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Preface 

The main objective of this series is to offer a practice-oriented survey of techniques 
currently used in Medicinal Chemistry. Following the volumes on Hansch analysis 
and related approaches (Vol. 1) and multivariate analyses (Vol. 2), the present hand- 
book focuses on some new, emerging techniques in drug discovery; emphasis is plat- 
ed on showing users how to apply these methods and to avoid time-consuming and 
costly errors. 

Four major topics are covered. The first centers on three-dimensional QSAR, and 
some of the enormous progress achieved in this field is summarized. Both the various 
3D-QSAR methods available as well as the chemometric tools for handling the statis- 
tical problems involved in 3D-QSAR studies are covered. 

Intimately coupled with 3D-QSAR is the current trend in pharmaceutical industry 
to establish chemical structure databases as a tool for identifying new leads. Cor- 
respondingly, in the second section, problems encountered in our understanding of 
molecular similarity and aspects of compound selection by clustering databases are 
treated. 

The third section covers advanced statistical techniques in drug discovery. Inter 
alia the approach of Svante Wold to apply PLS to non-linear structure-activity rela- 
tions deserves to be mentioned here. 

Last but not least, the use of neural networks for data analysis in QSAR problems 
is discussed. Advantages and disadvantages are critically analysed by comparing net- 
works versus statistics. 

The editors would like to thank all contributors and VCH publishers for their 
fruitful cooperation. 

Summer 1994 

Diisseldorf 
Kopenhagen 
Amsterdam 

Raimund Mannhold 
Povl Krogsgaard-Larsen 
Hendrik Timmerman 
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A Personal Foreword 

It is no coincidence that the first three volumes of Methods and Principles in 
Medicinal Chemistry deal with computer-assisted medicinal chemistry. After the 
classical Hansch method in Volume 1 and applications of chemometric methods in 
Volume 2, the present volume of the series contains a number of emerging new tech- 
niques. Of course, all approaches using molecular modeling techniques, such as 
structure-based design and de novo design, rely on computers as well. These will be 
treated separately in a forthcoming volume. 

This volume is a logical continuation of Volume 2. In fact, after analyzing the 
methods that have been developed following the Hansch method, we came to the 
conclusion that a number of these techniques have now matured, while others still 
require further developments. This criterion was used to select the chapters for 
Volumes 2 and 3. 

In reviewing the contents of the first three volumes in this series, it is evident that 
highly specialized tools have become available for the analysis of complex biological 
and chemical data sets in order to unravel quantitative structure-activity relation- 
ships. It has not become easier for the bench chemist to select the ideal method for 
dealing with the analysis of structure-activity relationships using chemical and bio- 
logical data. Specialist support is required to validate and apply statistical or chemo- 
metric and other computer-assisted tools. Volume 3 focusses very much on the 
newest methods employed by the chemometrician. We hope that, in an indirect way, 
some of the methods discussed will be of use to molecular design on a day to day 
basis. 

I am grateful to, and would like to thank all the contributing authors for their 
efforts in compiling this volume. 

February 1994, Base1 Han van de Waterbeemd 
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1 Introduction 
Hun van de Waterbeemd 

Abbreviations 

CFS conformationally flexible searching 
CLOGP calculated log P values 
CoMFA comparative molecular field analysis 
3D three-dimensional 
2D QSAR traditional Hansch analysis 
3D QSAR quantitative models based on 3D superposition of molecules 
GOLPE generating optimal PLS estimations 
MDL Information Systems Inc. 
MIC minimum inhibition concentration 
PLS 
SAR structure-activity relationships 
SPC structure-property correlations 
QSAR quantitative structure-activity relationships 

partial least squares projection to latent structures 

Symbols 

log 1/C 
log P 
Es Taft steric constant 
(7 Hammett electronic substituent constant 

IC50 

C is the molar concentration that produces a certain biological effect 
logarithm of the partition coefficient 

concentration at which 50% inhibition is observed 

1.1 3D QSAR 

Over the last two decades the art of drug discovery has changed dramatically with 
the introduction of new analytical tools. [ 1, 21 Analytical chemistry revolutionized 
both the analysis of chemical compounds and the study of biological processes. To- 
day crystallography and NMR contribute significantly to biostructural research and 
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have led to the unraveling of many details about the structure and function of macro- 
molecules, such as nucleic acids and proteins. The second revolution, developed in 
parallel and which is now indispensable, concerns the use of computers in molecular 
design and in the lead discovery process. 

The present series “Methods and Principles in Medicinal Chemistry” compiles the 
progress made in medicinal chemistry and illustrates the use of new methods and 
their limitations. It is no coincidence that the first two volumes involve the use of 
computers in molecular design, and that the present volume again discusses comput- 
er-assisted techniques. The development of the field quatitative structure-activity re- 
lationships (QSAR) and related topics has been covered in Volume 1 [3]. Traditional- 
ly, this approach, propagated by Hansch and Fujita since the 1960 s, employs mutiple 
linear regression techniques to obtain quantitative relationships [4, 51. However, the 
statistical relevance of many a published equation may be disputed, or is simply non- 
existent. Modern statistical methods have been developed and are frequently used in 
data analysis problems, thus, a completely new discipline named chemometrics was 
born. Such statistical approaches are widely used in analytical chemistry and are also 
applied to quantitative molecular design. Many examples can be found in Vol. 2 [6]. 
Pattern recognition and regression using biological and chemical data are now widely 
employed in medicinal chemistry. 

Chemical descriptors used in structure-property correlations (SPC) are often based 
on the lipohilic, electronic and steric nature of substituents [3,6]. Although some of 
the steric descriptors, such as molar volume, encode some 3D information, molecular 
conformation has rarely been considered. The recent development of 3D QSAR are 
attempts to add this, a third dimension, to studies in quantitative molecular design. 
The first textbook on this relatively new subject appeared in 1993 [7]. The comparative 
molecular field analysis (CoMFA) method has been critisized and should still be con- 
sidered as being in its infant years. The major problem being that CoMFA models are 
based on an alignment of compounds in a series, which is far from being a trivial 
problem [8]. Some progress has been made using genetic algorithms [9] and 3D ACC 
transforms (based on autocorrelation and cross-covariance of field descriptors [ 101. 

In summary, computers in molecular design are used in the following ways: 

- chemical information systems [I I], 
- computational chemistry [12- 141, 
- combinatorial chemistry, molecular diversity, molecular similarity [ 15 - 171, 
- de novo design [18-211, 
- molecular modeling [22], 
- pharmacophore generation [23 -261, 
- property prediction [27 - 281, 
- SPC, 2D QSAR [l -61, 
- 3D QSAR, COMFA, GOLPE [7], 
- synthesis planning, reaction databases [29]. 
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Figure 1. Important elements of computer-assisted medicinal chemistry. 

Some confusion in semantics arises with the terms computer chemistry and compu- 
tational chemistry [30- 321. For some authors, computational chemistry is just mere- 
ly number crunching as, e.g. in quantum chemical or X-ray or NMR calculations, 
and computer chemistry relates to organic synthesis planning [32]. Others may 
understand computational chemistry as being equivalent to computer-assisted mo- 
lecular design (CAMD). 

In Fig. 1 a schematic representation of the main building blocks used in computer- 
assisted methods in medicinal chemistry is given. The core is formed by databases 
for in-house and external data collections. The different ways of looking at these da- 
ta are the structure-property correlations approach and the 3D (Q)SAR approach. 
By the latter, we mean all methods looking at 3D structural data, thus, including mo- 
lecular modeling and de novo design, pharmacophore generation tools and methods 
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to screen 3D structural databases using conformationally flexible searching (CFS) 
strategies. Support for combinatorial chemistry or molecular diversity projects 
comes from a combination of 3D SAR and SPC techniques. 

1.2 Databases 

Large banks of chemical, biological and medical data are available and are potential- 
ly of interest to any drug discovery program. Chemical information systems and 
databases have become essential to handling such data [l I]. Most pharmaceutical 
companies have used commercial software to store their in-house chemical informa- 
tion in database systems, e.g. MDL's MACCS-11, is widely used for structure han- 
dling. With increasing computational power and memory, as well as a huge storage 
potential, it has now become possible to create 3D versions of large chemical 
databases [33 - 361. Recent software products include, e.g. MACCS-3D [37]. 
SYBYL-3D-UNITY [26], CATALYSWHypo and CATALYSTAnfo [25], APEX [24], 
and RECEPTOR [23]. 3D Queries and semi-automatic pharmacophore generation 
using conformationally flexible searching (CFS) have increased the possibilities in ra- 
tional lead finding for the medicinal chemist. Searching chemical databases using 3D 
(geometric), 2D (structural topology) and 1 D (property) features and constraints are 
now within reach. Generation of new leads is an important aspect of preclinical re- 
search, and database searching is one approach, while blind and targeted screening 
with batteries of tests is another. Most compounds screened are taken from in-house 
depositories, which are growing at a phenomenal rate through combinatorial chemis- 
try projects. 

1.3 Progress in Multivariate Data Analysis 

The quantification of electronic substituent effects by Hammett inspired Hansch 
and Fujita [38-411 to develop an analogous approach to define the contributions 
to the lipophilicity of an organic compound. Further studies on the role of 
lipophilicity in drug transport processes finally led to the introduction of quantita- 
tive models to describe relationships between biological effects and chemical struc- 
ture [41]. These can be expressed by the Hansch Equation in the following form: 
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where C is the concentration of a standard response (e.g. an ZC,, or MZC value), 
log P is the I-octanol/water partition coefficient, E, is Taft’s steric descriptor and 
0 the well-known Hammett constant reflecting the electronic contributions of substi- 
tuents. However, multiple linear regression, also called ordinary least squares, ap- 
pears not always suited to deriving such quantitative models. In Vol. 2 [6], various 
alternatives have been discussed, particularly, partial least squares (PLS) regression 
which is the current standard for establishing quantitative models. 

Various pattern recognition techniques have been developed to handle the prob- 
lems of embedded data. This often occurs when active compounds are compared to 
inactive ones and the point here is that there are numerous reasons as to why a com- 
pound is inactive. Potentially important progress has been achieved with complex da- 
ta sets using applications from the field of artificial intelligence. An increasing num- 
ber of publications have appeared using neural network algorithms (42, 431. These 
are well suited for pattern recognition applications using traditional molecular 
descriptors. Combinations of neural networks and molecular similarity matrices 
seem to be particularly promising [44] and other techniques of machine-learning are 
being explored [45]. 

1.4 Scope of this Book 

Some of the above-mentioned topics are dealt with in this book, while other comput- 
er-assisted methods will be addressed in forthcoming volumes. In Sec. 2 we want to 
present some studies demonstrating how chemometric (statistical) methods can be 
combined with molecular modeling tools, an approach now called 3D-QSAR. Both 
the CoMFA and GOLPE methods are discussed within this context. Clustering of 
compounds and chemical descriptors can be accomplished very well with pattern rec- 
ognition techniques, such as principal component analysis, cluster analysis and clus- 
ter significance analysis (see Vol. 2). In Sec. 3 of this book we deal with similarity 
criteria for rational clustering and searching through chemical databases. Further- 
more, it is illustrated how clustering techniques can be used to extract information 
from protein sequence databases. 

As stated above, recent developments in the understanding of certain data analysis 
problems may have applications in the field of molecular design. This involves, for 
example, the analysis of embedded data. A number of advanced statistical tech- 
niques are presented in Secs. 4 and 5 of this book. In Sec. 4 existing methods, have 
been developed further while Sec. 5 deals with new methods taken from the field of 
artificial intelligence (Al). It must be emphasized that the claims of many of these 
new methods in molecular design problems have yet to be verified and proven. How- 
ever, this book illustrates the considerable efforts that are being made to broaden the 
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scope of the methods employed to investigate the complex relationship between bio- 
logical activity and molecular structure. 
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Abbreviations 

5-HT 
Ah 
A1 I 
CoMFA 

GOLPE 
HOMO 

Ec50 

IDSO 
Kd 
HMG-COA 
LDA 
LDCT 
LUMO 
MCDD 
MEP 
PC 
PCA 
PCDD 
PES 
PLS 
QSAR 
r2  
rcv 
RDA 
SAR 

2 

5 -Hydroxytryptamine 
Arylhydrocarbon 
Angiotensin IT 
Comparative Molecular Field Analysis 
50% Effective Concentration 
Generating Optimal Linear PLS Estimations 
Highest Occupied Molecular Orbital 
50% Inhibitory Dose 
Affinity constant 
3-Hydroxy-3-methylglutaryl Coenzyme A 
Linear Discriminant Analysis 
Linear Discriminant Classification Tree 
Lowest Unoccupied Molecular Orbital 
Monochlorinated Dibenzo-p-dioxins 
Molecular Electrostatic Potential 
Principal Component 
Principal Component Analysis 
Polychlorinated Dibenzo-p-dioxins 
Potential Energy Surface 
Partial Least Squares 
Quantitative Structure-Activity Relationships 
Squared Correlation Coefficient 
Cross-validated Squared Correlation Coefficient 
Regularized Discriminant Analysis 
Structure-Activity Relationships 
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SCF-HF Self Consistent Field-Hartree Fock 
SD Standard Deviation 
TCDD Tetrachloro-dibenzo-p-dioxins 
TrCDD Trichloro-dibenzo-p-dioxins 

2.1.1 Introduction 

The role of computational simulations of molecular mechanisms in understanding 
biological processes is emphasized in this sentence by Weinstein [I]: 

“The rapid growth in our mechanistic understanding of biological systems and 
processes combined with the recently developed technological capabilities of molecu- 
lar biology, have engendered the promise that the essential modulatory processes, 
and the mode in which they are affected by environmental factors, can be understood 
at a discrete molecular level. For this promise to be realized fully, this new field re- 
quires detailed information, at the atomic level of resolution, about the structures 
and properties of the key molecular species involved in the underlying mechanisms. 
The approaches of physical chemistry and chemical physics are fundamental tools 
in this quest for essential information. Thus, structural information about biological 
systems can be obtained with the experimental methods of physical chemistry, espe- 
cially X-ray crystallography and multidimensional NMR, but these approaches are 
still costly in time and resources. The theoretical aspects of physical chemistry, utiliz- 
ing computational simulations of molecular mechanisms, support the experimental 
efforts and, in some cases, provide essential alternatives. Complementing both for- 
mal theory and direct experimentation, and resting on data and inferences from both 
molecular biology and structural biology, computational simulations of biological 
systems and mechanisms have become a major factor in modern research.” 

The main goals of Structure-Activity Relationship, SAR, studies are the rational- 
ization of the activities observed in a specific class of compounds, finding a hypothe- 
sis for the molecular mechanisms and design of new molecular structures with a 
more specific and enhanced activity. One way to achieve these goals can be through 
the development of computational methodologies based on the combined use of 
molecular modeling and chemometrics. Molecular modeling provides considerable 
molecular information on the conformational and stereoelectronic properties of the 
molecular systems under study. Chemometrics is an efficient method to condense 
useful information form large data sets and to obtain reliable predictive models in 
classification or regression problems. 

The activity of a drug can be considered as the end result of a series of complex 
phenomena: the methodologies involved in SAR studies are, generally speaking, fo- 
cussed on the first steps of the interaction between the ligand, i.e. the drug, and the 
biological macromolecule, i.e. the receptor. The first step is the recognition process 
between the two species, and all subsequent processes leading toward the final bio- 
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logical response are generally not taken into account. In other words, SAR studies 
try to analyze and model the approach of the ligand to the binding site and the for- 
mation of the ligand-macromolecule complex. Therefore, the search for relationships 
between biological activity and molecular structure can be seen as the search for 
those stereoelectronic properties required for the recognition process to occur. The 
set of stereoelectronic requirements necessary for a family of compounds to elicit a 
certain activity is generally defined as the pharmacophore. 

In most cases, only the structure of compounds characterized by a common bio- 
logical activity is available, while structural information on the receptor active site 
is lacking. In these cases the pharmacophore can be determined by means of a com- 
parative analysis of the physico-chemical properties of known ligands. This ap- 
proach relies on the hypothesis that the recognition process between the ligand and 
the receptor is based on the spatial distribution of certain properties of the active 
site being complementary to those of the interacting ligands: the properties common 
to the ligands would provide the information about the stereoelectronic requirements 
of the receptor active site. This approach is defined as the indirect approach toward 
the rationalization of structure-activity relationships. Since the early 1980s, this ap- 
proach has received huge impetus due to the development of both reliable computa- 
tional methods and hardware technology, especially for powerful graphical represen- 
tation. Nowadays, molecular modeling can provide many molecular stereoelectronic 
properties which can be employed as useful descriptors in SAR analysis; thus, the 
traditional two-dimensional description of molecular systems in SAR studies has 
now been replaced by a more detailed and appropriate three-dimensional representa- 
tion offered by molecular modeling. Not only can a large number of stereoelectronic 
properties be calculated, but also each compound can show a large number of ener- 
getically accessible conformations. In QSAR analysis all these conformations should 
be taken into account, leading to data sets of ever increasing dimensionality. A large 
data set with several hundreds of objects and which is affected by noise or correlation 
between variables, requires the use and development, of computational techniques 
which are able to extract from the data set only the necessary information for solving 
the SAR problem. Chemometrics fulfills this requirement and is now becoming a 
common tool in SAR studies. 

2.1.2 QSAR Methodology using Molecular Modeling 
and Chemometrics 

The strategies generally adopted with the indirect approach assume, that in the first 
instance, the stereoelectronic property distributions of the ligands can be approxi- 
mated by the spatial disposition of functional groups present in the ligands. Based 
on the hypothesis that ligands interact with the biological target in a specific confor- 
mation, usually called the binding conformation, the functional groups thought to 
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be involved in the binding must show a common spatial disposition. Thus, the search 
for the pharmacophore corresponds to the search for geometric similarity among the 
conformations of different molecules, the similarity being defined through a com- 
mon geometric disposition of selected functional groups. These groups must be pre- 
sent in all the examined compounds and must be equal or bioisosteric, i.e. they must 
all behave in the same way during interaction with the binding site. The approach 
based on the search for geometric similarity is commonly known as the Active Ana- 
log Approach [2]. This approach leads to a geometric model for the pharmacophore, 
i.e. the geometric pharmacophore. 

To obtain quantitative correlations with the activity, a further step involving the 
calculation of stereoelectronic properties for the binding conformations, and the 
search for similarities in their spatial distribution is needed. In recent years many ap- 
proaches have been developed to find correlations between the calculated molecular 
properties or their distributions and activities: Among these are the classical QSAR 
studies using molecular or atomic descriptors and CoMFA [3], (see Sec. 2.2) and 
GOLPE [4], (see Sec. 2.3) and methods that are able to localize points within the spa- 
tial distribution of properties which are strongly related to the activity. Comparison 
of molecular property distributions and the measurement of similarity between dis- 
tributions can also be achieved by means of similarity indexes such as those devel- 
oped by Carbo [ 5 ] ,  Richards [6]  and Sanz [7]. 

Our laboratories have developed a method for SAR analysis based on the com- 
bined use of molecular modeling and chemometrics. Molecular modeling is used to 
evaluate the minimum energy conformations of each compound from the data set 
and to calculate the stereoelectronic properties of the binding conformations. 
Chemometrics techniques are used to reduce the number of variables in the data set, 
select the geometric and stereoelectronic descriptors which contain useful informa- 
tion, and finally, ascertain the best predictive regression models for QSAR. 

In our method a search for the geometric pharmacophore, formally derived from 
the Active Analog Approach, was initially performed by the following steps: 

- evaluation of minimun energy conformations for each compound by means of 
Conformational Analysis; 

- optimization of conformational descriptors, i.e. variable reduction by means of 
Principal Components Analysis (PCA); 

- search for geometrical similarities between all accessible conformations to select 
the binding conformation by means of cluster analysis or classification meth- 
ods. 

Once the binding conformation has been defined the method involves: 

- calculation of suitable stereoelectronic properties and their distribution for the 
binding conformation; 
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- variable selection to ascertain the best predictive regression model for the activity 
by means of cross-validated regression techniques. 

2.1.2.1 Search for the Geometric Pharmacophore 

All the approaches aimed at correlating molecular properties to activity are greatly 
dependent on the problem of choosing the binding conformation for which the mo- 
lecular properties need to be evaluated. Therefore, the search for the geometric phar- 
macophore, i.e. the binding conformation, is a fundamental step in every SAR strat- 
egy. 

Conformational Analysis 

In our method the choice of the most suitable computational method for the confor- 
mational analysis, as well as the choice of an efficient method for complete sampling 
the conformational space of each compound, has assumed a particular relevance. 

Due to the dimensions of the molecular systems involved in SAR studies, the use 
of approximated calculation methods is often required for modeling conformational 
properties. In general, the results obtained from quantum mechanical semi-empirical 
methods or molecular mechanics methods are unforeseeablely affected by parame- 
terization. For this reason the reliability of approximated methods which determine 
conformational and stereoelectronic properties of a considered class of compounds 
must always be evaluated. In order to ascertain such a reliability, the results from the 
approximated methods must be compared with the available experimental evidence 
and/or results from ab initio calculations. 

As far as conformational sampling problems are concerned, a systematic search 
is the only exhaustive method for sampling the conformational space. However, use 
of this straightforward method is considerably limited for highly flexible molecules 
due to the rapidly increasing number of relevant degrees of freedom and, as a conse- 
quence, of the total number of accessible conformations. To overcome this problem, 
many efficient methods, which are essentially based on Monte Carlo or Molecular 
Dynamics techniques, have been developed to sample the conformational space satis- 
factorily [8]. 

In most of the cases we analyzed the dimension of the molecular systems and 
performed conformational analysis by using a systematic search; we adopted the 
MULTICONF [9] option procedure included in the molecular modeling software 
MACROMODEL [lo]. For each compound sampling was performed by employing 
a rigid rotor model and systematically increasing the conformationally relevant tor- 
sional angles to generate the starting geometries. Then each of these geometries was 
fully optimized, relaxing all the geometric degrees of freedom. All the stationary 
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points localized on the Potential Energy Surface (PES) were characterized as minima 
or saddle points by a second derivative analysis. Finally, in the subsequent analysis 
consideration was given to all the minimum energy conformations within a predefin- 
ed energy threshold, with respect to the global minimum (usually 6 - 8  kcal mol-I). 

Choice and Optimization of Conformational Descriptors 

The pharmacophore model is defined by N atoms selected to represent the spatial 
distribution of the groups thought to be relevant for activity. Then, the variables 
used to describe each conformation are the N(N- 1)/2 interatomic distances defined 
by these N atoms. The data set is, thus, a matrix containing the conformational mini- 
ma of all compounds: each row represents a conformation and each column an in- 
teratomic distance. The data matrix is then autoscaled and subjected to Principal 
Component Analysis (PCA) [I I]. The aim of PCA is to reduce the number of vari- 
ables required to describe the system without a significant loss of information and 
to exclude redundant information. In general, few Principal Components (PCs) ac- 
count for a high percentage of the total variance of the system. The projection of 
coefficients of the original variables onto these relevant PCs (loading projections) 
allows for the recognition of truly independent variables and, thus, an effective vari- 
able reduction, 

In our case, the loading projections of the interatomic distances onto the relevant 
FCs highlight any correlation between distances and the selection of only those that 
are truly independent, i.e. the least number of variables which are able to accurately 
describe the total variance of the data set. Thus, each conformation is then represent- 
ed by the values of these selected distances. 

Selection of the Binding Conformation 

During the development of our method two main strategies were adopted to ascertain 
the geometric pharmacophore. In the first, considerable attention was given to deter- 
mining the geometric similarity between the conformations, and, thus, cluster analysis 
techniques were used. The second strategy, on the contrary, was based on the use of 
classification methods, thus providing, besides the binding conformation, a quantita- 
tive model that discriminates between different classes of biological activity. 

Cluster Analysis Strategy 

Cluster analysis looks for natural groups in data sets: each object within a cluster 
is more similar to the other objects in that cluster than to any object belonging to 
other clusters (see Chap. 3.2). 
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Among the different cluster analysis methods, the non-hierarchical Jarvis-Patrick 
method [I21 seems to provide the most consistent level of predictive performance in 
classification problems 1131. This method attributes objects to clusters on the basis 
of common nearest neighbors, K. For each object the nearest neighbors, K, are evalu- 
ated, the K value being a parameter fixed by the user. Two objects A and B are then 
assigned to the same cluster if the following conditions are satisfied: i) A is among 
the nearest neighbors, K, of B; ii) B is among the nearest neighbors, K, of A; iii) com- 
mon neighbors, R, are present among the nearest neighbors, K ,  of both A and B. 
The clustering procedure is dependent on the parameter R: increasing R, i.e. increas- 
ing the selectivity of the clustering procedure increases the total cluster number. 

To select meaningful clusters, i.e. clusters that can be considered candidates as the 
geometric pharmacophore, the simultaneous presence of conformations of the maxi- 
mum number of active compounds and the minimum number of poorly active and 
inactive compounds, is adopted as the leading criterion. Finally, it is possible to find 
one cluster in which the centroid corresponds to an area in the descriptor space 
where the highest “concentration” of conformations of active compounds and the 
lowest “concentration” of conformations of poorly or inactive compounds are pre- 
sent. This cluster is called the “active” cluster and its centroid defines the best geo- 
metric model for activity. Moreover, the lowest energy conformation of each com- 
pound present in the active cluster is assumed to be the binding conformation for 
that compound. 

Classification Strategy 

When different molecules are assigned to classes of different activity, classification 
methods can be employed to model the biological response. A necessary condition 
for the use of classification methods is the presence of at least two classes of activity: 
active and inactive. Each compound is defined as active or inactive on the basis of 
its measured activity value; then each conformation is initially assigned to the activi- 
ty class of the corresponding compound. For instance, when two classes are present, 
in the initial estimate all conformations of the active compounds are assigned to the 
active class and all conformations of the inactive compounds to the inactive class. 
Starting from this initial estimate, a classification method is applied recursively, 
which finally results in the determination of one or more subsets of geometric phar- 
macophore models. 

Among the classification methods available, we used Regularized Discriminant 
Analysis, RDA [14], and Linear Discriminant Classification Tree, LDCT [15]. 

RDA is used in an iterative procedure: at each step, the classification method is 
used to relocate the conformations in the class calculated by the discriminant func- 
tion, i.e. misclassified conformations are moved to the corresponding calculated 
classes. The iterative process is stopped when the classification of the active confor- 
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mations no longer changes in two successive steps. At the end of the process, the con- 
formations assigned to the active class are subjected to cluster analysis to test the 
presence of more than one group of similar conformations, i.e. the presence of differ- 
ent models for the geometric pharmacophore within the active class. 

LDCT consists in the combined use of Linear Discriminant Analysis, LDA, [16, 
171 see Volume 2, and tree classification methods [18, 191. The tree structure is com- 
posed of nodes and leaves, the starting node being the initial estimate. At each step, 
two new nodes can be generated from each node by binary splitting. When a node 
is no longer split, it becomes a leaf. At each splitting in our procedure, the conforma- 
tions present in the node are partioned into two groups and classified using LDA, 
obtaining two new nodes. During this process, a node containing conformations of 
only one class, or a percentage of conformations of a particular class which is greater 
than a threshold value, is no longer split, i.e. it becomes a leaf: the conformations 
included in the leaf are all assigned to that class. At the end of the classification pro- 
cess, the obtained tree structure is validated by a leave-one-out cross-validation tech- 
nique [20]. The final tree contains active, inactive and “fuzzy” leaves. Each leaf of 
the active class represents a model for the geometric pharmacophore. 

2.1.2.2 Quantitative Correlation between Molecular Properties and Activity 

Based on the hypothesis that ligands with a similar spatial distribution of stereoelec- 
tronic properties interact in the same way with the active site of the receptor in the 
recognition process, once the binding conformation has been defined, properties 
thought to be connected to the activity are calculated for this conformation. 

Quantum mechanical calculations provide a considerable number of molecular 
descriptors that are useful for modeling the interaction process. Among these 
descriptors, global properties such as the dipole moment, HOMO and LUMO ener- 
gies, polarizability and shape and volume parameters can be considered. Moreover, 
local properties such as electron density and properties derived from the latter (point 
charges, Molecular Electrostatic Potential, (MEP), Molecular Electrostatic Field 
(MEF)), can be considered. Among these local descriptors, particular attention has 
been given to MEP, the most effective descriptor of the long range intermolecular 
interactions involved in ligand-receptor recognition processes [2 I]. 

Molecular Property Calculations 

As discussed above for conformational analysis, the stereoelectronic property calcu- 
lations also require particular care in the choice of computational method. It must 
be emphasized that methods that give good molecular geometries, one cannot neces- 
sarily accurately calculate properties relating to the electron distribution. Therefore, 
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when approximated calculation methods are necessary due to the molecular dimen- 
sions, a preliminary check should be made on their reliability by comparing the re- 
sults against the available experimental data, or against the results derived from ab 
initio calculations at the highest possible level. 

An analysis of the distribution of the local properties of the ligand can be per- 
formed by analyzing either the isovalue surfaces surrounding the molecules or two- 
dimensional maps, particularly when significant planes can be detected in the mole- 
cules. 

When local property distributions are compared, a large number of variables must 
be handled: in fact, property values calculated for all points in the selected space sur- 
rounding the molecule constitute the set of variables. A variable reduction can be 
performed by selecting a few relevant points. In the case of M E P  analysis, the mini- 
ma are usually considered because of their physical significance and they represent 
the preferred molecular sites for electrophilic attack. In other cases, the information 
retained in the overall M E P  distribution can be summarized by means of a few points 
representative of the topological characteristics of isopotential surfaces. 

Optimized Regression Models 

Once the molecular descriptors, which are useful for the QSAR analysis have been 
obtained, the variables representing redundant or useless information must be identi- 
fied and discarded in order to obtain acceptable models: models with a high degree 
of correlation are expressed by good values of the cross-validated correlation coeffi- 
cient, r&. A straightforward approach to variable selection can be performed by 
means of a systematic search for all possible models that can be derived from any 
possible combination of the variables. Unfortunately, this approach is not always 
feasible in practice, even with present day computational power. Different alternative 
strategies have been developed for variable selection: forward/backward methods 
[22], methods based on the use of regression techniques combined either with experi- 
mental design [4] or genetic algorithms [23]. 

To perform variable selection when a systematic search is not feasible, we adopted 
an iterative procedure based on the rzv value calculated by the Partial Least Squares 
(PLS) method [24, 251. At each step, variables representing either useless informa- 
tion or noise can be assessed by the value of their standardized regression coefficients 
when autoscaled variables are used. In other words, standardized regression coeffi- 
cient values can be regarded as the weight of each variable in the model; thus, the 
elimination of the variable with the lowest coefficient improves the model. This im- 
provement is quantitatively estimated by means of cross-validation techniques. In 
fact, elimination of these variables causes an increase in the r& value up to a maxi- 
mum; after this point any further elimination causes a decrease in & value and the 
iterative procedure is stopped. 
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2.1.2.3 Computer Programs 

The molecular modeling calculations were performed using both ab initio and semi- 
empirical quantum mechanical methods as well as molecular mechanics methods. 
The following programs were used: Gaussian 90 [26] for the ab initio calculations; 
MOPAC [27] for the semi-empirical AM1 [28] and MNDO [29] calculations; 
MACROMODEL [lo] and SYBYL [30] for the MM2 [31], AMBER [32] and OPLS 
[33] molecular mechanics calculations. 

Chemometrics calculations were performed by the SCAN [34] program which con- 
tains the PCA, clustering, classification and regression methods employed. The 
LDCT calculations were performed by a non-commercial programm which is avail- 
able upon request. 

2.1.3 Illustrative Examples 

To highlight different aspects of the proposed method, the results for five examples 
are shown, in which the search for the geometric pharmacophore and analysis of the 
stereoelectronic properties were undertaken. 

The studies concerning a series of amnesia-reversal compounds [35] and a series 
of Angiotensin I1 receptor antagonists [36, 371 illustrate these two strategies which 
are based on cluster analysis and classification methods adopted in the search for 
the geometric pharmacophore. In the case of the HMG-CoA reductase inhibitors, 
[38 -401 it has been shown that geometric similarity alone cannot always explain bio- 
logical behavior and the stereoelectronic properties must be included in the model 
for a more appropriate representation of the recognition process. Finally, in the cases 
of antagonists at the 5-HT3 receptor [41] and of Polychlorinated dibenzo-p-dioxins, 
PCDDs [42], the situation where the geometric approach is not fruitful is illustrated. 
Despite the fact that 5-HT3 antagonists fulfill the geometric requirements, the latter 
exhibit different activities; on the other hand, PCDD isomers do not have conforma- 
tional flexibility and exhibit quite different toxic effects. In the latter two examples 
our strategy was to perform the variable selection and to obtain the best predictive 
regression model. 

2.1.3.1 Amnesia-Reversal Compounds 

Primary degenerative dementia, also called Alzheimer’s disease, is a clinical syn- 
drome involving reduced intellectual functioning with impairment of memory, lan- 
guage and cognition. Research on new molecules, which are able to improve impaired 
cognitive functions, has led to the development of new compounds showing cogni- 
tion-activating properties. 
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Figure 1. Investigated amnesia-reversal compounds. (Reprinted with permission from Ref. 35, copyright 
1990, VCH). 

This study [35] has analyzed the conformational features of twelve known amne- 
sia-reversal compounds (Fig. I), searching for common structural features which can 
explain the observed cognition-activating properties. Compounds 1 - 6 present a sim- 
ilar anti-amnesic effect; compounds 7 and 8 are the most active compounds in the 
series and compounds 9-12 are inactive. 

The conformational analysis was carried out using the MM2 force-field, selected 
on the basis of an earlier study [43]: a comparison made with ab initio calculations 
has shown that this method is more reliable in the study of conformational proper- 
ties of compounds containing a pyrrolidinonic ring than the AMBER and OPLS 
force-fields, or the quantum mechanical semi-empirical AM1 method. 

A systematic search for minimum energy conformations was performed for each 
compound; all minimum energy conformations were retained and a total of 382 con- 
formations was found. 

All the compounds considered exhibit two polar functional groups, the N - C = 0 
amide group and the X- C = 0 group, with X = 0, N. These polar groups, which are 
presumed to be involved in the biological interaction, define our pharmacophore. In 
principle, the definition of the relative spatial disposition of the six atoms of the 
pharmacophore requires 15 interatomic distances (Fig. 2 a), however, in the present 
case, six of the distances are almost constant for all the compounds as they are con- 
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Figure 2. (a) Labels of the nine variable distances (dashed lines) of the pharmacophore; solid lines show 
the six distances constrained by bond lengths or angles. (b) Selected interatomic distances as conforma- 
tional descriptors. (Reprinted with permission from Ref. 35, copyright 1990, VCH). 

strained by bond lengths or bond angles. Thus, in the first instance, nine interatomic 
distances (Dl -D9) were thought to be necessary to completely describe our system. 

These nine distances were evaluated for all the conformational minima; the correla- 
tion matrix of their autoscaled values was subjected to PCA. Two principal compo- 
nents, labeled PC1 and PC2, accounted for about 96% of the variance of the data 
set. The loading projections (Fig. 3) of the nine original variables onto the PC1 and 
PC2 plane show three groups in which the original variables present similar loading 
values; the distances between one atom of the N - C = 0 moiety and the three atoms 
of the X-C = 0 moiety are present in each group. Therefore, to represent the total 
geometric variability of the system, three interatomic distances, one for each group, 
suffice, thus, reducing a 9-dimensional problem to a 3-dimensional one. The three dis- 
tances reported in Fig. 2b and labeled Do-o, Dc-c and DN-X were chosen. 

In order to determine the binding conformation, the Jarvis-Patrick cluster analysis 
was performed on the conformational minima of compounds 1-12, using the three 
selected interatomic distances to define the multivariate pattern space for clustering. 
In order to select meaningful clusters, the simultaneous presence of all the active 
compounds (1-8) was adopted as the leading criterion. Results (Table 1) show that 
only two clusters, referred to as A and B, fulfill our criteria. Therefore, by means of 

Table 1. Amnesia reversal compounds. Total conformations included (Conf.), molecules in the cluster 
(labeled Y), centroid values (A) and cluster Standard Deviation, SD, (A) for the two selected clusters A 
and B. 

~ ~ ~~ 

Conf. Molecules 
~ ~~~ ~ 

1 2  3 4 5 6 7 8 9 10 1 1 1 2  
A 42 Y Y Y Y Y Y Y Y - Y  - - 3.57 3.14 3.07 0.28 
B 24 Y Y Y Y Y Y Y Y -  - - - 3.65 3.24 3.75 0.19 
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Figure 3. Loading projections of the nine original variables onto the first two principal components PCl 
and PC2 plane. (Reprinted with permission from Ref. 35, copyright 1990, VCH). 

cluster analysis two sets of values for the interatomic distances were selected, which 
defined two possible pharmacophore models for the group of compounds examined. 
Fig. 4 shows the superimposed conformations of compounds 5 and 6 present in the 
two clusters A and B with respect to compound 8. 

The study of amnesia-reversal compounds provides an illustrative example of ap- 
plying certain aspects of the method relating to the search for the geometric phar- 
macophore: in this class of compounds, a geometric model appears to suffice in 
rationalizing the observed activities. 

2.1.3.2 Non-Peptide Angiotensin I1 Receptor Antagonists 

Linear octapeptide Angiotensin 11, AII, is a powerful endogenous vasosuppressor. 
Antagonists to the A11 receptor have been shown to be effective in treating human 
hypertension. 
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Figure 4. Fitting of the six atoms of pharmacophore of minimum energy conformations of compound 
5 (green) and 6 (blue) with regard to 8 (red): (a) cluster A results; (b) cluster B results. (Reprinted with 
permission from Ref. 35, copyright 1990, VCH). 
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Figure 5. Structure and binding affinity (ZCs0, p ~ )  of the investigated non-peptide A11 receptor antago- 
nists. Labeled atoms are considered in the pharmacophore definition. (Reprinted with permission from 
Ref. 37, copyright 1993, ESCOM). 

After a preliminary study [36], 8 active and 5 inactive non-peptide (Fig. 5) were 
examined [37]. For each compound, a random search for the minimum energy con- 
formations was performed; a large number of minimum energy conformations, 
within 8 kcal mol-' with respect to each global minimum, was found for a total of 
approximately 9000 conformations. Each conformation was described by ten in- 



24 D. Pitea et al. 

teratomic distances defining the relative spatial disposition of the key structural 
elements which constitute the pharmacophore [37]. 

To reduce the total number of conformations, cluster analysis employing the hierar- 
chical Unweighted Averaged Linkage method [I 31, was performed separately on the 
conformations of each molecule described by the ten selected distances. For each com- 
pound, cluster analysis highlights a certain number of clusters whose centrotypes are 
conformations representative of the total accessible conformational space; as a result, 
a total number of 734 conformations were retained. PCA was then performed on these 
conformations, allowing for the recognition of correlated distances and the reduction 
of the number of variables from ten to eight. Thus, the use of cluster analysis and 
PCA enabled a reduction in the complexity of the original data set in terms of samples 
and variables, with only a slight loss of useful information. 

LDCT was then used to model the biological activity of the A11 receptor antago- 
nists. In the initial estimate all the conformations (449) of active compounds were 
assigned to the active class and all the conformations (285) of inactive compounds 
to the inactive class. As a result of the final cross-validation process, LDCT provides 
4 active, 1 inactive and 2 fuzzy leaves (Fig. 6) and thus, four geometrical models for 
the pharmacophore were obtained. 

Of the four active leaves, only one leaf contains only active conformations with 
no inactive conformations present. Nevertheless, none of the four pharmacophore 

Active @ Initial 
Inactive estimate 

ACTIVE 1 ACTIVE 2 ACTIVE 3 FUZZY ACTIVE 4 FUZZY 

Figure 6. LDCT models for A11 receptor antagonists. 
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geometric models contains conformations of all the active compounds, thus, it is 
difficult to suggest a unique set of distances defining the geometric pharmacophore, 
and an extension of the indirect approach to other molecular descriptors seems 
necessary to better rationalize the activity of this set of A11 receptor antago- 
nists. 

2.1.3.3 HMG-CoA Reductase Inhibitors 

The biosynthetic pathway for cholesterol involves more than 25 different enzymes 
and the major rate-limiting step in this pathway is regulated by the 3-hy- 
droxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase, the enzyme that cata- 
lyzes the conversion of HMG-CoA to mevalonic acid. 

In this work [38-401, eleven inhibitors (Fig. 7), classified as active (1-5), poorly 
active (6-8) and inactive (9-11) according to the literature activity data, were exam- 
ined. Conformational analysis of compounds 1-11 was undertaken using the MM2 
force field; its reliability in determining molecular geometries and conformational 
relative energies was first confirmed using model compounds and comparing the re- 
sults with semi-empirical and ab initio calculations. For each compound a systematic 
search for minimum energy conformations was performed: all minimum energy con- 
formations within 6 kcal mol-' above each global minimum were retained furnish- 
ing a total of 432 conformations. 

2 3 4 

6 7 8 10 11 

Figure 7. Investigated HMG-CoA inhibitors. The labeled atoms A (*), X ( O ) ,  Y (*), M (A) and L ( W )  
are considered in the pharmacophore definition. (Reprinted with permission from Ref. 40, copyright 1992, 
ESCOM). 
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Figure% a) Main structural features connected with the activity of HMG-CoA inhibitors and atoms 
included in the pharmacophore. b) Interatomic distances considered as conformational descriptors. 
(Reprinted with permission from Ref. 40, copyright 1992, ESCOM). 

The knowledge to date of the properties in this class of compounds prompted us to 
select atoms A, M and X, L and Y (Fig. 8a) as representative of the spatial disposition 
of the lactonic (A), lipophilic (M and X), bulky (L) and polar (Y) groups respectively, 
i.e. of the main structural features relating to the activity. The ten interatomic distances 
defined by the five atoms (Fig. 8 b) were initially considered as conformational descrip- 
tors and were evaluated for all the conformational minima. The correlation matrix of 
their autoscaled values was subjected to PCA. The first three components account for 
approximately 85% of the total variance of the data set. From the loading projections 
of the ten original variables, three main groups, in which the original variables con- 
tained the same information, could be highlighted. Thus, only three interatomic dis- 
tances, one from each group, was sufficient to represent the variability of the system 
and the distances di, d4 and d, were chosen as conformational descriptors. 

In the search for the geometric pharmacophore, the conformational minima were 
subjected to the Jarvis-Patrick cluster analysis (Table 2): only one cluster fulfills the 
criterion for cluster relevance, i.e. the cluster contains conformations of the maxi- 
mum number of the active compounds 1-5. Moreover, this cluster contains not only 
the greatest number of active compounds, but also the lowest number of poorly ac- 
tive and inactive compounds. This cluster represents the best possible solution and 
was defined as the active cluster. Nevertheless, it should be noted that the active com- 
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Table 2. HMG-CoA reductase inhibitors. Total number of conformations (Conf.), molecules included 
(Y), centroid value (A) and cluster standard deviation, SD, (A) for the selected cluster. 

Conf. Molecules d, d4 d, SD 

1 2 3 4 5 6 7 8 9 1 0 1 1  
64 Y Y - Y Y - - Y Y - - 6.03 5.14 6.50 0.50 

pound 3 is not present in this cluster, while the poorly active 8 and the inactive 9 
are in this cluster. 

Thus, it seems that, in this case, geometric similarity is an insufficient criterion 
to rationalize the biological behavior of these compounds, and other properties have 
to be included in the model for a more appropriate description of the recognition 
process. For these reasons the MEP distributions of the lowest energy conformation 
for each compound present in the active cluster were calculated from the MNDO 
semi-empirical wave function in the plane of the lipophilic fragments (Fig. 9). The 

b 

Figure9. Molecular Electrostatic Potential maps in the lipophilic plane for compounds 1 (a), (3) (b), 
4 (c), and 9 (d). Solid and dashed lines correspond to positive and negative values, respectively. Isocontour 
levels every 2 kcal mol-'. (Reprinted with permission from Ref. 40, copyright 1992, ESCOM). 
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upper right zone of the maps seems to be the most discriminating as regards to activi- 
ty: in fact, all the active compounds show positive MEP values in this zone, while 
all the poorly active and inactive compounds show negative values. 

Indeed, compounds 8 and 9, although present in the active cluster, have different 
characteristics in their MEP distributions in this zone and thus, can be differentiated 
from the active compounds. On the other hand, compound 3, which had no confor- 
mations present in the active cluster, shows all the MEP distribution characteristics 
of the active compounds. Moreover, the MEP minimum located in the lower zone 
of the map is lower than the corresponding minima of the other active compounds. 
The carbonyl moiety present in this compound facilitates a stronger interaction with 
the secondary binding site, unlike compounds which have a fluorine atom as the po- 
lar group. This interaction can partially overcome the geometric differences between 
the conformations of compound 3 and the centroid of the active cluster. 

In conclusion, the case of the HMG-CoA inhibitors presents an interesting SAR 
problem because both the geometric and electronic properties of these compounds 
have to be taken into consideration in order to model the activity. The search for 
geometric similarity, although inadequate, is a necessary step in the SAR analysis, 
whereby a reasonable model for the binding conformation is formulated. The search 
for similarities in electronic distribution in the active conformations revealed further 
analogies between compounds which are useful for rationalizing activity. 

2.1.3.4 Antagonists at the 5-HT3 Receptor 

In this study ten benzimidazolone derivatives (Fig. lo), antagonists at the 5-HT3 re- 
ceptor, were investigated [41]. In the last few years, several geometric pharmacophore 
models for this class of compounds have been proposed [44-461. All include an 
aromatic ring, a hydrogen bond acceptor linking group (acyl or heterocyclic) coplanar 
to the aromatic moiety, and a hydrogen bond donor or a positively charged center, 
such as an amino nitrogen. A specific spatial disposition of such groups is a requisite 
for the effectiveness of compounds as antagonists. According to these models, the ac- 
tive conformation consists of acyl groups in an anti-periplanar (app) conformation. 

Interestingly, compounds 1-10 showed a wide spectrum of activity in both in vitro 
and in vivo tests (Table 3, see p. 30), even though all fulfill the requirements for the 
geometric pharmacophore model. The aim of this study was to ascertain whether ad- 
ditional descriptors relating to conformational and electronic properties could ex- 
plain the different degrees of activity of these molecules. 

The conformational analysis of compounds 1-10 was performed by the AM1 
method, where the reliability in predicting the conformational features of compound 
1 had been tested by comparing the results with the available experimental evidence: 
the X-ray structure [47] and the structural information provided by IR spectroscopy 
1481. 
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Figure 10. Chemical structure of the considered 5-HT3 receptor antagonists (Reprinted with permission 
from Ref. 41, copyright 1993, Elsevier). 

All the compounds exhibit two minima in which the endocyclic and exocyclic car- 
bony1 or thiocarbonyl groups are in a periplanar (pp)  or anti-periplanar conforma- 
tion (app), respectively; in all compounds the app conformation is the global mini- 
mum. On the basis of energy differences (AE = AHgp - AHFpp) between the relative 
and global minima, the relative population of the app conformation at 37 "C, napp, 
has been calculated (Table 3). 

For the app conformation of each compound, i.e. for the binding conformation, 
the following molecular descriptors were calculated by the AM1 method: atomic 
charges, dipole moment, HOMO and LUMO energies, polarizability, a shape param- 
eter derived from the moment of inertia [49], the relative population of the app con- 
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Table 3. Biological activities, expressed as inverse of the logarithms of the 50% Inhibitory Dose, pID,,, 
and of the binding affinity constant, pK,, of the 5HT3 receptor antagonists 1 - 10. The relative popula- 
tion of the upp conformation (napp) and MEP minimum values (kcal mol- I )  above the aromatic ring are 
reported. 

Compd PID,, pKd MEP 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

9.05 
8.73 
8.07 
7.75 
7.41 
6.91 
6.55 
6.34 
5.96 
5.57 

9.08 
9.10 
8.89 
8.16 
8.32 
8.85 
8.06 
7.77 
6.38 
6.62 

1.000 
0.619 
1 .ooo 
0.934 
0.934 
0.969 
0.902 
0.876 
0.909 
0.742 

- 19.4 
-27.8 
- 16.7 
- 17.1 
- 15.7 
- 12.5 
- 9.8 
- 10.6 
- 6.6 
- 6.4 

formation, the electrophilic and nucleophilic superdelocalizability indexes, as well as 
the corresponding frontier superdelocalizability indexes [50]. Moreover, for the app 
conformation of each compound, the MEP distribution was calculated at the ab in- 
itio SCF-HF level (3-21G basis set) in a 0.3 A spaced grid-point of the plane 1.70 A 
above the molecular plane. All compounds exhibited a negative zone above the aro- 
matic system, with the MEP minimum located on the benzene ring. The MEP mini- 
mum value above the aromatic system was included in the molecular descriptors (Ta- 
ble 3). 

The theoretical descriptors considered are not all necessarily suitable for defining 
the QSAR model. They can be correlated with each other and/or can contain useless 
information or noise. Thus, a selection of uncorrelated variables related to the in 
vitro and in vivo activities must be performed. The procedure discussed in Sec. 
2.1.2.2 was adopted. The PLS calculations were performed iteratively on the 
autoscaled variables, discarding the variable with the lowest coefficient value in each 
step, i.e. the variable containing useless information, until the maximum value of r-2 
was obtained. All the PLS calculations were performed separately on pKd and on 
pIDso with a "leave-one-out" cross-validation technique. 

At the end of the procedure, different acceptable mathematical models were ob- 
tained. To select the most significant QSAR models, both physical interpretability 
and the value of r-k were considered. From the possible choices, one model was se- 
lected for the in vivo (model Ia) and one for the in vitro (model Ib) activities (Ta- 
ble 4). Both models contain the MEP and the napp variables with very similar values 
for the regression coefficients: both activities increase when the MEP minimum de- 
creases and the app population increases. Calculated values vs experimental values 
of pK, and pD, ,  obtained with the two models are shown in Figure 11. 
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Table4. SHT, receptor antagonists. Least squares modelsa for pKd and pZD,,. Standard errors are 
reported in parentheses. 

Model Ia Model Ib 

Activity 
intercept 
MEP 

%p 

pKd 
3.301 (-t 1.382) 

- 0.1 35 (k 0.026) 
3.258 f-t 1.390) 

P I 4 0  
1.712 (k0.787) 

3.324 (i0.792) 
-0.180 (k0.015) 

r2 0.804 0.956 
rK 0.678 0.873 
SDEC 0.407 0.232 
SDEPc 0.522 0.395 
std. err. 0.487 0.277 
FcaIc. 7.379 24.12 
degrees of freedom 7 7 

a In these models the PLS and the least squares results are coincident as the number of PLS components 
equals the number of variables. 

r 

SDEC = $: and RSS is the Residual Sum of Squares. 

PRESS 
‘SDEP = 4~ and PRESS is the Predicted REsidual Sum of Squares. 
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Figure 11. Calculated vs experimental values of pKd and pZD,, obtained with models Ia and Ib. 
(Reprinted with permission from Ref. 41, copyright 1993, Elsevier). 
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Thus, the relationship between the naPp and the activities quantitatively supports 
the hypothesis that the two acyl groups must be anti-periplanar. On the other hand, 
the relationship between the MEP minima values and the activities suggests that the 
presence of electron-rich aromatic fragments enhances the activity. As a conse- 
quence, the II electron distribution seems to be directly involved in receptor recogni- 
tion. Moreover, the same model accounts for the activities observed both in vitro and 
in vivo. In conclusion, the mathematical model obtained provides a straightforward 
physical interpretation and leads to a better insight into the interaction process at the 
molecular level. 

2.1.3.5 Polychlorinated Dibenzo-p-dioxins 

Polychlorinated dibenzo-p-dioxins (PCDDs) are a group of chemicals that produce 
a broad pattern of toxic and biological effects, most of which are mediated by bind- 
ing to the Ah (Aromatic hydrocarbons) receptor. As the molecular structure of the 
receptor is still unknown indirect approaches that compare ligand properties are 
needed. 

The study of PCDD activity is an example where the geometric pharmacophore 
is unequivocally defined owing to poor conformational flexibility. Therefore, elec- 
tronic property distributions must be considered. 

We focussed our attention on the first recognition step of the PCDD-Ah receptor 
interaction, seeking patterns in the MEP of PCDDs which could be related to their 
binding affinities. A series of 14 PCDD isomers, which showed a significant range 
of binding affinity values, were analyzed and their molecular structures and experi- 
mental EC50 values are reported in Fig. 12. 

On the basis of preliminary studies [51, 521, the MEP was obtained by SCF-HF 
ab initio calculations with the 3 -21 G basis set. Analysis of the MEP distribution 
[42,53] in two-dimensional maps for 8 of the considered PCDD isomers showed that 
the MEP minima are more affected by the degree of substitution than by the differ- 
ences in substitution patterns which have important consequences for biological ac- 
tivity. On the contrary, visual analysis of the MEP isopotential surfaces highlighted 
some electrostatic properties required for high affinity, i.e. a strong concentration of 
the valence electron charge at both lateral sides of the principal molecular axis and 
a charge depletion over the oxygen atom region. On this basis, we proposed that the 
relevant information retained in the overall MEP distribution could be summarized 
by a few descriptors, i.e. the MEP values in points properly located around the mole- 
cules. Four points were proposed (Fig. 13), a and p, to model the electrostatic acces- 
sibility of the central region of the molecule toward an electron-rich site of the recep- 
tor, y and 6, to describe the possibility of a favorable interaction with electrophilic 
sites in the lateral positions. The linear correlations between the MEP values at these 
points and the negative logarithm of the experimental ECso binding affinities 
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Figure 12. Molecular skeletons of the analyzed PCDD isomers and experimental binding affinity 
(EC,, , M) values. 
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Figure 13. Location of the significant points around 2,3,7,8-TCDD. 

(pECs0) were calculated by the linear PLS method and a good correlation was 
found ( r2  = 0.981; rfY = 0.854) [42]. 

Our recent results, not yet published, show that the four descriptors do not corre- 
late with the affinities of the whole PCDD series. A PCA analysis has enabled us 
to differentiate two subsets of isomers on the basis of the values for the four pro- 
posed descriptors. All the isomers belonging to the first set (Set 1) are characterized 
by a typical electronic polarization along the principal molecular axis toward both 
lateral sides. Set 2 contains less highly chlorinated isomers with an uneven substitu- 
tion pattern with respect to the sides of the principal molecular axis (2,3,6-TrCDD, 
1,2,3,4-TCDD, 1,2,4-TrCDD and 1-MCDD). Only the affinities of isomers belonging 
to the Set 1 have been well accounted for by the previously proposed model. 

To obtain a global model that takes into account the electrostatic characteristics 
of the whole PCDD series, other points have been added and selected in three- 
dimensional MEP distributions (Fig. 13): y ‘ ,  6’, ya, yb, 6a and 66 are useful for im- 
proving the description of the lateral zones, sa, sb, da, db in order to sample the oxy- 
gen atom zone. A variable selection has been performed by means of a systematic 
search for all the possible models associated with any combinations of these descrip- 
tors. The models with the highest degrees of correlation which we obtained are re- 
ported in Table 5 alongside the r2 and r’, values. This procedure indicates that the 
most significant decriptors of the PCDD binding affinities are the MEP values 
in 6, y ’  and 6’. The same procedure, which was performed separately for Sets 1 
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Table 5. Standardized PLS models for the PCDD binding affinities. 

No. of isomers Variables PLS model (standardized coefficients)a r 2  r :" 
14 6, y ' ,  6' pEC5, = ~.O~MEP(~)-O.~~MEP(Y')-~.~~MEP(~') 0.874 0.759 
10 (Set 1) y' ,  6' pEC5o = -0.71 MEP(y')-O.76MEP(6') 0.950 0.898 

4 (Set 2) 6 pEC5, = 0.99MEP(d) 0.991 0.956 
Y pECS, = - 0.99 MEP ( y )  0.984 0.906 

a Models with only one variable have been obtained by the least squares method. 

and 2 (Table 5) ,  makes it possible to rationalize the global model on the basis of the 
characteristics of the two sets. The best models for Set 1 take into account the MEP 
features in both the lateral regions, as summarized by y' and 6' and high affinity val- 
ues are related to negative MEP values at both these points. The best models for Set 
2 are given solely by the 6 or y variable: binding affinity increases as the MEP value 
in 6 increases (or as the MEP value in y decreases). A similar trend in affinity with 
respect to the MEP values in y' and 3, or in 6 is maintained in the global model. 
On this basis, it can be inferred that the potential in the lateral regions is the most 
relevant as regards to affinity: high affinity is related to high negative MEP values 
in at least one of the lateral zones, or in both, if the molecule is characterized by 
a balanced electron polarization with respect to the principal molecular axis. 

In conclusion, a good quantitative model obtained by using descriptors derived 
from the MEP distributions confirms that the selected points are physical meaning- 
ful descriptors of the electrostatic properties recognized by the receptor and provides 
some insight into the nature of the interaction. 

2.1.4 Conclusions 

An understanding of complex biological systems and processes at the molecular level 
requires instruments which are able to give a detailed description of molecular struc- 
tures and properties, as well as techniques suitable for handling large amounts of in- 
formation. We have demonstrated that molecular modeling and chemometrics can 
be the right tools for such purposes. In fact, from our experience, summarized in the 
reported examples, we infer that methods based on the combined use of molecular 
modeling and chemometrics can give quantitative and predictive models of activity. 
It is important to stress that the models obtained are not only mathematically accep- 
table, but can also allow a straightforward physical interpretation of the ligand-active 
site interactive process. Thus, a mechanistic hypothesis of the activity can be derived 
from modeling ligand properties. 
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Of course, as in every modeling problem, only experimental validation of the 
hypothesis derived from the models can provide real growth in the knowledge and 
understanding of the problem. 
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2.2 3D QSAR Methods 

Andrew M. Davis 

2.2.1 Introduction 

The measured biological activity of a drug, which is active at a particular receptor, 
is a highly complex number indeed. It encodes the energetics of drug transport from 
the site of administration to the target receptor. It encodes for partitioning of the 
drug from the bulk phase into the receptor. Finally, it encodes the complementarity 
of three dimensional electrostatic fields, hydrogen bonding, hydrophobicity and 
shape of drug and receptor. Since the pioneering work of Hansch [I], QSAR meth- 
ods have been used to “decode” the importance of such interactions to the observed 
biological activity of drugs binding to their receptors. The success of this approach 
is obviously dependent on being able to ascertain the physico-chemical properties 
that could be used to accurately describe these molecular properties. 

Traditional QSAR studies have used descriptors based on experimentally derived 
1 -0ctanol-water partition coefficients to model the “hydrophobic effect” and Ham- 
mett substituent constants to model electronic effects. The influence of molecular 
shape has always been difficult to describe, and a wide range of descriptors, from 
simple molecular weights to complex topological indices, have been employed to 
model steric interactions [2,3]. 

In recent years the growth in importance of approaches employing computational 
chemistry has provided a plethora of molecular and atom-based descriptors that can 
be and have been employed in QSAR studies. These include descriptors derived from 
individual atomic partial charges, HOMO/LUMO energies, nucleophilic/elec- 
trophilic superdelocalizabilities etc. [4]. 

In general, these descriptors only describe the magnitude of particular physical 
properties and not any directional preferences that those properties may have. The 
CoMFA approach of Cramer, Patterson and Bunce though, looked at molecules in 
3-dimensions, from the viewpoint of the “receptor”, and described the magnitude 
and directional preferences of electronic and steric interactions [ 5 , 6 ] .  This technique 
measured the interaction energies between a small probe atom or group at a series 
of regular grid positions around and through the series of molecules. The molecules 
were previously overlaid/aligned to occupy the same position in space. At each grid 
point, the steric and electrostatic interaction energies between the probe and each 
molecule in the series are recorded. This set of numbers becomes a new steric and 
electrostatic descriptor in a QSAR analysis (Fig. 1). Therefore, many hundreds or 
even thousands of descriptors are generated which can be employed in a QSAR anal- 
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Figure 1. The interaction energies between the probe molecule and each target are measured on a regular 
3D grid, and each point in space becomes a descriptor variable in a QSAR analysis. In the case of CoMFA, 
each point in space becomes an electrostatic descriptor and a steric descriptor in a QSAR analysis. 

ysis. CoMFA uses the relatively new multivariate technique of Partial Least Squares 
(PLS) to ascertain predictive relationships between CoMFA fields and biological 
activity. The advantage of the CoMFA approach is that the result of the analysis can 
be mapped back into 3D space. This provides a three dimensional picture of the elec- 
trostatic and steric forces which are important for controlling biological activity in 
the series of molecules under consideration. The sole commercial implementation of 
the CoMFA procedure is in the SYBYL molecular modeling package [7], but similar 
types of analyzes can be performed using proprietary “off-the-shelf” packages. We 
decided to adopt the latter route, as we wanted to learn the advantages and pitfalls 
of the 3D QSAR method [38]. 

We employed the GRID force-field [8- 111 to compute the interaction energy be- 
tween a series of target molecules and a probe atom or group, over a regular 3D grid 
both around and through the target molecules. GRID calculates the total energy of 
interaction, which is the sum of electrostatic, steric and hydrogen bonding terms. The 
probe can be chosen from a wide choice of predefined probe molecules. The force- 
field was originally developed to probe the interior of proteins for interaction sites 
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useful for drug design. GRID has been used successfully to predict binding sites of 
small ligands in proteins [12], and has been extended to evaluate the properties of 
small molecules, when the receptor is unknown. The table-based statistical package, 
RS/1 [13], was employed to compile the generated grids into a QSAR table ready 
for statistical analysis. Statistical analysis was undertaken employing the multivariate 
technique of partial least squares as implemented in the QSAR package SIMCA [14], 
and the results were displayed in Chem-X [15]. 

2.2.2 3D QSAR of a Series of Calcium Channel Agonists 

We will illustrate the 3D QSAR method with an analysis of the molecular features 
which control the observed activity of a set of calcium channel agonists [16]. The 
modulation of transmembrane calcium movement is an important area of current 
pharmacological research with applications in many therapeutic areas. The com- 
pounds were tested for their ability to increase cardiac contractility. The inotropic 
potency of the compounds was expressed as the concentration of drug which in- 
creased the tension developed to 50% of the isoprenaline maximum in guinea pig 
atria paced at 1 Hz. The y descriptor used in the QSAR analysis was -log ECso, ex- 
pressed relative to the standard calcium channel agonist Bay K 8644 (Fig. 2). Early 
lead optimization in this series was directly guided by a linear regression model [ 161, 
which showed the importance of lipophilicity and steric size for the observed activity, 
and this led to the synthesis of FPL64176, (R = benzyl). Thus, this data set provided 
a good vehicle for our study of the usefulness of GRID and SIMCA in identifying 
structural features which can be used in the rational design of new compounds. We 
hoped that inclusion of compounds synthesized more recently would provide a great- 
er insight into the physico-chemical factors which control activation of the calcium 
channel by this class of compounds. The data set is shown in Table 1.  

\ 

O 2 x e M e  Me N Me 

H H 

FPL 64176 (13) Bay K 8644 

Figure 2. The structures of FPL64176 and Bay K 8644. The inotropic potencies were expressed relative to 
the standard calcium channel agonist Bay K 8644. 



42 A.M. Davis 

Table 1. CLOGP, CMR and force of contraction, EC,,, measured relative to Bay K 8644 for 36 com- 
pounds used in the QSAR analysis 

Compound R CLOGP CMR Relative force EC5, 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14- 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
30 
31 
32 
33 
34 
35 
36 

2-c1 
2-CF3 
2-OCH, 
2-H 
2-OCO-(2'-OH-C6H,) 
2-CH3 
2-F 
2,4-C1, 
2-1 
2-Br 
2-OCH2Ph 
2-C1,4-NO, 

2-Ph 
2-SCH2Ph 
2-SOCH2Ph 
2-S02CH2Ph 

2-CH2Ph 

2-CHZCH2Ph 
2-CH,,4-CH, 
2-SPh 
2-SOPh 
2-NH-Ph 
2-CH,-(4'-NO2-Ph) 
2-CH2-(2'-NO,-Ph) 
2-S-(4'-NO,-Ph) 
2-0-(4'-NO,-Ph) 
2-CH2-(4'-NH2-Ph) 
2-OS02-(4'-Me-Ph) 
2-OPh 
2-NH-pyrid-2-yl 
2-CH2-C6H, 
2-NH-C6H,, 
2-Br-4-F 

2-CH2Ph,4-F 
2-CH2-(4'-F-Ph) 

2-CH2(4'-F-Ph),4-F 

2.63 
3.09 
2.03 
2.18 
4.10 
2.67 
2.34 
3.35 
3.04 
2.78 
3.80 
2.41 
4.09 
4.06 
4.61 
2.41 
2.16 
4.62 
3.17 
4.62 
2.18 
4.79 
3.84 
3.56 
4.46 
4.13 
2.87 
3.06 
4.21 
3.94 
5.32 
4.84 
2.93 
4.24 
4.25 
4.40 

7.58 
7.60 
7.70 
7.08 

10.40 
7.58 
7.10 
8.07 
8.39 
7.86 

10.21 
8.30 

10.06 
9.60 

10.87 
10.90 
10.93 
10.52 
8.01 

10.40 
10.44 
9.96 

10.79 
10.78 
11.13 
10.47 
10.43 
10.62 
9.75 
9.75 

10.15 
10.06 
7.88 

10.08 
10.08 
10.09 

0.0943 
0.27 
0.0053 
0.059 
0.34 
0.14 
0.0093 
0.33 
0.22 
0.15 
1.13 
0.16 

0.174 
2.89 
0.312 
0.021 
8.00 
0.0568 
2.57 
0.34 

18.91 
4.31 
2.90 
1.24 
0.96 
0.0457 
0.0072 
2.90 
7.70 

35.5 

27.6 
19.8 

14.0 
19.0 
19.0 

0.220 
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Figure 3. Flow diagram showing the 3D QSAR procedure. 

The procedure for a 3D QSAR analysis can be summarized in Fig. 3. Each of the steps 
in the flow chart is important and can affect the predictability of the resulting model. 

2.2.2.1 Molecular Alignment 

Molecular alignment is probably the most crucial element of the analysis, as a poor 
alignment can result in an inadequate statistical model, if none at all. If the set of 
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molecules contains an important binding region that is invariant in that molecular 
set, then the problem is considerably easier to deal with. The perfect overlay of this 
would then be the basis of the alignment. An underlying assumption in QSAR ana- 
lyses, and not just in CoMFA, is that all molecules in the data set showing high activ- 
ity bind to their receptor in a similar way; inactive or poorly active compounds can 
be poor for many reasons, and may bind in different ways. Therefore, one should 
choose one of the most active compounds in the data set to define the molecular 
alignments. This is termed the “active-analog alignment” and is similar in concept 
to the molecular modeling procedure often termed the “active analog approach” 
[17], where the conformation which is adopted by all active compounds is sought 
after. The underlying assumption again, being that all active compounds must adopt 
a similar conformation. Which conformation one chooses is, in our view, arbitrary 
and the phrase ”bioactive conformation” is often employed favourably in this con- 
text. Usually, this is impossible to deduce, but lack of this information has not ham- 
pered 3D QSAR analyses published to date! This is highlighted in a recent study by 
Klebe and Abraham [ 181 of inhibitors of Thermolysin and human Rhinovirus 14. Al- 
though crystallographic data of the protein-ligand complex provided information on 
the true binding conformation of the ligand, alignments based on a theoretical bind- 
ing conformation gave CoMFA models as having equal, or superior predictive power, 
to those based on experimentally determined binding conformations [ 181. 

In our study, the conformation deduced from the X-ray data for FPL 64176, one 
of the most active compounds in the data set, was used as the starting point for the 
construction of 3D structures of the 36 compounds. Substituent variations were built 
in Chem-X using standard bond lengths and angles. The structures were not fully opti- 
mized. Full optimization would have introduced small differences in the bond angles, 
bond lengths and torsion angles of the common portions of the molecules in the test 
set, and this would have given rise to “noise” in the GRID analysis. In this case, all 
the molecules shared a common molecular fragment, a dimethyl substituted pyrrole 
ring, which is known to be important for binding. Structural variation was introduced 
on the phenyl ring at the ortho position with respect to the linking keto group adjoin- 
ing the pyrrole ring. Initial molecular alignment involved overlaying the pyrrole ring 
of each structure, followed by conformational analysis of the side chain. Here we fit- 
ted all the side chains to the conformation adopted by the benzyl side chain of 
FPL64176, since this was a low energy conformation for the compound in question. 
Since it was not possible to deduce the bioactive conformation of FPL64176, we se- 
lected an arbitrary conformation, i.e. the one deduced from the X-ray. 

If the molecules in the data set do not contain an obviously similar binding region, 
then the alignment procedure becomes more difficult. One would still choose one of 
the most active compounds to set the alignment. Intuitively, one should base the align- 
ments upon similarities in the 3D interaction fields. The CoMFA option in SYBYL 
contains a “FIELD-FIT” procedure, which does just that, and the program ASP was 
written to align molecules based upon their electrostatic isopotential/field [ 19, 201. 
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Other workers are investigating the use of GRID fields and 3D autocorrelation func- 
tions to deduce an alignment [21]. A number of other packages are available to deduce 
molecular alignment including RECEPTOR [17, 221, DISCO [23] and APEX-3D [24]. 

It has been suggested that the lack of a good statistical model could be an indicator 
of a poor initial alignment [22]. Thus, the CoMFA procedure could be employed as an 
iterative method, trying different alignment procedures until a satisfactory and sensible 
alignment is obtained. We suggest further that statistical outliers in an analysis might be 
compounds that adopt a different binding conformation at the receptor binding site. 

2.2.2.2 Charges 

The quality of the charge scheme chosen can influence the quality of the model de- 
rived in a number of ways. One CoMFA study has shown that the use of ab initio 
charges derived from ab initio wave functions (6- 3 1G") give an improved cross-vali- 
dated r2 compared with Mulliken semi-empirical charges [25]. Also noted was an 
increased contribution of the electrostatic term to the overall regression. It was sug- 
gested by the authors that this could be due to the increased quality of the charges. 
The correlation of ab initio charges with semi-empirical charges is not clear, and in 
some cases the charge on a given atom can change sign! The charge scheme should 
be able to identify inductive and resonance effects of substituent variations. In 
CoMFA work it is recommended that charges should be calculated by at least one 
MNDO method [22]. The GRID program assigns its own charges while calculating 
GRID fields. The GRID-defined atomic charges were obtained from a look-up table, 
and were assigned according to atom-types. The GRID-defined charges are insensi- 
tive to changes in structure in small molecules, e.g. changing a substituent on a 
phenyl ring does not change the charges on the ring atoms. Therefore, in our work 
the GRID charges were replaced with MNDO/PM3 Mulliken charges as calculated 
using MOPAC 5.0. We felt that this level of approximation was an adequate balance 
between the quality of the charges and the speed of calculation. 

2.2.2.3 Generating 3D Fields 

The CoMFA option within SYBYL calculates the electrostatic fields and steric fields 
around the molecules in the data set and treats them separately. The probe most of- 
ten used in CoMFA is a methyl probe with + 1.0 charge. Other probes can be select- 
ed. One criticism of the CoMFA approach is that hydrogen bonding cannot be ex- 
plicitly defined. However, hydrogen bonding is considered to some extent for two 
probe types, a proton with + 1 .O charge identifies hydrogen bonding acceptor groups 
and a hydroxyl anion with - 1.0 charge identifies hydrogen bond donating groups. 

GRID calculates fields in a conceptually different manner from CoMFA and cal- 
culates the total interaction energy between a probe and the molecules in the data 
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set. This is calculated as the sum of electrostatic, steric, and hydrogen bonding in- 
teraction energies at that point in space. The parameterization of the force-field has 
been made to reproduce experimentally determined binding energies. Therefore, the 
total interaction energy is an experimentally based balance between steric and elec- 
trostatic forces. We viewed this as an advantage of GRID fields. In our view, the use 
of a separate x-block describing electrostatic interaction, because of the scaling that 
has to be applied compared with the steric block (see later), increases the likelihood 
of overemphasis of electrostatic forces on any resulting model. 

Other types of 3D field can also be used, for example, electrostatic isopotentials, 
MOPAC-derived HOMO fields [26], and so-called “lipophilicity potentials” [27] 
such as those generated by HINT [281. 

