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Preface

This book was written for students seeking an intermediate-level text in
resource economics. It presumes that students have had differential cal-
culus and intermediate microeconomics. It is designed to bridge the gap
between texts which require only introductory economics and those
which require graduate microeconomics and advanced methods of
dynamic optimization such as the maximum principle and dynamic 
programming.

This text employs first-order difference equations to describe the
change in a resource as it is harvested or extracted. Resource manage-
ment is cast as a problem of optimal allocation over time, or dynamic
optimization. The method of Lagrange multipliers is introduced to pose
such problems conceptually and to examine the conditions that optimal
management must satisfy. The unique and ideally appealing feature of
this text is the use of Microsoft Excel Spreadsheet and Solver, a non-
linear programming algorithm within Excel, to solve numerical prob-
lems. Numerical problems help students see the dynamic trade-offs
inherent in resource management and serve as a bridge from a general
model to an empirical study of a real-world resource management
problem. A familiarity with Excel is helpful but not essential. Chapter 2
introduces the student to Excel and shows how spreadsheets might be
set up so that Solver can determine the optimal extraction of a nonre-
newable resource or the optimal harvest of a renewable resource. By
working through the examples in the text and the exercises at the end
of each chapter the student will develop a feel and economic intuition
for dynamic allocation problems along with an ability to solve and inter-
pret numerical optimization problems.

The introductory chapter on basic concepts and Chapter 2 on solving
numerical problems are followed by four chapters which develop eco-
nomic models for the management of fisheries, forests, nonrenewable
resources, and stock pollutants. Chapter 7 reviews the basic concepts in
cost–benefit analysis on the way to a discussion of option value and the
evaluation of decisions that are risky and irreversible. Chapter 8 explores
the concept of sustainable development from several perspectives.
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Following Chapter 8 is an annotated Bibliography of the topics covered
in Chapters 1–8.

Policies which might improve the management of real-world resources
are also examined. These policies include the use of individual transfer-
able quotas in fisheries, the public acquisition of old-growth forest, emis-
sion taxes, and pollution permits. By working through the optimization
problems first, the student will have a firm understanding of the role
shadow prices play in optimal allocation. It is then easier to understand
how policies which can introduce shadow prices into markets where they
are absent are more likely to improve resource allocation than policies
which ignore the motives and behavior of firms or individuals who
harvest natural resources or generate residual wastes.

I would like to thank Jon Erickson and Chris Cole for their thorough
reading of an earlier draft, checking the spreadsheets in the text and the
answers to the numerical exercises at the end of each chapter.



CHAPTER 1

Basic Concepts

1.0 Renewable, Nonrenewable, and Environmental Resources

Economics might be defined as the study of how society allocates scarce
resources. The field of resource economics would then be the study of
how society allocates scarce natural resources such as stocks of fish,
stands of trees, fresh water, oil, and other naturally occurring resources.
A distinction is sometimes made between resource and environmental
economics, where the latter field is concerned with the way wastes are
disposed of and the resulting quality of air, water, and soil serving as
waste receptors. In addition, environmental economics is concerned with
the conservation of natural environments and biodiversity.

Natural resources are often categorized as being renewable or nonre-
newable. A renewable resource must display a significant rate of growth
or renewal on a relevant economic time scale. An economic time scale
is a time interval for which planning and management are meaningful.
The notion of an economic time scale can make the classification of
natural resources a bit tricky. For example, how should we classify a stand
of old-growth coast redwood or an aquifer with an insignificant rate of
recharge? Whereas the redwood tree is a plant, and can be grown com-
mercially, old-growth redwoods may be 800 to 1,000 years old, and their
remaining stands might be more appropriately viewed as a nonrenew-
able resource. Whereas the water cycle provides precipitation that will
replenish lakes and streams, the water contained in an aquifer with little
or no recharge might be more economically similar to a pool of oil (a
nonrenewable resource) than to a lake or reservoir that receives signif-
icant recharge from rain or melting snow.

A critical question in the allocation of natural resources is “How much
of the resource should be harvested (extracted) today?” Finding the
“best” allocation of natural resources over time can be regarded as a
dynamic optimization problem. In such problems it is common to try to
maximize some measure of net economic value, over some future
horizon, subject to the dynamics of the harvested resource and any other
relevant constraints. The solution to the dynamic optimization of a
natural resource would be a schedule or “time path” indicating the

1



2 1 Basic Concepts

optimal amount to be harvested (extracted) in each period. The optimal
rate of harvest or extraction in a particular period may be zero. For
example, if a fish stock has been historically mismanaged, and the current
stock is below what is deemed optimal, then zero harvest (a moratorium
on fishing) may be best until the stock recovers to a size at which a pos-
itive level of harvest is optimal.

Aspects of natural resource allocation are depicted in Figure 1.1. On
the right-hand side (RHS) of this figure we depict an ocean containing
a stock of fish. The fish stock at the beginning of period t is denoted by
the variable Xt, measured in metric tons. In each period the level of net
growth depends on the size of the fish stock and is given by the function
F(Xt). We will postpone a detailed discussion of the properties of F(Xt)
until Chapter 3. For now, simply assume that if the fish stock is bounded
by some “environmental carrying capacity,” denoted K, so that K ≥ Xt ≥
0, then F(Xt) might be increasing as Xt goes from a low level to where
F(Xt) reaches a maximum sustainable yield (MSY) at XMSY, and then
F(Xt) declines as Xt goes from XMSY to K. Let Yt denote the rate of
harvest, also measured in metric tons, and assume that net growth occurs
before harvest. Then, the change in the fish stock, going from period t
to period t + 1, is the difference Xt+1 - Xt and is given by the difference
equation

(1.1)

Note, if harvest exceeds net growth [Yt > F(Xt)], the fish stock declines
(Xt+1 - Xt < 0), and if harvest is less than net growth [Yt < F(Xt)], the fish
stock increases (Xt+1 - Xt > 0).

During period t, harvest, Yt, flows to the economy, where it yields a net
benefit to various firms and individuals. The stock left in the ocean forms
the inventory at the beginning of the next period: i.e., Xt+1. This future
stock also conveys a benefit to the economy, because it provides the basis
for future growth, and it is often the case that larger stocks will lower
the cost of future harvest. Thus, implicit in the harvest decision is a bal-
ancing of current net benefit from Yt and future benefit that a slightly
larger Xt+1 would provide the economy.

On the left-hand side (LHS) of Figure 1.1 we show an equation
describing the dynamics of a nonrenewable resource. The stock of
extractable ore in period t is denoted by Rt and the current rate of extrac-
tion by qt. With no growth or renewal the stock in period t + 1 is simply
the stock in period t less the amount extracted in period t, so Rt+1 = Rt -
qt. The amount extracted also flows into the economy, where it generates
net benefits, but in contrast to harvest from the fish stock, consumption
of the nonrenewable resource generates a residual waste, aqt, propor-

X X F X Yt t t t+ - = ( ) -1



Figure 1.1. Renewable, Nonrenewable, and Environmental Resources



4 1 Basic Concepts

tional to the rate of extraction (1 > a > 0). For example, if Rt were a
deposit of coal (measured in metric tons) and qt were the number of tons
extracted and burned in period t, then aqt might be the tons of CO2 or
SO2 emerging from the smokestacks of utilities or foundries.

This residual waste can accumulate as a stock pollutant, denoted Zt. If
the rate at which the pollutant is generated, aqt, exceeds the rate at which
it is assimilated (or decomposed), -gZt, the stock pollutant will increase,
(Zt+1 - Zt > 0), whereas if the rate of generation is less than assimilation,
then the stock will decrease. The parameter g is called the assimilation
or degradation coefficient, where 1 > g > 0. Not shown in Figure 1.1 are
the consequences of different levels of Zt. Presumably there would be
some social or external cost imposed on the economy (society). This is
sometimes represented through a damage function, D(Zt). Damage func-
tions will be discussed in greater detail in Chapter 6.

If the economy is represented by the box in Figure 1.1, then the natural
environment, surrounding the economy, can be thought of as providing
a flow of renewable and nonrenewable resources, and also various media
for the disposal of unwanted (negatively valued) wastes. Missing from
Figure 1.1, however, is one additional service, usually referred to as
amenity value. A wilderness, a pristine stretch of beach, or a lake with
“swimmable” water quality provides individuals in the economy with
places for observation of flora and fauna, relaxation, and recreation that
are fundamentally different from comparable services provided at a 
city zoo, an exclusive beach hotel, or a backyard swimming pool. The
amenity value provided by various natural environments may critically
depend on the location and rate of resource extraction and waste dis-
posal. Thus, the optimal rates of harvest, extraction, and disposal should
take into account any reduction in amenity values. In general, current
net benefit from, say, Yt or qt, must be balanced with the discounted
future costs from reduced resource stocks, Xt+1 and Rt+1, and any reduc-
tion in amenity values caused by harvest, extraction, or disposal of asso-
ciated wastes.

1.1 Discounting

When attempting to determine the optimal allocation of natural
resources over time one immediately confronts the issue of “time pref-
erence.” Most individuals exhibit a preference for receiving benefits now,
as opposed to receiving the same level of benefits at a later date. Such
individuals are said to have a positive time preference. In order to induce
these individuals to save (thus providing funds for investment), an inter-
est payment or premium, over and above the amount borrowed, must be



1.1 Discounting 5

offered. A society composed of individuals with positive time prefer-
ences will typically develop “markets for loanable funds” (capital
markets) where the interest rates which emerge are like prices and
reflect, in part, society’s underlying time preference.

An individual with a positive time preference will discount the value
of a note or contract which promises to pay a fixed amount of money at
some future date. For example, a bond which promises to pay $10,000 10
years from now is not worth $10,000 today in a society of individuals with
positive time preferences. Suppose you own such a bond.What could you
get for it if you wished to sell it today? The answer will depend on the
credit rating (trustworthiness) of the government or corporation promis-
ing to make the payment, the expectation of inflation, and the taxes that
would be paid on the interest income. Suppose the payment will be made
with certainty, there is no expectation of inflation, and there is no tax on
earned interest. Then, the bond payment would be discounted by a rate
that would approximate society’s “pure” rate of time preference. We will
denote this rate by the symbol d, and simply refer to it as the discount
rate. The risk of default (nonpayment), the expectation of inflation, or
the presence of taxes on earned interest would raise private market rates
of interest above the discount rate. (Why?)

If the discount rate were 3%, so d = 0.03, then the “discount factor” is
defined as r = 1/(1 + d) = 1/(1 + 0.03) ª 0.97.The present value of a $10,000
payment made 10 years from now would be $10,000/(1 + d)10 = $10,000r10

ª $7,441. This should be the amount of money you would get for your
bond if you wished to sell it today. Note that the amount $7,441 is also
the amount you would need to invest at a rate of 3%, compounded annu-
ally, to have $10,000 10 years from now.

The present-value calculation for a single payment can be generalized
to a future stream of payments in a straightforward fashion. Let Nt

denote a payment made in year t. Suppose these payments are made over
the horizon t = 0, 1, 2, . . . , T, where t = 0 is the current year (period) and
t = T is the last year (or terminal period).The present value of this stream
of payments can be calculated by adding up the present value of each
individual payment. We can represent this calculation mathematically as

(1.2)

Suppose that N0 = 0 and Nt = A for t = 1, 2, . . . , •. In this case we have
a bond which promises to pay A dollars every year, from next year until
the end of time. Such a bond is called a perpetuity, and with 1 > r > 0,
when d > 0, equation (1.2) becomes an infinite geometric progression
which converges to N = A/d. This special result might be used to approx-

N Nt t
t

t T

=
=

=

Âr
0
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imate the value of certain long-lived projects or the decision to preserve
a natural environment for all future generations. For example, if a pro-
posed park were estimated to provide A = $10 million in annual net ben-
efits into the indefinite future, it would have a present value of $500
million at d = 0.02.

The preceding examples presume that time can be partitioned into dis-
crete periods (for example, years). In some resource allocation problems,
it is useful to treat time as a continuous variable, where the future
horizon becomes the interval T ≥ t ≥ 0. Recall the formula for compound
interest. It says that if A dollars is put in the bank at interest rate d, and
compounded m times over a horizon of length T, then the value at the
end of the horizon will be given by

(1.3)

where n = m/d. If interest is compounded continuously, both m and n
tend to infinity and [1 + 1/n]n tends to e, the base of the natural loga-
rithm. This implies V(T) = A edT. Note that A = V(T)e-dT becomes the
present value of a promise to pay V(T) at t = T (from the perspective of
t = 0). Thus, the continuous-time discount factor for a payment at instant
t is e-dt, and the present value of a continuous stream of payments N(t)
is calculated as

(1.4)

If N(t) = A (a constant) and if T Æ •, equation (1.4) can be integrated
directly to yield N = A/d, which is interpreted as the present value of an
asset which pays A dollars in each and every instant into the indefinite
future.

Our discussion of discounting and present value has focused on the
mathematics of making present-value calculations. The practice of dis-
counting has an important ethical dimension, particularly with regard to
the way resources are harvested over time, the evaluation of investments
or policies to protect the environment, and more generally the way the
current generation weights the welfare and options of future generations.

In financial markets the practice of discounting might be justified by
society’s positive time preference and by the economy’s need to allocate
scarce investment funds to firms which have expected returns that equal
or exceed the appropriate rate of discount. To ignore the time prefer-
ences of individuals and to replace competitive capital markets by the
decisions of some savings/investment czar would likely lead to ineffi-
ciencies, a reduction in the output and wealth generated by the economy,

N N t e dtt
T

= ( ) -Ú d

0

V T A m A m A n
mT m T n T

( ) = +( ) = +( )[ ] = +( )[ ]1 1 1 1d d d d d
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and the oppression of what many individuals regard as a fundamental
economic right. The commodity prices and interest rates which emerge
from competitive markets are highly efficient in allocating resources
toward those economic activities which are demanded by the individu-
als with purchasing power.

Although the efficiency of competitive markets in determining the
allocation of labor and capital is widely accepted, there remain questions
about discounting and the appropriate rate of discount when allocating
natural resources over time or investing in environmental quality. Basi-
cally the interest rates that emerge from capital markets reflect society’s
underlying rate of discount, the riskiness of a particular asset or portfo-
lio, and the prospect of general inflation. These factors, as already noted,
tend to raise market rates of interest above the discount rate.

Estimates of the discount rate in the United States have ranged
between 2% and 5%.This rate will vary across cultures at a point in time
and within a culture over time. A society’s discount rate would in theory
reflect its collective “sense of immediacy” and its general level of devel-
opment. A society where time is of the essence or where a large fraction
of the populace is on the brink of starvation would presumably have a
higher rate of discount.

As we will see in subsequent chapters, higher discount rates tend to
favor more rapid depletion of nonrenewable resources and lower stock
levels for renewable resources. High discount rates can make invest-
ments to improve or protect environmental quality unattractive when
compared to alternative investments in the private sector. High rates of
discount will greatly reduce the value of harvesting decisions or invest-
ments that have a preponderance of their benefits in the distant future.
Recall that a single payment of $10,000 in 10 years had a present value
of $7,441 at d = 0.03. If the discount rate increases to d = 0.10, its present
value drops to $3,855. If the payment of $10,000 would not be made until
100 years into the future, it would have a present value of only $520 at
d = 0.03 and the minuscule value of $0.72 (72 cents) if d = 0.10.

The exponential nature of discounting has the effect of weighting near-
term benefits much more heavily than benefits in the distant future. If 75
years were the life span of a single generation, and if that generation had
absolute discretion over resource use and a discount rate of d = 0.10, then
the weight attached to the welfare of the next generation would be sim-
ilarly minuscule. Such a situation could lead the current generation to
throw one long, extravagant, resource-depleting party that left subse-
quent generations with an impoverished inventory of natural resources,
a polluted environment, and very few options to change their economic
destiny.
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There are some who would view the current mélange of resource 
and environmental problems as being precisely the result of tyrannical
and selfish decisions by recent generations. Such a characterization
would not be fair or accurate. Although many renewable resources 
have been mismanaged (such as marine fisheries and tropical rain
forest), and various nonrenewable resources may have been depleted 
too rapidly (oil reserves in the United States), the process, though nonop-
timal, has generated both physical and human capital in the form of
buildings, a housing stock, highways and public infrastructure, modern
agriculture, and the advancement of science and technology. These 
also benefit and have expanded the choices open to future generations.
Further, any single generation is usually closely “linked” to the two 
generations which preceded it and the two generations which will 
follow. The current generation has historically made sacrifices in their
immediate well-being to provide for parents, children, and grandchil-
dren. Although intergenerational altruism may not be obvious in the
functioning of financial markets, it is more obvious in the way we 
have collectively tried to regulate the use of natural resources and the
quality of the environment. Our policies have not always been effective,
but their motivation seems to derive from a sincere concern for future
generations.

Determining the “best” endowment of human and natural capital to
leave future generations is made difficult because we do not know what
they will need or want. Some recommend that if we err, we should err
on the side of leaving more natural resources and undisturbed natural
environments. By saving them now we derive certain amenity benefits
and preserve the options to harvest or develop in the future.

The process of discounting, to the extent that it reflects a stable time
preference across a succession of generations is probably appropriate
when managing natural resources and environmental quality for the
maximum benefit of an ongoing society. Improving the well-being of the
current generation is a part of an ongoing process seeking to improve
the human condition. And when measured in terms of infant mortality,
caloric intake, and life expectancy, successive generations have been
made better off.

Nothing in the preceeding discussion helps us in determining the
precise rate of discount which should be used for a particular natural
resource or environmental project. In the analysis in future chapters 
we will explore the sensitivity of harvest and extraction rates, forest 
rotations, and rates of waste disposal to different rates of discount.
This will enable us to get a numerical feel for the significance of 
discounting.
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1.2 A Discrete-Time Extension of the Method of 
Lagrange Multipliers

In subsequent chapters we will encounter many problems where we wish
to maximize some measure of economic value subject to resource
dynamics. Such problems can often be viewed as special cases of a more
general dynamic optimization problem. The method of Lagrange multi-
pliers is a technique for solving constrained optimization problems. It is
regularly used to solve static allocation problems, but it can be extended
to solve dynamic problems as well. We will work through the mathe-
matics of a general problem in this section. In Chapter 2 we will show
how numerical problems can be posed and solved using Excel’s Solver.
Chapters 3–8 will examine how these problems arise when seeking to
maximize the net value from renewable and nonrenewable resources, the
control of stock pollutants, risky investment, and the selection of activi-
ties which might promote sustainable development.

Let Xt denote a physical measure of the size or amount of some
resource in period t. In a fishery Xt might represent the number of metric
tons of some (commercially valued) species. In a forest it may represent
the volume of standing (merchantable) timber.

Let Yt denote the level of harvest, measured in the same units as Xt.
For renewable resources we will frequently assume that resource dynam-
ics can be represented by the first-order difference equation (1.1). In that
equation Xt+1 - Xt = F(Xt) - Yt, where F(Xt) was the net growth function
for the resource. It assumed that the net growth from period t to period
t + 1 was a function of resource abundance in period t. We will assume
that the net growth function has continuous first- and second-order
derivatives. The current resource stock is represented by the initial con-
dition, X0, denoting the stock at t = 0.

The net benefits from resource abundance and harvest in period t are
denoted by pt and given by the function pt = p(Xt,Yt), which is also
assumed to have continuous first- and second-order derivatives. Higher
levels of harvest of the resource stock will normally yield higher net ben-
efits. The resource stock, Xt, may enter the net benefit function because
a larger stock conveys cost savings during search and harvest, or because
an intrinsic value is placed on the resource itself.

It is common practice to compare different harvest strategies, say Y1,t to
Y2,t, by computing the present value of the net benefits that they produce.
Note from equation (1.1) that different harvest strategies will result in dif-
ferent time-paths for the resource stock, Xt. Suppose Y1,t results in X1,t and
Y2,t results in X2,t, and we wish to calculate present value over the horizon
t = 0, 1, 2, . . . , T. As in the previous section we will denote the discount



10 1 Basic Concepts

factor by r = 1/(1 + d), where d is called the periodic rate of discount. In
this problem we will assume a constant, time-invariant rate of discount,
which implies that the discount factor is also time-invariant. It is not diffi-
cult to allow for changes in the discount rate over time. You would,
however, need to be able to predict the future values for this rate.

The present value comparison for the preceding two harvest strategies
would require a comparison of

In the first summation we are calculating the present value of the harvest
schedule Y1,t and the resulting biomass levels, X1,t. We would want to
know if this summation is greater than, less than, or equal to the present
value calculation for the second harvest schedule, Y2,t, which results in
X2,t.

Frequently we will seek the “best” harvest policy: that is, a harvest
strategy that maximizes the present value of net benefits. Candidate
harvest strategies must also satisfy equation (1.1) describing resource
dynamics. Mathematically we wish to find the harvest schedule, Yt, which
will

Thus, the objective is to maximize p, the present value of net benefits,
subject to the equation describing resource dynamics and the initial con-
dition, X0.

There are likely to be an infinite number of feasible harvest strategies.
How can we find the optimal Yt? Will it be unique? If T Æ •, will it ever
be the case, after some transition period, that the level of harvest and
the resource stock are unchanging through time and the system attains
a “steady state”? These are difficult but important questions. Let’s take
them one at a time.

Recall from calculus that when seeking the extremum (maximum,
minimum, or inflection point) of a single variable function, a necessary
condition requires that the first derivative of the function, when evalu-
ated at a candidate extremum, be equal to zero. Our optimization
problem is more complex because we have to determine the T + 1 values
for Yt which maximize p, and we have constraints in the form of our first-
order difference equation and the initial condition X0. We can, however,

Maximize =
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 Given
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follow a similar procedure after forming the appropriate Lagrangian
expression for our problem.This is done by introducing a set of new vari-
ables, denoted lt, called Lagrange multipliers. In general, every vari-
able defined by a difference equation will have an associated Lagrange
multiplier. This means that Xt will be associated with lt, Xt+1 will be 
associated with lt+1, and so on. It will turn out that the new variables, lt,
will have an important economic interpretation. They are also called
“shadow prices” because their value indicates the marginal value of an
incremental increase in Xt in period t.

We form the Lagrangian expression by writing the difference equa-
tion in implicit form, Xt + F(Xt) - Yt - Xt+1 = 0, premultiplying it by rt+1

lt+1, and then adding all such products to the objective function. The
Lagrangian expression for our problem takes the form

(1.5)

The rationale behind writing the Lagrangian this way is as follows: Since
the Lagrange multipliers are interpreted as shadow prices which measure
the value of an additional unit of the resource, we can think of the dif-
ference equation, written implicitly, as defining the level of Xt+1 that will
be available in period t + 1. The value of an additional (marginal) unit
of Xt+1 in period t + 1 is lt+1. This value is discounted one period, by r, to
put it on the same present-value basis as the net benefits in period t.Thus,
the expression in the curly brackets, {•}, is the sum of net benefits in
period t and the discounted value of the resource stock (biomass) in
period t + 1. This sum is then discounted back to the present by rt and
similar expressions are summed over all periods.

After forming the Lagrangian expression we proceed to take a series
of first-order partial derivatives and set them equal to zero. Collectively
they define the first-order necessary conditions, analogous to the first-
order condition for a single-variable function. They will be used in
solving for the optimal levels of Yt, Xt, and lt in transition and, if T Æ •,
at a steady state, if one exists. For our problem the necessary conditions
require

(1.6)

(1.7)

(1.8)
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The partial of the Lagrangian with respect to Xt may seem a bit puzzling.
When we examine the Lagrangian and the representative term in period
t, we observe Xt as an argument of the net benefit function p(Xt,Yt), by
itself, and as the sole argument in the net growth function, F(Xt). These
partials appear in the brackets {•} in equation (1.7). Where did the last
term, -rtlt, come from? If we think of the Lagrangian as a long sum of
expressions, and if we wish to take the partial with respect to Xt, we need
to find all the terms involving Xt. When we back up one period, from t
to t - 1, most of the terms are subscripted t - 1, with the notable excep-
tion of the last term, which becomes -rtltXt, with partial derivative -rtlt.

In addition to equations (1.6)–(1.8), which hold for t = 0, 1, . . . ,T, there
are two boundary conditions. The first is simply the initial condition that
X0 is known and given. To make things more concrete, suppose X0 = A,
where A is a known, positive constant. The second boundary condition
for this problem is a condition on lT+1. Recall that the Lagrange multi-
pliers were to be interpreted as shadow prices. Thus, lT+1 would be the
marginal value of one more unit of XT+1. Let’s suppose we are free to
choose lT+1 as some nonnegative number B, so that lT+1 = B ≥ 0. Then,
along with X0 = A and lT+1 = B, equations (1.6)–(1.8) can be thought of
as a system of (3T + 5) equations in (3T + 5) unknowns. The unknowns
are the optimal values for Yt, t = 0, 1, . . . , T, Xt, t = 0, 1, . . . , T + 1, and
lt, t = 0, 1, . . . , T + 1.

Equations (1.6)–(1.8) are likely to be nonlinear; this means there could
be more than one solution. It is also possible that there could be no solu-
tion in the sense that there is no set of values Yt, Xt, lt which simultane-
ously solve (1.6)–(1.8) and the boundary conditions. It is possible to
impose some curvature assumptions on p(•) and F(•) which will guar-
antee a unique solution for A > 0 and B ≥ 0. The details of these condi-
tions are a bit technical and need not concern us here. Of concern is the
economic interpretation of equations (1.6)–(1.8).

We can simplify and rewrite the first-order conditions to facilitate their
interpretation.

(1.9)

(1.10)

(1.11)

The LHS of equation (1.9) is the marginal net benefit of an additional
unit of the resource harvested in period t. For a harvest strategy to be
optimal this marginal net benefit must equal the opportunity cost, also
called user cost. User cost is represented by the term rlt+1, equal to the
discounted value of an additional unit of the resource in period t + 1.

X X F X Yt t t t+ = + ( ) -1

l ∂p ∂ rlt t tX F= ( ) + + ¢( )[ ]+• •1 1

∂p ∂ rl•( ) = +Yt t 1
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Thus equation (1.9) requires that we account for two types of costs, the
standard marginal cost of harvest in the current period (which has
already been accounted for in ∂p(•)/∂Yt) and the future cost that results
from the decision to harvest an additional unit of the resource today,
which is rlt+1. In some problems we may see this condition written p =
∂C(•)/∂Yt + rlt+1, implying that price today should equal marginal cost
(∂C(•)/∂Yt) plus user cost, rlt+1,

On the LHS of equation (1.10) we have lt, the value of an additional
unit of the resource, in situ, in period t. When a resource is optimally
managed, the marginal value of an additional unit of the resource in
period t equals the current period marginal net benefit, ∂p(•)/∂Xt, plus
the marginal benefit that an unharvested unit will convey in the next
period, rlt+1[1 + F¢(•)]. Note that this last term is the discounted value
of the marginal unit itself plus its marginal growth.

Equation (1.11) is simply a rewrite of equation (1.1), but now obtained
from the partial of the Lagrangian with respect to rlt+1.This should occur
in general: that is, the partial of the Lagrangian with respect to a dis-
counted multiplier should yield the difference equation for the associ-
ated state variable, in this case the resource stock.

What if T Æ •? In this case we have an infinite-horizon problem.
Equations (1.6)–(1.8) become an infinitely large system of equations in
an infinite number of unknowns, a potentially daunting problem. Under
certain conditions such problems will have a transitional period, say for
t ≥ t ≥ 0, where Yt, Xt, and lt are changing, followed by a period • > t >
t, where Yt, Xt, and lt are unchanging. In this infinitely long latter period
the variables or “system” is said to have reached a steady state because
Xt+1 = Xt = X*, Yt+1 = Yt = Y* , and lt+1 = lt = l*. The triple [X*,Y*, l*] is
called a steady-state optimum.

It is often possible to solve for the steady-state optimum by evaluat-
ing the first-order necessary conditions when Xt, Yt, and lt are unchang-
ing. In steady state we can dispense with all the time subscripts in
equations (1.6)–(1.8), which simply become three equations in three
unknowns, X*, Y*, and l*, and may be written as

(1.12)

(1.13)

(1.14)

Equation (1.13) requires a little bit of algebra and use of the definition
r = 1/(1 + d). It can be further manipulated to yield

(1.15)- - ¢( )[ ] = - ( )rl d ∂p ∂F X X•

Y F X= ( )
rl d ∂p ∂1 1+ ¢( ) - +( )[ ] = - ( )F X X•

rl ∂p ∂= ( )• Y
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Multiplying both sides by -1, substituting (1.12) into (1.15), and isolat-
ing d on the RHS yields

(1.16)

Equation (1.16) has been called the “fundamental equation of renew-
able resources.” Along with equation (1.14) it will define the optimal
steady-state values for X and Y.

Equation (1.16) has an interesting economic interpretation. On the
LHS, the term F ¢(X) my be interpreted as the marginal net growth rate.
The second term, called the “marginal stock effect,” measures the mar-
ginal value of the stock relative to the marginal value of harvest.The two
terms on the LHS sum to what might be interpreted as the resource’s
internal rate of return. Equation (1.16) thus requires that the optimal
steady-state values of X and Y cause the resource’s internal rate of return
to equal the rate of discount, d, which presumably equals the rate of
return on investments elsewhere in the economy. From this capital-the-
oretic point of view, the renewable resource is viewed as an asset, which
under optimal management will yield a rate of return comparable to that
of other capital assets. Are all renewable resources capable of yielding
an internal rate of return equal to the rate of discount? We will revisit
this question in Chapter 3.

Equation (1.14) results when equation (1.1) is evaluated at steady
state. It has an obvious and compelling logic. At the bioeconomic
optimum, and in fact at any sustainable equilibrium, harvest must equal
net growth. If this were not the case, if net growth exceeded harvest or
if harvest exceeded net growth, the resource stock would be changing
and we could not, by definition, be at a steady-state equilibrium. Thus 
Y = F(X) at any sustainable equilibrium, including the bioeconomic
optimum.

Equation (1.16), by the implicit function theorem, will imply a 
curve in X - Y space. Under a plausible set of curvature assumptions 
for F(X) and p(X,Y), the slope of this curve will be positive. Its exact
shape and placement in X - Y space will depend on all the bioeconomic
parameters in the functions F(X ) and p(X,Y ), and on the discount rate
d.

Several possible curves (for different underlying parameters) are
labeled f1, f2, and f3 in Figure 1.2. The net growth function is assumed
to take a logistic form where Y = F(X ) = rX(1 - X/K). The intersection
of F(X ) and a particular f(X ) would represent the solution of equations

¢( ) +
( )
( ) =F X

X
Y

∂p ∂
∂p ∂

d
•
•
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(1.14) and (1.16) and therefore depict the steady-state bioeconomic
optimum.

Figure 1.2 shows four equilibria: three bioeconomic optima and
maximum sustainable yield (MSY). The bioeconomic optimum at the
intersection of f1 and F(X) would imply that extinction is optimal! Such
an equilibrium might result if a slow-growing resource were confronted
by a high rate of discount and if harvesting costs for the last members of
the species were less than their market price.

The intersection of F(X) and f2 implies an optimal resource stock of
X*

2, positive, but less than K/2, which supports MSY = rK/4. This would

Figure 1.2. Maximum Sustainable Yield (MSY) and Three Bioeco-
nomic Optima
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be the case if the marginal stock effect is less than the discount 
rate. (Look at equation [1.16] and see if you can figure out why this is
true.)

The curve f3 implies a large marginal stock effect, greater in magni-
tude than the discount rate, d. This would occur if smaller fishable stocks
significantly increased cost. In such a case it is optimal to maintain a large
stock at the bioeconomic optimum, even greater than the maximum sus-
tainable yield stock, K/2. The conclusion to be drawn from Figure 1.2 is
that the optimal stock, from a bioeconomic perspective, may be less than
or greater than the stock level supporting maximum sustainable yield.
Its precise location will depend on the forms for p(X,Y) and F(X) and
the relevant bioeconomic parameters.

In our discussion of the infinite-horizon problem we mentioned 
that for certain problems the dynamics of the system has two stages, a
transitional stage, where the variables are changing, and a steady 
state, where the variables are unchanging. Equations (1.14) and (1.16),
when plotted in X - Y space, would define the steady-state values X*
and Y*. A possible transition (approach) to X* from X0 < X* is shown
in Figure 1.3. This might be the approach and steady state in a single-
species fishery where open access or mismanagement allowed the stock
to be overfished to a suboptimal level. By restricting harvest to a level
less than net growth [Yt < F(Xt)], the fish stock would grow, reaching X*
at t = t.

Although the general problem has the virtue of providing some broad
and important insights into resource management from an economic per-
spective, its presentation has been tedious and abstract. In the next
chapter we will solve some numerical problems using Excel’s Solver.
These numerical problems, and the problems found elsewhere in this
book, will, it is hoped, make the basic concepts and the economic
approach introduced in this chapter more operational, and thus more
meaningful.

1.3 Questions and Exercises

Q1.1 What is the central subject in the field of resource economics?

Q1.2 What is the economic distinction between renewable and nonre-
newable resources?

Q1.3 What is meant by the term user cost? If user cost increases, what
happens to the level of harvest or extraction today?

E1.1 Suppose the dynamics of a fish stock are given by the difference
equation (written in “iterative” form) Xt+1 = Xt + rXt(1 - Xt/K) - Yt, where
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X0 = 0.1, r = 0.5, and K = 1. Management authorities regard the stock as
being dangerously depleted and have imposed a 10-year moratorium on
harvesting (Yt = 0 for t = 0, 1, 2, . . . , 9). What happens to Xt during the
moratorium? Plot the time path for Xt (t = 0, 1, 2, . . . , 9) in t - X space.
(Hint: Set up an Excel Spreadsheet.)

E1.2 After the moratorium the management authorities are planning 
to allow fishing for 10 years at a harvest rate of Yt = 0.125 (for t =
10, 11, . . . , 19). Suppose the net benefit from harvest is given by pt =
pYt - cYt/Xt, where p = 2, c = 0.5, and d = 0.05. What is the present value
of net benefits of the 10-year moratorium followed by 10 years of fishing
at Yt = 0.125? (Hint: Modify the Excel Spreadsheet of E1.1.)

Figure 1.3. An Approach to the Steady-State Optimum X*
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E1.3 In steady state the fishery will yield Y = F(X) = rX(1 - X/K) and
an annual net benefit of p(X,Y) = (p - c/X)Y.Take the derivatives F ’(X),
∂p(•)/∂X, and ∂p(•)/∂Y, substitute them and Y = rX(1 - X/K) into equa-
tion (1.16), and simplify the LHS. We will make use of the result in
Chapter 3.



CHAPTER 2

Solving Numerical Allocation Problems

2.0 Introduction and Overview

Numerical allocation problems can serve at least two functions. First,
they can make theory and methods less abstract and more meaningful.
Second, they can serve as a useful bridge from theory and general models
to the actual analysis of “real-world” allocation problems.

By a numerical problem we mean a problem in which functional forms
have been specified and all relevant parameters and initial conditions
have been estimated or calibrated. Recall in Section 1.2 that the general
net benefit function took the form pt = p(Xt,Yt). The specific functional
form adopted in E1.2 was pt = pYt - cYt/Xt, where p > 0 was a parame-
ter denoting the per unit price for fish at the dock, Yt was the level of
harvest in period t, c > 0 was a cost parameter reflecting the cost of effort
for a particular fishing technology, and Xt was the fishable stock in period
t. In a numerical problem we would need values for p and c which might
be econometrically estimated from cross-sectional or time-series data, or
calibrated on the basis of knowledge of a particular vessel or fleet of
vessels.

Numerical analysis might involve both the simulation and the opti-
mization of a dynamic system. By simulation we will usually mean the
forward iteration of one or more difference equations. For example, in
E1.1, you were told that a fish stock evolved according to the equation
Xt+1 - Xt = rXt(1 - Xt/K) - Yt, or in iterative form Xt+1 = Xt + rXt(1 - Xt/K)
- Yt. With numerical values for r, K, and X0, it is relatively simple to use
spreadsheet software on a personal computer to determine the dynamic
implications for the fish stock from a particular (numerical) schedule of
harvests, Yt, over some future horizon t = 0, 1, . . . , T. Simulation analy-
sis is frequently referred to as a “what if” analysis. If we allow this level
of harvest over the next 10 years, what will happen to the fish stock?

Optimization asks the question “What’s best?” Economists are always
wondering what’s best. What is the best mix of inputs for a firm seeking
to produce a particular level of output? What is the best allocation of a
consumer’s limited budget? What conditions describe an optimal alloca-
tion of resources and distribution of output for an economy? What is the

19



20 2 Solving Numerical Allocation Problems

optimal level for a public good? What is the optimal harvest schedule
for a fish stock?

Of course, what’s best depends on (1) your objectives, (2) current
resource abundance, (3) available technology, and (4) the dynamic
response of the resource to harvesting. There are typically a number of
possible objectives for resource management, but for a well-defined opti-
mization problem, a single objective or a weighted sum of multiple objec-
tives will need to be specified. Selection of a particular objective or a set
of weights for the relevant multiple objectives is a value judgment. One
can argue for the compelling nature of a particular objective, but it will
still amount to a normative or subjective decision. Thus, optimization,
whether conducted by economic agents or by a social planner, is said to
be a normative exercise.

Showing students how to pose and solve dynamic allocation problems
has been difficult until recently, when the developers of spreadsheet soft-
ware started to include nonlinear programming algorithms in their menu
of spreadsheet options. Within the context of a spreadsheet (which can
be thought of as a large matrix) the nonlinear programming algorithm
can seek to maximize or minimize the value in a particular cell, by chang-
ing the values in one or more related cells, while trying to satisfy con-
straints on the values or relationships between other cells. Consider the
stylized spreadsheet in Spreadsheet 2.1.

This spreadsheet (or worksheet) is a matrix with 19 rows and 4
columns (A–D). In organizing our worksheets we will typically list the
parameters to the problem in column A and assign them values in
column B. In this hypothetical worksheet we have three parameters and
a Lagrange multiplier, or shadow price, l10. In column B the entries #1,
#2, #3, and #4 indicate that we would be assigning numerical values to
the three parameters and to l10.

Leaving row 5 empty allows us to separate the set of parameters from
the body of the worksheet. In cell A6 we introduce the heading “t” and
enter below it the numbers 0, 1, . . . , 10, indicating our optimization
horizon will have T = 9, and that we are including T + 1 = 10, in order to
assign a weight (shadow price) to the resource stock in period 10 (X10).
In cell B6 we place the heading “Yt” above the 10 numerical values (#5,
#6, . . . , #14), which will be the harvest schedule we wish to simulate or
the initial guess for the optimal harvest schedule we wish to find.

In cell C6 we introduce the heading “Xt.” The initial condition, X0, will
be a known, given number indicated by #15 in cell C7. The other values
of Xt are determined by formulas based on net growth and harvest in the
previous period. For example, X1 = X0 + rX0(1 - X0 /K) - Y0 might be a
formula we would want to enter in cell C8, where r might be “parame-
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ter 1” and K might be “parameter 2.” If this were the case, then in cell
C8 we would type

(2.1)

Equation (2.1) makes use of the worksheet language used in
Microsoft’s Excel. Other spreadsheet softwares use a similar language.
Excel is available for MS Windows and Macintosh operating systems. In
writing worksheet formulas, cells may be referenced with or without
dollar signs ($) prefacing the column and row address.We will often wish
to keep parameter values unchanged when using certain worksheet com-
mands, like the useful “Fill Down” command. If the value of parameter
1 is to be the same regardless of where it appears in the worksheet, we
will preface the cell that contains its numerical value with dollar signs
before the column and row address. Thus, the value for parameter 1
becomes $B$1. When a cell address is written without dollar signs and a
Fill Down command is used, Excel will assume we wish to iterate the
formula, incrementing the row number by 1 for each cell below the high-
lighted cell at the top of the Fill Down command. This is a useful con-
vention and will save you the time it would take to write each formula
in an iteration.

  = + ( )C7 $B$1*C7* 1-C7 $B$2 -B7

Spreadsheet 2.1
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In equation (2.1) addition, subtraction, multiplication, and division are
accomplished by the operators +, -, *, and /. Note also that C7 is the
address for our initial condition, X0; $B$2 is the cell containing the value
of parameter 2 (K); and B7 contains the harvest level in period zero (Y0).
If you pressed the mouse while pointing at cell C8 and dragged the cursor
down to cell C17 before releasing, you would be selecting cells C8
through C17. By pressing on the edit menu, dragging, and releasing on
the Fill Down command, Excel will enter all the correct formulas for X2,
X3, . . . , X10.The formula in cell C17 (calculating the value for X10) should
read

(2.2)

In cell D6 we introduce the column heading “PVNBt” to indicate that
the formulas below the heading will calculate the present value of net
benefits in period t. We will see in the next sections how discounting can
be appropriately coded and how the Fill Down command can be used to
avoid having to write equations which iterate in a recursive fashion. Note
that in cell B17 we have arbitrarily imposed a zero level of harvest in t
= 10. We could have left this cell blank, as it will not typically enter
present-value calculations for the horizon t = 0, 1, . . . , 9. We do calculate
the value for X10 in cell C17 and leave open the option of calculating its
present value according to the expression r10l10X10 in cell D17. Recall
that for this problem we are treating l10 as a parameter which allows us
subjectively to weight the value of the marginal fish, in the water, in
period 10. This approach will be useful in moderating the “end of the
world” effect which is typically encountered in finite-horizon optimiza-
tion problems. This aspect will also be discussed in greater detail in the
next two sections.

Finally, in cell C19 we indicate that in cell D19 we will be calculating
the present value of all net benefits (PVNB). This will typically be the
sum of the calculations under PVNBt, D7 through D17 in this hypo-
thetical worksheet. Recall that the numbers we entered under Yt repre-
sented a candidate harvest schedule. Those values determined, in part,
the values for Xt and the present values rtp(Xt,Yt) under the heading
PVNBt. The present-value calculation which would appear in cell D19
would tell us the present value of the particular harvest schedule with
the numbers #5, #6, . . . , #14. The resulting spreadsheet would depict 
the simulation of this particular harvest schedule. If we wish to find the
optimal harvest schedule, we may tell Excel’s Solver to maximize the
value in cell D19 by changing the harvest values in cells B7 through B16,
subject to certain constraints. At this point we are ready to work through
the details of two numerical problems.

