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Abstract Force-of-infection (FOI; the instantaneous rate

at which susceptible individuals acquire infection) is an

important summary parameter in many disease studies.

This parameter controls the propensity of diseases and

parasites to spread through populations and often depends

on the degree of contact between susceptible and infected

individuals. Longitudinal studies are perhaps capable of

providing the most information about FOI; however,

inference can also be drawn from cross-sectional age-

prevalence data in certain situations (for instance, when

disease is endemic in a population with little temporal

variation in vital rates). In this paper, we provide a review

of FOI as it relates to the study of marked animals,

highlighting difficulties with obtaining parameter estimates

with the intended interpretation. We also provide several

alternatives for accounting for detection probability when

estimating FOI. We primarily concentrate on the analysis

of cross-sectional age-prevalence data, where previous

approaches have traditionally assumed that the probability

of sampling an individual is the same regardless of disease

status or age class. Since this assumption is likely to be

violated in many wildlife populations, we work to extend

existing statistical methodology to account for potential

differences in capture probability. Our approach requires

that data be gathered such that capture–recapture or

removal estimators of abundance may be employed. We

use simulation to investigate the importance of accounting

for differences in detectability, demonstrating a potential

for substantial bias when detectability is ignored. Finally,

we illustrate our approach by analyzing age-prevalence

data from a removal study of ferrets in New Zealand.

Interest in this case focused on quantifying age-specific

susceptibility of ferrets to bovine tuberculosis.

Keywords Apparent prevalence � Capture–recapture �
Detection probability � Force-of-infection

Introduction

Force-of-infection (FOI) is a critical parameter in many

epidemiological models, representing the instantaneous

rate at which susceptible individuals become infected

(Muench 1959; Cohen 1973; Keiding 1991; Heisey et al.

2006). Its functional form differs depending on the

assumptions of the underlying disease model. For instance,

when exposure is controlled by environmental factors, FOI

may vary by time, age, and duration of exposure, but it
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rarely is written as a function of the number of infected

individuals in the population. In contrast, when infection is

contagious, FOI is often assumed to be dependent on the

rate of contact between susceptible and infected individu-

als, and sometimes in a highly nonlinear manner (for a

thorough review see Caley et al. 2009). In this paper, we

focus primarily on environmental transmission, which does

not require that one know or estimate the number of

infected individuals in the population.

The term FOI has been used in two different senses in the

disease ecology literature, which may lead to some confu-

sion. Several recent studies (e.g., Lachish et al. 2007; Ozgul

et al. 2009) referred to finite state transition probabilities

from susceptible to infected states as FOI. Estimated from

traditional multistate mark–recapture models (MSMR

models; Brownie et al. 1993; Hestbeck et al. 1991; Schwarz

et al. 1993), these parameters represent the probability that

an individual will be infected at time t ? 1 given that it was

susceptible at time t and survived from t! t þ 1. In MSMR

models, survival from t! t þ 1 is usually associated with

the state of the animal at a discrete point in time, t. In

contrast, conceptualization of FOI as a rate emphasizes that

dynamics occur in continuous time, with risks of mortality

and infection changing with the state of the individual. In

the likely case that mortality and transmission dynamics do

both occur continuously, estimators of survival and transi-

tion probability from MSMR models will often be biased

(Joe and Pollock 2002); with regard to typical epidemio-

logical studies, Joe and Pollock’s (2002) results suggest that

both FOI and the effect size for disease on survival will be

negatively biased. As such, we prefer to define FOI as a rate,

rather than a probability, and to build models for disease

systems where dynamics occur in continuous time.

Although longitudinal studies using long-term capture–

recapture studies may be preferable from an estimation

standpoint, ecologists and epidemiologists frequently use

apparent prevalence (the percentage of infected individuals

in a sample) to gauge the level of disease or parasitic

infection in animal and plant populations. However, raw

apparent prevalence is sensitive to the age-structure of the

population and to the censoring effects of infection-medi-

ated mortality (Heisey et al. 2006). For example, younger

individuals have less time to become infected, so prevalence

of infection is typically lower in younger organisms than

with older ones. Further, if infected individuals die consid-

erably sooner than uninfected ones, raw prevalence may

give an inaccurate picture of the importance of a pathogen

because living organisms are less likely to be infected. To

combat these problems, FOI models have become a common

way to analyze prevalence data when age can be determined

at the time of the sample and when disease is endemic in a

population. These models are often parameterized in terms

of hazard rates and permit estimation of age-specific

transmission and mortality rates that account for the biasing

effects of age and infection-induced mortality. Frequently

used in human epidemiology (see review by Heisey et al.

2006), this type of analysis has also been employed in fish

and wildlife disease studies (e.g., Cohen 1973; Woolhouse

and Chandiwana 1992; Hudson and Dobson 1997; Caley and

Hone 2002; Heisey et al. 2006; Gauthier et al. 2008).

