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Introduction

We are taught early in life abowt the necessity to plan ahcad. Present decisions
affeer future eventy by making cettain opportunities available, by precluding
others, and by alwring the costs of still ohers. If presem decisions do not
atfect future opportunities, the planning problem is trivial. One need then only
make the best decision for the present.

This book deals with analytic metheds for solving planning problems in
continuous time, namely the dynamic optimication techniques of the caleulus of
variations and of optimal control theory, The solution to a contingous time
dynamic problem is a continuous function (or a sct of functions) indicating the
uptimal path to be lollowed by the variables through vime (ot space).

The origin of the calculus of variations is commeonly traced to the posing of
the hrachistochrone problem by John Bernoulli in 1696 and its solution by him
und independently by his brother James in 1697, {1f a small object moves under
the influence of gravity. which path berween two fixed points enables it to
make the trip in the shortest time?) Other specific problems were solved and a
gencral mathematical theery was developed by Euler and Lagrange. The most
fruitful applications of the calcpius of variativns have been to theoretical
Physics, especially in connection with Hamilton's principle or the Principie of
Least Action. Early applications to economics appeared in the late 1920s and
carly 1930s by Rows. Evans, Hotelling. and Ramsey . with further applications
Published occasionally thereatter.

The modern era began in the early 1960s with a resurgence ol interest by
mathematiciuns and groups of cconomists and management scientists in certain
dynamical problems. Optimal control theory, developed in Russia by Pontrya-
2in and his co-workers in the lare 1950s and published in English teanslation in
1960, generalizes the valculus of varations by extending its range of applica-
bility, Ahout the same time. economists were interested in models of optimal
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economic growth (initiated decades before by Ramsey} while management
scientists were studying optimal inventory policies. These researchers were a
“‘ready market’" for the new tools of dynamical analysis, and application began
quickly. Dynamic programming, developed by Richard Bellman in the 1950s,
had also stimulated interest. Of course, these mathematical techniques have
been used in many other fields, such as aeronautics and chemical engineering.
The tools of caleulus of variations and optimal control are now nearly standard
in economics and management science. This text is devoted to expositing them
and illustrating their range of application in these areas.

In a static problem, one seeks an optimal number or finite set of numbers.
For instance, a firm may seek the production level x* that maximizes the
profit F(x) generated by producing and seiling x units:

max_rzOF(x)' (1)

The answer to this problem is a number, x*. If F(x) has a particular

functional form, then the number x™ can be determined precisely. Otherwise,
x* is characterized in terms of the function F. If F is continuously differen-
tiable and production is worthwhile, x™ typically satisfies the first order
necessary condition F(x*) = 0.

In another case, several variables may be selected simultaneously:

max  F(x,,..., Xx,)

subject to x;=20, i=1,2,...,n,
where F(x,,..., x,} is the profit function,' and x; is the amount of the ith
good, i =1,...,n. The solution is a set of n numbers, x’l". . x:,

representing the amounts of each good to produce and sell for maximum profit.
A multiperiod discrete time generalization of (1) involves choosing the
amount x, of the good to be produced and sold in each period #:

T
max »_ F(¢, x,)

Py (2)

subject to x, =20, tr=1,....T

r

The optimal solution is a set of 7 numbers, x}...., x}. Since the output in
any period affects the profit in that period only, problem (2) is reduced to a
sequence of static problems, namely, to choose a production level in each
period to maximize current profit. Thus the T first order conditions satisfied
by the T wvariables separate into T separate conditions, each in a single
variable. The extension to 7 goods should be apparent.

The problem becomes truly dynamic if the production level affects not only
current prefit but also profit in a later period. For example. current profit may

" This is a ditferent function than in (1), We use the name F for profit in several places. but the
particular form of the function may be different in each case.

Section 1. Introduction 5

depend on both current and past output due to costs of changing the production
rate {e.g., costs of hiring or firing):

T
max IZ::]F(LX“X;—J (3)

subject to x;,=z0, t=1,...,T,

with a production level x, at the moment of planning, ¢ = 0. Note x, must be
specified since it affects the profit available in period 1. The T first order
conditions satisfied by an optimal solution do not separate; they must be solved
simuitaneously.

The continuous time analog to (2) is

T
max / F(t, x(1)) drt

subjectto  x(f) = 0.

(4)

The solution will be a function x(¢), 0 < t < 7, that gives the firm’s optimal
output rate at each point in time over its planning period. As in (2), this is not
really dynamic since the output at any ¢ affects only current profit. The
optimal solution is to choose x(f) to maximize profit F(¢, x(t)) for each ¢.

The continuous time anatog of (3) is less immediate. Since time is continu-
ous, the meaning of “*previous period™ is not clear. It relates to the idea that
current profit depends on both current output and the rate at which output
changes with respect to time. The rate output changes over time is x’(¢). Thus,
the problem may be written

T
max / F(t, x(1), x'(¢)) dt

0
subjectto  x(£) =0, x(0) =x,.

Necessary conditions for solution will be deferred until a few more exampies
of continuous dynamic optimization problems have been given.

Exgmple 1. A firm has received an order for B units of product to be
delivered by time T. It seeks a production schedule for filling this order at the
Speciﬁed delivery date at minimum cost, bearing in mind that unit production
cost nses linearly with the production rate and that the unit cost of holding
ln\’eplory per unit time is constant. Let x(¢) denote the inventory accumulated
by time r. Then we have x(0) = 0 and must achieve x(7) = B. The inven-
tory level. at any moment. is the cumulated past production; the rate of change

of Inventory is the production rate dx /dr = x’(r). Thus the firms total cost at
any moment f is

o x' (0 x{r) +c,x(1r) = cl[x'(r)]2 + c.x(r}.
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where the first term is the total production cost, the product of the unit cost of
production and the level of production; the second term is the total cost of
holding inventory; and ¢, and ¢, are positive constants. The firm’s objective is
to determine a production rate x'(t) and inventory accumulation x(?) for
0=¢t=Tto

min f':[cl(x’(f))2 + czx(t)] dt
subject to x(0) =0, x(T)=18, x{t}=0.

One possible production plan is to produce at a uniform rate, namely
x(ty=B/T. Then x(t) = _[(;{B;’ T)ds = Bt/ T and the total cost incurred
will be

T 2
[ [c(B/T) + ¢,Bt/T| dt = ¢,B*/T + ¢, BT /2.
Jo
While this is a feasible plan, it may not minimize cost.

Example 2. From a stock of capital equal to K, an output can be produced at
rate F(K). The production function F is assumed to be twice continuously
differentiable, increasing, and concave. This output can be consumed, vielding
immediate satisfaction, or it can be invested to augment the capital stock and
hence future productive capacity. Output F(K) is therefore the sum of
consumption C and investment K’ = dK /dt (the change in capital stock).
The problem is to maximize utility from consumption over some specified
period by choosing the portion of output to be invested at each moment ¢. This
amounts to selecting the rate of growth K of the capital stock to

max fOTU(C(r)) dt, or max I/(;TU[F(K(I)] - K'(1)] ar

subject to K(0)=K, K(T)=z=0,

where the utility function U of consumption is twice continuously differen-
tiable, increasing, and concave.

If capital is not perfectly durable, but decays at a constant proportionate rate
b, then reinvestment at rate bK () is required to keep its stock intact (see the
appendix to this section) and therefore F{K) = C + K’ + bK. Hence the
amount zvailable for consumption is output less both the amount devoted to
replenishing the capital stock amdd the net change in capital. If. in addition,
future satisfactions are to be discounted at rate r (see the appendix to this
section), the problem is

max /Te"’L-’[F(K[I)] - K'(1) — BK(1}] dr
Yo

subject to K(0)=K,. K(I =0,

Gection L. Introduction ;

Example 3. Let P(K') be the profit rate, exclusive of capital costs, that can
be earned with a stock of productive capital K. If the firm has little control
over price. then P(K) = pF(K), where p is the market price and F(K) is
the output that capital stock K yields. The functions P or F are typically
assumed to be twice differentiable, increasing (at least for small and moderate
values of their arguments), and concave. The capital stock decays at a constant
proportionate rate b, so that K = I — bK, where I is gross investment, that
is, gross additions of capital. The cost of gross additions to capital at rate 7 is
C(Iy, where C is an increasing convex function. If investment goods have a
constant price ¢, then C(7) = ¢f.

We seck to maximize the present value of the net profit stream over the
fixed planning period 0 < r = T

T
max /e‘”[P(K)—C(K’+bK)] dt
0
subjectto  K(0) = K,, K(T) =0,
where K = K(T)and K’ = K’(1). Recall that 7 = K’ + bK.

This example can be reinterpreted as a problem in which X is ““*human
capital,”” P(K) is the earnings of an individual with human capital K, C(J) is
the cost of education or training, and b is the rate of forgetting. Alternatively,
K may be a firm's stock of goodwill; P(K) is then the firm’s maximum
earnings rate if its goodwill is X, and C(/) is expenditure on advertising and
promotion to enhance goodwill. In still another context, X is the stock of a
durable good that is leased to others, P(K) is the rentals collected, and C( I}
is the cost of producing or acquiring additional units. Finally, K may be the
state of healthiness or health capital, P(K) the earnings or well-being associ-
ated with health K, and C([) the expenditure on preventative health care,

The range of applications is far wider than suggested by these three
examples. Also, the same mathematical techniques apply to problems over
Space as well as time and have been used. for example, in the optimal design of
a ¢ity. Some classic geometry problems are noted next.

Example 4. Find the shortest distance in the planc between the points, (g, A4)
and (5. B). To state the problem more formally. recall that the square of the
length of the hypotenuse of a right triangle is cqual to the sum of the squares of
lengths of the other two sides. Thus a small distance ds can be expressed as
s = [(dr) + (@)’ ] * = [1 + x5 P dr (see Figure 1.11. Hence the
length of the path to be minimized is

;o a2
/ {1 + ‘\"(\fl‘}] dr subjectto x(a) = A, x(b) = B.
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ds
dx

dr
Figure 1.1

Example 5. Find the maximum area in the plane that can be enclosed by a
curve of length L and a straight line. This is a generalization of a familiar
algebra exercise for finding the rectangle of perimeter L that encloses the
largest area. The algebra problem involves selection of two parameters only
(length and width) since a rectangle is required. In the present problem, the
shape of the curve is to be found as well. ‘

Specifically, we seek the maximum area that can be enclosed by a string of
length L and a straight line, with the string emanating from the point (0, 0} and
terminating at (7, 0) on the straight line (Figure 1.2):

max fo(t) dt

T 172
subject to / [l + x'(r)z)] dt=1L, x(0)=0, x(T)=0.
0

Example 6. Find the path y(x) inthe x, ¥ plane such that a particle of mass,
m, propelled by the force of gravity travels from an initial point (X,, ¥o) to a
final point (x,, y,), in the shortest time. The particle may be thought of as a
bead and the path as the configuration of the wire along which it slides. The
total time of the particle’s journey is:

refa

Now, dt = ds/(ds/dt) = ds/v, where v is the particles velocity ds/d¢, and
ds is a short distance along its path. But (ds)? = (dx)* + (dy)’ so ds = (1 +
¥ 12 dx where ¥’ = dy/dx. Also, it is supposed that the particle neither
gains nor loses energy along its journey. This means that its kinetic energy,
my?/2 = mgy, its potential energy everywhere along the path, where mg 1s
the particle’s weight and g refers to the acceleration of gravity. (We suppose
the particle’s initial velocity is zero.) It then follows that v = {2 gy)'*. Upon

x{n

0 T !
Figure 1.2
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making all the right substitutions, the problem becomes
. *i 172
min / [(1+ %)/ 5] dx/(2g)'".
X0
This is the brachistochrone problem.

As noted above, the solution of a dynamic optimization problem is a
function, through time (or space). In the course of the discussion, analogy will
be made, wherever possible, to concepts familiar from static optimization,
where calculus can be employed. Three methods of dynamic optimization will
be discussed—first the calculus of variations, second, optimal control, and
third, dynamic programming. The calculus of variations is analogous to
classical calculus in its arena of applicability. That is, it can most easily be
employed when all the functions describing the problem are smooth and the
optimum is strictly inside the feasible region. Optimal control is applicable in
these instances but can also accommodate boundary sclutions. It may be
viewed as an analog of Kuhn-Tucker theory; see Section A6. Dynamic
programming is a generalization of both methods. It is especially useful in
dealing with problems involving uncertainty and in differential games.

The three questions of the existence of an optimum, the necessary conditions
for optimality, and the sufficiency of the necessary conditions for optimality,
arising in calculus (see Section A4) have their counterparts in dynamic
optimization. Existence is the most difficult question to answer and will not be
treated here. Some optimization problems appear reasonable yet have no
optimal solution. For example, even though a curve of shortest length connect-
ing any two given points in a plane exists, there is no connecting curve of
greatest length. There is no continuous function x(¢) connecting (f, x) = (0, 1)
and (1, 0) with minimum area under the graph of the function. The problem
{sce Figure 1.3)

¥
min f x{t) dt
o]

subjectto  x(0) =1, x(1) =0,

0 1 ¢
Figure 1.3
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has no solution in the class of continuous functions. (The area approaches zero
as the path approaches the L-shaped broken straight line joining (0, 1), (0,0}
and (I, 0). But that broken line is not the graph of a function; a unique value of
x is not associated with each ¢.)

Necessary conditions for optimality will be emphasized with some attention
to sufficiency. Examples from economics and management science are pro-
vided throughout.

APPENDIX TO SECTION 1
Discounting

If A dollars were invested at 100r percemt per year, the amount wounld grow to
A+rA=(1+4+7r)A after 1 year, to (1 + A +r(1 + A =(1+ 34 after 2
years, and to {1 + r}'4 after ¢ years. If the interest were compounded, not annually,
but twice a year, then the interest rate per 6 month period would be r/2 and the initial
amount A would grow to (1 + r/2)°4 after | year and to (1 + r/2)?‘A after ¢ years.
More generally, if interest were compounded 77 times per year, then the rate per period
is #/m. The amount A would grow to (1 + r/m)™A after 1 yearand to (1 + r/m)™A
after ¢ years. Continuous compounding amounts to letting m — oo, Since

Hm,, (1 + r/m)™ =e”,

it follows that A dollars invested at annual rate r, continzously compounded, grow to
Ae™ dollars in ¢ years.

What amount X" now would grow to B dollars in ¢ years, if interest is compounded
continuousty at rate r? The unknown sum X will be worth Xe” in f vears, so
Xe™ = B, Thus, X = e "B, That is, the present value of B dollars available t
years in the future, if the inferest rate or discount rate isr, is e”"'B,

Decay

If a stock K decays at a constant proportionate rate & > 0 and if it is not replenished,
then K'(1}/K{(#) = — b, that is K'(¢) = —bK(#). Since the solution to this differen-
tial equation is K(7) = K(0)e~ ', we sometimes say that the stock K decays expo-
nentially at rate b.

FURTHER READING

References on the calculus of variation include Bliss: Elsgolc, Gelfand and Fomin; and
D. R. Smith. A history of the calculus of variations is provided by Goldstine. For early
applications of calculus of variations to economics, see Evans (1924, 1930}, Hotelling.
and Ramsey. Many of the references cited in Section H1 on optimal control discuss the
calculus of variations as well and show the relationships between the two approaches to
dynamic optimization problems. Certain references cited in Section 1120 on dynamic
programming likewise show relationships among the techniques. Modern applications

Section 1. Introduction i

of the calculus of variations are now too numerous to list; a brief selected bibliography
appears at the end of this book.

Solution to discrete time problems like (1)-(3) is discussed in Sections A4-A6,
where some references are also mentioned. Concavity and convexity of functions are
discussed in Section A3,

Example 1 will be pursued thronghout this book. Example 2 is known as the
neoclassical growth model; see also Section 10. Generalizations of this basic growth
model comprise, perhaps, the largest set of papers on any single application area of
these techniques in economics. Takayama; Intriligator (1971); Hadley and Kemp; Tu,
Miller, Seierstad, and Sydsacter (1987); Sethi and Thompson; and Feichtinger and
Hartl all review some of this literature, Example 3 and variants of it will be discussed in
a variety of contexts.
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Example Solved

Suppose in Example 1.1 that the cost of holding inventory is zero: ¢; = 0.
Although now x(¢) does not enter into the integrand, the problem is dynamic
since total production over the time span of length 7 must be B. Since ¢, is a
positive constant, an equivalent problem is obtained by setting ¢, = 1.

min j:[xf(r)]2 dr "
subjectto  x(0) =0, x(T)=B, x(1)=0.

The solution to a discrete time approximation to this problem will suggest
the form of the solution to (1), whose optimality will then be verified.

Divide the interval {0, T] into T/k segments of equal length X. The
function x{#) can be approximated by the polygonal line with vertices y at the
end points of each segment: (0, 0), (k, y\), 2k, ¥3),.. ., (T, B). The deci-
sion variables are the inventory levels y,, ¥5, ..., ¥r/—, (Figure 2.1).

The rate of change x'(f) is approximated by Ax/Af = {y,— y;_}/k.
Thus the approximating problem is to find y;, i = 1,...,(T/k) — 1 soasto

T/k

min 3 [(}',— - y:’—l)/k]zk! where y, =0 and yr, =B, (2)

i=1

recalling that df is approximated by Af = k. Set the partial derivative of (2)
with respect to each ¥y, equal 1o zero

(yr'_yi—l)/k_(yi+l_y:')/k=0’ i=1,...,T/k-1
Therefore
Yo~ Yier = Y1 — Vs i=1,...,T/k-L
Thus successive differences are equal. The change in inventory, or the

production rate, is the same during each time interval of length k. Inventory
grows linearly with the y; lying on a straight line from (0, 0) to (T, B).

Section 2. Example Solved 13

0 & 24 3k 4k e T 7
Figure 2.1

The continuous time optimization problem (1) is obtained as & — 0 in (2).
The preceding calculation suggests that the solution to the continuous time
preblem may also involve production at a constant rate with inventory building
linearly: x(#) = tB/T. Since x’(¢) = B/T = 0, this path is feasible. This
conjecture will be verified by showing that no feasible path for inventory
accumulation can give lower cost.

All feasible paths obey the same initial and terminal conditions. Let z(¢) be
some continuously differentiable comparison path satisfying z(0) = 0, z(T)
= B. Define A(#) = z(#) — x(¢), the deviation between the comparison path
z{?) and the candidate path x(f) =tB/T at time ¢. Then A(0) = 0 and
h_(r) = 0, since the paths x and z coincide at the initial and terminal time.
S.mce ) =B/T + h(1), it follows that z'(z) = B/T + H(t) and the
difference in cost between using plans z and x is

JALF - [roF} ae= [*{{8r7+ w0 - (8777} a
= 2(B/T)/:h’(r)dt + f]r[;‘z’(r)]2 dt
=2(B/T)[A(T) - h(0)] + /T[ K(t)]* dt

- /T[h’(r)]2 dt =0

since h(‘T) = k(0) = 0. Thus, the cost of using any feasible production plan
{comparison path) can be no less than the cost of following the candidate plan
{path) X($) =tB/T, 0 <t =< T. Hence, the candidate is optimal.

‘ Typically problems will not be solved in this manner, although both discrete
t11'1‘1.e approximation and verification of optimality are useful. However, the
nelion of comparison path is important since it plays a central role in
developing the method of solution.




Section 3

Simplest Problem —Euler Equation

We seek properties of the solutien to the problem

max f"p(:, x(1), x'(2)) dt (1)

L

subjectto  x(f) = x5, x(f)) = x,. (2)

The function F is assumed to be continuous in its three arguments t, x, X’ and
to have continuous partial derivatives with respect to the second and third, x
and x’. Note that while the third argument of F is the time derivative of the
second, F is to be viewed as a function of three independent arguments. Thus
if F(a, b,¢) =a>+ bc — ¢?, then F(¢, x, X)) = 2 + xx’ — (X'} The ad-
missible class of functions x(f), among which the maximum is sought,
consists of all continuously differentiable functions defined on the interval
[, #,] satisfying the fixed endpoint conditions (2).

Suppose that the function x*(#), #, < ¢ < ¢, provides the maximum to (1).
Let x(#) be some other admissible function. Define the function A(r) to be
the deviation between the optimal path x*(#) and the comparison path x(?) at
each {:

A1) = x(1) - x*(r).
Since both x™ and x must obey (2), we have
k(1) =0, h(1,) = 0. (3)

We say the deviation 4 is admissible if the function x = x* + Ak is admissi-
ble.

For any constant g, the function y(¢) = x*(¢) + ah(7) will also be admissi-
ble since it is continuously differentiable and obeys (2) (since x* does and A is
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zero at the endpoints). With the functions x* and & both held fived, complite
the value of the integral in (1) for y(¢) as a function of the parameter g (see
Figure 3.1). The result is a function of a, say g(a):

g(a) = /HF(!, y(2), y'(2)) dt

fy

- /”F(:, x*(t) + ah(t), x*(1) + ak(1)) dt. (4)

iy

Since x™ maximizes (1), the function g must assume its maximum at @ = 0.
But this implies that g'(0) = 0 by the first order necessary condition for a
maximum of a function of a single variable; see (A4.2). To compute g'{a),
first apply the chain rule (A1.5) to the integrand of (4);

dF(t, x*(¢) + ah(t), x* + ak'(t))/da = F,h{t) + F_ k(1),

wl.lere F, and F,. denote partial derivatives of F with respect to its second and
third arguments, respectively, and are evaluated at (¢, x*(£) + ah(¢), x*(1)
+ ak'(1)). Second, Leibnitz's rule for differentiating under an integral (Al 10}
Is applied to compute g'(a), and the result is evaluated at the point that
maximizes g(g), namely, g = 0, yielding

£0) = [[ELr 37 (1) xR + Felt, 20, () (1))

=0 (5)

The condition that &'(0) be zero is necessary since x™ is assumed optimal.
RCCE{ll that the function A, held fixed to this point, was chosen arbitrarily.
mel'{C}ed only to being continuously differentiable and satisfying endpoint
conditions (2), The right side of (5) must be zero for any choice of A satisfying

"eS€ TWO restrictions.
#Expression (5) can be put into a more convenient form by inteprating the
second term by parts (AL.8). In [ udv = uv — f v du., we let F.. play the
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role of u and A'(1) dt play dv, obtaining

! 5
/1Fx,h’dt=Fx,h|§:J~/ h(t)(dF, jdt) dr. (6)
)

i

(We have assumed that dF,. /dt exists. This assumption is examined in the
appendix to this section.) Recall (3) and substitute it into (5):

f"[g(r, x*(1), x™(1)) = dF, (1. x*(r), x*(2))/dt] h(t) dt = 0. (7)

Equation (7) must hold if x* maximizes (1), and it must hold for every
continuously differentiable function % that is zero at the endpoints. It will
certainly hold if the coefficient of A(¢) is zero for every ¢, which

F (£, x*(8), x¥()) = dF (¢, x*(1), x*(t))/dt, t,<t<1i. (B)

Equation (8) is called the Fuler equation corresponding to problem (1)—(2).
It may be viewed as a generalization of the standard calculus first order
necessary conditions f’(x*) = 0 for a number x* to maximize the function
J(x). Indeed if dF, /df =0, then (B) reduces to that standard calculus
condition.

In fact, (7) holds for the entire class of functions 4 only if (8) holds:

Lemma 1. Suppese that g(¢) is a given, continuous function defined on

[£, 4,1
If

[stomieyar =0 )

for every continuous function A(¢} defined on [f, ¢,] and satisfying (3),
then g(f) =0for ¢ty =t =<t

PROOF. Suppose the conclusion is not true, so g(f) is nonzero, say positive,
for some ¢. Then, since g is continuous, g(#) > 0 on some interval [a, &] in
[#,, t,]. We construct a particular h(¢) satisfying the conditions of Lemma [,
namely (Figure 3.2),
h(‘}=[(t—a)(b—r), a=t=b,
0, elsewhere .
Compute
t b
] g(1)h(r) dr = f g(1)(1 — a)(b — 1) dr > 0,
't

o a

since the integrand is positive. This contradicts the hypothesis that (3) holds for
every function A in the specified class. A similar argument shows that
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“g(r) < 0 for some ¢ leads to a contradiction. Supposition that the conclu-
sion of the lemma was false while the hypotheses were true led to an
inconsistency, verifying the lemma. 0

Applying Lemma | to (7) indicates that (8) must hold. Equation (R), the
Euler equation, is a fundamental necessary condition for optimality of the
function x*(¢) in the problem (1)-(2).

It is important to note the Euler equation must hold for each—+in the interval
(4o, #,]. Equally important is the fact that dF,. /dt is the fotal derivative with
respect to {. In interpreting this notation, it must be remembered that the
partial derivative F,.(¢, x, x" is itself a function of three variables, This
function is to be differentiated with respect to ¢. The total rate of change of the
value of the function F,. with advance in ¢ is due, not only to change in ¢

itself, but also the concomitant changes in x and x’. Apply the chain rule to
compute

dF,./dt = F.,+ F.,x'+ F,. x",

noting tl"aat‘ each of F’s arguments depends on ¢. Subscripts indicate partial
differentiation. Thus the Euler equation can be written

Fo=F +F. X'+ F..x", ftyst=<t, (10)

W’here th:: partial derivatives are all evaluated at (¢, x*(¢), x™(1)) and x’ =
xX(), x* = x"(2). The Euler equation is a second order differential equation

t{"r x(1), to be solved with the two boundary conditions (2}. Another useful
Orm of the Euler equation is

Fo(t, x*(1), x*(1)) =f'p,(s. () x(s)) ds+ e, (1)

o

wh : . .

appe;e € 1s a constant. This form is called the duBois-Reymond equation and

g 1R as we?l when the admissible functions x{¢) are allowed to have
mers. If F, is continuous, differentiation of (11) with respect to ¢ yields (8).
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Still another useful form of the Euler equation can be found by evaluating
d(F— x'F,)/dt = F,+ F,x'+ F.x" —x"F, — x'dF,. [/ dt
= F,+ x'(F, — dF, /dt)
= F, (12)

The second line follows from cancellation of x”F,. and collection of terms
involving x'. The third line follows from recognition that the bracketed
expression is just the Euler equation (8) and must be satisfied by any function
x(2) that solves (1). This form, (12), of the Euler equation is especially useful
when the function F does not depend on 1 explicitly, i.e., F = F(x(f), x'(1).

In general, the coefficients in (10) (the partial derivatives of F) are not
constant and the differential equation is quite difficult to solve. Indeed, there
may be no closed form analytic solution to this differential equation for a given
specification of F. In such cases, however, it may be possible to gain
qualitative insight into the behavior of an optimal function x* even without
finding an analytic expression for it. If the problem is stated with implicit
functions only (as Examples 1.2 and 1.3), then usually one seeks qualitative
characterization of the solution.

Dealing with the Euler equation in its form as a second order differential
(10) can be avoided by replacing it with two first order differential equations.
This can be done by letting

plt} = Flt, x, x7). (13)

Then, if F,.,. # 0, x’ can be expressed as a function of 7, x, and p. Now a
new function, catled the Hamiltonian, is defined as

H(t,x,p)= ~F(t,x,x) +px (14)

where p is referred to as a generalized momenta in physics. In economics it
turns out to be a shadow price. The total differential of the Hamiltonian is

dH = —F, dt — F,dx — F.dx"+ pdx’ + x'dp= —F, dt — F. dx + X' dap,

since F_. dx’ = pdx’ by the definition of p. Thus, it follows that
dH/ex= —F, and dH/ap =x".

Now, if the function x(¢) satisfies the Euler equation (8), then —F_ =
—-dF,./dt = -dp/dt = —p’. Finally, then,

p = —dH/dx and x =aH/dp (15)

These two first order differential equations are referred to as the canonical
form of the Euler equation. The Hamiltonian plays an important role in
optimal control theory.

The Euler equation is also a necessary condition for a minimum of (1)
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subject to (2). Reviewing the argument, the idea of maximization entered at
Equation (4), where we noted that maximization of g at ¢ =0 implies
g0 = _0. BL‘II,. if x* were a minimizing function for {1)-(2), then g(a) would
assume its minimum at ¢ = 0, so that g (0) = 0.

Solutions of an Euler equation are called extremals. They are the analog of
solutions to the equation f'(x) = 0, called stationary points. If a point is to
maximize the function f(x), it must be a stationary point. On the other hand, a
statiopary point need not provide a maximum; it could be a minimizing point
or l'lf:]thef' maximizing nor minimizing. We do know that the maximizing poin;
is a stationary point, so we can restrict our search for the maximum to
stationary points. In similar fashion, we know that if a maximizing function for
the problem of (1) and {(2) exists, it must be an extremal. Thus we find

solutions to the Euler equation, i.e., we find extremals and search among
extremals for the optimizing path.

APPENDIX TO SECTION 3

The intcgrat.ion by parts to get from (5) to (7) rests on the supposition that the derivative
dF,. /dt exists. We show, through a pair of lemmas, that the supposition is justified.

Lemma 2. If g(!) is a given continuous function on [£y. £,] with the property that
f

] g(R(1)dt =0 (16)

o

Jor every continuously differentiable Sfunction h defined on [t, £;] satisfying
h(1) = h(¥)) = 0, then the function &(1) must be constanf on [1,, 1,].

PROGE. Let ¢ be the average value of g so by the Mean-Value theorem (A2.1)

5
/ [&(r} - c]di=0.
o
For any 4 satisfying the hypothesis, compute

[ Late) - ew(ey a - [ e(m () di - [ (1)) - hr)] =0 (1)

iy ta

'n view of (i6) and (3). In particular. consider

that satisfics the hypotheses. Then, by Leibnitz' rule. A() = g(r) — c. 50

/:1[8(3')‘f]h'(f)df=/rl[g(r}—c]zdrao (18)

% I

'Ihe in . . -
tegral must be nonnegative since the integrand is, but the expressions on the left
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in (17) and (18) are identical; since (17) is zero, (18) st also be, and therefore
g()=c¢c, fy=t=t 0

Lemma 3. If g(1) and f(t) are continuous on [4,, 1] and if
1
f [(e)h(t) + F(1)(£)] dt =0 (19)
Ta

for every continuously differentiable function h(ty defined on [ty 1] with
h(t,) = h(t,) = O, then the function Sty must be differentiable and f'(1) = g(1)
Jorta =t =8,

PROOF. Since k is differentiable, we may integrate by parts:

f"g(r)n(r)m= -f“c(:)hf(;) dt, where G(1) = [’g(s) ds,

I o

since A(ty) = A(f,) = 0. Substituting into (19) gives
n
] [£(1) - G()] K(s) dt = 0.
‘o

Applying Lemma 2 indicates that f(f) — G(1) is constant on [#,, 1,]. Thos f(¢) =
f,'; £g{s) ds + ¢ for some constant ¢, demonstrating that f is a differentiable function
with f{¢) = g(f) as claimed. O

Applying Lemma 3 to (5), we note that since x({) and x'(#) are specified
functions, the coefficients of the k(¢) and A'(¢) in (5) are functions of ! alone.
Identify those coefficients with g(¢) and f(#) in Lemma 3 to conclude that
dF.. / dt does exist and that

dF, /dt = F,.

This is the Euler equation. It can be shown further that since dF,. /dt exists,
the second derivative x” of the extremal exists for all values of ¢ for which
F. (1, x(8), x'(1)) # 0. The Euler equation can be derived from Lemmas 2
and 3 alone without Lemma 1. Its derivation by means of Lemma 1 is less
rigorous but simpler,

Section 4

Examples and Interpretations

Example 1. Find a function x(t) to sotve the problem of Section 2 above:

T
min / x'2(t) dt
0
subjectto  x(0) =0, x(T)=B.

The integrand is F(¢, x, x’) = x'*. Thus, F,, = 2x’. Since F is independent

of X in this case, F, = 0. Hence Euler's equation is 0 = 2x"(1), that is

equivalent to x” = 0, integrating once yields x'(¢f) = ¢, where ¢, is a

constant of integration. Integrating again gives x(f) = ¢,f + ¢ wheré €, is

another constant of integration. The two constants are determ?i;ned from 2thc

I:O‘lln;i-ar)_a conclitio_n.s of the problem; evaluating the function x at ¢ = (¢ and
= 1 gives conditions that ¢, and ¢, must satisfy, namely

X(O):O:("z, x(T)=BZC]T+('2_

S : .
Olvlpg. ope obtau-.ls ¢, = B/T, ¢, = 0; therefore the solution to the Euler
€quation with the given boundary conditions is

x(t)=8Bt/T, 0=t=T.

If there is a solut
i ution to the problem posed, this must be it. o
solution found in Section 2. it. Of course, this is the

Example 2, Find extremals for

f/; {[x’(f)]z + lOIx(r)} dr subjectto x{0) = 1. x(1) = 2.
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Since F(t, x, x") = x'* + 10tx, we have F, = 10¢, F,. = 2x" and dF, /dt
= 2 x"; thus the Euler equation is 10 = 2 x” or, equivalently,

x"(t) = 5¢.

The variables x and ¢ are separated. Integrate, introducing constants of
integration ¢, and ¢,:

x'(£) =522+ ¢
x(2) =53/6 + it + c,.
The constants are found by using the boundary conditions; they obey
x(0)=1=¢,, x{(1)=2=5/6+¢+c,.
Solving, ¢, = 1/6, ¢, = 1, and the extremal sought is
x(8) =527/6+1/6+ 1.
Example 3. Find extremals for
h
/ [tx’(t) + (x’(r))Z] dt  subjectto x(#,) = x,, x{#))=2x,
fy
where £, f,, X, and x, are given parameters. Write F(¢, x, x) = &x' + x'?
and compute F, = 0 and F,, = ¢ + 2 x’. Therefore, the Euler equation is
dF,. /dt = d(t +2x')/dt = 0.

Since the right side is zero, there is no need to carry out the differentiation; a
function whose derivative is zero must itself be constant. Hence

t+2x(t) = ¢

for some constant ¢,. Separate the variables, integrate again, and rearrange the
result slightly to obtain

x(t) = ¢, +¢,t/2 - */4.

The constants of integration must satisfy the pair of equations

x(1g) = xg = ¢, + €,14/2 — 15 /4,

x() =x, =¢ + ¢, /2 — 11 /4.

Example 4. Rewrning to Example 1.1, we seek a production and inventory
accumulation plan to minimize the sum of production and storage costs:

min -/‘;T{CI[X’(I)II + ey x(0)} dr
subjectto  x(0) =0, x(T)=B. x'(¢)=0.
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where ¢; and ¢, are given nonnegative constants. Suppose the optimal solution
satisfies the nonnegativity condition x'(f) = 0 with strict inequality, so that
this constraint is never binding. Since F, =c¢,, F,. = 2¢,x’, the Euler
equation 1s 2¢,x” = ¢, or

x'(1) = ¢; /2¢,. (1)

Integration twice yields
x(8) = et fde, + kit + &y,

where k, and k, are constants of integration determined by the boundary
conditions:

x(0)=0=4k,, x(T)=B=c,T?/4c, + kT +k,.
Thus
k,=B/T - c,T/4c,, k,=0
30
x(t)=c,t(t - T)/de,+ Bt/T, O0=<t=<T (2)

is the extremal sought.

We check whether (2) obeys x* = 0. From the Euler equation (1), it
follows immediately that x” > O so that x* is an increasing function of 7.
Thf:refore x(¢) = 0 for all ¢ if and only if it holds initially; x(0) = k,z=0.
This means the constraint x’(#) = 0 will be satisfied by (2} provided that

B>, T fac,. (3)

Therefore (2) is the solution to the problem if required total production B is
sufﬁciently large relative to the time period 7T available, and the storage cost
€2 1s sufficiently small relative to the unit production cost ¢,. If (3) does not
hold, then start of production is postponed in the optimal plan. This will be
d_emonstrated later (Section II.10) when we study the case where x’ = 0 is a
tight constraint.

The Euler equation 2¢,x” = c, has an interpretation. Recall that c, is the
cost of holding one additional unit of inventory for one time peried. Also
“lx'(0)]* is the total production cost at £, so 2¢,x’ is the instantaneous
Marginal cost of production and 2¢, x” is its time rate of change. Therefore,
the Euler equation calls for balancing the rate of change of the marginal
Production cost against the marginal inventory holding cost to minimize the
€ost of delivering B units of product at time 7.

y Tha interpretation may be clearer after integrating the Euler equation over a
€ry small segment of time, say A. Since the equation must hold for all aleng
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the path, we have

r+ A {+4
f 2¢,x"(t) ds = ] ¢, ds,

' t
that is, using (Al.1)
2 [x(1+ 8) = x'(t)] = c,A
or, rearranging,
2¢,x'(t) + c,a =2, X'(1 + A).

Thus, the marginal cost of producing a unit at ¢ and holding it for an increment
of time A must be the same as the marginal cost of producing it at ¢ + A. That

is, we are indifferent between producing a marginal unit at ¢ or postponing ita |

very litfle while. Indeed, all along the optimal path, no shift in the production
schedule can reduce cost.

Example 5. In Example 4, suppose expenditures are discounted at a continu-

ous rate r (review the appendix to Section 1).
T
min f e "oy x't+ eyx] dt
0

subjectto  x{0) =0, x(T)=B.

Again x'(t) = 0 is needed for economic sense, and again this requirement is 1
temporarily set aside, Compute F, =e "¢, and F,, =2e "¢, x'(#). The ]

Euler equation is

e e, = d(2e e x'(1))/ dt.

It calls for balancing the present value of the marginal inventory cost at { with {
the rate of change of the corresponding marginal production cost. Integrating |

this equation over a small increment of time, we get
f+ A f+A
/ e e, ds = / [d(2e ""c,x'(s))/ ds] ds;
7 I

that is,

r+a
2e e x'(1) + / e "c,ds = 2e " x(1 + A).
i
The marginal cost of producing a unit at 7 and holding it over the next little
increment of time A equals the marginal cost of producing a unit at ¢ + A.

Consequently, we are indifferent between producing a marginal unit at { or a |
little later. No change in this production schedule can reduce total discounted |

cost.
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Expanding
dF,. /dt = =2re e, x'(t) + 227 e, x"(1)
and simplifying also gives the Euler equation:
x(1) =rmx'(t) + ¢, [2¢,. (4)

Note that since x” must be nonnegative, the right side of (4) must be positive.
Hence, in an optimal plan x” > 0; an optimal plan involves a strictly
increasing production rate over time. Even without holding costs, a time
preference for money (r > 0) leads the firm to produce at an increasing rate
over time to maintain a constant present value of the marginal production cost.
The larger unit holding cost ¢, and the larger the interest rate r, the more
advantageous it is to postpone production (to save holding costs, to postpone
expenditures) and thus the steeper will be the path of production with respect to
time.

To solve the Euler equation (4), note that neither x nor ¢ appears in the
differential equation. Make the change of variable x’ = u, so that x” =
This gives a first order linear differential equation with constant coefficients
(se¢ Section B2):

W =ru+c,/f2c
with solution

"=u=ke'-c,/2r,,
where k, is a constant of integration. Integration yields
x(1) = kje™/r— ¢yt /2rc; + k,.
Boundary conditions
x(0)=0="4k,/r+k,, x(T)=B=ke"/r—c,;T2re, + k,
give values for the constants of integraticn
ky=—ki/r, ky=r(B+c,T/2rc))/(eT - 1),
Hence the solution is
x(¢) = (B + ;T/2rc)(e” = 1) /(eT = 1) ~ cyt/2rc,, O0=t=T,
(5)

irovided x'(t) = 0 is obeyed. This may be checked as before. Since x* > 0,
u:a know that x’ = 0 throughout provided x'(0) = 0. In tum, it can be shown
UX(0) = 0 if and only if
£

Bz(e"—1-rT)c,/27%,. (6)
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If (6) holds, then (5) satisfies the nonnegativity condition x’ = 0 and it will be
the optimal sclution. Production optimally begins at ¢ = 0 in qualitatively
similar circumstances as when r = 0, although the functional form of (6) is
somewhat different from (3). If (6) is violated, the start of production is

postponed.

Example 6. Centinuing, suppose production cost is a monotene increasing,
convex function g(x”") of the production rate x":

g(0) =0, g =0, g" >0 for x = 0.

The quadratic production cost is clearly a special case. For the problem

T
min f e " g(x) + ¢y x| dt
a
subjectto  x(0) =0, x(T)=23B
compute
Fx = e_”cz, Fx’ = e—rrgf(x:),
dF, /dt = —re”"'g’(x") + e77'g" (X'} x".
The Euler equation is therefore
g"(x()x"(1) = re'(x'(¢)) + c5. (7)

All terms in (7) except for x” are known to be nonnegative. It follows that
x" >0, so the optimal production rate {where positive) will be strictly
increasing with respect to time until T, when a total of B is accumnulated. As
in Example §, holding costs and time preferences both lead the firm to
postpone production to save inventory cost and postpone spending, From (7),
for a given production rate x’, the larger the interest rate 7 and the larger the
helding cost ¢,, the greater the rate of change of production x” must be. Note
that the general qualitative behavior of the solution has been determined
without exact specification of the production cost function g. Of course, an
explicit analytic sclution generally rests on this specification (as in the quadratic
case discussed above),

Example 7. An individual seeks the consumption rate at each moment of time
that will maximize his discounted utility stream over a period of known length
7. The utility of consumption U(C(¢)) at each moment ¢ is a known
increasing concave function {diminishing marginal utility of consumption):
U > 0and U" < 0. Future utility is discounted at rate #. The objective is

max | Te-ny(C(1)) ar (8)
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subject to a cash flow constraint. The individual derives current income from
exogenously determined wages w(t) and from interest earnings /K on his
holdings of capital assets K(f). For simplicity, the individual may borrow
capital (K < 0) as well as lend it at interest rate /. Capital can be bought or
sold at a price of unity. Thus income from interest and wages is allotied to
consumption and investment:

iK(t) + w(r) = C(¢t) + K'(¢). (9)
Both the initial and terminal capital stocks are specified:
K(0) = K, K(T)=K,. (10)

Using (9} to eliminate C from (8) leads to a calculus of variations problem in
one function K(¢). Denoting the integrand of (8) by F, and taking account
of (9), we compute (using the chain rle) F = e "U(C)i and F,. =
— e "'UN(C). The Euler equation is

d(—e "U(C))/dt = e U(C)i. {11)

To facilitate interpretation, integrate (11) over a small interval of time and
rearrange to

e "U(C(t)) = /Me—”U'(c(s))ids + e TIU(C(t + A)). (12)

!

Along an optimal consumption plan, the individual cannot increase utility by
shifting the time of consumption of 2 marginal dollar. The marginal discounted
utility from consumption at ¢ (the left side of (12)) must equal the marginal
discounted utility achieved by postponing that consumption to ¢ + A (the right
side of (12}). To explain further, note that if consumption is postponed, a
dollar earns income at rate i that may be consumed as earned. Since a marginal
dollar consumed at time s contributes incremental utility of U(C(5)), a
fraction i of a dollar consumed at s contributes H(C(s)). Thus the first term
on the right in (12) is the discounted incremental utility achieved during the
period of postponement. Finally, at the end of the period of postponement, the
dollar itself is consumed, yielding incremental utility U'(C(t + A)). The
second term on the right of (12) is this discounted marginal utility.

Performing the indicated differentiation in (11) and collecting terms gives

—UCIU =i-r. (13)

The proportionate rate of change of marginal utility equals the difference
between the earnings rate on invested capital and the impatience rate. Since
= U"/U" > 0 by hypothesis, the optimal sofution is characterized by dC Jdt
=0 if and only if i > r. The optimal consumption path rises if the rate of
€amings on capital / exceeds the individual's rate of impatience r. (A



Part I. Calculus of Variations

relatively patient individual foregoes some current consumption to let capital
grow so that a higher rate of consumption may be enjoyed later).

If the functional form of U is specified, more may be said. Let U(C) = In C,

w(f)=0for0=<¢t=<T,and let K; = 0. In this case (i3) becomes

C/C=i-r.

Integrate and substitute into (9):

K —iK=—-C= —C(0)e ",

Multiply through by €~ ', integrate, and use boundary conditions K(0Q) = K|,
and K{T) = 0 to find the constants of integration, yielding

K(1) =e"Kg[1 — (1 —e ™) /(1 - e'T)]. (14)

Then

C(#) = rKoet "7 /(1 — e™T),

EXERCISES

Find the Euler equation and its solution for

2
f [x+ - (x)’]dt subjectto x(1) =3, x(2) = 4.
1

Find the Euler equation and its solution for

b
/ F(t,x,x)dt subjectto x(a)=A, x(b)=28.

a

but do not evaluate constants of integration where
a. F1, x, x) = (x)?/1,
b, Flt, x, xy=1{(x) - 8xr+ 1.

Show that in a2n optimal solution to Example 6, one is indifferent to producing a
marginal unit at f or producing it at { 4+ A, since the sum of the marginal
discounted cost of production at ¢ and discounted holding cost from f to ¢ + A just
about equals the marginal discounted production cost at ¢ + A.

Solve Example 6 for the case r = 0. Explain the economic reason for your answer.

Find the consumption plan C(r), 0 = ¢ < T, over a fixed period to maximize the
discounted utility stream

T
f e_”C“(f] df
1]
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subject to
C(ty=iK(t) -K'(¢), K(O)=kK,, K(T)=0

where 0 < # < 1 and X, as in Example 7, represents the capital stock.

FURTHER READING

Solution of differential equations is discussed in Appendix B; see especially Sections
B1-B2. Example 4 will be discussed throughout this book; the nonnegativity condition
js handled in Section II10, Example 7 is drawn from Yaari (see also Levhari and
Sheshinksi for an application of this model to taxation).



Section 5

Solving the Euler Equation in Special Cases

The Euler equation can be difficult to solve. If any of the three arguments
(£, x, x") do not appear or if the integrand has a special structure, then hints
for solutions are available. Some of these instances are mentioned below, both
for specific guidance and for practice. Note that sometimes the *‘hints’® are of
little use and a direct solution to the Euler equation may be the easier route.

Case 1. F depends on ¢, x’ only: F = F(t, x').
Since F does not depend on x, the Euler equation (3.11) reduces to

F.

= const.

This is a first order differential equation in (¢, x") only and is referred to as a
first integral of the Euler equation. Examples 4.1 and 4.3 fit this case.

Example. The Euler equation for

1

] '(3x' — '3y dr subjectto x(f,) = x4, x(f,) =x,,
fo
is
F.=3-2tx = ¢
therefore
' = (cy— 3)/(-2) =¢,.
Separate variables:
x =c¢/t;

and integrate:
x=c¢lnt+c,;.
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The constants of integration ¢, and c¢, satisfy the pair of equations
Xo=cnty+ ¢, x;=¢Int, +¢,.
Case 2. F depends on x, x' only: F = F(x, x.
The Euler equation (3.12) reduces to the first infegral
F—-x'F,.=const, t,<t=¢,
which is the first order differential equation to be solved.

Example. Among the curves joining (¢,, x,) and (¢,, x,), find one generating
a surface of minimum area when rotated about the ¢ axis. That is,

4
min f 2mx[1 + (x’)z]u2 dt
%

subjectto  x(1,) = x5, x(¢;) = x,.
Since (ignoring the constant 2 7)

Fo=xx/[1+ (x’)z]m,

we solve

12 i2
F-xF, =x[1+(x)]" = x(x)[1 + ()] = c.
Manipulating algebraically,

)1/1

x=c{l+x3)"",  or x?=c*+32x2.

Rearranging, providing ¢ # 0,
x?=(x* -/t or x = x[(x? - cz)/cz]m.

We can deal with the positive root only because of the symmetry of the
problem. Separate variables:

dx/(x* = c)'? = dt/e,

provided x # . Integrate (using an integral table):
ln[(x+ (x? - cz)m)/c] ={r+k)/c,

where & is the constant of integration, Note that the derivative of In ¢ = 0 so
that when we differentiate both sides we get back the original differential
equation. Taking antilogs gives

x+ (x2 = 2)' = certhre,
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Now

2)1;2

x—(x'-c [x—(xz—cz)m][x+(xz—cz)m]/
[x + (x* - cz)m]

[x* ~ (2 - cz)]/[x + (x% - cz)m]

= CZ/CeU-—kJ/c - ce—{rd-k},?c.

That last step follows by substitution for x + (x* — ¢?)'2. Finally, by
addition we get

x = c[e(1+k),(c + e—[f+k){r] /2

This is the equation of a figure called a catenary; ¢ and % can be found using
the conditions x(¢,) = x5 and x(f,) = x,.

Example. The brachistochrone problem.

min/ 1[(1 +y’2)/y]u2 dx,
Xo

where the constant (2g)'/? is ignored. As the integrand does not involve x
explicitly (i.e., here the general form of the integrand is F(x, y(x), y(x})
rather than F(z, x(¢}, x'(#)) as in our previous examples), we have

F-yF, = [0+ -y +y2)] "

= [y(l +y’2)]_'b[1 +y?- y'2] = a consfant.

1/2 _

This implies that
[y(1+ %] ' _ a constant
which, in turn, means that
y(1+y7?) = 2k,
where k is a constant, so
, 12
y o= [(2k-y}/¥] "
Separzting variables gives
[y/2k - »)]'"" dy = ax.

Multiply the numerator and denominator in the bracketed expression by y to
get

ydy/(2ky - y?)'* = dx.
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Both sides can now be integrated to get

= —(2ky - yz)”2 + karccos(l — y/k) + ¢,

where ¢ is a constant. This is the equation of a cycloid.

Example. Newton's Second Law of Motion is F = ma = md?x/dt?, a
second order differential equation. The problem is to find the integral for
which this differential equation is the Euler equation. It turns out to be the
integral

/tl(mx’zfz - V(x)] ar.

L4

Since the integrand does not involve ¢,
mx'?j2 — V(x) — mx'? = ¢,

a constant. Thus,

-V(x) —-mx'?*)2=c.
Differentiation with respect to ¢ yields

-V'x —mx'x" =0
or

-V{(x) = mx",

Identifying — V'(x) = F yields the desired result.
_ The term mx’? /2 in the integrand is a particle’s kinetic energy, while V(x)
is defined as its potential energy. Physicists let 7= mx’? /2 and call

/’I(T— V)dt= /r'Ldt

[ o

the gction, or Hamilton's integral, where L = T — V is called the La-
grangian. The description of the motion of a particle through space in terms of
the Euler equation of this integral is referred to as the Principle of Least Action
or Hamilton’s Principle of Stationary Action. This principle plays a unifying
r9]e in theoretical physics in that laws of physics that are described by
differential equations have associated with them an appropriate action integral.
Indeed, discovering the action integral whose Euler equation is the desired
physical law is a major achievement.

The_ “‘special methods™* are not always the easiest way to solve a problem.
St?menmes an applicable, special form of the Euler equation is easier to work
With than the ordinary form and sometimes it is more difficult. The easiest

;Oute is determined by trial and error. For example, consider finding extremals
or

f]
f 2x + 330’ —a(x)] dr subjectto  x(fo) = x5, x(1,) = x,.
T
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Since the integrand does not depend on ¢, we could write the Euler equation in
the form F — x’F,. = ¢; that is

2%+ 4(x) = c. (1)

This nonlinear differential equation is not readily solved.
On the other hand, the standard form of the Euler equation (F, = dF,. /df)
for this problem is the second order linear differential equation

2x"+x=0, (2)

whose solution is easily found (see Section B3). The characteristic equation
associated with this differential equation is 2> + 1 = 0, with roots r =
+i/2'/2. Hence extremals are of the form

x(2) = ¢;sin £/2'% + c,yc0s £ /2172,

The constants ¢, and ¢, are found using the given boundary conditions.
(Differentiating the Buler equation found first (1) totally with respect to ¢ leads
to the second form (2}.) Note that several of the exercises of this section are of
the form of this illustration and are more readily solved by the standard Euler
equation.

Case 3. F depends on x" only: F = F(x'}.

The Euler equation is F_. _x" = 0. Thus along the extremal at each ¢,
either F,..(x") = 0 or x"(#) = 0. In the latter case, integration twice indi-
cates that the extremal is of the linear form x(f) = ¢, ¢t + ¢,. In the former
case, either F. .(x") = 0 or else x’is constamt, i.e., F,. = 0. The case of x’
constant was just considered. If F is linear in x’, F{x") = a + bx’, the Euler
equatien is an identity and any x satisfies it trivially (see also Case 5 to come).

We conelude that if the integrand F depends solely on x’ but is not linear,
then graphs of extremals are straight lines. Even if the functional form of F or
F,. .. appears complicated, we know that extremals must be linear. Boundary
conditions determine the constants.

This result may be applied immediately to Example 1.4 to conclude that the
shortest distance between two points in a plane is the straight line connecting
them.

Example. Extremals of

i
](x’)zexp(—x’)dr subject o x(t,) = x, x{(1,) = x,

Ta

must be of the form x(¢) = ¢,¢ + ¢,.

Case 4. F depends on ¢, x only: F = F(¢, x).
The Euler equaticn is (¢, x) = 0, which is not a differential equation. It
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calls for optimizing the integrand at each ¢. The dynamic problem is degener-
ate. (Review (1.4), for example).

Case 5. F is linear in x". F = A(t, x) + B(t, x)x".

The Euler equation is A, + B, x" = B, + B x’; that is, A (¢, x) =
B¢, x}, which is not a differential equation. This may be viewed as an
implicit equation for x in terms of . If the solution x(#) of this equation
satisfies the boundary conditions, it may be the optimal solution.

Alternatively, the Euler equation A, = B, may be an identity, 4 (1, x) =
B,(¢, x), satisfied by any function x. Then, according to the integrability
theorem for exact differential equations (see Appendix B}, there is a function
P(t, x)such that P,=A, P =B (so P,,=A4,=B,) and

Flt,x,x)=A+Bx' =P, + P.x' =dP/dt.

Thus, the integrand is the total derivative of a function P and

/h(A + Bx') dt = /"(dP/dt) dt = P(1,, x(1))) — P(4y, x(1,)).

o

The value of the integral depends only on the endpoints; the path joining them
is irrelevant in this case. Any feasible path is optimal. This is analogous to the
problem of maximizing a constant function; any feasible point would yield the
same value.

Case 5 is the only instance in which an Buler equation is an identity., To
understand this, suppose that (3.10) is an identity, satisfied for any set of four
values ¢, x, x*, x”. The coefficient of x* must be zero if (3.10) is to hold for
every possible value of x”. Thus, F,. . =0. Then F, - F., - x'F,. =0
for any ¢, x, x'. The first identity implies that F must be linear in x’, so F
has the form A(t, x) + B(¢, x)x’. Then the second identity becomes A4, =

B, as was to be shown.

Two integrands 1T appear quite different can lead to the same Euler
eguation and thus have the same extremals. This happens if the integrands
differ by an exact djfferential. For example, let P(¢, x) be a twice @i -
tiable function and define

Q. x, x")=dP/dr = P(1, x}) + P(r, x)x'(t).

Then for any twice differentiable function F(z, x, x", the two integrals

fn 4]
/ F(t,x,x)dt and / [F(r.x,x) + Q(t, x. x7)] ar
. o iy

subject to x(te) = x5, x(1,) = x,
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differ by a constant (namely, P(f,, x,) — P(#,, x;)) and the Euler equations
associated with the respective integrals are identical.

Example 1. [ x'(¢) dt subjected to x(Z,) = Xo, ¥(1,) = X if F = X', then
F,=0and F,. = 1, so that the Euler equation is 0 = 0, satisfied always. The
integrand is an exact differential, so

[ “x(t) dt = x(1,) = x(f6) = X, — X

for any differentiable function. The value of the integral depends only on the
endpoint conditions and not on the path connecting the endpoints.

Example 2. Suppose the production cost in Example 1.1 is linear:

min /:[clx’(t) + o, x(1)] dr
subjectto  x(0) =0, x(T)=B.

Then F, = ¢, and F,. = ¢, so that the Euler equation is ¢, = 0. This means
that there is no optimal production plan if there is a positive holding cost
(¢, > 0) and that any feasible plan is optimal if the holding cost is zero. The
underlying economics is as follows. If the unit production cost is constant, then
the total cost of manufacturing B units is ¢, B irrespective of the time
schedule:

forclx'(t) dt = ¢, x(T) - x(0)] = ¢,B.

If the cost of holding inventory is zero, then all feasible production plans are
equally good. If the inventory helding cost is positive, then postponing
production to the last moment reduces the total storage cost. The limiting
answer is x(£) =0, 0<t=<T, x(T) =B, which is a plan that can be
approached but is not itself a continuous function.

Example 3. To find extremals for
T
/ txx'dt  subjectto x(0) =0, x(T)=B,
0
compute F, = ix', F,. = tx, dF,. /dt = x + tx’. The Euler equation is x’
= x + tx’ or 0 = x, which can be satisfied only if B = 0.

To verify that there is no solution to the problem, integrate by parts by
letting xx’'dt = dv and ¢ = u, so x*/2 = v and df = du. Then

T T
ftxx’dt: (BzT—/ xzdr)/ZEBzTﬂ.
0 o
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The upper bound of B2T/2 can be realized only by setting x(#) =0,
0=t =T. This function satisfies the Euler equation but not the boundary
conditions {(except if B = 0). Evidently, there is no minimum; the integral can
be made arbitrarily small,

Example 4. For

f
/ e "(x' —ax)dt subjectto x(#,) = x,, x(#)=x,,

fa
we compute
F.=—age ™, F.=e", dF,. /dt = —re” ",

The Euler equation is ¢ = r. If, in fact g = r, then the Euler equation is an
identity and the integrand is an exact differential, namely d{(e™""x(¢))/dt. The
value of the integral is e~ ""1x, — e "°x,, independent of the path between
the given endpoints, On the other hand, if @ # r, then the Euler equation
cannot be satisfied; therefore there is no optimum. To verify this, add rx - rx
to the integrand and then use the observation just made:

;
/ 'e (X — rx + rx — ax) dt

fy
f —r¢ d

= / e (x' - rx)dt + / e "(rx — ax) dt
fy 1

!
=xe " —xpe o+ (r ~ a)/ ‘e~r'xdt.

lo

!f r = g, all feasible paths give the same value. If r # a, the value of the
u'ftegral may be made arbitrarily large or small by choosing a path with a very
high peak or low trough.

Example 5. Consider the discounted profit maximization problem (compare
Example 1.3),

max fOTe‘”[p(r)f(K(I)) ~ c(1)(K' + bK)) dt

subjectto  K(0) = K,, K(T)=K,,

(3)

where C(.t ) is the cost per unit of gross investment, p(#) the price per unit of
Output (given functions of time), K () the stock of productive capital, f(X)

output, and 7 = K’ + bK gross investment (net investment plus depreciation).
Coimpule

Fy = e "[ pf'(K) — cb} and Fy. = —e e,




as Part I. Calculus of Variations

The Enler equation is
d[-e"e(r)]/dt = e="{ p(1) F{K (1)) - c(2)b].

To interpret this, integrate over a small interval of time:

e e(t) — e ¥e( + A) = fHae‘”[p(s)f’(K(s)) — c{s)b] ds.

IS

The cost difference between purchasing a marginal unit of capital at 1 rather
than at £ + A is just offset by the marginal profit earned by that capital over
the period [¢,¢ + A].

Performing the indicated differentiation in the Euler equation yields the
equivalent requirement

e [ pf'(K) - ¢b] = e "[rc = ¢,
so the rule for choosing the optimal level of capital K*(¢) is
p(1)F(K*(8)} = (7 + bYe(1) - (1) (4)

This is a static equation for X*(¢), not a differential equation. It is feasible
only if K*(0) = K, and K*(T) = K. It says that, if possible, capital stock
should be chosen so that the value of the marginal product of capital at each
moment equals the cost of employing it. The *‘user cost’’ of capital (r + b)c
— ¢’ includes not only foregone interest on the money invested in capital and
decline in money value because of its physical deterioration but also capital
gains (or losses). Capital gains may occur, for example, if the unit price of
capital rises, thereby increasing the value of the capital stock held by the firm.
On the other hand, capital loss is possible, for instance, through the invention
of a new productive method that makes the firm’s capital stock outmoded,
diminishing its value.

Example 6. The Euler equation for
i
] (x*—2xx’ + 10tx) dt subjectto x(0) =1, x(1) =2
0

is x” = 5¢ with solution x(#) = 5¢%/6 + ¢/6 + 1. This problem, its Euler
equation, and its solution should be compared with Example 4.2. The Euler
equations and solutions are identical. The integrands differ by the term
~2xx’ = d(—x?)/dt, an exact differential. The value of the two integrals
evaluated along the extremal will differ by

X (1) +x30) = —4+ 1= -3,
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EXERCISES

1.

Find candidates to maximize or minimize
4 1/2
f [£(1 +(x’)2] dr  subjectto  x(r) =xo, x{r,)=x,.
o
You need not find the constants of integration,

Find candidates to maximize or minimize

!
/ IF(!‘, x, x}dt  subjectto x(1y) =x,, x(,)} =x,

o

(but do not find the constants of integration) where
F(t, x, x3 = x* + 4xx' + 2 x),

L F(Lx, xY = x? - 3xx’ - 2AxD3,

F(t, x, x) = x'(In x)?,

CF( x, xY = x4 3 + 200008,

Fit, x, x7) = te*

panEs

Find candidates to maximize or minimize
5
[ [ %% + axx’ + b(x’)z] dt  subjectto x(1fy) = x,. x(#,} =x,.
fo

Consider the cases & = 0, b > 0, and b < 0. How does the parameter a affect the
solution? Why?

A monopolist believes that the number of units x(¢) he can sell depends net only
on the price p(t) he sets, but also on the rate of change of price, p'(¢):
x=a,p+by+cyp. (5)
His cost of producing at rate x is
C{x})=a,x*+b,x+c,. (6)

Given the initial price p(0) = p, and required final price p(T) = Py, find the
price policy over 0 =< ¢ < T 1o maximize profits

/UT[ px — C(x)] dt

given (5). (6), and the boundary conditions above. (Caution: this problem involves
much messy algebra; it has been included for its historic interest. See the
suggestions for further reading that follow.)

Suppose a mine contains an amount B of a mineral resource (such as coal, COpPper,
or oil). The profit rate that can be earned from selling the resource at rate x is
In x. Find the rate at which the resource should be sold over the fixed period
[0, T'] to maximize the present value of profits from the mine. Assume the discount
tate is a constant r. Assume the resource has no value beyond T
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[Hint: Let y(¢) be the cumulative amount sold by time 7. Then y'(#) is the sales
rate at ¢. Find y(t) to

T
max f e "ln y'(t) dt
0
subjectto  ¥(0) =0, y(T)=B.]

6. Reconsider the problem in Exercise 5 above, but suppose that the profit rate is

P(x) when the resource is sold at rate x, where P'(0) > 0 and P" <0

a. Show that the present value of the marginal profit from extraction is constant
over the planning period. (Otherwise it would be worthwhile to shift the time of
sale of a unit of the resource from a less profitable moment to a more profitable
one.) Marginal profit P’(x) therefore grows exponentially at the discount rate
r,

b. Show that the optimal extraction rate declines through time.

FURTHER READING

See Arrow (1964) and Jorgenson for discussions of optimal firm investment. Samuclson
(1965) provides an important application of the catenary to economics. Very thorough
analyses of the brachistochrone problem and the surface of revolution of mimimum area
problem are presented by Bliss, and D. R. Smith. An elegant presentation of the
Principle of Least Action is provided by Feynman. Also see Goldstein. An interesting
biographical sketch of Hamilton and his contribution to physics can be found in Boorse,
Motz and Weaver. Exercise 4 is du¢ to Evans and is discussed in Allen. It is the starting
point for Roos’ differential game discussed in I.23. Exercises 5 and 6 are discussed in
a more general context by Hotelling, as well as in Section 7 and 9.

See Section B3 regarding second order linear differential equations. Integrands that
are lingar in x’ are discussed further in Section 16 for the case of infinite horizon
autonomous problems.