  = + ( )C16 $B$1*C16* 1-C16 $B$2 -B16
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2.1 An Optimal Depletion Problem

Our first numerical example will be a simple depletion problem. Suppose
you own a mine where the initial reserves have been normalized to R0 =
1. You wish to determine the extraction rates, qt, which will maximize the
present value of net benefits over the 10-year horizon t = 0, 1, . . . , 9. The
net benefit function is pt = ln(1 + qt), where ln(•) is the natural log oper-
ator. The discount rate is d = 0.05, and, for starters, we will assume that
any reserves left over in period 10 have a value of zero, so that l10 = 0.
Our initial worksheet is shown in Spreadsheet 2.2.

In Column A, rows 1–3, we list the parameters delta (d), rho (r), and
lambda 10 (l10). With d assigned the value of 0.05 in cell B1 we write the
formula =1/(1+$B$1) in cell B2 to define the parameter value for the dis-
count factor, r. The value of zero for l10 appears in cell B3.

In the body of the spreadsheet we define the headings t, qt, Rt, and
PVNBt in row 5. Under the period heading, t, we can enter zero in A6
and then use the “Series Option” to generate period indices 1, 2, . . . , 10
in cells A7–A16. Under the heading qt we enter the value 0.1 in cell B6
and then use the Fill Down command under the Edit Menu to enter 0.1
in cells B7–B15. We enter a zero in B16 implying q10 = 0. You could also
leave B16 empty. Under the heading Rt we enter 1 in cell C6 to indicate
our initial condition is R0 = 1. In cell C7 we enter the formula =C6-B6

Spreadsheet 2.2
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and then after pressing the mouse while pointing at C7, dragging, and
releasing on C16, we can use Fill Down to enter all the recursive for-
mulas for R2, R3, . . . , R10. If you’ve done it correctly you should get
reserves declining linearly in increments of 0.1 and you should be able
to click on cell C16 and in the formula bar see =C15-B15.

Under the heading PVNBt we will enter the formulas calculating the
present value of net benefits from qt and any leftover X10. In cell D6 we
enter the formula =($B$2^A6)*LN(1+B6) Note: The exponent operator
is the “^”. Use the Fill Down command to enter this formula recursively
in cells D7 through D15. Did you get the same numbers as in Spread-
sheet 2.2?

In cell D16 enter the formula =($B$2^A16)*$B$3*$C$16. This 
is the spreadsheet equivalent of r10l10X10, which, with l10 = 0, yields a
value of 0 in cell D16. We will change l10 to a positive parameter value
momentarily.

Finally, in cell C18 enter PVNB=, and in cell D18 enter the formula
=SUM($D$6:$D$16). This formula tells Excel to sum the present value
calculations in cells D6 through D16. Your spreadsheet should now be
identical to Spreadsheet 2.2 and we are ready to maximize PVNB.

Click and release on cell D18, which gives the PVNB for an extrac-
tion schedule of qt = 0.1, t = 0, 1, . . . , 9. Now load Solver by clicking and
dragging on the menu which contains Solver, and releasing when Solver
is highlighted. (The exact location of Solver will depend on what version
of Excel you are running.)

It will take Excel a few seconds to load Solver. When loading is com-
pleted, a dialogue box entitled “Solver Parameters” will appear. At the
top left Solver will indicate that $D$18 has been designated as the Set
Cell and that the preset operation is to maximize the value in this cell
(the Max option is active by default). You now need to tell Solver what
cells it can change while seeking to maximize $D$18. Click in the box
below the label “By Changing Cells” and enter $B$6:$B$15. This tells
Solver that it can change our candidate values of qt, currently set at 0.1.
The remaining box permits you to enter any additional constraints. Click
and release the Add button and in the constraint box enter $B$6:$B$15,
choose >=, and enter 0. This constrains the qt to be nonnegative. Click
and release the Add button again and this time enter $C$16, choose >=,
and enter 0. This constrains the remaining reserves in T + 1 = 10 to be
nonnegative, thus preventing Solver from extracting more ore than was
initially available to extract.

To summarize, we are maximizing the value in $D$18 by changing the
values in cells $B$6 through $B$15 and constraining those values (cor-
responding to qt) and $C$16 (corresponding to X10) to be nonnegative.
Click and release on the Solve button and Solver’s nonlinear program-
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ming algorithm swings into action. After 10 trials (iterations) Solver
announces that it has found a solution and that all constraints and opti-
mality conditions are satisfied. The solution is shown in Spreadsheet 2.3.

The first thing to note is that the value in cell D18 has been increased
from approximately 0.773 in Spreadsheet 2.2 to approximately 0.840 in
Spreadsheet 2.3. The second thing to note is that initial values of qt = 0.1
for t = 0, 1, . . . , 9 have been changed to q0 = 0.313, q1 = 0.251, q2 = 0.191,
q3 = 0.135, q4 = 0.080, q5 = 0.029, and q6 = q7 = q8 = q9 = 0. Thus, Solver
says if you are maximizing the present value of net benefits, when the
discount rate is d = 0.05, you have high rates of extraction early on, and
exhaustion by period 6 (R6 = 0).

Zero values for q6, q7, q8, and q9 are sometimes called “corner solu-
tions,” and they necessitate a modification of the first-order necessary
condition discussed in Chapter 1. The Lagrangian for this problem may
be written

(2.3)

and if qt > 0 the ∂L/∂qt = 0 implies 1/(1 + qt) = rlt+1. When Rt > 0, the
∂L/∂Rt = 0 implies rlt+1 = lt, so 1/(1 + q0) = rl1 = l 0 = 0.761. If it is optimal
to set a particular qt = 0, the first-order condition becomes what is called
a Kuhn–Tucker condition and takes the form [1/(1 + qt) - rlt+1]qt = 0. For
this example, if the marginal net benefit, equal to 1/(1 + qt), is less than
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user cost, rlt+1, then extraction in period t should be zero! Thus, the first-
order conditions presented in Chapter 1 are only correct if all Yt and Xt

(harvests and fish stocks) are optimally positive.
The calculation that l 0 = 0.761 has an interesting interpretation. It is

the value of having slightly larger initial reserves, R0. Knowing l 0 we can
calculate lt when the optimal Rt > 0, since ∂L/∂Rt = 0 implies rl t+1 = lt,
which in turn implies l t = (1 + d)tl 0. This says that the shadow price on
remaining reserves is increasing at the rate of discount when the resource
is being optimally extracted. We will return to this result in Chapter 5.

The solution in Spreadsheet 2.3 assumes l10 = 0 and there is no weight
attached to reserves in t = 10. A zero weight on remaining resources in
t = 10 is akin to saying that the world ends after t = 9. This result pro-
vides a strong incentive to use up anything of value before the end of
the world. In setting up our problems thus far, we have allowed for the
possibility of assigning a weight to resources at the end of the optimiza-
tion horizon. In Chapter 1 we allowed for the possibility of setting lT+1

= B ≥ 0. Increases in B will place greater weight on retaining resources
for use (optimization) after the current horizon.

In Spreadsheet 2.4 we show the results when l10 = 1.4, and Solver is
initiated from qt = 0.1 for t = 0, 1, . . . , 9. Remaining reserves in t = 10
(R10) are weighted (multiplied) by l10, discounted by r10, and added to

Spreadsheet 2.4
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the discounted net benefits from earlier periods. The constraints are
unchanged.

After 22 iterations Solver announces it has found a solution that sat-
isfies all constraints and optimality conditions. By assigning a weight of
l10 = 1.4 to R10 initial extraction rates are reduced, falling to zero in
periods 4 through 9, thus maintaining reserves of 0.668 for the next opti-
mization horizon. Although a positive weight on the resource stock in
period T + 1 has the anticipated conservation effect, it must be remem-
bered that this weight has an implicit opportunity cost in the form of
forgone discounted net benefits in the current optimization problem.
Now l 0 = 1/(1 + q0) = 0.859, which is the marginal value (shadow price)
of a positive increment in R0.

2.2 An Optimal Harvest Problem

In our second example we will consider a fishery where population
dynamics are given by the difference equation Xt+1 - Xt = F(Xt) - Yt. We
have seen that treating lT+1 as a choice variable allows us to place a sub-
jective weight on the resource stock in period T + 1. Larger values of lT+1

will normally lead to higher stock levels at the beginning of period T +
1, and thus a higher inventory from which to start the next round of
resource management (optimization). Higher resource inventories will
usually have an opportunity cost in the form of lower extraction or
harvest benefits during the current management (optimization) problem.
The expression rT+1lT+1XT+1 can be thought of as a type of final function.

There is another final function which might be used to approximate
the solution of an infinite-horizon, renewable resource problem. Suppose
in periods t ≥ T + 1 we required sustainability in the harvest of the renew-
able resource. Specifically, suppose that the harvest in periods t ≥ T + 1
had to equal net growth: i.e., Yt = Ȳ = F(XT+1), where the stock XT+1 sup-
ports the sustainable harvest Ȳ, and both are constant.

If the net benefit function is pt = p(Xt,Yt), then in each period net
benefit is p̄ = p(XT+1,F(XT+1)), also a constant. What is the present value,
in period T + 1, of sustainably harvesting XT+1? It will be given by the
following expression.

Note: Because p̄ = p(XT+1,F(XT+1)) is a constant we can take it outside the
first summation, and because we have an infinite horizon we can reindex
the summation from t = T + 1 to • to t = 0 to • and get the same con-
vergent series [1 + r + r2 + . . .] = (1 + d)/d since r = 1/(1 + d).
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Now suppose a resource manager were told to maximize the present
value of net benefits over the finite horizon, t = 0, 1, . . . , T, but with 

the final function . The

optimization problem may be formally stated as

In essence we’re telling the resource manager that she is free to choose
the harvest levels Yt, t = 0, 1, . . . , T, but that whatever the resulting value
of XT+1, that stock level must be sustainably harvested forever. Such a
final function should give some weight to XT+1, and in some cases the
values chosen for Yt, t = 0, 1, . . . , T will approximate the optimal
approach from X0 to the bioeconomic optimum (X*,Y*,l*). To see how
this might work, consider the following numerical example.

Suppose our net benefit function is a quadratic in Yt, taking the form
p(Yt) = aYt - (b/2)Y 2

t, where a > b > 0. We saw in Chapter 1 that the
steady-state optimal stock was given by the fundamental equation of
renewable resources, equation (1.16). With net benefits only a function
of harvest, the marginal stock effect vanishes, and we are left with F ¢(X)
= d as the expression defining the steady-state optimal stock. Suppose we
assume that net growth is given by F(X) = rX(1 - X/K). Then F ¢(X) =
r(1 - 2X/K) = d. Solving for X yields the explicit expression

(2.4)

With Y* = rX*(1 - X*/K) some algebra will show

(2.5)

With rl = p¢(Y) (see equation [1.12]) we get l = (1 + d)(a - bY*) or

(2.6)

Suppose a = 10, b = 1, r = 0.5, K = 1, and d = 0.05. The preceding for-
mulas yield the numerical values X* = 0.45, Y* = 0.12375, and l* = 10.37.
What if we set up a spreadsheet and ask Solver to maximize
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Will Solver select harvest levels for Yt, t = 0, 1, . . . , 9, that will cause Xt

to go from X0 to X10 ª X*?
Consider Spreadsheet 2.5. The parameter values are found in cells

$B$1 through $B$6. In cells $A$9 through $A$19 we define the period
index. In cells $B$9 through $B$18 we provide an initial guess (0.05) for
the optimal harvest levels Y*t , t = 0, 1, . . . , 9. These will be the values that
Solver will be allowed to change.

In cell $C$9 we specify the initial condition (also a parameter) 
X0 = 0.2. In cell $C$10 we type =C9+$B$3*C9*(1-C9/$B$4)-B9, which is
the Excel equation for X1. We fill down to $C$19, where the formula 
is =C18+$B$3*C18*(1-C18/$B$4)-B18, which is Excel’s expression for
X10.

In cell $D$9 we type =($B$6^A9)*($B$1*B9-($B$2/2)*B9^2), which
is the expression for r0p(Y0), the present value of harvest in period 
t = 0. We fill down this expression to cell $D$18, where it becomes
=($B$6^A18)*($B$1*B18-($B$2/2)*B18^2). The final function is pro-
grammed in cell $D$19 as the Excel equation

Spreadsheet 2.5
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Finally, in cell $D$21 we type =SUM($D$9:$D$19), which sums the
present values from the harvest levels Y*t , t = 0, 1, . . . , 9, plus the final
function. If you’ve entered everything correctly your spreadsheet should
be identical to Spreadsheet 2.5.

Now call up Solver. The set cell to be maximized is $D$21. The chang-
ing cells are $B$9:$B$18.The constraints are $B$9:$B$18 >= 0 and $C$19
>= 0.Tell Solver to “Solve” and in 22 trials (iterations) it should announce
that it has found a solution and that all constraints and optimality con-
ditions are satisfied. This solution should be identical to Spreadsheet 2.6.
Note that the optimal harvest schedule involves zero harvest in periods
t = 0 and t = 1. In periods t = 2 through t = 9 harvest is slowly increased
toward Y* = 0.12375 as Xt approaches X* = 0.45.

Pretty cool! We will make use of this type of final function again in
Chapter 6.We will make use of equations (2.4)–(2.5) when we talk about
sustainability in the context of a renewable resource–based economy in
Chapter 8.
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2.3 Questions and Exercises

Q2.1 What is the difference between simulation and optimization?

Q2.2 What is meant when it is said that “lT+1 is a subjective weight
assigned to XT+1”? What is likely to happen to the optimal value of XT+1if
we set lT+1 at a higher value?

Q2.3 In the optimal depletion problem, what is the interpretation of l 0?

E2.1 A mine has initial reserves of R0 = 1 and may be operated over the
horizon t = 0, 1, . . . , 9. In t = 10 the mine will be expropriated. Current
owners set l10 = 0. The net revenue in period t is given by pt = (p -
cqt /Rt)qt, where qt is the extraction rate, Rt are remaining reserves, p > 0
is the unit price for ore at the mill, and c > 0 is a cost parameter. Suppose
p = 1, c = 0.5, and d = 0.05. What is the optimal extraction rate, qt, for t =
0, 1, . . . , 9? Use Solver from an initial guess of qt = 0.1 for t = 0, 1, . . . ,
9.

E2.2 Consider a fishery where Xt+1 = Xt + rXt(1 - Xt/K) - Yt.The net ben-
efits from harvest are given by pt = ln(1 + Yt), where ln(•) is the natural
log operator. With the discount factor given by r = 1/(1 + d), and with 
r = 0.5, K = 100, and d = 0.05 you wish to

(a) Use Solver to find the optimal harvest schedule from an initial guess
of Yt = 10 for t = 0, 1, . . . , 9. In the constraint box, specify Yt ≥ 0, for t =
0, 1, . . . , 9 and X10 ≥ 0.
(b) Now set l10 = 0.075 and solve for the optimal harvest schedule, again
from an initial guess of Yt = 10, for t = 0, 1, . . . , 9, with the same 
constraints.
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CHAPTER 3

The Economics of Fisheries

3.0 Introduction and Overview

In this chapter we will explore in greater detail the general renewable
resource model used to introduce the method of Lagrange multipliers in
Chapter 1. This model will serve as a vehicle to examine traditional and
“bioeconomic” management policies. Before embarking on this more
detailed excursion we will construct some models that provide insight
into why fisheries are chronically overfished. Overfishing results in
depleted stocks that can support only a fraction of what might be har-
vested if stocks were maintained at higher levels. These models are
referred to as open access models, and they show, graphically, what
happens when there are unregulated access and harvesting of a common
property resource. By a common property resource we mean a resource
that is not recognized as “private property” until it is captured. The
inability of traditional management policies to avert the tragedy of over-
fishing has recently led to a willingness among coastal nations to exper-
iment with bioeconomic or “incentive-based” policies, such as Individual
Transferable Quotas (ITQs). Although the jury is still out on the effec-
tiveness of ITQs the initial results seem promising. A discussion of the
experience with these policies in New Zealand, Australia, Canada, and
the United States will close out this chapter.

3.1 Net Growth

In equation (1.1) we introduced a difference equation to describe the
change in a renewable resource from period t to period t + 1. The func-
tion F(Xt) was referred to as a net growth function. This function indi-
cates the net amount of new biomass or additional numbers of fish as a
function of the current biomass or current number of fish, Xt. It indicates
net biological growth. There are numerous functional forms which might
be used to describe (model) net biological growth. We have already
employed one function, F(Xt) = rXt(1 - Xt/K), which we will call the logis-
tic growth function, where r > 0 is referred to as the intrinsic growth rate
and K > 0 is called the environmental carrying capacity. Three other pos-
sible functional forms are given in equations (3.1a)–(3.1c).

32



3.1 Net Growth 33

(3.1a)

(3.1b)

(3.1c)

A plot of Xt+1 - Xt = DX = F(X ) provides some insight into the dynam-
ics implied by these different net growth functions. The logistic and func-
tions (3.1a)–(3.1c) are plotted in Figure 3.1 for r = K = 1 and K0 = 0.25.
Points where F(X ) = 0 will correspond to steady-state equilibria in the
unharvested or “pristine” fishery. Points where F(X ) > 0 correspond to
positive growth, and for function (3.1c), points where F(X ) < 0 (for K0

> X > 0) correspond to negative net growth, where rates of natural mor-
tality are greater than the rates of birth and survival.

Figure 3.1 reveals that all four growth functions have steady states at
X = 0 and X = K. For the logistic and the functions (3.1a) and (3.1b),
these are the only steady states. Since net growth for K > X > 0 is posi-
tive, the unharvested population, starting from X0, where K > X0 > 0,
would, for “small” values of r, tend to the steady state at X = K.

For the function (3.1c) X = K0 is also a steady state, but it is said to be
unstable. If the stock were displaced slightly to the left of K0, net growth
would be negative (F(X ) < 0) and a process leading to extinction would
result. Alternatively, if the stock were displaced slightly to the right of
K0, net growth would be positive and the stock would grow toward K.
The value K0 is sometimes referred to as the minimum viable population
size.

With our logistic form, or any of the forms in (3.1a)–(3.1c), we have a
nonlinear difference equation which might converge to X = K, but which
also has the potential for cyclical and chaotic behavior when the para-
meter r increases above a critical level. By cyclical behavior we mean
that after a transition, Xt takes on only a finite number of values. The
number of values will be an even number and the cycles might be 2-
point, 4-point, 8-point, or 2n-point cycles. If r increases above the critical
value, n Æ •, and the dynamic behavior becomes chaotic, with Xt appear-
ing to fluctuate randomly between upper and lower bounds.

Classifying the stability of steady states and determining the onset of
cyclical behavior in the dynamics of a single species are relatively
straightforward. For a candidate F(Xt) (1) solve for the steady-state equi-
libria by solving F(X ) = 0 (implying Xt+1 = Xt = X ), (2) write the equa-
tion for population dynamics in iterative form as Xt+1 = Xt + F(Xt) = f(Xt),
and (3) take the first derivative of f(•), denoting it as f¢(•). Then, a par-
ticular steady state, X, will be stable if |f¢(X )| < 1, where |•| is the
absolute-value operator.

F X rX X K X Kt t t t( ) = -( ) -( )0 1 1

F X rX K Xt t t( ) = ( )ln

F X X et t
r X Kt( ) = -[ ]-( )1 1



Figure 3.1. Net Growth Functions for r = K = 1, K0 = 0.25
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Consider our logistic F(Xt) = rXt(1 - Xt/K), where we set K = 1. In this
case we obtain f(Xt) = (1 + r)Xt - rX 2

t and f¢(Xt) = 1 + r - 2rXt. If the
steady state of interest is X = K = 1, then f¢(1) = 1 - r, and for K = 1 to
be stable |1 - r| < 1, which for r positive requires 2 > r > 0. In other words,
for 2 > r > 0 we would expect the population ultimately to converge to
K = 1, but for r > 2 we could get 2n-point cycles or chaos.

Spreadsheet 3.1 shows the population dynamics for our logistic form
when r = 1.9, K = 1, and X0 = 0.4. The initial simulation, for t = 0,1,
. . . ,30, is plotted as the uppermost time path. The other three time paths
show the resulting values of Xt when r is increased to 2.2, 2.55, and 2.9.
When r = 2.2 we get a two-point cycle, when r = 2.55 we get a four-point
cycle, and when r = 2.9 we get chaos, where Xt appears to be fluctuating
randomly.

3.2 Fishery Production Functions

In this chapter a fishery production function will relate harvest in period
t to the fish stock and fishing effort, also in period t. Harvest is regarded
as the output and the fish stock and effort are regarded as inputs. In
general, the production function will be written as Yt = H(Xt,Et). One
normally expects such production functions to be concave, with positive
first partial derivatives (∂H(•)/∂Xt > 0, ∂H(•)/∂Et > 0); a nonnegative
mixed, second partial (∂2H(•)/∂Xt∂Et = ∂2H(•)/∂Et∂Xt ≥ 0); and non-
positive, pure second partials (∂2H(•)/∂Xt

2 £ 0, ∂2H(•)/∂Et
2 £ 0). Two fre-

quently encountered functional forms are

(3.2a)

(3.2b)

where q > 0 is sometimes called a “catchability coefficient.” Production
function (3.2a) is a special case of the Cobb–Douglas form Yt = qXt

aEt
b,

where a = b = 1. It is often referred to as the catch-per-unit-effort (CPUE)
production function because it was originally the result of the assump-
tion that catch per unit effort (Yt/Et) was proportional to the fishable
stock, qXt.

We will refer to (3.2b) as the exponential production function. Note
that as Et Æ •, Yt Æ • in (3.2a) and Yt Æ Xt in (3.2b). The latter limit
is more realistic, but either function (or the more general Cobb–
Douglas) is best viewed as an approximation of a harvest technology,
with the choice among (3.2a), (3.2b), or other functional forms to be
decided by the available data.

Y X et t
qEt= -( )-1

Y qX Et t t=



36 3 The Economics of Fisheries

Spreadsheet 3.1

3.3 The Yield–Effort Function

Consider a single-species fishery where the amount harvested in period
t is given by the general production function Yt = H(Xt,Et), With harvest,
the resource stock changes according to Xt+1 - Xt = F(Xt) - Yt. If we sub-
stitute the production function into this equation and evaluate it at a
steady state (where Xt+1 = Xt = X ) we conclude that F(X ) = H(X,E). This
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is nothing more than a restatement of our earlier observation that
harvest must equal net growth in a steady state. Suppose we can solve
this last equation for X as a function of E, say, X = G(E). If we take this
function and substitute it into the production function we have Y =
H(G(E),E) = Y(E), where Y(E) is called the yield or yield–effort func-
tion. It gives the steady-state relationship between harvest (or yield) and
fishing effort. This function might be useful in the “long-run” manage-
ment of a fishery, and it has the potential to be estimated with appro-
priate time-series data on effort and harvest.

Suppose we adopt the logistic form F(X ) = rX(1 - X/K) and the CPUE
production function Y = H(X,E) = qXE.Then, the steady-state condition
H(X,E) = F(X ) implies X = K[1 - (q/r)E] and Y = Y(E) = qKE[1 -
(q/r)E]. The logistic net growth function and the yield–effort function 
are plotted in Figure 3.2. Although they appear the same (they are both
quadratics, and both have a maximum at YMSY = rK/4), the net growth
function shows the steady-state relationship between X and Y, and 
the yield–effort function shows the steady-state relationship between E
and Y.

Measuring fishing effort, Et, is problematic. In a fishery where similar
vessels pull identical nets through the water (a trawl fishery), one might
ideally measure effort as the total number of hours nets were deployed
and actively fishing during the year or season. In a troll or longline
fishery, one might measure effort as the total number of “hook hours”
by a fleet, again in a season or year. In fixed gear fisheries (gill net,
lobster, and crab), effort might be measured as the total number of units
deployed (nets, traps, or pots) assuming that they are fishing continu-
ously throughout the season or year. Unfortunately, there is typically
some vessel diversity within a fleet, records are not required or kept on
the number of hours a particular gear was actively fishing, and snags or
improper deployment may reduce the effectiveness of a particular set.
Often fishery scientists have to settle for the data available, which might
be days from port or simply the number of vessels in a fleet (with no
record of the number or length of trips during a season or year). Fishers
are typically reluctant to reveal information on the time, location, and
extent of their fishing effort, making time-series data on the ideal
measure of effort unavailable. Even with less than ideal data there seems
to be conclusive evidence as to what happens when a fishery is harvested
under open access conditions.

3.4 The Static Model of Open Access

With the yield–effort function, Y = Y(E), we can analyze the long-run
equilibrium in an open access fishery. Suppose the per unit dockside price
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Figure 3.2. The Net Growth and Yield–Effort Functions

is p > 0. Then, the steady-state revenue from yield Y(E) is simply R =
pY(E). This revenue function will look identical to the yield–effort func-
tion, but the vertical axis will now measure dollars ($), or whatever is the
appropriate “coin of the realm.” Suppose further that the cost of fishing
is given by the simple linear equation C = cE, where c > 0 is the unit cost
of effort. Both the revenue and the cost equations are plotted in Figure
3.3. They intersect at E = E•, which is referred to as the open access equi-
librium level of effort. At E• revenue equals cost and net revenue or

Figure 3.3. The Open Access (E•) and Rent Maximizing (E0) Levels of
Effort
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profit is zero (p = R - C = 0). The “zero-profit” condition is, in theory,
encountered in all competitive industries, where it is viewed as the
healthy outcome of socially desirable competitive forces. This is not the
case in an open access fishery.

At E• the cost of effort (including compensation to vessel owners and
crew) is being covered, but there is nothing left to pay the other impor-
tant factor, the fish stock! Because access is free, the fish stock is reduced
until it is worthless, in the sense that at X• effort cannot be expanded
without incurring a net financial loss. The open access equilibrium
(X•,Y•,E•) is frequently described as having “too many vessels chasing
too few fish.” From society’s point of view, there is too much effort and
the stock is so small that it can only support a small sustainable yield.
The open access equilibrium is also nonoptimal in that, if effort could be
reduced, the positive net revenues that would result could more than
financially compensate those fishers who reduced effort or left the fishery
entirely.

This simple static model would seem consistent with the observed
outcome of many open access regimes throughout history and across cul-
tures. In addition to fish stocks, case studies describing the depletion of
wildlife, forests, groundwater, and grassland could be documented. What
the static model does not do is describe the dynamics of the resource 
and the harvesting industry from an initial condition, where the resource
is often abundant. It will turn out that the open access equilibrium,
described by the static model, may not be reached, and that the resource
might be driven to extinction along an “approach path.”

3.5 The Dynamic Model of Open Access

The dynamic model of open access will consist of two difference equa-
tions, one describing the change in the resource when harvested, the
other describing the change in fishing effort. Substituting the fishery pro-
duction function into equation (1.1) will give us Xt+1 - Xt = F(Xt) -
H(Xt,Et), which we will use as the first equation. The second equation,
describing effort dynamics, is more speculative because it seeks to
explain the economic behavior of fishers. There are many possible
models, but perhaps the simplest and most compelling would hypothe-
size that effort is adjusted in response to last year’s profitability. If the
per unit price is p > 0 and the per unit cost of effort is c > 0, then profit
or net revenue in period t may be written as pt = pH(Xt,Et) - cEt. If profit
in period t is positive we would think that effort in period t + 1 would be
expanded, and if that response were linear we could write Et+1 - Et =
h[pH(Xt,Et) - cEt], where h > 0 is called an adjustment or “stiffness”
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parameter.We could write our two difference equations in iterative form
as a “dynamical system.”

(3.3)

With functional forms for F(•) and H(•); parameter values for h, p, and
c; and initial values for X0 and E0 we could simulate (iterate) system (3.3)
forward in time and observe the dynamics of Xt and Et. System (3.3) is
likely to be nonlinear and thus has the potential for periodic and chaotic
behavior. This raises the question of whether the system will ever reach
the equilibrium identified in the static open access model.

To illustrate the potential behavior of the dynamic open access system,
let’s specify logistic growth and the CPUE production function so that
system (3.3) can be written as

(3.4)

With parameter values for r, K, q, h, p, and c, and with initial values X0

and E0 we could iterate this system forward in time and observe the
behavior of Xt and Et. Before presenting the results of some numerical
simulations of system (3.4), it will be helpful to derive analytical expres-
sions for the open access equilibrium.

In steady state p = pqXE - cE = 0 implies X• = c/( pq) > 0 and using
the yield–effort function pqKE[1 - (q/r)E] = cE. Solving this last expres-
sion for E yields E• = r( pqK - c)/( pq2K), which is positive provided 
pqK > c. In a numerical analysis of (3.4) we can calculate X• and E•,
which will provide a reference by which to judge convergence. The point
X• = 0, E• = 0, is also an equilibrium, one in which both the resource and
harvesters go extinct. Barring species reintroduction, this equilibrium is
stable and may be the ultimate destination of (Xt,Et) if other equilibria
are unstable. We will examine this possibility numerically.

In Figure 3.4 we show the results of three open access simulations. The
base-case parameter set is c = 1, h = 0.3, K = 1, p = 200, q = 0.01, and r =
0.1. The initial values are X0 = E0 = 1, and the time path for Xt and phase-
plane diagram (Xt,Et) are plotted for t = 0, 1, . . . , 100. The base-case
results are shown in Figure 3.4a and reveal a slow spiral convergence to
X• = 0.5 and E• = 5.

In Figure 3.4b, h has been increased to 1, while all other parameter
values are unchanged. The values of X• and E• are unchanged, but
instead of convergence, X• and E• would appear to be the focus of a
limit cycle. A stable limit cycle would be approached from outside or

E pqX c Et t t+ = + -( )[ ]1 1 h

X r X K qE Xt t t t+ = + -( ) -[ ]1 1 1

E E pH X E cEt t t t t+ = + ( ) -[ ]1 h ,

X X F X H X Et t t t t+ = + ( ) - ( )1 ,
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inside the closed orbit defining the cycle. A limit cycle is conditionally
stable if it is approached from the outside or inside but not both. With
h = 1, try starting this open access system from X0 = 0.5 and E0 = 20. It
would appear that this limit cycle is stable.

In Figure 3.4c h has been returned to its base-case value of 0.3, and r
has been increased to 2.9. Recall that r = 2.9 induced chaos in the pris-
tine (Yt = 0) fishery, as was shown at the bottom of Spreadsheet 3.1.After
a chaotic transition, Xt and Et lock onto the open access equilibrium at
X• = 0.5 and E• = 145. In this last case, the presence of open access har-
vesting caused a qualitative change in the dynamics of the resource from
that found in the pristine system.

3.6 Static Rent Maximization by a Sole Owner

The economic inefficiency of open access was recognized by the 
mid-1950s. The policy prescription which was proposed at that time 
was either “sole ownership” (privatization) of the resource or the limi-
tation of effort to the level which would be adopted by a sole owner
seeking to maximize static profit or rent. The rent-maximizing level of
effort is also shown in Figure 3.3, where the revenue function R = pY(E)
and cost equation C = cE were used to identify the open access 
equilibrium.

A sole owner, with the exclusive right to harvest the fish stock, would
invest in a fleet or hire vessels so that effort maximized rent (profit) p =
pY(E) - cE. The simple first-order condition dp/dE = 0 implies pY¢(E)
= c, where Y¢(E) is the first derivative of the yield–effort function and
pY¢(E) is marginal revenue. Thus, the level of effort which maximizes
rent satisfies the familiar economic dictum that marginal revenue should
equal marginal cost. Graphically, the rent-maximizing level of effort is
identified by finding the point where the revenue curve has a slope of c,
the marginal cost of effort, and dropping a vertical to the E-axis. This
occurs at E0 in Figure 3.3. At E0 the vertical distance between R = pY(E)
and C = cE is maximized.

Auctioning off the permanent access to a fishery to the highest-bidding
sole owner was not a politically acceptable solution to the problem of
open access. A more feasible, although still controversial, policy that
emerged from the analysis of the rent-maximizing sole owner was
“limited entry.” If fishery managers could somehow remove excess
vessels so that effort was reduced from E• to E0, they would maximize
the static net value of the fishery, and then, if they could auction off
licenses granting seasonal or permanent access to the resource, they
would be able to capture all or a portion of the discounted static rent.



(a)

(b)



Figure 3.4. Open Access Dynamics: (a) The Base Case: Spiral Convergence to
(X•,E•); (b) With h = 1, (X•,E•) Appears to Be the Focus of a Limit Cycle; (c) With
r = 2.9, Initial Chaos, Then Convergence to (X•,E•)

(c)
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Such revenues might be earmarked for enforcement, management,
research, or habitat improvement.

The problem became how to encourage the appropriate number of
vessels to leave the fishery and how to prevent the remaining vessels
from investing in vessel improvements which would increase “fishing
power” or de facto effort. Several countries, including Canada, instituted
vessel buy-out programs, whereby federal or provincial funds were used
to buy vessels from owners participating in “overcapitalized” fisheries.
After purchase the government might sell the vessel for scrap metal or
resell it, with the restriction that it could never participate in the fishery
it was paid to leave.

The vessels remaining were usually given a license and only licensed
vessels were allowed access to the resource. Provisions frequently
allowed a license holder to sell his or her license upon retiring from the
fishery. If the buy-out program was successful, and remaining vessels
were making profits, the market price for a license will reflect the
expected present value of profits. In the limited entry salmon fisheries of
British Columbia and Alaska these licenses have sold at prices exceed-
ing $200,000.

The problem of restricting effort to E0 is not trivial. Even with a fixed
number of vessels, the effective level of effort might increase if vessels
refit to higher-horsepower engines or add new electronics, including
sonar to locate schools of fish and satellite-based navigational systems
to pinpoint the location of fishing effort. These sorts of vessel improve-
ments, referred to as capital stuffing, can, over time, lead to stock deple-
tion in the limited entry fishery. This has often caused fishery managers
to impose input restrictions on hull length, storage capacity, engine
horsepower, or net size. These sorts of gear restrictions are likely to
create inefficiencies themselves and to start a regulatory “game” in which
rent-seeking fishers are trying to find new ways to increase the effec-
tiveness of their vessel in hopes of increasing their share of the total
catch. Limited entry by itself is unlikely to achieve optimal management
over the long run.

3.7 Present Value Maximization

Is static revenue maximization, with effort set at E0, optimal in terms of
the present value or wealth that might be generated by a fishery? It will
turn out that static rent maximization is not optimal if your objective is
the maximization of present value. It also turns out that the abstract exer-
cise of present value maximization reveals an important management
concept which does not even arise in a static model. So, from both a the-
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oretical and a practical perspective, it is important to revisit the dynamic
optimization problem posed in Chapter 1 to illustrate the method of
Lagrange multipliers.We have done quite a bit of the tedious spade work
and in this section we can concentrate on the economic and management
implications.

Recall from Chapter 1 that pt = p(Xt,Yt) represented the net benefits
in period t of harvest Yt from a stock of size Xt. The harvested resource
changed according to Xt+1 - Xt = F(Xt) - Yt, and the stock was initially
given by X0. Maximizing the present value of net benefits, now over an
infinite horizon, leads to the problem

The modification of the Lagrangian in equation (1.5) to an infinite
horizon does not alter the first-order necessary conditions given by equa-
tions (1.6)–(1.8), and with the infinite horizon the prospect of reaching
a steady-state optimum is more valid than in a finite-horizon problem.
(Recall in that Section 2.2 we were able to derive a final function that
resulted in a harvest schedule that established the optimal steady-state
stock in period T + 1, and that the harvest schedule would approximate
the infinite-horizon approach.)

In steady state the first-order conditions collapse to three equations,
(1.12)–(1.14), in three unknowns, X, Y, and l. It was possible to elimi-
nate the term rl and, after some algebra, we obtained the two-equation
system which we rewrite for convenient reference here as

(3.5)

(3.6)

We referred to (3.5) as the fundamental equation of renewable
resources and noted that it required the steady-state levels of X and Y
to equate the “resource’s own rate of return,” (the LHS) to the rate of
discount, d. By the implicit function theorem equation (3.5) implied a
curve Y = f(X ), which we could plot along with Y = F(X ) to identify the
optimal levels X* and Y* (see Figure 1.2).

For the case where F(Xt) = rXt(1 - Xt/K ), Yt = H(Xt,Et) = qXtEt, and
Ct = cEt, we can solve the production function for Et = Yt/(qXt) and sub-
stitute into the cost equation to obtain the cost function Ct = cYt/(qXt).
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This permits us to write pt = pYt - cYt/(qXt) = [p - c/(qXt)]Yt, which has
the partials ∂p(•)/∂Xt = c/(qX 2

t ) and ∂p(•)/∂Yt = ( p - c/(qXt)). The deriv-
ative of the net growth function is F ¢(Xt) = r(1 - 2Xt/K). Evaluating these
partials at steady state and then substituting into (3.5) will yield

(3.7)

Solving for (3.7) for Y we obtain

(3.8)

We see that f(X ) depends on the entire set of bioeconomic parameters:
c, d, K, p, q, and r. Changes in any of the parameters will cause Y = f(X )
to shift in X - Y space, as was implied by the curves fi(X ), i = 1,2,3, drawn
in Figure 1.2.

Recall that one of the conclusions drawn from Figure 1.2 was that the
intersection of f(X ) and F(X ) could result in the optimal stock’s lying
above or below XMSY = K/2.We should have expected this. Maximum sus-
tainable yield and XMSY only depend on the parameters r and K and if
we have an objective that maximizes the present value of net benefit 
(in this case, net revenue), then the optimal stock should depend on the
economic parameters, c, d, p, and q as well.

By substituting Y = rX(1 - X/K) on the LHS of equation (3.8) we end
up with a single equation in X which has an explicit solution

(3.9)

This is the positive root of a quadratic expression (the negative root, not
making any economic sense, is discarded). Although notationally cum-
bersome it has the advantage, when programmed on a spreadsheet, of
permitting the numerical calculation of the optimal stock, based on the
six bioeconomic parameters. Numerically, one could change any of the
parameters and observe how X* changes (thus performing numerical
“comparative statics”). Knowing X*, one could calculate Y* = rX*(1 -
X*/K), E* = Y*/(qX*), and l* = (1 + d)[ p - c/(qX*)], thus obtaining
values for all the variables (unknowns) at the optimal steady state.

If one took the appropriate derivatives of (3.9) or entered a numeri-
cal example on a spreadsheet, one would conclude dX*/dr > 0, dX*/dK
> 0, dX*/dc > 0, dX*/dp < 0, dX*/dq < 0, and dX*/dd < 0. In words, if r,
K, or c increases, the optimal stock increases. If p, q, or d increases, the
optimal stock decreases.
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We are now in a position to explain the logic behind the subscripts
used in identifying the open access and rent-maximizing levels of effort
in Figure 3.3. For • > d > 0, E• > E* > E0. In words, the open access level
of effort will exceed the optimal level of effort, which will exceed the
rent-maximizing level of effort, for a finite and positive rate of discount.
Further, as d Æ •, E* Æ E•, and as d Æ 0, E* Æ E0, hence the subscripts.

That E* approaches E• as the discount rate goes to infinity has an
interesting interpretation. In open access, individual fishers are caught in
something of a dilemma. Collectively, they know that by harvesting less
today they would leave a larger fish stock, which would support larger
sustainable yields in the future, but unless they could trust all fishers to
cooperate in such a conservation strategy they would only be leaving fish
that another fisher would harvest, and their individual effort at building
the stock would be for naught. The game-strategic aspects of conser-
vation make stock maintenance above X• an unlikely and unstable
outcome in open access, with the result that individual fishers appear to
behave as if “there were no tomorrow,” or more precisely, that they
employ an infinite discount rate to evaluate the benefit of conservation.

At the other extreme, if d Æ 0, then a dollar’s worth of net benefit is
valued the same regardless of when it occurs, and it is optimal to maxi-
mize sustainable rent. Note that in steady state X0 > X* when d > 0.
Present value can always be increased by harvesting (X0 - X*), thus
increasing present value in the near term to an extent that will more than
offset the small reduction in sustainable net benefits once you reach X*.

The preceding discussion has been an attempt to compare three
steady-state equilibria: open access, static rent maximizing, and the
present value or “bioeconomic” optimum. For a positive but finite rate
of discount, it will be the case that E• > E* > E0 and X0 > X* > X•. The
relationship of Y• to Y0 and Y* is ambiguous because of the nonlinear
net growth function, which will usually have a single maximum at XMSY.
It is possible that Y• > Y0. For example, when F(X) = rX(1 - X/K),
H(X,E) = qXE, and C = cE, some algebra will reveal that

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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In Spreadsheet 3.2 we calculate (X•,E•,Y•), (E0,Y0,X0), and
(X*,Y*,E*) for the base-case parameter set r = 0.1, K = 1, q = 0.01, p =
200, c = 1, and d = 0.05. Only the bioeconomic optimum depends on d,
and we see that the bioeconomic optimum is identical with the rent-
maximizing optimum when d = 0 and essentially identical to the open
access equilibrium when d = 500.

With a comparative sense of the open access, rent-maximizing (sole
owner), and bioeconomic (present value–maximizing) equilibria, we 
now return to the concept of “user cost” to see the crucial role it plays
in moving from open access to a bioeconomic optimum. In Chapter 1,
equation (1.9) required ∂p(•)/∂Yt = rlt+1. This equation was interpreted
as equating the marginal net benefit from harvest in period t to the dis-
counted value of an additional unit of fish in the water in period t + 1,
where the latter term was referred to as user cost. From the recursive
structure of the first-order conditions, it can be shown that lt+1 reflects
the discounted value that the additional unit contributes over the entire
(possibly infinite) future horizon.Thus user cost reflects the entire future
benefit given that an increment in the stock in period t + 1 will provide
additional biological growth and cost savings into the indefinite future.

Individual fishers, although perhaps aware of the potential benefit of
a positive increment to the fish stock, may feel helpless to increase the
stock effectively in the face of harvesting by other competitive fishers.
Each fisher is presumably adopting a level of effort which equates the
marginal value product of effort to marginal cost, and no weight is given
to user cost. We will see that the success of actual management policies

Spreadsheet 3.2
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in avoiding the excesses of open access may critically depend on their
ability to introduce user cost into the decision calculus of individual
fishers. We now turn to a review of traditional management policies and
then bioeconomically based policies.