In sampling animal and plant populations, it is often

difficult to obtain a complete census of the population. In

these cases, age-prevalence data are almost always sum-

marized from a sample of the population and treated as if

they represent the population as a whole. However, when

the probability of detecting an organism depends on age- or

stage-class (as with disease status), age-prevalence in the

sample may differ markedly from age-prevalence in the

population (Jennelle et al. 2007). For instance, infection

may induce behavioral changes that make them more or

less prone to being captured (Faustino et al. 2004; Jennelle

et al. 2007). Even in plants, a seemingly ideal organism for

this type of study, detectability can be less than one and

may differ by life-state (Kery and Gregg 2003).

Jennelle et al. (2007) have described how to correct

prevalence for differences in detection probability if esti-

mates of detection probabilities are available. However,

treating corrected prevalence as data for fitting FOI models

is akin to doing statistics on statistics. A better approach is

to embed the process model for disease dynamics directly

into a model for the sampling process. In this manner,

estimates of FOI parameters and accompanying measures

of precision would implicitly account for uncertainty

associated with detection probability and thus for uncer-

tainty about true age-prevalence at the population level.

In this paper, we outline several approaches for esti-

mating FOI with data from marked animals. We start by

making suggestions on how traditional MSMR models can

be reparameterized to allow inference about instantaneous

FOI. Our focus then turns to ways of analyzing cross-

sectional age-prevalence data when detectability has the

potential to differ by age or infection status. In this case, we

assume that the investigator has collected age-prevalence

data in a manner that facilitates the estimation of detection

probability. In particular, we concentrate on the case where

mark–recapture or removal sampling is employed, with the

goal of estimating infection-mediated mortality and trans-

mission rates. After developing a statistical framework, we

employ a simulation study to investigate estimator prop-

erties under several biological and sampling scenarios,

comparing our approach to a more traditional approach that

does not attempt to account for detectability. Finally, we

analyze data from a removal study of feral ferrets Mustelo

furo in New Zealand, where interest is in estimating epi-

demiological parameters associated with bovine tubercu-

losis Mycobacterium bovis infection.
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Statistical framework

Multistate mark–recapture models revisited

Canonical MSMR models have traditionally assumed that

state transitions occur at the end of survival intervals, so

that susceptible individuals at time t have the same survival

probability to t ? 1 regardless of whether they become

infected or not. Joe and Pollock (2002) showed that when

state transitions are possible between t and t ? 1, and when

survival probability is different for the two states, (1) the

state transition probability estimator (i.e., estimate of

infection probability in our case) is negatively biased, and

(2) estimates of mortality are biased (the state with lower

survival probability exhibiting positive bias, and the state

with the higher survival probability exhibiting negative

bias). Relative bias was mostly low (\10%) for the cases

they considered; however, transition probabilities were

assumed to be symmetric (i.e., the transition from state A

to state B was the same as for state B to state A). Further,

only one such transition was allowed between successive

sampling periods. The potential for bias when applied to

disease studies is possibly much higher, as state transitions

are often unidirectional.

To be more consistent with the usual interpretation of

FOI, we suggest reparameterizing MSMR models in terms

of instantaneous rates [i.e., hazards; Cox and Oakes

(1984)]. A general strategy to accomplish this is to assume

that state transitions (including death) occur according to a

finite state continuous time (FSCT) Markov process

(Taylor and Karlin 1984); note that FSCT processes are

also termed ‘‘multistate’’ processes in the medical litera-

ture. Recently invoked by Miller and Andersen (2008) to

model fish tagging experiments in continuous time, FSCT

modeling involves constructing a matrix of homogeneous,

infinitesimal hazard rates (if hazards vary as a function of

time, piecewise constant hazard models may be assumed).

For example, letting d denote the instantaneous mortality

rate for susceptible individuals, d ? l be the instantaneous

mortality rate for infected individuals, and k be the infec-

tion hazard (i.e., force-of-infection) and imposing a three-

state irreversible disease model (e.g., Keiding 1991; Heisey

et al. 2006; see Fig. 1), the corresponding infinitesimal

matrix is given by

A ¼
�ðkþ dÞ k d

0 �ðdþ lÞ dþ l
0 0 0

2
4

3
5:

Each row corresponds to the state of an individual at the

beginning of the time period, with off-diagonal entries set

to the hazard rate for moving to the state given by its

column number. Diagonal entries are then set so that each

row sums to zero. A matrix of Arnason–Schwarz state

transition parameters / (Arnason 1972, 1973; Schwarz

et al. 1993) may then be written in terms of hazard rates by

calculating P ¼ V expðDtDÞV�1, where tD denotes the

duration of the time interval, D denotes a diagonal matrix

of the eigenvalues of A, and V is the matrix of eigenvectors

of A (Kalbfleisch and Lawless 1985; Miller and Andersen

2008). Covariates thought to influence disease progression

(e.g., age, time) could potentially be incorporated through

proportional hazard models (Cox and Oakes 1984). The

interested reader is referred to Miller and Andersen (2008)

for further explanation.

