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Results  All four proposed methods led to an improve-
ment in the estimate of treatment effect in the simulated 
data. The joint modelling method performed most strongly, 
with the censoring method also providing a good estimate 
of the treatment effect, but with higher uncertainty. In the 
real data example, the dose–response estimated using the 
censoring and joint modelling methods was higher than the 
very flat curve estimated from average final measurements.
Conclusions  Accounting for dropout using the proposed 
censoring or joint modelling methods allows the treatment 
effect to be recovered in studies where it may have been 
obscured due to dropout caused by the TBL.

Keywords  Dropout · Joint models · Xenograft · Tumour 
growth models

Introduction

Xenograft studies are the most common preclinical stud-
ies used to assess the antitumour effects of new compounds 
and involve grafting human cancer cells into the flanks of 
immune deficient mice. The main purpose of these studies is 
to assess the efficacy of the compound and characterise the 
dose–response relationship [1]. Analysis often involves com-
paring the final tumour sizes across dose groups to look for 
evidence of tumour shrinkage, which can be done in a num-
ber of ways, such as carrying out a t test on the final tumour 
sizes in each group, calculating a tumour growth index [2], 
or using adapted RECIST criteria to categorise response [3].

Comparing the tumour sizes from the final day of the study 
alone can cause potential issues, as any animals that dropout 
early are excluded from the analysis, which is equivalent to 
carrying out a complete case analysis, known to cause bias 
when data are not missing at random [4]. Often in xenograft 
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studies, a tumour burden limit (TBL) is imposed for ethical 
reasons, as tumour burden should be kept to the minimum 
required in all xenograft studies [5]. Once an animal’s tumour 
has reached this limit, it is removed from the study. The limit 
used varies and, for example, may be when the tumour has 
quadrupled in size from baseline [1, 6], the mean diameter 
exceeds 1.2 cm [5] or the weight of the tumour exceeds 2.5 g, 
as used in the following examples. The limit chosen will 
depend on the objective of the experiment.

Dropout due to the tumour burden limit means that ani-
mals with larger tumours are removed first from the study, 
reducing the group average tumour size, which dispro-
portionately affects the control group where tumours are 
expected to be largest. This causes a bias in the estimate of 
treatment effect, as the tumour size in the control group is 
being underestimated, and so any tumour shrinkage caused 
by the compound will look less significant [1, 7]. This is 
an example of informative dropout, as whether an animal 
drops out is dependent on unobserved measurements that 
would have been observed if dropout had not occurred [8, 
9], and as such is non-ignorable.

This dropout effect has previously been discussed in the 
literature, notably by Pan et al. [6], where dropout caused 
by the tumour burden limit is modelled using a survival 
model and tumours that are too small to be measured are 
modelled using a logistic model. Tan et al. [1] also discuss 
this issue and suggest the use of the expectation/conditional 
maximisation (ECM) algorithm.

Informative dropout in a wider context has also been exten-
sively investigated. Wu and Carroll [10] focus particularly on 
informative right censored data as is observed here and find 
that it can cause substantial bias and reduction in power when 
comparing group differences. Bjornsson et al. [11] look at the 
effect of informative dropout on parameter estimation in non-
linear fixed effects models and found that bias of up to 21 % 
in parameter estimates could be found if dropout was not 
accounted for in the analysis. Many methods for dealing with 
informative dropout have been suggested. Simple methods 
exist, such as last observation carried forwards (LOCF) where 
all missing measurements are replaced with the last measure-
ment taken, which in the case of xenograft studies would be a 
highly conservative approach. Other methods such as the use 
of ECM algorithms [1], selection models [12], pattern mixture 
models [12] and various methods to jointly model the dropout 
with the endpoint [13, 14] have also been suggested but most 
have not been applied to the problem of tumour burden limit.

In the present study, four methods for accounting for 
dropout due to the tumour burden limit were investigated 
on both a simulated data set and a real data set to see 
whether they could improve the estimate of the treatment 
effect. Throughout this paper, tumour growth has been sim-
ulated and modelled using the Simeoni model as the base 

model [15]; however, the same methods could be applied to 
other models of tumour growth.