The size of the 3D grid is an important consideration. First, the 3D grid should 
be large enough to contain all the molecules and extend far enough away from all 
the molecules in x, y, and z directions to allow the interaction energies to fall away 
to zero. This ensures fields are not truncated and allows room for larger compounds 
to be included in future analyses. The spacing of the grid points, if the data is handl- 
ed appropriately, should not affect the results in an adverse way [29]. A grid spacing 
of 2 A is often used in CoMFA analyses. A grid spacing of 1 A gives a much better 
defined mapping of the results obtained from the analysis, but one should consider 
the increase in the number of grid points as this could be problematic. A 
20x 20x20 A grid would generate 1000 grid points at 2 A spacing, but 8000 at I A 
spacing. It has been mentioned that the PLS routine in CoMFA appears to be slow 
(compared to SIMCA or GOLPE) when handling large numbers of GRID columns 

For our work an alkyl hydroxyl probe was selected as the probe molecule since this 
would provide information on electrostatic interactions, hydrogen bond donor and 
acceptor ability, and steric effects due to its size. We decided that the nature of the 
probe was unimportant as long as it could interact by all mechanisms. It is possible 
that a probe also bearing an overall formal charge would place more emphasis on 
electrostatic interactions, and GRID affords the possibility of defining custom pro- 
bes, if necessary. 

During the GRID calculations the bulk dielectric constant was set to 4.0, repre- 
senting the estimated dielectric constant of the active site of a receptor. In prelimi- 
nary work, we used a bulk dielectric of 80.0, but we decided that using the more 
realistic lower value would give a better representation of hydrophobic effects. Set- 
ting the dielectric constant to 4.0 would also increase the contribution of the electro- 
static term, and provide a good compromise between electrostatic and steric terms. 
If the dielectric constant had been set to lower than four, then the electrostatic term 
would have become a dominating factor. We do not know the effect of changing the 
dielectric constant in 3D QSAR analysis. As changing the dielectric constant would 
have resulted in a consistent change across the series, we did not feel it would have 
a major impact upon the quality of any derived model. 

1301. 
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2.2.2.4 Compilation of GRID Maps 

In CoMFA, a set of 3D data is represented as only one column in the resulting data- 
base table, the number displayed in each cell being roughly proportional to the vol- 
ume of that compound. The actual energy values at each grid point in space remain 
hidden in the software. 

In our analysis, the GRID maps were compiled into a table in RS/l, each column 
representing a point in space, and each row a compound in the test set, generating 
a 36 row by 15625 column table. The x, y, z coordinates of the GRID points were 
written as the column titles of this table. The column titles are the means to collaps- 
ing the dimensionality of the GRID block, removing redundant information, and re- 
generating the original GRID later in the analysis for the display of results. The neg- 
ative energy values generaly ranged from 0 to -9, but the positive values from 0 to 
+50.0 (the cut-off value is set by GRID). As extraction of PLS components is scale- 
dependant, this would unduly bias the analysis towards the steric terms [29]. This 
is because each column in the PLS analysis is usually centered upon the mean (mean 
subtracted from every value), and a greater range associated with the repulsive ener- 
gies would bias the position of centering, and hence, PLS component extraction. We, 
therefore, scaled all positive energies by 12.5, so they would only cover the range 0 
to +4.0. CoMFA also gives the opportunity to change the default cut-off value of 
the steric repulsive energies, and this is recommended. 

To analyze the information content of our RS/1 map data table, a table was con- 
structed showing the distribution of column/GRID point ranges (Table 2). Analysis 
of this distribution table demonstrated that the compiled GRID map data table con- 
tained many GRID points/columns at which the probe showed little or no variation 
in interaction energy across the set of test compounds. This was because of the fol- 
lowing: 

- a very large grid was used, therefore, many grid points were so far away from all 
the molecules that the interaction energy between the probe and all molecules was 
zero or nearly zero kcal/mol. 

- common parts of the molecule provide a constant interaction with the probe. 
- as part of the molecular volume is common to the whole set, there are regions 

of space where the probe is inside the van der Waals surface of the whole set, so 
interaction energies were constant at + 4.0 (after scaling). 

Inclusion of these redundant columns would grossly affect the chance of extract- 
ing a useful PLS model. A table was constructed in RS/1 that was a subset of the 
15625 master table that contained columns/GRID points where the range of energy 
values (Em,, -Emin) was greater than 0.2 kcal/mol, generating a 1842 column table. 
This cut-off was arbitrary, and we could have equally used a higher cut-off, e.g. in 
the 0.3 to 0.4 kcal/mol range without losing too much x-block information. Thus, 
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Table 2. Distribution of the interaction energy ranges between the hydroxyl probe and the 36 compounds 
at each GRID point in space, which are each columns in the compiled RS/1 table. 

Range Intervals (Em,, - Emin in each column) 
kcal/mol in the interval 

Number of colurnns/GRID points with range 

0 up to 0.1 
0.1 up to 0.2 
0.2 up to 0.3 
0.3 up to 0.4 
0.4 up to 0.5 
0.5 up to 1.0 
1.0 up to 1.5 
1.5 up to 2.0 
2.0 up to 3.0 
3.0 up to 4.0 
4.0 up to 5.0 
5.0 up to 6.0 
6.0 up to 7.0 
7.0 up to 8.0 
8.0 up to 9.0 
9.0 up to 10.0 

Total 

12818 
965 
196 
94 
96 

427 
193 
141 
165 
66 

146 
172 
81 
42 
16 
7 

15 625 

only around 10% of the data contained potentially useful information. This column 
filtering is similar to the MINIMUM - SIGMA option in CoMFA, which ignores 
columns with a standard deviation smaller than a user defined cut-off. 

2.2.2.5 Inclusion of Macroscopic Descriptors with 3D Field Data 

We wanted to include the macroscopic descriptors CLOGP and CMR with the GRID 
information in the analysis. GRID (and CoMFA) only considers the enthalpic com- 
ponent in drug-receptor interactions. GLOGP and CMR are calculations of log P 
(log of the octanol/water position coefficient) and the molecular refractivity respec- 
tively, and are obtained from the MEDCHEM software [37]. Molecular refractivity 
describes molecular volume essentially. The importance of log P is that it can be 
employed to model the large entropic component for drug-receptor interaction. One 
of the main contributions to the free energy of partitioning of lipophilic compounds 
from water to a non-polar receptor phase, is the favourable gain in entropy [31]. This 
arises because a lipophilic solute in water disrupts the random hydrogen bonding net- 
work in bulk water, and causes the ordering of water molecules around the van der 
Waals surface of the solute. On partitioning out of water, the random hydrogen bon- 
ding network can reform, which is an entropically favourable process. 

CLOGP and CMR were added to the data table with the activity data to generate 
a 1845 column by 36 row data table for analysis. 
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2.2.3 Statistical Analysis 

The use of so many variables in a regression analysis dictates the use of a multivariate 
statistical technique, and partial least squares is the technique of choice for 3D 
QSAR analyses. The partial least squares method identifies summary variables in the 
x-descriptors that are correlated with y as much as possible. In our analysis of the 
calcium channel agonist data set, the PLS routine implemented in SIMCA (Version 
4.4) was employed. In the version available to us, up to a 60 compound by 5600 vari- 
able matrix could be analyzed. After each component was extracted, the significance 
of that component to the model, and the overall significance of the model was tested 
by cross-validation. Cross-validation tests the uncertainty in prediction of the derived 
model. Normally, the model is derived several times, and at each stage groups of 
compounds are left out. Overall, all compounds are left out only once. Each time 
the model is used to predict those compounds left out, and the difference between 
the observed and predicted y is used to generate a predictivity statistic, the prediction 
of the sum of squared deviation from the correlation, PRESS. 

PRESS = zi’( Yi -y i l2 

For each PLS component the PRESS/SS is calculated, where SS is the residual sum 
of squares of the previous dimension. When the PRESS/SS (total or for any dimen- 
sion) is smaller than a significance LIMIT (5% level), then the tested dimension is 
considered significant. 

In our analysis of the calcium channel agonist data set, using as default 7 groups 
with 36 cases approximates to leaving 5 out at a time. The “leaving-groups-out ap- 
proach” is recommended over the “leave-one-out approach”, unless the compounds 
have been selected for the training set by an experimental design procedure which 
would ensure no clustering. If the compounds are clustered, leaving out only one at 
a time can give an over optimistic view of the model predictivity. This is because the 
model is still rigid enough to give a good prediction for the compound left out [30]. 
Clustering can be examined by plotting the scores for successive PLS dimensions or 
the scores from a PCA analysis, against each other in a 2D plot. 

The use of a cross-validation technique to test significance of the model has many 
advantages over using distribution-based tests for significance such as F-tests. Cross- 
validation always tests the model for predictivity and as we wish to use the model 
to guide the design of new compounds, then this is preferable. Also the use of cross- 
validation does not impose any assumptions upon the distribution of errors in the 
model. Such assumptions may not be valid with this type of data [32]. Most statisti- 
cal tests of significance assume that errors follow a normal distribution pattern. 

PLS analysis is sensitive to the scaling of the x-block descriptors. Because the units 
of the GRID columns are identical, i.e. kcal/mol, the GRID columns were not scaled. 
Autoscaling, which sets the variance of each column to unity, would place undue 
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Table 3. PLS Regression Models for the Full 36 Compound Data-set. 

Block PLS l a  PLS 2 PLS 3 PLS 4 overall r2  
Variances 

CLOGP = 1.0 
act = 1 .O 

GRID = 1458 rz  = 0.42 n/s n/s n/s 0.42 
act = 1.0 

GRID = 1458 r2  = 0.42 n/s n/s n/s 0.42 
CLOGP = 1 
CMR = 1 
act = 1 

GRID = 1 r 2  = 0.60 r2  = 0.71 r2  = 0.77 r2  = 0.86 0.86 
CLOGP = 1 n/s 
CMR= 1 
act = 1 

r2  = 0.69 

n/s not significant by cross validation. 
a First PLS component 

weight on columns containing little variation in interaction energy over the test set 
of compounds. Autoscaling may have some advantage, if in the data-preprocessing 
all descriptors which are not relevant for the PLS model were discarded, for instance 
after GOLPE variable reduction. A consequence of not autoscaling the field data 
is that the importance of a particular point in space to the overall regression is 
weighted by the variance of energies observed at that particular point in space. 

Inclusion of one whole molecule descriptor such as CLOGP along with hundreds 
or thousands of columns of GRID information requires careful attention to scaling. 
Table 3 shows the effect of changing the relative scaling of the variance of the GRID 
block to CLOGP and CMR column variances. 

Inclusion of CLOGP and CMR with the 1842 columns of GRID information 
without blockscaling has no effect upon the model obtained when compared to the 
model extracted from just the GRID information alone. Although CLOGP alone de- 
scribes 60% of the y-block variation, without blockscaling, the variable does not 
contribute significantly to the model. But when the GRID block variance is scaled 
to give the total variance of all columns as 1 .O, the same as the CLOGP column, the 
overall model now accounts for 86% of the activity data in 4 PLS components. This 
shows that in this data set where lipophilicity is known to be important in controlling 
the observed inotropic potency, the best PLS model can only be identified after the 
appropriate scaling. A similar approach has recently been employed by Silipo [33], 
McFarland [34], and Hansch [35] for the inclusion of macroscopic descriptors with 
CoMFA data. The scaled model described the data set more adequately than using 
either GRID information or the bulk descriptors separately. Kim [36] has demon- 
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strated that, in some cases, lipophilic effects can be parameterized directly from the 
molecular field of CoMFA. But for this data set where lipophilicity is known to be 
important in controlling biological activity, the best model can only be extracted by 
explicitly including the macroscopic descriptors CLOGP and CMR with the GRID 
data with appropriate block-scaling. Blockscaling is available in CoMFA, it is the de- 
fault option when 3D field data is included in an analysis. This scaling is applied 
to the electrostatic block and steric block, and to any macroscopic descriptors in- 
cluded, so each has an equal chance of contributing to the model. 

2.2.3.1 Results of the Analysis 

The results of the PLS analysis most often used to interpret 3D QSAR analyses, is 
a regression equation, where biological activity is expressed as the sum of contribu- 
tions from every variable in the model. The size of the coefficient for each variable 
underlies it’s importance in describing activity, although the original variance of that 
variable also modulates the coefficient as previously discussed. As each variable rep- 
resents variation in interaction energies at a defined point in 3D space, the regression 

Figure 4. Regression map showing the overall 4 component PLS model for the calcium channel data set. 
Red regions (positive coefficients) are favourable for steric bulk and unfavourable for electrostatic/hydro- 
gen bonding interactions. Blue regions (negative coefficients) are favourable for electrostatic interac- 
tions/hydrogen bonding interactions and unfavourable regions to place steric bulk. The map is displayed 
over the structures of the benzyl and p-toluene sulphonyl substituents, representatives of the most and 
least active compounds, respectively. 
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coefficients can be mapped back onto the initial x, y, z coordinates of the variables, 
generating the 3D regression map. In CoMFA, the default display is actually the co- 
efficient multiplied by the standard deviation of energies at that point in space, to 
overcome the modulating effect of the columns variance on PLS extraction. This, 
with a plot of y predicted vs y observed is usually the basis of most CoMFA inter- 
pretation published. One usually looks for how compounds showing high and low 
biological activity, and not outliers on the y vs ypred plot, interact with the regres- 
sion maps. The contribution of a particular grid point to activity is calculated from 
the product of the regression coefficient and the interaction energy between the pro- 
be and target molecule at that point. Interpretation of the electrostatic field regres- 
sion maps, therefore, requires consideration of the sign of the charge on the probe. 
So in a CoMFA analysis, taking a methyl probe with + 1 charge as an example, the 
more positive the y descriptor, the more active the compounds. Highly active com- 
pounds should be those that have: 

- a negative charge near regions of negative electrostatic regression mapping, since 
a negative coefficient multiplied by a favourable negative interaction energy 
equates to an increase in y,  

- a positive charge near regions of positive regression mapping, 
- steric bulk in regions of positive steric mapping, 
- no steric bulk in regions of negative steric mapping. 

The opposing arguments apply to poorly active compounds, but far more infor- 
mation can be extracted from the PLS analysis. One of the problems in interpreting 
the regression maps is identifying how many of the mapped regions contain useful 
information that can be interpreted. The questions are how many, and which, are the 
mapped regions which offer independent and useful information, and which of the 
mapped regions contain common information. This problem becomes complicated 
when more than one 3D field source is used in combination as in CoMFA, where 
the electrostatic and steric information are shown on two separate maps. 

The number of components in the PLS model, in fact, provides this information. 
For instance a 4 component PLS model indicates that the statistical analysis has 
identified 4 underlying unique properties of the molecules in the data set, which are 
important for describing biological activity. Each PLS component identifies a sepa- 
rate “underlying property” that is important in determining biological activity. The 
x-components are extracted so each is orthogonal, i.e. are not correlated to those pre- 
viously extracted. Variables that are weighted heavily on a particular component are 
important in defining that component. Other variables that are also weighted heavily 
on that component contain similar information. One can construct 3D weightings 
maps showing how each of the grid variables are weighted onto each PLS compo- 
nent, similar to the construction of regression maps. Therefore, all mapped regions 
that are weighted onto a single PLS component should have a single statistical/physi- 
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cal interpretation. The interpretation of the PLS weightings maps was aided by 
examining them against a plot of the scores, commonly denoted as “t” in SIMCA 
terminology, of the compounds in the PLS x component vs the scores of y on the 
PLS y component (u) .  The x and y scores for a particular component are the “pro- 
jections” of each compound in the data set onto the new physical summary descrip- 
tors extracted. The t vs u plot shows the “inner relationship”, or inner correlation 
between the x-PLS component and y-PLS component for a particular dimension. 
The weightings maps and scores plots contain complementary information. Com- 
pounds that appear at the positive and negative ends of the t /u axis, are those whose 
GRID fields are most important in defining that component. The weightings maps 
were displayed over the structures of the two compounds with the most negative t /u 
and the most positive t /u  values, i.e. compounds that are the most influential in 
defining that component. 

These methods were applied to the analysis of the 4 component PLS model ex- 
tracted from our calcium channel data set. The overall regression map and y vs y,,red 

plot are shown in Figs. 4 and 5 ,  respectively. The regression map is overlaid on the 
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Figure 5. A plot of y predicted vs y observed for the overall 4 component model. 
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structures R = benzyl (13) and R = p-toluenesulphonyl (28), representing a highly 
active and poorly active compound. In this GRID analysis with a negatively charged 
alkyl hydroxyl probe, highly active compounds are those that have: 

negative charge or hydrogen bonding groups near regions of negative regression 
coefficient/weighting, 
steric bulk in regions of positive regression coefficient/weighting. 

The opposing arguments apply to weakly active compounds. The interpretation 
was aided by examining the weightings maps together with t vs u plots for each PLS 
component. PLS 1 (the first PLS component) described 61 9'0 of the variance in bio- 
logical activity, and 84% of the variance of the CLOGP descriptor and 67% of CMR 
weight onto this component. Fig. 6 shows the weightings of each GRID point that 
are also loaded onto PLS 1, which was interpreted in conjunction with a plot of t 1 vs 
u l  (Fig. 7). The mapped GRID regions, therefore, showed points in space which are 

Figure 6. Map showing the weightings of the original grid points onto PLS 1. The positive and negative 
weightings are displayed at the same contouring level. This component is dominated by positive 
weightings, at this contouring level no negative weightings are observed. Also 84% of the variance of 
CLOGP and 67% of CMR weightings are loaded onto this component. The positive weighting regions, 
therefore, indicate where it is best to place lipophilicity. The weightings map is displayed over the struc- 
tures of the benzyl substituent and the methoxy substituent, compounds that define the positive and nega- 
tive ends of the inner relation for PLS 1. see Fie. 7 .  
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Figure 7. Plot of t 1 vs u 1, the inner correlation between the x-PLS component extracted and that propor- 
tion of y described for the first PLS dimension. 

favourably occupied by a bulky lipophilic substituent. PLS 1 is dominated by regions 
of positive coefficients, regions in space from which the -OH probe is repelled, cor- 
relating with high biological activity. 

Fig. 8 shows the weightings of GRID points onto PLS 2, and Fig. 9 a plot of t 2  
vs u2. The remaining 11% of the CLOGP and 30% of CMR that are loaded onto 
this component is the CMR term with a negative weighting. This component shows 
that too large a substituent can be detrimental to activity and negative PLS weights 
dominate this component. 

Fig. 10 shows the weightings of GRID points onto PLS 3, and Fig. 11 a plot of 
t 3  vs u3.  This shows that benzyl substituents and their isosteres have favourable posi- 
tive contours around the region of space they occupy, while the region of the aromat- 
ic ring of phenyl and phenethyl isosteres is filled with negative contours, which is 
unfavourable for this steric interaction. PLS 4 which describes only a further 7 %  of 
y (not shown) shows that benzyl substituents and phenethyl isosteres containing p -  
substituents appear to have less of an unfavourable effect upon biological activity. 
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Published CoMFA analyses so far have not been analyzed by inspecting individual 
PLS weightings maps with corresponding scores plots. But this information can be 
obtained from CoMFA, though scores plots are difficult to generate in CoMFA. 

Inspection of weightings maps in 3D QSAR can be highly illuminating, especially 
when more than one field of information is being used in the analysis, for instance, 
as in CoMFA where the electrostatic and steric forces are separated. For any one PLS 
component, the electrostatic weightings map and steric weightings maps must have 
a common interpretation, as they show electrostatic and steric descriptors that are 
weighted onto the same PLS component. 

2.2.3.2 Testing the Model 

The only way to truly test any QSAR model is to use it to predict the activities of 
compounds that have not been included in deducing the model. The validation pro- 
cedure used in PLS does test the model by leaving compounds out and predicting 
their activities, so one could argue that the model has been sufficiently tested. How- 
ever, cross-validated predictions are not the same as true predictions and this is be- 
cause, in deriving the PLS model, the properties of all the training set compounds 
supervise the PLS component extraction process. In 3D QSAR this also includes the 
initial preselection of variables based on minimum standard deviation, and variable 
reduction as achieved with GOLPE. It is possible that when the true predictivity of 
a model is tested, then the optimum number of components in the true prediction 
may be different from the optimum number derived by cross-validation on the train- 
ing set [30]. 

As an example, we divided the calcium channel agonist data set into two groups, 
an 18 compound training set and an 18 compound test set. In this particular subset, 
we found that 1536 points in space showed a range >0.2 kcal/mol, and these were 
used with CLOGP and CMR in a PLS analysis. PLS analysis extracted 2 significant 
components. Table 4 shows the statistics of the model prediction of the 18 test set 
compounds for 1 to 4 components. 

Table 4. Predictivity of an 18 compound training subset in predicting remaining 18 compounds. 

Model dimensionality Predicted vs observed r2  Predicted vs observed r2  
36 compounds training 
set+test set only 

18 compounds test set 

1 PLS component 
2 PLS components 
3 PLS components 
4 PLS components 
regression model in 
log P alone 

0.58 
0.71 
0.74 
0.76 
0.60 

0.35 
0.54 
0.54 
0.54 
0.40 
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Figure9. Plot of t2  vs u2,  the inner correlation for the 2nd PLS dimension. 

2.2.4 Conclusions 

The CoMFA and 3D QSAR methods have at last brought together molecular model- 
ing and traditional QSAR approaches. One of the problems with molecular model- 
ing has always been that more data would always be generated than could be quanti- 
tatively analyzed, and so often the data was interpreted in only a semi-quantitative 
way. One of the problems of QSAR methods has always been the lack of suitable 
and relevant descriptors. Now these 3D methods are paving the way forward. The 
“glue” that binds these two previously separate disciplines together is of course PLS. 
Although these techniques are easy to perform‘(especia1ly in CoMFA) and the main 
output is pictorial, they are in fact advanced statistical analyses, and are prone to 
the same pitfalls and errors as are all statistical analyses. Of particular importance, 
is the choice of the training set of compounds on which the model was developed 
in the first place, the detection of outliers in x space, y space and in the x-y correla- 
tion, and their careful use in prediction. 
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Figure 8. Map showing the weightings of the original grid points onto PLS 2. The map is displayed over 
the structures of the cyclohexylmethyl compound and the p-toluenesulphonyl substituted compound, com- 
pounds that define the positive and negative ends of PLS 2 inner correlation as shown in t 2  vs u 2  plot. 

Figure 10. Map showing the weightings of the original grid points onto PLS 3. The map is displayed over 
the structures of compound 21 and compound 28, which define the positive and negative ends of PLS 3 
inner correlation as shown in t 3 vs u 3 plot, respectively. 
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2.3 GOLPE: Philosophy and Applications in 3D QSAR 

Gabriele Cruciani and Sergio Clementi 

Abbreviations 

ACC Auto and Cross Covariance 
ACE Alternating Conditional Expectations 
APOLLO Automated PharmacOphore Location Through Ligand Overlap 
CoMFA Comparative Molecular Field Analysis 
CoMPA 
FFD Fractional Fractorial Design 
GOLPE 
GPb Glycogen Phosphorylase b 
HINT Hydrophobic INTeractions 
LOO Leave-One-Out 
PCA Principal Component Analysis 
PCS Principal Components 
PLS Partial Least Squares 
PRESS Predictive REsidual Sum of Squares 
QSAR Quantitative Structure-Activity Relationship 
SDEP Standard Deviation of Error of Predictions 
SIMCA Soft Independent Modeling of Class Analogy 
SSY Sum of Squares of response value 

Comparison of Molecular Potentials and Analysis 

Generating Optimal Linear PLS Estimations 

2.3.1 Introduction 

Quite a number of chapters in the first two volumes of the series Methods and Prin- 
ciples in Medicinal Chemistry (VCH, Weinheim) illustrate several aspects which we 
consider appropriate for introducing a detailed account of Generating Optimal Lin- 
ear PLS Estimations (GOLPE) [I]. In particular we wish to draw the reader’s atten- 
tion to the chapters on Principal Component Analysis (PCA) [2], Partial Least 
Squares (PLS) [4], Design IS], Comparative Molecular Field Analysis (CoMFA) [6], 
three-dimensional quantitative structure-activity relationships (3D QSAR) [6] and 
others. GOLPE is, in fact, a chemometric procedure, which is based on an advanced 
PLS method, aimed at obtaining models whith highly reliable predictivity by means 
of variable selection criteria. The procedure, developed by our group in Perugia over 
a period of five years, is oriented towards the research requirements of 3D QSAR, 
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and is implemented in a computer program, which complements rather then rivals 
methods such as SIMCA and CoMFA. 

In a brief introduction to this chapter we wish to state how we believe GOLPE 
should rank among the different chemometric tools used in QSAR, outline the phi- 
losophy which led us to develop such a procedure, and give a number of examples 
of some of the possible applications in conjunction with some comments and criti- 
cisms that have been raised so far. 

GOLPE is one of the new chemometric tools that have been suggested for 3D 
QSAR modeling, and in our opinions, falls completely within the QSAR tradition 
started by Hansch some thirty years ago. In fact the Hansch approach, expanding 
Hammett and Taft, allowed analogy models to be established which used “con- 
stants” for the varying fragments (substituents, amino acids, etc.) around a common 
skeleton framework. We have always considered the Hansch approach as being high- 
ly appropriate within this context. Chemometricians, especially those with a back- 
ground in physical organic chemistry, have suggested that there should be an update 
of the chemometric tools used in 3D-QSAR modeling. That is, to use PLS instead 
of ordinary multiple regression, design criteria in latent variables (principal proper- 
ties), to select the least number of the most informative structures, to use validated 
models and to avoid using indicator variables. A review on some of these topics can 
be found in Vol. 2 of the present series [7]. 

However, the traditional approach may be considered to have some limitations. 
Besides the obvious requirements of the additional thermodynamic relationship, 
where only series of compounds with a common skeleton framework should be con- 
sidered, conformational equilibria are not taken into account, and, in general, infor- 
mation on the 3D-structure is not employed at all. 

On the other hand, molecular modeling techniques have become extremely popu- 
lar, especially because of increasing computation. These methods, are aimed at cal- 
culating the energy of a number of conformations for each molecule at different lev- 
els of approximation, and then to study the possible interactions between the mole- 
cule and its binding site. It became possible from this approach to describe each mol- 
eculekonformation by a series of theoretically computed parameters, some of which 
are 3D in nature. 

A 3D QSAR is, therefore strictly speaking, a QSAR relationship in which the 
structural descriptors have 3D nature: several compounds are studied at the same 
time within the framework of a regression model, with the objective of ascertaining 
which structural features significantly affect the biological response. Notably, these 
3D descriptors are usually derived from the different modeling techniques. 

At present, the best example of state-of-the-art 3D QSAR is given by the CoMFA 
procedure [8]. Molecules are first represented by a long vector of interaction energies 
with a probe situated at regular intervals in three dimensions, and subsequently 
aligned according to some fitting criterion. The chemometric method used is PLS, 
because of the largely greater number of variables (descriptors) over the number of 
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objects (compounds), and the PLS models are validated by cross-validation tech- 
niques. The results are shown in terms of coefficients of a pseudo-regression equa- 
tion with the original variables, here as locations in the 3D space, and are represented 
by 3D graphics. 

Once again, it seems likely that the original idea of describing molecules in 3D by 
their interaction energies with different probes might be improved in the future by 
the application of more suitable chemometric strategies and/or newly developed 
tools. 

2.3.1.1 3D Molecular Descriptors and Chemometric Tools 

When a probe is moved around in a rectangular box of grid points and through a 
target molecule, it produces a three-dimensional box of interaction fields. Depending 
on the computational procedure used, these fields may represent total interaction 
energies (GRID) [9], steric or electrostatic fields (CoMFA) [8 ] ,  molecular electrostat- 
ic potential fields (CoMPA) [ 101, hydrophobic interactions (HINT) [ 1 I], electron 
densities etc. These fields may be used as point descriptors of the 3D molecular struc- 
ture and physico-chemical behaviour of the target molecule. Moreover, a graphical 
analysis allows a simple interpretation of the fields such as the visualization of the 
regions where the probe interacts most strongly with the target either by attraction 
or repulsion. 

However, problems arise when a number of molecules are studied at the same time. 
In this case, a simple graphics analysis and visualization is not sufficient to provide 
the necessary information in order to understand the observed trend in the biological 
properties of a series of compounds. In such a case, appropriate chemometric tools 
may be extremely useful in order to condense and extract hidden information. 

Principal Component Analysis (PCA) and Partial Least Squares (PLS) are statisti- 
cal multivariate techniques for extracting and rationalizing the maximum amount of 
common information from a multivariate description of a biological system. 

PCA is a projection method that provides an approximation of a matrix X ,  in this 
case the descriptor matrix in terms of the product of two smaller matrices T and P‘ 
(Eq. (1)). The matrices T and P‘ extract the essential information and patterns from 
X .  By plotting the columns of T, a picture of the dominant “object pattern” of X 
is obtained and, by analogy, plotting the rows of P‘ shows the complementary “vari- 
able pattern”. The number of statistically significant dimensions for the PCA model 
is determined by cross-validation as implemented in the NIPALS algorithm [12]. 

The Principal Components (PCs) are linear combinations of the original vari- 
ables, and in the 3D QSAR context can be regarded as the important 3D regions dis- 
tinguishing between the characterized subsystems. Moreover, PCs are orthogonal to 
each other, so that they represent independent effects. Examples on how to use PCA 
in 3D QSAR studies are given in Sec. 2.3.3. However, PCA is not a tool for handling 
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relationships between two different blocks of variables, and the relationship between 
the biological activity and the structural descriptors, described here in terms of 3D 
fields, must be modeled by PLS. 

U = B T + H  (3) 

Y = Y+BTQ’+F* (4) 

The two-block PLS model relates matrix X (chemical description) to matrix Y (bi- 
ological activities) with the purpose of predicting Y from X .  The X-block model is 
the same as in PCA. The Y-block matrix is modeled in a similar manner (Eq. (2)), 
and the maximum correlation between the X and Y block models is obtained using 
a PLS-weight matrix W’ [12]. The relationship between U and T, the “inner relation- 
ship”, can therefore be modeled by Eq. (3), where B is a diagonal matrix and H is 
a residual matrix. In the case of a single biological response, Eqs. (2) and (3) are 
substituted by Eq. (4). Similarly to PCA, the statistical significance for each model 
dimension is determined by cross-validation [ 12, 131. 

Predictions of y values for new compounds are obtained from the data of these 
compounds inserted into the PLS model in the sequence: x .+ t -+ u + y .  As the prin- 
cipal components in PCA, the PLS latent variables are linear combinations of all 
the original variables. In 3D QSAR, these PLS latent variables take into account the 
important 3D regions which results in a better model for the relationship between 
the X and Y matrices. Moreover, in PLS it is more appropriate to study the PLS- 
weights as the “variable pattern” instead of the P‘ loadings used in PCA. 

2.3.1.2 Unfolding Three-way Matrices 

Ordinary PCA and PLS methods require a two-way table of objects and variables. 
An object is often a physically distinguishable entity, such as target molecule or a 
probe, while a variable represents the results of an observation, or a measurement, 
or a computation undertaken with this object. However, 3D QSAR methods produce 
three-way matrices of molecular descriptors. In order to transform three-way matri- 
ces into a two-way table, an unfolding procedure and a simple reorganization of the 
data is required. The unfolding procedure is a method for transforming a multi-way 
matrix into a one-dimensional vector of numbers (Fig. l), while a data reorgani- 
zation is a procedure for organizing one-dimensional vectors into a two-way data 
table. 
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Figure 1. The 
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unfolding procedure for a three-dimensional data array X .  

The interaction energies between a target molecule and a probe produced by tradi- 
tional 3D QSAR methods may be viewed as descriptors of the probe, or of target 
behavior. The twofold interpretation of descriptors leads to different methods for 
producing the two-way data reorganization. Usually a 3D descriptor matrix for a sin- 
gle molecule is organized as a three-way table where the rows, the columns and the 
sheets are variables; the table itself represents the object and this three-way table can 
be easily rearranged as a one-dimensional vector (Fig. 1). 

In the presence of several molecules the procedure should be repeated for all the 
molecules and the vectors of variables assembled together in a two-way table in order 
to obtain a target matrix [14]. Thus, the target matrix will contain the interaction 
energies between all the molecules and one specific interacting group. 

With only one target molecule, many different computations may result by varying 
the probe, and, in this case, a probe matrix is obtained [14]. The probe matrix con- 
tains information about the interactions of different chemical groups with the same 
target molecule. With such a problem, multivariate statistics may be used to select 
the most suitable probes in order to design selective target ligands. 

Target matrices can be combined, thus, obtaining only one larger matrix. In the 
CoMFA procedure two probes are employed as blocks of descriptors and the result- 
ing two target matrices are combined to form a unique matrix containing the same 
number of objects and twice the number of variables. Similarly, by using GRID, sev- 
eral probe matrices can be combined by keeping the number of variables constant 
and increasing the number of objects. Clearly, the choice of using either the target 
or the probe or combined matrices for individual studies depends on what is to be 
deduced from the data, and is closely related with the problem in question. 

2.3.2 The GOLPE Philosophy 

Since data matrices in 3D QSAR are characterized by a huge number of variables 
(usually thousands) and a relatively low number of molecules (usually tens), the re- 
quirements of an appropriate chemometric tool should involve a sound validation 
method and a reliable variable selection procedure. In fact, nowadays, it is clear that 
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predictions should be made only on points excluded from the modeling phase, and 
that when there are many variables, keeping less important variables in the model 
can be detrimental to its predictivity. A thorough discussion on validation and vari- 
able selection can be found elsewhere [7], and is only briefly illustrated here. 

The standard reference for measuring the predictive power of a model with the giv- 
en complexity of the data set in cross-validation is PRESS (Eq. (5 ) ) ,  which is defined 
as the total sum of squares of predictions minus observation, and therefore, contains 
one term for each molecule. 

Q 2 =  1-PRESS/SSY= R k  (6)  

If the PRESS value is transformed into a dimensionless term by relating it to the 
initial sum of squares (Eq. (6)) one obtains Q2, i.e. the complement to one of the 
fraction of unexplained variance over the total variance. However, for purposes of 
the end-user, the square root of PRESS/N, which we suggested should be called 
SDEP [ 1 5 ]  (Eq. (7)), seems to be more directly related to the uncertainty of the pre- 
dictions, since it has the same units as the actual y values. Either PRESS, Q2 ,  or 
SDEP can be used to check the predictivity of regression models, including PLS. 

However, the meaning of any statistical parameter depends on the way it is com- 
puted. In our case, for instance, the parameters depend upon the way points are held 
out in the cross-validation phase. We have shown that the SDEP parameter decreases 
on increasing the number of cross-validation groups [16]. Consequently, if one 
decides to use the maximum number of groups possible, i.e. with a leave-one-out 
(LOO) procedure, a much better result (a higher predictivity) will always be obtained 
than by using a smaller number of groups. Therefore, although a LOO procedure is 
computationally simpler and faster, we should be aware that it gives an overoptimis- 
tic estimation of predictivity, either simply on numerical grounds, or because of the 
clusters of structures we often find in a 3D problem because of the discrete nature 
of organic molecular systems. Furthermore, it has also been stated recently that the 
use of groups is better than a LOO procedure, also for theoretical reasons [17]. 

Clearly, the way in which one decides to compute the statistics depends on how 
the results are to be presented. Usually, one should be pleased when reliable estima- 
tions of the model parameters are obtained, so that reliable uncertainties are ob- 
tained for future predictions. Quite often, however, theoreticians seem to be more 
concerned about illustrating how good their models are solely in terms of R 2 ,  R &  
or Q2. 

The GOLPE procedure was developed in order to improve as much as possible the 
reliability of future predictions. Consequently, even if the method is aimed at finding 
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Figure 2. Validation Scheme. 

the highest Q 2 ,  or the lowest SDEP, in principle, one should not expect that 
GOLPE will give, as such, Q2 values which are higher than those derived by other 
chemometric techniques. If in the eventuality it does so, then this is due to the vari- 
able selection procedure. In principle, the statistics produced by GOLPE are less op- 
timistic and, seem to be closer to the experimental values obtained from QSAR stud- 
ies and is, thus, a true reflection of the validity of the model. 

We should also draw attention to the fact that no validation procedure can give 
an objective and absolute criterion for estimating the validity of a model. In fact, 
validation procedures work either in terms of self-consistency of a data set or on an 
external test set, and the same parameters (PRESS, SDEP, etc.) can be used for any 
of these ways of formulating the problem. In the former case, one implicitly assigns 
to the whole model the predictivity of a number of reduced models derived from the 
whole model. In the latter case, unless one has a designed data set which automati- 
cally is defined as the test set of all the molecules outside the design data set, results 
will depend upon the selection of the test set, and there is no unique way of determin- 
ing this selection. This problem is highlighted in Fig. 2. When data are grouped, as 
in QSAR problems, a LOO procedure leads to an overpredictivity. 

Accordingly, in the GOLPE procedure we proposed to use a smaller number of 
groups (e.g. 5 )  instead of a LOO procedure, but we proposed that the group forma- 
tions were repeated several times e.g. 100) in a random way in order to avoid the re- 
sults being dependent on one single computational grouping. Consequently, SDEP 
is defined as the mean value of 100 individual “sdep” values, each obtained on 
predicting one fifth of the points at a time, with the five groups being randomly 
formed 100 times from the data set. 
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2.3.2.1 Variable Selection 

Although the need for variable selection has increased sharply over the last few years 
and several different strategies have been suggested [7], the method implemented in 
GOLPE appears to be the only one which is really aimed at evaluating the effect of 
each individual variable on model predictivity. The other methods of selecting vari- 
ables are based on their importance in the validated modeis. 

It is impossible to check the predictivity of all possible combinations of variables 
and we have selected the most appropriate approximation. Finding an efficient way 
of selecting the best combination of vairables is a typical design problem and the de- 
sign matrices used in fractional factorial designs (FFDs) provide a suitable tool [IS]. 
The strategy was based on using combinations of variables according to a FFD where 
each of the two levels (plus and minus) corresponds to the presence and absence of 
the variable. The design matrix proposed to test the prediction ability of these reduced 
models involve a different combination of variables which include only the “plus” and 
exclude only the “minus” variables. For each such combination, the prediction ability 
of the corresponding PLS model can be evaluated by means of SDEP (Fig. 3). 

In order to estimate the significance of a single variable effect on predictivity, a 
number of dummy (or ghost) variables were introduced into the design matrix. 

/ 

. . . . . 
\ . 

S 

- sdep 

* ~3 sdep SDWm - sdep b ;> 
wtiables 

Figure 3. Variable selection procedure. For each variable combination, suggested by the design matrix, the 
model predictivity is evaluated dividing the objects set into five groups and repeating the formation of 
groups several times. 
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It is worth mentioning that these dummy variables are not numbers: we define dum- 
my variables as some specific columns in the design matrix, say one over three or 
four. Since they are not true variables, the dummies are not used in the combinations 
of variables which evaluate the predictivity of each row of the design matrix. How- 
ever, they are used to compute the effects on predictivity for a ghost variable, so that 
the positive or the negative effects of true individual variables can be ascertained on 
the basis of a Student-t tailoring. 

The introduction of these dummy variables into the design matrix allows for a 
comparison between the effect of a true variable and the average effect of the dum- 
mies. If we assume that the variable selection works in an iterative manner, we can 
always retain the variables which have a positive effect on predictivity of the model, 
while variables with a negative effect can be excluded. This facilitates an increase in 
the stability of the results: the reduction of the number of variables leads to an in- 
crease in the degrees of freedom and, therefore, to a decrease of the critical value 
of the Student4 function besides a better control of variable combinations. The iter- 
ative process stops when no more variables are fixed or excluded. 

However, as the reliable strategy just outlined would have been impractical in 3D 
QSAR problems, we, therefore, had to find from the beginning an alternative strategy 
providing a reduced number of variables with which we could then apply this fixing/ 
excluding procedure. The most efficient way was to select variables in the loading 
space according to a D-optimal design for the purpose of this preliminary selection. 
The information is largely redundant for many of the variables and D-optimality 
appears to be an appropriate criterion for selecting variables in such a way that most 
of the redundant information is discarded while still retaining sufficient collinearity 
as required by the PLS algorithm. 

Consequently, the first step of the GOLPE procedure in 3D QSAR is a normal 
linear PLS model with all variables, followed by the variable preselection according 
to a D-optimal design in the loading space. The selection results depend upon the 
dimensionality of the PLS model and are more stable for low PLS dimensions. 
Moreover, it is recommended that the D-optimality criterion is used in an iterative 
manner, so that no less than a half of the variables are kept for each run. The 
preselection phase should be stopped when the predictivity of the reduced model 
changes significantly from the previous run: this indicates that we have finished 
discarding redundant information before beginning to discard important informa- 
tion. 

The GOLPE procedure appears, therefore, to be a powerful and efficient tool for 
variable selection. However, we should note that it can only be properly applied pro- 
vided that the regression model on the whole data set has at least some predictive 
ability in the first whole model. If this is not the case, variable selection can still be 
undertaken provided that there is sufficient structure in the X data, implying that 
the dimensionality of the problem is lower than the number of variables [l]. 
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2.3.3 Applications 

Because of these peculiar choices in developing GOLPE, both in the validation ap- 
proach and in the variable selection procedure, it seems to be appropriately designed 
to handle 3D QSAR matrices. In particular, it appears that it can be used profitably 
in CoMFA studies, not as an alternative method, but as an appropriate tool for ex- 
ploring the structural space and to ascertain the grid locations which exert the great- 
est effect on the biological response and which can be used in connection with the 
QSARKoMFA module of SYBYL. [NOTE: A UNIX version of the GOLPE pack- 
age for the SGI environment was developed in C at  M.I.A. (Perugia) by Massimo 
Baroni and is distributed in collaborative agreement with Tripos.] 

In principle, however, GOLPE could be used with any group of molecular 3D 
descriptors, which have been either calculated in-house or produced by commercially 
available software. Among them it seems that GRID, developed by Goodford [9], is 
particularly suitable either for the variety of probes it offers and for the reliability 
of its force field. On the other hand, the search for extremely precise theoretical 
calculations in terms of charges and energies, say, for instance, by molecular dynam- 
ics or ab initio methods, appears to be worthless in this context because of the over- 
whelming number of approximations employed in chemometrics. At present, the po- 
tential of combining GRID, CoMFA and GOLPE seems to provide the best possible 
working medium. 

Before illustrating a few examples on how to use GOLPE, a brief discussion on 
data pretreatment and other parameters that can be selected in the procedure seems 
appropriate, since different choices lead to different results. Besides data scaling, 
results depend upon the alignment criterion, the cut-off values of the fields, the cut- 
off value of the standard deviation, the grid spacing, the number of PLS compo- 
nents, etc. We wish to state, however, that it is probably impossible, and perhaps not 
correct, to furnish a set of general rules which should always be used in 3D QSAR 
studies. We understand that this may be a requirement of end-users who apply 
chemometric tools merely in a procedural manner; we should, on the contrary, 
strongly support the use of chemometrics in a more active and interactive way for 
a better understanding of the problem under investigation. 

Data pretreatment constitutes one of the subjects under discussion: depending on 
the required sensitivity, the raw field or energy data can be used either as such (but 
this might prevent ranking of the importance of locations), or autoscaled (but this 
blows up irrelevant variables), or blockscaled [ 131 (this cannot, however, solve the 
problem of the relative importance of individual properties, such as log P, in an ob- 
jective manner). Either blockscaling and the standard CoMFA scaling are aimed at 
assigning equal importance initially to the different “logical” effects in the analysis. 
The results of the full paper from which example 3.3 has been taken [I91 suggest that 
the final variable selection should be performed on autoscaled data, whereas the D- 
optimal preselection should be performed on non-scaled data. 
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Grid spacing and contour plots merit a few more words. On decreasing the grid 
spacing the number of grid nodes, and, therefore, of variables increases dramatically, 
for instance, by a factor of eight from 1000 to 8000. It is generally accepted that the 
large collinearities between variables introduce considerable noise. On the contrary, 
in our experience, at least with GRID probes, on using the variable selection criteria 
suggested in GOLPE, a grid spacing of 1 Angstrom always gives better results than 
with 2 Angstroms. The final warning takes into account the stability of the regression 
coefficients. When the PLS loadings are transformed into the coefficients rotated 
back into the original variable space they may give rise to misleading interpretations, 
if they are not derived from autoscaled models, and if they change significantly, as 
they sometimes do, with model dimensionality. 

2.3.3.1 PCA on the Target Matrix 

The GRID force field and Principal Component Analysis (PCA) have been used in 
order to predict the interactions of small chemical groups with all 64 different sequenc- 
es of beta DNA [14]. In this example the target matrix contains 64 objects (the triplets) 
and 95 10 variables which represent the interaction energies between the amide multi- 
atom probe and each triplet, calculated at each grid point in the minor groove space. 

The amide probe can accept two hydrogen bonds at the carbonyl oxygen atom, and 
donate two hydrogen bonds from the NH, group. The probe’s ability to accept and 
donate hydrogen bonds at the same time allows it to define a high number of interac- 
tion sites with all of the 64 DNA triplets. GRID shows that the probe can interact 
in the minor groove forming hydrogen bonds with the 0-2  oxygen of thymine and 
cytosine, N-3 nitrogen of guanine and adenine, 0-4* oxygen of deoxyribose rings, 
0 - P  oxygen of phosphate groups and N-2 nitrogen of guanine. Moreover, many com- 
binations of two, three or four hydrogen bonds are possible at these sites according 
to the geometric and energetic characteristics of the triplets and of the probe. The 
aliphatic amide probe can, therefore, from multiple hydrogen bonds with each triplet 
giving high energies of interaction. This interaction flexibility renders it to be a high 
affinity ligand for all the DNA triplets. 

Principal Component Analysis revealed three components accounting for 77.4% 
of the total variance in the target matrix: they are related to three different regions 
of selectivity in the minor groove space. On plotting the loadings of the PCA in the 
real 3D space of the molecules it is possible to evaluate the contributions of each 
zone around the molecules in determining the differences between triplets. It should 
be emphasized that these regions are not necessarily the locations with the highest 
energy of interaction between the probe and the triplets, but the regions where the 
probe can best distinguish between the triplets. 

The score plot for the first two components is shown in Fig. 4. In this plot each 
point represents one DNA triplet. When the points are close to  each order the corre- 
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Figure4. Score plot for the model describing the interaction of the CONH, probe. The first PC 
distinguishes two main groups of triplets while the second PC separates the two previous groups into three 
subgroups. 

sponding triplets interact with the CONH, probe in a similar way, but where the 
points are apart their interaction energies are different, and the probe interacts in a 
more specific way with each individual triplet. 

Fig.4 shows that the triplets are clustered into two larger groups and five sub- 
groups by means of this probe. The first principal component (PC) distinguishes be- 
tween the two main groups, and these groups correspond to the two loading regions 
shown in Fig. 5. The probe can form multiple hydrogen bonds to triplets (right hand 
side of these score plot) from the larger region of Fig. 5 ,  but there are fewer interac- 
tions from the smaller region (left hand side of the score plot). For example, the 
amide probe interacts with GTG (right) in the larger region, but with GCG (left) in 
the smaller region of Fig. 5 ,  and, as mentioned above, this smaller region is less fa- 
vourable for ligand design, simply because it is small. In fact, the size of a PC region 
is always an important factor to be considered, because it is not easy to exploit small 
regions for selective ligand design. Moreover, the two regions are not spatially distant 
from each other, and so it may not be easy to design a ligand which can place the 
amide group in the exact place for an exact required orientation. 
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Figure 5. View of the minor groove space of TTCGGTT DNA heptuplet showing the selectivity regions 
defined by the first PC. 

The situation is quite different with the second principal component which sepa- 
rates the three subgroups of triplets in Fig. 4. In this case, the selectivity regions are 
well separated from each other, as shown in the loading plot of Fig. 6, and could well 
be employed for ligand design. 

2.3.3.2 PCA on the Probe Matrix 

In this example, the binding of 31 different probes to the TTCGGTT double-stranded 
base-pair sequence is investigated by GRID. The whole data array is represented by 
a probe matrix containing 31 objects (the probes) and 9510 variables (the interaction 
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Figure 6. The minor groove of TTCGGTT DNA showing the selectivity regions defined by the second PC 
of the model. 

energies calculated at each grid point in the minor groove of the TTCGGTT DNA 
heptuplet). 

Two significant Principal Components are extracted from the matrix according to 
the cross-validation technique. These components account for about 87% of the to- 
tal variance in the data. The score plot for the PC model is shown in Fig. 7, and from 
this plot it can be seen that the interaction of the different GRID probes with DNA 
may be classified into several distinct groups. 

The first PC shows that probes carrying a partial negative charge (such as number 
12; carboxy oxygen) are clustered to the right, while those with a partial positive 
charge (e.g. number 8, an NH2 cation) are to the left of the plot. This shows that 
the charge on the probe influences its interaction energy with DNA. A numerical 
analysis of the interaction energies show that all the probes to the left of Fig. 6 tend 
to interact more favourably with the DNA heptuplet, since they have higher negative 
energy values. 
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Figure7. Score plot for the model describing the interactions of 31 probes with one target molecule 
(TTCGGTT DNA heptuplet). 

The PCA Score Contribution (PCS) plots (Figs. 8 and 9) can improve the chemical 
interpretation of these findings. These plots are made by multiplying the PC loadings 
by the variable energy fields, and since the fields vary with the probe, the Score Con- 
tribution (PCS) plots are related to the type of probe employed. Fig. 8 shows the PCS 
plot for Probe 8 (sp2 amine NH2 cation) while Fig. 9 shows the PCS plot for Probe 
15 (oxygen of sulphate or sulphonamide). The 3D regions in the minor groove are 
not the regions with highest interaction energies, nor the regions with the highest 
loadings: they are the regions in which the probes best differentiate their interaction 
with the same DNA target molecule. 

The second PC shows that the carboxy (number 31) and the sulphone (number 14) 
probes are high leverage probes. PCS plots for the second PC shows that there are 
local regions in the minor groove space in which probes interact in different ways 
with DNA. The COO- Probe interacts strongly with particular base-pairs of the 
heptuplet and this preference is determined both by the chemical properties of the 
probe and by the geometric properties of the hydrogen bonding pattern. Numerical 
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Figure 8. PCA Score Contribution plot describing the selectivity regions for interactions between the 
TTCGGTT molecule and the sp2 amine NH, probe. 

analysis shows that the energy binding differences between the carboxy and sulphone 
probes in these zones is about 4 Kcal/mol in favour of the carboxy probe. 

In conclusion, the score plots of a probe matrix allows the chemical groups which 
selectivity interact with the target structure to be distinguished while the PCS plots 
are associated with the spatial regions around the target molecule in which probes 
interact preferentially in a selective way. 

2.3.3.3 PLS Analysis on the Target Matrix 

In this paragraph, the selection of variables from a target matrix is discussed using 
the PLS algorithm implemented in GOLPE [l]. The selection is validated for a series 
of 36 glucose analogue inhibitors, whose X-ray structures bound to the enzyme gly- 
cogen phosphorylase b (GPb) has been determined, either with the aim of overcom- 
ing the alignment problem, and to test if the variables (here 3D regions) predicted 
by GOLPE are as important for inhibition as those ascertained from the X-ray crys- 
tallographic studies [20]. 

It is worth mentioning that this series of compounds raises no doubts or problems 
as regards to alignment criteria or active conformations. In fact, the X-ray structure 
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Figure 9. PCA score contribution plot describing the selectivity regions for interactions between the 
TTCGGTT molecule an the oxygen sulphate or sulphonamide probe. 

of the 36 glucose analogue inhibitors in a crystal of GPb, shows that the glucose ring 
is always superimposed in all the compounds, while the substituents at the alpha or 
beta position to C1 exhibit different orientations throughout the protein active site 
cavities. 

The data set consists of 36 compounds (objects) described by means of the interac- 
tion energies between the compounds and one specific interacting chemical group 
(the aromatic hydroxyl probe, OH). It is important to point out that in GRID force 
field the interaction energy is calculated as the overall sum of Lennard-Jones, electro- 
static and hydrogen bond interactions between the probe and the target structure. 
The overall interaction energy may be negative (attractive) or positive (repulsive) and, 
in general, the positive interaction values are greater than the negative values. A 
GRID calculation for each inhibitor compound yields 8400 variables. Performing a 
PLS analysis on the whole data set, with a positive field cut-off value of 5 Kcal and 
with a minimum sigma cut-off value equal to one, shows that the resulting model 
contains all the important experimentally determined regions (Fig. lo), but that also 
a high number of regions which do not fit the information known from the crystallo- 
graphic data (see Fig. 11). It is clear that the elimination of variables with small stan- 
dard deviation does not eliminate all of the noise. Nevertheless, it is difficult to have 
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Figure 10. Contour map of the coefficients for the model of interactions between the OH probe and all 
the 36 target molecules. The regions which do not fit Fig. 11 are generated by noise. 

a correct chemical interpretation of the model when so many variables with similar 
coefficients are present. 

Performing the variable selection phase of GOLPE on the same data set leads to 
the elimination of 98% of variables. A more detailed study of the important three-di- 
mensional regions involved in the final reduced model shows that there is a good 
agreement between the predicted regions and the experimentally determined impor- 
tant regions for inhibition (compare Figs. 11 and 12). 

The reduced model (Fig. 12) clearly shows the effect of these regions on the inhibi- 
tion capability of the compounds. Moreover, the predictive ability of the reduced 
model is notably increased, and the errors in the predictivity for the reduced model 
is in the order of magnitude of the average experimental errors in the Ki values 
[19-201. This indicates that GOLPE, when variable selection is performed with a 
suitable pretreatment, minimizes the risk of overfitting and overpredicting. 

2.3.3.4 PLS on Target Matrix as a Strategy to Ascertain 
the Active Conformation 

In the previous example the active conformation of the inhibitor compound was well 
known from X-ray crystallographic studies. In order to simulate how to ascertain the 
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Figure 11. The active site of GPb showing the amino acid residues which interact with the glucose ana- 
logue ligands. 

active conformation in a study, in which no previous knowledge of the compounds 
was available, three new inhibitor ligand molecules were added to the previous ma- 
trix. The inhibition constants for these new compounds are known, although no 
structural information from the crystallographic studies was used. 

A conformational search procedure was carried out for each of the three new GP 
ligands using the Systematic Search option in the SYBYL package [21], and 10 ener- 
getically accessible conformers were selected as representative conformations for 
each molecule. Each conformer was then superimposed on to the molecules of the 
previous data set, maintaining the glucose ring in the same position. The substituted 
atoms at the alpha and beta positions to C-I occupied different regions, which have 
been targeted in order to choose the active conformation. 

Each conformer was then characterized by a vector of descriptor energies using 
the GRID program, thus, obtaining 10 vectors for each of the three new molecules. 
The biological response value of the individual compound was then assigned to all 
of these 10 vectors. It is obvious that a coherent choice of the active conformer 
should explain the observed variation of the inhibition data values. Finally, these 30 
vectors were combined with the previous target matrix, obtaining a general matrix 
with 66 objects and 8400 GRID energy variables. 
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Figure 12. Contour map of the final model obtained by GOLPE showing the important interactions be- 
tween the OH probe and all the 36 target molecules. The region shown are related to a change of the 
response value and are in really good agreement with the experimentally determined regions shown in 
Fig. 1 I .  

The score plot of a PLS model drawn from this matrix (Fig. 13) demonstrates how 
it is relatively easy to select a few conformers which may represent the active confor- 
mation of the new compounds. All the conformers with the same y value lie at the 
same y level, but only a few conformers fit the model (continuous line). A chemical 
interpretation of this finding is that each of these conformer points represents dif- 
ferent combinations of the important regions which define the PC model. All these 
combinations were forced to give the same experimental inhibition value, but only 
those combinations which explain the overall observed variation of the biological re- 
sponse fall within the model. Accordingly, the conformers no 4 and 5 for each of 
the three compounds investigated may be chosen as candidates for the active confor- 
mations of the three new compounds. In a further step, GOLPE may be used to 
check the predictivity of all z3 combinations of conformations that can be obtained 
on adding the three new compounds to the 36 already available: the predictivities ob- 
tained will, hopefully, further reduce the number of candidate conformations. 

It is important to point out that other authors use PCA, or cluster analysis, in or- 
der to classify similar conformations, or in order to ascertain the active conformers. 
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Figure 13. PLS score plot on the target matrix. The latent variable extracted from the X descriptors matrix 
is related to the activity. The numbers refer to the degenerated conformations of the three new compounds. 

This is the correct strategy when the biological response in not known. However, if 
the response is known, we believe that PLS is the correct method for selecting the 
active conformers which would be consistent with the biological response model. 

2.3.3.5 GOLPE with Different 3D Descriptors 

The free energy of binding for a ligand-receptor complex may be partitioned into dif- 
ferent spatial contributions for different regions of the complex, using empirical en- 
ergy functions, following an approach similar to that of Williams et al. [22]. This 
type of treatment has been employed before, notably by Novotny et al. [23], and by 
Kollman et al. [24], with limited success. Several reasons can be given to explain the 
limited predictability of this approach. These are inaccuracies of the empirical poten- 
tial energy functions and the difficulties of modeling the solvent effects in non-cova- 
lent interactions in solution. Nevertheless, the most important reason is probably re- 



82 G. Cruciani and S. Clementi 

lated to  the nature of the free energy surface of the ligand macromolecule complex, 
consisting in multiple minima with similar energy as a result of the compensation 
of the different contributing terms [25]. Therefore, as a result of the large number 
of energetic terms and their relative compensation, small errors usually accumulate 
producing large uncertainties in the calculation. 

However, in a set of related compounds, probably not all the energetic terms con- 
tribute equally to the difference in the binding free energy, and only a subset of these 
energetic terms are perhaps responsible for most of the variance. This is the picture 
given by QSAR studies which show that enzyme inhibition is usually a function of 
the variance of certain physico-chemical properties at a specific site in the family of 
compounds under consideration [26]. 

The fact that QSAR studies are normally in good agreement with X-ray crystallo- 
graphic studies of enzyme-ligand interactions [27] indicates that these site-specific 
effects are a consequence of the protein-ligand interaction. Then, if the above-men- 
tioned errors are randomly distributed among the different energetic terms in all the 
complexes, it should be possible to separate the “energetic signals” from the “back- 
ground noise”. Statistical methods could then be used to obtain a correlation be- 
tween the binding free energy (response) and a weighted subset of energetic contribu- 
tions (independent variables). 

Preliminary results [Ortiz, A. R., Pisabarro, M.T., Wade, R., L Am. Chem. Soc., 
submitted (1994)l obtained by GOLPE indicated that it is possible to determine the 
energetic terms responsible for the binding free energy, and to derive equations with 
good predictive properties which can be used for designing better inhibitors. GOLPE 
can, therefore, be used in combination with any type of descriptor variable by which 
a set of molecules is characterized in the 3D space. 

2.3.4 Conclusions and Perspectives 

The GOLPE procedure is implemented in a software package that renders it highly 
appropriate for QSAR studies. In fact, it works by a very fast algorithm, employing 
a suitable validation criterion and relies on a unique philosophy of variable selection 
which is based on the design criteria. This permits a sound evaluation of the predic- 
tivity of each individual variable, in this case grid location. This procedure is presum- 
ably more reliable than other methods which are based on a stepwise reduction of 
variables by means of their coefficients, or by means of neural networks, genetic 
algorithms or simulated annealing, which might necessitate some unwarranted prun- 
ing. 

Some of the possibilities offered by GOLPE are illustrated in Fig. 14. Its speed is 
optimized by selecting the appropriate algorithms onyl in the presence of missing da- 
ta. A data set containing 36 objects and 8400 variables with a single response takes 
6 seconds on a 16 MB RAM R4000, and 14 seconds on an R3000 CPU for fitting 
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Figure 14. Some of the possibilities offered by the GOLPE procedure. 

a PLS model with 5 latent variable. For a leave-one-out prediction run (36 PLS mod- 
els), it takes 110 and 240 seconds, respectively. D-optimal variable selection with 
8000 variables takes only a few seconds, while FFD variable selection on 600 vari- 
ables takes about 10 hours. 

The results of the 3D QSAR study are illustrated as isocontour plots, drawn up 
from the coefficients of the linear polynomial derived from the PLS model which 
still contains all the variables. However, we know that their relative importance de- 
pends upon model dimensionality, and the optimal dimensionality is not a objective 
result, as it depends, in turn, on the method of cross-validation [16]. On the other 
hand GOLPE gives apparently much worse contour plots because of the small num- 
ber of variables remaining at  the end of the analysis. 
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Accordingly, the presentation of the important variables for each compound is giv- 
en as the “contribution to the activity” on multiplying each coefficient by the actual 
value of that variable for the compound, thus, measuring the contribution of the 
bi xi term to y. This procedure gives simpler results on autoscaled data, although the 
contributions are, strictly speaking, not dependent upon scaling. 

The GOLPE procedure was successfully applied by members of our research 
group to a dozen or so cases over the last two years. These include polychlorodiben- 
zofurans, [I], benzodiazepine analogues [28], prazosine analogues [29], glucose 
analogues [ 191, kinurenic acids [Costantino, G., and Pellicciari, R., work in prepara- 
tion], steroids [Clementi, S., Valigi, R., Cruciani, G., Riganelli, D., Cramer, R. D., 
and Patterson, D. E.; work in preparation], dipeptides [Riganelli, D., and Merz, A., 
work in preparation], triazines [Riganelli, D., Clementi, S., and Mabilia, M. A., work 
in preparation], monosubstituted benzenes [van de Waterbeemd, H., Carrupt, P. A., 
Clementi, S., Costantino, G., Cruciani, G., Valigi, R., work in preparation], dioxines 
[Clementi, S., Cruciani, G., Riganelli, D., and Valigi, R., work in preparation], xan- 
tines [Clementi, S., Riganelli, D., and Cruciani, G., work in preparation], ACE inhib- 
itors [Davis, A., and Cruciani, G., work in preparation], PLA2 inhibitors [Ortiz, 
A. R., Pisabarro, M.T., and Wade, R., J. Am. Chem. SOC., submitted (1994)l. 

Meanwhile, however, we are well aware that there have been some rumours, casting 
doubts about the soundness of the GOLPE procedure, which is suspected of finding 
chance correlations and, therefore, of overpredicting because of the low number of 
finally selected variables. We can understand such doubts in the light of this prob- 
lem, but we wish to point out in more detail why we believe that the procedure is 
foolproof. 

We are well aware that, even with PLS, when there are so many variables compared 
to the number of objects, it is possible to find several combinations of variables 
which exhibit the same and apparent good predictivity, but this happens only when 
the data set does not meet the stated requirements and/or when cross-validation is 
carried out in an inappropriate way. We would like to emphasize once more that the 
LOO procedure is expected to give overpredictivity with grouped objects, such as 
they usually are in QSAR studies, although a data exploration by PCA is almost nev- 
er done to test this. Moreover, change correlations are easily found only when vari- 
able selection is made stepwise, taking away those variables that do  not predict well, 
i.e. that do not fit the reduced model@). In such a case one “prunes” the variables 
according to the chemometric results. 

It is because of this that we stated that GOLPE should only be performed if the 
whole model showed some predictivity in the first place, or with some designed data 
sets (see Sec. 2.3.2.1). Furthermore, GOLPE is derived from a predictivity parameter, 
SDEP, which is computed in such a way, from groups randomly formed several times 
to minimize the risk of obtaining false predictivity estimations (see Sec. 2.3.2). In this 
context, even the effort of evaluating the risk of chance correlations by extensive sim- 
ulation studies on random numbers [30] does not appear to be appropriate. Since 
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random numbers should exhibit no predictivity, but they do have “structure”, howev- 
er, as a result of being random, when the validation method is not sufficiently fool- 
proof, they might appear to give predictivity in a few cases. Real QSAR data, howev- 
er, do have considerable structure, as shown by the variance accounted for in PCA 
studies, and simulations with random numbers probably does not lead to a good ap- 
proximation of the real problem. 

To our knowledge the best way of checking the reliability of a regression model 
is to permutate the elements of the y vector several times, and in no instance should 
high Q2 values be obtained unless one proceeds on to pruning which is forbidden 
because of the non-predictive nature of the model in the first place. So far, we have 
published only one illustrative example of such a procedure [I], which is also used 
in the simulation study [30], but we have used it successfully in several others of the 
data sets quoted above. Significantly, in one of these studies [Riganelli, D., Clementi, 
S., and Mabilia, M. A., work in preparation], we have found that GOLPE gave a pos- 
itive Q2 value in one case only out of the 32 possible combinations of aligning 
degenerate molecules as was expected. 

Another criticism of the GOLPE procedure was its inability to handle symmetrical 
molecules. This is certainly true, and is a major drawback of the problem in question 
and not of the numerical analysis. In fact, we stated that the main problem in 3D 
QSAR is alignment, but this is, in turn, a consequence of the dependence of the 3D 
description upon the position of each molecule within the 3D grid. Only until a 3D 
description, which is independent of shifting or bending a molecule within the grid 
is derived, will a 3D QSAR table contain variables which are truly congruent and, 
therefore, appropriate for chemometric modeling. 

Imaginative attempts at overcoming this problem have been reported, describing 
molecular structures in terms of similarity [31] or distance matrices [32]. However, 
in such cases, the symmetry of the matrices renders interpretation to be somewhat 
difficult: projection methods such as PLS describe objects in terms of variables and 
when rows and columns of a matrix are the same, the problem in question becomes 
intriguing. It seems to us that describing molecules in terms of similarity should be 
a good approach, provided that the similarity indices all refer to a target compound 
for each study, and that the similarity can be multivariately evaluated, dessecting the 
total similarity into a number of separate similarity concepts. 

For the time being, we should restrict ourselves to using the alignment criteria de- 
veloped so far: rigid fit, field fit, overlapping of hydrogen bonding points, fit of 
dummy atoms as in the APOLLO procedure [33], etc., although we are aware that 
all these methods are used depending on the problem under investigation and should 
not be considered as hard and fast rules. Furthermore, such a problem implicitly in- 
fers that all computed interactions simultaneously effect the biological response. It 
might be the case that we should dissect a ligand-receptor interaction into sequential 
steps, each depending upon specific properties; (a) crossing a membrane, presumably 
linked to  some molecular hydrophobicity parameter, which produces the actual con- 
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centration in the cell; (b) molecular recognition, which is presumably an electrostatic 
interaction, across a large distance and driven, therefore, by molecular electrostatic 
potentials; (c) binding, which is, namely, due to hydrogen bonding and steric/ 
lipophilic interactions. If this were the case, assigning the same importance to all 
fields in the PLS analysis might not be the best decision. 

We have proposed [34] a promising approach to solving the problem of congruen- 
cy in the 3D description: the ACC transforms. In fact, there are two major drawbacks 
with the present use of CoMFA or CoMFA-like approaches in 3D QSAR: the doubts 
concerning the congruency of the descriptor matrix and the absence of continuity 
constraints between the fields computed at neighboring grid nodes. 

The auto- and cross-covariance (ACC) transforms, proposed by Wold [35] to 
describe biopolymers were extended to three dimensions to handle 3D descriptions 
[34]. These transforms are suitable tools for to recognizing the information con- 
tained in 3D fields in a way that is much more appropriate for 3D QSAR. In fact, 
this rearrangement of raw data provided new data which take into account neigbor- 
ing effects, the required continuity between grid nodes, and which are independent 
of alignment within the grid lattice. The 3D ACC developed so far, allowed a unique 
description of degenerate numbering of molecules, but the method still requires con- 
siderable development. 

ACC transforms cannot describe different conformers in a unique way, since dif- 
ferent conformers give different ACC transforms due to the different relative posi- 
tions of atoms in the 3D space. An overall strategy for handling ACC transforms 
should be developed, possibly similar to that presented elsewhere [36]. If 3D QSAR 
might be based on the PLS modeling of the activity vector against the ACC matrix 
by means of GOLPE, the results would allow the interactions between locations that 
affect the biological response to be determined, and this would constitute a new tool 
for mapping unknown receptors. 

Acknowledgements 

We would like to thank the Italian funding agencies MURST and CNR for granting 
funds to the research projects in chemometrics, the team of coworkers in Perugia 
(Massimo Baroni, Daniela Bonelli, Gabriele Costantino, Daniela Riganelli and 
Roberta Valigi), and M. I. A. (Multivariate Infometric Analysis, Perugia) for support 
in inplementing the programs. 



2.3 GOLPE: Phi/osophy and Applications in 313 QSAR 87 

References 

[I] Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R., and Clementi, S., Quant. Struct. 
Act. Relat. 12,, 9-20 (1993) 

[2] Franke, R., Principal Component Analysis and Factor Analyis. In: Chemometric Methods in 
Molecular Design (Methods and Principles in Medicinal Chemistry, Vol. II), Mannhold, R., 
Krogsgaard-Larsen, P. and Timmerman, H., eds., VCH, Weinheim, 1995 

[3] Wold, S., and Dunn, W. J., SfMCA. In: Chemometric Methods in Molecular Design (Methods and 
Principles in Medicinal Chemistry, Vol. 11), Mannhold, R., Krogsgaard-Larsen, P. and Timmerman, 
H., eds., VCH, Weinheim, 1995 

[4] Wold, S., PLS. In: Chemometric Methods in Molecular Design (Methods of Principles in Medicinal 
Chemistry, Vol. 11), Mannhold, R., Krogsgaard-Larsen, P. and Timmerman, H., eds., VCH, 
Weinheim, 1995 

[5] Sjostrom, M. and Eriksson, L., Applications of Statistical Experimental Design and PLS modeling 
in QSAR. In: Chemornetric Methods in Molecular Design (Methods and Principles in Medicinal 
Chemistry, Vol. II), Mannhold, R., Krogsgaard-Larsen, P. and Timmerman, H., eds., VCH, 
Weinheim, 1995 

[6] Davis, A.M., 3 0  QSAR Methods. Sec. 2.2 of this volume 
[7] Clementi, S. and Wold, S., How to Select the Proper Statistical method? In: Chemometric Methods 

in Molecular Design (Methods and Principles in Medicinal Chemistry, Vol. 11), Mannhold, R., 
Krogsgaard-Larsen, P. and Timmerman, H., eds., VCH, Weinheim, 1995 

[8] Cramer, R.D. 111, Patterson, D.E. and Bunce, J.D., J.  Am. Chem. Soc. 110, 5959-5967 (1988) 
[9] Goodford, P.J., J.  Med. Chem. 28, 849-857 (1985) 

[lo] Floersheim, P., Nozulak, J. and Weber, H. P., Experience with Comparative Molecular Field Analy- 
sis. In: Trends in QSAR and Molecular Modeling ‘92, Wermuth, C. G., ed., ESCOM, Leiden, 1993, 
p 227-232 

[ I l l  Kellog, G.E. and Abraham, D.J., J .  Mol. Graph. 10, 212-217 (1992) 
[12] Wold, S., Albano, C., Dunn, W. J. 111, Edlund, U., Esbensen, K., Geladi P., Hellberg, S., Johansson, 

E., Lindberg, W. and Sjostrom, M., Multivariate Data Analysis in Chemistry. In: Chemometrics. 
Kowalski, B.R. ed., Reidel, Dordrecht, 1984, p 17-94 

[I31 Wold, S., Johansson, E. and Cocchi, M., Partial Least Squares Projections to Latent Structures. In: 
3 0  QSAR in Drug Design: Theory, Methods and Applications, Kubinyi, H., ed., ESCOM, Leiden, 1993 

[14] Cruciani, G. and Goodford, P.J., J.  Mol. Graph. 12, 116-129 (1994) 
[I51 Cruciani, G., Baroni, M., Bonelli, D., Clementi, S., Ebert, C. and Skagerberg, B., Quant. Struct.-Act. 