Age-prevalence modeling

Many studies of FOI base inference on cross-sectional age

prevalence samples. For instance, a researcher might sam-

ple a population at a single point in time and obtain counts

of the number of infected and non-infected individuals at a

given age. Letting CI
a and CN

a denote the number of age

a infected and non-infected individuals in a sample, age-

specific apparent prevalence is then computed as
CI

a

CI
aþCN

a
.

Assuming that the sample is much smaller than the popu-

lation size (thus ignoring finite population adjustments), one

approach for analyzing FOI would be to impose a binomial

model for these counts (e.g., Caley et al. 2009), i.e.,

CI
a�BinomialðCI

a þ CN
a ; maÞ:

Here, Binomialðh1; h2Þ represents a binomial probability

mass function with index (number of trials) h1 and success

probability h2, and ma denotes true prevalence in the pop-

ulation (ma ¼ NI
a

NI
aþNN

a
, where NI

a and NN
a give age-specific

abundance of infected and non-infected individuals,

respectively). Inference about FOI is then obtained by

placing ultrastructural constraints on the ma parameters.

The problem is that this approach ignores any bias or

additional variability associated with possible differences

in detection probability between infected and non-infected

individuals. Assuming that the detection probability for

A 3 state irreversible disease model

Not infected

After Keiding(1991),
Heisey etal. (2006)

Not

Infected

Dead

Fig. 1 Depiction of a three-state irreversible disease system, where

instantaneous transition hazards are denoted by k (force-of-infection),

d (mortality rate for susceptible individuals) and d ? l (mortality rate

for infected individuals). Subscripts t and a denote time and age,

respectively. After Keiding (1991) and Heisey et al. (2006)
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infected and non-infected individuals are pI
a and pN

a , the

expected count of each group is given by EðCI
aÞ ¼ NI

apI
a

and EðCN
a Þ ¼ NN

a pN
a . If one does not account for possible

differences in detection probability, a first order approxi-

mation to Eðm̂aÞ may then be given by

Eðm̂aÞ �
NI

apI
a

NI
apI

a þ NN
a pN

a

:

If pI
a � pN

a ; m̂a provides a reasonable proxy for ma; however,

if this condition does not hold, inference based on m̂a could

be misleading.

In practice, there are a priori reasons to expect differ-

ences in detection probability. For example, Gauthier et al.

(2008) speculated that fish trawls may sample diseased

striped bass more often than healthy ones because infection

debilitates the host, making them less likely to avoid the

sampling gear. Similarly, studies of conjunctivitis in house

finches have indicated that infected individuals stay closer

to food sources, such as bird feeders (Dhondt et al. 2005),

and thus may be more likely to be detected than non-

infected individuals. If observations at bird feeders are used

to make inferences about disease prevalence or FOI, the

results may be misleading. Jennelle et al. (2007) discuss

the ramifications of this problem for the interpretation of

raw prevalence; our goal in future sections is to explore the

consequences of using such data for FOI modeling and to

outline a solution.

Ignoring detection probability when estimating FOI

The binomial model for counts in the previous section

implies a joint likelihood for observed data of the form

L1 ¼ ½mjCI;CN�, where bold symbols denote vectors of

parameters or statistics and where the notation

[X |Y] denotes the conditional distribution of X given Y. To

make inferences about epidemiological parameters of

interest (e.g., FOI), one must write ma as a function of

infection and death processes. For cross-sectional data, this

typically involves making a stability assumption to ensure

that the parameters are identifiable. For example, in the

three-state irreversible disease model (Fig. 1), one might

assume that disease is endemic in the population and that

temporal variation in vital rates is negligible. We proceed

by making these assumptions in the rest of this treatment.

Suppose that system dynamics are described by the

system of differential equations

dNN=da ¼ �kaNN � dNN ð1Þ

dNI=da ¼ kaNN � dNI � lNI ð2Þ

(also see Fig. 1), where age is used in place of time to

emphasize that it is the relative numbers of individuals in

each disease class from each cohort (those animals born at

the same time) that are of interest. In this case, several

possibilities exist for modeling FOI using count data. If

we assume that infection does not influence mortality

(i.e., l = 0), ma can be written as

ma ¼ 1� exp �
Zt¼a

t¼0

hkðtjnÞdt

0
@

1
A;

where hk(t) denotes a function describing how k changes as

a function of age and an unknown parameter vector n (Caley

et al. 2009). Inference about FOI in this case means con-

ducting statistical inference with regard to L2 ¼ ½njCI;CN�.
Further complexity may be introduced by allowing

mortality rates to differ. Allowing l C 0 in Fig. 1, Heisey

et al. (2006) showed that one could conduct inference on

both n and l using cross-sectional data. If a parametric

hazard function is provided for ka (say with parameters n),

Heisey et al. (2006) showed that this probability could be

written generically as

ma ¼ 1� Skð0; aÞ
Skð0; aÞ þ

R a

0
fkðwÞSlðw; aÞdw

; ð3Þ

where fh(w) gives the failure time density function for the

process h, and Sh(x, y) gives the survivor function for the

process h given that the organism is alive at x: Pr(Th C y |

Th [ x) (see, for example, Cox and Oakes 1984). Heisey

et al. (2006) showed how to perform inference for a variety

of choices for hazard rates, approximating them with

piecewise exponential models to evaluate the integral in

Eq. (3). They used this approach to estimate n and l in the

two-state irreversible disease problem by conducting

inference with regard to the likelihood L3 ¼ ½n; ljCI;CN�.
Note that the generic FSCT approach outlined in section

‘‘Statistical framework’’ could also have been used here to

come up with a numerical approximation to ma.