Materials and methods

Dropout methods

Four methods proposed for dealing with informative dropout 
due to the tumour burden limit in xenograft experiments are 
explained below. Each method results in a model for tumour 
growth, from which tumour size can be estimated at any 
time. This allows a comparison between dose groups which 
is based on all available data, rather than focussing on a sin-
gle time point. The models can also be used for simulating 
future preclinical trials and translation to clinical trials.

Modelling

The modelling method involves the fitting of a tumour 
growth model to the available data. Let f(t) be the structural 
part of the model, which will give the expected tumour size 
at time t. If e(t) is the residual error which is assumed to 
arise from a distribution with mean zero and variance g(t), 
the observed tumour size will be given by y(t) = f(t) + e(t).

Pattern mixture

The pattern mixture method treats the population as a com-
bination of animals with different patterns of dropout and 
those who complete the study. The population parameters 
are then averaged across the patterns [12]. The data are split 
into dropout patterns based on the time of the final sample, 
and these dropout patterns can be collapsed to ensure a rea-
sonable amount of data remains in each pattern. Here, the 
available case missing value (ACMV) method is used; mean-
ing data for each pattern are imputed based on a model fitted 
to the data for animals that dropped out at a later date. In the 
current analysis, 5 data sets have been imputed. The same 
model is then fitted to each of the imputed data sets, and the 
results averaged to obtain the pooled parameter estimates. 
The variance of each parameter estimate (Vβ) can be com-
puted using Eqs. 1 and 2, referred to as Rubin’s rules [16].
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where Ūβ is the pooled within-imputation variance, M is 
the number of imputations, Bβ is the between-imputation 
variance of estimates, β̂m is the vector of parameter esti-
mates for imputed data set m, β̄ is the pooled parameter 
estimates and Uβ

m is the within-imputation variance of esti-
mates.It is not possible to simulate from a pattern mix-
ture model; therefore, it is not possible to calculate the 
confidence intervals for the dose–response, as the method 
cannot be bootstrapped and standard errors cannot be cal-
culated; this means that there will be no estimate of uncer-
tainty around the dose–response and whether the dose 
groups are significantly different to the control group can-
not be determined.

Censoring

In the censoring method, the same base model can be used 
as in the methods above, but the observations missing due 
to dropout are treated as censored using the M3 method 
from Beal [17]. This method is often used to model drug 
concentration data that are below the limit of quantifica-
tion (BLQ), whilst here it is assumed that the tumour size 
is above the tumour burden limit. The M3 method simul-
taneously models the continuous tumour growth data and 
the planned observations that were missing due to dropout 
which are treated as categorical. The likelihood for missing 
values is replaced by the likelihood of the missing value 
truly being above the tumour burden limit, given that the 
observation is missing due to dropout.

The likelihood for non-missing observations below the 
tumour burden limit is calculated using Eq. 3.

The likelihood for those points missing due to being above 
the TBL is assumed to be the likelihood the observation 
would truly be above the TBL, as shown in Eq. 4.

where Φ is the cumulative normal distribution function. 
This differs from that used when M3 is being used to model 
BLQ data, as the cumulative density is taken from 1, as we 
are interested in the probability of being above the limit, 
unlike for BLQ where we are interested in the probability 
of being below the limit.

Joint modelling

In the joint modelling method, the same base model can 
be used as in the methods above to describe the tumour 
growth profiles and then the missing data are modelled 
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using logistic regression. The two models are jointly fitted 
through the sharing of random effects.

A dropout model similar to that in Hansson et al. [14] is 
proposed, where it was used to simulate dropout, depend-
ent on the observed sum of longest diameters, progressive 
disease and time since the start of the study. Here, drop-
out is assumed to depend on tumour size only, as it does 
not directly depend on the time in the study, particularly for 
those in the treated groups where dropout occurred later. 
The logistic model is fitted to each time point indepen-
dently using Eqs. 5 and 6.