[I61 Cruciani, G., Clementi, S. and Baroni, M., Variable Selection in PLS Analysis. In: 3 0  QSAR in 

1171 Shao, J., J.  Amer. Stat. Assoc. 88, 486-494 (1993) 
1181 Box, G. E. P., Hunter, W. G. and Hunter, J. S., Statistics for  Experimenters, Wiley, New York, 1978 
1191 Cruciani, G. and Watson, K.A., J.  Med. Chem. 37, 2589-2601 (1994) 
[20] Martin, J.L., Veluraja, K., Ross, K., Johnson, L.N., Fleet, G. W. J., Ramsden, N.G., Bruce, I., 

Ochard, M. G., Oikonomakos, N. G., Papageorgiou, A. C., Leonidas, D. D. and Tsitoura, H. S., Bio- 
chemistry, 30, 10101 -101 16 (1991) 

Relat. 9, 101 - 107 (1990) 

Drug Design: Theory, Methods and Applications, Kubinyi, H., ed., ESCOM, Leiden, 1993 

1211 SYBYL Molecular Modeling System, Tripos Associates, St. Louis, MO, U.S.A. 
1221 Williams, D. H., J. P. L., Doig, A. J., Garder, M., Gerhard, U., Kaye, P.T., Lal, A. R., Nicholls, I. A,, 

Salter, C.J. and Mitchell, R.C., J.  Am. Chem. Soc. 113, 7020-7030 (1991) 
1231 Novotny, J., Bruccoleri, R.E. and Saul, F.A., Biochemistry 28, 4735 (1989) 
1241 Kollman, P., Wipff, G. and Singh, U.C., J.  Am. Chem. Soc. 107, 2212-2219 (1985) 
1251 Brooks 111, C. L., Karplus, M., Pettitt, B. M., Proteins, a Theoretical Perspective of Dynamics, Struc- 

ture and Thermodynamics, Advances in Chemical Physics. Vol. LXXI, 1988 



88 G. Cruciani and S, Clementi 

[26] Gupta, S.P., Chem. Rev. 87, 1193 (1987) 
[27] Hansch, C. and Klein, T.E., Methods in Enzymology 202, 512 (1991) 
[28] Allen, M. S., La Loggia, A. J., Dorn, L. J., Martin, M. J., Costantino, G., Hagen, T. J., Koehler, K. K., 

Skolnick, P. and Cook, J.M., J.  Med. Chem. 35, 4001-4010 (1992) 
[29] Cocchi, M., Cruciani, G., Menziani, M. C. and De Benedetti, P. G., Use of Advanced Chemometric 

Tools and Comparison of Different 3 0  Descriptors in QSAR Analysis of Prazosin Analog a ,  
Adrenergic Antagonists. In: Trends in QSAR and Molecular Modeling '92, Wermuth, C. G., ed., 
ESCOM, Leiden, 1993, p 527-529 

[30] Clark, M. and Cramer, D. R. 111, Quant. Struct.-Art. Relat. 12, 137 - 145 (1 993) 
1311 Good, A. C., So, S. S. and Richards, W. G., J.  Med. Chem. 36, 433 -438 (1993) 
[32] Bush, B.L. and Nachbar, R.B., Jr., J.  Comp. Aid. Mol. Des. 7, 587-619 (1993) 
[33] Snyder, J.P., Rao, S., Koehler, K. and Pellicciari, R., Pharmacochem. Lib. 18, 367-403 (1992) 
[34) Clementi, S., Cruciani, G., Riganelli, D., Valigi, R., Costantino, G., Baroni, M. and Wold, S., Pharm. 

Pharrnacol. Lett. 3, 5 - 8 (1 993) 
[35] Wold, S., Jonsson, J., Sjostrom, M., Sandberg, M. and Rannar, S., DNA and Peptide Sequences and 

Chemical Processes Multivariately Modeled by PCA and PLS, Anal. Chim. Act. in press (1 994) 
[36] Pitea, D., Cosentino, U., Moro, G., Bonati, L., Fraschini, E., Lasagni, M., Todeschini, R., 

Chemometrics and Molecular Modeling. In: Chemometric Methods in Molecular Design (Methods 
and Principles in Medicinal Chemistry, Vol. 11, Mannhold, R., Krogsgaard-Larsen, P. and Timmer- 
man, H., eds., VCH, Weinheim, 1995 



3 Rational Use of Chemical 
and Sequence Databases 

3.1 Molecular Similarity Analysis: 
Applications in Drug Discovery 

Mark A. Johnson, Gerald M. Maggiora, Michael S. Lajiness, Joseph B. Moon, 
James D. Petke, and Douglas C. Rohrer 

Abbreviations 

2D Two-Dimensional 
3D Three-Dimensional 
SAM Structure-Activity Map 
SAR Structure-Activity Relationship 
MEP Molecular Electrostatic Potential 
MSA Molecular Similarity Analysis 
MSV Molecular Steric Volume 
XMEP Extended Molecular Electrostatic Potential 

3.1.1 Introduction 

For some time, the atom-based superpositioning of 2D or 3D molecular structures 
has complemented traditional QSAR methods by highlighting structural com- 
monalities and differences [I]  and by generating useful chemical descriptors for 
QSAR models [2, 31. The recent appearance of rapidly computable similarity mea- 
sures, which are mainly 2D, has also opened up new opportunities in drug discovery. 
Notable amongst these are similarity searching [4 - 61; substructure similarity search- 
ing [7]; similarity, cluster, and dissimilarity selection of compounds for screening 
[S - 101; and structure-activity mapping [I 1, 121. Almost concurrently, atom-based 
superpositioning has evolved into the more general, but computationally extensive 
procedure of optimally superimposing or matching the fields which surround mole- 
cules. 
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The application of the concept of molecular similarity to problems in chemistry 
has grown significantly during the last decade, particularly within the last four to 
five years. This growth has coincided with an explosion in the number and variety 
of electronic databases which nowadays serve chemistry and related fields. In this 
context, the concept of molecular similarity has had an important and unifying ef- 
fect on the development of powerful methods for “mining” and analyzing the infor- 
mation from these databases in new and novel ways (see [13]). The drug discovery 
process, which is our focus here, has been, and is continuing to be significantly im- 
pacted by these methods. 

As the name implies, molecular similarity focuses on molecular features. The 
manner in which this information is represented is crucial in molecular similarity 
analysis (MSA). It is convenient to divide the types of representations into two gener- 
al classes that utilize atom-based or field-based descriptors, respectively. Atom-based 
descriptors may include the atoms themselves, molecular fragments or substructures 
(e.g. functional groups), molecular indices derived by topological methods (e.g. path 
counts [ 14]), atomic properties (e.g. electrotopological indices [ 151 or atomic 
polarizability), and non-bonded 3D atomic configurations. Field-based descriptors, 
on the other hand, describe the “micro-environment” surrounding all or a portion 
of a molecule and may include one or more of the following descriptors: charge or 
electron density, molecular electrostatic potential (MEP), molecular steric volume 
(MSV), hydrophobic field [ 161, and shape. Additional descriptive features used in 
MSA can be found in several more recent books [5, 17, 181. 

Development of similarity methods requires some means for evaluating which mo- 
lecular features are shared and those which are not shared by the set of molecules 
under study. Methods for accomplishing this task of “measuring” the commonalities 
and differences amongst molecules depend upon some form of optimal superposi- 
tioning or matching of either atom-based or field-based molecular features [I 91. 
Quantification of the degree of superpositioning or matching operationally gives rise 
to a similarity measure. 

Most similarity measures that are in use today possess values that lie in the range 
0 to 1 with 1 denoting maximum similarity and 0 indicating minimum similarity. 
In some cases, however, the range goes from - 1 to 1 (see Sec. 3.1.4) and [20]). 
Dissimilarity measures complement similarity measures by emphasizing the number 
of unshared features. Although one can always construct a dissimilarity measure 
from a similarity measure by taking 1 - (similarity value), dissimilarity measures are 
usually constructed without reference to similarity measures. Most dissimilarity mea- 
sures possess values ranging from 0 upwards, with 0 reflecting minimum dissimilarity 
(i.e. maximum similarity) and large values indicating increasing dissimilarity. Both 
types of measures are often reflected in the generic terms “similarity measure” or 
“proximity measure”. 

Atom-based similarity measures can be applied to molecules portrayed as either 
2D or 3D entities. Examples of how such measures can be employed in drug discov- 
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ery will be presented and discussed in Secs. 3.1.2 and 3.1.3. When more detailed 3D 
comparisons of molecules are needed, as is the case for many molecules of phar- 
maceutical interest, field-based similarity measures are required. Field-based mea- 
sures are much less restrictive than atom-based measures and, consequently, can pro- 
vide a more flexible characterization of subtle commonalities and differences 
amongst molecules. An example of the application of field-based measures is given 
in Sec. 3.1.4. 

Molecular similarity analysis can be viewed from both a global and a local per- 
spective. Global similarity methods are needed in order to take advantage of the in- 
formation stored in large chemical databases. These methods require that the “fea- 
ture set” used to compute similarity is obtainable for essentially all of the com- 
pounds in a database. Local similarity methods, on the other hand, deal only with 
small subsets of molecules within a database and, thus, the feature sets need only 
be obtainable for the subset of molecules under study. Moreover, due to the size of 
most chemical databases, global methods must be relatively fast and must produce 
unambiguous results, while local methods can employ more elaborate and computa- 
tionally demanding procedures that may, and in many cases do, exhibit a set of com- 
parable similarity values for each pair of molecules considered. Hence, atom-based 
methods can generally be applied both globally and locally, while field-based meth- 
ods are generally confined to local similarity studies. 

3.1.2 Similarity-Based Compound Selection 

3.1.2.1 Similarity Measures and Neighborhoods 

As suggested in the introduction, molecular similarity concepts have been employed 
to address quite diverse problems. Underlying these diverse applications is the simple 
and intuitive concept or a similarity neighborhood that “surrounds” a compound. 

In practice, construction of a similarity neighborhood requires three things in ad- 
dition to a similarity measure. First, there must be a set of compounds. This is typi- 
cally a database of structures of a collection of compounds. Second, there must be 
a reference compound from which the neighborhood is constructed. This is often 
called a “query compound” in database terminology. Finally, the similarity value at 
the neighborhood boundary or the neighborhood size must be specified. If a bound- 
ary value is specified, the neighborhood consists of all compounds whose similarity 
to the reference compound exceeds the boundary value. In this case, the number of 
compounds in the neighborhood (the neighborhood size) depends on the reference 
compound. If a neighborhood size, say Nsize, is specified, then the neighborhood 
consists of the reference compound and the Nsize - 1 compounds most similar to 
the reference compound. In this case, the similarity value at the neighborhood 
boundary depends on the reference compound. 
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Figure 1. Four size 7 similarity neighborhoods in the Fine Chemicals Directory based on a rigid (DDT) 
and a flexible (cocaine) reference compound and on a fragment-based (SMI) and a 3D atom-based (SM2) 
similarity measure. 
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Four similarity neighborhoods, NI,  N2, N3, and N4, with neighborhood sizes of 
seven (i.e. Nsize = 7), are given in Fig. 1. The reference database is the Fine Chemi- 
cals Directory (available from Molecular Design Ltd). Each column of structures rep- 
resents a separate neighborhood and is headed by the respective reference com- 
pound. The compounds of each neighborhood are ordered, so that the measured 
similarity values decrease as one proceeds down the list away from the reference com- 
pound. 

The four neighborhoods arise from two reference compounds, DDT and cocaine, 
and two similarity measures, SM1 and SM2, which employ 2D and 3D atom-based 
similarity procedures, respectively. The relationship of the similarity measures to the 
neighboorhoods they induce is as follows: SM1 + (NI,  N3) and SM2 + (N2, N4). 
This can also be written, using a notation that explicitly defines the similarity mea- 
sure used to induce the given neighborhood, as NIsM,, N2,,, N3sM1,  and N4,,. 
However, designation of the similarity measure will be omitted, except in cases where 
confusion may arise from its omission. 

The nature of the four neighborhoods provides information about the two similar- 
ity measures: N1 and N2 employ DDT, which is a relatively rigid molecule, as the 
reference structure, while N3 and N4 employ cocaine, which is a more flexible mole- 
cule, as the reference structure. Clearly both similarity measures relate to our intu- 
itive concept of molecular similarity. Only a very small percentage of the compounds 
in the Fine Chemicals Directory are “DDT-like” compounds. Yet both N1 and N2 
are comprised entirely of such compounds. It is equally obvious that the two mea- 
sures reflect different aspects of structure, for if they did not, then the two similarity 
measures would have necessarily generated identical neighborhoods. 

On first encountering two similarity measures with differing neighborhoods, it is 
appropriate to question which one provides the best measure of molecular similarity. 
However, it is more practical, if not more realistic, to analyze the contexts in which 
each measure may be the most useful. In this regard, it is helpful to know how the 
similarity measures were constructed. 

SMl - Fragment-Based 2 0  Similarity Measure 

SMI, giving rise to N1 and N3, is based upon a fixed set of structural fragments. 
Computationally, each structural fragment can be represented by a one-dimensional 
array, in which each element is represented by a single “bit”. Each bit is set to 1 if 
that fragment is present in a particular molecular structure or is set to zero otherwise. 
The order of elements is arbitrary. A contrived example would be, if the fixed set of 
fragments consists of a OH, COOH, and phenyl group, then benzoic acid would be 
represented by the OH bit set to 0, the COOH bit set to 1 and the phenyl bit set to 
1. Such bit representations, consisting of 300-2000 fragment bits, have traditionally 
been used to quickly screen out unwanted compounds in substructure searching. 
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Here the bit representation, which is implemented in COUSIN [2 11, a proprietary 
structural database and retrieval system, is used. 

Fragment-based similarity measures relate the number of fragments common to 
two structures (NC) to the number of fragments (NO) that differ between these 
structures, i.e. are possessed by one of the structures, but not by the other. These 
numbers are combined into a single value by a similarity coefficient. The Tanimoto 
coefficient, recommended by Willett and Winterman [22], is one of the more com- 
mon coefficients for fragment-based similarity measures and is used here. It is de- 
fined by NC/(NC+NO). 

SM2 - Atom-Bused 3 0  Similarity Measure 

SM2 giving rise to N 2  and N 4 ,  is based upon the similarity of the spatial arrange- 
ment of the atoms of a reference molecule with comparable atoms of another mole- 
cule found in a given database [23]. In these examples, a 3D version of the Fine 
Chemicals Directory generated using the CONCORD program [24] was used. A cli- 
que-detection algorithm [25] was employed to determine any possible correspon- 
dences, based on interatomic distance between the atoms of a database molecule 
with those of the reference molecule. An optimal overlay is produced for each possi- 
ble correspondence by least squares fitting. Several hundred different overlays may 
be generated for every database molecule: each overlay is scored according to the 
number of atoms that fall within some tolerance distance from similar atoms in the 
reference molecule. The best k overlays are retained as “hits” from the search, where 
k is a user-defined number. It is possible, but highly unlikely, that a single compound 
will have more than one of the top k overlays. Although the procedure actually gen- 
erates a set of 3D overlays, only the 2D representations of the highest-scoring hits 
are shown in columns N 2  and N 4  of Fig. 1. 

3.1.2.2 Application of 2D and 3D Similarity Measures 

The resemblences of similarity neighborhoods generated by the two atom-based sim- 
ilarity measures, SM1 and S M 2 ,  can be understood in terms of the method in which 
the two measures were constructed. In the case of SM1, the fragment-based measure, 
similar fragment bit representations imply similar bonding structures. This also ap- 
plies to S M 2 ,  the 3D atom-based measure, in the case of rigid molecules. In this case, 
3D structure is essentially determined by bonding structure and, thus, similar 3D 
structures should possess similar fragment bit representations. This, however, does 
not obtain for S M 2  in the case of flexible molecules, where the underlying bonding 
structures may differ appreciably due to conformational flexibility, hence, their frag- 
ment bit representations are also likely to be dissimilar. 
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The consequences of these differences in the two similarity measures lead to corre- 
sponding differences in the similarity neighborhoods that they generate. For exam- 
ple, the bonding structure of the relatively rigid DDT molecule largely determines its 
3D shape, and since molecules with similar bonding structures possess similar frag- 
ment bit representations, both neighborhoods, N1 and N2, obtained from the two 
measures are rather similar (Fig. 1). A comparable result is not expected for the con- 
formationally more flexible cocaine molecule. And this was found to be the case for 
N3 and N4 (Fig. 1). Moreover, the greater diversity of bonding structures found in 
N4 is not surprising, since the 3D atom-based method emphasizes the similarity of 
spatial configurations of comparable atoms among molecules and is not constrained 
by their underlying bonding structure. 

The above example shows that different similarity measures may be useful for dif- 
ferent purposes. However, this begs the question as to which method should be used 
for a given task. To clarify this issue, consider the following example. Suppose a com- 
pound with an interesting pharmacological activity is discovered. How can new, 
structurally-related molecules be found? Certainly, atom-based similarity methods 
ought to be of use here. But, the question remains as to which specific method 
should be used. If molecules that differ only slightly from the reference (i.e. active) 
molecule in bonding structure are desired, a fragment-based approach is recom- 
mended. This follows on from the fact that similar molecules have similar fragment 
bit representations and, hence, similar bonding structures. If, on the other hand, 
more general bonding patterns are desired, an atom-based 3D method is recommend- 
ed. As discussed above, this approach is likely to produce a greater yield of diverse 
bonding structures. In both cases, however, the results obtained will depend not only 
upon the similarity measure used, but also upon the conformational flexibility of the 
molecules under study. The differences obtained by the two similarity methods dis- 
cussed here, are accentuated significantly for conformationally flexible molecules. 

If additional specific structural information, such as the nature of the phar- 
macophore is available, both 2D and 3D similarity methods may also be of use. Two- 
dimensional methods are, however, considerably more limited than 3D methods in 
cases where the subset of atoms in question are not bonded, a situation which arises 
in most instances involving pharmacophores. 

3.1.2.3 Application of Dissimilarity-Based Compound Selection 
for Broad Screening 

The concept of a similarity neighborhood is useful for many purposes besides brows- 
ing through a database and searching for similar compounds. In broad screening 
programs, it is usually desirable to screen as many diverse structures as possible. La- 
jiness, et al. [9] briefly described three different approaches for selecting a set of 
structurally diverse compounds from a large compound collection. One of these, 
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cluster analysis, is discussed in Sec. 3 of this volume. Here a maximum dissimilarity 
approach is considered. 

In principle, a maximum dissimilarity method can be based upon any proximity 
measure. However, as maximum dissimilarity-based compound selection procedures 
can be computationally demanding due to the size of typical compound collections, 
only fast computable and globally available measures, such as the fragment-based 
measures described above, are used in practice. The dissimilarity selection process is 
as follows. A compound, C , ,  is selected at random from a given compound collec- 
tion. A second compound, C,, which is maximally dissimilar from the first one, is 
selected. A third compound, C,, which is maximally dissimilar to the first two, is 
selected. And this process is continued until the desired number of dissimilar com- 
pounds is obtained, ensuring at each iteration that the compound selected is max- 
imally dissimilar from all of the previously selected compounds. 

The preceding examples illustrate the basic concept of a similarity neighborhood 
and the role it plays in defining similarity and dissimilarity searches. As noted earlier, 
such searches are used for browsing through a database, selecting compounds for 
screening, and examining the effects of small structural changes. Other uses are 
emerging, such as characterization of the diversity of structures in a database and 
development of diversity criteria for efficiently augmenting a compound collection. 
It is encouraging, and somewhat surprising, that such significant and diverse appli- 
cations can arise from such a basic idea as a similarity neighborhood. 

3.1.3 Structure-Activity Maps (SAMs) 

3.1.3.1 A Visual Analogy 

The diverse uses for the ordered sets of compounds defined by similarity neighbor- 
hoods is evidence of the amount of information contained in those sets. Yet more 
information is available in the similarity region surrounding the reference com- 
pound. For instance, the ordered list in N4 (Fig. 1) indicates correctly that compound 
20 is less similar to cocaine than is compound 19. It also implies, possibly incorrectly, 
that compound 19 lies between cocaine and compound 20 in this particular 3D 
similarity space. It would be similar to suggesting that New York is further away from 
Detroit than is Chicago, but incorrectly suggesting to the geographically naive, that 
Chicago lies in between Detroit and New York. Knowledge of the distance from Chi- 
cago to New York resolves the ambiguity. However, knowing all of the paired distanc- 
es between a large number of cities is somewhat daunting and usually not necessary. 
A travel map efficiently prioritizes this paired distance information by arraying the 
cities on a plane and connecting neighboring cities by roads. An analogous concept 
of a map of structures will now be developed in which the cities are replaced by struc- 
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tures, and the lines representing links between neighboring cities are replaced by lines 
linking “neighboring” structures. 

3.1.3.2 Representing Inter-Structure Distances 

For the purpose of illustration, a region in similarity space consisting of the 20 com- 
pounds in the Derwent Standard Drug File (available from Molecular Design Ltd) 
most similar to carbamazepine - as defined by the preceding fragment-based simi- 
larity measure - is used. These compounds are given in Table 1 in the order of 
decreasing similarity to carbamazepine along with their principal pharmacological 
activity. The corresponding structures and activities can be found in Fig. 2. 

To construct a structure map of the 20 compounds, first compute all of the 190 
paired distances. In this example, each distance is calculated using the bond-deletion 
dissimilarity measure described in [ 121. Basically, the bond-deletion distance be- 
tween two molecules is the minimum number of bonds that must be deleted in order 
to obtain a substructure shared by both molecules. However, the details of this par- 
ticular measure are unimportant here, as our construction procedure is valid for 
mostly any dissimilarity measure and is easily adapted to accomodate most similarity 
measures as well. The important feature is that every pair of structures has a value 
representing the distance between them. 

These 190 distances can be reprsented by linking each pair of structures with a line 
whose length is related to the corresponding distance. However, as much of the dis- 
tance information is redundant, 190 connecting lines gives rise to an informational 
overload which increases non-linearly with the number of structures under consider- 

Table 1. Twenty compounds from the Derwent Standard Drug File which are the most similar to car- 
bamazepine in comparison to a fragment-based similarity measure. The compounds are listed in decreas- 
ing order of similarity. Major pharmacological activities are indicated by C - anticonvulsant, D - an- 
tidepressant, and P - psychostimulant. 

No. Compound No. Compound 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Carbamazepine (C) 
Dihydrocarbamazepine (C) 
GP-37-375 (C) 
Hocarbam2 (C) 
CGP-9055 (C) 
Hocarbam3 (C) 
CGP-I0795 ( C )  
CGP-077 (C) 
GP-47779 (C) 
Oxcarbamzepine (C) 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

CGP-16997 (C) 
Carbadiol (C) 
19148-RP (P, D) 
CGP-10000 (C) 

Carbaepox (C) 
19749-RP (P, D) 
Metapramine (P, D) 
Didesipramine (P, D) 
23669-RP (P, D) 

CGP-5924 (C) 
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Figure 2. Structure-activity map of a size 20 similarity neighborhood of carbamazepine constructed from 
the Derwent Standard Drug File using a fragment-based similarity measure. Edge weights reflect bond- 
deletion distances. Edges were pruned using the Relative Neighbor Rule. 

ation (for N structures there are N(N- 1)/2 lines connecting them). To illustrate this, 
return to the analogy of a travel map. 

Suppose the shortest route to Chicago from New York is via Detroit. Given that we 
indicated the distance from New York to Detroit and the distance from Detroit to Chi- 
cago by a connecting line, little additional information is gained by drawing a line direct- 
ly from New York to Chicago. Such additional lines would only clutter the road map. 

The key is to decide which pairwise distances need to be represented by connecting 
lines and, which do not. Different sets of rules have been developed for eliminating 
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largely redundant lines [26]. Toussaint’s simple relative neighbor rule [27] will be 
illustrated here. Consider any three structures and their connecting lines which are 
appropriately placed apart to form a triangle. If one of the lines is longer than either 
of the other two lines, then this line is tagged. When every possible combination of 
three structures has been examined in this manner, all tagged lines are deleted. The 
next section will illustrate the high information content in the remaining lines and 
will show how they focus attention on a number of simple comparisons available in 
the set of structures under consideration. 

3.1.3.3 Structure Maps 

The “net” of connected lines with structures at the nodes where the lines connect 
or end becomes a structure map when it is drawn out on a sheet of paper. However, 
just as many molecular structures cannot be drawn on a sheet of paper in such a way 
that the lengths of the drawn bonds are proportional to the actual bond lengths, 
most of these “nets” cannot be drawn on a sheet of paper without modifying the 
lengths of the connecting lines. However, the distance information can be preserved 
by labeling each line with its associated distance. Fig. 2 shows one such drawing 
amongst the many possibilities. 

Before discussing the aesthetics of this particular mode of representation of the 
relationships, some of the logical considerations inherent in the “net” itself should 
be highlighted. Firstly, the “net” is an example of a weighted graph [28], which is 
called a proximity graph. As such, it consists of a set of vertices (the structures) 
and a set of edges (the lines) with assigned weights (the distances). What can be 
deduced from the weights of the edges of this particular proximity graph? Here the 
bond-deletion distance has a simple interpretation. The weight of an edge is the 
number of bonds that must be deleted in order to obtain a common substructure of 
the two structures linked via that edge. By scanning the structure map for edges with 
weights of 1, we quickly find all the pairs of structures that differ by only one 
bond. 

What can be deduced from the distances or weights of the “tagged” edges that 
were deleted? Generally speaking, not much can be deduced with regard to any par- 
ticular deleted edge, except that it was part of a triangle in which it formed the lon- 
gest edge. However, much more could be deduced in the “topological” sense. 

Consider the homologous series methane, ethane, propane, and butane. The com- 
plete structure net, based on the edge-deletion distance, is laid out in the top of Fig. 3 
with one edge crossing. By applying the relative neighbor rule to the triangle consist- 
ing of methane, ethane, and propane, the methane-propane edge is tagged. After ap- 
plying the rule to the metane, propane, and butane triangle, the methane-butane edge 
is tagged. Similarly, the ethane-butane edge is tagged. Removing all tagged edges and 
aesthetically drawing the resulting proximity graph, we obtain the structure map at 
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C4H 10 

CH 

Complete structure net 

C 2 H 6  ~ C3H8 ~ C4H10 CH, ___ 

Structure net after applying the 
relative neighbor rule 

Figure 3. Structure maps of methane, ethane, propane and butane based on the bond-deletion distance. 
Hashed edges of the complete structure net are deleted according to the Relative Neighbor Rule to form 
a “path” of homologous structures. 

the bottom of Fig. 3. In graph theory, the underlying proximity graph is called a 
path. Viewed topologically, the structure map in Fig. 2 is clearly not a path. 

A proximity graph conveys topological information much better than actual dis- 
tance information. In fact, not much is lost by erasing the weights in Fig. 2 and re- 
taining only the edges. To illustrate this, consider the cycle of four compounds (i.e. 
a “4-cycle”) appearing on the left side of the figure, namely, carbamazepine, 
GP-37-375, CGP-16997, and CGP-077. It is can be seen that GP-37-375 lies between 
carbamazepine and CGP-16997, and that no compound lies between CGP-077 and 
carbamazepine. This 4-cycle contains all of the structural changes related to the 
placement of the nitrile group. Such information is not easily conveyed in structural 
lists. 

The topological information inherent in the proximity graph of a SAM is always 
preserved regardless of how the proximity graph is depicted on a page. However, dif- 
ferent depictions focus attention on different features of the proximity graph and a 
choice arises. The proximity graph can be laid out in such a way that the physical 
distances between the structures on the page correlate with their distances in similari- 
ty space using various linear of non-linear mapping techniques dealt with elsewhere 
in this volume. Such mapping layouts may obscure similarity relationships amongst 
neighboring compounds if there are many edge crossings. In Fig. 2, the proximity 
graph is laid out so as to minimize edge crossings, thus, emphasizing the neighboring 
relationships. Both layouts can be useful. 



3.1 MolecuIar Similarity Analysis: Applications in Drug Discovery 101 

3.1.3.4 Coloring a Structure Map 

A structure map can be viewed as a layout of a proximity graph in which the vertices 
are “colored” (i.e. labeled) by the corresponding structures. This is analogous to 
viewing a chemical graph as a graph in which the vertices are colored by atom types 
and the edges are colored by bond types. The vertices of a proximity graph can also 
be colored by the values of one or more biological activities associated with the cor- 
responding molecules. A structure map, additionally colored by activity, is called a 
structure-activity map or SAM. Fig. 2 is a SAM in which “activity coloring” gives 
the major pharmacological category of that compound as defined by the Derwent 
Standard Drug File. 

A SAM can be viewed as a picture taken from a particular perspective within a 
“structure-activity space” generated by a particular proximity measure. While it is 
not the space itself, it can be very useful for acquiring an immediate insight into the 
nature of the space and into many of the structure-activity relationships (SARs) that 
exist on the space. For such relationships to exist, an important similarity principle 
must be satisfied, namely that similar structures should generally possess similar 
properties or activities [29]. 

Evidence to support this principle can be seen in Fig. 2: anticonvulsants lie in the 
lower half of the figure, while psychostimulants and antidepressants lie in the upper 
right corner. Clearly, neighboring structures in this small region of 20 compounds 
in SAR space are in general agreement as regards to their major pharmacological 
activity. 

The qualifier “generally” is needed, however. A stricter version of the principle 
that similar structures always have similar properties would break down every time 
a small structural change led to a big effect on the property of interest. Such “break- 
downs” provide critical scientific insights. The boundary in Fig. 2 where the anti- 
convulsants meet the psychostimulants and antidepressants is a good place to look 
for one such “breakdown”. The SAM suggests that moving from the amines to the 
ureas greatly alters the dominant pharmacological activity in this region of struc- 
tures. 

SAMs, which deal with more complex situations, can be found in several references 
[I  1, 12, 301. In Fig. 2, the activity is a simple “yes” or “no” coloring as regards to 
the pharmacological classification of the compound. In the work of Gifford et al. 
[30], activity coloring is again a “yes” or “no” coloring as regards to the occurrence 
of N-oxidation, but in this case the structures are replaced by metabolic sites where 
either N-demethylation or N-oxidation could occur. The resulting SAM suggested a 
steric descriptor upon which a quantitative prediction of the relative frequency of N- 
oxidation was based. Recently, Johnson [I21 illustrated the use of SAMs in viewing 
structure-activity relationships involving quantitative potency estimates, and in 
studying how the effect of a particular structural change is a reflection of the struc- 
tural environment of that change. 
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3.1.4 Field-Based Similarity Methods 

The construction of structure maps usually requires considerably more computa- 
tional effort per compound than is required with a similarity search, but these maps 
generaly provide more information on the similarity relationships amongst a set of 
compounds. Field-based similarity methods usually require even more extensive 
computations in molecular comparisons. However, this extra effort can reveal addi- 
tional detailed and often less obvious information on the commonalities and differ- 
ences among compounds. Thus, in many such cases, the resulting field-based super- 
positions of two compounds are as interesting, if not more so, than the actual value 
of the similarity measure upon which they are based. 

Figure 4a. Energy minimized structure 
of morphine; carbons are shown in 
green, hydrogens in magenta, oxygen in 
red and nitrogen in blue. 

Figure 4b. The molecular electrostatic 
potential field of morphine with 
isopotentials contoured at + 10, blue, 
and - 10 kcal/mol, red. 

Figure 4c. The molecular steric volume 
of morphine contoured at the van der 
Waal’s distance from the atoms. 
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In field-based methods, the similarity of one or more molecular field properties 
evaluated at field points surrounding a molecule is used as the basis for quantitating 
molecular similarity. Field properties are determined primarily by the arrangement 
and electronic nature of the atoms constituting a molecule, and they furnish a much 
more detailed representation of the electronic and steric characteristics of a molecule 
than is provided by the spatial configuration of the atoms alone. 

3.1.4.1 Field-Based Similarity Measures 

The basic idea of field-based similarity is illustrated by the following example which 
uses the molecular electrostatic potential (MEP) to determine electrostatic molecular 

Figure 5a. Energy minimized structure 
of clonidine; carbons are shown in yel- 
low, hydrogens in magenta, oxygen in 
red and nitrogen in blue. 

Figure 5b. The molecular electrostatic 
potential field of clonidine with isopo- 
tentials contoured at +lo,  blue, and 
-10, red. 

Figure 5c. The molecular steric volume 
of clonidine contoured at the van der 
Waals distance from the atoms. 
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similarity. Consider two molecules which have been structurally superimposed in a 
predetermined relative orientation. We may construct a grid of points surrounding 
the molecules, and evaluate the MEP of each molecule at every point. Let uk and 
vk be the value of the MEP of the respective molecules at the kth grid point. The 
molecular similarity measure may be determined using the Carbo Similarity Index 
[311. 

Alternatively, the Hodgkin-Richards Similarity Index [32], 

or that developed by Petke may be used [20]: 

These indices may be evaluated by summation of the grid points as shown in the 
following example, or alternatively, by integration of approximate expressions over 
all space [33]. Each of the above indices provides a numerical value for the similarity 
ranging from - 1 (full dissimilarity) to + 1 (full similarity). In addition to the MEP, 
other related electronic properties such as the electron density or electric field may 
be used. 

Steric similarity may also be used and can be determined by employing a steric 
molecular “field” descriptor to represent the molecular steric volume (MSV). For ex- 
ample, such a descriptor may be constructed by representing the “size” of each atom 
by a spherical gaussian, and using the function 

where R ,  specifies the position of atom rn, c, and a, are parameters characteristic 
of atom rn, and the sum is taken over all atoms in a given molecule. 

3.1.4.2 Field-Based Molecular Superpositions 

Field-based methods may also be used to provide robust procedures for determining 
structural superpositions. This approach involves a straightforward extension of the 
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above, in which the similarity index is employed as an objective function in an op- 
timization procedure, and the relative orientation of the two molecules is varied in 
order to maximize the value of the index. A number of options are possible in such 
“field-fitting” procedures, including optimizations based on combined electrostatic 
and steric similarity, and optimizations, in which selected torsional angles (i.e. flexi- 
ble fitting”) in one or both molecules are varied in addition to relative translation 
and rotation. The use of field-based similarity methods for evaluating and optimiz- 
ing the match between molecules provides a means of overcoming a fundamental de- 
ficiency in atom-based matching, namely that of choosing which atoms to match in 
the fitting process. 

3.1.4.3 An Example of Field-Based Fitting: Morphine and Clonidine 

Two molecules with very different structures, morphine and clonidine, the latter be- 
ing an effective a2-adrenergic agent for treating morphine withdrawal symptoms 
[34], illustrate the use of field-based methods to explore the similarity between the 
two molecules. The 3D molecular structures were obtained by energy minimization 
using the MM2 molecular mechanics potential-energy function [35] starting from the 
X-ray crystal structure conformations [36, 371. The MOPAC program [38, 391 was 
then used to evaluate the partial atomic charges of each molecule. Fig. 4a shows the 
structure of morphine which was used as the prototype molecule in the matching 
process. An isopotential drawing, Fig. 4b, contoured at + 10 (blue) and 
- 10 kcal/mole (red) shows the general location and strength of the electrostatic 
potential field surrounding the molecule. Similarly, Fig. 4 c illustrates the steric field 
of the molecule contoured at the van der Waals radii. Fig. 5 shows the corresponding 
drawings for the clonidine molecule. 

Three levels of field-based similarity matches have been performed; MEP, extend- 
ed-MEP (XMEP), and XMEP plus MSK The Petke similarity index was used in all 
of the calculations described here. The match, involving only the MEP fields, is the 
simplest of all the approaches and contains the least information about the actual 
molecular structure. Moreover, the nature of the function used to evaluate the “stan- 
dard” MEP is comprised of terms containing “l/r”,  where r is the distance of the 
field point to an atomic center: as r + 0, l / r  4 0 0  and, thus, grid points that lie too 
close to an atomic center must be excluded. This gives rise to “holes” in the grid sur- 
rounding each atom position in the molecules being matched, a limitation that is re- 
moved when XMEP fields are used. In the latter case, the contribution to the MEP 
field in the region surrounding an atom is treated as a constant, removing the necessi- 
ty to exclude grid points in this region. 

Fig. 6 shows an optimized superposition obtained for morphine (green) and 
clonidine (yellow) with an MEP-based similarity value of 0.78. It is evident that while 
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Figure 6. A superposition of morphi 
green, and clonidine, yellow, obtained 
matching the MEP field. 

Figure 7. A superposition of morphine, 
green, and clonidine, yellow, obtained by 
matching the MEP field extended to include 
the region around the atoms. 

the similarity match obtained is very good, structural features that might be expected 
to match, such as the planar six-membered rings, are far from being aligned. The 
overall structural similarity is improved, however, if xMEP rather than MEP is em- 
ployed. Fig. 7 shows the optimized superposition of morphine onto clonidine ob- 
tained using the xMEP-based similarity measure. The relative positioning of the two 
molecules, especially the six-membered rings, is much closer to what might be ex- 
pected from both an electronic and structural view point. The xMEP-based similarity 
measure had a value of 0.60. Although this value is lower than the MEP-based simi- 
larity value, the two values are not directly comparable as they are based on a differ- 
ent number of points. 
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Figure 8. A superposition of morphine, 
green, and clonidine, yellow, obtained by 
matching bothe the extended MEP and MSV 
fields. 

Figure 9. An alternate superposition of 
phine, green, and clonidine, yellow, obt 
by matching both the extended MEF 
MSV fields. 

mor- 
ained 
’ and 

Some measure of MSV should, however, be included in any similarity-based mo- 
lecular superpositioning to properly account for the way in which both molecules in- 
teract with an opioid receptor. Thus, in the example shown in Fig. 8, XMEP and MSV 
have been combined to provide an explicit description of both the electronic and 
steric fields of morphine and clonidine. This figure clearly shows that the positioning 
of the two molecules is close to that obtained using the xMEP field alone, but that 
the match between the shapes of the molecules has been further improved to the 
point where the six-membered rings are now co-planar. This matching yielded a total 
similarity value of 0.61, which is a weighted average of the similarity values of 0.57 
and 0.62 for the XMEP and MSV fields, respectively. 
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Interestingly, field-based similarity methods can exhibit multiple molecular super- 
positions with almost identical similarity values. Fig. 9 provides an example of an 
alternative superpositioning of morphine and clonidine, which has a similarity value 
identical to that of the example shown in Fig. 6, namely 0.61. The corresponding 
XMEP and MSV similarity values of 0.56 and 0.63, respectively, are also close to 
those in the previous example. However, the two superpositions differ from each oth- 
er rather dramatically. While field-based similarity matching of these two molecules 
alone cannot resolve the actual mode of binding within an opioid receptor, consider- 
ation of a series of analogues could potentially lead to a unique solution. 

3.1.5 Conclusions 

The concept of molecular similarity is a powerful one that can impact the drug dis- 
covery process in many ways, some of which have been illustrated here. However, due 
to the vagueness of the concept, it is difficult to define unambiguously. (“Similarity 
is like pornography; it is difficult to define, but you know it when you see it!” G. M. 
Maggiora, 1993). In chemistry, for example, molecular features which are held to be 
important by one chemist may not be considered important by another, and such dif- 
ferences in opinion depend critically on their background and disciplinary orienta- 
tion. Thus, which molecular features should be included in any definition of molecu- 
lar similarity is somewhat dependent on the problem and this has led to a profusion 
of 2D and 3D methods, some of which are described above. 

The role that conformational flexibility plays in similarity-based matching has not 
been discussed in this work. As dealt with in current similarity methods, conforma- 
tional flexibility only considers rotations about single bonds. Hence, only 3D 
similarity methods are affected. As has been shown by a number of workers [40, 411, 
inclusion of conformational flexibility in atom-based similarity searches does lead 
to larger sets of “hits” for a given reference (sub)structure. This is also true of field- 
based methods, where additional superpositionings are found within a given dataset 
(J. D. Petke & D. C .  Rohrer, unpublished results). However, for illustrative purposes 
only, rigid 3D similarity matchings have been considered here. 

Although molecular similarity is a powerful concept, it must be applied in a flexi- 
ble manner so as to achieve its maximal effectiveness. To obtain such adaptability 
a number of 2D and 3D similarity methods must be available, ideally within an in- 
tegrated computer environment - an environment which can also enhance the po- 
tential for synergy. The methods described in this chapter provided examples of some 
of the molecular similarity techniques in use today, but the most important point to 
be gained from the above material is that many aspects of the drug discovery process 
can be impacted by the applications of MSA. 
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3.2 Clustering of Chemical Structure Databases 
for Compound Selection 

Geoffrey M. Downs and Peter Willett 

3.2.1 Introduction 

Clustering is the process of subdividing a group of entities into more homogeneous 
subgroups on the basis of some measure of similarity between the entities. General 
books on the subject include those by Gordon [I] ,  Everitt [2] and Sneath and Sokal 
[3]. The technique can be used to: 

0 identify the groups that are present in a dataset which is believed to contain many 
distinct populations; 

0 present a summary of the types of entity present in a dataset; 
0 construct a classification scheme for the entities in a dataset; 
0 test or define hypotheses about the relationships between the entities in a dataset; 
0 identify homogeneous subgroups within a dataset of entities of known behavior 

to assist in the prediction of the behavior of entities outside the dataset. 

In the present context, the entities of principal interest are the compounds in a 
chemical database, and the attributes are the descriptors used to represent them. 
Clustering methods can be employed to identify and to summarize the classes of 
compounds or attributes that are present. Knowledge of these can then be used as 
the basis for an unbiased and systematic approach to the selection of a representative 
of each of the classes that have been identified. Many applications of clustering have 
been reported including the following: 

0 the clustering of small sets of compounds on the basis of their chemical and/or 
biological properties; 

0 the clustering of substituent properties as part of the process of experimental 
design of a new series of compounds; 

0 the clustering of hits resulting from a substructure search of a databases, i.e. the 
retrieval of all molecules that contain a user-defined partial structure, with com- 
pound selection being undertaken to provide an overview of the range of struc- 
tural classes present in the search output; 

0 the clustering of an entire database, e.g. a corporate structure file, with com- 
pound selection being undertaken to identify candidates for biological screening. 
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The first two of these applications use clustering as one of the tools available for 
structure-activity relationship analysis, whereas the last two use clustering for larger- 
scale information analysis, visualization and sampling. 

Clustering of small sets of compounds is frequently performed as a preliminary 
step in more extensive structure-activity analyses, as outlined by Downs and Willett 
[4], or as a more general analytical chemistry exercise, which is exemplified by the 
extensively employed MASLOC procedure [5]. More specific examples include the 
classification of 40 neuroleptics, using assays with rats, by Lewi [6], and of 29 antibi- 
otics¶ with antibacterial data, by Takahashi et al. [7]. Similarly, Miyashita et al. [I21 
have clustered 62 cephalosporins, on the basis of antibacterial spectra, and 38 ben- 
zodiazepines, on the basis of 8 physico-chemical parameters, to obtain a representa- 
tive subset of compounds. Clustering to ascertain the interdependence of variables 
is discussed by Chen et al. [8], who employed cluster analysis to eliminate redundant 
variables, so that the remaining variables could be used for more precise structure- 
activtiy analysis methods (in this case factor analysis). Lin et al. [9] gave a more re- 
cent account of clustering and principal component analysis to select descriptors and 
then compounds for input into a CoMFA analysis of 3D molecular shape [lo]. 

Clustering of substituent properties was pioneered by Hansch et al. [I 31 as a means 
for selecting representative substituents from homogeneous subgroups formed on the 
basis of up to six physico-chemical parameters. This preliminary step in the data 
reduction was undertaken to facilitate the rapid formulation of a viable structure-ac- 
tivity relationship. The clusters formed were investigated further by Dunn et al. [I41 
to ascertain as to whether they shed light on the mechanisms of action by antitumor 
triazenes. There have been several subsequent discussions on the use of clustering 
methods with substituent data, which have been reviewed by Pleiss and Unger [15]. 
However, van de Waterbeemd et al. [I61 have shown that cluster analysis employed 
in this way can give disappointing results in some cases. An alternative approach has 
been adopted by Wootton et al. [ I l l ,  in which compounds are selected that are apart 
by at least a specified distance, as defined by the sum of their substituent physico- 
chemical parameters. The aim is to obtain a well distributed sample from the data 
set, and the approach is, thus, analogous to the maximum dissimilarity selection pro- 
cess, which is discussed later in Section 3.2.3.3. 

Clustering the outputs of 2D substructure searches, where a user’s query pattern 
consists of a set of atoms and bonds, has been reported by Willett et al. [I 71 and Bar- 
nard and Downs [18], but does not appear otherwise to have been discussed in the 
literature. However, the new generation of systems for 3D substructure searching, 
where a user’s query pattern is a putative pharmacophoric pattern that (usually) con- 
sists of a set of atoms and the associated interatomic distances [19,20], typically pro- 
duce much larger hit lists than 2D substructure searches. This may encourage a re-eval- 
uation of cluster analysis for the processing of search outputs, especially when flexible 
3D searching becomes fully established, since this is known to produce still larger 
numbers of hits than the present generation of rigid 3D searching systems [21]. 
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To-date, greater interest has been shown in the final application above, and this 
review hence focuses on the use of cluster analysis methods to select compounds for 
screening, a task that is normally accomplished by manual means. Cluster-based se- 
lection has the following advantages: 

0 a complex and time-consuming manual operation involving highly trained staff 
can be replaced by a cheaper automated procedure; 

0 an effective clustering procedure can help to ensure that no classes of compounds 
are overlooked when selecting structures for testing; 

0 the use of a parameterized clustering method permits the creation of different 
sets of structures to suit different screening requirements. 

The general steps involved in the process of clustering a dataset are as follows: 

1) Select an appropriate set of attributes (molecular properties). 
2) Process the dataset of entities (compounds) to generate attribute lists for each 

entity. If the set of attributes is of reasonable size then use these attributes as 
descriptors. Otherwise, combine attributes or conduct a dimensional analysis to 
produce a reasonable number of descriptors. If appropriate, and where necessary, 
standardize the descriptors. 

3) Use an appropriate similarity measure to calculate the similarity between each 
pair of entities. 

4) Use an appropriate clustering method to group the entities. 
5) Analyze the resultant clusters or classification hierarchy; the clustering can then 

be repeated, or the best set of clusters chosen as required. 

The reader will note that we have used the term “similarity measure” in Step 3 of 
this algorithm; this should be understood to include not only similarity measures, 
but also dissimilarity and distance measures. Sneath and Sokal [3] have given a de- 
tailed account of the many ways in which the resemblance between pairs of entities 
can be calculated. 

The attributes used to classify the entities are generally a subset of all of the possi- 
ble attributes. The choice of attributes is critical to the success of the subsequent 
classification: if the set of chosen attributes is incomplete with respect to a particular 
application, then distinctive subgroups in the dataset will not be differentiated, since 
entities that are similar in one dimension may be very different in another. The cho- 
sen set of attributes is the basis for the descriptors employed in the similarity mea- 
sure calculation (many attributes may be combined to form one descriptor). Exam- 
ples of descriptors that can be used to measure chemical similarities include biologi- 
cal properties [7, 121; topological indices, such as molecular connectivity x (chi) and 
K (kappa) shape indices [22] and electrotopological state indices [23]; structural frag- 
ments, such as augmented atoms [24], atom pairs [25], and three-dimensional (3D) 



114 G. M. Downs and I? Willett 

information, such as interatomic distance ranges [26]; and property values, such as 
melting point, molar refractivity, volume and log P [27]. 

In addition to the chosen attributes, classification of a set of entities is also depen- 
dent on the similarity measure employed. The choice of similarity measure is nor- 
mally left to the investigator; however, some of the available clustering methods de- 
mand, or are defined by, the use of a particular similarity measure. Attributes, 
descriptors and similarity measures have been discussed in greater detail earlier in 
Chap. 3.1 and by the present authors elsewhere [4,28]. Once appropriate descriptors 
and similarity measures have been selected, a clustering method can be used to pro- 
duce the required subgroups. The methods available for this purpose are discussed 
in the next section, with special reference to those methods that have already been 
used for clustering files of chemical compounds. 

3.2.2 Review of Clustering Methods 

Clustering methods can produce overlapping clusters, in which each object may be 
in more than one cluster, or non-ovedapping clusters, in which each object occurs 
in only one cluster. The latter are far more widely used and, thus, most of the meth- 
ods that are discussed below belong to this class. An example of the application of 
an overlapping method to compound selection has been provided by work carried 
out at the National Cancer Institute: this is discussed in Section 3.2.4.2. 

The non-overlapping cluster methods can be classified as shown in Figure 1. There 
are two main classes of clustering method: hierarchical methods and non-hierar- 
chical methods, which can be further subdivided as shown. This is not the only clas- 

Agglomerative 

Monothetic 

Divisive 

Polythetic 

- Hierarchical 

Single pass 

Relocation 

Nearest neighbor 

Others 

- Non-hierarchical 

Figure 1. Simple classification of clustering methods. 
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sification for non-overlapping clustering methods, but is the most widely used and 
the most accepted. 

Many of these methods are available in general-purpose statistical packages, such 
as SAS and SPSS, or in specific clustering packages, such as CLUSTAN. However, 
the routines in these packages are typically designed for processing small datasets, 
which contain at the most a few hundred entities, and they are thus not appropriate 
for processing chemical databases, which contain tens or hundreds of thousands of 
entities. Accordingly, users will generally need to encode their chosen clustering 
method to suit their own purposes, and so we have provided considerable algorithmic 
detail in the discussion below to facilitate such implementations. 

3.2.2.1 Hierarchical Clustering Methods 

An hierarchical clustering method produces a classification in which the smaller 
clusters of very similar molecules are nested within ever increasing larger clusters of 
less closely related molecules. This hierarchical arrangement of clusters is usually 
visualized as a dendrogram, which illustrates the ways in which molecules fuse into 
(or are subdivided into) clusters, and the similarity level at which this takes place. This 
is ideal for producing taxonomies, but it is difficult to interpret a dendrogram if it is 
used to describe a classification of a dataset containing more than a few tens of enti- 
ties. Hierarchical agglomerative methods generate a classification in a “bottom-up” 
manner, by a series of agglomerations in which small clusters, initially containing indi- 
vidual molecules, are fused together to form progressively larger clusters. Conversely, 
hierarchical divisive methods generate a classification in a “top-down” manner, by 
progressively subdividing the single cluster which represents the entire dataset. 

Hierarchical A gg Iomerative Methods 

Many clustering applications use one of the Sequential Agglomerative Hierarchical 
Non-overlapping (SAHN) clustering methods. These methods can be implemented 
by means of the basic algorithm below, which is known as the stored-matrix algo- 
rithm since it involves random access to the interentity similarity matrix throughout 
the entire cluster generation process: 

1) Calculate the similarity matrix, which contains the similarities between all pairs 
of entities in the dataset that is to be clustered. 

2) Find the most similar pair of points (where a point denotes either a single entity 
or a cluster of entities) and merge them into a cluster to form a new single point. 

3) Repeat Step 2 until only a single point remains, i.e. until all of the entities have 
been merged into one cluster. 
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Individual hierarchical agglomerative methods differ in the ways in which the most 
similar pair of points is defined, and in which the merged pair is represented as a 
single point. The original data is not required once the initial similarity matrix has 
been computed since the combinatorial solution to recompute the intercluster simi- 
larity is given by the Lance-Williams matrix-update formula [29]. 

where dkci,j, is the similarity measure between point k and a point (i, j )  formed by 
fusing points i andj .  Different SAHN methods have different values for the four pa- 
rameters a j ,  aj ,  p and y.  Many other SAHN techniques exist, but d o  not fall within 
the scope of the matrix-update formula and, thus, are rarely used. 

Murtagh [30] and others classified SAHN techniques into graph-theoretic or linkage 
methods and geometric or cluster-centre methods. Graph theoretic methods include 
the single linkage, complete-linkage, weighted-average and group-average methods, 
whilst geometric methods include the centroid, median and Ward’s, or the minimum 
variance, methods. An important concept, which Murtagh [30] discusses, is that of 
the reducibility property. If a method satisfies the reducibility property then agglomer- 
ations can be undertaken in restricted areas of the similarity space and the results 
amalgamated to form the overall hierarchy of relationships. Satisfaction of the proper- 
ty also means that reversals, or inversions, of the hierarchy cannot occur. Reversals are 
a problem with geometric methods because a cluster may end up being more similar 
to its parent cluster than to any of its constituent entities. Both median and centroid 
geometric methods are subject to this problem, but Ward’s method satisfies the 
reducibility property and, thus, this problem is not encountered. Graph-theoretic 
methods are also not subject to this problem, and the reducibility property is generally 
not applicable to them. However, under certain conditions, the group average method 
does satisfy the reducibility property and this point is discussed further below. 

The advantage of isolating methods which satisfy the reducibility property is that 
the stored matrix algorithm can be replaced by the computationally more efficient 
reciprocal nearest neighbor (RNN) algorithm. In this algorithm, a path is traced 
through the similarity space until a pair of points is reached that are more similar 
to each other than to any other points, i.e. they are reciprocal nearest neighbors 
(RNN). These RNN points are fused to form a single new point, and the search con- 
tinues until the last unfused (unused) point is reached. The basic RNN algorithm is, 
thus, as follows: 

1) Mark all entities, i, as “unused”. 
2) Starting at an unused i, trace a path of unused nearest neighbors (NN) until a pair 

of reciprocal nearest neighbors is encountered; i.e. trace a path of the form 
j : = NN ( i ) ,  k :  = NN (j ), 1 :  = NN ( k )  . . . until a pair of points is reached for which 
q = NN(p)  and p = NN(q). 
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3) Add the RNNsp and q to the list of RNNs along with the distance between them, 
mark q as “used”, and replace the centroid of p with the combined centroid of 
p and q. 

4) Continue the NN chain from the point in the path prior to p,  or choose another 
unused starting point if p was a starting point. 

5 )  Repeat Steps 2-4 until only one unused point remains. 

The RNN method is applicable to geometric clustering methods in which the most 
similar pair at each stage is defined by a distance measure. In Ward’s method, the 
intercluster variance is maximized as the intracluster variance is minimized. The Eu- 
clidean distance is used to determine distances between points and, hence, to define 
a cluster centroid. For two points i and j ,  the Euclidean distance, E, is given by: 

with the summation over all k. 
Thus, if the Euclidean distance is used in the RNN algorithm, the clusters obtained 

are those that would be obtained from the stored-matrix algorithm using the update 
formula appropriate to Ward’s method, i.e. the procedure results in a hierarchy of 
Ward clusters. To obtain the clusters, it is necessary to arrange the list of RNNs, pro- 
duced in Step 3 of the algorithm above, in order of increasing distance between them. 
This list represents the Ward hierarchy; the first in the list is the first pair to be merg- 
ed, and so on. 

We have mentioned above that the reducibility property does not apply to the 
graph theoretic methods. However, the group-average method can be implemented 
using the RNN algorithm if, and only if, the Cosine coefficient is used instead of 
the Euclidean distance to calculate the interentity similarities. For two points, i and 
j ,  the Cosine coefficient, C, is given by: 

with the summations over all k. 

This changes the normally graph-theoretic group-average method into a geometric 
one, and the RNN approach is valid [31, 321. Since a similarity coefficient is used 
instead of a distance, the closest points are those with the largest coefficients, and 
the RNN list needs to be arranged in order of decreasing coefficient (rather than in 
order of increasing distance as would be necessary for Ward’s method). 
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Hierarchical Divisive Methods 

Hierarchical divisive methods are generally much faster than the corresponding ag- 
glomerative methods, but often give poor levels of performance since they are 
monothetic in character, i.e. the divisions are based on just a single attribute. This 
is in marked contrast to all of the other clustering methods described in this review, 
which are polythetic in character, i.e. all of the attributes are considered simulta- 
neously during the cluster-generation process [33]. 

One of the few successful polythetic divisive methods is the minimum diameter 
hierarchical divisive method of Guenoche et al. [34], a general outline of which is 
given below: 

1)  For the set of N entities to be clustered, produce an input list of all N(N- 1)/2 
dissimilarities, arranged in decreasing order of magnitude; 

2) Take the top two entities in this dissimilarity list; these become the focus of the 
first bipartition of the dataset. Assign all other entities to the least dissimilar of 
these initial cluster centres; 

3) Recursively select the cluster with the largest diameter and partition it into two 
clusters, such that the larger cluster has the smallest possible diameter; 

4) Continue for a maximum of N-1 bipartitions. 

The diameter of a cluster is defined as the largest dissimilarity between any two 
of its members, and does not necessarily reflect the size (number of members) of the 
cluster; the diameter of a singleton cluster is defined as zero. 

One of the potential benefits of polythetic hierarchical divisive clustering is that 
users typically wish to have only a few clusters. Hierarchical agglomerative clustering 
requires the production of most the hierarchy, with the accompanying problem that 
erroneous assignments made early in the hierarchy are not corrected and, thus, 
become compounded. In the case of hierarchical divisive clustering, only the first 
part of the hierarchy need be produced, resulting in less risk of compounding errone- 
ous assignments. However, this method requires random access to the full dissimilar- 
ity matrix (to calculate the diameters in Step 3 of the algorithm above) if the de- 
mands on time are not to become too great. 

3.2.2.2 Non-Hierarchical Clustering Methods 

A non-hierarchical method generates a classification by partitioning a dataset, giving 
a set of (generally) non-overlapping groups which have no hierarchical relationships 
between them. A systematic evaluation of all possible partitions is not feasible, and 
many different heuristics have, thus, been described which identify good, but pos- 
sibly less than optimal, partitions; such methods are generally much less demanding 
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of computational resources than the hierarchical methods. Three of the main catego- 
ries of non-hierarchical methods are the single-pass, relocation and nearest-neighbor 
methods. 

Single-Pass Methods 

Single-pass methods are easy to implement and are very fast. As the name suggests, 
they require a single pass through the dataset to assign the entities to clusters. A 
threshold of similarity is used to decide as to whether to assign the next entity to an 
existing cluster or to use it as the start of a new cluster. As with other clustering meth- 
ods, it is, thus, necessary to decide how to represent an existing cluster so that simi- 
larity between an entity and a cluster can be determined. This cluster representative 
is normally obtained by calculating the centroid, i.e. the arithmetic mean of the at- 
tribute vectors for each of the entities in a cluster. The basic algorithm, which is com- 
monly referred to as the Leader Algorithm [35], is as follows: 

1) Designate the first entity as the first cluster. 
2) Assign the next entity to the most similar existing cluster, or, if the similarity does 

not equal or exceed the threshold similarity, designate it as the start of a new clus- 
ter. 

3) Continue until all entities have been processed. 

The major problem with single-pass clustering is that the resultant clusters are de- 
pendent on the order in which the structures are processed and upon the threshold 
used in Step 2. The former limitation has serious implications since it implies that 
an alternative, and possibly superior, classification could be obtained simply by per- 
muting the dataset so that the entities are processed in a different order. 

Relocation Methods 

Relocation methods assign entities to a user-defined number of seed clusters and 
then iteratively reassign entities to see if improved clustering results. Such methods 
are prone to reaching local optima rather than a global optimum, and it is generally 
not possible to determine when, or whether, the global optimum solution has bee? 
reached. The two most common relocation methods are k-means (as first discussed 
by Forgy [36]) and hill-climbing. The basic algorithm is as follows: 

1)  Select a user-defined number of entities as the cluster seeds. 
2) Assign all other entities to  the most similar cluster seed. 
3) Calculate the cluster representatives. 
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4) Assign each entity to the most similar cluster representative. 
5 )  Repeat Steps 3 and 4 until fewer than some minimal threshold number of changes 

occur in the membership of the set of clusters, or until a user defined number 
of iterations has taken place. 

The relocations, or repeated assignments, in Step 4 are an attempt to correct what 
is a potentially poor selection of seed entities. There are many ways of defining the 
cluster representative. The k-means method use the centroid, whereas the hill-climb- 
ing method uses a criterion function, such that an entity is relocated to another clus- 
ter if such a relocation results in an improvement of the chosen criterion function. 
The problem of stabilization around a local optimum can be lessened by reiteration 
of the algorithm either with different seed points, or with modified parameters to 
see if there is any improvement. However, consistent results, independent of the seed 
entities selected in Step 1, still cannot be guaranteed. 

Nearest-Neighbor Methods 

Nearest-neighbor methods assign structures to the same cluster as a defined number 
of their nearest neighbors. User-defined parameters determine how many nearest 
neighbors need to be considered and the necessary level of similarity between near- 
est-neighbor lists. There are several such methods, of which the Jarvis-Patrick meth- 
od [37] has proved to be highly appropriate for the clustering of chemical structures 
represented by structural fragments [38]. 

The Jarvis-Patrick method involves the use of a list of the top K nearest neighbors 
for each of the Nentities in a dataset. Nearest neighbors are typically identified using 
the Euclidean distance or the Tanimoto Coefficient as the similarity measure. The 
Tanimoto Coefficient, TC, is defined as: 

with the summations over all k. 

Once the lists of top K nearest neighbors for each entity have been produced, a 
second stage is used to create the clusters. Two entities, i andj ,  are placed in the same 
cluster if all of the following conditions are satisfied. 

0 i is in the top K nearest-neighbor list of j ,  
8 j is in the top K nearest-neighbor list of i, 
0 i and j have at least Kmin of their top K nearest neighbors in common, where 

Kmin is a user-defined parameter in the range 1 sKminsK.  
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The second stage uses a label array of length N to store the cluster labels for each 
entity, and proceeds as follows: 

1) Initialize the label array by setting each element to its position in the array; this 
sets each entity to its own initial cluster; 

2) Compare the nearest-neighbor lists for all pairs of entities, i and j ( i<j).  If all 
of the clustering conditions above are satisfied then replace the label array entry 
for j ,  and all other occurrences of the label array entry for j in the label array, 
with the label array entry for i. 

3) The label array contains the lowest array entries for the entities in each cluster, 
and members of the same cluster will have the same array entry. Scan the array 
to extract the members of each cluster. 

As with the hierarchical methods, this process is not order-dependent. However, 
instead of choosing a required number of clusters, as is required for the relocation 
methods, the partition is governed by the choice of K,,,; i.e. the emphasis is on par- 
titioning by degree of similarity between structures rather than by a predefined num- 
ber of clusters. It is necessary, therefore, to experiment with a range of Kmin values 
until roughly the required number of clusters is obtained. 

3.2.3 Choice of Clustering Method 

Each clustering method has its own characteristics, both in terms of the resultant 
clusters and in terms of the computing resources required. 

3.2.3.1 Computational Requirements 

For a dataset of N entities, the standard stored matrix approach for hierarchical ag- 
glomerative clustering requires O(N2) time and O(N2) space to generate and store 
the N x N  similarity matrix and O(N3)  time for the clustering, whereas the Recipro- 
cal Nearest Neighbor approach reduces the time required for clustering to OW2) 
and the space requirement to O(N).  Other fast SAHN algorithms have also been de- 
scribed [39, 401. The minimum diameter hierarchical divisive algorithm has an 
O(N2 log N )  clustering time requirement and an O(N2) space requirement (since it 
needs random access to the similarity matrix). The best of the non-hierarchical meth- 
ods reduce the clustering time requirement to only O(MN),  where M is the number 
of clusters generated, with a storage requirement of O(M+N); however, the worst 
non-hierarchical methods are slower than hierarchical ones. The Jarvis-Patrick meth- 
od requires O(N2) time and O(N)  space for the generation of the nearest-neighbor 
lists. 
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Methods requiring 0 ( N 3 )  time for the clustering, i.e. SAHN methods using the 
stored-matrix algorithm, can only be used for datasets containing a few tens or a few 
hundreds of entities, whereas the best of the non-hierarchical methods can be used 
for datasets containing tens or hundreds of thousands of entities given an appropri- 
ate implementation. Methods requiring O(N2) time for the calculation of the simi- 
larities are feasible for this size of dataset only if a subset of the total number of 
similarities are required in the clustering process. 

3.2.3.2 Cluster Shapes 

For the SAHN methods the two extremes of cluster characteristics are represented by 
single linkage and complete linkage. Single-linkage clusters are based on connected- 
ness, in that a single edge between two clusters is sufficient to merge them. These clus- 
ters are maximally connected subgraphs and so are characterized by the minimum 
path length among all pairs of entities in the cluster. The result is a tendency for clus- 
ters to be chained together to form long, straggly clusters. At the other extreme, com- 
plete-linkage clusters are based on the diameter of maximally complete subgraphs, 
where the diameter of a complete subgraph is the smallest similarity for all pairs of 
entities in the cluster. Complete linkage does not generate the clusters with minimum 
diameter (unlike the Guenoche Algorithm) and has a tendency to produce compact, 
but not very well separated clusters [41]. Ward’s method and the group-average meth- 
od lie in between these two extremes and tend to produce globular clusters. The mini- 
mum-diameter divisive method produces clusters which tend to be well separated and 
of variable shape. Of the non-hierarchical methods, the Jarvis-Patrick method tends 
to produce clusters similar to single linkage, though this depends on the relative values 
of K and Kmin, with k-means clusters being more similar to complete linkage. 

As to which of these methods is the most appropriate depends largely on the 
nature of the datasets. Clustering methods will form clusters from any dataset, even 
those containing evenly distributed entities. It is necessary, therefore, to ensure, first 
of all, that the dataset does contain distinct clusters, and there is an extensive litera- 
ture devoted to this problem of cluster validation [42]. In the case of heterogeneous 
datasets of chemical structures, this first condition can be assumed. The next deci- 
sion is whether the natural clusters are best perceived as, for instance, straggly or 
globular, so that the most appropriate cluster method can be applied. There is no 
automatic way of arriving at this decision. The most common approach is to use a 
range of different clustering methods and then to analyze visually the resultant clus- 
ters to determine which appear to be the most realistic or appropriate for a given 
application. However, visualization of the results of a cluster analysis is always a 
problem if large datasets are to be processed [2]. 

For hierarchical clustering the standard output is a dendrogram, but these become 
incomprehensible for more than a few hundred entities. For larger datasets, it is nec- 
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essary to take just one or two partitions from the hierarchy (which requires some 
manual or automated technique for deciding which partition(s) should be chosen), 
and then either display the structures in each cluster (or a representative structure 
from each cluster), or perform some form of data reduction to enable the entities 
to be plotted in a few dimensions. The former approach is the more common for 
chemical applications of non-hierarchical clustering methods. Structures from each 
chosen partition are transferred to a structure display routine, with the user being 
able to view each member of a cluster in 2D or 3D. 

3.2.3.3 Comparative Studies 

The review given in Section 3.2.2 emphasized the wide range of clustering methods 
that are currently available, and new methods are being described all the time. Hence 
there is a need for a set of guidelines to determine which of the clustering methods 
is the most appropriate for a particular application. Three main approaches to the 
selection of a method have been described: theoretical analyses to identify those 
methods with characteristics that closely match a set of predefined criteria of effec- 
tiveness (see, e.g. [43, 441); simulation studies, which use artifical datasets, for which 
the groupings are already known, and investigate the extent to which different meth- 
ods are able to recover this structure (see, e.g. [45]); and purely empirical compari- 
sons, which use evaluation criteria specific to the problem being studied. This last 
approach has been advocated by Everitt [46] and was adopted by Willett [28] and 
co-workers in a long series of experiments that evaluated over 30 different hierarchi- 
cal and non-hierarchical methods. These methods were used for clustering sets of 
compounds which were represented by their constituent atom-centred or bond-cen- 
tred fragment substructures. 

If we wish to carry out an empirical comparison of clustering methods, some 
quantitative measure of effectiveness is required in order to compare one method 
with another. In the context of selecting compounds for biological screening, the 
most important characteristic of a method is its ability to group together molecules 
with similar properties (or activities), while separating them from clusters that con- 
tain molecules with different properties. Adamson and Bush [24] have described a 
“leave-one-out” approach for the evaluation of chemical classifications that has 
been extensively used. The property value of a molecule, I,  within a dataset is as- 
sumed to be unknown, and the classification resulting from the use of some particu- 
lar clustering method is scanned to identify the cluster that contains the molecule, 
I .  The predicted property value for A P( I ) ,  is then set equal to the arithmetic mean 
of the observed property values of the other compounds in that cluster. This proce- 
dure results in the calculation of a P(I )  value for each of the N structures in a data- 
set, and an overall figure of merit for the classification is then obtained by calculat- 
ing the product moment correlation coefficient between the sets of N observed and 
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predicted values. The most generally useful clustering methods will be those that give 
high correlation coefficients in as wide a range of datasets as possible. This approach 
of comparing clustering methods was used by Willett [28], who found that the 
best results were given by Ward’s hierarchical-agglomerative method and by the 
Jarvis-Patrick non-hierarchical nearest-neighbor method. As mentioned in Sec- 
tion 3.2.3.1 these have comparable time and storage complexities. However, the 
Jarvis-Patrick method is noticeably more efficient in practice for at  least three rea- 
sons: 

0 The intermolecular and intercluster similarity calculations are simpler and, 
hence, less time-consuming; 
the calculation of the intermolecular similarities needed for the generation of the 
nearest-neighbor lists can be performed in a large number of small computer runs 
as computer resources allow, since the lists are calculated in isolation from each 
other; 

0 it is relatively easy to update these lists when new compounds are added to a data- 
set, whereas most of the hierarchical agglomerative methods (including Ward’s 
method) would require re-clustering of the complete dataset if new compounds 
became available. 

Accordingly, it was concluded that the Jarvis-Patrick method was the most appro- 
priate method for the clustering of files of compounds characterized by fragment 
substructures [38]. This method now forms the basis for the clustering package of 
the chemical database software produced by Daylight Chemical Information Sys- 
tems, and for the CLASS routine in the CAVEAT package for molecular design that 
is distributed by the University of California. 

Lajiness and his co-workers [47-491 at the Upjohn Company have described a 
rather different approach to compound selection that has also been shown to be 
highly effective in operation. The basic algorithm, which is referred to as Maximum 
Dissimilarity Selection, attempts to select a set of compounds that are as dissimilar 
to each other as possible in a single pass of the dataset to be processed. The iden- 
tification of the maximally dissimilar set of structures is computationally infeasible; 
instead, the initial compound is selected at random. Then, at each stage in the pro- 
cessing, the next compound is selected which exhibits the minimum similarities to 
all compounds previously selected. While this procedure cannot be expected to iden- 
tify an optimal set of compounds, it has been found to work reasonably well in prac- 
tice. Indeed, a simulaton study involving a test dataset of 2,000 structures with the 
addition of five groups of known active compounds suggested that this approach 
identified a greater number of active compounds than an approach which was based 
on clustering followed by the selection of a representative compound from each clus- 
ter. 
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3.2.4 Examples of the Selection of Compounds 
from Databases by Clustering Techniques 

The need to process large files of compounds means that only the simplest and most 
efficient similarity measures and clustering methods can be used to select com- 
pounds for screening. To date, most of the studies published on cluster-based com- 
pound selection have used the fragment-based structure representations discussed in 
Section 3.2.3.3. This approach to the calculation of intermolecular similarity is not 
new, having originally been studied by Harrison [50] and by Adamson and Bush [24] 
over two decades ago. Both of the selection systems discussed below use this ap- 
proach, as does the system at the Upjohn Company developed by Lajiness et al. 
[47-491. However, it must be emphasized that other similarity and clustering proce- 
dures could be used for large-scale compound selection if the processing require- 
ments were computationally feasible (see, e.g. 114, 27, 51, 521). The popularity of 
fragment-based approaches stems from the proven effectiveness of this approach [I  8, 
28, 471 and the fact that the requisite fragment data may already be available in a 
chemical organization in the form of the fragment bit-screen records that are a cen- 
tral component of 2D chemical substructure searching systems [53]. 

3.2.4.1 The Jarvis-Patrick Method 

The first report of large-scale clustering for compound selection described a system 
that was implemented at Pfizer Central Research (U. K.) and which was based on the 
Jarvis-Patrick method [38]. The company had maintained a Structural Representa- 
tives File (SRF) for some years, which contained approximately 5% of the total cor- 
porate structure file. The structures in the SRF had been chosen on the basis of their 
availability in sufficient quantities for testing purposes and of their being representa- 
tive of the structural variation in the entire file. The method of selection had been 
intellectual and somewhat ad hoc, generally amounting to the inclusion of com- 
pounds containing ring systems or functionalities that had been unrepresented previ- 
ously. 

The structures in the Pfizer database, which contained about 240,000 structures 
at the time of this work, were represented for the search by a bit-map B in which 
the bit B(I, J) is set to true if the J-th screening fragment was present in the I-th 
compound. A total of 1315 screens were employed, those being atom-centred or 
bond-centred fragment substructures that had already been selected for inclusion in 
the screen set on the basis of their frequencies of occurrence in the database 1531. 
The bit-map is stored on disk so as to allow quick access to  its columns, i.e. to the 
lists of compounds that contain specific fragment screens. This mode of access is 
needed for the implementation of an efficient nearest-neighbor searching algorithm 
that minimizes the time required for the generation of the Jarvis-Patrick nearest- 
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neighbor lists, calculated using the Tanimoto Coefficient as the intermolecular simi- 
larity measure. This nearest-neighbor algorithm, and others, are discussed in detail 
by Willett [28]. 

The nearest-neighbor lists for each of the compounds in the database are generat- 
ed in an overnight batch run, and t.he resulting sets of nearest neighbors -20 for each 
compound - are written to disk for use in the subsequent interactive clustering stage 
of the Jarvis-Patrick method. A classification is generated by the user specifying the 
particular clustering parameters that are to be used, and the resulting clusters are 
then output together with any singletons that have been identified, where a singleton 
is a cluster that contains only one molecule. The user can then, if he or she so wishes, 
allocate each singleton to the non-singleton cluster with which it is most similar. 
Once the final clusters have been obtained, a representative molecule is chosen from 
each cluster for biological screening; this is acccomplished by calculating the cen- 
troid of the bit-strings describing each of the compounds in a particular cluster, 
and then choosing the compound whose bit-string is the most similar to the cen- 
troid. 