Accounting for detection probability when estimating

FOI

When sampling probabilities depend on disease status, the

preceding approach to FOI may no longer suffice. We

propose a change in model structure to accommodate

potential differences in detection probability. In particular,

if data are collected according to a closed capture mark–

recapture sampling protocol, we suggest passing the

parameters of interest up a level in the modeling hierarchy.

For instance, for the three-state irreversible disease model

(Fig. 1), a generic likelihood may be written as

L4 ¼ ½n;ljNI;NN�½NI;NN; pI; pNjData�: ð4Þ

The first component of the likelihood, ½n; ljNI;NN� may be

parameterized in a manner analogous to traditional FOI
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models (replacing the count vectors CI and CN with NI and

NN, respectively). The second component, [NI, NN, pI, pN

| Data], may be modeled as a mark–recapture or removal

study, depending on what sampling protocol was followed.

Note that if data are gathered in this manner, CI and CN are

no longer sufficient statistics; rather, encounter histories are

modeled. Inference may then proceed by providing explicit

forms for each component of the likelihood. Capture–

recapture data are clearly desirable as they permit

inferences about temporal variation in detectability (Otis

et al. 1978). In this case, a diverse array of closed

population likelihoods are available (e.g., Otis et al.

1978; Pledger 2000; Conn et al. 2006). However, in

certain situations, political and logistical considerations

may preclude releases of diseased individuals back into the

population. In our study system, for example, individuals

were sacrificed to enable disease determination. Thus, in

some cases, removal studies may be the only possibility.

The likelihood for removals in this case is similar to the

one attributable to Zippin (1956):

NI;NN;pI;pNju
� �

¼
YA

a¼1

NI
a!

uI
1a!uI

2a!���uI
Ta!
½pI

a�
uI

1a ½ð1�pI
aÞpI

a�
uI

2a

� ð1�pI
aÞ

2pI
a

h iuI
3a

... ð1�pI
aÞ

T�1pI
a

h iuI
Ta

�
YA

a¼1

NN
a !

uN
1a!uN

2a!���uN
Ta!
½pN

a �
uN

1a ½ð1�pN
a ÞpN

a �
uN

2a

�½ð1�pN
a Þ

2pN
a �

uN
3a ...½ð1�pN

a Þ
T�1pN

a �
uN

Ta :

ð5Þ

Here, uI
ta and uN

ta give the number of age a organisms

encountered and removed from the population at sampling

occasion t that are infected and not infected, respectively,

and T gives the total number of sampling occasions. As

with all closed encounter models, the use of such a model

requires that sampling occasions are close enough together

temporally as to preclude any change in the population

with regard to infection status, mortality, immigration,

emigration, and recruitment.

Simulation study

We conducted a simulation study to compare the perfor-

mance of our approach to methods not accounting for

detectability. We were particularly interested in percent

relative bias (%Bias), coefficient of variation (CV), 95%

confidence interval coverage (CIcov), and root mean squared

error (RMSE) of estimators of k and l for the two different

approaches. We anticipated that estimator performance

would vary as a function of a number of factors, but for

simplicity, we considered estimator performance related to

variation in (1) detection probability for infected and non-

infected organisms, (2) expected number of annual births, (3)

the specified hazard function for transmission rate, and (4)

the number of age classes that were modeled. We imple-

mented a complete factorial design (Table 1), with 100

replicates at each combination of simulation input values.

We employed a stochastic simulation approach to gen-

erate data from the coupled differential equations specified

in Eqs. (1) and (2) (Renshaw 1991). All processes were

simulated as if they were piecewise exponential, with 20

windows per age increment to approximate age depen-

dency in disease transmission dynamics (the hazard rate at

the midpoint of each window was used and assumed to be

constant over the entire window). The number of births in a

given year was assumed to follow a Poisson distribution,

with expectation dependent upon the simulation input

value. All simulations assumed that age did not influence

detection probability, natural mortality, or infection-asso-

ciated mortality (note that the latter two assumptions are

necessary for estimation with a single snapshot of cross-

sectional age-prevalence data). A constant natural mortal-

ity hazard of d = 0.1 and a constant infection-associated

hazard of l = 0.3 were assumed throughout (these values

translate into annual survival probabilities of 0.67 and 0.90

for infected and non-infected individuals, respectively).