Simulated data

A data set was simulated using a model of the anticancer 
drug paclitaxel’s effect on tumour growth in xenograft 
studies reported in Simeoni et  al. [15]. The model was 
derived after the dosing of paclitaxel as an alcoholic solu-
tion of Cremophor to animals bearing A2780 tumours. 
The Simeoni model describes tumour growth with an ini-
tial exponential growth phase, followed by a linear growth 
phase and uses transit compartments to describe the delay 
in the effect of the drug on tumour size.

The drug concentrations were simulated from the reported 
two compartment intravenous model, with volume of distri-
bution 0.81 L/kg, K10 0.868, K12 0.006 and K21 0.0838 h−1, 
which was assumed to be the same for all animals, as no var-
iation in parameter values was provided. The tumour growth 
profiles were simulated using the parameter estimates in 
the original paper for paclitaxel experiment 1, which can be 
found in the results table, and with the tumour growth model 
shown in Fig. 1, and described by Eq. 7. Data were simu-
lated for 72 animals in total, 24 control animals, 24 receiving 

(5)x = θintercept + θtumour size + random effect

(6)Pr
drop out

=
exp (x)

1+ exp (x)
.

Fig. 1   Diagram of the Simeoni model of tumour growth, C(t) is the 
concentration of the drug at time t, with K2 estimating its potency. 
The overall tumour size is the sum of x1–x4, and K1 is the rate con-
stant for the transit of cells. The increase in cycling cells can be 
described by an exponential growth phase followed by a linear 
growth phase. This figure has been adapted from one presented in 
Simeoni et al. [15] 56 × 18 mm (300 × 300 DPI)
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4 mg/kg daily and 24 receiving 8 mg/kg daily starting on day 
8. The same observation times were used as in the original 
experiment, but a simpler dosing schedule was chosen to 
reduce the impact of dosing times on parameter estimation.

where x1 is the main cycling cells of the tumour and x2, x3 
and x4 represent states of cell death following anticancer 
treatment. Cell growth in x1 is first exponential then fol-
lowed by a linear growth phase, described by λ0 and λ1, 
respectively.Once the full data set was simulated, the tumour 
burden limit was applied, when an animal had an observed 
tumour size of 2.5 g or above that measurement and all sub-
sequent measurements for that animal were excluded. The 
study was then truncated, as is often done in practice, with 
the final day chosen based on the number of animals in the 
control group, as when very few animals remain in the con-
trol group comparisons to the treated groups cannot be made.
In this example, the comparison of dose groups is based on 
the estimation of the dose–response curve, where response 
is defined as tumour size on the final day of the study, as this 
allows a comparison with more traditional types of analysis. 
However, it is possible to use the resulting model to estimate 
drug efficacy in other ways. The true dose–response curve 
was simulated from the model and compared to the dose–
response curve estimated using the average size from the 
simulated data following dropout. A t test was also carried 
out on the simulated data on the final day to see whether dif-
ferences between the dose groups and the control could be 
detected.The four model-based methods described above 
were applied to the simulated data set. For each method, the 
same base model for tumour growth was used as the one 
used to simulate. All fitting was carried out in NONMEM 
7.3 [18] using ADVAN13, example code for the censoring 
and joint modelling methods is included as an appendix. 
First-order conditional estimation (FOCE) with interaction 
was used for the modelling and pattern mixture methods, 
whilst Laplacian estimation was used for the censoring and 
joint modelling methods as in both methods continuous and 
categorical data are fitted simultaneously. Model diagnos-
tics and visual predictive checks (VPC) were carried out on 
all models fitted throughout each method. From the result-
ing model, the dose–response curve was estimated using 
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expected tumour size on the final day, with 95 % confidence 
intervals calculated from bootstrapping where possible.