3.8 Traditional Management Policies

There are at least four policies which have been used to avoid stock
depletion under open access and which collectively might be regarded
as the traditional approach to fishery management. They are (i) closed
seasons, (ii) gear restrictions, (iii) total allowable catch (TAC), and (iv)
limited entry. These policies have been employed singly and in various
combinations.

A closed season specifies a period of time when harvest of the resource
is illegal. The closed season may correspond to a critical stage in the life
cycle of the species, when harvest might be particularly disruptive to
spawning or survival. For example, the commercial harvest of Pacific
salmon is prohibited when the fish enter the rivers and streams leading
to their spawning grounds. The harvest of shellfish is often closed during
the spring months, when warming waters induce spawning, which will
determine, in part, the set, survival, and size of future harvestable cohorts.
It is also the case that a closed season may reduce effort below the level,
E•, which would have occurred with no closed season. This is not a cer-
tainty because rent-seeking behavior by fishers may simply result in a
redistribution of the same amount of effort, with greater effort expended
during the open season when harvest is legal.

Gear restrictions are often imposed deliberately to reduce the effi-
ciency of fishers or to prevent adverse impacts on the supporting ecosys-
tem. In the groundfishery (cod, haddock, flounder) off the coast of New
England in the United States, the regional management council has
imposed a minimum mesh size of 5.25 inches for nets pulled by trawlers.
It was hoped that by keeping the mesh size at or above this minimum
juveniles in this “multispecies fishery” would be able to escape through
the net as it was being pulled along the sandy and relatively shallow
bottom on Georges Bank. In Maryland, watermen harvesting oysters
from Chesapeake Bay are restricted to pulling dredges using only sail-
powered boats called skipjacks. In the bays of southern Long Island, the
harvest of hard clams is restricted to hand pulled rakes or tongs. In the
latter two shellfisheries, the restrictions are thought to preclude diesel
powered vessels pulling larger dredges with vacuum pumps which might
destroy the benthic ecosystem, and thus the ability to grow future
“crops” of oysters and clams.
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Gear restrictions might be viewed as raising the unit cost of effort
from, say, c to c¢, as shown in Figure 3.5. This causes the cost equation to
rotate upward, establishing a new steady-state equilibrium at E¢• < E•.
Thus, gear restrictions may reduce effort, but do nothing about the
underlying problem of economic inefficiency and a resource harvested
to the point where it has a zero marginal value.

A total allowable catch (TAC) is an aggregate quota which fishery
managers regard as the “appropriate” harvest for the current year or
season. The appropriate harvest is often ill defined and may be based on
advice from biologists, economists, and industry representatives. Biolo-
gists and economists may develop “adaptive models” whereby the TAC
in period t, denoted TACt, is a function of the current stock estimate, Xt.
Mathematically we might write TACt = f(Xt), where the function f(•)
might be derived from the solution of a dynamic optimization problem.

Once determined, a TAC is announced along with a starting date for
the season. On the day the season opens employees of the fishery man-
agement agency will monitor harvest by the participating vessels, and
when the harvest is estimated to have reached the TAC, the season is
closed and further fishing prohibited.This creates what has been referred
to as “a race for the fish,” the marine equivalent of the Oklahoma land
rush.

Management by a TAC has at least three shortcomings. First, it
encourages a frenzied and often reckless expenditure of effort as fishers

Figure 3.5. The Effect of Gear Restrictions That Raise the Cost of
Effort
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compete to obtain as large a share of the TAC as possible for themselves
before the season is closed. Second, over time, the season often becomes
“compressed,” with a large volume of fish entering the market in a short
period, causing prices to plummet, and fresh fish to be processed, frozen,
and sold at prices considerably lower than what they will fetch on the
fresh market. The compressed season often leaves boats idle or, after
regearing, contributing to excess capacity in other fisheries.

The problems with management via a TAC were well illustrated by the
Alaskan halibut fishery prior to 1995. In 1991, the season was reduced
to two days, during which 4,000 commercial fishermen lowered over
25,000 miles of baited hooks to harvest a fish which might weigh up to
400 pounds and sell for $2.00 per pound on the dock. A lucky boat might
gross over $100,000 worth of fish in a single day. But with fatigue, over-
loading, and the harsh and unpredictable weather of the north Pacific,
hooked hands, broken ribs, and capsized vessels were not uncommon.
Ten years earlier the season lasted a leisurely 160 days, and consumers
had fresh fish for almost six months out of the year. (In 1995, a man-
agement system based on Individual Transferable Quotas [ITQs]
replaced the frenzy of the “halibut derby.” This change in management
policy has resulted in a dramatic change in the conduct of the fishery and
the price and availability of fresh halibut. We will discuss ITQs in greater
detail in the last section of this chapter.)

The fourth traditional policy is limited entry. Under a limited entry
program only licensed vessels are allowed to harvest fish. These vessels
are often selected on the basis of their historical participation in a fishery.
They are issued licenses which they might sell to another vessel owner
should they decide to retire or leave the fishery.

When a limited entry program is initially established the management
agency is often forced to admit almost all vessels that have previously
participated in the fishery. This typically causes an excessive number of
licenses to be issued as a result of the overcapitalization chronic to open
access. Fishery managers may then institute a buy-out program, as dis-
cussed earlier in this chapter. If the limited entry program is successful,
it will generate positive rents (profit) for the vessels holding licenses, and
if a license holder wishes to sell his or her license, the price received will
reflect the expected discounted value of future rents.

The generation of positive rents can cause problems for fishery man-
agers. If the limited entry fishery is also managed using a TAC, then each
vessel owner may have an incentive, and now the money, to invest in a
larger-horsepower engine, more sophisticated electronics, or simply a
larger vessel, in hopes of increasing his or her share of the TAC.Although
vessel numbers may have declined, if “upgrades” are made in the remain-
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ing vessels, then effective effort (or “fishing power”) may actually
increase, and any recovery of the stock may be halted or reversed. To
prevent the more obvious effort-enhancing investments (for example,
a new or larger vessel), fishery managers will sometimes impose gear
restrictions. You quickly end up with a complex regulatory situation,
where a limited entry fishery is managed using a TAC and vessels are
subject to hull length, hold capacity, or other gear restrictions. As noted
earlier, matters can degenerate into a regulatory “game,” in which regu-
lators impose a restriction and fishers reoptimize inputs hoping to
improve their position in the race for the fish.

The continued decline in commercial fish stocks worldwide has raised
serious questions about the long-run effectiveness of any combination of
the traditional policies. None of them seems capable of introducing user
cost into the decision calculus of individual fishers. There are two poli-
cies which have the potential to approximate user cost, landings taxes
and the previously mentioned Individual Transferable Quotas.

3.9 Bioeconomic Management Policies

To introduce user cost into the harvest decisions of rent-seeking fishers,
one needs to introduce an opportunity cost to the decision to harvest an
additional unit of the resource today. The first suggestion by economists
was to impose a “landings tax,” a per unit tax on fish brought to the dock.

Suppose that t > 0 is the tax rate, say, in dollars/pound. If fishers face
a constant expected price, p, then ( p - t) becomes the relevant aftertax
price. Confronted with a landings tax fishers would presumably harvest
where the after tax price equaled marginal cost. If we denote Ct =
C(Xt,Yt) as a general stock-dependent cost function, a fisher would
choose Yt so p - t = ∂C(•)/∂Yt, or p - ∂C(•)/∂Yt = t. In this last expres-
sion, if managers had the knowledge and ability to set t = rlt+1, they
would have achieved the desired first-order condition requiring ∂p(•)/∂Yt

= rlt+1. With the stock changing over time, the tax would, in theory, need
to be changed, increasing as the stock increases. If X0 < X*, and if pt =
[p - c/(qXt)] before the landings tax, then setting the tax at the steady-
state rate, t• = rl*, would, in theory, induce a moratorium until the stock
recovers to X*, at which time fishing is resumed with Y* = F(X*). Thus,
in theory, a landings tax could be used both to establish and to maintain
a fishery at the bioeconomic optimum.

In the mid-1970s, when the United States was considering the exten-
sion of its territorial waters, it was also trying to revise the way it
managed coastal fish stocks, which had been depleted by both domestic
and foreign harvests. The suggestion of a landings tax had already
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appeared in the academic literature, and representatives of the fishing
industry were vehemently opposed to the use of taxes to manage fish-
eries in the United States. They were successful in introducing language
which specifically forbids the use of taxes in the Fisheries Conservation
and Management Act (FCMA) of 1976, which extended territorial
waters to 200 miles and created the fishery conservation zone (FCZ) and
eight regional management councils to develop plans for the manage-
ment of the stocks within their regions.

Although the use of landings taxes was forbidden, economists struck
upon another approach, which had not been ruled out, and which might
also introduce user cost into the calculus of fishers. The concept was sub-
sequently dubbed Individual Transferable Quotas (ITQs) and had also
been proposed as a way to control emissions which reduced environ-
mental quality. Basically, the idea was to allocate shares of a TAC to a
limited set of fishers, who would have the choice of either harvesting
their share or selling it or a portion of it to another licensed fisher. The
option of sale (transfer) can be shown to create an opportunity cost to
harvest which might be manipulated, through the TAC, to reflect user
cost.

In Figure 3.6 we show the relationship among the demand for ITQs,
their supply, and the market clearing quota price. The inverse demand
for quota is presumed to be downward sloping so that Pt

Q = D(TACt,Xt),
where Pt

Q is the price in the quota (ITQ) market, TACt is the total allow-
able catch, and Xt is the fish stock, all in period t. It is assumed that the
TAC can be denominated into relatively small units so that a quota
holder can buy and sell units which could incrementally increase or
decrease the holder’s initial allocation. An increase in the fish stock
would cause the inverse demand curve to shift upward, since a larger fish
stock would reduce harvest cost and increase the rent associated with
each unit of ITQ.

Suppose that initially X0 < X* and the total allowable catch is set at
TAC0. The price for a unit of quota in the quota market would be PQ

0 ,
which becomes the opportunity cost of exercising the option to harvest
remaining quota. Suppose TAC0 and subsequent TACs are set which
allow for an increase in Xt until the optimal stock, X*, is reached. At 
that time the management council will want to set the total allowable
catch at TAC* = Y* = F(X*) and demand for quota will have shifted to
D(TAC,X*).

The market clearing quota price is now PQ*, and in theory PQ* = rl*.
Thus, by appropriately choosing the TACt and allowing the ITQs to be
transferable, the management council could guide a suboptimal stock to
the optimal level and sustain it.
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3.10 ITQ Programs in New Zealand, Australia, and Canada

Much of our experience with ITQ programs comes from their adoption
in New Zealand, Australia, and Canada. Iceland was actually the first
country to introduce an ITQ program, but restrictions on transferability
and firmly held fishing traditions within coastal communities apparently
have not led to dramatic changes in the size or efficiency of the Icelandic
industry. In the United States, ITQs are being used to manage the
Alaskan halibut and the surf clam in the mid-Atlantic.

In Canada ITQs have been used to manage herring, groundfish,
scallop, lobster, perch (in Lake Erie), and sablefish. Effort, measured by
the number of participating vessels, was reduced by 36% in the sablefish
fishery (from 47 to 30 vessels), 21% across two areas in the herring
fishery (65 to 51 vessels), 16% across two scallop areas (73 to 61 vessels),

Figure 3.6. The Price for ITQ in the Quota Market When X = X0 < X*
and When X = X*
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and 26% in Lake Erie (248 to 182 vessels). There was no reduction in
effort in two areas of the Canadian lobster fishery. (Lobster fisheries in
North America have not experienced the typical stock depletion associ-
ated with open access because access to inshore areas is often regulated
by informal, community-based sanctions.) The preceding are percentage
reductions which occurred during the first two to four years of a
program, and we would predict that the removal of excess capital from
a fishery may take several years.

A more dramatic reduction has taken place in Australia’s southern
bluefin tuna fishery, where the number of quota holders declined from
143 in 1984 (when ITQs were introduced) to 63 in 1988. There was also
a significant regional redistribution of bluefin ITQs among Western 
Australia, South Australia, and New South Wales, with the latter state’s
quota dropping from 1,872 metric tons in 1984–1985 to 0 in 1985–1986.
This probably reflects the ability of vessels in Western Australia and
South Australia to fish quota at a lower cost, thus permitting them to pur-
chase quota from the higher-cost vessels in New South Wales. Although
this might result in some painful adjustments to a local fishing economy,
it represents an improvement in efficiency which will lead to higher net
revenues for the fishery as a whole.

The New Zealand ITQ program began in 1986. The government
announced that the initial ITQs would be based on the average of the
two highest annual harvests during the last three years. Further, the
quota was initially issued in actual pounds instead of a share of a chang-
ing TAC. This resulted in a de facto TAC which was too high and neces-
sitated a government buy-back program to reduce catch and effort. In
1986 and 1987 the New Zealand government spent approximately $30
million (U.S.) to buy back quota. The ITQ program was subsequently
changed to a “share of TAC” program whereby the TAC was set adap-
tively each year.

The New Zealand program is extensive, covering 31 species in 10 man-
agement areas. Because of the announcement that quota would be ini-
tially awarded on the two best years of the last three, the resulting TAC
and number of vessels actually increased in the first year.The subsequent
buy-back program and the switch to a share of TAC program have
resulted in a decrease in vessel numbers, particularly of smaller vessels,
and a slight increase in the amount of quota held by the largest fishing
consortia. New Zealand limits the amount of quota which can be held
by an individual or company to 20% for an inshore fishery and 35% for
an offshore fishery.

The TACs in New Zealand, like those elsewhere, are often based on
the analysis and advice of fishery scientists and representatives of the
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industry.The fishing industry has frequently lobbied for larger TACs than
those proposed by biologists, and for certain species, like the orange
roughy, the stocks have actually declined since the initiation of the ITQ
program. Often there was not a lot of good analysis on which to estimate
stock size or models to simulate future population dynamics. New
Zealand has increased its scientific capability in these areas and the TACs
for many of the 31 species have been reduced. Perhaps most importantly,
the fishing industry now views the ITQ program as a valid approach to
management and appears willing to support a reduction in the current
TACs if solid analysis exists to justify it: specifically, that it will allow
greater harvests tomorrow.

In the Alaskan halibut fishery the ITQ program has delivered many
of the benefits that economists had promised. Fresh halibut is available
eight months of the year. The ex-vessel price in early 1997 was about
$2.50/lb., an increase of about $0.58/lb. from the price received in Alaska
in 1994. The price increase for fresh halibut has occurred despite the fact
that total landings of Pacific halibut increased from 54.7 million pounds
in 1994 to 65 million pounds in 1997. Search-and-rescue calls have
declined by 80% from 1994 to 1996, as vessels can choose to fish their
quota under safer weather conditions.Thus, the limited experience in the
Alaskan halibut fishery has been quite positive, and it is likely to lead to
more ITQ experiments in other U.S. fisheries.

Two potential problems with management via ITQs are high-grading
and nonselective gear in multispecies fisheries. If a vessel has an ITQ in
a fishery where there is a premium paid for larger fish, the vessel has an
incentive to try to maximize the number of large fish in its catch. This
can lead a vessel to throw back smaller, usually younger fish in hopes
that the next set will yield more valuable, larger fish. Often the smaller
discards will not survive, and through the process of high-grading the
catch to larger fish, de facto fishing mortality is increased well above what
the landed catch would indicate.

In a multispecies fishery several species might be harvested simulta-
neously by a nonselective gear, a situation that can lead to the “by-catch
problem.” For example, in the previously described groundfishery off the
coast of New England, cod, haddock, and flounder are harvested simul-
taneously by trawlers fishing on Georges Bank. If a vessel has a large
quota for cod, but a small quota for haddock, it may have to discard
haddock (a by-catch species) to avoid violation. Discards are again
subject to a high mortality rate and a dying fish thrown back into the
water won’t satisfy a consumer or a marine biologist. It would make
better sense for the vessel to keep the excess haddock and buy haddock
ITQ when it returns to port. Thus, regulations in a multispecies fishery
may need to allow for ITQ acquisition after the fact. A vessel might
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acquire ITQ to make its harvest “legal” by purchasing additional quota
from a reserve held back by fishery managers in anticipation of the by-
catch problem. Such reserves, however, may start a “race for the 
reserve,” a sort of smaller and species-selective version of the race for
the fish under a TAC. Multispecies fisheries, harvested with nonselective
gear, have always posed a major problem for fishery managers, and
although ITQs might help, they do not seem be the sought-after silver
bullet (solution).

3.11 Questions and Exercises

Q3.1 Is the rent-maximizing harvest, Y0, always greater than the open
access equilibrium harvest, Y•?

Q3.2 In the dynamic open access system will (X•,E•) always be reached
by a convergent spiral?
Q3.3 Will an increase in the discount rate result in a decrease in the
optimal harvest in a single-species fishery?

Q3.4 In the simple bioeconomic model, if the marginal stock effect is
greater than the discount rate, what is the relationship between X* and
XMSY?

E3.1 Consider a fishery where F(Xt) = rXt(Xt/K1 - 1)(1 - Xt/K2), Yt =
qXtEt, and Ct = cEt, where K2 > K1 > 0 and r, q, and c are also positive
parameters.
(a) What are the analytic expressions defining X• and E•?
(b) If p > 0 is the unit price for fish on the dock and h > 0 is the adjust-
ment (stiffness) parameter for effort, what is the system which might be
used to simulate open access dynamics?
(c) If r = 0.1, K1 = 0.1, K2 = 1, q = 0.1, p = 1, and c = 0.01, what are the
numerical values for X• and E•? If h = 5, X0 = 0.6, and E0 = 1, simulate
the system for t = 0, . . . , 1, 000, and describe, in words, the dynamics and
the stability of X• and E•.
(d) If c increases to c = 0.05, what are the new numerical values for
X• and E•? With h = 5, X0 = 0.6, and E0 = 1, simulate the system for
t = 0, . . . , 1, 000, and describe, in words, the dynamics and the stability
of X• and E•.

E3.2 Suppose the fishery in E3.1 were to be managed so as to maximize
the present value of net revenue where r = 1/(1 + d) is the discount factor.
(a) What is the expression for F ¢(X)?
(b) What is the expression for the “marginal stock effect”? (Hint: It
should be a function of X, c, r, K1, K2, p, and q.)
(c) For the initial parameter set in E3.1 (r = 0.1, K1 = 0.1, K2 = 1, q = 0.1,
p = 1, and c = 0.01), and with d = 0.05, solve for the numerical values 
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for the bioeconomic optimum, (X*,Y*,E*). Start Solver from a guess of
X* = 0.5.
(d) Suppose that the resource stock were estimated to be X0 = 0.3 and
that fishery managers decided to maximize the present value of net 
revenues for t = 0, 1, 2, . . . , 9, subject to X10 = X* (from part c of this 
question). What are the optimal values for Yt ≥ 0 for t = 0, 1, 2, . . . , 9?
(e) What is the shadow price on fish in the water at the bioeconomic
optimum?



CHAPTER 4

The Economics of Forestry

4.0 Introduction and Overview

In this chapter we will examine the economics of even-aged forestry and
the optimal inventory of old-growth forest. By an even-aged forest we
mean a forest that contains trees of the same species and age. Such a
forest might be established by a lightning-induced fire or by clear-cutting
of a stand of trees. The first non-native settlers in western Washington
and Oregon encountered vast stretches of even-aged forest (predomi-
nantly Douglas fir) which had been established by natural (“volunteer”)
reseeding following a fire.Today, silvicultural practices by forest firms are
specifically designed to establish an age-structured forest inventory or
“synchronized forest,” where tracts of land contain cohorts ranging in
age from seedlings to “financially mature” trees, that provide the forest
firm with a more or less steady flow of timber to their mills.

In western Washington and Oregon in the mid-1800s most forest
stands contained trees over 200 years old with diameters in excess of 
five feet. Collectively, these forests constituted a huge inventory of old-
growth timber, which was used in the construction of houses and com-
mercial buildings, the building of ships, and the manufacture of railroad
ties, telegraph poles, furniture, musical instruments, and a plethora of
other items. In the 1850s the old-growth forests of the Pacific Northwest
must have seemed limitless and inexhaustible, but by the 1920s foresters
were already contemplating the end of this period of “old-growth
mining” and the establishment of a forest economy based on the sus-
tainable harvest of timber from even-aged forest “plantations.” An
obvious question would be “When should we cease the cutting of old-
growth forest and preserve what’s left?”

This question has become a controversial policy issue in the Pacific
Northwest and Alaska, where most of the remaining old-growth forest
is on land owned by the federal government. The remaining inventory
of old-growth forest provides a valuable flow of “amenity services,” as a
result of its ability to provide (1) sites for hiking and camping, (2) habitat
for wildlife, (3) watershed protection, and (4) what we will later refer to
as option value.

59
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In determining the optimal age at which to cut an even-aged stand of
trees we will take the perspective of a private present-value maximizing
individual or firm. When trying to determine the optimal inventory of
old-growth forest to preserve we will take the perspective of a social
forester or planner who seeks to balance the flow of nontimber amenity
value with the desire for net revenue and jobs in the forest economy.
Many of these same issues arise in the management of the mixed hard-
wood forests of the north central and northeastern United States and in
the tropical forests found in developing countries. The administration of
these forests is more complex because it involves multispecies manage-
ment with interspecific competition for light, water, and nutrients in the
case of temperate forests, or the potential instability of soils in the case
of tropical forests.

4.1 The Volume Function and Mean Annual Increment

Consider a parcel of land which has recently been cleared of trees by fire
or cutting. Suppose the parcel is reseeded (restocked) by windblown seed
from neighboring trees or by seedlings planted by a forest firm. Taking
the date of reseeding as t = 0 and treating time as a continuous variable,
let Q = Q(t) denote volume of merchantable timber at instant t > 0. Mer-
chantable volume is the volume of wood which has commercial value. A
plausible shape for this volume function is shown in Figure 4.1.

Figure 4.1 shows the volume of merchantable timber increasing until

Figure 4.1. The Volume of Merchantable Timber, Q(t)
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about t = 86, after which volume decreases as a result of disease and
decay (senescence). In reality, merchantable volume may not become
positive until five or more years after reseeding.The functional form used
in drawing Figure 4.1 is a cubic, given by

(4.1)

where a = 100, b = 2, and d = 0.02. Another functional form which is fre-
quently used to approximate merchantable volume is the exponential

(4.2)

where b > a > 0.As t Æ •, Q(t) Æ ea, and there is no decline in the volume
of merchantable timber when using this functional form.

Foresters have long been interested in the appropriate time to wait
before a recently replanted parcel should be cut and replanted again.
The interval between cuttings is called the rotation length. Foresters were
also aware that it might be desirable to arrange a more or less steady
annual timber harvest from a large forest.This would presumably permit
more or less steady annual employment for loggers and mill workers. It
might be possible to organize a large forest into some number of smaller
parcels ranging in age from zero (just replanted) to age T (about to be
cut), where T is rotation length.

Suppose one wished to maximize the average annual yield from a rota-
tion of length T. This means that every T years you would cut the rep-
resentative parcel, obtaining an average annual volume Q(T)/T. Early
foresters called this average annual volume the mean annual increment
(MAI) and sought the rotation which would maximize it. Taking the first
derivative and setting it equal to zero results in the expression Q(T)/T
= Q¢(T). This says that the rotation which maximizes MAI must equate
the average product from waiting [Q(T)/T] with the marginal product
from waiting [Q¢(T)]. Graphically, this rotation can be identified by
finding where a ray from the origin is just tangent to the volume func-
tion. For the cubic growth function given in equation (4.1) the rotation
maximizing mean annual increment will be T = b/(2d). For the expo-
nential function in equation (4.2) this rotation is simply T = b. In Figure
4.2 we plot equation (4.2) for a = 10 and b = 70 and draw in the ray from
the origin, which is tangent at T = 70.

The rotation which maximizes average annual volume is analogous to
the stock level which maximizes sustainable yield in the fishery.Although
at first blush it may seem a desirable rotation (it maximizes the volume
harvested over an infinite horizon), it similarly ignores any economic
considerations, like the net price for timber, the cost of replanting, or the
discount rate.

Q t ea b t( ) = -

Q t at bt dt( ) = + -2 3
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4.2 The Optimal Single Rotation

Suppose a parcel of land has recently been reseeded and you are to max-
imize the net present value of this single stand. After this stand is cut,
the land will be converted to some other use in which you have no finan-
cial stake. How long should you wait before harvesting this single stand?

Let p denote the net price per unit volume at harvest, which is assumed
known and constant. With time a continuous variable, we will use e-dt as
the appropriate discount factor for calculating the present value of a
financial outcome at instant t > 0 (see Chapter 1). With no replanting 
the net present value of a single rotation of length T is given by ps =
pQ(T)e-dT. The optimal single rotation can be found by solving dps/dT =
pQ(T)e-dT(-d) + pQ¢(T)e-dT = 0 and implies

(4.3)

This equation has an important economic interpretation. On the LHS
the term pQ¢(T) is the marginal value of allowing the stand to grow an
increment (dT > 0) longer. On the RHS, the term dpQ(T) is the marginal
cost of allowing the stand to grow an increment longer. It represents the
forgone interest payment on not cutting the stand now. Thus, the optimal
single rotation will balance the marginal value of waiting with the mar-
ginal cost of waiting.

We could have canceled p from both sides of equation (4.3) and
written the first-order condition as Q¢(T)/Q(T) = d. The interpretation of
this equivalent equation is that the optimal single rotation equates the

  pQ T pQ T¢( ) = ( )d

Figure 4.2. The Volume Function Q(t) = ea-b/t
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percentage rate of increase in volume [Q¢(T)/Q(T)] to the rate of dis-
count. For the exponential volume function in equation (4.2), the optimal
single rotation has an analytical (explicit) expression given by T = ÷b/d.
It will normally be the case that the optimal single rotation is shorter
than the rotation which maximizes mean annual increment.

4.3 The Faustmann Rotation

Suppose now that the parcel of land has just been reseeded and you are
asked to determine the optimal rotation if the parcel is to be devoted to
rotational (even-aged) forestry in perpetuity. Suppose c is the cost of
replanting the parcel and that p, c, d, and Q(t) are unchanging over all
future rotations. In this unlikely stationary environment the optimal
rotation is constant and the pattern of cutting and replanting leads to the
“sawtoothed” time profile for Q(t) shown in Figure 4.3.

Figure 4.3 was drawn by using the exponential volume function with
a = 10 and b = 70 and arbitrarily imposing a rotation of 50 years. From
an economic perspective we may ask, What is the optimal rotation?

Recall we are assuming that the parcel has recently been reseeded and
that cost has been “sunk.” What is the expression for the present value
of net revenues from an infinite series of rotations, all of length T? At
the end of each rotation we would receive the same net revenue of
[pQ(T) - c].This would be obtained at T, 2T, 3T, . . . , and so on, ad infini-
tum. The present value of this infinite series will equal

Figure 4.3. Volume with Cutting and Reseeding Every T = 50 Years
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(4.4)

Note that the infinite series {1 + e-dT + e-2dT + e-3dT + . . .} converges to 1/(1
- e-dT) when 1 > e-dT > 0, and the last expression is obtained by multi-
plying the top and bottom of the previous expression by edT. The Faust-
mann rotation is the value of T which maximizes p. It is named after a
German civil servant, Martin Faustmann, who correctly formulated this
problem way back in 1849. The problem was correctly solved by another
German, Max Robert Pressler, in 1860. The optimal rotation must satisfy
dp/dT = 0. The derivative and subsequent algebra are tedious, but ulti-
mately lead to a logical expression with a nice economic interpretation.
First, note that

implies

Multiplying both sides by [1 - e-dT] and transposing yields

Now we make use of a critical observation. The second term on the
RHS is equal to dp because

This permits us finally to write

(4.5)

On the LHS, pQ¢(T ) is once again the marginal value of waiting. It is the
incremental return from delaying the cutting of the current stand by dT.
On the RHS, d[pQ(T ) - c] is the forgone interest payment if the current
stand were not cut at instant T. This is not the only opportunity cost of
delaying the cutting of the current stand. The term dp is the cost of in-
crementally delaying all future stands. Alternatively, if the land were
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reseeded after cutting the current stand, dp would be the forgone rental
payment which the landowner could charge a forester for renting her
land to grow trees. The sum of these two terms becomes the marginal
cost of waiting.

How does the Faustmann rotation, which must satisfy equation (4.5),
compare to the optimal single rotation of the previous section? Intu-
itively, delay in the infinite rotation problem incurs an additional cost
(dp). Thus, it is typically the case that the Faustmann rotation will be
shorter than the optimal single rotation. For high rates of discount, the
Faustmann rotation may only be slightly less than the optimal single 
rotation. Why? What happens to dp as d increases? Remember that p
depends on d!

Another interesting concept is given by the term [p(T*) - c], where
T* is the Faustmann rotation. Recall that p was the present value of all
future rotations given that the cost of planting the current stand had been
paid (sunk).We know that T* maximizes p.The term [p(T*) - c] is called
the land expectation or site value. It is the value of bare land devoted to
forestry. After cutting the current stand, but before replanting, [p(T*) -
c] must be positive to make replanting worthwhile. In other words, the
expected value of land with freshly planted seedlings, [p(T*)], must
exceed the cost of those seedlings to make reseeding a worthwhile thing
to do. If [p(T*) - c] < 0 the landowner would probably get out of forestry
and devote the land to its “next highest use.”

4.4 An Example

To illustrate the concepts encountered thus far, let’s consider a numeri-
cal example. Table 4.1 reports the volume of merchantable timber (in
board feet) from even-aged stands of Douglas fir grown on 14 different
site classes in the Pacific Northwest. The site class index runs from 80 (a
low-quality site) to 210 (a high-quality site). Volume for each site class
is reported in 10-year increments for stands ranging in age from 30 to
160 years.

Consider Site Class 140. Suppose we wish to fit the exponential volume
function to the merchantable volume for this site class.Taking the natural
log of both sides of equation (4.2) we obtain lnQ = a - b/t. Taking the
natural log of the volume data under Site Class 140 in Table 4.1 and
regressing it on 1/t result in the following ordinary least squares (OLS)
equation:

(4.6)
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Table 4.1. Merchantable Volume per Acre (in Board Feet) for Douglas Fir by Age and Site Class
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where the t-statistics are given in parentheses. The transformed data and
the regression results are reported in greater detail in Spreadsheet 4.1.

For the exponential volume function, we saw that the rotation maxi-
mizing average annual volume (or MAI) was simply T = b = 196.11 years.
We also determined that the rotation maximizing the present value of a
single rotation was Ts = ÷b/d. If the discount rate is d = 0.05, then the
optimal single rotation is Ts = 62.63.

Spreadsheet 4.1
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At the bottom of Spreadsheet 4.1 we entered an initial guess for the
Faustmann rotation (T* = 50, no longer shown) in cell $B$43.The expres-
sion for p, as given in equation (4.4), was programmed into cell $B$44.
The cost of replanting was set at c = $180/acre, the price per board foot
for timber was p = $0.65, and the discount rate was kept at d = 0.05.
Excel’s Solver was summoned to maximize p by changing the initial
guess for T*. The optimal (Faustmann) rotation, to which Solver quickly
converged, was T* = 61.66 (now in cell $B$43), which is only slightly less
than the optimal single rotation of Ts = 62.63. The maximized value of p
is $542.84 per acre, which exceeds the cost of replanting, c = $180 per
acre, implying that rotational forestry is viable on Site Class 140 land.

4.5 Timber Supply

The Faustmann model can be used to analyze the supply response of a
forest company to changes in p, c, and d. We will define the short-run
supply response to be the change in the volume of timber cut as the result
of a change in the rotation length. The long-run supply response will be
the result of a change in (i) the average annual volume, Q(T)/T, and (ii)
the amount of land devoted to forestry. Because the long-run supply
response depends on two factors, the net qualitative effect of a change
in p or c will be ambiguous.

To determine whether the timber supply will increase or decrease in
either the short run or the long run, we need to know the comparative
statics of the rotation length, T, and the rent on forest land, dp, for
changes in p, c, and d. In deriving equation (4.5) we saw that

Dividing both sides by p yields

or

(4.7)

The comparative static results we derive assume that Q¢(T) > 0, Q≤(T) <
0, and that all Faustmann rotations before and after a change in p, c,
or d are less than the rotation that maximizes average annual volume.
This last assumption is important in determining the long-run supply
response.
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Carefully examine equation (4.7), which must be satisfied by the Faust-
mann rotation. Suppose that p increases. How will the Faustmann rota-
tion change in order to reestablish the equality of equation (4.7)? An
increase in p will increase the denominator of the LHS and thus reduce
the LHS overall. To reestablish equation (4.7), we must increase Q¢(T),
which, given our assumptions, can only be done by shortening the Faust-
mann rotation from its previous value. Thus, if price increases from p1 to
p2 (p2 > p1), the Faustmann rotation will decrease from T1 to T2 (T2 < T1).
Since the Faustmann rotation decreases with an increase in price we write
dT/dp < 0.

A change in c will have the opposite effect on rotation length. In fact,
it is legitimate simply to regard (c/p) as a single parameter, the cost–price
ratio. Increases in p decrease the cost–price ratio, and increases in c
increase its value. By similar reasoning, if c increases, the denominator
of the LHS of (4.7) decreases, and we need to decrease Q¢(T ) to reestab-
lish equality. To decrease Q¢(T ) we would move to a longer rotation.
Since an increase in c lengthens the rotation we write dT/dc > 0.

Finally, consider an increase in the discount rate, d, which only appears
on the RHS of equation (4.7). As the discount rate increases, the RHS
will increase, since the numerator is increasing linearly in d, while the
denominator is asymptotically increasing to unity. To reestablish the
equality of (4.7), we need to increase Q¢(T ) on the LHS of (4.7), which
can only be done by decreasing T. This implies dT/dd < 0.

The short-run supply response of forest firms can be inferred from
these comparative results. In particular, if p, c, or d changes so that the
new rotation is shorter than the old (pre-change) rotation, then forest
firms will find themselves with “over-mature” timber, which they will cut,
increasing the volume (and thus supply) of timber flowing to the market.
Increases in p or d will result in a short-run increase in timber supply,
whereas an increase in c reduces short-run supply, since the new, longer,
rotation will necessitate a delay in cutting stands that were almost finan-
cially mature under a lower-c rotation.

In the long run, timber supply will depend on the average annual
volume per acre, Q(T)/T, and on the number of acres devoted to forestry.
The number of acres in forestry is thought to depend on dp, the rental
value of forest land. Any change in p, c, or d which increases dp will, in
theory, serve to attract more land to forestry. We can write dp = d[ pQ(T )
- c]/[edT - 1]. By inspection, an increase in p will increase dp, whereas an
increase in c will lower dp. Thus, an increase in p makes it more attrac-
tive to devote land to forestry, and an increase in c makes existing forest
land less profitable and some will be converted to other land uses.

An increase in d will reduce dp! This occurs because p depends on d
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and will decrease exponentially with increases in d. Since an increase in
d will lower dp, land devoted to forestry becomes less valuable and more
susceptible to conversion.

So, what are the long-run supply implications of a change in p, c, or d?
An increase in p leads to a shorter rotation and a lower average annual
volume, Q(T)/T. This would tend to reduce long-run supply. However,
an increase in p will increase dp and make forest land financially more
attractive. The net effect will depend on the relative strength of these
two effects, which is an empirical question. Qualitatively, the long-run
supply effect of an increase in p is said to be ambiguous.

The long-run supply implications of an increase in c (replanting cost)
are also ambiguous. Why? An increase in c causes forest firms to adopt
a longer rotation. This will increase Q(T)/T, which would tend to
increase long-run supply. However, an increase in c will reduce dp,
making forest land less profitable and reducing the amount of land
devoted to forestry. Again, the average annual volume effect and the
forest land value effect work at cross-purposes and the net effect cannot
be determined by a qualitative analysis using comparative statics.

Finally, an increase in the discount rate, d, will have an unambiguous
long-run supply effect.An increase in d will shorten the rotation of forest
firms and will reduce average annual volume, Q(T )/T. An increase in d
will also reduce dp and make land devoted to forestry less valuable. Both
effects work to reduce the long-run supply of timber.

The changes in rotation length, T; short-run timber supply, Q(T )/T; dp;
and long-run timber supply are summarized in Table 4.2.A plus sign indi-
cates that an increase in the parameter will increase the variable in ques-
tion, a negative sign indicates that an increase in the parameter will
reduce the variable in question, and a question mark indicates that the
effect is qualitatively ambiguous. For example, a negative sign in the T
row under p means dT/dp < 0, the plus sign in the row Short-run Supply
below p means that an increase in p will increase the short-run supply
of timber, and so on. Study Table 4.2 to make sure the entries are con-
sistent with your understanding of the Faustmann model.

4.6 The Optimal Stock of Old-Growth Forest

When the first white settlers arrived in the Pacific Northwest in the mid-
1800s they found vast tracts of even-aged forest, the result of lightning-
induced forest fires and natural reseeding. Most of these tracts contained
trees in excess of 200 years in age. Western Washington and Oregon and
Northern California were seen as a huge inventory of old-growth timber.
At the time, there was not much concern for conservation. One hundred
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and fifty years later less than 15% of that inventory remains. Old-growth
forest is thought to convey a variety of nontimber benefits, or amenity
flows, in the form of habitat for wildlife, watershed protection, and desir-
able sites for hiking and camping. Let’s consider a model which addresses
the question “When should we stop cutting old-growth forest and pre-
serve what’s left?”

Suppose that the flow of nontimber amenities in period t is a function
of the remaining stock of old-growth forest as given by the function At

= A(Xt), where At is the value ($) of the amenity flows from an old-
growth stock, Xt, measured in hectares. We will assume A¢(•) > 0 and
A≤(•) < 0. Suppose further that it is not possible to recreate old-growth
forest, in the sense that the evolutionary processes which created the
current “old-growth ecosystem” would not be operable after cutting. In
other words, although it may be possible to regrow a stand of 200-year-
old trees, the forest ecosystem 200 years after cutting would have a dif-
ferent composition of species (flora and fauna) than if the current
old-growth stand were preserved. If this perspective is legitimate, the
stock of old-growth forest becomes a nonrenewable resource, with
dynamics given by Xt+1 = Xt - ht, where ht is the number of hectares of
old-growth forest cut in period t.

Table 4.2. The Effect of Changes in p, c, and d on the Faustmann
Rotation, Short-Run Supply, Q(T)/T, dp, and Long-Run Supply
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What is gained by cutting a hectare of old-growth forest? Suppose
each hectare contains timber which has a net revenue of N > 0 after
logging. After the old-growth timber is harvested, assume that the
hectare is replanted and becomes a permanent part of the “new-growth”
forest inventory, which is optimally managed under a Faustmann rota-
tion with a present value of p per hectare. If X0 is the initial stock of old-
growth forest and Y0 the initial stock of new-growth forest, then the stock
of new-growth forest in period t is simply Yt = (Y0 + X0 - Xt).

Suppose the welfare flow in the forest economy in period t is given by

(4.8)

Note that the welfare flow consists of the amenity flow, A(Xt); the one-
time net revenue (stumpage) flow from old-growth timber if ht > 0; and
the rental flow from the accumulated stock of new-growth forest, where
dp is given at the beginning of period t, since the new-growth forest is
optimized via a Faustmann rotation for a discount rate of d.

At some point the forest economy will cease the harvesting of old-
growth forest because (i) none is left or (ii) what’s left is more valuable
preserved. When that happens the forest economy has reached a steady
state with ht = 0 and Xt = X* ≥ 0. Let’s assume that the forest economy
does decide to preserve some old-growth forest (X* > 0). How many
hectares should they preserve? Consider the problem seeking to maxi-
mize the present value of welfare subject to old-growth dynamics.

This problem has the associated Lagrangian

The first-order necessary conditions include

In steady state, where the forest economy chooses to preserve some
old-growth forest, it will be the case that both h = 0 and rl = N. This
implies that l = (1 + d)N. Evaluating the last expression in steady state
implies
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or

(4.9)

This is one equation in one unknown, the optimal stock of old-growth
forest, X*.The economic interpretation is straightforward. It says cut old-
growth forest until the marginal amenity flow, A¢(X) is equal to the inter-
est payment on the sum of the present value of an additional hectare of
new-growth forest plus the net revenue from old-growth timber, d(p +
N). It can also be shown that the approach from X0 > X* to X* is “most
rapid.” If hMAX is the maximum rate at which old-growth can be cut, then
there will be an interval t ≥ t ≥ 0 where ht = hMAX and t = (X0 - X*)/hMAX.

Marginal amenity flow is difficult to measure. It would include the
incremental benefits of habitat, watershed protection, and recreation
that an additional hectare of old-growth forest would provide, per
period. The term d(p + N) can be regarded as the opportunity cost of
preservation. It is the interest payment forgone by not cutting another
hectare of old-growth forest. It is more amenable to measurement. In
fact, if one can estimate d(p + N), one will have a lower-bound value
which A¢(X) must exceed in order to justify the preservation of all
remaining old-growth forest.

Table 4.3 contains estimates of d(p + N) for four important commer-
cial species, on high-quality sites, in coastal British Columbia, circa 1990.
The per hectare market value for old-growth timber provides consider-
able incentive for logging. A mixed stand of old-growth cedar/hemlock
would have yielded a net revenue of $50,199 (Canadian dollars). The
Faustmann rotations, for d = 0.04 and d = 0.06, are given in the third and
fourth columns and range from 52 to 79 years. The present value of all
future rotations for a recently replanted hectare is given for both dis-
count rates in the fifth and sixth columns. Finally, the opportunity cost of
old-growth preservation, d(p + N), is given for d = 0.04 and d = 0.06 in
the last two columns. If marginal amenity flow per hectare per year
exceeded these values, then the remaining old-growth forest in British
Columbia should be preserved.