Section 6

Second Order Conditions

In optimizing a twice continuously differentiable function f(x) of a single
variable x on an open interval, we know that if the number x* maximizes
J(x), it is necessary that f(x™) = 0 and f"(x™) = 0. If x* satisfies f"(x*)
=0 and f"(x*) < 0, then x* gives a local maximum to f. That is, if the
function is stationary at x* and locally concave in the neighborhood of x*
then x™® must provide a local maximum. ’

Son-.lewhat analogous conditions can be developed for the problem of finding
a continucusly differentiable function x{¢) that maximizes

t
/ F(t,x,x)dt  subjectto x(t) =x5, x(t)=x,, (1)

y

where F is twice continuously differentiable in its three arguments. We have

seen Fhat if the function x*(¢) maximizes (1), then, if for any fixed admissible
function A(¢) we define

!
g(a) = / 'F(t, x* + agh, x* 4 ak') dt,

i

We must have

g'(0) = /rl(Fxh + F.r)dt =0. (2)

o

tThhae u;’(pression in the middle is called the firsi variation. The requirement
Eul be zero when evaluated along the optimal function x*(#) leads to the
I equation, as discussed earlier,
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The analog of the second derivative of a function is the second variation. It
is

4
g’(0) = f [F, h® + 2F, bl + F,.. (K)] dt. (3)
)

If x*(t) maximizes (1), it is necessary that the second variation (3) be
nonpositive for all admissible functions 4(#). All second partial derivatives in
the integrand of (3) are to be evaluated along (¢, x*(8), x™(t)). This second
order condition for x*(f) to be maximizing leads to the Legendre condition to
be derived shortly.

The second variation will surely be nonpositive if F is concave in (x, x7).
To see this, note that the integrand of (3) is a quadratic form in & and A’ and
recall that such a quadratic form will be nonpositive if the coefficients are
second partial derivatives of a concave function (see Section A3).

Indeed a stronger statement can be made: If the integrand F(¢, x, x") is
jointly concave in its second and third arguments, and if x*(1) satisfies the
Euler equation F, = dF,./dt, then x*(f) maximizes (1). Thus, if F is
concave in x and x’, the Euler equation is sufficient for optimality. This
statement is rather easily verified. (It is analogous to the situation where a
stationary point of concave function is maximizing; see Section Ad.)

Suppose x*(1) satisfies the Euler equation and F is concave in {x, x').
Abbreviate

F=F(t x, x), F*=F(,x* x*), (4)

and let A(#) = x(#) — x™(£), so that A'(f) = x’(¢) — x™(f). Then since Fisa
concave function it follows from (A3.5) that

/"(F —FYdt s /”[(x — XVE* 4 (& — x*)EX] dr

N
- f (hF* + I FY) dt

fa

n
=/ h(F* - dF% [dt) dt
£

= 0. (5)

The next to last equality follows from an integration by parts; the last
expression is zero because x* satisfies the Euler equation by hypothesis.
Relation (5) shows that no feasible path x provides a larger value than does a
path x* satisfying the Euler equation, so that x* is maximizing as claimed.
For many problems of interest, F will not be concave in (x, x). The
Legendre condition requires that the integrand be locally concave in x* along
the optimal path. It is obtained from the requirement that (3) be nonpositive by
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some manipulation. To see what nonpositivity of (3) requires, integrate the
middle term by parts. Let = F, .. and dv =2hN dt, so that du =
(dF., /dt) dt and v = h*, Then

f 4
/ 2F ki dt = — / W (dF,, /dt) dt (6)

75 f

if we recall that h(z,) = h(t,) = 0. Substitute from (6) into (3):
!
g”(0) = / I[(F” —dF, . /dt )i + Fx,x,h’z] dr. (7)
o
Now we need a lemma.

Lemma. Let P(t) and Q(t) be given continuous functions on [t,, t,} and
let the quadratic functional

[ P@HOF + ot [ao)]} ar -

]

be defined for all continuously differentiable functions h(t) on (¢, t,)
such that h(t;} = h(t)) = 0. A necessary condition for (8) to be non-
positive for all such h is that P(1) < 0, t, < t < f|.

ProorF. The proof appears in the appendix of this section.

Once the function x™ is fixed, the partial derivatives in (7) are functions of ¢
alone. Identifying

P(r) = £ (6, x*(1), x*(0)),  Qt) = FY, — dFY /dt,
the lemma says that nonpositivity of (7) requires
F. (e, x*(1), x*(8)) = 0. (9}

This is the Legendre condition: A maximizing path x* must satisfy not only
the El_:lcr equation but also the Legendre condition (9). As is to be shown in
Exercise 3 below, for a minimizing path, the sign in (9) is reversed.

o For Example 4.6, F = ¢~ "“[g(X") + ¢, x], the Legendre condition requires
at

FX‘X' = e—!fgu(x() > 0

along a minimizing path. This is satisfied along any path since g” > 0 was
assumed; therefore the Legendre condition is surely satisfied. Moreover, F is

convex in x, x’ since not only F,. .. > 0, but also
&

F.F.,.-F,.=0

xtx'x
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as the reader should verify. Thus the solution to the Euler equation is the
minimizing path in Example 4.6.

In sum, a maximizing path must satisfy the Euler equation and the
Legendre condition (9). These are necessary conditions. A minimizing path
necessarily satisfies the Euler equation and the Legendre condition
F.(t,x*, x*) =0, as is to be shown in Exercise 3. The strengthened
Legendre condition, with a strong inequality (e.g., Fy.,- < 0) is not sufficient
for an optimum, as is to be shown in Exercise 5. However, if the integrand F
is concave in (x, x"), then a path that satisfies the Euler equation is maximiz-
ing; if the integrand is convex in (x, X'}, a path satisfying the Euler equation is
minimizing. Thus, the Euler equation together with concavity (convexity)
of the integrand in (x, x") are sufficient for a maximum (minimum).

APPENDIX TO SECTION 6 (OPTIONAL)
Proof of Lemma

The lemma is proven by contradiction by showing that the assumptions that (8) is
always nonpositive and that P(f) is positive anywhere on the interval [fg, f,] are
inconsistent. Suppose for some time § and some b > 0, P(s) = 2b > (. Since P is
continious, there will be a short interval of time around s during which P exceeds b.
Thus, there is a ¢ > 0 such that (Figure 6.1)

fhEs—c<s<s+e=sy
and

P(tYy>b, s-c=tl=s+ec

Corresponding to this function P, we construct a particular continuously differentiable
function A(¢) such that (8) will be positive. This will establish the necessity of
P(#) = 0 for (8) to be nonpositive. In particular, let
h(t) = sin® 7{t — 5)/¢c fors—c=t=s+e, (10)
0, elsewhere.
Then
B(t) = (z/c)2sinOcos B = (x/c)sin28

b ot

: \
S~

s—u¢ 5 5tc I

Figure 6.1
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where © = 7(¢ — s)/c. This h satisfies all the requirements. Then

f"[f’(h’)2 + QK] dt = fs+cP(1r/c)25in226 dr + ]

o 5—c §—c

5+

[
QOsin*edr. (11)
Since P(6) > bfors —c=t=<s+ ¢, wehave

LE X 2x
/ P(x/c)’sin®28 dr = (b:r/ZC)/ sinudu = bx?/c (12)
s—¢ -2r
using a change of variable integration (# =28 = 2x(t — 5)/c) and a table of
integrals.

Since Q(¢) is continuous on the closed interval [§ — ¢, § + ¢], there is some M
suchthat — M= Q(y=Mfors—c=<t=s+c Then

sS40 s+c
f Qsin“edtzf - Mdi= —2cM. (13)
s—e

F=C

Employing the lower bounds {12} and (13) in (i1) yields
4
/ [P(#) + Qr?] df = bx*/c — 2eM. (14)
‘o

But ba?/c — 2eM > 0 if bx?/2M > ¢?. Hence c can be chosen so smail that the
right side of (14) will be positive, and therefore the left side of (14) will also be
positive. Hence (8) will be nonpositive for any admissible # only if P(r) =0,
0 = ¢ = {,. This completes the proof of the lemma. O

EXERCISES

1. Show that the solution to the Euler equation for Example 4.7 is a maximizing path.

2, Shf}w that if F(t, x, x} is jointly convex in (x, x9, then any function x*(¢)
Sa.tlsfying the Euler equation F, = dF,. /dt and boundary conditions of (1) mini-
mizes the functional (1).

3. Show that a necessary condition for x™*(f) to minimize (1) is that the inequality
Foo(t, x*(1), x* (1)) = 0 be satisfied at every 1, < £ <1,

In Exercise 5.3 candidates were found for maxima and minima of

iy -
f [x* + @or’ + 6(x")°] dt subjectto x(2p) = %o, x(1,) = x, (15)

iy

where ¢ and b are known constants. The following questions ask what can be said
about whether the extermals are minimizing, maximizing, or neither for each
possible sign of &.

&’ Show that if b =0, then x = 0 is the only minimizing candidate. {Then a
' Elinilgum exists only if x4 = x, = 0.) Show that there is no maximizing path if
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b. Show that the extremal is minimizing if & > (a/2)%.
¢. Suppose that (a/2)? > & > 0. Find a path that minimizes

!
f I(x2 +b(x))dt subjectto x(f) = xo, X(#;) =x,.

fH

How is this path related to the extremal for (15)? How do the resulting solution
values differ? Can you mow argue that the extremal found for (15), in the
present case, is minimizing? (This shows that although the Legendre condition
is necessary, convexity of the integrand is not necessary.} Now also prove that
if b=xp,=x,=0,then x(¢) =0, #, = t = {,, does provide the minimum to
(15).

5. Consider
ix
max/ [x*— (x)*] dr  subjectto x(0) =0, x(2x)=0.
0

8, Show that extremals are of the form x(t) = ¢sin ¢, yielding a value of zero to
the integral. Is the Legendre condition satisfied? Is the integrand concave in
(x, x?

b. Show that p(f) = ¢ — ¢2/2x is a feasible solution that yields a positive value to
the integral. What conclusion can you draw about the sufficiency of the
Legendre condition? What can be said about the existence of a solution to the
stated problem?

FURTHER READING

The lemma and its proof are taken from Gelfand and Fomin. Additional second order
conditions are given names of Weierstrass and Jacebi and can be found in the calculus
of variations texts cited.

Section 7

Isoperimetric Problem

An optimization problem may be subject to an integral constraint:

max /r]F(t,x,x’) dt {1

1o

f
subject to / G(t, x, xVdt =B, x(f;) =x, x(1,)=x, (2

n

where F and G are twice continuously differentiable functions and B is a
given number. For example, the problem of maximizing the area enclosed by a
straight line and a string of length B can be posed in this form. Let the straight
line extend from (tg, Xo) = (0,0) to (#,, x,) = (#,,0). Then the area under
the curve will be given by (1) with F(¢, x, x") = x. The constraint on string
length is given by (2) with G(z, x, x) = [t + (x)2]'/2. (Recall Example
1.5). In this problem, the perimeter is constant, specified by (2)—hence the
name “‘isoperimetric.”” Such an example has provided the name for a whole
class of problems given by (1) and (2). Another example of the form of (1) and
(2) was given in Exercises 5.5 and 5.6.

T
max / e ""P(x}dt (3}
0
T
subject to / xdr = B, (4)
0

Where x(1) is the rate of extraction of a resource, B the initial endowment of
. ¥resource, and P(x) the profit rate at ¢ if the resource is extracted and sold
trate x(t). Because of its special structure, the isoperimetric constraint {4)
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can be converted into a fixed endpoint constraint, by defining:

1) = f x(s) ds 5) |

as the amount of resource extracted by time 7. Then y’(¢#) = x(¢) and (3) and

(4) are equivalently stated as

max [Te‘”P(y’) dt (6)
subjectto  »(0) =0, ¥(T) = B. (7 |

Typically, there is no simple transformation to eliminate an isoperimetric ]
constraint. However, recall that in a constrained calculus optimization prob-
lem, one may either use the constraint to eliminate a variable (yielding an
equivalent unconstrained problem), or the constraint may be appended to the §
objective with a Lagrange multiplier and equivalent necessary conditions §
developed (see Section AS). A Lagrange multiplier technique works here also. §

For instance, appending (4) to (3) with a Lagrange multiplier gives

L= ]OTe‘”P(x) dt — )\( /DTxdr - B)

- /T[e‘”P(x) — ax] dt + \B. (8)

A necessary condition for x to maximize the augmented integrand (8) is that it |

satisfy the Euler equation

e "P'(x) = . (9) §

In agreement with the findings of Exercise 5.6, the present value of marginal

profits is constant over the planning period.

In the general case, (1) and (2), we append constraint (2) to (1} by an
undetermined multiplier A. Any admissible function x satisfies (2}, so for such ]

an x,

/hF(r. X, x}ydt = /rl[F[r, x, X') — NG(t, x, x’)] dr + AB. (10}

o p

The integral on the left attains its extreme values with respect to X just where §
the integral on the right does; A then is chosen so that (2) is satisfied. The

Euler equation for the integral on the right is

F, - XG, = d(F. - MG,.)/dt. (11) §

From {A5.11) the Lagrange multiplier method rests on the supposition that |
the optimal point is not a stationary point of the constraining relation: this

gection 7. Isoperimetric Problem 49

prevents division by zero in the proof. An analogous proviso pertains here for
a similar reason. Thus, a necessary condition for solution to (1) and (2) may be
stated as follows: If the function x* is an optimum solution to (1) and (2)
and if x* is not an extremal for the constraining integral (2), then there is
a number \ such that x*(£), A satisfy (1) and (2).

Example 1.
1
min f [.vr’(t)}2 dt
0
1
subject to / x(t)dt =B, x(0)=0, x(1)=2.
0

The augmented integrand is (x’)> — Ax. Its Euler equation A + 2x" = 0 has
the solution

x() = =M*/A 4+t +c,.

Three constants are to be determined—A, ¢, ¢,—using the integral constraint
and boundary conditions:

1 1
/xdt=/ (-N*/4 + ¢t + ;) dt = B,
0 0

x(0)=¢c,=0, x(1)=-Nd+c¢, +0c,=2.
Hence
¢, =6B-4, ¢,=0, \=24(B-1).

Example 2. For

T
max / xdt
13

. T 1/2
subject to / [1+ (x’)z] dt=B, x(0)=0, x(T)=0.
0
The augmented integrand x — N1 + (x21"? has Euler equation
fu
1= —da/[1+ (x)] )/
Separate the variables and integrate:

12
t=-x/[L+ (x)]  +k.
Solve for x’ algebraically:

i2

¥ = (t-k)/[R-(1-k)




50 Part I. Calculus of Variations

Let u = ¥ ~ (t — k)%, s0 du = —2(t — k) dt. Then

x(f) = /x’(t] dt = —] du2u'? = —u'? + ¢,
$0
(x—e) + (r— k) =%

The solution traces out part of a circle. The constraints &, ¢, A are found to
satisfy the two endpoint conditions and the integral constraint.

The Lagrange multiplier associated with (1) and (2) has a useful interpreta-
tion as the marginal value of the parameter B; that is, the rate at which the
optimum changes with an increase in 8. For instance, in the resource
extraction problem (3) and (4), A represents the profit contributed by a
marginal unit of the resource. In Example 2, X represents the rate at which
area increases with string length.

To verify the claim, note that the optimal path x* = x*(¢; B) depends on
the parameter B. Assume x* is continuously differentiable in B. Define V(B)
as the optimal value in (1) and (2). Then

v(B) = /"F(:, x*, x*) dt

o
£ .

=/ [F(r, x*, x*) = MG(t, x*, ¥*)] dt + \B (12)
fo

since (2) is satisfied, where
x*=x*(t;B), x¥ =dx*/ot. (13)

Differentiating (12) totally with respect to B and taking (13) into account gives
lrl

Vi(B) = / [(F* = 2G9)h + (F* - NGE)H] dt + 1. (14)
L

where
h=dx*/3B, W =ax¥/3B = 32x*/ataB. (15)

But since the augmented integrand in (12) satisfies the Euler equation (11), the
integral in (14), after integrating the last term by parts, is zero for any
continuously differentiable function A satisfying the endpoint conditions. It
follows that

V'(B) = \ (16)
as claimed. (To see that the function A defined in (15) is admissible, one need

only observe that the optimal path corresponding to any modified B must be
feasible.)
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EXERCISES

1. Find extremals for

t 1
[ (x)°dt  subjectto / xidr=2, x(0)=0, x(1)=0.
o 0

3, Minimize
T T
f e "xdt  subjectto f x'2dr=A.
0 0
a. Solve using a multiplier.
b. Solve by eliminating the isoperimetric constraint, [Hint: Define y(#) =
fox'*(s) ds.]
3. Minimize
b Si1/2 ) b
{(1+x%)""dt subjectto xdf =,
o 0
given >0, ¢ > 0.
4. Maximize [ (2x — x?) df subject to [ txdf = 1.

FURTHER READING

Cullingford and Prideaux use an isoperimetric formulation for project planning.




Section 8

Free End Value

Thus far both the initial and the terminal values of the function have been |
prespecified. Suppose that only the initial value is given with all subsequent

values to be chosen optimally:

max f"p(z, x(1), x(1)) dt

. ) ]

subject to x(1y) = xg,

given xg, {,, ¢,. The terminal value x(#} is free. Rather than joining two |
given points in the plane, we now seek the best differentiable curve joining a §

given point and a given vertical line (see Figure 8.1).

To find conditions necessarily obeyed by a function x(#), 1, < =< ¢t,, that
is optimizing, we use the procedures aiready developed. For ease in writing, §
asterisks on optimal functions will sometimes be omitted where the meaning is |

clear from the context.

Suppose the function x(¢) is optimal and let x(¢) + A(t) be an admissible }
function. Thus, x(¢) + h(t} is defined on [¢,, ¢], continuously differentiable, §
and satisfies the initial condition. This implies that A{t,;)} = 0, but no restric- §

tion is placed on h(¢,). The comparison curve may terminate at a point above

or below (or at} x(f,) where the candidate ends, and therefore A{(r,) may be _

positive, negative, or zero.

We consider the family of admissible curves x(#) + @h(1), where x(¢) and .'
h(r) are fixed. The value of the integral (1) then depends on the parameter 4@,

as

2(a) = f"F(r, x(1) + ah(e), x'(2) + ak'(1)) dt. (2)

o
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£ it |
|

1
1

to n t

Figure 8.1

and assumes its maximum at ¢ = 0 since x is optimal. Hence, as before,
Iy
g0 = ["[Et x. )b+ Bt x, )] de =0, (3)
fa
Integrate the second term by parts, with F,. = w and A" dt = dv:

I L4
/Fx,h’dt=Fx.hJ§;—/ (hdF,. /dt) dt
fo fo

= (F.h)|, — f"(hde, /dt) dt

since A1y} = 0. The notation (F,., h) | r, means that the expression in paren-
theses preceding the vertical line is to be evaluated at ¢ = ¢,. Substitution into
(3) gives

5

/ K(F, - dF, /dt) dt + (F k)|, =0 (4)
L

with F, and F, in the integrand evaluated along the optimal path (¢, x(f),
X)),
‘ Since {4) must be zero for a/f admissible comparison functions, it must hold,
In particular, for functions terminating at the same point as the candidate
fury:tion x. Therefore, (4) must be zero for all differentiable functions
Satisfying h(¢,) = 0. This implies that the optimal function x must obey the
Euler equation

Flt,x, Xy =dF_(t,x,x)/dt, t,<t=1,. (5)

Since x satisfies (5), the condition that (4) be zero for all admissible
functions # imposes the requirement that

Fo(t, x(), x(2,)) h(2,)) = 0

_fOT any admissible h(7,). Since A(t,) is unrestricted and need not be zero, this
In nirn implies that

F.=0 a 1 if  x, is free. (6)
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Roughly, this means that a slight change in course at the last moment cannot §

improve the objective value. The boundary requirement (6) arising from
optimality considerations is called a transversality condition. It is employed
along with the given initial condition x(f,) = x, to find the particular values
of the two arbitrary constants of integration in the solution of the second order
differential equation (5). To sum up, the necessary conditions for a function
X to solve problem (1) are that it satisfy the Euler equation (3), the initial
condition x(t,) = x,, and the transversality condition (6). The Legendre
condition is also necessary.

Example 1. Find the shortest distance between the point x(a) = A and the
line t = b.
soLuTIoN. From the formulation in Example 1.4, the problem is

12

min /b{l + [x’(r)]z} dt

subjectto  x{a} = A (a, A, b fixed).

Since the integrand F depends only on x’, the solution to the Euler equation

(following Case 5.3) has the form x{(#) = ¢, + ¢,. Since the transversality
condition (6) is F. = x’/[1 + x'2]'"? = 0, x’(b) = 0. Thus the constants
¢,, €, must obey

x(@g) =A=ca+c¢,, x(b)=0=c¢,
so the extremal sought is
x(ty=A, a=t=bh,

the horizontal line from (@, A) to (b, A). Note that the Legendre condition is
satisfied since F... > 0. Indeed the integrand is convex and therefore this
solution is minirnizing, as is apparent.

Example 2. Optimum Checking Schedules and Random Failures.

A sophisticated application of our tools is determining a schedule for j

checking the status of a system that can fail at any time ¢. The cost per
inspection of the status (failed or okay) is ¢,;. The longer the period 7T between
the failure and its detection, the greater the loss Z(7) from failure. The more
frequently a system is checked, the lower will be the loss L(T) of undetected
failure and the higher will be the total cost of checking. An optimal checking
schedule minimizes the expected sum of these costs.

Suppose that inspections are so frequent that they can be described by a
smooth density function n(¢), giving the number of checks per unit time.
Therefore, 1/n(#) is the time interval between checks and 1,/2n(1) is the
expected time interval between a failure and the check that detects it. Suppose
that the first failure occurs at ¢. The approximate (exact, if L is linear)
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expected loss will be L(1/2n(¢)) and the cost of checking will be ¢, [In(s) ds
(cost per check times number of checks up to ). Let F(f) be the (known)
probability of failure between time 0 and time ¢, so that F’(¢) is the probability
density of failure. F is a nondecreasing function F(0) = 0 and F(t)) = 1; the
system wiil surely fail by #,. The expected cost incurred over the period from
time O until the time of detection of the first failure is

/:[fn/;”(s) ds + L(1/2n(1))| F'(¢) dt. (7)

This is the cost if failure occurs at ¢ multiplied by the probability density of
failure at ¢, and integrated over all possible failure times. We seek a checking
function n(¢) to minimize the expected cost (7).

Expression (7} will appear more familiar if we define x(r) = fon(s) ds so
that x'(#) = n(¢). With these substitutions, (7) becomes

min | cox{t) + L(172x)| F(¢) dt
L1 (1722 F (1) “

subjectte  x(0) =0, x{¢) free.
Routine computation produces the Euler equation
coF(t) = ~d[L(1/2x")F(1)/2x2] / dt (9)
Transversality condition (6) becomes
—L'FR2x'*=0 at . (10}
Separate variables in (9) and integrate:
F(t) = —L'F2x + k

where k is the constant of integration. Write a = k /¢y, recall that x’ = n,
and rearrange to

L'(1/2n)/n* = 2¢5|a - F]/F. (11)
Inview of (11), —L'F'/2n? = cola — F1, so that (10) is equivalent to
cola - F(1,)] = 0. (12)
Since F(1) = 1 by assumption, (12} implies that
a=1. (13)

T‘herefore, putting (13) into (11), the rule for determining the optimum
checkl1¥ schedule a(r} is given implicitly by

L'(1/2r(2))/ 77 (¢) = 2¢,[1 = F(1)]/F(1). (14)
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In the special case where the loss due to a failed system is just proportional
to the duration of the undetected failure, L(T) = ¢,T, Equation (14) gives an
explicit solution

n(r) = {e,F () /2¢,[1 — F(1)]}'". (15)

The larger the conditional probability density of failure F*/(1 — F) at £, given
survival until ¢, the smaller the cost ¢, of checking, and the larger the loss ¢,
from undetected failure, the more frequently one checks.

EXERCISES

1. Find necessary conditions for the function x = x™®(#), 1, < ¢ < ¢,, to maximize

r
/ iF(Jt‘, x, x') dt

ty

with only £, and #, given. Nowe that both x{#;) and x(#,) can be chosen
optimatly. (Answer: the Euler equation and the conditions F,.(t;, x(#;}, xX'(¢;)) = 0,
i=0,1)

2. What necessary conditions are obeyed by a solution to (1) if ‘‘maximize™ were
replaced by *‘minimize’"?

3. Find extremals for
JAODLOF + (1) (0) + x(1)} a

when x(0) and x{1) may be chosen freely.

4. In the checking model of Example 2, assume that the loss rate is constant |

(L(T) = ¢,T) and the optimal checking schedule {15} is applied.
a. Show that the expected cost is

(zcocl)”’/o"[p(r)(l ~ F(0)] .

b. In the worst possible case, nature would chose F to maximize the expected cost |
in a. Find the worst possible function F(#), assuming that failure is certain by a |

specified time f, (F{¢,) = 1), Then find the associated checking schedule.
(Answer: 1 — F(r)=(1 —r/t))'?, 0=t =1)

FURTHER READING
Example 2 and Exercise 4 are based on the work of J. B. Keller (1974b).

Section 9

Free Horizon—Transversality Conditions

Counsider a problem

max _/hF(t, x(t), x’(¢)) dt  subjectto x(2,) = x, (1)

Iy

in which the initial point (¢, x,) is given but neither of the terminal coordi-
nates are necessarily fixed in advance. The function F is twice continuously
differentiable, as before.

Let ¢, and x*(¢), tp <t =1, be optimal and consider a comparison
fu_nction x(f), fy = { < f, + §¢,. The domains of the two functions may differ
slightly, with the number ¢, small in absolute value but of any sign. Both x*
al_ld x are continuously differentiable functions and satisfy the initial condition.
Since their domains may not be identical, either x* (if 8t, > 0) or x (if
8¢, < 0) is extended on the interval [¢,, 1, + 61,], so that the functions (as
e:itended} do have 2 common domain. For instance, if §f, > 0, one may let
%" continue along a tangent drawn to x* at ¢, so

X¥(e) =x*(4) +x(0)) (e - 1), t=t=1 + 8¢,

If, on the other hand, 8¢, < 0, then x can be extended from t + 8t to 1, by
4 similar linear extrapolation. The extension is not specified in the sequel, but
3 workable procedure has been indicated,

Define the function h(t) as the difference between the extended functions at
€ach 7 on their common domain, so

x(1) =x*(1) + h(t),  fo=t<max(t,, 1, + 8t,). (2)

fome x*gto) = x(13) = x; by hypothesis, we have A(y) = 0. Only compari-
M functions that are “‘close’’ to the candidate function are considered, where
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Figure 9.1

the distance between the functions x and x™ is defined by
fx — x*|| = max, | A(e)| + max, | ()] + |31,]

+ {x(t, +84) - x*(2) 1, (3)
with the maximum absolute value taken over the domain of k. The last two
terms reflect the difference in terminal coordinates of the two functions. Thus
two continuously differentiable functions are close if, at each point of the
extended domain, their values are close and their slopes are similar, and if,
further, their termination points are close.

Figure 9.1 illustrates some of the notation to be used. In the figure, the
distance between paths is exaggerated for clarity. Let x*(¢), to == ¢f,
optimize (1), let A(¢) be an admissible, arbitrary, and fixed function, and let
8¢, be a small fixed number. Define

(@) = [T ) + b)) + ) a0

The function g assumes its optimum at ¢ = 0, so that g’(0) = 0 is required.
Application of Leibnitz’s rule (see (A1.10)) gives

l|‘I
g(0) = F(£, x*(1,). x*(1,)) ¢, + / (Fh+ F,H)di=0. (5)
fo
Integrate the second term in the integral by parts, recailing that A(¢,) = 0, to
get

g'(0) = F1,, x*(1,), x¥(1))) 61, + F (1, x*(1,), x*(t,))h(¢))

i
+f (F, - dF../dt)hat, (6)
‘o
where the integrand is evaluated along the optimal path (¢, x*(2), x*(/)).
Call the difference in the value of the functions at their respective terminal
points 8x,:
ox, = x(t, +61) — x*(¢,). N
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Now approximate x(f, + 8¢) by a line with intercept x(¢,) and slope x*(1,)
(see Figure 9.1). Then, we have approximately

bx; = x(t,}) — x*(¢,) + x*(¢1,) 61,
= k(1) + x%(1,) 81,. (8)

Thus, the difference in value of the functions at their respective terminal points
is approximated by their difference in value at ¢, pius the change in value over
the interval between #, and ¢, + &¢,. Rearrange (3) to

A() = éx, — x™(t)) 81,. (9)
Substitute {9) into (6) and collect terms,
1'1
/ (Fx — (de./dr))hdr + F.| ‘ 8x,+ (F-xF.)| ., 88 =0. (10)
fo

This is the expression sought. It is the first variation for (1).
Since the comparison curve x could terminate at exactly the same point that
x* does, with 8¢, = 0 and §x, = 0, it follows that

/:'(Fx— (dF, /dt))hdt =0 (11)

must hold for all admissible functions # satisfying A(#,) = A(¢,) = 0. Hence,
it is necessary that the Euler equation

F,—dF,./dt=0
be satisfied. But then (10) reduces to
Fx,],] dx; + (;F'—x’Fx.Hrl 8¢, = 0. (12)

Expression (12) is basic to finding the first order necessary conditions for
optimality corresponding to any specification of terminal conditions. These
conditions are used, together with the initial condition x(f;) = x,, to find the
constants of integration in the solution of the Euler equation.

Before obtaining new results from (12), we check that old results follow. Of
course, if both ;, and x(#) = x, are given, (12) reduces to the identity
0 = 0. In Section 8, we considered the case of t, fixed and x(¢,) free. In the
Present context, this means &, = 0 and dx, unrestricted so (12) implies

Fx’(rl’ x(1,}, x’(t])) bx =0
for any éx,. Therefore,
5 Fx'(’l-x(ﬁ%x’(r])) =0 {13}

if x| is free is required. in agreement with Section 8.
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xif

Xy =xtr) IB\',
g+ By =iy + 8

comparison path
—

Xy b—

[ oy + 8y !

Figure 9.2

Now suppose that £, is free but x(z,) = x, is fixed. Then éx, = 0 and (12)
becomes in this case

(F - ¥E)I, 86,=0
for all &¢,. Therefore, we require
F-xF.=10 (14)

at ¢, if 7, is free.

Finally, if x(#y) = x, and both x(¢,) and ¢, are free, then (13) and (14)
must hold. The initial condition and these two transversality conditions deter-
mine the two constants of integration in the Euler equation and the terminal
time #,. If x, and x, are given but ¢, is free, then the two given boundary
conditions and (14) determine the two constants of integration and 7,.

We summarize the necessary conditions obtained for

max of min /nF(t, x(2), x(t)) dt

o
subjectto  x(#5) = Xg-
Necessary Conditions
a. Euler equation: F, = dF_ /dI, to <t =t
b. Legendre condition:
(max) F., =<0, t,=1=1,
(min) Fo,. =0, =t/
¢. Boundary conditions:
1) x(#y) = x;-

(i) If x(#,) is fixed, then x(¢,) = x is known.
(iiiy If ¢, 1s fixed, then £, is known.
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d. Transversality conditions:
(1) If x(1,) is free, then F. = O at {,.
(i) If £, is free, then F — x’F,. = J at {,.
If both x(#,) and t, are free, conditions (d) can be written equivalently.
d’. Transversality conditions, if both x(#,) and ¢, are free:
in FE.=0att¢,.
(i) F=0atry,,.

Example 1. Find extremals for

f:{c,[xf(:)]z + erx()} ar (15)
subjectto  x(0) = 0, x(T) = B, (16)

where B is a given constant, but T is free.
From Section 4, the solution to the Euler equation is

x(8) =, t*fde, + Kt +K,, O0=i=<T. (17}
Since T is free, the transversality condition is (14); in particular
. 2
el x(T)]" = e, x(T). (18)

The three unknown constants K, X,, and T are to be determined from (17)
with the aid of the two given boundary conditions (16} and the transversality
condition (18).

The three conditions are solved for the three unknowns. Since x(0) = 0,
K, = 0. Then (18) yields

e,(e;T/2¢, + K,)* = ¢;(¢c,T? fae, + K\ T).

Expanding and collecting terms gives K, = 0. Thus

x(t) = c,t*jde,, 0=tr=T. (19)
Also x(T) = ¢, T?/dc, = B, so

T=2(Bec, /c,)'". {20)

The extremal is given by (19) and (20).
Example 2. Example 4.7, in which we sought an optimal consumption plan
Over a definite time horizon, will now be generalized. We assume that the
Individual's lifetime is unknown so an optimal contingency plan is sought. Let

F(1) be the probability of dying by time f, F’(¢) the associated probability
density function, and T an upper bound on possible lifetime (say 140 years},

#80 that F(T)= 1. Then 1 — F(f) = f,TF'(s} ds is the probability of living at

least until 7.
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The individual derives satisfaction not only from consumption L/(C), but
also from leaving an estate to beneficiaries. The latter is expressed through a
utility-of-bequest function W(K') that is continuously differentiable, nonnega-
tive, and increasing. The function W(K) differs from the utility-of-consump-
tion function U(C); it depends on a stock rather than a flow and reflects
consumption permitted to beneficiaries. Let a(f) be a discount term associated
with estate utility. The behavior of this function is not specified. It may
increase up to some !¢ and decline thereafter, reflecting the individual’s
assessment of the relative importance of leaving a large estate in the middle
years of life when the children are not fully grown, compared to early years
before children arrive or later years when the children are on their own.

If the individual dies at time #, the total lifetime utility will consist of the
discounted (at rate r) stream of utility from the consumption path up to f plus
the discounted (factor a(r)) utility from the bequest at death. Hence the
individual’s problem is to

max /O TF’(I)[ /0 eru(c(s) ds + a(W(K())| @t (1)

subject to the budget constraint (4.9),
C(t) = iK(1) + w(1) — K'(1), (22)
and boundary condition
K(0) = K,. (23)

To put the problem in a readily manageable form, integrate by parts the
portion of the objective involving the double integral (letting the inner integral
be 1 and its coefficient F” dt be dv). Then (21} is equivalent to

/Or{e—nu(c(r))[l CF()] + a(t)W(K(O)F(O)} dr.  (21)

This alternative form (217 can be interpreted as follows. If the individual lives
at least until / (probability 1 — F(#)), then utility from consumption U(C(t})
is collected. If the individual dies at ¢ (probability F'(f)), then utility from the
bequest is also received.
Denote the integrand of (217 by G, and use (22). Compute

Gy = e "U(CYi{(l — F) + aW'(K)F,

Gy = - "U(C)(1 - F).
After simplification, the Euler equation can be written

C(t) = = (i — r}U(C)/U(C) + m(U(C) - e"aW'(K))/ U(C)
(24)
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where
m(t) = P(8)/[1 - F(1)] (25)

is the conditional probability density of dying at ¢ given survival until then.
Comparing (24) with (4.13), one sees that the difference in the optimal rate of
change of consumption under certainty and uncertainty is reflected in the
second term of (24). In particular, if the bequest is not valued, that is,
a(t) = 0, (24) becomes

()= -(i-r-mu(c)/u(c),

from which it can be seen that the effect of uncertainty about one’s lifetime is
the same as an increase in the discount rate r; that is, as an increase in the rate
of impatience. Specifically, uncertainty about one’s lifetime raises the “‘effec-
tive’’ discount rate at each ¢ from r to r + F'(£)/[1 — F(¢)) = r + m. Thus
one discounts for both impatience and risk of dying. All this holds as well if
alt)y > 0.

Since T is fixed and K(T)} is free, the relevant transversality condition is

Felr= =& T0(C(T))[1 - F(T)] = 0. (26)

But since 1 — F(T) = 0 by hypothesis, (26) provides no new information.

EXERCISES

1. Let B be the total quantity of some exhaustible resource, for example, the amount
of mineral in a mine, controlled by a monopelist who discounts continuously at rate
r and wishes to maximize the present value of profits from the mine. Let y(t)ybe
the cumulative amount sold by time 7 and y'(¢} be the current rate of sates. The net
price (gross price less cost of mining) p(y’) is assumed to be a decreasing,
continuously differentiable function of the current rate of sales:

p{y} <0,
a. Let T denote the time at which the resource will be depleted. Then choose (¢}
and T to maximize

/:e‘”p(y’(r))y’(r) dt  subjectto y(0) =0, »(T) =B,

Employ the Euler equation, transversality condition, and Legendre condition to

show that the optimal plan involves sales decreasing over time, with y*(T) = 0.

b. Show that at T, the average profit per unit of resource extraction just equals the
marginal profit.

¢. Find the solution if

: p(y)=(1—e )y,

where & > 0 is a given constant, (Partial answer: T = (2kB/ ISREN
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Note that increasing the initial stock by a fraction lengthens the extraction
period only by a smaller fraction; that is, 7*(B) is an increasing concave
function,

d. Now suppose that the net price depends on the cumulative amount extracted and
sold, as well as on the current rate of production—sales. {Mining may become j
more expensive as the digging goes decper. Alternatively, the resource may be . = .
durable—e.g., aluminum—and the amount previously sold may be available for } Equahty ConStralned Endponlt
a second-hand market, affecting the demand for newly mined resource.} In |
particular, suppose

Section 10

ply,y)=a—-by -,

where 4, b, and ¢ are given positive constants. Find the sales plan to maximize
the present value of the profit stream in this case. The constants of integration
and T may be stated implicitly as the solution of a simultancous system of
equations.
2. Find necessary conditions for optimizing (1) if either x(f,) or ¢,, or both, may
also be chosen freely.
3. Use your answer to Exercise 2 together with transversality conditions d and &' to

show that . . . .
a _ Thus far terminal coordinates have been either given or else freely chosen.
I 3 " . - e - . .
f ]Fx(r, x*(2), x®(t))dt =0 1 There are 1ntel.'medlate possibilities, with some degree of constrained choice
I 1 regarding terminal coordinates.
Consider

if both ¢, and ¢, can be chosen freely (i.e_, that F, must equal zero on average if

t, and ¢, can be chosen freely). Hint: Recall the form (3.11) of the Euler equation. max or min ]rIF(I, x(¢e), x(¢)) ar (1)

; fo
FURTHER READING subject to x(1y) = x,, (2)
Example 2 is due to Yaari. Exercise 1 is due to Hotelling (1931). i R(t) = x,, (3)

where R is some differentiable function. Terminal time is neither fixed nor
completely free; any modification in terminal time #, must be accompanied by
a compensating change in the terminal function value x; to end on the terminal
curve (3} (see Figure 10,1},

In particular, a slight change in 8t; in terminal time occasions a change
R'(¢)) 8¢, in terminal value:

R'(1)) = bx, /b1,. (4)

Thf_e first variation for (1)-(3) is (9.10) with (4). As before, the Euler
€quation must hold for all ¢, < t < ¢,. Then substituting from (4} into (9.12)
glves

F+(R-x)F.=0 at ¢ (5)

If R(1,) = x, is required. Note that x' is the rate of change along the optimal
Path while R’ is the rate of change along the terminal curve (3). With a fixed
Mtutial point and a terminal point to satisfy (3), one must find two constants of
Ingegration plus ¢, with the aid of the solution of the Euler equation, the initial
Condition, the terminal condition (3), and the transversality condition (5).
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Rity= x

x| + bx,

Y] -

fn ty + By {

Figure 10.1

The summary at the end of Section 9 may be extended by
d. (iii) If ¢,, x, must satisfy R{z) = x,, then in addition
F+ (R -x)}F.=0 at .
Example. For functionals of the form
f"f(:, A1+ x2)" ar

fo

with x(#,) = x,. R(t;} = x,, the transversality condition (3) takes the form
U+ L+ RrRx) =0,
50 unless f = 0, the transversality requirement is
x'(t) = —-1/R(1).

The optimal path and terminal curve are orthogonal.
If the terminal curve were written in the implicit form

Ot x) =0 (6)

the transversality condition would look different. Since changes 8¢, éx, in
terminal position must obey, to a linear approximation,

o, 01, +Q,0x, =0
we have
8x,/8t, = -Q,/0,.
so the condition appears as
F-F(x'+Q,/Q)=0 a (7

if (6) must hold. Note that (5) and (7) are the same requirement; they differ in
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appearance alone. These equations indicate that
F—F.(x'—6x/8t)=0 at 1

where x’ s the slope of the optimal path and x, /87, denotes the slope of the
terminal curve, both at the terminal point.

Example. Two groups of people are located within a circular city of radius »
(and hence area 7r?). The smalier group occupies an area of size 4 and the
larger group occupies the rest. What spatial configuration of the minority
neighborhood provides a border with the majority population of minimal
length?

Loury shows that the optimal spatial configuration involves locating the
smaller group at the city’s fringe, in a lens-shaped area determined by the
intersection of two circles, one of which is the city’s boundary.

We formulate the problem as follows: The city is of given radius 7 and may
be taken to have center (r, 0). The interior boundary of the minority neighbor-
hood, denoted by x(#), may be taken to begin at the origin (0, () and end on
the city fringe, so {7,, x,) satisfies

(ty —r) +x2 =12, (8)
Its length is

];{1 + [x’(r)]z}u2 d. (9)

Since the height of the circle (8) above ¢ is [r? — (¢t — r)?]"% the total area
between the circle (8) and the curve x(f) is

LHr = =) - xifar= 4 o

The curve starts at the origin.

x(0) = 0, (11)
and ends on (8):

x(1,) = x,. (12)

In sum, we seek a curve x(f) (Figure 10.2) that minimizes (9) subject to (8),
(10)-(12). This is an isoperimetric problem with a restricted endpoint. Ap-
Pending constraint (10) to the objective (9) with multiplier A yields the
dugmented integrand, denoted F, of

’ Feli+ (] e N[ - (=] = x).
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xiry =t = — 12
minarity -'
neighborhood

f
x{f), to be found

Figure 10.2

The Euler equation
~x=d(x/[1+ ()]

may be integrated to

k—M=x/[1+ (x')z]m,

where & is a constant of integration. Square each side and solve algebraically
for x’. Separation of variables gives

12
dx = (k- M)dt/[r - (k- )]
Integration yields
12
x—c=[1-(k-n)] }/k,
where ¢ is a constant of integration. Squaring and rearranging terms produces
(x—cf +(t-m?=1/¥ (13)
where m = k /. The optimal path (13) is an arc of a circle. Denoting
Ot x,) = xi + (¢, - r]2 -r?
the transversality condition (7) becomes
e 142 ]
[(1+(x,)} _[xl+(‘1_r)/xl]
172
x [+ (x0)] =0,
Simplifying,
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x(t)

Figure 10,3

x(t)) = x, /(t, - ).
This requires path (13) to be orthogonal to the city boundary at the endpoint.
Computing x* from (13), we write this transversality condition as
(m—=1}/(x;—¢c)=x,/(t, - r). (14)

Therefore, the solution to the problem posed in (8)-(12) is an arc of a circle
that is orthogonal to the city boundary at the endpoints (Figure 10.3). The five
constants m, ¢, A, ¢, and x, that precisely determine this arc are found from
the endpoint and transversality conditions summarized in (8), (10)-(12) and
(14).

EXERCISES

1. Show that the shortest path from a given point (#,, x,} to a curve R(f) = x is a
straight line from (7,, x;) to (¢,, R(?,)) perpendicular to the tangent to R{#) = x
at (1, R(1,)), for some ¢,.

2. Find necessary conditions for solution to (1), (2) and

P(x)=1. (3)

3. Develop the basic equation for finding transversality conditions in case one or both
initial coordinates may be chosen freely or may be chosen to lie on a specified
curve. Then find the relevant transversality conditions in each case. [Hint:

£ +abr,
3(0)=f F(t, x + ah, x’ + ak’) dr,
fy+abi;
g(0) = (F-x'F. )|, 86 + F.1,8x,
—(F = x'F)| 8t = F. | 8%,
4
+f "(F, - dF, /dt)hd ]

o
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4, Find the curves for which
T 21172
/ {[1 + (x)] /x}dt
]
can have extrema subject to x(0) = 0, if

a. the point (¢,, x,) must be on the line x =t — 5, or
b. the point (¢, x;) must be on the circle (f — 9)* + x? = 9.

FURTHER READING
The example is discussed by Loury.

Section 11

Salvage Value

The value of the objective may depend on the terminal position as well as on
the path. For example, the reward for completing a task may depend on the
speed with which it was completed. There may be a “‘salvage value™ associ-
ated with the assets of the firm at terminal time.

Consider choosing ¢, and x(¢), ¢, < ¢t < #, to optimize

rl
/ F(t,x,x)dt + G(#), x;)  subjectto x(#)) =x,, (1)

‘it

where x, = x(¢,) is the terminal value of the function. Let x*(¢), £, < ¢ < ¢,,
be optimal and let x(1), ¢, < ¢, < ¢, + &¢,, be a nearby admissible compatri-
son function. Extend either x* or x so they share a common domain and
define

h(t) = x(1) = x*(2),  ty=<t=max(1,,¢t +81,). (2)

_Evaluating (1) along the function x* + ah on the interval (2,, t, + a8¢,)
gives

H+ab
g(a}=/ F(t,x* + ah, x* + ak') dt
f

+ Gt +adt,. x, +adx)). (3)

Since x* js optimal, we have by Leibnitz’s rule

I
8 () = f (Feh+ FoR)dr + (Fbt, + G, 81, + G, éx)) [, =0. (4)
iy
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Integrating by parts and recalling that h(t,) = 0 gives

'rl
f (F,— dF, /dt)hdt + (F.h+ Fot, + G, 81, + G, 8x,)], =0. (5)

fo
Since a comparison curve terminating at (f,, x,) is admissible, (5) must hold in
case 8f, = éx, = h(t,) = 0. This implies
FE,—dF./dt=0 (6)

must hold along x*(1), ¢, < ¢ < {,. Furthermore, we have approximately,
according to (9.9)

h(t) =~ 8x, — x*(4,) 8¢, (7)
Substituting (6) and (7) into (5) and collecting terms yields
(F-x"F, + G, 6t + (F. +G)bx =0 (8)

at ¢,. This is the fundamental result for finding transversality conditions for
problem (1}.

If terminal time f; is free, then 8¢, may have any sign and therefore its
coefficient must be zero:

F-x*F,+G,=0 at ¢t if 1 isfree. (9)

If the terminal position x, is chosen freely, then 5x, may be of arbitrary sign
and its coefficient must be zero.

F.+G., =0 at ¢t if x,isfree. (10)
If the terminal time and position must satisfy a differentiable relation,
R(#,) = x,. (11)
then, since R’ 8¢, = x|, if (11) is required we obtain
F+F.(R-X)+GR+G,=0 at ¢,. (12)

The summary of necessary conditions in Sections 9 and 10 may now be :

replaced by the following summary for

5
max or min [ F(t, x, x") dt + G(1,, x,)

fa
subject to x{15) = x,.
Necessary Conditions

a. Euler equation: F, = dF,. /dt, tp <t =1
b. Legendre condition:

(max) F..=0, t(,<t=1.
(min) F..z0
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¢. Boundary conditions:
() x(1;) = x,.
(i) If x(t,) is fixed, then x(#,) = x, 1s known.
(iii}) If ¢ is fixed, then ¢, is known.
(ivy If ¢, x, must satisfy R(?,) = x,, then this equation provides a
condition.
d. Transversality conditions:
(i) If x(s,) is free, then F,. + G, =0at ¢,.
(ii) If 7, is free, then F — x'F_, + G, =0 at 1,.
(iii) If ¢, x, must satisfy R(f,) = x,, then
F+F(R-x)Y+G R +G,=0 at f,.

Example. Imagine a research and development project in which there are
decreasing returns to spending money faster. The more rapidly a given sum is
spent, the less it contributes to total effective effort. (More rapid spending may
be used for overtime payments, for less productive factors, for greater use of
parallel rather than sequential efforts, etc.)

Let x(¢) be the rate of dollar spending at time 7 and let z(¢) be the
cumulative effort devoted to the project by time ¢. The rate of spending x(?)
and the growth of cumulative effort are related by

Z(8) = x'2(1). (13)
The total effective effort required to complete the project is A:
z{(0) =0, z(T)=4, (14)

where T denotes the time of completion (to be determined).

A reward of R can be collected when the project is completed. (R might be
the value of a patent on the invention or the value of the stream of profits
generated by the invention, discounted to the time the project is completed and
the profit stream begins.) If the discount rate is 7, then the value of the project
at time 0 (now) is the profit less the development costs:

T
e"TR—f e-"'x (1) dt. (15)
0

We maximize (15), subject to (13) and (14).
To express the problem wholly in terms of z and z’, use (13) to eliminate
X: then (15) may be written

T
max e TR — / e"'[z'(r)]zdr (16)
0
Since z does not appear in (16), the Euler equation is
Z'(I) = ce”.

o'be solved together with the boundary conditions (14) and transversality
Condition (9), since T may be chosen freely.
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Integrating and using z(0) = O gives

z{t) =ce™/r—c/r. (17
In this problem (9} (after simplifying) requires that
2(T) = (rR)'?. (18)
Using (17) in (18) gives
ce'T = (rR)2. (19)
Finally, setting z(T) = A in (17) gives
(e —1)e/r=A. (20)
Solve (19) and (20) for the two unknowns ¢ and T
c=(rR)!? (21)
and
T=—r"In(1 - A(r/R)'), (22)

Since the In function is defined for positive numbers only, (22) is sensible only
if

rA* < R. (23)
Substituting from (21) into (17) gives
2(t) = [(R/r)? = A](e'=1), O0=:=T, (24)

as the optimal path of accumulation of effective R&D effort provided that (23)
is satisfied. This proviso can be roughly interpreted as requiring that the
effective effort A be sufficiently small in relation to the reward R. If (23) is
not satisfied, then the project should not be undertaken. From (22), the optimal
duration of development T varies directly with the required effort 4 and
inversely with reward R; easier development or a bigger reward accelerate
development. Combining (24) and (13) gives the optimal spending path: If (23)
holds, then

: 2
x(1) = [(rR)""z-rA] e, 0=r=T,
where T is given in (22). Otherwise,
x(1) =0, 0=t

EXERCISES

1. Provide transversality conditions for (1) in the case where
a. t,. x, must satisfy Q(¢,.x) =0,
b. t,. x, must satisfy P(x,) = f,.
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2, Find transversality conditions for
)
max [ F(1, x(1), (1)) dt + Gt xp. 1, 3,)
0

in the case where {, is fixed, x, may be freely chosen and the terminal point
(¢,, x,) must be on the curve R(¢) = x,.

3. Many firms may be doing R&D on similar projects, Assume that the first firm to
complete its R&D claims the reward of R, and that no other firm gets a reward.
(For instance, the first firm gets an exclusive patent that prevents others from
selling similar inventions.) Suppose ABC Co. believes that the probability of rival
invention by time ¢ is

F(£) =1- e, (25)

where & > 0 is constant. Assume ABC's R&D technology is given by (13) and
(14). Find ABC’s optimal spending plan and time of completion. How does the
possibility of rival preemption affect the optimal development plan?

(Partial Solution: Since ABC spends money on R&D at ¢ only if no rival has claimed
the reward by ¢, and since it will collect the reward at 7 only if no rival appears by T,
{15) is replaced by

T
e~ TR(1 - F(T)) —/ e=x(1)[1 - F(1)] dt.
Q
where F(?) is specified in (25).

4. Suppose the situation described in Exercise 3 is changed so that the first firm to
complete its invention claims the reward of R, but a lesser reward of R,, where
A’/r < R, < R, is available to a firm completing its R&D after the first prize of
R has been claimed. Suppose that ABC has accumulated effective effort of z; by
the time f,, a rival, claims the reward R. Find ABC’s optimal development
program from the moment #, forward. Also find the value of that optimal program.

(Partial Solution: Since the problem is autonomous {defined in Section 15), we may
Count time from the moment a rival claims the reward R; therefore the optimal value
from the moment ¢, forward is

- 3 T
r[(Rhfr)l_.-k__A +z0] = max e—rT:,Rz_ / e,_”{z’)z dt
3]

subjectto  z(0) = z5. z(T3) = A.
5. Suppose the R&D rewards are the same as in Exercise 4 and that ABC's R&D
technelogy is (13) and (14). The probability of rival invention by ¢ is {25) as
expressed in Exercise 3. Find ABC's optimal development plan.
{Himts: If no one has completed invention by 7, ABC spends at rate (27> (to be
found). ABC collects R at T (to be found) if no rival has claimed that reward by
thiln. If a rival completes invention and claims the major reward R at ¢ (probabil-
ity density F'(f) = he™"*) when ABC's accumulated effective effort is Z, then
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ABC can modify its development program. The value from ¢ forward of that ;

optimal program is that found in Exercise 4.
—(r+ T T —(r+ AN 1/2 2 P 2
max Re + [ e {#l(Ra/1)2 =4 +200] - [2(1)] bar
o
subjectto  z(0) =0, z(T)=A.

FURTHER READING
The R&D problem of this section and Exercises 3-5 have been explored in a series of

papers by Kamien and Schwartz. See especially Kamien and Schwartz (1982). A j
differential game approach to the R&D problem is presented in Example 2 of Section §

II.23.

Section 12

Inequality Constraint Endpoints and
Sensitivity Analysis

Optimiza.xtion may be subject to endpoint inequality constraints. For example,
the terminal time ¢, may be freely chosen so long as it does not exceed a given
upper bound T

t,=T. (1)
Or the terminal value x, may be selected freely provided that
X, = a. (2)

Frequently the lower bound a is zero. To cope with such possibilities, we
mflke‘lwo changes in our procedures. First, we deal exclusively with maxi-
mization problems. (Analogous results for minimization problems are to be
Sﬂppl_ied in the exercises.) Second, we look more closely at how changes in the
solution function x affect the value of the solution since feasible changes may
be restricted.

Suppose the initial coordinates are fixed and requirements on the terminal
Coordinates are to be specified later. Thus,

f
max / F(t, x(0), x(1)) dr, (3)
i
subject to x(15) = x,. (4)
Let x*(p), fo < { = f, be the optimal function and let F* denote the vatue of

F a‘;"ng this function: that is, F*(£) = F(¢, x*(1). x™(1)). Let J* be the
Maximum value achieved in (3).
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Let x(1), t, < { = ¢, + 8¢, be a feasible comparison function that is close
to the optimal function x*(f). Extend x or x* so that they have a common
domain. Let J denote the value of the integral in (3) for this comparison
function. Then

f+ 5t ¢
s s (TR d- [CF )

fg fo
!
= [IIHHF(I, x, x') dt + / I[F(t, x, X’} = F(r, x*, x*}] dt.
4 E
()

Since J* is the maximum, (5) must be nonpositive. We seck a linear
approximation to (5). Since 8¢, is small and x is close to x*, the first integral
in the second line of (3) is approximately equal to

{+8¢
f F(1,, x*(1,), x*(1,)) dt = F*(1,) 8¢,
4

Further, the second integrand in the second line of (5) can be expanded by
Taylor’s theorem (A2.9) around (¢, x*, x*). Hence

r'|
J = J* = F*(t,)) 6¢, + f ((x -~ x"Ff + (x' —x™) Ff)dt + h.o.t,
[

(6)

where FX(t) = F (¢, x*(1), x*(1)), F} is defined analogously, and A.0.1.
denotes higher-order terms. Writing

r(t) = x(¢) — x*(1) (7)
gives
J— J* = F*(1,) 8t + /"(F;hua:m dt+hoti (8

The linear terms of (8) comprise the first variation of J, written
h
8J = F*(1,) 8¢, + / (Fth + F}R) dr. (9)
ia

Expression (9) is familiar from earlier calculations; compare it with {9.5).
The recalculation highlights the appropriate interpretation of (9): the first
variation (%) is the rate of change in the optimal value J * due to a slight shift
in path h, or shift in terminal coordinates. Its importance will be seen after
transforming (9) in the now-familiar way.
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Integrate the last term in (9) by parts with A(t,) = 0 (since X, 18 fixed):
I
8 = F*t,) 81, + Fr |, k(1)) + f i(F;" - dF} /dt)hdt.
fo

Dropping the asterisks for convenience and using (9.9) for h(f,) gives the
form sought for the first variation of J, in agreement with (9.10)

f
6 = (F = X'F,)|, bt + Fy | 6%, + ] (F, - dF, /dt)hdr. (10)

fy

Since x* provides the maximum, any feasible modifications must lead to a
solution with value no less than J*, that is, must produce §J < 0.

By a familiar argument that the comparison path was arbitrary and could
surely terminate at the same point as the optimal path (81, = éx, = 0), the
integral in (10) must be nonpositive for all differentiable functions A with
h{ty) = h(t,) = 0. This implies that the Euler equation

F,—dF,/dt=0 (1)

must hold along the optimal path x*.
Since the comparison path could have x(¢,} = x,, we take 5x, = 0 for this
and the next paragraph. Then (10) reduces to

8J = (F-x'F,)| 8t =0. (12)

If ¢, is fixed in the problem specification, then 8¢, = 0 is required and (12)
gives no further restriction. If #, is free, then 8¢, may have any sign and the
coefficient of 8¢, must be zero. This gives the same transversality condition
(9.14) as before.

Now imagine that ¢, is neither fixed nor completely free; rather, (1) is
imposed. Then either the optimal ¢, < T or else f, = T. In the first case, the
comparison path may end before or after ¢, and therefore modifications &¢,
may be either positive or negative; hence

F-xF.=0 a ( if ¢ =T when(1)isimposed. (13)

The upper bound T is not an active constraint and the result is the same as if I8
were unconstrained. In the second case, £, = T and feasible medifications
involve either the same or an earlier termination time, thus 8, =0 is
Tequired. But then, if (12) is to hold for all &/, =< 0. we must have

F-xF.=0 a 1 if ¢ =T when(1)isimposed. (14)
This is the new result. Conditions (13) and (14) may be combined into

bz, F-xF.=0, (T-t WF-x'F.)=0 a 1.
(15)
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Next, the appropriate transversality conditions are sought in case x is
constrained. We require

F.|,6x,=0 forfeasible bx,. (16)

If x, is fixed, then feasible §x, = O and (16) yields no information. If x, may
be chosen freely, then feasible 6x, may be positive or negative and (16} is
assured only if F,.(7,) = 0. These are familiar results. If (2} is imposed, either
X, > a or else x, = a. If x, > ¢, then feasible modifications 8x, may be
positive or negative and therefore

F.(t)=0 if x> awhen (2} isimposed. (17)

On the other hand, if x, = @ in an optimal solution, then any comparison path
must have the same or larger terminal value; that is, feasible modifications
involve 8x,; = 0. In this case, (16) holds for all feasible modifications only if

F.(t;) =0 incase x, =a when (2} is imposed. (18)
Combining (17) and (18) gives the equivalent requirement that
x,za, F.;)=0, (x -aF. (1,)=0 (19)

X
if (2} is required.
The first variation of (3), in case neither the initial nor terminal coordinates
are necessarily fixed, can be developed in similar fashion. It is

87 = (F=x'E,)|, 0t + Ful, 6% — (F=XF)|, 8t~ F.| , 6%,
4
+f (F, - dF, /dr)hdr. (20)
o

This is the fundamental expression for finding all the first order necessary
conditions for (3) whichever boundary conditions are imposed.

The first variation, (20), makes it possible to conduct sensitivity analysis.
That is, it can be asked how the optimized value of the integral (3) changes if
its upper limit of integration ¢, changes or the terminal value x, changes. The
changes in #, and x, are assumed to be independent. We begin by observing
that when ¢, and x{(1,) are fixed, the value of (3) along an exiremal may be
regarded as a function of 7, and x,. That is, let

I
Vin. x,) :/ F(e,x*,x*) dr (21)
Iy
5.1, x{t,) = x4, x, free.
Similarly, let
s
V{ts, x,) = f F(r.x. ®)dr (22)
f

5.1, x(ty) = x5. X, free,
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where ) # 1,, X, # x, and X(¢#) refers to the extremal for the integral (22).
Thus,

ts t
V(ty, x3) = V(¢ x)) =/ F(t, 2, %) dr—f Ft, x*, x*)dt, (23)
'rD

o

which is just J — J* = 8J in (5) if we let ¢, = ¢, + 8¢, and regard () =
x(#) as the comparison path to x™(¢). But then, from (20) we get

V(tz.3) = V(ti, x) =60 = (F = X'F) |, 8, + Fu|, 6%, (24)

where we have taken into account that the Euler equation must be satisfied. For
4y, £, Xy, X, sufficiently close, by the definition of a total differential of a
function of two variables

Vit,, x)) = V{t,, x) = V, 6t + V,_bx, (25)

where V, and ¥, refer to the partial derivatives of ¥ with respect to £ and x,
respectively. It then follows from (24) and (25) that

V,=F—-x'F, = ~H, (26a)
V.=F,=p (26b)

where H refers to the Hamiltonian and p the generalized momenta defined in
(3.13). V, and V, represent the changes in the value of the integral (3) with
respect to small changes in ¢, and x,, respectively, when the path x*(¢) is
adjusted optimally.

Now if there are constraints ¢, < T, X; = a, and they are tight, i.e.,
ty = T, x| = a, for the extremal of (3), then V, and V, indicate by how much
the optimal vatue of (3) would change with respect to a relaxation of each
constraint separately. This means that the Hamiltonian # and the generalized
momenta p may be regarded as the respective shadow prices associated with
the constraints on the upper limit of integration , and the terminal value x|
That is, the Hamiltonian H and the generalized momenta p indicate the most
one would be willing to pay to have the respective constraints on ¢, and x,
telaxed. Obviously, if a constraint is not binding for an extremal of (3)— for
txampie, if the optimal ¢, < T—then the most one would be willing to pay to
relax this constraint is zero, The interpretation of F and P as shadow prices
Provide intuitive meanings to the transversality conditions (15) and (19).
According to (15),

(T_"1)(F‘”x’Fx'): ~(r-1)H=0. (27)

V\_’hat this means is that if 7, < T, then the shadow price of T the Hamilto-
Man H = (. While if the shadow price —H > 0. then T = ¢,, the constraint
mustj be binding. Similarly, from (19} we have

(v, —a)F. =(x,—a)p=0 a t. (28)
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This means that either the constraint is not binding, x, > @, and its shadow
price p = 0, or its shadow price p < 0 and the constraint is binding. (Note
that the shadow prices H and p are both nonpositive here, a counter intuitive
way of thinking of them. Thus, in optimal control theory the Hamiltonion is
defined so that both shadow prices are nonnegative.)

Expressions (27) and (28) are referred to as complementary slackness
conditions. Combining (26a, b) gives

V,=F-V,x, (29)

a partial differential equation that must be satisfied along x*(1). It is known as
the Hamilton-Jacobi equation (see I1.21.7).

Example. Land Use in a Long, Narrow City.

A city is confined to a rectangular strip of given width W and maximum
length L. A fixed amount of area A is to be a business district, with the
remainder for roadway. Each square yard of business area generates g tons of
traffic per unit time, with destinations uniformly distributed over the remaining
business area. W is assumed sufficiently small for transport cost in the
breadthwise direction to be neglected. The cost per ton-yard of moving traffic
lengthwise a small distance at point ¢ is an increasing function S /x),

fle/x) =blv/x), k=1, b>0, (30)

of the traffic density v/x at that point, with v(¢) the total volume of traffic
passing lengthwise coordinate ¢ and x(¢) the road width at ¢. Hence the total
transport cost in the city per unit time is

[ w640 x(0)) (31)

The problem is to choose the width of the road x(f) and the length L < L of
the city to minimize (31). (Note that 7 is distance, not time, in this problem).

We introduce a new variable y in terms of which both v and x will be
given. Let y'(¢) denote the width of the business district at ¢ (see Figure 12.1),

y(6) =w-x(1) (32)

W T -

) !
business D = W
area |

= i)
road X1 '

i '

Figore 12.1
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and y(#) be the total business area to the left of ¢
!
(1) = ]0 (W—x(s)]ds, »(0) =0, p(L)=A. (33)

To calculate v(¢), first note that the volume of traffic originating to the left of ¢
is gy(#), of which a fraction [ A — y(#)]/ A has destination to the right of ¢,
Thus gy()[A — y(£)]/ A passes ¢t from left to right. Second, a similar
calculation shows that g{ A — y(#)] y(¢)/ A passes ¢ from right to left. Hence
the total volume ©(¢) passing ¢ is

v(t) =2g[A4 - y()] »(1)/ A. (34)
Substicuting from (30), (32), and (34) into (31) gives

min (2g/A4)'b [ YA <y w = )
fuy (A-y)y " (W-y)"ar (35)

subjectto  L=<L, y(0)=0, y(L)=A.

The additional requirement 0 =< y’(¢) < W turns out to be satisfied automati-
cally. Once the function y(¢) that minimizes (35) is known, the optimal x can
be found through (32).

. The positive constant in front of the integral in (35) may be ignored. The
integrand F(y, ¥} does not contain ¢, and therefore it is of the form discussed
earlier in Case 2 in Section 5. The Euler equation is F — y’ F,. = C. Thus,

(YA - y)/(W=-)]" W= (k+1)y]=C (36)

fer some constant C.