Real data

A real example was also analysed using the proposed meth-
ods. The data were from an AstraZeneca study into an anti-
cancer compound (referred to as drug A), in combination 
with another drug (referred to as drug C), where a tumour 
burden limit of 2.5 g was used. The study included 48 ani-
mals in 6 equally sized groups, a control group, a 20 mg/
kg dose of drug A group and a 10 mg/kg dose of drug C 
group, as well as three combination groups, where 5, 10 or 
20 mg/kg of drug A was given, in addition to 10 mg/kg of 
drug C. Both drugs were given as single dose on day 13. 
The dose–response for drug A was considered in the four 
groups where 10 mg/kg of drug C was given.

t tests were carried out on the data at the latest time point 
where animals remained in each group to be compared. All 
the available data were then used to develop the model. The 
same base tumour growth model was used as in the simu-
lated data example; however, a K-PD model was used in 
place of a PK model as no drug concentrations were avail-
able [19]. The PK was described using a “virtual” one-
compartment model with bolus input, with the drug effect 
assumed to be proportional to a “virtual” infusion rate 
instead of drug concentration. In this example, as two drugs 
are being given, there are two dosing compartments, which 
are referred to as xDrug A and xDrug C as shown in Eq. 8. The 
drug concentrations in the tumour growth model in Eq. 7 
were then replaced by DRA and DRC from Eq. 8. The two 
drugs were assumed to have an additive effect [20].

It should be noted that a proportion of the data in the treated 
groups was missing in the middle of the study as the tumours 
were too small to be measured; the use of the M3 method for 
this missing data was investigated. Animals were not assumed 
to be “cured” when a tumour was no longer measureable as 
they tended to regrow again before the end of the study [6].

Results

Simulated data

The data

The simulated data set is shown in Fig.  2, with observa-
tions missing due to dropout greyed out. The study was 

(8)

dxDrug A

dt
= −ke,Drug A · xDrug A(t), DRA = ke,Drug A · xDrug A

dxDrug C

dt
= −ke,Drug C · xDrug C(t), DRC = ke,Drug C · xDrug C
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ended on day 17, as after this only one animal remained 
in the control group. It can be observed that the paclitaxel 
treatment is reducing tumour growth, and is also caus-
ing increased variation between individuals as the dose 
increases. The reduction in the average tumour size on the 
final day following dropout can be seen through the lines 
plotted through the points from day 17 on each plot before 
and after dropout. In total 82 of a possible 432 observations 
in the truncated study were missing (19  %), over half of 
which were from the control group, where in total 30 % of 
the data was missing. In the control group, only 8 animals 
completed the study, compared to 15 in the 4 mg/kg group 
and 19 in the 8 mg/kg group.

Overall results

The parameter estimates obtained using each of the meth-
ods are given in Table S1 in the supplementary material. In 
general, the parameter estimation is good, and all estimates 

are within 25 % of the true values, with the exception of 
the estimate of the linear growth phase (λ1) which is highly 
underestimated by the modelling and pattern mixture meth-
ods. In general, the inter-individual variation and residual 
error are less well estimated, the inter-individual variation 
(IIV) for K1 and K2 could not be well estimated together, 
so IIV on K2 was removed from the model for all analy-
ses. The modelling method tended to overestimate the vari-
ation and underestimate the residual error, whilst the pat-
tern mixture method overestimated both. The censoring and 
joint methods estimated the IIV well, but the residual error 
is inflated by both methods, particularly in the censoring 
method, which may be due to some model misspecification.

Where available, the relative standard errors (RSE) are 
reasonable for most of the parameter estimates, with the 
censoring method having the highest, and the joint model 
the lowest. However, some of the RSEs for the IIV esti-
mates are high for the modelling and censoring methods, 
which were not observed when using the joint model, 
where all RSEs remained low. The modelling, censoring 
and joint modelling methods take a comparable amount 
of time. The pattern mixture method takes longer than the 
other methods as a model need to be fitted to each drop-
out pattern, and then to each of the imputed data sets, addi-
tional time is also required for the imputation of missing 
data and pooling of the results from each imputation.