Each simulation was run for A years, and once NN and NI

had been generated, removal encounter histories were then

simulated by applying specified capture probabilities to the

multinomial model in Eq. (5). All simulations assumed

four trapping sessions in the terminal year. These sum-

maries were used to estimate abundance, capture proba-

bility, and disease dynamics parameters from Eq. (4); the

total number of individuals captured by disease status and

age were used as sufficient statistics to estimate parameters

from the ‘‘traditional’’ FOI likelihood, L3.

For each simulation, maximum likelihood estimates

were computed using function nlm in program R (R

Table 1 Possible inputs to the force-of-infection (FOI) simulation

experiment

Capture probability N0 A HazMod

pN = 0.3, pI = 0.3 500 5 Weibull (0.2, 1) (flat)

pN = 0.2, pI = 0.4 1,000 10 Weibull (0.2, 1.1) (increasing)

pN = 0.4, pI = 0.2 15 Weibull (0.2, 0.9) (decreasing)

pN = 0.1, pI = 0.5 Log-logistic (0.3, 2.0) (unimodal)

pN = 0.5, pI = 0.1

A complete factorial design was considered where 100 replicates

were run for each possible combination of input values

Simulations could vary by capture probability for infected (pI) and

uninfected (pN) individuals, expected number of births per year (N0),

number of age classes (A), and parametric form of the hazard model

for k (HazMod)
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Development Core Team 2005). For simplicity, the same

functional form for k was used for estimation as was used

for generation of the data. Numerical variance estimates

were computed by inverting the resultant Hessian and

applying the delta method (Seber 1982). For each design

point and estimation procedure, we recorded the number of

simulation replicates yielding proper variance–covariance

matrices (i.e., the Hessian was non-singular, and variance

estimates were all C0). Only simulations resulting in

proper variance–covariance matrices were used in com-

putation of estimator performance statistics (e.g., bias,

CIcov, CV, RMSE). Approximate 95% confidence inter-

vals (CI) were computed as the maximum likelihood esti-

mate ± 2 standard errors (SE). Estimator performance

statistics were tabulated with respect to l, q, and j, where

q and j were the parameters associated with the parametric

hazard function for ka [See Appendix, Electronic Supple-

mentary Material (ESM]. The requisite code for perform-

ing simulations is included in the ESM.

The simulations confirmed extreme bias (up to 45%) in

the estimators of parameters of the hazard function for the

transmission rate, ka, when detectability varied by infection

status and was not accounted for (See Table 1 of Appendix

in ESM). In contrast, bias for the approach accounting for

detectability (e.g., Eq. 4) was considerably less and, for

most cases, statistically indistinguishable from zero. Sub-

stantial (up to 35%) positive bias in l, the rate of disease-

mediated mortality, was evident in both approaches when

the number of age classes was low (A = 5), but it persisted

at lower levels as the number of age classes increased for

the approach ignoring detectability.

Because bias in parameters for ka is difficult to visual-

ize, we simulated several large datasets to provide the

reader with a better picture of the consequences of such

bias. For the case where A = 10 and N0 = 100,000, we

simulated one dataset for each combination of capture

probability and hazard function type (see Table 1). The

value for N0 was chosen so as to obtain approximate

expected value data, thus limiting the influence of sampling

variability. When detectability is accounted for, bias in ka

hazard profiles is minimal, but it is potentially substantial

when differences in detectability are ignored (Fig. 2).

0.
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0.
3

0.
6
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^ , Weib(0.2, 1.0)

H
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0.
0

0.
3

0.
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λ1
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3
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d

0 2 4 6 8 10 0 2 4 6 8 10

λ2
^ , Log(0.3,2.0)

Age

Fig. 2 A visual depiction of hazard profiles resulting from the

analysis of large datsets. If k1 appears in the graph subtitle, this

indicates that the analysis accounting for detection probability was

employed, while a k2 indicates that detection probability was not

accounted for. The true, underlying parametric hazard model is also

presented as a solid black line. The remaining lines on each graph

represent estimated hazard profiles under different combinations of

detection probabilities: pN = 0.3 and pI = 0.3 (broken line, short
dashes), pN = 0.2 and pI = 0.4 (dotted line), pN = 0.4 and pI = 0.2

(broken line, dots/short dashes), pN = 0.1 and pI = 0.5 (broken line,

long dashes), and pN = 0.5 and pI = 0.1 (broken line, dots/long
dashes. pI Capture probability for infected individuals, pN capture

probability for noninfected individuals. See text for other notations
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Large sample bias was also minimal for l when detect-

ability was accounted for, but this was not the case when

detectability was ignored (Table 2).

In addition to bias, we also examined the influence of

simulation inputs and analysis methods on small sample

CIcov (see Appendix Table 2 ESM), CV (see Appendix

Table 3 ESM), and RMSE (see Appendix Table 4 ESM).