3.2.4.2 The Leader Method 

For many years, the National Cancer Institute (NCI) Division of Cancer Treatment 
has run a large-scale program for the computer-assisted testing of molecules for anti- 
tumor activity (see, e.g. [54]). NCI has recently adopted a cluster-based mechanism 
for the selection of compounds for biological screening that is rather different in ap- 
proach to that adopted by the Pfizer system [55 ,56] .  

The compounds in the NCI database are again represented by lists of fragment 
substructures, but an open-ended fragment description is employed here, which re- 
sults in large numbers of detailed and highly specific fragments being available for 
the characterization of each structure. Moreover, each of these fragments has an 
associated weight that describes its multiplicity, its size (in terms of the number of 
atoms and bonds) and its frequency throughout the entire database. In the Pfizer 
work, conversely, each molecule was characterized by an unweighted bit-string de- 
scribing merely the presence or absence of a limited number of fairly generalized 
fragments. 

The clustering method used is a modification of the basic Leader method that has 
been described in Section 3.2.2.2. The NCI version assigns a compound, I ,  to all ex- 
isting clusters, J, for which the similarity between I and the first compound to have 
joined cluster J is greater than a user-defined threshold, thus resulting in an overlap- 
ping classification (since an individual compound can belong to more than one clus- 
ter). The similarity between a pair of structures is calculated using a weighted form 
of the Asymmetric Coefficient [57], since this was found to give better results with 
these weighted fragment descriptions than the Tanimoto Coefficient used at Pfizer. 
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A file of compounds to be clustered is first arranged in order of increasing sum of 
fragment weights. Not only does this ensure that a unique classification is obtained 
from a given set of compounds, which is often not the case with single pass methods, 
but it also allows for the use of an optimization procedure that minimizes the num- 
ber of compound-to-cluster similarities that need to be calculated [55]. 

The threshold similarity above which a compound joins a cluster is deliberately 
set at a high value, to ensure the identification of a large number of small clusters, 
which is in marked contrast to the clusters produced in the Pfizer work. Moreover, 
no attempt has been made to reallocate singletons to other non-singleton clusters. 
Instead, the view is taken that a compound that does not cluster is clearly dissimilar 
to the rest of the dataset and is, thus, of especial interest in a program which max- 
imizes the diversity of the compounds that are to be submitted for biological testing. 
Thus, while the NCI work uses a similarity-based approach to clustering, it also takes 
into account at least some of the work carried out on dissimilarity selection. 

3.2.5 Conclusions 

In this review, we have summarized the algorithms and methods that have been sug- 
gested for clustering files of chemical compounds as a precursor to the selection of 
compounds for inclusion in biological screening programs. The basic computational 
techniques necessary for this were described some years ago [24, 381, but only recent- 
ly have they started to become more widely used [ 181 as high-performance UNIX 
workstations became available. The availability of such hardware has facilitated the 
application of time-consuming clustering procedures to corporate databases that 
may contain in excess of a quarter of a million chemical compounds. The fact that 
most work on compound selection takes place within the fine-chemicals industries 
using proprietary databases means that it is difficult to obtain an accurate picture 
of the extent to which clustering procedures are routinely used. However, the wide- 
spread recognition of the need to maximize structural diversity in the sets of com- 
pounds that undergo biological screening means that cluster-based selection proce- 
dures are likely to become increasingly widely used in the near future. 

The current status of cluster-based selection is exemplified by the system that is 
being developed at the European Communities Joint Research Centre [4, 181. The 
aim is to provide analytical tools for processing the 100,000 EINECS substances in 
the ECDIN database [58] .  Physico-chemical property values are available for only 
a few of these substances, and Jarvis-Patrick clustering is being used to reveal natural 
groupings in the dataset which are likely to have similar properties. To assist this pro- 
cess, the latest enhancements include the ability to produce descriptor sets tailored 
to specific properties by analysis of the variety of fragment descriptors present in 
those substances with known property values. The resultant clusters provide 
homogeneous subsets of the input data that are suitable for more exact, but more 
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computationally demanding, QSAR techniques for the prediction of properties. 
Clustering is also being used to  form a basic classification of the EINECS substanc- 
es. Visual inspection of the structure diagrams of the substances in each cluster has 
been facilitated by a cluster display routine, in which any cluster can be selected and 
the constituent structure diagrams displayed as required. 

The greatest change that we are likely to see in the next few years is in the type 
of structure representation that is used to calculate measures of intermolecular simi- 
larity. The systems for compound selection described in this review are based on the 
substructural fragments that are used for conventional, 2D chemical substructure 
searching [52]. Although efficient, and surprisingly effective, in operation, such a 
fragment-based representation provides only a relatively crude decription of a chemi- 
cal structure; much more precise measures of intermolecular structural resemblance 
are possible using 3D structural information, since the 3D shape of a molecule is 
known to play a significant role in the recognition of a molecule at a biological re- 
ceptor site. Techniques for processing databases of 3D molecules are at present un- 
dergoing rapid development [19, 201, and this has already resulted in several 3D simi- 
larity measures that use interatomic distance information [59]. These measures are 
sufficiently fast for similarity searching, where a single target molecule is matched 
against an entire database to find its nearest neighbors, but at present they are far 
too slow to facilitate the clustering of large databases. Once appropriate algorithms 
have been developed, it is likely that clustering based on 3D similarity measures will 
become more widely used since they should provide a classification of a database 
that reflects the biological properties of the constituent molecules more accurately 
than the present generation of clustering procedures that employ 2D similarity mea- 
sures. 
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Abbreviations and Symbols 

G 
GDP, GTP 
DNA 
D 
L 
n 
i, i' 
0 

C 
EVD 
U 

Z 
r 

S 
P 
X 

MI, M2, . . .  
D1, D2, . . .  
Al,  A2, . .  . 
BI, B2, . .  . 
5HT1, 5HT2 
H1, H2 
W 
UPGMA 
FM 
a, b, c, . . . 
r 

d 

e 

A* 

C 

X 

Guanosine 
Guanosine Diphosphate, -Triphosphate 
DeoxyriboNucleic Acid 
distance matrix 
similarity matrix 
number of objects 
indices for objects 
origin of space 
angular distance matrix 
variance-covariance matrix 
EigenValue Decomposition 
eigenvector (or factor) matrix 
eigenvalue matrix 
identity matrix 
number of factors (in the context of receptor mapping) 
global dispersion 
scores matrix 
number of measurements 
measurement table 

muscarinic cholinergic receptors 
dopaminergic receptors 
a-adrenergic receptors 
/I-adrenergic receptors 
serotonergic receptors 
histaminergic receptors 
weight matrix 
Unweighted Pair-Group Mean Arithmetic 
Fitch and Margoliash 
tips of tree 
root of tree (in the context of phylogenetic clustering) 
node of tree 
root mean square deviation of tips from root 
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D r  
S 

D *  

average distance of tips from root 
root mean square relative deviation between observed and comput- 
ed distances 
reconstructed distance matrix 

3.3.1 G-protein Coupled Receptors 

G-protein coupled receptors are proteins that play an important role in the chemical 
transduction of signals within cells. The length of these proteins varies from 350 to 
850 amino acid residues, with an average length of about 450 residues [I] .  The sec- 
ondary structure of a typical G-protein coupled receptor is represented in Fig. 1. The 
N-terminal of the protein is located in the extracellular space, while the C-terminal 
is within the cytoplasm. Seven domains, each with an average length of 24 residues, 
span the lipid bilayer of the cell plasma membrane. These seven transmembrane do- 
mains are linked together by means of outer (0) and inner (i) segments of variable 
lengths. A characteristic S-S bond forms a bridge between two cysteines which are 
located in the second and third outer segment (02 and 03 in Fig. 1). The generally 
hydrophobic amino acids of the transmembrane segments form alpha helices which 
are arranged more or less in the form of a cylindrical shaft as indicated in Fig. 2.  
The amino acids in the extracellular and intracellular domains are generally hydro- 
philic, the former being generally acidic and the latter tending to be basic. Small 
molecules, such as neurotransmitters, are the first messengers in the signal transduc- 

i3 

Figure 1. Secondary structure of a G-protein coupled receptor protein, showing the transmembrane, extra- 
cellular (0) and intracellular (i) segments. 
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hydrophilic 
inner domains inner domains 

Figure 2. Tertiary structure of a G-protein coupled receptor with the shaft-like arrangement of the seven 
transmembrane segments. 

tion pathway of a cell [2] and are released by other cells in the synaptic clefts. They 
are able to bind reversibly to specific amino acids which are located on the inside 
of the transmembrane shaft of a receptor. Typical neurotransmitters are acetyl- 
choline, dopamine, noradrenaline, serotonin and histamine. Some of the G-protein 
coupled receptors also interact with peptides and odorants. A special class is formed 
by the photoreceptors in the retina of the eye, so called opsines, which are activated 
by photons rather than by chemical substances. 

Signal transduction, as it is presently understood, is represented schematically in 
Fig. 3. Each receptor is associated with a G-protein which in the inactivated state 
consists of three parts ( a ,  /3 and y ) .  It binds GDP (guanosine diphosphate) from 
which this class of receptors derives its name. Upon activation, the G-protein dissoci- 
ates into two parts (a and B y )  by exchanging GDP for GTP (guanosine triphos- 
phate). This in turn stimulates an enzyme (such as adenylate cyclase or phos- 
pholipase C) and causes the release of a secondary messenger (such as cyclic adeno- 
sine monophosphate or inositol phosphate) into the cytoplasm [3]. 

G-protein coupled receptors are thought to have evolved from an ancestral protein 
by random mutations of the DNA in the corresponding gene. It is estimated that the 
first divergence took place between 600 million and 1 billion years ago from an an- 
cestral bacterial rhodopsin [4]. At the time of writing some 247 different receptors 
have been identified, which can be broadly classified into eight families according 
to the primary messengers that bind them specifically and which have been men- 
tioned previously. The ancestral relationship between the various proteins is called 
a phylogeny. When a particular protein is studied in the different species, one can 
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primary messenger 
(neurotransmitter) 

a 

b 

0 
secondary messenger 

Figure 3. Schematic representation of a signal transduction pathway within a cell by means of a G-protein 
coupled receptor. a) The pathway starts with the binding of a neurotransmitter that is released in the 
synaptic cleft on the extracellular side, followed by b) activation of the receptor, GDP-GTP mediated dis- 
sociation of the G-protein, activation of an enzyme (phospholipase C or adenylate cyclase) and release 
of a secondary messenger (inositol phosphate or cyclic AMP) into the cytoplasm. 

often trace the path of evolution of the species going from primitive organisms such 
as fungi and bacteria to fishes, amphibians, reptiles, birds, mammals and then up 
to primates and man. This is also the case with, for example, hemoglobin and 
cytochrome C, both of which have evolved over a period of 1 billion years [ 5 ] .  

G-protein coupled receptors play an important role in the central and peripheral 
nervous system. They are also implicated in various hereditary or congenital diseases, 
such as retinitis pigmentosa and diabetes mellitus, which are attributed to mutant re- 
ceptor proteins encoded by impaired genes. In this study we only considered the 
muscarinic cholinergic receptors that bind acetylcholine, the a- and /3-adrenergic re- 
ceptors that bind noradrenaline, and those that bind serotonin and histamine. These 
receptors can be isolated in vitro for the purpose of screening new drugs. When a 
synthetic compound binds to a particular receptor, the compound may either mimick 
the action of the natural transmitter, in which case, it is called an agonist, or it may 
inhibit the receptor, in which case, it is referred to as an antagonist. The antagonist 
binds with a greater affinity to the receptor than the natural transmitter, but will not 
lead to the production of a second messenger down the transduction pathway. 
Agonists find therapeutic use either when there is a deficiency in the natural trans- 
mitter compounds in the neighbourhood of the receptor, or when the sensitivity of 
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the receptor has decreased, or when the number of receptors has diminished. Con- 
versely, antagonists play a therapeutic role either when there is an excess of natural 
transmitter molecules, or when the sensitivity of the receptor has increased, or when 
the receptors have proliferated abnormally. 

Screening for synthetic agonists or antagonists is still largely an empirical under- 
taking. Molecular biology is only beginning to reveal the structure and the function 
of the active site of receptors. Although there are reasonable grounds for speculation 
on the binding and effect of naturally occurring transmitters, such as serotonin, we 
still have very little understanding about the way chemically unrelated synthetic 
agonists and antagonists exert their activity at the molecular level [6]. New sequences 
of G-protein coupled receptors are added continuously to the list of 247 that are 
known today. These may be duplicates of previously discovered sequences, but which 
have been expressed in different species, or they may be novel types or subtypes of 
a known receptor that exhibit distinct pharmacological properties. In order to orga- 
nize and structure this large mass of information which is stored in our databases 
of amino acid sequences, we employed an approach which we call receptor mapping. 
Basically, our receptor mapping produces a two-dimensional representation of a 
group of receptors which reveals their similarity (or dissimilarity) together with their 
ancestral relationship. Similarities and dissimilarities can be mapped by means of 
Principal Coordinates Analysis as described by Gower [7]. Ancestral relationships 
are determined by phylogenetic clustering according to the method of Fitch and 
Margoliash [8]. 

3.3.2 Principal Coordinates Analysis of 71 Receptor Sequences 

A preliminary analysis was first carried out on 71 sequences of G-protein coupled 
receptors. These receptors can be classified into 26 pharmacological classes, accord- 
ing to distinct biological functions and to the specific binding of various biogenic 
amines. The 71 sequences have been isolated from ten different vertebrate species, 
including human (25), rat (24), mouse (3, porcine (4), bovine (3), dog (3), hamster 
(3), chicken (2), turkey (1) and xenopus, a type of toad (1). The amino acid sequences 
have been compared pairwise, which resulted in a similarity score, ranging from 0 
to 100 for each of the 2,485 (i.e. 71 x70/2) different pairs. Similarity is defined here 
as the relative number of identical amino acid residues in the corresponding posi- 
tions of two aligned sequences, with respect to the number of compared positions. 
Sometimes, similarity is defined as the relative number of “like” amino acid residues 
in the corresponding positions of the alignment according to the amino acid replace- 
ments that are acceptable in natural selection [9]. The former are referred to as iden- 
tity scores, while the latter are called similarity scores. In this study, our measure of 
similarity is based on identity scores of amino acids. The computer program VGAP 
has been devised for the optimal alignment of the sequences using a variable gap 
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penalty and for the derivation of identity scores [lo]. The result of this calculation 
is a 71 x 7 1  symmetrical matrix of similarities (more precisely, identity scores) in 
which 0 means complete difference and where 100 indicates identity. This square 
matrix is identified by the symbol, L (for likeness). 

The first step in the analysis is the transformation of the matrix of similarities, 
L, into a matrix of dissimilarities, 0, by subtracting from 100: 

Dii, = 100-Ljj. with i, i ’  = 1,. . .,n (1 1 

where i, i’ are indices for the rows and columns of the matrices D and L ,  and where 
n refers to the number of sequences. In Fig. 4 we have represented the distribution 
of the 2,485 dissimilarities in D. A strong mode appears at about 70 percent, with 
minor modes around 50 and 10 percent. This diagram gives an impression of the 
rather large differences that exist between the 7 1 individual sequences (individual da- 
ta are not shown). 

Our objective is to derive a spatial configuration of the 71 sequences such that the 
distances between representative points correspond with the observed dissimilarities 
in D. The problem can be equated to the reconstruction of a road map from a table 
of distances between cities, such as can be found on the reverse of a traveler’s map 
[I 11. The reconstruction can be performed with a ruler and compass, provided that 
the numbers represent point-to-point distances (as the crow flies), and provided that 
the configuration of points is truly two-dimensional. These assumptions may be 
largely satisfied in the case of a small geographical area for which the spherical shape 
of the earth can be neglected. In the case of n locations, one, thus, reduces 
n x (n  - 1)/2 distances to n x 2 coordinates. The reduction of data, thus, amounts to 
a factor (n-  1)/4, which increases linearly with the number of points, n. Further- 

dissimilarity % 

Figure 4. Distribution of the 2,485 dissimilarities among 71 G-protein coupled receptor sequences. 
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more, information represented by a map can be more readily comprehended, remem- 
bered and reproduced than from a table of distances [12]. 

In the case of protein sequences, we may consider each sequence as a point in 
space. Sequences that are very similar will be found close to one another, while those 
that are highly dissimilar will be a large distance apart. Here too, we may wish to 
convert the table of distances (more precisely, dissimilarities) into a kind of map 
which visualizes similarities and dissimilarities. The above assumptions, however, are 
not met in the case of protein sequences. Observed dissimilarities between sequences 
are not expressed as Euclidean distances, but rather as scores between 0 and 100. The 
latter also exhibit a degree of uncertainty, which arises from the occurrence of vari- 
able gaps in the alignment of the sequences. Furthermore, the dimensionality of the 
spatial configuration is unknown a-priori. In this case, the procedure with ruler and 
compass is inadequate and methods derived from factor analysis should be em- 
ployed. Principal Coordinates Analysis is one such factor-analysis method developed 
by Gower [7]. The method is applied to a square table of distances (or dissimilarities) 
and produces a two-dimensional display which accounts for a maximum amount of 
the information in the table. It is closely related to Principal Components Analysis 
[I31 which pursues the same objective, but with a rectangular table of measurements 
taken from a collection of objects, such as a table of biological and physico-chemical 
properties of proteins for example. 

A crucial step in Principal Coordinates Analysis is the transformation of the n x n 
dissimilarity matrix D defined above into an n x n dispersion (or variance-covari- 
ance) matrix C by means of the formula: 

where D i ,  D$ and 02 refer to row means, column means and global means of the 
squared dissimilarity matrix, D2:  

1 n  

1 "  
D;., = - D:, with i' = 1,. . . ,n 

n j = l  
(4) 

The expression between brackets in Eq. (2) represents the operation of centering of 
D 2  simultaneously by rows and by columns, which is also called double-centering. 
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(The last term in Eq. (2) is required in order that the expression possesses zero global 
mean.) The formulae in Eq. (2)  can be derived by considering the triangle relation- 
ship which involves two points, i, i’ and the origin 0 of space: 

where Doi and Doir denote the distances of points i and if from the origin of space 
0, where Diir is the Euclidean distance between points i and i ’, and where Bii, is their 
angular distance as seen from the origin. Double centering of D 2  removes the first 
two terms in the above expression (Eq. (7)) and leaves the term -2C. 

The resulting dispersion matrix C can now be factor-analyzed by means of a suit- 
able computer program for eigenvalue decomposition (EVD), such as the QR-algo- 
rithm by Householder [14]. This results in a n x r  orthonormal matrix of eigenvectors 
U (also called factor matrix) and an r x r  diagonal matrix of eigenvalues A 2  such 
that: 

with the orthogonality condition imposed on the columns of U :  

I =  U T - U  (9) 

where I represents the r x  r identity matrix of dimension r. (Note that our definition 
of eigenvalue decomposition deviates from the usual notation by the introduction of 
the constant weight, l/n. The weight is introduced here in order to make the notation 
of this section compatible with the following section in which variable weights are 
introduced.) The superscript T indicates transposition of rows and columns of a ma- 
trix, and the dot indicates matrix multiplication. The number r is the rank of the 
dispersion matrix, C, i.e. the number of independent dimensions of the space that 
is required to  fully represent the geometrical properties of the n sequences. In gener- 
al, r is at most equal to n - I .  (Double centering removes one dimension from the 
original number of dimensions, which is at the most equal to n.) Hence, in the case 
of 71 sequences, we may require up to 70 dimensions to fully represent the distances 
between receptors sequences. Fortunately, as we shall see, not all dimensions contrib- 
ute in the same way to the geometrical representation, and a large number of these 
may be artificial, or represent noise. Artifacts and noise may be introduced by our 
choice of distance metric, whose scale at the higher end is limited to 100 percent simi- 
larity. The distance metric is obtained by comparing sequences of variable gap 
lengths. The independent dimensions extracted by the algorithm are called factors 
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of the dispersion table, hence the term factor analysis which is given as the generic 
term for the procedure described above by Eq. (8). In this context, the terms factor, 
eigenvector and principal component are used synonymously. We prefer the former, 
however, for the sake of brevity. Because of the orthogonality of U, we can also de- 
fine the eigenvalue decomposition of the dispersion matrix in the form: 

The rows of the factor matrix U refer to n proteins. The columns of U define the 
orientations of the r factors in the original space that contains the pattern of points 
as defined by D. By definition, these factors are orthogonal, which means mutually 
uncorrelated or independent. The diagonal elements of the matrix A 2  represent the 
contributions of the corresponding factors to the global dispersion, c, in the matrix 
C. (Contribution to global dispersion and eigenvalue are used synonymously here, 
although we prefer the former.) The global dispersion, c, is equal to the mean of the 
diagonal elements of C, which is also equal to the sum of the diagonal elements of 
A2: 

1 

n 
trace ( A ~ )  = -trace (c) = c ( 1  1) 

where trace defines the sum of elements on the main diagonal of a square matrix. 
The global dispersion, c, is invariant when the original dimensions of space are 

rotated towards the computed orientations of the factors. These factors can also be 
regarded as the principal axes of inertia for the pattern of points that are defined 
by the distances in D. In the case of an ellipsoidal structure, the factors represent the 
main axes of symmetry of the pattern. The global dispersion is a measure of the dis- 
tribution of the points around the centroid of the pattern, which is the center of 
mass, assuming that all points have unit mass. By convention, factors are arranged 
in decreasing order of their contributions to the global dispersion. Note that these 
contributions have positive values and that their number is at most equal to n- 1 in 
the present application to distance matrices. The relative magnitude of the contribu- 
tions indicates roughly whether a factor represents structural information or noise. 
We did not include trivial factors, i.e. those that do  not contribute to the global dis- 
persion. Such trivial factors arise when points within the pattern are coincidental, 
collinear or coplanar. Any such occurrence decreases the number of nontrivial fac- 
tors, r, that can be extracted from the n x n  distance matrix, which explains why the 
number of factors (also called rank) can be less than n - 1. 

The principal coordinates S of the n points can be reconstructed in r-dimensional 
factor space by means o f  

S = l/tlU-A (12) 
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where S represents the n x r  matrix of principal coordinates (also called factor 
scores), and where the r x r  diagonal matrix of factor contributions has been defined 
above. Each row of S contains the r coordinates of one of the n points. 

It can be shown that the original dispersion matrix C can be reconstructed from 
the principal coordinates in S (Eq. (13)) by virtue of the orthonormality of U and 
the eigenvalue decomposition of the dispersion matrix C (see Eq. (8)). 

The main difference between Principal Coordinates Analysis and Principal Com- 
ponents Analysis is that the former is applied to an n x n  distance matrix, 0, while 
the latter requires an n xp measurement table, X ,  which describes the same n objects 
by means of p measurements. The table, X ,  can thus, be regarded as a table of coor- 
dinates which defines the n objects in p-dimensional measurement space. (For the 
sake of simplicity, we assumed that the pattern of points is centered about the origin 
of space.) In Principal Components Analysis one first computes the dispersion 
matrix, C, from the n x p  measurement table, X. 

Subsequently, one then applies the factor analysis described above. The results are 
identical to those obtained by Principal Coordinates Analysis. With both methods 
a substantial reduction in the apparent dimensionality of the data is achieved. In the 
case of an n x n  distance table, 0, there is a large degree of redundancy whenever the 
number of structural dimensions is smaller than n. In the case of a measurement 
table, redundancy is derived from the possible correlations between the p measure- 
ments. Both methods can be executed with the SPECTRAMAP program for explor- 
atory multivariate data analysis which places more emphasis on the visual display 
of the results [15]. 

In Fig. 5 we have reproduced the 71 sequences of G-protein coupled receptors by 
means of their principal coordinates in the plane of the first two dominant factors. 
Dominant factors are the structural dimensions that account for a large part of the 
global dispersion, c, (Eq. (1 1)) of the pattern of points in multidimensional space. 
The horizontal and vertical axes of the diagram (Fig. 5 )  represent the first and second 
dominant factors which contribute 18 and 12 percent to the global dispersion, re- 
spectively. Together they account for 30 percent of the global dispersion, which is 
rather low. The third dominant factor is oriented perpendicular to the plane of the 
plot and contributes another 9 percent of the dispersion. This factor is indicated on 
the diagram by means of the variable thickness of the contours of the circular sym- 
bols. A thick outline signals that the corresponding point is represented above the 
plane of the map. A thin outline indicates that the point lies below the plane. By 
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Figure 5. Principal coordinates plot of the 71 sequences, as obtained by the SPECTRAMAP program 
1151. The two most dominant factors are represented along the horizontal and vertical axes of the plot. 
A third factor which is perpendicular to the plane of the plot is indicated by means of the variable thick- 
ness of the contours of the symbols. The three factors contribute 18, 12 and 9 percent to the total disper- 
sion of the points around the centroid, respectively. The latter is represented by a small cross (+) at the 
center of the plot. All 71 points are assigned equal mass (or weight). Distances between points on the map 
are related to differences in amino acid sequences. 

means of the horizontal and vertical dimensions of the map and the visual depth 
guide, we are able to reproduce 39 percent of the global dispersion, which leaves 61 
percent unaccounted for. The latter is to be attributed to higher-order structural fac- 
tors and to factors that represent artifacts and noise in the data. Nevertheless, we will 
show below that the two- (or three-) dimensional map which is shown in Fig. 5 pro- 
vides useful information about the similarities and dissimilarities between protein 
sequences, their classification and their evolutionary descendence. We have arranged 
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the labels of the 71 sequences on the map in order to emphasize these points. First, 
we shall explain briefly the structure of the labels. The initial three letters indicate 
the type of species from which the receptors have been isolated: Hum (human), Mou 
(mouse), Chi (chicken), Tur (turkey), Ham (hamster), Bov (bovine), Por (porcine), 
and Xen (xenopus). The next two or three letters identify the six types of receptors 
studied: Mar (muscarinic cholinergic), D (dopaminergic), A and B (alpha- and beta- 
adrenergic), 5HT (serotonergic) and H (histaminergic). These are broad categories 
of receptors that can be distinguished in pharmacological assays by their differential 
effects on the main neurotransmitters (acetylcholine, dopamine, noradrenaline, sero- 
tonin and histamine). A finer subdivision of the 71 receptors can be made according 
to their pharmacological subtype. In total, we can classify the 71 sequences into 26 
subtypes of G-protein coupled receptors. These include 5 muscarinic cholinergic 
(MI, M2, M3, M4, M5), 5 dopaminergic (Dl, D2, D3, D4, DS), 5 alpha-adrenergic 
(AIA, -B and A2A, -B, -C), 3 beta-adrenergic (BI, B2, B3), 6 serotonergic (5HTl A, 
-B, -C, -D, -E and 5HT2) and, finally, 2 histaminergic (HI and H2) subtypes. Many 
of these subtypes are replicated several times in the map shown in Fig. 5 due to the 
same gene being expressed in the different species outlined above. Table 1 shows how 
the 71 sequences are distributed over the 26 subtypes. Conventionally, some subtypes 
are identified idiosyncratically by means of Greek letters, lower case letters, Roman 
numerals and subscripts, such as m3, M3, 111, etc. Here, we adopted a notation of 
our own, which is compatible with the limitations of current computer representa- 
tions. It must also be mentioned that the naming of subtypes is historical rather than 
systematic and is always subject to change; as new receptors are discovered, new clas- 
sifications emerge. This accounts for some complicated labels, such as Rat A2ar- 
RG20, which is most likely to be an A2A receptor expressed in rats, judging from 
its proximity to other A2A sequences in Fig. 5. 

Interpretation of the map in Fig. 5 is rather straightforward. Proteins that are rep- 
resented close together possess highly similar sequences, while those that are further 
away are dissimilar. In other words, distances between points on the map can be in- 
terpreted in terms of the original dissimilarities in the original data table, D. The 
small cross (+) in the center of the plot indicates the centroid (or center of mass) 
of the pattern of 71 points, where it is assumed that each point has the same mass. 
Along the horizontal axis of the map, which represents the first dominant factor, 
there is a considerable contrast between the 5 muscarinic cholinergic subtypes on the 
left and the 21 other subtypes on the right. The vertical axis, which accounts for the 
second dominant factor, showed a considerable contrast between D2, D3 subtypes 
at the top and the B1, B2, B3, AI,  D1 and H2 subtypes at the bottom on the right 
side of the map. A third contrast, due to the effect of the third dominant factor, is 
shown along the depth axis which is encoded by the variable thickness of the con- 
tours of the circular symbols. This contrast distinguishes the three A2 subtypes 
(below the plane) and D2 (above the plane). 
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Table 1. Compilation of the 26 receptor subtypes, their number of sequences expressed in different 
species, evolutionary distance from the computed root (percent dissimilarity) and length of sequence 
(number of amino acid residues). 

Type of Subtype of Number of Evolutionary Length of 
receptor receptor sequences distance sequence 

Muscarinic 
acetylcholine 

Dopamine 

a-adrenergic 

P-adrenergic 

Serotonin 

Histamine 

All 

M1 
M2 
M3 
M4 
M5 

D1 
D2 
D3 
D4 
D5 

A1A 
AIB 
A2A 
A2B 
A2C 

B1 
B2 
B3 

5HTlA 
5HTlB 
5HTlC 
5HTID 
5HTlE 
5HT2 

HI 
H2 

26 

4 
4 
3 
3 
2 

3 
7 
2 
1 
1 

5 
1 
4 
2 
2 

3 
4 
3 

2 
1 
3 
3 
1 
3 

1 
3 

71 

37.4 
39.0 
37.4 
38.2 
38.2 

39.3 
36.6 
36.2 
35.9 
39.6 

39.1 
39.1 
37.0 
37.8 
38.0 

38.4 
39.1 
36.3 

34.9 
34.0 
39.7 
33.9 
34.1 
40.2 

38.0 
37.1 

37.5 

460 
466 
590 
419 
532 

447 
443 
423 
387 
471 

494 
515 
450 
451 
454 

477 
418 
400 

422 
386 
459 
371 
365 
411 

49 1 
359 

450 

Many of the 26 pharmacologically distinct classes can be distinguished as separate 
groups on the map of Fig. 5. An overlap, however, is observed between A2B and -C, 
between SHTIA, -B and -E, and between D1 and D5 receptor subtypes. Two se- 
quences also appear to be separate from the main group which they were thought 
to belong to for pharmacological reasons. This is the case for Turkey B1 and Bovine 
AIA. These discrepancies will be discussed in Sec. 3.3.5. Despite these shortcomings, 
one obtains a visual display of the main relationships between G-protein coupled re- 
ceptors, in as far as they are known at present. A notable feature of the landscape 
is the isolated position of the histaminergic H I  receptor which appears as being quite 
unrelated to all the others, especially H2. Another feature of the pattern is the sepa- 
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ration of the three dopaminergic receptors D2, D3 at the top, D4 in the middle and 
DI, D5 near the bottom of the map. The separation between the A1 and A2 receptors 
is also remarkable. Other salient features are, on the one hand, the division of the 
serotonergic subtypes into 5HT2, 5HTlC and on the other hand, the group com- 
posed of SHTIA, -B, -D, -E. In the following section we shall reduce the 71 sequenc- 
es to 26 receptor subtypes and illustrate how a more succinct mapping can be pro- 
duced which still exhibits the same features discussed above. 

3.3.3 Principal Coordinates Analysis of 26 Receptor Subtypes 

In the previous section we have seen how the 71 sequences of G-protein coupled re- 
ceptors can be grouped into 26 pharmacological subtypes. Principal Coordinates 
Analysis has also shown that these 26 subtypes can be distinguished on the basis of 
the similarities between their amino acid sequences with the exception of a few over- 
laps and discrepancies which will be discussed later on. In this section we shall at- 
tempt to simplify the analysis by reducing the 71 x71 matrix of sequence similarities 
to a 26x26 matrix of subtype similarities. To this end, we have computed average 
similarities by averaging the rows and columns of the 71 x 7 1 matrix whose corre- 
sponding sequences belong to the same subtype as shown in Fig. 5 and in Table 1. 
(For example, the four rows in the 71 x71 table, corresponding to the MI subtype, 
are averaged into a single row. The four columns in the same 71 x71 table corre- 
sponding to the MI subtype are also averaged into a single column. By convention, 
the similarity between an averaged subtype and itself is set to 100 percent.) The result 
which has been subjected to Principal Coordinates Analysis once again is presented 
in Table 2. In contrast to the previous analysis, we now assign variable masses (or 
weights) to the 26 points in the pattern of subtypes according to the number of se- 
quences present in each. This requires the construction of a 26 x 26 diagonal weight- 
ing matrix, u/; in which the diagonal elements are proportional to the number of se- 
quences in each of the 26 subgroups (Table 1). These masses (or weights) are nor- 
malized to a unit sum and are shown in the last column of Table 2. Variable weight- 
ing, rather than constant weighting, is applied here in order to account for the fact 
that subtypes with many replicates in different species are defined more precisely in 
space than those with fewer or no replicates. This type of variable weighting also en- 
sures that the new result obtained from the 26 subtypes most resembles the previous 
one (Fig. 5) derived from the 71 original sequences. 

Generalized Principal Coordinates Analysis involves the eigenvalue decomposition 
(or factorization) of the weighted dispersion matrix W’12- C. W’”, which results in 
an orthogonal matrix of eigenvectors (or factors) U and a diagonal matrix of eigen- 
values (or contributions to the global weighted dispersion) A2: 
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with the usual condition for orthonormality of the columns of U (Eq. (9)): 

where I represents the identity matrix of r-dimensional factor space. The number of 
non-trivial factors, r, that can be extracted is called the rank of the dispersion matrix 
C. The coordinates (or scores) S of the 26 subtypes in r-dimensional factor space are 
now defined by the following: 

In the previous case of the 71 sequences, we assumed that all 71 points in the pattern 
had a constant mass (or weight). In the present case of 26 subtypes, we assign to each 
of the 26 points a mass (or weight) which is proportional to the number of sequences 
in the corresponding subtype. This explains the difference between Eqs. (8) and (12) 
and Eqs. (15) and (17). The latter is reduced to the former, however, when the vari- 
able weight matrix W is replaced by the constant weight l/n. 

Similarly, as in the previous section, we can show that the sum of the diagonal ele- 
ments (or trace) of A 2  is equal to the global dispersion of C :  

trace ( A ~ )  = trace ( w ' / ~ -  C .  w"~) = c (1 8) 

In other words, the sum of the eigenvalues is equal to the global dispersion, c. The 
latter is invariant when the original coordinate axes are rotated toward the computed 
orthogonal factors. 

It can also be shown that the dispersion, C, of the 26 receptor subtypes around 
their weighted centroid can be reconstructed from the matrix of their coordinates, S :  

by virtue of the orthogonality of the columns of U and from the definition of eigen- 
value decomposition (Eqs. (1 5) and (1 6)). 

The result of the variable weighted analysis of the 26 receptor subtypes is shown 
in Fig. 6. The rules for interpretation are the same as those for Fig. 5. In the present 
case, we find that the three most dominant factors account for 19, 13 and 9 percent 
of the global dispersion. (These three factors are displayed along the horizontal, ver- 
tical and depth axes, respectively.) Together they account for 41 percent of the global 
dispersion, which is comparable to the result of the previous analysis, in which 39 
percent was accounted for by the three dominant factors. The points on the map in 
Fig. 6 are virtually identical to the centroids of the corresponding clusters in the map 
of Fig. 5. In fact, one could also have obtained the map of the 26 receptor subtypes 
by computing averages of the factor coordinates of the corresponding sequences 
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Figure6. Weighted principal coordinates plot of the 26 receptor subtypes, as obtained by the SPEC- 
TRAMAP program [15]. The three factors contribute 19, 13 and 9 percent to the total dispersion of the 
points around the centroid, respectively. The individual 26 points are assigned a mass (or weight) which 
is proportional to the number of sequences in each subgroup, as listed in Table 1. The analysis has been 
produced from the data in Table 2. Distances between points on the map are related to differences in the 
average amino acid sequences of receptor subtypes. 

from the results of the analysis on the complete set of 71 sequences. In the case of 
a large collection of sequences (several hundreds) it is more convenient, however, to 
compute averaged distances and to apply a weighted analysis as described above. The 
reason being, that the time required for the extraction of factors from distance data 
is proportional to the dimension of the table raised to a power of about 2.5. The 
generalized Principal Coordinates Analysis and the resulting map in Fig. 6 were ob- 
tained with the SPECTRAMAP program [15]. 

Our previous findings have been confirmed in the work described here. The over- 
laps between A2B and -C, between SHTlA, and -B, between 5HTIA and -E, and 
between D1 and D5 receptor subtypes are also not clearly resolved in this map. 
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Figure 7. Three-dimensional perspective drawing of the arrangement of 26 receptor subtypes in the space 
defined by the three dominant factors obtained by weighted Principal Components Analysis, the first two 
factors of which are shown in Fig. 6.  

In order to enhance the three-dimensional structure of the 26 receptors we also have 
presented the three dominant factors in perspective in Fig. 7 with the point of view 
being on the left lower side and slightly above the plane of the map in Fig. 6. In this 
representation one can see more clearly how the third factor accounts for a contrast 
between the dopaminergic receptors D2, D3 (top) and the cluster of alpha-adrenergic 
receptors A2A, -B, -C (bottom). The latter cannot be resolved in three-factor 
space. 

3.3.4 Phylogenetic Clustering 

As we have mentioned in the introduction, dissimilarities between amino acid se- 
quences of proteins are the result of mutations in the corresponding DNA sequences 
over periods of several hundreds of millions of years. Estimates for the mutation rate 
indicate that it takes between 2.5 to 10 million years to produce a one percent change 
in the amino acid sequenes of functional proteins, such as hemoglobins, cytochrome 
C and G-protein coupled receptors [4, 16, 171. It is, therefore, reasonable to assume 
that these proteins have descended from common ancestors and, hence, they are 
related to each other by means of a tree-like structure. Such an ancestral tree, if it 
exists, is called a phylogeny, and the process of its formation is referred to as phylo- 
genetic clustering. There are two approaches to obtaining a phylogeny, depending 
whether clustering is performed upon sequences of DNA bases or upon sequences 
of amino acid residues. The former is called parsimony clustering and considers the 
minimal number of DNA mutations that are needed to transform one DNA sequence 
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into another. The latter is referred to as distance clustering and requires a matrix of 
dissimilarities between sequences. Here we describe a method of distance clustering 
which has been developed by Fitch and Margoliash [8]. 

In order to illustrate the method of phylogenetic distance clustering, we have taken 
an excerpt from Table 2, which is shown in Fig. 8. The reduced table shows the 
dissimilarities between four selected receptor subtypes (Bl, B2, D2 and Ml).  Note 
that the dissimilarities were derived from the similarities by Eq. (1). 

B1 B2 D2 M1 
a b c d  

- 
a 

b 

C 

d 
- 

49 

49 72 76 

73 72 74 

77 76 74 0 

linear UPGMA-tree 

C 

a 

B1 
0 

radial FM-tree 

82 

Figure 8. Illustration of phylogenetic clustering using an excerpt from Table 2 (insert). The table lists the 
dissimilarities (100 minus similarities) between four selected receptor subtypes. a) The corresponding lin- 
ear UPGMA-tree according to Sneath and Sokal [18]. The tips of the tree (a, b, c, d) are arranged along 
a horizontal line. The two nodes are labeled x and y. The root of the tree is identified as r. The numbers 
along the vertical scale indicate mean clustering distance from the nodes and root to the tips of the tree. 
b) The corresponding radial tree, according to Fitch and Margoliash [8]. The numbers along the branches 
indicate the branch lengths from the nodes x and y to the tips of the tree. (See text for explanation). 
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As a starting point, we first built a hierarchical tree by means of the unweighted 
pair-group mean arithmetic method (UPGMA) by Sneath and Sokal [18]. 

The UPGMA-tree from the reduced distance table in Fig. 8 has been obtained as 
follows. First, we selected the two closest points. In this case we found that the small- 
est distance, D a , b ,  of 49 was between points a and b. The ancestor of points a and 
b is labeled x, and is placed half-way between D a , b ,  i.e. at 24.5 units from both a and 
b. Next, we computed the distances Dc ,ab  and D d , a b  between the remaining points c 
and d to the mean position of the previously identified group of two points ab: 

We observed that Dc,ab was the shortest of the two distances. Consequently, point 
c is joined to the group ab and their common ancestor, which is labeled y, is placed 
half-way between D c , a b ,  i.e. at 36.25 units from the group abc. The remaining point 
d has a mean distance Dd ,abc  from the three points a, b, c that are already clustered 
together: 

The terminal node or root of this artificial group of four points is labeled r, and is 
placed half-way between Dd,abc ,  i.e. at 37.83 units from the group abcd. The com- 
plete tree is shown in the form of a linear tree as illustrated in Fig. 8. In this linear 
tree, the tips of the tree are arranged along the horizontal line. The vertical scale rep- 
resents the arithmetic mean distances of the nodes to the tips of the tree. In the 
UPGMA-method, mean values are not weighted due to the variable number of 
points in each group. For example, in the case when a group abc is joined with anoth- 
er group of two points de, the unweighted pair-group mean arithmetic (UPGMA) 
distance is obtained from: 

Once the initial UPGMA-tree was obtained, we proceeded to calculate the phylo- 
genetic branch lengths. This calculation is based upon a general formula which re- 
lates the distance, D , ,  between an arbitrary point a and its ancestor x to the dis- 
tance D a , b  between the two points that descend from x and to the distances D , ,  and 
D b , c  between each of these points, a, b and a third point c that does not descend 
from x: 
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This formula can be understood by regarding the branch lengths in Fig. 8 a  as evo- 
lutionary distances, i.e. as being proportional to the number of years required to mu- 
tate one amino acid sequence. 

In Eq. (24), we have chosen point c as the pivotal point that does not descend from 
the node x. We could have chosen, however, point d instead. In the general case, we 
will obtain n, points c, that do not not descend from the node x. In order to accom- 
modate for multiple points c, we must rewrite Eq. (24) in the following way: 

which involes the mean of the differences Da,,-Db,, over all n, points c, that do 
not descend from x (cf. Fitch and Margoliash [8], abbreviated FM). 

The formula in Eq. (25) must be applied recursively to all the intermediate nodes 
of the FM-tree. This is a tedious calculation which should be left to a computer 
algorithm, such as the PHYLIP program developed by Felsenstein [19]. In our sim- 
plified example from the insert of Fig. 8, however, the calculation can still be done 
on paper. First, we compute the distance D,, according to Eq. (25): 

1 1 

2 2 

1 1 

2 2  

D a , x  = - f a , b + -  [(Da,c-Db,c)+(Da,d-Db,d)ll 

= - (49+ - [(73 - 72) + (77 - 76)]) = 25 

From this result we can easily derive the branch length, Db,,: 

Db,x = Da,b-Da,, = 49-25 = 24 

Next, we obtain the distance DC,, from the basic Eq. (24): 

since: 
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At this stage, we can compute the distance D , ,  between the two nodes x and y from 
the results obtained previously and using the clustering tree of Fig. 8a: 

Finally, we must compute the distance D d , y  from Eq. (24): 

1 1 

2 2 
D d , y  = -(Dd,ab+Dd,c-Dc,ab) = -(76.5+74-72.5) = 39 (33) 

since Dc,ab and D d , a b  have already been computed in Eqs. (29) and (30). 
Using the branch lengths which we have calculated above, we can now construct 

the radial FM-tree which is shown in Fig. 8 b. 
Additionally, we may wish to estimate the position of the root of the radial tree. 

This root can be placed on the branch which joins the last two nodes in the UPGMA- 
tree. In our example shown in Fig. 8, we except the root to be close to node y on the 
branch that joins points d and y. (In this respect, we consider each tip of the tree 
as a primary node). The position of the root is assumed from a condition which is 
imposed on the branches of the tree. A feasible condition requires that the distances 
from all the tips to the assumed root of the tree must have minimal variance. Zero 
variance would result if the rate of mutation from one primordial ancestor had al- 
ways been the same at any time along all branches of the tree. We can express that 
the root mean square deviation, d,  of the distances from the tips to the root (labeled 
r) of the tree must be minimal: 

(34) 

where D,, represents the distance from tip 1 to the root r of the tree, and where D, 
is the mean distance from the n tips to the root r: 

From the numerical results obtained from the FM-tree in Fig. 8 we found that: 

Dr,b = 37+Dr,y (37) 
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and, hence, we compute the mean distance D, from Eq. (35) as follows: 

1 

4 
Dr = -(149+2Dr,,) = 37.25+0.50Dr,, 

When this result is substituted into the expression for the root mean square distance, 
d, in Eq. (34) we obtain: 

n 
C (D, ,  - D,)2 = (0.75 +0.5OD,J2 + (-0.25 +0.50D,,,)2 + (- 2.25 +0.50Dr,,)2 

I 

+ (1.75 - 1 = 3.00D2, - 7.00 D,,  + 8.75 (41) 

which is minimal when: 

6.00Dr,,-7.O0 = 0 

which follows that D,,  = 1.17. 
Substitution of this result into Eq. (40) produces a mean distance from the tips 

to the root Dr or 37.84. Substitution of Dr into Eq. (34) leads to the root mean 
square deviation, d,  being equal to 1.08, which constitutes 2.85 percent of the mean 
distance, D, . 

By means of the branch lengths of the radial FM-tree, we can reconstruct the dis- 
tances between the tips. The distance Da,d in the UPGMA-tree in Fig. 8 is equal to 
the sum of the branch lengths 25 + 13 + 39 = 77, which is exactly equal to the tabulat- 
ed dissimilarity. In this illustrative example we are able to reconstruct all the original 
dissimilarities from the computed branch lengths of the FM-tree. In real applica- 
tions, however, this is not generally the case. In the analysis of amino acid sequences, 
deviations arise due to the nature of the dissimilarities, which are only estimates of 
the true values because of unequal sequence lengths and variable gaps in the se- 
quences. With real data it is even possible that some of the computed branch lengths 
turn out to be negative. In the following example we shall show how an improved 
alternative tree may be produced, starting from the UPGMA-tree as an initial esti- 
mate. 

In order to measure the goodness of fit between the computed phylogenetic tree 
and the measured dissimilarities, we adopted the root mean square relative deviation, 
s, which is expressed as a percentage: 
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l2 J 
where Dri ,and Di,i,represent the reconstructed and tabulated dissimilarities between 
sequences i and i’, respectively, and where the sums extend over all n sequences. Note 
that the expression assumes that all sequences are different from each other, since 
Di,if must be different from zero. In the example of Fig. 8 we find that the root 
mean square relative deviation is exactly equal to zero, since the tree fits the data 
exactly. 

In general, there is no guarantee that the UPGMA-tree is the one that produces 
the smallest possible root mean square deviation in Eq. (43). One should, therefore, 
examine alternative trees with branching patterns that differ from that of the 
UPGMA-tree. In the method developed by Fitch and Margoliash [S] one produces 
alternative trees by systematic variation of the branching of the initial UPGMA-tree. 
It the radial tree of Fig. 8 b, the branch connecting x to b may be removed from the 
tree and reinserted between y and c. This produces an alternative tree which is ana- 
lyzed by the method outlined above, and the resulting relative deviation, s, (Eq. (43)) 
is compared with the value obtained previously. If the new tree leads to an improve- 
ment, then it will be retained as the best solution temporarily, and the old value of 
the relative deviation is replaced by the new one. The search then continues, until no 
further improvement is obtained. In practice, the number of possible alternative trees 
may be too large to be examined within a reasonable time, even with the use of a 
powerful computer. Searching for good alternative trees can be made more efficient 
by means of a so-called branch-and-bound algorithm. This reduces the number of 
possible alternatives to a smaller number with a higher probability of producing an 
improved tree. Even then, the number of alternatives may still be too large. It is usu- 
al, therefore, to limit the scope of the search process by allowing only one or two 
branches to be removed and replaced at the same time. Some of these alternative 
trees are represented in Fig. 9, in a similar way to the UPGMA-tree described in 
Fig. 8. In this case, none of these can be retained as an improvement, since the initial 
radial tree configuration reproduced exactly the tabulated dissimilarities. 

It may be worth mentioning that phylogenetic clustering according to Fitch and 
Margoliash (FM) is a special case of hierarchical and agglomerative clustering, in 
which nodes are combined such that the sum of the branches that connect any two 
primary nodes (tips) is in optimal agreement with the observed distance between 
them. In this respect, the result is different to that of a minimal spanning tree, in 
which points are joined so that the sum of all branch lengths is minimal. 

We now return to Table 2 which contains the 26 x 26 similarities between G-protein 
coupled receptor subtypes. The result of phylogenetic clustering is shown in the form 
of a radial FM-tree in Fig. 10. This tree is derived from an initial UPGMA-tree. The 
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Figure 9. Construction of alternative trees (shown right) starting from an initial tree (shown left) by 
systematic removal and reconnection of the branches. 

average distance, D,, (Eq. (35)) from the 26 tips to the computed root, r, is 37.2 
units of percentage dissimilarity (see also Table 2). An open circle near the center of 
the radial tree marks the position of the root. The root mean square deviation, d, 
(Eq. (34)) of the 26 tips from the root equals 5.9 percent dissimilarity. The root mean 
square relative deviation, s, (Eq. (43)) between the 325 reconstructed and measured 
dissimilarities is 2.2 percent dissimilarity. 

Three branches in the neighborhood of the root resulted in small negative branch 
lengths of the order of -.5 percent on the dissimilarity scale. These have been set 
to equal zero and are disregarded, as they cannot be represented conveniently on the 
radial tree of Fig. 10. A search for a better alternative tree yielded only marginal im- 
provements of the root mean square deviations, s, and, d, from their initial values 
of 2.2 and 5.9 to the final values of 2.1 and 4.0 percent dissimilarity, after 52 trials. 
This occurred, however, at the expense of an increase of the total negative branch 
length from - 1.4 to -2.8 percent dissimilarity. It was concluded, therefore, that the 
initial UPGMA configuration is an adequate representation of the phylogenetic rela- 
tionship between the 26 subtypes of G-protein coupled receptors. 
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Figure 10. Radial tree according to Fitch and Margoliash [8] as derived from an initial UPGMA-tree ac- 
cording to Sneath and Sokal [18] from the 26 receptor subtypes. The radial branches have been arranged 
around the computed root (open circle) such as to agree maximally with the disposition of the receptors 
in the map of Fig. 6 around the center of the plot (small cross). The agreement is fair. Only the D4 dopa- 
minergic receptor does not fit well. 

From Fig. 11 it is evident that any two branches emerging from a node may be 
switched without affecting the topological properties of the tree. In the radial tree 
of the 26 receptors in Fig. 10, the pair consisting of MI and M5 may be interchanged 
by switching the branches emerging from their common node. Likewise, the pair con- 
sisting of the group MI,  M5 and M3 may be interchanged, and so on. It can be un- 
derstood that the number of possible equivalent changes amounts to 2"-' ,  where n 
is the number of receptors that have been clustered. In our case of 26 receptors, this 
corresponds with 225 or about 34 million topologically equivalent trees. We have 
proposed elsewhere [20] to arrange the branches of the radial tree such as to match 
as closely as possible the disposition of the receptors in the two-dimensional map 
obtained by generalized Principal Coordinates Analysis. The arrangement of the 26 
tips around the computed root of the tree in Fig. 10 is in such a way that it corre- 
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Figure 11. Topologically equivalent trees (shown right) that can be derived from an initial tree configura- 
tion (shown left). The number of equivalent trees that can be constructed with n leaves is 2"-'. 

sponds maximally with the arrangement of the 26 points on the map of Fig. 6, as 
viewed from the centroid of the pattern. Overall, the agreement between the tree and 
the map is fair. Only the branch leading to D4 cannot be moved to a position in the 
tree which agrees with its placement on the map without crossing other branches of 
the tree. The canonical form of the radial tree is the one that corresponds maximally 
with the corresponding factor map. It is a unique representation of the radial tree 
(apart from reflections about the horizontal and vertical axes). 

3.3.5 Discussion 

We have analyzed the observed dissimilarities between amino acid sequences of G- 
protein coupled receptors from two points of view. The first approach by Principal 
Coordinates Analysis produced a static picture in the form of a map which shows 
the dissimilarities between receptors by means of their distances in low-dimensional 
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factor space. This map represents the situation as it is today. The second approach 
by phylogenetic clustering yields a dynamic picture in the form of a tree which shows 
the evolution from the more primitive ancestors to the present-day manifestations of 
the receptors. In philosophical terms, one may refer to the factor mapping as an 
idealistic Platonic representation, and to the phylogenetic tree as an evolutionary Ar- 
istotelian view. It is not uncommon in the history of science that emphasis shifts 
from one point of view to another, and back again [21]. Here, we adopt a synthetic 
position by combining the geometric properties of the mapping with the topological 
structure of the tree. We have shown that both views are complementary, in the sense 
that the branches of the radial tree can be arranged in the order as they appear on 
the map. Conversely, it is possible to superimpose the topological structure of the 
tree on the map, except for the D4 receptor which does not seem to fit well into a 
two-dimensional map [20]. The fact that such a high degree of complementarity ex- 
ists between the two-dimensional projection and the clustering tree of an apparently 
high-dimensional pattern is remarkable. It seems as if nature constrains viable and 
functional random mutations within a low-dimensional subspace of a vastly high- 
dimensional mutation space [22]. It thus appears as if G-protein coupled receptors 
have been bound over several hundred millions of years by a low-dimensional attrac- 
tor which may have forced them into a space of fractal dimensionality, possibly be- 
tween 3 and 4. 

In the mapping of Fig. 5 we highlighted the two discrepancies between the appar- 
ent clusters and the corresponding pharmacological classifications in the case of the 
Turkey B1 and Bovine AIA sequences. It is not clear yet whether these anomalies 
are due to experimental errors in the sequences, or to misclassification by the algo- 
rithm. A possible explanation may be found in a so-called horizontal gene transla- 
tion by which a relatively large segment of the DNA sequence is moved from one 
place to another [23]. 

The canonical form of the tree and the factor map, on which it is based, allow 
a much easier comparison of phylogenetic results obtained within and between labo- 
ratories. The only geometric arbitrariness of the canonical form lies in a possible 
reflection of the horizontal and vertical axes. This results in three topologically 
equivalent mirror images of the tree and the map, which cannot be superimposed 
by means of a rotation in the plane of the diagram. A pictorial illustration of this 
concept is given in Fig. 12. In the maps of Figs. 6 and 10 we have placed, rather ar- 
bitrarily, the muscarinic cholinergic receptors at the left, and the D2, D3 subtypes 
of the dopaminergic receptor in the upper right corner. Other researchers may decide 
otherwise, but this geometric arbitrariness is substantially less significant than the 
topological one. 

The radial tree of Fig. 10 reflects the presumed ancestral relationships between the 
26 subtypes of G-protein coupled receptors, which can be summarized as follows: 
Earliest divergence is observed between the muscarinic acetylcholine receptors (M 1 
to M5). The histamine HI receptor is also clearly different from all the others and 
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Figure 12. Symbolic illustration of the topologically equivalent maps that can be obtained by means of 
horizontal and vertical reflections (shown right) from an initial configuration (shown left). 

especially from H2, as HI  branches off at a short distance from the computed root 
(indicated by an open circle). Likewise, there appears to be only a remote kinship be- 
tween the DI, D2, D3, D4 subtypes of the dopaminergic receptor, on the one hand, 
and the D1, D5 subtypes, on the other hand. The a-adrenergic A2 receptors appear 
to be only remotely related to the A1 ones. Finally, the serotonergic receptors 5HT1 C 
and 5HT2 seem to belong to a different lineage than the SHTIA, -B, -D and -E re- 
ceptors. This is in line with phylogenetic analyses of alpha-adrenergic receptors by 
Harrison, et al., [24] and of serotonin receptors by Goethert [25] and by Kim, et al., 
I261 which confirm the interpretation derived from the factor map in Fig. 6. 

We also must address the problem of selecting the most appropriate metric for rep- 
resenting distances between receptor sequences. The present analyses are based upon 
dissimilarities, D, as obtained from the pairwise comparisons of similarities, L ,  of 
amino acid sequences by means of the VGAP computer program of Moereels, et al. 
[lo], which accounts for variable gaps in the sequence alignments and for variable 
lengths of the sequences (Eq. (1)). Our Principal Coordinates Analysis has not 
shown any relevant violations of the assumptions for a Euclidean metric. Alternative 
metrics can be defined by means of the square root and the logarithmic [23] transfor- 
mations: 

D = (100-L)1’2 (44) 

D = -1nL (45) 

We have observed no substantial difference between our linear metric (Eq. (1)) and 
the logarithmic one (Eq. (45)). 
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Branch lengths of the phylogenetic tree are expressed in percent changes in amino 
acid sequences. It is convenient and often justifiable to convert these branch lengths 
into evolutionary times [27]. Current estimates yield an upper bound of 10 million 
years for the production of a one percent change in amino acid sequences by random 
mutations [4]. Since the average distance of the leaves of the tree to the computed 
root is about 37 percent, this would suggest that first divergence took place some 370 
million years ago. The latter calculation rests upon the assumption that the rate of 
mutation has been constant and homogeneous in all the subtypes of receptors [28]. 
The primordial ancestral receptor is thought to be much older, between 600 million 
and one billion years [4]. The discrepancy may be due to the incorrect assumption 
that there was a constant and homogeneous mutation rate over the past billion years. 
Moreover, some amino acid residues must have mutated several times, which leads 
to an underestimation of the number of mutations applied to any particular se- 
quence. Many mutations may have led to non-functional receptors and, hence, have 
produced unviable or less competitive organisms. These are not represented in the 
phylogeny as they have become extinct. Finally, it must be understood that the phylo- 
genetic tree of Fig. 10 is fundamentally unrooted. This means that there is no obser- 
vational evidence for the existence of a primordial ancestor. As has been explained 
above, the root of the tree has been inferred from a statistical standpoint, such as 
to minimize the root mean square deviation of its distances from the tips (Eq. (34)). 

A significant correlation is observed between the lengths of the amino acid 
sequences (number of AAs) and the evolutionary distances from the root (percent 
dissimilarity). These values are compiled in Table 1 and are displayed in Fig. 13. The 
product-moment (Pearson) coefficient of correlation is 0.61 (P<.OOl). At present, 
we cannot offer an explanation for this correlation. 

r=0.61 (P < .001) 
n=26 

t 
350 I I I 

32 34 36 38 40 42 
evolutionary distance from root 

(“A dissimilarity) 

Figure 13. Relationship between sequence length (number of amino acid residues) and evolutionary 
distance from the computed root (percent dissimilarity). 
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We expect that our approach of combining factor mappings and phylogenetic trees 
may be helpful in bringing other tentative correlations to light. For example, one may 
look for patterns in the properties of the various G-protein coupled receptors, such 
as their type of signalling pathway which has been established to be either via activa- 
tion of phospholipase C or of adenylate cyclase [lo]. 
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4 Advanced Statistical Techniques 

4.1 Continuum Regression: A New Algorithm 
for the Prediction of Biological Activity 

Jonathan A. Malpass, David IK Salt, Martyn G. Ford, E. Watcyn Wynn, 
and David 1 Livingstone 

Abbreviations 

QSAR 
SAR 
MLR 
PCR 
PLS 
CR 
cv 
PRESS 
LOO 

Symbols 

n 
P 
Y 
x 
xi 

Y 
X 
Xi 

P 
‘xu 

Quantitative Structure-Activity Relationship 
Structure-Activity Relationship 
Multiple Linear Regression 
Principal Components Regression 
Partial Least Squares Regression 
Continuum Regression 
Cross-validation 
Predictive Error Sum of Squares 
Leave-One-Out 

number of cases/observations 
number of descriptor variables 
generic response variable vector 
generic descriptor variable matrix 
generic descriptor variable vector 
mean-centered response variable vector 
mean-centered descriptor variable matrix 
mean-centered descriptor variable vector 
estimated value of response 
correlation coefficient of xi and y 
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covariance of xi and y 
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Continuum Regression Generalized Criterion Function 
Continuum Regression adjustable parameter 
latent variablekomponent coefficient vector 
latent variablekomponent 
variance - covariance matrix 

maximum number of non-zero eigenvalues of S = X ’ X  
eigenvectors of S = X ‘ X  
eigenvalues of S = X ’ X  
set of coefficients used in defining c 
Lagrangian function 
Lagrangian multipliers 
algebraic term 
algebraic term 
algebraic term 
algebraic term 
algebraic term 
algebraic term 
algebraic term 
algebraic term 
number of constraints in the Lagrangian function 
dimension of Bordered Hessian 
number of rows and columns that “border” the Hessian matrix 
determinant of Bordered Hessian 
class of models 
complete data set 
reduced data set 
number of cross-validation groups 
individual cross-validation group 
Wold’s cross-validatory statistic 
Osten’s cross-validatory statistic 
Stone and Brooks’ cross-validatory statistic 
number of non-zero partial regression coefficients 
number of components in model 
regression t-statistic 
multiple coefficient of determination 
adjusted R 2  
maximum value of I 
log of the inverse concentration giving median inhibition 
indicator variable for the presence of a para-hydroxy substituent 
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71345 sum of the lipophilicity at the meta and para positions in the phenyl ring 
sum of the molar refractivities at the meta and para positions in the 
phenyl ring 
sum of the field and inductive effects at the meta and para positions in 
the phenyl ring 
sum of the resonance effects at the meta and para positions in the 
phenyl ring 

F 3 4 5  

R 3 4 5  

4.1.1 Introduction 

Formulation of a structure-activity relationship (SAR) for a series of biologically ac- 
tive compounds is an important step in the molecular design process. Since Hansch’s 
first use of multiple linear regression (MLR) [I], a number of multivariate statistical 
techniques have been employed in efforts to produce more accurate SARs. The use 
of Principal Components Regression (PCR) [2, 31 or Partial Least Squares regression 
(PLS) [4, 51, for example, can be successful. However, Quantitative Structure-Activi- 
ty Relationship (QSAR) practitioners are often confused about the choice of method 
to employ. Another problem, which is inherent in all multivariate statistical tech- 
niques, is how to define the optimal model. Although the objective is to produce as 
parsimonious a model as possible while maintaining accuracy, it is not always clear 
how many components or original variables should be included in the final model 
specification. This problem is further confounded when data sets consisting of rela- 
tively few cases or objects, n, compared to the number of physico-chemical proper- 
ties or descriptor variables, p ,  are to be analyzed. The plethora of multivariate statis- 
tical techniques has presented a further dilemma to the model specification stage and 
the choice of criteria to be considered, when constructing the components or latent 
variables, often appears arbitrary. However, the underlying structure of the data 
should always be considered when choosing the analytical procedure, since an inap- 
propriate choice may violate the assumptions of that method and lead to severe 
limitations in the predictive power of the resulting model. This chapter addresses the 
complex problem of identifying the most accurate and most predictive QSAR model 
using relatively small samples of compounds to represent the population of proper- 
ties. 

Continuum Regression (CR), which was introduced by Stone and Brooks [6] to ad- 
dress several of these problems, allows the component construction stage of utilize 
fully the information in both the response variable, j ,  and the descriptor variable set, 
X = ,i2,. . . &. Furthermore, a criterion function, T, and the number of com- 
ponents to be included in the model are optimized using a cross-validation criterion 
for model specification. A new formulation of CR has now been developed [7] which 
offers further advantages over Stone and Brooks’ original formulation. These in- 
clude an analytical solution to  identify an optimum, for each component, 
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avoidance of infinite I; computational efficiency, and a reliable model specification 
procedure which does not require cross-validation. This newly developed CR is 
therefore, not subject to assumptions which have no theoretical basis and which are 
difficult to justify. 

4.1.2 Equivalence of Continuum Regression with MLR, PLS, 
and PCR 

Continuum Regression is a general regression technique which embraces the three 
popular procedures of Multiple Linear Regression (MLR), Partial Least Squares 
(PLS), and Principal Components Regression (PCR). The concept of relating MLR, 
PLS, and PCR may appear paradoxical at first. However, a closer inspection iden- 
tifies the criterion function maximized in MLR as the correlation between the 
response and the descriptor variable set. In PLS the covariance of the response and 
the descriptor set is maximized, and in PCR it is the variance of the descriptor vari- 
ables. 

In vector notation, the correlation coefficient of the mean-centered variables x and 
y can be defined as: 

X'Y 

rxy = 

and, hence, the square of the correlation coefficient is: 

The covariance of the response and descriptor variable is: 

COV,, = (x'y)2 

and the variance of the descriptor variable is: 

(3) 

var, = x'x (4) 

It is the similarity between these criterion functions that leads to the formulation of 
a generalized criterion function, T If c is the vector of coefficients such that c 'X 
forms one component, then Stone and Brook's generalized criterion function is: 
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The new formulation has the generalized criterion function: 

In both functions the parameter, a, has the range (0,l)  and varying a adjusts the 
balance between the covariance of the response and the descriptor variables and the 
variance of the descriptor variable set. 

Continuum Regression is so named because a is allowed to take any value in the 
continuum (0,l). Substituting a = 0 into Eqs. 5 and 6 yields the following: 

( c t x r y ) 2  

(C‘X‘XC) 
T =  (7) 

which is the correlation between the response and the constructed component. By 
substituting a = 0.5 into T the function becomes: 

i.e., the covariance of the response and the new component. When a = 1, T becomes 

T = ( c ’ X ’ X C )  (9) 

or the variance of the new component. By comparing Eqs. (2) ,  (3) and (4) with Eq. 
(7), (8) and (91, it is apparent that the methods of MLR, PLS, and PCR are achieved 
by Continuum Regression when a is set to 0, 0.5, and 1, respectively. Each of the 
methods can be achieved to yield orthonormal components assuming that the set of 
vectors cl, c2,. . . , c,, where rn = min [n - 1 , p ] ,  are constructed such that they are 
maxima, of unit length and are orthogonal to each other. The algorithm for con- 
structing such components is outlined in Sec. 4.1.3. 

4.1.3 Construction Algorithm 

Research undertaken at the University of Portsmouth has led to the development 
of a robust and reliable CR algorithm. The details of this procedure, including 
its mathematical features, are presented below and identify the strategy adopted to 
overcome deficiencies in Stone and Brooks’ CR procedure highlighted in Sec. 
4.1.1. 
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4.1.3.1 A New Formulation of Continuum Regression 

Let u l ,  u2, .  . . ,urn be the orthonormalized eigenvectors of S = X ’ X  that correspond 
to the eigenvalues e1,e2,. . .,em such that O<el < e 2 < .  . . <em.  The vectors 
cj,  j = 1,2,. . . ,m then take the form: 

subject to the following constraints: 

and 
C J S C k  = 0 j # k  

I l c j l l  = 1 i =  1,2,. . .,m 

and such that cj maximizes T If T is now expressed as a logarithmic function, In T 
at c = cj can be written as: 

(15) q = elzl  2 +e2z2+.  2 . .emzm 2 

and s = X’y .  The orthogonality and unit length constraints (Eqs. (1 1) and (12)) can 
now be written as: 

(17) 21 + z 2 + .  . . + z ,  = 1 2 2  2 

a, j z l  + a2jz2 + . . . + amjzm = 0 (18) 

where aij = eic; v;. The Lagrangian equation, L, which maximizes In T is, in general, 

-Al(allzl  +a2122+.  . . +a,,z,)--. . .-Ak(alkzf +azkz2 +.  . . +a,,z,) 

(19) 

where Ai, i = 0,1,2,. . . , k are the Lagrangian multipliers. 
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Differentiating with respect to zi yields 

To obtain a set of zi that maximize cj which in turn maximize In set Eq. (20) to 
zero. This yields ,lo = 3 a -2a2, and the maximizing of zi for c1 are found by solv- 
ing 

The remaining vectors, c2, .  . . , c, are found by solving the matrix equation for z, 
where 

D =  diag[e1(-1+2a)+ae(3-2a),. . .,e,(-1+2a)+ae(3-2a)] (23) 

This can be shown to be equivalent to the iterative solution of the following: 

where 

As the determination of zi coefficients is an iterative technique, a starting vector 
must be estimated. In effect choosing a random vector will yield maximal results pro- 
viding the method incorporates a maximum solution detection technique, such as 
that of the Bordered Hessian, outlined in Sec. 4.1.3.2. 

4.1.3.2 Maximizing T 

The Bordered Hessian method [81 tests whether the solutions of the optimization 
process are maxima, minima or saddle points. The Hessian matrix consists of all par- 
tial second derivatives of L with respect to zi, i.e., 62L/6zjzj, and is “bordered” by 
the partial second derivatives of L with respect to the conditions Aj ,  i.e. 6’L/6AiAj. 
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If p is the number of variables and k is the number of conditions, then the 
Bordered Hessian is of dimension (p + k )  x (p +k) .  The Bordered Hessian can now 
be considered as a series of submatrices of dimension R, R = 2 k +  1,. . .,k+n, which 
consist of the k x  k common matrix and are supplemented by r = k+ 1,. . .,n rows 
and columns of partial derivatives of zi. If the determinant of each of these sub- 
matrices is evaluated, the condition for zi to yield a maximizing solution is: 

(-l)'XO,>O , r = k + l , .  . . ,n  (28) 

where A ,  is the determinant of the matrix evaluated. 

and a new solution obtained. 
If the solution fails to yield a maximum, the starting vector of zi is re-estimated 

4.1.3.3 Optimizing a 

The new formulation of Continuum Regression yields an analytical solution of a 
which maximizes the information in the data set by optimizing the balance between 
the covariance of the response and descriptor variables and the variance of the 
descriptor variable set. 

If the Lagrangian function Eq. (19) is differentiated with respect to a ,  i.e., 

- = (-2+4a) In (2)+2 In (e )  6L 

6a 
then a is found as 

In (z)+ln (e)  a =  
4 In (z) 

This estimate of a is optimal and, hence, should produce a regression equation that 
yields more reliable and accurate predictions. 

4.1.4 Model Specification 

Determination of the final model depends on two criteria; the model should be as 
parsimonious as possible, i.e. it should contain as few components/original variables 
as possible whilst maintaining accurate prediction. Because cross-validation (CV) is 
recommended for model specification when using PLS, PCR, and Stone and 
Brooks' CR [9- 111, a brief summary of the cross-validation procedure is presented 
below. Later sections will describe an alternative approach using the Portsmouth for- 
mulation of CR and compare the results obtained by the different procedures. 
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4.1.4.1 The Cross-Validation Procedure 

For a class of models, Mi, where i is the number of components in the model, the 
full data set, D = b, X ) ,  is divided into G groups, where 2 5 GI n. Each group gj, 
j = 1,. . . ,G is then deleted, in turn, from the full data set to obtain a reduced set, 
D - . The model parameters are then estimated on the reduced set and estimate(s), 
9, for the response(s) in the deleted group obtained using the corresponding descrip- 
tor variable values. By squaring and summing over the differences ( y - j ) ,  where y 
is the original response a “partial PRESS” value is calculated and the procedure is 
repeated for all gJ. The Predictive Error Sum of Squares (PRESS) is obtained by 
summing over the partial PRESS values. 

This procedure can then be repeated for the next model, Mi+,,  in the class. 
If G is chosen to equal n then each of the groups contain one case. This is com- 

monly referred to as a “leave-one-out’’ (LOO) method and has been widely adopted 
in QSAR studies. The alternative approach is to split the data set, D = @,X), into 
two equal groups, i.e. G = 2. These two approaches represent two extremes and in 
practice G can vary between the limits (2,n). 

4.1.4.2 Model Specification using Cross-Validation 

Once the PRESS scores for the series of models have been obtained, various criteria 
can be employed to determine the optimal model. The first of these criteria is to 
choose the model which yields the lowest PRESS. Since PRESS is a function of 
residuals, the optimal model will be the model which minimizes predictive errors. A 
second choice is to select the model that yields a local minimum. The model is 
chosen to contain the fewest components/variables whilst minimizing PRESS. 
Fig. 1 a and 1 b illustrate these two cases. A third technique is to set some a priori 
threshold value of PRESS; the optimal model is then chosen to be the first model 
to yield a PRESS score below this threshold (Fig. 2). These criteria, particularly the 
threshold method, are somewhat subjective. 

Wold [9], Osten [I21 and Stone and Brooks [6] have all employed different 
numerical criteria to determine the optimum model. 