The true dose–response can be assessed using the pop-
ulation tumour size at each dose, as simulated from the 
model, which can be seen in Table  1. The tumour sizes 
estimated using the average size on the final day are shown 
in the row below, and it can be seen that they provide a 
poor estimate, with the estimate in the control group par-
ticularly poor, making the dose–response curve nearly flat, 
and the drug appear less effective than it is. In general, as 
the tumour burden limit is reduced, the estimated dose–
response curve will become lower and flatter. t test found 
that the tumour sizes in the high dose group were signifi-
cantly smaller than those in the control group, but no dif-
ference was found between the lower dose group and the 
control group.

The expected tumour sizes on day 17 from each 
method are also given in Table  1. The 95  % confidence 

Fig. 2   Simulated tumour growth profiles for control, 4 and 8 mg/kg 
groups, grey points were deleted as the animal had dropped out for 
being above the tumour burden limit or they occurred after 17 days, 
with those points in black making up the final data set. The paler 
solid line shows the average tumour sizes on the final day in each 
dose group before dropout occurred, with the darker solid line show-
ing the average following dropout. The dashed lines show the cut-offs 
for TBL and end of study 69 × 58 mm (300 × 300 DPI)

Table 1   Predicted tumour sizes 
on day 17 for each of the four 
methods, with 95 % confidence 
intervals from bootstrapping

Method 95 % CI around tumour size prediction on day 17

Control group 4 mg/kg group 8 mg/kg group

True values 4.90 1.91 0.68

Means 1.56 (1.00–1.88) 1.18 (0.93–1.49) 0.80 (0.60–1.11)

Modelling 3.19 (2.70–3.77) 1.68 (1.30–1.97) 0.68 (0.52–0.89)

Pattern mixture 2.40 1.36 0.62

Censoring 4.84 (3.38–7.84) 1.79 (1.19–2.91) 0.56 (0.43–1.12)

Joint modelling 5.22 (4.16–5.47) 1.99 (1.39–2.27) 0.64 (0.46–0.76)
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intervals allow comparisons between the dose groups, 
such that if the intervals do not overlap the difference 
in tumour size can be considered significant at the 5  % 
level. This same information can be seen in the dose–
response curves in Figure S1 in the supplementary mate-
rial. The modelling method found a significant difference 
between both dose groups and the control group; how-
ever, the dose–response curve was not well estimated, 
with the response in the control group particularly poor 
and the true curve lying outside of the 95 % confidence 
interval. When using the censoring method, significant 
differences between the groups were found and the dose–
response curve was well estimated but the confidence 
intervals were wide, mainly caused by the high resid-
ual error associated with this method. Finally, the joint 
model found that both groups were significantly differ-
ent to the control group and the dose–response curve was 
well estimated, with confidence intervals much smaller 
than those found using the censoring method. The esti-
mate of drug effect (K2) also provides an estimate of the 
drug’s effectiveness. It was underestimated in the model-
ling method and overestimated in the other two methods, 
which is consistent with the greater efficacy estimated by 
the second of the two methods.

The pattern mixture model may be affected by small 
sample size, as there are relatively few animals in each 
dropout pattern. For this reason, the dropout patterns were 
combined into four groups (A–D); dropout before day 11 
with 7 animals, dropout on day 11 with 7 animals, drop-
out after day 11 with 16 animals and those who completed 
the study with 42 animals. This grouping meant there was 
a minimum of seven animals in each dropout pattern. The 
ACMV method was chosen, meaning the model fitted to 
animals in pattern A was used to impute missing values for 
animals in pattern B, and the model fitted to animals in pat-
terns A and B was used to imputed missing values for ani-
mals in pattern C and so on.

A plot of the M3 method for the control group is given 
in Fig. 3a, which shows the population model fit, with asso-
ciated variation. In the M3 method, the likelihood for miss-
ing values is replaced by the probability and the tumour 
size was truly above the TBL given that the animal had 
been dropped from the study, which is represented by the 
shaded area under the normal curves. In this plot, it can 
be seen that the normal distributions capture the missing 
data (greyed out) well, despite the inflated residual error 
estimate.