. In the optimal solution, either L < L orelse L = L. We consider each case
In turn. As s to be shown in Exercise 3 below, if the constraint on the length
of the city is not tight, then the transversality condition ¥ — y'F,, = 0 applies;
Fherefore C = 0. Since neither y = O nor y = 4 for all ¢ is fgasiblc. C= 0
tmplies that W — (k + 1)y’ = 0, or that

Y= W/lk+1). (37)
Putting (37) inte (32) gives the road width at 7;
x(1) = W - p(1) = kW/ilk+1). (38)

Optimal land use involves a t road of constant width that is a fraction & /(k + 1)
of the city’s width if I < L. |

To find out when L < L, note that {37) implies that y(1) = Wri/(k + 1),
sothat y(L) = WL /(k + 1). Using the boundary conditions of (35), WI /(k
+1) =4 and :

L=Ak+1)/W=lL. (39)

Thus (39) is necessary to have road width given by (38).
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If A>LW/(k+ 1), (39)is not satisfied. L = L and, as is to be shown in
Exercise 3, F — y'F,, < 0 at L, so that, in view of (36), C =< 0. In this case,
a closed-form solution to the differential equation (36) is not available. From
the symmetry of the problem, y wilt be symmetric about the midpoint L /2.
This can be verified formally by showing that if y(f) satisfies (36), then so
does z{f)=A — y(L - 1).

To be meaningful, the first square bracketed expression in (36) must be
positive so that the second term has the sign of C, which is negative:

W— (k+1)y <O0. (40)
Then (40) and (32) imply that
x(1) < kW/(k +1). (41)

From (41), when the city is constricted, the road will be narrower at every
point than would be optimal if the city length were unconstrained. (Recall that
the business area is fixed while the total area is ‘‘too small.””) Thus not only is
the total road area smaller than when L is unrestricted, but also the road width
is narrower at each f in the present case. To determine the relative shape or
width of the road through the city, we seek p”. Take the logarithm of (36),

(k+Dmy+(k+Din(A—-y) - (k+1D)In(W-y)
+In{(k+1)y - W)=In(-C),
differentiate totally
(k+1)y/y - (k+ 1)y/(A=3) + (k+ 1)y [(W=Y)
+(k+ 1)y /(k+ 1)y - W] =0,
and solve for y” algebraically:
y =@y -AW-rk+1) - Wwl/ky(a-y). (42)

From (40) and (42), ¥” has the sign of y — 4 /2. By symmetry, y” < 0 when
t<L/2, y(L/2)=0,and y" > 0for ¢ > L /2. Since y" = —x’, the road

kW1 +H{

A=WLIO + k) A WL+ 1
Figure 12.2
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widens stealdily from ¢ = 0to { = L/2 and then narrows symmetrically for
t > L/2. Since y'0) = W, x(0) = W — y'(0) = 0 and, by symmetry, x(IL)
= 0 (see Figure 12.2).

EXERCISES

1. Find necessary conditions for solution of (3) and {4) if at the same time t, is fixed
and @ = x(¢)) < b is required.

2. Find necessary conditions for solution of

!
min f F(t,x, %) dr

o

subjectto  x(fy) =xq, a=x(f)=<b, ¢ fixed, ¢ free.

3. Find necessary conditions for solution of

!
min / lF(Jr,x, x') dt

fo
subjectto  x(f) =x,, x(t,)=x, £, =T.

4. Show that (20) is the first variation of

]
/ F(t, x, x') di,

‘o

where neither the initial nor terminal coordinates are necessarily fixed.

FURTHER READING

The example of land use in a long, narrow city was taken from Solow and Vickery.




Section 13

Corners

In the problems discussed so far, the admissible functions had to be continu-
ously differentiable. It may be desirable to admit functions that are continuous
throughout and are continuously differentiable except possibly at one or several

points. Such functions are said to be piecewise smooth. A point at which the 3

derivative is discontinuous is called a corner.
Example 1. The value of

min /:(x — 2} (x' - 1) at

subjectto  x(0) =0, x(3) =2,

is bounded below by zero. This lower bound is attained if either x = 2 or }

X =1lateach ¢+, 0 <¢ =<3, Thus

_ o, 0=<t=<?2,
x(t)_{z, 2t <3,

must be minimizing. This function (Figure 13.1) is piecewise smooth, with a '

comner at { = 2.
We seck necessary conditions for a function x to optimize

fy

i
fF(r.x,x')dr subjectto  x{f,) = xo, x{f;} = x,, (1)

where x must be piecewise smooth. Therefore, it must be continuous, with & j
continuous derivative everywhere on [7,, f,] except possibly at a few points. |

In particular, suppose the optimizing function x*(r) is continuously differ- |
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x(t)

] ] ] |
I 2 3 7

Figure 13.1

entiable on [£,, #,] except at some point 7,, ¢, < ¢, < t,. Write

7 p £y f{
/F(r,x,x)a'r=/ F(t, x, x') a‘r+/ F(t,x, x)dt.  (2)
r

fo 1y X

On each‘ int.erval_, (4. 2,1, and {£,, £,], x*(¢) satisfies an Euler equation, To
prove this, imagine that x(#,) = x,. Then x™(2), ¢, < ¢ < ¢,, must optimize

f
/ F(t,x,x)dt  subjectio x(f,) =x5, x(t,) =x,, (3)

Iy

while x*(¢), ¢, < ¢ < ¢,, optimizes

1
/ F(t,x,x)dt  subjectio x(1,) =x,, x(t,) =x,. (4)

f

If the value of either of these subproblems could be improved, then the sum
coulq be enhanced by replacing the relevant segment of x* by the improved
solution of the subproblem. Thus, if x* solves (1), it also solves (3) and (4).
f\llhough x* satisfies the same differential equation . = dF,. /dt on each
lmerval,‘ the constants of integration may differ with thc;:r boun(;ary conditions
appropriate to each interval employed. The conditions that hold at (¢,, x,) are
called the Weierstrass-Erdmann Corner Conditions. These are developzed as
follows.

Both ¢, and x, must be selected optimally, so no modification can improve
the value. in {2). To consider its implication, select arbitrary modifications
61,,8x, in lhe optimal coordinates 7,, x,. Changing the endpoint of (3) also
;hanges the Initial point of (4) since the solution is continuous on f, < ¢ = 4.
tho find the impact on (2) of slightly changing the switching point, we compute

¢ changes in the values of (3) and (4).

By (12.20), the variation 8.7 of

J &
J= / Fl, x, x') di (5)
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is
8J = (F_x’Fx’)lbab+Fx’|b5x0_ (F_x’Fx')1aaa_Fx'|a6xa
b
+[ (F, - dF, /di)hdt. (6)
i

Evaluating (6) along x* gives the linear part of the difference J — J¥*, where
J* corresponds to x™ and J corresponds to a comparison curve X. We use (6)
with @ = t,, b = ¢, to find the change in value of (3) due to the move of the
terminal coordinates 1, X, by 8f,,8x,. Since the initial coordinates are
unchanged, da = 87, = 0 and 8x, = 8x, = 0. The Euler equation will also
be obeyed; therefore the integral is zero. Thus (6) applied to (3} reduces to

(F—x'F.)|,; 8t + F. | 5 8%, (7)

as the change in value of (3) resulting from the move of the terminal
coordinates, The superscript minus on f, indicates that the values are to be
taken as 7, is approached from below.

Moving the point ¢,, X, not only shifts the terminal point of (3) but also
shifts the initial conditions for problem (4). To find the resulting changes in
value of (4), again we use (6), this time identifying & = #,, x, = X;, b =1,
x, = x,. The Enler equation is obeyed by x*, so the integral in (6) equals
zero. Since the comparison curve also ends at ¢, x,, the terms 6 and 6x,
are zero. The change in (4), using (6) is thus

—(F—X'Fx')h; 6‘2_Fx’|r;5x2- (8)

The plus superscripts indicate evaluation as ¢, is approached from above.
The net change in (2) from moving ¢,, X, is the sum of changes in (3) and
(4), namely, (7) plus (8):

[(F_x,Fx’)hz‘ - (F_X’Fx’)lr-j] 6r2+(Fx’|:z‘ _Fx’1f§‘)ax2' (9)

If ¢,, x, is optimal, no change in these coordinates can improve the value in

(2). Since feasible changes in 8¢, and 5x, are independent and may have any
sign, their coefficients in (9) must each equal zero. Therefore,

Fx’|:{=Fx’|r; (10)
and
(F_x’Fx’)h; = (F' x!Fx’)lr;‘ (11)

Conditions (10) and (11) which must hold at any discontinuity of x™ are the 1
Weierstrass-Erdmann Corner Conditions and state that along an optimal

path x* the functions F,. and F — x'F,. are continuous. These functions must
be continuous even where x*’ is not continuous.

The two (identical) Euler equations are solved with the aid of the three :
boundary conditions x(#) = x,, i = 0,1,2, and the two comer conditions

(10} and (11) to determine the four constants of integration and ¢,.
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The corner conditions for Example 1 are that

F.=2(x-2(x - 1)
and
F-x'F.=—(x-2(x - 1)(x+1)

be continnous throughout. The proposed solution renders both expressions
equal to zero on [0, 3]. Recall that if ¢ does not appear in the integrand, then
the Euler equation takes the form

F - x'F,. = const.

We have just shown this to be satisfied (with constant = 0),

Example 2. Find the extremals with corners, if any, for
T
/ (eyx?+cx)dr subjectto x(0) =0, x(T)=B.
0

The expressions
F.=2cx
and

—x'F. = 2
F-x'F.=¢cx-cx

must be continuous throughout. But continuity of F_. in this case directly

implies continuity of x’, so there can be no corners (no points of discontinuity
of x7).

EXERCISE
Find extremals of
4
min [ (x' — D (x' + 1) at
o
subject to x(0) =0, x{4)=2

that have just one corner,

FURTHER READING
Corners are often more readily handled by optimal control; see Section II12.
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Inequality Constraints in (¢, x)

Consider optimizing

/t'F(t,x,x’) dt (1)

o

R(=x(t), fr=t=1,

x(tp) = %o, x(#;) = x,, {2)
where R(¢) is a given continuous function. The solution of the Euler equation
for (1), with the given boundary points, may satisfy (2); the problem is then
solved. Alternatively, there is some interval in which the solution to the Euler
equation is not feasible and then constraint (2) is followed with x(1) = R(?).

One might think of solving (1) and (2) by finding the extremal that satisfies the
endpoint conditions and replacing infeasible portions of the extremal by

subject to

segments of the boundary x() = R(?). This is generally not optimal, as will &8

be iliustrated later.

Suppose that the solution of the Euler equation satisfies (2) over [Z,, ¢,] and
that (2) is tight over [Z,, £;], with 7, < f, < 7, < f; (see Figure 14.1). Then
boundary conditions determining the constants of integration for the Euler
equation F, = dF,. /dt, t, <t <t are x({;) = X, and x(Z,) = R(;). The
optimal path continues, following x(f) = R(f), 1, <t =1, and a similar

Euler equation is obeyed over the final interval [t4, t,], with constants of

integration determined in part by x(#;) = R(f;) and x(#;) = x,. We must still

determine 7, and #,. Since these are found in a similar manner, the selection of

¢, is emphasized.
The integral (1) can be expressed as the sum

f; f
[ F(1, x, x) d:+f F(t, x, x) dt. 3) 4
, |

o 2
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Figure 14.1

If x*(1), to <t < ¢, is optimal for (1), then for given ¢,, x, (with R(ty) =
X,), the function x*(¢), ¢, < 1 < ¢,, must be optimal for

/rZF(r, x, x'} dt
“ (@

subjectto  x(t,) = x5, x(8,) = x,, R{?)=x(¢),

while x*(#), t, < ¢ < 1,, is optimal for

/"F(r, x, x') dt
‘2 (5)

subjectto  x(5,) = x,, x(#;) =x,, R(2) = x(s).

This is obvious, since if the value of either of these subproblems could be
improved, the value of the sum could clearly be enhanced by replacing the
relevant segment of x™ with the optimal solution to the subproblem.

Suppose the optimal path x* reaches the curve R(f) at t,. If f, were
modified to ¢, + 8¢,, the following changes would ensue. First, the Buler
equation would be followed to point C instead of point B in Figure 14.2.
Thus, the first portion of the solution, following the extremal to the curve R(D)
c_hanges the endpoint slightly. Second, the path follows the constraint from
time £, + 8¢, (point C) to #;, rather than from ¢, to f,.

C R{ry

x{r}

iy 17+ by 1y

Figure 14.2
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The change in the value of (1) is the sum of changes in the value of (4) and
(5) due to the altering of f,. Apply Equation (13.6) to (4) with a = ¢,
b = t,. Since the Euler equation is to be obeyed, the integral term in (13.6) is
zero. The initial coordinates are unchanged, so 8/, = 0 and éx, = 0. The
change in (4) due to adjustment &1, is thus

F.bx, + (F-x'F,)8t, at t,. (6)
But since B and C are both on the constraint, 8¢,, 6x, must obey
R'(1,) 61, = 8x,. (M
Combining (6) and (7) yields
[F+ F (R — x7)] 8t,. (8)

Thus (8) is (the linear part of) the change in the value of (4) corresponding to
&t,. In Figure 14.2, it is the value of modifying the path to the constraining
curve from AB to AC.

The value of the integral (5), the value of continning from C rather than
from B, is also affected. Since the path from B to C follows the curve R(¢),
the change in (5) is

f‘”“’ﬁ(:, R(t). R(1)) di = +F(t,, R(,), R(1,)) 8¢, (9)

i.e., the value of F at £, times the length of the interval. This is the value
foregone by omitting the segment BC from (5).
Subtracting (9) from (8) gives the net change in (1):

[F(2, x, %) + Fo(t, x, x)(R" = x') = F(t, R, R)]| ., 81,. (10)

Since feasible §¢, may have any sign, its coefficient in (10) must be zero if no
improvement is to be possible:

F(t,x,, x)— F(t,x,, R) + F(t,x,, *}{R-x)=0 at ¢,
(11)

In (11), x’(¢,) is the left-hand derivative, the rate of change of the extremal as
it approaches the constraint; R'(t,) is the slope of the constraint at ¢,; and
R(t)) = x,.

Equation (11) must be satisfied by an optimal function x*(#) and number ¢,.
With #,,x*(¢,) held fixed, one can view F(z,, x*(t,), y) = f(») as a func-
tion of a single variable. Then (11) may be written

f(x) = f(R)+ S (X) (R - x) =0 (12)
where x’ = x’(t;), R’ = R'(t,). Applying (A2.3) to (12), we can show that

either x* = R’ or f*(r) = 0 for some number r between x’(f,) and R'(¢,).
Recalling our definition of f, this means that either

F..t;, x*(#;),r) =0  forsome r
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or
R'(t,) = x*(¢t,)  where t, and x*(1) are optimal. (13)

A similar argument shows that (13) holds with 7, replaced by ¢,. Since R’ is
the slope of the constraint and x’ is the slope of the extremal (selution of the
Euler equation), the extremal is tangent to the constraining curve at juncture
points if F,... # 0 everywhere.

To sum up, an optimal solution to (1) is characterized by the following
conditions:

a. On every interval such that R(f) > x(f), the Euler equation F, =
dF,. /dt must be obeyed.

h. On every other interval, the function x is determined by x(f) = R(¢).

c. Let 1° denote a time of switching from an interval of type a to an interval
of type b or vice versa. Boundary conditions for determining the
constants of integration in the solution to the Euler equation include
R(1%) = x(+°) and R(t°) = x'(¢°) (provided F,. . # 0).

Example. A firm must meet an exogenous cyclical shipments schedule S'(1),
0 = ¢ < T. Production cost is proportional to the square of the production rate
and inventory cost is linear. Inventory must be nonnegative. Find the produc-
tien plan to make the required shipments at minimum cost,

Let x(#) be cumulative output by time 7, so that x’(#) is the output rate at ¢,
Inventory is the cumulative cutput x(f) less the cumulative shipments to date
S5¢(t). Thus

min /UT{-.’.'I[)(’(I)]2 + o x(¢) - S(I)]} dt (14)
subjectto  x(f) = S(¢), 0=<t=<T, x(0)=ux,. (15)

The solution involves time intervals on which x(#) = S(¢} and time intervals
for which x obeys the Euler equation. While the constraint is tight, current
production x” just matches current shipments §°, Extremals are of the form

x(8) =, % fde, + kt + k,. (16)

Suppose an extremal is followed for ¢, < ¢ < #,. The four numbers ¢,, #,, k,,
and k, are determined by

x(t,) = 8(z,), x(t;) = 8(¢,),
x'(1) = 5(n), x'(t;) = §'(1,),

since the optimal path x must be continuous, the constraint x = S is tight just
before {, and after t,, and F,. . = 2¢, # 0. Therefore, by condition (c),
X" = §' at the moment between intervals of the two types. Since S is a known
funcfion, ¢, 7,, k,, k, can be found for each interval on which the constraint
1$ not tight.

(17)
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Figure 14.3

Note in Figure 14,3 that the slope of x’, that is, the rate of increase in
production, is ¢, /2¢, on each free interval, on which the censtraint is not
tight. In the early part of the free interval, such as (¢, £,) or (Z;, ¢,), the
production rate exceeds the shipment rate and inventory accumulates. The peak
inventory on each free interval occurs when x* = §'. For the remainder of the
free interval, shipments exceed production with the difference supplied from
inventory. Area A = area B and area A® = area B®. Inventory reaches zero
at the end of the free interval, ¢, or ¢,. For ¢, <t < ¢, production satisfies
shipping requirements exactly.

We remark that if max, $"(¢) < ¢, /2¢,, then it would never be optimal to
produce for inventory. Output equals sales throughout.

It is apparent from Figure 14.3 that the optimal solution does nof consist of
feasible pertions of a single extremal joined by boundary segments, for such a
solution would involve portions of a single straight line, X = ¢,¢/2¢, + k,,
whereas Figure 14.3 involves poertions of several straight lines (same slopes,
different intercepts). One does not delete infeasible portions of the uncon-
strained solution to get the constrained optimal solution,

EXERCISE

5
min f {[x(0)]* + 4x} ar
o
subjectto  x(0} =10, x(5) =0, x{¢) =6 -2t
Sketch the optiral path and compute it with the path obtained by ignoring the inequality

constraint.

FURTHER READING
The example is adopted from Anderson.

Section 15

Infinite Horizon Autonomous Problems

A problem of the form

max /me"’F(x(t), x'(t)) dt
0

subjectto  x(0) = x,

(1)

has an infinite planning time or horizon. A problem is said to be autonomous
if it does not depend on time explicitly; ¢ is not an argument. But economists
also say that (1) is aufonomous since its dependence on time is merely
through the discount term, which is constant. (The Euler equation for (1) will
be autonomous; ¢ is not an argument. See (2) following.) These two definitions
differ but the context should make clear which is being applied.

In infinite horizon problems, there may be no necessary transversality
condition. Even if a transversality condition holds, it may be of little help in
determining constants of integration. The needed condition is often obtained
from the observation that if such problems depend on time only through the
discount term, it may be reasonable to expect the solution x(¢) to tend toward
a stationary level x, in the long run. A steady state or stationary state is one
in which x’ = x” = 0. The steady state x, for (1) is found by putting
X' = x” = 0 in the Euler equation

Fo=—-rFo +F. . .x+F..x" (2)
The number x, is therefore implicitly specified by

‘ F.(x,,0) + rF.{x,,0) = 0. (3)
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The second boundary condition for problem (1} is thus frequently taken to be
lim, .., x(#) = x,. 4
For example

min [ e (X + ax + by’ + ex'?) dt
0

subjectto  x(0} = x,.
where ¢ > 0 and r > O gives rise to the Euler equation
x*—rx'—x/c=(a+rb)/2c,
that has the particular solution
x,= —(a+rb)2.
The general solution to the Euler equation is
x(t) = Ae™ + Be" + x;

where w,, w, = r/2 + [(r/2)> + 1/¢)]'/* are the roots of the associated
characteristic equation. These roots are real and opposite in sign, so w, > 0 >
w,. Selecting the constants of integration A and B so that the initial condition
and the terminal condition (4) are satisfied yields

x(1) = (xg — x,)e™ + x,.

The steady state will not be attained in finite time but will be approached as ¢
grows (recall that w, < 0). Differentiating gives

x'(t) = wy[ x(1) - x,].

which has the form of a common ‘‘adjustment’’ equation. The value of x(#)
moves toward x; at a rate proportional to the gap between the current value
x(¢) and the *‘desired’’ or steady state value x,. The rate of adjustment w,
depends on the discount rate r and the parameter ¢.

Section 16

Most Rapid Approach Paths

Consider the infinite horizon autonomous problem that is linear in x”:

f e~ [ M(x) + N(x)x dr (1)
0
subjectto  x(0) = x5, A(x) =x" < B(x). {2)
The rate of change of x may be bounded, as noted. The Euler equation,
M'(x) + rN(x) = 0, (3)

in an ordinary equation in a single variable x, not a differential equation (recall
Case 5 of Section 5). Suppose (3) has a unique solution x; then x is the
stationary solution. But this will not be feasible for all ¢ unless x, = x,. The
optimal solution to (1) to (2) is to move from x, to x, as quickly as possible
and then remain at x,. This is called a most rapid approach path (MRAP).

The claim can be made plausible as follows. (A more rigorous proof is in the
appendix to this section,) Define S(x) = [;;N(y) dy. Then S'(x) = N(x), so
(1} is equivalent to

/me'”[M(x) + §(x)x] dr. (4)
4]
Integration by parts (with u = ™" and dv = §'(x)x’ dr) gives
/Ome‘”[M(x) + 18(x)] at, (5)
which depends on x but not x’. (We assume lim __e "'S(x(f)) = 0.) The

proflem has been written in such a way that the reward or payoff depends only
on the state variable; one wants to get to a desirable state as soon as possible
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Figure 16.1

and stay there. There is the unique value of x that maximizes M(x) + rS(x)
and therefore satisfies M'(x) + r§(x) = M'(x) + rN(x) = 0. This is x;
see (3).

Recall that x, satisfies (3) and suppose

M(x)+rN(x)>0 for x<ux; (6)
M(x)+rN(x) <0 for x>x,.

Then the result can be stated as follows. If x, < x,, then the optimal path
involves the fastest possible rate of increase, x’ = B(x), until x is reached.
Similarly, if x, > x,, then the optimal path involves the fastest possible rate of
decrease with x’' = A(x), until x, is reached. Then x, is maintained
thereafter. If the inequalities of (6) are reversed, the MRAP is minimizing.

If (3) has more than one solution, then the optimal solution will be a MRAP
to some local maximum of M(x) + rS(x). To determine which local maxi-
mum is to be approached, it is necessary to evaluate (1) along the MRAP from
X, to each local maximum x,. Consider Figure 16.1. Starting at x,,, it clearly
pays to move away from x;, though it is not readily apparent which direction
is best. There are two local maxima, x, and x,. Certainly movement to the
left as far as x, would be superior to staying at x, since it involves an
improved path with M(x) + rS(x) > M{xy) + rS(x,) at all times. Thus we
might move from x; to x, as quickly as possible and then remain there.

Alternatively, it might be preferable to move to x; as quickly as possible
and then remain there. The desirability of this alternative has to be closely
evaluated, since to attain the higher peak at x,, it is necessary to take a
short-term decrease in payoff while passing from x, to x, before enjoying

values of M + rS in excess of that available at x,. If there is more than one 4

stationary state, as in this example, the one to approach may depend on the
initiat state.

Example 1. Let R(x) be the maximum revenue a firm can earmn with
“goodwill” of x. Assume R(0) > 0 and R” < 0. Goodwill increases with
advertising I and decays at constant proportional rate b: x'(1) = I(1) — bx(¢).
The firm is to choose advertising spending [(f} to maximize the present value

Section 16. Most Rapid Approach Paths 9

of the stream of profits, R(x) — I

/:e‘”[R(x) —x' - bx| ar (7)
subjectto x(0) = x4 > 0, g;

-bx=x' =1- bx.

The lower bound on X’ is achieved when spending on advertising is zero. The
upper bound reflects a maximum (possibly infinite) permissible spending rate
I
Equation (3) defining x,; becomes

Rix,)=r+b. (10}
Since R* <« (1, (10) has at most one solution (we assume it has one) and (6) is
satisfied. Therefore, the solution to (7)-(9) is a MRAP to x;. Specifically, if
Xo < X;, then x' + bx = I (so x(¢t) = I/b + (x, — I/b)e” %) uniil x(#) =
x,. Once x, is achieved, it is maintained by keeping f(#) = bx,.

Example 2, Modify the investment probiem in Section 5 by making the
terminal time infinite and the terminal value free:

max /me_”[pf(K) - o(K' + bK)] dt

subjectto  K(0) = K,

where f is cutput from capital stock K, f'(0) > 0, f” < 0; p is the constant
price at which output can be sold; ¢ is the constant cost per unit investment;
and b is the rate of capital depreciation. The solution is the MRAP to the
unique capital stock defined by
pf(K,) = (r+b)c.

If X’ is unconstrained and K, = K, K, can be achieved immediately by a
jump in K. If the growth in the firm must be self-financed so that X’ <
PI(K)/c — bK, then the MRAP involves setting K~ as large as possible until
K, is attained and choosing K’ to maintain K, thereafter. On the other hand,
if K < K, the solution is to make no investment, X'+ K = 0, until X
falls to K. Then K, is maintained by investing at the constant rate bK, to
offset depreciation,

APPENDIX TO SECTION 16
The optimality of a MRAP can be proven by writing (1) as a line imegral:

) ] e " [M(x) + N(x)x] dr = fe‘”Mdr + e 'Ndx,
o ¢

where C is the curve x = x(¢t), { < r (see Section AT).
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Let x(f) be the path that reaches x, as rapidly as possible and let y(f) be some
other feasible path (it reaches x, more siowly). Let ¢, be the time y gets to x_. Then
x and y coincide for t > t,. We must show that x gives a higher value to the integral
from 0 1o ¢, than y does (see Figure 16.2):

/ﬂ"’e—n[M(x) + N(x)x] dr - /G’Pe-ff[M(y) +N()y] >0, (11)

Each of these integrals can be written as a corresponding line integral, so the left side of
(11) equals

] e ""Mdt + e "'Ndx — f e "'"Mdr + e "'Ndx,

mnp mgp

where the line integrals are evaluated along the optimal path of x and the comparison
path mgp of y. Reversing the orientation of the optimal path, we write equivalently

—f e "Mdt+ e ""Ndx — / e~ ""Mdit + e ""Ndx

pam map

= - f e "'Mdt + e " Ndx. (12)
pnmap

This is & line integral around a single closed curve, oriented so the enclosed region is on
the left as one proceeds along the curve. Apply Green's theorem to write (12) as the
double integral (see Section AT)

f/ e [ M'(x) + rN(x)] dxdt, (13}

where the double integral is to be evaluated over the region bounded by the curve
mgpnm. Throughout the region x < x, the integrand in (13) by hypothesis (6) is
positive throughout the region and hence the integral (13) is positive. Consequently
(12), and thereby the left side of (11), is positive, completing the demonstration.

If the inequalities in (6) were reversed, then the sign of (13) would be negative and
the MRAP x(#) would be minimizing.

3

Section 16. Most Rapid Approach Paths 101

EXERCISE

The population of a fish species in a lake at time ¢ is x(t). The natural growth
rate of the population is g{x), where g(x) is a concave function with g(0) = g(x )
=0 and g(x) > 0 for 0 < x < x . The fish are caught for sale at rate h{t). Hence,
the rate of change of the fish population is

x(t) = g(x(¢)) - A{t).
Let p be the price at which fish are sold and c¢(x) be the cost of catching a fish when

the population is X; ¢{x) is a nonincreasing function. Why?

a. Show that the present value of profits derived from fishing can be written
[ erle - c(x()][elx(r)) - ¥(1)] ar.
0

b. Find and characterize the fish population that maximizes the value of profits from
fishing, found in @. (What are the bounds on x’(¢)?)

FURTHER READING

See Spence and Starvett for a discussion of MRAP and Colin Clark (1976) and Sethi
{1977b) for complementary discussions in terms of Green's theorem. Example 1 is due
to Nerlove and Arrow. The exercise is due to Colin Clark, who has extensively studied
the dynamics of fishing and fish populations. Also see V. L. Smith (1977). A
differential game approach to the fish harvesting problem is presented in Example 3 of
Section I1.23.



Section 17

Diagrammatic Analysis

Consider the problem

miin ‘/:e_”[f(x’(r))+g(x(t))] dar (1)
subjectto  x(0) = xy, x(T) = x, (2)

where f” > 0 and g” > 0. The functions f and g are twice continuously
differentiable and strictly convex, but not further specified. The Fuler equation
implies

X" = [of (%) + g(x)] /£7(x). (3)

The Legendre condition is always satisfied. Indeed the integrand of (1) is
convex in x, X', $o a solution to (2) and (3) will be minimizing.

Equation (3) cannot be solved without further specification of f and g.
Since the signs of f' and g’ have not been restricted, the sign of x” is not
obvious. Yet the solution can be characterized qualitatively by diagrammatic
analysis. This is done by deducing how a path x(7) that satisfies (3) can
proceed through time. And this, in turn, is done by constructing a phase
diagram in the x-x’ plane.

Note that ¢ is not an argument of (3); it is an autonomous differential
equation. To ascertain directions of movement in the x-x* plane consistent with
a solutien to (3), note that whenever x’ > 0, x increases through time.
Therefore, from any point x, x’ above the x’ = ( axis, the x coordinate of a
solution to (3) must be increasing. Similarly, from any point below the x* = 0
line, the x coordinate of a solution to (3) must decrease. Thus, the x' = 0 line
divides the plane into two regions, one in which x is increasing and the other
in which x is decreasing (see Figure 17.1).
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Figure 17,1

Next, we consider the locus of points x, x’ such that x* = 0. From (3),
such points satisfy

(¥ +g'(x) =0 (4)
The slope of the curve implicitly described by (4) is
dx’fdx = —g"(x)/rf"(x) <0 along x" =0. (5)

Along the x” = 0 locus, a small increase in the x coordinate must be
accompanied by a small decrease in the x’ coordinate in order to stay on the
locus.

The x” = 0 locus, (4), divides the x-x’ plane into two regions. In one, the
right side of (3) is positive so x” > 0, and therefore x’is increasing. In the
other, the right side of (3) is negative, so x” < 0 and x’ is decreasing. To
determine the direction of movement to the right of the x” = 0 locus, let
(x,, x,) satisfy (4) (i.e., be on the locus), so (x, + k, x7) is to the right of it
for & > 0. Since g” > 0, g’ is an increasing function and therefore rf(x’) +
glx, +k)y>rf(x)+ g'(x,) =0

From (3), this means that x” > 0 and thus x’ is increasing at (x,+ Kk, x}).
Similarly, from any point to the left of the x” = 0 locus, we have x* < 0 and
the x’ coordinate decreasing. The x’ = 0 and x” = 0 loci each divide the
X-x’ plane into two regions, giving four regions altogether. The directions of
movement through time in the plane consistent with the analysis thus far are
indicated in Figure 17.1. Both x and x’ depend on ¢, but the argument has
been suppressed. Typical paths consistent with the directional arrows are also
illustrated. Thus, a point on a path indicates values of x, x’ that might be
realized at a moment 7. The values x, x’ advance along the path in the
direction indicated as time elapses. Since the solution to the differential
eq‘nion with given boundary conditions is unique, each point in the plane lies
on exactly one path. Note that each path is horizontal (x* stationary) as it
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crosses the x” = 0 locus and is vertical ( x stationary) as it crosses the x* = 0
locus.

We have found diagrammatically the class of solutions to the Euler equations
(3). It is clear from Figure 17.1 that the solution must be either monotonic,
single-peaked, or single-troughed in x(¢): x'(¢) changes sign at most once.

From all the solutions to (3), we select the one that satisfies boundary
conditions (2); this will be the path that begins on the vertical line x = x; and
terminates on the vertical line x = x, with an elapsed time of T to make the
trip. Each of the three paths illustrated in Figure 17.2 is the solution for some
T.

If x; in (2) is not specified, so that x(7T) may be selected freely, then the
transversality condition is

r(x(T)) =o0. (6)

Since f” is strictly monotone, there is at most one value of x’ that satisfies (6).
The Euler equation (3} must be satisfied, as must the initial condition x(0) =
X,. In this case, we select from among all the paths satisfying (3) the path that
begins on the vertical line x = x;, and goes to the horizontal line implicidy
specified by (6) in a total elapsed time of T (see Figure 17.3).

Finally, meodify problem (1) and (2} by assuming that 7 — o and
lim,_ . x(f) is free. In this case, the transversality condition is typically
replaced by the requirement that x approach a steady state or stationary
solution. A stationary solution x, for which x’ = 0 and x” = 0, lies at the

intersection of the two curves that divide the plane. It is given implicitly, from ]

(3) by
rf(0) + g'(x,) = 0. (7)
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x" such that
[ flh=0
x'=0
\’ X
l x'=0

X =Xxp
Figure 17.3
xt
T
=0
X
x'=0
X x"=0
X =xg
Figure 17.4

Therefore the solution path is the one beginning on the vertical line x = x,
and tending toward x = x, as 7 increases without bound (Figure 17.4).

The following example is a standard application of calculus of variations to
economics and further illustrates the techniques of diagrammatic analysis.

Example. The Neoclassical Growth Model.

In a constant population of L identical workers, per capita consumption is
¢(#). Each worker derives utility U(¢) from consumption, where U > 0 and
U” < 0. We suppose that marginal utility increases without bound as con-
sumption shrinks to zero: lim,_,U"(c) = oo. (For example, U(c) = ¢'? has
this property.) A central planner is 1o select a consumption plan to maximize
aggregate discounted utility

max /0 "o LU(c(1)) dt ()

Faﬂng into account the production possibilities of the economy. A single output
Is produced using capital X and labor I in a production function F(X, L)
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that is homogeneous of degree 1. (See A1.11) — (Al.14).) We assume that
both productive factors are essential (F(0, L) = F(K,() = 0) and that their
marginal products Fj, F, are positive and decreasing.

The single produced good can be consumed or saved to increase the stock of
capital. Capital can be consumed. Thus

F(K,L)=Lc+ K, K(0)=K,. (9)

According to (9), total output can be allocated to consumption, Lc, or to
augmenting the stock of capital, K’. The problem is to choose ¢ to maximize
(8), subject to (9). One can use (9) to eliminate ¢ and then find the optimal
function K(r), recalling that L is a constant.

A change of variable is especially useful when L is growing exponentially.
We make it now, in anticipation of later use. Define

k=K/L,  f(k)=F(K/L,1). (10)

Thus capital per capita and output per capita are k and f(k), respectively.
Using definitions (10) and the assumption that F is homogeneous of degree 1,
we have

F(K,L) = Lf(k) (11)
where f(0) = 0, f(k) > 0, f“(k) < 0.! It is convenient to assume that, as
the use of a factor shrinks toward zero, its marginal product increases without

bound: f'(0) = . Dividing (9) by L, using (10) and (11), and rearranging
gives

Use (12} in (8) to eliminate ¢, yielding
max, L / e~ U(F(K) - k) dt
0

(13)
subjectto  k(0) = k,, k=0, f(k)-—k =0.

The Euler equation for (13) is
[dU(c)/dr])/U(c) = Ur{c)e /U = = [ f(k) ~ r]. (14)

The assumptions on f* and U/ assure that the nonnegativity restrictions will be
satisfied.

'Differentiate {11 using definitions (10) and the chain rule:
0< Fy=Lf(k)akjaK = Lf(k);L = f(k).
0> Fep = f(kYakjak = f-(&k)/L.
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X, %
Figure 17.5

Rule (14) should be compared with (4.13). The proportionate rate of change
of marginal utility equals the difference between the earnings rate on invested
capital and the discount rate. In the present case, the earnings rate on capital is
endogenous; that is, the marginal productivity of capital is not a given
parameter but rather is determined within the model,

The optimal solution satisfies both the basic balance equation (12) and the
Euler equation (14). To develop qualitative properties of the optimal solution,
we constrict a phase diagram in the nonnegative ¢-k plane. From (14) ¢’ = 0
if

(k) =r. (15)

Thus, (15} defines the locus of points in the ¢-k plane for which ¢’ = 0. Since
the left side is monotone decreasing, (15) has a unique solution. Call it . If
k >k, then

Sk)-r<fik)—r=0

since f" <« 0 by assumption. Hence, from (14) (recall — U*/ U’ > 0 always),
it follows that ¢’ < 0 when & > k. Similarly, ¢’ > 0 when & < k,. The
directional arrows in Figure 17.5 reflect these conclusions. From a point in
k-c space to the right (left) of & - the ¢ coordinate must fall (rise).

Next, from (12), k& = 0 whenever

¢ = f(k). (16)
Thus, (16) defines the locus of points for which &’ = 0. The curve described
by (16) passes through the origin and has derivatives
de/dk = f'(k), d*c/dk® = f(k).

In view of our assumptions about f, the curve described by (16) is increasing
and concave (see Figure 17.6). It divides the k-¢ plane into two sections. Let
(k. ¢,) satisfy (16) and consider the point (k. ¢, + m) where m > 0. Thus
(kq‘ ¢, + m) lies above (k. ¢,). Then, from (12},

k' =flk,) —(c,+m)=-m<0,
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k k

Figure 17.6

and so k declines at (k,, ¢, + m). Therefore k is falling at every point above
the &’ = 0 locus. Similarly, from any point below the &’ = 0 locus, &' >0
and so k is rising. The directional arrows in Figure 17.6 reflect these
conclusions. The diagram now indicates the general direction of movement that
(k, ) would take from any location. Note in each case that ¢ is mementarily
stationary along a path as the ¢/ = 0 locus is crossed and that & is stationary
as the &’ = 0 locus is crossed.

Is there a steady-state level of per capita consumption and capital that is
sustainable forever? If so, is there a path tending toward this point? The
answer to both questions is “‘yes.”’ A steady-state is one in which ¢ = 0 and
also X’ =0, namely, (k,,c,) where ¢, = f(k,). Furthermore, from the
theorem regarding the existence of a solution to a differential equation, there is
at most one path from the line k = &, to the point (£, c,).

Suppose that &k, < k. Then the approach to (£, ¢;) must be from below,
with ¢ and & both rising monotonically from their initial values to their
stationary values along the unique path 1 in Figure 17.7. If initial consumnption
were chosen too large (such as in path 2), then capital will be accumulated for
a while and iater diminish, eventually becoming depleted and crossing inte
k < 0, an infeasible solution. On the other hand, if initial consumption were
chosen too small, then consumption will rise for a while, peak, and then fall,
as shown in path 3. Such a path cannot be optimal since, after a time, one
could increase consumption, jumping vertically to path 4 leading toward k, ¢

from above. Path 1 is the only optimal plan if &y < k. If k, > &, then the
optimal path to the steady state has both & and ¢ decreasing monotonically §

along path 4. Other paths are consistent with the directional arrows and hence

the two differential equations, but if the horizon is infinite, they can be ruled ]
out as either infeasible or inferior, by arguments similar to those just used. The §
paths 1 and 4 tending to k, c, are the only optimal ones. If X, < &k, path | is }
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Figure 17,7

followed with both ¢ and & increasing monotonically with advancing time. If
ko > kg, path 4 is followed with & and ¢ each decreasing over time.

The behavior of the system (12) and (14) can be approximated in the
neighborhood of the steady state (k,, c,} by a related system of linear
differential equations. Expand the right sides of (12) and (14) in a Taylor series
around (K, ¢,), retaining only the linear terms. For example,

J(k) == [f(k)) = e]] + (k) (k- k) = (e = ¢,) + h.o.t.

In view of (15), the square-bracketed term on the right is zero. Thus,
approximately,

k' :f’(ks)(k - ks) - ((‘ - Cs) (1?)
and, similariy,
¢ = =f (k) (k- kU (e)/U(e,). (18)

The homogeneous system corresponding to (17) and (18) has the characteristic
equation (See Section B3.)

m* = mf(k} = f(k)U(c,)/U(c;) = 0 (19)

with roots

mymy = { £k £ [ £k + 4f"(ks)v'(cs)/v”(cs)]""'2}/2‘ (20)

These roots are real and of opposite signs. Let m, > 0 > m,. The general
fomj of the solution to (17) and (18) is

k(1) =A™ + Be™ +k,, c(t) =A,e™ + Bye™ +¢,. (21)
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Since the solution is to converge to the steady state (i.e.,

lim, ,c(?)=c¢,), A, = A, =0. Use £(0) =
k). Note that

(1) = myfe(t) - ¢
Thus the rate of convergence of the linearized system is proportional to the
deviation between the current posmon a.nd r.he steady state posmon

— k,and B, = [f'(k,) — my](k, -
k(t) = my[ k(1) - k],

R

steady stare. What is that steady State T = ¥ 3

3} in the neighborhood of the stationary state by a linear
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ition fo the optimal growth problem above under the
at the population (or labor force) is growing at a constant
pis L(¢)/ L(t) = n, so that L(7) = L{O)e™. Assume also
yreciates at a constant proportionate rate &, [Hint: In this

K' =F(K,L) - Lc - bK,

dt = K'/L - KL'/I* = f(k) —c - bk — kn.]
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ns. See, for example, Arrow and Kurz (1970), Shell,
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lim, .k, =k, §
ko and (17) to find B, = &k, | 1.
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- optimal growth means that the present generation should not discount the utility
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EXERCISES

5
a. Verify that the solution #4(1) in the case where

J(x) = bx' + ex'2,

g(x) =x*+ax

111

is consistent with the general behavior determined by diagrammatic analysis.

A quesuon KEJ 1N CONnecnon wiin g sieady-sTare aniyss U me neoclas-
sical growth modei 1s: What is the highest steaay-state level of per capita
consumption, c¢,. The answer is provided by observing that in the steady-state
¢, = f(k,), and therefore de, /dk, = f* > 0, by the assumption that f* > 0.
That is, steady-state per capita assumption increases as the steady-state optimal
stock, k,, increases. But from (15) f(k) = r, and therefore from the total
differential of (15) and the assumption that f* < 0, it follows that dk /dr =
1/f"(k,) < 0. Thus, the steady-state capital stock and therefore the steady-state
level of consumption , ¢, increase as the discount rate 7 declines. The highest
level of steady-state per capita consumption occurs if r = 0. The path of
capital accumulation that leads to this highest steady-state level of per capita
consumption is known as the golden rule of capital accumulation. The golden
rule, ‘Do unto others as you would have them do unto you,”” in the context of

e ik ;|'

of consumption of future generations (you would not like them to do that if you
were the future generation). If the present peneration discounts future genera-
tions utility, then it consumes more today and leaves a lower capital stock for
the future that uitimately leads to lower steady-state per capita consumption.
However, if the discount rate r = 0, the integral in (8) does not converge, and
the subsequent analysis does not apply. This difficulty can be avoided by
replacing the integrand in (8) by w(c(¢)) — 4(C), where T is the level of per
capita consumption in which the individual is completely satisfied, i.e., above
this level the marginal utility of consumption declines and minimizing the
integral. ¢ is sometimes referred to as the bliss point. Ramsey used this
formulation in his original analysis of the optimal growth problem.

If the problem had a finite terminal time T, then the transversality condition
would be

—e"TU(e(T)) =0
which implies ¢{(T) = o. This is clearly infeasible. The nonnegativity con-
straint on K(T) has been ignored. The best that can be done a1t T is to
consume all the capital that remains. Hence, the boundary condition must be

K(T) = 0. -

The phase diagram already drawn is appropriate. The optimal path will be the
one beginning on the line & = X, and terminating on the line kK = 0 at T. E

Analysis of the relationship between the optimal finite horizon and infinite
horizon capital accumulation paths are the subject matter of turnpike theorems. }

if K(T) is free,

b. Repeat part a, in the case where x(T) may be chosen freely.
c. Repeat part a, in the case where 7 — o and llm,_,,,x(r) is not constrained but

assumed to tend 10 3

2. Approximate Equation
differential equation. D
state. {Partial solution
f' (@ + g(x) = 0.)

3. Sketch the optimal so
alternative supposition t
proportionate vate #; th
that the capital stock de
case

and therefore

k' =d(K/L),

FURTHER READIN

There is very extensive liter
generalizations and extensi
Intriligator, and Takayama.
and Samuelson (1965) and T

See Appendix B, Sectio
approximations to them in tt



Section 18

Several Functions and Double Integrals

The procedures developed thus far can be extended to problems involving
determination of more than one function. Suppose that in the class of differen-

tiable functions x*(#) and y*(f) optimize

[ F (0, 500, % (0), 7(0) ae

: |

subject to x(ty) = xq, ¥(t5) =¥,

with the terminal time and terminal values of the functions not necessarily
fixed. Let x(1), ¥(£), 8, = ¢ < ¢, + 8¢,, be admissible comparison functions §
close to x*, y*, respectively, in the sense of (9.3). Extend the functions so the §

candidate and comparison functions all have the same domain. Define

h(t) = x(t) —x*(1), k(1) = »(1) - y*(2),
s t<max(¢, ¢t +8¢).

Since xo and y, are fixed, h(¢,) = k(fy) = 0. With x*, y* k, k all held |
fixed, the value of the objective (1) when evaluated at x* + ah, y* + ak §

depends solely on the parameter a. Write

t,+adi 3
gla) = / F(t,x* + ah, y* + ak, x* + ak', y* + ak’) dt. (3)}
i —_ k:

0

Since g(a) assumes its extremum at ¢ = 0,

f :
g'(0) = [ (Feh+ FoR' + F ok + Fok)di + F|, 86, =0  {(4)
' g

o

o]
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with the integral evaluated along (¢, x*(2), x™(1), y*(), y*(1)). Integrating
the terms in A', X’ by parts and recalling that h(ty) = k(1) = 0, one can
rewrite (4)

/{"[(;; ~ dF, [dt)h + (F, - dF, /di)k] di
+(Feh)],, + (F k)|, + F|, 5t = 0. (5)

We have approximately, according to (9.9},

k(1) = 8x; — x™(1))81,

k(1,) = 8y, = y*(1,) 81,, (6)
where

bx, = x(1 + 81)) — x*(1,),

8y, = (1, + 8t} — y*(1).
Substitute into (5) to get the expression sought,

/“{(Fx ~ dF,, /dt)k + (F, — dF,, /dt}k] dt

L1}
+(F—x™F, y¥F,)| WO+ Fo ], 8x, + Fl, 8y, =0. (7)

Now (7) holds for any admissible choice of functions # and . In particular, it
holds for A arbitrary but with A(1y) = h(#,) = 8x, = 8¢, = O and with k = 0
on f, < t = ¢,. It then follows from (7) that x*, y* satisfy

4
/ (F,— dF, /diYhdi = 0,

f
and therefore
F, - dF, /dt = 0. (8)
Similarly, x* and p* must satisfy
F, - dF, /dt = 0. (9)

mis system of two interdependent Euler equations (8) and (9) must be satisfied
Simultaneously by x* and y*. The solution of this pair of second order
differential equations contains four arbitrary constants of integration to be
determined from the boundary and transversality conditions.

If terminal time is freely chosen, then it follows from (7)-(9) that

A
(F-XF,~y'F)|, =0 if 1 isfree, (10)
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If the terminal vatues of x and y are free, then we must have

F.l,=0 if x(#,) is free
. : (11)
F,|, =0 if p(¢,)is free
Suppose, instead that x(¢,), y(¢;) must lie on a curve
Q(x,y)=0. (12)
Then, since
O.8x,+Q,6y, =0
for admissible changes in terminal values, we must have _
F,/F,=0Q,/Q, a 1 if (12)isrequired. (13) §

Finally, the terminal position may be required to satisfy a relation of the
form

ot, x, y) =0, (14)
Then modification of the endpoint must obey, to a linear approximation, _
0,61, +0,8x,+Q,8y,=0. (15)

Suppose 4y, = 0, then 6¢,, 6x, must obey
Q.81+ Q. 6x, =0,
which, combined with (7), implies
FoFx+Q/0)~Fy =0 a . (16) 4

Similarly, setting 6x, = 0 and allowing &y,, 8¢, to vary according to (15)
leads to

F-F.x-F(y+0,/0,)=0 a I{,. (17)

Therefore, if the terminal point must obey (14), the transversality conditions §
are (16} and (17). 1

Second order conditions for problems involving n unknown functions are }
analogous to those in Section 6 with one unknown function. In particular, 8
second order necessary condition for functions x*, y* to maximize (1) is }
the Legendre condition that F be concave in X', ' along x*, y*. If !
F(z, x, ¥, x’, ¥? is jointly concave in its last four arguments, then functions” 3
x*, y* satisfying the Euler equations and relevant boundary conditions will §
maximize {1). Straightforward extensions obtain for minimization and for the
case that 7 unknown functions are to be found. ;

Isoperimetric constraints may be appended, each with its own constant 4
multiplier, as in Section 7. A finite constraint, such as i

g, x(1), y(1)) =0, (13)'_;.
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is appended to the integrand with a multiplier function Nt). If x*(#), y*(¢)
optimize (1) subject to (18), and if g, and g , are not both zero anywhere,
then there is a function X(¢) such that x*(¢), y*(¢) satisfy the Euler equations
for

h
f (F+\g) dr. (19)

fy

Similarly, a differential constraint
g(t, x(1), y(1)., x(1)y(1)) = 0 (20)

may be appended to the integrand with a multiplier function; if x*, p*
optimize (1) subject to (20) and if g, and &, are not both zero anywhere,
then there is a function N(f) such that x*(¢), y*(¢) satisfy the Euler equations
for (19), where g is as defined in (20},

Example.
Find the extremal for

x,2
] (x2+y?+2xy)dr  subjectto x(0) =0, x(x/2) =1,
O

»0) =0, y(x/2)= ~1.

SOLUTION, Since F,. =2y, F,. = 2x’, F,=2x, and F, =2y, the system
of Euler equations is

y=x", x =y".
Differentiating the first equation twice and combining it with the second yields
x®(t} = x(1),
which has characteristic equation r* = 1 with roots » = +1, + /. Therefore,
x(t) =" + 67" + ;008 £ + Cysin
y(1) =x"(t) = c,e" + c,e” " — cyc08 t — cysin t.
The boundary conditions give
O=0,=¢=0, ¢ =1,
and so the extremal sought is
x(t) =sinz,  y(t)} =sinz.
An Euler equation can be derived for a double integral,

4 / ]F(t,s, x(t.s), x,(1,5), x(t,5)) drds. {21)
A
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where t and s are the independent variables of which x is a continuous
function with continuous partial derivatives x,, x, with respect to f and s,
respectively. A represents the area of the fixed region in the ¢-s plane,
bounded by a simply connected closed curve C (i.e., one which does not cross
itself and has no holes in its interior) over which the integration is performed.
Corresponding to the boundary conditions x(#,) = Xx,, x(f,) = x,, in the case
of a single integral is the condition that x(¢, s) taken on specified values for all
£, s along the curve C.
Suppose that x*(¢, 5) optimizes (21) and let

x(t,s) =x*(r,s) + ah(2,s) (22)

be a comparison path that satisfies the same boundary conditions as x*, so that
h(t,s) = 0forall ¢, s along €, and is continuous as are its partial derivatives.
As before, let

gla) = / /F(r, s, x* + ah, x{ + ah,, x¥ + ah,) dtds. (23)
A
Thus,

g'(0) = / f (Fuh + F h, + F h,) dids = 0. (24)
A

At this stage of the derivation of the Euler equation in the case of a single
integral the term involving A’(¢) would be integrated by parts. The counterpart
trick here is to appeal to Green’s theorem (see Section A7).

/P(!,s) dt + Q(1, s) ds = / / (0, - P)dids (25

by letting P = — A(t, S)F, . Q = A1, 5)F, , where Q, and P refer to partial
derivatives with respect to ¢ and s of P and Q, respectively. So, then

/h(t,s)[—Fxs dt + F, ds|
=/f(a(hFx;)/ar+6(hFx!)/as] dt ds (26)

= / f (h,F, + hOF, /8t + hF, + hdF, /ds| drds = 0.
A
(27)

The reason (27) equals zero is that A(r, s), which appears in the integral on thc
left side of (26) must be zero for all 7, s along the curve ¢. Thus, from (27) it
follows that

/f (hF, + h,F,) dtds = _ff (haF, /ot + haF, /ds)dids. (28) §
A A ;
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Now, substituting from (28) into (24) yields
/f (F, - oF, /ot - 3F,_ [as)hdtds = 0, (29)
A

from which it follows that the Euler equation is
F, —8F, /3t - 0F, [35=0. (30}
This derivation of the Euler equation can be extended to multiple integrals.

Example, Find the Euler equation for

min// (x? + x2} drds,
4

F,=0,F =2x, F_=2x,. Thus, the Euler equation is
X+ x5 =0.

This partial differential equation is referred to as Laplace’s equation and arises
in many physics problems.

EXERCISES

1. Show that the necessary conditions for continuously differentiable fumctions
x (1), ..., x,(¢) to maximize

f”F(:, (85 s xn(1), (1) (1) dt

fg

subjectto  x,(t;) =a;, x;(t) =8, i=1,...n,

are that these » functions satisfy the endpoint conditions and the simultanecus
system of Euler equations

F =dF jdt, i=1,...,n

2. Show that if F(t, x, y, X'y is a concave function of (x, v, ',y and if the

functions x*(¢). y*(0) satisfy the boundary conditions in (1) and the Euler
equations (8} and (9), then the functions x*, y* maximize ().

3. State the Legendre necessary condition for the problem posed in Exercise 1.

4. Find extremals for the fixed endpoint problems

a, f 1[2xy —2x - (xVY + (Y,

fa

b f '[2xy - 2xP 4+ (X - () dr,
) o

f "s 2
C. (X~ +x"yv' + yyds.

fo
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5. Show that the Euler equation obeyed by an optimal solution to

max ff‘IF(:, x(2), x(t}), x"(¢)) dt

subjectto  x(#) =xp, x(£) =x;, ¢# fixed
is
F,— dF, /dt + d°F,. [df* = 0.
[Hint: Find

f
2'(0) = f Eh+F. o +F h)dt=0
1

0

for any admissible function k. Integrate the middle term by parts as usual,
Integrate the last term by parts twice.)

FURTHER READING

Section B4 regards solution of nth order linear differential equations.

If the objective function is quadratic, the differential equations arising from optimiza-
tion have a known solution, See Connors and Teichroew for applications to manage-
ment science. Other functional forms often lead fo systems of differential equations that
are difficult to solve. If the functional forms are not fully specified, as frequently
happens in economics, then the analysis uses phase diagrams (recall Section 17). But
for a problem with two functions to be analyzed, a four-dimensional diagram would be
required, an impractical sitbation. Thus analysts frequently content themselves with a
formal statement and interpretation of the necessary conditions. See Treadway for an
exceptional example of exploiting the information in the necessary conditions. Finally,
see Example 116.2; while it is more readily solved in the optimal control format, the
caleulus of variations is also applicable. H. T. Davis is & good source for further study
of double integral problems.

PART 11

OPTIMAL CONTROL




Section 1

Introduction

The classical calculus of variations has been generalized. The maximum
principle for optimal control, developed in the late 1950s by L. §. Pontryagin
and his co-workers, applies to all calculus of variations problems. In such
problems, optimal control gives equivalent results, as one would expect. The
two approaches differ, however, and the optimal control approach sometimes
affords insights into a problem that might be less readily apparent through the
calculus of variations.

Optimal control also applies to problems for which the calculus of variations
is not convenient, such as those involving constraints on the derivatives of
functions sought. For instance, one can solve problems in which net investment
or production rates are required to be nonnegative. While proof of the
maximum principle under full generality is beyond our scope, the now-familiar
methods are used to generate some of the results of interest and to lend
Plausibility to others.

In optimal control problems, variables are divided into two classes, state
variables and control variables. The movement of state variables is governed
by first order differential equations. The simplest control problem is one of
selecting a piecewise continuous control function (1), Lh=1=<t,t0

max /“f(:, x(t), (1)) dt (1)
subjectto  x'(r) = g(r, x(2), u(1)), {2)
tor Iy, x(ty) = xy fixed; x({,) free. (3}

Here f and g are assumed to be continuously differentiable functions of three
Indpendent arguments, none of which is a derivative. The contro! variable
u(f) must be a piecewise continuous function of time. The stafe variable x(t)
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changes over time according to the differential equation (2) governing its
movement. The control # influences the objective (1), both directly (through
its own value) and indirectly through its impact on the evolution of the state
variable x (that enters the objective (1)). The highest derivative appearing in
the preblem fermulation is the first derivative, and it appears only as the left
side of the state equation (2). (Equation (2) is sometimes also called the
transition equation,) A problem involving higher derivatives can be trans-
formed into one in which the highest derivative is the first, as will be shown
later,

The prototypical calculus of variations problem of choosing a continnousty
differentiable function x(¢), {p=¢t=1{,, to

max ['f(t, x{t), x'(t)) ar

subjectto  x(£y) = x,

(4)

is readily transformed into an equivalent problem in optimal control. Let
u{t) = x'(¢). Then the equivalent optimal control problem is

max /:'f(t, x(1), u(2)) dt

subject to x'(t) = u(r), x(1) = x,.

(3)

The state variable is x, while # is the control. For instance, our production
planning Example 1.1 appears as

min /OT[cluz(t) + ¢, x(1)] dt
subjectto  x’(¢) = u(z), x(0)=0, x(T}) =8, u(f)=0,

where the production rate #(¢) is the control and the current inventory on hand
x({) is the state variable. In this case, the objective is minimization rather than
maximization, and the terminal point is fixed rather than free. These are
typical variants from the initial format of (1) or (5).

While a calculus of variations problem (4) can always be put into an optimal
control format (5), it is not always the most natural or useful form. For
instance, Example 11.2 can be readily expressed as an optimal control prob-
lem:

(6)

max fre‘”U(C(r)) dt
subject oK' = F(K(#)) — C(1) - bK (1),
K(0) =K,, K(T)=0, C(t)=0.

Here K(t) is the sole state variable; its rate of change is given in the
differential equation. There is one control variable, the rate of consumption

(7)
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C(¢). Choice of C(7) determines the rate of capital accumulation and also the
value of the objective function.

Likewise, Example 11.3 is readily expressed as a problem of optimal
control:

max /OTe'”[P(K(I)) - e(1(1))] @t

subject to K'(t) = I{r) - bK(1), (8)
K(0) =K,, K(T)=0, I(t)=0.

The objective is maximization of the discounted stream of profits, namely,
revenues attainable with capital stock X less the cost of capital investment.
Capital is augmented by gross investment but decays at exponential rate b. The
state variable is the capital stock K'; the control variable is net investment f.

An optimal control problem may have several state variables and several
control variables. Each state variable evolves according to a differential
equation. The number of control variables may be greater or smaller than the
number of state variables,

The optimal control results are developed in the next sections for problems
already solved by calculus of variations. This will develop familiarity with the

new notations and tools. New problem will then be solved and their use
illustrated.

FURTHER READING

References on the techniques of optimal control theory include Pontryagin et al. (1962),
Berkovitz (1974, 1976), Bryson and Ho, Fleming and Rishel, Hestenes, and Lee and
Markus. In addition, there are a number of books that provide an introduction to the
theory as well as discussion of applications in economics and management science;
these include books by Hadley and Kemp, Intriligator (1971); Takayama, Sethi and
Thompson; Feichtinger and Hartl; and Seierstad and Sydsaeter. For further surveys of
applications in management science, see Bensoussan, Hurst, and Naslund; Bensoussan,
Kleindorfer and Tapiero; and Sethi (1978). The references at the back of this book
Provide an overview of other applications to economics and management science; the
list is merely sugpestive of the range of work that has appeared.




Section 2

Simplest Problem —Necessary Conditions

The simplest problem in calculus of variations had the values of the state

variable at both endpoints fixed. But the simplest problem in optimal control
involves a free value of the state variable at the terminal point. To find 3
necessary conditions that a maximizing solution u*(¢), x*(¢), f, <7< t, to
problem (1.1)-(1.3) must obey, we follow a procedure reminiscent of solving %
a nonlinear programming problem with Lagrange multipliers (see Section AS). 3§
Since the constraining relation (1.2) must hold at each ¢ over the entire interval
t, =t =< t,, we have a multiplier function M), rather than a single Lagrange 3§
multiplier value as would be associated with a single constraint. For now, let 3§

AN ¢) be any continuously differentiable function ¢ on ry, < ¢ < t|; shortly, a
convenient specification for its behavior will be made.

For any functions x, u satisfying (1.2) and (1.3) and any continuously '

differentiable function A, all defined on 7, < f < ¢, we have

[t 0 ) de= [ 20, u(0)

a

assume. Integrate the last term on the right of (1) by parts

= ["Mn ) dr = =X x(0) ) ¥ + [ KON e @) __f

] y

Substituting from (2) into (1) gives

/f(: x( dr_/ [ (e, x(2),u(2)) + M) g(e, x(1), u(t))

+x(OX(0)] dr = Nt,)x(1)) + N1g) x(40). (3) §

+Mo)g (1, x(1), u(r)) - Neyx ()] dt (1)

since the coefficients of Mi#) must sum to zero if (1.2) is satisfied, as we

Section 2. Simplest Problem—Necessary Conditions 125

A control function u(?), ¢y, < t < ¢,, together with the initial condition (1.3)
and the differential equation (1.2) determine the path of the corresponding state
variable x*(1), 1, < t < ¢,. Thus we may speak of finding the control func-
tion, since a corresponding state function is implied. Since selection of the
control function u(f) determines the state variable x(#), it determines the
value of (3) as well.

To develop the necessary conditions for solution of the calculus of variations
problem (1.4), we constructed a one-parameter family of comparison curves
x*(8) + ah(t), x*(t) + ak’(t), where h(f) was arbitrary but fixed. In the
current notation (1.5), x” = i and a modified control function u(?) + ak'(f)
produces, via integration, a modified state function x(¢) + @h(?). However,
for the implicit state equation (1.2), one cannot give an explicit expression for
the modified control. Hence the modified state function will be expressed
implicitly. Since the previous /4, &’ notation is not helpful here, we depart from
the previous usage of A and now let A(f) represent a fixed modification in the
control u(t).

We consider a one-parameter family of comparison controls u*(¢) + ah(1),
where #*(f) is the optimal control, A(¢) is some fixed function, and a is a
parameter. Let y(f, a), #, < { < {,, denote the state variable generated by
{1.2) and (1.3) with control w*(¢) + ah(f), t, =<1 < t,. We assume that
(¢, @) is a smooth function of both its arguments. The second argument enters
parametrically. Clearly ¢ = 0 provides the optimal path x*. Further, all
comparison paths satisfy the initial condition. Hence

¥(1,0) =x*(1), y(to. a) = x,. (4)

With the functions ™, x* and A all held fixed, the value of (1.1) evaluated
along the control function u*(¢) + ah(¢) and the corresponding state v(7, @)
depends on the single parameter a. Thus we write

J(a) = f"f(r,y(r, a), u*(e) + ah(1)) dt
Using (3),

5@y = ["1A(0 300, 0, (1) + ah(0)

+N1)g(t. y(1, a), u*(1) + ah(1))
+y(t, @)X ()] di = M1)y(1,.0) + N1,)y(t5.0).  (5)

Since u* is a maximizing control, the function J(4g) assumes its maximum at
@ = 0. Hence J{0) = 0. Differentiating with respect to @ and evaluating at
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a = 0 gives, on collecting terms,
L
J(0) = f [ + Mg+ XDy, + (fu + Agu)h] df — N1,)2,(1,.0),

° ©

where f,, g, and f,, g, denote the partial derivatives of the functions f, g
with respect to their second and third arguments, respectively; and y, is the
partial derivative of y with respect to its second argument. Since ¢ = 0, the
functions are evaluated along (¢, x*(¢), #*(#)). The last term of (5) is indepen-
dent of a—that is, y,(#,, a) = O0—since y(1,, a) = x, for all a.

To this point, the function A(¢) was only required to be differentiable. Since
the precise impact of modifying the control variable on the course of the state
variable (i.e., y,) is difficult to determine, M?) is selected to eliminate the
need to do so. Let X obey the linear differential equation.

