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Abstract

We evaluate an approach to detect single-nucleotide polymorphisms (SNPs) that account for a linkage signal with
covariate-based affected relative pair linkage analysis in a conditional-logistic model framework using all 200
replicates of the Genetic Analysis Workshop 17 family data set. We begin by combining the multiple known
covariate values into a single variable, a propensity score. We also use each SNP as a covariate, using an additive
coding based on the number of minor alleles. We evaluate the distribution of the difference between LOD scores
with the propensity score covariate only and LOD scores with the propensity score covariate and a SNP covariate.
The inclusion of causal SNPs in causal genes increases LOD scores more than the inclusion of noncausal SNPs
either within causal genes or outside causal genes. We compare the results from this method to results from a
family-based association analysis and conclude that it is possible to identify SNPs that account for the linkage
signals from genes using a SNP-covariate-based affected relative pair linkage approach.

Background
Owing to the complexity of the genetic models underly-
ing complex traits, model-free linkage methods, which
do not require the specification of a disease model, are a
popular choice. With these methods, inclusion of covari-
ates increases the power to detect linkage [1], provided
that the covariates reflect underlying locus heterogene-
ity. The method allows the genetic relative risk to
depend on the covariate so that, in effect, the allele
sharing at the marker locus differs for different values of
the covariate. A general conditional-logistic model
developed by Olson [2] provides a unified framework to
incorporate covariates, and this model is implemented
in LODPAL (SAGE, version 6.1.0) [3]. A modified one-
parameter model has been proposed [4], so that only
one additional parameter per covariate is required.

To identify single-nucleotide polymorphisms (SNPs)
that may explain the observed linkage signals, several
researchers have developed methods for an affected pair
analysis [5-10] and for quantitative trait linkage analysis
[11]. Among these studies, Houwing-Duistermaat et al.
[8] proposed using Olson’s conditional-logistic model
with a genotype-based covariate to explain the linkage
signals. They applied the method to three SNPs and five
markers in the Genetic Analysis Workshop 14 data, and
they confirmed a SNP that explained a linkage peak.
However, the statistical properties of this method still
need to be studied. The large numbers of SNPs from
exome sequencing data, along with the identical-by-
descent (IBD) allele sharing from fully informative mar-
kers in the Genetic Analysis Workshop 17 (GAW17)
data set [12], provide a good opportunity to evaluate
this approach; hence our purpose here is to evaluate
this new method in depth.* Correspondence: yeunjoo.song@case.edu
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Methods
Phenotype data
We analyzed all 200 replicates of the GAW17 family
data set. The binary affected status was analyzed as the
main trait of interest, and the affected relative pairs
from all eight extended pedigrees were used.
Based on the knowledge of the underlying simulating

model, we included Age, Sex, and Smoking status as
covariates in all analyses. Using the method of Doan et
al. [13], we combined these three covariates into a sin-
gle variable, a propensity score (PS), as a means of
allowing for multiple covariates with the addition of
only 1 degree of freedom (df). In each replicate, the PS
values were estimated by taking the predicted probabil-
ity of being affected, given the set of covariates, after fit-
ting a logistic regression of affection status on the given
covariates with all 698 individuals using R, version
2.10.1 [14].

Marker data
We used the IBD sharing values for the 3,205 genes
from 22 autosomal chromosomes. After removing the
SNPs with no variability in the data set or with no LOD
score result from LODPAL, the average number of
SNPs remaining for the analysis in each replicate was
9,069 out of 24,487 total SNPs. Among these 9,069
SNPs, 8,912 were in noncausal genes, 126 were noncau-
sal SNPs in causal genes, and 31 were causal SNPs in
causal genes. Each gene contained 1 to 231 SNPs. Using
an additive coding based on the number of minor
alleles, we recoded each SNP as 0, 1, or 2.

Analysis
In the general conditional-logistic model by Olson [2],
the likelihood ratio (LR) for a relative pair r is written:
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where li is the relative risk of disease for an individual
who shares i alleles IBD with an affected relative, fri is
the prior probability that a pair will share i alleles IBD,
and f̂ ri is the estimated probability that a pair will
share i alleles IBD conditional on available marker data.
The model is parameterized in terms of the logarithms
of relative risk, so:
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where the δij are the parameters associated with the
covariate xj, with b0 and δ0 = 0. We use a one-parameter

model so that only one additional parameter is estimated
for each included covariate. The asymptotic distribution
of the LR statistics (i.e., 4.605 × LOD score) for the
one-parameter model is a 50:50 mixture of a chi-square
distribution with K df and a chi-square distribution with
K + 1 df when there are K covariates in the model and
the relative pairs are independent.
The first model in our analysis includes one covariate

PS, so:

l b di i i= +( )exp .PS (3)

The second model included two covariates, PS and a
SNP, incorporating the SNPs in a gene one by one as an
additional covariate, so:

l b d di i i i= + +( )exp .1 2PS SNP (4)