The parameter estimates from the logistic dropout model 
of the joint modelling method were −20.4 for the intercept, 
8.75 for the effect of tumour type, and the random effect 
CV % estimate was 11.3 %. This resulted in the probability 
of dropout curve in Fig. 3b, where the probability of drop-
out is close to zero until the tumour reaches approximately 

2 g, then rises steeply, until, when the tumour reaches 3 g 
the probability of dropout is nearly 1.

Real data

The data used to estimate the dose–response of drug A 
are shown in Fig.  4. Across all dose levels, 16 animals 
dropped out before the end of the study, leading to 39 miss-
ing observations. The dose–response was estimated from 
the data using the average tumour size in each dose group 
on day 55 (Table 2). The tumour size is similar in both the 
drug C only group and the 10  mg/kg group and is lower 
in the 5 and 20 mg/kg groups, but the differences are not 
significant. Overall there is little evidence of drug A being 
efficacious, with the dose–response curve being relatively 
flat. These results will be dependent on the time point cho-
sen for the analysis, and choosing an earlier time point may 

Fig. 3   a Diagram explaining the use of the M3 method in the control 
group, with observed tumour sizes (black) and missing observations 
(grey), the population model (solid line), with the normal distribution 
around each predicted point. Adapted from Bonate’s book pharma-
cokinetic–pharmacodynamic modelling and simulation [21]. b Prob-
ability of dropout from logistic model of dropout by on tumour size 
128 × 195 mm (300 × 300 DPI)
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have led to drug A appearing more efficacious, as all treat-
ments were single dose.

There were 128 observations missing because the 
tumours were too small to measure. The number generally 
increased as the dose increased. Using the M3 method to 
account for these unmeasurable tumours was investigated 
but did not provide an improvement to the model. The 
parameter estimates from each of the methods are given in 
Table S2 in the supplementary material; the inter-individ-
ual variation could not be estimated for all parameters, due 
to the high number of parameters relative to the amount 
of data. The pattern mixture method could not be imple-
mented due to the small number of animals, with only 16 
animals dropping out altogether, there was a maximum of 
two animals in any dropout pattern, which was not enough 
to build a robust model for the imputation of missing data. 
In this example, the models were fitted starting at the time 
of first dose (day 13), not the time of inoculation (day 0).

The observed variation in the control and drug A only 
groups was very low, suggesting most of the variability 

is introduced by drug C; however, this could be due to 
the shorter follow-up time used in these groups (9  days 
compared to 69  days). As in the simulated example, the 
growth parameters (λ0 and λ1) are estimated to be higher 
in the censoring and joint modelling methods than in the 
modelling method, explaining the higher estimated tumour 
sizes on the final day. The standard errors follow a simi-
lar pattern to the simulated example, with the largest being 
observed for the censoring method, followed by the model-
ling method.

The estimated tumour size on day 55 in for each of the 
dose groups is given in Table  2, and the dose–response 
curves can be seen in Figure S2 in the supplementary mate-
rial. When comparing the mean of the final measurements, 
the highest dose appears to have reduced the average size 
of the tumours by 0.4  g compared to the controls; the 
reduction is estimated to be even lower using the modelling 
methods at 0.2 g. However, when using the other two meth-
ods, the drug appears to be having a greater effect with the 
reduction estimated to be 2.2  g for the censoring method 
and 1  g for the joint modelling method. These findings 
are reflected in the estimate of the drug effect parameter 
(K2,Drug A) which was estimated to be over ten times lower 
in the modelling method than the other two methods.

The results suggests that, as in the simulated example, 
the drug effect is larger than suggested by comparing final 
averages, as dropout could be hiding the treatment effect, 
by reducing the estimated tumour size in the control group, 
which can then be recovered by accounting for the dropout 
in the analysis.