It is interesting to note that as the discount rate increases from d =
0.04 to d = 0.06, p decreases as expected, but the overall opportunity cost,
d(p + N), increases. This happens because the net revenue from cutting
old-growth timber is so large relative to p that the increased interest
payment on N more than offsets the decline in dp. For higher discount
rates, land expectation or site value, (p - c), becomes negative, indicat-

¢( ) = +( )A X Nd p

¢( ) - + - +( ) =A X N Ndp d1 0



Table 4.3. The Opportunity Cost of Old-Growth Forest Preservation on High-Quality Sites in Coastal
British Columbia, circa 1990
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ing that forest firms would have no interest in replanting. Their only
interest would be in the value of standing old-growth timber.

4.7 Questions and Exercises

Q4.1 Non-native settlers of the Pacific Northwest found a vast inventory
of old-growth forest. What are the conservation and rotational problems
confronting a forest-based economy fortunate enough to inherit such an
old-growth inventory?

Q4.2 In words, explain the mean annual increment, the optimal single
rotation, and the Faustmann rotation.

Q4.3 If the discount rate increases, what happens to the optimal inven-
tory of old-growth forest which a forest economy would choose to 
preserve?

E4.1 You are the manager of a forest products company with land
recently planted (t = 0) with a fast-growing species of pine. The mer-
chantable volume of timber at instant t ≥ 0 is given by Q(t) = at + bt2 -
gt3, where a = 10, b = 1, and g = 0.01.
(a) What is the maximum volume and when does it occur?
(b) What rotation length maximizes mean annual increment, [Q(T)/T],
and what is the associated volume?
(c) If the net price per unit volume is p = 1 and the discount rate is d =
0.05, what are the optimal single rotation, Ts; volume at harvest; and
present value at t = 0?
(d) If the cost of replanting is c = 150, what are the optimal Faustmann
rotation, T*; volume at harvest; and present value at t = 0?
(e) If the price increases to p = 2, what are the new values for Ts and
T*? Do the new values make sense relative to their values when p = 1?

E4.2 Suppose that the inventory of old-growth forest yields an amenity
flow given by At = a ln(Xt), where a > 0, and ln(•) is the natural log oper-
ator. As in Section 4.6, let d denote the discount rate, N the net revenue
from old-growth timber, and p the present value of recently replanted
land under the Faustmann rotation.
(a) What is the expression defining X*, the optimal amount of old-
growth forest to preserve?
(b) Suppose the initial stock of old-growth forest has been normalized
to X0 = 1, and you estimate a = 615, d = 0.05, p = 1,000, and N = 40,000.
What is the value for X*?
(c) If the maximum rate at which old growth can be cut is hMAX = 0.01,
how many years of “old-growth mining” will be allowed before the forest
economy must obtain all its timber from “new-growth” forest?
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E4.3 A private woodlot owner receives an amenity flow, A(t), while
growing trees, where A¢(t) > 0, A≤(t) < 0, A(0) = 0, and the woodlot was
replanted at t = 0. Suppose she is interested in both the amenity flow and
the present value of net revenue from a single rotation. She wishes to
maximize

(a) What is the first-order condition defining the optimal single rotation
with nontimber amenity benefits? Hint: The derivative of the integral
with respect to T is simply A(T)e-dT.
(b) What is the marginal value of waiting? What is the marginal cost of
waiting?
(c) If Q(T) = ea - b/T (b > a > 0) and A(t) = vt - wt2 (v > w > 0), what is
the implicit expression, G(T) = 0, that must be satisfied by the single rota-
tion maximizing p?
(d) If a = 15, b = 180, d = 0.05, p = 1, v = 173.167, and w = 0.0025, what
is the value for the rotation maximizing p? Denote this rotation TA.
(e) How does TA compare with Ts, the optimal single rotation when no
amenity value is present?

p d d= ( ) + ( )- -ÚpQ T e A t e dtT t
T
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CHAPTER 5

The Economics of Nonrenewable Resources

5.0 Introduction and Overview

Nonrenewable resources do not exhibit significant growth or renewal
over an economic time scale. Examples would include coal, oil, and
natural gas and minerals such as copper, tin, iron, silver, and gold. We
noted in Chapter 1 that a plant or animal species might be more appro-
priately viewed as a nonrenewable resource than as a renewable
resource. In Chapter 2 we developed a model of a nonrenewable
resource to show how Solver might be used to determine the optimal
time path of depletion. In Chapter 4 the cutting of old-growth forest was
modeled as a nonrenewable resource.

If the initial reserves of a nonrenewable resource are known, the ques-
tion becomes “How should they be extracted over time?” Is complete
depletion (exhaustion) ever optimal? Is it ever optimal to abandon a
mine or well with extractable reserves? Does the time path of extraction
by a competitive firm differ from that of a price-making monopolist? If
exploration allows a firm to find (acquire) more reserves, what are the
optimal time paths for extraction and exploration?

In working through the various models of this chapter an economic
measure of resource scarcity which is different from standard measures
based on physical abundance will emerge. From an economic perspec-
tive, scarcity should reflect marginal value net of the marginal costs asso-
ciated with extraction. The Lagrange multiplier, encountered in our
models of renewable resources, will once again provide an appropriate
economic measure of scarcity.

When a commodity is scarce from an economic perspective, it com-
mands a positive rent: that is, a market price which exceeds the marginal
cost of production. “Rent seeking behavior” by firms supplying the com-
modity, or potential substitutes, and consumers wishing to avoid high
prices set in motion market forces which may offset a decline in physi-
cal abundance. Economists view scarcity as a constantly changing
dynamic condition, in which ingenuity and adaptive behavior allow
society to escape the pinch of scarcity in one resource, only to face it in
another.

77
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Not all scientists share the economist’s optimism about the ingenuity
and adaptability of Homo economicus, or at least the ability to extend
that ingenuity to the protection of environmental quality and the preser-
vation of natural environments. Ecologists often view resource depletion
and pollution as irreversible and inevitable results of growth in economic
output, as measured by gross domestic product (GDP).There is, however,
some evidence to indicate that economic growth might be necessary
before a modern society can consider environmental protection and con-
servation. When a society is free from the threat of starvation and war,
resources can be devoted to protecting and improving environmental
quality and preserving remaining wilderness. Can nutritional security and
political stability be established in less developed countries in time to
allow for investment in, and preservation of, their natural environments?

5.1 A Simple Model

Suppose a nonrenewable resource has known initial reserves given by
R0. Denote the level of extraction in period t by qt. With no exploration
and discovery, the dynamics of remaining reserves are given by the
simple difference equation Rt+1 = Rt - qt, where Rt and qt have the same
unit of measure, say, metric tons.

To keep things simple, suppose that society only values extraction, qt,
according to the utility function U(qt), where U¢(•) > 0 and U≤(•) < 0
guarantee strict concavity. Utility is discounted by the factor r = 1/(1 +
d), and society’s objective is to select the extraction schedule which max-
imizes discounted utility subject to the dynamics of remaining reserves.

What is the relevant horizon? For this simple problem, let’s suppose
that the relevant economic horizon is t = 0, 1, . . . , T, where T is finite
and given. (In subsequent problems we will treat T as an unknown that
must be optimally determined.) It is also assumed that there is no value
assigned to remaining reserves in period T + 1. In the notation of Chapter
2 we set lT+1 = B = 0.

With Ut = U(qt), T given, and lT+1 = 0, we have no incentive to save or
conserve the resource beyond t = T, and exhaustion (RT+1 = 0) is optimal.
This permits us to dispense with the difference equation for remaining
reserves and to substitute the single constraint

(5.1)

Equation (5.1) requires that cumulative extraction exhausts initial
reserves. Maximization of discounted utility subject to the exhaustion
constraint leads to the Lagrangian

R qt
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(5.2)

Let’s assume that qt > 0 for T ≥ t ≥ 0, so that exhaustion before T + 1
is not optimal. (U¢(0) Æ • will guarantee that this is the case.) The first-
order conditions for maximization of discounted utility require

(5.3)

and

(5.4)

Equation (5.3) must hold for t = 0,1, . . . ,T, and implies

(5.5)

Equation (5.5) implies that discounted utility is maximized by sched-
uling extraction so that discounted marginal utility is equal in every
period.Also note that m = ∂L/∂R0 may be interpreted as the shadow price
of initial reserves, R0. It is the value of having one more unit of initial
reserves to deplete optimally.

Consider two adjacent periods, t and t + 1. Equation (5.5) implies that
rtU¢(qt) = rt+1U¢(qt+1), or U¢(qt+1) = (1 + d) U¢(qt). The implication of this
last expression is that the marginal utility of extraction must be growing
at the rate of discount, or more generally

(5.6)

Finally, note that equations (5.3) and (5.4) constitute a system of (T + 2)
equations in (T + 2) unknowns, permitting us to solve, in theory, for qt,
t = 0, 1, . . . , T, and m.

5.2 Hotelling’s Rule

Suppose a market exists for qt, and in each period U¢(qt) = pt, where pt is
the unit price for qt. Then we can substitute pt = U¢(qt) and p0 = U¢(q0)
into equation (5.6) to obtain

(5.7)

Equation (5.7) says that the price is rising at the rate of interest. Harold
Hotelling, an economist writing in 1931, presumed that a competitive
industry, which comprised present value maximizing mine owners with
perfect foresight, would schedule extractions so that price would rise at
the rate of discount. If they did not, they couldn’t be maximizing present
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value, since a reallocation of extraction from a period with a lower dis-
counted price to a period with a higher discounted price would increase
present value. From Hotelling’s perspective competitive mine owners,
maximizing the present value of their initial reserves, would be forced to
extract so that price rose at the rate of interest. Another way of express-
ing Hotelling’s rule is to note that (5.7) implies pt+1 = (1 + d)pt, which can
be algebraically manipulated to yield

(5.8)

This version says that the capital gain on an extractable unit of qt in the
ground (the LHS) must equal the rate of discount in order to remain
indifferent between extracting that unit in period t versus extracting it
in period t + 1.

This is the simplest form of Hotelling’s Rule and it implicitly assumes
that there are no costs of extraction, or that the marginal cost of extrac-
tion is constant, and that pt represents the net price per unit. If these
assumptions are relaxed we will get modifications of equation (5.8).
Before we examine more complex models, let’s flesh out the implications
of Hotelling’s Rule for different inverse demand curves.

5.3 The Inverse Demand Curve

By an inverse demand curve we mean a function mapping aggregate quan-
tity to market price. In general, we will write pt = D(qt), where pt is the unit
price in period t given that an aggregate quantity of qt is supplied to the
market. We will assume that D(qt) does not increase with increases in qt

(D¢(qt) £ 0), and we will often assume that price decreases with increases
in qt(D¢(qt) < 0). Two functional forms we will use in our analysis of non-
renewable resources are the linear inverse demand curve given by

(5.9)

and the constant elasticity inverse demand curve given by

(5.10)

The linear inverse demand curve has an intercept of a > 0 on the price
axis and an intercept of a/b > 0 on the quantity axis (see Figure 5.1).

The elasticity of demand in period t is given by the general expression

(5.11)ht
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For the linear inverse demand curve you can show that ht = |1 - a/(bqt)|.
As qt Æ 0, ht Æ •; when qt = a/(2b), ht = 1; and when qt = a/b, ht = 0.

The constant elasticity inverse demand curve, with a > 0 and b > 0, is
convex to the origin, with the qt and pt axes serving as asymptotes. (See
Figure 5.2.) The elasticity of demand does not depend on qt and is given
by ht = |-1/b|.

What will be the level of extraction and price (over time) under
Hotelling’s Rule when the competitive market is characterized by the
linear or constant elasticity inverse demand curve? Would the extraction
and price paths differ if all reserves of the nonrenewable resource were

Figure 5.1. The Linear Inverse Demand Curve: a = 1 and b = 0.1

Figure 5.2. The Constant Elasticity Demand Curve: a = 1 and b = 1
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controlled by a price-making monopolist? We will analyze the competi-
tive industry first.

5.4 Extraction and Price Paths in the Competitive Industry

Let’s first consider a competitive mining industry facing a linear inverse
demand curve for aggregate output, qt. An important characteristic of
the linear demand curve is the implied maximum (or “choke-off”) price
at the intercept pt = a when qt = 0. Such an upper bound may result from
the existence of a superabundant substitute, available at a constant mar-
ginal cost MCs = a. In scheduling their production, each competitive firm
is assumed to know about this “backstop” substitute and to know that
price will reach the intercept when all reserves have been collectively
exhausted. Suppose exhaustion occurs in t = T. At that time remaining
reserves and extraction fall to zero (RT = qT = 0). The date of exhaustion,
T, is unknown and must be determined along with the competitive
extraction and price paths.

With knowledge of the choke-off price, and optimizing so as to equate
the discounted price in each period, price will rise at the rate of discount
until pT = a. Knowing where price will end up and knowing its rate of
increase imply pT = a = (1 + d)Tp0. We can solve for the initial price, p0 =
a(1 + d)-T, which upon substitution into equation (5.7) implies

(5.12)

This is the price path, pt. With the linear inverse demand curve we also
have pt = a - bqt. Equating these last two expressions and solving for qt

yield the extraction path

(5.13)

The only problem with the price and extraction paths is that we don’t
know the date of exhaustion, T. With no reserve-dependent extraction
costs exhaustion will be optimal, and cumulative extractions, from t = 0
to t = T - 1, must equal initial reserves, R0, implying

(5.14)

Given values for a, b, d, and R0, equation (5.14) will imply a value for T,
and one could numerically plot the time paths for extraction and price.
These time paths are shown in Figures 5.3 and 5.4 when a = 1, b = 0.1,
d = 0.05, and R0 = 75. The value of T satisfying equation (5.14) is T =
19.94. In a discrete-time problem such as this, where T must be an integer,
we round T up to 20. The extraction path is concave to the origin start-
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ing at q0 = 6.22 and declining to q20 = 0. The price path is convex from
below, starting at p0 = 0.38 and rising at the rate of discount to p20 = 1.

The derivation of competitive extraction and price paths for the con-
stant elasticity inverse demand curve (equation [5.10]) is made difficult
by the lack of a choke-off price. Recall that the qt and pt axes were asymp-
totes for the constant elasticity curve. With no choke-off price, price can
continue to rise forever as the rate of extraction becomes infinitesimal.
Price will rise at the rate of discount so we know pt = (1 + d)tp0. Equat-
ing this last expression to pt = aqt

-b and solving for qt yields

Figure 5.3. The Competitive Extraction Path for the Linear Inverse
Demand Curve When a = 1, b = 0.1, d = 0.05, and R0 = 75

Figure 5.4. The Competitive Price Path for the Linear Inverse Demand
Curve When a = 1, b = 0.1, d = 0.05, and R0 = 75
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(5.15)

As t Æ •, qt Æ 0, and pt Æ • as we surmised from Figure 5.2. Assuming
exhaustion as t Æ •, we can equate cumulative extraction (in the limit)
to initial reserves and use the resulting expression to solve for p0. Specif-
ically, it can be shown that

(5.16)

Solving for p0 yields

(5.17)

When this last expression is evaluated for the same parameter values
used to illustrate the linear inverse demand curve (i.e., a = 1, b = 0.1, d =
0.05, and R0 = 75), one obtains p0 = 0.7142. The competitive extraction
and price paths in this case are shown in Figures 5.5 and 5.6.

With the implications of Hotelling’s Rule fleshed out for a competi-
tive mining industry facing either a linear or a constant elasticity inverse
demand curve we can now ask, “How would the extraction and price
paths differ if all reserves were controlled by a monopolist?” The ques-
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ity Inverse Demand Curve When a = 1, b = 0.1, d = 0.05, and R0 = 75
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tion is of historical interest because of the existence of the Organization
of Petroleum Exporting Countries (OPEC), which from 1973 to 1981
maintained a monopoly-like cartel, setting production quotas for its
members and for a brief period banning the export of oil to the United
States. This set off a series of price increases which by 1981 saw the real
price of crude oil standing at five times the price level of the early 1970s.
It also resulted in the greatest “peaceful” transfer of wealth from the
industrialized economies of North America, Europe, and Asia to OPEC
members that included Saudi Arabia, Kuwait, Iran, Iraq, Libya, the
United Arab Emirates, Algeria, Nigeria, Indonesia, Venezuela, Ecuador,
Gabon, and Qatar. By the early 1980s, however, a combination of energy
conservation, new (non-OPEC) sources of crude oil, and an economic
recession resulted in reduced demand. The cartel itself had experienced
internal bickering and, in 1979, the outbreak of hostilities between Iran
and Iraq. Saudi Arabia, which had frequently reduced its quota to main-
tain price while other members were producing in excess of their agreed
quota, finally grew tired of what it regarded as greedy, undisciplined
overproduction and decided it would produce at its full quota and let the
price find a new, lower, market equilibrium. Although OPEC has never
regained its previous cohesion, the analysis of monopoly pricing of a non-
renewable resource is still of considerable interest.

Figure 5.6. The Competitive Price Path for the Constant Elasticity
Inverse Demand Curve When a = 1, b = 0.1, d = 0.05, and R0 = 75
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5.5 Extraction and Price Paths under Monopoly

As with our analysis of the competitive mining industry, we will assume
there is no variable cost to extraction. (Reserve-dependent costs will be
examined in the next section.) We assume that the monopolist seeks to
maximize the present value of revenues and knows the form of the
inverse demand curve. If the monopolist faced a linear inverse demand
curve, revenue in period t would be given by pt = ptqt = aqt - bqt

2. Hotelling
simply argued that the monopolist, as a price maker, would schedule
extraction so as to equate discounted marginal revenue. If this were not
the case, extraction could be shifted from a period with lower discounted
marginal revenue to a period when discounted marginal revenue was
higher, and overall present value would be increased.

If the monopolist schedules extraction to equate discounted mar-
ginal revenue, then marginal revenue, given by MRt = a - 2bqt, must be
rising at the rate of discount. This implies that MRt = (1 + d)tMR0. For
the linear inverse demand curve, marginal revenue will equal price when
extraction drops to zero: that is, MRT = pT = a when qT = 0, where 
t = T is the monopolist’s date of exhaustion, which may differ from the
date of exhaustion in the competitive industry. Knowing the rate of
increase in marginal revenue and its value at t = T one can solve for 
MR0 = a(1 + d)-T, and the second expression for marginal revenue
becomes MRt = a(1 + d)t-T. Equating this expression to the expression
MRt = a - 2bqt and solving for qt yields

(5.18)

Compare equation (5.18) with equation (5.13). Although we don’t know
the monopolist’s date of exhaustion, if a, b, d, and R0 are the same as in
the competitive industry, and if the dates of exhaustion for both are rea-
sonably far into the future, then the monopolist’s initial rate of extrac-
tion will be approximately one-half that of the competitive industry,
because [a/(2b)] is one-half of (a/b). If the monopolist’s initial rate of
extraction is less than that of the competitive industry, if exhaustion is
optimal (as is the case with no reserve-dependent costs), and if R0 is the
same for competitors in aggregate as for the monopolist, then the date
of exhaustion for the monopolist, Tm, will be greater than the date of
exhaustion for the competitive industry, Tc. When plotted in the same
graph, the extraction path for the monopolist will intersect the compet-
itive extraction path from below and there will be an interval where the
rate of extraction of the monopolist exceeds the rate of extraction from
the competitive industry. The monopolist’s date of exhaustion is the
value of T which equates

q a bt
t T= ( )[ ] - +( )[ ]-

2 1 1 d  
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(5.19)

For a = 1, b = 0.1, d = 0.05, and R0 = 75, Tm ª 30 > Tc = 20. The monopo-
list’s extraction path, and that for the competitive industry (from Figure
5.3), are shown in Figure 5.7.

In Figure 5.7, if R0 is the same for both the competitive and the monop-
olistic industry, then the area below the competitive extraction path and
above the monopolist’s extraction path, to the left of their intersection,
will equal the area below the monopolist’s extraction path and above the
competitive extraction path to the right of their intersection. Why?

For the linear inverse demand curve the monopolist is able to increase
the present value of its revenues by restricting extraction initially, thus
raising price. Since it is optimal to exhaust initial reserves, R0, the monop-
olist will extend the period of positive extraction to Tm - 1. Although the
monopolist spreads extraction over a longer horizon, there is nothing
socially desirable about this behavior. In fact, if U¢(qt) = pt; – that is, mar-
ginal social welfare is equal to price – then the competitive extraction
path is optimal and the monopolist’s extraction path reduces the present
value of social welfare. Will the monopolist’s extraction always be ini-
tially restrictive? Let’s now consider the monopolist facing a constant
elasticity inverse demand curve.

With the constant elasticity inverse demand curve, revenue in period
t is given by pt = aqt

-bqt = aqt
1-b, and marginal revenue is given by MRt =

(1 - b)aqt
-b = (1 - b)pt. With marginal revenue (MR) rising at the rate of
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Figure 5.7. The Extraction Paths for the Monopolistic (Solid Curve)
and Competitive (Dashed Curve) Mining Industry Facing a Linear
Inverse Demand Curve When a = 1, b = 0.1, d = 0.05, and R0 = 75
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discount we know that MRt = (1 + d)tMR0 = (1 + d)t(1 - b)p0. These last
two expressions imply that pt = (1 + d)tp0: that is, price is rising at the rate
of interest, which was our result for the competitive industry. We could
solve for qt, in which case we would get the same expression as given in
equation (5.15). The conclusion: If the inverse demand curve exhibits
constant elasticity, the time paths for extraction and price are the same
for the competitive industry and the monopolist. The key to this unex-
pected result lies in the fact that the monopolist, facing a constant elas-
ticity inverse demand curve, cannot increase the present value of
revenues by restricting the rate of extraction. In fact, points on a con-
stant elasticity inverse demand curve all yield the same revenue.
Although the monopolist is still a price-maker, he or she is unable to
shift revenue to earlier periods as was the case with the linear inverse
demand curve.

We might summarize these last two sections as follows: (i) If the
mining industry is competitive, with complete futures markets for qt,
price will rise at the rate of discount. (ii) If marginal social welfare is
equal to price (U¢(qt) = pt), then the competitive extraction and price
paths are optimal. (iii) If a monopolist can take advantage of changing
elasticity of demand to increase the present value of revenues, then he
or she will restrict the rate of extraction initially and spread initial
reserves over a longer horizon than the competitive industry. The
monopolist is not behaving out of any conservation ethic, but is simply
trying to maximize the present value of revenues.

5.6 Reserve-Dependent Costs

The nonrenewable resource models considered thus far have assumed
that there are no variable costs to extraction and that any fixed costs
have been incurred (sunk). Although not realistic, this assumption kept
things analytically simple and allowed us to get a feel for the dynamics
of extraction and price in the competitive and monopolistic mining
industry. We now consider the implications of reserve-dependent costs.
Specifically, suppose that the cost of extracting qt depends on the level
of remaining reserves so that Ct = C(qt,Rt) is the cost of extracting qt units
of ore when remaining reserves are Rt. Using subscripts to denote the
partial derivatives of C(•), it is assumed that Cq(•) > 0, Cqq(•) > 0, CqR(•)
= CRq(•) < 0, CR(•) < 0, and CRR(•) > 0.As in the fishery model of Chapter
3, higher reserves serve to lower total cost [CR(•) < 0] and the marginal
cost of extraction [CqR(•) < 0].

Consider the competitive industry facing per unit prices pt for t = 0, 1,
. . . , T. Each competitive firm is assumed to have information on the
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“forward prices” for delivery of a unit of qt in period t. These prices are
assumed to be known through the smooth operation of a futures market
for qt.These prices are not affected by the extraction decisions of an indi-
vidual firm. Net revenue in period t is given by pt = ptqt - C(qt,Rt). The
representative firm will try to extract so as to

The Lagrangian for this problem may be written as

(5.20)

and for qt, Rt, and lt positive, the first-order conditions require

(5.21)

(5.22)

(5.23)

Dividing through by rt, this system implies rlt+1 = pt - Cq(•), lt =
(1 + d)[pt-1 - Cq(•)], and rlt+1 - lt = CR(•). Substituting the first two
expressions into the third implies [pt - Cq(•)] - (1 + d)[pt-1 - Cq(•)] =
CR(•). This last expression can be further manipulated to imply

(5.24)

In this expression the term [ pt - Cq(qt,Rt)] can be defined as the “rent”
on the marginal unit extracted in period t, and [ pt-1 - Cq(qt-1,Rt-1)] is the
rent on the marginal unit extracted in period t - 1. Knowing that CR(•)
< 0, equation (5.24) has the following, Hotelling-type, interpretation: In
the competitive industry, with reserve-dependent costs, rent rises at less
than the rate of discount.

How long will the competitive industry operate? The answer will
depend on initial reserves, the inverse demand curve, and the cost func-
tion. If t = T is the last period for optimal operation (qT > 0, qT+1 = 0),
then we know that any remaining reserves in period T + 1 must be worth-

p C p C

p C
C

p C
t q t q

t q

R

t q

- ( )[ ] - - ( )[ ]
- ( )[ ] = +

( )
- ( )[ ]

-

- -

• •

•
•

•
1

1 1

d

∂
∂ rl

r
L

q R R
t

t
t t t

+
+[ ] = - + -[ ] =

1
1 0

∂
∂

r rl r l
L
R

C
t

t
R t

t
t= - ( ) +[ ] - =+• 1 0

∂
∂

r rl
L
q

p C
t

t
t q t= - ( ) -[ ] =+• 1 0

L p q C q R q R Rt
t t t t t t t t

t

T

= - ( ) + - + -[ ]{ }+ +
=
Âr rl, 1 1

0

   

Maximize

Subject to

 given   chosen

rt
t t t t

t

T

t t t

p q C q R

R R q

R T

- ( )[ ]

- = -
=

+

Â ,

,

0

1

0



90 5 The Economics of Nonrenewable Resources

less, thus lT+1 = 0. From equation (5.21) we see that pT = Cq(qT,RT): that
is, price equals marginal cost. It will also be the case that RT, while pos-
itive, will have optimally declined so that pT = C(qT, RT)/qT. In the ter-
minal period, the marginal cost of extraction equals price, which also
equals the average cost of extraction. With pT known, this would give us
two equations which may imply unique values for qT and RT. For
example, when pt = p and Ct = cqt/Rt, where p and c are positive constants,
Cq(•) = C(•)/qt, and the two terminal conditions collapse to a single con-
dition implying RT = c/p. The Lagrangian in this case is linear in qt, and
the optimal extraction schedule is to drive Rt from R0 to RT as rapidly as
possible. If qMAX ≥ qt ≥ 0 then the number of periods with maximum
extraction would be given by (R0 - RT)/qMAX.

Spreadsheet 5.1 shows this linear case when p = 1, c = 10, d = 0.05,
R0 = 100, and qMAX = 10. Although the discount rate is used to calculate
present value, it plays no role in determining the optimal extraction
schedule, since the most rapid approach path (MRAP) is optimal. Note:
The number of periods to reach RT = 10 from R0 = 100, using qMAX = 10,
is 9. Thus, the last period with positive extraction at qMAX is t = 8. It is
optimal to abandon the mine with 10 units of remaining reserves. Their
extraction would only lower present value.

Equation (5.24) contains our earlier result for the competitive indus-
try with no variable costs, since in that case Cq(•) = CR(•) = 0 (in fact,

Spreadsheet 5.1
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there is no variable cost function), and price rises at the rate of discount.
It also contains the case where costs only depend on the rate of extrac-
tion [C = C(qt)], in which case rent rises at the rate of discount.

By now you might be able to anticipate the analogue of equation
(5.24) for the monopolist. You should be able to show that the monop-
olist will schedule extraction so that

(5.25)

In words, the monopolist will schedule extraction so marginal revenue
less marginal cost rises at less than the rate of discount, where the term
CR(•)/[MRt-1 - Cq(•)] < 0.

The introduction of reserve-dependent costs resulted in a more real-
istic model of the competitive or monopolistic mining industry. The
model, however, still lacks several important features, most notably the
process of exploration for and acquisition of new reserves.

5.7 Exploration

Geological processes typically result in a nonuniform distribution of
resources in the earth’s crust. The location and size of economically
recoverable reserves are uncertain. Firms and individuals must typically
explore (search) for recoverable reserves, and their economic value may
depend on their grade (concentration), location, technology available for
extraction, future price, and cost. Exploration is a costly and risky invest-
ment. It is undertaken when a firm believes that the expected present
value of discoveries will exceed the cost of prospecting, field develop-
ment, and extraction. If extraction costs are reserve-dependent, a firm
may have an incentive to increase exploration as its known and devel-
oped reserves decline. The prospect of future discoveries may also
depend on cumulative discoveries to date. If the most obvious locations
have been explored, the probability of large future discoveries may
decline.

Determining the optimal rates of extraction and exploration, in the
face of uncertain discovery, is a formidable problem.To keep things man-
ageable, we will develop a two-period model, t = 0,1, where t = 0 is the
current period and t = 1 is the future (period). Current extraction (q0 ≥
0) and exploration (e0 ≥ 0) decisions are contemporaneously determined,
based on current net revenues, exploration costs, expected discoveries,
and the present value of expected future net revenues from optimal
extraction in each of two possible future states (s = 0, s = 1). A zero–one
random variable, conditional on e0 > 0, is used to determine the size of
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the discovery which augments reserves at the beginning of t = 1. It is not
optimal to explore in the future (t = 1), since there is no third period 
(t = 2) when discoveries could be extracted. Thus, given the structure of
this simple two-period model, the firm must optimally determine the
level of four variables, q1,0 = the level of extraction in future state s = 0,
q1,1 = the level of extraction in future state s = 1, q0 = the level of extrac-
tion in t = 0, and e0 = the level of exploration in t = 0.

Let’s start by specifying the exploration/discovery process. To keep
things simple we assume that the random process of discovery can be
characterized by the binary variable s, where s = 0 with probability e and
s = 1 with probability (1 - e), 1 > e > 0. If s = 0, positive exploratory effort
(e0 > 0) results in no discovery. If s = 1, then positive exploratory effort
yields a discovery of size ae0, where a > 0. This permits us to write the
size of discovery as Ds = sae0, where Ds is the size of discovery in state
s, s = 0,1.

The solution of this two-period, two-state problem will employ the
method of stochastic dynamic programming (SDP), which can be
employed in multiperiod, multistate problems as well. The procedure
starts in the terminal period, when it is possible to determine optimal
behavior assuming remaining reserves, after extraction and discovery in
the previous period, are known with certainty. In state s = 0 (no discov-
ery), we know that remaining reserves are simply R1 = R0 - q0. Denote
the price in t = 1 as p1, and assume that the cost of extracting q1 units in
t = 1 (in either state) is given by the term cq 2

1/R1, where c > 0. In s = 0 the
cost of extracting q1,0 becomes cq 2

1,0/(R0 - q0) and we can write the net
revenue in t = 1, s = 0, as

(5.26)

In state s = 1, after a discovery of size ae0, remaining reserves are R1 =
R0 - q0 + ae0, and the net revenue from q1,1 is given by

(5.27)

p1,0 can be maximized with respect to q1,0, as can p1,1 with respect to q1,1.
Setting the appropriate derivatives equal to zero you should obtain

(5.28)

(5.29)

Equations (5.28) and (5.29) constitute the optimal extraction policy
for the future in all possible states. Note that the optimal value of q1,0
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depends on q0 and the optimal value of q1,1 depends on q0 and e0, neither
of which is known at this point in the solution algorithm, but when they
are known, we will know what to do in either state.

Now take the expressions for q*1,0 and q*1,1 and substitute them into
equations (5.26) and (5.27), respectively. After some algebra you should
get the following expressions for optimized net revenue:

(5.30)

(5.31)

Suppose that the first period decisions q0 > 0 and e0 > 0 have been
made, but that the size of the discovery has not been revealed. The
expected value, in t = 1, of a (q0,e0) decision may be calculated as

(5.32)

The expression for p1 depends on q0 and e0 and presumes optimal extrac-
tion in the future in all possible states. Such expressions are called value
functions. We can discount p1 by r, add it to the expression for net
revenue in t = 0, and obtain an expression for the present value of
expected net revenues which depends on q0 and e0. This expression takes
the form

(5.33)

Setting the partial derivatives of p with respect to q0 and e0 equal to zero
yields the following expressions for optimal first-period extraction and
exploration:

(5.34)

(5.35)

Assuming that the optimal levels for q0 and e0 are positive, one would
wait until the state of the world is revealed, and then use equation (5.28)
or (5.29) to determine the optimal levels of extraction in s = 0 or s = 1.

There are eight parameters in this model: R0, p0, p1, c, w, a, e, and d.
Spreadsheet 5.2 shows the optimal values for q0, e0, q1,0, and q1,1 when 
R0 = 100, p0 = 1, p1 = 1.1, c = 2, w = 5, a = 250, e = 0.7, and d = 0.05. In cell
$B$21 we have programmed the expression for p from equation (5.33)
and placed guesses for the optimal q0 and e0 in cells $B$19 and $B$20,
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respectively. As a check on our algebra we asked Solver to maximize p
by changing q0 and e0, and after a few iterations it converges to the values
given by our analytical expressions in cells $B$13 and $B$14.

By inspection of the optimal expressions for q0, e0, q1,0, and q1,1, or
through numerical analysis via Spreadsheet 5.2, one can conduct com-
parative statics to see how extraction and exploration change as a result
of a change in one of the eight parameters. The results are summarized
in Table 5.1, where a plus sign (+) indicates that an increase in a para-
meter increases the optimal value of a variable, a minus sign (-) indi-
cates that an increase in a parameter will decrease the optimal value of
the variable, and zero (0) indicates no change.

The comparative statics are, for the most part, consistent with eco-
nomic intuition. For example, the optimal level of extraction in the first
period will (i) increase with increases in initial reserves, R0, the initial
price, p0, or the discount rate, d; (ii) decrease with increases in the future
price, p1, or the cost of extraction, c; and (iii) remain unchanged for
changes in the cost of exploration, w; the productivity of exploration, a;
and the probability of no discovery, e. The fact that the optimal level 
of q0 does not depend on w, a, or e is a result of the separability of 
q0 and e0 in the expression for the present value of expected net rev-

Spreadsheet 5.2
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enues, p (p is separable in q0 and e0 if the second, cross-partial deriva-
tive, pq,e, is zero).

Exploratory effort is not affected by a change in R0 or p0, will increase
with an increase in p1 or a, and will decrease with an increase in c, w, e,
or d. The only surprise here is that exploratory effort is not influenced
by the size of initial reserves. In more complex models, it might be the
case that low initial reserves would encourage greater initial exploration.
The nonresponse of optimal e0 to a change in p0 makes sense since one
cannot sell discoveries in the initial period.

The comparative statics of q*1,0 and q*1,1 are made complex by their
dependency on q0 and e0, which are determined first. The logic of the
comparative statics for q*1,0 and q*1,1 is more readily deduced by moving
vertically down a parameter column in Table 5.1. For example, an
increase in initial reserves, R0, will increase extraction in the current
period and in all future states. Basically, an increase in initial reserves is
optimally spread across all periods and all states. An increase in current
price, because it increases the optimal q0, will reduce the rate of extrac-
tion in either future state. An increase in p1 will reduce extraction ini-
tially and increase it in either state. An increase in the cost of extraction,
via an increase in c, reduces all variables. An increase in the cost of
exploratory effort, w, reduces the level of exploration and the level of
extraction in future state s = 1, while leaving extraction in the no-dis-
covery state (s = 0) unchanged. If the productivity of exploratory effort
increases, the optimal level of e0 will increase, along with the optimal rate
of extraction in s = 1, but again, there is no change in the optimal extrac-
tion rate in s = 0. If the probability of no discovery, e, increases, the

Table 5.1. The Comparative Statics of Extraction and Exploration
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optimal e0 is reduced, as is the optimal extraction rate in s = 1. Finally,
an increase in the discount rate increases current extraction and reduces
exploration and future extraction in all states.

5.8 The Economic Measure of Scarcity

In our model with reserve-dependent costs, the first-order condition for
qt > 0 required pt - Cq(•) = rlt+1 (see equation [5.21]). When the optimal
extraction schedule has been determined, lt+1 will reflect the value of the
marginal unit of remaining reserves in period t + 1. Because lt+1 is linked,
via a difference equation, to all future lt+1+t, t = 1, 2, . . . , it will reflect
the value that the marginal unit conveys in period t + 1 and in all future
periods. Recall that lt+1 was also called a shadow price on the marginal
unit of ore in the ground in period t + 1, presuming that remaining
reserves would be optimally extracted. The equation pt - Cq(•) = rlt+1

simply says that the marginal value of a unit of ore at the surface in
period t should equal the discounted marginal value if it were left in the
ground, and thus available in period t + 1.

The economic notion of scarcity is based on net value rather than phys-
ical abundance. If we could be confident that a resource were being opti-
mally extracted (say, by a competitive industry with adequate futures
markets) then the preferred measure of resource scarcity from an econ-
omist’s point of view would be lt+1 = (1 + d)[pt - Cq(•)]. If we could
observe the current spot price for qt and estimate marginal cost Cq(•)
and the social rate of discount, d, we could estimate the time series lt+1

and observe what was happening to resource scarcity over time. This is
not as easy as it sounds. Time-series data on marginal cost in extractive
industries are either nonexistent or proprietary. In attempting to recon-
struct the scarcity index lt+1 it may be easier to estimate the cost func-
tion C(Rt,qt) and take the partial with respect to qt to obtain a marginal
cost function which would provide an estimate of marginal cost.

The economic measure of resource scarcity can indicate growing or
declining scarcity, which would be counter to a geologic (abundance-
based) notion of scarcity. Note: If marginal costs increase as remaining
reserves decline, but market price does not increase as rapidly, then lt+1

is declining, and the resource is becoming less scarce from an economic
perspective. The fact that remaining reserves are declining would indi-
cate geologic scarcity, but unless the market price increases faster than
marginal cost, the resource is not becoming economically scarce. This is
precisely what has happened to copper. Copper was once used exten-
sively in plumbing and in the transmission of electricity. It has been
replaced by plastic in plumbing and by aluminum for distributing elec-
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tricity. While the known remaining reserves of copper have declined the
real price of copper has fallen, and from an economic perspective, copper
is less scarce.

On the cost side of scarcity, if technology lowers the cost of exploration
or extraction, but price remains high, the resource is becoming more
scarce. This is what happened to crude oil in the last half of the nine-
teenth century. Although geological and engineering applications led to
the discovery of more oil and reduced the cost of extraction and refine-
ment, the demand for kerosene and other distillates increased at a
greater rate, and from an economic point of view the resource, though
known reserves were more abundant, was becoming more scarce. The
opposite forces were at work in the 1980s, when the demand for crude
oil declined as a result of improved efficiency in automobiles, appliances,
heating, and air conditioning. Since 1981 crude oil has become less scarce,
in terms of our economic measure of scarcity.

The development of substitute commodities, in the case of copper, or
the substitution of capital and labor, in the case of energy, can reduce
economic scarcity. As the OPEC experience has shown, it may be possi-
ble to create a short-term economic scarcity, but innovators, entrepre-
neurs, and consumers will react to high prices by trying to provide
lower-cost substitutes or by adapting their economic behavior to reduce
the demand for an economically scarce commodity. These forces have
been effective at ameliorating resource scarcity throughout human
history. Although scarcity is an ever-present economic fact of life, it is a
dynamic condition, at least for the resources and commodities that flow
through organized markets.

What about species extinction? Was the passenger pigeon economi-
cally scarce when the last member of that species died in a zoo in 1914?
We could argue that our economic notion of scarcity is equally valid for
endangered species, and that what we need to do is replace pt with the
collectively held marginal preservation value for the species in question,
and replace Cq(•) with the marginal cost of preservation. Is the fresh-
water snail darter more or less scarce than the right whale? Species that
are highly valued and easy to protect (conserve) would be the most
scarce, and perhaps the ones on which conservation efforts should be
focused. In reality, the problem is more complex, genetically, economi-
cally, and politically.

What about environmental quality? Is potable fresh water more scarce
than clean air? Could we modify our commodity-based notion of eco-
nomic scarcity and apply it to environmental goods? Would it help us
prioritize an agenda for environmental action? Perhaps, but the more
“public” or nonmarket the environmental service or attribute, the more
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difficult it will be to adapt our economic notion of scarcity, which is best
suited to private commodities that pass through markets.We could argue
that if a species or environmental attribute tends toward the private/
market side of the commodity spectrum, the market or nongovernmen-
tal organizations (NGOs) might be active and effective in reducing eco-
nomic scarcity. Such a perspective might imply that safe drinking water
or animals that are prized by hunters or photographers are more
amenable to provision or protection through markets or private conser-
vation efforts than the species or environmental attributes which tend to
be purely public and nonmarket. These may require national or multi-
national conservation efforts to reduce economic scarcity.

5.9 Questions and Exercises

Q5.1 Indicate whether each of the following statements is true or false
and briefly explain why.
(a) In the simple model of a nonrenewable resource, discounted mar-
ginal utility should be equated for all periods when extraction is 
positive.
(b) If price equals marginal utility, then, in the simple model, price
should rise at the rate of discount.
(c) A monopolist would deplete a nonrenewable resource faster than a
competitive industry.
(d) The choke-off price is a price that is so low that it causes the com-
petitive mining industry to shut down before exhaustion.
(e) With reserve-dependent costs, price less marginal cost is rising at less
than the rate of discount in the competitive mining industry.
(f) An increase in the current (spot) price for oil will cause an increase
in exploration.
(g) An increase in extraction cost will reduce extraction and explo-
ration.
(h) An increase in the discount rate will increase the current rate of
extraction and reduce exploration.
(i) If, as a resource is being physically depleted, its price does not
increase, it is becoming less scarce economically.
(j) If the price of a resource increases, substitution, conservation, and
exploration might cause the price to fall in the future.

E5.1 You are a present value maximizing monopolist facing a 
downward-sloping demand curve for diamonds extracted from your mine.
The price for diamonds in period t is given by pt = a - bqt, where qt is the
rate of diamond extraction in period t, and a > b > 0. Your remaining
diamond reserves change according to Rt+1 = Rt - qt. You face reserve-
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dependent extraction costs given by the function Ct = cqt/Rt, c > 0.Your net
revenue in period t is given by the expression pt = aqt - bqt

2 - cqt /Rt. You
wish to maximize the present value of net revenue over the horizon t = 0,
1, . . . , T, for a discount rate of d, assigning no value to remaining reserves
in period T + 1 (lT+1 = 0).You may treat R0 and T as given constants.
(a) Write the Lagrangian expression for this problem and derive the
first-order necessary conditions.
(b) Suppose a = 1, b = 0.5, c = 0.001, d = 0.05, R0 = 1, and T = 9. Use
Solver to maximize the present value of net revenues subject to qt ≥ 0
for t = 0, 1, 2, . . . , 9, q10 = 0, R10 ≥ 0. As an initial guess for the optimal
rates of extraction set qt = 0.1 for t = 0, 1, 2, . . . , 9. Is the diamond mine
abandoned before T = 9?
(c) Suppose the rate of discount increases to d = 0.1. Resolve for the
optimal rates of extraction. What does the increase in the discount rate
do to the optimal extraction rate?