X(t) = = [folt. x5, 0*) + M) g, (¢, x*, u*)], with A\(1,) = 0. (7)

{Recall that x* and «™ are fixed functions of £.) With X given in (7), (6) holds
provided that

f
/ [£(t, x*. u*) + hgy(t, x*. u¥)| hdt = 0 (8)
ty
for an arbitrary function A(f). In particular, it must hold for A(t) =
Skt x5 u™) + N g (¢, x*, u*), so that

/fl[f.‘(r, X*(1), w* () + N g, (1, x*(0), u¥()]'dt = 0. (9)

This, in turn, implies the necessary condition that
St x* (), 1™ (1)) + N g t, (), u*()) =0, t,=t=1, (10)

To sum up, we have shown that if the functiens w*(#), x*(#) maximize
(1.1), subject to (1.2) and (1.3), then there is a continuously differentiable
function M#) such that &*, x*, A simultaneously satisfy the state equation

x'(r) = g{t, x(r), u(1)), x(t) = xq, (11)
the multiplier equation

N(t) = =[St x(2), a(e)) + M) g, (¢, x(2), u(D))], Nt) =0,
(12}

and the optimality condition

Sult, x(6), u(0)) + M) g, (e, x(2), u(1)) = 0. (13)

k]
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for 1, < { < ¢,. The multiplier equation (12) is also known as the costate,
auxiliary, adjoint, or influence equation.,

The device for remembering, or generating these conditions (similar to
solving a nonlinear programming problem by forming the Lagrangian, differ-
entiating, etc.) is the Hamiltonian

H{t, x(1), u{t), N1)) = f(1, x, u) + rg(s, x, u). (14)

Now
d0H/du =0 generates (13): AH/du=f, + g, =0, (137
—dH/dx =X generates (12): N(t)= -~ 8H/dx = —(f. + \g, );
(12)
dH/3N = x' recovers (11): X' =0H/aN=g. (11%)

In addition, we have x({;) = x5 and M#))=0. Ateach ¢, u is a stationary
point of the Hamiltonian for the given values of x and M. One can find # as a
function of x and A from (13) and substitute into (12) and (11) to get a system
of two differential equations in x and A. These conditions (11)-(13) are also
necessary for a minimization problem. It will be shown in Section 7 that the
Hamiltonion as defined in (14) is just the negative of the Hamiltonion of
expression (14} in Section 1.3,

For a maximization problem, it is also necessary that t#*(¢) maximize
H(t, x*(1), u, N(1)) with respect to %. Thus, H, (1, x*, u*, N = 0 is neces-
sary for maximization. In a minimization problem, #*(f) must minimize
H(t, x*(1), u, (1)) with respect to u, and therefore H, (t, x* u*, N> 0is
necessary. These two results have not yet been proven but they will be
discussed later,

Note that the Hamiltonian as defined in (14) is similar to the Hamiltonian
defined in (1.3.14). Indeed, if we let A = — p, then they differ only by a minus
sign. Moreover, the necessary conditions -~ 3H /3x = X, AH/AN = x' 1e-
semble the canonical form of the Euler equation (I.3.15) and 0K Jou=20
corresponds to the definition of p in (I.3.13). In fact, if g(¢, x, 4) = u so that
X" = u, then the necessary conditions (I.3.11) and (I.3.12) are exactly the
canonical form of the Euler equation and (1.3.13) is the definition of p.

Example 1. Show that the necessary conditions for optimality in (1.5) are
equivalent to the Euler equation

fxzdfx’/dt (IS)
and transversality condition
f_r’ = 0 at It‘1 (16)

that must he obeyed for the equivalemt calculus of variations problem (1.4).
What are the second order necessary conditions?
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Form the Hamiltonian, following (14),
H=f(t, x,u) + .
Then,
AH/du=f,+ =0, (17)
X =-aH/ox=-f,, Mt) =0. (18)

Thus, if x*, u* are optimal, there must be a continuously differentiable
function A such that x*, ™, A simultaneously satisfy x’' = u, x(f,) = x, and
(17)-(18) over the interval f, < ¢ =< /,.

To show that these conditions are equivalent to (15)-(16), differentiate (17)
with respect to time;

df,/dit+X =20
and use the result to eliminate X' from (18):
So=df,/dt,

which is (15}. Also, the boundary condition A{#,} = O is the same as in (16).
Finally, the necessary condition H,, = f, (¢, x*, u*} < 0 corresponds to the
necessary Legendre condition f,...(7, x¥, x*} < 0.

Thus we have no new result. Optimal control yields, as necessary condi-
tions, a system of two first order differential equations instead of the Euler
equation a single second order differential equation. The transversality condi-
tions and second order necessary conditions under each formulation are
likewise equivalent. In each case, the boundary conditions for solution of the
differential equation are split, with one holding at the initial moment and the
other holding at the final moment.

To show that (15) and (16) imply (17) and (18), we need only reverse the
process. That is, define

Ne) = ~fu(t, x(1), X(0). (19)
Differentiate (19) with respect to ¢ and substitute into (15);
_fx = X(f) N (20)

Putting (19) into (16) gives
A(z) = 0. (21)

But (19)-(21) correspond exactly to conditions (17) and (18). Thus the two
approaches yield equivalent necessary conditions for optimality, as claimed.
Since optimal control is equivalent to calculus of variations for all problems
to which the latter applies, one may wonder why it is useful to learn about
optimal control. One response is that it applies to a wider class of problems, te
be studied later. Another answer is that optimal control may be more conven-
ient for certain problems and may also suggest economic interpretations that
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are less readily apparent in solving by the calculus of variations. Each of these
points will be illustrated; see Example 2 and 3 below.

Example 2.

1
max / (x +u) dt (22)
1}
subjectto  x" =1 —u?, x(0) = 1. (23)
Form the Hamiltonian
H(t, x,u,\) =x+u+Nl-u?).

Necessary conditions are (23) and

H,=1-2\u=0, H,,=-2x=0, (24)
N=-H =-1, A1) = 0. (25)
Integrate (25) and use the boundary condition to find
A=1-1¢ (26)
Then H,, = —2(1 — £) = 0 for 0 < ¢ < 1. Also, from (24),
u=1/2n=1/2(1 —1). (27

Substituting (27) into (23) gives

X =1-1/401-0°%  x(0) = 1.

Integrating, using the boundary condition, and drawing the results together
yields the solution:

x(2) =1—1/4(1 — ) + 5/4,
Mt)=1-1¢,
u(t) = 1/2(1 —1).

Example 3. The rate at which a new product can be sold at any time 7 is
S(p()g(Q(f)) where p is the price and Q is the cumulative sales. We
assume f(p) < 0; sales vary inversely with price. Also g(Q) =0 for
Q = Q,. For a given price, current sales grow with past sales in the early
stages as people learn abeut the good from past purchasers. But as cumulative
sales increase, there is a decline in the number of people who have not yet
purchased the good. Eventually the sales rate for any given price falls, as the
market becomes saturated. The unit production cost ¢ may be constant or may
decline with cumulative sales if the firm learns how to produce less expen-
sively with experience: ¢ = ¢(Q), ¢'(Q) < 0. Characterize the price policy
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p(), 0 =t = T, that maximizes profits from this new ‘fad’’ over a fixed
horizon T.
The problem is

max [ o~ (@l7(p)e(Q) a (28)
swbjectto Q' = f(p)2(Q). 00)=Qp>0.  (29)

Price p is the control variable and cumulative sales  is the state variable,
Form the Hamiltonian

H=f(p)g(Q}[p-c(Q) + 1. (30)
The optimal solution must satisfy (29) and
H, = g(Q}{ S (p)[p - c(Q) + N + f(p)} =0, (31)
H,, = g(QH{/(p) p - c(Q) + N +25(p)} =0, (32)
X = —H, = f(p){2(Q)c(Q) - 810} p - (@) + N}, (33)
NT) = 0. (34)

We use these conditions to characterize the solution qualitatively. Since g > 0,
we know from (31) that

A=-f/f-p+e (35)
Differentiating (35) totally with respect to ¢ gives
N = =pl2-1/()] + Q. (36)
Substituting (35) into (32) and (33) gives
gl2-r1/1() <o, (32)
XN =flec+8fif]. (33)
Equate (36) and (33", using (29):
[2-1/(rY) P = &' 12/ 1, (37)

from which we conclude that
sign p’ = sign g’ (38)

since f < 0 and (32) holds. Result (38) tells us that in marketing a good its
optimal price rises while the market expands (Q < Q,) and falls as the market
matures (Q > Q,).
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EXERCISES
1. Use optimal control to find the shortest distance between the point x(@) = A and
the line ¢ = b.

2. Solve by optimal control

min f:[ x2(1) + ax(r) + bu(t) + cu?(1)] dt

subjectto  x(¢) = u(r), x(0) = x, fixed, 7 fixed, x(T)free, c>0.

5
max f (ux— uz—xQ) dt
1

subjectto x" =x+u, x(1)=2.
4. Find necessary conditions for solution of

max /I]f(t, X, u)dt

fy
subjectto X’ =g(t, x,u), o, 1 fixed, x(1y), x(t,) free.

1
min fuz(r)dt

subjectto  x'(7) = x(¢) + u(r), x(0) =1,

6. Show that necessary conditions for the solution of

max /Ilf(r, x,u)dt + ¢(x,)

subjectto  x(7) = g(r, x. ), x(fo) = x4, 1,1, fixed, x(1,) = x, free.

are (11)-(13) except that N¢,) = ¢'(x,). Relate to the corresponding transversal-
ity condition in the calculus of variations for the case g = u.

7. Using the results of exercise 6,

min /1;{2(:) dr + x*(1)

subjectto x'(r) = x(¢}) + u(t), x(0) = 1.
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8. The problem

max jtlf(x, u) di

‘o
subjectto  x' = g(x,u), x(f;) = x, fixed, x(1,) = x, free,
is qutonomous since there is no explicit dependence on f. Show that the

Hamiltonian is a constant function of time along the optimal path. {Hint: Compute
using the chain rule,

dH/dt = H X' + H' + H\X

and substitute from the necessary conditions for the partial derivatives of H.]
Autonomons problems and their advantages are discussed further in Section 8.

9. The Euler equation for the calculus of variations problem
fy
max ] F(x, x'}y dt
fn

subjectto  x(f,) = x, fixed, x(#,) = x, free.

can be written

F - x'F_. = const, sty

Show that this is equivalent to the coadition that the Hamiltonian for the related
control problem is constant.

10. Use the results of Exercise 8 to show that for Example 3,
a, if f{p) = ™7, then the optimal sales rate fg is constant,
b. if f{p) = p~° then revenue ( pfg) is constant in an optimal program.

11. Discuss how the calculus of variations could be used to analyze Examples 2 and 3.

FURTHER READING

See (B4.7)-(B4.9) on the equivalence between a single second order differential
equation and a pair of first order differential equations.

Example 3 was stimulated by Robinson and Lakhani, who also provided numerical
results for a special case with discounting.

Compare the results mentioned here with those above, especially of Section 1.8 and
I.11. Note that while the simplest problem of calculus of variations had a fixed
endpoint, the simplest problem of optimal control has a free end value.

Section 3

Sufficiency

When are the necessary conditions for optimality both necessary and suffi-
cient? In nonlinear programming, the Kuhn-Tucker necessary conditions are
also sufficient provided that a concave (convex) objective function is to be
maximized (minimized) over a closed convex region. In the calculus of
variations, the necessary conditions are also sufficient for optimality if the
integrand F(t, x, x’} is concave (convex) in x, x’. Analogous results obtain
for optimal control problems.

Suppose that f(f, x, #) and g({, x, u) are both differentiable concave
functions of x, u in the problem

max /I'f(t,x.u) dt (1)

oy

subjectto  x' = g(t, x,4), x(t,) = x,. (2)

The argument ¢ of x(#) and u(r) will frequently be suppressed. Suppose that
the functions x*, t*, X satisfy the necessary conditions

St x, u) + Mg (1, x,u) =0, (3)
N = —f(t, x,u) - hg, (1, x, 1), (4
Mt,) =0, 5)

and the constraints (2) for all 7, < ¢ < f,. Suppose further that x and X are
continuous with

Ry

Nt) = 0 (6)

ffll' all { if gz, x, &) is nonlinear in x or u, or both. Then the functions
X7, u” solve the problem given by (1) and (2). Thus if the functions f and g
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are both jointly concave x, & (and if the sign restriction in (6) holds), then the
necessary conditions (2)-(5) are also sufficient for optimality.

The assertion can be verified as follows. Suppose x*, u*, A satisfy (2)~(6).
Let x, u be functions satisfying (2). Let f*, £, and so on denote functions
evaluated along (¢, x*, ¥*) and let f, g, and so on denote functions evaluated
along the feasible path (¢, x, «). Then we must show that

DE/”(f*—f)d;zo. (7)

o
Since f is a concave function of (x, u), we have
Sr=fz(x*=x)ff+ (v - u)f], (8)

and therefore (reasons to follow)

D= /{”[(x*= — X+ (u* - )]
- 1"[(x* — x)(=hg¥ = X) + (u* — u)(-rg?)] at

= /nh[g* —g— (2 - x)el - (v —u)gl] dt

= 0. (9)

as was to be shown. The second line of (9) was obtained by substituting from
(4) for f¥ and from (3) for f.F. The third line of (9) was found by integrating
by parts the terms involving X, recalling (2) and (5). The last line follows
from (6} and the assumed concavity of g in x and u.

If the function g is linear in x, #, then A may assume any sign. The
demonstration follows since the last square bracket in (9) will equal zero.
Further, if f is concave while g is convex and X = 0, then the necessary
conditions will also be sufficient for optimality. The proof proceeds as shown
above, except that in the next to last line A and its coefficients are each
nonpositive, therefore making their product nonnegative.

EXERCISES

1. Show that if f and g are both concave functions of x and u, if (6) holds, and if
x*, u*, & satisfy (2)-(5), then w*(¢) does maximize the Hamiltonian
H(1, x*(0), u, N at each r, t, <t < 1, with respect 1o «,

2. Show that if minimization was required in problem (1) and {(2), and if the functions
S and g are both joimly convex in x, u. then functions x*, u*, N\ satisfving
(2)-(6) will solve the problem. Also show that &*(¢) will minimize the Hamilto-
nian H{¢. x*(1). w, X)) at each ¢.
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3. Investigate whether the solutions obtained in the exercises of Section 2 minimize or
maximize.

4. Suppose ¢(x} is a concave function and that f(f, x, ¥) and g(7, x, W) are

differentiable concave functions of (x, #). State and prove a sufficiency theorem
for

max /nf(t. x, u) dt + ¢(x;)

subjectto  x" =g(t,x,u), x{t5) =x, fto.t, fixed, x(1,) = x, free.

FURTHER READING

Mangasarian provided the basic sufficiency theorem for optimal control. See also
Section 15 and Seierstad and Sydsaeter (1977, 1987) for extensions to more complex
control problems.

Compare the present results with those of Section 1.6,



Section 4

Interpretations

The multiplier A in optimal control problems has an interesting and economi-
cally meaningful interpretation. In nonlinear programming the Lagrange multi-
plier is interpreted as a marginal valuation of the associated constraint. (See
Section AS.) Here N¢) is the marginal valuation of the associated state variable
at 1.

Consider

max ]Ilf(t, X, u)dt

‘o (1)

subject to x(t) =g(t, x,u), x(t) = x,.

Let ¥V(x,, t,) denote the maximum of (1), for a given initial state x, at initial
time £,. Let x*, u* be the state and control functions providing this maximum,
and let A be the corresponding multiplier. Suppose #* is a continuous function
of 1.

We also consider a modification to problem (1) in which the initial state is
X, + @, where a is a number close to zero. The maximum for the modified
problem is V{(x, + a, #5). Let x and w denote the state and control functions
providing this maximum.

Appending the differential equation in (1) with a continuously differentiable
multiplier function A(f) gives

V(xg. ty) = /r'f(r_ x*, u*) dt

o

= /fl[f(t, x* u*) + ag(n, Xt out) - Axdr. (2)
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Integrate the last term by parts (recalling 2.2)):
'rl
V(xorta) = [(£%+Ng* + Xx™) df — M1) x(1) + Nto) x(t,).

(3)

where asterisks label functions evaluated along (¢, x*, «™®). Similarly, one
finds that (using the same X)

Vixg+a,ty) = /r'fa’t

o
4
- / (f+2g +Nx)dt — N1,)x()) + Mto)[ x(25) + a,
o
where x, u are optimal for this problem. Subtracting,

V(Xo,+ @, 1) — V(xq, ) = f'[f(r, x,u) = f(¢t, x*, u*)] dt

f]
=/ (f+Xg+Nx—f*—ng* - Nx"dr
oy

+ Néo)a - Ne)[x() - x*(1)].  (4)

Substitute for the integrand its Taylor series around (¢, x*, u*):
f
V(xo+a,te) = V(xguto) = [[(f7 +rgd+ X)(x - 2"
t

+(fF + regd)(u — u™)] ar
+ Mto)a - )‘(fl)[x(rl) - x*(fl)]
+ h.o.1. (5)

Let A be the multiplier satisfying the necessary conditions for (1). Since
x*, u* N satisfy the necessary conditions (2.11)-(2.13) for optimality,

X = —(fF+reg}),

(5) reduces to

JE+xgk=0, A1) =0,

Vixe+a,15) — V{xg, t) = Mitg)a + h.o.t. {6)
Divide (6) by the parameter ¢ and then let @ approach zero:

lima-o[ V{xg +a,t,) — V(x,, ’0)]/5’ = V.(x5. %)

M) (7)
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provided the limit exists. The first equation of (7) constitutes the definition of
derivative of V' with respect to x. We assume that this derivative exists. Thus
the multiplier N#,) is the marginal valuation in the optimal program of the
state variable at ¢,

The discussion thus far has only considered the initial time. However, M1t)
is the marginal valuation of the associated state variable at time ¢. If there were
an exogenous, tiny increment to the state variable at time ¢ and if the problem
were modified optimally thereafter, the increment in the total value of the
objective would be at the rate Ai{).

To verify this assertion, recall that the objective in (1) is additive. Any
portion of an optimal program is itself optimat.

For instance, suppose we follow the solution x™, #* to (1) for some period
to < t=<t* and then stop and reconsider the optimal path from that time
forward:

max /:'f(t, X, u)dt

subject to x'(t) =g(t, x,u), x(t*) =x*(*).

(8)

A solution to (8) must be x*(¢), 4*(¢), t* =<t < ¢,, namely, the same as the
original solution to (1} on the interval from ¢* forward. To see this, suppose
it is untrue. Then there is solution to (8) providing a larger value than does
x*,.u* on t* =t < t,. The value of (1) could then be improved by following
x* u* to t* and switching to the solution to (8). But this contradicts the
assumed optimality of x*, u* for (1). Therefore, x*, u*, t¥* = ¢ <1, must
solve (8).

We return to the question of the interpretation of A. Application of the
methods used to reach (7) to problem (8) leads to the result

Vlx(e™), e*) = Ne*), (9)

provided that this derivative exists, where A is the function associated with
problem (1) (since the solutions to (1) and (8) coincide on #* < ¢ < ¢,). Then
Mt *) is the marginal valuation of the state variable at ¢*. But the time ¢*
was arbitrary, so forany 7, f, St < f,,

V{x(e), 1) =N1), 1o=1=1,. (10}

is the marginal valuation of the state variable at time ¢, whenever this
derivative exists.

It is easy to confirm the interpretation at f,. If there is no salvage term, the
marginal value of the state at terminal time is zero: N¢;) = 0. And if there is a
salvage term, the marginal value of the state is the marginal contribution of the
state to the salvage term: N{,) = ¢'(x,) (recall Exercise 2.16).
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For ease in discussion, let x be the stock of an asset and f(1, x, u) current
profit. It is an identity that

M) x(8) = M) x(2,) + ff'(x’)\ + xX) dt

= N1p) x(1y) + /"[d(xx)/dr] dr. (11)

Recall that A(¢) is the marginal valuation of the state variable at ¢. Thus the
value of the terminal stock of assets is the value of the original stock plus the
change in the value of assets over the control period [, ¢,]. The total rate of
change in the value of assets

d(x)\)/dt = X'\ + xX

is composed of the value of additions (or reductions) in the stock of assets (the
first term on the right side) plus the change in the value of existing assets (the
second tetm on the right side). That is, both changes in amount of assets held
and in the unit value of assets contribute to the change in the value of all assets.
From (3), the rate at which the total value accumulates is

JHAg+xX = H+xX where H = f+ \g. (12)

The first term is the direct gain at 7 of f(¢, x, 1), say the current cash flow.
The second term is an indirect gain through the change in the state variable.
One can think of Ag = Ax’ as the increase in future profitability attributable to
the increase in the stock of assets. The third and remaining term xX represents
the changed valuation in current assets, the capital gains. Thus, (12) represents
the contribution rate at ¢, both direct and indirect, toward the total value.

At each moment, one chooses the control # to maximize the net contribution
(12) toward total value. For given state variable x(?) and marginal valuation of
the state N ), this means choosing u(7) to maximize A, and hence to satisfy

dH/du=f,+Ng, =0, ty=t=1, (13)
and ailso
FH/ = f,, + g, < 0. (14)

Note aiso that if one were free to choose x to maximize (12), then one would
set

fo+rg + N =0. (15)

Of course, the choice of u completely determines x. A sufficient condition for
x*, u*,\ 10 be optimal is that they be feasible with \#,) = 0 and that the
problem

max, fH(e, x, u, 1)) + N(2) x] (16)

have x = x™*(f),u = u*(1) as its solution for all lo<i=<i,.
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Example, Let P(x) be the profit rate that can be earned with a stock of
productive capital x, where P'(0) > 0 and P” < 0. The capital stock decays
at a constant proportionate rate » = 0. Investment cost is an increasing convex
function of the gress investment rate #, with C(0) = 0 and C” > 0. We seek
the investment rate #(¢) that maximizes the present value of the profit stream
over the fixed planning period 0 = 1 = T

T

max / e[ P(x} ~ C(u)] dt (17)
0

subjectto  x* =w—bx, x(0)=x,>0, u=0. (18)

We assume that the nonnegativity condition on & will be met automatically,
Therefore, since the capital stock is initially positive, it cannot become
negative; review (18). (This is Problem 1.8).

The Hamiltenian is

H=e"[P(x) - C(u)] + Mu - bx}.

Optimal functions x, # and A satisfy (18) and

H,= - "C'(u) + A= 0, (19)
H,, = —e"'C"(u) <0, (20)
X = —H, = —e"P(x}+b\  NT)=0. (21)

Condition (20) is satisfied by our assumptions on C. Equation (19) states that,
at each 7, the marginal cost of investment must equal the marginal value X of a
unit of capital. Both terms are discounted back to the initial moment ¢ = 0 of
planning. Equivalently,

c{u(t)) = e"N) (22)

requires that marginal cost equal marginal benefit contemporaneously at each ¢
aleng the optimal investment path.

Differential equation (21) can be manipulated to show the composition of the
marginal value of a unit of capital. Subtract bA from each side, multiply by the
integrating factor e~ ', and integrate using the boundary conditions on (21):

T
e PN\(¢) =] e *Pspr( x(s)) ds.
t
Therefore, the value at time ¢ of a marginal unit of capital is the discounted
stream of marginal profits it generates from the present to the end of the

planning horizon:

e 1) = fre‘“”’“’_”P’(x(s)] ds. (23)
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The calculation reflects the fact that capital decays, and therefore at each time
s> ¢ a unit of it contributes only a fraction e~%° of what it contributed
originally at time /. Combining (22) and (23) yields the marginal cost =
marginal benefit condition for optimal investment

C'(u(r)) = f!Te“’”)(‘*”P'(x(s)) ds. (24)

EXERCISE

Derive condition (24) using the calculus of variations.

FURTHER READING

These interpretations are greatly elaborated by Dorfman. The sufficiency condition
related to (16} is due to Seierstad and Sydsaeter (1977); see also Section 15. Benveniste

and Scheinkman (1979) give sufficient conditions for the value function to be differen-
tiabie.



Section 5

Several Variables

Our procedures are readily extended to problems with several control and state
variables. We illustrate with a preblem in two states and two controls (but note
that the number of states and the number of controls need not be equal in
general):

max / U1t %8, % (0), (0). (1) dt (1)
subject o x}{¢) = g;(¢, x, (1), %, (), u (1), uy(2}), i=1,2,
x(£o), X5(4p) fixed, x,(1,), x,(1,) free, @

where the functions f, g,, and g, are continuously differentiable.

Suppose the optimal solution to (1) and (2} is x7, x5, uf, u}. Let h(f) and
h,(1) be arbitrary fixed feasible modifications in the controls and consider the
one parameter family of comparison controls u (1) = u¥(#) + ah(t),i = 1,2,
where @ ts a scalar. The solution of the differential equations (2) with this
specification of u,, u, is denoted by x, = y,(t, a), x; = y,{1, a). We sup-
pose that y, and y, are smooth functions of ¢ and a. Since & = 0 must yield
the optimal function x¥, x5, we have y,(¢,0) = x7(1),i = 1,2. Also, since
the initial conditions of (2) must be obeyed by any feasible path,

yiltg,a) = x,(t,), i=1,2. (3)

Append differential equations (2) to the objective (1) with continuously
differentiable multiplier functions A (7}, A.(£), as in (2.1}, to get

[lrae= ["Uang - nxi 4 g - s an @)
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where f, g;, and g, have arguments (¢, x,, x,, u,u,) and x,, u,;, A,
i = 1,2, are functions of ¢. Integration by parts gives

1 1
—f Mxpde = =N(8) x(4) + Nt x(g) +f xNodt, i=1,2.
iy

o

(5)
Substituting from (5) into (4) gives
f 2 .
/ fdt = / (f+ Mg+ Mg+ X +x,8) dr
A Ig
_()\lxl + "zxz)le + (xlxl + hle) | ! (6)

Equation (6) holds for any feasible functions x,, x,, #,, 4, and any differ-
entiable functions A, X,. Now evaluate (6) using the control variables u, =
uy + ahy, u, = uf + ah, and the corresponding state variables ,, y, devel-
oped above. The value of the integral is a function of the parameter g, since
uy, us, hy, h, are fixed:

F4
J(a) = f (1, 3i(t, @), p(t, @), ut + ahy, u¥ + ahy) di

iy
5
= / (f"‘ Ng + Mg, + 7N +y2)\’2) dt
fo
—()\1J’|+)\2)’2)|;I+(7\1J’1+7\2J’2)|;n, (7)

where f, g, and g, have arguments (¢, y,(f, @), y,(¢, @), u¥(s) +
ah (1), u3(1) + ahy(1)) and N, X,, i = 1,2 have argument ¢. Since uf, u
maximize (1) by hypothesis, (7) must achieve its maximum at # = 0. This
means J'(0) = 0. Computing from (7), recalling (3), gives

J(0) = /r'[(c'lf/ax, + N3g, /dx, + N8, /8x, + XN} oy, /da

+(3f/3x, + N3g, /ax, + N08,/3x, + X,) 3y, /da
+(8f/3u, + \dg, /ou, + Mog, /du)h,

+(3f/0uy + N3g, /Bu, + Mg, /du,)h,| dt

= N(2) dy,(11, 0)/3a — M (1,) 83,(1,, @) /3a = 0. (8)

Since (B) is evaluated at g = 0, the partial derivatives of f, g, and g, in ()
are evaluated along (¢, xT(), x3(1), uf(t), u3(1)).

Equation (8) holds for any continuously differentiable multiplier functions
A (8), A (7). We specify these multipliers for the coefficients of dy, /da and
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dy, /da to be zero:
X = —(3f/3x, + Ndg,/dx, + N\, 3g,/8x,),
N = —(8f/8x, + N3g, /3x, + Mag, /9x,), (9)
with boundary conditions
M(6) =0, M) =0, (10)

where the partial derivatives in (9) are evaluated along
(¢, XT(8), x3(1), uf (1), u3(1)). Specifying (9) and (10), (8) reduces to

[ (s /00, + Mg, 18w, + 98, o)

+{(8S/0u, + N3g, /0u, + g, [du, )y de =0 (11)

along (¢, x¥, x3, ul, u3). Equation (11) must hold for any modification
functions #, and A,. In particular, taking

h;=8f/0u; + \dg, /ou, + \0g,/0u,, i=1,2,
leads to the conclusion that the optimal solution obeys
af/ou, + Nog, /ou, + Mag, /ou, =0,
af/uy + NAg, /Ou, + \,9g, /0u, =0, (12)

We have shown that if (xT, x7, uf, ) maximize (1) subject to (2), then
there must be continuously differentiable functions A, A, such that
(xT, x3, uf, u3, A, Ay} satisfy not only (2), but also (9), (10), and (12).
These necessary conditions (exclusive of boundary requirements) can be stated
in terms of the Hamiltonian,

H(t, x, %, 0,80, M. M) = f+ Mg+ Mg
We have the state equations,
x,=0H/dN=¢;, i=1,2; (13a)
the multiplier equations,
Xo=—0H/dx,= —(3f/8x, + N3g,/3x,+ NaAg,/dx;), i=1,2;
(13b)
and the optimality conditions,
OH/u; = 3f/ou; + N\ g, /du; + \dg,/du; =0, i=1,2, (13c)

as necessary conditions to be obeyed by x{, xJ, #f, u3, A, A, in addition to
the boundary conditions

x(1), x3(45) given, N(1,) = N(1;) = 0. (14)
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Further, u(¢), 43(¢) must maximize H(z, x*(1), X300, g, 1y, M, M(E)
with respect to u,, &, at each ¢.

The extension to n state variables and m control variables is straightfor-
ward. To save writing, compact vector notation is employed. If y =

(¥ ...¥land z=[z,..., 2], then
P

yoz= 3 3z.
i1

Suppose that there are # state variables, m control variables, and a salvage
term:

max /:'f(t,x,(r),...,x,,(t),u,(t),...,u,,,(t))dt (15)

+o(x (1), .., x,(1))
subjectto  x(¢) =gt x (1), ... x (1), u (), ..., u,(8)), (16)
x;(t,) fixed, x,(t,) free, i=1,...,n, (17)

where the functions f, g, are continuously differentiable in all arguments,
Note that n need not equal m; indeed n=m. Let x = [xy, oo x,],
u={u,...,u,l, g=1[g,....,8,] denote the vectors indicated. Let u* be
the vector of optimal control functions. Solving simultaneously the system
(16}, (17) with & = u™* generates the corresponding optimal state variables x*.
The necessary conditions can be developed as above.

If the vector control function #* and corresponding vector state x* solve
(15)-(17), then there are continuously differentiable functions M) =
[A(D, ..., A (6] such that, defining

H(z, 2,1, N) = f(t,x,0) + 3 Na,(1, x,u), (18)
i=1

u*, x*, X together simultaneously satisfy
x;=dH/IN = g(t, x,u), x(f)fixed, i=1,..., n; (19)
Ne= —0H[0x, = —[af/3x, + 3" Ndg,/ax, |, k=1,...,n

i=1

(20)
MN(1) = de(x(1,))/0x,,  k=1,....m; (21)

"
0=0H/ou;=3af/du;+ 3 Ndg,/du;, j=1,....,m; (22)
i=1

Tespectively. In addition w*(7) maximizes H(r, x*(¢), u, A(#)) with respect to
U at each ¢.
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EXERCISES
1. Show that (19)—(22) are necessary conditions for an optimal selution to (15)-(17).

2, Compare and verify the equivalence of the necessary conditions for solution of the
calculus of variations problem

4|
max / Flt,x, o X 2, xn)dt+ o( x,,..., x,)

fo

subjectto  x;(#,) fixed, x;(¢,)free, i=1,...,n,

and the necessary conditions for the equivalent optimal control problem,

3. Show that M(#) can be interpreted as the marginal valuation of the /th state
variable at f in problem (15)-(17),

FURTHER READING

Seater developed a model in which an individual divides time among leisure, work, and
search for a higher wage. The state variables are the current wage and wealth (assets).
Davis and Elzinga analyze a model in which a firm chooses the rate at which earnings
are retained and new equity capital raised in order to maximize the present value of
owners’ holdings. The state variables are the market price of 2 share of stock and the
exquity per share. Harris smudied household purchase and consumption rates to maximize
utility; state variables are the stock of goods and the stock of money. Sampson chooses
consumption and search for a resource and improved technology; the state variables are
the resource stock and the technology level.

Section 6

Fixed Endpoint Problems

Suppose both the initial and terminal values of the state variable are fixed:

max /rlf(t,x, ©) dt (1)
subjectto  x'(¢) = g(1, x, u), (2)
x(t0) = x0.  x(4,) = x,, o, 1,, fixed. (3)

Because of the requirement that the comparison control guide the state to the
fixed position x, at time ¢,, we modify our approach to finding necessary
conditions obeyed by optimal solutions. We assume that a feasible solution
exists.

Let #* denote an optimal control function and let x* be the correspending
state function, generated by putting ¥ = «* into (2) and solving (2) and (3).
Denote the maximum value in (1) as J*. Let # denote another feasible control
function and let x be the corresponding state function obtained by solving (2)
and (3) with this control. Denote the value of the integrals in (1) following x,
u by J. Then using (2.3) and (3), we write

rl
J—J¥=AJ= / [f(f,x,u) +Ag(r, x,u) + xX
fo

—f{r, x* ut) = hg(n, x u*) - XN dr. (4)
Substitute for the integrand in (4) its Taylor series around (¢, x*, u*):

AJ= /rl[(fx + g, + X)(x - x*)

+{fo + hg ) (u - u®)] ar + /“h.a.r. {5)
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The partial derivatives of f and g are evaluated along (¢, x*, u*). Define
dx=x—-x% = du=wu-u" {6)

The part of AJ that is linear in §x, 6u is called the first varigtion of J and is
written

87 = ["[(f 4 20+ X)ox+ (£, + M) bu] (7)

o

The variation & looks familiar; it was derived earlier by a slightly different
approach. The current method is more flexible. It provides the first variation
(or the linear part of the difference in functional values) even when a
one-parameter family of feasible functions may be difficult to construct.

If x*, u* are optimal for (1)-(3), then no modification of that policy (say to
X, ) can improve the value of J. As before, we choose X to satisfy

N(t) = —[ £ e, x*, u®) + M) g (1, x*, u*)], (8)
so the coefficient of &x in (7) will be zero. Then we need

]
& = f [£u(2, x*, u*) + Ag, (¢, x*, u*)) udt s 0 (9)
fo

for any arbitrary feasible modification of the control du. (Recall that §J is the
linear part of J — J* and J* is the maximum.) Note that feasibility now
includes the requirement that the corresponding modified state variable termi-
nate at x,.

It is shown in the appendix to this section that, if there is a feasible control u
that drives the state from x(#,) = x, to x(¢,) = x,, then the coefficient of du
in (9) must be zero.

St X%, u*) + Ng (f, x*, u*) =0 (10)

when X obeys (8). In sum, if x*, u* are optimal for (1)~(3), then there is a
functionA such that x*, u*, \ simultaneously satisfy (2), (3), (8), and (10).
The Hamiltonian is maximized with respect to & at each ¢. Note that there is
no transversality condition; the fixed value x, provides the needed condition.

The necessity of (10) is no longer obvious, since du cannot be chosen
completely arbitrarily. The modified control must be feasible; it must drive the
state variable to x, at f,. The necessity of (10) in the present case can be
verified by a somewhat lengthy construction, as shown in the appendix to this
section. We first suppose x*, #* is optimal but does not satisfy (10). Then we
construct a modification of the control Su that is feasible and that improves J.
This contradicts the assumed optimality and completes the demonstration of
necessity of (10).

We have implicitly assumed that certain regularity conditions hold; other-
wise the foregoing must be modified. A full statement of necessary conditions
includes a multiplier A, associated with f that may be either 0 or 1. We have

Section 6. Fixed Endpoint Problems 149

implicitly assumed that A, can always be chosen equal to 1 yet without
regularity, it may be necessary to choose Ay = 0. As an example, consider

T
max / udt
1

subjectto  x" = u*, x(0) = x(T) =0.
In this problem, # = 0, 0 < ¢ < T, is the only feasible control. Writing

H=u+ M2,
we have
H,=1+2)u=0.
which is not satisfied by & = 0. The correct version is
H = Nu+ a2,
S0
H,=x +2At =0,

A choice of A, = 0 and u = 0 does satisfy this condition. We shall implicitly
assume in the following that we can optimally choose A, = 1. See also Section
14 for a more complete treatment.

Example 1. We solve our production planning problem by optimal control.
Let u(t) be the production rate and x(f), the inventory level:

T
min / (i + ¢yx) dt (11)
(]

subjectto  x’(¢) = u(t}, x(0) =0, x(T)=B, u(r)z=0. (12)

The initial state (inventory level) is zero and is supposed to reach B by time T
Inventory holding cost accrues at ¢, per umit and production cost increases
with the square of the production rate. We form the Hamiltonian:

H=cu?+c,x+ M.
Then
3H/du = 2cu + \ = 0, (13)
N = —0H/dx = —c,. (14)
To find x, u, X that satisfy (12)-(14), integrate (14) to get A and substitute

into (13). Then put  into (12) and integrate. The two constants of integration
are found using the boundary conditions, yielding

x(t) =c,t(t — T)jdc, + Bt/ T,
u(t) = c,(2r - T)/4e, + B/ T,
Mt) = ¢,T/2 - 2¢,B/T ~ ¢yt

$0 long as ¥ = 0 for 0 < ¢ < T. This is the solution obtained by the calculus
of variations, as it should be.
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Example 2. Two factors, capital X (¢} and an extractive resource R(f) are
used to produce a good Q according to the production function @ = AK'~?R¢
(Cobb-Douglas), where 0 < @ < 1. The product may be consumed, yielding
utility U(C) = InC, where C(t) is the consumption, or it may be invested.
The total amount of extractive resource available is X,. We wish to maximize
utility over a fixed horizon T

T
max /lnC(t)dt
0

subjectto X' = —R, X(0)=X,, X(T)=0,
K' = AK'"°R° - C, K(0) =K, K(T)=0,
C=0, R=20.

The remaining stock of extractive resource is X{r). Terminal stocks of
extractive resource and capital equal zero since they are of no value at T. (A
better formulation involves nonnegativity conditions on terminal stocks; see
Section 7.) This problem has two state variables X and X and two control
variables C and R.

It will be convenient to define y(¢) = R /K, the ratio of resource to capital.
Replacing R with Xy, the problem becomes

T
max /lnCdt (15)
G

subjectto X' = -Ky, X(0)=X,, X(T)=0,
K' = AKy* - C, K(0)=K,, K(T)=0, (16)
C=0, py=0.

Since the marginal utility of C becomes arbitrarily large as C — 0, an optimal
solution has C > 0. Likewise, since the marginal productivity of the resource
becomes infinitely large as its use shrinks toward zero, an optimal solution has
¥y > 0. Thus, we are assured that the nonnegativity conditions on the controls
will be met.

Let A and A, be the multipliers associated with X and X, respectively.
They are the marginal values of extractive resource reserves and of capital.
The Hamiltonian is

H=inC—- NKy+M(AKy® - C). (17)
An optimal solution C, y, X, K, N, A, obeys (16), (17) and
H-=1/C-)\=0, (18}
H, = -\NK+ o), AKy*~' = 0, (19)
X =-H, =0, (20)
M= —Hp =Ny - NAy°. (21)
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We shall show that the optimal capital /output ratio grows linearly and that
the optimal consumption grows faster or slower than linearly according to
whether ¢ < 1/2 or @ > 1/2. The way to find all the variables will be
explained later. From (19), so long as K > 0, we have

A= Mady L (22}
Since A, is constant, from (20), this implies that
N/h=(1-a)y/y. (23)
But substituting from (22) for A, into (21) gives
% /h=—(1-a)4y". (24)
Combining (23) and (24) gives y~“*Vy" = — A Integrating yields
Ay® = 1/(k, + at). (25)

The optimal resource/capital ratio declines, according to (25). And since
K/Q =K/AKy® = k; + at, the optimal capital /output ratio grows linearly
at the rate a.

Substituting from (25) into (24) gives

/M= —(1-a)/(k +at).
Integrating produces

M) = (ky +ar)” Tk,

which, when combined with (18) yields
C(t) = ky(k, + ar)' ™", (26)

Optimal consumption grows over time according to (16). It grows at an
increasing rate if @ < 1/2, at a constant rate if @ = 1/2, and at a decreasing
rate if @ > 1/2.

One can substitute for C and y from (26) and (25) into (17) to obtain the
differential equation obeyed by K. It is a linear first order eguation with
integrating factor (k, + af)~'/“. Finally, putting the result in (16) and inte-
grating gives X. The two constants of integration generated here plus the two,
k, and k,, generated above can then be found with the aid of the four
boundary conditions in (16) and (17).

APPENDIX TO SECTION 6

In this appendix we prove the necessity of (10). First, 3« must be feasible, thus, it must
render §x; = 0. Second, it must be improving, and hence, render 57 > 0. Let us
Compute each of these variations for an arbitrary Sw. For an arbitrary multiplier
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function ¥

J= /:tlf(!,x,u)dr= [f'(f+ vg — yx')dt

o fo

- /:1(f+ vg + xv) dt — v(#,) x(1,) + v(to) x(10). (27)

o

5 = f“[(fx +yg, + ) ox + (f, +ve,) du] de - v(1)) bx(4,)

o

+ (1) 8x(%). (28)
If we let
vt} = —(fr+ves), () =0, (29)
then
6J = f’(f,, +yg,) budt. (30)

fa

Also, by (2), we get

f"[m(x)g(:,x, u) — m(1)x(1)] dt = 0 1)

o

for any multiplier function m(?). Imegrating the last term by parts,
t
j "(mg + xm’) dt ~ m(1;)x(t,) + m(1) x(t) = 0. (32)
o

Now compute the variation in (32) {taking the linear part of the Taylor expansion as
was done in (4) and (5)).

/h[(mgjr + m') bx + mg, du] dt — m{t,) éx, = 0. (33)
fo
Choose m to satisfy
m(t) = —mg., m(t)=1. (34)
Then (33) becomes
)
6x, = / Img“ dudt, (35)

o

and therefore, for any constant k, from (30) to (35),

t
8+ k bx, = f (fu + vga + kmg,) bud, (36)
‘o
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where v and m are assumed to follow (28) and (34), respectively. We have at our
disposal the constant & and the function du(¢). If we let

su=[f,+(v+km)g,]. (37)

and choose & so that §x, = 0 (it is shown below that k can be chosen to achieve this),
then

t
6+ k6x1=t5.f=f l[fu+(y+km)gu]2dt20_ (38)
“H

The last relation of (38) holds with strict inequality unless
fut(y+km)g, =0, to=t=<t. (39)

Thas, the choice of (37) improves the objective value unless (39) holds; (39) is
therefore necessary if no improvement is to be possible.

It remains to verify that & can be selected to assure feasibility. Substitute from (37)
ato (35) to get

3x; = frlmgu[fu + (v + km)g,,] dt =0 (40)

o
or
! t
/ lmgu(fu + 'Ygu) dr + k/ Ing:' dt=0. (41)
‘o o

Provided that m>g2 # 0, we can solve (41) for

k= - f!lmg,(f“ +vg,) dt/ftlm"g;‘; di. (42)
tp

t

Note, as claimed, putting k according to (42) into ¢40) renders éx, = 0. In sum, a
modification du given in (37) with &, v(¢), and m(f) specified in (42), (28), and (34),
respectively, will improve J (see 38)) unless (39) is satisfied. Thus, (39) is necessary
for optimality of x*, 4*, as claimed earlier. But write

A=y +km. (43)
Then, from (28), (34) and (43),
N=y +km = —[fo+ (y+km)g,] = —(fe+ e, (44)
and
M) =v(8) + km{e) = k. (45)

Equation (45) relates the parameters and indicates that N ) will be determined within
the problem. Now (44) and (45) specify exactly the function A of (7)-(10). Hence (39)
is equivalent to (10). This completes the demonstration. In fumre cases of fixed values
of the state variable at terminal points, no such proofs are provided. Results are given
under the supposition that there is a feasible control to insure that the given constraints
of the problem are satisfied.



154 Part II. Optimal Control

EXERCISES
1.
1
minimize / w’(t) dt
0
subjectto  x'(2) = x(1) + u(t), x(0) =1, x(1)=0.
2. Solve Exercise 14.5 using optimal control.

3. In Example 1, explain why the multiplier declines over time at rate ¢,.

4. Suppose that future utilities in Example 2 are discounted at rate r. Show that
a. the optimal capital /output ratic grows linearly at rate a:
K/iQ=k + at.

b. the optimal consumption path is a single peaked function of time that eventually
declines if T is sufficiently large:

C(t) = kye "*(k, + at)" ™",

3. Show there is no solution to

1
max f 1 dt
0

subjectto  x’ =x+u*, x(0) =1, x(1}=0.

FURTHER READING

The appendix is based on a discussion of Bryson and Ho. Example 2 is based on
Dasgupta and Heal. They use more general functional forms and include a random
exogenous occurrence of a technical advance that releases the dependence of the
economy on the exhaustible resource (e.g., solar energy replaces oil), See also Kamien
and Schwartz (1978a, 1979) for extensions involving endogenous technical advance and
pollution, respectively.

Section 7

VYarious Endpoint Conditions

Results for 2 fixed value of the state variable at the endpoint, a free value of
the state variable at the endpoint, a free vatue of the upper limit of integration,
several functions, and a salvage term emerge from a single problem incorporat-
ing all these features. The possibility of terminal nonnegativity requirement on
some state variables, separately and together, will also be considered.

We seek to maximize

/:‘f(r, x,u)dt + ¢(¢,, x(¢,)) (1)
o
subject to
x{ty=gt,x,u), i=1,..., n; (2)
x(ty) =x,fixed, i=1,... n; (3)
x(4) =x, fixed, i=1,...,¢: 4)
x(t)free, i=g+1,...,r; (5)
x(,)z0, i=r+41,...,s (6)
K(Xpypooo . X0, 0) 20 at t; (7)
where

l=g=r=<s=<n,
x(1) =[x (1), ..., x ()], w(¥) = [u,(2),. ... u,(1)].

and X is assumed to be a continuously differentiable function. Provision has
been made for some components of the state vector to be fixed at terminal
lime, for others to be free, for still others to be nonnegative, and lastly, for
Some to obey a certain inequality condition.
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To generate the necessary conditions obeyed by an optimal solution, associ-
ate a continuously differentiable multiplier function A,(#) with the ith equation
of 2), let A =[A, ..., A,] and write

!
J=/‘[f+)\-(g~x')] dt + (¢, x(1,)). (8)
fn
Familiar integration by parts, term by term, yields
L
J= f (F+N-g+Nx)dt+ o(1,, x(1,))
fo

+ Mio) - x(1) = Mty) - x(1). )

Let x*, u* be optimal and let J*, f*, g% ¢* denote values attained through
evaluation along (¢, x*, u™). Let x, u be a nearby feasible path satisfying
Q)-Mon ty<t=<t + 8¢ and let J, f, g, ¢ denote values attained when
evaluated along the feasible path (¢, x, #). Using (9) and the same function A
in each case, compute the difference in value achieved using the two programs:

.,v'—.,i”“z/h(_f+)\-g-&-)\'-.)4:—_}""‘—}l\"-‘g"“—}\'-.?c"‘)f)‘r+¢;b—q')"t

i

SN - [x(n) - 2*(1)] +£"+6"f(r,x,u) a.  (10)

Substitute for the integrand in (10) and also ¢ — ¢ their Taylor series around
(x*, u*). The first variation of J consists of the linear terms in that series. It
is the first order approximation to the change in J resulting from a feasible
modification of the control. We have

§5J = f"[(fx+>\g1+x) ch+ (£, + he,) - bu dt

+ ¢, 0x  + ¢, 81, — N1)) - h(1) + f(r) 81, (11)

where
h=1[h,.. . k)], k() =x(t) - x}1),
bu = (duy, ..., 8u,),  Buit)=ult) - uj(t),
8x, = x(t, + 61)) - x*(¢,). (12)

All the functions in (11) are to be evaluated along (x*(7), #*(¢)). Using the
construction in (I9.9), we have approximately

h() = x(t) — x*(¢,) = 6x, — x™(¢,) b1, = 8x, — g*(r,} 81, (13}
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Substituting (13) into (11) and collecting terms,
N
o/ = / [(fx+ Mg+ X) - B+ (f, + Ng,) - bu] dt
fo

+{de = M) - 8x, + (F+ Mg+, 0n=<0. (14)

Now ( 14)_, with definitions (12), is the desired form of the variation. It must be
nonnegative for feasible modifications of the path, The multipliers A\ are
chosen to satisfy

N = “_(fx+x3x) (15)
along (x*, u™); that is,

n
)Q:_(anaxi‘*‘ E)\jagj/‘ax; s i=1,...,n,
i=1

where {he partial derivatives are all evaluated along the optimal path (x*, u™).
Now, since the comparison path could end at the same point in time and some
values of the state variables as the optimal path does, we need

!
/ '(f,j"+)xg:) cdudt =0 (16)
iy

for all feasible du. It can be shown as in Section II.6 that if there is a feasible
solution, (16) will be assured only if

futAg, =0 (17)
along (x*, u™); that is

n
af/ou; + kE Mg /Ou; =0, j=1,...,m.
=1

Furthermore, the familiar condition that the Hamiltonian be maximized with
respect to the controls is obtained. With (15) and (17), (14) reduces to

(.= M) -dx, + (f+r-g+9¢)dt, =0 a ¢ (18)
or

[ n
;} (86/0x; = N)ox, + | f+ X Ng; + 86 /a1 | 81, <0
= oy
for all feasible éx, = éx,(1,),8t,. Owing to (4), dx(t)=0 for i=

l...., q. Owing w0 (5), 8x/{t,) may have any sign for i=g+1,...,r:
therefore we choose

)\i(tl)=a¢faxj, i=g+1,...r. (19)



158 Part I1. Optimal Control

If the value of a state variable is freely chosen at terminal time, then the value
of its multiplier at terminal time is its marginal contribution to the salvage
term.

For the components of x in (6), we have x(¢;) > 0 or x,(¢,) = 0. In the
former case, éx,(?,) may have any sign, so let

N(1) =3d/0x; if x(1,) >0, i=r+1,...,5. (20)

If the nonnegativity condition is not binding, the case is similar to that of the
terminal value being free. In the latter case, feasible modifications must not
decrease x,(t,), so x; = 0 only. But then [d¢ /3x; —~ N(1,)] dx,(2) = O for
all feasible &x,(¢,) only if

N(t) = 3¢/0x;  when x{t,)=0, i=r+1,...,s (21)

If the nonnegativity condition is active, the terminal marginal value of the state
variable is no less than its contribution to the salvage term. The statements in
(2) and (21) can be combined into

x(n) =0, AN()zde/dx,
x(6)[ M) —3¢/8x,] =0, i=r+1,...,s. (22)

In particular, if x; does not enter the salvage term, then (22) tells us that the
terminal values of state and its multiplier are nonnegative and at least one is
zero. If x; > 0, its valuation X; is zero. If x; = 0, its valuations may be
positive at .

Now

fj [3¢/0x; — N(8,)] 8x:(2,) + [ f + Zn: NEgi+ o, 8, =0 (23)
i=5+1 =1

must hold for all feasible modifications in the last # — § coordinates of the
state vector and in the terminal time. If (7) is satisfied with strict inequality in
an optimal solution, then the modifications may have any sign and, if X > 0,

AN =8é/dx,,  i=s+1,....n,

f+ 2 Neg+9,=0. (24)
i=1
But if K = 0 in an optimal solution, then the values that 8x,,,,..., 6x,, 6f

may assume at 7, must leave the value of K unchanged or else increase it.
Thus, we require

aK=3 (3K /3x,) 6x, + (3K /31,) 6, = 0. (25)
=1
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Apply Farkas’ lemma (Section A6) to the statement that (23) must hold for all
BXgpqrer s 6x,f, bty satisfying (25). By Farkas’ lemma, since (3K Ax_,,,
...,8K/3t)) is a1 X (n — 5 + 1) matrix, there must be a number p = 0
such that

N(t) =080/3x,+ paK/ax,, i=s+1,...,n,
n
f+ 2} Ng + ¢, +paK/at =0 (26)

at ¢, whenever X = 0. Conditions (24) and (26) can be combined into

N(t) =d¢/dx, + paK/ix,, i=s+1,...,n,

S+ Z)\fgf+¢f+paK/at| =0,

i=1
pz=0, K=0, pK=0 a ¢, {27)

If K> 0, then (27) assures that p = 0 so (27) yields (24). If K = 0, then
p = 0and (27) gives (26).

The transversality condition for a variety of special cases may be found from
(27). For instance, if K does not depend on ¢, and ¢, may be freely chosen,
then we have the condition that

"
f+ 2 Ngi+é,=0 at ¢ if ¢ isfree. (28)
=1

If (7) is the condition for terminal time to be bounded above,
K=T-12=20, (29)

then the second line of (27) implies the requirement that
n
S+ L g +e,20 (30)

with strict equality if ¢, < T.

If there are several terminal conditions X, = 0 to be satisfied, the necessary
conditions can be found, as above, using Farkas™ lemma. There will be a
humber p, = 0 associated with each such constraint, along with the require-
ment that p, K, = 0. Necessary conditions corresponding to a terminal equal-
y relation K = 0 is equivalent to K = 0 and — K = 0. Conditions (27) are
obtained, excepr that the associated multiplier 7 is unrestricted in sign.

Necessary conditions obeyed by an optimal solution x*, &%, include exis-
lence of continuous functions A = [MC1), ... (A,(7)] and numbers p as speci-
fied below such that the following are obeyed.
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Necessary Conditions
a. State equations:
x,=glt.x,u), i=1,...,n

b. Multiplier (costate, auxiliary, adjoint) equations:
Xo=—|af/ex;+ > Ndg,/ox, |, i=1,....n
i=1

c. Optimality conditions:
() af/du, + Yi  NBg /Ou; =0, j=1,... . M;
(i) H(t, x*, u, N) is maximized by u = u™,
d. Transversality conditions
(i) N(t) = 8¢ /dx, if x,(z)) is free;
(i) x(¢) = 0, \(1)) = 3¢ /dx,;, x(tIN(E) — 3¢ /3x;) =0,
(i) N(#)) = d¢/0x; + paK/dx,,
i=q,....,n, pz0, pK=0,if
K(x (), ., x, () =2 0is required;
(v} \(t) =93¢ /0x, + pdK/dx, i=gq,....n,
if K(x,(t),-.., x,(¢)) =01s required;
@ f+ T Ng+ o, =0at ¢ if ¢ is free;
(i) f+ S0 Ng + ¢, = 0at ¢, with strict equality in case ¢, < T,
if T~ ) = is required;
(vii) M) =039 /0x;+ pdK/ox;, i=q,...,n,
f+yiong +o,+paKjat, =0,
p=20, K=0, pK=0at ¢ if
K(x, (1)), .., x,(t), 1;) = 0 is required.

Note that in (18) the coefficient of &t, is the Hamiltonian plus the partial
derivative of the salvage term with respect to time. If the upper limit of the
integration can be freely chosen then this coefficient must equal zero (recall
(28)). In particular, in the absence of a salvage term the Hamiltonian must be

zero if ¢, can be chosen freely. Moreover, if f, is restricted by an upper .:_

bound then the Hamiltonian (in the absence of a salvage term) must be
nonnegative, according to (29} and (30). Now, using arguments similar to the
ones in Section 1.3 and 1.12, it follows that the Hamiltonian is just the shadow
price of extending the upper limit of integration by a small amount.

Also, by recalling the deviation of the canonical form of the Euler equation
in Section 1.3, expressions (13) and (15), it follows that the necessary condition
dH/du = 0 in the optimal control formulation is just the counterpart of the

definition of p in (L3.13). That is. 3H/du = f, + Ag, = O implies that

AN=—f,/8, &, + 0. Butif x’ = u, then g, = land A = —p, in (1.3.13)-

In other words, A = —p/g,. (Note that the p here is not the same as in (26) _

above.) From this it follows that the Hamiltonion defined in optimal control

theory is just the negative of the Hamiltonion defined in the calculus of '

variations.
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Example 1. In Section I10 we showed that for problems of the form
1, ’
optimize / F(r, )1+ 1) dr
'rl]

subject to x'=u, x(t) =x,, R(1) = x,

the optimal path will be perpendicular to the terminal curve R(t) =x, at 1.
In the optimal control format, let

H=f(t, )1 + )" + nu,
K=x —R(1).
Then x, & and M also satisfy

H,=f(t, x)u/(t + i)' * + x =0, (31)

X = —H,= —f(t, x)(1 + u?)"”, (32)

Nt) =p, (33)
S0+ )" - pR() =0 a1, (34)

where f:ransversality conditions (33) and (34) are adapted from (d.iv) with p
unrestricted in sign since the terminal condition is an equality.

Substituting from (31) and (33) into (34) and collecting terms gives
uR' = -1 at f;
that is

u(t) = x'(4) = -1/R(1)),

and so the optimal path is orthogonal to the terminal curve, as claimed.

Ex.ample 2. Reconsider the problem of choosing consumption over a known
finite horizon T to maximize the value of the discounted utility stream:

max /Te‘”U(C(r)] dr

subjectto K’ =iK-C, C=20, K(0)=K,>0, K(T)=z0,

where K is capital stock, i is its earnings rate. lim,._,U(C) = o, and
U” < 0. The condition on the wtility function for small rates of consumption

assures that €' > 0. The terminal capital stock must be nonnegative but need
not be zero.

The Hamiltonian for the problem is

H = e "U(C) + NiK - C).
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The functions K, C, and A must cbey the constraints and also 5.

He=e "U(C)-A=0, so U(C(t)) =e'N1),
X =—i\,  so N¢#)=XNe ",
MT)=0 and MT)K(T) =0. ] .
Combining the first two lines gives
U{C(1)) = e 7.
There are now two possibilities: either K(T) = 0 or NT) = 0. If the latter L 1.
holds, then Ay = 0 so that U(C(¢)) = 0 for all 0 = ¢ < T. This is feasible . 8.
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only if the utility function has a ‘‘bliss point’” C* at which utility is maximal
(UAC™) = 0; recall U” < 0 by hypothesis) and if iK, is large enough to
support consumption at the rate C* throughout the period (i.e., if iK, = C*(1
~ e~ 7)), Under these circumstances, the marginal valuation of capital is zero.
The bliss point is achieved throughout and additional capital would add no
utility. If the conditions just described do not all hold, then A, > 0, MT) > 0,
and K(T) =40. Capital has a positive marginal valuation, reflecting the
increment in utility that could be attained. Capital is exhausted at the end of the
period.

EXERCISES

1.

max fl(—uzﬂ) dt
0

subjectto x* =p, ¥ =u, x(0)=0, y(0)=0, x(1)+y{1)=2.
Compare the necessary conditions of calculus of variations with the necessary

conditions of optimal control for the problem

i
max / e x, ) dt + (e, x(1)
iy
subject to x(t,)} = x, fixed
if it is also required (alternatively) that
a. x{1) =10,
b. x{#) = R(1,),
c. x(t) = R{1)),
d, 1, =T.

Sotve Example 2 by the calculus of variations.

Write a minimization problem analogous to (1)-(7) and find necessary conditions
for its solution.
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Find necessary conditions for the solution to problem {1)-(3) with the added
constraints

Ki(x(h)...., x,(6)) 20
Ky(x)(t1),.... x.(1)) = 0.

Reconsider problem (1}-(7) with ¢, fixed. Suppose that the functions f, Elr- -1 &n
are all concave in (x,..., x,, 4,, ..., 4,) and that both ¢ and X are concave
in{x,,..., x,}. State and prove a sufficiency theorem. (Review Section 3.)

Find the shortest path from the circle x” + 2 = 1 to the straight line # = 2.

Find the shortest path from the circle x2 + ¢2

1 to the straight line x = ¢ — 2,
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Discounting, Current Values,
Comparative Dynamics

For many problems of economic interest, future values of rewards and
expenditures are discounted, say, at rate r:

max [ eyt x,u) (1)

subjectto  x’ = g(1, x,u), x(0) = x,. (2)
In terms of the Hamiltonian
H=e"f(t,x,u) + Ag(1, x, 1), (3)

we require (x, #, A) to satisfy

H,=e'f +A\g, =0, CYN

X’ = _HX = e_”fx -_ hg,\." MT) = 0 (5)

All values are discounted back to time 0; in particular, the multiplier N¢) gives :".__

a marginal valuation of the state variable at ¢ discounted back to time zero.

It is often convenient to conduct the discussion in terms of current values, i
that is, values at ¢ rather than their equivalent at time zero. Further, if ¢ is not ]
an explicit argument of f or g, then the differential equa.tionf, describil?g an
optimum solution will be amonomous when the multiplier is given in its

current value form. These points will now be illustrated.
Write (3) in the formn

and define

H=e"[f(t, x,u) + e Ne(t, x, u)] (6)

m(t) = e”\(7) 0]
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as the current value multipiier associated with (2). Whereas N(?) gives the
marginal value of the state variable at 7, discounted back to time zero (when
the whole problem is being solved), the new current value multiplier mi(¢)

gives the marginal value of the state variable at time 7 in terms of values at ¢,
Also let

H=e"H =f(t,x,u) + mg(e, x,u). (8)

We call # the current value Hamiltonian. Differentiating (7) with respect to
time gives

m.i' = rerfk+ Xer.f
=rm—e"'H, (9)
on substituting from (7) and (5). In view of (8), H = e "#, so (9) becomes

m =rm—e"d(e"#)/dx
=rm— e e " H,
=rm—f.-mg,. {10)
In addition, (4) can be written as
H,=d(e"#)/du=e"34#/3u =0,

which implies

3 [du = 0. (11)
Finally, (2) may be recovered in terms of the current value Hamiltonian:
X =9X/dm=¢g. (12)
In sum, (3)-(5) may be equivalently stated as
H=f(t, x, u) + mg(t, x, u), (13)
34 /3u = f, + mg, =0, (14)
m=rm-—03X/dx=rm-f —mg,. (15)

Terminal conditions may be stated in terms of the current value multipliers by
using conditions already derived and definition (7). For example, if x(T) is
free, then NT) = e~ "m(T) =0 is required. If x(T) = 0 is needed, then
e ""'m(Ty=0and e~ ""m(T)x(T) = 0.

Notice first that (14) and (15) do not contain any discount terms. Second,

note that if 7 is not an explicit argument of f or g, then Equations (2), (14),
and (15) reduce to

x' = g(x,u),
Jlx, u) + mg,(x,u) =0,

m o=rm— f(x,u) —mg.(x, u),
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which is an gutonomous set of equations; that is, they do not depend on time
explicitly. Solving the second equation for # = u(m, x) in terms of m and x
and substituting into the equations for x’, m’ results in a pair of autonomous
differential equations. In general, autonomous differential equations are easier
to solve than nonautonomous ones. Furthermore, even if an explicit soluticn is
not possible, phase diagram analysis of the qualitative properties of the solution
may be possible when there are autonomous equations,

The following example uses the current value multiplier in an infinite
horizon problem. Diagrammatic analysis and the use of the approximating
linear differential equation system in the neighborhood of the sieady state are
shown. Finally, comparative dynamic analysis is illustrated.

Example. Reconsider the example in Section 4, but let T = oo;

max f e P(x) - C(u)] dt (16)
0
subjectto  x" =u — bx, x(0) =x,=0, (17)
u=z0. (18)
The current value Hamiltonian is
H=P(x) - C(u) + m{u - bx).

If the optimal investment rate is positive, it satisfies

Clu) =m, (19)
where the current value multiplier obeys
m = (r+b)m— P'(x). {20)

The solution x, u, m must satisfy the foregoing conditions (if it involves
u > 0). (Compare this with the conditions developed in Section 4.) We cannot
find the solution explicitly without specification of P and C. Nenetheless, we
can qualitatively characterize the solution by sketching paths compatible with
the conditions for either the x-m plane or the x-u plane.

We eliminate # and consider the x-m plane. Since C” >0, €’ is a
monotone function and may be inverted. Thus, from (19)

u=C"m =g(m)), (19)

where g = ' ~'. The properties of g are readily obtained from the properties
of C'. Since C'(0) = 0, it follows that g(0) = 0. Also, differentiating (19}
gives
C"(u) du = dm.
so that
dujdm=1/C" =g’ > 0.