Discussion

Using any of the proposed methods to account for the drop-
out gives a better estimate of the dose–response than com-
paring the tumour sizes on the final day. The modelling and 
pattern mixture methods give the worst estimates mainly due 
to estimation of the tumour sizes in the control group, which 
remain underestimated. The pattern mixture model could 
also be struggling due to low sample size, here only 72 ani-
mals were available, leading to low numbers of animals in 

Fig. 4   Tumour growth profiles from the real data by dose of drug A 
and drug C 77 × 72 mm (300 × 300 DPI)

Table 2   Estimated tumour size on day 55 using each of the methods, with 95  % confidence intervals in parentheses calculated from  
bootstrapping

Method 95 % CI around tumour size prediction on day 55

Drug C Drug C + 5 mg/kg drug A Drug C + 10 mg/kg drug A Drug C + 20 mg/kg drug A

Means 1.23 (0.69–1.78) 0.37 (0.23–0.63) 1.22 (1.09–1.35) 0.87 (0.68–1.06)

Modelling 3.18 (1.10, 4.25) 3.09 (0.92, 4.00) 3.00 (0.80, 3.92) 2.98 (0.52, 3.58)

Censoring 4.93 (3.04, 7.34) 4.37 (2.45, 6.52) 3.81 (1.85, 5.99) 2.70 (0.83, 5.01)

Joint modelling 4.20 (3.51, 5.07) 3.94 (3.24, 4.83) 3.68 (2.97, 4.58) 3.16 (2.42, 4.12)
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each dropout pattern, whereas another successful use of the 
method included data from over 1100 patients [12].

A partial reason for the poor performance of the mod-
elling method is the underestimation of the linear growth 
phase. For the model used to simulate the data, it is 
expected that on average exponential growth will switch 
to linear growth at approximately 3  g, occurring around 
day 14 in the control group. This means very little data 
will remain to support the estimation of this linear growth 
phase, as animals drop out when their tumour reaches 2.5 g. 
However, it is believed that this does not fully account for 
the poor performance, and the initial exponential growth 
is also underestimated by the modelling method. Further 
examples were simulated from simpler one parameter 
growth models, and following dropout similar underestima-
tion of tumour size was observed. As the pattern mixture 
method involved the fitting of the same model, it suffered 
from the same problems as modelling alone.

Both the censoring and joint modelling methods give 
good estimates of the dose–response. However, the censor-
ing method gives poor estimates of the variation between 
animals and the residual error, meaning whilst it may be 
useful in giving a point estimate for the efficacy of the drug, 
it may not be suitable for future simulations. The between-
animal variation is well estimated by the joint model, mak-
ing it the most effective all-around method for accounting 
for dropout due to the tumour burden limit. Joint model-
ling also allows some flexibility around the tumour burden 
limit, which may be important in practice, although not in 
the artificial simulated example discussed here. Both meth-
ods are relatively easy to implement, and analysis takes no 
longer than modelling alone.

The modelling, censoring and joint modelling methods 
could all detect differences between both the low and high 
dose groups and the control group, which was not possible 
when using a t test, which may mean fewer animals could 
be used in order to get the same results using one of these 

methods, in keeping with both the reduction and refinement 
of the 3Rs principles [22].

The success of the methods was assessed through the 
dose–response curve, where response was defined as the 
estimated tumour size on the final day; this was done so 
that a comparison could be made to other methods that 
compare the tumour sizes on the final day. However, this 
may not be the best way to assess the differences between 
groups. Other metrics could be used, such as the parameter 
describing the drug effect (K2) in the above cases, or area 
under the tumour growth inhibition curve, which may be 
more effective at summarising the tumour growth through-
out the whole experiment.