E5.2 A nonrenewable resource yields net benefits according to the func-
tion p(qt) = aqt

b. Positive levels of extraction are desired for t = 0,1,2,3,4,
from initial reserves R0 (given). Rt+1 = Rt - qt and at t = 5, q5 = R5 = 0.
(a) With r = 1/(1 + d), solve for the expression defining the optimal
extraction rate q*t as a function of b, d, q0, and t.
(b) Making use of the exhaustion condition

solve for the expression defining q*0.
(c) For a = 1, b = 0.5, d = 0.1, and R0 = 1, solve for the numerical values
of q*t and R*t for t = 0, 1, 2, 3, 4, 5.
(d) What is the value of an increment to initial reserves, R0?

E5.3 You are managing a mine which has entered into a contract to sell
all ore to another company at a fixed unit price for the life of the mine.
The cost of extracting qt units is given by the cost function Ct = cqt

2.
Denoting the constant unit price by p, the net revenue in period t is pt =
pqt - cqt

2. Although the contract specifies the unit price, the number of
units extracted and sold in a particular period and the date when the
mine is closed are decisions to be made by you. Let t = T denote the
period when the mine is closed and qT = 0. You wish to
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where R0 is the given level of initial reserves. The Lagrangian for this
problem may be written as

(a) What are the first-order necessary conditions?
(b) With qT = 0, what is the expression for m and qt?

(c) Making use of the constraint requiring exhaustion of R0, and noting

that , what is the implicit equation which

could be used numerically to solve for the optimal exhaustion date, T?
(d) If R0 = 1, p = 1, c = 1.14, and d = 0.05, what is the optimal date of
exhaustion and extraction levels, q*t , t = 0, 1, . . . , T-1?
(e) Set up an Excel Spreadsheet with a horizon longer than the value of
T obtained in part (d). Give Solver the option of optimizing the present
value of net revenue over this longer horizon subject to the constraint
that Rt ≥ 0 for all t. Does Solver opt for your solution in part (d)?
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CHAPTER 6

Stock Pollutants

6.0 Introduction and Overview

This chapter is concerned with the wastes from production or consump-
tion that might accumulate over time. We will refer to any accumulated
waste as a stock pollutant. Returning to Figure 1.1, extracted ore, qt, was
seen to generate a waste flow, aqt, which might accumulate as the stock
pollutant, Zt, where a > 0 was a coefficient (parameter) with a dimen-
sion which converted the units used to measure qt into the units used to
measure Zt. For example, if qt were measured in metric tons (mt) and Zt

were measured in parts per million (ppm), then a would have the dimen-
sion parts per million/metric ton (ppm/mt).

For degradable wastes, there is often a biological or chemical process
whereby a portion of the pollution stock is decomposed (degraded) into
constituent compounds that might pose little or no threat to the envi-
ronment. In Figure 1.1, the rate at which the stock pollutant degrades is
gZt, where 1 > g > 0 is a degradation coefficient indicating the fraction of
the pollution stock degraded during period t. The net effect of the rates
of waste flow and degradation will determine the change in the stock
pollutant as given by the difference equation

Zt+1 - Zt = -gZt + aqt (6.1)

As noted in Chapter 1, if the rate of waste flow exceeds the rate of
degradation, the stock pollutant will increase; if the degradation rate
exceeds the flow of new waste, the stock pollutant will decrease. If the
rate of waste flow precisely equals the rate of degradation, the stock pol-
lutant will be unchanged. If such an equality can be maintained, the pol-
lution stock will be in a steady state.

Not all stock pollutants are degradable. If g = 0, positive waste flows
can only increase the level of the stock pollutant. Nondegradable wastes
might be subject to diffusion, as they are spread by physical, or perhaps
biological, processes and become more evenly distributed within the
overall environment. Diffusion may reduce the “local” concentration of
a nondegradable stock pollutant, but the overall mass of such pollutants,
in a closed environment, cannot decrease. To model the diffusion of a
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nondegradable stock pollutant, one must typically construct a model that
has both a temporal and a spatial dimension. In this chapter we will
examine some simple models for both degradable and nondegradable
stock pollutants.

The rate of waste generation might be more complex than a simple
coefficient of proportionality, such as a. In the next section we will intro-
duce the commodity-residual transformation frontier, where an economy
must implicitly allocate its resources to choose the rate of output for a
positively valued commodity and the rate of flow for a negatively valued
residual (waste).

This is followed by a section which formulates a measure of welfare
in which the damage from a stock pollutant is subtracted from the 
value of the commodity which generates the residual waste flow. Such 
a measure is consistent with the recommendation by environmental
economists that the national income accounts be adjusted to reflect the
depletion of nonrenewable resources and the cost of environmental
damage.

Sections 6.3 through 6.6 present some simple models of degradable
and nondegradable stock pollutants. The emphasis is on the optimal
control of stock pollutants by (i) the implicit allocation of resources
between commodity production and waste reduction, (ii) the rate and
location of residual deposition, (iii) the rate of extraction of a nonre-
newable resource, and (iv) the rate of waste generation and recycling.
These models collectively cover many of the dynamic and spatial aspects
of real-world pollutants.

Section 6.7 analyzes two environmental policies advocated by econo-
mists: emission taxes and marketable pollution permits. Section 6.8 ends
the chapter with some questions and exercises.

6.1 The Commodity-Residual Transformation Frontier

Suppose, within the context of Figure 1.1, we defined St = aqt to be the
flow of residual waste from the extraction of qt units of ore in period t.
The presumption would be that the rate of residual waste (or simply
residual) is proportional to the rate of extraction. This is but one possi-
ble relationship. In general, let Qt denote the rate of production of some
positively valued commodity in period t and St the rate of flow of a jointly
produced, negatively valued residual. The residual is negatively valued
because it might accumulate as a damage-inducing stock pollutant.

Within the economy, suppose there is a fixed bundle of resources
which can be used to produce Qt or reduce St. (Since the underlying
bundle of resources is fixed, we don’t need to represent them as a time-



6.1 Commodity-Residual Transformation Frontier 103

varying variable.) Given the fixed bundle of resources, let f(Qt,St) = 0
denote the commodity-residual transformation frontier. This implicit
function indicates the minimum level of St for a given level of Qt, or
equivalently, the maximum level of Qt for a given level of St. What would
the commodity-residual transformation frontier look like in Qt–St space?
One possible curve is shown in Figure 6.1.

In Figure 6.1 the commodity rate QMIN > 0 represents the largest rate
of output that can be achieved when St = 0. If St were a residual that accu-
mulated as a highly toxic stock pollutant, then the economy might find
it optimal to allocate the available resources to locate at (QMIN,0). If, on
the other hand, St and its associated stock pollutant produced only mild
discomfort, the economy might opt for a larger level for Qt. To produce
Qt > QMIN the economy would have to divert some of the fixed resources
from residual prevention and to commodity production. This would
result in a positive flow of residuals (St > 0). At the other extreme from
(QMIN,0), if all resources were devoted to production of Qt, the economy
could achieve Qt = QMAX, but it would have to accept a flow of residuals
at St = SMAX. Points along the curve connecting (QMIN,0) with (QMAX,SMAX)
represent the trade-off menu for Qt and St, given the fixed bundle of
resources. This is the commodity-residual transformation frontier
implied by f(Qt,St) = 0. It is a relative of the production possibility (PP)
curve from introductory economics. The PP curve depicted the trade-off
between two positively valued commodities, whereas the commodity-

Figure 6.1. The Commodity-Residual Transformation Frontier
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residual transformation frontier shows the trade-off between a com-
modity and its jointly produced residual.

6.2 Damage Functions and Welfare

In this book a damage function will relate the size of the stock pollutant,
Zt, to the monetary damage suffered by an economy in period t. In static
models of pollution, damage might depend on the level of emissions or
waste flow, St. With the pollution stock changing according to Zt+1 - Zt =
-gZt + St, residual wastes emitted in period t will not become part of the
pollution stock until period t + 1, when they will make their first “con-
tribution” to a future flow of environmental damage.

Denoting the level of monetary damage in period t by Dt, the damage
function will be written as Dt = D(Zt). The shape of the damage function
will depend on the toxicity of Zt. In a spatial model, damage might
depend on location. One would generally think that larger pollution
stocks would result in higher damage, D¢(•) > 0, and that damage might
be “smoothly” increasing at an increasing rate, D≤(•) > 0. Positive first
and second derivatives would imply that the damage function is strictly
convex. As it turns out, empirical studies seem to indicate that damage
functions, from exposing a single individual to higher doses of some pol-
lutant, might resemble a discontinuous step-function, as shown in Figure
6.2. The step-function would imply that damage is constant for a certain
level (dose) of Zt, and then jumps discontinuously at a critical threshold.
When individual step-functions are aggregated across a large, diverse
population, a smooth, strictly convex function might be a reasonable way
to approximate total damage.

Empirical estimation of damage functions is made difficult by the need
to assign dollar values to the damage to an ecosystem.This might involve
estimating the value of a particular plant or animal species within that
system, or attempting to value human morbidity or a shortened life.What
is the monetary damage from an oil-soaked sea otter? What is the 
loss from a life shortened by emphysema exacerbated by air pollution?
These questions pose difficult valuation problems. Damages might be
imperfectly estimated by lost earnings, hospitalization costs, and the
“willingness-to-pay” of humans to remain healthy or prevent despolia-
tion of marine or other ecosystems. Various methods exist to estimate
environmental damage (or the value of improving environmental
quality). Two methods frequently employed are the travel cost method
and contingent valuation.

The travel cost method attempts to value a favored or preferred envi-
ronmental attribute by observing the additional costs that users (hikers,
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bikers, campers, etc.) are willing to incur for recreation in a site with the
preferred attribute. It is also possible to estimate the loss to users if the
attribute or environmental quality is impaired. For example, clean and
less congested beaches may require visitors to expend more time and
money in travel and accommodations than if they visited less clean or
more congested beaches closer to home. If wastes or an oil spill were to
sully the more distant, pristine beach, the travel cost premium, summed
over all potential visitors, might provide an estimate of one component
of the environmental damage.

Contingent valuation methods might be used to estimate other com-
ponents of damage. Contingent valuation employs surveys to directly ask
individuals their willingness-to-pay for certain attributes, or the level of
compensation which the individual would require to forgo certain attrib-
utes. Returning to our less-than-clean, congested urban beach, a contin-
gent valuation survey might show a visitor pictures of the beach after
refuse pickup and under less congested conditions and ask the individ-
ual how much he or she would be willing to pay for a day of refuse-free,
reduced-congestion beach time. Alternatively, visitors to the more
distant, pristine beach might be shown pictures of washed-up medical

Figure 6.2. Damage as a Step Function and as a Smooth, Convex 
Function
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wastes or oil-stained sand and asked what compensation payment they
would require if a garbage scow or oil barge were to disgorge its con-
tents onto the beach during the last day of their vacation.

The preceding examples involved observing travel cost or administer-
ing surveys to visitors at a site. Such research might provide estimates of
the value of cleanup or the damage from pollution to “users.” Contin-
gent valuation, because it employs survey techniques, can be used to 
estimate nonuse values as well. Most economists would agree that 
individuals with a low or zero probability of visiting (using) a pristine
environment might still be willing to pay something for its preservation
or protection. Accurately measuring these values is much more difficult
because of the tendency that a respondent might have to embed broader
environmental values into a question about a particular inlet in Alaska
or beach on Cape Cod. Although the value that current nonusers place
on the option of future use (including the options of generations yet
unborn) is seen as valid, its measurement by contingent valuation
methods is imprecise and controversial. In this text we need not resolve
these measurement issues. In the optimization problems of this chapter,
we will typically assume a convex damage function and then solve for
the optimal flow of waste, disposal site, or rate of recycling. In empirical
work dynamic models might be useful in determining the environmen-
tal value implied by a certain ambient standard. For example, if the costs
of waste treatment are known and if an ambient standard is binding, it
may be possible to estimate the smallest marginal environmental damage
which would optimally justify the ambient standard.

Mathematically we might hypothesize that the welfare of society in
period t depends on the flow of output, Qt, and the level of the stock pol-
lutant, Zt, and write Wt = W(Qt,Zt). The welfare function might be addi-
tively separable, where Wt = p(Qt) - D(Zt), with p(•) strictly concave
[p¢(•) > 0 and p≤(•) < 0] and D(•) strictly convex [D¢(•) > 0, D≤(•) > 0].

The additively separable form could reflect a national accounting phi-
losophy in which environmental damage is deducted from the value of
newly produced goods and services. Such a revision to the national
income accounts has been advocated by environmental economists for
at least three decades. Although such deductions from gross domestic
product are conceptually well founded, the aforementioned difficulty of
measuring environmental damage on an annual basis causes other econ-
omists to view such proposals as impractical. The dynamic models we
will now consider will clarify the economic notion of damage, and suggest
how such damages might be measured, by making use of shadow prices,
in a fashion similar to that proposed for measuring the scarcity of a non-
renewable resource.
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6.3 A Degradable Stock Pollutant

For a degradable stock pollutant, with dynamics Zt+1 - Zt = -gZt + St, the
degradation coefficient, g, is positive. We will assume that the economy
faces a commodity-residual transformation frontier implied by f(Qt,St)
= 0. The partial derivative of f(•) with respect to the rate of output, Qt,
will be denoted by fQ(•) and, by convention, will be positive, (fQ(•) > 0).
The partial with respect to the residual rate, St, will be negative (fS(•) <
0). Assume a separable welfare function, whereby economic well-being
in period t is given by Wt = p(Qt) - D(Zt), with p(•) strictly concave and
D(•) strictly convex. The optimization problem of interest seeks to

The Lagrangian for this problem may be written as

Note that the commodity-residual transformation frontier is premulti-
plied by -mt and included within the summation operator. This implies
that the shadow price on the resources implicit in the transformation
frontier may be changing over time. The negative sign, -mtf(•), is also
convention, but chosen because it will lead to logical signs for lt+1 and mt

(specifically, lt+1 < 0 and mt > 0).
The first-order necessary conditions imply

(6.2)

(6.3)

(6.4)

Zt+1 - Zt = -gZt + St (6.5)

(6.6)

Equations (6.2)–(6.6) are obtained by setting the partial derivatives of L
with respect to Qt, St, Zt, rlt+1, and mt equal to zero. It is assumed that
QMAX > Qt > QMIN > 0; St, Zt, and mt are positive; and lt+1 is negative.
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We next consider the conditions at a steady-state optimum and then
the likely approach path if Z0 π Z*. In steady state m = p¢(•)/fQ(•) and
rl = p¢(•)fS(•)/fQ(•). Evaluating (6.4) in steady state and factoring out
rl imply rl[(1 - g) - (1 + d)] = D¢(•). Substituting in the expression for
rl, and simplifying, imply -p¢(•)[fS(•)/fQ(•)] = D¢(•)/(d + g). Although
this last expression may appear to be nothing more than notational 
gibberish, it does have a logical economic interpretation. The term 
-[fS(•)/fQ(•)] is equal to dQ/dS and is called a marginal rate of trans-
formation (MRT); in this case it is the marginal rate at which S can be
transformed into Q. In other words, if you are willing to put up with
slightly higher residual emissions, how much more Q can you get? p¢(•)
is the marginal value of that additional unit of steady-state Q. Thus, the
LHS is the marginal value of a slight increase in S which will allow a
slight increase in Q. What is the cost? The cost is that a slight increase
in S will lead to a slight increase in steady-state Z, which leads to an
increase in marginal damage, D¢(•). That marginal damage is sustained
over an infinite horizon and has a present value (adjusted by the degra-
dation coefficient) of D¢(•)/(d + g). Thus, this last equation says that in
steady state you want to choose the mix of Q and S so that the marginal
value in transformation is precisely equal to the present value of mar-
ginal damage. Makes perfect sense, right?

Equations (6.6) and (6.5) can be evaluated in steady state and imply
f(Q,S) = 0 and Z = S/g. We will bundle these last three equations
together, because they can be used to solve for the steady-state levels of
Q, S, and Z, and simply state that

(6.7)

define (Q*,S*,Z*).
If p(•) and f(•) are strictly concave in Qt, the approach from Z0 π Z*

will be asymptotic, with Zt Æ Z* as t Æ •. If Z0 > Z*, the economy will
select rates of output and residual emission where gZt > St, and the pol-
lution stock will decline toward Z*. If Z0 < Z*, the economy can indulge
in rates of output and residual emission in excess of those at the steady-
state optimum, St will be greater than gZt, and the pollution stock will
grow toward Z*.

If the Lagrangian is linear in Qt and St, the approach to Z* may be
most rapid. Consider the case when (i) p(•) = pQt, where p > 0 is the unit
price for Qt; (ii) D(•) = cZt

2, where c > 0 is a damage coefficient; and (iii)
the transformation frontier is given by f(Qt,St) = Qt - nSt - QMIN = 0,
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where n > 0 is a coefficient indicating the incremental increase in com-
modity Qt if one is willing to put up with an incremental increase in the
residual St. It is assumed that QMAX ≥ Qt ≥ QMIN. The commodity-
residual transformation frontier is drawn in Figure 6.3. In this case
f(Qt,St) = 0 implies St = (Qt - QMIN)/n.

The optimal steady-state pollution stock, Z*, is immediately implied
by the first equation in the group (6.7). This can be shown by noting 
that fQ(•) = 1, fS(•) = -n, D¢(•) = 2cZ, and p¢(•) = p. Substituting these
derivatives into -p¢(•)[fS(•)/fQ(•)] = D¢(•)/(d + g) one obtains pn =
2cZ/(d + g) or

(6.8)

Given the expression for Z*, one can obtain expressions for S* and
Q* by noting S* = gZ* and Q* = QMIN + nS*. Spreadsheet 6.1 shows the
numerical values when p = 2, n = 10, d = 0.05, g = 0.2, c = 0.1, QMIN = 10,
QMAX = 100, and Z0 = 0. These parameter values imply a unique steady-
state optimum where Z* = 25, S* = 5, Q* = 60. In the body of the spread-
sheet we set up a 21-period horizon (t = 0, 1, . . . , 20) in which we will
ask Solver to determine how it wants to go from Z0 = 0 to Z* = 25. The
choice variables will be Qt, t = 0, 1, . . . , 19, and in cell $C$14 we define
St in terms of the choice for Qt by typing =(B14 - $B$6)/$B$2 and fill
down accordingly. In cell $D$15 we program the dynamics of the stock
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Figure 6.3. f(Qt,St) = Qt - nSt - QMAX = 0, with QMAX ≥ Qt ≥ QMIN
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Spreadsheet 6.1
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pollutant by typing =(1 - $B$4)*D14 + C14. In column E we program
the discounted net revenues. In cell $E$14 we type =((1/(1 +
$B$3))^A14)*($B$1*B14 - $B$5*(D14^2)) and fill down through cell
$E$33. The terminal function in cell $E$34 requires some explanation.

In this example we are going to tell Solver that whatever it selects for
Z20, it has to adopt that value as a steady-state pollution stock and live
with it forever. This terminal condition is similar in spirit to the terminal
condition discussed in Chapter 2 for the optimal harvest problem.
(Review Section 2.2.) This approach implies that S = gZ20 and Q = QMIN

+ ngZ20 for the rest of time, as well. The discounted terminal value in cell
$E$34 is the expression

where Z = Z20 and Q = QMIN + ngZ20. Thus in cell $E$34 we type

This terminal function tells Solver that although it is free to choose
values for Q0 through Q19, it must live with Z20 and its steady-state com-
panions S = gZ20 and Q = QMIN + ngZ20 for the rest of time. As an initial
guess we set Qt = 100 = QMAX for t = 0, 1, . . . , 19, which results in a ter-
minal pollution stock of Z20 = 44.48 and a total present value of p =
1,142.855. The time paths for Qt, Zt, and St are shown in the chart at the
bottom of the spreadsheet. In setting up Solver you will specify $E$36
as the Set Cell to be maximized and $B$14:$B$33 as the changing cells.
In the constraint box enter two constraints (the minimum and maximum
levels for Qt) by typing $B$14:$B$33 <= 100 and $B$14:$B$33 >= 10.

How does Solver change Qt to maximize p? The results are shown in
Spreadsheet 6.2. We see that Solver opts to go on a short binge, setting
Qt = 100 for t = 0, 1, 2 and Q3 = 84.33. This results in the pollution stock’s
growing from Z0 = 0 to Z4 = Z* = 25 (which was calculated via equation
[6.8] prior to optimization). Solver then stays at the steady-state
optimum from t = 4 through t = 19 and, given our terminal function, for
the rest of time. The chart at the bottom of Spreadsheet 6.2 depicts this
most rapid approach to Z*.
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Spreadsheet 6.2
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6.4 Diffusion and a Nondegradable Stock Pollutant

Among the major environmental problems in the United States are the
identification, assessment, and possible remediation of sites where toxic
substances had been legally or illegally dumped prior to the enactment
of legislation requiring environmentally secure disposal. These sites
might contain a variety of pollutants which can contaminate soils and
groundwater. In the vicinity of some sites there have been suspiciously
high rates of leukemia and other cancers. Often the firms or individuals
responsible for the dump site are no longer in existence or are financially
incapable of paying for damages and remediation. The U.S. government
has established a fund (called the “Superfund”) under the control of the
Environmental Protection Agency (EPA) to clean up such sites, but the
sheer number of sites and the cost of remediation have resulted in what
many regard as unacceptably slow progress. How should the EPA pri-
oritize the known Superfund sites? Given the limited funds for cleanup
what is the optimal schedule for remediation?

Let Zi denote the stock (mass) of one or more pollutants at site i, i =
1, 2, . . . , I. Although some of the pollutants may be subject to biodegra-
dation, we will assume, in this model, that the initial mass of accumulated
pollutants can only be diffused into surrounding soils or groundwater by
precipitation (rain or snowmelt). The initial volume (sphere) of contam-
ination is assumed given and is denoted by Vi,0. Over time, the volume
of contamination is assumed to grow according to the equation Vi,t+1 = (1
+ ai)Vi,t, where 1 > ai > 0 is the rate at which the volume of contamina-
tion grows.

Within a volume of contaminated soil or water the concentration of
the pollutant will typically vary. The actual dynamics of a pollutant
moving through nonuniform soil or a “plume” of contaminated ground-
water can be quite complex. We will simplify things by defining average
concentration in period t as Ci,t = Zi/Vi,t and assume that the damage 
at site i in period t is a function of both the volume contaminated and
the average concentration, and let Di,t = Di(Vi,t,Ci,t) denote the damage
at site i if nothing is done and the volume of contamination grows
unchecked. Intuitively, one would think that an increase in the volume
of contaminated soil or water would increase damage. If no additional
pollutants are deposited at the ith site, the growth in the volume of con-
tamination will reduce average concentration, and the dynamics of
damage at a particular site will depend on the weight given to Vi,t and
Ci,t in Di(•).

Let Xi,t = 0 indicate that the ith site has not been cleaned up during or
before period t, and let Xi,t = 1 indicate that the ith site has been cleaned
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up during or before period t. If Xi,t = 1, Xi,t = 1 for all t > t: that is, once
a site is cleaned, it stays cleaned.

If and when a site is cleaned, the damage in the period of remediation
and all future periods is assumed to go to zero. Damage with or without
remediation becomes Di,t = (1 - Xi,t)Di(Vi,t,Ci,t). Let Ki denote the cost of
cleanup at the ith site, and K the total funds available for remediation.

In our allocation problem we will assume that funds not spent in
period t may be placed in an interest bearing account where they will
increase by the factor (1 + d) per period, where d > 0 is the rate of dis-
count. This introduces a scheduling dimension to our problem, where
initial remediation at some sites might be optimal, while waiting for
unspent funds to compound to the point where other sites can be cleaned
up at a later date. Alternatively, the environmental agency can contract
with a remediation firm for cleanup of a particular site at a future date
and make a reduced, present-value payment today.

The optimal schedule of remediation becomes a binary dynamic opti-
mization problem which seeks to

In words, the optimal cleanup schedule seeks to minimize the discounted
sum of remediation costs and environmental damage. In determining the
optimal schedule, the first time that Xi,t = 1 the environmental agency
commits to make a payment of Ki dollars in period t or a present value
payment of rt Ki today (in t = 0). If and when Xi,t = 1, Xi,t = 1 for t > t,
and the future coefficients on Ki are zero, thus ensuring only a one-time
payment for remediation at any site. Initially, it is assumed that no reme-
diation has taken place, Xi,0 = 0, and that Zi > 0 and Vi,0 > 0 for all i. The
budget constraint may be written

Insight into the optimal scheduling of remediation will be enhanced
through a numerical example. Consider the problem with five toxic 
sites (I = 5) over a 21-year horizon (T = 20). For a damage function 
with no remediation, let Di,t = biCi,tV 2

i,t, where bi > 0 is a coefficient indi-
cating the relative financial damage from pollutants at the ith site. With
Ci,t = Zi/Vi,t, the damage function becomes Di,t = biZiVi,t. The initial con-
ditions and parameters are Zi, Vi,0, ai, Ki, bi, K, and d, and their numeri-
cal values are summarized at the top of Spreadsheet 6.3. Note that 
Site #1 is relatively small in terms of the mass of toxics (Z1 = 5) and the
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initial volume of contamination (V1,0 = 10). Site #1 has a relatively slow
rate of growth in the volume of contaminated soil or water (a1 = 0.01),
but it is relatively damaging (b1 = 1). Site #1 is the least costly to clean
up (K1 = 50).

Site #2 is the largest site in terms of the mass of pollutants (Z2 = 50)
and volume already contaminated (V2,0 = 500) and the most rapid in dis-
persion (a2 = 0.1). Site #2 is the most costly to clean up (K2 = 500) 
but relatively low in damage (b2 = 0.01). Sites #3, #4, and #5 fall between
Sites #1 and #2 in these attributes.The overall (present-value) budget for
remediation is K = $400 million and the discount rate is d = 0.05.

In cells B15 through F35 we introduce the initial conditions indicating
that no sites have been cleaned (Xi,0 = 0) and set Xi,t = 0 for t = 1, 2, . . . ,
20, to see what will happen to the present value of damages at each 
site in each future period. In row 38 we program the initial damage level
Di,0 = biZiVi,0 for the five sites. For example, in B38 we have typed
=$B$8*$B$4*$B$5. In cells B39 through F58 we program the expres-
sion for the discounted sum of remediation cost and environmental
damage. For example, in cell B39 we have typed =($B$12^A39)*((B16-
B15)*$B$7 + (1-B16)*$B$8*$B$4*$B$5*(1 + $B$6)^A39). Note that the
initial damage grows according to (1 + a1) and we can fill down through
cell B58 to get discounted cost and damage through t = 20.Also note that
discounted remediation cost will enter at most once, in the period when
cleanup is initiated. Reading down a column in the block B38 through
F58 you can see what is happening to discounted damages at each site
if no remediation takes place. In row 60 we sum the discounted remedi-
ation cost and environmental damage for each site. For Site #1 the sum
of discounted damage is $731.90 million, whereas for Site #2 it is $8695.38
million. The sum of discounted remediation cost and environmental
damages over all sites is given in cell B62. This will be the sum we will
ask Solver to minimize.

In cells G15 through K15 we enter zeros, indicating that remediation
cost is zero in t = 0 for all sites.Then in cells G16 through K35 we program
the formula for discounted remediation cost. For example in cell G16 we
have typed =($B$12^A16)*(B16-B15)*$B$7 and fill down through G35.
When we optimize by changing cells $B$16 through $F$35, the block of
cells G16 through K35 will indicate if and when remediation is under-
taken, and the present value of the costs Ki. In G38 through K38 the dis-
counted remediation costs are summarized by site. They are summed to
get total discounted clean up costs in cell E62. These costs needed to be
broken out separately from environmental damages in order to specify
the overall budget (Superfund) constraint.

We are now ready to call Solver. We indicate that we wish to minimize
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the Set Cell $B$62 by changing cells $B$16 through $F$35. The binary
constraints on Xi,t are achieved by using three statements.

$B$16:$F$35 <= 1
$B$16:$F$35 = integer
$B$16:$F$35 >= 0

The constraint that if Xi,t = 1, Xi,t = 1, for t > t, can be imposed by the fol-
lowing statements:

$B$17:$B$35 >= $B$16:$B$34
$C$17:$C$35 >= $C$16:$C$34
$D$17:$D$35 >= $D$16:$D$34
$E$17:$E$35 >= $E$16:$E$34
$F$17:$F$35 >= $F$16:$F$34

Finally, the constraint requiring that the present value of remediation
costs not exceed the total funds available is achieved by entering $E$62
<= $B$10

You can now click on the Solve button and Solver will embark on 
an agonizingly long search for the optimal remediation schedule, which
will be revealed in the 1’s and 0’s in the block B16 through F35 and 
by the present values for cleanup costs in block G16 through K35. It 
turns out that using your economic intuition you can beat Solver to the
solution.

Take a close look at Spreadsheet 6.3, in particular row 58, which con-
tains the discounted damages for our five sites. If you could reduce the
damages at one site to zero in t = 20, which site would you choose? It
would be Site #2, weighing in with discounted damages of $633.88
million. For Site #2, with a2 > d, the discounted environmental damages
actually grow over time. If this were the case for the other sites we could
move backward in time, from t = 20 to t = 0, looking for the largest mar-
ginal reduction in damage. For the other sites, however, ai < d, and dis-
counted environmental damage declines from t = 0 to t = 20.

We can see that of the other sites, Site #3 has the next highest damages,
starting at D3,0 = $800 million and declining to D3,20 = $448.03 million. In
checking out the remediation costs for Sites #2 and #3, we see that K2 =
$500 million, and thus we could not afford immediate remediation at Site
#2, since our entire budget is only K = $400 million. Site #3 has a cleanup
cost of $200 million, which is reduced to a present value of $190.47
million in t = 1, the first period that remediation can be implemented.
Change the 0 in cell D16 to a 1 and fill down to D35. By making a com-
mitment to the cleanup of Site #3 in t = 1 we will eliminate all future
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environmental damages at that site. We then have ($400 - $190.47) =
$209.53 million in uncommitted cleanup funds to use in the future
cleanup of Site #2, which we could not afford to do in t = 1 anyway.

When should we schedule Site #2, or, more accurately, when can we
afford to schedule Site #2? Proceed to column C, row 35, and change the
0 to a 1. Examination of cell H35 shows that cleaning up Site #2 in t =
20 only has a present value cost of $188.44 million. This is less than the
uncommitted balance of $209.53 million after cleaning up Site #3 in t =
1, so we can consider an earlier date for remediation of Site #2. In fact,
committing to the cleanup of Site #2 in t = 18 has a present-value cost of
$207.76 million, which results in a combined present value for Sites #2
and #3 of $398.23 million, which is less than our present value budget of
$400 million. There is no other combination of timing and sites which
will yield a lower present value for cleanup costs and environmental
damage. This result is shown in Spreadsheet 6.4. If you use this spread-
sheet as an initial guess for Solver, it will stop after the first iteration and
indicate that it could not improve upon your solution. Perhaps you
should earn the remaining $1.77 million as your consulting fee. Not bad
for a day’s work!

6.5 Optimal Extraction with a Nondegradable Waste

Suppose that the extraction of a nonrenewable resource generates a non-
degradable waste. In particular, suppose remaining reserves change
according to Rt+1 = Rt - qt, while the stock pollutant accumulates accord-
ing to Zt+1 = Zt + aqt. It is assumed that the stock pollutant is relatively
immobile, so we need not concern ourselves with diffusion. The welfare
of the economy in period t is given by Wt = pqt - cZt

2, where p > 0 is the
per unit price for qt and c > 0 is a cost parameter. (This might be the case
for a region or small country extracting qt for export at a world price of
p, while having to contend with the local environmental damages caused
by Zt.) Finally, assume that the rate of extraction is subject to a capacity
constraint so that qMAX ≥ qt ≥ 0.

Given the structure of this problem, there will be only two possible
outcomes. Either initial reserves, R0, will be completely exhausted by
some period t = T, in which case the nondegradable pollution stock, ZT

= aR0, will continue to impose damages over the remaining (infinite)
horizon, or the economy will stop extraction before exhaustion in order
to prevent the pollution stock from exceeding its “optimal” level. In the
first case aR0 £ Z*; in the second case aR0 > Z*, where Z* is the optimal
pollution stock. In either case, if Z0 < Z*, the approach to Z* is most
rapid and will involve some initial periods where qt = qMAX.
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The Lagrangian expression for this problem may be written as

where the last term represents the present value of damages from a pol-
lution stock of ZT which will never degrade. We are again making use of
a terminal condition similar in philosophy to that employed in Section
2.2. It is derived in the same manner as the terminal value function in
cell $E$34 of Spreadsheet 6.1, only in this case qt drops to 0 when
reserves are exhausted or the optimal pollution stock is reached.

Suppose the relevant solution is one in which we stop extracting to
prevent the pollution stock from exceeding its optimal value Z* > 0. In
this case we know that a steady state has been reached where q* = 0, R*
> 0, and l* = 0, since remaining reserves are worthless. Take the partial
of L with respect to qt. Suppose t = T - 1 is the last period when extrac-
tion is positive. Then ∂L/∂qT-1 = 0 would imply that p - rlT + rmTa = 0.
But lT = l* = 0, implying that mT = m* = -(1 + d)p/a < 0. Now take the
partial of L with respect to Zt and set it equal to 0. It will imply -2cZt +
rmt+1 - mt = 0. In steady state this implies Z* = -dm/[2c(1 + d)] = dp/[2ac]
as the expression for the optimal pollution stock. The optimal extraction
path in this case will have qt = qMAX for t = 0, 1, . . . , T - 2, and 0 < qT-1

£ qMAX, with ZT = Z* = dp/[2ac].
In Spreadsheet 6.5 we show a numerical example of the case in which

depletion is not optimal because of damage from the stock pollutant.The
parameter values are a = 0.1, p = 100, c = 0.5, and d = 0.05, with initial
conditions R0 = 1,000 and Z0 = 0. These parameter values imply Z* = 50.
In this initial spreadsheet we specify qt = qMAX = 100 for t = 0, 1, 2, . . . ,
9, which causes depletion in period t = 10 (R10 = 0) and causes the pol-
lution stock to reach Z10 = 100. In cell E8 we type =($B$5^A8)*($B$2*B8
- $B$3*(D8^2)) and fill down to E17. In cell E18 we type
=($B$5^A17)*(-$B$3*($D$18^2)/$B$4), which is the present value of
damage from Z10. In cell E20 we type =SUM($E$8:$E$18) to calculate
the present value of welfare for this initial depletion schedule.This yields
the value W = 6,501.09454.

Can Solver increase the present value of welfare by changing qt? 
We tell Solver to maximize $E$20 by changing cells $B$8:$B$17,
subject to $B$8:$B$17 <= 100 and $B$8:$B$17 >= 0.As we would predict,
Solver recognizes that Zt should not exceed Z* = 50, and in Spreadsheet
6.6 sets q5 = . . . = q9 = 0, yielding a present value of welfare of W =
23,616.0293.
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Spreadsheet 6.5

Spreadsheet 6.6
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6.6 Recycling

Many products have scrap value because they contain materials that can
be recycled into the same or different products.Various metals,plastic,and
newsprint are common examples. We will consider a nonrenewable
resource that can be recycled once. In particular, let Rt denote remaining
reserves and qt extraction in period t so that Rt+1 = Rt - qt. Suppose qt is a
commodity which is used and immediately recycled, or processed into
another commodity, ut, which can be consumed in period t or inventoried.
Let It denote the inventory of ut where It+1 = It + bqt - ut, and 1 > b > 0.

Suppose qt is sold in a competitive market at unit price p1 > 0, and like-
wise for ut, but at unit price p2. To keep things simple, we assume that
the extraction costs of qt are not reserve dependent and that the net
revenue in period t may be written as p1,t = p1qt - C1(qt). The cost of recy-
cling or processing qt into ut depends on the levels of both qt and ut

according to C2(qt,ut), leading to a second stream of net revenues given
by p2,t = p2ut - C2(qt,ut). (This model can also be thought of as a transfer
pricing model, in which one division of a company extracts qt and sells it
at price p1 to a second division, which then processes qt for storage as It+1

or sale as ut.) Let t = T be the first period that both qt and ut go to 0. We
will assume that this happens because the nonrenewable resource, Rt,
and the inventory, It, have been exhausted.

The Lagrangian for this problem may be written as

and for the periods when qt, ut, Rt, and It are positive, we have first-order
necessary conditions that require

The last two equations imply that lt+1 = (1 + d)lt and mt+1 = (1 + d)mt. This
says that both the shadow prices on remaining reserves and remaining
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inventories are growing at the rate of discount. Substituting the expres-
sions for lt+1 and mt+1 into the first and second equations we obtain

We can use these last two equations to determine the terminal values for
lT and mT. If in t = T, when qT = uT = 0, the marginal costs are also zero
– i.e., ∂C1(•)/∂qT = ∂C2(•)/∂qT = ∂C2(•)/∂uT = 0 – then mT = p2 and lT = p1

+ bp2. Having these expressions for the terminal values for lT and mT,
and knowing that the shadow prices are rising at the rate of discount, we
can in turn show that mt = rT-t p2 and lt = rT-t[p1 + bp2]. Thus, although
we do not know the terminal period, T, we do know how the shadow
prices will behave over time and where they will end up when qT = uT =
0. To solve the problem in its entirety we could substitute mt = rT-tp2 and
lt = rT-t[p1 + bp2] into the last two equations and select a candidate value
(a guess) for T. Then we could solve for qt and ut, simultaneously, for the
horizon t = 0, 1, . . . ,T-1. Since depletion will be optimal, we would then
check to see if

If the sum of extraction is greater than (less than) R0, we shorten
(lengthen) T and resolve the previous two equations for the new values
of qt and ut. Alternatively, for a numerical problem, we can summon
Solver and check its solution to see if lt and mt are behaving as they
should on the basis of our analytic understanding of the problem.

In Spreadsheet 6.7 we show the setup for an optimal extraction/recy-
cling problem. In this problem C1(qt) = c1q 2

t and C2(qt,ut) = c2(qt + ut)2.,
where c1 = 0.01 and c2 = 0.001. The market price for qt is p1 = 2, while the
market price for ut is p2 = 1. The recovery rate is b = 0.7, the discount
rate is d = 0.05, initial reserves are R0 = 100, and initial inventories are I0

= 0. In this worksheet, extraction is spread out over 20 periods (t = 0, 1,
2, . . . ,19) with qt = 5. Recycling is initially set at bqt = 3.5, for the same
horizon. The values for q20 and u20 are set at 0 and Solver will be allowed
to change only the earlier values of these variables. Of interest is whether
Solver will find it optimal to deplete reserves and inventories before 
T = 20.

In cell F10 we type
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which is the expression for discounted net revenue. This expression is
filled down to cell F30. Cell F32 contains the sum of cells $F$10 through
$F$30, which for the initial guess qt = 5 and ut = 3.5 for t = 0, . . . , 19,
yields 172.435087. Solver is then asked to maximize the value in cell
$F$32 by changing the values in $B$10 :$B$29 and $D$10 :$D$29,
subject to the nonnegativity constraint that $B$10 :$E$30 >= 0.

Spreadsheet 6.8 shows Solver’s optimal solution. Initial extraction is
increased and reserves are depleted by the beginning of t = 7. (The values
for qt, ut, Rt, and It for t ≥ 7 are so small that they are regarded as 0 by
Solver.) It is optimal to sell all units of ut as they become available; thus
ut = bqt, and no inventories accumulate. Examination of the values for lt

will show that they grow from l0 = 2.00465 at a rate of approximately d
= 0.05, reaching lT = l7 = p1 + bp2 = 2.7. Because inventories, It, are never
positive, mt is not required to grow at the rate of discount. Only when It

> 0 will mt+1 = (1 + d)mt. The maximized present value is p = 224.430795.

6.7 Emission Taxes and Marketable Pollution Permits

Environmental policy constitutes an attempt by government to correct
for economic behavior which generates unacceptable environmental
damage. Deterioration of air and water quality in the United States in
the 1950s and 1960s led to the passage of laws by state and federal gov-
ernments which established a system of standards and permits which
sought to control the amount and type of wastes disposed of via smoke-
stack and outfall. The federal government also subsidized the construc-
tion of primary and secondary municipal wastewater treatment plants.
Although progress has been made in improving the quality of many lakes
and rivers, improving the quality of air in the major metropolitan areas
of the United States has proved to be a more difficult problem. A 
combination of pollutants from point sources (factories and utilities) 
and mobile sources (cars, trucks, and buses) makes the formulation of
effective air quality policies more difficult than in the case of wastewater
treatment. Economists have long advocated the use of emission taxes
or marketable pollution permits. This section will focus on these two 
policies.

We begin with the emission tax. Consider an industry that comprises
many identical firms, each employing a technology characterized by a
commodity-residual transformation function f(Qt,St) = 0, as described in
Section 6.1. We assume that QMAX ≥ Qt ≥ QMIN, ∂f(•)/∂Qt = fQ > 0,
∂f(•)/∂St = fS < 0, f(QMIN,0) = 0, and f(QMAX,SMAX) = 0 as in Figure 6.1.
Suppose no firm is concerned with the dynamics of the stock pollutant
and each is exclusively interested in maximizing after-tax revenue in each
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period. Each firm is a price-taker, receiving p > 0 for each unit of Qt.
Each firm faces a tax rate of tt > 0 for each unit of St emitted. This tax
rate might change over time, hence the subscript. In each period, each
firm faces a static optimization problem associated with the Lagrangian

(6.9)

with first-order conditions for QMAX > Qt > QMIN that require

(6.10)

(6.11)

(6.12)

Equations (6.10) and (6.11) imply that p/tt = -fQ/fS, which along with
f(Qt,St) = 0 provides the representative firm with two equations to solve
for the levels of Qt and St which maximize after-tax revenue. For example,
suppose that

(6.13)

where QMIN = m and n are positive parameters. The partials of this func-
tion are fQ = 2(Qt - m) ≥ 0 and fS = -n < 0, and p/tt = 2(Qt - m)/n implies
that

(6.14)

which upon substitution into (6.13) implies

(6.15)

Note that as tt Æ •, Qt Æ m = QMIN, and St Æ 0. As tt Æ 0, Qt Æ QMAX

and St Æ SMAX. In fact, tt must be greater than np/[2(QMAX - m)] before
each competitive firm would choose Qt < QMAX and St < SMAX.