Section 8. Discounting, Current Values, Comparative Dynamics 167

L.

x'=0
gim) = bx
S
m _

m =0
m = P{x)(r+ b)

Xs \ x

Figure 8.1

Putting (19%) in (17) gives
x" = g(m) - bx. (21)

Now .(20) ‘and (21) form a pair of differential equations in x and m. To sketch
the (.ilrectlons of movement compatible with these two equations, we first
consider the x’' = 0 locus, namely, points satisfying

g(m) = bx. (22)

_Since Ig(O) =0 and g’ >0, this locus passes through the origin and is
increasing. At a point (x,, m_) on the locus, (22) is satisfied. At a point
(x4, m, + k), k > 0, above the locus, we have

glm,+ k) —bx,>0

since g is an increasing function and so x” > 0 at such a point. Similarly, one
can show that x is decreasing at points below the x’ = 0 locus.
Next, consider the points for which m* = 0, namely,

(r+ b)ym = P'(x). (23)

_Slnce P” <0, this is a downward sloping curve. Above the curve, m is
Increasing, whereas m decreases below the m” = 0 locus. Figure 8.1 reflects
the gna]ysis and shows typical paths consistent with the differential equations.

Since the problem is infinite horizon and autonomous, we inguire about a
Steady state. The steady state is defined by x’ = m’ = 0, or equivalently by
the solution x, m, of (22} and (23). There is a unique path from x,, to x,. To
verify that this steady state is a saddlepoint, we show that the characteristic
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roots of the linearized differential equation system are real and of opposite
sign. Take the linear terms of the Taylor series expansion of the right side of
(20) and (21) around x,, i, to get the approximating linear differential
equation system (see (B5.21)-(B5.24)):

’

x' = -b(x-x,) +g(m)(m—mg),
m = —P"(x){x—x,)+ (r+8)(m-m),

where x = x(#), m = m(?). The characteristic roots are

ki, k,=r/2 % [(r + 2!))2 - 4g’(ms)P”(xs)]m/2.

Since g’ > 0 and P* < 0, the roots are real. Because the argument of the
square root function exceeds r?, the smaller of the roots is negative. And since
the sum of the roots is positive (r), the larger root must surely be positive.
Hence, the roots are real and of opposite sign; the stationary point is a
saddlepoint as illustrated. (See Section B5, especially (B5.18) and the discus-
sion thereof.)

If x, < x,, the steady state will be approached monotonically, with x
growing steadily and m falling. Since u is an increasing function of m, (recall
(19)), it follows that the investment rate is also decreasing monotonically in
this case. Other patterns of behavior, arising from a finite horizon and /or
alternative terminal conditions are apparent from the diagram.

Comparative statics analysis of the steady state can be made. An increase in
the discount rate r lowers the m’ = 0 locus and leaves the x’ = 0 locus
unaffected. The new intersection involves lower values of m and x, (see
Figure 8.2). Thus, an increase in the discount rate reduces the equilibrium
capital stock, its marginal valuation, and (from (19)) the equilibrium invest-
ment rate:

dx,/ar<0, am /ir <0, du,/ar < 0.

An increase in the decay rate b shifts to the left the m’ = 0 down and the __

x’ =0 loci, so the new intersection has a lower value of x,. While the
equilibrium capital stock falls, the influence on the marginal valuation of that

stock and on the equilibrium investment rate is unclear. These comparative |

statics results can also be found by differentiating the system of equations (22)
and (23). Similar analyses can be made with respect to shifts in the marginal
profit function P‘(x) or the marginal cost C'(u) (i.e., g(m)).

Comparative dynamics, which involve analysis of changes in the entire
optimal path with respect 1o a change in a parameter, not just the steady state,

is more difficult, but sometimes possible. To determine the effect of an
increase in the discount rate on the optimal path, let r, > r,. The impact on §
the steady state was just discussed. Suppose Xo < X,,. We show that the
optimal path corresponding to r, lies below the optimal path corresponding to ?
r, by showing that the paths cannot cross. The optimal paths cannor be |
sketched as in Figure 8.2. Clearly, there is no intersection between x, and |
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Figure 8.2

X;,. Suppose x* is the x coordinate of the intersection point closest to x_,.

From Figure 8.2 the slope of the optimal path associated with r, must be
smaller than that associated with r, at (x®, m*). The slope of the optimal
path is

dm/dx=m/x" = [(r+b)m - P(x)]/[g(m) - bx].

At the intersection, b, x*, and m* will be the same for both paths.
Therefore the required inequality holds if r, < r,, which is a contradiction and
the optimal paths corresponding to 7, and r, cannot cross. If the discount rate
rises, the optimal path of 1, and hence of investment, is shifted down and the
stationary level of x is decreased. Similar analyses would reveal that a
downward shift in the marginal profit function or an upward shift in the
marginal cost function results in a downward shift of the optimal path of
advertising corresponding to each given level of the stock x.

Another approach to comparative dynamics is to determine how the maxi-
mized value of the objective changes with respect to a parameter of the
problem. For instance, it might be asked how a change in the discount rate r
changes the value of the maximized objective (16). This can be done in general
by the following procedure.

Consider the simplest optimal control problem (see (1.1), (1.2), (1.3)):

max /"'f(:,x(:),u(:);r)d;

subject to  x'(¢) = g(¢, x(¢), u(¢)),
ty. t, x(ty) = xq, fixed;  x(t,) free,
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where the parameter r appears explicitly in the integrand. This problem can be
rewritten as

rnax/:l[f(t, x(t), u(t); r) + M) g(t, x(2), u(1))

+x(r)N(1)] de = M) x(t,) + Mo} (o)

(recall 2.3). Now, once the maximization has been carried out, the optimal
control, #* = w*(r), the state, x* = x*(r), and the costate, X* = X*(r). That
is, afl the optimizing values of the relevant variables are functions of the
parameter r. Now let the optimized value of the objective

P = [ ), 40+ R )0 2 4(0)

+x*(r))\*’(r)] dt = W(t;; r)x*(t; r) + ¥(to: r)x*(1o: ).
(24)

Then,

V*(r)y/ar = ftl[f,* +frax*/ar+ fFau*jor

ty
+X{( g} ax*/dr + g} du*/dr)
+g*aN/3r + x*ON/3r + XV ax*/ar] dt
— Xt r)ax* (a5 r)/ar
— x*(t; r)aN (1, r)/3r + R(tgs r) ax™ (e r)/0r
+ x*(tg: r) O (1, 1)/ ar, (25)

where fF, ¥, £, g¥, g} refer to the partial derivalives of f and g with
respect to r, x, and u, respectively, evaluated along u*, x*. Note that f is
affected by a change in r directly, and indirectly through the changes in x*
and u* However, by regrouping the terms inside the integral we get

L8}
[ [ 4 (£ + Rg* + W) ax*/or + (£ + Wgl) ou*/or
fo

+g*ON/ar + x*IN/3r + N ax*/8r]| dr

L
= f [ £ + x* 3N /ar + x*aN/or + X ox*/ar| di, (26)
I,

a

because the coefficients of dx*/3r and du*/dr are just the necessary
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conditions that must equal zero along the optimal path and g* = x*. Thus,
'r'l
av*/ar = / [/ + x*aX/ar + x*0X°/or + X ax*/3r] di
‘o
= Nty r)ax*(ey;ry/ar — x*(e;r) 3% (e,; r)/or
+ X205 1) 3x* (105 7)/3r + x*(ty: 1) AN (205 7) for. (27)

Now integrate [ [x*3X"/3r]dt by parts, letting u = x* dy =

[d(3X"/ar)/dt] di (observe that X' /ar = A(dN/dt)/3r = A(AN/Br)/ dt),
so that v = dX*/8r and du = x* dt. Thus,

/fl[xa)\*’/ar] dt = x*(tl; r) 3)\*(Ii; r)/ar

rl
— x*(ty, T)ON (255 7}/ 07 — ] [x*aX/ar] dt.
oy
(28)
Substituting (28) back into (27) and cancelling terms gives

BV*(r)/ar - /fl[fr* 4 ):Iﬂfax*/ar] ar — )\*(f], F) ax*(rl, r)/ar

+ X(to, r)dx*(t,;r)/ar. (29)
Integration of [ X*(8x*/3r) dt by parts with u = 8x*/dr and dv = Ndt,
so that du = {3x™/8r) dt and v = N gives

/ Nfax*/ar] dt = X(t,; r)ax*(¢,;r)/ar

fo

f
- Xty ) ax* (85 r)/ar — / ][X"ax*’/ar] dt.

a

(30}

Finally, upon substitution from (30) into (29) and cancellation of terms, we get
'f]

*(ryfar = / [£X - Xax*/ar| dr. (31)
L

But x™ = g* and since g* is not an explicit function of r it follows that
dg*/ar = 0. So,

f
avV*(r)/or = j 1* dr. (32)
o
In terms of the above example
av*r)/jor= —f te™"[ p(x* - C(u%)] dt < 0. (33)
0



172 Part II. Optimal Control ~ §

Expression (32) is an optimal control equivalent of the ‘‘envelope theorem’’
that arises in connection with static optimization problems. In the static version
of the envelope theorem the partial derivative of the optimized objective
function with respect to r would just be f,*. Here it is the integral of f*, If
one wanted to determine, say, du*(¢)/dr then as in static optimization
problems, one would have to appeal to the second order conditions.

EXERCISES

1. In (16)-(18), let P(x) = ax — x?/2 and C{&) = cu®. Solve explicitly and relate
your findings to the analysis of the general case (16)-(18).

2, Provide a diagrammatic analysis of the solution to (16)-(18) in the x-u plane.
(Differentiate (19} totally and use (19) and (20) to eliminate m and #’ from the
system.)

3. In (16)-(18), suppose that the profit function is linear, P(x) = px, and solve the
problem. Show that m and u reach their respective steady state levels immediately,
but x approaches its steady state only asymptotically.

4. If the discount rate r(r) is time dependent, transformation to current values is still
possible, although it cannot lead to an autonomous problem. Consider

T
[l (e, 21y, u(n)) @t

o
subject to x = g{t, x,u), x(0) =x,,

where
p(t) = /D’r(s) ds.

If r(#} = r constant, the p(#) = rt, so the generalization reduces to the famitiar
form for a constant discount rate, Following the outline above, find the necessary
conditions for optimality using a current value multiplier.

5. Uility {{C, P) increases with the consumption rate C and decreases with the
stock of pollution, P. For C > 0, P > 0,

U->0, Urr < 0, limeo_ Up = o0,
Up <0, Upp < @, limp_oUp = 0, Uep=0.

The constant rate of output C is to be divided between consumption and pollution
control. Consumption contributes to pollution, while pollution control reduces it;
Z{C) is the net contribution 1o the pollution flow, with Z° > 0, Z* > 0. For small
C, lintle pollution is created and much abated; thus net pollution declines: Z(C) < ©.
But for large C. considerable pollution is created and few resources remain for
pollution control, therefore on net, pollution increases; Z(C) > 0. Let C* be the
consumption rate that satisfies Z(C™) = 0. In addition, the environment absorbs
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pollution at a comstant proporticnate rate b. Characterize the consumption path
C(t) that maximizes the discounted utility stream:

[ e~"U(C, P) dt
o
subject to

P =Z(Cy-bP, P0O)=P,, 0=C=<C, O0sx<P.

Also characterize the corresponding optimal pollution path and the steady state.

FURTHER READING

The discussion of the exarnple and Exercise 3 have been drawn from Gould. Several
capital stock-investment problems lead to a similar formulation. For instance, x might
be the stock of goodwill possessed by the firm; then w is the rate of advertising to
increase that goodwill (see Gould). Or if x is human capital, then u is related to
education and training (s¢e Ben-Porath, Blinder and Weiss, Haley, Heckman). If x is
the stock of & durable good whose services are rented ous for profit (for example, autos,
heavy machinery, computers, and copying machines), then  is the rate of acquisition
or manufacture of new machines {(see Kamien and Schwartz 1974c). On applications to
health capital, see Cropper (1977) and Grossman. And see Kotowitz and Mathewson
for recent extensions to optimal advertising.

See Gould, Oniki, and Epstein for further discussion of comparative dynamics.
Caputo in three articles presents a derivation of the dynamic envelope theorem and an
example of its application.

Exercise 5 is analyzed by Forster. See Cropper (1976) for extensions.



Section 9

Equilibria in Infinite Horizon
Autonomous Problems

The example in the last section was an infinite horizon *‘‘autonomous™
problem. It is said to be autonomous because time enters only through the
discount term. In infinite horizon problems, a transversality condition needed

to provide a boundary condition is typically replaced by the assumption that the
optimal solution approaches a steady state. This assumption is plausible since §

one might expect that, in the long run, the optimal solution would tend to

“‘settle down’' as the environment is stationary by hypothesis. However, some 1§

autonomous problems have no stable equilibrium.

In the example of Section 8, the optimal path of the state variable x was ";
monotonic over time. In infinite hotizon autonomous problems with just one 3
state variable, if there is an optimal path to a steady state, then the state 1
variable is monotonic. Further, in such cases, that steady state must be a
**saddlepoint.”” There may not be an optimal path to a steady state; it may be
unstable, with paths leading away from it. In general, there may be no steady 3
state, a unique steady state, or multiple steady states. This section is devoted 10§
demonstrating these results, and generally, to cataloging the kinds of equilibria 4
that may exist. The results depend heavily upon the assumptions that the }
problem has a single state variable, a single control, and an infinite horizon ;

and is autonomous.
Consider

max /:e‘”f(x,u) at (1)

subject t0 " =g(x,u), x(0) = x,. (2) 1

The current value Hamiltonian for (1) is

H(x,u,m)=f(x,u)+ mg(x,u). (3)
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Since ¥ maximizes (2), we have
H, =f(x,u)+mg,(x,u) =0, (4)
H, <0 (5)

Only weak inequality is required in (5), but we assume that strong inequality
holds. (This is used in (9).) Further,

m=rm-H =rm-f —mg,. (6)

Since H, is strictly monotone along an optimal path, by (5), (4) implicitly
gives u as a function of x and m. Write

u=U{x,m). {7)

We assume that U is a continuously differentiable function. The properties of
U may be found by differentiating (4) and (7) totally:

dH,=H, du+ H,  dx+g,dm =0, (8)
From (8) we have

du = -(H,,/H,,)dx ~ (g,/H,,) dm. (9)
while from (7) du = U, dx + U, d,,. Hence, from (9)

U= ~H, /Hy U,=-8,/H,. (10)

Substituting from (7) into (2) and (6) gives a pair of differential equations for x
and m:

x' =g(x,Ulx,m)), x(0)=x,, (11)
m =rm— H/(x,U(x, m}), m). (12)
A steady state (x,, m,}, assumed to exist, satisfies
g(x, U(x, m)) =0, (13)
rm~H (x,U(x,m), m)=0. (14)

Let u, = U(x,, m).

To determine the nature of any steady state, we study the linear differential
equation system that approximates (11) and (12) at x_, m,. Take the linear
terms of the Taylor series expansion of the right sides of (11} and {12) around
X, mg

k\
"

(gx+gqu)(x_xs) +guUm(m - ms)' (15)
- (Hxx + quUx)(x - xs) + (f' — By - quUm)(m - ms)’ (16)

where the partial derivatives are evaluated at (x,, m,) and x = x(f), m =
m(r). Using (10} to eliminate U, and U,, gives

x' =a{x—x)+b(m-m,)), {17)

’

m =c{x~-x,)+ (r—a)(m-m,). (18)

3
il
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where the coefficients are
a:gx_guHux/Huu’ b= _(g:/Huu)’
c= HJEu - HuuHxx)/Huu (19)

and all the partial derivatives are evaluated at (x,, m,). In studying (17) and
(18), it will save writing if we consider the variables to be x — x; and
m — m,. The steady state for the transformed variables is the origin (0, 0).
Rather than introduce a new notation for the transformed variables, we shall
continue to use the symbols x and m. Context will generally indicate whether
X — X, oF X is meant. As an exercise, it may be useful to repeat the analysis in
terms of the original variables.
The characteristic equation associated with (17) and (18) is

k*—rk+a(r—a)-bc=0 (20)
with roots
ki ky=r/2 % [(r—2a) +abc] " 2. (21)
The solution has the form
x(1) = Ae“* + Be*?’ (22)
for k,, &, real and distinct, or
x(t) = (A + Bt)e"" (23)
if kK, =k,=r/2, 0r

1/2
x(t) = e"/*(Acos pt + Bsinpt), p= [—(-"’—20)2—4!)(']
(24)

if p is real. (See also Section B3.) If the roots are real, then the largcr. r‘oot is
necessarily positive (recall (21)). The smaller root may be either .posnwe or
negative. It will be negative if r < [(r — 2a)* + 4bc]'/?; that is, if

be > a(r — a), (25)

the roots are real and of opposite signs. Let &, > 0 > k, if (25) holds. Then
{22) will converge to 0 provided we take A = 0. The assumption of conver-
gence to the steady state has provided a condition with which to evaluate_a
constant of integration. Thus, if the inequality of (25) holds, then the roots will
certainly be real and the steady state will satisfy the conditions to be a
saddlepoint.

On the other hand, the roots will be real and nonnegative if (r — 2a)* +
4 bc = 0 and (25) fails. These two conditions may be written

a(r — @) = be = a(r — a) - (r/2)’ implies roots are real and nonnegative.

(26)
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As long as the roots are both nonnegative, the path ((22) or (23)) cannot
converge to the steady state. It will move away from it, unless the initial
position happens to be the steady state.

Finally, the roots will be complex if (r — 2a)2 + 4bc < 0; that is,

a(r~a) — (r/2)’ > bc  implies roots are complex. (27)

Then the path follows (24). But note that since the real part of the complex
roots is positive (= r/2), the path moves away from the steady state. The
steady state is an unstable equilibrium,

In sum, a solution to (17) and (18) can converge to the origin only if (25)
holds. In all other cases, all paths diverge from the origin. The solution to an
arbitrary pair of linear differential equations with constant coefficients may
exhibit still other patterns. The roots could be both real and negative or
complex with negative real parts. In either case, the equilibrium would be
stable with all paths converging to it. (See Section B3). But a pair of linear
differential equations (17) and (18) arising from solution to the problem given
by (1) and (2) cannot have both roots with negative real parts; the solution
pattern cannot be totally stable with all paths converging to a steady state.

Figure 9.1 illustrates a phase diagram for (17) and (18) in the neighborhood
of the steady state. Since (17) and (18) are just (15) and (16) and approximates
(11) and (12) in that neighborhood, Figure 9.1 also reflects the behavior of
(11)-(12) near the steady state. The diagrams shown depend on the signs and
magnitudes of the various parameters,

From (17) and (18), the x’ = 0 locus is given by

m= —ax/b, (28)
whereas the m’ = 0 locus is

In view of (5) and definition (19), & > 0. However, @ and ¢ could have any
sign. In the usual manner, we find that the x coordinate will be rising above
the x* = 0 locus if @ > 0, will be falling if ¢ < 0, and so on. Also note that
the x' =0 locus will be steeper than the ' =0 locus if and only if
—a/b> —c/(r — a). With these considerations in mind, one may develop
nine possible diagrams, illustrated in Figure 9.1, based on the signs and
relative magnitudes of parameters. We distinguish between equilibria that are
saddlepoints and those that are not; no indication is given as to whether roots
of unstable equilibria are real or complex.

Figure 9.1 not only catalogs the various possibilities according to the signs
and relative magnitudes of the expressions in (19) but also illustrates the need
to check whether (25) holds. One can show that

be - a(r - ﬂ') = (ginx - Zgungux + giHuu)/Huu
- r(gx - guqu /Hrm)' (25’)
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(a) (b) {c)

(d} (e) ()

® (h) (i

Figure 9.1. @ r>a> 0, c> 0, be > a(r — a): saddlepoint. b r>a>0¢>0,
be < a(r — a): divergent. {(¢) a>r, c> saddlcpomt.. W@ r>a>0, c<Q:
divergent. (&) a>r, ¢ <0, bc > alr — a). saddl_epomt. fy a>r, ¢c<0,
be < a(r — a). divergent. (g) a <0, ¢ > 0: saddlepoint (h) a< 0, c<0, be <
a(r — a): divergemt. (i) @ < 0, ¢ < 0, bc > a{r — a): saddlepoint,

In certain cases, (25) will be necessarily satisfied (Figures 9.1c, f) or necessar-
ily fail (Figure 9.1d). In other cases, the condition must be checked. To see
this, compare figures 9.1h and 9.1i. Their general appearance is similar and it
may seem that there would be a path to the origin in either case; yet (25) is
satisfied in Case i but violated in Case h; the former equilibriom is a
saddlepoint but the latter is not!

If the Hamiltonian is concave in x, y then ¢ > 0 (review 19)). A check of
Figures 9.1e and 9.1b indicates that concavity of H is neither necessary nor
sufficient for an equilibrium to be a saddlepoint (and hence a convergent path).
However, if H is concave and the discount rate is small, the equilibrium will
be a saddlepoint.
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The analysis above has been conducted for the neighborhood of a single
equilibrium. Of course (13) and (14) may have several solutions; (11) and (12)
may have multiple equilibria. The analysis may be applied separately to each
equilibrium. If there are multiple equilibria, the desired steady state and the
qualitative nature of the optimal solution may depend crucially on the initial
conditions.

We can now show that the optimal path to a steady state (if one exists) will
always be monotonic in the state variable for the problems of (1) and (2).
Suppose we follow the optimal solution to (1) and (2) up to a time t,, arriving
at x, = x(¢,}, and then stop to reconsider the problem at that time:

max / e "m0 f(x, u) dt
‘ (30)

subjectto  x" = g(x,u}, x(f)=x,.

Problem (30) has been written with values discounted back to ;. (Of course,
multiplication by e~"" will discount future values back to time 0 if desired.)

Problems (1) and (30) are structuraily the same, differing only in the initial
value of the state variable. To see this more clearly, change the variable of
integration in (30) from ¢ to s = ¢ — ¢,. If we define V(x,) as the maximum
that can be achieved in (1), starting in state x,, the maximum value in (30) is
V(x,). The fact that ¥(x) is a function of a single variable (time does not
enter) rests on the assumptions that the problem has an infinite horizon and that
it is autonomous.

Following an argument similar to the one given at the beginning of Section
4, it can be shown that in an optimal solution to (1), the current value

multiplier m associated with (1) is related to the current value function V{x)
by

m(1) = V(x(1)) (31)
wherever the derivative exists. Substituting from (31) into (3) gives
H=f(x,u)+ V(x)g(x,u). (32)

The control u is chosen to maximize (32). Since (32) depends only on x and
u, the maximizing value of ¥ = u(x) depends only on x. If g(x, u(x)) = 0,
then x' = 0. If x is stationary, then m = V'(x) and u = u(x) are also
stationary and the value of x cannot change further. Since x’ cannot change
sign, the state x must be a monotone function of time. Note however that the
optimal control function u need nof be monotone. Recall that the steady state
teed not be unique and that there does not need to be a path converging to a
particular steady state. We have established only that from any given initial
point, if the optimal path for (1) goes to some steady state (and V'(x) exists
along that path), then that path will be monotone in x.
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In example of Section 8, the optimal path is monotone in  as well as in x.
While this need nof always be the case, there are sets of conditions under
which it will be so. In particular, suppose that the current value Hamiltonian is
concave, with

ux =

H, <0,  H,H -H.L=0 (33)
and further that
£,>0, g,<0, H,<0  mi#)=0 forall ¢=0. (34)

Then the necessary conditions are sufficient for optimality. In addition, the
approach of (x, ¥, m) to unique steady state values (x, ug, m,) will be
monotonic, as will now be shown.

Under assumptions (33) and (34), (13) describes an upward sloping curve in
the m-x plane, while (14) describes a downward sloping curve. Thus there is
at most one intersection, and therefore at most one steady state. Further, under
assumptions (33) and (34), we have, by definition (19), a <0, ¢ = 0. The
present case therefore corresponds to Figure 9.1g. It is clear from the sketch
(extending it to permit the x* =0 and m' = O loci to be nonlinear while
retaining their positive and negative slopes, respectively, as required by the
assumptions) that both x and m must approach the equilibrium monotonicaily.
If x, < x,, then x increases and m decreases. Further, since du/df =
U,dx/dt + U, dm/dt, u decreases in this case, as by (10), U, < 0 and
U, > 0. If, on the other hand, x, > x,, then x decreases while m and u
increase throughout.

In conclusion, this section has been devoted to cataloging the nature of
equilibriz and the approach to those equilibria that can arise for problems of
the form (1) and (2). The following example illustrates the analysis that may be
performed in a particular instance,

Example. The market for a product is n people, of whom x(7) know of the
good. Their purchases generate profits of P(x), where P(0) =0, P’ >0,
and P” < 0. People learn of the firm by discussion with others who are
knowledgeable. At a cost C(u) (where C(0) =0, €' > 0, and C” > 0), the
firm influences the contact rate u(f), the rate at which people discuss the firm.
The x(t) knowledgeable people inform x(#)u(#} people, of whom only a
fraction 1 — x /n will be newly informed. Knowledgeable people forget at a
constant proportionate rate b. Characterize the program that maximizes the
present value of the firm’s profit stream:

max /me‘”[P(x) - C(u)] ar (35)
0

subject to x'= —bx+xu(l —x/n), 0<x;<n. (36)
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From (36), x < n throughout since the positive term tends toward zero as x
approaches n. The current value Hamiltonian is

H=P(x) - Clu) + m(—bx + xu — x*u/n).
An optimal solution satisfies {36} and
C'(u) = mx(1 - x/n}, (37)
m=(r+b-uym+2mxujn- P(x). (38)

For the phase diagram analysis, differentiate (37) totally and use (35) to

eliminate m and (37) and (38) to eliminate m' from the result. The resulting
system is (36) and

W =[r+bx/(n—x)|C(u})/C"(4) - P(x)x(1 — x/n)/C"(u). (39)
We have ¥’ = 0 along x = 0 and for
u=bn/(n-x). (40)

This is an increasing convex function that grows without bound as x ap-
proaches n. Above this locus, x is increasing; x decreases below the locus.
The points (x, %) such that &’ = 0 satisfy

Cu) = P(x)x(1 —x/n)/[r+ bx/(n - x)] = h(x). (41

The left side is an increasing function of #. The right side depends only on x.
Itis zero at both x = Oand x = m; it is increasing for small x and decreasing
for large x. Figure 9.2 illustrates the identification of pairs (x, u) satisfying
(41). As illustrated, two values of x correspend to each value of u, 0 < ¢ <
uy. They are closer together as « gets larger. The phase diagram in the case
that the curves intersect can now be drawn (Figure 9.3).

There are two equilibria in Figure 9.3, To characterize each, we linearize
the system of (36) and (39) in the neighborhood of an equilibrium (X, u),
getting

x=a(x-x)+b(u-u),

W= ay(x - x,) + by(u — ), (42)

C'{u) kix)

i) Wy Wy u Xy Xz T3 X2 X512 x

Figure 9.2
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Figure 9.3
where
a = —xu/n<0,
b, =x,(1-x,/n)>0,
b,=r+bx,/(n—x,)>0. {43)

The sign of a, is ambiguous. The roots of the characteristic equation associ-
ated with (42) will be real and of opposite sign if and only if

alb2 - azb] < 0 (44)
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(review (B5.12) and (B5.13)). Thus an equilibrium at which (44) holds will be
a saddlepoint; the solution diverges from an equilibrium at which (44) does not
hold.

The linearized x* = 0 locus has slope du/dx = —a, /b, > 0. The lin-
earized u' = O locus has slope du /dx = —a, /b,. In view of the signs given
in (43), it follows that (44) will hold if and only if —a, /b, > —a, / b, that
is, the linearized x’ = O locus is steeper than the linearized ¥ = 0 locus.
Consulting Figure 9.4, one sees that the second equilibrium, the one with the
larger coordinates, is characterized by the x* = 0 locus being steeper than the
# = 0 locus; it is a saddlepoint. The equilibrium with the smaller coordinates
is totally unstable since the x’ = O locus is less steep than the &’ = O locus
there. If X, is sufficiendy large, the firm can get on the unique path to the
saddlepoint equilibrium (sketched as the heavy curve). Note that while x is
monotonic on this path, ¥ may not be.

EXERCISES

1. Discuss the optimal selution to the Neoclassical Growth Model in Exercise 117.4.

2. Show that if, in the Neoclassical Growth Model of Exercise 1, utility Ue, &)

depends on capital stock (wealth), as well as on consumptio,
>0, U.<0, U,=0, U >0, U, <0,

[«

then there may be multiple equilibria. Show further that these equilibria alternate in
character between being saddlepoints and being totally unstable.
3. A population of N fish in a certain lake grow at rate
N'(t) = aN(t) — BN?(1)

if undisturbed by people. Fish can be withdrawn from the lake and consumed at
rate ¢(t), vielding utility #(c(¢}) to the consuming community and reducing the
fish growth rate accordingly:

N'(t) = aN(t} - bBN?(1) - ¢(t),

Assume future utilities to the community are discounted at constant rate r.
Characterize a fishing (consumption) plan 10 maximize the present value of the
discounted stream of utilities. Assume that N{0) = a/b (why?), and the " > 0,
u" < 0.

4. Verify (31).
5. An example in which H is concave and there is no finite saddlepoint equilibria is

J = max / e~ 2 4 xu - x72) dr
0

’

subjectto X' =u, x(0)=x,>0

where r > 1. Show the following.
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a. Optimal functions x{¢) and m(?) satisfy
X =x+m, m=(r-1m.

b. The only steady state solution to the system in a. is (0,0) and it is totally
unstable.
¢. The optimal solution is

x(t) = xqe’, u{r} = xy€', m(t) =0, J=0.

FURTHER READING

The advertising example was drawn from Gould. Exercise 2 is discussed in detail by
Kurz (1968b). Exercise 3 is drawn from Colin Clark, whereas Exercise 3 is discussed
by Kurz (1968a) and Samuelson (1972},

The analysis of local behavior of the optimal solution in the neighberhood of a steady
state is considerably more difficult if there is more than one state variable. The class of
problems

max ] e "'F(x, u) dt
0
subjectto X’ =u, x(0} = x,,

where x = [x,,.... x,], ¥ =[uy,...,u,] and F is a twice differentiable concave
function of its 27 arguments, has been studied by means of a linear approximation in
the neighborhood of a steady state. Levhari and Liviatan have shown that if F is
strictly concave in its 2n arguments, then if 1, is a root of the characteristic equation,
so is r — m,. This means that complete stability is impossible; if the real part of m; is
negative, then the real part of r — m; cannot be negative. Further, they have shown
that if F is strictly concave and r = 0, then there are no purely imaginary roots. See
also Kurz {1968a) and Samuclson (1972).

A related question is global stability of an equilibrium. Under what conditions will
the optimal solution converge to a particular equilibrium regardless of the initial
conditions? For example, see Ryder and Heal for an extensive analysis of a particular
problem with two state variables. See Brock (1977) for a survey of results on global
asymptotic stability. See also Rockafellar, Magilt (1977a, b), Cass and Shell, Brock and
Scheinkman (1976, 1977), and Scheinkman (1978) for representative papers on stabil-
ity.

The questions of appropriate solution concept and of the existence and properties of
solutions to infinite horizon problems have been addressed by Halkin (1974), Haurie
(1976). Brock and Haurie {1976). Halkin showed that in general there are no necessary
transversality conditions for an infinite horizon problem. See also Seierstad and
Sydsaeter {1977, 1987}, and Michel.

Section 10

Bounded Controls

The control may be bounded, as in

i
max / If(t,Jvc,a!) dt (1)
fo
subjectto  x’ = g(#, x,u), x(t) = x,, (2)
asu<bh. (3)

Absence of a bound is a special case with either ¢ > — o0 or b — o, as
appropriate. For instance, gross investment may be required to be nonnegative.
Let J denote the value of the integral in (1). After appending (2) with a

n_lultiplier and integrating by parts, one can compute the variation §.J, the
linear part of J — J*.

6J = [I[(fjr +hg, + X)ox + (f, + Ng,) ou] dt — N(£,) 6x(¢,). (4)

Choose X to satisfy

N = —(fi+he).  Nf) =0, (5)
so that (4) reduces to

5J = /‘f’(fu + Ng,) udt. (4)

lr_l order for x, #, A to provide an optimal solution, no comparison path can
Yield a larger value to the objective. Thus,

8J = ['(fﬁxg") dudt <0 (6)
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is required for all feasible modifications éu. Feasible modifications are those
that maintain (3). If the optimal control is at its lower bound & at some 7, then
the modified control @ + 4 can be no less than ¢ for feasibility, so éu = 0 is
required. Similarly, if the optimal control is at its upper bound b, then any
feasible modification satisfies du =< 0. Summarizing,

Su=0 whenever u = a,
6u =0 whenever u = b,
5u = unrestricted whenever a < u < b. N

We need (6) to be satisfied for all du consistent with (7). Therefore, u will
be chosen so that

u(t)y =a onlyif f,+Ag, =<0 at f,
a<u(ty<b only if f,+ Ag,=0 at ¢,
u(t) =5 only if f,+hg,=0 at ¢. (8)

For instance, if u*(¢) = a, then (from (7)) du = 0 is required, and thus
(f,+ Ag,)bu =<0 only if f,+ Ag,=<O0. Similarly, if #*(f) = b, then
Su = 0 is required for a feasible modification and thus (f, + Ag,)du <0
only if f, + Ag, = 0. And, as usuval, if ¢ < #™(¢) < b, then éu may have
any sign so that (f, + Ag,) éu < 0 can be assured only if f, + Ag, =0Oat 1.
A statement equivalent to (8) is

f,+Ag, <0  implies u(z) =a,

f,+hg, =0 implies a =< u(t) <b,

f,+hg,>0  implies u(t)=>5. (8)

Thus, if x*, #* solve (1)-(3), then there must be a function A such that

x*, u*, N satisfy (2), (3), (5), and (B). These necessary conditions can be
generated by means of the Hamiltonian

H=f(t, x,u) + Ng(t, x, u).
Then (2) and (5) result from
x' = aH/a\, XN =-0H/dx.
Conditions (8) can be generated by maximizing £ subject to (3); this is an

ordinary nonlinear programming probiem in u.
Solve

max H=f+xg (9)
subject to asu=b

by appending the constraints to the objective with multipliers w,. w,. The
Lagrangian for (9) is (see Section A6)

L=f(s, x.u) +xg(t.x,u) + wi(b—u) + wy(u— a), (10)
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from which we cbtain the necessary conditions for a constrained maximum
with respect to u:

dLjdu=f,+hg, -~ w +w,=0, (11)
w20, wi(b-u)=0, (12)
w, =0, wy(u-a)=0. (13)

Conditions (11)-(13) are equivalent to conditions (8) and constitute an
alternative statement of the requirement, as will be shown in Exercise 6. (If
w*(t) = a, then b — u* > 0, so (12) requires w, = 0; hence, from (11),
f.+ Mg, + w,=0. Since w, 20, we have f, + g, <0 if u*()=a.
This is the first instance in (8). One continues similarly for the other two
possibilities.)

Example 1. We solved our production planning problem
X T
min f (e, + ¢, x) dt
0

subjectte  x' =u, x(0)=0, x(T)=8, u(t)=z=0

in Section 6 and elsewhere in the case of B = ¢,T? /4¢,. f B < ¢,T?/dc,,
that plan is not feasible and explicit account must be taken of the nonnegativity
constraint # = 0, We now discuss this case.

This control #(¢) is to be chosen at each ¢ to minimize the Hamiltonian
H=cu*+c,x+hu, subjectto u =0,
The Lagrangian, with multiplier function w, is
L=cu’+c,x+ i — wu.

Necessary conditions for u to be minimizing (see Exercise 1) are

8L /3u=2cu+A-w=0, (14)
w20, u=0, wu=0, (15)

Further,

N=-8H/dx= —c,,
0 that

Mty =k, — ¢yt (16)
for some constant k,. Substituting from (16) into (14) and rearranging gives
u(t) = {w—=N)/2¢c, = (c;1 — kg + w)/2¢,. (17)

To solve, we make a conjecture about the structure of the solution and then
seek a path with this structure satisfying the conditions. Since the time span 7
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is long relative to the amount B to be produced, we guess that there is an
initial period, say 0 =< f =< ¢* (for some ¢* to be determined), with no
production or inventory. Production begins at 7*. Thus our hypothesis is

u(t) =0, O0=<t<r*,
w(t) >0, t*=r=sT, (18)

for some t* to be determined.
When u(t) = 0, we have from (17)

w(t) =k, —ct=0, O0=t<t* (19)

Nonnegativity in (19) is required by (15). From (19), w(?) decreases on
0 = ¢ < t*, so nonnegativity is assured provided

ko — c,t* = 0. {20)
When u(¢) > 0, (15) implies w(¢) = 0. Then from (17)
u(t) = (et — kg)/2¢, 20, *=t=<T. (21)

Since u(#) increases after ¢*, u(t) = 0 for 1* = ¢ < T provided that u(¢*) =
(eyt* — ky)/2¢, = 0. This requirement and (20) together imply that

ky = o, t*. (22)
Hypothesis (18) now takes the more concrete form
u(t) =0, Ost<r,
u(ty = ¢,(t — %) 2¢,, t"=st=<T. (23)
Recalling that 1 = x’ and integrating yields
x() =0, O=t<1t”,
x(1) = ¢yt ~ *)*Jde,, t*st=T. (24)

The constants of integration were evaluated using the final condition x(0) = 0
and the required continuity of x (so x(¢*} = 0). Finally, combining (24) with
the terminal condition x{T) = B gives

™ =T=2(c,B/c,)'". (25)

With a distant delivery date T, the duration of the production period T — *
varies directly with ¢, B/c,; it increases with the amount to be produced and
the production cost coefficient ¢, and decreases with the unit holding cost ¢;.

It is precisely the period obtained under the supposition that production had 10 ;
begin immediately but that the delivery date T could be chosen optimally; se¢ 3

Example 19.1.
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ut)

truncated {26)

— optimal

/‘| 5 ) T f
BIT —)Ti4e,

Figure 10.1

In sum, the solution is given in the accompanying table, where ¢* is given
by ‘(25). Extending our sufficiency theorem to cover a constrained control
region shows the solution tabulated to be optimal (see Section 15).

0= t<t* f=t=T
u(1) 0 e, (t — 1%)/2¢,
x(t) 0 oyt — 1% fae,
NP o(1* = f) ot -0
w(?) (" — 1) 0

Observe that the solution could 707 be obtained by taking the solution to the
unconstrained problem

u(t) = (2t — T)/4e, + B/ T (26)

and deleting the nonfeasible portion! Taking this solution, appropriate only if
B = c,T?/4c,, and setting u = O whenever it dictates 1 < 0 does not provide
the optimal solution. This is algebraically clear and is also illustrated graphi-
cally in Figure 10.1 where , = T/2 ~ 2¢,B/c,T, t, =24 =T-
4c,B/c,t, and 1* is given in (25).

in Figure 10.1, the “*solution’’ (26} begins with ¥ < 0 and reaches u = 0 at
?,- Since output is negative for 0 < ¢ < f,, inventory is likewise negative.
Production from {, until 7, is devoted to driving inventory back up to zero!
Production from 1, until T fulfills the total delivery requirement B, If
Production were to begin at ¢, and follow the truncated path, a total of B

Wﬁulfi be produced but costs would be needlessly high. The cost minimizing
Plan is reflected in the optimal path.
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Example 2. Machine Maintenance and Sale Date.

A functioning machine yields a constant revenue R > 0, net of all costs
except for machine maintenance. This revenue flow ceases when the machine
stops functioning or is sold. Its age at failure is stochastic. Preventative
maintenance reduces the probability of failure by any age. A failed machine is
wotthless. If the machine is still working at age ¢, its salvage or resale value is
S(7). We assume that S’(¢) < 0 and that S(t) < R /r, where r is the discount
rate. Thus, the salvage value is less than the discounted revenue stream that a
hypothetically infinite-lived machine could produce.

Let F(¢) denote the probability that the machine will fail by age ¢. The
probability of failure at any time, given survival to that time, depends on
current maintenance #(f) and on a “‘natural’’ failure rate A(#) that governs in
the absence of maintenance and increases with machine age. Specifically F(#)
satisfies the differential equation

F() = [1 - u()]r(}[1 - F(6)].  R(0) =0, (27)
where A(t) is a known function satisfying
wyz=0, K(t)=0.

This means that the instantaneous probability density of failure at #, given
survival to ¢, does not depend on the maintenance history, but only on the
current maintenance effort. (Of course the probability of survival to ¢ does
depend on the maintenance history.}

F(&)=1- exp(—/;[l — u(s)] A(s) ds|.

The maintenance rate #(f) is bounded:
O=u(t)=1. (28)

If u = 0 is selected, then the failure rate F"/(1 — F) assumes its natural value
h(1). If u = 1, the failure rate will be zero. Maintenance cost is M(u)h
where M(u) is a known function satisfying

M@©) =0, M(u)>0, M{u)>0 for 0su=<l. (29)

The discounted expected profit from the machine is

fOTe—"[R = M{u(O)A(O][1 = F()] de + e~ TS(T)[1 - F(T)].
(30)

We seck a maintenance policy & and sale date T to maximize (30) subject 1@

(27) and (28). The control is u; the state is F.
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The current value Hamiltonian is
H=[R—M(u)h|(1 - F) + N1 = u}h(1 ~ F) + w,u + w,(1 - u),

where A is the current value multiplier associated with (27). An optimal
maintenance policy «* must maximize H at each age 1,0 =<t = T, where A
satisfies

X =rN—Hp=r\+R - M{u)h + N1 - u)h. (31)

Since F(T') and T are to be chosen optimally, transversality conditions (7.d.i)
and (7.d.v), respectively, apply. The salvage term corresponding to ¢ is

#(F(T),T) = e 7S(T)[1 - F(T)]
where the state variable is F and terminal time is 7. Since
$¢(F.T) = —e~TS(T),
#2(F.T) = e T[1 = F(D)][$(T) - rS(T)],
application of (7.d.i) to this problem gives

NT) = -S8(T), (32)
and (7.d.v) yields
H(T) = [rS(T) - $(T)|[1 - F(T)]. (33)
We have
H,= —h(1 - F)[M'(u) + N + w, — w, = 0,
w20, w20, wu=0, wi(l-u)=0, (34)
so from (34) and (29),
if M'(0) + A1) >0,
then select w*(1) =0, w, =0;
if M'(1) + N1) <0,
then * (33)
select w*(r) =1, w, =0;
otherwise select u™*(r)

to satisfy M'(u) + N¢) =0, w, = w, = 0.

Si_nc§ the functional forms of M and A have not been specified, we can only
Qualntatively characterize the optimal solution. Define

Q1) = M'(u(1)) + Mr1).
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On an interval of time during which 0 < #* < 1, we have O(¢) = 0. Since Q
is constant, Q'(f) = 0. Therefore

O'(t) = M (u)u’ + X
=M"(u)u' + [r+ (1 — w)h]AN+ R — M{u)h
= M"(u)u' — M'(u)[r+ (1 - u)h] + R — M(u)h =0,

where we have used (31) to eliminate X and then used Q(¢) = 0 to eliminate
M. The last equation may be rearranged to find that the optimal maintenance
policy satisfies

M (u)u' = M'(u)[r+ (1 - u)h] - R+ M(u)h (36)

whenever the bounds of (28) are net tight. Since M” > O by assumption, the
sign #' is the same as the sign of the right side of (36).

It will facilitate our study of & to consider first the locus of points (A, )
such that &’ = 0 would be obtained. Such points satisfy

M(u)[r+ (1 — uyh] - R+ M(u)h = 0. (37)

The shape of the locus may be discerned by differentiating (37) implicitly to
get

dujdh= —[M+ (1 —u)M]/[r+ (1 - u)h]M” < 0.

The negativity follows by inspection, using the assumed properties of M. The
intercepts of the locus (&, ¥} for which &’ = 0 are also obtainable from (37).
This is illustrated in Figure 10.2.

Next, we seek the direction of movement of a trajectory (A, u) through time
where h is a given function and u obeys the differential equation (36). We
know that A is nondecreasing; hence, the rightward pointing arrow in Figure

10.2. Further, since the right side of (36} is an increasing function of #, a path

at a point above the ¥’ = 0 locus will rise and a path at a point below it will
fall. The arrows in Figure 10.2 illustrate these facts.

u=M1RIN

h=RM(O)—r
Figure 10.2

Section 10, Bounded Controls 193

Figure 10.2 differs from those drawn earlier. Since the state variable is
absent from (36), we were able to include the nonautonomous exogenous
function A(#) in the diagram.

Substitute from (32) into (33) using the definition of H to get

R-M(u)h—[r+(1-u)hlS=-8S =20 a T. (38)

At the time of sale, the excess of the value obtained by keeping the machine a
little longer over the value of selling it should be no less than the loss in resale
value from postponing sale slightly.

We can now show that the optimal maintenance policy involves w'(f) < 0,
0=<t=7T, in every case. (But the actual expenditure M{u)h may either
increase or decrease through time since 2 = 0.) If 0 < u(T) < 1, then
Q(T) =10, so0 XT) = =M (u(T)) = —S8(T). Substituting this into (38) and
recalling (36), we obtain #(T) =< 0. From Figure 10.2, if #'(T) = 0, then u
must be nonincreasing throughout (0, T). It is likewise clear from the figure
that # is nonincreasing throughout in case w(T) = 0.

Finally, soppose u(7) = 1. Let ¢, be the first moment that ¥ = 1. From
(31} and (32), we get

Nt) = - /{Te_’“_"[R — M(1)h(s)] ds — e="T7O8(T), 1, =1=T.

Replace A(t) by its upper bound A(T) for 0 = t = T, so that
Ni)= -(1—e " T2)[R~MW}A(TY]/r - e T-98(T).
Then, since Q = M’ + A,
QU =M (1) - (1 - e " TR - M(W)}A(T)]/r — e "T=8(T).
From (35) and (32),
M(1) + MT) =M{1) - S(T) <0;
therefore
M(1) < §(T).
Replacing M’(1) by its upper bound finally gives
Q)= (1 -7 r$(T) - R+ M()A(T)}/r<0. 1=tsT,
where the second inequality follows from (38). In particular, QU < 0.
Therefore, there can be no period of & < 1 ending at ¢, (since Q(f,) = 0 in

that case). This means that ¥ = | for 0 < 7 < T in case &(7T) = 1. Thus u is
4 nonincreasing function of machine age in every case.
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EXERCISES

1.

6.

Find necessary conditions for solution of the problem

i
min ] If(!, x,u}dt
fo
subjectto X" = g{f, x,u), x(1,) =x,, alt) =u(t) = b(t).
Find the control function #(f) that solves
2
max f (2x —3u—u')dr
)}
subjectic X' =x+u, 0=u=2, x(0)=35 x(2)free,
Provide an interpretation for the result that M *) = 0 in the solution of Example 1.
An individuat’s earnings are proportional to the product of his ‘*human capital™
K (1) and the fraction of his time, 1 — (), spent working. Human capital decays
at a constant proportionate rate b and grows with investment, an increasing
concave function of capital and the proportion of time s(¢) devoted to education.

Discuss the optimal study-work program to maximize the discounted earnings
over a known remaining lifetime 7

T
max /e"”(l—s)Kdt
0
subjectto K = A(sK)" — bK, K(0)=K,>0, O0=s=<],
where A >0, 0<a<l1, b=0.

Reconsider Example 2 in the case in which a failed machine is worth a positive
constant junk value.

Show that conditions {11)-{13) are equivalent to conditions (8).

FURTHER READING

Example 2 is discussed by Kamien and Schwartz (1971b). See Ben-Porath and Haley .
for analysis of Exercise 4, as well as Blinder and Weiss; Heckman; Ryder, Stafford and
Stephan; Southwick and Zionts. Another paper with bounded controls is by Aarrestad. 1

Section 11

Further Control Constraint

The effects of constraints on the controls, depending on ¢ and x, will now be
examined in a problem with several states and controls. Feasible controls may
be interrelated. For example, if one wishes to divide a single resource among
three uses, ome can let u,, i = 1,2, be the share in the ith use, and
I — u, — u, will then be the share in the third use. For each share to be
nonnegative, we stipulate that

u, =0, u, = 0, - u —u, =0,

In general, control constraints that do not depend on the current state can be
written

(e, u(s),...,u,() =0, j=1,...,p, (1)

where the functions A ; are assumed continuously differentiable. Note that (1)
encompasses equality constraints since

h; 20 and —-h; 20 imply h; = 0.

I Consider an optimal control problem with a single constraint of the form in
)

max /flf(r,x, u) dt (2)
subjectto  x; =g (1, x.u), i=1,....n (3)
h(t, u) =0, (4)
x(ty) = x,, (5)
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where x = [x,,..., x,]Jand u = [u,, ..., u,]. Without incorporating (4) at
this point, append (3} with a vector of continuous functions A = [, ..., A,]
to the objective J:

n "
J= f !f(t, x,u)+ Y )\,-[g,-(r, X, u) — x4y dt.
Iy i=1
Integrate by parts and compute the variation, taking into account (5):
t
8J = / T(fe+ g, + X) - 8x+ (f, + Ag,)] dr — N 8x, < 0. (6)
o

Let x and # solve (2)-(5); then 8/ < 0 at x, n, as indicated. Choose A ()
to satisfy

’k=_(3f/axk+ i}\fagf/axk), k=1,...,n, (7)
i=1

MN(g) =0, k=1,...,n, (8)
where x and # are optimal. In view of (7) and (8), (6) reduces to
M n 1
&J = 3 (af/auj+ Z}\,-Bg,-/auj) du; dt <0, (9) 3
to J=1 i=1 E

so at each f, the optimal x, # must satisfy

i3 "
> (af/au,. + > )\,.ag,./au,.) Su; <0 (10)
i=1 i=1
for all feasible modifications [8u,, . . ., du,,). When A(f, u,,..., u,) > 0in :

an optimal solution, then feasible modifications du;, j = 1,..., m, may have

any sign, so that

affou, + Y Nog /ou; =0 at ¢ if hA(t,u, ..., u,)>0
i=1

in the controls are those that do not reduce the value of A. This means that

dh =3 (3h/du,)du, =0 (12) 4
i=1 1

is required. Hence (10) must be satisfied at the optimal x, u# for alt 's
[8%,,....6u,] that obey (12). We assume A satisfies a regularity condition :

(11) E

is necessary. If, however, (¢, u,, ..., u,) = 0, then feasible modifications
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so that only feasible modifications satisfy (12). Applying Farkas’ lemma (see
Section AG) to the statement that **(10) holds for all [buy,...,du,] that obey
(12),” indicates that an equivalent statement is *‘there is a function w(z) = 0
such that

H
affdu;+ 3 N3g; /du,+ wah/du; =0, j=1,...,m, (13)
=1

I

whenever A(¢, u,,...,u,) = 0."" Cases (11) and (13) can be combined into
n

afjdu; + Z)xiag,-/auj+wah/au_,-=0, J=1,...,m, (14)
i=1

w0, wh =0, (15)

for fy = { = t,. When A > 0, (15) assures that w = 0 and then (14) yields the
requirement of (11). Otherwise (14)-(15) imply satisfaction of (13).

In sum, necessary conditions for x, # to solve (2)-(5) are that x, u satisfy
(3)-(5) and that there are continuous functions N¢) = [AL....%,] and a
function w(f) such that x, u, A, satisfy (7), (8), (14), and (15). Conditions
(14) and (15) are obtained by maximizing H = f + 3718, subject to (4);
the Lagrange multiplier is w. Form the Lagrangian

L=f+ _Z)\,.g,.+wh

i=1

and compute

Ne= —0L/dx, = —|8f/ax, + 3 Ndg, /oax, |,

i=1

M) =0, k=1,...,n

oL /3u; = affou, + 3y Nag;/du;+ wdh/ou, =0, Jj=1,....m
i=1

A regularity condition or constraint qualification that must hold is discussed at

the end of this section.

If constraint (4) were replaced by (1), then there would be a multiplier
W; 2 0 associated with each, along with the requirement that w;h; = 0 at each
I, 1, < t < t,. The necessary conditions can be found as above, considering
lhe‘ admissible modifications [8u,,. .., 8u,,] that preserve adherence to (1)
(using Farkas’ lemma). Alternatively, each constraint of (1) may be appended
o J by a multiplier w; = 0 and then computing 6J < 0, and so on. The
restriction wih; = 0 is also needed.

The admissible controls may depend on the state. For instance, the amount
of resource to be allocated among several uses (controls) may be bounded by

the amount available (state). In general, the admissible control region at ¢ may
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be described by
hj(t,xl,....xn,u,,.‘.,um)20, j=1_...p, (16)

where the functions A, are assumed to be continuously differentiable. In this
case, (16) must be incorporated into J for the impact of modifications in the
state variables on the feasible control region to be reflected in the multipliers
) VP W

We now develop necessary conditions obeyed by a solution to

4
max / F(¢, x(e), u(t)) dt (17)
fH
subjectto  x; = g, (¢, x(#), a(t)), i=1,...,n, (18)
mit, x(t),u(t)) =0, j=1,...,p, (16} j
xf(tﬂ) :xi’O! f= 1!"'1"9 (19)
where x = [x,,..., X,] and & = [4, ..., &,]. It is assumed that for every 4

attainable (¢, x), there exists a control function # that satisfies (16). It is also ':'
assumed that the constraints (16) satisfy a regularity condition or constraint 3

qualification along the optimal path, to be discussed later.
Let J denote (17); append (18) with differentiable multipliers A{?), /=
1,...,n, and (16) with multipliers w;(#), j=1,.... P, that satisfy

w; 20, wh; =0, ty=st=<t,. (20)

Then

n " P
S+ Z Ngi - Z ANx; + > wih; | dt.
i=1 i=1 i=1

4
7=

fo

Integration by parts gives
'rl
sz (f+N-g+ N x+w-h)dt-A-x|, +Nx[,,
L
where

A=[MeN] g=(an 24
w=[w,...,w]. hz[h,,.”,hp].

Compute the variation, taking notice of (19):

fH
6J = f [(fx+kgx+x+whx)-6x+ (fu"'}\gu"'“’hu)'ﬁu]dt
ia

—\-dx, 0. (21) 4
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The variation (21) must be nonnegative at the optimal x, #. Choose the
multipliers A so that the coefficients of each §x, will be zero:

n P
N, = - (af/axk + S Nndg /ax + Y wjahj/axk), (22)
i=1 i=1

MNe(ty) = 0. (23)

Now (21) reduces to

;o m 7 P
8J = / kz (Bf/auk + D NOg [Bu, + 3, wydh;/ou,| bu, dr,
f{ k=1 i=1 i=1
(23)
which must be nonnegative for all feasible modifications éu,, ..., éu,,. Since

all the constraints are incorporated into J, this implies

n P
af/Bu, + X NOg, [ou, + 3w dh /du, =0, k=1,...,m.
i=1 i=1

(25)
The necessary conditions for x,,..., x,, #,,..., 4, to solve (16)-(19) are
that there are continuous functions XA, ..., A, and functions w, .. ., W, such

tbat (16), (18)-(20), (22), (23), and (25) are obeyed. At each ¢, the Hamilto-
nian is maximized with respect to u, subject to (16). Two of these conditions
can be generated from the Lagrangian

L=f+ il}\,-g,-+ Ep:] wih,.
i= =
Then J
aL/du, =0, j=1,....m, yields (25);
X.= —dL/dx,, k=1,....n,  yields(22).

Note that whenever h; > 0, we have w; = 0 and the terms involving partial
derivatives of & ; have no impact. However, whenever the jth constraint of
(16) is tight, choice of control variables is restricted to maintain feasibility.
Thﬁf multipliers A(#) give the marginal valuation of the corresponding state
vanable x; at f. Note that (22) reflect not only the direct effect of changes in
X; on the current reward f and on the state changes through g,,.... g,. but
also the effect of changes in x, on the control region through k., ..., k.

_Since the Kuhn-Tucker theorem has been used in maximizing the Hamilto-
Man, a constraint qualification of Kuhn-Tucker theory is needed (review
Section A6.) Any of the Kuhn-Tucker constraint qualifications will do. For
Instance, it will be satisfied if all the functions k& are concave in « and the set
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of u, satisfying (16) has a nonempty interior. It is satisfied if the matrix of
partial derivatives of active constraints in (16) with respect to the controls has
rank equal to the number of active constraints (which in turn does not exceed

m),
Constraints on the state space alone (without any component of u) cannot

be studied in the way just suggested. At each time f, there must be a way of
insuring feasibility, which means choice of u. State space constraints will be
discussed in Section 17.

EXERCISES

1.

Follow the procedure suggested at the beginning of this section and use Farkas’
lemma to find necessary conditions for an optimal solution of (1)-(3) and (5).
Find necessary conditions for an optimal solution to (2), subject to (3), (5), and
hi(t, )20, j=1,...,p -1,
hi(t,u) =0, i=pLp+ 1.0
Show that w;, j = p,, ..., p,, may be of any sign. [Hint: Recall that an equality

can be written as two inequalitics. ]

Find necessary conditions for an optimal selution to

min f’f(r, x, u) dt

L

subjectto  x* =g(t, x,u), h(z,u) <0, x(1)=0.

A firm’s investment must be self-financed, that is, paid from current revenues. Let ;
R(K) be the net revenue earned from a stock of capital K. Let C([) be the cost of §
investing at rate /. Assume R’ >0, R” <0, " >0, C” > 0. Discuss the 1

optimal solution to
max f e "[R(K) - ¢(D)] ar
a
subjectto K’ =1—bK, K(0)=K,, 0=I=R(X).

Show that the first variation for

max, , . /Ilf(r, x,u)ydt + o(x(2,). 1)

i

subject 10 L=gdr,xou), i=1,....n,
h(t,x,u)z0, j=1,..., r,
x(t) = Xo,
x(t)=x4, i=1H...., g=n,

Ki(x(t).0) 20, k=1,....s,
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where x = [x,...,.x, ]l u=[u,...,u,l] is
n £
6J = (f+ 3 )\,-g,-) 8, + (a¢/a:, + 3 p aK,‘/a:.) 6t
i=1 f k=1
4 5
+ 3 (a¢/axf+ S b aK,(/ax,.n\,.) 8x,
i=g+1 k=1

k=1

2n

f " n r
+/ [ 3 (af/axk + 3 N3G Ax N+ Y wj&hj/axk) dx,
i=1 j=1
g

+ 3

k=1

L
(affauk + 3 N g /ou, +
i=t

r

3w ah,/ou,
i=1

o]



Section 12

Discontinuous and Bang-Bang Control

The continuity requirement on the control can be relaxed. Admissible controls j:?_
are now piecewise continuous functions of time. This means that the control [
will be continuous, except possibly at a finite number of points of time. Any f
discontinuity involves a finite jump. The state variable x, the multiplier §
function A, and the Hamiltonian H must (still) be continuous, regardiess of

discontinuity in u.
Discontinuities in « correspond to corners in x in the calculus of variations.
Recall from Section I13 that if the solution x(¢) to

]
optimize f F(t, x, x') dt

fo
has comers, the functions

F

e

and F-x'F,

must nonetheless be continuous. To see what this means in the optimal control 3

format, rewrite the problem

i
optimize / F(t, x,u)dt
&

subject to x' = u.

The Hamiltonian is
H=F+ .
Then
H,=F, +x=0, so A= —F_..

PR Tt
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Thus continuity of A throughout corresponds to continuity of F,.. Further-
more, substituting this expression for A into H gives, since x* = u,

H=F—-Xx'F,.
Thus, continvity of H corresponds to the second corner condition.

The solution to a problem that is linear in ¥ frequently involves discontinu-
ities in the control. Consider

max /rfl[F(t, x) + uf(t, x)] a (1}
subjectto  x* = G(r, x) + ug(t, x), (2)
x{0) = xo, (3)
asu=x<b. 4)

The Hamiltonian is

H=F(t,x) + uf(s, x) + NG(¢t, x) + hug(¢, x)

=F+ MG+ (f+Ng)u. (5)
The necessary conditions include
N = —aH/dx, (6)
a <
w=1t7? whenever f + )\g{ = }0. (7
b >

If £+ Ag = 0 cannot be sustained over an interval of time, then the control is
““bang bang’’; it is at its minimum level while its coefficient in H is negative
a_nd is at its maximum level when its coefficient in A is positive. Alterna-
tively, one could write the Lagrangian

L=H+wiu—a)+ w,(b-u)
with necessary conditions (6) and

Lu2f+Ag+w1_w2=0a w1209 w](u_a)=

Of course, (7) and (7") are equivalent conditions.

I'_:Xllmple 1. A particle starts at a given point x,, and can move along a straight
]mi“ at an acceleration that can be controlled within limits. Let x(#} denote its
Position at 7. Then x"(¢) = u, x(0) = X, where u is constrained to obey
“} = u < 1. The problem is to choose u so the particle comes to fest
(X" = 0) at the origin (x = () as quickly as possible. Let x, = x, x, = x".
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Then the problem can be stated

T
min,, 5 / dt
D

subjectto x| =x,, X%{0)=x, Xx(T)=0,
X, =u, x(0)=0, x(T)=0,
—l=u=x1 (i.e.,u—150and—u—1$0).
Associate A; with x,. The Lagrangian is
L=1+Nx,+Mu+w(u—1)— w(u+1).
An optimal solution satisfies
dL/Bu=7N+w, —w,=0 (8)
where
w, 20, wl(u-1)=0,
w, 20, wyu+1)=0
N = —3dL/3dx, =0, (9)
N, = —aL/dx, = —A,. (10)

Also, since the terminal time is free,

L(T)=0. (11)

Indeed, since the problem is autonomous, L = O throughout {0, 7].

Conditions (8) imply either A, > 0, in which case w, > 0and ¥ = —1, or
A, < 0, in which case w, > 0 and ¥ = 1. Thus, # = —1 when )\2>Oand :

# = 1 when A, < 0. From (9), N, is constant. Integrating (10) then gives

M) = =N+ e (12) i

Since M, is a linear function of ¢, it changes sign at most once. But since the
value w depends on the sign of A,, this means u changes value (switches) at

most onhce.

The control & is not determined from (8) if A, = 0, but A, = 0 for, at most, ':
an instant. To see this, suppose A, = 0 for an interval of time. Then, from §

(12), N, = 0 and therefore H =1+ 0+ 0 =0, which contradicts (11).
Thus, {8) determines u for all 7, except possibly a single moment of switching.

During an interval of time in which u = 1, x, u=1,sothat x, =1+ §
Co- Hence xj =X, =1+ ¢y, so that x, = /2 4 ¢yt + ¢, Substituting ]

t = x; — ¢, we obtain

x, = (x; - "-'0)2/2 +co(xy =€) + 6y = X3/2+ ¢,
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E¥]

Xp X\

switching curve

Figure 12.1
where ¢, = —c} /2 + ¢,. The optimal path is a parabola in the X,-X; plane
when # =1, When u = -1, x4 = — 1, which implies X, = —1 + ¢;, and
X} =X, = —{ + ¢, which gives x, = —(t — ;)*/2 + ¢, = ~x2 /2 +c,.

The two parabolas passing through x, = x, =0 are x, = x? /2 and x, =
—x3 /2. The final portion of the path must be along one of these two curves.
The solution consists of at most two portions since # changes value at most
once. In Figure 12.1, follow the parabola from the initial point to one of the
two parabolas passing through the origin; then follow the parabola to the
origin.

The parabolas with x, increasing correspond to solutions with x} = u = 1
> 0, while the parabolas with downward-pointing arrows correspond to x4 =
#= —1<0 (recall the problem formulation). The heavily marked path
indicates an optimal solution from initial position (x,, 0). The optimal solution
involves maximum acceleration for half the distance to the origin and then

maximum deceleration for the remaining distance to bring the particle to rest at
the origin.

Example 2. A good produced at rate x(f) can either be reinvested to expand

Productive capacity or sold. Productive capacity grows at the reinvestment

rate. What fraction &(¢) of the output at time 7 should be reinvested to

maximize total sales over the fixed period [0,T)? The initial capacity is c.
With the definitions provided, we seek to

max /T[l - u(1)] x(2) dt (13}
0
subjectto  x'(r} = u(£)x(r), x{(0) =c >0, (14)
O=<u(t)=<1.