Values of CIcov were often lower than 95% for both

analysis approaches, but they were particularly poor for the

scale parameter of hazard rate functions (q) when detection

rates were highest for infected individuals and when esti-

mation did not account for differences in detectability. In

some of these cases, CIcov dropped to zero, such that no

estimated CI included the true value of q.

The CV was comparable between analysis methods,

albeit slightly smaller on average for the approach not

incorporating detectability. For l, CV was unacceptably

high with only five age classes ([4.5 in all cases). Inter-

pretation of CV, particularly for l, was somewhat prob-

lematic due to the influence of a number of outliers where

estimated variances were quite high. For example, in the

first row of Table 3 of the Appendix in the ESM, the entry

for CV (l̂1) is 34.70; however, 68 out of 85 simulation

replicates had an estimated CV\7.0. As was expected, CV

decreased as the number of age classes increased and as the

expected number of sampled animals increased. Never-

theless, CV was often [1.0 for l, and [0.2 for q and j.

The RMSE is perhaps the best indicator of which

analysis method to choose because it incorporates both bias

and variance. When the probability of detection was equal

for infected and noninfected individuals, the RMSE was

similar for both analysis methods, indicating that either

method of analysis might be chosen. However, as the

detection probability for the two states diverged, RMSE

increasingly favored the approach accounting for detect-

ability (see Appendix Table 4 ESM).

Feral ferrets and M. bovis infection in New Zealand

Caley and Hone (2002) estimated FOI parameters for feral

ferrets in New Zealand, comparing support for several

transmission alternatives using Akaike’s information cri-

terion (AIC) (Burnham and Anderson 2002). These

researchers found support for a model consistent with the

hypothesis of dietary-related transmission resulting from

the consumption of M. bovis-infected material (e.g., from

infected brushtail possums Trichosurus vulpecula). Their

analysis employed L3, assuming that detection probability

did not vary with disease state.

We analyzed trapping data from one of Caley and

Hone’s (2002) study sites, Awatere Valley, attempting to

account for possible differences in detection probability.

The study area was sampled in March of 2000 using baited

leg-hold traps, and resulting data were summarized by age,

disease status, and trapping occasion (Table 3; for further

information see Caley and Hone 2002).

Table 2 Large sample estimates of the disease-mediated mortality

rate when possible variation in detectability was (l̂1) and was not (l̂2)

accounted for

Capture Probability HazMod l̂1 l̂2

pN = 0.3, pI = 0.3 Weibull(0.2, 1.0) 0.29 0.29

pN = 0.3, pI = 0.3 Weibull(0.2, 1.1) 0.31 0.31

pN = 0.3, pI = 0.3 Weibull(0.2, 0.9) 0.29 0.29

pN = 0.3, pI = 0.3 Log-Logistic(0.3, 2.0) 0.29 0.29

pN = 0.2, pI = 0.4 Weibull(0.2, 1.0) 0.29 0.38

pN = 0.2, pI = 0.4 Weibull(0.2, 1.1) 0.35 0.50

pN = 0.2, pI = 0.4 Weibull(0.2, 0.9) 0.31 0.35

pN = 0.2, pI = 0.4 Log-Logistic(0.3, 2.0) 0.29 0.27

pN = 0.4, pI = 0.2 Weibull(0.2, 1.0) 0.30 0.24

pN = 0.4, pI = 0.2 Weibull(0.2, 1.1) 0.31 0.21

pN = 0.4, pI = 0.2 Weibull(0.2, 0.9) 0.31 0.27

pN = 0.4, pI = 0.2 Log-Logistic(0.3, 2.0) 0.30 0.34

pN = 0.1, pI = 0.5 Weibull(0.2, 1.0) 0.24 0.00

pN = 0.1, pI = 0.5 Weibull(0.2, 1.1) 0.32 0.06

pN = 0.1, pI = 0.5 Weibull(0.2, 0.9) 0.28 0.03

pN = 0.1, pI = 0.5 Log-Logistic(0.3, 2.0) 0.30 0.02

pN = 0.5, pI = 0.1 Weibull(0.2, 1.0) 0.29 0.17

pN = 0.5, pI = 0.1 Weibull(0.2, 1.1) 0.31 0.12

pN = 0.5, pI = 0.1 Weibull(0.2, 0.9) 0.29 0.22

pN = 0.5, pI = 0.1 Log–Logistic(0.3, 2.0) 0.29 0.42

Each simulation employed initial cohort sizes of N0 = 100,000 to

limit the influence of sampling variation, used a true value of l of 0.3,

and 10 age classes. Datasets varied by the assumed capture proba-

bility for infected (pI) and non-infected (pN) individuals, and the

underlying parametric hazard model (HazMod)