To summarize, given the form of the commodity-residual transforma-
tion function in equation (6.13), after-tax revenue maximization by each
firm will imply that each will operate so as to produce Qt and St as given
by equations (6.14) and (6.15), subject to QMAX ≥ Qt ≥ m and SMAX ≥ St

≥ 0.
What is the optimal tax tt? Let’s suppose that the environmental regu-

lator has studied the industry and knows the form of f(Qt,St) = 0.
Suppose that aggregate emissions contribute to the accumulation of the
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stock pollutant Zt and that there are N > 0 firms in the industry. The 
regulator wants to set tt so as to cause each firm to adopt the levels for
Qt and St which will

Note that pNQt is the value of aggregate output in period t and that NSt

is the aggregate waste loading from our N identical firms. We are also
assuming that damage is quadratic in the pollution stock with c > 0. The
Lagrangian for the regulator may be written

The first-order necessary conditions for QMAX > Qt > m, St > 0, and Zt >
0 require

(6.16)

(6.17)

(6.18)

Equation (6.16) implies mt = Np/fQ, and upon substitution into equation
(6.17) gives rlt+1 = pfS/fQ. Equation (6.18) implies rlt+1(1 - g) - lt = 2cZt.
We will evaluate these last three expressions in steady state to determine
expressions for the optimal pollution stock, rate of output, and rate of
residual emissions. Knowing the optimal steady-state rate of output, Q*,
for the representative firm, the regulator can calculate the steady-state
optimal emissions tax according to t* = np/[2(Q* - m)]. The expression
for the optimal tax comes from solving equation (6.14) for tt and pre-
sumes that all firms maximize after-tax revenue.

In steady state we have m = Np/fQ, rl = pfS/fQ, and -rl(d + g) = 2cZ.
Substituting rl into the last expression yields -p[fS/fQ](d + g) = 2cZ. To
make things concrete, assume that the commodity-residual transforma-
tion frontier is again given by equation (6.13) with fQ = 2(Qt - m) and
fS = -n. Substituting these partials into the last steady-state equation
implies
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(6.19)

which is the analogue to equation (6.8), but for the quadratic 
commodity-residual transformation frontier given by (6.13). In steady
state we also know that S* = (Q* - m)2/n and that NS* = gZ*. These last
two expressions combine with equation (6.19) to imply

which can be solved for Q* yielding

(6.20)

Knowing Q* the environmental regulator can set t* = np/[2(Q* - m)],
which will induce firms to operate at (Q*,S*), where NS* = gZ* at the
steady-state optimum. Because the commodity-residual transformation
frontier is nonlinear the optimal approach from Z0 < Z* would require
the environmental regulator to solve in advance for Q*t and then calcu-
late and announce t*t . From Z0 < Z* the optimal emission tax will asymp-
totically rise to t* as the steady-state equilibrium is approached.

Table 6.1 reports on the comparative statics of the steady-state
optimum to changes in various parameters.The base-case parameters are
n = 10, p = 200, d = 0.05, g = 0.2, c = 0.02, N = 100, and m = 10. Columns
3 through 7 give the new values for Q*, t*, S*, and Z* for a change in a
single parameter to the value reported at the top of that column.

For example, when n is increased from 10 to 20 the optimal level of
output for the representative firm increases from 15 to 17.94.The optimal
tax increases from 200 to 251.98. Each firm now emits 3.15 units of waste
each period and the optimal pollution stock increases from 1,250 to

   
Q

n p
cN

m* =
+( )

+
2

3

4
d g g

N Q m
n

Z
np
c Q m

*
*

*
-( )

= =
+( )
-( )

2

4g
d g

Z
np
c Q m

*
*

=
+( )
-( )

d g
4

Table 6.1 Steady-State Optimum with an Emission Tax



132 6 Stock Pollutants

1,574.90. Note: Increases in p, d, and g increase the optimal pollution
stock; increases in n, p, and c raise the optimal emission tax, t*; and
increases in d and g lower it. The level of emissions from the represen-
tative firm increases with increases in n, p, d, and g and declines with an
increase in c.

Another way of showing numerical comparative statics is to construct
a table showing the percentage change in a variable divided by the per-
centage change in the parameter. Such ratios may be interpreted as elas-
ticities. The absolute changes in Table 6.1 are converted to elasticities in
Table 6.2. Such a table has the advantage of conveying both the direc-
tion and the relative size of the change. The calculations in Table 6.2 are
made easier by the fact that in Table 6.1 all parameters were increased
by 100%. Table 6.2 also contains the elasticities of the steady-state vari-
ables for changes in N, the number of firms in the industry.

All of the elasticities in Table 6.2 are less than 1, with the exception of
the response of S* to a change in g.An increase in g from 0.2 to 0.4 causes
an 18% increase in Q*, a 35% decrease in t*, a 135% increase in S*, and
a 17% increase in Z*.

The second environmental policy advocated by economists is mar-
ketable pollution permits. Such permits are now being used to reduce
SO2 emissions, which are a precursor to acid rain. The Chicago Board of
Trade currently administers the auction for both “spot” (current year)
and futures markets. The market was initially set up for fossil fuel
burning utilities but is being expanded to other industries and air pollu-
tants. Since its inception in 1993, the price of a permit to emit one ton of
SO2 has fallen from about $150 to about $68. This would seem to indi-
cate that the cost of reducing SO2 emissions has fallen as firms have
looked for a least-cost way to avoid having to purchase permits.

With a slight modification, we can make use of the emission tax model
to examine firm behavior when there is access to a market for pollution
permits. Let fi(Qi,t,Si,t) = 0 denote the commodity-residual transforma-

Table 6.2 Elasticities of the Steady-State Variables for a 100% Increase in
Various Parameters in the Emission Tax Model
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tion frontier for the ith firm in a competitive industry. We will assume
that the ith firm is endowed with Mi,t permits in period t. Each permit
entitles the firm to emit one ton of some pollutant, or to sell that right
to another firm, with the permit price being determined through a com-
petitive auction. Each firm, though technologically different from every
other, wishes to maximize net revenue in each period. If the firm chooses
to emit residuals beyond Mi,t, it must purchase permits at a per unit price
of pm,t > 0. If the firm chooses to emit at a rate less than Mi,t, it can sell
the unused permits and augment its revenue. This market structure leads
to the Lagrangian

(6.21)

where for Qi,MAX > Qi,t > Qi,MIN the first-order conditions require

(6.22)

(6.23)

(6.24)

Equations (6.22) and (6.23) imply p/pm,t = -fi,Q/fi,S. Recall in the emission
tax model that our representative firm sought to equate the ratio 
of price to emission tax to the same marginal rate of transformation 
(i.e., p/tt = -fQ/fS). Thus, we can see that the price for a marketable pol-
lution permit, pm,t, is playing a role similar to that of the emission tax 
tt. Given Mi,t, the equations p/pm,t = -fi,Q/fi,S and fi(Qi,t,Si,t) = 0 will permit
each firm to determine its optimal levels for Qi,t and Si,t, and to deter-
mine whether it will be a buyer or seller in the market for pollution
permits.With a given price, p, for Qi,t (faced by all our heterogeneous but
competitive firms), there will exist a demand function Si(pm,t), and the
price which clears the pollution permit market must satisfy the follow-
ing equation:

(6.25)

where the excess demand, (Si(pm,t) - Mi,t), for a particular firm may be
positive, zero, or negative, and I is the number of firms in the industry.

If we adopt the commodity-residual transformation frontier specified
in equation (6.13), the ith firm’s rate of output and residual emissions
will be determined by

(6.26)
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Note the similarity between equations (6.14)–(6.15) and (6.26)–(6.27).
With a heterogeneous industry we have firm-specific transformation
parameters, ni and mi, and again note the similar roles played by the emis-
sion tax and the price in the permit market.

There is a difference between these two sets of equations. In equations
(6.14)–(6.15) the firm would wait for the environmental regulator to
announce this period’s emission tax, tt. In our model of marketable pol-
lution permits each firm must have received its allotment, Mi,t; know p,
ni, and mi; and then participate in an auction where they offer to buy or
sell, on the basis of the candidate market clearing price, which the auc-
tioneer announces and then modifies until there is no further desire to
trade among the I firms in the industry.

Mathematically, we are able to solve for the market clearing price, pm,t,
and don’t need an auctioneer. Return to equation (6.25) and assume we
are dealing with an emission demand function given by (6.27). Substi-
tuting (6.27) into (6.25) implies

(6.28)

where Mt is the known total of permits which have been issued by the
environmental regulator. Although still unknown, the market clearing
price in the permit market will be a constant. Some algebra will reveal

Although the environmental regulator would be able to tell the auc-
tioneer Mt, and possibly p, it is probably a stretch for her to know all the
ni. Thus the auctioneer, even in this model, might have to stick around
to help find pm,t. Once found, however, it will be consistent with the emis-
sion decisions by the I firms and the total number of permits available.

6.8 Questions and Exercises

Q6.1 What is the difference between a degradable and a nondegradable
stock pollutant? If the initial pollution stock is positive (Z0 > 0), what
happens to Zt over time if g > 0 and g = 0 when no further wastes are
generated?

Q6.2 What is the definition of the commodity-residual transformation
frontier?
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Q6.3 What are the travel cost method and the method of contingent 
valuation? Why are they used by environmental economists?

E6.1 Consider a commodity, Qt, which generates a residual waste flow
according to aQt, which may accumulate as a stock pollutant, Zt, accord-
ing to Zt+1 - Zt = -gZt + aQt, where a and g are both positive but less
than 1. The stock pollutant adversely affects the growth of a renewable
resource according to Xt+1 - Xt = rXt(1 - Xt/K)/(1 + bZt) - Yt, where r,
K, and b are positive parameters and Yt is the rate of harvest of the
renewable resource in period t. The rates of commodity production and
harvest of the renewable resource are both constrained according to
QMAX ≥ Qt ≥ 0 and YMAX ≥ Yt ≥ 0. The welfare of the economy in period
t is given by Wt = e ln(Qt) + (1 - e)ln(Yt), where ln(•) is the natural log
operator and 1 > e > 0. Consider the Lagrangian

where r = 1/(1 + d), d > 0.
(a) What are the first-order conditions assuming that Zt and Xt are pos-
itive, QMAX > Qt > 0, and YMAX > Yt > 0? What are the signs of lt+1 and
mt+1?
(b) Evaluate the first-order conditions in steady state and derive the
analytic expression for Z*, the steady-state optimal pollution stock.What
is the expression for X* as a function of Z*, K, r, d, and b?
(c) If your algebra is correct, you should get the values for Z*, X*, Y*,
and Q* as given in cells $B$9:$B$12 on the initial spreadsheet for E6.1,
when a = 0.2, b = 1, d = 0.1, g = 0.2, e = 0.25, r = 1, and K = 1. In columns
C through H we set up an initial spreadsheet to determine the optimal
values for Qt and Yt for t = 0, 1, . . . , 24. The initial conditions are Z0 = 0
and X0 = 1. The equations for Zt+1 and Xt+1 are programmed in cells 
$F$3 and $G$3, respectively, and filled down through $F$27 and $G$27.
In cell $H$2 we have typed =((1/(1+$B$3))^C2)*($B$5*LN(D2)+
(1-$B$5)*LN(E2)) and we fill down to $H$26. In cell $H$27 we have
typed the final function

This is the expression for the present value of maintaining Q = (g/a)Z25

and Y = rX25(1 - X25/K)/(1 + bZ25) over the infinite horizon t = 25, 26,
. . . , •. (See Section 2.2, Section 6.3, and Spreadsheet 6.1.) This is yet
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another example of approximating the infinite-horizon approach path in
a finite-horizon problem. Can you replicate this spreadsheet?
(d) Now call up Solver and maximize the set cell $H$29 by changing
cells $D$2 :$E$26 subject to $D$2 :$D$26 <= 2, $D$2 :$G$27 >= 0, and
$E$2 :$E$26 <= 0.15. These constraints imply QMAX = 2 and YMAX = 0.15.
When you send Solver off on its mission it will hit the time limit and it
will want to stop, after 21 iterations, at a “current solution.” Use that
current solution as a new initial spreadsheet and tell Solver to keep
looking. After 42 more iterations it should converge to an optimal solu-
tion and the values for Z25 and X25 should be very close to the previously
calculated values for Z* and X* in cells $B$9 and $B$10, respectively.
(This problem is not robust for all plausible parameter values. For Z* to
be positive, it must be the case that g > (d + 2g)e.)

E6.2 Consider a nonrenewable resource, such as that depicted in Figure
1.1. Welfare in period t is given by Wt = (a - (b/2)qt)qt - cZ 2

t, where 
a, b, and c are positive parameters. Pollution dynamics are given by 
Zt+1 - Zt = -gZt + aqt, where g and a are positive, but less than 1. The 
nonrenewable resource changes according to Rt+1 = Rt - qt. When qt > 0
results in a waste flow, we would expect a slower rate of extraction than
if there were no waste (a = 0) or zero damage (c = 0). Consider the initial
spreadsheet for E6.2. The parameters are a = 10, b = 1, c = 1, a = 0.5, d =
0.05, and g = 0.1. The initial conditions are R0 = 1 and Z0 = 0. In 
cells $C$11 and $D$11 we have programmed in the expressions R1

and Z1, respectively, and filled down to $C$30 and $D$30. The expres-
sion for W0 is programmed in cell $E$10 as =($B$7^A10)*(($B$1-
($B$2/2)*B10)*B10-$B$3*(D10^2)). This is filled down to cell $E$29.
We specify a final function in cell $E$30 which tells Solver that the dis-
counted damage from Z20, for t = 20, 21, . . . •, is -r19cZ 2

20 /(d + g). In cell
$E$32 we sum the flow of discounted welfare and the discounted damage
of the degrading pollution stock, Z20. The initial values are qt = 0.05, for
t = 0, 1, . . . , 19.
(a) Replicate this initial spreadsheet.
(b) Call Solver and ask it to maximize $E$32 by changing $B$10 :$B$29,
subject to $B$10:$D$30 >= 0. Plot the optimal time paths for qt, Rt, and
Zt.
(c) Reset the optimal spreadsheet to the initial spreadsheet and set c =
0. Resolve for the optimal extraction path. Do you deplete sooner?

E6.3 In the marketable pollution permit model of Section 6.7, we
derived the optimal residual rate for the ith firm facing a commodity-
residual transformation frontier given by f(Qi,t,Si,t) = (Qi,t - m)2 - niSi,t =
0 and a permit price of pm,t. This gave rise to the expression
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as the optimal emission rate for the ith firm. If a total of Mt permits were
available in period t, the market clearing permit price would have to
satisfy

Suppose n1 = 1, n2 = 2, n3 = 3, Mt = 600, Mi,t = 200, i = 1,2,3, and p = 400.
What are the market clearing permit price, pm,t; the level of emissions for
each of the three firms; and the permits bought or sold by each?
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CHAPTER 7

Option Value and Risky Development

7.0 Introduction and Overview

In this chapter we consider the desirability and timing of projects which
might irreversibly alter a natural environment. A large hydroelectric or
irrigation project might necessitate the construction of a reservoir, which
may inundate a sizable area behind a dam, alter the hydrological
processes of a free-flowing river, and be very costly to remove. The
cutting of an old-growth forest and the conversion of land to agriculture
or other uses might also be viewed as irreversible developments. Risk or
uncertainty is present if the future net benefits of development, or the
benefits of continued preservation, are not known when a decision about
starting the project must be made.

Evaluating the desirability of an investment project has traditionally
drawn upon a body of economic theory and methods referred to as cost-
benefit analysis. This is a sizable literature examining (i) the theoretical
foundations of cost–benefits analysis, (ii) the appropriate formulas to
evaluate the desirability of a project and, (iii) the complications that arise
when there is unemployment, imperfect competition, government regu-
lation, or different opportunity costs for resources that are diverted from
the private sector of an economy. It is not possible to cover all these
topics, and the next section will review the basic formulas used to calcu-
late a benefit–cost ratio, the present value of net benefits, a project’s
internal rate of return, and the return on invested capital.

Traditional cost–benefit analysis is oriented toward making a simple
decision: should an investment project be undertaken today? The deci-
sion is basically a “now-or-never” decision. Missing from the traditional
analysis was the possibility (or option) of delay. More recent literature
in financial economics is concerned with the optimal timing of a project,
or when to exercise an investment option.The option of optimally invest-
ing in the future should be of value today. By undertaking a risky project,
which is costly to reverse, we incur the construction costs (real resource
costs) and we “kill” the option of investing if and when conditions are
more favorable in the future. If we do invest today, we would want the

141
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present value of expected benefits to equal or exceed the present value
of expected costs plus the value of the option to wait.

The models and mathematics of option value are fairly technical. In
Section 7.2 we consider a simple two-period model. This model is
extended to an infinite horizon in Section 7.3. Critical “trigger values”
are examined in Section 7.4; these are values that must be observed
(reached) before making a risky and irreversible investment or devel-
opment decision. Section 7.5 provides some questions and exercises.

7.1 Cost–Benefit Analysis

In our discussion of discounting in Chapter 1, we noted that the present
value of net benefits over the horizon t = 0, 1, 2, . . . , T, could be calcu-
lated according to the formula

(7.1)

where r = 1/(1 + d) was our discount factor, d > 0 was the discount rate,
and Nt = Bt - Ct was the level of net benefits in period t. In previous chap-
ters the benefits (Bt) and costs (Ct) in a particular period depended on
the rate of harvest or extraction and the size of the resource stock. In
cost–benefit analysis it is usually presumed that the construction of a
project will result in a flow of benefits over some future horizon. In addi-
tion to the construction costs, which typically dominate the initial
periods, there may be operation and maintenance costs, and in the ter-
minal period, a scrap value or “decommissioning cost.”The time path for
net benefits might look like the one plotted in Figure 7.1.

The data for this plot are given in Spreadsheet 7.1.The first two periods
are characterized by construction costs of $100 million and no benefits.
In the third period (t = 2) benefits of $40 million are realized, and in
periods t = 3 through t = 8 the benefits are $50 million per period before
falling to $40 million in period t = 9. In periods t = 2 through t = 9 the
operation and maintenance costs are $10 million per period. In period 
t = 10 the project is shut down while major maintenance of $50 million
is performed. The project is now showing its age, and although the oper-
ation and maintenance costs are the same as before the shutdown, the
output and benefits decline to $20 million in t = 18 and the project is
decommissioned, at a cost of $50 million, in t = 19.

It is important to note that numbers entered under the columns Bt and
Ct in Spreadsheet 7.1 are the best estimates of future benefits and costs
from our perspective in period t = 0. There will always be some uncer-
tainty about any future financial flow, but in this example it is assumed
that these benefit and cost values are known and given.
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Suppose the agency conducting the cost–benefit analysis is instructed
to use a discount rate of d = 0.05 per period. This rate might reflect the
opportunity cost of the resources (funds) used in constructing and main-
taining the project. Such resources might have been invested in private
investments or they might have provided a flow of utility to consumers.
With a mandated discount rate and values for Nt = Bt - Ct, it is a rela-
tively simple task to calculate the present value of net benefits accord-
ing to formula (7.1). The values for rtNt are calculated in column G in
Spreadsheet 7.1, and they sum to $77.5887154 million, as reported in cell
$G$27. The fact that the present value of net benefits is positive is taken
as an indication that the project in question provides a positive net

Figure 7.1. A Time Path for Net Benefits
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Spreadsheet 7.1
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benefit to society, above the opportunity cost of the resources needed to
implement the project. It is important to note that there has been no con-
sideration of who pays the costs and who receives the benefits. The issue
of who pays the costs and who receives the benefits may be hotly debated
or deliberately obfuscated within the political process in which public
projects are proposed, designed, and funded. In the real world, projects
with a positive present value for net benefits have been rejected because
they were seen as inequitable (unfair) in their distribution of costs and
benefits. Projects of questionable net present value have been approved
because they are viewed as an acceptable way of helping a deserving
segment of society (for example, farmers).

Many resource development agencies are instructed to calculate a
benefit–cost ratio. The formula for this ratio is given as

(7.2)

and is simply the ratio of the present value of benefits to the present
value of costs. If a project provides a net benefit to society it should have
a benefit–cost ratio greater than 1 (B/C > 1). For our hypothetical project,
at a discount rate of d = 0.05, the benefit–cost ratio is 1.22362865 as cal-
culated in cell $E$29 in Spreadsheet 7.1. Given the inherent uncertainty
in real world estimates of Bt and Ct, and the incentive of some agencies
to justify their continued existence with a slate of apparently desirable
projects, the benefit–cost ratio is sometimes required to exceed a value
greater than 1, say 1.3, to provide a greater measure of confidence that
the project in question would actually provide positive net benefits to
society.

A third criterion that is sometimes used to evaluate a project is the
internal rate of return (IRR). Given Nt, a project’s internal rate of return
is the rate r which when used as a discount rate would reduce the present
value of net benefits to 0. The internal rate of return must satisfy the
equation

(7.3)

In column H of Spreadsheet 7.1 we calculate the present value of net
revenues for rate r given in cell $E$31. The value r = 0.11296595 was
actually obtained using Solver. Initially, in cell $E$31, we specified the
value r = 0.05 and we obtained the same values in column H as were
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obtained in column G for d = 0.05. We then summoned Solver and asked
it to drive the value in cell $H$27 to 0 by changing the value in the cell
$E$31. Solver quickly iterates to the value r = 0.11296595. This would
seem to make intuitive sense. Since the present value of net benefits was
positive at d = 0.05, and given the time path of net benefits shown in
Figure 7.1, it seems quite logical that a higher rate, r > d, would be
required to drive the present value of net benefits to zero.

When using the internal rate of return as an investment criterion, a
project must satisfy the rule r > d to justify construction today. The inter-
nal rate of return might be thought of as an average rate of return for a
project, presuming that the horizon and underlying values of Bt and Ct

cannot be altered. (For example, it presumes that it is not possible to ter-
minate the project at the end of period t = 9.)

There are several potential problems with the internal rate of return
criterion. Specifically, equation (7.3) can be transformed into a polyno-
mial of order T in r with the possibility of T distinct roots. If the time
path for net benefits changes sign more than once then there may be
more than one rate, r, which will reduce the present value of net bene-
fits to 0. In our time profile for net benefits in Figure 7.1, there are four
sign changes.

In addition to the possibility that the internal rate of return will not
be unique, there is a question about the “availability” of positive bal-
ances, prior to t = T, and whether these balances have re-investment
options. These potential problems have caused some project analysts to
use the return on invested capital (RIC) as the preferred criterion when
comparing two or more investment projects or when calculating an inter-
nal return for a project with decommissioning or cleanup costs.

To solve for the RIC we need to define a project’s balance in t = t as

(7.4)

where the rate it will be either the risk-free discount rate, d, or the RIC
according to the following rule:

(7.5)

In equation (7.5) we have defined the project’s balance in recursive form
and the presumption is that if the project’s balance in t-1 is negative, no
balance is available for re-investment, and the project’s RIC is the appro-
priate marginal return. If the project’s balance in t-1 is positive, that
balance is invested for one period at the risk-free discount rate, d. Thus,
depending on the project’s balance in t-1, that balance will be com-
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pounded forward to t by either the RIC (if PBt-1 < 0)) or the risk-free
discount rate, d (if PBt-1 > 0). At this point, however, the RIC is still
unknown.

In columns I, J, and K of Spreadsheet 7.1 we set about trying to find
the RIC. The column headings are PBt-1, the project’s balance in t-1;
(1 + ?)PBt-1, indicating that at this point we don’t know which rate we
will use in compounding PBt-1; and PBt. In t = 0 there is no prior project
balance and therefore nothing to compound, so we enter 0 in cells I6 and
J6. In cell K6 we define the project’s balance to equal the compounded
prior balance plus current period net benefit and we type =J6 + D6. In 
t = 0 the project’s balance is simply N0 = -100. In cell I7 we type =K6,
which brings down the previous period balance for inspection and com-
pounding. In J7 we will make use of an Excel IF Statement and we type

=IF(I7<0,(1+$E$33)*I7,(1+$B$3)*I7 (7.6)

This tells Excel that if the project balance in I7 is negative, then use the
value of the RIC in cell $E$33 for compounding. The initial guess for the
RIC was 0.10 and the value now appearing in cell $E$33 is actually
Solver’s solution for the RIC. In cell K7 we fill down from cell K6 or type
=J7 + D7. We can then highlight cells I7 :K7 and fill down to cells I25 :
K25. The value in cell K25 is the project balance in the terminal period,
T = 19. If you programmed everything correctly you should have a value
of 57.5966556 in cell K25. The RIC is defined as the rate of return which
drives the project’s balance in the terminal period to 0. Thus, we can use
Solver to drive the value in cell K25 to 0 by changing the value in cell
$E$33 from our initial guess of 0.1. When you set Solver to work it
quickly finds the real RIC to be 0.11186959. The fact that the traditional
internal rate of return, r = 0.11296595, was close to the RIC = 0.11186959
was a result of the hypothetical data for Bt and Ct in Spreadsheet 7.1,
and for other examples the internal rate of return and the RIC may be
significantly different.

The RIC has many nice properties. It exits, it is unique, and when there
is only one sign change in the time profile of net benefits (going from
negative initial values to positive values), it is equal to the traditional
IRR. The RIC depends on the risk-free rate of discount and is monoton-
ically increasing in d. It has an upper bound (called the “crushing rate of
return”). The decision: invest if RIC > d; do not invest if RIC < d.

7.2 Option Value in a Simple Two-Period Model

In general, the cost–benefit formulas in the preceding section should
include estimates of any environmental damage or forgone amenity ben-
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efits which the project might cause or induce. These would need to be
estimated for each period in the project’s horizon (t = 0.1, . . . ,T) and
added to the costs of construction and operation. If there were environ-
mental damages beyond the project’s horizon, it would be appropriate
to add the present value of environmental damage from t = T + 1, . . . ,
•, to the decommissioning cost in period t = T. Uncertainty and the fact
that a project may be economically costly or ecologically impossible to
reverse are two aspects that are not easily introduced into the traditional
cost–benefit framework. Dynamic programming, although more difficult
analytically, has the advantage of being able to consider uncertainty and
irreversibility explicitly. We’ll begin with a simple two-period model to
get a feel for these two important aspects of resource development.

Consider an old-growth forest not far from the capital city of a devel-
oping country. The forest could be clear-cut today (t = 0), producing
timber with a known net revenue of T0. If this is done, the remaining veg-
etation will be burned and the land converted to agriculture with a
known net revenue in the future (t = 1) of D1. The present value of clear-
cutting today is D = T0 + rD1, where r = 1/(1 + d) is the discount factor.

If the forest is not cut today, residents of the capital city will visit the
forest to view the majestic trees, birds, and wildlife. It has been estimated
that the amenity value in the current period is A0. In the future, both
amenity value and net revenue from timber are uncertain. Suppose there
are only two possible future “states of world.” In state 1 (s = 1) the market
price of tropical hardwood has drastically increased, resulting in a net
revenue from timber of T1,1, which exceeds domestic amenity value, A1,1.
In state 2 (s = 2) an international boycott on the import of tropical hard-
woods has resulted in a drastically reduced demand, and the net value
of the timber is T1,2, which is less than amenity value, A1,2. Thus, in future
state 1 T1,1 > A1,1, and in future state 2 A1,2 > T1,2. Suppose that planners
advising the country’s president believe that future state 1 will occur with
probability p, and that state 2 will occur with probability (1 - p). We will
assume that T0 > A0 > 0 and that the other net timber, agricultural, and
amenity values are positive.

The president, although aware of the amenity value derived by her
fellow citizens, is also aware that the sale of logs, particularly in state 1,
will provide needed foreign exchange that can be used to improve the
water and sanitation system within the capital city. If the forest is not cut
today, the president feels that it is optimal to cut if state 1 occurs, but to
preserve the forest if state 2 occurs. With this optimal, state-contingent
decision rule, the expected present value of preservation today is given
by P = A0 + r[pT1,1 + (1 - p)A1,2]. If D > P the president will order the
timber cut today and the land converted to agriculture. If D < P the pres-
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ident will spare the forest today and wait to see which state obtains in
the future. The point of indifference, where D = P, implies

(7.7)

On the LHS we have the net value of cutting the forest today, where the
forgone amenity value in t = 0 has been deducted from T0 + rD1. On the
RHS the term r[pT1,1 + (1 - p)A1,2] is the option value of preservation
in t = 0. If the forest is not cut today, the president preserves her option
of behaving optimally in the future, cutting the forest in state 1 and pre-
serving it in state 2. Note: Option value is the discounted expected net
value of behaving optimally in the future. With 1 > r > 0, 1 > p > 0, and
T1,1 and A1,2 both positive, option value is unambiguously positive.

Comparative statics in this simple model are relatively straightfor-
ward. An increase in T1,1 or A1,2 will increase option value and tend to
increase the incentive to preserve the forest today. An increase in T0, D1,
or a decrease in A0 will increase the LHS and tend to increase the like-
lihood of cutting today. An increase in the discount rate, d, will reduce
the RHS more than it reduces the LHS, thus tipping the scale toward
cutting today.

One interesting, but not obvious, feature of the model is the sign of
dp/dd which would preserve the president’s indifference between cutting
today and waiting. Multiply both sides of (7.7) by (1 + d) and consider
the changes in p which must counter an increase in d in order to pre-
serve indifference. You should obtain the equation (T0 - A0)dd = (T1,1 -
A1,2)dp, or

(7.8)

We have assumed that T0 > A0. If T1,1 > A1,2, it will be the case that dp/dd
> 0. If, however, A1,2 > T1,1, then dp/dd < 0. Some reflection should reveal
that this result is logical. Since an increase in the discount rate reduces
option value, we would need to increase the probability of the higher-
valued future state in order to maintain indifference. If T1,1 > A1,2, then
p must go up, whereas if A1,2 > T1,1, p must go down in order for (1 - p)
to go up.

7.3 Option Value: An Infinite-Horizon Model

What would be the option value of preserving the forest in t = 0 with an
infinite future horizon? The analysis becomes more complex, but man-
ageable, with the following assumptions: (i) If the forest is cut today, or
in any period, t, D1 is the net agricultural benefit per period over the infi-
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nite future, t+1, t+2, . . . •. (ii) If the forest has not been cut in period t,
there are only two possible states in period (t + 1), and it will be optimal
to cut the first time state 1 (s = 1) occurs. (iii) The probability of state 1
is “stationary”: that is, it remains constant at p. (iv) The expected value
of entering the next period with the forest intact is [pT1 + (1 - p)A2],
where T1 and A2 are the stationary optimal net benefits in state 1 and
state 2, respectively.

What is the net present value of a decision to cut the forest today?
This is given by D = T0 + rD1(1 + r + r2 + . . .) = T0 + rD1[(1 + d)/d] or 
D = T0 + D1/d. (This present value is likely to be an overstatement of the
net value of future agricultural production, since it is well known that
without fertilizers, production falls off rapidly after soil nutrients from
the “slash and burn” are depleted. The level of soil nutrients might be
viewed as an inventory and managed as a renewable resource.)

What is the net present value of a decision to preserve the forest
today? The expression for P is complex because it must account for the
possibility that the forest could be cut in any of the future periods t = 1,
2, . . . , •.We will write out the expression, explain the logic of the various
terms, and then note that the expression comprises two convergent
series.

The initial expression for P is

In the first line we have A0, the known amenity value received in t =
0, plus the discounted expected value in period t = 1. These terms are
identical to those in the two-period model, except that we have sup-
pressed the time subscript for net timber value in state 1 (T1) and
amenity value in state 2 (A2) since they are assumed to be the station-
ary optimal decisions.

In the second line we have the discounted expected value in t = 2. If
the forest has been cut in period t = 1, we obtain the known present value
of an infinite flow of net agricultural benefits, D1, for t = 2,3, . . . ,•. The
probability of this stream is p and we multiply it by r2 to bring it back
to t = 0. The second term represents the expected value in period t = 2 if
we have not cut in t = 1. The probability of not having cut in t = 1 is 
(1 - p) and the stationary expected value [pT1 + (1 - p)A2] is also dis-
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counted by r2, since we are in period t = 2. (Note: In period t = 2, the dis-
counted expected value of cutting is [1 - p]pr2T1 and the expected dis-
counted value of not cutting is (1 - p)2r2A2, which is what you get if you
expand the second term in the second line.)

If the forest was not cut in period t = 1, line 3 of our expression for P
calculates the discounted present value in t = 3 of a decision to cut or
preserve in t = 2. Specifically, if the forest is cut in t = 2, then in period t
= 3 we obtain the known present value of D1 for t = 3, 4, . . . , •.The prob-
ability of not cutting in t = 1 is (1 - p), the probability of cutting in period
t = 2 is p, and the present value in t = 3 is discounted back to t = 0 by r3.
The second term in line 3 is the discounted expected value if the forest
has not been cut in t = 1 or t = 2. The stationary expected value of enter-
ing t = 3 with the forest still standing is [pT1 + (1 - p)A2]. The probabil-
ity we will enter t = 3 with the forest intact is (1 - p)2, and given that
we’re in t = 3, we discount this term by r3 as well.

The fourth line in the expression for P calculates the discounted
expected value in t = 4 from a decision to cut or not to cut in period t =
3. As in lines 2 and 3, the first term is the discounted expected value of
net agricultural benefits, now from t = 4, 5, . . . , •, if the forest was cut in
t = 3.The second term is the discounted expected net benefits if the forest
was not cut in t = 3 and we enter t = 4 with our option intact. If the logic
of these four lines is shaky, a useful exercise is to construct a decision
tree, which has the advantage of providing a visualization of the possi-
ble decision sequences, their joint probabilities, and their discounted
expected values.

Because both r and p are positive fractions, the processes of comput-
ing joint probabilities and discounting will often result in terms which
converge as t Æ •. A close inspection of our expression for P will reveal
that

The term (1 + r + r2 + . . .) converges to [(1 + d)/d] while the term [1 +
[(1 - p)/(1 + d)] + [(1 - p)/(1 + d)]2 + . . .] converges to [(1 + d)/(d + p)].
These results permit us to write the expression for P one last time as

(7.9)

We have waded through a lot of algebra to obtain this expression for the
expected present value of not cutting in t = 0. As a check on the validity
of equation (7.9) we can ask, “What happens when p Æ 1?” As p goes
to 1, the probability of cutting in t = 1 goes to 1, and the present value

P A T A D= + + -( )[ ] +( ) + +( )[ ]0 1 2 11p p d p p d d p

   

P A T A

D

= + + -( )[ ] + -( ) -( ) + -( ) +( )[ ] +[ ]
+ + + +( ) + -( ) +( ) + -( ) +( )[ ] +[ ]

0 1 2
2

2
1

2 2

1 1 1 1 1 1

1 1 1 1 1 1

r p p p d p d

r p r r p d p d

. . .

. . . . . .



7.3 Option Value: An Infinite-Horizon Model 153

of not cutting today (t = 0) should be P = A0 + r[T1 + D1/d], which is in
fact what happens to equation (7.9).

As with the two-period model, it is instructive to consider the point of
indifference where D = P, implying

(7.10)

On the LHS we again have the present value of cutting and conversion
to agriculture, less the forgone amenity benefits in t = 0. On the RHS we
have the infinite-horizon expression for the option value of not cutting
in t = 0. Some numerical analysis can illustrate the magnitude and poten-
tial importance of option value.

Suppose that the forest, if cut today, would yield T0 = $20 million in
net revenue from logs, and when the land was devoted to intensive agri-
culture it would yield net benefits of D1 = $5 million per period ad infini-
tum. Assume the current amenity flow is A0 = $3 million, the value of
logs in state 1 is T1 = $25 million, and the amenity flow in state 2 is A2 =
$3.7 million. Let d = 0.05 and p = 0.5. In Spreadsheet 7.2 we have pro-
grammed the expressions for D = T0 + D1/d, P, as given in equation (7.9),
and option value, as given on the RHS of equation (7.10). For these
parameter values, D = P = $120 million and option value equals $117
million or 97.5% of the value of P. In this base case, the president would
be indifferent between development and preservation in t = 0.

If p were to increase to p = 0.75, the scale would be tipped toward
preservation today, with D unchanged and P increasing to $121.34375

T D A T A D0 1 0 1 2 11+ - = + -( )[ ] +( ) + +( )[ ]d p p d p p d d p

Spreadsheet 7.2
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million. In this case it is the higher probability of larger net revenues for
the timber which causes the president to wait.

If p falls to p = 0.25, the probability of state 2 increases to 0.75. In state
2, amenity value of A2 = $3.7 million was assumed to exceed the net
revenue from logs. Decreasing p to 0.25 lowers P to $116.41667 million,
and the president would cut the forest today.

If the discount rate increases from d = 0.05 to d = 0.1, D falls to $70
million, but P falls by more to P = $68.583333 million. At the higher dis-
count rate it is optimal to cut today.

Finally, if D1 falls to $2.5 million, D falls to $70 million, but P falls by
a lesser amount to P = $74.5454545 million, implying that it would be
optimal to delay cutting at least one period.

7.4 The Trigger Values for Irreversible Decisions

Many resource development projects are costly or impossible to reverse.
If the future benefits or costs of such projects are uncertain, one would
intuitively think that a more cautious or conservative investment rule
would be appropriate. In this section we will explore two models, one in
which an irreversible project has uncertain future net benefits and a
second in which a stand of old-growth forest provides uncertain amenity
value. These are continuous-time models, and a complete derivation of
the value functions inherent in each problem requires mathematics
beyond the basic calculus used in this book. You will be asked to take
certain results on faith. Nevertheless, the trigger values which emerge
from these models have intuitive appeal, and the approach taken is
important in resource economics, in which irreversibility and uncertainty
go hand in hand.

Consider a development project that can be constructed at instant t
for a cost of K million dollars. The net benefits, N, at t > t are unknown
but are thought to “evolve” according to the stochastic differential 
equation

(7.11)

This particular equation implies that net benefits are changing accord-
ing to a process of geometric Brownian motion (GBM). Dividing both
sides by N we have dN/N = mdt + sdz. The term mdt is the mean or
expected percentage change in N for the time increment dt, and m is
called the mean drift rate. The term sdz introduces a random component
to the drift in N because dz = e(t)÷dt, where e(t)is a normally distributed
random variable with 0 mean and standard deviation of 1. The random
variables e(t) are independent and identically distributed (iid), and the

dN Ndt Ndz= +m s
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stochastic process z(t) is called a standard Wiener process or “white
noise.” Net benefit is also a random process (because it depends on the
change in z), and s is called the standard deviation rate.

A discrete-time approximation of (7.11) is given by the stochastic dif-
ference equation

(7.12)

where the et+1 are standard normal random variates, and the implied time
increment is dt = 1. From a known value of N0, and given values for m
and s, it is possible to use Excel to generate several sample paths or real-
izations for Nt. This is done in Spreadsheet 7.3.

In $A$7:$A$37 we specify the period index t = 0, 1, . . . , 30. We then
select cells $B$8:$D$37 and choose Analysis Tools from the Options
Menu. When the Analysis Tools Menu is loaded, choose Random
Number Generation. A dialogue box should appear, indicating that the
output range is $B$8:$D$37, and there are to be three random variables
(or samples in columns B, C, and D) of 30 random numbers each. In the
distribution option, select the normal distribution with mean 0 and vari-
ance 1, since it corresponds to the distribution for et+1. Click the OK
button and Excel will generate the 3 random samples, which we have
labeled First Epsilon, Second Epsilon, and Third Epsilon. We can
program equation (7.12) to obtain three realizations or sample trajecto-
ries for Nt. In cells $E$7, $F$7, and $G$7 we enter =$B$1 to specify that
N0 = 5 for all three realizations. In cell $E$8 we enter =(1+$B$2)*E7+
$B$3*E7*B8 and fill down to $E$37, giving us the first realization based
on the first sample of et+1.

In cell $F$7 we enter =(1+$B$2)*F7+$B$3*F7*C8 and fill down to
$F$37 to obtain our second realization for Nt, and in cell $G$7 we type
=(1+$B$2)*G7+$B$3*G7*D8 and fill down to $G$37 to obtain the third
realization. The three realizations are then plotted in the figure at the
bottom of the spreadsheet. Although all three realizations start at N0 =
5 and employ the same values for m and s, the future values for Nt are
determined by the et+1 values, which are random and independent within
and between sample realizations. The first realization is plotted as the
solid line ending with a value of N30 = 15.0168643. The second realiza-
tion is plotted as the dashed line ending in N30 = 16.4299634, and the third
realization is drawn as a dotted line ending in N30 = 15.9367308.

In this model the expected net benefit in period t is E{Nt} = (1 + m)tN0.
The fact that the et+1 are iid standard normal means that the variance
about E{Nt} grows with t while the standard deviation grows with the
square root of t. This means that as we look further into the future we
should expect the realizations to diverge. Also shown in the figure at the
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bottom of Spreadsheet 7.3 is the 95% confidence interval for E{Nt}. This
interval is given by the upper bound (UB) and lower bound (LB)

where the value of a is selected from the standard normal distribution
for the level of confidence desired. For example, in Spreadsheet 7.3 we
plot the 95% confidence interval with a = 1.96. These bounds become
quite wide for distant t; the implication is that Nt becomes less certain
the further we forecast into the future.