The Lagrangian is
L=(1-u)x+xux+ wil—u)+wu.
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An optimal solution satisfies

L,=x(A—1)+w,—w, =0, (15)
w, = 0, w, = 0, w,(l —u) =0, w,u =0, (16)
N=—-L,=u-1-uh (17)
NT) = 0. (18)

Since x(0) > 0 and x’ = 0, x > 0 throughout; therefore, from (15-(17
Either A > 1 and u=1, 50 N = —X,
or A<l and =0, so XN=-1 (19)

This means  is decreasing over 0 < ¢t < T. Furthermore, by (18), it is zero at
T. Thus, there is a final interval ¢* = ¢ < T during which A< 1, ¥ =0,
¥ = —1, and then x’ = 0. Hence

u(1) =0,
N =T-1, t*=<r=T. (20)
x(t) = x(t*),
The time ¢* is such that N¢*) = 1; that is,
*=T-1 (21)

provided 7 = 1. If T = 1, then the solution is given by (20) with t*=0.
If T> 1, then there is an initial interval 0 < = T — 1 during which

A>1l,u=1 ¥ = -\ x' = x. Using x(0) = c and the required continuity
of xand hat ¢* = T — | gives
u(t) = 1,
ANt) =exp(T—1t-1), 0<st<T-1. (22)
x(t) = ce’,
Values of w, and w, are found from (15) and (16), using COH-22).f T= 1,
then
w{t)=0, wy()=ec(l-T+r), O0=t=sT-1. (23)
If T> 1, then
wl(r)={ce'[exp(T—t—l)—l], 0=<1<T-1,
0, T-1=<t=<T,
0 O0=r<T-1
= * M 4
w2{1) [c(l—T—i—!)exp(T—l), T-1=t=<T. (24)

These functions satisfy the nonnegativity conditions. In this problem, they
happen to be continuous but centinuity of the w, is not required.
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A e x(1)

[

T—1 T ¢t T—1 7T ¢ T-1T +
Figure 12.2

If the planning horizon is short, then it is optimal to sell all the output.
Otherwise, it is optimal to reinvest all the output until + = 7 — 1, building

capacity at the maximal rate, and thereafter sell all the cutput. (See Figure
12.2)

EXERCISES
1.

T
max f e {1 — u)xdt
0

subjectto X' = ux, Xx(0)=x,>0, O0=wu=xl.

2,
2
max / (2x - 3u) dt
0
subjectto x' =x+wu, 0=<u=x2, x(0)=35, x(2)free.
3. Repeat Exercise 2, replacing *‘max’" by “‘min."’
4.
T
max f (x—u)dt
0
subject to ' =u, 0=u=xx,
x(0) = x; given, x{T) free, T given.
5.

|
min / (2 - 5N ude
0
subjectto  x' =2x + 4te*'u, x(0) =0, x(1)=e', —-l=u=l.

6. The revenue px(/) that a machine earns at any time 7 is proportional to its quality
Xx(t}. The quality decays at a constant proportionate rate & but can be enhanced by
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expenditure #(r) on maintenance. The machine will be sold at a predetermined
time T; the sales price is proportional to its quality. Find the maintenance policy
(), 0=r=T, to

max /Ore_”[px(r) - u(f)] dt + e " Tsx(T)

subjectto  x' =w — bx, O=wu=<i, x(0)=ux,

where 5 < 1 < p/(r + b). Also interpret the stated inequalities.

7. Reconsider Exercise 10.4 incase ¢ = 1 and b = 0.

FURTHER READING

Example | is drawn from Pontryagin, who also gives several related examples. These
examples are given as well in Bryson and Ho and in Lee and Markus. Example 2 is
from Berkovitz. See Thompson and Bensoussan, Hurst, Naslund for maintenance
problems related to the one in Exercise 6. See Ijiri and Thompson for another
application of bang-bang control. Exercise 5 is from Hestenes. Arvan and Moses
provide a more recent, novel application of a bang-bang control.

Section 13

Singular Solutions and Most Rapid
Approach Paths

SINGULAR SOLUTIONS

In the examples of Section 12, the Hamiltonian was linear in the control u.
The coefficient # in the Hamiltonian could be equal to zero only for isolated
instants. In other problems, the coefficient of & in H is equal to zero over
some period of time. During such periods, the control does not affect the
Hamiltonian, and therefore, the choice of # is not determined in the usual
way. In these cases, the value of u is said to be singuler. One can usually
manipulate the various other conditions to determine the valuve of the control,

In the notation of (12.1)-(12.7), if S+ Ag =0, then the value of u is not
apparent. It clearly cannot be chosen to maximize H, since in this case the
value of H is independent of the value of u. However, if f+ Ag = D over a
period of time, this fact may often be used to advantage,

Example 1. The altitude of the land is given by the differentiable function
Y(#), 0 < t=<7T. Find the altitude x(z) at which to build a road over
0 <1 < T 50 that the grade never exceeds |a| = 0 and the total cost

/‘)T[X(f) — p(1)]* a1 (1)

15 r_nininﬂzed. The cost at each 7 accumulates with the square of the amount of
filling or excavation needed.
The constraint can be written

X =u, - a<u=a,. (2)
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The Lagrangian is
L= —(x-yY+r+wia-u)+wlu+a),
50 the optimal solution satisfies
Ly=Xx-w +w,=0, w =0, wlae—-u)=0,
w20, wyu+a)=0; (3)
—H,=2(x-y); (4)
NT) = 0. (5)

N
N0)

il

Transversality conditions (5) hold since the height of the road at the endpoints
is not specified. Combining (4} and (5) gives

i) = 2 /0 Tx(s) = »(s)] ds. (6)

/:[ x(s) — y(s)] ds = 0. (M

Combining (3) and (6} indicates that there are three types of intervals;

a. u(t) = —a, [j[x(s) — y(s)] ds < 0;
b. x(t) = y(1), u(#) = y(t), fy[x(s) — y(s)]ds = 0;
c. u(ty=a, [jlx(s) - y(s)] ds > 0.

The optimal road consists of sections built along the terrain exactty and of
sections of maximum allowable grade.

These specifications are sufficient to determine the optimal road construction
uniquely. For instance, in Figure 13.1, ¢, and x(¢,) are determined by

fy T
/ [x(s) — ¥(s)] ds = 0, / [x(s) — »(s)] ds =0,
0 Iy
while in Figure 13.2, ¢, and ¢, are specified by

f!'[x(s) - y(s}] ds =0, fT[x(s) - y{(s)] ds = 0.
] i

Figure 13,1
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¥

Figure 13.2

Example 2. The firm’s problem of selecting investment 7 to

max /:e—"[p(r)f(x(:)) — e())1(1)] dt
subjectto K’ =1-bK, K(0)=K,, I>0,

where p(t) and c(¢) are given functions of time indicating the unit price of
output f(K) and of investment 7, has current value Hamiltonian

H=pf(K) - o+ m(I- bK).
Necessary conditions obeyed by a solution include

m(t) =c(t),  He)[e(r) - m(1)] =0, (8)
m' = (r+bym — pf'(K). (9}

The marginal value m of a unit of capital never exceeds its marginal cost ¢. If
the marginal value is less than the marginal cost, then no investment occurs.
On any interval that 7> 0, we have m=c¢ so m' = ¢, making these
substitutions into (9) gives the familiar rule for the optimal capital stock:

pf(K)y=(r+b)c—¢ while I>0 (10)

(review 15.2)). [ is selected to maintain (10), as long as that is feasible.
(Differentiate (10) totally with respect to £ to get an explicit equation involving
L) This is the singular solution.

To see what conditions hold while 7 = 0, collect terms in m in (9) and
integrate:

e~ m(1) = /me—(r+b)sp(s)f’(K(S]) ds, (11)

f

where we used the assumption that lim,_, e~ "*®"m(f) = 0 to evalvate the
constant of integration. Also, by the fundamental theorem of integral calculus,

e ie(t) = — [ [d(e+vue(s)) ] ds

[T e e by - s 12)
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Combining (8), (11), and (12) gives
f e‘('”’”[p(s)f'(K(s)) = {r+ b)c(s) + c’(s)] ds=0 (13)
]

with equality in case [ > 0. Therefore, capital is not acquired at any time that
the discounted stream of revenue produced by a marginal unit of capital is
insufficient to cover the corresponding discounted stream of ““user cost.”” Now
suppose that f(#) =0 on f <t =, with (¢} > O just prior to #, and
immediately after ¢,. Thus,

f e [ pf — (r+b)e+ ¢ ds=0 (14)
i
for t = ¢, and for ¢ = £,. It follows that

&
] e—(f+°3~°[pf’— (r+b)c+c|ds=0, Hhst=t, (15)

¢

with equality for t = 1.

Therefore the myopic rule (10), marginal cost = marginal benefit holds af
each moment ¢ of an interval on which I > 0. Furthermore, it holds on
average (taking f = ¢, in (15)) over an interval ¢, < ¢ < ¢, that 7 = 0. Over
an interval between investment periods, the integral of discounted cost of
capital employment equals the discounted marginal value of its product,

Example 3. The Vidaie-Wolfe Advertising Model.
Sethi’s formulation of the advertising model proposed by Vidale and Wolfe

is as follows. The total profit, excluding advertising cost, from industry sales
per unit time is P. The firm supplies a fraction x of industry sales and thereby
collects a gross profit of Px. Advertising expenditure u(r) affects its market 3§

share:
x'(t) = au(t)[1 - x(2)] - bx(1}).  x(0) = x,, (16)

where
0= u(t) <a. (17)
Parameter g reflects the efficacy of advertising in attracting sales. Sales are
lost to others at the constant proportionate rate b. The firm can affect the rate

of gain of new sales, but not the rate of loss of repeat sales. The profit, to be
maximized by choice of u(f) subject to (16) and (17), is

[ et - uo)] ar (19) |
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Let m be the current value multiplier associated with (16) and write the
current value Lagrangian

L =Px—u+mlau(l — x) — bx] + wu + wy(& ~ u)
= Px — mbx + u[ma(l — x) — 1] + wu+ w,(# — u).
Necessary conditions for solution inctude
m = (r+b+au)m- P, (19)
L/du=ma(l —x) -1+ w, —w, =0,
w20, wu=0 w20, w,(F-u)=0 (20)

u= [E] when ma(l — x)[ - ]1. (21)

<

Sethi gives the following solution:

I.If Pa<r+ b, then w= 0 for all .
O If Pa>r+ b and Pab < (r+ b+ att)(b + aif), then the steady
state,

x,= 1~ [r+ (r* + 4abP)"| j20P,
u,=bx /a(l — x,)

m.=1/a{l - x,),

can be attained and it should be approached as rapidly as possible by
selecting

u=

u <
ug whenever x(r){ = }xs.
o >

OI. If Pa>r+ b and Pab = (r + b + atiX( b + aii) then

”(’)=iﬁ if x(2)<1— (r+b+ai)/aP,
0 otherwise .

In Case I, the profit available is too low relative to the efficacy of
advertising, the rate of discounting, and the loss rate of repeat sales for any
advertising to be worthwhile, In Case II, advertising is worthwhile, and an
optimal state x is attained as rapidly as possible and maintained thereafter. In
Case IN, advertising is worthwhile but the ceiling on the advertising rate
prevents maintenance of the optimal share x..

It is left to the reader to verify the solution by checking that the conditions
(16}, (17), and (19)-(21) are satisfied in each case. How this solution was

'éeveloped in the first place is of more interest. We find the singular solution of
ase II.
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According to (21), adventising will be at either its lower or its upper bound
except when ma(l — x) = 1. Suppose this equation were to hold for some
interval of time. Since m(l — x) would be constant,

0=dm(l —x)/dt=m(l -x)—x'm.
Substitute for x’ from (16), for m’ from (19), and m = 1/a{l — x):
aP(1 -x) —r(1 —x) - b=0.

This quadratic equation in 1 — x has two solutions, but for it to be meaningful
only the positive root can be relevant:

1-x,=[r+(r?+4abP)'"| 20P. (22)
Since x, = 0 is also required for sense, we must have
Paz=r+b. (23)
Since x is constant over the interval being discussed,
m, = 1/a(l — x,) (24)
and, from (16), u satisfies
u, = bx,/a(l — x,) (25)
provided
u, <. (26)

It can be shown that (26) is equivalent to
{(ati + b + r}{ai + b) = abP. (27)

Thus, a singular solution can occur if (23) and (27) hold. Compare this with
Case II. The singular solution is given by (22), (24), and (25). The strong
inequalities of Case II assure the existence of projects with positive value and
with a steady state that can be achieved in finite time.

If x,; # x,, the singular solution will not be attained immediately. From
(21), the only other possibilities are # = #w or u = 0. If x5 < x,, then u = #
for 0 < ¢ = T, where T is to be determined. Solve differential equations (16)
and (19) with # = i, using boundary cenditions

x(0)=x,, m{)=m, x(T)=x,

to determine the two constants of integration and the unknown time T. The
first is given and the second and third are required by the continuity of the
multiplier m and the state x. Alternatively, if x, > x,, then put u =0,
0=<:t=<7T into (16) and (19) and solve with the same three boundary
conditions.
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Development of the other two cases is similar. Under some circumstance,
u = Ofor all # > 0 may be the solution. Put # = 0 into (16) and (19), yielding

x(t) = xge™ ¥, m(t) = P/(r+ b) + cet*59,
If (20) is to be satisfied, ¢ = 0. Now
ma(l — x) = Pa(l — x,e”*)/(r+b) <1 forall f20
is required for 4 = 0 to be optimal. This holds only if Pa/(r + b) < 1. This

is Case L

MOST RAPID APPROACH PATHS

There is a class of autonomous problems with one state variable and one
control in which the optimal solution is to approach some stationary level of
the state variable as fast as possible. This is called a most rapid approach path

(MRAP) (recall Section 116). This class consists of problems that can be
written as

max /:e—"[P(x) + Q(x)f(x, u)] ar (28)
subjectto X’ = F(x} + G(x)f(x,u), x(0)=x,,  (29)
a(x) = u < b(x). (30)

This problem may, but need not, be linear in #. Constraint (29) can be used to
eliminate f(x, 4} (and hence ) from (28):

max /Ome_”[M(x) + N(x)x'] dt (31)
subjectto  A(x) = x’ < B(x), (32)

where (32} is the constraint on x’ corresponding to constraint (30) on u. The
problem (31) and (32) has been discussed in Section 116.

Examples 1 and 2 are not autonomous and therefore the MRAP does not
apply 1o them. However, Example 3 is amenable to solution by means of
MRAP. Use (16) to eliminate » from (19):

fme‘”[Px — (x"+ bx)/a(l - x)] dr.

In the notation of (31), M(x) = Px — bx/a(l — x) and N(x) = — 1/a(l -
X}, so that

M(x) +rN(x) =P - bja(l - x}’ — r/a(l - x) = I{x).
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Since I(x)= —2bja(l —xy* —r/(1 —x)’a<0 and I(0)=P - (b +
ry/a, the equation J(x)} = 0 has a unique solution, x,, in the interval
0<x=<l,

1-x,= [r + (r* + 4abP)”2] /2aP,

if and only if (23) holds. Hence, if (23) holds, set # = & until x, is attained
and then put ¥ = u, = bx, /(1 — x,) to maintain x, thereafter. One can show
that x, < X implies #, < #, so the policy just given is feasible provided
x, < X.

Similarly, if x> x,> 0 and X > x,, then put # =0 until x = x, is
attained (MRAP) and then set & = u, thereafter. Again X > x, implies
i > u, and therefore the policy is feasible,

If (23) does not hold, then f(x) < 0 for all 0 = x = 1 and profit is too low
for any advertising to be worthwhile. M{x) + rN(x) is maximized by x = 0,
so one should set # = 0 for all ¢.

EXERCISES

1. Output f(k) produced with capital & may be consumed or reinvested. Capital
depreciates at proportionate rate b. The production function f{X) satisfies
JO)=0, s(k)y>0, f(k)<0, limg.gS(k) = ce.
The fraction of output saved and reinvested is s, so the fraction consumed is 1 — s.
Maximize the discounted stream of consumption over a fixed time period

max j:re_”(l - $)f (k) dt (i)
subjectto  k‘ = gf(k) - bk, k(0) =ky, k(T)=0, (ii)
O0=s=<l. (iii)

a. Find the optimal savings plan in the special case f{k) = k% where 0 < o < 1.

b. Discuss the optimal savings plan for the general case where f(Xk) is as specified
in the problem above.

¢. Reconsider the above questions in case T = <o,

2. A firm's owpe O = f(K, L) is a twice continuously differentiable concave
linearly homogeneous function of capital X and labor L. Revenue is an increasing
concave function R(Q) of output. The wage rate of labor is w. The cost of
investing in a unit of capital is ¢. Investment / must be nonnegative and cannot
exceed an upper bound 7. Capital depreciates at a constant proportionate rate b.
Characterize the plan K(r), I(7), L{r) that maximizes the discounted stream of
profits,

max /;me"”[R(f(K. L}) -l - wL] dt

subjectto K’ =1-bK, K(0)=K,. O0=si=</,

where b, ¢, and w are given positive constant.
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3. Suppose that [ = aR(f(K, L)) in Exercise 2, so that investment cannot exceed a
given proportion of sales revenue.

FURTHER READING

Example 1 is discussed by Pontryagin, Example 2 by Arrow (1968) and Nickell (1974),
and Example 3 by Sethi {1973). See alsa Section I16 and the references cited there.
Exercise 1 is worked by Varaiya. For further examples with bounded controls and
*‘averaging conditions'’ like Example 2 see Kamien and Schwartz (1977b) and Clark,
Clarke, and Munro,



Section 14

The Pontryagin Maximum Principle, Existence

The Pontryagin maximum principle is stated somewhat differently from our 3
usage. Qur version is correct only under more stringent conditions than have i5_
been fully stated. We shall set forth the Pontryagin maximum principle and
then note the differences between it and the version given in earlier solutions.

)

THE PROBLEM
Find a piecewise continuous control vector u(f) = [u(?), ..., #,(1)] and an
associated continuous and piecewise differentiable state vector x(f) =
[x,(t), ..., x,(1)], defined on the fixed time interval {1, £,]. that will
h E
max/ £(t, x(2)., u(t)) dt (1) ]

subject to the differential equations

i

initial conditions

x (1) = x5, i=1,...,n (X fixed), (3) :"

terminal conditions

x 1) = x4, i=1...., FL8
x, (1) = x;. i=p+1 v q (x4, I=1...., q fixed),
xi(!l)free' i=g+1, n,

x(6) = gt %(0).w(0), i=1.ooom, ® ]
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and control variable restriction

u(t)elU, Uagivensetin R”. (5)
We assume that f, g, 3f/3x;, and dg, /dx; are continuous functions of all
their arguments, forall i =1,...,nand j=1,..., n.

Theorem. In order that x*(1), w*(t) be optimal for the above problem, it
is necessary that there exist a constant N, and continuous functions
NI = (M), .., M), where forall 1, < t < t, we have (M, N1)) #
(0, 0) such that for every ty <t <1,

H(t, x*(1), u, M(8)) < H(z, x*(1), u*(1), A(n), (6)
where the Hamiltonian function H is defined by
H(t, x,u, M) = Nf(t. x,u) + 3 Ngt, x, u). (7)
i=1
Except at points of discontinuity of u*(t),
X{t) = —aH(1, x*(¢), u*(1), A(?7))/ax,, i=1,...,n (8)
Furthermore

=1 o A=0 (9)

and, finally, the following transversality conditions are satisfied:

N {,) no conditions, i=1,...,p,
M) =0 (=0if x}t))>x,) i=p+1,....q,
At =0, i=qg+1,...,n.

(10)

There are two types of differences between the above treatment and the
approximation in preceding sections. One concerns technical accuracy and the
other is stylistic.

We first take up the matter of technical accuracy. The variable X, in the
Hamiltonian in (7) is either O or 1 (see (9)). We have always taken =1
under the implicit supposition that the problem would have a solution in which
the objective matters. Yet, this supposition need not always be satisfied. There
are problems in which the optimal solution requires A\, = 0. We have disre-
garded that possibility and will continue to do so (despite the risk of technical
accuracy). (But see the related discussion and example in Section 7.)

Second. we note the stylistic differences. The control region here is speci-
fied implicitly by (5), wherein it is required that the control vector u(r) =
[FI(I), <oy 4 (0] lie in some set U. That set may be the entire m-dimen-
Sional Euclidean space or may be a proper subset of it. As a resuit of the
implicit specification of the control region, the choice of control that maxi-
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mizes the Hamiltonian at each point of time ¢ can be stated only implicitly; see
(6). .
If one specifies the control region U and also perhaps has some further
information about the structure of f, g, i = 1,..., n, then one can use the
Kuhn-Tucker theorem, for example, 1o characterize further the value of &,
namely «*, that provides the maximum in (6). This was done in previous
sections. The fundamental requirement is, however, (6).

We have largely avoided the question of exisfence of a solution of an
optimal control problem. Conditions are known under which existence is
assured. For instance, if the functions f, g are continuous and bounded with
bounded derivatives and if f is strictly concave in the controls and the
functions g are linear in the controls, then existence can be shown.

FURTHER READING

See Pontryagin, Lee and Markus, Hestenes, Fleming and Rishel, or Seierstad and
Sydsaeter (1987, for careful treatments of the conditions under which the multiplier A,
can be set equal to 1.

On existence, see Cesari, Steinberg and Stalford, and Fleming and Rishel. Exten-

sions to problems with unbounded time domain have been provided by Baum. See Long

and Vousden and Seierstad and Sydsaeter (1977, 1987) for a summary of theorems. See

also Gaines (1976, 1977).

Section 15

Further Sufficiency Theorems

For the problem

r1
max / 7(t, x, u) dt (1)
i
subjectto  x’ = g(¢, x, u), (2)
x(tp) = x4, #,, 1, fixed, (3)

it was shown that if the functions f and g are both concave in x and u, then
the necessary conditions for optimality are also sufficient (provided also that
)\‘2 0 .1f £ is nonlinear in x, ). That sufficiency theorem (generalized in
dimensionality, if necessary) is easy to apply. However, some interesting
problems are not concave in x, u. A generalized version of Mangasarian’s
theorem, discovered by Arrow, applies to a broader range of problems.
However, it may be more difficult to check whether it is applicable,

To state the Arrow sufficiency result, a couple of definitions are needed. Let
¥ = U(t, x, N) denote the value of the control that maximizes

H(t, x,u,N) = f(s, x, u) + Ag(t, x, u) (4)

for given values of (¢, x, A). The notation U1, x, N reflects the dependence

of the maximizing value of u upon the parameters of the maximization
Problem (4). Let

H(1, x,N) = max, H(¢t, x, u, \)
S x U X, N) + ag{e, x, U1, x,N). (5)

Lhéls H* is the value of the Hamiltonian when evaluated at the maximizing u;
Is called the maximized Hamiltonian,
Arrow’s theorem, applied to (1)-(3), is as follows.
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Theorem (Arrow). If H(¢, x, N} is a concave function of x for given N
to<t=t, and there exists x™(t), u™(t), Nt) with x*, \ continuous
satisfving (2), (3), and also

u(t) = Uz, x,(1), N1)), (6)
X = —(f,+2e,), (7)
futrg, =0, (8)

)\(tl) =0, (9)

then x*, u* will maximize (1) subject to (2) and (3).

Concavity of f and g in X, v has been replaced by the weaker condition
that the maximized Hamiltonian H° be concave in x. Checking the properties

of a derived function, such as H°, can be more difficult than checking

properties of f and g. However, if f and g are each concave in x and u,

then it will be true that H® is concave in x. This is a result of the following 3

lemma.

Lemma. If a function G(x, u) is concave in (x, ©), then max ,G(x, u) is

a concave function of x.

PROOF. Let x,, X, be two values of x and let »; maximize G(x,, u) with 4

respect to u#, i = 1,2, Thenforany 0 = ¢ < 1,
a max ,G(x,, ) + (1 — &) max ,G(x,, u)
= aG(x, uy) + (1 — a)G(x,, 4;)
< Glax, + (1 - @)x,, au, + (1 — @)u,)

< max,G(ax, + {1 — @) x,, u),

where the first equality holds by definition of #;, the next relation holds by §
concavity of G, and the last by the property of a maximum, The inequality §

establishes the concavity of max ,G(x, ¥) in x.

If follows immediately from this lemma that if /" and g are concave in x, ¥ 1
for all ¢ and if A = 0, then H? is concave and the present theorem may be j
applied. Since that special case constitutes Mangasarian’s theorem, Arrow’s
theorem represents a direct generalization. The maximized Hamiltonian can be
concave in x even if f and g are not concave in x and u, so Arrow’s theorem '

is aiso useful in cases in which Mangasarian's theorem does not apply.

Finally, note that the current value Hamiltonian differs from the regular
Hamiltonian only by a discount factor. Hence one can readily write a corre- §
sponding theorem in terms of concavity of the maximized current value j

Hamiltonian.

Example 1. Modify the problem in Exercise 13.1 so the objective is 0 |
maximize the discounted stream of utility U((1 — $)f(k)) of consumption :
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whcl_‘c _U’ >0, U" <0, and lim,_,U"(c) = o. We wish to show that the
maximized current value Hamiltonian is concave in the state variable k, so that
the necessary conditions for solution are sufficient. The current value Hamilto-
pian is

H=U((1 - s)f(k)) + m[sf (k) - bk]|. (10)

The value of s that maximizes (10) satisfies
H, = f(k)(m - U) =0, (11)
H, =fU" <0, (12)
Condition (12) is satisfied by our assumption on U, and condition (11) implies
U((1 - 5)£(k)) = m. (13)

Let g be the inverse function ¥ ~', so that
1—s=g(m)/f(k). (14)

Substituting the maximizing control from (14) into (10) gives the maximized
current value Hamiltonjan

H® = U(g(m)} + m[ f(k) - g(m) - bk].

The .maximized Hamiltonian H° is clearly concave in the state variable &
provided that m > 0, but m > 0 is assured by (11) and the assumption that

i .> 0. Therefore, necessary conditions for solution are also sufficient for
optimality.

Example 2. Limit Pricing

A firm wants to price its product to maximize the stream of discounted
profits. If it maximizes current profits, the high price and profits may attract
the entry of rivals, which in turn will reduce future profit possibilities. Let
current profit R ( p) be a strictly concave function of price p with R7(p) < 0,
The maximum profit the firm believes will be available to it after rival entry is
R, < max »Ri(p) (independent of current price and lower than current
Monopoly profits). Whether, or when, a rival will enter is not known, but let
F(1) denote the probability that entry will occur by time ¢, with F(Q) = 0. The
COHdit?onal probability density of entry at time ¢, given its nonoccurrence prior
::l(; I,. IS.F'(!‘)/[I - f(r)]. We assume that this conditional entry probabiliry

DSity 1s an increasing, convex function of product price. This specification
reflects the supposition that as price rises, the profitability of potential entrants

;’; a given size increases and so does their likelihood of entry. Thus, we
Sume

F(1)/[1 - F(r)] = h(p(1))

where

h(0) =0, Hw(p)=0, K(p)=0.
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Discounting future profits at rate r, the firm seeks a price policy p(#) to
max [ e {R(p(0)[1- F(O] + RF(}at (15)
0

subjectto  F'(r) = h( p(#})[1 - F(7}]. (16)
F(0) = 0. (17)

The integrand is the expected profits at ¢, composed of R, if no rival has -If
entered by ¢, and otherwise R,. The state variable is a probability £ while the 1

control function is price p.
The current value Hamiltonian is

H = R(p)(1 = F) + R,F + mh(p)(1 = F). (18) 4

If F*, p* is optimal, then F*, p*, m satisfy the constraints (16) and (17) and 'Eﬁ
also
aH/3p = R{(p)(1 = F) + mK(l - F) =0, (19) 4

*H/ap? = [RY p) + mi(p)](1 - F) =0, ]

The integrand and the constraint are not concave in F and p. However, the 3

value of the control p that maximizes H satisfies (19) and therefore also

Ri(p) + mk(p) =0 (21)

and so is independent of F. Since the left side of (21) is monotone decreasing'
in p if m < 0, it associates a unique value of p with each negative value of §
m. Let p = P(m) denote the function implicitly defined by (21). Then, the 3

maximized current value Hamiltonian is

O = [R(P(m)) + mh(P(m))|(1 - F) + RyF, (zz)_f

which is linear and hence concave in the state variable F. Therefore, a solution]
to the foregoing necessary conditions (16)-(20) is also a solution to they

optimization problem of (15) and (16).

We will show that the necessary conditions are satisfied by constant valuc-t

of p and m. The constant m satisfying (20} is

m = ~ (R~ Ry)/[r + A(p)]. )]

Negativity of m reflects the fact that an increment in the state variable F raises §
the probability of rival entry and therefore reduces the optimal expected value ;

(at a rate proportional to the difference in earnings without and with rivals)- 3
Substituting from (23) into (21) gives

Ri(p)/[Ri() - Ro} = H(p)/[r + h(p)]. (24}

an implicit equation for p.

m =rm—dH/3F =R, - R, + m[h(p) +r]. (20 .
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Now assume that R,(p) is a strictly concave function of p with
max , R{(p) = R,(p™) > R,, where p™ denotes the monopoly price, and
that R,(p) = R, has two distinct roots. Let

g(p) = Ri(p)[r + h(p)] - K(p)[R\(P) - R,]. (25)

The p that solves (24) also solves g p) = 0 and conversely. Call the smaller
root of R{(p)=R,, P and the larger p. Since R(p) is strictly concave
Ri(p) > 0, and RY(p) < Osothat g(p) > Oand g(J) < 0. Also, R(p)>
R, Tor p < p < p. Compute -

g'(p) = R(P)[r + h(p)] + R(P)W(p) - W (D)[Ry(P) - R,
- K(P)Ri(p)
= Ri(p)[r + h(p)] - W(P)[R(P) - R;] <0,
for p<p=<p (26)

where the negativity of (26} follows from the assumption that R} < 0, A" > 0
and .Rl(p) = R,. Thus, as g(p) is positive at p, negative at P and is
continuous it follows by the intermediate value theorem that there must exist a
p, say p*, such that g(p*) = 0 for p < p* < p. Moreover, since g'( p) < 0
for P =p=p, it follows that p* is unique. Finally, from (25} it follows that
at g(p*) = 0, R|(p* > 0if H(p*) > 0 and that R (p™) > R (p*) > li’2
in this case. That is, if the condltlonal probability of entry is positive at p*
then R(p™) > 0. But then p* occurs at the upward sloping part of R( p),
which means that p* < p™. Recall that R'(p™) =0 by the definition of p™
Also, p* > p because g(p) > 0, while g(p* = 0 and g 1p) < 0. Equa-
tions (16} and (17) can be integrated after setting p(1) = p* to get

F(t) =1 — e ho™, (27)

So with p* defined by (24), m, F are given in terms of p* in (23) and (27).
These functions satisfy (16)-(20) and are thus optimal. Sufficiency of the
necessary conditions was established by means of Arrow’s theorem even
though Mangasarian’s theorem could not be vused directly.

EXERCISES

L State the analog of Arrow’s theorem for a minimization problem.

2,

Show that in Example 2 neither the integrand of (15) nor the right side of (16) is
concave or convex in F and p.

Shgw that the solution to the maintenance problem for given T in Section I1.10 is
Opumal, that is, that the necessary conditions are also sufficient for optimality for a
given T,
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4. Show that the necessary conditions are sufficient for optimality in Exercise 13.1
(check the three cases of s = 0, 0 < s < I, and s = 1).

FURTHER READING
See Mangasarian for his full theorem and proof. Arrow and Kurz (1970) give a rough

proof of Arrow’s theorem while Kamien and Schwartz (1971d) provide another proof _.'L
under restrictive conditions. See Seierstad and Sydsaeter (1977, 1987) for a full and J

careful treatment of sufficiency theorems. Also see Robson {1981) and Hartl.

Example 2 is discussed at length by Kamien and Schwartz (1971b). See also Leung ._::

(1991) for a discussion of the transversality conditions associated with this model.

Section 16

Alternative Formulations

Problems that look different may be equivalent.

ALTERNATE OBJECTIVE VALUE FORMULATION
It is possible to state

max /rlf(l,x, u) dt (1)
subject to x' =gt x, u), g;

x(ty) = X,

ast: a lermingl value problem, in which the objective is to maximize a function
g the terminal state alone. To see this, define the function y(f), fhy=t=t
y "

yi(1) = f(t, x,u), (4)
¥{tp) = 0. 3
Then ’ ?
y0) = [ re, x ) ar (©
Thus, problem (1)—(3) can be stated as
max y(z,)
subjectto  x' = g(r, x,u), ¥ =f(t, x,u), (7)

X(ID) = Xg. y(‘n) = 0.
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In the calculus of variations, (1) is known as the problem of Lagrange while
the terminal value problem (7) is in the Mayer form.
A combined form with integral and terminal value term

max frlf(t, x,u) dt + $(x(1,))

subject to (2) and (3)

(8)

is known in the calculus of variations as the Bolza form of the problem. The
three forms are equivalent. For instance, writing (8) as a terminal value
problem is immediate, using the construction (4) and (5). To write (8) as an
equivalent value problem of Lagrange, let

7' =0, Z(1,)free, Z(t) = o(x(1))). (9)
Then (8) is equivalent to

max f [ £t 0 w) + Z(0)/(1, - 10)] a (10)

subject to (2}, (3), and (9).

Thus, the three forms of the objective are all of equal generality and '
equivalent. However, some authors appear to favor one form over the others. !
A theorem stated for any one form can be translated to apply to either of the 3

other forms.

AUTONOMOUS FORMULATION

A nonautonomous problem (1)-(3) can be formally posed as an autonomous "

problem by letting z'(¢) = 1, z(#g) = {4

it
max / f(z. x, u)dr
T

L

subject to x =gz, x,u), x(t,) =x5. 2 =1, z(t5) =t

ties of autonomous problems can be translated to nonautonomous problems.

ISOPERIMETRIC CONSTRAINTS

An isoperimetric constraint

[1]

(11)

The problem does not formally depend on time. Theorems relating to proper-

/"G(:. x.u)dt = B (12) |
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can be written in differential form by defining a new variable y(r) by

y'(t) = G(t, x, u), (13)
y(te) = 0, (14)
y(1,) = B. (15)

Replace (12) by the equivalent specifications (13)-(15).

HIGHER DERIVATIVES

If higher derivatives enter, as in f(¢, x, x’, x", x”), one can let x’ = ¥y
Y =2z, 2" =u. Then successive substitution gives f(¢, x, y, z, u). This
(part of the) problem has three state variables x, y, z and one control u.

EXERCISES

1. Write the necessary conditions for problem (1)-(3). Write the necessary conditions
for problem (7). Show that the two sets of conditions are equivalent,

2. Show the equivalence between the necessary conditions for
a. (8) and (10);
b. {1)-(3) and (1 1).

3. Find necessary conditions for maximization of (13. subject to (2)-(3), and {13)-(135).
Show that the multiplier associated with the state variable ¥ is constant. Explain
why this is so.

FURTHER READING

ljiri Ian.d Thompson analyzed a commodity trading model in which the objective is to
maximize the value of assets held at terminal time,
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State Variable Inequality Constraints

Variables may be required to be nonnegative for some expression to have ';f-
meaning. Sometimes the nonnegativity of a state variable can be assured very §
simply. For instance, suppose the state variable moves according to a differen-

tial equation of the form
x =g(x,u) - gu), x(t) =x >0,
where x = 0 is required.
gx,u) =0, g(u)=0 for x=O0andall admissible u,

and also

g(x,u) =0, for x < 0 and all admissible u.

These conditions imply that g,(0, )} = 0. If we then merely require that
x(t,) = 0, we ensure that x(1) = 0, fy =1 = £, To see this, note that once X}
falls to zero, it cannot increase thereafter. If x were to become negative, it]
could not increase later to satisfy the terminal nonnegativity requirement.y
Thus, the terminal nonnegativity restriction assures nonnegativity throughout. s

(See Exercise 1 below for another class of problems in which nonnegativity is

assured.) ;
If such arguments cannot be employed, it may be necessary to incorporate;

the nonnegativity restriction directly. We develop the necessary conditions. B
may be advisable to solve the problem without explicit cognizance of th‘
nonnegativity restriction to see if perhaps it will be satisfied. If so, the problem,

is solved simply. If not, some hints may emerge regarding the structure of they
solution to the constrained problem. ;
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For the problem
r1
max / St x, 1) dt + o(x(t,)) (n
)
subjectto  x’ =g{t,x,u4), x(t) = x,, (2)

k(t,x) =0, 3)

we associate a multiplier function N¢) with (2) and a multiplier functi
with (3). The Hamiltonian is pler Tanction (1)

H=f(t, x,u) + Mg (1, x,u) + 9k(2, x). (4)

Necessary conditions for optimality include satisfaction of (2), (3), and
H, =f,+ kg, =0, (5)
N=—H,=-(fo+ N, + 1k}, (6)
Nt) = o, (x(1)), (7)
7 =0, nk = 0. (8)

Example 1.
- t T ) 2
min,, 3 / (x* + c*u?) dt
0

subjectto X" =wu, x(0)=x,>0, x(T)=0,
hit,x)=a, -bit-xs0,
hy(t, x) =x—a, + bt <0,
where a,, b{ >0, @ > Xy > ay, and a, /b, > a /b,. The problem is illus-
lrateq graphically in Figure 17.1. The path begins at x, on the x axis, must
stay in the shaded area, and must end on the ¢ axis. The necessary conditions

for the minimization problem are developed in Exercise 2.
The Hamiltonian is

H=(1/2)(x* + ) + Mt + my{a, — byt — x) + 5y(x — ay + byt).

x{f)

a2

aib; "az;"bz !

Figure 17.1



232 Part II. Optimal Control

Necessary conditions for x, #, \, #,, %, in addition to the given constraints are

H,=ctu+r=0, s0 u= —Ac% (9)
XN=-H.=—x+mn—m; (10)
=0, 7h; = 0, i=12. (11)

Since initial and terminal values of x are specified, no boundary conditions on
A emerge. Since x(77) = 0 is required, the bounds at 7 require

a/b,sT=<a,/b,.

From (7.30),
either  H(:)=0 and a,/b <T<a/b,,
or H(T)=z0 and T=a,/b, (12)
or H(T)=0 and T=4a,/b;.
Initially k4, # 0, s0 9, = 0, = 0. On this (or any) free interval, X = —x
from (10) and x” = u = —\/c¢*. Hence,
x* =x/ct > 0. (13)

Therefore, the path of x on any free interval must be convex and of the form

x(t) = ke + kye t/* (14) 1

for some constants &, k,.
Suppose neither constraint were binding at 7. Then, since x(T)y =0,

H(T) = (1/2)&® + i = = (1/2)*u? =0 onlyif u(T)=0.
But
u(T) = x'(T) = (k&7 - ke~ 7/%)/c,
while
x(T) = k™' + kye"T'e=0.

Then both #(T) = x(T) = 0 imply k, = k, = 0, so x{¢) = 0 on a final free
interval. This contradicts the property that T is the first moment for which '.
x = 0. Therefore, a constraint must be active at 7. Then H(T)= |

-1/} (T) < 0, 50 T = @, / b, from (12).

From (9), continuity of M\ implies continuity of u. Therefore at a point g
dividing a free interval and a constrained interval, the path must be tangent O |
the constraint (since ¥ = x”). But since x(/} is convex on every free interval,
it cannot become tangent to #, = 0, as shown in Figures 17.1 and 17.2, Thus, i
the path touches &, = 0 only at 7 (since it must touch at 7, as discovered in 4
the previous paragraph, and since there cannot be a constrained interval along j

h, = 0; otherwise the tangency condition could not be met.)
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a3/ azlba !
Figure 17.2

Therefore, the solution is (14), where k,, &, are chosen so that
x(ay/bz) = keexp(a, /byc) + kyexp(—a, /byc) =0,
provided that this satisfies A, = 0 (see Figure 17.2). If this is not feasible, then
the sclutien follows a path of the form (14) from (0, x,) to a peint of tangency
with &, = 0, then follows #, = O for some interval, and finally leaves #, = 0

from a point of tangency and follows another path of the form (14) to
(a, /b,,0). Thus,

ke'c + ke te, O0=<t=1,
x(1) = {a - byt, LSt
k'S + ke, tL,<t=<a,/b,,

where the values of &, k;, and ¥, are determined by (1} the initial condition,
(2) continunity at 7,, and (3) tangency at ¢,, while the values of &,, kX, and ¢,
are determined by (4) continuity at £,, (3) tangency at £,, and (6) the terminal
condition x(a, /b,) = O {see Figure 17.4).

e

o

a)

b
I
I

I a b dafb3 !

Figure 17.3

——_——



234 Part II. Optimal Contro]

a2

4

arfby @b '

Figure 17.4

Seierstad and Sydsaeter (1977) have provided a sufficiency theorem for §
problems with constraints on the state variables. There is a new feature. The §
multipliers associated with state variables may be discontinuous at a junction 3
point 7 between an interval on which a state constraint is binding and an

interval on which it is not, At such a point we have a jump condition:

Nr*) = Nr7) = bk, (7, x(1)) (15)

where ]
b=0. (16) 3

In addition, 3
H(r*) = H(r) + bk,(r. x(r)). (1) ]

Thus, a jump in the Hamiltonian can occur if k (7, x(1)) % 0.

Example 2. Reconsider Exercise 8.5 under the altered assumptions that

lim, U, = —a,a>0, and 1
a/(r + b) > U{C*)/Z/(CY). (18) 4

The Hamiltonian for
max / e ""U(C, P) dt (19) 3
S 3

subject to P =Z(C)-bP, PO})=P,, P=0 (20) _.

is

H = U(C, P) + m[ Z(C) - bP] + nP,
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co c* [

Figure 17.5

from which
U, +mZ =0, (21)
m={r+bm-U,-n, 2=0, 9P=0. (22)

The necessary conditions will be sufficient for optimality. We sketch the phase
diagram in the C-P plane. Differentiating (21) totally and using (21) and (22)
to eliminate m and m" from the result leads to the pair of differential
equations, (20) and

(Ue - U.Z7/ZVC = Z[(r + B)U,/Z' + U, + 1]. (23)

The P’ =0 locus (Figure 17.5), P = Z(C)/b, is an increasing concave
function with intercept (C*, 0), where C* satisfies Z(C*) = 0. P is decreas-
ing above the locus and increasing below it.

The €’ =0 locus, where P> 0, obeys (r + B)U./Z'(C) + U,=0, a
decreasing curve. Its intercept (C°, 0) obeys

U(C®,0)/Z(C?%) = a/(r + b) > U(C*)/Z(CT),

?Jvhere the inequality follows by hypothesis (18). Since U, /Z(C) is a decreas-
g function of C, it follows that C® < C*. Above the C' = 0 locus, C' > 0
and below the C’ = 0 locus, €' < 0.

Since the ¢’ = ¢ and P’ = 0 loci have no intersection, there is no steady
State with P > 0. The steady state is (C*,0). C* lies on P’ = 0, and when
P =y, 7 > 0 so that C’ = 0 is also possibie. Indeed, from (23)

n=a-(r+bHU(CY/Z(C*) >0 when P=0, (24)
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where the inequality follows by hypothesis (i8). Note that the required
inequality of (22) is satisfied. Thus, the optimal path is the heavy path shown,
with pollution decreasing monotonically to zero and then remaining at zero
once attained. Consumption grows to C* and stays at C* once attained. Since
C < C* before the steady state, the community is net pollution abating until
the pollution is gone. The hypotheses in this case say that the marginal
disutility of pollution, even at low levels, is high; this explains the patiern
described.

There are other approaches to handling state variable constraints of the form
k(t, x) = 0. Since

dk(et, x)/dt = k,(t, x) + k,(¢, x)x
=k, + k,g(t, x,u),

one can assure k(¢, x) = 0 by requiring that & not decrease whenever k = 0

o(t, x,u) =k (t,x) + k (¢, x)g(t,x,u) 20

whenever k(¢, x) = 0. (25) i.ﬁ

Now the results of Section 11 can be applied to the problem

max frlf(r, X, u)dt (26) -Ii

1y
subjectto  x' = g(¢, x,u), x(f) = x, (27)
é(t, x,u) =0,  whenever k{(t,x) =0, (28)

where ¢ is as defined in (25). This is equivalent to problem (1)-(3).

To distinguish this notation, let M(¢) and N(¢) be the multipliers associated '.

with (27) and (28), respectively. Form the Hamiltonian

H(t, x,u, M) = f{t, x,u) + M(1)g(1, x, 4) (29)

and the Lagrangian

L{t,x,u, M, N} = H(t, x,u, M} + N()$(t, x,u).  (30)

Necessary conditions for (x, &) to be optimal are that there exist functions M ;
and N such that (x, u, M, N) satisfy not only (27) and (28) but also at points

of continuity

oL /au = 0, (31) |
M = -3 /ax, (32) |
N(1)=0, N(f)s0, Nk=0. (33) §

The requirement N'(f) = O will be explained below.
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To relate the necessary conditions arising from the two approaches, expand
(31):

E‘u=fu+Mgu+kagu=O' (34)
Wwrite
M=N\- Nk,. (35)
Substituting (35} into (34) gives
Ju+ hg, =0 (36)
Expand (32}, using (25)
M = —f,— Mg, — Nk, +gk, . +g.k,). (37)
Differentiating (33) totally gives
M =X-Nk, - Nk, g—- Nk, (38)
Equate (37) and (38), using (35) to eliminate M, and simplify:
N o= —(f+Ag, +mky), (39)
where
n=-N. (40)

Thus, the two approaches give the same necessary conditions with the multipli-
ers, A, 4 related to M, N through (35) and (40). Note that since 4 = 0 by (8),
(40) implies that N’ =< 0 is required on intervals of continuity of N, as is
recorded in (33). Note also that continuity of A implies cominuity of M + Nk .
However, from (153} X is not continuous in general. Moreover, the jump
condiﬁt_ions for M can be stated by combining (35) with (15). Neither M, N,
nor H is necessarily continuous in this formulation.

A medification of the second version results in continuous multipliers but at
the cost of an unusual specification of the Hamiltonian. Associate multiplier
Pty with (27 and n(t) with (28). Form the Hamiltonian

H(t) =f+pg + no. (41)

The multiplier p is continuous, n is piecewise continuous, and p, 7, X, u
satisfy (27}, (28), and

p'=-H,=-f,-pg,—-ne,

H,=0. {42}
on each interval of continuity of #. The Hamiltonian is maximized with respect
0 u and the maximized Hamiltonian is continuous. The multiplier n is
HOnIincreasing and is consrant (not necessarily zero) on every interval on
which k(¢, x_) > 0. It is continuous if and only if A is continuous. Note that
P, n, and H are continuous, but the product n¢ is zero only when the
constraint {3) is active. Further, as in (40), n = - N
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EXERCISES
1. Consider a problem in which there is one state x and control &, and the state

equation is
x' = g(#) — bx,

where g{u) = 0 for all admissible values of u, and where x(0} = (. Show that if
the above conditions are met, then

x()=z0  for 0=<¢=<T.

Using the results stated for problem (1)-(3), show that the necessary conditions for

]
min f J(¢t, x, u) dt
o
subject to (2) and (3)
are that x*, u*, &, 5 satisfy (2), (3), (5)-(7), and
() =0, 9()k(r,x) =0, fpst=t,.

[Hine: Multiply the objective by — 1 to get a maximization problem and then see
what conditions are required. ]

A firm wants to maximize the present value of its dividend stream

aa
[ e "uft) dt
0
subject to
K =R(K)-bK-u+y—-rB, K(@0)=K,>0,
B =y, B(0) =0, ak - B=0, u=0,

where K(f) is its capital stock, R{K) the revenue earned with K, b the decay rate '_
of capital, w(¢) the dividend rate, y(¢) the rate of borrowing (repayment, if -

negative}, and B(#) the debt. The total debt cannot exceed a fraction a of the
capital stock. Dividends must be nonnegative.
a. Verify the problem formulation

b. Show that if @ < 1, then the optimal solution involves borrowing the maximum

possible amount until X is attained. What is X7

¢. Show that if @ = 1, the panern suggested in part b is impossible. Show that the }

only possible solution is an immediate jump at the initial moment to K. (Sce
also Section 1.8.)

Solve the example of Section [14 by optimal control.

Solve Example | of this section using an alternate approach.
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6.
5
min f (4x + u?) de
o

subject to x =u, x(0)=10, x(5})=0, x(1)=z=6-2¢s.

FURTHER READING

See, for instance, Jabobson, Lele, and Speyer for a futl discussion of necessary
conditions in the presence of state constraints and for a treatment of the jump
conditions, as well as Hestenes, Bryson and Ho, Taylor (1972, 1974), Seierstad and
Sydsaeter (1977, 1987), and Hartl (1984).

Applications 1o production and related problems have been made by Anderson (1970)
and Pekelman (1974, 1979). The pollution problem is posed and discussed by Forster
(1977).



Section 18

Jumps in the State Variable, Switches
in State Equations

Thus far the state variable has been required to be continuous, Now imagine
that a finite jump in the state may be permitted. For instance, if the state is the
stock of a resource or capital, then a discrete jump in the stock could be
achieved by a momentarily infinite investment. We consider the circumstances
under which such a jump could be optimal and the necessary conditions
accompanying that jump. The discussion follows that of Arrow and Kurz, who
in turn describe the method of Vind for such problems.
Modify the standard form

max fo(t, X, u)dt
0

subjectto  x' = g(¢, x, 4)

by permitting a finite upward jump at some moment #,. Let x*(#,) be the
state’s value immediately after the jump, while x~(#,) is the value before the
jump, The time #, and the magnitude of the jump x*(f,) — x~(#,) are to be
determined optimally. This formulation permits, but does not require, a jump.
Let c(f,) be the cost per unit increase in the state variable. The objective may
be written

max /Tf(r,x, u) dr — c(rl)[x+(rl] —x"(rl)]. (1)
0

The state variable’s evolution follows the typical pattern before f,. Write it
in integrated form:

x(8) = x(0) + /Ig(s,x,u) ds, O0=r=<i,. (2a)
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Following ¢,, the discrete jump in x must be recorded, so

x(1) = x(0) + / gls,x,w)ds+x* () —x (1), t,<t=T.
(2b)

The idea is to transform the problem (1) and (2) into an equivalent problem
to which the usual methods can be applied. The necessary conditions for the
equivalent problem can then be determined. Finally, these conditions are
translated back to find their equivalent statement in terms of the original
problem (1) and (2).

An equivalent problem is developed by viewing time as a clock that can run
normally or can be stopped at will. Let w index artificial time. Artificial time
runs at the same pace as natural time except at a jump. Natural time stops
while the jump cccurs, but artificial time continues running. The jump occurs
smoothly in artificial time. After the jump, the clock resumes and artificial
time runs apace with natural time.

Natural time ¢ is now to be considered as a state variable whose movement
in artificial time is governed by a new control u,. Thus,

0 during a jump in x,
dt/dw = ug(w) = {1 otheri'isi P

The development of x in artificial time follows the familiar form dx/dw =
g(w, x, u), except during a jump. During a jump, the rate of change in x is
governed by another new control . If the jump occurs during (w,, w,) in
artificial time, then

X (0) —x(6) = x(w) = x(0) = [ () dw = wy(wy = w,).

We can take 4, to be a constant function over the interval that it is positive.
Thus over a jump interval

dy/dw = u,.

These two forms for dx/dw (the latter pertaining during the jump and the
former at all other time) can be expressed in a single equation, using the
control u, that is 0 during a jump and 1 elsewhere. Hence,

dx/dw = ug{w)g(z, x(1), u(w)} + [1 — ug(w)]u,(w). (3)

The reader should check that this single equation has the properties claimed for
it. Alsg

dtjdw = uy(w), O0=<uy=l. (4)

The objective increases at rate f when natural time is running. At other times,
the cost of the jump is accumulated at a rate proporticnal to the speed of the
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jump. Both features can be combined into a single expression by the device just
employed:

max /;W{uo(w)f(t, x(w), u(w)) = [1 = ug(w)]e(t)u(w)} dw. (5)

The problem of maximizing (5) subject to (3) and (4) is an ordinary contro]
problem, with state variables x and 7 and control variables w, u,, u,.
Let A, and A; be the multipliers associated with (3) and (4), respectively,
The Hamiltonian is
H=uyf~ (1 —uy)cu, + )\l[uog + (1 — uy)u ] + Nty
= uoH, + (1 - uo) H,,
where

H=f+Ng+\, Hy= (N - cu,.

We maximize A with respect to u, u,, 4, stepwise. Note that # appears only §

in H,, u, appears only in H,, and u, appears in neither. Thus, we maximize
H, and H, separately, denoting

H) = max, H,, H)=max, H,.
Then

max,, , . H = max, (u,H) + (1 — uo) Hy) = max(H?, H)). (6)

The last step follows from the fact that u, will be either § or 1,
The multipliers obey

N(w) = —H, = —uy(f, + Ne,)
_ b+ Ne) when u, = 1.
o when u,=0;
No(w) = —H, = —uo(f, + Ng) + (1 = wou,c'(t)

_(fr+llgr) when u, =1,
u,c'(t) when u, = 0.

The next chore is analysis of (3)-(8) and translation of the results and their }
implications back to natural time. To that end, we identify A, as the multiplier }

associated with (2) and let

H,,(t,x.u,)\):f(r,x,u)+)\1g(r,x,u) (9) .:
be the Hamiltonian in natural time for (1) and (2). First, since H, is to be §

maximized with respect to u,

u maximizes H, ateach 1. (10) |

0 |

® |
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Second, from (7), since A, does not change during a fump, we have

= —(f.+ Ng,)= —0H,/dx. (11)
Third, since H, is linear in «, and u, is not bounded above,
AN-c=0 (12)

since otherwise an infinite value in (5) could be achieved. Furthermore, a jump
occurs only when u, > 0 and this cannot happen when (12} holds with strict
inequality (since #, is chosen to maximize H,). Thus,

N=c atajump(i.e. at?). (13)
Fourth, the argument just given assures that M, =< 0. But, in fact, A, = 0 can
always be attained by setting &, = 0 so that H,? = . This implies
H? when wy =1,

max H = max(H?,0) =
0 when u, =0.

(14)

Since max J must be a continuous function of w, it must be zero at the end of
a jump. Furthermore, if the jump occurs after the first moment then max A is
also zero at the beginning of a jump. Thus, if f; > O then

max H = max, [ f(t,, x7(¢,), «) + N(t,)g(t, x7 (1), u) + N5 (8))]
=0

= maxu[f(rl, x*(1),u) + N(# e (e, x*(8), u) + )\3—(‘1)] '
(15)
To determine the implication of (15), the behavior of A, over a jump is
needed. Reviewing (8), we see that Aj is constant on a jump since #, is then
constant and since natural time is stopped. Further, since A, changes at a
constant rate #,c¢’ over the interval and since the duration of the jump must be
[x*(2,) — x™(£,))/ 4, (recail the total gain in x to be made during the jump

and the rate at which it is accomulated), the total change in A, over the jump
interval [w,, w,] is

N () = A (1) = Re( w2} = No(wy) = e(t)uy(wy — wy)
()27 (1) —x(1)] (16)
since x(w,) — x(w,) = u,(w, — w,). Combining (15} and (16) gives
max, H,(t,, x*(t;), u, N1,)) — max, H,(¢;, x~(1;), u, N1, })
=t} x(¢) - x*(1)] if £,>0. (17)

In sum, if the solution to (1) and (2) involves a jump at ¢,, then, with the
Hamiltonian given by (9), necessary conditions are (10)-(13) and (17).

Arrow and Kurz give some indications of when jumps may and may not
occur, If max , H, is strictly concave in x for given A and ¢, then a jump




244 Part II. Optimal Control

can never be optimal except possibly at the initial moment. They argue as
follows: Suppose that max, H, is strictly concave in x and that there is a
jump at ¢, > 0; then HJ is strictly concave in x as H? and max, H, only
differ by 2 constant. Since ), is a linear function of w (A(W) = u,c'(H)w + k,
where k is a constant) and since x changes during a jump, HY is strictly
concave in w, This follows from the observation that if H? is regarded as a
function of x only, H, = H)(x(w)), then dH?/dw = H? dx/dw. But
dx/dw = u,, a constant during the jump. So d’H?/dw® = H®_u? < 0 by
virtue of HJ,, < 0. Since H? is zero at both the beginning and the end of the
jump, it must be positive in the middle. It is here that the strict concavity of

H? plays a crucial role. If H? were not strictly concave in w then the i
function could be zero at the beginning of the jump, and coincide with the
horizontal axis until the end of the jump. But according to (14), H) <0 }
during a jump. We have a contradiction, indicating there cannot be a jump at §
some #; > 0. However, a jump at 0 is not ruled out by this argument since

there is no requirement that H? be zero at the beginning of the jump.

Example. A monopolist produces a quality-differentiated spectrum of a good

for a market of consumers with differing tastes. Let ¢ be the index of quality

of a unit of product and let ¢ be the index of a consumer’s taste, his marginal

utility for quality. Each individual buys at most one unit. A consumer with
taste £, faced with a range of qualities and corresponding unit prices P(g) will -}
equate marginal cost with marginal utility and choose the unit with that quality 3

q satistying
Pq) =t (18)

if there is such a quality available. The monopolist knows the cost CY( q) of :
producing a unit with quality ¢ (with ¢’ >0, €” > 0) and knows the |

proportion F{#) of the population whose taste index does not exceed ¢. F is
assumed continuously differentiable, with F* > 0, F(0) = 0, F( Ty=1. The

monopolist chooses the quality of product g(¢) to induce a person with taste # ?

to buy and associated price p(¢) to maximize profit:

j{')TF'(f)[p(f) - C(q(t))] dr, (19) .'

which is price less cost for each person with taste ¢, weighted by the density of

consumers with taste ¢, and summed over all tastes. (The choice of g(¢) and
p(t) imply the price and quality must be chosen with individual's utility
maximizing behavior (18) in mind.) Since dp/dg = p’/q’ = t, write u = p.
Then, (19) is to be maximized subject to

p=u,  p0)=C(0), (20)
g =u/t, q0})=0, (21) §
uzo. (22)
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The control variable # must be nonnegative so price and quality do not
decrease with taste. The quality index begins at zero and the price begins at the
fixed cost of producing a unit of lowest quality (so profit will be nonnegative).

Associate multipliers A, A, and w with consiraints (20)-(22), respectively.
The Lagrangian is

L=F[p- C(q)] + Mu+ Mu/t + wu.

An optimal solution obeys (20)-(22) and

L,=N+XN/t+w=0, wz=0, wu=0, (23)
Xo=-~L,=~F, MNT)=0, (24)
N=-L,=FC(q), N(T)=0. (25)

The maximizing Hamiltonian is strictly concave in gq (since —C” < 0), so
there can be no jumps in g. Thus u is bounded. Either A, + A, /# < 0 and
u=0,orelse \y + A, /t =0and u > 0.

Integrating (24) and (25) gives

MO =1-F@, )= - Fls)cla(s)) as. (26)

A unit increase in price for a person with taste ¢ has value 1 — F since all
whose taste index is at least ¢ will pay a similarly higher price. A unit increase
in quality for a person with taste ¢ raises the quality for all with higher taste
indices and therefore raises production and cost accordingly.

From (23), A + )\, < 0. Substituting from (26) gives

T
(1 - F(1)] s/ F(s)C'(q(s)) ds. (27)
i
By the Fundamental Theorem of Calculus

_/T(d{s[l - F(s)]}/ds) ds

!

{1 - F()

/T{SF’(S) - [1 = F(s)]} ds.

H

Substitution in (27) gives
0= /TF(S){C’(Q(S)) —s+ [t F(9)|/F(s) s, (28)

On an interval for which & > 0, (28) holds with equality and so
C'(q(f)) =t -[1-F(1)]/F(t} when u>0 (29)
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implicidy specifies g(t) (so long as g(t) satisfies ¢’ > 0) for ¢ = t, where ¢,
is implicitly defined by

C(0) =4 - [1 = F(ty)]/F'{15). (30)

Individuals with tastes in the range 0 < 7 < ¢, are assigned g = 0 and hence
do not buy the good. Determination of # and then p follows from (21) and
then (20) once ¢ is known,

There could be an interior interval ¢, < ¢ =< {,, where 0 < ¢, < t, < T, on
which # = 0 so that p and g are constant there. All individuals with tastes in
this range are assigned the same quality item (and same price). This could
happen only if the right side of (29) were decreasing in ¢ over some interval.
Then (28) holds as an equality when evaluated at # = ¢, and at t = {,, so that

[FCca) - i+ [1 - F@)/P@ =0 ()

n

The condition (29) that holds whenever # > 0 also holds on average over an
interval with # = 0. (Compare with the average condition in Example 13.2
during periods of no investment in the capital model.)

Specificalty, suppose F(¢) = ¢/ T (uniform distribution) and C(q) = ag +
bq*/2, where 0 < @ < T and 0 < b. From (30), t, = (a + T)/2, and from
29 q(y=Q2t-T—-a)/b for ty=t=<T. Since t=(bg+ T + a)/2,
and P'(g) = f, we get P'(q) = (bg + T + a)/2, and therefore consumers
will be presented with the price schedule P(g) = bg*/4 + (a + T)q/2.
Consumers optimize according to (18) with this price schedule and select the
quality

0, O<t<(a+T)/2
(2t - T-a)/b, (e+T)2=<t=T,

() l
designed by the monopolist.

A problem somewhat analogous to a jump in the state variable involves an
optimal change in the state equation during the period of optimization. Such an
opportunity can arise naturally in, say, switching from one mode of extracting
oil from a well to another. Formally, the problem now becomes

max /f’f‘(r,x(r),u(r)) de + /rzfz(r,x(r),u(r)) dt

o

—o(s, x(1,), u(t,)) (32)
(o 18 x(2)u(n)), t=1s1
st ¥ = [gz(t,x(r),u(r)). t, <1<t (33)
x(t0) = xo. t, x(t,). . x(1,) free
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In (32), f' and f? are two possibly different objective functions, and ¢ is the
cost of changing the state equation from g' to g2 at ¢,. Solution of (32)-(33)
involves forming Hamiltonians H' = f' + A g! for ;=< t=<¢, and H? =
f*+ M g?for t, <t < t,. The necessary conditions within each time interval
are the vsual ones, namely,

H,=0, X=-H] for t<t=¢

H;=0, X=-H! for t,<t=<t, (34)

The new conditions are
H'(t)) —¢,(t,) = H* (1;) if to<t, <1, (35)
H'(t) - ¢,(8) = HY 1)) if t,=1¢t <1, (36)
H'(4) - ¢,(t,) = H* (1)) if to<t,=1t, (37)
A1)+ e (1) = M (1) (38)

HY () =0, N(5) =0 or A1) =0. (39)

Condition (39) is just the ordinary condition for a problem with free terminal
time and free terminal value. Conditions (35)}-(38) are new. According to
(35), if there is a time #) at which H' less the marginal cost of switching from
g' to g* equals H? then it is optimal to switch at ¢,. If such a switch occurs
then according to (38) the marginal valuation of the state variable evaluated
according to f' and g' plus the marginal cost, with respect to the state
variable, must equal the valuation of the state variable evaluated according to
f? and g2 Finally, if there is no ¢, that satisfies (35) then we should either
skip directly to the second optimization problem involving f2 and g2, if (36)
holds, or stick entirely with the first optimization problem involving f' and
g' if (37) holds.

FURTHER READING

See Vind and Arrow and Kurz for the theoretical developments. Mussa and Rosen
Provide an extensive discussion of the product quality example.

Another example in which the optimizer takes the maximizing behavior of another
agent as a constraint is the selection of the tax schedule, subject to individual behavior.
Mirrlees wrote the seminal paper; sce Brito and Oakland and also Cooter.

The analysis of switching from one state equation to another is based on Amit, who
derives the necessary conditions. See also Tomiyama and Tomiyama and Rossana,



Section 19

Delayed Response

Thus far we have considered situations in which the value of the state variable }
responds immediately to the control variable, This may not accurately describe §
many economic and management problems. For example, suppose sales is
regarded as the state variable and price as the firm’s control variable; sales 3
may not respond immediately to a reduction in price; for example, it might }
take time for customers to become aware of the new price. Likewise, a firm’s
decision to invest in new capital equipment does not result in new productive
capacity until the equipment has been ordered, delivered, installed, and tested. |

Such situations can be handled by optimal control methods, but not as easily
as the immediate response situations. For this reason, delayed response prob-

lems are often modeled as immediate response problems.,

Formally, however, necessary conditions for optimal control of a problem §
involving a delayed response can be derived. We consider the analog to the §
simplest problem considered in Section 2 and seek the necessary conditions }

satisfied by the control that can

max /If(r x(1), u(t)) dt (1) i

o

subjectto  x” = g(¢, x(¢), x(1 = 7), u{t), u(r = 1)), (2

x(1) = x, for - T=1=1,, 3)
u(ty =u, for t,—- 1151, (4)
x(1,) free. (5)

Several features of this formulation merit attention. First, only contemporane-

ous values of the state variable and the control variable enter the maximand. -
Second, the rate of change in the state variable depends on the current and past
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values of the state and control variables. The delay in the response is,
moreover, a fixed interval of time, 7. Third, the values of the control variable
and the state variable are given constants for time 7 prior to the initial time £,
from which the optimal solution is sought.