Wold 3 E-test criterion 

Wold’s E-test employs the PRESS scores as follows: 

PRESSi, 1 

PRESSi 
E =  i=0 ,1 ,2 ,  . . .  
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PRESSo is calculated from the model based on using the mean of the response, and 
PRESSi, i = 1,2,. . . is calculated from the models containing 1,2,. . . components. 
Wold originally suggested that components with E< 1 .O were significant and should 
be included in the prediction model, but he now recommends a more conservative 
value. If E< 0.4 then the model containing i+ 1 components is considered to be sig- 
nificant and Wold considers that the process should terminate when the E exceeds 
this value [ 131. The choice of E < 0.4 appears to be somewhat arbitrary. However, in 
our experience 0.4 corresponds approximately to a 95 070 significance test. 

A Cross-Vulidution Vuriunce Statistic 

Osten has produced an F-statistic similar to that used in regression for model com- 
parison. Osten’s F is defined as: 

’* (PRESSi - PRESSi, I)/q 
FOST = PRESSi+l/(np-(i+ 1)q) 

where q is the number of partial regression coefficients which do not equal zero. 
FosT follows an F-distribution on q and (np-(i+ 1)q) degrees of freedom. A com- 
ponent is deemed significant, at say the 95% significance level, if FosT > FTAB. 
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The I statistic 

Stone and Brook’s original formulation of Continuum Regression employs CV to 
determine the optimal values of a and o, the number of components in the model. 
Their algorithm does not allow for an analytical solution of a, and so they employ 
the cross-validatory index, I ,  for this purpose where 

PRESSi 
= 1 -____ 

PRESS, 
i = 1,2,. . . (33) 

The values of a and o which yield the highest value of I are deemed to  produce the 
optimal model. 

4.1.5 Model Specification without Cross-Validation 

Wold [9], Osten [12], and Stone and Brooks [6] recommend that CV should be 
employed for the dual purpose of model specification and predictive assessment. 
However, there is no rigorous theoretical basis for this procedure, which in any case 
tends to yield over-optimistic results. Moreover, if CV is used to design a good 
predictive model, the same procedure cannot be used to provide an unbiased and in- 
dependent assessment of predictive accuracy. For these reasons, a method of model 
specification which is not based on cross-validation, is desirable. 

An appropriate procedure is outlined below. 

1. Using the Portsmouth formulation of Continuum Regression, obtain the com- 
ponents and associated component scores based on the analysis at optimal a. 

2. Regress the component scores on to the response variable, y, and obtain the regres- 
sion f-statistics for each component. 

3. Formulate the model by including components that have significant f-statistics. 
4. Calculate the PRESS statistic for the specified model. 
5. Calculate I, where 

I =  ( I -  PRESS,,d >,,00% 
PRESS, 

(34) 

I is a cross-validatory R2 statistic, i.e. it yields a value that cannot exceed loo%, and 
represents the percentage of predictive accuracy achieved by the model specified at 
Stage 3. 
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4.1.6 Properties and Performance 
of the Continuum Regression Algorithm 

The problems encountered when attempting to specify a QSAR prediction model, 
based on relatively small sets of compounds, have been outlined in Sects 4.1.1 and 
4.1.2. Such considerations raise a number of questions which do not appear to have 
been fully investigated. Should the choice of analytical procedure used to specify a 
model, for example, be based on the covariance structure of the data set, and how 
will an inappropriate choice affect the predictive power of a particular model? It 
would also of interest to establish whether a robust model can be specified without 
recourse to cross-validation. Finally, to what extent do the procedures introduced by 
the Portsmouth formulation of CR protec against spurious correlation, and how are 
standard procedures such as MLR, PLS, and PCR susceptible to this problem? 

4.1.6.1 Does the Correlation Structure of a Data Set Affect the Choice 
of Analysis Method Used to Specify a Prediction Model? 

To investigate whether the choice of method could affect the accuracy of the model, 
and whether the nature of the data set should govern the choice of technique, 
replicated data sets of known correlation structure were constructed prior to analysis 
by MLR, PLS, PCR and the new algorithm of CR described in Sec. 4.1.3. Because 
the size of the data set could also affect the choice of technique, replicate data sets 
of varying size were generated for each correlation structure to provide a set of ran- 
dom samples from a population of known characteristics. 

The procedure employed to produce and analyze simulated data sets of known 
structure is presented below: 

1. For a given correlation structure, sets of multivariate vectors were generated using 
a random number generator. NAG FORTRAN Library routines GOSCCF, 
GOSEAF and GOSEZF [I41 were used to yield vectors of normally distributed 
random numbers using a non-repeatable seed. This system with a seed generated 
by using the time and date has the effect of yielding unique vectors of random 
numbers. Data sets were generated using population correlation structures (see 
Appendix 1) and are subject to the usual sample errors, i.e. the correlation struc- 
ture of a data set will not be identical to the stated population correlation struc- 
ture. The data sets varied in size from 4 to 6 descriptor variables and 10 to S O  cases 
(or objects). 

2. Each data set was then analyzed using an in-house CR routine with a set to 0, 
0.5 and 1, as well as allowing 01 to be optimized analytically. Preliminary studies 
using real data sets had shown that the CR routine, with a = 0, 0.5, and 1, gave 
identical results to those yielded by MLR, PLS, and PCR routines. 
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3. For each data set R2,  R 2  (adjusted R2), and I,,, were calculated and recorded. 
The first component a was also recorded for the CR run for which optimal a was 
estimated. 

4. The procedure was repeated several times on replicate data sampled from each 
structured multivariate specification. 

The experiments were performed on the University of Portsmouth Science Faculty 
VAX 6310 using codes written in FORTRAN 77.  The population correlation struc- 
tures of each multivariate population used in the study are given in Appendix 1. 

A summary of the results identifying the population correlation structure, the size 
of the data set, the number of replicate analyses, and a series of summary statistics 
of the distribution of the parameter, a ,  is presented in Table 1. For data sets with 
a population structure where there is no association between any of the variables 
(population Al), the mean value of a tends towards the higher end of the con- 
tinuum, i.e. values greater than 0.6. The minimum and maximum values indicate that 
the range of values tend to be [ O S ,  1.01, with 50% of the values (between the lower 
quartile, QI,  and the upper quartile, 4 3  lying approximately in the range [0.6, 0.71. 
The second population, A2, is characterized by uncorrelated descriptor variables of 
which two exhibit a weak association with the response variable. The results show 
that a tends towards 0.5 (PLS) although the range of a values is large [0.01, 0.921. 
The third population structure, A3, exhibits a stronger association between the 
descriptor variables and the response, although the descriptors remain uncorrelated. 
The tendency here is for a to be calculated as approximately 0.6, and the range of 
a is again large [-0.80, 1.531. The characteristic of the fourth series of data sets, 
generated using population A4, is that whilst some of the descriptor variables are 
highly correlated with the response, there is some association between the descriptor 
variables. In this series of analyses, the first component a values exhibit much 
smaller ranges and tend towards 0.5, suggesting that for this data structure, PLS is 
an appropriate method of analysis. 

A data set was generated with a structure in which two orthogonal descriptor vari- 
ables were equally correlated (r  = 0.7) to the response variable (population A5, Ap- 
pendix 1). In this example, both descriptors were uniformly distributed about a zero 
mean. For this data, the optimum value of a (0.35) approached that of MLR (a  = 0), 
a satisfactory result since this data structure tends to satisfy some of the assumptions 
required for ordinary least squares regression. Thus, a can be used to adjust the crite- 
rion function, T, so that it matches the data structure and is a useful diagnostic. 

As the ratio of the number of cases to the number of variables increases, a tends 
towards 0.5. Thus for population A2, the mean value of a for the three descriptor 
variable data sets decreases from 0.58 to 0.53 as the number of cases increases from 
10 to 30. 

There are a number of instances where the calculated value of a falls outside the 
continuum (0, I), e.g. population Al ,  which comprises random variables (the three 
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Table 1. Results from simulated data sets of varying size and population correlation structure. 

POPU- NO. No. No. 1st component a 
lation Vars. Cases runs 

mean St. min. max. Q 1  4 3  
dev . 

A1 2 
3 
3 
3 
4 
4 
4 
4 
5 

A2 3 
3 
3 
4 
4 
4 
4 
5 

A3 2 
2 
2 
3 
3 
3 
4 
4 
4 

A4 2 
2 
2 
4 
4 
6 

40 
10 
20 
30 
20 
30 
40 
50 
20 
10 
20 
30 
10 
20 
30 
40 
20 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
30 
50 
10 
30 
30 

20 
47 
50 
45 
50 
67 
50 
20 
49 
49 
46 
50 
48 
48 
50 
40 
49 
46 
49 
50 
46 
49 
51 
48 
50 
50 
25 
25 
25 
25 
25 
25 

0.79 
0.61 
0.67 
0.67 
0.65 
0.66 
0.65 
0.68 
0.62 
0.58 
0.55 
0.53 
0.59 
0.56 
0.54 
0.53 
0.62 
0.60 
0.60 
0.58 
0.67 
0.61 
0.59 
0.64 
0.62 
0.60 
0.60 
0.54 
0.58 
0.53 
0.53 
0.55 

0.19 
0.26 
0.10 
0.09 
0.08 
0.09 
0.09 
0.09 
0.08 
0.12 
0.04 
0.02 
0.08 
0.05 
0.03 
0.02 
0.08 
0.18 
0.09 
0.05 
0.15 
0.08 
0.06 
0.23 
0.25 
0.03 
0.17 
0.01 
0.07 
0.01 
0.01 
0.02 

0.61 

0.55 
0.52 
0.54 
0.55 
0.55 
0.56 
0.51 
0.01 
0.50 
0.50 
0.49 
0.50 
0.50 
0.49 
0.51 

- 0.93 

- 0.37 
0.51 
0.53 
0.54 
0.54 
0.54 
0.00 

- 0.80 
0.54 
0.53 
0.53 
0.49 
0.51 
0.52 
0.50 

1.31 
0.91 
0.97 
0.97 
0.91 
0.97 
1 .oo 
0.93 
0.86 
0.92 
0.71 
0.59 
0.80 
0.69 
0.64 
0.57 
0.86 
1.04 
0.95 
0.76 
1.18 
0.97 
0.99 
1.44 
1.53 
0.72 
1.41 
0.57 
0.80 
0.55 
0.55 
0.62 

0.56 
0.60 
0.62 
0.58 
0.61 
0.58 
0.61 
0.56 
0.53 
0.53 
0.52 
0.53 
0.53 
0.52 
0.52 
0.56 
0.54 
0.55 
0.55 
0.57 
0.55 
0.56 
0.57 
0.58 
0.57 
0.55 
0.54 
0.53 
0.52 
0.53 
0.55 

0.71 
0.70 
0.72 
0.68 
0.69 
0.69 
0.74 
0.66 
0.63 
0.56 
0.54 
0.61 
0.58 
0.55 
0.54 
0.66 
0.66 
0.61 
0.59 
0.69 
0.63 
0.60 
0.71 
0.67 
0.61 
0.59 
0.55 
0.63 
0.55 
0.54 
0.56 

variable, ten case data set with a value of -0.93, and the two variable, forty case 
data set with a value of 1.31). Although in Sec. 4.1.2 the range of the value of a was 
specified to be (0, 1) there is no actual theoretical bound to this continuum. Once 
again, the results suggest that a may be a useful diagnostic for this type of data struc- 
ture. However, this property requires further investigation before it can be im- 
plemented. 



178 J.  A.  Malpass et al. 

4.1.6.2 Does the Choice of Method Affect the Predictive Capability? 

The simulated data sets described in Sec. 4.1.6.1 were also used to investigate whether 
predictive capability is affected by the method of analysis employed to specify the 
model. By analyzing each data set with MLR, PLS, PCR, and the new formulation 
of CR and calculating the prediction criterion, I,,,, the predictive capability of the 
models specified by each method of analysis can be compared. I,,, represents the 
ability of each model to predict the response of known data. A selection of results 
describing the performance of the models specified by MLR, PLS, PCR, and the 
new formulation of CR is given in Table 2 which identifies the population structure 
and the maximum I-statistic for each of these methods; the reported a value is that 
calculated for the first component extracted by the CR analysis. The ImaX statistics 
are those which represent the best model as specified by each of the methods, 
regardless of how many components constitute the model. 

The results highlight a number of interesting features. First, whenever the 
calculated value of a is significantly different from 0, 0.5, or 1, CR clearly outper- 
forms the other three methods, e.g. for population A2 where the three variable, ten 

Table 2. A selection of summary results comparing the predictive performance of MLR, PLS, PCR and 
the new formulation of CR when analyzing simulated data sets. 

Popu- No. No. 
lation Vars. Cases 

I CR 

MLR PLS PCR 1st comp. I 
a 

A2 3 
3 
4 
4 
4 
4 
5 

A3 2 
3 
3 
4 
4 
4 
4 
4 

A4 2 
4 
4 

10 
10 
10 
10 
10 
20 
10 
10 
10 
20 
10 
10 
10 
20 
20 
10 
10 
10 

-26.15 
69.27 

- 79.97 
5.88 

29.89 
16.34 
10.22 
38.85 

-23.52 
55.83 

54.70 
- 144.32 

-29.58 
38.56 
17.14 
22.86 
12.09 
18.44 

41.46 
72.46 
58.87 
54.54 
70.53 
21.96 
24.93 
51.23 
39.57 
55.69 
22.36 
77.00 
35.79 
56.10 
39.88 
41.02 
65.78 
78.08 

30.94 
62.44 
59.46 
34.21 
55.89 
21.17 
21.63 
38.85 
28.14 
57.46 
9.30 

67.23 
20.95 
46.96 
34.51 
23.52 
60.58 
71.60 

0.70 
0.54 
0.54 
0.58 
0.50 
0.55 
0.71 
0.54 
0.59 
0.60 
0.62 
0.56 
0.59 
0.61 
0.56 
0.63 
0.58 
0.55 

53.62 
72.28 
65.24 
53.95 
69.83 
37.26 
36.50 
50.66 
40.74 
61.44 
23.18 
76.20 
35.25 
56.42 
40.18 
42.63 
66.12 
77.92 
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case example produces an a value of 0.70, and CR has an Z-statistic far better than 
any of the other methods. Second, when a is approximately equal to 0.5, CR and 
PLS produce very similar results, e.g. population A3, four variables and twenty 
cases. This suggests that it is important to match the method of analysis to the data 
set since the predictive capability can be improved by adjusting a to give the most 
appropriate criterion function, 7: Although for the majority of samples investigated, 
CR yields a larger prediction statistic, I,,,, than the other methods, there are a few 
cases when MLR, PLS and PCR produce slightly better results. Such differences 
were relatively small, however, and may have arisen from chance effects. Further- 
more, as the ratio case numberhariable number increases, the results yielded by the 
four methods become very similar, e.g. for any of the four descriptor variable data 
sets (Table 2), the I-statistics yielded by MLR, PLS, PCR, and CR tended towards 
equality. 

These observations confirm the importance of choosing the appropriate regression 
procedure, and, hence, the optimum criterion function, 7; in order maximize the 
cross-validatory index, I ,  which reflects the robustness of the prediction model. 

4.1.6.3 Can Robust Models be Specified Without Recourse to Cross-Validation? 

To address the question of whether robust models can be specified without recourse 
to cross-validation, a number of data sets taken from the literature were analysed by 
CR, employing the model specification method of Stone and Brooks [6] described 
in Sec. 4.1.4.2 and that proposed by the Portsmouth group method (Sec. 4.1.5). Once 
again, the Z statistic of Stone and Brooks’ (Eq. (34)) was used as a basis for assessing 
predictive power. The values of I calculated for the models specified by each method 
were compared (Table 3) in order to indicate whether models can be specified 
without the use of cross-validation, i.e. using the procedure developed at the Univer- 
sity of Portsmouth. In all but one, of the examples investigated, the cross-validatory 
statistic, I ,  obtained when the model is specified without recourse to cross-validation 
is as good as, or better, than that obtained when cross-validation is employed. This 
confirms that robust QSAR models can be constructed without reference to cross- 
validation. The one exception to this observation [21] still yields a satisfactory result 
( I  = 74.63%), although in this example, I falls substantially below the value 
calculated by the method of Stone and Brooks ( I  = 86.21 Yo). However, as mentioned 
earlier, estimates of I,,, calculated using QSAR models specified using cross- 
validation as a construction criterion are likely to yield biased estimates which 
overstate the power of prediction (Sec. 4.1 -5).  The most notable improvement in 
Z,,, obtained by switching from the procedure of Stone and Brooks to that of the 
Portsmouth group, being an increase from 0 to 30% [26]. This result demonstrates 
that a model specified when using cross-validation with no predictive value what- 
soever, can be improved by basing component construction on the optimum value 
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Table 3. Summary of results from the experiment comparing model specification methods. 

Ref. No. No. With Cross-Validation Without Cross-Validation 
No. Vars. Cases 

Imax No. R 2  No. sig. I R 2  

comps. comps. 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 a 

27 
27 
28 

3 
3 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 

8 
12 
14 
16 
25 
13 
25 
40 
22 
23 
25 
11 
21 
28 
15 

29.55 
75.00 
47.68 
86.21 
84.73 
95.96 
82.71 
91.19 
88.30 
95.02 
72.58 

-1.67 
92.75 
90.52 
81.55 

1 
2 
2 
3 
2 
3 
2 
4 
2 
5 
3 
2 
4 
6 
6 

46.57 
84.61 
51.15 
89.98 
86.91 
97.51 
78.87 
94.95 
89.54 
96.51 
77.42 
37.69 
94.86 
98.08 
90.96 

1 
2 
2 
3 
2 
3 
2 
3 
2 
5 
2 

3 
6 
5c 

3b 

30.43 
74.98 
48.13 
86.04 
84.74 
97.08 
74.63 
92.02 
85.46 
97.17 
74.19 
31.81 
93.96 
96.79 
82.98 

46.57 
86.15 
55.23 
91.40 
88.00 
97.16 
79.79 
94.91 
90.07 
97.30 
76.21 
72.48 
95.58 
98.38 
94.38 

a reduced data set 
significant components were component numbers 1,  2, and 4 
significant components were component numbers 1 ,  3, 4, 5, and 6 

of a. However, an I value of 31.81 To indicates that the predictive capability of this 
model is limited. 

It is interesting to note the very strong association between the I values obtained 
using LOO CV (Portsmouth algorithm) and the R 2  values which express the degree 
to which the model fits the data used in its specification. A plot of I vs R 2  (Fig. 3) 
illustrates this strong, linear relationship (r  = 0.91). 

4.1.6.4 Does Continuum Regression Protect Against Spurious Correlations? 

An additional concern to QSAR practioners is the inclusion of non-significant vari- 
ables, or components, into regression models. These Type 1 errors cause non-signifi- 
cant variables to be included in a QSAR model, when, in fact, they have little or no 
significant information to contribute. Spurious correlations have been investigated 
by Topliss and Costello [29], Topliss and Edwards [30] and, more recently, Wakeling 
and Morris [31]. These three studies address the problem using data sets constructed 
of random numbers that are uniformly distributed; the problem does not appear to 
have been investigated for normally distributed data. 
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Figure 3 

To investigate the extent to which models specified by the Portsmouth algorithm 
of CR are prone to chance effects, a limited study was undertaken. The study involv- 
ed generating replicate data sets, of equal size (three descriptor variables and twenty 
cases), with three population correlation structures (Appendix A6). The population 
structures were chosen such that there would be ample opportunity for the analysis 
to give spurious results. The “uncorrelated” population (A6i) yielded random vec- 
tors that were independent of each another, and, hence, any significant result would 
have been a chance effect. The second population (A6ii) introduced a significant 
amount of correlation between two of the independent descriptors and the response 
and retained a third, random descriptor. The third population (A6iii) introduced 
multicollinearity into the data by constructing two of the descriptors to be dependent 
whilst still being highly correlated with the response. Once again, a third, random 
descriptor variable was included. 

The appearance of chance effects in any of the analyses are easily detected. For 
population A6i, any component deemed significant by Wold’s E-test (Eq. (31)) or 
the t-distribution (Sec. 4.1.5) is a chance effect; population A6ii and A6iii, where the 
populations comprise two significant descriptor variables, one-component models 
are more minimalistic and three-component models less minimalistic than those 
which would have been obtained by MLR. If the third component is deemed signifi- 
cant, it may indicate a spurious result arising from sampling errors. From the limited 
set of results presented in Table 4, there is some evidence to suggest that the Ports- 
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Table 4. The number of significant components included in prediction models constructed using 
simulated samples from populations of known condition structure. 

Population A6i A6ii A6iii 

No. components Sig. test 1 2 3 1 2 3 1 2 3 
Model specification by cross-validation E<1.0 3 0 0 0 6 4 1 3 6 

E<0.4 0 0 0 3 7 0 8 0 0  
Portsmouth Algorithm p<O.O5 1 0 0 1 6 3 4 4 2 

mouth algorithm offers some protection against chance effects. Thus, only one in 
ten of the samples derived from population A6i gave rise to a significant CR model; 
in contrast, all twenty samples derived from the populations with correlation be- 
tween y and x 1, and y and x 2  (A6ii, A6iii) gave a significant model. Of the samples 
from population A6ii, seven out of ten gave models with the expected number of 
components or less; from population A6iii, four out of ten gave one-component 
models and four gave two-component models. These results have been based on tail 
probabilities of the t-distribution derived using the Portsmouth model specification 
procedure (Sec. 4.1 S). Specifying the CR model using cross-validation and Wold’s 
E-statistic leads to more conservative models when E< 0.4, but less conservative 
models when E < 1 .O. 

4.1.6.5 How CR Predictions Compare with those 
of other Regression Procedures 

A comparison of the performances of MLR, PLS, PCR, and CR was undertaken 
using the data of Kruse et al. [25] for multisubstrate inhibitors of dopamine p- 
hydroxylase (DBH) acting at the phenethylamine binding site. The potency of the 
twenty-five 3,4,5-substituted DBH inhibitors tested and five chemical parameters 
used to quantify their chemical features are presented in Table 5 ,  and the associated 
correlation matrix in Table 6. Five significant interparameter correlations (r  > 0.38, 
p < 0.05) were observed. Furthermore, the data exhibited multicollinearity (Amax/ 
Amin = 45 1.6). Thus, this data violates the assumption of that independent descrip- 
tor variables are required in order to perform ordinary least squares and multiple 
linear regression. It, therefore, provides a useful example to highlight the advantages, 
if any, of PLS, PCR, and CR. 

The “best” MLR equation reported by Kruse 1251 and his colleagues contained 
four variables, 

-log ICso = 1.28 (kO.22)I- 0.14( k 0.02)MR +0.65 (k0.16) 71 + 1.42 (k0.33)F- 1.26 
(35) 
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Table 5. Chemical parameters of 3,4,5-substituted DBH inhibitors. I is indicator variable for the presence 
of a 4-OH, 71 is the sum of the lipophilicity at the 3-, 4-, and 5-positions, MR is the molar refractivity 
at the 3-, 4-, and 5-positions, F is the sum of the inductive effects at the 3-, 4-, and 5-positions and I? 
is a measure of the resonance effects. 

Substituent -log IC,, '40H n345 MR345 F345 R34, 

3-NO,, 4-OMe 
4-OMe 
3-OMe 
3-OH 
4-C1 
4-NO2 
3-Me, 4-OH 
4-F 
3,5-C12, 4-OMe 
3,5-F2, 4-OMe 
H 
3-NO2, 4-OH 
3,4-CI2 
3-Br, 4-OH 
3-C1 
3-F 
4-OH 
3,5-CI2 

3,4-(OH)2 
3-C1, 4-OH 

3,5-F2 
3-F, 4-OH 

3,5-C1,, 4-OH 
3,5-F,, 4-OH 
3,4-(OMe), 

- 2.55 
- 2.30 
-2.19 
-2.17 
- 1.98 
- 1.72 
- 1.69 
- 1.67 
- 1.67 
- 1.55 
- 1.50 
- 1.49 
- 1.44 
- 1.07 
- 1.07 
- 0.74 
- 0.41 
- 0.38 
- 0.34 
- 0.30 
-0.17 
- 0.07 
-0.16 

1.13 
- 2.75 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 
0 
1 
0 
1 
1 
1 
0 
1 
1 
0 

- 0.30 
- 0.02 
- 0.02 
- 0.67 
- 0.71 
- 0.28 
-0.11 

0.14 
1.40 
0.26 
0.00 

- 0.95 
1.42 
0.19 
0.71 
0.14 

- 0.67 
1.42 

- 1.34 
0.04 

- 0.53 
0.28 
0.75 

- 0.39 
- 0.04 

16.23 
9.87 
9.87 
4.85 
8.03 
9.36 
9.50 
2.92 

19.93 
9.71 
3.00 

11.21 
13.06 
12.73 
8.03 
2.92 
4.85 

13.06 
6.70 
9.88 
4.77 
2.84 

14.91 
4.69 

16.74 

0.93 
0.26 
0.26 
0.29 
0.41 
0.67 
0.25 
0.43 
1.08 
1.12 
0.00 
0.96 
0.82 
0.73 
0.41 
0.43 
0.29 
0.82 
0.58 
0.70 
0.72 
0.86 
1.11 
1.15 
0.52 

- 0.35 
- 0.5 I 
-0.51 
- 0.64 
-0.15 

0.16 
- 0.77 
- 0.34 
-0.81 
- 1.19 

0.00 
- 0.48 
- 0.30 
-0.81 
-0.15 
- 0.34 
- 0.64 
- 0.30 
- 1.28 
- 0.79 
- 0.98 
- 0.68 
- 0.94 
- 1.32 
- 1.02 

and had an R 2  = 0.83, which indicated a good fit to the data. The data was analyz- 
ed using the CR algorithm reported in Sec. 4.1.3., with a fixed at 0, 0.5, and 1, or 
optimized analytically. This resulted in four models corresponding to MLR, PLS, 
PCR, and CR, respectively. Because cross-validation is recommended for use during 
model construction, the models specified for PLS and PCR have been based on this 
procedure. However, the CR model was constructed according to the Wocedure 
outlined in Sec. 4.1.5. The MLR procedure (a = 0) gave p coefficients within the 
tolerances of their standard errors, which were identical to those reported by Kruse 
et al. [25] thus, validating the CR algorithm. 

Table 7 gives comparisons of the four methods. The equation giving the best fit 
to the data (i.e. the largest R 2 )  was obtained using MLR; R 2  values of 0.77 were ob- 
tained for PLS, PCR and CR. The goodness of fit obtained using MLR is probably 
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Table 6. Correlation matrix of chemical parameters of 3,4,5-substituted DBH inhibitors. Significant 
pairwise correlation are in bold. 

- log IC,, '40H =345 M R 3 4 5  F345 R345 

- log IC,, 1 .oo 
'40H 0.58 1 .oo 
=345 - 0.03 - 0.45 1 .oo 
M R 3 4 5  - 0.35 - 0.06 0.43 1 .oo 
F345 0.40 0.21 0.23 0.45 1 .oo 
R345 - 0.40 - 0.55 0.28 -0.10 - 0.43 1 .oo 

Table 7. Summary of statistics comparing the fit and prediction of CR, MLR, PLS and PCR models 
for 3,4,5-substituted DBH inhibitors. 

Regression 1st Component a No. of Sig. I R2 

Method Comps. 

CR 0.67 2 74.19 76.77 
MLR 0.0 1 71.65 83.37 
PLS 0.5 2 73.13 77.31 
PCR 1 .o 3 68.39 77.48 

Table 8. Comparative partial regression coefficients (In) of the original variables used to construct QSAR 
models of 3,4,5-substituted DBH inhibitors. 

Regression '4OH =345 M R 3 4 5  F345 R345 
Method 

CR (a  = 0.67) 1.4077 0.5076 - 0.1274 0.6852 -0.6617 
MLR 1.1699 0.6398 - 0.1497 1.2990 - 0.0730 
PLS 1.0509 0.5298 - 0.1292 0.6972 - 0.6561 
PCR 0.9617 0.6804 -0.1387 0.6275 - 0.7594 

due to overfitting, since it is not reflected in the predictive capability of the MLR 
equation. The I values obtained for the different equations is in fact ranked as the 
following: CR > PLS > MLR < PCR. Table 8 suggests that the electronic effects of 
substituents at positions 3, 4, and 5 of the phenyl ring account for these discrepan- 
cies; the parameters F345 and R345 which are significantly correlated (Table 6) are 
given with contrasting influences on -logICs0 depending on which method of 
regression was used for model specification. The best prediction was obtained using 
the model constructed by the CR algorithm developed at the University of Ports- 
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Table 9. Loadings of the components deemed significant by CR, MLR, PLS, and PCR analyzes. Signifi- 
cant loadings 0, < 0.05) are in bold. 

Regression Comp. '40, 7945 MR345 F345 R345 
Method Index 

CR 1 
2 

MLR 1 
PLS 1 

2 
PCR 1 

2 
3 

0.1099 
0.6945 
0.6259 
0.1556 
0.6906 
0.0067 

0.6102 
- 0.5384 

-0.0148 
0.3399 
0.3423 
0.0093 
0.3518 

- 0.0677 
- 0.5639 
- 0.7495 

- 0.9915 
- 0.0346 
- 0.0801 
- 0.9817 
- 0.0348 
- 0.9972 

0.0504 
0.0471 

0.0380 
0.4560 
0.6950 
0.0689 
0.4600 

- 0.0309 
- 0.3752 

0.2523 

- 0.0566 
- 0.4393 
- 0.0391 
- 0.0854 
- 0.4318 

0.0082 
0.4989 

-0.001 1 

mouth, where equal weighting was given to both electronic terms. The low Z value 
using a three-component PCR model probably reflects the lack of supervision during 
the construction of the components. The equations obtained using PLS (a = 0.5) 
and CR (a = 0.67 for this example) were constructed criteria functions based on dif- 
ferent degrees of supervision (i.e. dependence on -log ICso). 

The loadings of the original variables onto the significant components (Table 9) sug- 
gest that molar refractivity is described by a single component, whereas the 
remaining variables describing the partition and electronic properties of the rneta and 
para positions of the phenyl ring and the presence or absence, of a para-hydroxy 
substituent combined to produce a molecular feature which is useful for predicting 
novel compounds of high biological activity. A tentative interpretation of the structure- 
activity relationship as given by the various models is that bulk and electronic charac- 
ter were both important in determining the potency of DBH inhibitors. The electronic 
character for the set of substituents used in this study is supplemented by the partition 
properties and the presence of the hydroxy group to provide a predictor variable ortho- 
gonal to that describing the bulk of the substituents. Inhibitor activity seems to be as- 
sociated with small substituents which tend to withdraw electrons by induction and 
donate electrons to the n-bond system delocalized over the phenyl ring. The bulk and 
inductive effects have already been identified by Kruse et al. [25] who suggest that the 
latter may decrease the pKa of any hydroxyl group present in the ring. However, the 
resonance term included in the most successful prediction models was not recognized 
by these workers, possibly because it is a source of multicollinearity (Table 6). 
Resonance will be reinforced by the presence of dissociated hydroxyls, i.e. low pKa 
values, since the anion has strong electron donating properties. Inductive withdrawal 
and mesomeric donation of electrons would also be possible with the 3,Sdihalogen 
substitution pattern associated with potent inhibitors [25]. The independence of bulk 
and electronic effects is not easily recognizable in the model obtained using MLR for 
which the loading pattern (onto a single component) is less clear. 
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4.1.7 Concluding Remarks 

The Continuum Regression algorithm was developed to overcome the problems asso- 
ciated with the construction of parsimonious components and model specification. 
Refinements to the original method of Stone and Brooks [6] which allow the data 
structure to determine the nature of the general criterion function, T, have led to the 
development of an algorithm which is proving to be a useful research tool. This 
algorithm is available commercially as part of the University of Portsmouth Enter- 
prise Limited’s Drug Design Software, PARAGONTM. Further work is required to 
establish whether Continuum Regression can improve the prediction of biological ac- 
tivity based on sets of molecular properties which are characterized by multicol- 
linerarity. 

Appendix 

The population correlation structures used to generate the simulated data sets are 
given below. 

A 1. Data sets of all sizes were generated with the correlation structure shown below. 
The four descriptor variable set is used as an example. 

Y X I  x 2  x3  x 4  

Y 1 .o 
X I  0.0 1 .o 
x 2  0.0 0.0 I .o 
x 3  0.0 0.0 0.0 1 .o 
x 4  0.0 0.0 0.0 0.0 1 .o 

A2. The data sets were generated so that variables XI  and x 2  were correlated with 
y for all set sizes, e.g. four descriptor variables. 

Y XI x2  x 3  x 4  

Y 1 .o 
X I  0.25 1 .o 
x 2  0.25 0.0 1 .o 
x 3  0.0 0.0 0.0 1 .o 
x 4  0.0 0.0 0.0 0.0 1 .o 



4.1 Continuum Regression 187 

A3. Data sets of all sizes were generated so that three descriptor variables, X I ,  x2, 
and x3 were highly correlated with the response variable, e.g. four descriptor 
variables. 

Y X I  x 2  x3 x4  

Y 1 .o 
x l  0.5 1 .o 
x 2  0.5 0.0 1 .o 
x3 0.5 0.0 0.0 1 .o 
x 4  0.0 0.0 0.0 0.0 1 .o 

A 4. Some correlation amongst the descriptor variables was introduced, e.g. four 
descriptor variables. 

Y x l  x 2  x3 x4  

Y 1 .o 
x l  0.5 1 .o 
x 2  0.5 0.3 1 .o 
x3 0.5 0.4 0.6 1 .o 
x 4  0.5 0.2 0.3 0.2 1 .o 

A5. This data set was generated so that two orthogonal descriptor variables were 
equally correlated with the response variable. The sample correlation structure 
is: 

Y XI x 2  

Y 
x l  
x 2  

1 .o 
0.705 
0.700 

1 .o 
0.0 1 .o 
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A6. The population correlation structures used in the investigation into spurious 
correlations were defined as follows: 

(i) Uncorrelated: 

Y X I  x2 x3 

Y 1 .o 
X I  0.0 1 .O 
x2 0.0 0.0 1 .o 
x3 0.0 0.0 0.0 1 .o 

(ii) Some Correlation: 

Y X I  x2 x3 

Y 
X I  

x2 
x3 

1 .o 
0.7 
0.7 
0.0 

1 .o 
0.0 1 .o 
0.0 0.0 1 .o 

(iii) Multicollinearity: 

Y X I  x2 x3 

Y 1 .o 
X I  0.8 I .o 
x2 0.8 0.4 1 .o 
x3 0.0 0.0 0.0 1 .o 
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4.2.1 Introduction 

One of the tools required by the medicinal chemist is a simple, objective, pictorial 
method of representing the biochemical and biological data obtained from families 
of chemical compounds. The pictorial representation can form the common ground 
for a cogent interpretation of the results with the biologist and for the design of fu- 
ture tailor-made molecules for use as markers or drugs. The need for such a descrip- 
tive multivariate tool is essential at the interface between Chemistry and Biology 
because of the infinite permutations of molecular descriptors in chemical synthesis 
and the complexity of living organisms. The multivariate approach should serve sev- 
eral purposes, such as sifting through information without imposing any a priori de- 
terminate classification, and enable the development of a model for the prediction 
of activity profiles of as yet unsynthesized molecules. However, under no circum- 
stances, should the tool be an end in itself, but should open up new areas for further 
experiments and analyses by other complementary multivariate methods. In the pre- 
sent chapter, we propose that these requirements are aptly met by Correspondence 
Factorial Analysis (CFA). 

4.2.1.1 The Need for an Interface Between Chemistry and Biology 

There exists the one extreme, where large numbers of molecules are blindly screened, 
that too often is wasteful of resources, intellectually unsatisfying and of uncertain 
outcome. At the other extreme, is the design of a handful of highly specific and, 
hopefully non-toxic ligands which is based on the structural information obtained 
from the active sites of proteins by sophisticated “know-how” and analytical tools. 
Between these two extremes, there exists a middle pathway that makes the most of 
all available information and neither rejects screening nor depends entirely on state- 
of-the-art knowledge. The number of new molecules that need be synthesized is min- 
imized by objectively analyzing existing data obtained from the interactions between 
molecules and effectors in the relevant biological and pharmacological tests and 
from toxicological studies. This is a desirable alternative to the design of compounds 
by the overexploitation of methods of synthesis already mastered, or by searching 
for loopholes in patents. 

4.2.1.2 Concept of a Multivariate System 

Medicinal chemistry has to deal with the interface between two systems (organized 
self-consistent wholes), one composed of molecules and the other of biological pa- 
rameters. A molecule, whether a small chemical entity or a macromolecule, should 
not be considered as an isolated entity but as an integral part of a greater whole 
(system). The uniqueness of each molecular structure is gauged with respect to its 
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peers. A given biological response occurs in the context of an environment of multi- 
ple complex interactions and interferences. When considering the interfacing of the 
two systems, a multivariate method that encompasses both and attaches equal im- 
portance to each is required. 

The data take the form of matrices (table i x j  of the responses of ( i )  molecules 
on ( j )  tests). Although such tables can be analyzed by a univariate approach, this 
is extremely laborious and also biased because of a natural tendency to search for 
maxima and minima and to rank rather than to structure. Nor are an iterative bivari- 
ate approach (regression), which considers the variables in pairs, or multiple regres- 
sion analysis, which preselects a dependent variable, suitable for a preliminary analy- 
sis. These methods are also laborious and their use only postpones the finding of 
an all-embracing solution. On a less serious note, one could describe uni- and bivari- 
ate approaches as “molecular psychology” and multivariate approaches as “molecu- 
lar sociology’’ which seeks the whole gamut of correlations between a population 
of molecules and a population of receptors. 

4.2.1.3 The Choice of Correspondence Factorial Analysis (CFA) 

CFA surpasses the notion of rank by adopting the concept of structure or organiza- 
tion and, in so doing, can be considered as an abstract form of Pattern Recognition. 
It is governed by the laws of probability and, thus, yields an overview that is an ap- 
proximation. However, it dispenses with artificially determined mathematical proba- 
bility levels ( p  values indicating the significance of correlations), that are less crucial 
in multiparametric relationships than bivariate relationships and which may be of 
little relevance in the biological context. Instead CFA highlights legitimate and mean- 
ingful correlation levels by eliminating redundant information, filtering out noise 
and minimizing artefacts. In this respect, it belongs to the realm of fuzzy logic 
(expert systems, neural networks, etc.). 

The likelihood of establishing imaginary unfounded relationships between totally 
independent variables by CFA is minimal since it seeks convergence of indicators and 
yields a theoretical index ( A )  of the quality of the factorial representation. Moreover, 
a CFA requires expert interpretation. In the results of a CFA, both chemists and biol- 
ogists will not only find affirmation of the tried and tested (a sign of the strength 
and validity of the approach) as well as of some of their untested hypotheses, but 
also a number of similarities and contrasts that can lead to  new ideas and that may 
cast doubt upon certain preconceptions. CFA is no substitute for human decision- 
making powers, but is an appropriate and effective tool for interpretation and deci- 
sion-making. The factorial plots of CFA, read in conjunction with tables giving the 
contributions of the variables to the factorial axes, reveal the most probable correla- 
tions among the extraordinarily vast number of possible combinations in an ordered 
fashion. To do  so, like other multivariate methods, it relies upon a technique of data 
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reduction, more specifically, the computing of vectors from a diagonal matrix by an 
eigenfactor - eigenvector routine. 

4.2.1.4 Multivariate Data Reduction by X2-Metrics in CFA 

In factorial analysis, one of the oldest methods of data reduction is covariance as 
applied, for instance, in Principal Component Analysis (PCA). CFA, on the other 
hand, is based on the use of X2-metrics on the assumption that the data table ( i x j )  
is a frequency table, i.e., there is a probability of a statistical link (kinetic interaction) 
between molecule (i) and test 6 )  under defined conditions (as in the statistics of ther- 
modynamics). In a way, CFA can be regarded as a two-fold unified PCA performed 
on the molecules, on the one hand, and on the tests, on the other. This allows the 
direct representation of both molecules and tests simultaneously on single factorial 
axes or plots and the disclosure of relationships among molecules, tests, and between 
molecules and tests within each successive factorial plot required, by decreasing or- 
der of variance, to describe the total variance (inertia) of the experimental system in 
a stepwise fashion. As in PCA, the first factorial plot (9, (p2) reveals the strongest 
correlations among the variables, the q3 p4 plot weaker correlations, and so on, thus 
highlighting the principal organization but also substructures of the system. Howev- 
er, unlike in the case of PCA, the lower order correlations are as relevant as the high- 
er order correlations. In CFA, there is not theoretical limit to the number of variables 
(molecules or tests) that can be analyzed. This could be as low as 2x2 (if this were 
meaningful), but is more usually as high as 100x200. In practice, the upper limit is 
governed by the computation time, the degree of graphic resolution (approx. 200 
items per page), and ease of interpretation. 

Owing to the use of X2-metrics, CFA obeys the principle of distributional equiva- 
lence which offers several advantages: (a) clustered items (e.g, molecules) can be 
grouped together into barycenters in the factorial plots to improve clarity. This 
means that, for the analysis of very large data matrices, a stepwise approach can be 
adopted, whereby items are preassembled into groups (by selection or by a partition 
technique) for group analyses. These groups can be subsequently split into their indi- 
vidual components. (b) The normalized profiles of supplementary variables, either 
molecules or tests, can be routinely introduced into a CFA that is used as a 
mathematical model. The process can be stretched to test hypotheses on other types 
of data that are considered pertinent, such as molecular descriptors (e.g., physico- 
chemical properties, spectroscopic data) etc. Relative contributions establish whether 
the new data are truly relevant to the existing analysis. 

A CFA can be validated by the use of other cluster techniques applied to the 
X2-distance square matrix such as independent classification of the study fields 
(molecules and tests) by nearest-neighbor analysis, partitioning around mobile target 
items, minimum spanning trees, or ascending hierarchical clustering in order to ob- 
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tain an overview of the projections of each field over several or all of the factorial 
axes describing the experimental system. A CFA can also be a basis for prospective 
modeling by applying a qualitative method of category assignment, such as discrimi- 
nant analysis, or a quantitative method of evaluating a dependent variable, such as 
stochastic regression, to selected factorial axes. This variable, usually a biological 
test, is considered to be dependent upon the structural descriptors of the molecules. 
In this case, the use of regression analysis is totally justified since correlations are 
not based on the initial variables, but on superlative variables constituted by the fac- 
torial axes which are orthogonal and, therefore independent. In multivariate statis- 
tics, no single method is allowed to dominate other methods and the results of an 
analysis will be all the more reliable, if several methods point to the same conclusion. 

4.2.2 Applications and Methodology of CFA 

CFA was first developed by BenzCcri and coworkers [I -41 and is reviewed in [5-81 
with up-to-date discussion by van der Heijden et al. [9] and Goodman [lo]. This 
method has long been a specialist area of French scientists (viz. the journal “Les 
Cahiers de IYnaIyse des Donnees which was founded in 1976 and is entirely devoted 
to CFA) and has recently gained a much wider audience in an ever increasing number 
of disciplines. CFA is now common in studies relating to geology and ecology 
[ 1 1 - 151, evolution [ 161, analytical chemistry (e.g., chromatography [ 17, 181, electro- 
phoresis [ 191, the analysis of electron micrographs of macromolecules [20]), sensor 
chemistry [21] and increasingly in medicine [22- 291. (The aforementioned referenc- 
es are just but a few selected from a long list for illustrative purposes). To our knowl- 
edge, the application of CFA to metallurgy [30, 311, olfactory substances [32], and, 
most importantly, to structure - activity relationships of chemical substances has yet 
to be addressed by others. The list of the different types of chemical compound, ei- 
ther natural or synthetic, whose structures and properties have been analyzed by 
CFA, is fairly extensive and relate to both agronomy (pesticides [33], insecticides 
[34], pheromones [35, 361) and medicine (antibiotics [37], antiparasitic agents [38], 
flavonoids [39], steroids [40-421, triphenylethylene analogs of estrogens [43 - 481 
and others [49,50]). 

A brief description of the CFA method will follow to aid in the understanding of 
the application to steroid receptor binding data which is presented in the second half 
of this chapter. 

4.2.2.1 The Data Matrix 

Direct application of CFA to a set of data is possible on four conditions: the data 
do not comprize negative values, they are homogeneous (i.e, the measurements cor- 
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respond to intensive variables), exhaustive (no variables have been knowingly omit- 
ted), and relevant (not purely independent variables). The data can be made homoge- 
neous by the appropriate scaling (logarithmic transformation, centering, normaliz- 
ing, centering+normalizing etc.). A limited number of missing values for any given 
variable can be extrapolated. On the whole, these are relatively drastic conditions 
since, outside industrial screening programs, it is rare to encounter data that are not 
the result of a linear step-by-step reasoning. 

The crude data for analysis by CFA may take several forms: contingency and fre- 
quency tables, rankings, “yes” or “no” responses (O/l) ,  experimental values with or 
without calculated antivalues in order to account not only for the specificity, but also 
the amplitude of response of the test molecules, tables of disjunctive variables used 
as such or to construct frequency tables (e.g., the Burt matrix [51]), etc. 

4.2.2.2 Statistical Procedure 

Let us consider the case of steroids interacting with different hormone receptors. A 
data matrix of the (i) molecules (Xi = n) (rows) by the (j) tests (C j  = p )  (columns) 
is constituted. The data table is subjected to an appropriate transformation proce- 
dure to allow representation of both molecules and tests on single-display factorial 
maps. The j tests are, thus, projected into the multidimensional space made up of 
the i molecules R’ and vice versa the i molecules are projected into the j-dimension- 
a1 space of the tests RJ. The position of each point representing a single test result 
for a given molecule in the R i  space is given by the probability that test ( j )  has an 
amplitude of hj for molecule (i) and is defined by the ratio 

where 

and where 

hj 4 j  

. f j =  C Aj 
j 

(3) 

A symmetrical calculation defines the position of each molecule for each test 
Kj/f i .)  in the RJ space. This dual procedure yields comparable normalized profiles 
(histograms) for the rows and columns, thus, enabling their comparison by a tech- 
nique that can be considered as a form of pattern recognition. 

To represent these two sets of points, principal projection axes are established as 
in PCA by determining eigenvalues (A) and eigenvectors (5). A symmetrical matrix 
is constituted of the distances Sjjr between pairs of molecules k2-distance) as fol- 
lows: 
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The calculation is performed by solving equations of the type [R] -A [XI = 0 and 
[R] [ V,] = Ax [ V,] (diagonalization of the symmetric matrix). This procedure is sim- 
pler in CFA than in PCA because one of the sets of points is given by the matrix 
[ R ]  = [MI * [M’] .  The permutation of the indices is, thus, equivalent to transposing 
the matrix onto the other set of points [M’] * [MI with the same eigenvalues as those 
of R. 

The coordinates pj of the tests for factorial axis a are calculated by using the for- 
mula: 

paj = AA’2 v,./fy ( 5 )  

where is the square root of the non-trivial eigenvalue A,, K j  the corresponding 
eigenvector, and f.’? the square root of the marginal relative frequency of test ( j )  
for the (i) molecules. The correspondence between the molecules and tests is given 
by the transition formulae: 

P 
pai = (1/AL’2) c Kj f l )pa j  for the molecules - (6) 

j =  1 

n 

i =  1 
paj = (111 L’2) C Kjg j )  pai for the tests - (7) 

The factorial axes pa are ranked by their order of importance in accounting for 
the total variance of the system (p,, p2, p3.. .pn-,). Factorial maps are then drawn 
by plotting any two of these orthogonal axes and displaying the projection of points. 

If a large part of the total variance is not accounted for by the two principal facto- 
rial axes p, and p2, i.e, the true points are not close to their projections onto the 
p1 p2 map, it is necessary to refer to the absolute contribution (AC) and relative con- 
tribution (RC) of each variable to all factorial axes, in order to assess how well a par- 
ticular axis represents the variance of the system (ACs of the variables) and how a 
variable is dispersed across all the axes (RCs of the variables). For test j ,  

ACaCj) = J p i j / A a  100 (CACs = 100% for any axis a )  

(CRCs of each variable to all axes = 1) 

(8) 

(9) 
and 

RCa(i) = pii/dj(i ,G) 

where G is the distance from the center of gravity of the points. RC is in fact the 
square of the cosine of the test j for axis a. 
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4.2.2.3 CFA Program Availibility 

Computations for the writing of CFA programs are presented in several textbooks 18, 
52, 531. Standard CFA programs are commercially available from French sources in- 
cluding ADDAD (Association pour le Developpement et la Diffusion des Donnees, La- 
boratoire de Statistique, Tour 45 - 55,4 Place Jussieu, 75005 Paris), ITCF (Institut Tech- 
nique des Ctreales et des Fourrages, 8 ave du Prksident Wilson, 751 16 Paris), and DP 
Tool Club (Program ADS0 [54], BP 745 59657 Villeneuve d’Ascq, France), but also 
in other countries, Kovach Computing Service (Wales, U.K.), SimCA Version 2 (Prof. 
M. J. Greenacre, P.O. Box 567, Irene, 1675 South Africa), BMDP Statistical Software 
Inc., BMDP PC-90 user’s Guide, 1990 (Los Angeles), SPSS Categories Reference 
Guide 1990, SPSS Inc. (Chicago), ANOVA-FREQ Version 6, SAWSTAT User’s Guide 
Vol. 1, 1990, SAS Institute Inc. (Cary, North Carolina). These standard programs can 
be run on mainframe and personal computers (PC/AT, Macintosh [55]) as well as on 
UNIX work-stations. Computing time for matrices smaller than 200x 50 is at present 
reasonable, especially if the computer is equipped with an arithmetic processor. 

In the example given below, calculations were performed on a microcomputer 
(16-32 bits of 655K of central memory, Hewlett-Packard 9836) with an in-house 
program written especially for the analysis of structure-activity relationships. The 
program has many subroutines and, unlike the above commercial programs, is flexi- 
ble and not restrictive, enabling many variations in input and output (calculations 
as well as graphs). This flexibility is essential if CFA is to be considered as an impor- 
tant route to other techniques. The program was adapted for BASIC (Microsoft 
Language) from FORTRAN ANACOR software. 

4.2.3 Application of CFA to the Analysis 
of Steroid-Receptor Relationships 

One chapter cannot illustrate all the facets and advantages of CFA in the field of 
QSAR, and the reader may need to refer to published examples for further details. The 
present illustration is an unpublished analysis of the binding of 187 steroids to 5 ste- 
roid hormone receptors (see Appendices): estrogen receptor (ER), progesterone recep- 
tor (PR), androgen receptor (AR), mineralocorticoid receptor (MR) and glucocor- 
ticoid receptor (GR) present in “cytosol”, a “high speed” supernatant, obtained from 
different target tissues and species (187x5 matrix). The crude data was taken from 
several publications [56 - 601. The steroid population was primarily, but not solely, 
characterized by differences in ring saturation and by the presence or absence of alkyl 
and hydroxyl groups and of a C-17-a ethynyl substituent (see appendix). There were no 
bulky substituents or lengthy side chains in strategic positions that to our knowledge 
might preferentially interact with amino-acids outside the binding site of the natural 
hormone. For each receptor, the tests were performed under identical experimental 
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conditions. The results are expressed as relative binding affinities (RBAs) with re- 
spect to the competition of the natural hormone (estradiol, progesterone, testoster- 
one, aldosterone) or of a biologically active synthetic analog (dexamethasone) with 
an RBA taken to be equal to 100. The range of RBAs for each receptor was small 
enough not to warrant logarithmic transformation. Although the vast majority 
of the results consists of the means of at least three replicate experiments, some are 

Table 1. Coded RBAs of steroids 20 to 50 for five receptors. An excerpt from the converted data table 
describing the relative binding affinities (RBAs) of 187 steroids (see Appendix) for five steroid receptors 
(ER = estrogen receptor, PR = progesterone receptor, AR = androgen receptor, MR = mineralocorticoid 
receptor, GR = glucocorticoid receptor). The RBAs for each receptor (R), measured as previously de- 
scribed 1561, were coded as follows: R O = R B A < l ,  R1 = 1 - 3 ,  R 2 = 3 - 1 0 ,  R 3 =  10-15, R 4 =  15-25, 

R11 = 250-600, thus, yielding a total of 54 categories. 
R 5 = 2 5 - 5 0 ,  R6=50-75 ,  R7=75-100,  R 8 =  100-125, R 9 =  125-150, R10= 150-250, 

PR 
0 1 2 3 4 5 6 7 8 9 1 0 1  
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single determinations with a much higher margin of error. For this reason, we decid- 
ed not to analyze the true means or experimental values but to distribute the RBAs 
into 9 to 12 categories according to receptor class as indicated in Table 1 for steroids 
20 to 50. This resulted in a 187x54 matrix. 

A crucial feature of this table that justifies analysis by CFA is the lack of specifici- 
ty of the majority of compounds including natural hormones such as progesterone 
(27). One of the objectives of the pharmaceutical industry has been, and still re- 
mains, the design of progestational drugs with minimal androgenic side effects (AR 
binding). However, the most specific progesterone analog, although often a very use- 
ful tool for studying mechanisms of action, is not necessarily the most suitable drug. 
The necessity for an anti-mineralocorticoid activity component (MR binding), for 
instance, may be expressed, and the object then is to identify the compounds with 
the appropriate mix of activities. 

In this study, we have limited the biological variables to just the 5 classes of hor- 
mone receptor but, in previous studies on diverse populations of steroids or steroid 
analogs, we have taken into account other or additional columns such as RBA deter- 
minations under different incubation conditions [41] or on cytosols of different ori- 
gins [41, 42,451, inhibition of kinase activation [46-481, growth responses and even 
cytotoxicity [45, 47, 481. Additional columns such as descriptors of chemical struc- 
ture, the cost of synthesis, and so on, could also be included. 

We shall now proceed to illustrate several correspondence factorial analyses of the 
data set represented by the excerpt in Table 1. 

4.2.3.1 Multiple Correspondence Analysis (MCA) 

Each cell Kij of the 187 x 54 matrix as already defined presents the probability (0/1) 
of association of steroid (i) with response (ix). This is an example of multiple corre- 
spondence analysis (MCA), since each test is divided into subcolumns [33, 34, 43, 
441. A major advantage of MCA compared to binary CFA is that MCA does not 
assume a linear relationship between the two types of variable, in this case molecules 
and tests. Table 1 can be analyzed directly by MCA (see below) or, more simply, after 
conversion into a Burt matrix [51,61]. 

Analysis of Relationships Among Receptors via a Burt matrix 

Prior to  factorial analysis, the data set, of which Table 1 is an excerpt, was converted 
into a Burt matrix describing the frequency of co-occurrence of the various 
subclasses of receptor interaction (symmetrical 54 x 54 square matrix). This matrix 
is illustrated by a chequer board representation in Fig. 1. Each cell Kjj. of the matrix - 
or minisquare of the board - represents the frequency of association of the receptor 
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ER 

PR 

AR 

MR 

G R  

ER PR AR MR GR 

Figure 1. Chequer representation of a 54x  54 Burt semi-matrix describing the frequency of occurrence of 
each combination of binding categories. (Frequency: 0 = 0, 0 = 1-2, = 3-9, 0 10-49, 250).  

binding levels jx, and j’x,, for a molecule. The sum total of the frequencies per large 
“receptor square” corresponds to the population of test molecules, namely, 187. The 
frequency of occurrence of each binding category, i.e., the diagonal of this matrix, is 
shown by the histograms in Fig. 2. The sum of the frequencies along the diagonal per 
large square is, of course, 187. This type of approach is convenient for a factorial anal- 
ysis of highly heterogeneous data but is not recommended here since, apart from neces- 
sitating lengthy calculations, it only gives a rough picture of the experimental system 
partly because of high background noise as a result of having to subdivide the test 
of columns. Indeed, as indicated in the factorial plot of Fig. 3 a, the principal projec- 
tion axes describe less than 18% of the total variance (10.1 Yo for cpl and 6.8% for cp2). 

In Fig. 3 a, we have linked the highest binding levels for each receptor (5 to 1 1)  into 
polygons and highlighted the zero binding levels by encircled crosses. ARO and PRO 
are close, as are MRo and GR,. All four are located within a restricted area distant 
from ERO (near the origin) but close to high ER binding levels. It is, thus, possible 
to conclude that the binding capability of the steroids is correlated negatively as fol- 
lows ER/(PR+AR+GR+MR), i.e., that steroids that bind to ER do not bind well 
to the other receptors and vice versa, or that ER is the most atypical of the five recep- 
tors. The high-binding-level polygons establish the isolation of ER (top right-hand 
quadrant) and reveal some degree of overlap between all the other receptors with the 
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Figure 2. Frequency of occurrence of each binding category for each receptor as given by the diagonal 
in Fig. 1. 

most overlap occurring between AR and PR (bottom quadrants) and between GR 
and MR (left-hand quadrants). However, some overlap is also evident between GR 
and PR, even AR, and also between AR and MR. 

Analysis of Relationships Among Steroids and Receptors by MCA 

MCA of the data set represented by Table 1 (187x54 matrix) yields a p, p2 factorial 
plot (Fig. 3 b) that is directly superimposable upon Fig. 3 a. For the sake of clarity, 
only the highest binding level for each class of hormone receptor is shown, whereas 
all steroids are represented. The distribution of the steroids in relation to the receptor 
categories is not uniform, but an examination of the individual position of each 
steroid within this plot would be like trying to find a needle in a haystack. For this 
reason, and because the plot accounts for only a small proportion of the total 
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A. = 0.17 
t = 6.8 % q2 

<p' 
a = 0.25 
t= 10.1% 

Figure 3a. Correspondence factorial plot depicting the two main axes (9, p2 (16.9% of the total variance) 
obtained by analysis of the Burt matrix illustrated in Fig. 1. ( A  = eigenvalue of the factorial axis, 5 = per- 
cent variance accounted for by the axis). For each receptor, the binding categories 2 R5 have been joined 
to form a polygon. The location of the zero binding levels (ER,, MR,, GR,, PRO and AR,) are indicated 

by 0. 

variance of the system, we decided to discard this approach for one that would be 
more fruitful. 

4.2.3.2 CFA of Binding Profiles (Probability Scales) to Determine Specificities 

The KG results in Table 1 can be considered as probabilities of each steroid molecule 
(i) binding to each receptor molecule (j) which are expressed according to a probabili- 
ty scale based on the binding affinity (interaction kinetics) of the natural hormone 
(= 100). Establishing a profile (pattern) with respect to a norm, that temporarily sets 
aside the absolute value of the response (amplitude), is a common and practical way 
of setting out data in a CFA. In this instance, in the absence of the true experimental 
values in Table 1, the mean RBA of each binding category was attributed to each ste- 
roid, as appropriate (187 x 5 matrix of Table 2). A CFA of the data in Table 2 
supplies the following information. 
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3. =0.41 
t=4.2% q2 

cp’ 
h=0.50 
t =  5.1% 

Figure 3 b. p, p2 Factorial plot (9.3% of total variance) obtained by multiple correspondence analysis of 
the data set represented by the excerpt from Table 1. For each receptor, onIy the location of the highest 
binding category is shown (8 for ER, 10 for AR, GR, MR, 11 for PR) ( W  = receptor, - = steroid). The 
plots in (a) and (b) superimposable. 

Marginal Weights 

The mean marginal weight of each receptor, which denotes the overall level of bind- 
ing to the different receptors for all steroids, is as follows: ER  TO), PR (47%), AR 
(23%), GR (16Oro), MR (9070). This bias toward PR might be explained by the ease 
of synthesis of certain analogs, or by an instinctive selection of molecules with a pro- 
gestin component for biochemical study. The bias might reflect the aims of a phar- 
maceutical research program and could be minimized by increasing the steroid popu- 
lation and/or by the use of techniques of random sampling. 

Distances from the Center of Gravity 

The distances of the receptors from the center of gravity (centroid) of the 
multivariate cloud (ER (16.4), MR (3.56), GR (2.56), AR (1.38), PR (0.48)) clearly 
indicate that ER is the most atypical receptor in its behavior toward this population 
of molecules and is very different from the other receptors that fall into an irregular 
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Table 2. Mean RBAs of steroids 20 to 50 according to binding category. 

No. ER PR AR MR GR 

20 62.5 6.5 1.5 0 1.5 
21 112.5 20 1.5 0 1.5 
22 12.5 0 0 0 6.5 
23 112.5 0 0 0 0 
24 6.5 0 0 0 0 
25 62.5 6.5 0 0 6.5 
26 112.5 6.5 0 0 0 
21 0 112.5 6.5 6.5 0 
28 0 62.5 1.5 6.5 0 
29 0 137.5 20 6.5 0 
30 0 137.5 6.5 12.5 6.5 
31 0 137.5 20 6.5 0 
32 0 137.5 6.5 20 0 
33 0 62.5 1.5 0 0 
34 0 112.5 62.5 0 0 
35 0 137.5 20 0 6.5 
36 0 137.5 20 0 6.5 
37 0 200 6.5 1.5 0 
38 0 137.5 0 1.5 6.5 
39 0 137.5 6.5 0 1.5 
40 0 112.5 0 0 I .5 
41 0 400 6.5 0 6.5 
42 0 137.5 1 .5  0 12.5 
43 0 400 6.5 6.5 12.5 
44 0 12.5 0 0 6.5 
45 0 400 20 6.5 1.5 
46 0 137.5 37.5 20 0 
41 0 137.5 37.5 6.5 20 
48 0 400 112.5 87.5 62.5 
49 0 400 1.5 6.5 0 
50 0 112.5 0 0 0 

Each steroid in Table 1 was allocated a mean RBA (RO = 0, R1 = 1.5, R2 = 6.5, R3 = 12.5, R4 = 20, 
R5 = 37.5, R6 = 62.5, R7 = 87.5, R8 = 112.5, R9 = 137.5, R10 = 200, RII = 400). 

step-wise progression (MR + GR + AR + PR) away from the center. PR  is situated 
nearest to the center of the multivariate cloud. 

Receptor and Steroid Profiles 

As mentioned above, CFA operates a multiple comparison of patterns. Typical recep- 
tor binding patterns for two steroids 129 and 132 are illustrated in Fig. 4. The sum 
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Figure 4. Comparative binding patterns of steroids 129 (shown left) and 132 (shown right). 
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A B 
Figure 5. (a) Distribution of the total variance over the four factorial axes required to describe the 187 x 5 
matrix of Table 2 (Sec. 4.3.3.2: Analysis of binding specificity). (b) Distribution of the total variance over 
the five factorial axes (q, to qs) required to describe the 187 x 10 matrix obtained after splitting the data 
columns of Table 2 into mean values and anti-values (Sect. 3.3: Analysis of binding specificity and ampli- 
tude). Axes q6-q9: <0.002% of the total variance. 

of each profile is 100010. Corresponding patterns for the binding of all steroids to 
each receptor are not shown. 

Distribution of Variance over the Factorial Axes 

There are 5 biological tests in this study and, therefore, 4 factorial axes since, unlike 
in the case of PCA, the first latent root is trivial (= 1). The total variance (inertia) 
of the system is distributed over these axes as shown in Fig. 5a. 

Absolute and Relative Contributions 

The absolute contribution (AC) is the extent to which a factorial axis is representative 
of the variance of the system (ZAC = 100010). The relative contribution (RC) 
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Figure 6. Absolute (AC) and relative contributions (RC) of the receptors to the four factorial axes required 
to describe the 187 x 5 matrix of Table 2. Solid histogram bars indicate that the coordinate of the receptor 
is positive with respect to the axis, hollow bars reflect negative coordinates. (ZACs = 100% for all vari- 
ables per factorial axis, ERCs = 1 per variable over all factorial axes). 

(cos' 0)  is the dispersion of a variable over all the factorial axes (ZRCs of each vari- 
able to all axes = 1). The ACs and RCs of the receptors to all 4 factorial axes are given 
in Fig. 6 and reveal the meaning that can be attached to the factorial axes. The ql ax- 
is describes the distinctive specificity of ER which is the most striking feature of the 
steroid population. Once this aspect has been dealt with, q2 subsequently indicates 
that GR and MR can be considered as a group that contrasts to the AR-PR group 
with the exception of a few molecules that can further distinguish between AR and 
PR (p3 axis) and between MR and GR (qs axis). The molecules at the root of these 
relationships can be identified from the corresponding AC and RC tables (not shown). 

Correspondence Factorial Plots 

Figure 7a  is the plot of the principal factorial axes (q ,  p2) obtained by CFA of the 
data set represented by Table 2 and describes a substantial proportion (68.6%) of the 
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Figure 7a. qr q2 correspondence factorial plot of the analysis of the mean RBAs of the 187 x5 matrix of 
Table 2. ( W  = receptors, ~ = steroids). 

information content of the experimental system (42.2% for p,; 26.4% for p2). Ste- 
roids near to the center of a factorial plot are unrelated to the others (e.g. inactive 
steroids, steroids with a mean profile, or steroids that are described by lower factorial 
axes). Clustering of variables within the plot signifies correlation, whereas 
diametrically opposed positions reflect an anti-correlation. Figure 7 a clearly illus- 
trates the fundamental features of this system already discussed above, i.e., first, an 
opposition between ER and the other steroid receptors (negative vs positive coor- 
dinates along the p, axis) and, second, close analogies between AR and PR and be- 
tween GR and MR which are, however, in opposition (above and below the pl axis 
respectively). The compounds that account for this receptor distribution map are 
either dispersed around the ER pole in the left-hand quadrants (steroids with a 
phenolic A-ring) or along a vertical axis in the opposite right-hand quadrants (deriv- 
atives of 3-keto-4-enes), thus, reflecting the well-known specificity of these receptors. 
There is no cross-specificity between these two types of receptor for this population 
of molecules. 
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Figure 7b. p3 p4 correspondence factorial plot of the analysis of the mean RBAs of the 187 x 5 matrix of 
Table 2. (m = receptors, - = steroids). 

The remaining information content (3 1 Yo) is plotted in the p3 p4 map (Fig. 7 b) 
which occults ER’s participation in the total variance as indicated by its central posi- 
tion near the origin. This plot illustrates the finer distinctive features among the re- 
ceptors. Whereas AR and PR are broadly similar in their antithesis to ER (Fig. 7a), 
there are features that distinguish between them (Fig. 7 b). GR and MR differ to an 
even greater extent. The steroids at the extremes of the cloud in Fig. 7 b account for 
most of the observed differences in behavior. Those located between the PR and GR 
poles infer that interaction with these receptors is achieved by common structural 
features and that in other words, PR and GR have close similarities as regards to 
their hormone binding sites. A substantial number of steroids at the center of the 
cloud are attracted equally by all four receptors, a known property of most 
3-keto-4,9,1 I-trienes [59]. 

Barycenters of Archetypal Steroids 

Figures 7 a and 7 b account for the total variance of the system and are much easier 
to understand than Figs. 3 a  and 3 b that only describe 10-20% of the total variance. 
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As already mentioned in Sec. 4.3.1.4, matters can be simplified even further by iden- 
tifying either clusters of steroids with common descriptors in Fig. 7 or subfamilies 
of compounds within the original data bank. In each case, the profiles of the identi- 
fied groups are introduced as a single supplementary variable into the analysis (see 
Sec. 4.3.5.1 below) [49,62]. To illustrate this principle, we considered the following 
families of steroids (barycenters): steroids with a phenolic A-ring and 3-keto-4-enes 
with one of three functional groups at C-17: -COCH,, -B-OH, or -COCH20H 
(Fig. 8). Each plot in Fig. 8 represents the calculated profile of the family (designated 
total) and the profiles of selected subfamilies with distinctive substituents or combi- 
nations of substituents. These barycenters were introduced as supplementary vari- 

C 1 1 4  
C 1 7  C-CH 3 

Total A-Phenol 1 

GR 

C13  C3H7 4 

M R  
GR GR 

Figure 8. Calculated binding profiles of steroid families and subfamilies with distinctive structural fea- 
tures. Top left: A-ring phenolic steroids (l), with a C-13-methyl and C-l7-/3-hydroxy substituent as in 
estradiol (E,) (2), with a C-17-a-ethynyl substituent (3), with a C-11-substituent (4). Top right: Steroids 
with a C-Z7-COCH3 substituent (l), with a C-19-methyl substituent as in progesterone (2), with double 
bonds at C-4 and C-9 (3), with a substituent or double bond at C-6 (4), with a substituent at C-1 1 (5) .  
Bottom left: Steroids with a C-17-/3-hydroxy substituent (1) with diverse alkyl groups at C-13 (2, 3, 4). 
Bottom right: Steroids with a C-17-COCH20H substituent (l), and a C-1 1 -OH substituent (2), or car- 
bony1 at C-l 1 (3), or fluorine at C-9 (4), or with a C-16-a-methyl substituent (5).  



210 J-C. Dore and 7: Ojasoo 

Ic = 0.28 
T= 13.4% 

1-0 

3 c  

34 

GR 

0 3  
Ic = 0.37 
t= 17.5% 

Figure 9. Introduction of the barycenters defined in Fig. 8 into the factorial plot of Fig. 7 b. A-ring 
phenolic steroids (@), steroids with a C-17-COCH3 (*), a C-17-COCH2OH (a), a C-17-P-hydroxy 
(+) substituent. The numbering corresponds to the subfamilies defined in the caption to Fig. 8. 

ables into the factorial plots of Figs. 7 a and 7 b which describe specificity of binding 
only and disregard amplitude of response (see Sec. 4.3.3.3) (Fig. 9). 

The top left-hand plot in Fig. 8 shows that the A-ring phenolic molecules within 
the population with a C-13-methyl and C-17-P-OH as in estradiol do  not have a 
specificity profile and amplitude of response that are very different from those of 
the total population of ring A phenols. It also shows that the introduction of an 
ethynyl group at C-17-a enhances ER binding but also introduces a slight PR bind- 
ing component. On the other hand, a C-1 1-substituent decreases ER binding under 
these experimental conditions and introduces a marginal GR binding component. 
These barycenters are obviously situated in the left-hand quadrants of Fig. 7 a  in the 
immediate vicinity of the ER pole (not shown). Their position in relation to Fig. 7 b 
is given in Fig. 9 and reflects the corresponding induction of PR and GR binding by 
the ethynyl group at C-17 and by the substituent at C-11. Both barycenters move 
away from the locus of the total A-ring phenolic population toward these poles. 

The introduction of a C-11 substituent into the 3-keto-4-ene population with a 
C-17-COCH3 diminishes binding to PR whilst introducing a noticeable GR bind- 
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ing component (top right-hand plot of Fig. 8 and quartile of Fig. 9). A C-6 substituent 
or double bond initiates a trend toward AR. On the other hand, an additional double 
bond at C-9 increases PR binding and decreases AR binding, leading to the barycenter 
that is most inherently PR-like. In the C-17-COCH20H series (bottom right-hand 
plot of Fig. 8 and quartile of Fig. 9), the presence of either a C-I 1 -OH or of a C-9 - F 
is favorable toward both MR and GR binding, with a slight preference for GR. Both 
these barycenters are situated between the GR and MR poles. The introduction of a 
C-16-a-CH3 increases the GR binding specificity as shown by the position of this 
barycenter next to the GR pole. On the other hand, a C-I 1 ketone is manifestly highly 
unfavorable to GR binding as illustrated by the barycenter position in a zone which 
is diametrically opposed to GR. Only a minor MR component characterizes these 
C-1 I keto compounds. In the C-17-P-OH series, we chose to investigate the effects 
of the alkyl at C-13 (bottom left-hand plot of Fig. 8 and quartile of Fig. 9). A C-13 
ethyl group influenced the amplitude of GR binding and a C-I3 propyl had an influ- 
ence on AR binding [40]. 

It is not the purpose of the present chapter to detail all the structural information 
that can be gleaned from the creation of such barycenters. The above examples just 
illustrate how CFA brings to the fore, in pictorial terms, what the biochemists know 
by experience, intuition, and subjective analysis of data tables [56,58]  but also what 
they might still ignore. Differences that appear evident at high response values are 
often missed at lower response levels. Because this type of analysis is far more objec- 
tive and, at all times, founded on a much wider information base than any analysis 
undertaken manually by the expert who can only master a limited amount of infor- 
mation at a time, its potential usefulness for studying the nature of hormone binding 
sites on receptor proteins is obvious [63,64]. 