If net benefits evolve according to equation (7.11), what is the level
for N which would trigger the construction of a project we could never
abandon? Equation (7.11) implies that future net benefits are log nor-
mally distributed and if N is the level of net benefit currently observed
in t = 0, then the expected net benefit at future instant t is E{N(t)} = Nemt,
where e is the base of the natural log, which is also used in the process
of continuous discounting (see Section 1.1). This is a happy coincidence
because we can get an analytic expression for the present value of
expected net benefits by noting

In general, if the project is constructed when net benefits are currently
estimated to be N, its discounted expected value is given by

(7.13)

where it is assumed that d > m. If this were not the case, if m > d, then the
project should be constructed immediately because expected net bene-
fits are growing faster than the rate of discount and the expected value
of such a project is infinite.

Suppose we have not constructed the project, but have the option of
doing so. What is the value of being able to exercise that option opti-
mally at the trigger value N*? If the current net benefit is N, the value
of the option to invest optimally can be shown to equal

(7.14)

where VW denotes the value of waiting.
Equation (7.14) assumes that N < N*, which is a bit problematic

because we have not yet solved for N*. The coefficient g > 0 is also
unknown, but we will solve for it as well. The coefficient b is given by the
positive root of a quadratic and takes the form
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(7.15)

Although the derivation of equations (7.14) and (7.15) is beyond the
mathematical scope of this text, the form of VW has certain intuitive
appeal. First, if N Æ 0, VW Æ 0. In other words, if net benefits fall to 0,
the value of the option to construct the irreversible project goes to 0 as
well. Note: In equation (7.11), if N falls to 0 it can never become posi-
tive again. Conversely, as N increases, the value of the option to invest
should increase. With g > 0 and b > 1 (because d > m), VW will increase
with an increase in N.

The unknown trigger value, N*, and the coefficient g can be deter-
mined via two conditions that must hold at the trigger value. The first
condition is called the value-matching condition and simply requires VW

= VI - K. This says that at N* you are indifferent between waiting and
the discounted expected net value of the project, less construction cost.
Given our forms for VW and VI this condition requires

(7.16)

The second condition is called the smooth-pasting condition. It
requires equality of the first derivatives of the value functions at N*, or
V¢W = V¢I. It says that the value function in the region where waiting is
optimal should smoothly meet the value function in the region where
construction is optimal. Given our forms for VW and VI this condition
requires

(7.17)

Equations (7.16) and (7.17) constitute a two-equation system in the
unknowns g and N*. Solving (7.17) for g yields

(7.18)

Substituting this result back into (7.16) and solving for N = N* yield

(7.19)

This is the trigger value that our stochastically evolving N must reach
before we will commit to constructing a project we can never abandon.
Conventional cost–benefit analysis would simply say you should con-
struct when N = dK. In other words, construct when the current net
benefit flow covers the interest cost of construction. The critical coeffi-
cient with irreversibility and uncertainty becomes D = b(d - m)/(b - 1).
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If D > d, then we have a more conservative investment rule. Let’s go back
to Spreadsheet 7.3, add a few more bells and whistles, and see if the three
realizations for Nt in that spreadsheet would ever justify construction
when K = 100 and d = 0.1.

In Spreadsheet 7.4 we have inserted the values for K and d; calculated
b, D, and N*; and deleted the UB and LB values for the 95% confidence
interval. In $H$12:$H$42 we have filled down the values of N* so we can
easily select and plot the three realizations for Nt and N*. In the figure
at the bottom of the spreadsheet we can see that all of the realizations
reach N* before t = 30, but they do so at different times. The first real-
ization exceeds N* for the first time in t = 14, the second realization
exceeds N* in t = 25, and the third realization reaches N* in t = 21. Note
that the third realization falls back below N* in t = 22. This, of course, is
one of the risks of irreversibility. Even though you have an expectation
that net benefit will be drifting upward (m = 0.04), the standard deviation
rate means that once you invest, it is still possible for the realization to
turn “nasty,” with an interval where net revenue may not cover the inter-
est payment on K. Also note that D = 0.11089454 > d = 0.1, which con-
firms our intuition that with irreversibility and uncertainty we would wait
for a larger value of N to be realized before we commit to this project.
Finally, when you replicate Spreadsheet 7.3, the et+1 values that you
obtain will be different, but the programming of Nt and N* will be the
same.

The decision to cut a stand of old-growth forest might be viewed as
an irreversible and risky decision. Uncertainty can arise because the
future price of old-growth timber is uncertain, future amenity value is
uncertain, or both. To keep things simple, consider a model in which the
net value of old-growth timber in a particular forest parcel is known and
unchanging at N dollars. Uncertainty arises because amenity value (the
use value of visitors, the option value of potential visitors, and the exis-
tence value of nonvisitors) is stochastically evolving according to

(7.20)

where m is now the mean or expected drift rate in amenity value, A; s >
0 is the standard deviation rate; and dz = e(t)÷dt, where the e(t) are gen-
erated from a standard normal distribution.

Amenity value is said to evolve according to geometric Brownian
motion. With a growing or more affluent population, we might expect
that the amenity value attached to the remaining stands of old growth is
also growing, and that m > 0. We will assume that d > m, where d is the
risk-free social rate of discount. If this were not the case, if m > d, then
the old-growth forest should be permanently preserved, since it repre-

dA Adt Adz= +m s
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sents a natural asset that is growing in expected value more rapidly than
the social rate of discount.

In this model the trigger value, A*, will be a lower bound or barrier.
If A remains above A*, it will be optimal to continue to preserve the
forest. If A is currently below A*, or if it falls to A*, it is optimal to cut
the forest, sell the timber, and place N in a risk-free portfolio where it
will earn a return of d.

What is the value of the old-growth forest? If amenity value currently
exceeds the trigger value (A > A*), it can be shown that preservation has
an expected present value given by

(7.21)

The first term on the RHS is the option value of preservation, where 
g > 0 is an unknown parameter which will be determined simultaneously
with A*, and -a is the negative root of a quadratic given by

(7.22)

The second term on the RHS of (7.21), A/(d - m), is the expected value
of never cutting. Thus VP is the sum of the option value to cut plus the
expected present value of never cutting.

Again, it is not possible with standard calculus to derive the expres-
sion for VP, but the option value of preservation, gA-a, also has intuitive
appeal. Suppose amenity value drifts to a large value. The option to cut
such a valuable old-growth forest will approach 0 (remember -a < 0)
and one would never wish to exercise such an option. Conversely, if A
Æ 0 the option to cut becomes very valuable and will be exercised when
A first reaches A*.

What is the value of cutting? That’s easy; it is simply

VC = N (7.23)

As in the previous problem, we will determine g and A* by using the
value-matching and smooth-pasting conditions. The value-matching con-
dition requires that VP = VC at A*, or

(7.24)

while the smooth-pasting condition requires V¢P = V¢C at A*, or

(7.25)
Solving this last expression for g yields
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(7.26)

Substituting the expression for g into (7.24) and solving for A = A* yield

(7.27)

This is the critical lower bound which A must initially exceed and
never fall below if preservation of the old-growth forest is to remain
optimal. The critical coefficient in this model is D = a(d - m)/(a + 1). We
would expect that D < d. The intuition is, since cutting is an irreversible
act, we would allow A to drift below dN before cutting, whereas tradi-
tional cost–benefit analysis would say to cut the first time that A reached
dN.

7.5 Questions and Exercises

Q7.1 What is the basic question cost–benefit analysis seeks to answer?

Q7.2 What is the definition of option value?

Q7.3 What is a trigger value? How is it used to determine the optimal
timing of an irreversible and risky project?

E7.1 Consider a three-period problem where t = 0,1,2. If an old-growth
forest is cut in t = 0, it will yield net revenues of T0 followed by net agri-
cultural revenues of N1 in t = 1 and N2 in t = 2. If the forest is not cut in
t = 0, society will receive an amenity flow of A0. If the forest is uncut at
the beginning of t = 1, it will be optimal to cut in state 1, when net timber
revenue will be T1, and it will be optimal to preserve in state 2, when
amenity value is A1. The subjective probability of state 1 in t = 1 is p1,
and thus the subjective probability of state 2 in t = 1 is (1 - p1). If the
forest has not been cut at the beginning of t = 2, it will be optimal to cut
in state 1, when net timber revenues are T2, and it will be optimal to pre-
serve in state 2, when the amenity value is A2. The subjective probabil-
ity of state 1 in t = 2 is p2 and the subjective probability of state 2 is 
(1 - p2).
(a) What is the expression for the option value of preservation in t = 0?
(b) Suppose T0 = 100, N1 = 5, A0 = 10, N2 = 5, p1 = 0.5, T1 = 120, A1 = 12,
p2 = 0.6, T2 = 130, A2 = 15, and d = 0.05. What is the optimal first-period
decision? Why? What is the option value of preservation in t = 0?
(c) Suppose d increases to 0.1 while the other parameters in part (b) are
unchanged. What is the optimal first-period decision now? Why?
(d) What is the probability that the forest will not be cut?
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E7.2 Consider an old-growth forest where amenity value is evolving
according to equation (7.20) with m = 0.02 and s = 0.2. The known and
unchanging net value of the timber is N = $500 million. Suppose the risk-
free social discount rate is d = 0.05. What is the trigger value A* which
would cause the forest to be cut?



CHAPTER 8

Sustainable Development

8.0 Introduction and Overview

The term sustainable development entered the lexicon of specialists fol-
lowing the release of a report by the UN’s World Commission on Envi-
ronment and Development (WCED). The commission, chaired by Gro
Harlem Brundtland of Norway, defined sustainable development as
“development that meets the needs of the present without compromis-
ing the ability of future generations to meet their own needs. . . . At a
minimum, sustainable development must not endanger the natural
systems that support life on Earth.” In 1992, at the Earth Summit in Rio
de Janeiro, sustainable development emerged as the common theme
linking conventions to reduce the emissions of greenhouse gases and to
preserve biodiversity.With these conventions being ratified by more than
140 countries, one might conclude that the concept must have broad
international appeal.

The widespread acceptance of sustainable development as a guiding
philosophy is also the result of its vagueness or multiple interpretations.
Sustainable development means different things to different people,
including academics, who often define the term from the perspective of
a particular paradigm within their specialized field. Economists would
tend to think of sustainable development as a steady state within a
natural resource or macroeconomic growth model. Sociologists might
think of sustainable development in terms of a socioeconomic system
that evolves slowly and nondestructively with its supporting ecosystem.

The word sustainable implies some sort of time horizon. There are
many harvest and extraction rates which might be sustainable over a
period of 10 or 20 years. This is probably too short an interval for most
people’s definition of sustainable. If sustainable means “can be main-
tained ad infinitum,” then even primitive hunting–gathering societies
would probably fail to qualify as sustainable.

We have spent a considerable amount of time and effort in determin-
ing the existence and character of steady-state equilibrium in models of
renewable resources and stock pollutants. There are many sustainable
stock levels for an economy based on the harvest of a renewable
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resource. We will consider sustainable development from this perspec-
tive in the next section.

The WCED makes specific reference to the development needs of the
present generation, as well as the ability of future generations to meet
their own needs. This raises the question of intergenerational equity and
the altruistic feelings that the present generation may have for its chil-
dren and grandchildren. If each generation cares about the welfare of
the next generation (and the resources and natural environments they
will inherit), how will resources be allocated over time? A model with
discounting and altruism will be analyzed in the third section of this
chapter.

Suppose the biophysical world is continuously evolving, replete with
extinctions and natural events that randomly alter the environment and
its ability to support the socioeconomic systems of humans. How can we
talk about sustainable development in a world that is stochastically
evolving? The concept of coevolution seems appropriate in such a world.
It is discussed in Section 8.3.

In a stochastic environment, be it a business or a tropical rainforest,
the admonition to “manage adaptively” is gaining widespread accep-
tance. The trigger value models encountered in Chapter 7 were basically
adaptive models in which a decision rule was established indicating the
conditions that would justify the taking of an irreversible action. Can
such an approach guide incremental development decisions? This
prospect is considered in Section 8.4.

Section 8.5 ponders the questions “Is sustainable development feasi-
ble or economically desirable? Has the concept outlived its usefulness?”
Section 8.6 concludes with some questions and exercises.

8.1 Sustainable Development as a Steady State

If an economy were simply based on the harvest of a renewable resource,
then sustainable development might simply mean the adoption of a
harvest rate that matched net growth, or Y = F(X) in the notation of
Chapter 1. We saw, however, that with a concave net growth function,
such as the logistic Y = F(X) = rX(1 - X/K), there were an infinite number
of steady-state pairs (X,Y). The “best” sustainable (X,Y) pair depended
on the objectives of the “owner” or manager of the resource.

Suppose that net benefit only depends on harvest and is written as p
= p(Y), where p¢(•) > 0 and p≤(•) < 0. (Since we are only considering
alternative steady states we can dispense with all time subscripts.) In this
case the maximization of the present value of net benefits implies that
the optimal stock size must satisfy F¢(X) = d. (This is true for any strictly



concave p[Y].) This is one equation in the optimal steady-state stock.
Suppose that Y = F(X) = rX(1 - X/K). Then F ¢(X) = r(1 - 2X/K) = d
implies X¢ = K(r - d)/(2r), which for d > 0 implies that X¢ < MSY = K/2.
Because the practice of discounting reduces the weight assigned to the
net benefits of future generations, some have argued that the “equitable”
steady-state biomass is the optimal level when d Æ 0 or X¢ = XMSY = K/2.

When net benefit depends on both harvest and biomass, so that p =
p(X,Y), we obtained F¢(X) + pX(•)/pY(•) = d, where pX(•)/pY(•) > 0 
was called the marginal stock effect. (Note: pX[•] = ∂p[•]/∂X and 
pY[•] = ∂p[•]/∂Y. See equation [1.16].) If the marginal stock effect is
greater than the discount rate, then the steady-state optimal biomass
would be X≤ > XMSY: that is, the optimal stock exceeds the stock level
that maximizes sustainable yield. If it is again argued on the basis of
intergenerational equity that the discount rate should become vanish-
ingly small, then F¢(X) = -pX(•)/pY(•) and this will imply an optimal
biomass X¢≤ > X≤. When p = ln(XY), where ln(•) is the natural log 
operator, and when Y = F(X) = rX(1 - X/K), equation (1.16) becomes
r(1 - 2X/K) + Y/X = d. Substituting Y = rX(1 - X/K) into this equation
and solving for X yield an explicit solution X≤ = K(2r - d)/(3r). As d Æ
0 we get X¢≤ = 2K/3.

These various steady-state optima are calculated and plotted in
Spreadsheet 8.1 for the case when Y = F(X) = rX(1 - X/K) and p =
ln(XY) for r = 0.5, K = 1, and d = 0.05.These functional forms and param-
eter values result in the values X¢ = 0.45, XMSY = 0.5, X≤ = 0.6333, and X¢≤
= 0.6666. Recall that the marginal stock effect increases the optimal stock
(X≤ > X¢) and that the optimal stock increases when the discount rate is
reduced. Also recall that the present value of net benefits is undefined
when d = 0, so mathematically we can only let d go to 0 in the limit.Alter-
natively, we can regard XMSY and X¢≤ as being the result of two static opti-
mization problems, where XMSY is the solution of the unconstrained
maximization of Y = F(X), while X¢≤ is the solution to the maximization
of p(X,Y) subject to Y = F(X).

8.2 Intergenerational Altruism and the Stock of 
a Renewable Resource

If a natural resource is the basis of a family’s livelihood, and if that family
sees itself as part of an ongoing, intergenerational tradition, then one
might expect that the behavior of the current generation would be tem-
pered by an altruistic motive to leave an abundant stock for the next
generation. To be able to act on such an altruistic motive, it is necessary
that the family possess some exclusivity of access to the resource. This
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situation is thought to exist in the lobster fishery off the coast of Maine.
In that fishery, sons often follow fathers in the harvesting of lobsters from
well-defined coastal areas, which, over time, have become the exclusive
lobster grounds for that family.

Suppose that the placement and retrieval of the “lobster pots” (traps
baited with fish or meat) are a two-person operation. Let the father in
period t be the skipper (captain), who determines the number of pots to
be placed on the family’s grounds. The son is the crew member in period
t but will become the skipper in period t + 1. Assume that there is a high
correlation between the number of pots and harvest, Yt. Let pt = (p -
cYt/Xt)Yt be the function describing net revenue in period t as a function
of harvest and the lobster stock, Xt, where p and c are the per unit price
for lobster and a positive cost parameter, respectively. The father’s share
of net revenue is a (1 > a > 0), while the son receives (1 - a).

Although lobstering has been a family tradition, and the father is
certain that the son will continue that tradition in period t + 1, he is pes-
simistic about the participation in the fishery by his grandchildren. In
fact, the father, in period t, believes that his son will have to share net
revenue in period t + 1 with a nonfamily crew member, and that the
family tradition of lobstering will cease in period t + 2. How will the
father’s view of the future affect his harvest decision in period t?

We will again resort to the logic of dynamic programming to answer
this question. This requires us to determine the son’s optimal harvest in
period t + 1 before we can determine the father’s optimal harvest in
period t.

In period t + 1 the son, now skipper, receives a(p - cYt+1/Xt+1)Yt+1. If
the son maximizes this share by choosing Yt+1 we obtain the static first-
order condition requiring that price equal marginal cost or p = 2cYt+1/Xt+1,
which can be solved for Yt+1 = pXt+1/(2c).This becomes the father’s expec-
tation of the son’s harvest decision in period t + 1.

In period t the father wishes to maximize net revenue which he shares
with his son but realizes that his harvest decision in period t will affect
stock size, and thus the share of net revenue his son receives in period t
+ 1. This effect occurs through the dynamics of the lobster population,
in which it is assumed that Xt+1 = Xt + F(Xt) - Yt. Suppose the father seeks
to maximize

(8.1)

Substituting the son’s optimal decision rule Yt+1 = pXt+1/(2c) into (8.1)
yields

(8.2)p r a= -( ) + ( )[ ]{ }+p cY X Y p c Xt t t t
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But we also know Xt+1 = Xt + F(Xt) - Yt, which upon substitution in (8.2)
yields the expression that the father can optimize with respect to Yt

(8.3)

In (8.3) Xt is taken as a given. Setting dp/dYt = 0 and solving for Yt will
yield

(8.4)

Equation (8.4) is the father’s harvest rule. It is based on his expectations
of the future (his son maximizes a(p - cYt+1/Xt+1)Yt+1 in period t + 1) and
it depends on the stock the father inherits in period t.

Consider the implications if all previous fathers had had the same
expectations, and thus the same harvest rule. What would be the steady-
state stock that the father of period t would inherit? This can be found
by equating the harvest rule to net growth, F(X). Suppose net growth is
logistic. Equating F(X) = rX(1 - X/K) with the RHS of (8.4) and solving
for X yield

(8.5)

How would this stock level compare to the steady-state level that max-
imizes the present value of net revenue? We know that the bioeconomic
optimum is defined by the equations F ¢(X) + pX/pY = d and Y = F(X).
With p = (p - cY/X)Y and F(X) = rX(1 - X/K) the optimal level for X
must satisfy

(8.6)

Given parameter values for a, c, d, K, p, and r, Solver can be used to find
the value of X which satisfies (8.6).This value can then be compared with
the X value from equation (8.5) to see how close the father/son steady
state is to the bioeconomic optimum. This done in Spreadsheet 8.2 for a
= 0.7, c = 1, d = 0.05, K = 1, p = 0.25, r = 0.5.

The parameter values are entered in $B$1 :$B$6. Equation (8.5) is pro-
grammed in cell $B$8, a guess of X = 0.8 was initially entered in $B$9,
and equation (8.6), with d transposed to the LHS, was programmed in
$B$10. Solver was summoned and told to drive the value in $B$10 to 0
by changing the value in $B$9.

The father/son steady-state stock is calculated to be 0.7604 and the
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optimal (present value maximizing) stock level was determined by
Solver to be 0.7846. The two steady states are not far apart. One might
conclude that if (i) property rights to a renewable resource can be
assigned (so exclusivity of harvest in an area is protected) and (ii) altru-
ism between at least two generations (father/son) exists, then the result-
ing steady-state stock may be close to the present value maximizing
optimum.

A couple of qualifiers are in order. First, Solver indicates the existence
of several solutions to equation (8.6). By starting from an initial guess of
X = 0.5, Solver iterates to X = 0.1487 as the bioeconomic optimum. The
second-order conditions, however, are not satisfied at this solution.

Second, the steady state implied by the static optimization of pt implies
Y = pX/(2c) with an associated steady-state stock of X = K[2cr - p]/(2cr)
= 0.75. This is also very close to the optimal stock of 0.7846.

In general, an altruistic motive, even for just one period, should result
in a steady state closer to the present value maximizing optimum. If the
father and son live for more than one period, and if the father optimizes
near-term harvests while attaching a positive weight to the net revenue
earned when the son is the skipper, then the altruistic and bioeconomic
steady states are likely to be even closer. The father’s problem becomes
analytically and computationally more difficult the longer the horizon
for which he must predict the behavior of his offspring. The current
model was tractable because of the quadratic net revenue function and
because the father only needed to form rational expectations about the
son’s behavior for one period into the future.
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8.3 Coevolution

In resource systems, where the difference equations are changing over
time, or where a random variable causes “stochastic evolution,” the exis-
tence of a steady state may be impossible or at least highly unlikely. The
notion of sustainable development as a steady state is also inappropri-
ate. Both ecological and socioeconomic systems often exhibit changes
that do not seem consistent with a stationary set of deterministic differ-
ence equations.

In ecology, coevolution is concerned with the dynamics of two or more
species that interact over time. It is also possible to speak of the coevo-
lution of a socioeconomic system and the underlying natural environ-
ment which provides resource and amenity service flows. Coevolution, in
this context, might be defined as the evolution of a socioeconomic system
and its natural environment in a way that is nondestructive. Specifically,
agents within the socioeconomic system engage in activities which may
involve harvest, extraction, and waste generation, but on a scale which
does not drastically or irreversibly alter the natural environment. Vari-
ables used to measure or monitor the system may always be changing,
but they remain within bounds, which from the perspective of the socio-
economic system are acceptable.

The terms nondestructive and acceptable are obviously subjective and
imply Homo economicus is still in the driver’s seat, determining what
type of changes are acceptable. Such a perspective may be objectionable
to some, but there is nothing preventing Homo economicus from holding
strong environmental values and altruistic motives toward future gener-
ations. It also seems appropriate that Homo economicus bear responsi-
bility for the environmental consequences of resource development and
waste generation. In this section we will construct a model of coevolu-
tion and show how acceptability might be given a quantitative 
dimension.

We will begin with a deterministic, three-species system which con-
verges to a “pristine” steady state. The three species are grass, an herbi-
vore, and a carnivore, which is a predator of the herbivore. This
deterministic system is then modified to allow for the intrinsic growth
rate of grass to be a normally distributed iid random variable. Coevolu-
tion becomes an exercise in stochastic simulation. An index of biodiver-
sity is proposed. It depends on the size of each species relative to its size
in the pristine steady state. Into this system we introduce a domestic
species, cattle, which compete with the herbivore for grass. It is possible
to explore the stochastic implications of different stocking rates (number
of cattle) and to simulate their impact on biodiversity.



Let X1,t be the biomass of grass available to the herbivore, X2,t, in
period t. The herbivore is a prey species (food source) for the predator,
X3,t. When cattle are introduced, Ct = C will denote the stocking rate. It
is assumed that the carnivore does not prey on domestic cattle, although
the model could be easily modified to allow for that possibility.

The equation describing the dynamics of grass biomass is given by

(8.7)

where the intrinsic growth rate, r1,t+1, will subsequently be treated as an
iid normal random variable. In order to get a feel for the expected
biomass of grass and the number of herbivores and carnivores in the pris-
tine system, we will initially replace r1,t+1 with its expected value r1 =
E{r1,t+1}. Cattle and the wild herbivore consume grass at the positive rates
of a1 and a2 per head, per period. Their presence will reduce grass
biomass below K.

The dynamics of the herbivore are given by

(8.8)

where r2 is the intrinsic growth rate, and the carrying capacity of the her-
bivore depends on the availability of grass according to bX1,t. The term
gX2,tX3,t determines the number of “kills” by the predator, where g > 0
reflects the strength of predation.

The dynamics of the predator are given by

(8.9)

where r3 is the intrinsic growth rate of the predator whose environmen-
tal carrying capacity depends on the herbivore population according to
hX2,t.

By temporarily suppressing the stochasticity in r1, and by setting Ct =
C (a constant) it is possible to identify the three equations which will
define the steady-state levels for X1, X2, and X3. Knowing the steady state
for the pristine system will be useful in defining our index of biodiver-
sity and in evaluating the evolution of the system when r1,t+1 is a random
variable.

Evaluating (8.7)–(8.9) in steady state results in the following equa-
tions: a1C + a2X2 = r1X1(1 - X1/K), r2(1 - X2/(bX1)) = gX3, and X3 = hX2.
The first equation simply says that the amount of grass consumed by
cattle and the herbivore must equal net growth. The second equation
results from the requirement that the steady-state rate of predation must
equal the rate of net growth in the herbivore. The third equation says
that the steady-state predator population equals the herbivore popula-
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tion times h, where 1/h is the number of herbivores needed to support
a single predator, per period.

Some algebra will show that

(8.10)

and that X1 must satisfy

(8.11)

With parameter values for r1, K, a1, a2, r2, b, g, r3, h, and C, equation
(8.11) might be solved numerically for X1. Then X2 would be given by
equation (8.10) and X3 = hX2. If this is done for C = 0 (no cattle), and if
(8.11) implies a unique positive level for X1, then we will have numeri-
cally solved for the pristine steady state: that is, the equilibrium before
Homo economicus decides to start grazing cattle.

This is done in Spreadsheet 8.3 for the parameter values r1 = 1.5, K =
1,000,000, a1 = 100, a2 = 20, r2 = 0.5, b = 0.01, g = 0.001, r3 = 0.2, h = 0.02,
and C = 0. In cell $B$12 a guess for X1 was entered. (In our case it 
was X1 = 1,000,000.) Equation (8.11) was programmed in cell $B$13.
Solver was called and asked to drive the value in cell $B$13 to 0 by
changing the guess for X1 in cell $B$12 subject to the constraint $B$12
≥ 0. (Solver was run twice to obtain the value G(X1) = 5.8208E - 11.)
Equation (8.10) was programmed in cell $B$14 and X3 = hX2 in cell
$B$15.This resulted in the values X1 = 902,018.967, X2 = 6,628.55627, and
X3 = 132.571125. These values are in turn used as the initial conditions,
X1,0, X2,0, and X3,0 in cells $F$2, $G$2, and $H$2, respectively. They will
also be used as reference levels in our index of biodiversity, to be
described momentarily.

We now allow r1,t+1 to be an iid normal random variable.We will specify
a mean or expected value of r1 = E{r1,t+1} = 1.5 and a standard deviation
of s = 0.5, and we will generate a sample of 41 variates in column E by
using Excel’s random number generator found in the Analysis Tools
menu. Select $E$3:$E$43 and Analysis Tools from under the Options
Menu. Select Random Number Generation and the Normal Distribu-
tion, specifying a mean of 1.5 and a standard deviation of 0.5. Click OK
and Excel will generate the desired sample of iid normal random 
variates.

In cell $F$3 we program the expression for X1,1 using the first of the
randomly generated intrinsic growth rates. The equation is entered 
as =F2+E3*F2*(12F2/$B$2)2$B$3*$B$102$B$4*G2. In cell $G$3 we 
type the equation for X2,1 as =G2+$B$5*G2*(12G2/($B$6*F2))2
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$B$7*G2*H2, and in cell $H$3 we enter X3,1 as =H2+$B$8*H2*(12
H2/($B$9*G2)). We then select the block $F$3 :$H$43 and fill down,
generating a stochastic simulation for our pristine grass–herbivore–
carnivore system. Plots of X1,t, X2,t, and X3,t show the nonstationary,
ragged evolution of all three species induced by the stochastic growth
rate for grass.

As a measure of biodiversity we construct the index number

(8.12)

where X1,p, X2,p, and X3,p are the population levels for grass, the herbi-
vore, and the carnivore in the pristine steady state. Since we specified the
pristine steady state as the initial condition, B0 = 100. In cell $I$2 we have
programmed =100*(F2/$F$2)*(G2/$G$2)*(H2/$H$2) and we fill down
to $I$43. The biodiversity index is plotted at the bottom of Spreadsheet
8.3.

Some comments about the biodiversity index are in order. First, there
does not appear to be any widely accepted index of biodiversity. The
index given by (8.12) has the property that if any species becomes
extinct, Bt = 0. Although this property may be desirable, equation (8.12)
has some shortcomings. The pristine steady state is associated with an
index of 100, but an index of 100 would also result if the herbivore were
four times its pristine population and grass biomass and the predator
were at one-half of their pristine populations. This latter composition
would probably be viewed as “less healthy” than the pristine steady state,
which one would intuitively regard as a more healthy, natural balance of
populations. Thus, the index in (8.12) does have the problem that differ-
ent and potentially unhealthy population levels can yield the same index
number. Plotting the time paths for each species might provide a visual
indication of this potential problem. If any deviation from the pristine
steady state is viewed as unhealthy, then the index

might be preferred to (8.12).
Spreadsheet 8.3 presumed that Ct = C = 0, and it basically showed that

with stochastic growth in the forage base (grass), the ecosystem that com-
prised our three species would appear to perpetually “wander” about the
pristine steady state. This may not always be the case. Depending on the
stocking rate, C, and other parameters in the model, the pristine steady
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state calculated using Solver may be “stochastically unstable,” and
depending on the initial condition, species extinctions could result. If
grass biomass goes to 0 then the “ultimate” steady state, (0,0,0), will be
the unfortunate dynamic outcome. Identifying the existence of multiple
pristine equilibria (when G(X1) = 0 has more than one positive root) and
determining the stability of the stochastic system (which will also depend
on s) are formidable problems beyond the scope of this text. Instead we
will suggest some modifications to Spreadsheet 8.3 that are numerically
interesting.

Let’s introduce cattle into the system and explore the stochastic impli-
cations. This is done in Spreadsheet 8.4 where C = 2,000. The determin-
istic steady state (when r1 = 1.5) is calculated as X1 = 707,670.962, X2 =
5,515.45787, and X3 = 110.309157, indicating that the introduction of
cattle reduces the population levels of all three species. We continue to
use the C = 0, pristine steady state as our initial condition and as the ref-
erence for our biodiversity index (8.12). The same sample of random
variates, r1,t+1, in $E$3:$E$43 is also retained.

The consequences of C = 2,000 are dramatic, especially within the first
20 periods. Grass biomass declines from 902,018 to 171,094 in t = 7,
causing a decline in the herbivore population to 1,620 animals in t = 8
with the predator population falling to 44 animals in t = 11. The 
biodiversity index declines from B0 = 100 to B8 = 2.498 in t = 8 and it
takes until t = 26 before it climbs back above 50. (The biodiversity 
index of the deterministic steady state, when C = 2,000, is approximately
54.40.) Thus, it would appear that the stocking of 2,000 cattle in every
period puts the natural ecosystem under significant stress during the first
20 periods.

If the random growth rates had been smaller, extinction of one or more
species might have occurred.To estimate the likelihood of extinction one
could run a large number of stochastic simulations, say 1,000, and observe
how often extinction results. Such analysis would give the managers of
our rangeland ecosystem an indication of whether C = 2,000 is a sto-
chastically sustainable development.

The introduction of a stochastic growth rate for grass induced sto-
chastic variation in all of the higher trophic level species. In exploring
the stochastic sustainability of a particular stocking rate, managers may
choose to adopt a lower bound rule for Bt. The rule might be “Allow no
stocking rate which results in a Bt < 30 in any of 1,000 stochastic simu-
lations.” Justification of such a lower bound for Bt would require a
risk–benefit analysis of the cost and likelihood of undesirable evolutions
of the ecosystem versus the increase in expected present value from
higher stocking rates.

The analysis in Spreadsheet 8.4 assumed that Ct = C for all t. An
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obvious modification is to permit adaptive management, where the
number of cattle stocked in period t would depend on an assessment of
the growth and quality of grass. This moves us from stochastic simula-
tion, as a method to analyze coevolution, to stochastic optimization as a
method for adaptive management.

8.4 Adaptive Development

When the future benefits or costs of a development project are uncer-
tain, and if the project can be designed in stages, optimal development
is likely to be incremental and adaptive. By observing the outcome of an
initial stage or pilot project, one can determine the optimal scale of
development in subsequent stages.

Adaptive development will make use of dynamic programming. To
determine the value of a pilot project today, we need to know the like-
lihood and value of the alternative optimal investments in subsequent
stages.

Consider a project that can be completed in two stages (t = 0,1). In t
= 0 a decision must be made whether to initiate a small pilot project. Let
d0 = 1 denote that the pilot project has been initiated and d0 = 0 that the
pilot project has not been undertaken. If d0 = 1, there will be a signal in
t = 1 indicating no environmental costs, E = 0, or E = 1, indicating sig-
nificant environmental costs.

If d0 = 1 suppose that the a priori subjective probability that E = 0 is
p1, and thus the probability that E = 1 is (1 - p1). Let the unit cost of
development be k > 0. Since the pilot project is a unit-sized project it will
cost k if initiated in t = 0.

If no environmental costs are signaled, additional development may
be optimal. The ultimate scale of the project will be D = d0 + d1 = 1 + d1.
Beginning in t = 2, benefits will flow at a rate of p(1 + d1) and continue
ad infinitum, where p > 0.The present value of this benefit stream is given
by

(8.13)

Even if E = 0 for the pilot project, there is a possibility of environmen-
tal costs if additional development is undertaken. Suppose the environ-
mental costs, in t = 2, 3, . . . , •, are C2 = 0 or C2 = b(1 + d1)2, where b > 0.
Suppose the probability that C2 = 0, conditional on a signal E = 0, is p2.
The probability that C2 = b(1 + d1)2 is therefore (1 - p2). If d1 > 0 and
environmental costs occur, they, like the benefits in (8.13), persist from t
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= 2 to infinity, and the present value of net benefits in this situation can
be shown to equal

(8.14)

In t = 1 each unit of additional development will also have a cost of k >
0. If E = 0 after d0 = 1, project managers will choose d1,0 to maximize the
expected present value of future net benefits as given by

where d1,0 ≥ 0 denotes the level of additional development when d0 = 1
and E = 0. Note: In (8.15), the present value of benefits, B, are a sure
thing (they occur whether C2 = 0 or C2 = b[1 + d1,0]2). There is a proba-
bility of (1 - p2) that C2 = b(1 + d1,0)2, and the cost of adding d1,0 more
units is kd1,0. The first-order condition for maximizing V0(d1,0) with
respect to d1,0 requires

(8.16)

Solving (8.16) for the optimal d1,0 yields

(8.17)

Now suppose that after d0 = 1 the signal is E = 1. We will interpret E
= 1 to mean that environmental costs in periods t = 2, 3, . . . , •, will be
C2 = b(1 + d1,1)2 with certainty, where d1,1 ≥ 0 is the additional level of
development taken in light of (or despite) this knowledge. Would addi-
tional development take place? Project managers would seek to maxi-
mize

(8.18)

The maximization of V1(d1,1) for d1,1 > 0 requires

(8.19)

and solving for the optimal level of d1,1 yields

(8.20)

If we undertake the pilot project we now know what the optimal level
of development will be if our signal is E = 0 or E = 1, and by substituting
the optimal levels for d1,0 and d1,1 into their respective value functions we
can determine the discounted expected value of the pilot project as
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(8.21)

This last expression can be interpreted as the “take-it-or-leave-it” option
value of the pilot project in t = 0. If it is positive, the pilot project should
be undertaken.

A numerical example at this point may be helpful. Suppose we could
construct a pilot project in t = 0 for k = $5 million. The pilot project may
signal no environmental cost (E = 0) with probability p1 = 0.5, or it may
signal significant environmental cost (E = 1) with probability (1 - p1) = 0.5.
If E = 0 project managers believe they can add to the project with a prob-
ability of p2 = 0.8 that there will be no environmental cost in t = 2, 3, . . . ,
•. If E = 0 the probability that environmental costs would be C2 = b(1 +
d1)2 is therefore (1 - p2) = 0.2. If E = 1 any additional development will
result in environmental costs of C2 = b(1 + d1)2 with certainty.Let b = 0.225.
The completed project yields benefits of p(1 + d1) in t = 2, 3, . . . , •, where
p = $1 million. Assume that the discount rate is d = 0.1. These parameter
values are entered in cells $B$1:$B$7 in Spreadsheet 8.5.

The expression for d*1,0 given in equation (8.17) is programmed in cell
$B$9 and returns a value of d*1,0 = 4. Equation (8.20) for d*1,1 is pro-
grammed in cell $B$10 and returns the numerical equivalent of d*1,1 =
0. These optimal levels for second-stage development, when substituted
into their respective value functions, imply V0(d*1,0) = $15.2273 million
and V1(d*1,1) = $7.0455 million, yielding a pilot project value of V(d0 = 1)
= $5.1240 million.

] - kp p1 0 1 0 1 1 1 11V d V d( ) ( ), ,
* + -( ) *V d0 1=( ) = [r
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In adaptive development, dynamic programming replaces traditional
cost–benefit analysis, and the ultimate scale of development depends on
the signals received in earlier stages. To determine the value of an initial
pilot project, one needs to know what one can expect to learn and how
the project will be optimally modified on the basis of the possible infor-
mation (signals). Adaptive development requires that projects be
designed in stages, with specific protocols for monitoring environmental
consequences.

8.5 A Requiem for Sustainable Development?

This chapter has considered development from several perspectives: (1)
as a steady-state equilibrium for an economy based on a renewable
resource; (2) as an acceptable set of “coevolutionary trajectories” for, say,
net revenue and an index of biodiversity; and (3) as an adaptive policy for
sequential development in an uncertain environment. The last two per-
spectives, coevolution and adaptive development, would suggest that the
term sustainable development may be operationally limited. Our experi-
ence since the Earth Summit in 1992 suggests that the concept has had
little influence on the domestic and international policies of nation states.

Operationally, if physical and biological systems exhibit natural fluc-
tuation, is sustainable development feasible? In a stochastic socioeco-
nomic system is sustainable development desirable? Is the adjective
sustainable inconsistent with a dynamic system whose structure is chang-
ing with the passage of time? It might be possible to concoct a definition
of sustainable development which would encompass development in sto-
chastic and evolving environments, but it may be preferable to coin a
new, more descriptive term for what is likely to be a better approach to
such problems. Perhaps adaptive development is that term.

From a practical perspective, both developed and developing countries
seem unable or unwilling to limit the harvest of renewable resources to
net growth or to restrict the extraction and burning of fossil fuels to rates
which would reduce the emission of greenhouse gases. Many observers
believe that major environmental problems have gotten worse since
1992. This would seem to be the case for air quality and water quality
(sanitation) in much of the developing world. The lofty rhetoric and
signing of international conventions seem to be at best a case of good
intent and at worst a case of subterfuge. Using sustainable development
as a mantra, and believing that it is feasible and desired on some broad
global scale, may have delayed the formulation of policies and projects
which could improve the management of a single species, reduce pollu-
tion in a particular region, or provide potable water to a rural village.
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The orientation of this book has been the microdynamics of resource
systems. Our chances of modeling and understanding national or
regional resource and environmental problems seem greater than for
problems that are global in scale. It is also the case that a region or
country may be more effective in formulating and enforcing policies than
an international organization such as the United Nations.

Are we simply to throw up our hands at global problems such as
climate change? Obviously not, but we should probably proceed from a
more micro and perhaps national perspective. For example, the Montreal
Protocol focused on the control of chlorofluorocarbons, a single class of
pollutants. For other greenhouse gases, especially carbon emissions, the
national costs of morbidity and shortened lives may be a more com-
pelling reason for countries to take actions to reduce the burning of
carbon-based fuels. For example, the U.S. program of marketable SO2

permits, which has caused a reduction in acid precipitation in the north-
eastern United States, has also reduced acid rain in eastern Canada. This
program, which was initially applied to U.S. electric utilities, is being
expanded to nitrous oxides and extended to other industries. Stiffer air
quality standards in the United States will reduce aggregate global 
emissions.

Another institutional alternative to international organizations are
nongovernmental organizations, or NGOs. NGOs often focus on the con-
servation of a few closely related species or on the solution of a specific
development problem. For example, NGOs have brokered agreements
between donors, banks, and developing counties which have allowed for
the retirement of a portion of a country’s international debt in return for
the preservation and protection of certain species or ecosystems.

In most instances the success stories in development and conservation
have occurred when the problems are micro and well-defined, and incen-
tive-based policies can be employed. Incentive-based policies require an
understanding of the motivations of individuals and households as they
seek to solve the basic problems of securing water, food, and shelter.
Incentive-based policies will try to introduce shadow prices into the opti-
mizing calculus of firms and individuals. For example, sharing safari or
tourist revenues with villagers may encourage them to protect wildlife
and habitat.

Adaptive models are called for in stochastic environments. Even
simple models might suggest appropriate strategies when harvesting a
natural resource or developing a natural environment. In resource man-
agement, simple “escapement rules,” whereby the level of harvest
depends on the degree to which a resource population exceeds some crit-
ical level, emerge as the best policy when growth is stochastic. This
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chapter has shown how multistage projects might be adaptively imple-
mented. The disasters with large-scale, take-it-or-leave-it projects have
caused funding agencies to think smaller and expand adaptively in light
of the information on the costs and benefits generated in the earlier
stages of a project.

In the last 15 years resource economics and development economics
have converged on many of the same allocation problems.This is not sur-
prising, given the realization that resource management and environ-
mental quality are important to the welfare of the residents of a
developing country. In resource economics there has been a move away
from deterministic models, with a steady-state optimum, toward sto-
chastic models requiring adaptive management. It seems likely that
adaptive development, based on the application of stochastic dynamic
programming, may replace sustainable development as a more com-
pelling development philosophy.

8.6 Questions and Exercises

Q8.1 Is sustainable development, based on the harvest of a renewable
resource, feasible with a positive discount rate?

Q8.2 How would altruism affect the stocks of natural resources handed
down to subsequent generations? Is the ability to act on altruistic
motives affected by the assignment of property rights?

Q8.3 What is the definition of coevolution? What numerical method is
useful in determining the ecosystem implications of fixed rates of harvest
or extraction?