To derive the necessary conditions for this problem we proceed as before.
Append (2) to (1) with continwously differentiable multiplier function A(#),
perform the usual integration by parts, and compute the first variation

]
8J = / [(3f/3x, + Nag/dx, + X} bx, + (Ndg/dx,_,) bx,_,
1

+{(8f/3u, + Ndg/du,) bu, + (Ndg/du,_.) bu,_,] dt
+N1,) 6x(1)), (6)

where the subscripts indicate whether the contemporaneous or lagged variable
is meant.
By setting § = { — 7, so that £ = § + 7, one has

/";\(r)[ag(:, x(2), x(t ~ 1), u(t), u(t - 7))/0%,_,] x,_ (1) dt

Iy

= /'1-1)\(5 +1)[ag(s + 7, x(s + 7). x(5), u(s + 1), u(5)/3x,]

x 8x,_.(s + 7) ds, (7)

and similarly for the term involving éu,_.. Since X, and u, are fixed prior to
ty, x, .. and u,_ are fixed prior to ¢{; + 7, so that éx,_ . = éu, =0 for
! < fy + 7. Thus, we may increase the lower limit of integration in (7) by r
since the integrand is zero on the deleted interval. Substituting from (7) into (6)
with the change in the lower limit of integration, using the analogous expres-

sion for the term involving éu,_ ., and collecting terms gives
H—T
/‘ {[af/3x, + N3g/3x, + X + (Aag/0x,_ ) | ...] bx,
fn
+[af/8u, + Nog/du, + (Nag/ou,_.)| .| ou} dt

+/;1 [(3f/3x, + Nag/dx, + X) éx,

+{3f/0u, + Nag/ou,) du,| dt + M1,) 8x(t,). (8)

Note that in the first integral Ad g /8x,_,and Adg/du,_, are to be evaluated
a 7 + 7. Also note that du,_, and dx,_, do not appear in the second integral
because they would be generated beyond 'the horizon t.

To render the first variation (8) equal to zero, we choose A so the coefficient
of éx, is zero. We then get the optimality conditions in the usual way,
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resulting in the necessary conditions

X = _af/axr - )\ag/ax: - ()\ag/axf—f)if+'r’ Lh=t<f -,
()

3f/du, + Ndg/du, + (N3g/du,_ )| ,0, =0, tost<t, —7, (10)

X = —af/dx, - Nog/dx,, h-r=t=<I, (11)
af/du, + Adg/du, =0, -1t (12) |
A1) = 0. (13)

If the Hamiltonian is written as
H(t, x(1), x(t — 7), u(t), u(t — 7), A1)
=f(ts Xy “r) + )\,g(l‘, Koy Xpogs Uyy ur-r)!

then it can easily be verified that

N = —0H/dx,— 0H/dX,_,|,n,, fost<ti—7, (14) ]

BH/du, + 0H[du,_|,., =0, fo=t<t —r, (15) 4
X = -3H/3x,, t,-r=<t<1, (16) |
AH/Bu, =0, t,—1<t=t,. (17)

The presence of a delayed response adds terms to the necessary conditions that 4
would obtain if the response were immediate, as (9) and (10) or (14) and (15) ¥
indicate. These conditions reduce to the ones that obtain in the case of
immediate response if the lagged variables are not arguments, so the partial §

derivatives with respect to them vanish.

The interpretation of these conditions is analogous to earlier interpretations.
The total impact of a slight change in the control at any time ¢ should be zero §
in an optimal program. That impact is partially realized contemporaneously at §
(0H /du,) and partially, 7 periods later, through its appearance as a lagged §
variable (3H /du,_ |, ,). The reasoning is similar for the marginal impact of }

the state variable.

Example. In the limit pricing example of Section 15, the probability of rival
entry at any time, conditional on no prior entry, depends on the incumbent
firm's current price. It may be more realistic to suppose that entry cannot be

achieved immediately but takes a certain amount 7 of time, as acquisition of
the productive and distributive facilities takes some time. Thus, the incumbent
firm’s current price may determine the conditional probability of entry 7 }

periods in the future,
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Retaining all the other assumptions of Section 15 regarding the relevant
fanctions,

max fome‘”{Rl(p(r))[l - F(2)] + R,F(t)] ar (18)
subjectto  F'(¢) = h(p(t —))[1 - F()], t=7, (19)
p(t)=0, -7=1t<0, (20)
F(t)=0, -r1=s1<0. (21)

According to (19) the price at time ¢ influences the probability density of entry
attime ¢ + 7.
The current value Hamiltonian is

H=R(p(t)[1 - F(£)] + RyF(t) + m(e)h(p(t - ))[1 - F(r)(]. )
22

Employing (9) and (10), we obtain

Ri(p())[1 - F()] +m(t + )i (p()[1 - F(t+ 7)] = 0 (23)

and
m = R(p(0) = Ry + m(O[B(p(t = D) +7].  (24)
Trying constant values for p(¥) and mf(f) yields
m= —(RI—RZ)/[r+h(p)]. (25)

as before, and

Ri(p)/[R\(p) - R,) = W(p)e " [[r + h(p)]. (26)

The last expression follows from (23) and integration of (19) with p(1)
constant, which yields

F(ty=1—e MU= >, 27)
s0 that
[1 = F(r + n))/[1 = F(1)] = e "7, (28)

This solution satisfies the necessary conditions and reduces to the solution
found earlier in case 7 = 0. The entry lag can be shown to raise the incumbent
firm’s current price, compared to that in the absence of a lag. The reason is the
further away a future loss, the lower its present cost. This in turn means that
the incumbent firm should sacrifice less of its current profits and therefore
Price higher than in the absence of an entry lag.
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EXERCISES

1. Show that if the time lag 7 is a differentiable function of time (t), then in going
from (6) to (8) we get

n—rity)
f [(3f/ax, + hag/dx, + X

‘o

+(3g/0x, /(1 = #H()) | 14reny) 8%,
+(af/ou, + 2ag/ou, + (Nag/ou,_ /(1 — +(£)) | y4rer) Ou,] at

!
+f1 [(af/dx, + N3g/dx, + X) bx,
[

=it
+{af/3u, + Nag/du,) bu,]| dt + N ,)x(¢,),

where 7(¢) = dr/dt. Derive the necessary conditions corresponding to (14)-{17).
[Hint: éu,_ .., =0 and éx,_,,, =0 for £ <5+ 7(4,), while du,_,.,, = bu,
(1 — 1), 8x,_,y = dx,(1 — 7) for ¢ = 15 + 7(£).]

2, Characterize the optimal investment plan if investment cost is proportional to the
investment rate but investment affects the capital stock with a fixed lag of 7.

max f:e‘”[P(x(f)) — cu(t)] dt

subjectto  x'(¢) = u(t — 1) — bx(1), x(0) = x,,
u(t) =0, -r=t<0.

FURTHER READING

The derivation of (14)-(17) and Exercise 1 is based on Budelis and Bryson {(1970).
Further analysis of the example appears in DeBondt (1976). Other applications of this
technique appear in El-Hodiri, Lochman, and Whinston (1972) and Sethi and McGuire
(1977). The latter articie involves variable {rather than fixed) lags. See also Mann
(1975}, for a discussion of Exercise 2 and further extensions of lags applied to
advertising.

Section 20

Optimal Control with Integral State Equations

Just as some situations in economics and management science are most
appropriately described by state equations involving a delayed response, so
others are best described by having the state equation be an integral equation.
Although any state equation of the form

x = g(t, x(1), u(1) (1)

can be written as an integral equation

x(1) = [ ‘(s x(s). u(s)) ds + x(t5). )

fo

However, there are state equations of the form
!
x(1) = /g(t,x(s),u(s),s) ds + x(1,) (3)
fa

that cannot be put in the form of (1) by merely differentiating both sides with
fespect to ¢, as (2) can.

An example involving a firm's optimal selection of a product’s durability
through time will serve to illustrate when the use of an integral state equation,

such as (3), is useful. But first we will derive the necessary conditions for the
problem

max /f(t x(0).u{0)) dr (4)
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subject to (3), and x(2,) = x,, x(#,) free. To do this we form the Lagrangian

Lix,u,¥) = /.rlf(l, x(1), u(1))

iy

+ /:I)\(t)[/:g(t, x(s), u(s), s) ds + x(1,) - x(1)| ar.
(5)

Upon changing the order of integration in the terms involving the dounble 3§

integral we get

I
o

L=/:1f(t,x(r),u(t))dt+f [/rfl)\(s)g(s, *(2), u(t), 1) ds

+xN0) = 5(ON0)] | a. © |

Note that in going from (5) to (6) the first and fourth arguments of g have

been interchanged. Now define the Hamiltonian as

3
H(t, x,u,N) = £(¢, x{(1), u(2)) + / Ns)g(s, x(1), u(r), 1) ds. (1) }
) ;
The Lagrangian (6) can now, upon substitution from (7) into (6), be written as

Lixu N = ["{H( x u N = MO [x(0) - x()]} db. (8) |

o

We can now regard (8) as a maximization problem in the calculus of variations :.:
involving two functions, x(7) and u(t), but in which x’(#), and #'(¢) do not 3

appear (see Scction 1.18). The Euler equations are then

OL/du = f,(t, x(¢), u(t) + /“)\(s)gu(s, x(8),u(t),1)ds =0 (9)

and

OL/dx =f (1, x(1), u(r)) + f'?\(S)gx(S. x(1). u(t), 1) ds — N1} = 0.
(10) '-

But (9) and (10) together with the definition of # in (7) give

0H /du = 0 (1) |
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and
aH/dx = N1t) (12)

as the necessary conditions.

Now suppose that dg(t, x(s), u(s), 5)/3t =0, then ddg/at)/ou =
8(dg/3u)/3t = 0 by virue of the equality of cross-partial derivatives. Next
recall that in going from (5) to (6) the first and fourth arguments of g were
interchanged so that dg /3¢ = 0 implies that dg,/8s =0, that is, that g, is
constant with respect to the variable of integration s in (9), but then )
becomes

Slt x(1). () + g,(x(0), w1}, 1) ["Nsyds =0, (13)

Expression (13) is almost the same as the necessary condition for an optimal
control problem in which the state equation is a differential equation such as
(1) except that in (13) g, is multiplied by an integral of the multiplier A s)
instead of single multiplier, say, Ao(t), that appears in the standard optimal
control problem. However, this suggests that the multiplier N(s) appearing in
(13) is just the negative time derivative of Ao(f), as we can write Aft) =
N(t) — ["N(7) dr and identifying A(s) in (13) as — No(7). Thus, [/'N(s)ds
= — /"Ny(7) d7 and (13) can be rewritten as,

Sut 8u{M(t) = (1)) = 0. (14)

But for the simplest optimal control problem in which Ay(#,) can be chosen
freely Ay(7,) = 0, and therefore (9) finally reduces to

Jut N(t}e, =0=0H/au. (15)
Similarly, (10) reduces to
~N(1) = S+ N(1) g, = 0H /bx (16)

upon recalling that N¢) = — Ao(0).

Thus, what has been shown is that the necessary conditions for the optimal
Control problem (4) subject to the integral state equation (3} reduce to the
Decessary conditions for the standard optimal control problem with state
€quation (1). Similarly, it can be shown that just as in the standard optimal
control problem that if the maximized Hamiltonian is concave in the state
Variable then the necessary conditions (9) and (10) are also sufficient for a
Mmaximoem.

Example, A firm produces a durable good, the durability of which, as
Measured by its decay rate, can be chosen at each instant of time. That is, each
Vintage of the good can have a different durability.

Let x(¢) denote the quantity of the durable good produced at time 7, and
b{(1) denore its decay rate. The total quantity of the durable at time t, denoted
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by O(f), is

o) = [fernox(s) a, (1) |

and Q0) = 0. If b(¢) = b, that is, the decay rate is constant through time,
then

Q(r) = x(1) - bfore"b(r_”x(s) ds =x(1) —0Q(r) (1)

and (18) could be rewritten as an equivalent differential equation,

P(H(1), 1) denotes the product’s selling price at time ¢ given that its decay 'f
rate is b(¢), and c(x(¢), b(¢)) denotes the total cost of producing the quantity .
x(¢) of the good with decay rate b(¢). It is supposed that total production cost

has the particular form

C(x, b) = xg(x)h(b) + f(x). (19)

That is, the guantity of the good produced and its decay rate interact multi- 3
plicatively in the total cost function. However, A'(b) > 0, h"(b) = 0, f(x)
> 0, and all other second derivatives are positive. The sign of g'(x) is not }
specified at this point. The good's selling price, P(b(t), £), can be related to
its durability as reflected by b(¢), a higher &#(f) meaning a lower durability,
through the observation that it must equal the discounted stream of rental §
prices of the service provided by the good. If this were not so there would be i
an opportunity either for the buyer or the seller to profit from the difference in 4
the selling price and the rental price of the durable good. The product’s selling 4
price is the discounted stream of rental prices of the service provided, where §
the discounting takes into account the discount rate r, assumed to be a §
constant, and the deterioration of the service provided at the decay rate b{f).

Thus,

P(b(1), 1) = /mp((Q(s))e—{r+b{I]](5-f) ds. (20)

!

where p(Q(s)) refers to the rental price at time 5 when the stock of the ;:1

durable good is Q.
The firm’s objective is to choose how much to produce x(#) at each point in

time and to set the decay rate A(7), so as to maximize its discounted profit ]

stream, namely,

= /me"”[P(b(r), 1yx(1) — C{x(¢). b(1))] ar. (21)
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subject to (17). Now (21) can be rewritten as

y = /0 me"" x(t)[ /f " p(Q(s))emtrrowxs—n ds] - C(x,b)} dt (22)

upon substitution for P(b(f), 1)) from (20} into (21). The terms in (22)
involving the double integral can, upon changing the order of integration, be
rewritten as

/Om e "p(Q (5))[/ —HRGE=0 ¢ (4) a’r] ds. (23)

But from (17) it follows that the inner integral is just Q(s), the stock of the
durable good at time s. Substituting from (23) back into (22) and switching f
for s as the variable of integration we get

:/: 1 p(Q(1))Q(1) = C(x(t), b(1)] dt. (24)

The Hamiltonian formed from the objective function (24) and the state
equation (17) is

H= e[ pQ - C(x(t), b(1))] + /0 o060 (1) \(s) ds. (25)

Note that as, in going from (3) to (7), the roles of # and s are interchanged, so
also are they here in going from (17) to (25). The necessary conditions are

BH/dx = —e~"'C, + / ~B0G6-D)\(5) ds = 0 (26)
0

!
AH/8b = —e"C, — / (5= )e ® X =Dx()\(s) ds = 0 (27)
0

N1} = 8H/30(1) = e[ p(Q(n)) + P(Q()Q(1)]  (28)
Wwhere C, and C, refer to the partial derivatives of C with respect to x and b,

l'espectwely, while p° refers to the derivative of p with respect to Q.
Substituting from (19) and (28) into (26) gives

[2(x) + xg'(x)] A(b) + 1(x)

- _/me—(ﬁbcm(s—n[p(Q )+p Q(S} ]ds (29}
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and substituting from (19) and (28) into (27) gives

g((0) = — [ (5= )e O p(Q(s) + (2())2s)] ds.

In both (29) and (30) the transversality condition
!
lim, ., f e~ ¥\ () ds = 0
0

has been employed to set fje "IN s) ds = — [[Te™ 2O DL(s) ds.

FURTHER READING

The derivation of the necessary conditions (11) and (12) is based on Kamien and_:
Muller. A more rigorous derivation appears in Bakke, Nerlove and Arrow, and Mang §
provide examples of problems involving integral state equations. The example is based
on Muller and Peles. They also indicate when the quality of the good optimatly declinen_;'_

through time.

(30) :.

Section 21

Dynamic Programming

A third approach to dynamic optimization problems, called dynaemic pro-
gramming, was developed by Richard Bellman. It has been fruitfully applied
to both discrete and continuous time problems. We discuss only the latter,

The basic principle of dynamic programming, called the principle of
optimality, can be put roughly as follows. An optimal path has the property
that whatever the initial conditions and control values over some initial period,
the control (or decision variables) over the remaining period must be optimal
for the remaining problem, with the state resulting from the early decisions
considered as the initial condition.

Consider

max /:f(r,x,u) dt + ¢(x(T). T) )

subject to x =g(t,x,u), x(0)=a.

Define the optimal value function J(f,, x,) as the best value that can be
Obtained starting at time 7, in state x,. This function is defined for all
0 < ¢, < T and for any feasible state x, that may arise. Thus,

T
Ty, Xo) = max/ £(t. x.u)dr + $(x(T), T)
& (2)

!

subjectto x’ =g(¢, x,u), x(#;) = xg.
Then, in particular,
HT, X(T)) = 8(x(T). T). ()
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We break up the integral in (2) as

) (4)

Lo+ At T
Ity xp) =maxu(f fdt+/ fdt+ ¢
fy A

+ Al

where A7 is taken to be very small and positive. Next, by the dynamic
programming principle, we argue that the control function u(f), t, + Ar < ¢
= T should be optimal for the problem beginning at f, + A¢ in state
x(ty + A1) = x5 + Ax. The state x, + Ax, of course, depends on the state
X, and on the control function #(7) chosen over the period ¢, = 1 < 1, + At.
Hence,

to+ Al T
J(ty, x) = max f fdr+  max / fdt+ ¢
u 1

fosIsiy+ Al fo thtarstsT fotat
subjectto  x" =g, x{t + Af) =x,+ Ax; (5)
that is,
AT
J(ty. %) = max fdt + Ity + At,xo+ Ax)|.  (6)
tyststg+ar ko

The return over t; =<7 =< T can be thought of as a sum of the return over £

fp <1t =<t;+ At plus the return by continuing optimally from the resulting
position (7, + Af, x, + Ax). Both the immediate return and the future return
are affected by the control u(?), f, < 7 < f; + Af, which is to be chosen
optimally. '

To put (5) in a more useful form, we approximate the first integral on the
right by f(#;. x,.u) Az, the height of the curve at the lower limit of integra-
tion times the width of the interval. Since At is very small we can consider the

control to be constant over {, <! < f, + A¢. Further, we assume J is a

twice continuously differentiable function and expand the second term on the
right by Taylor’s theorem. Hence,

J(ty, xo) = max [ 15, xq, u) At + J{tg, Xo) + J,(25, %) AL
+J (1o, xo) Ax + h.o.t].

Subtracting J(#,, x,) from each side, dividing through by A¢, and letting
At — 0 gives

0 = max, [ f(7, x, u) + J,(¢, x) + J, (1, x)x].

Zero subscripts have been dropped since there is no ambiguity. Since x’ =
g(t. x, &), we have finally

—J{t, x) = max [ F(¢, x.u) + J(t, x)g(s. x, u)]. (7) ]
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This is the fundamental partial differential equation obeyed by the optimal
value function J(f, x). Tt is often referred to as the Hamilton-Jacobi-Bellman
gquation. One finds the maximizing # in terms of ¢, x, and the unknown
function J, and then substitutes the result into (7) to get the partial differentiat
equation to be solved with boundary condition (3).

Note that the expression on the right of (7}, to be maximized with respect to
i, looks like the Hamiltonian, except that J. (¢, x) is playing the role of the
muitiplier A(#). However, recall our interpretation of A¢) as the marginal
valuation of the state variable x! Indeed M) = J, (¢, x(#)), and the right side
of (7) is exactly our old directive that the Hamiltonian be maximized with
respect to . Note also that (7) is exactly the same as (I1.12.29).

The differential equation of optimal control for M) can be derived from (7)
as well. Let u provide the maximum in (7), so f, + J,. g, = 0. Also, since (7)
must hold for any x, it must hold if x is modified slightly. Thus, the partial
derivative of (7) with respect to x must be zero (with u chosen optimally in
terms of ¢, x, and J.):

_er=fx+‘]xxg+‘;xgx‘ (8)
The total derivative of J, is
di{t,x)/dt=J,+J, 8. (9)

Writing A = J, and substituting for J,, from (9) into (8) gives the familiar
differential equation

—X =f, + g,

Hence, with sufficient differentiability, the dynamic programming approach
can be used to develop the necessary conditions of optimal control. Alterna-
tively, one can also use the fundamental partial differential equation (7)
directly (although we do not recommend it for most problems).

Example. To illustrate, consider

min / e "(ax? + bu’) dr
0 ' (10)
subject to x=u, x(0})=x,>0,
where @ > 0, b > 0. With f = e "(ax? + bu?) and g = u, (7) becomes
~J, =min,[e "(ax? 4+ bu?) + J u]. (11)
Differentiate to find the optimal u:
e "bu+ J, =0, so u= -—J.e'/2b. (12)
Substituting for « from (12) into (11) yields

—J, = e "(ax® + J2e¥ /Ab) — J2e' [2b.
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Collecting terms and multiplying through by e’‘ gives
axt — J2e*/Ab + e"'J, = 0. (13}
To solve the partial differential equation, we propose a general form of the ]

solution to see if there is some set of parameter values for which the proposed

solution satisfies the partial differential equation. Let us “‘try™ ]

J(t, x) = e "Ax?, (14)

where A is a constant to be determined. From the problem statement {10), the ‘3

optimal value must be positive, so A > 0. For (14) compute ?'
J,= —re7™A’x*and J, = 2e "Ax

Substituting into (13) gives 3

Al/b+rA-a=0. (15)

Thus, (14) solves (13) if A4 is the positive root of the guadratic equation (15);

that is, ]

A=[-r+(r+4a/8)"]b. (16) §

The optimal control is now determined from (14) and (12) to be j'

u= —Ax/b. (17)

Note that (17) gives the optimal control in terms of the state variable; this is §

the so-called feedback form. If solution in terms of ¢ is desired, one can §

recall that x' = ¥ = — Ax /b and solve this differential equation for x{(t) = f__

xue_“‘” 4 from which u is readily determined.

A simpler form of the optimality conditions is available for infinite horizon §

autonomous problems, such as in the preceding example. An infinite horizon
autonomous problem can be written in the form

max /me“”f(x, u) dt
0

subjectto x* = g(x, u).

(18)

Hence,
J(tg, xo) = max | e "“f(x,u)dt
fo
o
= e_”"max] e " (x, u) dr.
fo

The value of the integral on the right depends on the initial state, but is i
independent of the initial time. Now let .

V(x,} = maxf e TUTIf(x, u) dt.
s
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Then

J(t, x) = e "V(x),
J,=—re”"V{(x),
J.=e "V'(x).

Substituting into (7) and multiplying through by e”* yields the basic ordinary
differential equation

rV{(x) = max,[ f(x,u) + V'(x)g(x, u)] (19)

obeyed by the optimal current value function V(x) associated with problem
(18).

It

EXERCISES

1. Solve the example of this section by using (19),
2. Solve by dynamic programming;
) T
min / (e14® + ¢e;x) de
0
subject to x' =u, x(0)=0, x(T)=8.
[Hints: ¢, x — J2/de, + J, = 0. Try a solution of the form

J(t, x) =a+ bxt + hx?/t + ki,

where a, b, k, and k are constants to be determined. Compare the solution with
that found earlier by other methods.]

FURTHER READING

For an introduction to dynamic programming, see Bellman, Howard, or Nemhauser,
Bellman and Dreyfus shows the relationships among dynamic programming, the
catculus of variations, and optimal control. Beckmann discusses some applications of
dynamic programming to economics.

_ Our discussion has focused on continuous time dynamic programming. In applica-
tions, dynamic programming's greater strength may be in discrete problems, particu-
larly where the underlying functions are not smooth and '‘nice.”” The dynamic
Programming approach- permits very efficient computer algorithms to be developed for
Such problems. This topic is of great interest but aside from the primary thrust of this

‘-‘fOOk. See Stokey and Lucas and any of the references just mentioned for an introduc-
1on to this area.




Section 22

Stochastic Optimal Control

Stochastic features have appeared in many of our examples, including uncer-
tain consumer or machine lifetime and uncertain rival behavior. The literature
contains further examples, with uncertainty regarding, for example, the timing 4
of illness, catastrophe, expropriation, or technical breakthrough. These appli-
cations involve a known probability distribution function that is typically a §
state variable and occasionally a function of a state variable. The widespread
use of this approach attests to its serviceability, but it will not do for all .

stochastic problems of interest. Another approach to stochastic modeling,

which has become especially prevalent in modern finance, is the topic of this

section.

The movement of the state variable may not be fully deterministic but it may 3
be subject to stochastic disturbance. To consider such problems, we make
some assertions about the stochastic calculus of Ité, which forms the basis for j
the analysis. The dynamic programming tools of the last section will also be |
wsed; since a random element enters into the movement of the system, the |
optimal control must be stated in feedback form, in terms of the state of the g
system, rather than in terms of time alone (because the state that will be

obtained cannot be known in advance, due to the stochastic disturbance).

Instead of the usual differential equation x' = g{{, x, #), we have the

formal stochastic differential equation

dx = g(t, x,u)dt +o(f, x,»)dz, (1) §

where dz is the increment of a stochastic process z that obeys what is called
Brownian motion or white noise or is a Wiener process. The expected rate
of change is g, but there is a disturbance term. Briefly, for a Wiener process E
z, and for any partition !, ¢, f,,... of the time interval, the random
variables z(f,) — z(fp), 2(f;) — 2(f)), 2(83) — 2(Ly), ... are independently
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and normally distributed with mean zero and variances £, — #5, f; — £, ;3 —
t,, ..., Tespectively. It turns out that the differential elements df and dz have
the following multiplication table:

I dz dt
dzy dt 0 (2)
di 0 0
Since (dz)? = dt, the differential of a function
y=F(t,z),
where z is a Wiener process, will include a second partial derivative. In
particular, in expanding by Taylor series, we get
dy = F.dt + F,dz + (1/2)F,(dt)’ + F,, drdz + (1/2)F,(dz)’ + h.o.t.
50
dy = (F, + F,) di + F, dz ©)

on using the multiplication table (2). Subscripts indicate partial derivatives.
Similarly, if
y = F (f, X ) . (4)
where x obeys (1), then y is stochastic since x is. The stochastic differential
of y is found using Taylor’s theorem and (2). We get
dy = F, dt + Fodx + (1/2)F,,(dx)*, (5)

whe.re dx is given by (1). This rule (5) is known as 70’s theorem. Of course,
(_3) is a special case of (5). One can substitute from (1) into (5) and use (2} to
simplify the results, obtaining the equivalent statement

dy = (F,+ F,g + (1/2)F,,0%) dt + Fodz. (6)
The Itd stochastic calculus extends to many variables, with many stochastic
processes. For instance, let x = [x,,..., x,] and
dx,=g{t, x)dt+ 3 a{t,x)dz;, i=1,...n (7)
i=1

Let the Wiener processes dz; and dz; have correlation coefficient p,;. Finally,
let y = F(t, x). Then Itd’s theorem gives the rule for the stochastic differen-
tial:

n

dy =Y (9F/3x,)dx; + (3F/3t) dt

i=1

12

n
i=1j=

(8°F/ax,dx,) dx, dx;, (8)
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where the dx; are given in (7) and the products dx; dx; are computed using
(7) and the multiplication table

dz; dz; = p;; di, i,j=1,...,n,
dz, dt =0, i=1,...n, (9)

where the correlation coefficient p; = 1 foralli=1,...,n.

The rules for integration of a stochastic differential equation are different
from the ordinary calculus rules. For example, in the usual case, if dy = ydbx,
then y = e*. But in the stochastic calculus, the differential equation dy = ydz
has solution y = e~ '/, The method of verification is the same in each case;
one differentiates the proposed solution by the appropriate rules and checks
whether the differential equation is satisfied. To verify the stochastic example,
write

y=e""?=F(z,f)
and differentiate using (3). Since
F,=y, F,=y, ad F=-y/2,
we get
dy=(—-y/2+y/2)dt + ydz=ydz

as claimed.
As a second example, the stochastic differential equation

dx = axdt + bxdz
has solution

x(1) = xoe(a—bzl2)1+bz'
To verify, we denote the right side F(¢, 7), compute
F,=(a- b /2)x,
F, = bx, F,, = b’x,
and plug into (3) to get
dx = [(a - b*/2)x + b*x /2] dt + bxdz

= axdt + bxdz

as claimed.
As a third example, we seek the stochastic differential of x = Q/P where
Q and P obey

dP/P = adt + bdz, (10)
dQ/Q = cdt, (11)
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with @, b, ¢ given constants. In the ordinary deterministic case, we should
have

dx/x=dQ/Q ~ dP/P.
However, using It0’s theorem (8), we compute
dx = Xp dP + X0 dQ + (1/2)Xpp(dP)’ + xpp dPAQ + (1/2) xp0(d0)’
= —(Q/P*)dP +dQ/P + (Q/P*)(dP) - dPdQ /P
Multiplying through by 1/x = P/Q gives
dx/x = —dP[P +dQ/Q + (dP/PY - (dP/P)(d0Q/Q).
Substituting from (10) and (11} and simplifying gives
de/x=(c+b*—a)dt - bdz.

Now consider the stochastic optimal control problem.

max E[ /Orf(t, x,u)dt + ¢(x(T), T))

subjectto  dx = g(¢, x,u) dt + o(t, x,u) dz, x(0) = x,,

(12)

where the function E refers to the expected value. To find necessary condi-
tions for solution, we follow the method of the preceding section. Define
J{(#,,%,) to be the maximum expected value obtainable in a problem of the
form of (12), starting at time 1, in state x(#,) = x,:

Jty, x5) = maqu(fo(t, x,u)dt + &(x(T), T))

subjectto  dx=gdr + odz, x(1,) = x,. (13)
Then, as in (20.2)-(20.6), we obtain
J(t, x) = max E(f(1, x,u) Ar + J(t + A1, x + Ax)).  (14)

Assuming that J is twice continuously differentiable, we expand the function
on the right around (¢, x):

J(t+ At x+Ax)=J(t, x) + J,(¢, x) At + J (¢, x) Ax
+(1/2)d(t, xX)(Ax)* + h.o.1. (15)
But recalling the differential constraint in (12), we have approximately
Ax=gAt+aAz,

(Ax)’ = g?(At) + o?(Az)* + 2g0ArAz = 62 AL + h.o.1.. (16)
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where use has been made of (2) and the foresight that we will soon divide by
At and then let A7 — 0. Substitute from (16} into (15) and then put the result
into (14) to get

J(t, x) =max E(fAr+ J+ J At + J,g At + J,0Az
+(1/2)J, 0% At + h.0.t). (17)

Note that the stochastic differential of J is being computed in the process.
Now take expectation in (17); the only stochastic term in (17) is Az and its
expectation is zero by assumption. Also, subtract J(#, x) from each side,
divide through by At, and finally let A7 — 0 to get

—~J (1, x) = max (f(t, x, u) + J (¢, x) g(2, x, u)
+(1/2)0%J (2, x}). (18)

This is the basic condition for the stochastic optimal control problem (12). It
has boundary condition

JHT. x(T)) = o(x(T), T). (19)

Conditions (18) and (19} should be compared with (21.7) and (21.3).
To illustrate the use of these necessary conditions, consider a stochastic
modification of the example of Section 21:

min Ef e lax? + ht) dt
0 & ) (20)

subject to dx=udt+odz, a>0, b>0, ¢>0.

Note that ¢ is a constant parameter here. The function (¢, x, ¥) = o x.
Substituting the special form of (20) into (18) yields

—J, = min (e "(ax® + bu?) + Ju + (1/2)0?x%J,,).  (21) §

The minimizing ¥ is
u=—-J,e"/2b. (22)
Substituting (22} into (21) and simplifying gives
—e"J = ax® - Je¥jab + (1/2)0x* ), e, (23)

Now try a solution to this partial differential equation of the same form as that
which worked in the deterministic case:

J(t, x) = e "Ax*. (24)

Compute the required partial derivatives of (24), substitute into (23), and

simplify to find that A4 must satisfy

A /b+ (r-o¥)A —a=0. (25) |
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Since only the positive root made sense before, we take the positive root here:
2 232 12
A= {a -r+[(r—o } +4a/b] }b/Z. (26)
Again using (24) in (22) gives the optimal control,

u=-Ax/b, (27)

where A is given by (26). Compare this with the findings of Section 21.

A simpler form of (18} is available for problems that are autonomous and
have an infinite time horizon. The optimal expected return can then be
expressed in current value terms independently of . The procedure was
followed in the preceding section and the results are analogous. Let

V(xg) = max E/ e U x, u) dt
Iy

subjectto  drx =g{x,u)dt + a(x,u)dz, x(t)) =x,, (28)

50
J(t, x) = e " V(x). (29)
Substituting from (29) into (18) gives
rV{(x) = max,(f(x, u) + V'(x)g(x, u) + (1/2)0*(x, u} V"(x)},
(30)
which should be compared with (21,19},
The next example, based on work by Merton, concerns allocating personal

wealth among current consumption, investment in a sure or riskless asset, and
investment in a risky asset in the absence of transaction costs. Let

W = total wealth,

w = fraction of wealth in the risky asset,

s = return on the sure asset,

a = expected return on the risky asset, @ > s,

o” = variance per unit time of return on risky asset,
¢ = consumption,

Ulc) = ¢®/ b = utility function, b < 1.
The change in wealth is given by
dw = [s(1 -~ w)W + awW - ¢| dr + wWodz. (31)

The deterministic portion is composed of the return on the funds in the sure
asset, plus the expected return on the funds in the risky asset, less consump-
tion. The objective is maximization of the expected discounted utility stream.
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For convenience, we assume an infinite horizon:

max E/:(e‘”cb/b) dt (32)

subject to (31) and W(0) = W,.
This is an infinite horizon autonomous problem with one state variable W and
two controls ¢ and w. Although (30) was developed for a problem with just

one state variable and one control, it is readily extended to the present case,
Using the specifications of (31) and (32), (30) becomes

V(W) = max, ,(c?/b+ V' (W)[s(1 - w)W + awW — ]
+(1/2) W W2tV (W)). (33)

Calculus gives the maximizing values of ¢ and w in terms of parameters of the
problem, the state W, and the unknown function

c= [V, w= V(W) (s-a)/tWVI (W), (34)

We assume the optimal solution involves investment in both assets at all times.
Substituting from (34} and (33) and simplifying gives

VWY = (V) P71 = b)/b + sWV' = (s — @) (V') /20%V". (35)

Let us ‘‘try”” a solution to this nonlinear second order differential equation of
the form

V(W) = AW?, (36)

where A is a positive parameter to be determined. Compute the required
derivatives of (36) and substitute the results into (35). After simplification, one
gets

Ab = {[r—sb— (s —a)f'b/20*(1 = b)}/(1 - b)}b_l‘ (37)

Hence the optimal current value function is (36), with A4 as specified in 37n.
To find the optimal control functions, use (36) and (37) in (34):

c= W(ABY'®V,  w=(a-s)/(t - b (38)

The individual consumes a constant fraction of wealth at each moment. The
optimal fraction depends on all the parameters; it varies directly with the
discount rate and with the riskiness of the risky asset. The optimal division of
wealth between the two kinds of assets is a constant, independent of total
wealth. The portion devoted to the risky asset varies directly with the expected
return of the risky asset and inversely with the variance of that return.
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EXERCISES

1. Solve problem (20) using the current optimal value function ¥{x).

2. Find a control function ¢(¢) 10

max E/ e e?(t) dt
0

subjectto  dx = (bx — ¢) dt + Axdz, x(0) =x,> 0,

where z(f) is Wiener.
SOLUTION: ¢(8) = [(r — ab)/(1 — &) + ah® /2]x(1).

FURTHER READING

For stochastic problems in this text, review examples and exercises in Section I8, I9,
111, and II10 and IIL5, for instance, See also Cropper (1976, 1977), Dasgupta and
Heal, Kamien and Schwartz (1971a, 1974a, 1977a), Long (1975), Raviv, and Robson,

Dreyfus (1965, pp. 215-224) gives a derivation of the necessary conditions of this
section and some examples. Amold provides a good readabie treatment of the stochastic
calculus. See Merten (1969) for a more thorcugh discussion of the example of this
section and the methodology of solution and for analysis of the more realistic case of an
individual with a finite planning horizon. Brock (1976) is an excellent *‘user’s manual.**
Exercise 2 is discussed fully by Brock. Malliaris and Brock is the expanded sequel to
Brock (1976).

For further applications of the stochastic optimal control, see Merton (1971) (con-
sumption and asset management), Fischer (index bonds), Gonedes and Lieber {produc-
tion planning). Constantinides and Richard (cash management), and Tapiero (advertis-
ing).
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Differential Games

Up to this point the dynamic optimization methods studied related to problems
involving a single individual carrying out the optimization. In particular, in the
case of an optimal control problem it is a single individual’s choice of the
contrel variable that advances the state of the system. However, there are
many situations in which the state of the system is determined by more than the
individual. For example, if the stock of fish in a body of water represents the
state of the system, then the amount of fish harvested by a number of
individuals determines the state. Similarly, the probability that someone will
successfully develop a patentable new product or process of production de-
pends on how much each of several individuals invests in research and
development. Finally, unless its seller is a monopolist, a product’s price at a
point in time depends on the output level of each of its producers.

Sitvations in which the joint actions of several individuals, each acting
independently, either effect a common state variable or each other’s payoffs
through time, are modeled as differential games. In particular, we confine our
attention to noncooperative games, those in which the individuals, referred to
as players, do not explicitly cooperate in selecting the values of their control
variables, and for which the state of the system changes according to one or
more differential equations. Thus, in a differential game, the players interact
repeatedly through time. However, their interaction is not a simple repetition
of the original game, as the initial conditions for each game giffer through the
continuous change in the state.

In the case of two players, 1 and 2, a typical differential game is posed as
player | choosing his control, u,, to maximize

Pue) = [0 60, w0, um) e ()

5
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while player 2 chooses to maximize
f
S u,, u,) = f S, xi(1), %, (2}, u (1), uy(1)) at (2)
Ty

with both maximization problems subject to the state equations

x;(t):g*(t,x,(t),xz(r),u,(t),uz(l‘)) (3)
x(ty) = x;0, x,(1,)free, i=1,2.

As in a standard optimal control problem, the controls are assumed to be
piecewise continuous, while f* and g‘ are assumed to be known and continu-
ously differentiable functions of their four independent arguments. Each player
is aware of the other’s presence and how the other’s choice of his controt
variable affects the state equations. As a result, the individual player must take
into account the other player's choice of his control variable in choosing his
own. That is, each player chooses his control variable so as to maximize his
payoff for every possible choice of the other player’s control variable. The two
players are assumed to choose their control variables simultaneously. But this
appears to require that each player guess what the other is going to do in order
for him to make his optimal choice. This guessing in turn leads to the
possibility that one or both of the players would like to revise his decision
given what was actually done by the other. When there is no incentive for
either player to revise his choice of his control variable, then the choices are
said to be in equilibrium. In particular, they are said to be in Nash equilib-
rium if

T ut, u3) = I (uy, u¥) (4a)
and

JHuk, ut) = I (uf, uy) (4b)

where u}, u} are referred to as player 1°s and player 2's respective equilib-
rium strategies. According to 4(a, b), each player is doing the best he can given
the other’s strategy, the choice of the control variable, and neither has an
incentive to deviate from his choice. This definition of equilibrium together
with each player’s knowledge of both objective functions in fact enables each
player to avoid having to guess what the other will do by figuring out what the
equilibrium has to be on his own and choosing his equilibrium strategy
accordingly. In effect, each player can compute not only what his best response
is for each of his rival’s strategies but also what his rival’s best response is to
each of his own strategies. Moreover, each player knows that the other has
also conducted this thought experiment and so they can both select their
equilibrium strategies immediately. The obvious strong assumption in this line
of reasoning is that there is only one Nash equilibrium. If there are several
Nash equilibria then neither player can be certain about which one the other
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will focus on. There is intense research and an extensive literature on the
guestion of how players might both choose one Nash equilibrium among
several.

The strategies, in the form of selecting the control variables #, and u,, most
commonly employed in the application of the theory of differential games are
either open-loop or feedback. Open-loop strategies are ones for which each
player chooses all the values of his control variable for each point in time at the
outset of the game. That is, &, = u,(#); the value of the control at each point
in time is only a function of time. This type of strategy implies that each player
has committed to his entire course of action at the beginning of the game and
will not revise it at any subsequent point in time. The Nash equilibrium
open-loop strategies are relatively easy to determine as they involve a straight-
forward application of the standard optimal control methods. That is, for each
player form a Hamiltonian:

Hi(t, x, (1), x,(0), wy(£), uy(£), Xo(1), Na(1))
S firNg' + Ng?, =12 (5)

corresponding to (1), (2) and (3). The Nash equilibrium conditions (4a, b) in
terms of the Hamiltonians are:

HY(t, x, (1), x,(6), wi(2), w3 (1), X{1), %(1))

= H'(t, x,(1), %,(4), w, (1), 3(6), N2}, 2%,(¢))
H2(1, x,(1t), x,(2), ut (e}, ui(2), Ni(£), %(1))

= HA(1, x,(2), x,(1), ui(2), u (1), X (1), % (7))

Applying the standard necessary conditions of optimal control theory to (5)
gives rise to the equations

H,j',,=0, N/(t) = —0H"/dx,, i=1,2, j=1.2 (6)
which together with (3) yield eight equations for determining the eight func-
tions wF(2), w¥ (1), N}, X0, x}(0, x3(1), i = 1,2.

The relative simplicity of finding or characterizing open-loop strategies has
caused them to be frequently employed. However, the implicit requirement
that each player commit to his entire sequence of actions through time at the
outset is thought to be rarely satisfied in real world situations. It is commonly
held that a player will have the option and incentive to revise his actions
through time as the game evolves. Thus, it is thought that a more appropriate
way of modeling a player’s behavior is to suppose that he can condition his
action at each point in time on the basis of the state of the system at that point
in time. This class of strategies is referred to as feedback strategies and is
characterized by the requirement that &, = w/f, x,(¢), x,(1)), i = 1, 2. That
is, the control at each point in time be a function of both time and the state of
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the system x,(f), x,(f) at that time. Conceptually, what distinguishes feed-
back strategies from open-loop strategies is that a feedback strategy consists of
a contingency plan that indicates what the best thing to do is for each value of
the state variable at each point in time rather than just what the best thing to do
is at each point in time at the ountset of the game. While there are circumstances
for which the two types of strategies coincide in that the actions taken are
identical at each point in time, in general they do not. Moreover, feedback
strategies have the property of being subgame perfect. This means that after
each player’s actions have caused the state of the system to evolve from its
initial state to a new state, the continuation of the game with this new state
thought of as the initial state may be regarded as a subgame of the original
game. A feedback strategy allows the players to do their best in this subgame
even if the initial state of the subgame evolved through prior suboptimal
actions. Thus, a feedback strategy is optimal not only for the original game as
specified by its initial conditions but also for every subgame evolving from it

While the concept of feedback strategy is more appealing and more general
in the sense it could be one that depends only on time and not on the state of
the system at that time—that is, it subsumes open-loop strategies, it is more
difficult to compute. As with open-loop strategies, feedback strategies must
satisfy the Nash equilibrium conditions (4a, b). The computational difficulty
arises in connection with the co-state variables X,(7), X%,(¢), i = 1,2. To
compute the feedback strategies the Hamiltonians corresponding to problems
(1), (2) and (3) are formed.

Hi(t, x(8), x,(1), w, (1, x,(8), x,(8)), wx e, x,(£) x2(2)), X (2), No(1))
=fT+Ng' + g%, i=1,2. (7)
The first set of necessary conditions are
H;, =0, i=1,2. (8)
However, the second set of necessary conditions are
N/(t) = ~aH'/ax, - (3H'/du,)(dut /dx))
)\f,-’(t) = —BHZ/axj— (aHzfau,)(au‘,“/axj)
j=12 (%)

The second term on the right side of (9) appears because it has been posited
that the players employ feedback strategies and therefore that u ; is function of
X;(1), x,{1). The reason that the term (3. H'/du ) (3u7/dx,) does not appear
on the right side of (9) is because dH'/3u, = 0 according to the first
necessary condition (8). The reason that feedback strategies are difficult to
compute is because of the presence of the last term, referred to as the
interaction term, on the right side of (9). Intuitively, finding player 1's optimal
feedback strategy u,(?, x,(f), x,(t)) requires that player 2's optimal feedback
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strategy us({, x,(1), x,(2)) be known which, in turn, requires that player 1’s
be known, and so on. Yet, despite this difficulty, feedback strategies have been
computed as the examples below will illustrate. A further requirement for a
feedback strategy is that it be optimal for any initial conditions ty, xg. This, of
course, is consistent with the requirement that a feedback strategy be optimal
from any subsequent time and value of the state variable forward.

The nature of a feedback strategy is in the spirit of the principle of
optimality of dynamic programming. Recall that in derivation of the fundamen-
tal partial differential equation, the Hamilton-Jacobi-Bellman equation, obeyed
by the optimal value function (21.7), the requirement that the objective
function be optimat for each time and value of the state variable forward was
employed. Thus, (21.7) is commonly employed to find feedback strategies.
This, of course, involves the simultaneous solution of two partial differential
equalions, a tricky task indeed.

Example 1. This example will serve to illustrate both how open-loop and
feedback solutions are computed and the difference between the two. Suppose
two firms produce an identical product. The cost of producing it is governed
by the total cost function

C(u) = cu, + 132,  i=1,2 (10) 4

where u,(¢) refers to the i-th firm’s production level at time . Each firm
supplies all it produces at time ¢ to the market. At each point in time the firms
face a common price p(f) at which they can sell their product. However, the
amount they jointly supply at time ¢, u,(¢) + u,(¢), determines the rate at
which price changes at time ¢, dp(r)/dt = p'(1). The relationship between the
total amount supplied and the change in price at time 7 is described by the
differential equation,

(1) =sla~u(1) —uy(r) - p(0)],  p(O)=p,.  (11)

Thus, p(t) is the state variable. The parameter s refers to the speed at which
the price adjusts to the price corresponding to the total quantity supplied on the
demand function. The full meaning of this will become apparent shortly. At
this point it should be observed that if s = 0, then p(¢) = 0.

Each firm chooses its level of output u A1) 50 as to maximize

Ji= f:e"’(p(r)uj(f) - Clu(0))] de. i=12 (12)

subject to {10) and {11). The role of 5 can now be further understood by
solving for p(¢) in (11} and substituting into (12} to get

(=]

Jj(“l'“2)=/ e_”[(a_“l*uz)“i—P’”ifs_C(”;)] dr (13)

0
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where r refers to a constant discount rate. From (13) it is evident that in the
limit as s — oo the second term in the integral vanishes and each firm in fact
faces a downward sloping linear demand function ¢ — 4, — 1, = p(t). Thus,
if the speed of adjustment is instantaneous, then the firms are engaged in a
simple Cournot duopoly situation repeated at each instant of time. If, on the
other hand, there is some lag in the adjustment of price to the contemporaneous
quantity produced, then each firm faces a horizontal demand function at each
mstant of time. That is what the formulation in (12) implies, together with the
adjustment equation (11).

To find the open-loop Nash equilibrium for this game we form the current
value Hamiltonians

H'=p(t)u(t) - Clu{0)) + m()s(a - u,(r) - uy (1) - p(2)),
i=1,2 (14)
and obtain the necessary conditions
Hy=p(ty—c-u(t) -m()s=0, i=1,2 (15)
and
—mf¢) =ut) - m(t)(s+r) and lim, e "'m;(¢) =0 (16)

where (10) was employed in obtaining (15). Now solving (15) for u,(t),
plugging into (16), integrating (16) with the aide of the integrating factor
e”**" and using the transversality condition to defermine the constant of
integration, yields

m(t) = /me“z”’)”")(p(r) -c)dr, i=1,2. (17)

?

From (17) it is evident that m,(f) = m,(t) as both are equal to the same right
hand side. It then follows from (15) that uy(f) = u,(¢) = u(1). Differentiating
(15) with respect to time and substituting for sm'(f) from this operation, and
for sm(¢) from (15), into (16) multiplied by s, yields

w(t) =s{a—u(t) - p(0)] = (s + 1) p(1) - c —u(r)]. (18)
Now the stationary open-loop Nash equilibrium strategies are the ones for
which #'(#) = p'(¢) = 0. From setting the right sides of (11) and (18) equal to
Zero it follows that the stationary open-loop strategies and the product price are
u* = (@~ c)(s+r)/[4s+ 3r] (19)

and
P ={2(a+c)s+ (a+2¢)r]/as + 3r], (20)

respectively.
The price p* in (20) that results from the open-loop strategies has an
interesting interpretation. Suppose the two firms were engaged in a static
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Cournot duopoly game in which the demand function was p = a — #, — u,,
and with cost functions given by (10). Then it is not difficult to show that the
equilibriom quantity each firm produces is #, = (@ — ¢)/4 and the equilib-
rium price is py, = (@ + ¢)/2. On the other hand, if each firm were to behave
naively in the sense of believing that it faces a horizental demand function,
i.e., that neither its own level of output nor its rival’s influences the product’s
price, then each will produce u, = (@ — €)/3 and the equilibrium price will
be py = (@ + 2¢)/3. Now with some algebra applied to (20) it is possible to
show that the stationary open-loop equilibrium price is

P* = (4spp + 3rpy) /(45 + 3r). (21)

Thus, p* is a convex combination of the two prices Pp and p,,. Moreover, it
follows that

Hm,, . p*=p,, lim,_. = py (22)

where r and s are held fixed when the respective limits are taken. Thus, when
price adjusts instantaneously, s — oo, the stationary open-loop Nash equilib-
rivm price becomes the duopoly price of the static Cournot duopoly. On the
other hand, when r = co, each firm discounts future profits completely, and
the stationary open-loop equilibrium price approaches the static equilibrium
price p, that would prevail if each firm acted naively. It is also easy to see
that p* = p,, if r =0, the firm’s value future profits the same as present
profits, and p* = p, if s =0, the price is insensitive to the total quantity
supplied.

This concludes our analysis of the open-loop Nash equilibrium strategies.
We now turn to a characterization of the feedback Nash equilibrium strategies.

To find the feedback strategies v (¢, p(?)) we form for each player the value
function

rVi(p) = maxu,{(ﬂ —c)u;— ui /2 + SV;(,D)[G —p—u - “j]}!
i=1,2, i#j (22)

by recalling (20.19), and where V) refers to the derivative of ¥/ with respect
to p. The maximization with respect to u; yields

u(p)=p-c-svj, i=1,2. (23)

Note that the control u; is just a function of p as time does not enter
explicitly. Substitution from (23) into (22) yields
. : 2
rVi=(p-c)p-c—sV))-(p—c—sV)) 2
+sVjla-p-(2p-2c-sVi-sV))], i=1,2, i=j

(24)

Note that in (24) both ¥, and V; appear. We shall only be concerned here
with interior solutions, i.e., those for which u A p) > 0. This will be assured if
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a > p,. Solving the system of differential equations represented by (24) means
finding value functions V'*( p) that satisfy them. The following value functions
are proposed as solutions,

Vip)=g, -Ep+ K p°/2, i=1,2 (25)

which implies
V)=K,p-E,. (26)
In order for the value functions proposed in (25) to be solutions to (24), the

coefficients E;, K, and the constant g must have the “‘right’” values. To find
them, substitute from (26) into (24) to get

(1/2)rk;p* — rE;p + rg;
=(1/2 - 3sK, + S’K.K; + (1/2)s’°K?) p?
+[3sE, - ’K,E; - 25°K E, - ¢ + sK,(a + 2¢)] p
+{1/2)c? + ((1/2)sE, + sE; — a - 2¢)E;, i=1,2. (27)
Now the left and right sides of (27) must be equal for all possible values of p.
This means that the coefficients of p> and p on both sides of (27) must be

equal, as well as the constant terms on both sides. Equating the coefficients of
p* and collecting terms yields
SKi+ (28°K;, - 6s—r)K, +1=0, i=1,2, i%j. (28)

By equating the coefficients of p an expression for E, as a function of X, X,
and ¢ can be found, Finally, equating the constant terms gives g, as a function
of E, and E,.

The next step is to establish that X, = K,, from which it will follow that
E, = E,, g =g,, and ultimately that the optimal feedback strategies are
symmetric, i.e., u¥(p) = u3(p). To show that K, = K,, subtract the two
equations in (28) to get

(K, - K,)[s*(K, + K;) = (r+6s)] = 0. (29)
From (29) it follows that either X , =K, or
s*(K, + K,) = r + 6s. (30)
Substituting from {26) into (23) and then into the state equation (11) gives
p(1) —sp[s(K, + K,) = 3] =s[a+2c-s(E + E)]. (31)

A particular solution to this first order differential equation is obtained by
setting p’(¢) = 0 and solving for p(#) = B, a constant. The solution to the
homogeneous part is

p(t) = pe™ (32)
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where D = s[s(X, + K,) — 3], and p, is the value of the constant of
integration. The complete solution to (31) is
p(8) =p+ (po — p)e”". (33)

where p = p, — J is obtained by setting ¢ = 0 in (33). Now in order for p(7)
to converge to J as { » o, D < 0 or (K, + K,) < 3 is required. But by
substitution from (30) for s*(X, + K,) this means that 7 + 35 < 0 is re-
quired. However, this cannot hold as r and s are both nonnegative. Thus, the
requirement that the products price converge through time, that a stationary
solution exists, rules out the possibility of an asymmetric Nash equilibrium
with feedback strategies that are asymmetric, u7(p) # wi(p).

Having established that K, = K, = K we can now solve for the roots of
(28). Specifically,

Kok ={r+6s=[(r+65) - 1252] "} j6s. (34)

To distinguish between the two roots K, K given in (34) we return to (33},
with K, = K, where now D = 5(2sK — 3). The requirement that D <0
means that K < 3/2s is required. Now the larger root K takes on its smallest
value when 7 = 0 in (34). But for r = 0, K = (3 + v6)/3s > 3/2s. Thus,
the larger root of (34) prevents convergence of p(#). On the other hand, the
smaller root K achieves its highest value at r = 0, as 3K /ar < 0. At r = 0,
K = (3 — v6)/3s < 3/25. Thus, only the smaller root allows for the conver-
gence of p(f).
With K = X it follows that

E=[c-sK(a+c)]/(r- 35K + 3s) (35)

and
w*(p) = (1 —sK)p + (sE - ¢). (36)

Expression (36) gives the Nash equilibrium feedback strategies. Now, from
(31), the particular solution with X, = K, = K, and E, = E, = E is

p=|a+2(c-sE)/[2(1 - sK) +1]. (37)

This is the stationary feedback Nash equilibrium price.

Our last step is to see what happens to (37) as 5 — oo, price adjustment is
immediate. Let lim,__sX = 8 and lim,_ sE = . Now for K=K, 8 =1
— +/2/3. From (38), v = (¢ — a3 — 2¢8)/(3 — 38). Thus, from (37)

lim,. 7= (a+2(c-v))/(3-28). (38)
Finally, substituting for $ and y in (38) and rearranging terms gives
lim, B = {(a+2c)(1 - 8) +2(a+¢)]/3(3-28)(1 - 58)
= (pn+2P5v273)/(1 +2V2/3) (39)

where p,. and p, were defined above.

7. o, v it it e o
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Recalling (22), and comparing with (39), it become evident that the open-loop
and feedback Nash equilibrium of this game give significantly different an-
swers when s — o. In the open-loop case the equilibrium price converges to
the static duopoly price while in the feedback case it converges to a price
below it. The reason for this is because when the players play feedback
strategies they produce more than when they play open-loop strategies, or the
static Cournot duopoly game. The intuitive reason for this is that in (36) as
§ — oo the coefficient of p is \/m , a positive number. Thus, each player
increases (decreases) his output with an increase (decrease) in price. What this
means is that if one player increases his output, thereby causing price to
decline, the other will decrease his output. This tends to offset some but not all
of the price decline caused by the first player’s output expansion. Therefore,
the first player has greater incentive to expand his output than he would if the
price decline were not partially offset by the other’s output contraction.
However, both players know this about the other’s behavior and therefore both
expand their respective outputs above the equilibrium levels that would prevail
in a static Cournot duopoly equilibrium,

Example 2. Two players are engaged in a race to develop & new product. The
winner of the race will receive a patent that will enable her to realize positive
profits until the patent expires and imitators drive profits to zero. The present
value of the winner’s profits that commence at the moment the race ends are
denoted by P, Neither player knows the total amount of knowledge, z, it will
take to successfully develop the new product. Knowledge is accumulated
through time accerding te the differential equation

degjdt = z2)(t) = u,(t), 7,(0) =0, i=1,2, (40)

where u,(t) is the level of effort devoted to accumulation of knowledge by
firm 7 at time ¢, and neither firm has accumulated any knowledge at the outset.
Thus, (40) represents the state equations for this game, with state variables
2,(¢) and control #,(¢). The cost of accumulating knowledge at rate (1) is
ul 2.

As knowledge is accumulated over time and the total amount for successful
development of the new product is unknown, its successful development date is
unknown. However, the probability of successful development by a given date
1s known to both firms and supposed to be given by

Flzj(t))=1—-e?"  F)=0, i=1.2. (41)

According to (41) the probability of successful development is zero if no
knowledge is accumulated and X is a constant. From (41) it follows that

dﬁ(z,-(r)),f’d; = Az(1)e Azr)
= hu(r)e ™0 = fi(z,)u (1) (42)



282 Part I1. Optiinal Control

where (40} was employed to get the final expression and f;(z;) refers to the
derivative of F, with respect to z;. Now from (41} and (42) it follows that the
conditional probability of successful development immediately beyond time ¢
given no successful development until time f, the hazard rate, is

fz) (/1 - F) = M(1),  i=1,2. (43)
The problem faced by each player is to maximize
) T
) = [C1P(1 - E(z) dF(z)/dt
e
—e‘”(l — Fz))(1 - Fz(zz))u?/?-] dt,

i#®j, i=1,2. (44)
The interpretation of (44) is that with probability dF, /dt player / realizes the
payoff P at time ¢ provided the rival has not successfully developed the
product by then, probability (1 — ), less the development costs that are
incurred as long as neither she nor her rival has succeeded in developing the

product, probability (1 — F))(1 — F,).

Now we can integrate the first term under the integral in (44) by parns,
letting dv = (dF;/dt)dt and u = 1 — F; to get

T
| P(1 = F)(aRat) a = PL(1 - E(z(TH]E(z(T))
T
+/ PF,(dF,/dt) dt. (45)
(]
Substituting from (42) and (45) into (44) gives
T
-’”(“u “2) - [ [P(l _ e—}\z;)e—kzj}\uj _ e‘”e'““”"—’ufﬂ] dt
0

+P[e—.\z,(?"] _ e—uz,-fTHz;(T))] , i®j, i=1,2 (45)

We can now begin to find the feedback Nash equilibrium controls by

forming the value function for each player. As we are not dealing with an _.
infinite horizon problem we have to use form (21.7) rather than (21.19). Thus, '_

for the first player

_J,I(I, FA Z2) = maxmu,z,,zz)[P(l - e_Ml)e_M:)\EZ

_e—rfe—MZ|+zz)uf /2 + "’zll“l + J-leﬁz] (4‘?)

where J/, J!, J] refer to the respective partial derivatives of J' with respect |
to £, z, and z,. Note that both J and J;, appear in (47) because there are
two states equations, (40). Also, the maximization with respect to u, is taken ]

Section 23, Differential Games 183

with a given value of 4, = ¥,. Obviously, there is a counterpart to (47) for the
second player.
The first order condition for (47) is

—e e Natay, 4 J! = 0. (48)

Solving for u, in (48) and for u, in the counterpart of (48), and substituting
for 4, and u, back into (47) gives

J+ [(J;l)ze”e“z'”?)]/z + J; JlelleNut
+ PJle"NeM - 1) = 0. (49)

We now propose
Tt 2, 2,) = b(1)e X%+ k(r)e™u,  i#j, i=1,2 (50)

as a solution to the partial differential equation (49) and its counterpart for
player 2. From (50} it follows that

JZI! = _fzzz = _)\be_Nﬁ*'Zz) (Sla)
7

—Npe~NMatm) _ NeemMu i, i=1,2  (51.b)
and
J = b (t)e Nt 4 p(r)e e (51.b)

where &(¢) and A’(¢) refer to the time derivatives of b(f) and k(2),
respectively. Substituting from (51.a.b.¢) back into (49} and collecting terms
gives

e Matlp 4 pXPe + 3b2Ne" 2]
+&"2[ k' + (k- P)bXe] = 0. (52)

As both ™31+ and e~ % gre always positive it follows that each of the
bracketed expressions must be zero. This gives rise to two ordinary differential
equations

b + bXPe™ + 36 Ne" /2 = 0 (53)
and
k' + (k- P)bXe™ = 0. (54)

Now, from the proposed value function (50) and (46) together with the
requirement that

JUT, i (T),25(T)) = —Pe MNaD+zIn 4 pe=ially (55)
recall (21.3), it follows that
b(T)= -P, &(T)=P. (56)
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Thus, (56) provides the boundary conditions for (53) and (54). Expression (53)
is known as a Bernoulli equation and can be solved by letting #(¢) = —1/g(#),
so b'(t) = g'(¢)/q®, where ¢'(1) is the time derivative of g(¢). Substituting
into (53) and multiplying through by g* gives

g — giPe” + 3Xe" /2 =0, (57)

a first order linear differential equation. A particular sclution to (57) is
g = 3/2 P. The homogeneous part of the equation has the form g’/ g = XPe™
or dg/q = XPe™ dr. Thus, In g = XPfje” ds + c,, where ¢, is the con-
stant of integration. Carrying out the integration, taking antilogs and combin-
ing the solution to the homogeneous equation with the particular solution gives

q(f) = 3/2P + cyexp XP(e™ — 1)/r. (58)

Using the boundary condition (56) to evaluate the constant of integration gives
g(T) = 1/P, which upon substitution into (58) yields ¢, =

—{(3P)exp[—NP(e"" — 1)]. Substituting back into (58) and recalling that
g = —1/b finally gives as a solution to (53)

b(t) = —2P/[3 — exp(PR (e’ - e} /r]. (59)

Turning to (54) the particular solution is & = P. The solution to the homoge-
neous equation is k(#) = c,exp[— fyb(s)Ne’* ds], where ¢, is the constant of
integration. Combining the solution to the homogeneous equation with this
particular solution gives

k(r) = c,exp[— fnrb(s))\ze” ds

The boundary cendition &(T) = P, (56), implies that ¢, = 0. Thus, k(¢f) = P
t.e., k() is constant with respect to time,

Now (o find the explicit expression for u7, from (48) we need to know Jo- !
To determine J, ' we substitute for b(¢) from (59) and k(¢) = P into the
value function (50) to get

+ P, (60)

—2Pe_)“!+‘323
J'=— 4 P (61)
3 - expm(t)

where m(t) = PX(e™ — ¢
From (61) it follows that

J} = 2APe N0t /(3 — exp m(t)]. (62)
Finally, combining (62} and (48) gives
ui{1.2) = 2PXe’"/[3 —exp( PN (e —e'T)/r)]. i=1,2 (63)

the feedback Nash equilibrium strategies. It is evident from (63) that & = u3,
and that u} is independent of the state variables z, and z,. i.e., it only

'Ty/r. There is a counterpart to (61) for player 2.
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depends on time. Thus, in this case the feedback controls coincide with the
open-loop controls.