4.2.3.3 Dual CFA (Specificity and Amplitude of Binding) 

The CFA described in Sec. 4.3.3.2 is based on a comparison of specificity profiles in- 
dependently of the binding levels. To account for the amplitude of the binding inter- 
action, each RBA column in Table 2 has to  be split into two subcolumns correspond- 
ing, on the one hand, to the mean RBA values (analyzed above) and, on the other, 
to “anti-values” (not shown) obtained by subtracting each mean RBA from the maxi- 
mum mean RBA value recorded in that column. This procedure gives a 187 x 10 ma- 
trix that can be analyzed as above (for distribution of variance, see Fig. 5) to give 
factorial plots where each receptor is no longer represented by a point but by a vector 
(Fig. 10). Yet again, the atypical behavior of ER is apparent as are the close similari- 
ties between AR and PR and the slightly less marked kinship between GR and MR. 
The position of the molecules in this map is, however, not only a function of their 
specificity but also of the affinity of binding. Other examples of dual CFAs are 
illustrated elsewhere [33, 361. 
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Figure 10. p, p2 Correspondence factorial plot obtained by analysis of the 1 8 7 ~  10 matrix obtained after 
splitting the columns of Table 2 into mean RBA values and corresponding calculated anti-values. (tip of 
vector (+) = high RBA, origin of vector = low RBA). (p,: A = 0.20, r = 42.3%; p2: 1 = 0.10, 5 = 20.8%). 

4.2.4 Post-CFA Analyses: Minimum Spanning Trees 
and Hierarchical Classifications 

As already mentioned in the introduction, CFA is not an end in itself but can be 
complemented by the use of other algorithms applied to the X2-distance square ma- 
trix such as, for instance, algorithms for minimum spanning trees, that link variables 
into a shortest-distance network, or for hierarchical classifications, in which correlat- 
ed variables (either receptors or steroids) are clustered beneath interconnected nodes 
of different heights [65 - 701. These methods can be applied to describing the total 
variance of the system [47,71] or of the variance of selected factorial axes so that, 
for example, correlation levels derived from the hierarchical classifications [48] or 
tree-like networks [39,72] can be transposed onto the factorial plots. 

4.2.4.1 Minimum Spanning Trees 

A minimum spanning tree is the shortest route within the multidimensional space 
that links the steroids into a network on the basis of their responses toward the recep- 
tors (or the receptors into another network on the basis of their reactivity toward the 
steroids). The responses can be considered either in terms of specificity alone or of 
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Figure 11. Minimum spanning tree of the 187 steroids drawn on the basis of their binding specificity and 
mean amplitude as deduced from the mean RBAs of Table 2 and corresponding calculated anti-values 
(187x 10 matrix). Only 124 out of 187 steroids are shown since the remaining 63 coincide with illustrated 
steroids. Due to lack of space, the distances between steroids are not represented to scale. As an indication, 
the greatest interval is 0.87 (between 37 and 41), the shortest 6.5 x (between 3 and 4). The majority 
of the steroids are separated by an interval of approx ~ X I O - ~ .  The symbols correspond to different 
chemical affiliations: 0 = A-ring phenolic steroids, 0 = 3-keto-17-p-hydroxy steroids, 0 = steroids with 
C-17-COCH, substituent, B = steroids with C-17-COCH20H, A = lactones and oxathiolanes, 
Y A  = miscellaneous). 

specificity and amplitude as shown in Fig. 11 which is an analysis of our 187 x 10 ma- 
trix using the algorithm of Prim [73]. (When steroids fall into identical positions, 
only one steroid is indicated). The distance along a path between two steroids reflects 
the degree of similarity in their behavior towards the battery of receptors. No loops 



214 .I-C. DorP and 7: Ojasoo 

or backtracking is permitted. The restriction that the route linking the steroids be 
as short as possible is important when one considers that there are nearly 500 million 
ways in which just 12 items can be arranged linearly. The minimum spanning tree 
is, thus, not only a logical way of arranging steroids but a true description of the 
inherent structure of the experimental system under study. Like factorial plots and 
hierarchical trees (see below), minimum spanning trees give a clear pictorial represen- 
tation of the data. The position of any one steroid (e.g., part of a cluster, a milestone 
or at a branch end) describes its affiliation to the other steroids. The branch path- 
ways describe how the cross-section of receptor binding properties evolves. Addition- 
al molecules can be introduced into the experimental system. The new molecule may 
be located at a branch extremity (enhanced selectivity), between two adjacent nodes 
(an intermediary), or between two non-adjacent nodes (creation of a new pathway). 

In the minimum spanning tree of Fig. 11 ,  the ground level, which is represented 
by steroid 106 (a progesterone derivative with a 5p configuration), corresponds to ab- 
sence of affinity or very low affinity, whereas the branch ends correspond to a high 
mean binding affinity level. There is no common trunk. Instead, the system spreads 
out immediately into three main branches. The left-hand branch is composed solely 
of A-ring phenolic steroids that bind specifically to ER. The right-hand branch is 
mostly made up of molecules with a C- 17 - COCH,OH, i.e., corticoids, with howev- 
er, a few exceptions. Compounds 44, 96 and 127 all belong to the C-17-COCH3 
family but all have either a hydroxy or a methoxy substituent at C-I 1. Several mole- 
cules, which are nearly all an offshoot from the corticoid 91, are derivatives of 
3-keto-17-hydroxy compounds. Of these, 132, 135, 167, 169 are similarly substituted 
at C-11, 71, 77, and 78 have a C-13-ethyl group, 150 and 170 have modified A-rings 
(A-nor and 2-0x0, respectively) and 167 has an electronically interesting substituent 
(CH2CH = CH,) at C-17-a. 

The middle branch has a bifurcation at molecule 112. The left-hand bifurcation 
is entirely composed of 3-keto-17-hydroxy derivatives except for molecule 34, a pro- 
gesterone derivative characterized by a C-6-a - methyl. The right-band bifurcation is 
more varied comprising the hard core of the C-17 - COCH3 derivatives, but also 
several 3-keto-17-hydroxy compounds, in particular those with a C-17 a-ethynyl (e.g. 
61-64, 68, 70, 115, 117, 143, 144, 173) or a C-7 a-methyl (76, 141, 142). The latter 
have a particularly high mean binding affinity as do the majority of the lactones and 
oxathiolanes (45 - 52) within the steroid bank. 

This is only a broad description of the tree which contains many interesting fea- 
tures that cannot be detailed here, but which can form the basis for fruitful discus- 
sion between the medicinal chemist and the biologist. 
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4.2.4.2 Hierarchical Clustering 

An ascending hierarchical tree describing the relationships among receptors (Fig. 12) 
was constructed by applying an algorithm for agglomerative hierarchical clustering 
that uses the aggregation criterion of Lance and Williams [74] and standard coeffi- 
cients of a = 0.625 and p = -0.25 to the X2-distance table. The matrix of mean 
RBA values (1 87 x 5 - Table 2) was converted into a matrix of the distances that sep- 
arate the receptors (j), taken as pairs, when these are projected into the multidimen- 
sional space defined by the (i) steroids. These distances were arrayed into a symmet- 
rical j x j  semi-matrix in which the two closest receptors were united into a single 
group and the dissimilarity of the newly-formed group with each of the other recep- 
tors was calculated. The two closest receptors or groups of receptors were again 
united and the process was iterated j- 1 times. An equivalent hierarchical steroid tree 
was also built (not shown). 

This method applied to the total variance of the experimental system without fil- 
tering out lower axes highlights the characteristic binding specificity of ER. Yet 
again, MR and GR are seen to be affiliated as are PR and AR, but, as indicated by 
the lower node height, the AR/PR relationship is closer than the GR/MR relation- 
ship for this population of molecules. However, since the stem above the node that 
groups MR and GR is very short, there is no significant gap between the two pairs 
of receptors. This classification is yet another illustration of how different classes of 
steroid hormone receptor are apprehended by the interacting steroids and is an indi- 
rect comparison of the stereo-chemistry of ligand binding sites [42]. It has been com- 
pared to phylogenetic trees of receptors obtained by analysis of selected amino-acid 

Figure 12. Hierarchical classification of the receptors on the ba- 
sis of the mean RBA values in Table2 (187x5 matrix). 

MR P R :  ER 
GR AR 
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sequences presumed to be involved in ligand-dependent regulation of transactivation 
and in receptor dimerization. 

4.2.5 Simulation and Prediction Studies 

4.2.5.1 Introduction of Additional Steroids and Tests into a CFA 

The factorial plots in Figs. 7 and 10 can be considered as mathematical models. If 
the results for all receptors are available for a further compound (steroid or non-ste- 
roid) or for all steroids in a further test (receptor binding or other), it is possible to 
evaluate the position of the compound or test in the model by using the transition 
formula for the calculation of coordinates given in Sec. 4.3.2.2 [75]. As an illustration 
we have introduced the binding profiles of several C-1 1 substituted phenolic A-ring 
steroids (Table 3) [76,77] into the pl p2 factorial maps of Fig. 7. Missing MR bind- 
ing values were extrapolated on the basis of GR values in view of the affiliation be- 

), = 0.57 

[P’ 
h = 0.89 
Z= 42.2% 

Figure 13a. Use of the p1 p2 CFA plot in Fig. 7a  as a mathematical model for introducing the binding 
profiles of eight steroids substituted at C-11 (Table 3). Missing MR values were extrapolated on the basis 
of GR (*) or AR ( o ) values. 
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tween GR and MR in Fig. 7a and on the basis of AR values in view of the similar 
quadrant location of AR and MR in Fig. 7 b. These compounds were omitted from 
the initial analysis, not only because of missing values, but because there is good evi- 
dence to believe that the introduction of bulky or long-chain substituents at C-l l of 
the steroid skeleton leads to interactions with amino-acid residues outside of the 
binding site of the endogenous hormone. These compounds would, therefore, not be 
directly relevant to a study of the stereochemistry of the binding site. 

The introduction of certain bulky substituents at C-I 1 can not only dramatically 
affect the specificity of 3-keto-4-ene steroids [78], but also the specificity of phenolic 
A-ring steroids [76, 771 (Figs. 13a and b). Irrespective whether missing MR values 
were extrapolated on the basis of GR or AR, it is clear that for certain substituents 
(vinyl, thienyl, in- or p-methoxyphenyl), there is a distinct drift away from the ER 
pole towards the other receptors (Fig. 13a). In the plot of the lower factorial axes 
(Fig. 13 b), steroid location naturally depends upon whether GR or AR values were 
used for the extrapolation of MR (above and below the v3 axis, respectively). 

)c = 0.28 
t= 13.4% 4)4 

cP3 
I = 0.37 
t= 17.5% 

Figure 13b. Use of the p3p, CFA plot in Fig. 7 b  as a mathematical model for introducing the binding 
profiles of eight steroids substituted at C-I 1 (Table 3). Missing MR values were extrapolated on the basis 
of GR (*) or AR ( 0 )  values. 
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Table 3. Mean RBAs of supplementary steroids (C-l 1 substituted derivatives of ethynyl estradiol) accord- 
ing to binding category 

c-11 ER PR AR MR GR 

s1 
s 2  
s3 
s4 
s 5  
S6 
s 7  
S8 

ProPyl 
n-butyl 
vinyl 
ally1 
m-methoxy-phenyl 
p-methoxy-phenyl 
benzyl 
thienyl 

62.5 
87.5 
62.5 
87.5 
20 
62.5 
12.5 
87.5 

6.5 
6.5 

62.5 
20 
0 

37.5 
0 

20 

0 
0 
1.5 
0 
0 
0 
0 
7.5 

n.d. 
n.d. 
n.d. 
n.d. 
n.d. 
n.d. 
n.d. 
n.d. 

6.5 
12.5 
20 

6.5 
20 
87.5 
0 

37.5 

n.d.: not determined 

4.2.5.2 Analyzing the Construction of a System 

CFA describes the experimental system in terms of a series of factorial axes of de- 
creasing variance. Projections onto the p, axis, a sort of trunk road, gives the rela- 
tive positions of the most important variables or by analogy, cities. Stepwise inclu- 
sion of additional factorial axes leads to an increasingly accurate, detailed and com- 
plex road map. Thus, a minimum spanning tree based on the p2p3 axes will still 
yield a rather large scale map, whereas further axes will give rise to an increasing 
number of ramifications. This progressive complexity induced by stepwise addition 
of factors is a useful simulation of the construction of an intricate experimental sys- 
tem. Ideally, at this stage, the CFA progam should be completely interactive. 

4.2.5.3 Predicted Profiles of Hypothetical Steroids 

If the chemical structures of the test compounds are coded according to a chosen 
system and possible permutations of these codes are on computer lists [79], mathe- 
matical modeling and multivariate analysis of the resultant computer-conceived mol- 
ecules can help predict their relationships with the existing test compounds and thus 
their probable receptor binding profiles. In this way, the actual synthesis of a major 
proportion of computer-conceived molecules becomes unnecessary. 

4.2.6 Conclusions and Future Trends 

In conclusion, correspondence factorial analysis (CFA) of molecular screening data 
is an invaluable preliminary, but strategic tool that establishes how the screening data 
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are organized and, thereby assists expert opinion on the design of new molecules. 
Without multivariate analysis, the correlations and governing trends within the ini- 
tial data matrix may be difficult to grasp because of the sheer volume of the data, 
and because of the presence of much redundant information. 

CFA is essentially an interface between areas of knowledge because it gives con- 
densed pictorial views of large sets of data that can form the common ground for 
a much-needed dialogue between chemist and biologist, whilst preserving the essence 
of each discipline. The biologist can classify test-compounds without the aid of a 
theoretical chemist, design appropriate studies on the mechanism of action to ex- 
plain unexpected analogies, and introduce further variables such as time [29] into the 
CFAs used as mathematical models in order to obtain a dynamic view of the ex- 
perimental system. The chemist can include further variables relating to chemical 
structure. These may concern 3D-structures (e.g. crystalline coordinates or van der 
Waals spheres translated into contours, vectors, pixel densities, skeletons. . . ), chemi- 
cal formulae (compared by fitting or breaking up into fragments), spectral signatures 
(mass and NMR spectra or transformed UV and IR spectra), quantum variables 
(isopotential map, charge density, free valency index, 71 electron density.. .) etc. It 
is also possible to include information from other disciplines, e.g., economic factors, 
because CFA does not correlate items and properties but sets of properties [50]. 

CFA is also an interface between statistical methods because data reduction by the 
use of X2-metrics enables the subsequent application of other statistical methods. 
The choice of new molecules to be synthesized can, thus, be further optimized by 
methods that, unlike CFA, are no longer purely descriptive. The correspondence fac- 
torial axes are in fact a new set of variables of particular interest since they are inde- 
pendent. This warrants the legitimate use of methods such as stochastic regression 
[80] and discriminant analysis applied to one, several, or all of the factorial axes. 

Finally, the use of an interactive CFA program is an elegant and relatively simple 
way of simulating complex situations since its rationale is based upon organizing a 
system in stepwise fashion. 
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Appendix 

A 1. Estradiol and Related Derivatives 

No. Rt R2 R3 Other 

1 
2 

3 

4 
5 
6 
7 

8 

9 

10 

11 

12 

13 

14 

1.5 

OH 
= O  

OH 

OH(17a) D-homo 

OH D-homo 

CH,OH 

CH,OH 

OH C-I6 : P-OH 

OH C-16: a-OH 

OH C-16:a-OH 

OH 

OH 

OH 
OH 

OH 

C-1 1 : P-OH 
C-1 1 : P-OCH, 
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No. Rl R2 R, Other 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

118 

136 

155 
156 
157 
158 
159 

OH 

OH 

OH 

OH 

OH 

OH 

OH 

OH 

OH 

OH 

OH 

OH 

OH 

OCH, 

OCH, 

OH 

CH3 
C=CH 

C=CH 

C=CH 

C=CH 

C=CH 

C-CH 

C-l 1 : b-OC,H, 

C-2 : CH, 

C-7 : a-CH, 

C-9 : a-CH, 

C-l 1 : P-OCH, 

C-l 1 : a-OCH, 

C-l 1 : b-OC2H, 

C-12 : P-CH, 

C-16:/3-C=CH, a-OH 

C-ll:b-OCH,, C16:a-OH 

C-3 : methoxylated 

C-I 1 : /3-C3H, 

C-3 : methoxylated 

C-9 : p(iso) 

A2. Progesterone and Related Derivatives 

No. A C-19 R, Other 

21 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

CH3 C-16 : a-CH, 
CH3 OCOCH, C-6 : a-CH, 

6 CH, OCOCH, C-6 : a-CH, 
6 CH, OCOCH, C-6 : C1 

CH, 
9 CH, 
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No. A C-I9 Rl Other 

39 
40 
41 
42 
43 
44 

96 

119 
120 
121 

127 
128 
129 
130417 
131 

153 
154 

174 
175 
176 
178 

9, 11 
9 
9 
9 
9 
9 

1 

9 

9 

9 

6 

6 9P, 10a 

OH 

OH 
OH 

OH 

a-C-17: acetate 

C-22 : CH, 

C-11 : P-OCH, 
C-l3:C2H, 

C-9:F, C-ll :OH, C-16:Ci-CH, 

C-2 : gem-(CH,), 
C-16: gem-(CH,), 
C-6,16: a,a-(CH& 

C-11 :B-OH 
C-11: a-OH 
C-1 1 : 8-OH 

C-16: a-C2H5, C-21 :OH 
C-2 : gen~-(CH~)~,  C-6 : C1 

C-8 : P-CH, 
/3-C-13 : propyl 

A3. Lactones/oxathiolanes 

No. A C-19 R 

45 Rl 
46 R2 

47 9 R2 

48 9, I 1  R2 
49 R3 
50 6 R3 

51 9 R3 

52 9, 11 R3 

179 CH3 Rl 

180 CH3 RZ 
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A4. Testosterone and Related Derivatives 

No. A Rl R2 Other 

53 
54 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72/140 
73 
74 
75449 
76 
17 
78 

115 
116 
117 

124 
125 
126 

132 
133 
134 
135 
137 
138 
139 
141 
142 
143 
144 

4 
1, 4 
5 (10) 
4 
4 
4 
4 
4 
4 
4 
4 
4, 9 
4, 9, 11 
4, 9 
4, 9 
4, 9, 11 
4, 9, 11 
4, 9 
4, 9, 11  
4, 9, 11 
4, 9, 11 
4, 9, 11 
4, 9, 11 
4, 9, 11  

4 
4, 9, 11 
4, 9, 11 

4 
4, 9, 11 
4, 9, 11 

4 
4, 9 
4 
4, 9 
4, 9 
4, 9, 11 
4, 9 
4 
4, 9 
4, 9 
4, 9 

C-CH 
C=CH 
C-CH 
C-CH 

CH3 

C-CH 
C-CH 
C-CH 
C-CH 

CH3 
CH3 
CH3 
CH3 
CH3 
CH3 
CH3 
C-CH 

C=CH 

CH3 
CH3 
C=CH 
C=CH 
C-CH 
C-CH 

CH3 
CH3 
C-CH 
C-CH 

C-19: CH3 
C-19: CH, 

C-11: P-OCH, 

C-l 1 : P-C,H, 

C-2 : P-CH, 

C-7 : a-CH3 
C-4: CH3 

C-7 : a-CH3 

C-19: CH3 

C-2 : CZ-CH, 
C-2: P-CH, 
C-2: gem-(CH3)* 

C-1 1 : P-OH 
C-1 1 : P-OH 
C-1 1 : P-OH 
C-1 1 : P-OCH, 

C-7 : a-CH, 
C-7 : a-CH, 
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No. A R, R2 Other 

145 
146 
148 
150 
151 
152 

164 
165 
166 
167 
168 
169 
170 
171 
172 
173 

4, 9, 11  
4, 9, I 1  
4, 9, 11 
4, 9, 11 
4, 9, 11 

5 (10) 

4, 9 
4, 9, 11 
4, 9, 11 
4, 9, 11 

4, 9 
4, 9, 11 
4 
4, 9, 11 
4, 9, I t  

4 

C-CH 

C-3 : deoxo 
C-17: n o  OH 
C-6 : gern-(CH3)2 
A-nor 
2-OX0 

C-1 1 : keto 
c-4 : c1 

C-11:P-OH; C-I9:CH, 
C-I 1 P-OCH, 
2-OX0 
C-17: acetate; C-19: CH, 
C-17: acetate 
C-17: acetate 

AS. Corticoids 

No. A c-9 Rt RZ R, Other 

79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
97 
98 

OH 

6 

1 

I 
1 
1 

F 
F 
F 

1 F 
1 F 
I F 

= O  
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 

OH 
OH 

C-18 : CHO 

C-21 :acetate 

C-2 : CH, 

OH 
OH 

CH, 
OH CH, 

OH CH3 

OH CH3 

OH 

OH CH, C-21 : acetate 

OH 
OH OH 
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No. A c-9 Rl R2 R3 Other 

99 

100 
101 
102 
103 
104 

122 
123 

181 
182 
183 
184 
185 
186 
187 

F 

F 
F 
F 
F 
CI 

F 
F 

OH 

OH 
OH 
OH 
OH 
c1 

= O  
= O  
= O  
OH 
OCH, 
OH 
OH 

\ 

O \  P’ 
C 

OH 

OH 
OH 
OH 
* 

C-6: F 

(2-2: P-CH, 
C-2 : gem-(CH,). 
2 

C-16: a-CI4, 
C-16: a-CH, 
C21 :acetate 

(2-21 :acetate 

* Function at C-17: - COCH 0 - CH - CH = CH, 
L O 9  

A6. Miscellaneous 

No. R, A c-5 R2 Other 

55 
56 

105 
106 
107 
108 
109 
110 
111 
112 
113 
114 

160 
161 
162/147 
163 

= O  
= O  

= O  
= O  
8-OH 
P-OH 
a-OH 
a-OH 
= O  
= O  
P-OH 
a-OH 

= O  
= O  
=O 
= O  

a-5 
a-5 

a-5 
P-5 
a-5 
P-5 
a-5 
P-5 
8-5 
P-5 
a-5 
a-5 

a-5 
4 
4, 9, 11 
4, 9, 11 

P-OH 
P-OH, a-CH, 

COCH, 
COCH, 
COCH, 
COCH, 
COCH, 
COCH, 
COCH,OH 
OH 
OH 
OH 

= O  
= O  
= O  
= O  C-13 = C2H, 
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Abbreviations 

kNN 
SIMCA 
CSA 
PCA 
CVA 
SCD 
GSCD 
LLM 

k-Nearest Neighbor 
Soft Independent Modeling of Class Analogy 
Cluster Significance Analysis 
Principal Component Analysis 
Canonical Variate Analysis 
Single Class Discrimination 
Generalized Single Class Discrimination 
Linear Learning Machine 

Symbols (equations) 
7 

wi = 0.05 +0.90 ( ci-min ) for i = 1 to n 
max- min 

uj = 1 -w; for i = 1 to n 

i = l  wmj = for j = 1 to p 
sumw 

c (xij-wmj) 2 wi 
i =  1 for j = 1 to p 

wsj = 1' sumw 
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(XZTXZ- AjXA T X A  )gj = 0 for j = 1 to p (7) 

(XVTXV- A;XWTXW)gj = 0 for j = 1 to p (8) 

4.3.1 Embedded Data 

Biological activity data is described as being “embedded” (or “asymmetric”) if a set 
of active compounds occurs as a cluster in a diffuse cloud of inactive compounds, 
when the compounds are plotted in physico-chemical property space. Active com- 
pounds (actives) are, therefore, similar to each other with respect to certain proper- 
ties, e.g. log P, molecular weight and pKa, while inactive compounds (inactives) lack 
this characteristic pattern of similarity for a variety of reasons. There is, thus, an op- 
timum range of values for a subset of properties which promotes activity, and any 
deviation from this range results in inactivity. Identification of this informative 
subset can be problematic due to the presence of properties which are not relevant 
for determining activity and which, consequently, contribute noise to the system. 
Embedded data has been described by some authors, for example, Magee [I], 
McFarland and Gans [2,3] and Dunn and Wold [4]. 

The main differences between “embedded” and “non-embedded” activity data are 
summarized in Fig. 1. 

Fig. 1 clearly shows that the statistical methods developed for the analysis of 
linearly separable classes of activity, such as linear discriminant analysis, are genera- 
ly, inappropriate for embedded data as they depend on there being a difference in 
the mean values of the active and inactive class. In the case of embedded data, the 
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Classes have different means 

Classes may have similar variances 

Figure 1. Diagram showing the main differences between non-embedded and embedded activity data. Fill- 
ed squares denote active compounds and open squares denote inactive compounds. 

Classes are not linearly separable 

Classes may have the same mean 

Embedded class has a smaller variance 
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active and inactive class may have the same mean value. In some situations, inclusion 
of transformations of the original property variables (e.g. squared variables) in the 
property matrix has enabled methods developed for linear discrimination of activity 
classes to be employed successfully, but at the expense of increasing the dimensional- 
ly of the descriptor array. 

Multivariate embedded data have been successfully analyzed in QSAR using SIM- 
CA (Soft Independent Modeling of Class Analogy) [ 5 ] ,  Cluster Significance 
Analysis (CSA) [2, 31, k-Nearest Neighbor (kNN) [6] and Single Class Discrimina- 
tion (SCD) [7 ,8] .  These methods are all suitable for the analysis of classified biologi- 
cal activity data; i.e. where the compounds are qualitatively labeled “active” or “inac- 
tive”. SCD is also applicable to quantitatively defined activities. The methods of 
kNN and SCD are described below. SIMCA and CSA are discussed elsewhere in 
volume 2 of this series. 

4.3.2 k-Nearest Neighbor Analysis 

4.3.2.1 Methodology 

k-Nearest Neighbor (kNN) [6] is a method for classifying unknown samples (test 
samples) based on their proximity to samples of known class (the training set) 
without actually fitting a model. This method is suitable for resolving classification 
problems associated with embedded and non-embedded activity data, and is quite 
simple when considered on a computational and conceptual basis. The distance of 
all samples in the training set from a test sample are determined in multivariate 
space. Generally, an Euclidean distance measure is used and the Euclidean distance, 
d, between two samples, i and j ,  is calculated as: 

where m is the number of properties and Xih is the h th  property value of sample, i. 
The class membership of k-nearest neighbors of the test sample is ascertained. The 
value of k is user-determined, e.g. such as 5. A simple “majority vote” on the classes 
of the k-nearest neighbors can then be used to predict the class of the test sample 
and this concept is illustrated in Fig. 2. The active compounds are embedded within 
the inactives and two unknowns are included (X and Y). It is apparent that X will 
always be predicted as inactive for values of k from 1 to 5, whereas the predicted class 
of Y depends on the value of k. Y is predicted as active for k = 1 or k = 5, but as 
inactive for k = 3. 
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Figure 3. Plot showing 2 active cluster locations in a two-dimensional property space. 

A particular advantage of kNN is that it is also appropriate for multiclass pro- 
blems, or for classes with clusters situated at more than one location in property 
space as shown in Fig. 3. This situation may arise in QSAR when two different 
modes of action are occurring in the compound set, each requiring a different op- 
timum property profile. 

Further aspects of this method can be divided into two categories: the selection 
of k,  and the scaling of the descriptors. These topics are discussed in the following 
sections. 
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4.3.2.2 Selection of k 

A suitable value of k can be selected based on a “leave-one-out’’ principle. In order 
to perform this selection, a number of different k values are first selected, e.g. 1, 3, 
5 ,  7, 9. Each member of the training set is used as a “test” compound and its k- 
nearest neighbors are used to predict its class for all values of k. The value of k, 
which best predicts the class of all members of the training set in this manner, is 
selected as the optimum value to be used for true unknowns. 

kNN, in its simplest form may not perform well when a different number of 
samples exists in each class, particularly when one class occupies the property space 
with a higher density than the other class. The situation is further exacerbated with 
overlapping classes as depicted in Fig. 4. Only one of the actives would be correctly 
classified for k = 1 or 3, as the active class occupies the property space less densely 
than the inactive class. 

Coomans and Massart [lo] have proposed a modification to the “majority vote” 
classification procedure for such circumstances, termed the “alternative vote” meth- 
od. This cpu-intensive approach requires the testing of many possibilities before the 
best one can be selected. They defined a decision rule which states: “For 2 classes, 
a test object is only classified as class 1 if, for its k-nearest neighbors, at least a of 
them are in class 1, otherwise the object belongs to class 21’ The user must select and 
test several values of k and a .  The optimum combination can be chosen using a 
leave-one-out approach, as described previously. This approach can be extended to 
choosing different (k, a )  pairs for each class, and also allows prior probabilities of 
class membership to be incorporated. 
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Figure 4. Plot showing the problem of classification for overlapping classes with different densities of 
points in a two-dimensional property space. 



4.3 Analysis of Embedded Data 233 

4.3.2.3 Scaling and Weighting 

As kNN works on the premise that compounds which are similar in property space 
will possess similar activity, then its success is highly dependent on the set of proper- 
ties chosen to portray similarity. Inclusion of properties which are not relevant to 
activity will introduce noise. Generally, important properties are not known prior to 
analysis, which can lead to property matrices containing considerable noise, resulting 
in a poor classification by kNN. 

Once a particular set of properties has been chosen, the problem of whether or 
not to scale or weight the property data must be considered. Physico-chemical pro- 
perty data are usually on different scales, and, thus, a preliminary autoscaling of the 
properties is usually required. 

Various ways of weighting the individual properties have been proposed with the 
aim of improving classification. Properties showing a difference in mean and/or 
variance between the classes are weighted to be more influential in the model. Those 
showing minimal difference are down-weighted or omitted. Weighting factors, f, can 
be included in the calculation of intersample distance as shown below: 

Such weighting factors can be calculated in a variety of ways, e.g. Fisher weights are 
a ratio of “between groups” sums of squares to the “within groups” sums of squares. 
Forbes et al. [ l l]  describe a variation of Fisher weights which is suitable for 
multiclass data and specifically designed for the analysis of mass spectral data. 

4.3.2.4 QSAR Examples of kNN 

An early example of the use of kNN in chemistry is given by Kowalski and Bender 
[6]. Much development of the kNN method has taken place in analytical chemistry, 
but some examples of applications are available in the QSAR literature [12- 181. In 
3 of these examples, discussed below, kNN has been compared with discriminant 
classification methods. 

Sjostrom and Kowalski [I61 analyzed 6 assorted chemical and biological data sets, 
comparing kNN with SIMCA, Linear Discriminant Analysis (LDA), the Linear 
Learning Machine (LLM) and the Bayesian Classification Rule. Although none of 
their examples was specifically related to QSAR, the authors provide a comprehen- 
sive and comparative study of these methods in related fields. Overall, kNN per- 
formed as well as the other methods. Overlapping classes were postulated by the 
authors for some sets when each analysis method resulted in a different misclassifi- 
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cation. These observations show the value of using more than one classification 
method when analyzing a data set. 

Henry and Block [I71 classified a set of 51 compounds into 5 therapeutic classes 
(analgesics, antidepressives, antihistamines, anticholinergics and anti-Parkinson 
drugs). They used 4 connectivity indices and the molar refractivity of substituents 
at 8 different positions on the overlaid structures, giving 40 properties in total. 
Again, kNN was found to perform as well as LDA and Quadratic Discriminant 
Analysis. By discarding 4 of the positions and using a single connectivity index at 
the remaining 4 positions, they achieved approximately 75 Vo correct classification 
for the training set on a leave-one-out basis. This reference provides an example of 
the different results that can be obtained from using different values of k. 

Gombar, Jaeger and Jurs [ 181 reported a more recent example of a comparative 
study of kNN with Adaptive Least Squares, Bayes Linear and Bayes Quadratic 
Discrimination, Iterative Least Squares and the Linear Learning Machine (LLM). 
They analyzed the activity of a training set of 68 hypolipidemic arylproprionic acid 
derivatives using calculated physico-chemical descriptors. Prior to analysis, the 
descriptor set was reduced from 64 to 19 by excluding collinear properties and those 
with minimal variation. From these 19, 10 were then selected depending on their 
predictive power in LLM. In this study kNN performed poorly compared to the 
other methods, achieving only 75% correct classification of the training set (with 
k = 1) compared with > 89% for the other methods based on cross-validation. How- 
ever, the variable selection method employed may have influenced the results in favor 
of LLM. 

Overall, kNN has proved reasonably successful as a classifier in QSAR even 
though the more sophisticated modifications to the basic method have not been 
widely implemented. It is less ambitious than other classification methods which 
base predictions of activity on some underlying model. Such methods can be more 
powerful and have the advantage of interpretability, but do depend on the validity 
of the form of model chosen. 

4.3.3 Single Class Discrimination 

4.3.3.1 Overview of Methods 

Single Class Discrimination (SCD) [7, 81 is a collection of methods specifically 
developed for the analysis of embedded data. The essential feature of embedded data 
is that the active class is tightly clustered in property space compared to the inactive 
class. SCD looks for subspaces of the full property space where such a pattern is 
most evident. A fixed point is defined (often the mean of the active class) as the “cen- 
tre of activity”, and the variance about this point can be used to represent the spread 
of each class. The relative spread of the 2 classes, which we aim to maximize, is esti- 
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mated by the ratio of these variances. SCD now proceeds in a manner similar to Prin- 
cipal Component Analysis (PCA) [9], but using the above variance ratio rather than 
total variance as the criterion to  extract axes in order of importance. Thus, SCD is, 
principally, a dimensionality-reduction technique. 

The output from SCD is also similar to PCA, consisting of scores, loadings and 
eigenvalues. The results can, therefore, be viewed as two- or three-dimensional scores 
plots and informative properties identified from the loadings. The plots should 
depict a clustering of the actives about the model origin and a dispersal of the inac- 
tives. The number of informative axes can be determined from a scree plot (a plot 
of eigenvalue against PC number), for example, and the Euclidean distance of a com- 
pound from the origin in this subspace can be calculated. This distance is known as 
the “Model Vector Length” (MVL) of a compound and may, under some cir- 
cumstances, provide an estimate of class membership, with inactives having a greater 
MVL than actives. 

SCD was originally developed to analyze classified activity data [7], but has since 
been generalized to accommodate a continuous measure of activity such as ZC50 or 
ED5, values [8]. The generalized methods, termed Generalized Single Class 
Discrimination (GSCD), are also tolerant of classified or mixed activity data, where 
the more active compounds are expressed as an ICso value while the poorly active 
compounds may have an activity quoted as “ > 100 p ~ ”  for example. This mixed 
type of activity is common in pharmaceutical biological testing and such data is not 
readily processed by conventional methods of analysis. 

A number of specific algorithms for implementing SCD were originally described, 
namely SCD-PCA I, I1 and 111, SCD-CVA, GSCD-PCA I, 11, and 111 and GSCD- 
CVA. From these, 4 have emerged as being of primary importance and these are 
SCD-PCA I, SCD-CVA, GSCD-PCA I and GSCD-CVA. The following discussion 
is restricted to these 4 algorithms and the methods are named after the algorithm 
used to identify informative axes, i.e. Principal Component Analysis (PCA) or 
Canonical Variate Analysis (CVA) [9]. The distinguishing features of these 4 
methods are given in Table 1. 

The different algorithms can be distinguished by 2 factors: a) how they deal with 
covariance between the descriptors in the active set, and b) whether the measure of 
biological activity results is classified or continuous. 

With the former, the PCA-based algorithms (SCD-PCA I and GSCD-PCA I) ig- 
nore covariance between the descriptors in the active set, whilst the CVA based 
algorithms (SCD-CVA and GSCD-CVA) take full account of such covariance. As to 
which algorithm should be employed, would depend entirely on the structure of the 
data. The CVA algorithms tend to produce a tighter clustering of the active set than 
the PCA algorithms. However, because of the requirement to calculate many addi- 
tional parameters (the actives covariances) a relatively large active set is needed to 
obtain a stable model. This is usually somewhat of a luxury in QSAR! For smaller 
active sets, a preliminary dimensionality reduction of the property matrix, e.g. by 



236 KS. Rose et al. 

Table 1. Summary of the Differences Between the 4 Main (G)SCD Algorithms. 

Name Biological Underlying Treatment of What the Axes Maximize 
activity type algorithm covariance 

of actives 

SCD-PCA I Categorized PCA Ignored Variance of inactives, 

SCD-CVA Categorized CVA Evaluated Ratio of variance of 

GSCD-PCA I Continuous or PCA Ignored Variance of inactives, 

GSCD-CVA Continuous or CVA Evaluated Ratio of variance of 

after autoscaling actives 

inactives to actives 

categorized after autoscaling actives 

categorized inactives to actives 

PCA, may often be advizable prior to analysis by (G)SCD in order to improve 
stability. 

As regards to  point b), it is of course always possible to analyze continuous data 
in a classified fashion, after drawing a line at some, possibly arbitrary, activity level. 
However, this often leads to loss of information, and the GSCD methods described 
here offer a more flexible approach. Essentially, the activity measure for each com- 
pound is used to construct an “activity weight”, lying between 0 and 1, which repre- 
sents the degree of activity. It can also be thought of as showing the degree of 
membership of the active class. Here, 1 denotes a member of the active class, 0 
denotes a member of the inactive class, and in-between values are used for com- 
pounds of intermediate activity, with a foot in both camps. This idea of the “degree 
of class membership” is based on Fuzzy Theory [19]. 

In the GSCD algorithms the activity weights are used to  calculate “weighted” 
means and standard deviations at points where, for classified activity, members of 
either just one class or of the other class would be used to calculate ordinary means 
and standard deviations. Indeed, the SCD methods can be viewed as special cases 
of their GSCD counterparts, as the generalized algorithms work perfectly well on 
classified data using weights that are either 0 or 1. However, it clarifies the ideas if 
they are considered separately - at least in the first instance - and so both ap- 
proaches are described here. 

The SCD-PCA I, GSCD-PCA I, SCD-CVA and GSCD-CVA methods are de- 
scribed below, with a view to a relatively simple implementation. A more complete 
mathematical description of the algorithms is given by Rose et al. [7, 81. 

First, some definitions are given: 

Training set 
Test set 
n 

Compounds with known activity used to generate the model 
Compounds for which an activity prediction is required 
Total number of compounds in the training set 
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na 
ni 
nt 
P 
X 
X A  
XI 
xw 
x v  
Z 
C 

W 

2, 

Number of active compounds 
Number of inactive compounds 
Number of compounds in the test set 
Number of properties 
An n by p matrix of properties for the training set 
An na by p matrix of properties for the active set 
An ni by p matrix of properties for the inactive set 
An n by p matrix of properties for the active weighted set 
An n by p matrix of properties for the inactive weighted set 
An nt b y p  matrix of properties of the test set 
A vector of activities of length, n 
A vector of active weights of length, n 
A vector of inactive weights of length, n 

Bold upper-case characters denote a matrix, bold lower-case denotes a vector and 
lower-case denotes scalars. 

4.3.3.2 SCD-PCA I 

Since the activity is classified, the property matrix, X ,  can be divided into 2 sub- 
matrices, X A  of dimension nu by p which contains data on the active compounds, 
and XI of dimension ni by p which contains data on the inactive compounds. The 
column means and standard deviations of X A  are calculated. These means, which 
estimate the centre of activity, are subtracted from the columns of both XA and XI. 
X A  and XI are then scaled by dividing the columns by the standard deviations of 
X A .  This results in XA becoming autoscaled, but XI will be composed of properties 
with different variances. Large variances in XI are due to a greater property spread 
in XI relative to X A  (embedded data), or a difference in the means of the 2 classes 
(non-embedded). PCA is then carried out on the inactive matrix, XI, and an appro- 
priate number of axes are retained. (Note: this PCA should be carried out without 
further centering or scaling of XI) .  X A  is mapped to this space by post-multiplying 
it by the matrix of PC loadings. 

Test compounds, held in the matrix Z,  are simply mapped to the SCD model by 
passing Z through the above process. The columns of Z are centered and scaled using 
the column means and standard deviations of XA,  and the resulting matrix is post- 
multiplied by the PC loadings to obtain the scores for each test compound. 

4.3.3.3 GSCD-PCA I 

The activity vector, c is transformed to a vector of active weights, w, which lie within 
the range 0- 1, such that active compounds have a high value of w and inactives have 
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a low value of w. One approach, appropriate for -log ZC,, data for example, is to 
scale c to lie in the range of 0.05 to 0.95. This avoids assigning compounds to the 
boundaries (i.e. wi values of 0 or 1). Thus, w can be calculated as follows: 

wi = 0.05+0.90( ci-min ) for i = 1 to n 
max- min (3) 

where, min is the activity of the least active compound and max is the activity of 
the most active compound. Compounds with activity quoted as inactive or 
“> 100,u~” ,  for example can be given w values of 0. For SCD-PCA I, active com- 
pounds are given a value of 1, and inactives a value of 0. 

The inactive weights, u, are calculated as: 

u .  = 1 -w.  for i = 1 to n (4) 

The active weighted mean, wm, is calculated for each property by: 

n c (xijw;) 
( 5 )  

i =  1 wmj = for j = 1 to p 
sumw 

where, sumw is the sum of w. 
The active weighted standard deviation, ws, of each property is calculated as: 

c ( q j - w m j )  2 wi 

(6) 
i =  I for j = 1 to p 

wsj = J sumw 

The active weighted means are subtracted from the columns of X and the columns 
of X are divided by the active weighted standard deviations. Each row of X is then 
multiplied by the square root of its inactive weight, fi, to give the “inactive” 
matrix, XV. PCA is performed on X V  to obtain a matrix of PC loadings. Finally, 
X is post-multiplied by the loadings to obtain the final scores for the compounds. 

The scores of test compounds are determined by centering and scaling 2 using the 
active weighted means and standard deviations of X and post-multiplying the resul- 
tant matrix by the PC loadings of XV. 

In GSCD models of non-embedded, or partially embedded, data, the active 
weighted mean is not the best value to use for centering the matrices. In these situa- 
tions, the variance ratio can, in fact, be increased by using a different value further 
from the mean of the inactive set to center the data. A simple method for estimating 
this alternative center, termed the “optimal mean”, is given in [8]. 
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4.3.3.4 SCD-CVA 

X is divided into the submatrices X A  and XI, and the mean of each column of XA 
is calculated and subtracted from X A  and XI. We then solve the eigenvalue equation: 

(XITXI-lfXATXA)gj  = 0 f o r j =  1 t o p  (7) 

where, gJ is the vector of loadings for the jth axis and ,Ij is the jth eigenvalue. This 
can be solved either using a general latent root and vector algorithm, or a CVA 
algorithm where XITXZ takes the place of the “between groups” sums of squares 
matrix, whilst X A  T X A  corresponds to the “within groups” sums of squares 
matrix. The scores of test compounds are calculated by subtracting the means of X A  
from Z and post-multiplying by the CVA loadings. 

4.3.3.5 GSCD-CVA 

The active weighted (or “optimal”) means of X ,  wm, are calculated as described 
above and are then substracted from the columns of X .  Each row of X is multiplied 
by the square root of its active weight, 6, to give a matrix, XW; weighted to ac- 
tivity. Similarly, each row of X is multiplied by the square root of its inactive weight, 
fi, to give a matrix, XC: weighted to inactivity. We then solve the eigenvalue equa- 
tion, as described previously: 

(XVTXV- nfXWTXW)gj = 0 for j = 1 to p (8) 

The scores of test compounds are calculated by subtracting the active weighted 
means of X from Z and then post-multiplying by the CVA loadings. 

4.3.3.6 Significance Testing 

Once an SCD model has been generated the significance of the axes can be determin- 
ed by using random permutations to test the null hypothesis that there is no relation- 
ship between activity and the physico-chemical properties. Essentially, this involves 
randomizing the activity vector of the compounds, but not the property matrix, and 
recalculating the SCD model. This is performed a large number of times (e.g. 500) 
to calculate the likelihood of obtaining by chance axes with similar eigenvalues 
to those of the real model. Confidence limits of 95% can be obtained using this 
approach as outlined above for the first axis and then with adjustments for sub- 
sequent axes. The method is discussed fully by Wood et al. [20] for the classified 
case. 
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Figure 5. Results of the SCD-PCA I1 analysis on the Antimycin A analogs. 
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Figure 6. Results of the GSCD-PCA I1 analysis on the Antimycin A analogs. 
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4.3.3.7 QSAR Applications of SCD 

As the SCD methods are relatively new, there are few examples of their application 
in the QSAR literature. In the original papers [7, 81, artifical data was widely used 
to  portray the features of these methods. However, two QSAR data sets were also 
analyzed using both the classified (SCD) and continuous (GSCD) activity methods. 
The data of Selwood et al. [21], which consisted of activity data and 53 physico- 
chemical properties for 3 1 antifilarial Antimycin A analogues, was analyzed using 
SCD-PCA I1 [7] and GSCD-PCA I1 [S]. For the SCD-PCA I1 analysis, the 15 most 
active compounds were classified as active and the remainder as inactive. The GSCD- 
PCA I1 used the -log ED,, values directly. Both approaches gave a good clustering 
of the more active compounds and the models could be interpreted with respect to 
chemical structure. The results are shown in Figs. 5 and 6. 

The other QSAR data set analyzed in these papers was the data of Goodford et 
al. [22] on the toxicity of methoxychloro analogues to houseflies. ED,, values and 
5 substituent constants were available for 25 compounds. The 13 most toxic com- 
pounds were classified as “active” in the SCD analysis. SCD-PCA I and GSCD-PCA 
I successfully grouped the toxic compounds and generated chemically interpretable 
axes. The results of the analyses are shown in Figs. 7 and 8. 

In both the above examples, the “optimal” mean was employed in preference to 
the “active weighted” mean in the GSCD analyses. 
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Figure 7. Results of the SCD-PCA I analysis on the methoxychloro analogs. 
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Figure 8. Results of the GSCD-PCA I analysis on the methoxychloro analogs. 

The preliminary results from (G)SCD look encouraging and it is a valuable new 
approach for analyzing non-linear QSARs in multivariate property space. 

References 

[ l ]  Magee, P. S., Parameter Focussing - A New QSAR Technique. In: ZUPAC Pesticide Chemistry: 
Human Welfare and the Environment, Miyamtot, J. and Kearney P. C., eds., Pergamon Press, Ox- 
ford, 1983, p. 251 -260 

[2] McFarland, J.W. and Gans, D. J., J.  Med. Chem. 29, 505-514 (1986) 
[3] McFarland, J. W. and Gans, D. J., J. Med. Chem. 30, 46-49 (1987) 
[4] Dunn 111, W. J. and Wold, S., J.  Med. Chem. 23, 595-599 (1980) 
[S] Wold, S., Pattern Recog. 8, 127-139 (1976) 
[6] Kowalski, B.R. and Bender, C.F., Anal. Chem. 44, 1405-1411 (1972) 
[7] Rose, V.S., Wood, J. and MacFie, H. J.H., Quant, Struct.-Act. Relat. 10, 359-368 (1991) 
[8] Rose, V. S., Wood, J. and MacFie, H. J. H., Quant. Struct.-Act. Relat. 11, 492-504 (1992) 
[9] Chatfield, C. and Collins, A. J., Introduction to Multivariate Analysis, Chapman and Hall, London, 

1980 
[lo] Coomans, D. and Massart, D. L., Anal. Chim. Acta 136, 15-27 (1982) 
[11] Forbes, R.A., Tews, E. C., Freiser, B. S., Wise, M.B. and Perone, S., J.  Chem. In$ Comput. Sci. 26, 

93-98 (1986) 



4.3 Analysis of Embedded Data 243 

[t2] Kowalski, B.R. and Bender, C.F., J.  Am. Chem. Soc. 96, 916-918 (1974) 
[I31 Chou, J.T. and Jurs, P.C., J.  Med. Chem. 22, 792-797 (1979) 
[14] Clare, 8. W., J.  Med. Chem. 33, 687-702 (1990) 
[15] Stouch, T.R. and Jurs, P.C., J.  Med. Chem. 29, 2125-2136 (1986) 
[16] Sjostrom, M. and Kowalski, B.R., Anal. Chim. Acfa. 112, 11-30 (1979) 
1171 Henry, D. R. and Block, J. H., J.  Med. Chem. 22, 465-472 (1979) 
[I81 Gombar, V. K., Jaeger, E. P. and Jurs, P, C., Quant. Struct.-Act. Relat. 7, 225 -234 ( 1  988) 
1191 Otto, M., Chemom. Infell. Lab. Sys. 4, 101 - 120 (1988) 
[20] Wood, J., Rose, V.S. and MacFie, H. J.H., Chemom. Intell. Lab. Sys. 23, 205-212 (1994) 
[21] Selwood, D.L., Livingstone, D. J., Comley, J.C.W., 0-Dowd, A.B., Hudson, A.T., Jackson, P., 

[22] Goodford, P. J., Hudson, A.T., Sheppey, G.C., Wootton, R., Black, M. H., Sutherland, G. J. and 
Jandu, K.S., Rose, V.S. and Stables, J.N., J .  Med. Chern. 33, 136-242 (1990) 

Wickharn, J.C., J.  Med. Chem. 19, 1239-1247 (1976) 



4.4 Quantitative Analysis of Structure-Activity-Class 
Relationships by (Fuzzy) Adaptive Least Squares * 

Klaus-Jiirgen Schaper 

Abbreviations 

ALS 
ANN 
FALS 
kNN 
LDA 
LLM 
LOO 
MLR 
MMG 
NLR 
PCA 
PCVR 
QSAR 
s.e. 

Symbols 

Adaptive Least Squares 
Artificial Neural Network 
Fuzzy Adaptive Least Squares 
k-Nearest Neighbor 
Linear Discriminant Analysis 
Linear Learning Machine 
Leave-One-Out (cross-validation) 
Multiple Linear Regression 
Mean Membership Grade 
Non-linear Regression 
Principal Component Analysis 
Principal Component after VARIMAX Rotation 
Quantitative Structure-Activity Relationship 
standard error 

activity score of class j after scaling 
correction for compound i at iteration t 
contribution index of a variable 
distance of calculated activity score to near cut-off point 
error function value 
fuzzy level (a constant) 
no. of groups (categories, activity classes) 
no. of independent variables (descriptors) 
calculated (fitted or predicted) mid-rank value 

*Dedicated to Prof. Dr. Joachim K. Seydel, Borstel, on the occasion of his 65th birthday, with gratitude 
for two decades of generous support 
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observed mid-rank value 
membership function value corresponding to Zcalc 
total no. of compounds or measurements 
size of group j 
no. of misclassified objects 
no. of iterations without improvement of R, or E 
multiple correlation coefficient 
Spearman rank correlation coefficient 
descriptor correlation matrix 
standard error of regression coefficient k 
total no. of ALS-iterations 
no. of temporary best iteration 
matrix of activity ranks after ALS scaling 
matrix of scaled descriptor values 

4.4.1 Introduction 

The biological potency of drugs, herbicides, antifungals, etc. is often recorded in the 
form of activity ratings such as “inactive” (-), “weakly active” (+), “active” (+ +) 
and “strongly active” (+ + +). The method of choice for analyzing class data in 
QSAR investigations usually is the technique of linear discriminant analysis (LDA) 
[ I ,  21. However, LDA is not considered to be appropriate for investigating ordered 
class data (except in a 2-group case), mainly for the following reasons: (i) LDA has 
been developed to deal with the problem of discriminating independent classes or 
categories; (ii) the assumption of multivariate normal distribution of descriptor data 
in each category and of equality in within-group covariance matrices is often not 
fulfilled in the case of g groups (g 2 3); (iii) since g discriminant functions are deriv- 
ed, they are difficult to interpret in terms of a structure-activity relationship model. 

With the aim of overcoming these unfavorable aspects of LDA, Ikuo Moriguchi 
and coworkers [3-161 initiated the development and application of a new 
discrimination method called A d a p t i v e  Least Squares (ALS) analysis almost 20 
years ago. Since 1988 Fuzzy Adaptive Least Squares (FALS), wich is a more powerful 
version of the basic ALS technique, has been investigated by the same group 
[17-221. As FALS was only recently developed, until now only one paper by a dif- 
ferent group [23] comparing the use of this method with other methods had been 
published, whereas ALS has been widely applied to the field of QSAR by other in- 
vestigators [24-391. 

The ALS method is a non-parametric classifier which has been devised to derive 
a single QSAR equation irrespective of the number of observed activity classes. Non- 
parametric in contrast to parametric statistics does not require normally distributed 
data. Parametric statistics involve parameters which define the population (i.e. the 
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mean, p, and the standard deviation, (T) whereas non-parametric statistics are in- 
dependent of the distribution of data. The ordinal scale of bioactivity data is analyz- 
ed by ALS/FALS and the activity scale is ordered (i.e. with increasing activity in the 
classes 1 ,  2, 3 .  . .), but not necessarily at equal intervals. Thus, the non-parametric 
ALS method is a technique which accounts for the observed ranks of bioactivity in 
terms of the physico-chemical properties of compounds and compares calculated (i.e. 
fitted or predicted) with observed ranks. The degree of similarity between ranks is 
quantified by the non-parametric Spearman rank correlation coefficient, Rs. 

4.4.2 The ALS Algorithm 

The ALS method allows decisions for ordered g-group discrimination (g 2 2) by us- 
ing a single discriminant function. This function is obtained by iterative application 
of multiple linear regression (MLR) analysis with a stepwise adaptation of the depen- 
dent activity variable. The procedure is repeated for a given number of iterations, or 
until all substances are correctly classified, and the best discriminant function is 
selected. In contrast to LDA, the discriminant function is non-unique. If the objects 
that define the observed classes are sufficiently apart, many discriminants may be 
found that would equally well distinguish between the classes [28, 381. 

An overview of the algorithm discussed in this section is given by the flow chart 
shown in Fig. 1. To the best of our knowledge, the computer program mentioned in 
Ref. [40] is the only one that is commercially available. 

4.4.2.1 Scaling of Ranked Activity Data and Further Data Preprocessing 

The observed activity ranks, in general, are numbered in ascending order, with rank 
1 denoting the lowest activity class. In the first paper on ALS [3] as well as in two 
other papers [30,31], no special scaling was performed. However, as the data can be 
very skew (different numbers of compounds in activity classes), all other papers used 
a specific method of scaling, taking into account the number of objects of a certain 
rank. As a standard numerical score for ordered categories the so-called “ridit” has 
been proposed [41]. The choice of “ridit”, as a numerical score, is based on the 
assumption that only the potency order of groups is reliable, whereas quantitative 
differences in the potency between groups as well as between compounds within a 
group are uncertain. Since 1980 Moriguchi et al. [4] used a modified ridit as defined 
by Eq. (1): 

with 
aj = 4[(nj/2+Z)/n]-2 j =  1 .  .g  (1) 
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. 

mult. lin. regr. anal.: 
ZO’”*W = 3 + correction WR’ = (X‘ x)-l X‘ z0-11 

I Rs“’ (Spearman rank correl. coeff.) 

r”l r = r + l  

I Output of optimal values of  
Regr.coeffs. W, Rs, E . 

~~ (final classification using 
Z,,,. and cutting points) 

Figure 1. Flow chart of the ALS algorithm (see Sec. 4.4.2.). 

Z=O if j =  1 

Z =  E n i  i f j > I  
j -  1 

i =  1 

Here uj is the scaled activity score of a compound in class j, nj and ni are the size 
of groups, j and i, respectively, and n is the total number of compounds. According 
to Eq. (1) the mean value of uj over n compounds becomes zero. After the calcula- 
tion of starting scores, uj, for the members of class j ( j  = 1 . .g) the cut-off points * 

* Called “cutting points” by Moriguchi et al. [4-221 
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bj,;+, ( j  = 1 . .g- 1) between classes are fixed in advance before undertaking the ALS 
iteration. The cut-off points bj,j+l are taken as the midpoints between a; and a;+,: 

bj,j+l = (aj+aj+i)/2 (2) 

The next step in the preprocessing of activity data is the replacement of the a priori 
rank value of each compound by its corresponding a; value, thus, giving rise to the 
(n  *I)-matrix Z ( f  = O) (t  is the number of ALS iterations). This matrix contains the 
starting scores of activity that are adapted in subsequent ALS iterations and are used 
as the dependent data set to be described by physico-chemical descriptors. Finally, 
before entering the ALS iteration procedure, it is useful to  calculate the standard 
deviation of all independent variables selected for the analysis. Standard deviations 
are used for the calculation of contribution indexes of descriptors (see Sec. 4.4.2.3). 

4.4.2.2 The ALS Iteration 

The ALS algorithm is fundamentally an iterative multiple linear regression analysis 
[42] that uses an error corrective feedback for discriminant development. Therefore, 
in ALS as in MLR the same precautions must be taken, e.g. selection of a training 
set of compounds of low collinearity and with a high variance in molecular descrip- 
tors [43-461. The degree of descriptor collinearity of a given set of compounds must 
be tested, e.g. by calculating [2] the correlation matrix, R,. However, just a mere in- 
spection of a matrix of simple correlation coefficients is not sufficient. Often, several 
descriptors encode partially related information. Therefore, multicollinearities 
among the descriptors can also be a problem, giving rise to numerical instabilities 
in the analysis. As a diagnostic, the multiple correlation coefficient of the regression 
between one independent variable, i, and the remaining (rn - 1) regressors can be ob- 
tained directly [43] from the i th main diagonal element, Cii, of the inverted correla- 
tion matrix, (R,) - I ,  by: 

(3) Rmult,,; = (I - 1/Ciy2 

In the case of two or more coefficients with, e.g. Rmult. > 0.6, a detailed analysis sug- 
gests descriptors that may be deleted. A better solution to the problem of 
multicollinearity, however, is the application of principal component analysis [47, 
481 (see also Sec. 4.4.3.4). A further problem to be considered before running an 
MLR-type QSAR analysis is the occurrence of outliers or points of high leverage in 
the X-descriptor space [49, 501. 

The ALS iteration is started at cycle number one (t = 1) with the activity data 
matrix 2'' = O) obtained in the preprocessing step and the (n  *m) descriptor matrix D 
that is expanded by one column with a vector of ones to give the [n x(m+ I)] 
regressor matrix X (see Eq. (5)). As in MLR analysis the estimate of the [(m+ 1) X 1) 
vector of weights, U: (i.e. slopes, regression coefficients) is obtained by: 
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In Eq. (4) the superscript, t, denotes the tth ALS iteration cycle. The next step is the 
computation of calculated (fitted) 2-values for each compound by: 

where 

z^= X =  

1 x,1 . . .  X I  m 

1x21 ... *2 m . .  
. .  
1 X n 1 . .  . Xnm 

W =  

The element xu in matri.. X is the jth descriptor of compound, I 

reformulated without matrix notation as: 

( 5 )  

WO 

W1 

Wm 

Eq.(5) can be 

2;= w ~ + w ~ x ; ~ + w 2 x i 2 + . .  .+wmxjm (i = 1 .  .n) ( 5  a> 

Finally, all compounds are classified (a posteriori classification) on the basis of the 
calculated values of 2 and the previously fixed cut-off points bj, j +  : 

if Z;<b,.2 then assign substance i to class 1; 

if bj-,,j <?;I bj,j+l then assign substance i to class j ;  

if bg-,,z <t; then assign substance i to class g. 

For the evaluation of intermediate and final classification results, two criteria are 
used (order of priority: a)>b)): 

a) The Spearman rank correlation coefficient, R,, i.e. the correlation between ob- 
served and calculated activity class mid-ranks; 

b) the Error function value, E, (apparent variance of errors). 

In ALS, the Spearman rank correlation coefficient must be calculated by the same 
procedure as in simple linear regression analysis [51, 521. The only difference is the 
use of observed and calculated mid-ranks (mo, m,) instead of x- and y-values: 
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Mid-ranks are averaged ranks of "tied" compounds (identical class). The error func- 
tion, E, is defined empirically by: 

E =  ei  / (n-m-I )  
[ i I l  2 1  

(7) 

Now, assume that the ALS analysis is started at  iteration t = 0 with extremely un- 
favorable arbitrary values for R, and E (e.g. R$ = O) = - 1 and E" = O)= 03) which 
must be improved during subsequent iterations (see Fig. I). This means at least that 
at iteration t = 1 these starting values are improved. Therefore, the corresponding 
matrices W(') and .2?@) are retained as well as and E('). Subsequently, to com- 
plete the first iteration cycle, the adaptation step of ALS is performed. By adaptation 
of the elements of Z^(t), the deviations mainly between observed activity scores 
(Z(t = O ) )  and calculated activity scores (.2?@)) of misclassified objects are reduced by 
applying the correction term, Cy): 

In the early stages of development [3 - 61, several empirically defined expressions 
were investigated for Ci. Since 1984 [7] the following terms have been used: 

If correctly classified: 
cl" = 0 

If misclassified below observed class: 

C!" = + [0.1+0.1/(0.45 + S1'))2] 

If misclassified above observed class: 

C?' = - [0.1+0.1/(0.45+6~')2] 
where 

Sl"= Iz^I"-b.. 1 
J3J+1 
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Figure 2. Graphical representation of the correction term C, as a function of calculated activity scores in 
a four-class problem assuming that a compound has been observed to belong to class no. 1 ,  2, 3, or 4 
which are all identical in size. 

S f )  is the distance between the calculated activity score of compound i and the cut- 
off point of its observed class that is nearer to Z f )  (e.g., use b,,2 if i has been ob- 
served as class 2 but calculated as class 1; use b2,3 if the calculated class is 3). Fig. 2 
shows a graphical illustration of the correction term, Ci, as a function of calculated 
activity scores assuming that a compound has been observed as belonging to classes 
1,2, 3 or 4 (indicated by numbers on the graph). This graph shows that no correction 
was applied if the calculated activity score of a compound observed as class j is 
within the range of bjPl,; and bj,j+l. Below this range, the score increases (positive 
C,) and vice versa. Compounds with physico-chemical properties leading to 
calculated scores that are far from the observed score z;'=O) are shifted only by 
Ci-0.1. Those near to the cut-off point are considerably more shifted to enable a 
correct classification. 

The new Z( ' )  values obtained in the final adaptation step of this ALS iteration are 
used to form the dependent variable for the next iteration cycle that hopefully will 
lead to further improvement of Rs and E. In the case of increased R,, the cor- 
responding data (z U: R,, E retained in the hitherto obtained best iteration t*)  is 
again updated and the cycle continued. The same procedure is performed if 
R f )  = R f * )  AND E(')<E('*). The adaptation step is performed without updating if 

According to Moriguchi et al. [7, 101 the best result obtained after 20 iterations is 
used as the final result. However, we found that an often better result is obtained with 
more iterations. Therefore, we modified the algorithm slightly (see Fig. 1). In the 

R',"<R('*) or if R f )  = Rf*) AND E(f)>E(c*) .  
S ?  
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modified procedure the number, r, of iterations, without further improvement of Rs 
or E, is counted and at each iteration with improvement, the number r is reset to 
r = 0. The iteration cycle is abandoned, only if, r is equal to the predetermined num- 
ber “max-iter“ (e.g. max-iter = 60, for a leave-one-out cross-validation (LOO) 
max-iter = 50). To avoid long computation times, an improvement of E is only ac- 
ceptable if E(‘)<(E(‘*)- 1 x 

To show that better results were obtained by this version, we re-analyzed the anti- 
inflammatory data of 38 furoindoles investigated by Moriguchi et al. [lo]. Using the 
standard version (20 iterations) we reproduced Eq. (4) reported by Moriguchi et al. 
[lo] (here Eq. (12)), however we were unable to reproduce the LOO results: 

ẑ  = 3.057B,(1)- 1.778F(1)+0.639Ncp, -4.286 (1 2) 
( t ) :  (6.70) (3.87) (3.09) (6.72) 
(ci): (0.97) (0.56) (0.38) 

n = 3 8  E=1.310 Rs=0.828 nmis= 7(0)  
LOO cross-Val.: Rs = 0.771 nmis = 9 (0) 
LOO cross-Val.: R, = 0.74 nmis = 10 (0) (Ref. [lo]) 

Using the modified version (iteration until r = 60, LOO: r = 50) we obtained Eq. 
(1 3), which indicated a clearly improved relationship. In addition to the reduction 
of the number of misclassified compounds, the shift in the regression coefficients 
(Eq. 12+ 13) obtained by the modified version in Fig. 1 is indeed quite remarkable: 

ẑ  = 3.802 B,(l) - 2.51 3 F(1) + 0.814NCp, - 5.435 ( 1  3) 
( t ) :  (7.48) (4.91) (3.53) (7.65) 
(ci): (1.21) (0.79) (0.48) 

n = 3 8  E=1.310 Rs=0.854 nmiS= 6(0)  
LOO cross-Val.: Rs =0.771 nmis= 9 (0) 

In these equations, nmis is the number of misclassified or LOO-mispredicted com- 
pounds; the figure in parentheses after the value of nmiS is the number misclassified 
by two grades. The first line below the equations shows the t-test value [42] of the 
regression coefficients (t = coefficienthtandard error of coefficient) while the sec- 
ond line contains the “contribution indices” (ci) of the variables (see Sec. 4.4.2.3). 

4.4.2.3 Validation of ALS-Discriminants 

For the validation of the regression equations obtained by the ALS technique, 
Moriguchi et al. [4, 5, 101 proposed the contribution index of each independent vari- 



4.4 Quantitative Analysis of Structure-Activity-Class Relationships 253 

able. The contribution index (cik) of descriptor, k, is a measure of its contribution 
to the discriminant scores. It is defined as the product of the regression coefficient 
of the descriptor and its standard deviation: 

The ci values are identical to the slopes if scaled descriptors are used (scaled to a 
mean of zero and standard deviation, sk  = 1). Thus, this is a way of comparing the 
slopes of variables that are on the same scale. This index has been used by Moriguchi 
[4,5, 8- 11, 19-22] and others [36] to validate the importance of descriptors and, 
furthermore, to form a basis for their backward stepwise elimination. Descriptors 
with ci<O.l were tested as candidates for elimination. However the final set of 
descriptors was selected primarily on the basis of cross-validation results using the 
LOO prediction technique (therefore, even ci < 0.03 is possible [8,9,20,22]). The dis- 
criminant function giving the best LOO prediction is the one that is finally adopted. 

Obviously ci is mainly a reflection of the steepness of the gradient but not of the 
scatter around the regression line (hyperplane) Iike the t-test in conventional regres- 
sion analysis. Therefore, in addition to ci, we also calculate the t-test value [42]. Since 
the t-statistics were developed for normally distributed continuous data, t-values can- 
not, strictly speaking be interpreted on face value and merely provide a rough estima- 
tion as to which descriptor should be eliminated (if t 5 1.5). 

To illustrate the way in which the t-test is more sensitive compared to the ci-test, 
the ALS analysis published by Garcia et al. [36] was repeated to enable a comparison 
of ci- and t-values. Garcia determined the mutagenic potency of 10 triazino indoles 
in three bioassay systems and found three relationships (Eq. 4-6 [36]) between clas- 
sified activity data (2 classes) and substituent lipophilicity expressed by n. We 
repeated the analysis by the same procedure (standard version of ALS with 40 itera- 
tions (!) [36]) and obtained identical results in two of the equations, whereas one of 
the equations differed slightly for reasons unknown: 

E RS nmis 
z ^ =  -0.859n+0.158 0.222 1 0 
( t ) :  (5.66) (1.03) 

(c i ) :  (0.89) 

z^= -0.737~+0.183 0.148 1 0 
( t ) :  (5.94) (1.46) 

(ci): (0.76) 

z^= -0.677~-0.207 0.933 0.817 1 
( t ) :  (2.59) (0.78) 

(c i ) :  (0.70) 
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The standard deviation of n is identical in all three equations and, therefore, the ci- 
values are exactly collinear with the regression coefficients of n and only differ 
slightly. In contrast the t-value of Eq. (17) is much lower compared to Eqs. (15) and 
(16), which obviously highlights the fact that at least one derivative is not adequately 
described by this equation. 

Both ci- and f-values may give an overoptimistic picture of the importance of vari- 
ables included in the ALS analysis. ALS is obviously extremely flexible and often 
gives rise to an excellent description of the training set data. As described previously, 
calculated activity scores of compounds are iteratively shifted in the direction of the 
observed class scores if this is in any way compatible with their physico-chemical pro- 
perties and the relationships observed within the whole data set. Therefore, to ensure 
that no overfitting occurs, as well as to obtain a realistic feeling for the predictive 
capability of the model, cross-validation [53, 541 e.g. by the LOO prediction, is 
strongly recommended. Furthermore, the contribution of each individual descriptor 
to the predictive capability of a model can be assessed by the deterioration of results 
that occurs when that particular descriptor is eliminated [38]. 

4.4.3 Application of ALS 

In this section, first the analysis of the activity ranking of mitomycin derivatives is 
discussed. Then material from several publications [14,21,31] in which ALS is ap- 
plied to some interesting data sets is briefly mentioned. Finally, the ALS analysis of 
the dose- and property-dependent biological effect classes of antihypertensive acryl- 
oylpiperazinoquinazolines is presented in more detail. 

4.4.3.1 Antitumor Activity of Mitomycins 

The antitumor activity of mitomycins (I) was one of the earliest data sets to have 
been analyzed by the ALS method [3, 51. This data set has been used several times 
for comparing ALS with other techniques of pattern recognition (see Sec. 4.4.4). 

In the first analysis by Moriguchi and Komatsu [3], the antitumor activity against 
solid sarcoma in mice was categorized into five classes. Later, classes 1 and 2 were 

C H 2 C O N H 2  xfi t, 
./ 
0 

- 7  
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combined to class 1, and classes 4 and 5 were combined to give class 3. Furthermore, 
the activity against ascites sarcoma (3 classes) was investigated [5]. All activity data 
and corresponding descriptor values used by Moriguchi et al. [3, 51 are listed in Table 
1. In the analysis of the solid sarcoma 5-class data set [3] a very early version of ALS 
was used which did not perform “ridit” scaling and, furthermore applied a different 
correction term. Nevertheless, the resulting discriminant function (Eq. (1 8)) is similar 
to the one (Eq. (19)) obtained from the flow chart outlined in Fig. 1 [ 5 5 ] :  

ẑ  = -4.33 F,-2.46Vwx + 2.481, = OMe +2.28Zy = OH + 0.77 ES,* + 1.42 (1 8) 

al = 0.5 a2 = 1.5 a3 = 2.5 a4 = 3.5 a5 = 4.5 

b1,2 = 1 b2,3 = 2 b3,4 = 3 b4,5 = 4 

n = 16 R, = 0.963 nmis = l (1)  

ẑ  = - 4.49FX - 2.32Vwx + 2.251, = OMe + 2.1 1 Zy = OH + O.79Es,, - 1.1 1 
( I ) :  (2.8) (2.0) (4.2) (3.1) (3.3) (1.8) 

(1 9) 

(ci): (0.5) (0.4) (1.0) (0.7) (0.7) 

a, = - 1.625 a2 = - 1.125 a3 = -0.375 a4 = 0.875 a5 = 1.75 

n = 16 E = 0.769 R, = 0.963 nmis = l(1) 
b, ,2= -1.375 b2,3= -0.75 b3,4=0.25 b4,5= 1.3125 

Both discriminants misclassified compound 15 as belonging to class 3, whereas 
class I was the observed class (see Table 1). According to both equations, the activity 
decreased with increasing bulk and field effects of substituents at the X position as 
well as with the steric effects of Z substituents. Favorable effects are observed if 
Y = H is replaced by Y = OMe or Y = OH as indicated by the positive regression 
coefficients of the two indicator variables which point to the presence (I= I )  or 
absence (I = 0) of a specific substructure. 

In the second ALS analysis of the mitomycin data (3-group classification!) 
Moriguchi et al. [5] replaced the indicator variables of Eqs. (18) and (19) by o;, a 
descriptor for the polarizing effects of the Y substituents and, furthermore, express- 
ed the steric effect of the Z substituents by the STERIMOL variable Unfor- 
tunately, there are only three different substituents in position Y. Therefore, there is 
an ideal intercorrelation between o; and 1, = OMe and Zy = OH. Thus, compounds de- 
scribed by such indicator variables can be equally described by 0;. This does not 
mean to say that activity depends solely on this descriptor, although this could not 
be ruled out completely with the given data set. In this analysis Moriguchi et al. [5] 
did not use the correction term given in Eqs. ( lob) and (IOc) but the following: 

C?) = k [P(Z^r)-Z~f=0))2+0.1/(0.45+6~))2] (20) 

with B = 0.01, 0.03 or 0.05. 



% Table 1. Property descriptors and antitumor activity of mitomycin derivatives (I). 

No. X Y Z  FX om,x V W x  a: Es,z L?,,z B4,= Activity Class 
Q\ 

Solid Sarcoma Ascites Sarcoma A 

e 

IL, 
O a  c a b  O a  Cace  p a e  O a  C a d f  p a d  p a f  % 

s. 