E8.1 You have acquired two neighboring uninhabited islands in the
South Pacific and are in the process of planning for their development
or preservation. Let V1 = v1 ln(W1) be the net benefit from preserving W1

hectares of wilderness on Island #1, V2 = v2 ln(W2) be the net benefit from
preserving W2 hectares of wilderness on Island #2, and N = nln(D) be
the net benefit from development of D hectares on either island, where
v1, v2, and n are positive constants and ln(•) is the natural log operator.
Let W1,0 and W2,0 denote the size of Islands #1 and #2, respectively, and
both are in a pristine, undeveloped state. You wish to maximize the sum
of net benefits subject to W1,0 ≥ W1 and W2,0 ≥ W2.
(a) Given that D is the optimal total number of hectares developed on
both islands, what is the expression defining D in terms of W1,0, W2,0, and
the unknown values for W1 and W2?
(b) What are the relevant marginal conditions for determining W1, W2

and D?
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(c) What are the specific expressions defining W1, W2, and D in terms of
the parameters v1, v2, n, W1,0, and W2,0?
(d) Suppose that W1,0 = 10, W2,0 = 5, v1 = 3, v2 = 2, and n = 2. What are
the optimal levels for W1, W2, and D?
(e) Suppose the expected net benefits of development decline so that n
= 1, ceteris paribus. What are the revised values for W1, W2, and D?

E8.2 A developing country is trying to determine a policy for the preser-
vation of its rain forest. Let Xt denote the number of hectares of rain
forest and At the number of hectares of agricultural land in period t. The
rate of irreversible conversion is denoted by Dt > 0.All land is either rain
forest or in agriculture and thus Xt+1 = Xt - Dt and At+1 = At + Dt. There
are net benefits to the stocks of both rain forest and agricultural land
and there is a cost to conversion (agricultural development). The
country’s welfare in period t is given by Wt = N(At) + B(Xt) - cDt, where
N(At) and B(Xt) are strictly concave net benefit functions for agricultural
land and rain forest, respectively, and c is the unit cost of clearing and
land preparation. The rain forest policy is to permit conversions that will

where r = 1/(1 + d) is the usual discount factor. The country is relatively
undeveloped and X0 is significantly larger than A0.
(a) What is the Lagrangian expression for this problem? Remember
each state variable must have a Lagrange multiplier. What are the first-
order necessary conditions?
(b) Evaluate the first-order conditions in steady state and identify the
two expressions that might be used to solve for the steady-state optimal
levels of rain forest, X*, and agricultural land, A*. (You may assume X0

> X*.)
(c) Suppose N(At) = aln(At) and B(Xt) = bln(Xt), where a and b are pos-
itive constants. Use the two expressions identified in part (b) to solve for
the explicit expression for X*.
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B.0 Texts

Listed in the following are texts pitched at the introductory, intermediate, and
graduate levels.

Tietenberg, T. 1996. Environmental and Natural Resource Economics (Fourth
Edition), Addison-Wesley, Reading, Massachusetts.
A comprehensive introductory text covering both natural resource and envi-
ronmental economics. The text is aimed at undergraduates with or without
introductory economics. Calculus is not required.

Hartwick, J. M. and N. D. Olewiler. 1998. The Economics of Natural Resource Use
(Second Edition), Addison-Wesley, Reading, Massachusetts.
An intermediate text using graphical analysis and differential calculus. Part
I of this text provides two introductory chapters. Part II contains five chap-
ters using static (equilibrium) models to examine the allocation of land,
water, and fish; the generation of pollution; and the economics of environ-
mental policy. Part III contains five chapters developing intertemporal
(dynamic) models of nonrenewable and renewable resources.

Hanley, N., Shogren, J. F., and B.White. 1997. Environmental Economics in Theory
and Practice, Oxford University Press, New York.
This is a text for advanced undergraduates or graduate students with two or
more semesters of calculus and intermediate or graduate microeconomics.
Contrary to its title, it is a comprehensive text covering both environmen-
tal and resource economics. The text also contains two chapters (12 and 13)
on the theory of nonmarket valuation and methods for estimating environ-
mental costs and benefits (such as contingent valuation, travel cost, and
hedonic pricing).

Clark, C. W. 1990. Mathematical Bioeconomics: The Optimal Management of
Renewable Resources (Second Edition), Wiley-Interscience, New York.
This is a frequently cited classic graduate text for students with a strong
background in calculus and differential equations. The second edition
focuses exclusively on renewable resources. It contains chapters on optimal
control theory and dynamical systems.

Conrad, J. M. and C. W. Clark. 1987. Natural Resource Economics: Notes and
Problems, Cambridge University Press, New York.
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This is a graduate-level text with the premise that numerical examples help
in understanding theory, develop economic intuition, and serve as a bridge
to the analysis of real-world problems. The first chapter covers the method
of Lagrange multipliers, dynamic programming, the maximum principle, and
some basic numerical and graphical techniques. This chapter is followed by
chapters on renewable and nonrenewable resources, environmental man-
agement, and stochastic resource models.

B.1 Basic Concepts

The first section in Chapter 1 of this text discusses the attributes of renewable,
nonrenewable, and environmental resources and the role they play in an
economy. The second section presented the algebra of discounting; the third
section goes through the arduous task of extending the method of Lagrange mul-
tipliers to dynamic allocation problems. The following articles are classic refer-
ences, most written in the 1960s. The texts provide a more contemporary
discussion of these topics.

Weisbrod, B. A. 1964. “Collective Consumption Services of Individual 
Consumption Goods,” Quarterly Journal of Economics, 78:471–477.
This article introduced the concept of option value for a hospital or park,
based on the potential (uncertain) future demand by individuals.

Boulding, K. E. 1966. “The Economics of the Coming Spaceship Earth,” in H.
Jarrett (ed.), Environmental Quality in a Growing Economy, Johns Hopkins
University Press, Baltimore.
Another classic, examining the implications of the first and second laws of
thermodynamics for an economic system, along with the notion that welfare
in a closed economy (spaceship) should be concerned with stock mainte-
nance, as opposed to maximizing throughput (GDP).This article is reprinted
in Markandya, A. and J. Richardson, eds. 1992. Environmental Economics:
A Reader, St. Martin’s Press, New York.

Krutilla, J. V. 1967. “Conservation Revisited,” American Economic Review,
57:777–786.
A third classic, concerned with the ability of markets (1) to efficiently allo-
cate natural resources over time, (2) to signal resource scarcity, and (3) to
account for option demand. This article is also reprinted in Markandya and
Richardson (1992).

Baumol, W. J. 1968. “On the Social Rate of Discount,” American Economic
Review, 57:788–802.
The fourth classic, it discusses the social rate of discount and the effects of
inflation, taxes, and risk on market rates of return.

Kahn, J. R. 1998. The Economic Approach to Environmental and Natural
Resources (Second Edition), Dryden Press, Fort Worth, Texas.
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An introductory text: Chapters 1 and 2 provide a taxonomy of natural
resources and examine the role of markets, discounting, and present value.

Tietenberg (1996): Chapters 1 and 2 cover basic concepts. (See B.0 for a com-
plete citation.)

Pearce, D. W. and R. K. Turner. 1990. Economics of Natural Resources and the
Environment, Johns Hopkins University Press, Baltimore.
This is an intermediate text. Chapters 1, 2, and 3 cover basic concepts, with
a particular concern for sustainability. A discussion of the methods of static
and dynamic optimization thrusts the reader into more advanced articles
and texts.

Dorfman, R. 1969. “An Economic Interpretation of Optimal Control Theory,”
American Economic Review, 59:817–831.
In the 1960s optimal control theory and the maximum principle provided a
powerful new way to pose and solve dynamic optimization problems, such
as the problem of optimal saving and investment. In this classic, Professor
Dorfman tries to bring his colleagues up to speed.

Spence, A. M. and D. A. Starrett. 1975. “Most Rapid Approach Paths in 
Accumulation Problems,” International Economic Review, 16:388–403.
This article lays out sufficient conditions for the most rapid approach path
(MRAP) to be optimal in both discrete- and continuous-time models.

Conrad and Clark (1987): Chapter 1 covers some of the methods for static and
dynamic optimization. (See B.0 for a complete citation.)

Léonard, D. and N. V. Long. 1992. Optimal Control Theory and Static Optimiza-
tion in Economics, Cambridge University Press, New York.
This is a graduate-level text on static and dynamic optimization. Chapter 1
covers static optimization and the method of Lagrange multipliers. Section
4.2 provides a discrete-time derivation of the maximum principle.

B.2 Solving Numerical Allocation Problems

The inclusion of nonlinear programming algorithms in spreadsheet software
greatly facilitates the ability to pose and solve simple numerical allocation 
problems. Prior to the widespread availability of such software, and powerful per-
sonal computers (PCs) to run it, resource economists had to resort to analytic
approximations or nonlinear programming packages that, in the 1970s, were only
available on mainframe computers.

Burt, O. R. 1964. “Optimal Resource Use over Time with an Application to
Ground Water,” Management Science, 11:80–93.
Oscar Burt was perhaps the first economist to apply stochastic dynamic pro-
gramming to resource management. Burt was initially concerned with the
optimal use of groundwater. In this seminal paper, Burt shows how to derive
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first- and second-order, approximately optimal feedback rules, of the form
xt = f(st), where xt is the amount of water to be pumped from a groundwater
stock of size st. This approach presumes that resource dynamics are linear
in the stock and harvest (extraction). Suppose the groundwater stock in t +
1 is given by the equation st+1 = st + wt - xt, where wt is random recharge to
the aquifer in period t, with an expected value of w(st). Burt shows that a
first-order approximation to the optimal feedback rule is implied by the
equation ∂G(xt,st)/∂xt = {1/[d - w¢(st)]}[∂G(xt,st)/∂st], where G(xt,st) is the net
benefit function for the amount xt pumped from a groundwater stock of size
st. The feedback policy equation, based on a second-order approximation of
the value function, is more complex, but still manageable. The great advan-
tage of these rules, particularly in 1964, was that they spared resource man-
agers the need to approximate numerically the value function itself, a
process which, at that time, would have taxed the memory of available 
computers.

Kolberg, W. C. 1993. “Quick and Easy Optimal Approach Paths for Nonlinear
Natural Resource Models,” American Journal of Agricultural Economics,
75:685–695.
For an autonomous discrete-time problem, Kolberg obtains an approxi-
mately optimal current-period decision rule, Ut = f(Xt), where Ut is the uti-
lization of the resource in period t and Xt is the resource stock, by (1)
identifying an optimal transition equation from the first-order conditions for
present value maximization; (2) solving for a steady-state optimum; (3)
taking a small perturbation from the steady-state optimum and using the
optimal transition equation to iterate backward in time, generating an
optimal trajectory, (Ut-1,Xt-1); then (4) econometrically estimating the
current period decision rule by regressing Ut on Xt. Kolberg demonstrates
his approach for a model of the Northern California anchovy fishery.

Rowse, J. 1995. “Computing Optimal Allocations for Discrete-Time Nonlinear
Natural Resource Models,” Natural Resource Modeling, 9:147–175.
Rowse no longer sees the need for first- or second-order approximations or
current period decision rules, such as that derived by Kolberg.With the avail-
ability of significant computing power on PCs and workstations, one can use
powerful and reasonably friendly nonlinear programming packages to solve
for the optimal time path for harvest or extraction. Rowse touts the General
Algebraic Modeling System (GAMS) and the optimization subroutine
MINOS for solving dynamic allocation problems and presents the code for
several problems analyzed in the resource economics literature.

Winston, W. L. and S. C. Albright. 1997. Practical Management Science:
Spreadsheet Modeling and Applications, Duxbury Press, Belmont,
California.
This is a text for advanced undergraduates or M.B.A. students with a famil-
iarity with Microsoft Excel. The book covers a variety of models and
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methods including linear programming, network models, integer program-
ming, nonlinear programming, goal programming, decision-tree models,
inventory models, queueing models, simulation, and forecasting. There are
lots of interesting case studies, and although the orientation is on manage-
ment within a firm, the models and methods have obvious relevance for the
management of natural resources.

B.3 The Economics of Fisheries

The are two classic articles on the economics of fishing, both written in the 1950s.

Gordon, H. S. 1954. “The Economic Theory of a Common Property Resource:
The Fishery,” Journal of Political Economy, 62:124–142.
In this paper Gordon lays out the static model of open access as a way of
explaining why so many fisheries end up with too many (aging and decay-
ing) vessels chasing too few fish.

Scott, A. D. 1955. “The Fishery: The Objective of Sole Ownership,” Journal of
Political Economy, 63:116–124.
If open access results in excessive effort (E•) and a reduction in social
welfare, perhaps the optimal level of effort would be E0, the level adopted
by a sole owner with exclusive harvesting rights. The sole owner would set
effort so as to maximize static rent, where the vertical difference between
the revenue function and cost ray in Figure 3.3 is greatest. If fishery man-
agers could limit the number of vessels and hours fished, they might be able
to restrict effort in an open access fishery to E0. Subsequent analysis in the
1960s and 1970s showed that if the management objective was present value
maximization, E0, when the discount rate was positive, would not be optimal.
In 1955, however, Scott’s prescriptions made eminent sense.

Smith, V. L. 1968. “Economics of Production from Natural Resources,” American
Economic Review, 58: 409–431.
Vernon Smith wrote two articles in the late 1960s that were the first to model
the dynamics of a resource and the capital stock of the exploiting industry
as a system. Different models (or cases) were developed to consider renew-
able or nonrenewable resources with or without stock or crowding exter-
nalities. This paper provided the theoretical basis for dynamic open-access
models. A familiarity with differential equations and phase-plane analysis is
appropriate before attempting this paper.

Plourde, C. G. 1970. “A Simple Model of Replenishable Natural Resource
Exploitation,” American Economic Review, 60:518–522.
A short, compact article using the maximum principle to solve for the rate
of harvest which maximizes discounted utility when (1) utility only depends
on harvest and (2) growth is logistic.

Burt, O. R. and R. G. Cummings. 1970. “Production and Investment in Natural
Resource Industries,” American Economic Review, 60:576–590.
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This paper presents a discrete-time, finite-horizon model of harvest and
investment in a natural resource industry. Though only using the method of
Lagrange multipliers and differential calculus, this article is not for the alge-
braically or notationally faint of heart.

Clark, C. W. 1973. “The Economics of Overexploitation,” Science, 181:630–634.
This paper examines the conditions that would induce the commercial
extinction of a plant or animal.

Brown, G. B. Jr. 1974. “An Optimal Program for Managing Common Property
Resources with Congestion Externalities,” Journal of Political Economy,
82:163–174.
Brown examines how a landings tax and a tax on effort might be used to
reflect user cost and (static) congestion externalities. Perhaps as a result of
this paper, the fishing industry successfully lobbied for a prohibition on the
use of landings taxes in the Fishery Management and Conservation Act of
1976.

Wilen, J. 1976. “Common Property Resources and the Dynamics of Overex-
ploitation: The Case of the North Pacific Fur Seal,” Department of Eco-
nomics, Programme in Natural Resource Economics, Paper No. 3, The
University of British Columbia, Vancouver.
This is perhaps the first empirical study of a dynamic open-access model
based on the earlier work by Vernon Smith. The history of exploitation of
the northern fur seal makes for fascinating reading. The seals winter along
the California coast and then migrate almost 6,000 miles to breeding
grounds on the Pribilof Islands. With the Alaska Purchase in 1867, the
United States acquired the Pribilofs and granted exclusive harvest rights for
a 20-year period on the islands to the Alaska Commercial Company. When
the seals were migrating between breeding and wintering grounds, they were
subject to open access, and pressure was put on U.S. officials by the Alaska
Commercial Company to prevent Canadian vessels from taking seals in the
Bering Sea. Gun-boat diplomacy by the United States and British inter-
vention on behalf of Canada ultimately led to international arbitration.
Wilen estimates a dynamic open-access model for different historical
periods, checks for stability of the open access equilibrium, and for the
period 1882–1900 plots the likely values for the seal population and vessel
numbers in “phase space.” (This paper needs to be published in a more
accessible book of readings!)

Clark, C.W. 1985. Bioeconomic Modelling and Fisheries Management, John Wiley
& Sons, New York.
In this text Clark takes a more detailed look into models of fishing includ-
ing search and capture, processing and marketing, age-structured models,
regulation, taxes and quotas, multispecies fisheries, fluctuations, and man-
agement under uncertainty. As always, Clark combines mathematical rigor
with clear and insightful exposition.
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Bjørndal, T. and J. M. Conrad. 1987. “The Dynamics of an Open Access Fishery,”
Canadian Journal of Economics, 20:74–85.
This article offers an empirical analysis of the open access forces leading to
the decline, and ultimately a moratorium, in the North Sea herring fishery.

Conrad, J. M. 1995.“Bioeconomic Models of the Fishery,” in D.W. Bromley (ed.),
The Handbook of Environmental Economics, Blackwell, Cambridge,
Massachusetts.
This is a survey article attempting to review the development of fishery eco-
nomics, open access models, simple bioeconomic models of optimal fishing,
and issues in fisheries management.

Grafton, R. Q. 1996. “Individual Transferable Quotas: Theory and Practice,”
Reviews in Fish Biology and Fisheries, 6:5–20.
This is a well-written paper for a general audience. Grafton first discusses
the theory of ITQs and then describes the experience to date with ITQ pro-
grams in Canada, Iceland, Australia, and New Zealand. He attempts to
determine the effect that ITQs have had on (1) economic efficiency, (2)
employment and harvest shares, (3) compliance with management regula-
tions, and (4) cost recovery, management costs, and distribution of resource
rents between fishers and the government. The article contains a glossary 
of terms used by fisheries economists in discussing ITQs and a good set of
references.

Homans, F. R. and J. E. Wilen. 1997. “A Model of Regulated Open Access
Resource Use,” Journal of Environmental Economics and Management,
32:1–21.
This paper presents a more plausible model of regulation, in which man-
agement authorities set a TAC according to a linear adaptive policy and
fishers make decisions on fishing effort that determine season length. The
TAC leads to large expenditures of effort during a compressed (shortened)
season. The model is applied to the North Pacific halibut fishery.

B.4 The Economics of Forestry

Hyde, W. F. 1980. Timber Supply, Land Allocation, and Economic Efficiency,
Johns Hopkins University Press, Baltimore.
This text was written at a time when there was a concern about the ade-
quacy of private and public lands to supply sufficient timber to the U.S.
economy. At the time, forest plans by the U.S. Forest Service were calling
for management to meet “multiple objectives,” including recreation, wildlife
habitat, and watershed protection. In addition, wilderness groups were
calling for an expansion of the system of national parks (like the creation
of the North Cascades National Park), where the harvest of timber would
be prohibited. The forest industry, and some members of the U.S. Congress,
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were concerned that the multiple use management doctrines and the expan-
sion of the national park system would severely limit the land available for
timber harvest and rotational forestry. Would a “timber famine” ensue?
Hyde concludes that the efficient management of private and public lands
currently devoted to rotational forestry should provide an adequate supply
of timber in the future. In fact, more intensive silvicultural practices may
lead to greater timber output from fewer hectares, further reducing the “per-
ceived” conflict between timber supply, on the one hand, and multiple uses
or additions to the inventory of wilderness, on the other.

Johansson, P.-O. and K.-G. Löfgren. 1985. The Economics of Forestry and Natural
Resources, Basil Blackwell, Oxford, England.
Although the emphasis of this book is on the economics of forestry, it con-
tains chapters on the theory of investment, benefit–cost rules for natural
resources, and the economics of nonrenewable and renewable resources.The
effects of different forest taxes, improved biotechnology, perfect and imper-
fect markets, and risk are examined in terms of the change in rotation length
and other forest practices. There is an econometric analysis of the demand
and supply of wood in Sweden.

Samuelson, P.A. 1976.“Economics of Forestry in an Evolving Society,” Economic
Inquiry, 14:466–492.
This is a classic.The Nobel Laureate and a founding father of modern (math-
ematical) economics surveys 125 years of writings by foresters and econo-
mists, warts (mistakes) and all. After posing and solving the infinite-rotation
problem, and noting the potentially strong private incentive to invest the net
revenue from timber in other, higher-yield investments, Samuelson consid-
ers the potential externalities and public services that forests might provide
in a democratic, developed country. The paper was originally presented at a
conference in 1974; that makes Professor Samuelson perceptive if not a
prophet when he notes, “Ecologists know that soil erosion and atmospheric
quality at one spot on the globe may be importantly affected by whether or
not trees are being grown at places some distance away. To the degree this
is so, the simple Faustmann calculus and the bouncings of futures contracts
for plywood on the organized exchanges need to be altered in the interests
of the public.”

Hartman, R. 1976.“The Harvesting Decision When a Standing Forest Has Value,”
Economic Inquiry, 14:52–58.
From the same issue of Economic Inquiry that contains the Samuelson
classic, Hartman extends the Faustmann model so that a stand of trees pro-
vides a continuous flow of amenity value that increases with the age of the
stand. He derives a first-order condition that can be used to calculate the
amenity-inclusive optimal rotation.

Deacon, R. T. 1985. “The Simple Analytics of Forest Economics,” in R. T. Deacon
and M. B. Johnson (eds.), Forestlands Public and Private, Ballinger, San 
Francisco.
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A clear exposition of the Faustmann rotation, pitched at the intermediate
level. This paper emphasizes the marginal value of waiting and the marginal
cost of waiting and discusses the short-run and long-run comparative statics
of timber supply.

Binkley, C. S. 1987. “When Is the Optimal Economic Rotation Longer Than the
Rotation of Maximum Sustained Yield?” Journal of Environmental Eco-
nomics and Management, 14:152–158.
This article establishes the condition under which the Faustmann rotation
(T*) may be longer than the rotation that maximizes mean annual increment
(TMAI). This might occur with a fast-growing species, for which the cost/price
ratio (c/p) is relatively large.A sufficient condition for T* > TMAI is for 1/TMAI

> d. Using an exponential volume function, Binkley shows that this will be
the case for the fast-growing pine Pinus patula on plantations in Tanzania.

Conrad, J. M. and D. Ludwig. 1994. “Forest Land Policy: The Optimal Stock of
Old-Growth Forest,” Natural Resource Modeling, 8:27–45.
This paper presents a continuous-time version of the old-growth forest
model of Section 4.6. Although this paper uses the maximum principle, the
stopping (optimal inventory) rule for X* is the same.

B.5 The Economics of Nonrenewable Resources

There are two texts that provide a foundation for reading the now numerous
articles on the economics of nonrenewable resources.

Fisher, A. C. 1981. Resource and Environmental Economics, Cambridge 
University Press, Cambridge, England.
This text is accessible to students with intermediate microeconomics and cal-
culus. Chapters 2 and 4 are excellent introductions to models of optimal
depletion, monopoly, uncertainty, exploration, and measures of resource
scarcity.

Dasgupta, P. S. and G. M. Heal. 1979. Economic Theory and Exhaustible
Resources, James Nisbet & Co. Ltd. and Cambridge University Press,
Cambridge, England.
This is a graduate-level text which is broader in scope than the title might
suggest. There are chapters on static allocation, externalities, intertemporal
equilibrium, and renewable resources. These are followed by 10 chapters
covering optimal depletion, production with a nonrenewable resource as an
input, depletion and capital accumulation, intergenerational welfare, imper-
fect competition, taxation, uncertainty and information, and price dynamics.
This is an extremely thorough and rigorous text.

Gray, L. C. 1914. “Rent under the Assumption of Exhaustibility,” Quarterly
Journal of Economics, 28:466–489.
Perhaps the first article to recognize an additional (user) cost to marginal
extraction today. In the context of a simple arithmetic example, Gray
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showed that the present value of marginal net revenue (rent) must be the
same in all periods with positive extraction.

Hotelling, H. 1931. “The Economics of Exhaustible Resources,” Journal of Polit-
ical Economy, 39:137–175.
This is the classic paper on nonrenewable resources. Hotelling examines
price paths and extraction under competition, monopoly, and welfare max-
imization. Hotelling’s use of the calculus of variations probably made this
paper inaccessible to most of the economics profession at the time it was
published. Hotelling illustrated the theory and mathematics with numerical
examples and graphical analysis. In addition to the core sections on compe-
tition, monopoly, and welfare maximization, Hotelling considers discontin-
uous solutions, valuation of the mine under monopoly, the effects of
cumulative production, severance taxes, and duopoly. This paper, along with
his work on the economics of depreciation, duopoly, stability analysis, and
the travel-cost method for estimating recreational demand, made Hotelling
not only the father of resource economics, but one of the brightest minds in
economics in the early twentieth century.

Devarajan, S. and A. C. Fisher. 1981. “Hotelling’s ‘Economics of Exhaustible
Resources’: Fifty Years Later,” Journal of Economic Literature, 19:65–73.
This is a retrospective on Hotelling’s 1931 paper (which was rediscovered
by resource economists in the 1960s), in light of the considerable literature
which sought to extend Hotelling’s analysis to answer theoretical and policy
questions raised by the energy “crisis” of the early and mid-1970s.

Barnett, H. J. and C. Morse. 1963. Scarcity and Growth:The Economics of Natural
Resource Availability, Johns Hopkins University Press, Baltimore.
An influential study of the adequacy of natural resources and the prospects
for continued economic growth in the post–World War II era. Barnett and
Morse first consider whether physical measures (abundance), prices, or
extraction costs might serve as an index of impending resource scarcity.They
reject abundance measures as lacking an appropriate economic dimension
and instead assemble relative price and unit cost indices for minerals, fossil
fuels, and timber for the period 1870–1957. With the exception of timber,
they did not observe any significant increase in real prices or average extrac-
tion costs. They conclude that although resource scarcity is ever present, it
is a dynamic and “kaleidoscopic” condition, with markets, human ingenuity,
and commodity substitution working to mitigate the scarcity of a particular
resource.

Smith,V. K. 1980.“The Evaluation of Natural Resource Adequacy: Elusive Quest
or Frontier of Economic Analysis?” Land Economics, 56:257–298.
Smith provides a nice review of Barnett and Morse and the economic
research, based on more sophisticated theory and econometrics, which
sought to reassess the adequacy of natural resources in the 1970s. Although
reexamination provided continued support for Barnett and Morse’s opti-
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mistic assessment, Smith notes some important caveats and inherent limi-
tations in empirical economic analysis and calls for continued economic
research.

Solow, R. M. 1974. “The Economics of Resources or the Resources of Econom-
ics,” American Economic Review, 64(Proceedings):1–14.
This paper is based on the Richard T. Ely lecture given by Professor Solow
at the American Economic Association meetings in December 1973. It is an
erudite exposition of the role of nonrenewable resources in an economy and
the role that markets might play in their optimal depletion, conservation,
and exploration.

Review of Economic Studies. 1974.“Symposium on the Economics of Exhaustible
Resources,” 41.
This was a special issue containing papers by Robert Solow, Joseph Stiglitz,
Milton Weinstein and Richard Zeckhauser, Claude Henry, and Partha 
Dasgupta and Geoffrey Heal.

Stiglitz, J. E. 1976. “Monopoly and the Rate of Extraction of Exhaustible
Resources,” American Economic Review, 66:655–661.
Stiglitz examines when a monopolist may or may not restrict the initial rate
of extraction.

Pindyck, R. A. 1978. “The Optimal Exploration and Production of Nonrenew-
able Resources,” Journal of Political Economy, 86:841–861.
This paper develops a deterministic model with two state variables
(“proved” reserves and cumulative discoveries) in which competitive pro-
ducers (or a monopolist) must simultaneously determine the levels of
extraction and exploration. One possible outcome is a pattern of extraction
and discovery which gives rise to a U-shaped price path. The appendix 
contains a numerical example in which the model is estimated and solved
for extraction (106 barrels) and exploration (wells drilled) for the Permian
region of Texas.

Pindyck, R. S. 1980. “Uncertainty and Natural Resource Markets,” Journal of
Political Economy, 88:1203–1225.
In this paper Professor Pindyck considers a model with continuous price and
reserve uncertainty. With nonlinear reserve-dependent extraction costs,
C(R), with C¢(R) < 0 and C≤(R) > 0, fluctuations in reserves will raise
expected (future) costs and there is an incentive to speed up the rate of pro-
duction. Price would begin lower and rise more rapidly. The model is
extended to include exploration which might be undertaken (a) to reduce
uncertainty about the size of future reserves, and/or (b) to improve the allo-
cation of future exploratory effort. The paper employs dynamic program-
ming and Itô’s Lemma.

Brown, G. M. and B. C. Field. 1978. “Implications of Alternative Measures of
Natural Resource Scarcity,” Journal of Political Economy, 88:229–243.
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Brown and Field review various measures of resource scarcity and find com-
monly used measures, such as market price and average extraction cost, to
be deficient. They propose resource rent as a preferred measure, but note
the difficulty in obtaining the time-series data to estimate rent accurately.
Marginal discovery costs are suggested as a useful proxy.

Arrow, K. J. and S. Chang. 1982.“Optimal Pricing, Use, and Exploration of Uncer-
tain Natural Resource Stocks,” Journal of Environmental Economics and
Management, 9:1–10.
A model of depletion and exploration is developed in which the probabil-
ity of discovering a field (mine) over a small increment of time (dt) depends
on the size of the area explored. With constant exploration costs (per unit
area explored) the model results in optimal exploration’s being zero or at
its maximum, depending on whether the sum of the unit cost of exploration
plus user cost is greater than or less than the expected marginal increase in
current value from exploration. This paper uses dynamic programming and
a first-order Taylor approximation to the Bellman equation.

Devarajan, S. and A. C. Fisher. 1982. “Exploration and Scarcity,” Journal of Polit-
ical Economy, 90:1279–1290.
Resource rent (price less marginal extraction cost) was argued by Brown
and Field to be the preferred measure of resource scarcity with marginal
discovery cost as an empirically more tractable alternative. In a two-period
model Devarajan and Fisher show that resource rent will be equal to mar-
ginal exploration costs when optimizing firms face a deterministic discovery
process and may bound resource rent when discovery is uncertain.

Halvorsen, R. and T. R. Smith. 1984. “On Measuring Natural Resource Scarcity,”
Journal of Political Economy, 92:954–964.
Halvorsen and Smith note that many resource industries are vertically inte-
grated and that this can further exacerbate the problem of measuring
scarcity using rent at the time of extraction. With duality theory they show
how to estimate econometrically the shadow price on a nonrenewable
resource. An empirical study of Canadian mining shows that the shadow
price for ore declined significantly from 1956 through 1974.

Farzin,Y. H. 1984.“The Effect of the Discount Rate on Depletion of Exhaustible
Resources,” Journal of Political Economy, 92:841–851.
Farzin shows that if the production cost of a substitute (backstop) depends
on the cost of capital (thus, on the rate of discount), a decrease (increase)
in the discount rate might cause the nonrenewable resource to be extracted
more (less) rapidly. If a decrease in the discount rate lowers the “choke-off”
price this will lower the initial price of the nonrenewable resource and may
lead to more rapid depletion. If an increase in the discount rate raises the
choke-off price, the initial price of the nonrenewable resource increases and
will result in less rapid depletion. This result is opposite the “standard”
result, in which the choke-off price was regarded as a constant.
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Swierzbinski, J. E. and R. Mendelsohn. 1989. “Information and Exhaustible
Resources: A Bayesian Analysis,” Journal of Environmental Economics and
Management, 16:193–208.
In a continuous-time model, in which information gathering allows a mine
owner to update her estimate of the size of remaining reserves, Swierzbin-
ski and Mendelsohn show that observed resource prices will be a random
variable, even though the expected rate of change in price is consistent with
the Hotelling Rule.

Cairns, R. D. 1990. “The Economics of Exploration for Nonrenewable
Resources,” Journal of Economic Surveys, 4:361–395.
This paper provides a detailed survey of the economics literature on the
exploration for nonrenewable resources.

Livernois, J. 1992. “A Note on the Effect of Tax Brackets on Nonrenewable
Resource Extraction,” Journal of Environmental Economics and Manage-
ment, 22:272–280.
This paper shows how progressive tax rates for a severance tax or a profits
tax, when imposed on a firm extracting a nonrenewable resource, might lead
to constant extraction rates over some interval of time.

Farzin, Y. H. 1995. “Technological Change and the Dynamics of Resource
Scarcity Measures,” Journal of Environmental Economics and Management,
29:105–120.
This paper examines the effect that technological change has on measures
of resource scarcity (cost, price, and rent). Depending on the form of 
technological change, the three measures may move together or they may
move inconsistently. The paper provides a theoretical basis for why the dif-
ferent measures may diverge empirically. Rent remains the preferred
measure.

Olson L. J. and K. C. Knapp. 1997. “Exhaustible Resource Allocation in an Over-
lapping Generations Economy,” Journal of Environmental Economics and
Management, 32:277–292.
This paper reveals that overlapping generation (OLG) models can result in
atypical behavior. In a finite-horizon model, the rate of extraction may
increase and price may decrease over the entire horizon. In an infinite-
horizon model, cycles in extraction and prices may occur.

Vincent, J. R., Panayotou, T., and J. M. Hartwick. 1997. “Resource Depletion and
Sustainability in Small Open Economies,” Journal of Environmental 
Economics and Management, 33:274–286.
A small (price-taking) country, extracting and exporting a nonrenewable
resource, may need to invest resource rents in other forms of capital in order
to sustain domestic consumption.
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B.6 Stock Pollutants

The early literature on stock pollutants built upon the extensive literature
dealing with optimal economic growth. Now, however, production or consump-
tion gave rise to a waste flow which might accumulate as a stock pollutant. The
first of these articles appeared in the early 1970s.

Keeler, E., Spence, A. M., and R. Zeckhauser. 1972. “The Optimal Control of 
Pollution,” Journal of Economic Theory, 4:19–34.

Forster, B. 1972. “A Note on the Optimal Control of Pollution,” Journal of 
Economic Theory, 5:537–539

Forster, B. 1972. “Optimal Consumption Planning in a Polluted Environment,”
Swedish Journal of Economics, 74:281–285.

Plourde, C. G. 1972. “A Model of Waste Accumulation and Disposal,” Canadian
Journal of Economics, 5:119–125.

Smith,V. L. 1972.“Dynamics of Waste Accumulation: Disposal versus Recycling,”
Quarterly Journal of Economics, 86:600–616.

D’Arge, R. C. and K. C. Kogiku. 1973.“Economic Growth and the Environment,”
Review of Economic Studies, 40:61–77.

Cropper, M. 1976. “Regulating Activities with Catastrophic Environmental
Effects,” Journal of Environmental Economics and Management, 3:1–15.

Forster, B. A. 1977. “On a One-State Variable Optimal Control Problem,” in J.
D. Pitchford and S. J. Turnovsky (eds.), Applications of Control Theory to
Economic Analysis, North Holland, Amsterdam. pp. 35–56.

Conrad and Clark (1987): Chapter 4 has sections on residuals management, static
externality, and dynamic externality.The latter section contains three models
of a stock pollutant. (See B.0 for complete citation.)

Conrad, J. M., and L. J. Olson. 1992. “The Economics of a Stock Pollutant:
Aldicarb on Long Island,” Environmental and Resource Economics,
2:245–258.
This paper looks at an incident of groundwater contamination by the pesti-
cide aldicarb, the likely time path for concentration following a moratorium
on its use in 1979, and whether, given the New York State health standard,
it would ever be optimal to use aldicarb again once the standard was 
reestablished.

Xepapadeas, A. P. 1992. “Environmental Policy Design and Dynamic Nonpoint-
Source Pollution,” Journal of Environmental Economics and Management,
23:22–39.
This paper looks at the role of dynamic taxes (charges) in keeping observed
concentrations of a pollutant close to desired levels. This is an advanced
paper, employing both deterministic and stochastic models.
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Tahvonen, O. and J. Kuuluvainen. 1993. “Economic Growth, Pollution, and
Renewable Resources,” Journal of Environmental Economics and Manage-
ment, 24:101–118.
This paper contains models in which a stock pollutant reduces human
welfare directly and in which the stock pollutant might also adversely affect
the growth of a renewable resource, which is a factor of production.

Falk, I. and R. Mendelsohn. 1993. “The Economics of Controlling Stock Pollu-
tants: An Efficient Strategy for Greenhouse Gases,” Journal of Environ-
mental Economics and Management, 25:76–88.
This paper presents a model to control a stock pollutant wherein increasing
marginal damage from an increasing pollution stock leads to higher abate-
ment over time. An example of global warming is presented.

Wirl, F. 1994. “Pigouvian Taxation of Energy for Flow and Stock Externalities
and Strategic, Noncompetitive Energy Pricing,” Journal of Environmental
Economics and Management, 26:1–18.
Suppose energy is produced and marketed by a price-making cartel which
is subject to taxation by a consumer-oriented government. Further, suppose
that the consumption of energy results in a flow externality (acid rain) and
a stock externality (global warming). This paper explores the time paths for
price and the energy tax which result from a differential game between the
taxing government and the price-making cartel.

Karp, L. and J. Livernois. 1994. “Using Automatic Tax Changes to Control Pol-
lution Emissions,” Journal of Environmental Economics and Management,
27:38–48.
Suppose a regulator, although not knowing the cost of pollution abatement,
imposes an emission tax on polluting firms, with the tax rate increasing if
emissions continue to exceed a target. This paper looks at the welfare impli-
cations of such a tax, depending on whether firms behave strategically.

Kennedy, J.O.S. 1995. “Changes in Optimal Pollution Taxes as Population
Increases,” Journal of Environmental Economics and Management,
28:19–33.
In a two-period model, Kennedy examines the types of taxes that may be
needed to compensate for immigration when pollution is “depletable” and
when it is “undepletable.”

Tahvonen, O. 1996. “Trade with Polluting Nonrenewable Resources,” Journal of
Environmental Economics and Management, 30:1–17.
This paper considers the rate of extraction and an excise tax on the con-
sumption of a nonrenewable resource that generates waste flows which
might accumulate as a stock pollutant. Extraction costs may depend on the
rate of extraction and remaining reserves.The resource sector might be com-
petitive or a price-making monopoly (cartel). The latter case results in a dif-
ferential game. Time paths are derived for a numerical example.
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Tahvonen, O. and S. Seppo. 1996. “Nonconvexities in Optimal Pollution Accu-
mulation,” Journal of Environmental Economics and Management,
31:160–177.
This paper shows how bounded damages or a nonmonotonic pollution decay
function may result in multiple steady-state optima, thus changing the eco-
nomic properties of optimal pollution control.

Harford, J. 1997. “Stock Pollution, Child-Bearing Externalities, and the Social
Discount Rate,” Journal of Environmental Economics and Management,
33:94–105.
A stock pollutant results from the production of a good used for consump-
tion, childbearing, and capital bequests. Optimality in this model requires a
pollution tax and a tax per child equal to the discounted present value of
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in exploration, 92

economic horizon: for extraction of
nonrenewable resource, 78

economics: environmental, 1; resource, 1.
See also bioeconomic optimum.

economic time scale, 1
effort: catch-per-unit-effort, 35–6; open

access and rent-maximizing levels of,
38f, 47–9; open access equilibrium level
of effort, 38–9; yield–effort function,
36–7

emission taxes, 127–32
endangered species: as scarce commodity,

97
environment: environmental carrying

capacity, 2, 32–3; environmental quality
as scarce commodity, 97–8; travel cost
and contingent methods to estimate
damage to, 104–5

Excel program: Analysis Tools Menu,
155; Fill Down command, 21–4, 155;
Options Menu, 155; Random Number
Generation, 155; Series Option, 23;
Solver, 22, 24–5; worksheet language of,
21

exhaustion: in extraction of nonrenewable
resource, 78–9; monopolist’s date of,
86–7

exploration: comparative statics, 94–6;
specification for two-period, two-state
problem, 92; variables in decision for,
91–2

extraction: comparative statics, 94–6;
determining levels in two-period, two-
state exploration problem, 93–4;
determining optimal rates of, 91–2; with
nondegradable waste, 119, 122–3; of
nonrenewable resource, 78; optimal rate
of, 2, 4

extraction paths: inverse demand curves
for a monopolist, 86–8; for inverse
demand curves in competitive industry,
82–5

Faustmann, Martin, 64
Faustmann rotation, 63–5, 68; effect of

changes in price, costs, and discount 
rate on, 68–71; model to analyze timber
supply response, 68–70

final function: infinite-horizon, renewable
resource problem, 27–8; optimal harvest
problem, 27–30

first-order conditions: in optimal depletion
problem, 25–6

fisheries: open access, 38–9; overfished, 32;
production function, 35

Fisheries Conservation and Management
Act (1976), 53

fishing: fishing gear restrictions, 49–50;
ITQ programs in New Zealand,
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present value, expected: in option value 



212 Index

present value, expected: (cont.)
infinite horizon model, 151–4; of
preservation of old-growth forest, 161

present value, or bioeconomic optimum,
47–8; harvest equal to net growth, 14;
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quota (ITQ) market: price for ITQs in,
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static rent maximization, 41–4, 48
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depending on remaining, 88–90; in
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problem, 92–3; of nonrenewable
resource, 78
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transformation frontier, 102–4,
107–12; flow rate in damage model of
degradable stock pollutant, 107–12;
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resource abundance benefit: in Faustmann
rotation model, 68–70

resource allocation: commodity-residual
transformation frontier in, 107–12;
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problems of, 6

resources: common property, 32; optimal
management of, 13; scarcity as economic
measure, 77; specified objectives in
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dynamics of, 2–4; extraction of, 119;
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social rate of discount, 160–1
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167–8

steady-state optimum, 13; approach to,
16–17; in sustainable development,
167–9

stock pollutants: damage function 
related to size of, 104–6; damage model
for degradable, 107–12; defined, 101;
degradable and nondegradable wastes,
101; residual waste as, 4

supply response: with changes in price,
cost, and discount rate, 68–71

sustainability: in harvest of renewable
resource, 27; maximum sustainable
yield, 14–16

TAC, 50–3
time: in method of Lagrange multipliers,
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benefits, 142–3
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value functions, 93; smooth-pasting
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value judgment, 20
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values: economic measure of scarcity

based on net, 96; needed for numerical
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multiplier, 11
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welfare function: damage model of
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willingness-to-pay: using contingent

valuation to estimate, 105
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