The simulation study shows that the joint model is the 
most effective of the proposed methods, with the dose–
response, and variation between animals well estimated 
and the method easy to implement. The real case exam-
ple shows the joint modelling method can help to recover 
the estimate of drug effect when it has been disguised by 
dropout.
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Appendix: NONMEM code

NONMEM code to implement the censoring method

$PROBLEM FITIING SIMEONI MODEL WITH CENSORING METHOD  
$INPUT GROUP ID TIME DV MDV AMT ADDL II
$DATA Data.csv 
$SUBROUTINE ADVAN13 TOL = 6
$MODEL COMP (CENTRAL, DEFDOSE) COMP (PERIPH) COMP (CYCLING) COMP (TRANSIT1)

COMP (TRANSIT2) COMP (TRANSIT3) COMP (TOTAL, DEFOBS)
$PK V1 = 0.81 K10 = 0.868*24 K12 = 0.006*24 k21 = 0.0838*24

; Assume PK parameters fixed as no varia�on es�mates given, scale to days
S1 = V1
; PD parameters 
K1    =  THETA(1)*EXP(ETA(1))
K2    =  THETA(2)*EXP(ETA(2))
L0    =  THETA(3)*EXP(ETA(3))
L1 =  THETA(4)*EXP(ETA(4))
W0 =  THETA(5)*EXP(ETA(5))
; PSI fixed to 20 as in original paper 
PSI =  20
; residual error es�mate 
SDSL = THETA(6)
; ini�al condi�ons 
IF (A_0FLG.EQ.1) THEN 

A_0(3) = W0 
A_0(7) = W0

ENDIF 
$DES DADT(1) = A(2) * K21 - A(1) * (K10+K12) 

DADT(2) = A(1) * K12 - A(2) * K21
CP = (A(1) / V1) / 1000  ; scale to mg/L
DADT(3) = ( (L0*A(3)) / (1 + ((L0/L1)*A(7))**PSI)**(1/PSI) ) - (K2*CP*A(3))
DADT(4) = K2*CP*A(3) - K1 * A(4)
DADT(5) = K1 * A(4) - K1 * A(5)
DADT(6) = K1 * A(5) - K1 * A(6)

DADT(7) = DADT(3) + DADT(4) + DADT(5) + DADT(6)
$ERROR WEIGHT = A(7)

; specify upper limit of tumour size (TBL)
UPL = 2.5
IPRED = F
; If tumour size is below the limit 
IF(DV.LE.UPL) THEN

F_FLAG=0 
Y = IPRED + IPRED*EPS(1)*SDSL

; If tumour size is above the limit
ELSE

F_FLAG=1 ; use likelihood
Y = 1 - PHI((UPL-WEIGHT)/(SDSL*WEIGHT))

ENDIF
$THETA (0,1)       ; K1

(0,0.8)      ; K2
(0,0.2)        ; L0
(0,0.7)       ; L1
(0,0.08)        ; W0
(0,0.2) ; SDSL

$OMEGA 0.1 ; K1
0,FIX ; K2
0.1 ; L0
0.01 ; L1
0.1 ; W0

$SIGMA 1,FIX
$ESTIMATION METHOD=1 INTER LAPLACIAN NUMERICAL SLOW MAXEVAL=9999 
$COVARIANCE SLOW 
$TABLE GROUP ID TIME DV AMT CMT WEIGHT PRED IPRED ONEHEADER NOPRINT 
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NONMEM code to implement the joint modelling 
method

As in the censoring method except:

As in the censoring method except: 

$INPUT GROUP ID TIME DV MDV AMT ADDL II DVID
; Where DVID is 1 for tumour size observa�on, and 2 for missing indicator variable 
for logis�c model

$PK ; addi�onal parameters 
INT =  THETA(6)
SLOPE =  THETA(7)

$ERROR ; tumour growth 
IF (DVID.EQ.1) THEN

Y      = IPRED + IPRED*EPS(1)  
ENDIF
; logis�c regression

LOGIT=INT+SLOPE*WEIGHT+ETA(6)
AA = EXP(LOGIT)
PROB = AA/(1+AA)
IF(DVID.EQ.2.AND.DV.EQ.1) THEN

F_FLAG=1
Y = PROB

ENDIF
IF(DVID.EQ.2.AND.DV.EQ.0) THEN

F_FLAG=1
Y = 1-PROB

ENDIF
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