1 NH, OMe H 0.02 -0.16 0.177 1.81 1.24 1.00 1.00 5 5 3 3 3 3 3 3 3 3 4 
2 NHEt OMe H -0.11 -0.24 0.493 1.81 1.24 1.00 1.00 5 5 3 3 3 3 3 3 2 3 
3 NH2 OMe Me 0.02 -0.16 0.177 1.81 0 1.52 2.04 4 4 3 3 3 3 3 3 3 3 
4 NH, OMe Et 0.02 -0.16 0.177 1.81 -0.07 1.52 2.97 4 4 3 3 3 3 2 2 2 2 
5 NH, OMe Ac 0.02 -0.16 0.177 1.81 -0.47 1.90 2.93 4 4 3 3 2 2 2 2 2 2 
6 NH, OH Me 0.02 -0.16 0.177 1.55 0 1.52 2.04 4 4 3 3 3 3 2 2 2 2 
7 NMe, OMe H 0.10 -0.15 0.441 1.81 1.24 1.00 1.00 4 4 3 3 3 3 3 3 3 3 
8 NH2 OMe COPh-2-C1 0.02 -0.16 0.177 1.81 -1.19 2.36 5.98 3 3 2 2 2 2 
9 NH, OMe COPh-4-C1 0.02 -0.16 0.177 1.81 -1.19 2.36 5.98 3 3 2 2 2 2 

10 NHPh OMe H -0.02 -0.12 0.892 1.81 1.24 1.00 1.00 3 3 2 2 2 2 2 2 2 2 
11 OMe OMe H 0.26 0.12 0.304 1.81 1.24 1.00 1.00 3 3 2 2 2 2 3 3 3 3 
12 OMe OMe Me 0.26 0.12 0.304 1.81 0 1.52 2.04 3 3 2 2 2 2 2 2 3 2 
13 OMe OH Me 0.26 0.12 0.304 1.55 0 1.52 2.04 2 2 1 1 2 1 1 2 2 2 
14 NH, H Me 0.02 -0.16 0.177 0.49 0 1.52 2.04 1 1 1 1 2 1 1 1 1 1 
15 NH, OMe S0,Me 0.02 -0.16 0.177 1.81 -1.54 2.11 3.15 1 3 1 2 2 2 3 2 2 2 
16 OMe H Me 0.26 0.12 0.304 0.49 0 1.52 2.04 1 1 1 1 1 1 1 1 1 1 

a o = obsd., c = calc., p = pred.; Eqs. (18) and (19); Eq. (21); Eq. (22); Eq. (40); Eq. (41) 
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For each /3 value twenty iterations are performed and finally the best one is selected. 
As values for ci and E are not given by Moriguchi et al. [5] we recalculated the equa- 
tions of Moriguchi et al. In the case of the solid sarcoma data we successfully 
reproduced the equation published (with /3 = 0.03) but found different LOO predic- 
tions, whereas for the ascites sarcoma data we obtained identical LOO misclassifica- 
tions but a slightly different discriminant function: 

Solid Sarcoma 

2 = -4.33 c , , , ~ -  2.51Vwx+ 1.560; - 1.43 B,,z + 0.03 (21) 
( t ) :  (2.80) (2.1 I )  (3.52) (2.88) (0.02) 
(ci): (0.56) (0.49) (0.70) (0.67) 

= -1.5 c12 = -0.375 a 3  = 1.125 b l , 2  = -0.938 b 2 , 3  = 0.375 
n = 16 E = 0.915 Rs = 0.969 nmis =' I(O) 

LOO: Rs = 0.833 nmis = 4(0) 

Ascites Sarcoma 

z^= -2.10Vwx+ 1.750g-O.53B4,z- 1.12 
( t ) :  (1.53) (3.75) (1.53) (0.94) 
(ci): (0.42) (0.83) (0.41) 

al = -1.571 a2 = -0.429 a3 = 1.143 b 1 , 2  = -1 b2,3 = 0.357 
n = 14 E = 1.333Rs = 0.876 nmis = 2(0) 

LOO: Rs = 0.706 nmis = 4(0) 

It was interesting to find that in contrast to the solid sarcoma test system the X 
substituents appeared to have no electronic influence on the ascites test results and 
that, furthermore, the steric effects of the Z substituents in this data set is best de- 
scribed by the largest width, B4. Compounds which have been misclassified in the 
training sets and mispredicted in the LOO cross-validation are shown in Table 1. 
According to Moriguchi et al. [5, 191 and Tetko et al. [23] compounds 5, 13, 15 and 
16 are mispredicted in a LOO run of Eq. (21) whereas we found mispredictions for 
the derivatives 5 and 13, 14, and 15 in all runs with /3 = 0.01, 0.03 and 0.05, or when 
applying the procedure outlined in Fig. 1. Probably two values have been in- 
advertently interchanged in the analysis undertaken by Moriguchi et al. [5]. 

4.4.3.2 Inhibition of Calmodulin Activated Phosphodiesterase 

This next section deals with chloropromazine-type inhibitors of calmodulin activated 
phosphodiesterase [ 14, 211. Although activity data of 53 compounds were available, 
the mode of inhibition was not completely understood. However, it was known that 
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24 of the analogues could be categorized into three different types (I, 11, 111) of 
calmodulin inhibitors, whereas 29 compounds could not be categorized as such. The 
24 compounds for which the inhibitory mode of action was known were analyzed 
by LDA to clarify the structural characteristics of the three groups of inhibitors and 
this information was used to classify the 29 analogs. Finally, the combined set of 31 
type I compounds (6 derived from the first group of 24, and 25 obtained from the 
second group of 29) was investigated by ALS to identify properties responsible for 
their assignment to the three classes of activity. In this investigation physico- 
chemical characteristics of stable and semi-stable “candidate conformers” of flexible 
derivatives were considered (22 compounds with one conformer, 7 with two con- 
formers and 2 with three conformers). Using conformation-dependent descriptors in 
the QSAR analysis, a simultaneous selection of the best set of conformers and the 
best subset of descriptors was performed [56!]. (A similar analysis with simultaneous 
selection of sets has also been performed by Yoshii et al. [15]). The technique of 
simultaneously selecting the best set of descriptors and conformers is certainly prone 
to giving chance correlations. Nevertheless, this approach of, first, determining a 
group of isomechanistic compounds by LDA, and then investigating QSARs for the 
activity ranking within the homogeneous group, is very interesting. Moriguchi et al. 
[5] showed that the discrimination between compounds with different types of activi- 
ty can also be performed by ALS when only two types are considered or one type 
is compared with several others. 

4.4.3.3 Fungicidal Methyl N-Phenylcarbamates 

A few years ago Takahashi and Kirino et al. [31] determined the fungicidal activity 
of methyl N-phenylcarbamates against gray mold of cucumber caused by Botrytis 
cinerea resistant to benzimidazole fungicides. Two test systems were investigated: 

a) the preventive activity (2 classes) after foliar application in pot tests that can be 

b) an in vitro test for the determination of the concentration required for the 50% 
viewed as a type of “in vivo” test, and 

inhibition of mycelial growth (plCs0). 

Interestingly, the activity classes observed for 19 derivatives in test a) could be quan- 
titatively described in a linear ALS equation by pZC50 values and by substituent 
lipophilicity (nmis,LOO = 0). Obviously, these variables are descriptors of specific ac- 
tivity and transport properties. Furthermore, pZC50 values of 69 compounds showed 
a significant correlation with the physico-chemical substituent effects. Similar rela- 
tionships between quantitative in vivo and in vitro test results have often been found, 
e.g. in medicinal chemistry. This type of intercorrelation is, however, not frequently 
described for quantitative and semi-quantitative data. Clearly the two relationships 
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mentioned above can be used to predict the in vivo classification of homologous 
compounds . 

A successful prediction of the activity rating of (morpholinocarbony1)furoindoles 
with analgesic and anti-inflammatory activities has been described by Kawashima 
and Moriguchi et al. [lo, 111. After analyzing the semi-quantitative data (3 classes) 
of 38 derivatives by the ALS technique these researchers synthesized 15 additional 
compounds to confirm the correlations obtained. Fortunately, in both test sytems 13 
of the additional derivatives showed class 3 activity. 

4.4.3.4 Antihypertensive AcryloyJpiperazinoquinazolines 

In this latter part of Sec. 4.4.3 dose- and property-dependent activity classes of an- 
tihypertensive acryloylpiperazinoquinazolines (11) are analyzed by the ALS tech- 
nique [ 5 5 ] .  

A few years ago Schaper 1.571 showed that single or all measurements from several 
dose-response curves can be included in a correlation of logit(% effect) with 
physico-chemical descriptors and log (concentration): 

logit(%) = log(%/(lOO-Yo)) = b*log I/ED,,+b *log C (23) 

log 1 /ED,() = a0 + a, x, +a&, + . . . (24) 

logit(%) = bo+b,X,  +b,X,+. . . +b*logC (25) 

Using ALS, Schaper and Saxena [34] later showed that this same approach could 
be applied to activity classes, thus, taking into consideration experimental uncertain- 
ties in the data as well as allowing for the inclusion of 0% and 100% effect data for 
which the logit transformation is not defined. This method is demonstrated here 
with the example of the antihypertensives (11) investigated by Sekiya et al. 1581. This 
data set was analyzed previously using ALS [59] and other methods [22, 32, 35, 601 
without taking into consideration the dose-dependence. To make the analysis easier 
we restricted ourselves to aryl acryloyl derivatives (11, aryl = substituted phenyl) 
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Table 2. The observed, calculated and predicted (LOO-cross-validated) activity data for a given dose of 
2-(4-Acryloylpiperazino)-4-amino-6,7-dimethoxyquinazolines (11) 

R Dose Activity Class Activity Score Z 
1% 
M/kg Obsd. Calc. Pred. Calc. Pred. 

3 h  6 h  3 h a  6 h b  3 h a  6 h b  3 h a  3 h a  

H 

2-Me 

3-Me 
4-Me 
4-i-Pr 
2-Me0 
3-Me0 
4-Me0 

2-Et0 
4-Et0 

4-i-Pro 
3,5-(Me0), 
2,3 ,4-(Me0)3 
4-c1 

4-Br 
3-N02 
3-CF3 

3,4-c1, 

-5.182 
- 5.659 
-6.182 
- 4.646 
-5.169 
- 5.646 
-4.655 
- 5.227 
- 4.664 
- 4.699 
-4.710 
- 4.653 
-5.176 
- 5.653 
-4.714 
-5.189 
- 5.666 
-6.189 
- 4.726 
- 4.709 
- 4.707 
- 4.702 
- 4.689 
- 4.750 
-4.715 
- 4.696 

2 
2 
1 
3 
2 
1 
2 
2 
1 

1 
2 
3 
2 
2 
1 
2 
2 
1 
2 
1 
2 
1 
1 
2 
1 
1 

2 
2 
2 
3 
2 
1 
2 
1 
1 
1 
2 
3 
3 
2 

3 
3 
1 
2 
1 
2 
2 
1 
2 
1 
1 

- 

2 2 
2 2 
1 2 
2 2 
2 2 
I 1 
2 2 
2 2 
1 1 
1 1 
2 2 
3 3 
2 3 
2 2 
1 
2 2 
2 2 
1 1 
2 2 
1 1 
2 2 
1 2 
1 1 
2 2 
1 1 
1 1 

- 

2 
2 
I 
2 
2 
2 
3 
2 
2 
1 
2 
3 
2 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
2 
1 
1 

2 
2 
2 
2 
2 
2 
3 
2 
I 
2 
2 
3 
2 
2 

2 
2 
1 
2 
1 
3 
2 
1 
2 
1 
1 

0.194 
-0.180 
-0.589 

0.547 
0.137 

1.253 
1.044 

- 0.236 

-0.243 
-0.518 

0.249 
1.382 
0.972 
0.599 

- 0.534 
0.212 

-0.162 
-0.571 

0.526 
- 2.202 

0.860 
- 0.235 
- 1.373 
-0.103 
- 1.686 
- 0.681 

0.214 
- 0.200 
-0.712 

0.521 
0.135 

-0.238 
1.447 
1.075 
0.073 

0.272 
1.415 
I .003 
0.624 

-0.549 
0.200 

-0.158 
- 0.624 

-0.614 

0.512 

0.918 
- 2.454 

- 0.026 
- 1.436 
-0.103 
- 1.814 
- 0.757 

a calc. by Eq. (29), see cut-off points in Table 6. 
calc. by Eq. (30), see cut-off points in Table 6. 

whereas previously published analyses investigated a more heterogeneous set of com- 
pounds (aryl = substituted phenyl, furyl, thienyl). The molar doses and activity 
ratings observed three and six hours after oral administration of drugs to rats are 
listed in Table 2 .  A graphical illustration of the dose-dependent activity classes 3 h 
after administration is given in Fig. 3. Table 3 presents a list of descriptor values used 
in the analysis. Values for the resonance effect r *R and the field effect f *F were ob- 
tained from Ref. [61] and the remaining data from Ref. [62].  

Preliminary ALS analyses with different sets of descriptors showed inconclusive 
results because of the numerical instability of some regression coefficients. Indeed, 
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Figure 3. Classes of  antihypertensive activity of 18 cinnamoyl-piperazinoquinazolines (11) observed 3 
hours after oral administration of different doses to rats. The R groups are shown with the position of 
substitution on the phenyl ring indicated. (Class 1: no  significant blood pressure reduction (BPR) 
(BPR < 10%); class 2: 10% 5 BPR < 20%; class 3: 20% 5 BPR < 30%). 

this effect could be traced back to intercorrelations among descriptors. In  such a 
situation, principal component analysis (PCA) [47, 481 may be useful for obtaining 
uncorrelated parameters. Table 4 shows the correlation matrix of the continuous 
variables considered in this analysis. The multiple correlation coefficients RmUlt, of 
the regression between every one descriptor and the remaining regressors is given in 
the bottom row. An inspection of the correlation matrix suggests that there is no 
serious intercorrelation among descriptors. However, the Rmult, values clearly show 
the opposite and underline the necessity for a more detailed analysis. (It is unusual 
though to use E R and o simultaneously in one regression analysis, but here they 
are considered in conjunction in order to obtain a better description of the electronic 
effects). Performing a PCA with subsequent VARIMAX rotation [47] based on the 
correlation matrix in Table 4 results in the loadings of descriptors onto four 
VARIMAX-rotated principal components (PCVRs), listed in Table 5, and onto the 
PCVR scores of the measurements, listed in Table 3. The high loading values in Table 
5 show that PCVRI is mainly an expression of the resonance effect, whereas 
PCVR2, PCVR3 and PCVR4 represent the field effect, the bulk effect of meta/para 
positions and the overall substituent lipophilicity, respectively. As PCVR 3 and 
PCVR4 represent almost pure substituent effects, they may also be used in the 
form of (PCVR 3)2 and (PCVR4)2 to investigate whether non-linear relationships 
between the activity ranking and these substituent effects do exist. In previous 
analyses [22, 32, 35, 59, 601 performed on one section of the data given by Sekiya 
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Table 3. Physico-chemical property data of 2-(4-acryloylpiperazino)-4-amino-6,7-dimethoxyquinazolines 
(11); (Xo,m,p-position for columns 1 to 4, u, = up; EMR = XMR,,,,,p; MI?, = MRorfho; PCVR 1 
to PCVR4 = scaled and VARIMAX-rotated principal components derived from the values given in col- 
umns I to 5). 

R ZfF D R  Xu Zn EMR MR, PCVR1 PCVR2 PCVR3 PCVR4 

H 

2-Me 

3-Me 
4-Me 
4-i-Pr 
2-Me0 
3-Me0 
4-Me0 

2-Et0 
4-Et0 

4-i-Pro 
3,5-(Me0), 
2,3,4-(MeO), 
4-C1 
3 , 4 4 2  
4-Br 
3-NO2 
3-CF3 

0.000 0.000 0.00 0.00 3.09 1.03 0.587 -0.855 -0.753 
0.000 0.000 0.00 0.00 3.09 1.03 0.587 -0.855 -0.753 
0.000 0.000 0.00 0.00 3.09 1.03 0.587 -0.855 -0.753 

-0.065 -0.122 -0.17 0.56 3.09 5.65 -0.221 -0.735 -1.197 
-0.065 -0.122 -0.17 0.56 3.09 5.65 -0.221 -0.735 - 1.197 
-0.065 -0.122 -0.17 0.56 3.09 5.65 -0.221 -0.735 -1.197 
-0.051 -0.049 -0.07 0.56 7.71 1.03 0.413 -1.147 0.036 
-0.052 -0.141 -0.17 0.56 7.71 1.03 -0.004 -1.074 -0.078 
-0.080 -0.120 -0.15 1.53 17.04 1.03 0.292 -1.634 1.712 

0.515 -0.432 -0.27 -0.02 3.09 7.87 -1.060 0.744 -1.611 
0.405 -0.174 0.12 -0.02 9.93 1.03 0.753 -0.217 0.546 
0.413 -0.500 -0.27 -0.02 9.93 1.03 -0.800 0.044 0.116 
0.413 -0.500 -0.27 -0.02 9.93 1.03 -0.800 0.044 0.116 
0.413 -0.500 -0.27 -0.02 9.93 1.03 -0.800 0.044 0.116 
0.356 -0.383 -0.24 0.38 3.09 12.47 -0.988 0.478 -1.664 
0.363 -0.444 -0.24 0.38 14.53 1.03 -0.474 -0.394 1.118 
0.363 -0.444 -0.24 0.38 14.53 1.03 -0.474 -0.394 1.118 
0.363 -0.444 -0.24 0.38 14.53 1.03 -0.474 -0.394 1.118 
0.488 -0.724 -0.45 1.05 19.12 1.03 -1.540 -0.000 1.454 
0.809 -0.347 0.24 -0.04 16.77 1.03 0.921 0.418 1.846 
1.333 -1.105 -0.42 -0.06 16.77 7.87 -2.278 2.279 0.558 
0.690 -0.161 0.23 0.71 8.09 1.03 0.593 0.855 -0.511 
1.366 -0.217 0.60 1.42 13.09 1.03 1.133 2.466 -0.115 
0.727 -0.176 0.23 0.86 10.94 1.03 0.662 0.763 0.065 
1.087 0.054 0.71 -0.28 9.42 1.03 2.409 1.263 0.453 
0.618 0.065 0.43 0.88 7.08 1.03 1.421 0.625 -0.541 

-0.831 
-0.831 
-0.831 

0.504 
0.504 
0.504 
0.263 
0.320 
2.102 

- 0.537 
- 1.043 
-0.828 
-0.828 
- 0.828 

0.302 
-0.155 
-0.155 
-0.155 

1.344 
- 1.256 
- 0.747 

0.718 
2.190 
0.951 

- 1.680 
0.999 

Table 4. Correlation matrix and multiple correlation coefficients of the continuous descriptors of Table 
3 (n  = 26). 

EfFo, m, p 1 .ooo 
XrRo, m,p - 0.422 1 .ooo 
ZrJp, m, 0 = p 0.439 0.620 1.000 
=no*m,p - 0.036 0.155 0.123 1 .ooo 
= ~ R m *  m,,p 0.490 - 0.574 - 0.075 0.270 1 .ooo 

Rmult.: 0.994 0.997 0.996 0.624 0.894 
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Table 5. Loadings of five variables (columns 1 to 5 of Table 3) onto VARIMAX-rotated principal com- 
ponents PCVR 1 to 4 and corresponding eigenvalues of PCVRs. 

PCVR 1 PCVR 2 PCVR3 PCVR4 

ZfF 0.075 0.957 0.274 - 0.044 
ZrR 0.836 - 0.400 - 0.357 0.112 

=ap,m,o = p 0.915 0.397 - 0.022 0.057 
0.093 - 0.038 0.134 0.986 ' n p ,  m. o 

ZMRm, m ' , p  -0.186 0.268 0.929 0.176 

eigenvalue 1.586 1.307 1.084 1.021 

[59], the indicator variable Io-OR was found to be significant. Therefore, we have 
also included this descriptor as well as the indicator 1o-R and MR, (= MRortho). 
Finally, of course, the dose (logM/kg) is also added to the descriptor set. Using 
logM/kg, the PCVRs and one of the ortho-effect descriptors the ALS analysis 
could be performed without encountering any problems. The stepwise regression 
analysis of the 3 h data leading to the most significant relationship (Eq. (29)) is il- 
lustrated in Table 6. The final equation for the 6 h data (Eq. (30)) was obtained 
analogously and is also presented in Table 6. 

Using I,-,, or Zo-R instead of MR, did not lead to improved equations. This is 
in contrast to the ALS equation by Sekiya [59] (referred to by Moriguchi et al. [60]) 
which shows that o-OR groups are unfavorable for activity. Unfortunately, the paper 
by Sekiya is not available in this laboratory. According to Moriguchi et al. [60] the 
more heterogeneous data set given by Sekiya [58,59] is, furthermore, described most- 
ly in terms of lipophilicity and electronic effects, both having a negative effect on 
activity. The same dependence on electronic effects is indicated by Eqs. (29) and (30), 
whereas lipophilicity reaches the border of significance. Interestingly, both equations 
show a non-linear decrease of activity with steric bulk at the meta and para position 
(= PCVR 3). This effect was possibly not tested by Sekiya [59,60]. In Table 2 the ob- 
served activity classes are compared with the ratings calculated using Eqs. 29 and 30 
and with those predicted by the LOO cross-validation. Calculated and predicted ac- 
tivity scores Zcalc, obtained from Eq. 29 are also listed in Table 2. Fig. 4 shows the 
dose-dependence of Zcalc, as calculated from Eq. (29) for the 18 compounds (with 
n = 26 doses) of the 3 h data set. The only misclassification occurs at the highest 
dose in regression line 8 (R = 2-Me) with a Zcalc, value almost in the center of the 
class 2 range (class 3 had been observed). For this measurement, the LOO procedure 
(mis)predicts almost the same value (Zpred,=Zcalc,, see Table 2) whereas all other 
mispredicted values have Zpred. values near to the cut-off points. 



Table 6. Stepwise ALS regression analysis of 3 h activity ratings (Eqs. (26) - (29)) and of 6 h data (Eq. (30)) using the activity data in Table 2 and descriptor 
values in Table 3a.b. P 

A 
rl 

logM/kg PCVR1 PCVR2 PCVR3 (PCVR3)z PCVR4 (PCVR4)2 MR, intercept nmis R, LOO Eq. 
(=RC)  (=Fd) (=Z.MR,,,,,) ( =Crr) 

nmis RS 
$ 

(2.82)e (2.89) (2.68) (0.06) (2.30) (1.30) (0.03) (0.38) (2.98) ? 
1.093 -0.66 -0.55 -0.02 -0.52 - 0.23 0.005 -0.04 5.81 l(0) 0.977 7(0) 0.641 (26) % 

(0.51)f (0.66) (0.55) (0.02) (0.54) (0.23) (0.01) (0.14) 

1.02 -0.66 -0.54 - 0.53 - 0.25 
(3.05) (4.05) (3.29) (3.32) (1.71) 
(0.50) (0.66) (0.54) (0.55) (0.25) 

-0.06 5.78 1(0) 0.977 7(0) 0.641 (27) 
(0.94) (3.31) 
(0.17) 

0.91 -0.59 -0.55 - 0.57 - 0.21 
(2.71) (4.08) (3.43) (3.93) (1.44) 
(0.45) (0.59) (0.55) (0.59) (0.21) 

5.14 l(0) 0.977 7(0) 0.641 (28) 
(2.97) 

0.78 -0.68 -0.58 - 0.63 
(2.32) (4.49) (3.49) (4.19) 
(0.39) (0.68) (0.58) (0.66) 

4.51 l(0) 0.977 4(0) 0.773 (29) 
(2.58) 

0.62 -0.52 -0.47 - 0.58 - 0.32 
(1.36) (2.58) (2.12) (2.73) (1.56) 
(0.31) (0.52) (0.48) (0.57) (0.32) 

3.57 4(0) 0.866 9(0) 0.644 (30) 
(1.50) 

a 3 h d a t a ( n = 2 6 ) :  a , =  -1.154 uz=0.692 a3=1.846 b,,,= -0.231 b2,,=1.269 
6 h data (n  = 25): al  = - 1.280 u2 = 0.320 u3 = 1.600 bl ,2  = -0.480 b2,3 = 0.960 
R = resonance effect (c i )  = contribution index F = field effect (1) = t-test value 
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Figure 4. Illustration of the dose-dependence of 3 h activity scores ZCaIc, obtained from Eq. (29) for the 
18 cinnamoylpiperazinoquinazolines (11). The following are the R groups substituted on the phenyl group 
with positions indicated. 1 4-Me; 2 4-Me0; 3 3-Me; 4 2,3,4-(MeO),; 5 4-Et0; 6 H; 7 4-i-Pro; 8 2-Me; 
9 3-Me0; 10 4-Br; 11 4-C1; 12 4-i-Pr; 13 2-Me0; 14 2-Et0; 15 3-CF3; 16 3,4-C1,; 17 3-N02; 18 
3,5-(Me0)2. 

4.4.4 Comparison of ALS with Other Methods 

ALS has been extensively compared with other methods for classification and pat- 
tern recognition such as with for instance LDA [2-6, 9, 24, 271, kNN [2, 4, 6, 9, 
24, 26, 28, 29, 381, LLM [24, 29, 381, FALS [19, 22, 23, 601, Artificial Neural Net- 
works (ANN) [22, 23, 32, 35, 391, Funclink [22, 601, SIMCA [9], MLR [3], Bayes 
statistics [29], Iterative Least Squares [29] and Non-linear Regression (NLR) [39]. 
Generally, ALS is a good contender compared with other methods (except for FALS 
and Funclink). Frequently, ALS provides a better description of the training set data, 
whereas its predictive power is approximately similar to other techniques. Specific 
results obtained by different methods for the previously discussed 3-class mitomycin 
data sets in Table 1 are compared in Table 7. The favorable results obtained by 
Moriguchi et al. [60] with ANN for the training set in contrast to the unfavorable 
results obtained from the LOO cross-validation are obviously an indication of over- 
fitting by estimating too many ANN weights (memory effect). 

Wiese and Schaper [39] recently compared ALS with ANN and NLR in the 
analysis of dose- and property-dependent 070 effect data [63] of acaricidal 
chloromethanesulfonamides (CICH2SO2NR’R2). They also analyzed the effect of 
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Table 7. Comparison of the classification results obtained by different methods for the 3-class data sets 
of Table 1 ;  (a) training set data, (b) LOO cross-validation. 

Method Solid Sarcoma 

“mis Rs 

~ 

Ascites Sarcoma Ref. 

0.878 
0.706 
0.795 
0.667 
0.876 
0.876 
0.931 
0.93 1 
1 
0.548 

Table 8. Comparison of the classification results for acaricidal chloromethanesulfonamides obtained by 
different methods with different class limitsa; (a) training set data, (b) LOO cross-validation; n = 43. 

a class 1 class 2 class 3 class 4 
class limits (I): < 6O%, 60 to <80% 80 to 90% > 90% 
class limits (11): <35%, 35 to <65%, 65 to 8S%,  > 85% 
class limits (111): <30%, 30 to <TO%, 70 to 8570, > 85% 
Ref. [55] 

different a priori classification schemes on the predictive power, i.e. unequally spaced 
class limits in the test data chosen by the authors [63] were changed to more evenly 
spaced 070 effect ranges. The class limits and classification results are listed in Table 
8. In this investigation, unclassified 070 effect data were analyzed by ANN and NLR 
with a posteriori classification according to class limits. The results showed that the 
classification capability of all three methods was dependent on the chosen class 
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limits and that the class ranges (I) appeared to be optimal. Furthermore, it was found 
that ALS could describe the observed activity classes better than NLR and ANN. 
On comparing LOO predictions all three methods gave similar results. 

4.4.5 Non-linear ALS Analysis 

With the exception of one paper [33], only linear regression type ALS analysis has 
until now been described to our knowledge. However, in the last decade it has 
become obvious that increasingly non-linear functions are required to obtain a satis- 
factory description of biological activity data. Therefore, non-linear relationships 
should also be considered for the analysis of classified data. Within the framework 
of the ALS method this means that the MLR procedure must be replaced by non- 
linear regression (NLR) analysis [42]. Unfortunately, NLR is not as straightforward 
as MLR. Within each ALS cycle an iterative optimization of NLR coefficients must 
be performed, and furthermore, a specific (non-linear) function must be provided. 

In the field of QSAR “bilinear” relationships are often determined between activi- 
ty and log P [62, 641. Therefore, an artificial data set based on Eq. (31) has been 
generated to show a non-linear ALS analysis. In Sec. 4.4.5.1 experimental data are 
analyzed. 

Y =  1.5l0gP-210g(IO-’P+1)+5 (31) 

Unclassified activities Y calculated using Eq. (3 1) and the corresponding “observed” 
activity classes are listed in Table 9. Usually it is possible to approximately fit bilinear 
data to a parabolic relationship. If this approach is applied to this data set, the 
following equation is obtained by linear (!) ALS analysis: 

Z = 0.451 log P- 0.102 (log P)2 + 0.385 
( f ) :  (5.22) (6.26) ( I  .66) 
(ci): (1.45) (1.74) 

U I  = -1.375 ~2 = -0.125 ~3 = 1.125 b1.2 = -0.75 b 2 , 3  = 0.5625 
IZ = 16 E = 0.804 Rs = 0.963 nmis = l(0) 

LOO: R, = 0.702 nmis = 6(0) 

Obviously, the description of the total (training) set by this equation is quite good. 
However, the LOO results clearly show that this model is not really suitable. Of 
course the bilinear fit is definitely superior: 