Table 3 Number of removals by age (years) and trapping period for

feral ferrets not infected and infected with Mycobacterium bovis

Age Trapping occasion

1 2 3 4 5 6 7 8 9

Not infected

0.33 5 3 1 4 1 2 0 1 0

1.33 0 0 0 0 0 0 0 0 0

2.33 1 0 0 0 0 0 0 0 0

3.33 0 0 0 0 0 0 0 0 0

4.33 0 0 0 0 0 0 0 0 0

Infected

0.33 1 2 3 2 2 2 2 0 2

1.33 1 1 1 0 1 1 0 0 1

2.33 0 0 0 2 0 0 0 0 0

3.33 1 0 1 0 0 0 0 0 0

4.33 0 0 2 0 1 0 0 0 0
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We made several modifications to L4 for analysis of the

ferret data. To start, parameters NN
a and NI

a were replaced

with MN
a þ f N

a and MI
a þ f I

a , where MN
a and MI

a were the

number of animals of each age and disease class, respec-

tively, removed during the study, and f N
a and f I

a were

nonnegative parameters indicating the difference between

true abundance and the total number removed. A log link

was used to constrain these parameters to be nonnegative.

We fit a total of 12 models to the ferret data and included

two possibilities for detection probability [dependent or not

dependent on infection status; denoted as p(I) and p(�),
respectively], two possibilities for mortality {ferret morality

affected [S(I)] or not affected [S(�)]}, and three underlying

FOI models. In particular, we considered age-specific FOI

models (Weibull, log-logistic, or exponential). The expo-

nential model posits a constant FOI with age, the Weibull

model allows monotonically decreasing or increasing FOI

hazards with age, and the log-logistic model allows a

unimodal distribution for FOI. Given that the youngest

individuals sampled at this study area had already been

weaned, the exponential model corresponds to the model

with the most support from Caley and Hone’s (2002) ori-

ginal analysis. Resultant model fits were compared with the

conditional AIC (AICc) (Burnham and Anderson 2002).

Model fitting suggested that a model with constant

infection hazard, constant detection probability, and mor-

tality independent of infection had the most support

(Table 4). However, ferret data were quite sparse, which

likely led to the selection of models with few parameters.

Log-likelihoods were similar for all models fit, and several

candidate models had reasonable support. The FOI esti-

mate from the highest ranked model indicated that the FOI

hazard was constant at 0.30, with a SE of 0.21 (the SE was

estimated by setting abundance parameters (fI, fN) that

were estimated on the boundary to zero to promote Hessian

convergence).

Discussion

We have outlined methods for modeling FOI using animal

encounter data that account for potential differences in

detection probability by disease status. For longitudinal

studies, we suggest that multi-state mark–recapture models

are appropriate, but argue that increased realism is impar-

ted by modeling state transitions (including death) using

continuous time hazard functions. This is quite similar to

the approach used by Ergon et al. (2009) in modeling the

latent time of maturation with mark–recapture methods.

However, the approach we advocate is more general and

does not require that one solve for cell probabilities ana-

lytically. Rather, the continuous time FSCT algorithm

requires only that one specify an instantaneous transition

matrix A for the process (perhaps considering a number of

such matrices if hazards vary over time or age). This

approach is applicable to a wide variety of disease systems,

not just the three-state irreversible disease model.

For cross-sectional age-prevalence data obtained at a

snapshot in time, our simulation experiment revealed the

importance of accounting for detectability when capture

rates differ between infected and non-infected individuals.

In particular, the approach accounting for detectability was

relatively unbiased with lower mean squared error than the

approach ignoring detectability. In practice, researchers

will often not know if such a difference exists; in these

situations, we recommend that ecologists collect auxiliary

data that can be used to estimate detection probabilities.

The simulation study employed here compared estima-

tors of disease dynamics parameters when removal studies

were employed. However, the only real requirement is a

closed captures model [NI, NN, pI, pN | Data] that permits

inference about abundance and encounter probabilities. In

general, removal sampling is less efficient and requires

more stringent assumptions about variation in encounter

probability than capture–recapture studies. Thus, we would

expect better performance of estimators with capture–

recapture data and would recommend the use of capture–

recapture over removal experiments when it is politically

and logistically feasible to release diseased animals back

into the population.

Whatever sampling design is chosen, our simulation

results indicate that adequate precision on disease dynamics

Table 4 Models fit to ferret age-prevalence data, ranked by AICc

Model k -LogL DAICc

k(Exponential)S(�)p(�) 12 -52.36 0.0

k(Exponential)S(�)p(I) 13 -51.54 2.2

k(LogLogistic)S(�)p(�) 13 -52.11 3.4

k(Weibull)S(�)p(�) 13 -52.28 3.7

k(Exponential)S(I)p(�) 13 -52.36 3.9

k(LogLogistic)S(�)p(I) 14 -51.36 6.0

k(Weibull)S(�)p(I) 14 -51.51 6.3

k(Exponential)S(I)p(I) 14 -51.54 6.3

k(LogLogistic)S(I)p(�) 14 -52.03 7.3

k(Weibull)S(I)p(�) 14 -52.28 7.8

k(LogLogistic)S(I)p(I) 15 -51.28 10.1

k(Weibull)S(I)p(I) 15 -51.51 10.6

Difference from top ranked conditional Akaike’s information crite-

rion (AICc) model is given by DAICc. Also presented are the number

of parameters (k) and the negative log-likelihood value (-LogL).