We evaluate the LOD score increases from the first
model to the second model (LodDiff) to detect SNPs
that differentially account for the linkage signals.
In each replicate, the LodDiff values are calculated for

all available SNPs. Then, the mean LodDiff values are
calculated for three different groups of SNPs: SNPs in
noncausal genes, noncausal SNPs in causal genes, and
causal SNPs in causal genes. The distributions of these
mean LodDiff values over 200 replicates are compared.
Again in each replicate, all SNPs are sorted and divided
into 10 equal partitions (deciles) according to their
LodDiff values, and the proportion of true causal SNPs
within each partition is checked. We report the mean
proportion values over 200 replicates.
To conduct family-based association analysis using the

residuals obtained from the logistic regression model
with Age, Sex, and Smoking as covariates, we use the
ASSOC program in SAGE (version 6.1.0). ASSOC
performs a likelihood-based regression unconditional on
parental genotype. The analysis model includes a SNP
as a fixed effect and a polygenic component as a ran-
dom effect. To account for the nonnormal distribution
of the residuals, we apply the George-Elston transforma-
tion. The –log(p-value) is summarized in the same way
as the LodDiff value was from 200 replicates.

Results and discussion
In Figure 1 we plot the mean LOD scores from 200
replicates for each SNP for both models. In the first
model without a SNP covariate, several genes in chro-
mosomes 4 and 6 were significant (LOD score > 3.0),
and the inclusion of an additional SNP covariate
increased the LOD score substantially in the second
model. In Figure 2 the density plots of observed LR
statistics from these mean LOD scores using SNPs in
noncausal genes are compared with the theoretical
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50:50 mixture of a chi-square distribution with 1 df and
a chi-square distribution with 2 df for the first model
and with a 50:50 mixture of a chi-square distribution
with 2 df and a chi-square distribution with 3 df for the
second model.
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Figure 1 LOD scores from the model without SNP covariate
and the model with SNP covariate. LOD score is plotted against
SNP location. The first model without a SNP covariate is plotted in
black, and the second model with a SNP covariate is plotted in
blue.
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Figure 2 Observed LR statistics and theoretical mixture
distribution. The density of observed LR statistics from LOD scores
using SNPs in noncausal genes is plotted. For the first model
without a SNP covariate, the theoretical distribution is a 50:50
mixture of a chi-square distribution with 1 df and a chi-square
distribution with 2 df because we have one covariate. For the
second model with a SNP covariate, the theoretical distribution is a
50:50 mixture of a chi-square distribution with 2 df and a chi-square
distribution with 3 df because we have two covariates. The blue
curve is for the observed LR statistics; the black curve is for the
theoretical values.
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Figure 3 Density plots of LodDiff values. The distributions of
LodDiff values for three groups of SNPs: noncausal SNPs in
noncausal genes (green), noncausal SNPs in causal genes (blue), and
causal SNPs in causal genes (red). The dashed line in the same color
as the curve indicates the mean location for each distribution.
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Figure 4 Proportions of causal SNPs in the LodDiff distribution.
The plot shows the proportions of the causal SNPs in each decile of
the sorted LodDiff values from the linkage analysis (solid line) and
of the sorted –log(p-value) from the family-based association
analysis (dashed line).
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The density plots of the mean LodDiff values for the
three groups of SNPs are shown in Figure 3. From the dis-
tribution of LodDiff, we found that the inclusion of causal
SNPs in causal genes increased the LOD scores more than
the inclusion of noncausal SNPs did either within causal
genes or outside causal genes. The overall mean LodDiff
values were 0.45 (± 0.04) for noncausal SNPs in noncausal
genes, 0.47 (± 0.07) for noncausal SNPs in causal genes,
and 0.89 (± 0.3) for causal SNPs in causal genes.
The plot of the proportions of the causal SNPs in

each decile of the sorted mean LodDiff values, starting
with the bottom decile, is shown in Figure 4. A clear
tendency can be seen for this proportion to increase,
implying that this approach may be able to detect causal
SNPs. The proportions of causal SNPs in the ten deciles
of –log(p-values) from the family-based association ana-
lysis is presented with a dashed line for comparison.
From the ordered mean LodDiff values of SNPs,

five causal SNPs (C4S4935, C6S2981, C10S3109,
C4S1878, and C8S442) are included in the top 5%
(Table 1). Among these five causal SNPs, the top
three SNPs (C4S4935, C6S2981, and C10S3109) are
included in the top 1%, and two of these SNPs are in
the top 0.01%. From the family-based association
analysis, six causal SNPs (C10S3109, C6S2981,
C4S4935, C4S1878, C9S444, and C13S523) are
included in the top 5% of significant SNPs, four of
which are among the SNPs identified by the covari-
ate-based linkage analysis.
In addition, we checked the correlations between Lod-

Diff and other properties of SNPs. The correlation
between the LodDiff values and the number of addi-
tional SNPs in the gene being considered was 0.05. The
correlation with the minor allele frequency of the SNP
included was 0.07 and 0.19 with the effect size. Our ana-
lysis did not consider the linkage disequilibrium struc-
ture. Linkage disequilibrium between SNPs within a
gene and SNPs in different genes might affect the effec-
tiveness of LodDiff. Further work is needed to investi-
gate this matter.

Conclusions
We investigated the possibility of identifying SNPs that
account for the linkage signals coming from genes using

a covariate-based affected relative pair linkage approach.
Further research is needed to study the statistical prop-
erties and the empirical null distribution to evaluate the
significance of any result.
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