Z =  0.738logP- 1.18910g(IO-’~574P+1)+0.339 (33) 
( t ) :  (5.79) (7.65) (2.76) (1.35) 
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Table 9. Artificial activity data Y generated by a bilinear relationship (Eq. 31) and the corresponding 
“observed” activity classes analyzed by linear (parabolic) and non-linear (bilinear) ALS technique 
(Eqs. (32) and (33)). 

~~~~~~~~~~~~~~~~ 

No. IogP Ya Activity Class 2 2 
calc.d pred.d,e 

“obsd” calc.‘ pred.c,e calc.d pred. d,e 

1 - 4  
2 - 3  
3 - 2  
4 -1.5 
5 - 1  
6 -0.5 
7 0 
8 0.5 
9 1 

10 1.5 
11 2 
12 2.5 
13 3 
14 4 
15 6 
16 8 

- I .ooo 
0.500 
1.999 
2.747 
3.491 
4.223 
4.917 
5.51 1 
5.898 
6.011 
5.917 
5.123 
5.491 
4.999 
4.000 
3.000 

1 
1 
1 
1 
2 
2 
2 
3 
3 
3 
3 
3 
3 
2 
2 
1 

1 1 
1 1 
1 2 
2 2 
2 2 
2 2 
2 2 
3 2 
3 2 
3 3 
3 3 
3 3 
3 3 
2 3 
2 1 
1 1 

1 
1 
1 
1 
2 
2 
2 
3 
3 
3 
3 
3 
3 
2 
2 
1 

1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
2 
1 

-2.615 
- 1.877 
- 1.138 
- 0.769 
- 0.401 
- 0.035 

0.325 
0.666 
0.955 
1.130 
1.144 
1.025 
0.839 
0.405 

- 0.494 
- 1.395 

- 2.960 
- 2.052 
- 1.212 
- 0.624 
- 0.452 
- 0.028 

0.277 
0.518 
0.986 
1.256 
1.317 
I .240 
1 .ooo 
0.733 

-0.495 
- 1.708 

a Eq. (31); class 1: Y<3.25; class 2: 3.255 Y55.25; class 3: 5.25< Y; Eq. (32); Eq. (33); LOO 
cross-validation 

2 ( 1 1 b ( I I I ( I ! I I I I J ( I I I  I , , / [  

8 9 10 11 12 13 u - 

- 

D -  

1 ’  16 

I I J 1 l l l l l l l l l l , , l l l , l I , , I  

-3 - .I - 

-4  -2 0 2 4 6 8 
log P 

Figure 5. Two different fits (Eqs. (32) and (33)) to the artificial class data of Table 
(parabolic) (------) and non-linear (bilinear) (-) ALS analysis. Starting scores are 

9 obtained by linear 
indicated by squares 
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n =  16 E=0.299 R s =  1 nmis = 0 
LOO: R ,  = 0.853 nmis = 3(0) 

The optimal l o g P  values as defined by Eqs. (31), (32) and (33) are 1.48, 2.21 and 
1.79, respectively. Fig. 5 shows the starting scores (ai values) of the compounds as 
well as the curves calculated by Eqs. (32) and (33). 

4.4.5.1 Non-linear ALS Analysis of Activity Data of Enantiomeric Mixtures 

Recently Schaper [33, 651 showed that the biological activity of combined drugs that 
are mutually exclusive in their binding to a common receptor site can be described 
by the non-linear relationship (34). This relationship holds true also for mixtures of 
stereoisomers/enantiomers. 

where 

Y , .  , j  = activity (log 1/ECS0) of the mixture of drugs/isomers 1 . . J ;  

Yi 
f i  

= activity of the pure isomer/enantiomer i ;  
= mole fraction of isomer i in the mixture. 

(34) 

The activities of pure enantiomers are dependent on their physico-chemical proper- 
ties. This dependence may also be recognized by QSAR analysis of activity data of 
incompletely resolved enantiomeric mixtures. 

This approach has, indeed, been applied by Schaper [33] to the PED,~ data given 
by Manabe et al. [66] who investigated the fungicidal effect of chiral N- 
acylimidazoles against powdery 
mildew on barley. Ten compounds were tested as racemates and four of these 
racemates were also tested after being resolved into the (+)- and (-)-enantiomers. 
However, all purified isomers were still contaminated with the other optical isomer 
by up to 6.5%. This contamination of course is accounted for in terms of the mole 
fractions in Eqs.(34) and (35). The absolute configuration of the isomers is un- 
known, but as all (+)-enantiomen were found to be more active than the (-)- 
enantiomers it may be safe to assume that all (+)-isomers have the same configura- 
tion. For two enantiomers ((-)-H, (-)-OMe, see Table 10) the activity was determin- 
ed as pED5,<3.7 [66]. Schaper [33] employed an arbitrary value of pED5, = 3.4 in 
the NLR anaiysis although assuming that this approach might not be correct. 
Therefore we classified all compounds into four activity classes (Table 10) which 
classify the two inactives into the lowest activity class 1.  Using the same equation 
as in the NLR analysis [33], an excellent description of the class data by the field 

(acyl = 4 -X- Ph  - CH2 - C*H(t- Bu) - CO -) 
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Table 10. Fungicidal activity of chiral2-(4-X-Benzyl)-2-t-butylacetylimidazoles towards powdery mildew 
(Erysiphe graminis) on barley; comparison of the observed pED,, values and activity classes with 
classes obtained by non-linear ALS analysis (Eq. (35)). 

No. X Opt. Purity E. gram. Activity Class Zcalc.d F Bl 
f ( + )  f(-) P W O  

obsd. a calc. b,d  pred. ' g d  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

( + )-H 
( - 1-H 
(*)-H 
( + )-OMe 
( - )-OMe 
( t )-OMe 
( + )-CI 
( - )-c1 
( t )-c1 
( + )-Br 
(-)-Br 
(?)-Br 
(*)-I 
( _t )-NO, 
(k )-CF, 
( * )-CN 
(*)-Me 
( * )-SMe 

0.999 
0.003 
0.500 
0.980 
0.01 1 
0.500 
0.950 
0.037 
0.500 
0.935 
0.049 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 

0.001 
0.997 
0.500 
0.020 
0.989 
0.500 
0.050 
0.963 
0.500 
0.065 
0.951 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 

4.33 2 2 
<3.70 1 1 

4.34 2 2 
5.15 3 3 

<3.70 1 1 
5.15 3 3 
6.35 4 4 
4.82 2 3 
6.35 4 4 
6.29 4 4 
5.22 3 3 
6.06 4 4 
5.89 4 4 
5.92 4 4 
5.96 4 4 
6.34 4 4 
4.66 2 2 
5.14 3 3 

2 
1 
1 
3 
2 
3 
4 
3 
3 
4 
3 
4 
4 
4 
4 
4 
3 
2 

- 1.102 
- 2.404 
- 1.382 
- 0.043 
- 1.612 
- 0.329 

0.898 
- 0.471 

0.621 
1.164 

- 0.097 
0.893 
1.075 
1.074 
0.798 
0.576 

0.009 
- 0.779 

0.00 1.00 
0.00 1.00 
0.00 1.00 
0.26 1.35 
0.26 1.35 
0.26 1.35 
0.41 1.80 
0.41 1.80 
0.41 1.80 
0.44 1.95 
0.44 1.95 
0.44 1.95 
0.40 2.15 
0.67 1.70 
0.38 1.98 
0.51 1.60 
0.04 1.52 
0.20 1.70 

a class 1: pED5,<4.1; class 2: 4.1 ~ p E D ~ ~ s 4 . 9 ;  class 3: 4.9<pED5,<5.7; class 4: 5.7<pED5, 
b ~ l =  - 1 . 7 7 8 , ~ , =  -1.121, C Z ~ =  - 0 . 2 2 2 , ~ ~ , = 1 . 1 1 1 ; b , , , =  -1.444, b,,,= -0,667, b,,,=0.444 

LOO-cross-validation, calc. by Eq. (35) 

effect F and STERIMOL B,  [62] was obtained with the training set (see Table 10) 
and satisfactory results were also obtained using a LOO procedure: 

with 
Zi+) = - 2.467 + 2.265 F+ 1.366 B,  

Zi-1 = - 2.429 + 2.265 F 

(35 b) 

(35 c) 

( t ) :  (4.75) (3.58) (3.61) 

it): (7.27) (3.58) 

IZ = 18 E = 0.295 R, = 0.984 nmis = l(0) 
LOO: R, = 0.879 n,iS = 6(0) 
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4.4.5.2 Analysis of Embedded Data 

ALS is based on the technique of MLR analysis. Therefore, in principle, ALS can 
discriminate only between compound groups and/or activity classes which are 
separated by (linear) hyperplanes in multidimensional space. However, in Fig. 5 it has 
been shown that in the case of a one-dimensional descriptor space, the group of ac- 
tives which are embedded in inactives can be separated from the latter, if a non-linear 
discriminant function is fitted to the data. Usually, the unknown non-linear function 
is approximated by a parabolic relationship which can be analyzed by linear regres- 
sion techniques. Certainly, this approach can also be applied to a multi-dimensional 
descriptor space. For instance, in a 2D space with actives being surrounded by inac- 
tives, 2 values may be described by X I ,  X f  and X 2 ,  X i .  In this case, concentric 
circles or ellipses are formed by the curves which separate actives from inactives. 
However, the axes of these ellipses are necessarily parallel to the descriptor axes. To 
allow discrimination of inactives from actives forming elliptic planes inclined against 
the descriptor coordinate axes, descriptor cross-terms (e.g. X ,  *X2) must be in- 
cluded. 

The artificial embedded data of Fig. 6 has been analyzed by this approach and a 
complete separation of actives from inactives was possible using Eq. (36): 

ẑ  = 0.667X1 - 0.12OXf + 0.867X2 -0.1 19Xi + 0.101 XI X2 - 3.748 (36) 
a ,  = -1 a2= 1 6 , , 2  = 0 

n =  16 E=0.799 Rs= 1 nmis=O 

7 -  

6 -  

5 -  

4 -  

3 -  9 
0 

3 4 5 6 7 8 9 10 

x2 

Figure 6. Illustration of the ellipsoid (obtained from Eq. (36) separating embedded actives (filled circles) 
from inactives (open circles) 
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The transition of actives to inactives is observed at all those points in X space where 
Z = bj,j+l. Therefore, to obtain the equation for the transition curve (ellipsoid) 
shown in Fig. 6, this expression must be substituted into Eq. (36) and the equation 
solved for X ,  or X,. 

This approach to the analysis of embedded data is only feasible in the case of a 
low dimensional descriptor space. In the case of a multi-dimensional space, many 
different cross-terms must be analyzed. Therefore, in this situation, more complex 
methods such as Cluster Significance Analysis [67] or Single Class Discriminant 
Analysis [68] are preferred. 

- 

4.4.6 Fuzzy Adaptive Least Squares (FALS) 

Between 1988 and 1990 Moriguchi et al. [17- 191 introduced an advanced version of 
the ALS method, named Fuzzy Adaptive Least Squares (FALS) and this technique 
is still undergoing further development [20- 221. We shall be discussing only the 
latest developments in this section. 

A novel feature of FALS lies in the classification of objects using the concepts of 
fuzzy theory. Ordered categories contain not only statistical uncertainties, which 
stem from inaccuracies of measurement, but also a “built-in vagueness”, as a result 
of the subjective criteria employed for the classification. Such uncertainties can be 
conceptualized by introducing a membership function that indicates the extent to 
which an object belongs to an activity class. The theory of fuzzy sets [69-711 
enables the representation and handling of vague statements and the uncertainties 
of classifications in a data set. Instead of assigning a sample to a single class, 
samples may belong to more than one class with different degrees of membership 
in each class. With the theory of fuzzy sets decisions can be made on the basis of 
a characteristic function that increases or decreases monotonically with the variable 
of interest (in this case Zcalc.). This function is the membership function that repre- 
sents a fuzzy set over Zcalc.. In contrast to fuzzy set theory, a conventional or crisp 
subset A of a given universe of elements is usually defined by specifying for every 
element of the universe if it is a member of A or not. Mathematically, this can be 
expressed by the membership function that assigns a value of M ( 2 )  = 1 to every ele- 
ment that is a member of the subset A and a value of M ( Z )  = 0 to elements that 
are not members of A .  Fuzzy sets are obtained by a generalization of the concept 
of a membership function to allow for membership values between 0 and 1. To 
illustrate this, for example, the membership in a certain activity class would be ascer- 
tained for an object by determining all those values of Z that have a membership 
value M ( Z )  which is greater than, say, 0.5. The membership function chosen for 
solving a problem by fuzzy set theory depends on the classification problem at 
hand. 
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FALS involves the following changes and extensions of ALS: 

1. FALS is performed in two steps. Step 1 is a complete ALS analysis with 20 itera- 
tions. The best result is used as a starting point in Step 2 (the actual FALS). 

2. For each object the membership value M(Z)  is calculated as a function of Zcalc.. 

3. The ALS correction term C1 depends on M(Z). 

4. The optimization criterion is the product of Rs and the mean membership grade: 
Rs*MMG. 

A flow chart of FALS is shown in Fig. 7. In FALS the a posteriori classification is 
performed by the same algorithm as in ALS (comparison of Zcalc, with cut-off 
points, (refer to text following Eq. (5)). The main difference between ALS and FALS 
is the adaptation step, which in the case of FALS is dependent on the M(Z)  values. 
Moriguchi et al. [17-221 defined the following membership function for a com- 
pound with observed class 1 (Eq. (37a)), c lass j  (j = 1 . .g, Eqs. (37b)-(37d) or class 
g (Eq. (37e)): 

M ( 2 )  = 1 
if j = 1 AND Z1(b1,2-FL1,2) 

1 

l+[(Z-bj-l,j)/FLj-l,j - 1 1 4  
M ( Z )  = 

if j > l  AND Z<(bj-l,j+FLj-,,j) 

(37 4 

(37 b) 

M(Z)  = 1 (37 c) 

if 1 < j < g  AND (bj- +FLj-l,j) < ZI (bj,j+ -FLj,j+ ,) 

1 
M(Z)  = 

1 + [(bj, j+  1 -2)lFLj.j + 1 - 1 i 4  

if j < g  AND (bj,j+l -FLj,j+l)<Z 

M(Z), = 1 

if j = g AND (b,-l,,+FL,-1,,)<2 

(37 d) 

(37 e) 

where Z = 2 = Zcalc, is the Z-value calculated by MLR, and FLjj+ is the fuzzy level, 
a constant quantifying the “fuzziness” or indistinct nature of the boundary between 
class j and class j +  1. FL determines the gradient of the (M(Z) vs ZCa1,)-curves in 
the vicinity of the class boundaries. The gradient decreases with increasing FL values 
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m (t = 1...20) 
L 

I calculation of I RMO" = (Rs*MMG)O" 

, 
Adaptation: 
2"'"" - AD) - 2 + correction I 

I calculation of I RM"' = (Rs * MMG)"' 
I I 

I 
t 

Output of optimal results - 
Figure 7. Flow chart of FALS 

or increasing fuzziness of the boundary between classes. For a three-class problem 
Eqs. (37a)-(37e) describe three curves shown in Fig. 8 which were calculated with 
FL = 0.2 for all class boundaries [72!]. It becomes clear when comparing Fig. 8 with 
Eqs. (37 a) - (37 e) that the upwardly sloping gradient of a membership curve is 
described by Eq. (37 b), whereas the downwardly sloping gradient is described by 
Eq. (37d). Furthermore, it is found that M ( 2 )  = 0.5 whenever 
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0 . 5  

0 . 0  

3 b l  v2 a2 $?;3, I , , 9: I 1 
I , , , , I , , , , T , , , , I , ,  

-1.5 -1 0 - 0 . 5  0 . 0  0 . 5  1.0 1.5 
Zca lc  

Figure 8. Membership function curves calculated for a three-class classification problem with identical 
class sizes using fuzzy level FL = 0.2 at all class boundaries 

In FALS, the adaptation of Zcalc. for the next iteration is performed as in ALS 
(compare Figs. 1 and 7), the correction term is calculated, however, by a different 
equation: 

c?) = a*I[1 -M(~;'))I*FL. J -  1 11'2 if ZI"sa j  (38 a) 

In Eq. (38) a is a constant (usually a = 0.5). According to this equation C;" = 0 if 
Zcalc, is within the range of (bj-,,j+FLj-,,j) to (bj,j+l -FLj,j+l) because then 
M ( Z )  = 1. The correction term is added (Eq. (38a)) if Zcalc, is lower than 
(bj- +FLj- it is subtracted (Eq. (38 b)) if Zcalc. is higher than (b,,j+ -FLj,j+ ,). 
The correction profiles, corresponding to the membership functions of Fig. 8, are 
shown in Fig. 9. 

After adaptation of Zcalc, and subsequent MLR analysis the results obtained are 
evaluated by calculating Rs as well as the mean membership grade MMG, 

The product of Rs and MMG is used as the criterion for the best discrimination in 
Step 2 of FALS. MMG provides a measure of the accuracy of the calculated 
classification, whereas Rs supplements the information concerning the mis- 
classification of more than one rating. Thus, the iterative least squares calculation 
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-0 3 :' 9 ! 2  9 b 2  93 2 3  
I I ' C I  1 6 ,  I " ,  ~I~~~ I [  

- 1 5  -10 - 0 5  0 0  0 5  1 0  1 5  

Z c o l c  

Figure 9. Correction profiles corresponding to Figure 8 calculated for the objects observed in classes 1, 
2, or 3 with identical fuzzy levels (FL = 0.2) at all class boundaries 

is carried out to maximize Z M ( Z )  or to minimize ZC;. Iterations in Step 2 are con- 
tinued until no further improvement of Rs*MMG is observed (with a maximum of 
at least 20 iterations). Clearly also, the results of FALS are validated by the LOO 
prediction. The discriminant function with a scientifically reasonable subset of 
descriptors which gives the best LOO prediction is finally adopted. 

Because of the recent development of FALS, until now only a few papers compar- 
ing the use of this method with other techniques have been published 119, 21 -23, 
601. Generally, FALS compares very favorably with other methods (see Tables 1 and 
7). By applying FALS to the mitomycin data of Table 1 the following equations were 
obtained by Moriguchi et al. [19]: 

Solid Sarcoma 

ẑ  = -5 .650,x-  3.20 Vwx+ 1.660;- 1.64B,,z+0.58 
(ci): (0.70) (0.59) (0.72) (0.74) 

n = 16 MMG = 0.925 Rs = 0.969 nmis = l(0) (FL values not given) 
LOO: MMG 0.883 Rs = 0.901 nmis = 2(0) 

Ascites Sarcoma 
z^= - 1.91 Vwx+ 1.730*y-O.55Bq,~-O.88 
(ci): (0.37) (0.79) (0.41) 

n = 14 MMG = 0.859 Rs = 0.876 nmis = 2(0) (FL values not given) 
LOO: MMG = 0.857 R,  = 0.876 nmiS = 2(0) 
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4.4.7 Advantages and Disadvantages of (F)ALS 

The advantages are: 

- only one QSAR equation is obtained which can be easily interpreted; 
- only a small number of misclassifications is obtained in the training set; 

cross-validation results are at least comparable with other techniques; 
- the approximate significance of regression coefficients can be tested by a t-test; 
- non-linear dependences of activity class rankings on physico-chemical descrip- 

tors may be analyzed by non-linear (F)ALS. 

Furthermore (not shown): 

- calculated activity scores (Zcalc.) obtained by ALS analysis of classified artificial 
data are highly collinear with unclassified artificial data; 

- (F)ALS regression coefficients obtained from classified artificial data are propor- 
tional to the coefficients used to generate the unclassified artificial data; 

The disadvantages: 

- because of the inherent extreme adaptability of (F)ALS the possibility of overfit- 
ting must be considered and cross-validation is absolutely necessary; 

- for iterative techniques such as (F)ALS, cross-validation requires long computa- 
tion times (especially in non-linear (F)ALS); 

- the basic (F)ALS method provides meaningful results only for linearly separable 
data; 

- if data with more than two activity classes is analyzed by (F)ALS then different 
rankings of only one type of activity are allowed; 

- unequivocal statistical tests on the significance of regression coefficients are not 
yet available. 
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Alternating Conditional Expectations 
molar concentration of triazene causing 30 mutations above background in 
10' bacteria 
apparent inhibition constant for dihydrofolate reductase 
molar refractivity 
number of points (compounds) 
hydrophobic substituent constant 
probability (i.e. statistical significance level) 
octanol-water partition coefficient 
Quantitative Structure-Activity Relationships 
density of highest occupied molecular orbital on triazene nitrogen 1 
multiple correlation coefficient 
cross-validated r 2  
standard error of estimate 
residual sum of squares 
sum of squares of deviations from the mean. 

4.5.1 Introduction: Non-Linearity and ACE 

In any quantitative and empirical field of research, the technique of multiple linear 
regression is likely to be useful in discovering a relationship between a variable of 
interest (the response variable) and a set of predictor variables. There is, however, no 
a priori reason to expect relationships to be linear. Indeed, in the field of quantitative 
structure-activity relationships (QSAR) the classic equation of Hansch contains a 
term quadratic in log P. Until recently, there was no easy method of exploring non- 
linearity in data except by extremely laborious and quite unreliable trial-and-error 
procedures, involving the trial of non-linear functions of the predictor variables as 
additional predictor variables. In addition, there was no systematic procedure to 
determine optimal non-linear transformations. However, the situation has now 
changed following the introduction of the Alternating Conditional Expectations 
(ACE) method by Breiman and Friedman [I]. This method was first applied to 
QSAR by Franke and Lanteri [2]. 
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For a dependent variable y and a set of independent variables x,, the ACE meth- 
od involves fitting a set of functions in the form of: 

where f and the g,  are univariate arbitrary non-linear functions, and E is a residual 
error term. The functions f and gi are chosen such that the fit is optimized (i.e. the 
sum of squares of the residuals), being subject only to the condition that they are 
smooth functions. 

In order to remove indeterminacy, it is assumed that f(y) and the g,(xi) have an 
expectation value of zero, and that f ( y )  has unit variance. No particular form is as- 
sumed for these functions and they are obtained iteratively, starting with a linear 
transformation and then alternatingly improving f @ )  and the gi (x i ) ,  and hence the 
name, ACE. Each of the functions is obtained as table, with a pair of numbers repre- 
senting each point. These functions may then be plotted or subjected to conventional 
curve-fitting procedures. It should be noted that ACE is not a general non-linear 
data fitting method and is restricted to fitting sums of univariate non-linear func- 
tions. 

Within the program it is possible to selectively force one or more of the functions 
to be monotonic or linear, or to be excluded. A smoothing algorithm is applied, 
which requires the user to supply a parameter, SPAN. If SPAN is between zero and 
one, then it represents the fraction of the range of y or xi which is averaged in the 
smoothing process. If SPAN is zero, then the range of the smoother is adaptive, and 
is generated by the program. This should only be undertaken when the number of 
points is large (more than 30). Since an optimal fit is then obtained, it is expected 
that this would usually allow for a more parsimonious description of a system than 
would be expected from linear methods, using trial-and-error transformations. 

The value of ACE lies in its ability to give an insight into the form of the optimal 
transforms. While one can often find effective transforms by trial-and-error, the 
amount of work involved escalates rapidly as the number of variables to be tried and 
the number of transformations increases. If rn transformations are to be tried on 
each of n variables, the number of regressions to be tried in an exhaustive search is 
nm. The ACE procedure places no restrictions on the number of transformations; 
all possible transformations are tried at once. 

While it would be unusual to solve a regression problem in a single application 
of ACE, the method does furnish a solution in much less time than would be expect- 
ed in an exhaustive search, and at the same time ensures that no unexpected or 
unusual transformation has been missed. At the same time, it must be recognized 
that ACE can give misleading results, especially with small samples or when there 
are large errors in the data. Therefore, the robustness of the transformations should 
be checked by comparison with ACE runs on the same data but with constraints im- 
posed on the transformations, and by applying of linear or non-linear regression 
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with the transformations have been explicitly imposed. Particular care should be 
taken when the dependent variables is transformed, as the properties of this method 
have not been fully understood and is still under investigation. 

The variance of each transformed variable should be calculated, and provides a 
measure of the relative importance of that variable in the resulting QSAR. Those 
variables with low variance are candidates for constraint to linearity, or for dele- 
tion. This also applies to variables which give physically implausible transformation 

Trials with simulated data show that ACE performs extremely well when the error 
(either random or lack-of-fit) is very small, but that it is undermined when the error 
is larger, especially when the number of points is small, or the number of variables 
large. Under these circumstances, the plots of the transformations become degraded 
in form, and it becomes harder to judge the analytic form of the appropriate trans- 
formation from the plots. In particular, with completely random data, apparent 
good correlations can often be obtained under these conditions. Cross-validation 
serves to control this tendency. 

plots. 

4.5.2 Cross-Validation with ACE 

The use of any statistical technique requires testing the significance of its findings. 
ACE is a complex technique for which no formal statistical tests are available and 
confidence is placed in the non-parametric technique of cross-validation. By analogy 
with conventional regression, an r2  may be defined as (SS,-SS, . ) /SS, ,  where SS,  is 
the sum of squares of deviations from the mean of the response variable, and SS,. 
is the sum of squares of the residuals. A cross-validated r:,, may be defined analo- 
gously, by leaving out groups of points, then running ACE on the points which re- 
main, and finally, predicting the response variable values for the points which had 
been left out. This is repeated until every point has been left out once, and only once. 
The sum of squares of the predicted residuals calculated in this way is used instead 
of SS, mentioned above to give r&. The r2  and rzv values calculated as described 
above, provide a measure of the goodness of fit and the robustness of the ACE 
regression, respectively. 

It has usually been found that r 2  is an excessively optimistic estimate, in that on 
applying standard multiple regression to the data set, with the transformations sug- 
gested by the ACE plots, the r 2  obtained is not as large as that given by ACE. On 
the other hand, the r& is usually smaller than that indicated by conventional regres- 
sion. This occurs because of large errors in the predicted residuals when one or more 
of the predictor variables is extremal. Trials with synthetic data [3] showed that this 
tendency of cross-validation to give misleadingly pessimistic results is was further ex- 
acerbated when either the number of variables was large, the number of points small, 
or when there was considerable random error present in the data. 
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An interesting observation of ACE in QSAR work is the frequent occurrence of 
piecewise linear transformations [2,3]. This can sometimes be explained by physical 
models such as compartment distribution as derived by Kubinyi [4], but in other 
cases, the causes are more obscure [3]. 

4.5.3 The Randomization Test 

Topliss and Edwards [5] have studied the phenomenon of chance correlation in the 
context of multiple linear regression and have published the results of computer sim- 
ulation. This work has been widely interpreted to mean that no useful results can 
be obtained from selecting variables by multiple regression, despite a statement to 
the contrary by these authors. Their results represented the worst case, in which the 
independent variables were uncorrelated. In the case of where there is correlation, 
the effective number of variables is smaller than the actual number, but an extra pro- 
blem now arises, namely multicollinearity. The problem of chance correlation may 
be dealt with by a method suggested by Topliss and Edwards [ 5 ]  with a modification 
by Giles (Giles, D. E., Murdoch University, personal communication, 1990). 

In this method, the values for the dependent variables are randomly reassigned to 
the drugs, keeping the independent variables constant. This procedure is repeated a 
number of times. If the fit obtained with the real data is consistently better than that 
with the reassigned data, the correlation obtained with the real data can be confi- 
dently assumed not to be due to chance. Random reassignment of dependent vari- 
ables in conjunction with ACE effectively demonstrates the relevance of the 
unselected set of variables to the problem in hand, and can also be employed in a 
stepwise linear regression. 

4.5.4 Stepwise Regression with ACE 

Stepwise regression, both forward and backward in the context of multiple linear 
regression has been employed for a long time in statistics and in QSAR analysis. 
Stepwise regression has been relatively unexplored in the context of ACE, but experi- 
ence suggests that with small data sets at least, the equations obtained are not robust, 
and that the transformations derived are unacceptably complex, representing overfit- 
ting. The validation technique described in Sec. 4.5.3 can be applied. Firsf, a maxi- 
mum acceptable number of independent variables must be decided in advance, and 
any run giving more than that number must be discarded. The stepwise selection pro- 
cess is then carried out with the randomized dependent variable, just as in the case 
of unmodified data, and is repeated a number of times. The resulting correlation co- 
efficient data may then be normalized with the Fisher transformation (Afifi and 
Azen [6]) and a significance test may then be applied. In most real cases, this would 
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require excessive demands on computer time and forward stepwise regression with 
ACE should probably be avoided for the above reasons. 

4.5.5 Examples 

Two examples of ACE applied to data taken from the literature are provided. These 
are not necessarily the “best” examples of QSARs in the papers from which they 
were taken, but merely serve as examples of how ACE can illuminate certain aspects 
of the data, and provide transformations which were not apparent in the original 
treatment. 

4.5.5.1 DHFR Inhibitors 

Selassie et al. [7] have presented a set of QSARs for the inhibition of Lactobacillus 
casei dihydrofolate reductase (DHFR) by a series of 68 benzyldiaminopyrimidines of 
the general structure: 

The best equation is as follows: 

log ( 1 /KJ  = 1.1 3 ( f 0.23) MR + 0.47 ( k 0.3 0) MR + 0.5 3 ( f 0.5 1 ) MR, 

- 0.19( k0.29)MRz + 0.34 (fO.30) n3 + 0.25 ( f 0.18) n4 

- 0.62 (k 0.42) log Lp3 (lO*3) + I] 

- 0.78 (f 0.34) log u,( lo*‘) + I ]  + 5.43 (k 0.19) 

n = 68, 2 = 0.726, s = 0.283 

where log p3 = - 1.02 and log p4 = -0.98, the n terms are hydrophobic substituent 
constants, the terms in parentheses are 95% confidence estimates and the MR terms 
are molar refractivities. 

Reanalysis of the data of Selassie et al. [7] by ACE, using the adaptive smoother 
span, resulted in the transformation plots shown in Fig. 1, with an r2 of 0.760, r:” 
of 0.477, and with the variance 0.142 for MR;, 0.035 for n3, 0.165 for n4, 0.386 for 
MRh, and 0.069 for MR,. The variances for n3 and MR, were small, suggesting that 
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these variables were of minor importance. Constraining 7c4 to linearity reduced r 2  to 
0.628, which is an unacceptable loss in the goodness of fit. Constraint on any other 
single variable resulted in little loss. The plot for MR> is almost perfectly linear, and 
the plot for MR; deviates from linearity at one point only, which corresponds to the 
only 3-fluoro compound in the data set. The transformation plot for MR, is not 
feasible, and should be tested for linearity. Constraining M R i  and MRs to 
linearity gave an r2  of 0.740 and an r:" of 0.535. If, in addition, either 7c3 or n4 was 
constrained to linearity, an r2  of 0.705 and 0.613 was obtained, respectively, result- 
ing in an appreciable loss in the goodness of fit in the first case, and unacceptable 
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loss in the goodness of fit in the second case. The transformations of n3 and n4 
point considerably towards a bilinear plot of the kind described by Kubinyi [4], albeit 
in the case of the former, with one highly influential point. This was not the same 
point as in the case of MR;,  but was one of only two compounds that contained 
an alcohol substituent (CH20H). Thus the left-hand side of the bilinear transfor- 
mation of n3 seems doubtful. A similar QSAR to that of the previous mentioned 
authors has been obtained with this method, except that the MR, transformation is 
linear, and the term linear in n3 is doubtful. Examination of the equation published 
(Eq. (2)) showed that the MR: term is statistically not significant, and when this 
term was omitted, r 2  decreased only by 0.005. On omitting the term linear in n3, r 2  
was further decreased by only 0.005. This bordered on statistical significance. 

4.5.5.2 Triazene Mutagenicity 

Shusterman et al. [8] studied the mutagenicities of 17 N-I and phenyl-substituted 
1 -methyl-3-phenyl triazenes, of the following structure: 

The substituents and values of the descriptors are given in Table 1.  
Their equation was as follows: 

i z  = 17, r 2  = 0.789, s = 0.638 

When ACE was applied to their data with SPAN 0.3, the plots shown in Fig. 2 were 
obtained, with r 2  = 0.890, rzv = 0.800 and variances of 0.493 for log P and 0.234 for 
QHOMO. The transformation on qHOMO was almost linear, and when the ACE run 
was repeated with this transformation constrained to linearity, the statistics obtained 
were r 2  = 0.886 and r& = 0.806. The transformation for log P can be viewed as be- 
ing sigmoidal, pointing to a function such as tan- '  x, tanh x, or the logistic func- 
tion, e"/(d'+ 1). While none of these functions was derived from a particular physi- 
cal model, they all point to the same conclusion: biological activity increases with 
increasing log P between the log P values 2 to 3, but below 2 and above 3, the effect 
tends asymptotically to a constant value. That is, below a log P value of 2, fur- 
ther decreases of log P are ineffective in reducing activity further, and similarly, 
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Table 1. Properties of phenyltrianzenes. 

No. R X log P qHOMO log l /C  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

3,5-CN 
4-S02NH2 
3-CONH2 
4-CONH2 
4-CONH2 
3-NHCONH, 
4-CN 
4-COCH3 
H 
4-CONH2 
4-NHCONH2 

4-CF3 
4-NHCOCHs 

3-CH3 
4-C1 
4-CHS 
4-C6H5 

2.18 
0.98 
1.21 
1.20 
2.09 
1.29 
2.39 
2.27 
2.59 
2.46 
1.25 
1.54 
3.70 
2.85 
3.33 
2.93 
4.40 

0.483 
0.507 
0.444 
0.417 
0.426 
0.274 
0.410 
0.409 
0.386 
0.425 
0.260 
0.257 
0.482 
0.380 
0.382 
0.362 
0.202 

3.46 
3.49 
3.51 
4.04 
4.16 
4.19 
4.43 
4.47 
5.32 
5.41 
5.59 
5.83 
5.99 
6.44 
6.48 
7.00 
7.67 
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Figure 2. ACE transformations of the descriptors in Example 2. (A) log P, (B) qHOMO 

above 3, increases in log P are ineffective in increasing activity. Such a phenomenon 
has not been reported previously, and requires further investigation, if it is to be con- 
firmed by studies using alternative models and more compounds. 

Adopting the logistic function in the form of 
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where x = log P, o is the position of the inflection point and w is a width parameter. 
Non-linear regression using the algorithm of Marquardt (Bevington [9]) yielded the 
following results: a = - 7.246, b = 2.327, w = 7.540, o = 2.522, and c = 7.043, with 
r2 = 0.902 and s = 0.436. It can by seen that the position of the inflection point giv- 
en by non-linear regression corresponds well with that obtained by ACE, and that 
the fit is a marked improvement over Equation 2. 

A demonstration of the validity of the ACE regression in this last example is given 
by the randomization procedure described in Sec. 4.5.3. If the dependent variable is 
randomly reassigned, the values of r 2  and & shown in Table 2 were obtained. It will 
be seen that r& is always negative, and that r2 implies, perhaps surprisingly, an ap- 
preciable fit in some cases. This illustrates the tendency of ACE to overfit. If however 
the Fisher transformation is applied to the r2 values followed by a test, based on the 
normal distribution, the r2 from the original data is greater than that from the ran- 
domized data at a very high level of significance ( p  = 2.1 x lo-"). 

Table 2. Series of ACE runs using the data of Table 1. 

r 2  
1 l+ r  

u=-In- 
2 1 - r  

- 0.243 0.244 0.541 
-0.919 0.124 0.367 
- 0.415 0.281 0.591 
- 0.565 0.414 0.764 
- 0.721 0.009 0.097 
- 0.547 0.175 0.446 
- 0.693 0.098 0.323 
- 0.202 0.369 0.750 
- 0.633 0.394 0.737 
- 0.850 0.294 0.607 
-1.111 0.111 0.346 
- 0.935 0.1 12 0.348 
- 0.620 0.434 0.790 
-0.810 0.027 0.165 
- 1.870 0.261 0.564 
- 0.370 0.125 0.370 

Mean 0.488 
S.D. 0.214 

For non-randomized data: r2 = 0.890, u = 1.768, p = 2.1 x The Fisher transformation invoIves 
transforming the correlation coefficient r, which has the range - 1 to 1, into the statistic u, which has 
the range - m to w ,  and is approximately normally distributed [7]. 
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4.5.6 Conclusion 

The ACE method is a very useful technique for determining univariate non-linear 
transformations in multiple linear regression, but some caution in its application is 
necessary. In particular, the application of ACE in a forward stepwise manner to re- 
duce a large pool of predictor variables leads to overfitting of data (i.e. random corre- 
lation) and, consequently, unsatisfactory transformations, unless heavy smoothing 
is applied. Heavy smoothing in turn leads to a loss of resolution in the fitted func- 
tion, defeating the purpose of the ACE analysis. Thus, this application of ACE, at 
least with small samples, cannot be recommended. A backwards stepwise approach, 
starting with a data set, which has already been partially selected by other methods, 
seems more satisfactory. Transformation of the dependent variable should also be 
undertaken with due caution. 

The only technique for assessing the quality of the fit is cross-validation. While 
the cross-validated r 2  decisively rejects data in which the dependent variable has 
been randomized, this leads to an unduly pessimistic estimate of the likely error 
when applied to data, in which a genuine correlation does exist. The ACE technique 
should, therefore, be supplemented with either classical multiple regression, linear or 
non-linear methods to obtain a realistic appraisal of the results. 

The routine use of ACE should be considered whenever transformations are 
sought after in multiple regression analysis. Large amounts of random error result 
in poor transformation curves, and tend to disguise the form of the transformations. 
Provided that random errors are not dominant, ACE suggests feasible transforma- 
tions at a considerable speed, and indicates when it is not possible to obtain a useful 
set of additive non-linear transformations. 

In cross-validation, the calculation of the residual for a point, which is extremal 
in one or more variables, involves extrapolation of the transformation tables. The 
large residuals for extremal points are a warning that the ACE transformations 
should not be extrapolated, and also that the cross-validated r 2  is unduly pessimis- 
tic. As already remarked by Franke and Lanteri [2 ] ,  the conventional r2 is excessive- 
ly optimistic, so perhaps the function of ACE should be to suggest transformations, 
which can then be verified and tested for statistical significance using normal linear 
methods for which the standard F and t tests are available. 
A physical interpretation of the results from an ACE analysis should be based not 

on the transformation plots as such, but on the resulting conventional linear or non- 
linear regression, but should even then be made with due caution. Because of col- 
linearities in the data, such interpretations are necessarily speculative. While it is usu- 
ally not possible to decide, on statistical grounds, which of a group of correlated 
variables is most relevant, it is often found that the members of these groups of vari- 
ables are all indicators of a common physical factor. It must be remembered, how- 
ever, that in the selection of transformations there has been some effective loss of 
degrees of freedom. 
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ACE can, at best, give an indication of the form of an optimal transformation. 
This could be interpreted physically, as with the bilinear transformtion in the first 
example, or it could be quite empirical, as with the logistic function in the second 
example. It is usually possible to assign many different functional forms to such a 
transformation, which from a purely statistical point of view, are indistinguishable 
in the data set at hand. When one of these functions has theoretical significance, the 
ACE transformation can be said to support the physical model underlying that func- 
tion. When, as in the second example, no such physical model is obvious, it is first 
necessary to confirm the form of the transformation. This may be accomplished by 
investigating other methods of selecting descriptors, to determine whether the form 
of the transformation is stable, and by collecting data on more cases, in this case 
drugs. If the transformation is stable, this strongly suggests that some non-linear 
functional relationship is operating, and one then has the task of discovering the na- 
ture and physical significance of such a relationship. This task is beyond the scope 
of statistical methods, but the form of the ACE transformation curves should pro- 
vide some clues. 

4.5.7 Availability 

The ACE method is implemented in the statistics package S-Plus, which is available 
from the CSIRO Division of Mathematics and Statistics, Locked Bag 17, North 
Ryde, NSW 21 13, Australia. The ACE subroutines are also available by email, free 
of charge, as “ace” from statlib over the internet network as follows: 
ftp lib.stat.cmu.edu 
Name statlib 
Password (your email address) 
cd general 
get ace 

This file should be named ace.for. The sub-routines are written in standard FOR- 
TRAN. A set of supporting and driver routines and their documentation are avail- 
able at no charge through internet as follows: 
ftp csuvaxl .murdoch.edu.au 
Name anonymous 
Password (your email address) 
cd pub/chem/martha 
get (filename) 

edit.for, aceprog.for, multlr.for, hpplot.for, exam - lmar, exam - Z.mar, ex- 
am - Lout, exam - Z.out, martha.doc., and readme.txt. The .FOR files are written in 
Microsoft FORTRAN for the PC. They include an interactive editor, a graphics 
package and a conventional multiple linear regression program. Graphics output is 

The required files are: 
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to a HPGL file. In addition to the above, you will need a FORTRAN compiler, pref- 
erably Microsoft, and some means of transfering the HPGL graphics output to a 
hardcopy or screen. It may be necessary to remove a few characters inserted by the 
system from the beginning and end of each file. 
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5.1 Neural Networks - A Tool for Drug Design 
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Abbreviations 

NN 
P C  
QSAR 
BP 
MLR 
ReNDeR 
CoMFA 
LOO 

Neural Network 
Personal Computer 
Quantitative Structure-Activity Relationships 
Back Propagation 
Multiple Linear Regression 
Reversible Non-linear Dimension Reduction 
Comparative Molecular Field Analysis 
Leave-One-Out. 

5.1.1 Introduction 

In the last few years there has been an explosion of interest in the field of artificial 
intelligence known as neural networks [ I ,  21. This has not only involved research into 
the techniques themselves but has included the practical application of these meth- 
ods to a wide variety of existing problems in our society. Neural networks are 
employed inter alia in the recognition of handwriting for cheque verification, under- 
ground train platform management, the forecasting of trends in stock market move- 
ments, the recognition of faces in a security system and even the control of a nuclear 
reactor. Along side these demonstrations of utility there has also been much “hype”. 
The following quotes from a book devoted to P C  implementations of neural net- 
works highlights this [3]: 

“Neural networks. . . are being touted as one of the greatest computational tools 
ever developed. Much of the excitement is due to the apparent ability of neural net- 
works to imitate the brain’s ability to make decisions and draw conclusions when 
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presented with complex, noisy, irrelevant, and/or partial information.. . . It is hard, 
especially for a person unfamiliar with the subject, to separate the substance from 
the hype.. . . 

Neural networks really do offer solutions to some problems that can’t be solved 
in any other way known. . . It is a myth that neural networks can leap tall buildings 
in a single bound and that they can solve problems single handed/y.. . .” 

Without doubt, neural networks (NN) have attracted considerable attention from 
the chemical community as can be seen from the increase in the number of papers 
using neural networks for chemical applications (Fig. 1) since 1987. Applications 
have included, QSAR data analysis, prediction of protein secondary structure, pro- 
cess control, analysis of spectra, prediction of chemical reactivity, etc. Networks have 
found applications in most areas in chemistry, not only performing established com- 
puting tasks, but tackling complex problem solving using their ability for pattern rec- 
ognition. The future for networks in chemistry will be exciting as further applica- 
tions are discovered. Networks are already improving productivity in chemical pro- 
cesses, but a considerable amount of work is still to be done to fully understand their 
“behavior” and some caution will need to be exercised before their full potential is 
realized. 

The appeal of new techniques in any branch of science is their potential to perform 
traditional tasks more effectively and more efficiently. With increasing pressures on 
chemists to improve productivity, novel technologies are sometimes implemented 
prior to establishing the soundness of the method. To some extent, neural networks 
fall into this category and some “catching up” is taking place in chemistry with a 
re-examination of various applications in the light of neural networks. Some prob- 
lems associated with networks have already been encountered by those who work ex- 
clusively in that area, but the sharing of this information across scientific fields 
has not always taken place. Recently, enthusiasm for the appealing results obtained 
with networks has come under criticism and strategies have been drawn up to dimin- 

1 ” 86 87 88 89 90 91 92 93 

Figure 1. Frequency of publications 
mentioning neural networks and chem- 
istry from the Chemical Abstracts data- 
base. The projected number of publica- 
tions for 1993 has been illustrated in 
light shading. This was not an exhaus- 
tive search but should serve to show the 
trends. 
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ish problems such as overfitting. Criticisms have been leveled before at so-called 
“black box” methods where a complete understanding of the method has been 
overlooked because of the remarkable results which emerged. Fortunately, a more 
analytical approach is now taking place with a healthy respect for potential prob- 
lems. 

This chapter focuses on the use of neural networks to carry out the chemometric 
procedures involved in quantitative drug design (QSAR). Comparison is made with 
the standard techniques which are used for these tasks and we attempt to shed light 
on potential problems and suggest the necessary steps to minimize them. 

5.1.1.1 Neural Network Theory 

Most artificial intelligence methods seek to emulate intelligence by reproducing the 
decision-making functions of the brain. There is, generally, no attempt to simulate 
the way in which these decisions are reached, they aim simply to reproduce “what 
we do” rather than “how we do it”. Neural networks, on the other hand, try, in a 
limited sense, to mimic ”what we do7’ by copying the way in which the brain LLdoes 
it”. An artificial neural network consists of a number of processing units connected 
together, usually, but not always, in a number of distinct layers. Numerous texts have 
been published which describe the theory of neural networks and so in this chapter 
we will simply give a brief description of how one of the more popular types of net- 
work (back propagation) operates. 

Each processing unit, or neuron using the brain analogy, performs 3 functions. 
This contrasts to the hundreds of functions carried out by biological neurons, but 
this approximation is adequate for the simple models used at present. The 3 func- 
tions sum the inputs that the processing unit receives, apply a transfer function to 
the summed inputs and produce an output (Fig. 2). The transfer function shown in 
the figure is a sigmoid although several other transfer functions may be used; the 
purpose of a transfer function is to mimic the operation of biological neurons which 
send out an impulse if the inputs received are above a threshold value. A number of 
different network-learning processes are available, but the most widely used for 
chemometrics is feed-forward back propagation (BP). Typically, this type of network 
uses processing units placed in three types of layers, input, hidden, and output, see 
Fig. 3 ,  for example, and this has also been termed a multi-layer perceptron. Each unit 
in a layer is connected to units in adjacent layers with an associated weight (connec- 
tion strength); it is the adjustment of these weights which is undertaken during net- 
work training. The output value of each unit in the final layer is compared to a target 
value. If we take a simple QSAR multiple linear regression case we may have, for ex- 
ample, a table of n compounds with y physico-chemical descriptors and the asso- 
ciated biological activity for the n compounds. A BP network would be set up con- 
taining y units in the input layer and one unit in the output layer (i.e. biological activ- 
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Outj 

Input 
CiWij.Outi + biasj 

Figure 2. A. Diagram illustrating the 3 functions performed by a neural network processing element. The 
bias unit can be considered to be a scaling term which can be treated as the connection weight from a 
neuron with a constant output of 1.0 B. Sigmoidal transfer function used in back propagation neural net- 
works (N. B., the transfer function is continuous). 

n 

Figure 3. Example of a 3 layer neural network showing input 
Input Hidden Output units and two layers of active processing units. 

ity) with usually one layer of hidden units between the input and output layers 
(Fig. 3). 

Input to the network in this example would be the values of each of they  physico- 
chemical properties, to each of the y input neurons, for each compound in turn. The 
target value for each compound is the biological activity. Since the data enters the 
network at the input layer and produces a signal at the output layer (one neuron in 
this case) this type of network is known as feed-forward. Network training involves 
iteratively changing the weights between neurons until the output signal matches the 
target output within a desired error limit. There are various ways in which the net- 
work weights may be altered, but one of the most commonly used methods is known 
as the delta rule [4] as described below. 

In the delta rule, the change Ak Wji, in the weight for the connection between 
neuron j and neuron i the kth iteration is given by 

Ak Wji = pdpj.outpj+a A k - ,  Wji 
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where f i  is the learning rate and a a momentum term, two parameters which may 
be adjusted to control the speed at which the network assimilates information. The 
error signal Spj of the j t h  neuron on presentation of the p t h  pattern is determined 
as follows: 
if neuron j belongs to the output layer 

Spj = (tpj - out,,) f ’  (inppj) 

and if neuron j belongs to the hidden layer 

where z represents the neurons to which neuron j sends its output and where 
f’(inppj) is the derivative with respect to inpPj of the transfer function. This use of 
a derivative of the transfer function in the delta rule imposes a restriction on the type 
of transfer functions which may be used in this kind of network training, obviously 
they must be capable of differentiation. 

At the beginning of training the connection weights are set to random values. The 
data for all of the compounds (physico-chemical descriptors) are passed through the 
network (i.e., feed forward) and the output responses are compared to the target data 
(biological activity) to give an error value. The weights are then adjusted for the sec- 
ond pass of the data through the network in order to reduce the above error value. 
Since the delta rule requires the calculation of an error at the output neuron in order 
to calculate errors for other neurons in the network, this is known as “back propaga- 
tion of errors”, hence the name back propagation (BP). Such networks are some- 
times given the rather unwieldy title of “feed-forward back propagation” which we 
will abbreviate to BP. The entire procedure is repeated in an iterative manner until 
the error value reaches a minimum or other specific criteria are met (e.g., a preset 
number of cycles or a specific error cut-off). Finally, a regression coefficient may be 
calculated between the observed biological activity and the network predicted values. 

5.1.1.2 Implementation (Hardware/Software) 

Neural network computing systems can be implemented using either specialist hard- 
ware or software, or a combination of the two. As an imitation of the brain, which 
can be regarded as a huge parallel computing device, they lend themselves particular- 
ly well to parallel computers, that is to say computers which have multiple proces- 
sors. Using such systems it is possible to assign a single processor to carry out the 
calculations for a single neuron, or group of neurons, and to connect the input and 
output signals of the neurons in any desired architecture (BP networks are just one 
such type of network). An alternative is to construct the architecture of a particular 
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network directly into silicon so that the processing elements and their connections 
are “hard-wired” together. The advantage of this latter approach is the speed with 
which networks can be trained, since the computer does not have to control the 
routes which is taken by the information through the network, a disadvantage being 
of course that the network architecture cannot be re-organized once the chip is con- 
structed. The use of highly parallel computers or dedicated network chips is required 
when very large networks (millions of connections) are constructed. 

Most chemical problems, with the exception of protein structure prediction (see 
later), do not involve large numbers of connections and are thus generally imple- 
mented in software running on serial computers. Modern PCs have sufficient com- 
puting power to allow network training to be completed in a few hours or less and, 
of course, once trained, a network is able to make “predictions” very quickly. In cer- 
tain circumstances, networks may need to be re-trained many times, for example, 
when carrying out cross-validation, in which case it may be necessary to use a more 
powerful computer such as a UNIX workstation. There is a large variety of software 
available commercially and in the public domain for the construction of BP net- 
works (and other architectures) as outlined in Appendix 1. These programs run on 
most commonly available hardware platforms such as IBM PC, Macintosh, and 
UNIX workstations from SUN, Silicon Graphics, IBM, etc. 

5.1.1.3 Chemical Applications 

Some of the earliest applications of neural networks to chemistry involved the pre- 
diction of protein secondary structure from amino acid sequences [5-71. The input 
layer of the networks in these examples consisted of a number of groups of neurons 
with each group containing 21 neurons. As the linear sequence of amino acids is pre- 
sented to the network, one neuron in each group is activated according to the identity 
of the amino acid at that position. Twenty of the neurons in each group correspond 
to the naturally occurring amino acids, the extra neuron is activated to indicate the 
termination of a protein chain. Network training is carried out to predict the second- 
ary structure of a central residue. For example, in the work reported by Qian and Se- 
jnowski [ 5 ] ,  the input layer consisted of 13 groups of neurons so a prediction was 
made for a residue on the basis of 6 neighbors on either side. The.output layer may 
consist of two (helix, sheet) or three neurons (helix, coil, sheet) and various numbers 
of neurons have been used in the hidden layer. Variants of these experiments have 
involved prediction of @-turns [8] and prediction of the disulphide bonding state of 
cysteine residues [9]. Comparison of these network predictions with standard tech- 
niques showed that the networks performed as well, or in some cases slightly better. 
However, perhaps not surprisingly, it is clear that the amino acid sequence alone does 
not contain sufficient information for accurate prediction of the secondary structure. 
More recent applications of networks to protein structure problems have involved the 
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prediction of water binding sites on proteins [lo] and the pK, value of a catalytic 
histidine residue [ I  I]. 

Neural networks have been employed in the estimation of aqueous solubility of 
organic compounds [12], the interpretation of infra-red spectra [13], the prediction 
and classification of 13C chemical shifts [I41 and the prediction of physical organic 
substituent constants such as r~ values [I51 and log P [16]. Applications of networks 
to QSAR problems are described in the next section and references [17- 191 give 
some recent reviews on the chemical applications of networks. 

5.1.2 Applications to QSAR 

One of the first reports of the application of neural networks to a QSAR problem 
involved the discriminant analysis of a set of anticarcinogenic mitomycin derivatives 
[20]. These compounds were classified into 5 activity categories and the trained net- 
work was able to correctly classify all 16 compounds. The physico-chemical data 
used to describe these compounds consisted of two indicator variables and four sub- 
stituent constants. Thus, for a training set of 16 compounds, chance effects would 
not be expected to be a problem [21]. The network architecture employed in this ex- 
ample, however, involved a hidden layer of 12 neurons with at least 132 connections 
in the network. Concern that chance effects may have dominated these results led 
us to examine the performance of discriminant networks using random numbers [22] 
as is summarized in the next section. The presence of too many connections in a net- 
work may not only allow chance correlations to occur, but may also result in over 
fitting. That is to say, an over elaborate surface may be fitted to the training data, 
leading to apparently good performance in fitting, but not prediction. This problem 
was recognized by Andrea [23] who proposed a parameter, p, which could be used 
to characterize the relationship between data points and connections: 

No. of data points 

No. of connections 
P =  (4) 

In the particular example reported [23] it was recommended that p should be 
greater than 1.8, to avoid memorizing the data, and less than 2.2, so that the network 
would have sufficient connections to fit the data. The next section discusses in great- 
er detail the question of optimum values for p. The networks reported in reference 
[20] employed a p value of less than 0.5 and could, therefore, have resulted in an over- 
fitting. Network prediction performance for this example was tested by splitting the 
data into two sets, a training set of 11 compounds and a test set of five compounds. 
After training, the network was still able to predict the training set correctly, as ex- 
pected, but test set performance was poor suggesting that the network was indeed 
overfitted. 
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Others have recognized the problem of overfitting and the difficulties involved in 
assessing the performance of trained networks and have reanalyzed the mitomycin 
data set [24]. In these experiments the number of neurons in the hidden layer was 
reduced to a minimum which would correctly classify all of the training set mole- 
cules. Fifty random starting weight matrices were used for training, and 50 predic- 
tions were made on the test compounds. A probability was assigned to the predic- 
tions to assess the significance of the results. This was determined using a sign crite- 
rion defined in Eq. (5 ) .  For ranks of activity Ho and H I  after n trials, the molecule 
was predicted rn times as Ho and n-rn (m<n-rn) times as H,. Then at the level 
p of significance: 

the molecule is assigned rank H I .  This method has clear advantages over a single 
training and prediction cycle for networks which have a p value which indicates that 
over-training is a potential problem. In particular, this technique is advantageous 
when examining data sets with a limited number of compounds as it may be difficult 
to construct a network with a p value greater than a recommended value. 

Early examples of QSAR analyses usually only considered a handful of physico- 
chemical descriptors (e.g., log a, n, E, etc.). The general trend in more recent 
years has been to generate and collect as many descriptors as possible. The problems 
of using such “wide” data sets with multiple linear regression are well known [21], 
one solution to these problems would be to use a selection strategy which would re- 
duce dimensionality [25, 261. Networks, of course, add further complications if you 
take into account overfitting and over-training. To circumvent these problems Wikel 
and Dow [27] used neural networks to identify those properties most relevant to the 
dependent variable. In one of their examples, a data set of 31 compounds and 53 
descriptors was used. A neural network was set up to  perform multiple linear regres- 
sion (MLR) using a cross-validation procedure. Training was not fully completed to 
convergence (i.e., the global minimum) as the ability of the network to generalize at 
the global minimum was found to be poor judging from the cross-validation predic- 
tion results. After training, the values of the weights were visualized to highlight 
those descriptors which were important in obtaining a solution. Each of the “local 
minima” from these analyses consistently showed the importance of the same subset 
of the original descriptors. These selected properties were then used to generate MLR 
equations. Two of these properties which had high weights were ultimately incorpo- 
rated into the final equation. 

This technique of using the weights to identify properties of interest appears to 
be very useful. Unfortunately, cross-validation is not a panacea for the problems of 
chance effects, and it is still possible that apparent important descriptors will be cho- 
sen by chance. Wikel and Dow [27], however, introduced two important suggestions 
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ReNDeR Network 

Parameter Layer - v  
Output Figure 4. Example of the architecture required for 

Input 
Layer Layer a ReNDeR neural network. 

for network training which might help to minimize over-training and, thus, the mem- 
orization of input data. The first of these, is to use cross-validation to monitor pre- 
dictive performance and the second, is to not train to convergence. 

Another early report on the use of neural networks for QSAR described a method 
for the display of a large number of physico-chemical properties in a small number 
of dimensions; this technique is known as ReNDeR (Reversible Non-linear Dimen- 
sion Reduction) Multivariate display techniques are of considerable importance to 
QSAR since they are able to reveal the patterns hidden in quite complex data [28] 
and yet, since they are an unsupervised learning method, they should not suffer from 
chance effects [29]. Figure 4 illustrates the network architecture for ReNDeR, al- 
though more units can be used in the parameter layer (e.g., 3 for 3D display). The 
network simply trains to reproduce at the output layer the same data that are present- 
ed to the input layer [30]. Once trained, the network effectively squeezes the data 
through a two-dimensional bottle-neck (the central hidden layer) so that when each 
compound is presented to the network two values will appear at the neurons in the 
central hidden layer. These values may be used as the X and Y coordinates for the 
construction of a two-dimensional plot. The term “unsupervised learning” refers to 
the fact that this method does not use any information concerning the dependent 
data (i.e., biological activity) for training. This technique overcomes many of the 
problems of using several physicochemical properties, although any clustering of ac- 
tivity classes due to chance cannot be completely ruled out [31]. The examples pre- 
sented by Livingstone et al. [30] were encouraging and complemented the results ob- 
tained using the dimension reduction techniques, non-linear mapping and principal 
components analysis. In one case the ReNDeR plot was superior and appeared to 
be less affected by noisy data. 

Richards and co-workers [32], employed a ReNDeR approach to examine a series 
of steroids. In this study, a large number of descriptors were generated describing 
the steric and electrostatic properties of the molecules. To simplify the large data set 
generated, each molecule was compared with each other to provide an N x N  table 
of molecular similarities [33]. Similarities were calculated using either shape or 
electrostatic potential, or both together. This information was used as input to a 
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Figure 5. ReNDeR neural network plot from an electrostatic potential similarity matrix for a series of 
steroids. The binding affinity of each compound for the corticosteroid binding globulin was classified into 
3 categories; high affinity (W); intermediate affinity (A); low affinity (0). Diagram reproduced with kind 
permission from Good et al. [32]. 

ReNDeR network. The neuron plot using the electrostatic potential similarity matrix 
demonstrated good clustering of the high activity class (Fig. 5 ) .  Each similarity ma- 
trix was also examined using the CoMFA routine within SYBYL (Tripos Associates) 
since the steroids reported here have been previously analyzed using the CoMFA 
technique [34]. The results showed that the similarity approach gave comparable 
models to those of the first reported study, and that it can be helpful to visualize 
the problem using a two-dimensional display method. The testing of new compounds 
would require the similarity matrix and the ReNDeR network to be recalculated. Vi- 
sual inspection of the plot could then be used to make activity predictions for the 
untested compounds. 

An interesting application of the use of networks in QSAR was recently reported 
by Weinstein and co-workers who examined the classification of anticancer agents 
[35]. This study employed the screening data of 134 drugs tested for their ability to 
inhibit the growth of a panel of 60 different human tumor cell lines. Compounds 
were categorized into 6 classes according to their mechanism of action. The network 
architecture employed for this study used 60 neurons in the input layer, 6 neurons 
in the output layer and a variable number (3 to 9) of neurons in the hidden layer. 
There were, thus, more connections in the networks than compounds studied, 
although the use of dose-response information to characterize the compounds 
meant that the input data exceeded the number of connections. In order to test 
the predictive ability of these networks, a cross-validation scheme was included 
in the algorithm. Rather than perform the often used leave-one-out (LOO) method, 
Weinstein et al. chose to divide the data set into ten approximately equal subsets. The 
network was trained on 9/10ths of the data and a prediction was made on the re- 
mainder. This process was repeated 10 times until each group had been left out for 
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prediction. In this case the network model performed better than linear discriminant 
analysis. 

One of the advantages of using neural networks for regression and discriminant 
analysis is their ability to develop complex non-linear and cross product terms with- 
out these terms having to be specifically defined [4, 361. Following their use of net- 
works in discriminant analysis Aoyama and co-workers [20] used a neural network 
to perform MLR, and in order to simulate the way that MLR constructs linear equa- 
tions, employed a linear transfer function for the final output neuron [37]. Although 
this might be expected to simulate the regression process, it appeared that this simply 
resulted in a poorer fit and required a greater number of connections to achive a 
comparable fit to a network using sigmoidal transfer functions for all neurons [36]. 
Another regression approach using a hybrid neural network system, known as 
FUNCLINK [38], has recently been described by Liu and co-workers [39-411. This 
progam generates an expanded list of new parameters derived from the original prop- 
erties using a chosen list of non-linear and cross product functions. The expanded 
list of parameters is then utilized for multiple linear regression (and discriminant 
analysis) using a two layer neural network. In a series of experiments comparing 
FUNCLINK to 3 layer networks, they appeared to provide superior predictive ability. 
However, although the performance of FUNCLINK compared well with MLR, it 
does not have the ability and natural advantage of neural networks to generate ap- 
propriate non-linear and cross product terms as needed. Moreover, the possibility of 
chance effects increases as increasingly more new parameters are considered for the 
data analysis component of this method [21]. 

5.1.3 Networks vs Statistics 

Our own interest in the use of neural networks for QSAR was initiated by reports 
claiming superior results over traditional statistical methods. On closer inspection, 
it was noted that these networks often used as many connections as there were com- 
pounds under consideration. If connections could be regarded as the equivalence of 
independent variables, then these analyses may suffer from chance effects. Indeed, 
the phenomenon of overfitting is well known in the network community but appears 
to have been overlooked by early QSARhetwork researchers. This was probably due 
to the exciting results that were being obtained. An exception, however, is the work 
reported by Andrea [23] who proposed the p parameter (Eq. (4)) to describe the rela- 
tionship between connections and compounds. 

5.1.3.1 Discriminant Analysis 

We have concentrated on determining experimental guidelines to help minimize over- 
training (memorization) and, thus, avoid, to a large extent, the potential problem of 
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Figure 6. Plot of percentage cumulative 
prediction success against p .  Results 
represent the percentage of output unit 
patterns differing from their respective 
target patterns by 10% (O), 20% (A), 
30% (O), 40% (B) and 50% ,(A). 

chance effects. As a first approach to this problem we investigated how well neural 
networks would perform linear discriminant analysis using random numbers [22] .  
These experiments simulated a QSAR study involving 50 compounds classified into 
two categories (25 in each). The 4 input variables were created using random num- 
bers generated by employing the RSI data analysis package (BBN Software, Staines, 
U.K.). Two output units were used and training was aimed at activating the appropri- 
ate unit for the category of that compound. The number of hidden layer units was 
varied from 1 to 7. A plot of Yo prediction success against p (Fig. 6) demonstrates 
that as the number of connections approaches the number of compounds under con- 
sideration (i.e., p = 1) the percentage prediction success is close to 100%. Clearly, at 
p values less than 2.0, memorization of the input data is occurring. It is necessary, 
therefore, to use networks with a p value in excess of 3 to keep apparent successful 
predictions (within 0.2 of the target) at a rate lower than 50%. 

The network architecture needed to perform discriminant analysis does not neces- 
sarily require as many output units as there are activity categories. A single output 
unit may be used by employing target values set to either end of the output range 
(e.g., 0.0 and 1 .O) for each category. The above experiments were repeated using this 
protocol, in which the identical random number data sets as generated previously 
were employed. Fig. 7 shows that the total RMS error (a global measure of error for 
the differences between each of the output and target values) is lower for the 4-n- 1 
discriminant analysis networks. It follows that, at the same p values, the 4 - n - 1 net- 
work performs better than a 4 - n - 2 network which suggests that it is more capable 
of memorizing the data. 

One criticism of the above experiments is the use of random numbers to simulate 
physico-chemical input parameters. The structure of real and random data is differ- 
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ent and their behavior in the above paradigm may also differ significantly. An addi- 
tional problem is that these networks cannot be tested for predictive capability, since 
using random numbers one would obviously expect prediction to be poor. To address 
these points, a previously reported discriminant analysis involving a series of an- 
tineoplastic napthoquinones [42] was used for NN training. In this study 3 physico- 
chemical properties ( C n ,  CMR and Xn2) were shown to classify 22 of the 27 com- 
pounds correctly. In our work, the squared term was not employed in the training 
since networks can implicitly account for non-linear relationships [4, 361. In these 
experiments the number of hidden layer units was varied and the number of incor- 

a 
a 

a 

C MR 
a 2- 

-2 -1 0 1 2 

a 
A 

Inactive 
Active 

c7c 
Figure 8. Plot of ZMR vs En for a series of 27 antineoplastic napthoquinones [42]. A hypothetical func- 
tion has been drawn to separate the active (A)  and inactive (a )  compounds. 
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rectly classified compounds was monitored. This number decreased from 7, for a 
hidden layer of 1 unit, to 0 (all classified correctly) with 7 hidden layer units. These 
results mirror those observed for random number data. To test this network system 
for predictive ability, 9 compounds were chosen at random and removed from the 
training set. The remaining compounds were used to train networks with varying 
numbers of hidden layer units. Each test compound was then presented to the trained 
network for classification. In all cases, at least 5 of the 9 were incorrectly classified 
demonstrating the poor predictive ability of the networks. A plot of ZMR against 
C z  (Fig. 8) shows that the active and inactive compounds are in close proximity to 
each other which serves to highlight the inadequacy of this information for the dis- 
crimination of the 2 activity classes. An over-trained network may be able to separate 
each class by fitting a complex function between the classes (as shown in Fig. 8), 
however, this would be of no use for the purpose of prediction. This particular 
QSAR analysis may have been compromized by unsuitable physico-chemical data 
which inadequately described each compound. 

5.1.3.2 Regression Analysis 

In contrast to discriminant analysis which requires a yesho  decision for classifica- 
tion, regression analysis networks are trained toward a continuous target variable. 

Table 1. Effect of varying network architecture on regression performance. 

Network a 

Architecture 
Connections D E  R2 k SEM 

" 
/ 

13 
19 
25 
31 
37 
43 
49 
25 (15 cases) 
25 (45 cases) 
25 (55 cases) 
25 (135 cases) 

7.14 
3.85 
2.63 
2.0 
1.61 
1.35 
1.16 
1.02 
0.6 
1.8 
2.2 
5.4 

0.214k0.022 
0.434k 0.035 
0.542 f 0.041 
0.743 f 0.025 
0.852 f 0.023 
0.915k0.012 
0.977 f 0.005 
0.985 k0.007 
0.996 fO.001 
0.770 f 0.025 
0.672 f 0.023 
0.318f0.015 

a Network architecture, the three numbers indicate the number of units in the input, hidden and output 
layers, respectively. 

The number of connections in the network. Results are the average of 10 experiments for each network 
architecture. New sets of random numbers were generated for each experiment. 

Ratio of the number of cases (50, unless otherwise stated) to the number of connections. 
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A similar series of experiments to those described above for discriminant analysis 
have been carried out with regression analysis networks using random numbers as 
input. Table 1 gives the results of network training expressed as an average correla- 
tion coefficient for the 10 data sets used for each architecture, and it can be seen that 
at  p values of less than 2.0 the correlation coefficient using random numbers is above 
0.74. A previously reported QSAR study using networks recommended that a p value 
between 1.8 and 2.2 was optimal for network performance, as measured by predictive 
capability [23]. Clearly at this p value the networks shown in Table 1 have memorized 
a significant quantity of data. The two studies, however, cannot be compared in too 
great a detail as the results shown in the table are based on random numbers, whereas 
the analysis reported by Andrea and Kalayeh I231 used real data. The structure of 
real data, in terms of correlations between variables, is clearly different to that of 
random number sets. Another difference between these two sets of results is that the 
performance of the networks using real data was tested by examining their predictive 
capability. Networks which have been trained to associate sets of random numbers 
might be expected to fit, but not to predict the data. 

5.1.3.3 Real Examples of QSAR 

Since the main purpose of fitting a linear (or other) model to a QSAR data set is 
to make predictions for unknown compounds, it is necessary to examine real QSAR 
data sets, with differing in-built structure, in order to assess how well networks might 
perform in prediction. Four previously published QSAR examples were selected to 
exemplify a number of different and commonly encountered QSAR models. Table 2 
lists each of the four data sets along with the originally published equations and 
cross-validated correlation coefficients calculated using a leave-one-out (LOO) pro- 
cedure. Each of these data sets has been analyzed using MLR neural networks with 
varying numbers of hidden layer units. One known problem with neural networks 
is that they can fall into so-called “local minima”. In other words, the best solution 
is missed. If we imagine that the solution to the problem involves an error surface 
of “hills and valleys” and that the aim is to find the lowest point on the surface by 
going down hill, it is possible, from different starting points, to end up in different 
minimum positions, which may not necessarily be the lowest. Attempts to overcome 
this problem include perturbing the weights connecting the units in the network, fol- 
lowed by further training, or merely choosing another starting point and training 
again. A simple check on the total error will indicate which minimum is the lowest. 
In our own training procedures we employed a system of perturbing the weights and 
restarting the networks to try and locate the global minimum. 

Neural networks were trained using the BIOPROP software [46] which incor- 
porates a command language to enable control of network training (input/out- 
put/initialization/saving etc.) by use of script files. Each neural network MLR analy- 
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Table 2. QSAR equations. Eqs. (6), (7), (9) and (11) represent our own work repeating the MLR analyses 
previously reported. In these examples small differences were found in the coefficients and constants of 
the original equations to our own calculations. These frequent small differences may be due to computer 
rounding errors or to typographical errors in the original paper (data tables were carefully checked 
against the originals to avoid errors). 

~~ 

No. Equation n R~ s F Cross- 
validated 
R2 

Linear example [43] 
log Pexpt = 0.40aC,,, - 0 . 4 6 ~  + 0.33E(,,,,, - 6.06 

Linear with indicator [44] 

108 P,,,, = 0.412a,,,,-0.359p+0.384~((,,,,) -7.1 15 

log 1/C= 0.457~+1.051-0.48MRy~ 
log 1/C= 0.424n+ 1.0901-0.495MRy+3.374 
log 1/C = 0.4247~ + 0. 165MRy + 3.494 

Quadratic [45] 
log (l/D40) = - 1 .40R;-0.42Rm+ 0.71 pKa+O.39 
log (1 /D40) = - 1.42R $ - 0.43 R, + 0.70pKa + 0.36 
log(l/D,,) = - 1.06Rm+0.73pKa+0.02 

Quadratic with Indicator [44] 
log 1/C = 0.827~; -0.1 1 n;‘-0.97MRy+0.91 1+4.47 
log 1/C = 0.847~; -0.1 1 7~;‘ -0.97MRy + 0.96Z+4.40 
log 1/C= 0.347~;-0.03MRY+4.47 

37 0.826 0.6956 
37 0.847 0.609 

38 0.929 0.264 
38 0.931 0.259 
38 0.835 0.393 

50 0.828 0.25 
50 0.821 0.252 
50 0.709 0.317 

34 0.878 0.343 
34 0.837 0.420 
34 0.430 0.759 

52.10 
60.8 0.784 

17.1 
151.9 0.916 
88.87 

67.9 
70.2 0.789 
57.23 

13.3 
37.1 0.781 
11.7 

a The constant value was not documented; presumably an omission. 

sis was conducted using data scaled between the ranges of 0.0 to 1.0, and in one ex- 
ample between 0.2 to 0.8. The latter experiment was conducted to allow the network 
to extrapolate beyond the scaled range. Output values from the BIOPROP package 
fall in the range 0.0 to 1.0. Cross-validation was also conducted using both LOO and 
leave-N-examples out procedures (N = approximately 10% of the data set). The 
choice of grouping of compounds for the leave-N-examples out procedure was based 
on hierarchical clustering of the compounds as described by the physico-chemical 
parameters. A similarity level was chosen which divided the compounds into 4 
groups and representatives from each were selected for testing. Training and testing 
were continued until all compounds had been left out (once) for test purposes. In 
those cases where the original equation used an indicator variable or a squared term, 
these parameters were not included for training. The removal of these properties was 
aimed at allowing the network to exploit its ability to develop “non-linear” relation- 
ships without these being specifically stated. 

The four QSAR examples examined (Eqs. (6), (7), (9) and (11); Table2) contain 
various structured data sets ranging from linear to a quadratic equation including 
an indicator variable. The intention was to explore their behavior in network training 
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as the relationship between biological activity and physico-chemical properties in- 
creased in complexity going from a linear to a quadratic model. Our other aim was 
to determine whether networks were capable of outperforming traditional statistical 
methods. 

Training 

Fig. 9 to 12 illustrate the changes in correlation coefficient as p is altered. In each 
case, R 2  improves as the number of connections in the network is increased. At a 
p value below 2.0, the R 2  value tended to level out toward its maximum value. The 
linear example reached a value close to unity for training, however, the remaining 
“non-linear” examples failed to reach this level. One explanation for this behavior, 
which contrasts to the results obtained with random numbers, is that the inherent 
structure in the data prevents the network achieving a perfect fit. This is reasonable, 
for example, if 2 compounds have the same values for their physico-chemical input 
data but differ in their biological response, then it will not be possible to accurately 
predict the activity of both compounds. 

In addition to the neural network results, Fig. 9 to 12 show the results obtained 
using regression analysis. The networks all performed well, and provided R 2  values 
exceeding those obtained using traditional methods at p values less than 3 (in 2 cases 

R‘ 

R2CV 

0.5 fi 
0 1 2 3 4 5 6 7  

P 
Figure 9. Plot comparing the correlation coefficients obtained using traditional statistics and neural net- 
works for the “Linear” example listed in Table 2 [43]. For each curve, the correlation coefficient is plotted 
against p. The top two curves represent training of the data using networks employing a 3 - n - 1 architec- 
ture with the data scaled between 0.0-1.0 (m) and 0.2-0.8 (A).  The cross-validation curves employed 
the LOO (A) and leave-N-out (0)  procedures, respectively; in this case N is approximately 10% of the 
data set. The horizontal lines represent the results obtained using traditonal statistics which are detailed 
in Table 2. The cross-validation result using traditional statistics used a LOO procedure. 
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R (wlo Ind) 
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Figure 10. Plot comparing the correlation coefficients obtained using traditional statistics and neural net- 
works for the “Linear with Indicator” example listed in Table 2 [44]. For each curve, the correlation coeffi- 
cient is plotted against p. The top curve represents training of the data using networks employing a 
2-n - 1 architecture with the data scaled between 0.0- 1.0 (E). The cross-validation curves employed the 
LOO (A) and leave-N-out (0)  procedures, respectively; in this case N is approximately 10% of the data 
set. The horizontal lines represent the results obtained using traditional statistics which are detailed in Ta- 
ble 2. In addition, a line has been drawn showing the correlation coefficient in which the indicator variable 
was omitted. The cross-validation result using traditional statistics used a LOO procedure. 

R 2  

0.9 ’9 
22 

R cv 
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P 
Figure 11. Plot comparing the correlation coefficients obtained using traditional statistics and neural net- 
works for the “Quadratic“ example listed in Table 2 [45]. For each curve, the correlation coefficient is plot- 
ted against p. The top curve represents training of the data using networks employing a 2-n-  1 architec- 
ture with the data scaled between 0.0-1.0 (W).  The cross-validation curves employed the LOO (A) and 
leave-N-out (0) procedures, respectively; in this case N is approximately 10% of the data set. The hori- 
zontal lines represent the results obtained using traditional statistics which are detailed in Table 2. In addi- 
tion, a line has been drawn showing the correlation coefficient in which the quadratic variable was omit- 
ted. The cross-validation result using traditional statistics used a LOO procedure. 
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Figure 12. Plot comparing the correlation coefficients obtained using traditional statistics and neural net- 
works for the “Quadratic with Indicator“ example listed in Table 2 [44]. For each curve, the correlation 
coefficient is plotted against p. The top curve represents training of the data using networks employing 
a 2 - n -  1 architecture with the data scaled between 0.0- 1.0 (m). The cross-validation curves employed 
the LOO (A) and leave-N-out (0)  procedures, respectively; in this case N is approximately 10% of the 
data set. The horizontal lines represent the results obtained using traditional statistics which are detailed 
in Table 2. In addition, a line has been drawn showing the correlation coefficient in which the quadratic 
and indicator variables were omitted. The cross-validation result using traditional statistics used a LOO 
procedure. 

p was less than 6). It should be kept in mind of, course, that in our training proce- 
dures the squared terms and indicator variables were not used as input for network 
training. The networks have, therefore, discovered, the “non-linear” relationships of 
the input properties to the target data. To illustrate this further, the MLR equations 
were also derived without the square or indicator terms Eqns. (S), (10) and (12); 
Table 2) and their values have been shown on Fig. 10 to 12. Clearly, the networks are 
performing well at p values less than 8.0 and far exceed the fit using traditional meth- 
ods. 

One concern with the training “predictions” was the fact that the data were scaled 
between 0.0 and 1 .O. As the network operates in this range, then it is unable to extrap- 
olate beyond these limits. Such constraints may give artificially higher R 2  values. To 
test this hypothesis, the linear data set was also trained using data scaled between 
0.2-0.8. The result (Fig. 9) shows that the correlation coefficient is reduced, and in 
future experiments we may employ this smaller scaling range to avoid any potential 
problems. 
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Cross-Validation 

Although the training results are impressive, this does not give any indication of how 
well the network will perform predictively. This can be measured to some extent by 
using cross-validation techniques. Cross-validation provides an idea of robustness 
but is normally used to give an indication of how well a model predicts when n cases 
are left out of the analysis. In our study we used both LOO and leave-N-out proce- 
dures and the results are shown in Fig. 9 to 12 (as expected, the leave-N-out procedure 
takes less time to calculate). Both methods give similar results with the exception of 
the quadratic example where the leave-N-out gave higher R 2  values at lower p val- 
ues. Although the cross-validated results were variable at low p values, the behavior 
of each example was somewhat similar. Once again, the quadratic example appears 
to behave differently giving a maximum cross-validated R 2  at p = 5.5. 

Interestingly, the cross-validated R 2 ,  in all cases except for a few points on the 
linear example, fell below the results obtained with traditional statistical methods. 
Thus, although the networks appear to fit these data sets very well, they perform 
poorly in prediction as measured by cross-validation. It may be argued that this result 
is a consequence of over-training and highlights a disadvantage of networks which 
perform statistical procedures. On the other hand, the networks are able to fit the 
more complex data sets without having to specify indicators or non-linear transforms 
and appear to predict more accurately than the regression models without these 
terms. A more effective test of the performance of both neural networks and stan- 
dard statistics is the use of a train/test set procedure. This involves the introduction 
of a test set after training has completed in order to determine predictive capability. 
Unfortunately, the generation of test and training sets requires careful consideration, 
unlike a LOO procedure in which every compound in the set is left out once. The 
major advantage of a traininghest set approach, is that those compounds left out 
should be representative of the entire data set, if chosen correctly. Unless a data set 
is particularly “well-behaved”, in terms of the disposition of compounds in parame- 
ter space, the LOO procedure will select some highly unsuitable (i.e. outlier) com- 
pounds since every compound in the set is considered. 

5.1.4 Conclusions 

Neural networks have found applications in many areas of chemistry including sever- 
al different approaches to the generation of quantitative structure-activity relation- 
ships. They appear to offer some advantage over the fitting of traditional statistical 
models, such as regression and discriminant functions in that it is not necessary to 
specify the particular functional form of the relationship. This means, for example, 
that non-linear and cross-product terms of the input variables are identified without 
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having to explicity state these terms. Similarly, indicator variables are also not re- 
quired for network training. 

There are also disadvantages in the use of neural networks to fit such models. In- 
terpretation of the contribution of individual variables is difficult, in addition to as- 
sessing the “significance” of network fitting, since there are no equivalent terms in 
the statistical methods used to judge regression and discriminant analysis. An appro- 
priate architecture is essential to avoid over-fitting as demonstrated by the near per- 
fect results obtained using random numbers. Our experiments with these random 
number sets suggest guidelines for the value of p when constructing networks for 
both discriminant and regression analysis. Judging from the analysis of real data 
sets, it appears that networks perform well in fitting with the correlation coefficient 
for the network fit being greater than that of the regression model. The performance 
of networks in prediction, however, as measured by cross-validation, was consider- 
ably worse than that of the regression equations. 

The apparent disadvantages of analyzing data in this way with neural networks 
may seem to outweigh the advantages. This may be true, and it is clear that caution 
must be exercized in the interpretation of network models, particulary when they are 
used for prediction. They may be useful, however, as “idea generators”. A neural net- 
work may be able to fit a model to a set of data where statistical methods have failed 
to do so. Such models, of course, will need careful inspection, for example, by exam- 
ination of cross-validated predictions. 

One area in which networks may offer something new is in data reduction. The 
ReNDeR network is a novel approach to the display of multivariate data which has 
advantages over existing methods. One of these advantages is the ability to  move 
between the two-dimensional display produced by the network and the starting 
data [30]. This is particularly important when the primary aim of the data set dis- 
play is to identify clusters of interesting samples, so that further samples might be 
predicted. 

We hope that this chapter has demonstrated some interesting applications of 
neural networks and that it will encourage others to investigate the use of such sys- 
tems in their own work. To this end, we have provided a list of relevant software, 
books and other sources of information (see Appendix (Al)). Software which is 
available both commercially and in the public domain can be executed on any com- 
puter from a P C  to a Cray supercomputer. In addition, for those readers who wish 
to examine the performance of a particular network package, we have provided the 
data set for the “Linear” example [43] outlined in Table 2 (see Appendix (A2)). This 
data set can be used to investigate various network foibles such as overfitting and 
local minima. 
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Appendix 

Al.  Neural network software and other information sources 
This list is by no means exhaustive, but is representative of the software that is 

available commercially and in the public domain for the construction of neural net- 
works. We have also provided some electronic bulletin board addresses and hope that 
this information will prove useful to those who wish to experiment with networks. 

1. Central Neural System BBS has an electronic bulletin board containing 26 Mbytes 
of files related to artificial neural networks. These include simulation packages, 
demos, source code, tutorials and other text. Most of these are suited to IBM PC 
compatible machines, but some are available for Macintosh and Unix machines. 
CNS BBS can be contacted via Wesley Elsberry, P. 0. Box 11 87, Richland, WA 
99352, USA; email: elsberry@beta.tricity.wsu.edu. cost = free. 

2. The Neuron Digest bulletin board reports (approx. monthly) on various aspects 
of neural network activities and can be accessed by contacting the moderator 
Peter Marvit on the following email address; marvit@cattell.psych.upenn.edu. 

3. BIOPROP. Bioprop is a programmable neural network simulator which uses a 
command language. Several example scripts are provided with the manual which 
can be purchased from Steven Muskal, Laboratory of Biodynamics, University 
of California, Berkeley, Berkeley, CA 94709 (41 5)-486 4338; email, 
smuskal@sbl-4.cchem.berkeley.edu. 

4. Rumelhart and McClelland published their network software on diskette in the 
Handbook of their series of books on “Explorations in Parallel Distributed Pro- 
cessing (1988, MIT Press, No. 3 in the series). Various programs and exercizes are 
outlined in the text, however, this software is not very user-friendly. 

5 .  BrainMaker Pro. 3.0, California Scientific Software, 10024 Newtown Rd, Nevada 
City, CA 95959, USA. BrainMaker Pro 3.0 (Dos/Windows) $795; Brain Maker 
3.0 (Dos/Windows/Mac) $ 195 (also a student version, quantity sales only, 
approx $38). Various add-ons, boards and support available. 

6. The ARD Corporation have a software package called Propagator which is avail- 
able for IBM PCs, Macintoshs ($199) and Sun workstations ($499). ARD Cor- 
poration, 9151 Rumsey, Rd, Columbia, MD 21045 USA. email: propaga- 
tor@ard.com 
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7. MATLAB Neural Network Toolbox; this package contains software which allows 
both supervised and unsupervised learning rules to be implemented. A 350 page 
manual is included explaining, with examples, the methods available. Product 
and pricing information can be obtained from, The Math Works, Inc., 24 Prime 
Park Way, Natick, MA, 01760, USA. 

8. The following is a list of books with code (some on diskette) and offers guidance 
on practical applications of various neural network models. 

a. Korn, Granino A, Neural Network Experiments on Personal Computers and 
Workstations, Cambridge, MA, MIT Press, 1991 

b. Caudill, M. and Butler, C., Understanding Neural Networks, Vol. I and 11, Cam- 
bridge, MA, MIT Press, 1992 

c. Eberhart, R. C. and Dobbins, R. W., Neural Network PC Tools, Cambridge, MA, 
Academic Press, 1990. Diskette for book from Software Frontiers, Gilbert, AZ 

d. McCord, N. M. and Illingworth, W. T., A Practical Guide to Neural Nets, Read- 
ing, MA, Addison-Wesely, 1990 

e. A diskette offered by A1 Expert magazine (San Francisco, CA and Boulder, CO). 
This collection of programs supplements several articles published over a period 
of time 

f. Staff Writers, Neural Teacher, Salt Lake City, UT, Softlabs Corp, 1989 
g. Staff Writers, Neural Works Explorer, Pittsburg, PA, Neuralware, 1990 
h. Aleksander, I., A n  Introduction to Neural Computing. London, England: Chap- 

man and Hall, 1990. Software for book from Adhoc Reading Systems, East 
Brunswick, NJ, USA 

i. Orchard, G. A. and Phillips, W. A., Neural Computation, East Sussex, England, 
LEA Ltd., 1990 

j. Blum, A., Neural Networks Programming in C+ +, New York, NY, John-Wiley, 
1992 

k. Muller, B. and Reinhardt, J., Neural Networks: A n  Introduction, New York NY, 
Springer-Verlag, 1990 

1. Freeman, J. A. and Skapura, D. M., Neural Networks: Algorithms, Applications, 
and Programming Techniques, New York, NY, Addison-Wesley, 1991 

m. Kosko, B., Neural Networks and Fuzzy Systems, Englewood Cliffs, NJ, Prentice- 
Hall, 1992 

n. Staff Writers, The Brain Simulator, San Francisco, CA, Abbot, Foster and 
Hauserman, 1989 

0. Staff Writers, NetWurkz, Palo Alto, CA, DAIR Computer Systems, 1989 
p. Staff Writers, Anwareness, Vancouver, BC, Canada, Neural Systems, 1989 
q. Masters, T., Practical Neural Network Recipes in C+ +, New York, NY, Academ- 

The following books are introductory in nature and combine the ideas behind expert 
systems and neutral networks. 
r. Zahedi, F., Intelligent Systems for Business, Belmont, CA, Wadsworth, 1993 

ic Press, 1993 
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S .  

t. 

U. 

V. 

9. 

a. 
b. 

10. 

Gallant, S. I., Neural Network Learning and Expert Systems, Cambridge, MA, 
MIT, 1992 
Blanchard, 0. and Beard, P., Intelligent Applications, New Canaan, CT, 
Lionheart, 1992 
Lawrence, J., Introduction to Neural Networks and Expert Systems, Nevada 
City, CA, California Scientific Software, 1992 
Zupan, J. and Gasteiger, J., Neural Networks for Chemists: A Textbook, VCH 
Publishers, 1993 
Other commercial software packages for neural network simulation. Unfor- 
tunately we have few details for this software. 
Neuralworks Professional 2 +, Neuralware, Inc., Pittsburgh, PA 15276 USA 
We know of other NN packages which are available such as: NeuroCompiler 
(Neuro Informatik GmbH, Berlin), AIM, Brain Cel, Neural Desk, Neural. Case, 
Neuro Windows, Explorenet 3000, Neuroshell (Systems Group) and DynaMind, 
DynaMind Developer (NeuroDynamX). 
There is of course a wealth of freely available neural network software and a list 
of free software and frequently asked questions (FAQ) can be obtained from 
Lutz Prechelt, University of Karlsruhe, Germany, email; prechelt@ira.uka.de 

A2. Example linear QSAR data set [43] (see Table 2 Eq. (3)) 

Compound 

Tetrafluoromethane 
Trifluoromethane 
Fluoromethane 
Ethanenitrile 
Propanenitrile 
Methanenitrile 
Methanal 
Propanone 
Butanone 
Ethanamide 
Methanamide 
N,N-dimethyl methanamide 
Propan-2-01 
Ethanol 
Methanol 
Methoxymethane 
Ethoxyethane 
Dioxan 
Propoxypropane 
Cyclohexane 

2.5555 
2.5400 
2.5556 
4.6210 
6.5043 
3.0178 
2.7452 
6.5100 
8.4345 
5.7137 
3.8732 
7.7540 
7.0014 
5.1232 
3.2533 
5.2699 
9.0251 
9.1490 

12.8080 
11.3131 

0.000 
1.652 
1.654 
3.045 
3.061 
3.584 
1.972 
2.749 
2.804 
3.920 
3.701 
3.453 
2.049 
1.945 
1.979 
1 A23 
1.843 
0.000 
1.819 
0.002 

~ 20.3 
- 17.9 
- 17.4 
- 15.9 
- 15.3 
- 17.0 
- 14.7 
- 13.1 
- 12.7 
- 13.1 
- 13.6 
- 12.2 
- 14.5 
- 15.0 
- 15.7 
- 14.8 
- 14.2 
- 13.3 
- 13.9 
- 13.5 

1.18 
0.64 
0.51 

0.16 
- 0.25 

0.35 

0.29 
- 1.26 
- 1.95 
- 1.01 

0.05 
-0.31 
- 0.77 

0.10 
0.89 

- 0.27 
2.03 
3.44 

- 0.34 

- 0.24 

Table A 2  continued on p. 318. 
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Compound acalc iu E(HOMO) 1% P e x p t  

Cyclopentane 9.4330 0.067 - 14.7 3.00 
Pyridine 9.1539 2.048 - 12.7 0.65 
Nitrobenzene 12.2284 5.417 - 12.8 1.85 
Methylbenzene 11.1511 0.193 - 12.9 2.73 
p-Xylene 13.3834 0.004 - 12.2 3.15 
rn-Xylene 13.3789 0.079 - 12.5 3.20 
o - X y 1 en e 13.3885 0.265 - 12.5 3.12 
Ethene 3.9007 0.001 - 15.8 1.13 
Ethane 4.4304 0.000 - 16.2 1.12 
Propane 6.3180 0.006 - 15.4 1.61 
Butane 8.2057 0.002 - 14.7 2.12 
Pentane 10.0951 0.006 -14.1 2.67 
Hexane 11.9821 0.015 - 13.6 3.25 
Isubutane 8.2141 0.007 - 14.9 2.19 
Methane 2.5519 0 I000 - 19.7 1.55 
Benzene 9.5935 0.000 - 13.9 2.13 
Water 1.3474 2.100 - 17.8a -1.38 

Data from ref [43]. 
a Corrected as per communication with David Lewis. 



5.2 Rule Induction Applied to the Derivation 
of Quantitative Structure-Activity Relationships 

Mohammed A-Razzak and Robert C. Glen 

5.2.1 Introduction 

The field of Artificial Intelligence (Al) has generated numerous innovative methods 
for the extraction of rules from data. We have applied techniques specifically tailored 
to the expert systems area which are useful in deriving simple rules from large data- 
sets. These methods have been employed to analyze relatively small series of mole- 
cules with the objective of establishing rules which are predictive and reliable as well 
as providing an insight into the mechanisms of molecular behavior. 

The derivation of useful relationships between computed and measured molecular 
properties of molecules and their physical and biological properties has been at- 
tempted using many different types of data generation and analysis methods. The 
objective is usually to increase the understanding of the processes involved and to 
establish predictive descriptions relating molecular properties to biological actions. 

Classical QSAR analyzes may utilize physicochemical substituent constants de- 
scribing properties of molecules, and trends within series may be discovered using 
statistical methods such as correlation analysis. More diverse types of data have been 
generated based on computational-chemistry methods [ 11. Because of the large num- 
ber of possible molecular descriptors which can be calculated, this approach may re- 
sult in underdetermined problems where there may be a high ratio of molecular 
descriptors to cases. In addition, much of the generated data may be noise, which 
although accurately describes the molecules in a series, it may have not direct bearing 
on their biological activities. 

To overcome some of these deficiencies, non-parametric statistics and pattern rec- 
ognition methods have been developed [2] and applied to these problems. For exam- 
ple, principal components analysis (PCA), cluster analysis, partial least squares 
(PLS), nearest neighbour (kNN), etc. These are generally described as being either 
supervized (in which a model is fitted, e.g. linear regression) or unsupervized (in 
which the data is not fitted to a model, e.g. a non-linear map). Although these meth- 
ods have been, and continue to be applied successfully to many problems, it is some- 
times difficult to interpret the results and formulate the next step. 

More recently in the field of Artificial Intelligence, methods have been specifically 
developed (Al) in the expert systems area designed to extract rules from data [3,4]. 
The input is usually a number of test cases and the output is a tree-structured series 
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of rules (a class probability tree). This is an example of a supervized learning 
method. 

Applications are diverse and include, for example, electronics [ 5 ] ,  agriculture [6] 
and engineering [7]. The attraction of these rule-induction methods, is that the rules 
generated during the induction phase can be easily interpreted and applied later to 
new cases. The performance of new examples can be tested and the reasons for suc- 
cess or failure can be easily deduced. 

The software package EXTRAN [8] implements the rule induction used in the ex- 
amples analyzed here and is based on the ID3 [9] algorithm. This algorithm is modi- 
fied to allow pruning of “bushy” rule trees using a X-squared criterion. 

5.2.2 Rule Induction Using the ID3 Algorithm 

First, we shall highlight some of the vocabulary used in rule induction. 
Induction: the task of detecting rules in the example set. 
Objects: each data point. 
Attributes: the properties that describe the objects. 
Decision tree: the set of rules (or one rule). 
CX: a modification of ID3 to introduce a chi-squared test at each decision point. 
The ID3 algorithm attempts to construct a simple decision tree from a number of 
objects. It may not be the best tree (the method is iterative), but it is usually compact 
and extracts the essence of the information contained in the examples. 

If C contains p objects of class P and n objects of class N then an object will 
belong to class P probability p / ( p  + n )  and to class N with probability n / ( p  + n )  
The information in a decision tree is, therefore: 

I(P,n) = -p/(P+n) log,p/(P+n)-n/(P+n) log,n/(P+n) (1) 

If attribute A with values (Ai, Ai+, . . .) is used for the root of the decision tree then 
it will partition C into ( C ,  Ci+, . . .) where Ci contains those objects in C that have 
value A; of A. Let Ci contain pi object of class P and ni objects of class N. The ex- 
pected information for the subtree for Ci is Z(p, n;). The expected information re- 
quired for the tree with A as a root is then obtained as the weighted average: 

The information gain on branching A is, therefore: 

gain (A)  = Z(p,n) -E(A)  (3) 
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The ID3 method examines all the attributes and then chooses the one that maximizes 
the information gain. The same process is then reiterated over the rest of the attri- 
butes, or until a suitable level of reliability is achieved (the rule tree may be “pruned” 
at any stage). The objects are then divided into subsets depending on their value of 
that attribute. 

In the case of missing data, a null value is recorded and incorporated into the in- 
formation entropy calculation. A chi-squared test for stochastic independence has 
been found to be useful for noisy data. 

Suppose attribute A produces subsets (Cl, C2, . . . C,)  of C where Ci contains pi 
and ni of class P and N. If the value of A is irrelevant to the class of an object in 
C, the expected value pi of pi should be: 

if ni is the corresponding expected value of ni, the statistic 

is approximately chi-square with u- 1 degrees of freedom. The tree-building algo- 
rithm can then be modified to reject attributes whose irrelevance cannot be rejected 
with high confidence. 

5.2.2.1 Examples of Data Analysis 

Two sets of data are analyzed here. The first data set consists of calculated molecular 
properties and the thin-layer chromatography (TLC) retention factors of a series of 
substituted benzoic acids. Pattern recognition and neural network methods have 
shown the relationships present in the TLC test set. The second dataset is a series 
of anticonvulsants showing anti-epileptic activity which was previously analyzed us- 
ing regression methods. 

5.2.2.2 Rule Induction on Thin-Layer Chromatography Data 

Thin-layer chromatography retention times of 22 substituted benzoic acids were mea- 
sured on 10x20 cm glass-backed plates precoated with C-18 bonded silica gel with 
an in-built fluorescent indicator. Thin-layer chromatography was performed in glass 
TLC tanks containing 5 mL of the mobile phase. The mobile phase consisted of mix- 
tures of different solvent systems: acetonitrile-water (30 : 20), acetonitrile-water 
(40 : 60), acetonitrile-water (60 : 40), methanol-water (40 : 60), methanol-water 
(50 : 50) and methanol-water (60 : 40). 
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The retention factors (Rf values) were converted into Rm values by the following 
equation: 

In order to use numeric data in rule-induction, the data must first be classified. In 
this case, the TLC plate was divided into 5 equally spaced regions of increasing Rj 
values, (0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, 0.8-1.0). The compounds and data are 
listed in Table 1. 

The molecular structures for the twenty-two substituted benzoic acids were con- 
structed using SYBYL [12], geometrically optimized using MOPAC [13] (AM1 PRE- 
CISE) and a range of physicochemical properties was calculated using an in-house 

Table 1. R, values of substituted benzoic acids. 

Compound Acetonitrile/ Acetonitrile/ Acetonitrile/ MeOH/ MeOH/ MeOH/ 
water water water water water water 
(30 : 20) (40 : 60) (60 : 40) (40 : 60) (50 : 50) (60 : 40) 

4-F 

3-F 
2-F 

2-CF3 

3-CF3 

4-CF3 
2-F,4-CF3 

4-F,3-CF, 

4-CH3 

2-CH3 

4-F,2-CF, 

3-CH3 
4-NH2 

H 
2-OH 

3-OH,5-OH 

2-OH,6-OH 

2-OH,3-OH 

2-OH,5-OH 
2-OH,4-OH 

3-OH,4-OH 
2-COOH 

0.15 

0.14 
0.21 

0.11 

0.07 

0.04 

0.07 

0.06 
0.08 
0.12 

0.13 

0.12 
0.41 

0.20 
0.16 

0.62 

0.26 
0.29 
0.37 

0.31 

0.57 
0.37 

0.26 

0.26 
0.32 

0.23 

0.16 

0.12 

0.18 

0.14 
0.15 

0.17 
0.19 

0.18 
0.45 

0.25 
0.22 

0.55 

0.39 
0.44 

0.48 

0.44 
0.57 

0.50 

0.49 

0.48 
0.51 

0.45 

0.39 

0.37 
0.39 

0.35 

0.42 
0.44 

0.44 

0.44 
0.57 

0.49 
0.48 

0.64 

0.51 

0.59 

0.62 
0.61 

0.66 

0.63 

0.10 0.23 0.37 

0.10 0.23 0.37 
0.18 0.37 0.49 
0.10 0.26 0.41 

0.03 0.11 0.26 

0.03 0.1 1 0.26 

0.03 0.14 0.29 

0.03 0.11 0.20 
0.05 0.19 0.33 

0.05 0.19 0.33 
0.09 0.22 0.38 

0.09 0.20 0.38 

0.45 0.62 0.72 

0.17 0.35 0.52 

0.13 0.27 0.43 

0.62 0.67 0.78 

0.25 0.39 0.55 

0.26 0.40 0.59 
0.38 0.53 0.66 

0.30 0.47 0.61 
0.56 0.66 0.78 
0.35 0.57 0.67 
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Table 2. The calculated physico-chemical properties. 

Property 

Molecular area (AREA) [15] A’ 
Molecular volume (VOL) [I61 A 
Ovality (OVAL)a 
Molecular weight (MW) [I71 Daltons 
Dipole moment (DIP)b Debye 
Sum of the excess atomic charge on Oxygen and Nitrogen atoms (QNO)b electrons 
Sum of the excess charge on Nitrogen atoms (QN)b electrons 
Sum of the excess charge on Oxygen atoms (QO)b electrons 
Number of multiple bonds (NMULT) 
Molecular polarizability (POLAR)‘ cm3 
Dipole moment of the solvent (BIPSOL)b Debye 
Polarizability of the solvent (POLSOL)‘ cm3 

a Ovality is the ratio of the surface area to the minimum surface area which would be found if the 
molecule were constrained to be a sphere. 

Atomic charges and dipoles were calculated by the Partial Equalization of Orbital Electronegativity 

‘ Molecular polarizabilities are calculated from Slaters rules for the calculation of atomic screening con- 
stants (to be published) [18]. 

(PEOE) [19-221. 

package PROFILES [14]. The properties calculated are listed in Table 2. In addition, 
the same properties were calculated for the ionised species (e.g. COO- , NH:), for 
example, QNOC (parameters appended with -C to denote the charged species). The 
data set also included the squared terms for each of the parameters relating to the 
neutral species (to introduce non-linearity into the parameter set). This resulted in 
36 descriptors for each molecule. 

An earlier study [lo] showed that pattern recognition and neural network methods 
utilizing some of these molecular properties were of use in predicting retention fac- 
tors for this series. Rule induction offers a different perspective on the data, and 
perhaps some insight into the chromatographic behavior of these compounds. 

The CX algorithm was used for induction, giving rise to the rules in Fig. 1. 
All the molecules are classified using a subset of the original parameters which are 

the following: QNC2, POLSOL, MW, POLAR, DIP2, AREA2, DIPSOL, OVAL2. 
The remaining parameters were unnecessary for complete classification. This is a 

particularly useful attribute of rule-induction, highly correlated parameters (e.g. mo- 
lecular volume is highly correlated with the molecular area, r = 0.98) and those with 
little discriminatory value are discarded. 

Classes 1 and 2 were combined due to the small sample size and a series of test 
runs performed on the data, which involved a “leave-one-out” strategy. All the mole- 
cules except one were used to derive rules which were employed to predict the reten- 
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QCN2 
dl33 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I >=7.57 =2 

>=2983 : MW 
451.1 =3 
>=151.1 : DIP2 

<I 71 =2 
>=I 71 =3 

POLSOL 
45.59 : MW 

I ~ 1 3 6 . 6  : POLAR 
I 1 <117.9 =5 
I I >=117.9 =5 
I >=136.6 : DIP2 
I c7 57 : AREA2 
I 1 49073 =4 
I I >=29073 =5 
I >= 7.57 =3 

>=25.59 : POLSOL 
49.83 : MW 

I <136.6 : DIPSOL 
I I <1.4 =4 
I I >=1.4 : DIPSO 
I I <I57 : DIP2 
I I c7.79 =3 
I I >=7.79 =4 
I I >=1.57 =4 
I 
I 

~7.57 : MW 
I <137.6 =2 

I I >=137.6 ’ AREA2 
1 I 49073 . AREA2 

I <24715 : DIPSOL 
I I 4 40 =4 
I I >=1.40 ’ DIPSOL 
I 1 <I .57 =3 
I I >=1.57 =4 
I ,24715 =3 

>=29073 : DIPSOL 
4.40 =4 
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. .  
>=I 132 . OVAL2 

d 7 7  : POLSOL 
I 49.38 : DIPSOL 
I I 4.46 : DIPSOL 
I I I 4.4 , DIPSOL 
I I I 1 d 3 6  =3 
I I I I >=1.36 =2 
I I [ >=1.4 =2 
1 1 >=1.46 =3 
I >=29.38 =2 

>=1.77 : DIPSOL 
<1.46 : DIPSOL 

I <1.4 =2 
I >=1.4 =I 

>=I 458 =2 

Figure 1. Rule induction on the TLC data. 

Classes 1 lo 5 and total. 
2 27 54 36 13 132 
0 5 36 36 13 90 
0 0 2 15 13 30 
0 0  0 1 1 1  12 
0 0 0 1 1 2  
0 0  0 0 1 0  10 
0 0  2 1 4  2 18 
0 0  0 1 4  2 16 
0 0  0 1 2  0 12 
0 0 0 2 2 4  
0 0 2 0 0 2  
0 5 34 21 0 60 
0 3 21 21 0 45 
0 0  5 1 3  0 18 
0 0 0 6 0 6  
0 0  5 7 0 12 
0 0 5 1 0 6  
0 0 5 0 0 5  
0 0 0 1 0 1  
0 0  0 8 0 2 7  
0 1  15 8 0 24 
0 1 2 0 0 3  
0 0 1 3  8 0 2 1  
0 0 1 1  4 0 1 5  
0 0  8 4 0 12 
0 0 2  2 0  4 
0 0 6  2 0  8 
0 0 4  0 0  4 
0 0 2  2 0  4 
0 0 3  0 0  3 
0 0 2  4 0  6 
0 0 0  2 0  2 
0 0 2  2 0  4 
0 2 1  0 0 3  
0 2 1 3  0 0 15 
0 0 9  0 0  9 
0 2 4  0 0  6 
0 1 0  0 0  1 
0 1 4  0 0  5 
2 22 18 0 0 42 
0 12 18 0 0 30 
0 7 1 8  0 0 25 
0 7 8  0 0  15 
0 2 8  0 0  10 
0 0 5  0 0  5 
0 2 3  0 0  5 
0 5 0  0 0  5 
0 0 1 0  0 0 10 
0 5 0  0 0  5 
2 1 0  0 0 0 12 
2 4 0  0 0  6 
0 4 0  0 0  4 
2 0 0  0 0  2 
0 6 0  0 0  6 

tion factor of the test compound. The results were excellent and correctly predicted 
the outcome in most cases for 90% of the samples. 

Those compounds which were predicted to fall into the wrong class were invariably 
predicted to be in the adjacent class, which was due to compounds lying very close 
to the classification levels. Small changes in the induced rules (by adding or removing 
compounds) in some cases reclassified these into the correct classes and was due to 
a “splitting” in the decision tree at slightly different values. This behavior is usually 
seen in small data sets (such as this one), where there are relatively few examples in 
each class. 
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Table 3. Prediction of TLC retention timesa. 

Class pass fail % correct To randomb 

1 + 2  6 
3 9 

4 9 
5 9 

60% 
90% 
90% 

90% 

29/132 = 22% 

54/132 = 41% 

36/132 = 27% 
13/132 = 10% 

a 10 runs were performed (50 in all) for each class. This used a “leave-one-out” strategy of using the 
training set to define a class probability tree which was used to predict the class membership of the 
missing member. 

This is the percentage expected for a random guess of the result. 

Compounds with a low Rf value are not predicted so well. This may well be due 
to the difficulty in measuring retention factors near the base of the TLC plate. Small 
changes in the decision levels resulted in some compounds being classified into the 
next faster moving band of the TLC plate. 

Analysis of the rules is simple and allows an interpretation of the results in a chem- 
ical sense. Branches having a high classification rate are particularly useful. For ex- 
ample, compounds which ascend the TLC plate rapidly have different properties to 
those which remain near the base. This has been explained previously in classical 
terms as the proton acceptor ability, proton donor ability and dipole interaction of 
the solute (the compound of interest) and the solvent [the stationary phase (silica in 
this case)] [23]. Since silica gel is amphoteric in nature, i.e. being both hydrophilic 
and lipophilic in character (due to the simultaneous existence of both silanol and 
siloxane groups), hydrogen bonding and dispersion interactions therefore are thought 
to be important in determining retention factors. 

Examination of the induced rules shows some particularly strong branches, e.g. 
such as the following: 

If QNC2 >, 1 .I 3 and Ovality2 >, 1.77 then compounds are found near to the base 
of the plate (low Rf). On the other hand, if QNC2< 1.3 and POLSOL <25.5 and 
M W <  136 then compounds are found near to the top of the plate (high Rf). The 
challenge then is to interpret the rules in a chemical sense, and one interpretation 
may be: 

“compounds having less excess charge on the nitrogen and low molecular weight 
in a solvent of high polarizability, interact less (decreased hydrogen bonding capaci- 
ty) with the stationary phase and interact more with the solvent (presumably via dis- 
persion forces) and are moved up the plate” 
while, 

“compounds having good hydrogen bonding groups (more highly charged), 
which are more oval than spherical, are situated near to the base of the plate, 
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presumably due to greater hydrogen bonding interactions with the stationary phase 
and lower mobility, due to the non-spherical shape”. 

These rules makes sense in the context of existing chromatographic theory and are 
an example of how underlying principles can be supported by the data. 

5.2.2.3 Forced Induction and Exception Programing on Anticonvulsant Data 

The anticonvulsant and CNS-depressant activities of sixteen commercialy available 
anti-epileptics were subject to regression analysis by Lien, Liao and Shinouda [24]. 
The maximal electro-shock data (MES) includes 16 compounds, 3 descriptors and 
the MES field. The data, compounds and a description of the attributes is contained 
in Table4. 

A simple correlation between anticonvulsant activities and logP was derived: 

log 1 / C  = 0.627 (0.093) log P+ 2.58 (0.1 6) 

n = 16, r = 0.76, s = 0.342. 

(7) 

When diazepam, clonazepam and carbamazepine were omitted (on reports that 
they interact with different receptors) an improved fit of the data was obtained: 

log 1 /C = 7.776 (0.847) log MW- 14.438 (1.943) 

B = 13, T = 0.941, s = 0.241 

Table 4. CNS data of selected anti-epileptics. 

Compound MES log MW log P Dipole Moment 

phenytoin 4.42 - 2.4 2.47 1.74 
ethytoin 3.38 2.31 1.53 1.74 
mephenytoin 3.56 2.34 2.09 I .74 
phenobarbital 4.03 2.31 1.42 0.87 
metharbital 3.19 2.3 1.21 1.13 
mephobarbital 3.86 2.39 1.98 0.81 
primidone 4.28 2.34 2.1 1.35 
trimethadione 2.36 2.16 - 0.37 1 .I4 
paramethadione 2.82 2.20 0.13 1.69 
ethosuximide 2.15 2.15 0.01 1.47 
methsuximide 3.43 2.31 1.54 1.61 
phensuximide 3.31 2.28 1.4 1.61 
phenacemide 3.31 2.25 0.57 2.06 
diazepam 4.11 2.45 2.82 2.65 
clonazepam 3.56 2.51 2.41 2.33 
carbamazepine 4.4 - 2.31 2.18 2.41 
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Figure 2. Class probability tree of the MES data. 

The optimum lipophilicity was calculated to be 1.42 from regression (derived from 
the parabolic equation) with a negative dependence on ,u (the dipole moment). This 
data set is a useful example with which to demonstrate forced induction and excep- 
tion programming. 

Selecting the mean of the MES data (3.5) and using automatic induction (CX) 
gives the class probability tree in Fig. 2. 

Using only log MW, 100% classification was obtained and this was therefore, the 
most important descriptor. Those compounds with log M W  value greater than 2.32 
are in the most active set. This is interesting (but not surprising). The regression anal- 
ysis of the full data set inferred that log P and dipole moment were important but 
that log MW was of lower significance. However log P and log M W  were highly cor- 
related (r  = 0.93) for this series of compounds. 

When diazepam, clonazepam and carbamazepine were omitted from the regres- 
sion analysis (reports suggested that they interact with different receptors) a better 
fit of the data was obtained in the regression analysis resulting in the simple relation- 
ship shown in Eq. 8. 

The correlation coefficient is increased and log MW is now the important descrip- 
tor in the regression equation. This was the result found using induction. Since in- 
duction works in a stepwise fashion, classification for the majority of compounds 
may be achieved early on in the analysis using only a few descriptors with outliers 
classified later employing additional descriptors in the set. In this way, the more im- 
portant descriptors (for most of the set of compounds) are revealed. 

In order to obtain more information on a diverse set of parameters, or to view the 
data from a different viewpoint, induction may be forced to split descriptors in a 
defined sequence. By forcing induction to split log P first, the decision tree in Fig. 3 
is obtained. 

This gives about 90% classification of the full data set, assuming that the tree is 
pruned to remove nodes 3 to 4. This can be compared with the regression equation 
which used log P as a significant contributor (where the correlation coefficient was 
0.88). The induction next splits log MW, while the next most significant contributor 
to the regression equation is the dipole moment, p. 
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Figure 3. Class probability tree for the MES data (forced induction on log P).  

gt 3.5 

log MW gt 3.5 

le 3.5 

Figure 4. Class probability tree for the MES data (forced induction on dipole moment). 

The splitting value selected for log P by induction was 1.76, which is similar to the 
optimum value found for lipophilicity by regression (1.42). So, compounds with log 
P greater than 1.42 are in the more active set. The precise value of decision values 
is, however, unstable in such small data sets and can change with the omission (or 
addition) of key compounds to the training set. 

Splitting first the dipole moment gives a lower classification (only 61 070, induction 
tree shown in Fig. 4). 

This is similar to regression in which the dipole was found to be less significant. 
The dependence on the dipole moment was negative in the regression equation. This 
is not completely the case in rule induction, where a number of compounds display- 
ing a dipole greater than 2.19 Debye are classified as more active using this descrip- 
tor. A possible explanation might be that this parameter becomes influential in cases 
where other descriptors have values which enable the dipole moment to become sig- 
nificant. 

This is also an interesting example in which to attempt exception programming 
[25]. This method is a modification of the induction algorithm and can be used to 
reveal combinations of descriptors (physico-chemical properties in these applica- 
tions) that are not present in the training set. It may, therefore, be useful in expanding 
the training set to cover more of the parameter space at minimal cost. 
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Figure 5. Class probability for the MES data showing exception programming. 

In this method, a decision tree is generated using the automatic CX induction al- 
gorithm to determine the decision points for each of the attributes. The values of 
the attributes are then converted from numerical to logical values, depending on 
threshold values given in the trees. A new class is created (undefined) for undefined 
compounds or combinations. The example sets are then entered as exceptions to the 
general case of undefined. 

A new decision tree was generated using exception programming (Fig. 5). The un- 
defined points in the tree are cases which do not appear in the trial set (Fig. 5) .  For 
example, there is no case of a compound with a dipole > = 2.195 and a log P< 1.76 
and a log MW<3.325. This is a very useful feature when expanding a compound 
set to cover property space in the most efficient way. 

5.2.3 Conclusions 

Rule induction using the CX algorithm can be an alternative method for data analy- 
sis. The rules are usually compact and may offer insights into the role of molecular 
properties in the determining physical and biological properties. Rule induction ap- 
pears to extract properties in a different way than, for example, regression in the 
determination of the relative contribution and importance of descriptors. The pre- 
sentation of the results in the form of conditional statements is clear (from the point 
of view of deciding with which molecule to test next) and may be compared to, for 
example, regression equations or non-linear map plots which classify the objects of 
interest, but do not easily reveal the reasons behind the classification. 
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The probabilities attached to the derived rules (based on the number of correctly 
classified members in each branch) allows confidence to be attached to particular 
branches. Also, it is clear how the rules were derived and (if requested are given by 
the program) which examples were used to determine the rules. Also exception pro- 
gramming may be used to further explore property space economically. 

Since several trees may be induced from the same data set by forcing induction on 
attributes of interest, we can examine the data from different angles. A number of 
alternative production rules may, thus, be generated from the same data set. 

The results imply that in some cases it would be advantageous to use rule-induc- 
tion as a complementary technique in addition to conventional statistical and pat- 
tern-recognition methods [26]. 
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