Model description includes the functional form for FOI (exponential,

Weibull, log-logistic), parameterization for survival, indicating whe-

ther there was increased mortality for infected animals [S(I)] or not

[S(�)], and parameterization for detection probability, with p(�) indi-

cating equal detectability among disease states and p(I) indicating that

the detection probability depended on disease status
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parameters will typically only be achieved with a large

number of age classes and a large number of captured

individuals. Out of the range of input parameter values, ten

age classes seemed acceptable for disease transmission

parameters, while 15 or more may be needed to obtain

reasonable precision on disease-mediated mortality, l.

Because ageing individuals is rarely a precise procedure, a

reasonable question for future research is whether biased or

imprecise ageing techniques have an effect on estimator

performance. Although ageing errors can be corrected for if

there are some individuals of known age (e.g., Conn and

Diefenbach 2007), adding another source of uncertainty to

estimation will only decrease estimator precision. A related

issue is the degree to which false negatives and positives

occur; this problem may be similarly addressed using

clinical studies in which a ‘‘gold standard’’ is available to

estimate the probabilities of correctly assigning disease

status. Although we did not explore the effect of unmodeled

age-related differences in detection probability on the FOI

estimator, this source of variation could also be addressed

using our modeling approach. We suspect that age-based

variation in detection rates will only bias traditional FOI

estimation if age interacts with disease status in some

fashion, since age-specific apparent prevalence is unaf-

fected if both disease classes are impacted similarly by

age-related variation in detection probability.

The results in this study were obtained using direct

maximization of Eq. 4, which yielded unbiased estimates

but slight overestimates of precision (as suggested by the

less than nominal CIcov). In the future, a more cohesive

approach would be to integrate out unobserved abundance

parameters using a method such as MCMC. This approach

should do a better job of properly accounting for

uncertainty.

Our analysis of feral ferret data suggested a value of FOI

(k̂ ¼ 0:30, SE 0.21) that was commensurate with the values

estimated in Caley and Hone’s (2002) original study.

Model selection favored a model with a constant detection

probability and also suggested that the FOI hazard was

constant over time for the observed age classes (the latter

result is consistent with Caley and Hone’s hypothesis that

disease transmission occurs through the ingestion of

M. bovis contaminated material). However, the ferret data

were quite sparse, and a number of alternative models with

p as a function of disease status had reasonable support.

There was comparably little support for models with

increased mortality for infected animals; however, simu-

lation results indicated relatively little ability to estimate

this quantity with just five age classes.

We reiterate that snapshots of age-prevalence data are

only appropriate for studies of endemic disease where the

effects of environmental stochasticity on vital rates are

minimal. Inference from such data requires similar

assumptions as for vertical life tables (Seber 1982),

including a stable age structure (Caswell 2001) and constant

recruitment. Numerous authors have urged caution in using

life table data for inference about survival in naturally

fluctuating populations (e.g., Anderson et al. 1981;

Menkens and Boyce 1993; Conn et al. 2005). However, our

simulations suggested that FOI estimators have reasonable

properties when there is some variability in vital rates (we

note that simulations still assumed that these processes were

stationary). In this paper, we have addressed one assump-

tion not usually addressed by life table approaches—

namely, detectability. We believe this is useful, in the spirit

of illustrating ‘‘... how successive approximations to reality

can improve mathematical models which remain inevitably

approximate’’ (Cohen 1973). Tests of other life table

assumptions (e.g., negligible temporal stochasticity) require

sampling populations at more than one point in time. We

urge ecologists to consider both logistical constraints and

possible assumption violations when selecting a sampling

program and analysis approach.

Future research should be directed at developing meth-

ods that allow for different functional forms of FOI,

including those that are dependent on contact rates between

susceptible and infected individuals. Several longitudinal

studies have found increased infection transition probabil-

ities in areas with higher disease prevalence (e.g., Lachish

et al. 2007; Ozgul et al. 2009), which is expected under

horizontal transmission [see, for example,, Caley et al.

(2009) for a review of functional forms proposed for FOI in

these cases]. However, direct estimation of transmission

rates when FOI depends on the number of infected indi-

viduals is not trivial. Adaption of state space methods using

complete data parameterizations (e.g., Schofield et al.

2009) may be useful in this regard. However, complex

sampling algorithms may be needed to sample the posterior

surface (Gibson and Renshaw 1998; O’Neill and Roberts

1999).

We suspect that problems with detectability hamper a

number of other types of disease prevalence analyses. By

paying closer attention to statistical sampling protocols that

incorporate detectability, we hope that ecologists can

increase the defensibility of their work while simulta-

neously deriving more robust parameter estimates. In this

manner, we envision a better prediction of wildlife disease

dynamics and an increased ability to prescribe effective

disease management strategies for animal and plant

populations.
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