Example 3. Suppose the evolution of the stock of fish, in a particular body of
water is governed by the differential equation

dx/dt = x'(t} = ax(t) — bx(#)In x(), (64)

where x(1} and x'(¢) refer to the stock of fish and its rate of change at time ¢,
respectively, and o > 0, b > 0. It is also assumed that x(¢) = 2. We need at
least two fish, one of each gender, for the fish population to survive.
According to (64), the stock X{f) generates ax(#) births and bx(¢)In x(f)
deaths at each point in time. The steady state fish stock, x’(¢) = 0, consistent
with (64) is x(f) = %/,

Now suppose that two fishermen harvest fish from this stock. Each fisher-
man’s catch is directly related to the level of effort he devotes to this activity
and the stock of fish. Thus,

c(t) = wit)x(r), i=12, (65)

where ¢, refers to the J-th fisherman's catch and w,(¢) the effort level he
expends, at time /. The fisherman's harvesting activity reduces the fish stock
and is incorporated into the state equation (64) to yield

x(t) =(e¢—w, — wy)x — bxIn x. (66)

Each fisherman derives satisfaction from his catch according to the utility
function

u(e()) =ainc(t) =a,lnw(tyx(t), i=1,2, (67)

where w;(f)x(?) = 0 and ¢, > 0. 1t will prove convenient for computation to
let

y{t) =In x(¢) (68)
so that dy/dt = y'(1) = x'(t}/ x(¢). Dividing (66) through by x(t) yields
Y(t) =a - w —w, - by (69)

as the transformed state equation,
The interaction between the players is described by an infinite horizon
differential game in which each seeks to

max, Ji(w,, w,) = a‘./we‘”[y(r] +lnw ()] dr.  i=1.2 (70)

subject to (69), and where the utility function (67) was transformed according
10 (68). The feedback Nash equilibrium strategies. w*(s. y(r)), are soughi. It
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turns out in this case that they coincide with the open-loop strategies. The
open-loop strategies are found by forming the Hamiltonians

H=ea(y+hnw)+Na-w —w,-by), i=12 (71)
The necessary conditions yield

w,=a,e "/ (71a)

X(t) = —e "a; + ON(1), lim,  N(f) =0, i=1,2, (7Ib)

where N;(¢) refers to the time derivative of A,(#). Note that the state variable

y(t) does not appear explicitly in (71a). However, it may appear implicitly

through A(f). Now from (71b) and the use of the integrating factor e~ *' and
the transversality condition it follows that

N(e) = g /(r + b), (72)

which is also independent of y(¢). Substituting from (72) back into (71a) gives
wi{t) =wi(t)=r+b {(73)

as the Nash equilibrium effort levels of the two players at each point in time. It
is the absence of the state variable in both (71a) and (72) that makes the
open-loop and feedback strategies coincide. Roughly speaking, open-loop and
feedback Nash equilibrium strategies coincide whenever the necessary condi-
tion with respect to the control variable after substitution for the solution of the
co-state variable does not contain the state variable.

EXERCISES

1, Show that for the finite horizon version of Example 1 that the Nash equilibrium
feedback strategies are uf(f, p(£)) are symmetric and u™(¢, p(£)) = (1 -
skt p(t) — ¢ + sE(t), where K(¢) is the solution to the Riccati equation

K'(1)= -35°K* (1) + (6s+ r)K(t) - 1.
(Hint: assume the value function

vi(t,p) = K,() P2 + E{1)p + &.(1).)

2. Suppose two firms are complementary monopolists. That is, each firm is the sole
producer of an intermediate product which, together with the other firm's product,
makes up a final good. The price of the final good is the sum of the prices of the
intermediate goods, under the assumption that one unit of the final good requires
one unit of each of them. Suppose that the quantity demanded of the final good
adjusts according to the differential equation

dx/dt = x'(t) = s(@a - py(t) — p,(1) - x(1))
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where fr(r), x'(t) denote the guantity of the good and its time derivative at time £,
respectively, and s is a speed of adjustment parameter as in Example 1. Each firm
faces the identical cost functions C(x) = ¢x + x2/2 and seeks to

max, J'(p,, p;) = / e[ pix — ex — x*j2] dt
o

subject to the state equation above and x(0) = x,. Show that
p={(c+2a)s +ra] /(55 + 2r)

is the open-loop Nash equilibrium strategy for each player and that 1t is also the
feedback Nash equilibrium strategy.

3. Suppose two firms produce an identical product, the respective outputs of which at

a point in time are u,(t), #,(¢). The cost of producing this product depends on the
quantity produced and the rate of change in the quantity produced, du(1}/dt =
w(#), according to the function ¢; = cu,; + bu? + Au;? /2,1 =1, 2. The demand
function for the product is linear, p(#) = @ - (&, + u,). Each firm seeks to

-]

max, J'(x,, x,) = / e "(pu;, - C} at
0

subject to
u:(’) = xi(r)' “,’(0) = “m' i .—,&J
wir) = x;(u;, up), u;(0) = uy, i=1,2,

fvhere x{1), the rate of change of output at ¢ is the control variable and # is the
nterest rate. Show that the Nash equilibrium feedback strategics are of the form

xt =K+ kwu + ku,
X3 = K+ kyuy + kg
(Hint: see Drisketl and McCafferty.)

4. Suppose two firms compete in the sale of an identical product, the demand function

for which is
p(t) =a~y(4) - y:1)

where p(#), y,(t), y,(1} tefer 1o the product’s price, the output of the first firm,
and the output of the second firm. respectively, at time 7. Each firm’s marginal
cost of production is zero up to its production capacity level, k() at time ¢, and
infinite beyond it. The firms can expand their capacity levels through net invest-
ment J.(1) according to the differential equation

kt) =1(t) — 8k (r), kA0) =hy, i=1,2,

where & refers to the rate at which capacity decays and &;(¢) the time derivative of
k(1). The cost of net investment is governed by the functions

C(r)y=gql+c?2. =12
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Each firm produces up to its capacity level at each point in time. Thus, each firm
competes through its capacity investment over time. Namely, each firm seeks to

fmax;, jo Te (@ - 21() - 72(0) 21} - C((1))] e

subject to the state equation governing capital accumulation.
i. Show that the open-loop steady-state Nash equilibrium capacity levels are

ki=[a-q(r+8)]/(3+ cé(r+3d)].

ii. Find the feedback Nash equilibrium investment strategies. (Hint: let the value
function for the i-th player be V(k) = u + vk, + wk, + xk} /2 + ykk; +
zk} /2, where u, v, x, ¥, 2 are parameters to be determined.)

FURTHER READING

The formal theory of differential games was introduced by Isaacs, although Roos
analyzed a differential game back in 1925, without calling it that. The heavy-duty
mathematical text on the subject is Friedman's. Basar and Olsder’s, and Mehlmann's

are more recent and more intuitive expositions. Feichtinger and Jorgensen, and
Clemhout and Wan provide surveys of recent applications of differential games in E
economics and management science. Example 1 is based on Fershtman and Kamien -
(1987, 1990). Example 2 is based on Reinganum (1981, 1982). Example 3 is based on
Plourde and Yeung, who present a continuous time version of the game introduced by 3

Levhari and Mirman,

The necessary conditions for Nash equilibrium feedback strategies are based on Starr
and Ho. Reinganum and Stokey explain the relationship between commitment in -3
open-loop and feedback strategies. The latest word on when open-loop and feedback 3

strategies coincide is by Fershtman. There is a third class of strategies called closed-loop
in which the control u = u(¢, x(t;), x(¢)), depends on the initia! condition as well as

the state and time. For a discussion see Basar and Oldser or Mehlmann. Problem 2 is
based on Ohm; Problem 3 on Driskell and McCafferty; and Problem 4 on Reynolds. 3§

See also Dockner, and Tsutsui and Mino for further analysis of Example 1.

Qbviously Nash is the source of the equilibrium concept bearing his name. Selten is
the source of the concept of subgame perfection. Luce and Raiffa is the classic game §

theory text following the introduction of the subject by von Neumann and Morgenstern.

Myerson provides the latest word on the subject, including the literature on refine-

ments.

APPENDIX A

CALCULUS AND NONLINEAR
PROGRAMMING




Section 1

Calculus Techniques

We assume familiarity with the calculus of several variables and the usual
algebra prerequisite. Some previous exposure to mathematical programming is
also helpful. Certain results from these areas are reviewed in this appendix.

Fundamental Theorem of Integral Calculus. If f{x) is continuous in the
interval @ < x < b, and if F(x) = [ f(x)dx is an indefinite integral of
J(x), then the definite integral

[rx)ax= [F(x) dx = F() - Fa), (1)

where the derivative of
F(x) = [ 7w du 2)
dF/dx = F/(x) = f(x). (3)

The chain rule for differentiation of a function of a function is
df(y(x)}/dx = f'(y)y'(x). (4)
It extends readily to functions of several variables. For example,
dg(y(x), z(x)}/dx = g (y, 2) ¥ (%) + g.(¥. )2 (x). (5)

where subscripts label the partial derivative with respect to the indicated
argument.
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The counterpart to the chain rule for differentiation is the change of the
variable of integration. Suppose x = k() on the interval ¢, <t =< ¢, such
that A(ty) = @, A(t)) = b, and that x increases continuously or decreases
continuously from « to b as ¢ goes from 7, to ¢, then

/bf(x)dr = /:'f[h(r)]h'(r) dr. (6)

The product rule for differentiation is
d[ u( x)v(x)]/dx = u(x)v'(x) + v(x)uw(x). (M

Integrate and rearrange to get the formula for integration by parts:

/u(x)v'(x)dx= w(x)v{x) —/u(x)u’(x) dx

fvdbr:uv—fudu, (8)

where dv = v'(x) dx and du = &'(x) dx. For example, to evaluate [ xe* dix,
let #(x) = x and v'(x) = e*, Then ¥'(x) = 1 and v(x) = e*, and therefore,

/xexdx=xe‘— /e*dx= {x - t)e*.

or, briefly,

For definite integrals, (7) becomes

[ u(x)v(x) de = u(b)o(5) - u(@)ola) - [ (0 ax. )

a a

The rule for differentiating an integral with respect to a parameter is

Liebnitz’s Rule. Let f(x, ) be continuous with respect to x for every value

of r, with a continuous derivative df(x, r)/dr with respect to x and r in 3
the rectangle a = x < b, r < r < F of the x—r plane. Let the functions j

Bir}

A(r) and B(r) have continuous derivatives. If V(r) = [\ f(x, r)dx, }

then
vi(r) =f(B(r).7)B'(r) - f(A(r), r) A(r)

Bir)
+ [ “as(x, 1) or) . (10)
Alr)
For example, if
V(r) = / e="*P(s) ds,
r2
then

av(ry/dr= P(rye~"” - 2P(r*)re " - /rse"’P(s) ds.

r
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A function f(x, y) is said to be homogeneous of degree n if
fkx, ky) = Kf(x, 3). (11)

For example, x’y is homogeneous of degree 3, x°y'~% and 2 x — 5y are
h’on‘wgeneous of degree 1, and 4x/ y is homogeneous of degree 0. Differen-
tiating (11) with respect to & and evaluating at & = 1 gives

Sex+ S,y =nf, (12)

which is known as Euler’s theorem on homogeneous functions,

If f(x, y) is homogeneous of degree one and we take k = 1/x in (11)
and rearrange, we get

F(x,9) =xf(1, y/x) = xg(y/x). (13)

The value of the function is the product of a scale factor x and the value of a
function of the ratio y/x.




Section 2

Mean-Value Theorems

Mean-Value Theorem. If f(x) is continuous on an interval a < x < b, 3

then there exists a number ¥, such that

/bf(x)dX=f(f)(b- a),  where a<x<b. (l)i{

Recalling (1.1) and (1.3), one can rewrite (1)

[F(b)-F(a)]/(b—a) =F'(X) forsome a<¥<b. (2)_:

Expression (2) is the mean-value theorem of differential calculus, while (1)

is the mean-value theorem of integral calculus. . :
Mean-value theorem (2) has an interesting geometric interpretation. The left :

side s the slope of the hypotenuse of the right triangle ABC ir} F.igure 2.1,
with base of length b — @ and height F(b) — F(a). Then (2) indicates that }
there is at least one point, say ¥, at which the curve F(x) has the same slope

as the hypotenuse AB of the triangle joining the end points,

In (2), X is strictly between @ and . The mean-value theorem can be used

to show that

if F(b) — F(a) = F'(a)(b — a), then either

a = b orelse F*(r) = 0 for some r strictly (3)

between g and b.
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Figure 2,1

This is clear from the graph. Algebraically, if @ = b, the result is immediate.

So suppose @ < b. By the mean-value theorem, there is a number g, 7 < g<
b, such that

F(b) - F(a) = (b - a)F'(q).
Combining this with the hypothesis of (3} gives
[F(a) - F(a)](b~ a) =0.
Again, by the mean-value theorem, there is a number r, a < r < g, such that
Fa) - F(q) = (a - q)F(r),
and therefore,
(@-q)(b-a)yF(r) = 0.

Since a < g < b, F(r) = 0, as was to be shown. The case of a > b is
analogous,

Any curve can be approximated arbitrarily well in the neighborhood of a
point by a polynomial of sufficiently high order, according to

Taylor's Theorem. If the function f(x) and its Sirst n — | derivatives agre
continuous in the interval a < x < b and its nth derivative for each x,

a < x < b exists, then for a < Xo < b, the Taylor series expansion of
J(x) about the point Xy Is

S = 1(00) + 3 (5= x) SOt R, (1)

where f' = d'f /dx' and R, =(x = x)"f(Z)/n!, for some %, a < &%
< b,

This Taylor series expansion of Sfix) extends (2). We call R, ., the
réemainder and (n — 1)th the order of the approximation obtained by deleting
R, . The special case (2) gives the zero order approximation and R, = -
@) f(X). The first order approximation is Jx) = flxg) + (x ~ x) /(%) a
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straight line through (x,, f(x,)) with slope f'( X,). The second order approxi-
mation gives a quadratic approximation to the curve at the point x,. Deleting
the remainder in (4) gives an nth degree polynomial approximation to f( x).

The mean-value theorem for a function of two variables, F(x, y), is
developed as follows. For points (x, ¥) and (xg, ¥p) in the domain of F, let
h=x—xyand k =y — y,. Define the function

f(2) = F(x, + th, yo + tk) (5)
of the single variable ¢ on the interval 0 < ¢ < 1. Then
J(1) = f(0) = F(x, ) — F(x,. 3,).
But from (2),
S(1) = f(0) = f(}) forsome 7, O<i<l. (6)
Differentiating (5) with respect to ¢ gives
f(¢) = hF, + kF,, (N

where F, and F, are evaluated at (x, + th, Yo + tk). Combining (5)-(7)
gives the mean-value theorem for a function of two variables:

F(x, y) - F(x,, Yo) = (x - xo)Fx(f,J_’) +(y~- J’O)Fy(f, 7) (8)

for some X, ¥, where x, < ¥ < x and Yo < F <y

The Taylor series expansion or generalized mean-value theorem (3) can ]

likewise be extended to a function of two variables. Let # = x — x, and
k =y — y, Then,

F(x,y) = F+ (hF, + kF,) + R, 9)
where R, = K’F, . /2 + hkF,, + k*F,, /2. On the right side of (9), F, F,

and F, are evaluated at x,, y, and the second partial derivatives in R, are
evaluated at some point between x, y and Xo» Yo. Expanding further, we get

F(x,y) = F+ (hF,_+ kF,) + (B?F, /2 + hkF,, + k°F,, /2) + R,,
(10)
where F and its partial derivatives on the right side are all evaluated at
(xp. ¥o) and R; is the remainder.

More generally, the first order Taylor series expansion of a function
F(xy, ..., x,) of n variables about the point x° = (x9, ..., x%) is

Flx,,....,x,)=F+ glh,ﬁ.+R2 (11)
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where
n o
RZ:(IXZ)Z thhJ'F;J! h;‘:x‘:_x?, I'=1,...,ﬂ.
i=1j=1

On the right side of (11), F and F, are evaluated at x° and the F; are
evaluated at some point between x and x°. The second order expansion is

" I

n
Flxy,...,x)=F+ E}h,-F,-+(1/2)Z hihiFy+ Ry, (12)
i= 1

i=1 j=

where F and its first and second partial derivatives F,, F, ; on the right are all
evaluated at x°, and R, is the remainder term. The series can be expanded to
as many terms as desired.




Section 3

Concave and Convex Functions

A function f(x) is said to be concave on the interval ¢ < x < b if for all -:.

O<t<landforanya=x, =x,=<b

tf(x)+ (1= 0f(x) = flex + (1L - 1)xy). (1) 5

A weighted average of the values of the function at any two points is no greater §
than the value of the function at the same weighted average of the arguments. ._\
If the inequality in (1) is strong, then the function f(x) is said to be strictly §
concave. The chord joining any two points on the graph of a concave function
is not above the graph. If the function is strictly concave, the chord is strictly §
below the graph. Linear functions are concave, but not strictly concave (see

Figure 3.1}).

A function f(x) is said to be convex if the inequality in (1) is reversed. It is .':

strictly convex if the reversed inequality is strong. For example, f(x) = -x?

is a strictly concave function, whereas f(x) = x? is strictly convex. These
functions illustrate the general principle that if f(x) is a concave function, j

then —f(x) is a convex function.

Concave functions have several important properties. First, a concave §
Junction f(x) is continuous on any open interval a < x < b on which it i %

defined.
Second, if f is concave and differentiable,

(xs - 2} (x) 2 f(0) - f(x) = (5~ x)f(x). @) §

The slope of the line joining two points on its graph is less than the slopé 3
of the tangent line at its left endpoint and greater than the siope of iS 1
tangent line on its right endpoint (see Figure 3.1). For a convex function, §

the inequalities in (2) are reversed.

Section 3. Concave and Convex Functions 299

fix)

Fltxe, + {1 —1x3z) //
Flxy}
flxyy

2 x) fxp + (1= X Xy b X

Figure 3.1

Third, the second derivative of a twice differentiable concave function is
nonpositive. To see this, use (2.4) to write

F(x2) = f(x) = (% = x)f(x) = (o =) S(B)2 - (3)

for some ¥ where X, < X < x,. But from (2) or Figure 3.1, it is apparent that
the left side of (2) is nonpositive. Therefore, the right side of (3) must also be
nonpositive. Since {x, — x1)2 is positive, f"( X) must be nonpositive. Further,
since (3) holds for any a=x, <x,<b, f(x)<0 for all a<x=<5h.
Similarly, the second derivative of a convex function is nonnegative.

The condition f*(x) = 0 for all x in the domain is both necessary and
sufficient for a twice differentiable function f to be concave. If f"(x) < 0,
then f is strictly concave. The converse of this, however, is not true. The
function f(x) = —x* appears to be strictly concave when plotted but, £”(0)
= 0. Despite this possibility, we assume that f"(x) < 0 for strictly concave
functions. The reader should keep in mind the possibility of exceptional points.

The definition of a concave function of two variables f(x, y} is a direct
extension of the definition (1)

Hlxp, y) + (1= 1) f(x, p2) s ftx, + (1= )y 09, + (1 = 1))

(4)

for all 0 = ¢ < 1 and any pair of points (x,, ¥,), (X,, ¥,) in the domain of f.
The extension of (2} is

fxy, 3} = F(xo3) s {xg = x)) o x, 90) + (3= ) L(x0 00),

(5)

which holds for a differentiable concave function of two variables at any pair
of points in its domain. Inequalities (4) and (5) are reversed for a convex
function.
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To find the analog of the sign condition on the second derivative, write the
counterpart to (3), employing (2.9). Let # = x, — x, and k¥ = y, — y,. Then,

f(xz’ )’2) _f(xl! yl) - hfx(x]! J”l) - kfy(xlv yl)
= WS, /2 + Bk, + K3f,, /2 (6)

where the second partial derivatives are evaluated at an appropriate point X, ¥
between (x,, ¥,) and (x,, y,). The left side of (6) is nonpositive by (5), and
therefore, the quadratic form on the right side must be nonpositive as
well. (A guadratic form is a function of the form f(x,,...,x,) =
i Snoi@,x;x; where a;; = ay, i, j=1,...,n)1f f, #0, add and

subtract kZ é‘; [ and collect terms to write the right side of (6) equivalently

fxx[(h + kfxy/fxx)z + (fxxfyy "‘ffy)szfxzx] < {. (7)

Stnce (7) must hold for any choice of # and £, including & = 0, it follows that

fex = 0. (8)

In addition, (7) must hold in case # = —kf,, /... so in view of (8), we must
have

fxxfyy_ 3)*20 . (9)

Thus, if f{x, ») is concave and if f,, # 0, then (8) and (9) hold. Note that

(8) and (9) together imply that
Sy =0. (10)

In case f,, = 0, one can conduct the argument under the supposition that

fyy # 0, to conclude that (9) and (10) hold. These conditions are sufficient for 3§
concavity. If the inequalities are strict, f is strictly concave. If f(x, y}isa §

convex function, then f,, = 0, f,, = 0, and (9) holds as well.

A function f(x,,..., x,) is concave if
f(x*) + (1 - ) f(x%) = flax* + (1 - 1) x°) (11)
for al 0=<7x<1 and any pair of points x* = [x{,...,x;], x"= 1
[x?,..., x}] in the domain of f. The extension of (2) may be stated that if §
f(x,, ..., x,)is concave and differentiable, then :
n
F(x) = f(x%) = 3 (xF - x7)fi(x°), (12)
i=1

where x* and x® are any two points in the domain of f. And, letting }

hi=x‘;*_x?,i=1,...,m,

SR CURD WHIEUREDS

n
i=) j=

1

kS, (13) |
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by the Taylor series expansion (2.11), where the second partial derivatives are
evaluated at an appropriate point ¥ between x* and x°. Since the left side of
(13) is nonpositive by (12), the quadratic form on the right of (13) must be
nonpositive,

To state an equivalent condition for the quadratic form in h, on the right of
(13) to be nonpositive, we need some definitions. The coefficient matrix of
second partial derivatives of a function f,

fu flz .f]n
pe|Mn S S
f;!l fnz v frm

is called a Hessian matrix of f. The quadratic form on the right on (13) can
be written

hHKWT < 0 (14)

where h = (h,,...,h4,], and AT is the transpose of k. The quadratic form
hHRT is said to be negative semidefinite if (14) holds for all k. (It is
negative definite if (14) holds with strict inequality for all & # 0.) Equiva-
lently, we say that the Hessian matrix H is negative semidefinite if AHAT is
negative semidefinite. The matrix is negative semidefinite if its principal
minors alternate in sign, beginning with negative:

fll flz fll flz f13
Ju <o, £ f >0, Jau Jfo fn|<o0,...
noon fa Jo In
(-D)"1H| =0 (15)

where 1.1 refers to determinant and last principal minor, namely the determi-
nant of H itself, may be zero. (If H is negative definite, then the principal
minors alternate in sign and none may be zero.) It is clear from (12) and (13)
that H is negative semidefinite for all x if f is concave.

If f(x, ..., x,)is twice continuously differentiable and convex, then the
sign in (12) is reversed, and thus the Hessian must be positive semidefinite.
The matrix H is positive semidefinite if all its principal minors are positive,
except possibly | H | which may be zero. It is positive semidefinite if and only
if f is convex.

The notion of concavity has been generalized in several ways. A function
fix, ..., x,) is said to be quasiconcave if

S(x* 4 (1 = 1) x°) = min[ f(x*), £(x°)] (16)
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for any x*, x° in the domain of f and for all 0 < ¢ < 1. Equivalently,
J(x,, ..., x.) is quasiconcave if and only if the set
A,={x* f(x) 2z a} (17)

is convex for every number a. A function g is gquasiconvex if —g is
quasiconcave. Every concave function is quasiconcave, but a quasiconcave
function need not be concave, nor even continuous.

FURTHER READING

See Arrow and Enthoven for a discussion of quasiconcavity and the uses of the concept
in optimization.

Section 4

Maxima and Minima

The Weierstrass theorem assures us that a continuous function assumes a
maximum and a minimum on a closed bounded domain. If the hypotheses are
not satisfied, then there may be ne maximum and/or minimum. For instance,
J(X) = 4x — x? has no maximum on 0 < x < 2 since the interval is not
closed; the function attains values arbitrarily close to 4, but the value 4 is not
achieved on the interval, The function f(x) = 4 + 1/x is not continuous on
—1 = x =< 1 and has no maximum on that interval; it becomes arbitrarily large
as x approaches zero from the right, The maximum may occur on the interior
of the domain or at a boundary point. It may be attained at just one or at
several points in the domain.

If f(x*) > f(x) for all x near x*—that is, for all x such that x* — ¢ < x
< x* + ¢ for some ¢ > 0—then x* is said to provide a strict local maxi-
mum. If f(x*) > f(x) for all x in the domain of f, then x* provides a
strict global maximum. Local and global minima are defined analogously.

Suppose f(x) is twice continuously differentiable and attains its maximum
at x* on @ < x < b. From the mean-value theorem (2.2),

S(x) = 7(x™) = (%) (x - x¥) (1)

for some ¥ between x and x*. Since x* maximizes f, the left side of (1)
Tust be nonpositive and therefore the right side as well. Thus f = 0 when
X < x* and f <0 when x > x*. Since f* is continuous, we conclude that

f(x*)=0. (2)

Furthermore, from Taylor's theorem (2.4),

f(x) = S(x*) = (x = ) (x*) = (x = x*) (%) /2 (3)
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for some ¥ between x and x*. Since (2) holds and x* is maximizing, the left
side of (3) is nonpositive. This implies

S (x*) <0. {4)

Thus, conditions (2) and (4) are necessary for a point x* to maximize a
twice continuously differentiable function f(x) on the interior of ity
domain. At a local maximum, the function is stationary (2) and locally
concave (4).

Further, if x* satisfies (2) and also

f(x) <0 (3)

for all x near x*, ie., x* — £ € x < x™ + ¢, then it follows from (3) that
J(x*) > f(x). Therefore, (2) and (3) are sufficient conditions for a point
x* to provide a local maximum.

Similar arguments show that necessary conditions for a local minimum are
(2) and

F(x%) = 0. (6)
Sufficient conditions for a local minimum are (2) and
f1(x) >0, (7}

for all x near x*.

To find the maximum of a function of one variable, one compares the values
of the function at each of the local maxima and at the boundary points of the
domain, if any, and selects the largest. If the function is strictly concave over
its entire domain (globally strictly concave), the maximizing point will be
unique.

In Figure 4.1, the boundary point x = g maximizes the function f(x) over
a < x = g. Points b and 4 are local maxima and satisfy (2) and (4). Points ¢
and e are local minima, satisfying (2) and (6).

For a twice continuously differentiable function f(x, y) of two variables,
one can repeat the above arguments. Let x*, y* provide an interior maximum.

fix}
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Mean-value theorem (2.8) gives
S5 2) = S(x5 5%) = (x = ") (%, 9) + (¥ - )12, 5) (8)

for some X, ¥ between x*, y* and x, y. Since x*, y* is maximizing, the left
side is nonpositive for all x, y. Taking y = y*, we find that x — x* and f,
must have opposite signs for any x, so that f, = 0. Similarly, Jf, = 0. Thus,
it is necessary for f to be stationary at x*, y*:

SAxp) =0, £(x% ) 0. ©)
From the Taylor expansion (2.9),
S(x, 3) =~ F(x*, 5%) = BE{x*, %) = kf,(x*, %)
= e /2 + BRS,, + KPS, /2, (10)

where £ =x — x* k =y — y* and the second partial derivatives on the
right are evaluated at some point between x, y and x*, y*. But, since x*, y*
is maximizing and since (9) holds, the left side of (10) must be nonpositive, so
the right side must be as well. As shown in (3.6)-(3.10), at x*, y*

Sex  Say
Syx Syy
Thus, (9) and (11), local stationarity and local concavity, are necessary for a

local maximum at x*, y*, Similarly, one shows that local stationarity (9) and
local convexity,

fxxso, =fxxfyy_f_3y20. (ll)

fxxaos fxxfyy_ffyaoy (12)

are necessary for a local minimum at x*, y*. Sufficient conditions for a local
optimum are (9) and strong inequalities in (11) (maximum) or ( 12) (minimum)
for all x, y near x*, y*.

To find the minimum of a function f(x, y), one compares the values of the
function at each of the local maxima and along the boundary of the domain and
selects the largest value. If f(x, y) is strictly concave throughout its domain,
then a local maximum will be the global maximum.

Example. Maximize f(x, y) = xy + 9y — x? — y¥/12.

Compute
Sr=y-2x=0, Jexr =2, [, =1,
So=x+9-y'/d=0, Iy = -»/2,
_|-2 i
|H|—| : _yﬁ’_y 1.
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The first order conditions are satisfied at (1/2 + (37/4)'%,1 + 37'/%) and at
(1/2 = (37/9'2,1 — 37"/%). At the first solution, f,, < 0 and | H| > 0;
thus it is 2 local maximum. At the second point, | H | < 0; thus it is neither a
local maximum, nor a local minimum.

The way is clear to show that if x* = [x],..., x3] maximizes the twice
continuously differentiable function f(x,,...,X,) on the interior of its
domain, then

fi{x*y=0, i=1,...,n (13)

Furthermore, let x = [x,,..., x,] and &, = x; — xf. Then, by Taylor’s
theorem (2.11) we have

S5 = 1) = SR = DT X hibyfy (09)

i=1

where the second partial derivatives on the right are evaluated at some point

between x and x*. Since x* is maximizing and since (13) holds, the quadratic

form on the right must be nonpositive, that is, negative semidefinite. Thus, the

principal minors of the Hessian matrix of f must alternate in sign, starting
with negative (review (3.15)). And if the quadratic form in (14) is negative 7

definite at x* and (13) holds, then x* provides a local maximum.

Analogously, necessary conditions for a minimum of f are stationarity (13) '
and local convexity, that is, positive semidefiniteness of the Hessian. Positive 3
definiteness of the Hessian and stationarity are sufficient conditions for a local 3

minimum.

Section 5

Equality Constrained Optimization

A maximization problem subject to constraint is

max f(x, y) (1)
subject to g(x, y)=0b. (2)

Find among the points x, y satisfying the constraint (2) the one giving the
largest value to the objective function (1). One might solve (2) for ¥ in terms
of x, and then substitute into (1) to get an unconstrained problem in the single
variable x. In principle, one can do this locally in the neighborhood of a point
Xy, ¥o provided that g (x,, y,) # 0:

Implicit Function Theorem. If g(x, ¥) has continuous partial derivatives
and if g(x,, yo) = 0 while g (x,, y,) # 0, then there is a rectangular
regionx, £ x < x,, y, £y < y, containing x,, y, such that for every x
in the interval, the equation g(x, y) = 0 determines exactly one value
of y = G(x). Furthermore, g(x,G(x)) =0 in this region. Finally,
G(x) Is continuous and differentiable, with

dy/dx = G'(x) = -g./g,. (3)

The condition g , # 0 prevents division by zero. Solve (2} for y = G(x) and
substitute into (1) to get

max f(x,G(x)). (4)
If x* solves (4), then by the chain rule (1.5), we have at x*
fo+f,G =0 (5)

Substituting from (3) gives
fx_fygx/gy =0
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level curves of f

Fix, yy=g¢
fix,yy=c3
flx,yy=1¢3
C] ey

. \ X
X
g=¢t

Figure 5.1

or equivalently, as long as f, # 0,
Felfy=28./8, (6)

At the optimum, the maximum attainable level curve of f is just tangent to the

constraining relation g = b (see Figure 5.1).
Provided that g, # 0, one can define

N=fo/2 (7
Rearranging (7) gives
Se= Mg, =0 (8)
and substituting from (7) into (6) gives
fy— g, =0. (9)

Conditions (8) and (9) are equivalent to (6). They can also be generated by
forming the Lagrangian for (1) and (2}, namely,

L(x, 7, N = f(x,») + Nb - g(x, »)], (10)

and setting the partial derivatives of (10) equal to zero
L, =f.—2:=0,
L,=f,—Xg, =0,
L,=b-g(x,y)=0. (11)

If it is not true that both g, = g, = 0, then the solution (x, ¥, A) to (1) and
{2) satisfies the three equations (11). Of course, (11} is also necessary for a
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minimum, There are two advantages to (10) and (1) over (6). First, (10) and
(11) are readily generalized in a symmetric form to problems involving several
variables and possibly several constraints. Second, the Lagrange multiplier has
a useful interpretation.

To develop the interpretation, let V(&) be the maximum value in (1). Since
the constraint is satisfied at the optimum, we can write

V(b) =f(x.y) + Nb-g(x, )] at x=x*(b), y=y*(b).

Differentiating with respect to b, and using the chain rule, gives
V(b)Y = (f, - Ng,) dx/db+ {f, — Ag,) dy/db + \.
But, since x*, y* satisfy (11), this reduces to
V() = A, (12)

Thus, the multiplier A is the marginal valuation of the constraint. It tells the
rate at which the maximum objective function value changes with a change in
the right side of the constraint.

The second order condition for a solution to (1) and (2) can be developed

from (4) and (5). The second derivative of (4) with respect to x will be
nonpositive at a minimum. Hence,

d(f, + [,G')/dx = [,y + 2£,,G + 1,G" + £,,(G) =0.
Substitute from (3) for G’ and multiply through by g2 to get
82 x = 2y8x8y + £,y 8% + 851,67 S 0.
Substituting for
G"(x) =dG'/dx = d(—gx/gy)/dx
= ~{8,[82x + 2,G(0)] - 28.(2,x + 2,,G)}/ 8}
using G = —f,/f, finally gives

gifxx - 2fxygxgy +fyygi + 2fygxgxy —fxgxgy)' - f)'g.l’gxx =0

(13)

as a second order necessary condition satisfied by the solution (x*, y*) to (1)
and (2). If (x*, y*) satisfies (6) and (13) with strong inequality, then (x*, y*)
provides a local maximum. If g is linear, then (13) will be satisfied provided f
is concave. The inequality of (13) is reversed for a minimum. Finally, it can be
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verified by evaluation of the determinant, using (7)-(10), that (13) is equiva-

lent to
L, L, &,
Lyx Lyy & =0 (13')
& & 0

To solve a problem with » variables with 71 constraints,

max f(x,,...,x,) (14)
subjectto g x,....x,)=b, i=1,...,m, (15)

where m < n and f, g,...., 8, are all twice continuously differentiable,
one associates a Lagrange multiplier A; with the 7th constraint of (15) and
forms the Lagrangian

L{Xps oo Xy My Ay) =_f(x) + E )\f[br - gj(x)]. (16)
i=1
Set the partial derivative of L with respect to each argument equal to zero
AL/dx;=8f/dx;~ > Ndg,/ox;=0, j=1,....n, (17)
i=1

dLjaN =b,-g,=0, i=1,...,m. (18)

Finally, solve the #n + n1 equations (17} and (18) for x,, ..., X, A, ..., A
The maximizing point will be found among the sets of solutions to (17) and
(18).

Theorem 1. Lef f, g,...., 8, be twice continuously differentiable func- {
tions of x = [x,,..., x,}. If there are vectors x* = [xT,..., x%] and -
No=1[X,...,N,] that satisfy (17) and (18) and if

n n
zl Z; B 37 L(x*, X)/dx,8x;< 0 (19)
i=li=
Jfor every nonzero vector [k, ..., h,] satisfying
n
. hidg(x*)/ox, =0, i=1,...,m, (20)
i=1

then [ has a strict local maximum at x* subject to (15). If the inequality
in (19) is reversed, then f has a strict local minimum.

If f is strictly concave and each g; is linear, then (19)-(20) will be satisfied 1

by any point x* satisfying (17) and (18). In this special case, a solution of (17)
and (18) is a solution of (14) and (15).

Section 5. Equality Constrained Optimization 3

For the more general case, the conditions for the Hessian of the Lagrangian
to be negative definite (19), subject to the linear constraint (20), can be stated
equivalently as follows. Suppose the Jacobian mairix

[0g;/0x;], i=1,....,m, j=1,...,n (21)

has rank m and suppose the variables are indexed so the submatrix of the first
m rows of (21} has rank m. Then, conditions (19) and (20) can be replaced by
the requirement that at x™* the determinants of the bordered Hessian

L fax} - FLfax 8x, dg, f0x, - dg,./dx
(-1 Ljox,8x, -+ L/BxE  Bg foxy - BE,/dx, >0 (22)
dg, fox, ag, /dx, 0 0
88 /Bx, B8, /0%, 0 0
for k. =m + 1,..., n. For a local minimum, (—1)* is replaced by (- 1)".

The multipliers A; retain their interpretation as the marginal valuation of the
associated constraint. Thus, defining V by

V(b,,..., b,) = max f(x,,..., x,}  subjectto(15), (23)
it can be shown, as before, that
N=2aVv/ab,, i=1,...,m. (24)
Example.
max 2x+ y

subjectto  x? + y? = 4.
The Lagrangian is
L=2x+y+MN4-x2-y%),
50
L. =2-2xx=0,
L,=1-2\y=0
Ly=4-x*-y*=0.
These equations are satisfied by
(x1, 910 N) = (4/5'72,2/5' 2,542 /)
and by
(X2, 3. 0) = —(x, ¥, N
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For the second order condition, m = 1, k = n = 2, and the determinant of the
bordered Hessian is

Lis Ly &) |-2n 0 2x
Lyx Lyy gy = 0 -2x 2y =8)\(x2+y2),

g, g 0 2x 2y 0

which has the sign of A. It is positive at the first stationary point and negative
at the second, and therefore the first solution gives a local maximum and the
second a local minimum,

Finally, we note a more general theorem that applies without the regularity
assumptions that are typically made.

Theorem 2. Let fand g, i=1,...,m, be continuously differentiable
Junctions of x = (x,,...,x,). If x* is a local maximum or local }
minimum of f for all points x in a neighborhood of x* satisfying (15),

then there exist m + 1 real numbers M, \,, . . ., N,,, not all zero, such
that

No 3f(x*)/8x, - i Nog{x*)/ax; =0, j=1,...,n (25

If x* is a local extremum, then the rank of the augmented Jacobian matrix,

formed by appending the columns of 3f/3x,, j=1,...,n, to (21), is less
than m + 1 at x*. Furthermore, if that augmented matrix has the same rank 7§
as (21) at x*, then A\, # 0 and one can set A, = 1. If the augmented matrix
has a larger rank than (21), then A, = 0. This can happen if the feasible region 3

is just one point. For instance,
max x+y
subject to xX2+y*=0
has Lagrangian
L =x(x+y) - N(x?+ %),
The equations
L,.=3-20x=0,
L,=X-2Ny=0,
L, =-(x*+y*)=0

have solution A, = x = y = 0. They have no solution with A, = 1.

FURTHER READING

Among the texts treating optimization subject to equality constraint are those by Avrie §

(Chapter 2), Hadley (Chapter 3) and Silberberg (1990) (Chapter 6).

Section 6

Inequality Constrained Optimization

At the solution to

max f(x, y) (1)
subjectto  g(x, y) = b, (2)

constraint (2) may not be tight; that is, it may hold as a strict inequality. Then,
we expect condition (4.9) to hold. Alternatively, the constraint may be active,
that is, hold as an equality at the maximum. In this case, one expects (5.6) or
(3.11} to hold. These conditions can all be set forth as follows. Associate
multiptier A with (2), form the Lagrangian

L{x, . N = f(x,5) + N b - g(x, »)]. (3)

and differentiate
Ly=fi—Mg,=0, (4)
Ly=f,—hg, =0, (5)
Ly=b-g=0, Az=0, Mb-g)=0. (6)

Conditions (4)-(6) are necessary for a solution to (1) and (2). The new
tonditions are (6). The first part restates (2). Nonnegativity of A reflects the
fact that increasing b enlarges the feasible region and therefore cannot reduce
the maximum value attainable. The third part of (6) says that either the
Multiplier is zero or else the constraint is tight.

If the constraint is not tight, then b > g, 50 A = 0 and (4) and (5) reduce to
the familiar requirements of Section 4. The marginal valuation of the constraint
IS Zero since it has no effect at the optimum. If the constraint is tight, then
{4)-(6) replicate the requirements of Section 5.
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Example.
max x? + y?
subject to 2x? +y' = 4.
The Lagrangian is
Lix,y,N) =x"+y* + M4 - 2x? - »?).
The necessary conditions

2x—4kx =0,
2y —2xy =0,

2x+yi=4, Az 0, Md4-2x"-3?) =0,
are satisfied by the following points:

{x,y.3):(0,0,0), (£22,0,1/2), (0, + 2,1).

The largest value of the objective function, namely 4, is attained at the last pair

of points,

Nonnegativity requirements on variables induce modification of necessary 4

conditions. If the solution x* to

max  f(x) (7)

subjectto  x =0 (8)

occurs at x* > 0, then the conditions of Section 4 apply. If the maximum '
occurs at the boundary x* = 0, however, then the function must be decreasing
at x = 0. Thus, necessary conditions for solution of (7) and (8) are (Figure §

6.1)

The addition of nonnegativity conditions

x =0, y=0 (10}

fix) fix)

o —————

x

x* = x

maximumonx > Oatx =@ maximum on x > 0atx >0

Figure 6.1

f(x)=0, x=z=0, xf(x)=0. o 3
These conditions could also be found by using {1)-(6) with g = —x, b= 0. _'
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to the problem (1) and (2) leads to the necessary conditions
fe—hg,=<0, x=z20, x(f.—rg)=0,
f,—hg, =0, y=0, y(f,—2Xg) =0,
hb-g=0, Az 0, Nf-g)=0. (11)

Example.
max x2 4 y?
subjectto  2x2+y’ =4, x=0, y=0.
The necessary conditions
2x -4x =<0, x=0, x(2x — 4xx) = 0,
¥(2y - 2»0) =0,
2x? +y* < 4, Az=0, M4 -2x7 -y =0

2y —2hy =0, y=0,

are satisfied by (0,0,0) and by (2'/2,0,1/2), as well as by the optimal
solution (0, 2, |).
Necessary conditions for solution of

max  f(x,,...,x,) (12)
subjectto g x,,....x,) =<b, i=1,...,m, (13)
where f, g,,..., 8, are continuously differentiable, are known as Kuhn-
Tucker conditions. Under regularity conditions if x* = [x,,..., x,] solves
(12) and (13), then there is a vector X* = [N, ..., A,,] such that letting
™
L{x,N) =f+ _Zl N(B - g.), (14)

X*, N satisfy

Fid
OL/dx;=3f/dx;~ 3 Ndg,/ox; =0, j=1,...,n,

i=1

AL/9N = b — g, 20, (15)
A20,  Mb-g)=0. i=1,...,m. (16)

If x, = 0is required, then the jth line of (15} is replaced by
8L/3x,<0, x,20, x,dL/dx,=0. (15)

If f is concave and each g, is convex, then the necessary conditions (15)
and (16) are also sufficient and a solution to {(15) and (16) is a solution to (12)
and (13).
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The regularity condition mentioned above is also known as a constraint
qualification. There are a number of formulations of the needed constraint
qualification. Let J(x*) be the set of indices of the constraints that are tight
at x*:

I(x*) = {i: g(x*) = b;}. (17)
One constraint qualification is that the matrix of partial derivatives of active
constraints g,(x*), i € F(x*), have full rank. A second is that all constraint
functions g are convex and the constraint set has a nonempty interior. A third
is developed as follows.

Inactive constraints will remain satisfied for a slight modification from x* to

x* + h, where A is small in absolute value. If x* + & is to be feasible, we

must have
gx*+h)<b, iel(x*).

Expand in a Taylor series around x*:
g(x*+ k) =g(x*) + i} [8e:(x*)/0x;]h; + R, < b;.
j=
Neglecting the remainder term and recalling that g(x*) = b;, this becomes
_Z"jl [og(x*)/ax,|r; <0, iel(x¥), (18)
i=

for any feasible modification A. It turns out that (18) may also be satisfied by
an infeasible modification in case the regularity condition is not satisfied. For
example, if the constraints are

g(x,x;) = —x, =0,
g:(x. %) = -x, =0,
g:(x., x;) = —(1 - x,)3 +x,<0,

then at (1,0), the second and third constraints are tight. Condition (18)
becomes
0h, - 1A, =0
Ohy + A, =0,
which is satisfied by & = (a,0), where ¢ > 0. But x* + A= (1l + 4,0) is
not feasible for any a > 0 (see Figure 6.2). A constraint qualification rules out

such a cusp. It indicates that there is no vector A satisfying (18) that improves
the value of the objective function, that is, satisfying (18) and also

i h;af(x*)/3x,; > 0. (19)
Ji=1

Section 6. Inequality Constrained Optimization nz

X2

1 Xy

Figure 6.2

The nonexistence of an / that satisfies (18) and (19) is called the constraint

gqualification and is assured by cither of the two other constraint qualifications
mentioned earlier,

The Kuhn-Tucker theorem can be proved using Farkas' lemma.

Farkas’ Lemms. Lefq =[q,,...,q,)andx = [x,,..., x,] be n-dimen-
sional vectors and let A denote an m X n matrix:

a, 4a; a,

a3 Oxn LT
A= . . .

aml “mz amn

Then, the statement that
(i) g-x =<0 forall x such that Ax = 0
is equivalent to the statement that
(ii) there exists an m-dimensional vector
v=[v,...

U] 20 such that vA + ¢ = 0.

The two statements in Farkas' lemma can be written equivalently (i)

¥i19;x; =0 forall [x,,..., x,) such that
n
ZGUXJZO, '.=l,...,m,
=1
and {ii) there exist v, 2 0,i = 1,..., m, such that
m
ZU,GU-FQJ,:O, j=l,...,".
i=1
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One proof of this result uses the duality theory of linear programming,
Consider the linear programming preblem.

"
max ) q,x;
i=1

n
subject to Eausz(}, i=1,...,m.
i=1
The dual linear program is
m
min Y Oy,
i=1
m
subjectto - Y. wva;=gq;, Jj=1,...,n, v=0, i=1,...,m.
i=1
If statement (i) holds, then the objective of the maximization problem is
nonpositive for all feasible [x,, ..., x,]. The maximum that can be achieved §
is zero, and it certainly can be achieved with x; =0, 7=1,..., n. Then,

duality theory assures that the maximization problem has a solution as well,

with value zero. Thus, the constraints of the minimization problem can be §

satisfied. That, in turn, means that statement (ii) is satisfied,

Conversely, suppose statement (ii) holds. Then the minimization problem

has a feasible solution (with value zerc). By duality, the maximization problem

must also have a feasible solution with value zero. This, finally, implies that §

statement (i) holds. Now we have

Kubn-Tucker Theorem. Iff, g,,..
local maximum, then there are multipliers k= [}, . ..
x*, N satisfy (15) and (16), provided that there is no h satisfying (18)
and (19).

prooOF. Since there is no A satisfying (18) and (19}, we must have
n
Y. haf(x%)/ax; =0
=1
for all 4 such that

Y hdg(x%)/dx; =0, iel{x*).
j=1

Identify 4, Bf(x*)/axj, and 63,-{):*)/6.17} with x;, g, and @, respec-
tively, in part (i) of Farkas' lemma. Then, identifying N, with v,, part (ii) of 3

Farkas’ lemma says that there exist A, = 0, i € I(x*), such that
%)\jag,-(x*)/é‘xj + 3f(x*)/8x, =0,

Let A = 0 for i € J(x™). Then (15) and (16) follow.

., B, are all differentiable and x* is a
s Nnl, such that 3

mrtipzr. .

e i o g
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Without the regularity condition, we have the following result.

Fritz John Theorem. Suppose f, g,,..., g, are continuously differen-
tiable. If x* is a solution to (12) and (13), there is a vector N\* =
[N, X, ..., X)) such that x*, y* satisfy

m
NOSf/3x;— 3 N ag,/dx, =0,
i=1

A#EO0, A=0, Mb-g)=0, i=1,...,m.

FURTHER READING

Among the texts that discuss constrained optimization are those by Avriel (Chapter 3),

Hadley (Chapter 6), Lasdon (Chapter 1), Zangwill (Chapter 2), and Silberberg (1990)
{Chapter 14).
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Section 7

yidy— B

Line Integrals and Green’s Theorem

yiay— A

x{a) xi{b) x
Figure 7.1

Example. Let C be the parabola represented parametrically by x = 3£2,
y=2¢ 0=¢=1, oriented in the direction of increasing #. Then, since

Let C denote a curve in the x-y plane; C is said to be smooth if it can be : x(#) = 6t and y(#) = 2, we have the line integrals

i 1
represented parametrically as /xzydx _ ] (3t2)2216tdt ~ 10877,
x = x(1), y=uy(1, a<t=bh c 0

where x and y are continuously differentiable on ¢ < t = b. Let A be the
point {x(a), y(a)) and B be the point (x(b), (b)). The orientation of C is ;
the direction from A toward B (see Figure 7.1). If A and B coincide but the §
curve does not otherwise intersect itself, then C is a simple closed curve. -

Let F(x, y) be a function defined for all (x, ) along C. Then, the line S / F(x, y) de + G(x, y) dy
integral of F with respect to x along C is defined as - c

/CF(X, y)dx =lim,_ E’:F(x(f:‘)’ y(ti))[x(ti) - x(ri—l)] :

provided the limit exists when x(¢ ~ 1) = x(t), where @ = L << oo <
t,., < t, = b, and can be evaluated by the ordinary integral :

LRy ac= ["F(xn), s)xtey a. O

a

i
/xzydy = / (3:2Y2¢2 dt = 6.
C 0

The expression

means
/F(x, y)dx + /G(x,y) dy.
c c
Thus, for example,
/xzydx +x’ydy = 108/7 + 6.
c

In the special case that y(¢) = ¢, we have y'(f) = 1, so that

b
/G(x,t)dr= / G(x(e),t)dt
c a

Similarly, the line integral of F with respect to y along C is defined as

S Gy dy =tim, o 3 FG(0), 20D [20) = (1)
and

b
= [TF(x(0), () (1) . @ b
a /F(x, t)dx + G(x, t) dr = ] [F(x,t)x" + G(x, )] dt. (3)
Reversing the orientation of C reverses the sign of the integral, since it § ¢ “
amounts 10 reversing the limits of integration on the corresponding ordinary }

integral.

An important theorem, Green's theorem, explains how a line integral on a
closed curve can be evaluated as an ordinary double integral.
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Green'’s Theorem. Let R be a closed and bounded region in the x-y plane,
whose boundary C consists of a finite number of simple smooth closed
curves that do not intersect. Let F(x, y) and G(x, y) have continuous
first partial derivatives in R. Let C be oriented so that region is on the
left as one advances along C in the positive direction. Then,

§ Fdx+ Gay = / f (3G/ax — 0FJay) dxdy.  (4) :
C R 3

The direction of the integral sign on the left indicates the orientation of
the line integral on the closed curve. The expression on the right Is the %

ordinary double integral over the region R.

Example. The area of a region R can be written as any of the following three j

line integrals.

/C - ydx = /dey = (1/2)[]C - ydx + xdy].

To check the third expression, for example, note that F = -y, G = x, so

dG/dx =1and dF/3dy = — 1. Hence,

(1/2)[/0 -ydx+xdy] = (1/2)[ fR[l - (=1)] dxdy = / f;dedy

as claimed.

APPENDIX B

DIFFERENTIAL EQUATIONS




Section 1

Introduction

The solution to an algebraic equation is a number or set of numbers that satisfy
the equation. Solutions of the quadratic equation ¢*> — 8¢ + 15 = Q are the
numbers 3 and 5 since they satisfy the equation.

Solutions of differential equations, on the other hand, are functions. Solving
a differential equation means finding a function that, together with its deriva-
tives, satisfies the specified equation. For example, a solution to the differen-
tial equation

y(t)y=dy/dt=4 (1)

is a function y(?), whose derivative is equal to 4, namely, the linear functions
M) = a + 4t, where a is any constant. Solutions of

y(t) =d’y/dt* =2 (2)
are functions y(t) whose second derivative is 2, namely, functions of the form
yioy=a+ b+ 12,

where & and b are constants, Solutions to
d'yjdt* =dy/dt o y(1) = y(1) (3)

are functions y(¢) whose first and second derivatives are equal, namely,
functions of the firm

y(t) = be' +a,

a5 may be verified by computing the derivatives.
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Further examples of differential equations are
wo=t, (4)
() +y"(y) - Oy =sint, (5)
where y = ¥(¢), ¥’ = y'(1), and so on. A solution to a differential equation
is a function y(¢) that, together with its derivatives, satisfies the differential
equation. The general solution is the set of all solutions to the differential
equation. A particular solution is obtained by specifying a value for the §
constant(s) of integration. Thus y(¢) = a + 2¢ is the general solution to (1}, {
whereas y(t) = 2¢ and y(f) = —3 + 21 are particular solutions. Sometimes 3
we seek the particular solution which passes through a given point.
Differential equations are classified in terms of the highest derivative |
appearing in them. This is referred to as their order. Equations (1) and (4) are §
first order, whereas (2), (3), and (5) are of second order. A differential
equation is said to be finear if the unknown function y{f) and its derivatives
each appear only to the first power. Otherwise, the equation is said to be
noniinear. Thus, (1)-(3) are linear differential equations, whereas (4) and (5)
are nonlinear. g
A differential equation may be solved by the method known as separation s
of variables if it can be written as the equation of a term depending on y alone ]
and a term depending on ¢ alone. For example, the differential equation
g(y}y = f(#) (where f depends only on ¢ and g only on y) can be written

g(y)dy = /(1) dt
since y’ = dy/dt. The variables are now separated and the solution is

Je(y)ydy=[f(t)at+c,

where ¢ is an arbitrary constant.

Example 1. y' = dy/dt = 1> may be formally rearranged to dy = #* d. 1
Since the left side depends on y alone and the right on ¢ alone, the variables 3 3
have been separated. Integrating gives y = #*/3 + ¢. b

Example 2. 3’ = aty can be rearranged to dy/y = atdf. The left side $

depends on y only and the right side depends only on r. Integrating gives

In y = at?/2 + ¢ or, equivalently, y = e+’ 12 a5 the function sought. ]
A differential equation

F(t, ¥y +g(e,»)dy/dr=0

or, equivalently,
S, dr+g(t.¥y)dy=0
is said to be exact if there is some function L(¢, ¥) such that
dU= U dt+ U,dy=fdt +gdy.
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Thus, the differential equation is exact if it is precisely the total differential of
some function. The exact differential equation

dU=20
has immediate solution

u(t, y) =c.

Example 3. The differential equation #?y’ + 2¢y = 0 may be written as
1* dy + 2ty dt = 0, which is equivalent to d(t2y) = 0. (Check this claim by
differentiating: d(t2y) = 2ty dt + t*dy.) Integrating gives t*y = ¢, so

y=c/t.
Example 4. The differential equation (1 + 2¢y)y’' + y* = 0 may be written
as (1‘ + 2yt) dy + y* dt = 0, which is equivalent to d(¢ty? + y) = 0. The
solution is £y2 + y = ¢, which is an implicit equation for y as a function of f.
EXERCISE

Solve yy' = (2. (Answer: y* = 2t%/3 + ¢))

FURTHER READING

There are many fine texts on differential equations, for example, those of Coddington
and Levinsen, Ince, Kaplan, Pontryagin, and Sanchez.




Section 2

Linear First Order Differential Equations

CONSTANT COEFFICIENTS

A first order linear differential equation with constant coefficients has the form -

y(t) + Py(1) = Q (1)

where P and Q are given constants. To find a function y(¢) that satisfies (1),
note that

d{e® y(1))/dt = Pe"'y(t) + e'y(t) = e[ y(e) + Py(1)].

Thus, if equation (1) is multiplied by e, the left side will be an exact
differential, that is, the total derivative with respect to ¢ of some function.

Formally multiplying through by 4 then gives
d{ef'y) = Qe dt,
which may be integrated to
e’y =ef'Q/P + ¢,

where ¢ is a constant of integration. Multiplying by e~

" gives

y{t)=Q/P+ce”™ 2 =
as the family of functions that satisfy differential equation (1). It is called the ':;

general solution of (1).

To determine ¢, we need the value of the function ¥ at one point. _FOT 1
example, if y(0) = y, were required, then, evaluating (2) at 1 = O_ gl\fﬁ
¥y = Q/P + c, and therefore ¢ = y, — Q/P. The solution of (1) satisfying

Y =y, is

¥(1) = yoe=P" + (1 = e P)Q/P. OF
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In sum, the procedure for solving a first order linear differential equation
with constant coefficients (1) is to multiply through by e®’, called the
integrating factor, and integrate. Use the value of the function at one point to
evaluate the constant of integration. The point used is called an initial
condition or boundary condition.

VARIABLE RIGHT SIDE

If the right side of (1) were not constant, but a known function of {, the
procedure would be similar. For instance, given

y'(t) + Py(t) = ae®, 4)
multiply by integrating factor e”* and separate variables:
d(e”' y(1)} = ae®+* dt.
Integrate:
e”'y(t) = ae®* /(b + P) + c.
Therefore,
y(t) = ae® /(b + P) + ce™*" (5)

is the family of functions satisfying (4). Again, ¢ can be determined from a
boundary condition.

VARIABLE COEFFICIENTS
The general form of a first order linear differential equation is
y(#) + P(6) y(t) = Q(1), (6)

where both P(7) and Q(¢) are known functions and the function y(¢) is to be
found. The integrating factor is e’ ©¥ since (recalling that d( [ Pdr)/dt = P)

d(y(r)e! P4 /dr = &/ PO[ y'(1) + P(1)y(1)].
Therefore, multiplying (6) by the integrating factor e’ #4' and integrating gives
ye! POl = / Qe F¥dt + ¢

or finally
y = e—_.-'Pd:/ Q(r)ejpd: dt + Ce—_.-'Pd.r, (7)

where ¢ is the constant of integration. This is the general solution of (6). A
particular solution is obtained by specifying the value of the constraint c.

If faced with a differential equation like (6), one should nor try to use
formula (7) directly. Rather, one should follow the same procedure as outline
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above to obtain (7): multiply by e/ 7% and integrate. We illustrate with
»(1) + av(e)/t = b. )

The coefficient of y, namely a@/#, is not constant. Following the outline
above, the integrating factor will be

gl (aindt = gaint _ sa.
Multiplying (8) through by ¢“ gives
[y (t) + ap(t)/t] = d(¢7p(2))/dt = be”.
Integrating
tiy(ty =br* ' fa+ 1)+ i a* -1,
y($)/t=blnt+c if a=-1,
$0,
y(t) =btfla+ V) +et™®, a# -1,
y(#)=btlnt +ct, a= -1, (9)

is the solution of (8).

If Q(t) = 0 in (6), the resulting differential equation is said to be homoge-
neous: otherwise it is nonhomogeneous. One can check the samples given so
far (as well as (6) and (7)) to confirm that the general solution of a first order
linear differential equation consists of the sum of the general solution to the
related homogeneous differential equation (obtained by setting O = 0 and
solving) and a particular solution to the complete equation. For instance, the
general solution to the homogeneous equation

y+Py=0

obtained from (1} is y(f) = ce”¥?, while a particular solution to (1} is
y = Q/P; the sum of these two functions is (2), the general solution to (1).
While this observation is not needed for solving first order linear differential
equations (since they can be solved by the procedure outlined above), the
principle is a useful one for differential equations of higher order. It remains
true that the general solution of a nonhomogeneous linear differential equation
is the sum of the general solution to the related homogeneous equation and a
particular solution of the complete equation.

In many applications of calculus of variations or optimal control theory,
interest focuses on the behavior of the solution to a differential equation as the
independent variable, usually time, increases indefinitely. The value that the
solution approaches (if any) is referred to as the steady state, stationary
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state, or equilibrium._ For example, from (2) it follows that if P > 0, then
lim, ,.y= lim,ﬂ,(Q/P + ce"") =0Q/P.

The‘ particular solution y = @/P of (1) can also be interpreted as the
stationary state. It could also be determined by asking the value of y that
satisfies (6) with ¥ = 0.

EXERCISE
Solve x'(1) + ax(t)/t = bt
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Linear Second Order Differential Equations

A second order linear differential equation can be put in the form
y(t) + P()y'(1) + Q) y(¢1) = R(¢), (1) 7

where P, O, and R are known functions and the function y{¢) is to be found. :i'
Equation (1) is called the complete equation. Associated with (1) is a differen- ::,
tial equation obtained by replacing R(¢) by O:

() + P(e)y(r) + QO ¥() =0, () |

which is called the reduced equation. The complete equation is also said to be
nonhomogeneous while the reduced equation is homogeneous. The reduced .j
equation is of interest owing to ;

Theorem 1. The general solution of the complete equation (1) is the sum 3

of any particular solution of the complete equation and the general :
solution of the reduced equation (2). K

The general solution of the reduced equation is given in Theorem 2 below. ]
Before citing it, we give a needed definition. The functions y(7) and y,{(?}{
are said to be linearly dependent on the interval f, < ¢ <17, if there are
constants ¢, and ¢,, not both zero, such that 3

oy(?) + ¢ x,(8) =0,

If no such identity holds, the functions are said to be /inearly f;ndepenq'em.
For example, the functions y,(f) = e*" and y,(f) = 3" are lincarly
dependent, since

tastst,. ) §

3y.(1) - y,(1) = 0.
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On the other hand, y(t) = ¢** and y;(f) = e™2' are linearly independent
since

€%+ ce7% = e (16" + ¢y)

can be zero on an interval only if ¢, = ¢, = 0,
Now we state

Theorem 2. Any solution y(t) of the reduced equation (2) on lLyst=t
can be expressed as a linear combination

Y1) = e (1) + 3, (1),
of any two solutions y, and y, that are linearly independent.

Lhst=t, {4)

Since every solution of (2) is of form (4), (4) is called the general solution
of (2). If we find any two linearly independent solutions of (2), then we can
find all solutions of (2).

For example, both y(t) = €** and y,(f) = e~ ' satisfy the differential
equation

y(1) —4y(1) = 0. (5)
Since these solutions are linearly independent, the general solution of (5) is
»(1) = ;%" + c,e7 %,
Any solution of (5) must be of this form.

HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS

We consider differential equation (1) in which P(¢) = A and r) = B are
constant. Suppose also that R(f) = 0. Since the general solution of y* + Py
=0i8 y=ce ' one might guess that a solution of the second order
differential equation

(1) + Ay'(e) + By(1) = 0 (6)
would be of the form y = ce”’ for appropriate choice of constants ¢ and r. If
Y1) = ce” were a solution, it would satisfy (6). Compute y’ = ree’, y* =
r*ce™ and substitute into (6):
ce”(r* + Ar+ B) = 0.
Excluding the unhelpful case of ¢ = 0, our trial solution satisfies (6) if and
only if r is a solution to the quadratic equation
r’+ Ar+ B=0.

Equation (7) is called the characteristic equation associated with (6). It has
two roots, that may be found by the quadratic formula, namely

ror=—-A/2+ (A - 48)' 2. (8)
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There are three cases according to the sign of A% — 4 B. Each is considered
in trn.

Case 1. A* > 4B. In this case, the roots r, and r , are real and distinct. The
general solution to (6) is therefore
y(t) = e’ + e, (9)
where r; and r, are the roots (8) of the characteristic equation (7), while ¢,
and ¢, are arbitrary constants.
Example, The characteristic equation associated with
y'—4dy=0

if r* — 4 = 0, which has real roots r,, 7, = +2. Hence the general solution
of the given differential equation is
¥(1) = c,e* + e,

Case 2. A® < 4B. Here the roots r, and r, are complex conjugates:

ror=—A2 £i(4B-A)"/2 =0+ bi (10)
where { = (—1)!/?, and we define
a=-Aj2, b=(B-4)"). (11)
The general solution may be written
(1) = e“(ce™ + ce” ). (12)
Since it is true that
e*" =cost x isint, (13)

(12) may be rewritten
$(£) = % (kycos b + ikysin br), (14)

where k; = ¢, + ¢,, k, = €, — ¢;. We can also find real solutions, since if a
compiex function

y(1) = u{t) + iv(1) (15)

is a solution to (6), then the real functions #(¢) and v(¢) are each solutions of
(6) as well. To see this, use the assumption that (15) is a solution of (6):

u + Au' + Bu + i(v" + Av' + Bv) = 0.
This eqguation holds only if the real part and the imaginary part are each zero:

W+ AUV + Bu =0,
v" + Av' + By = 0.
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This means that # and v are each solutions of (6), as claimed. Applying this
result to (14), we conclude that the general real solution to (6) in Case (2) is

¥(1) = e*(kcos bt + k,sin bt), (16)

where ¢ and b are defined in (11) and k, and k, are arbitrary constants.

Example. To solve the differential equation
y(#) = 4y(t) + 13y(1) = 0,
we write the characteristic equation

rP—4r+13=0
and solve

r,r; =2+ 3i.
Hence, the general solution is

y(t) = e*(k,cos3f + k,sin3¢).

Case 3. A® = 48. The roots r =r; = —A/2. Since the roots are repeated,
we have only one solution y(¢) = c,e“‘“/ 2. with one arbitrary constant, We
need another. Try

»(t) = kee™,

where the constants & and r are to be determined. For this trial solution,
¥ =ke"(l + rt), »" = rke" (2 + rt). Substituting into (6) gives

ke[2r+ A+ t(r?+ Ar+ B)] = 0 (17)

Equation (17) must hold for all t. This means that the coefficient of # must be
zero, and therefore

rP+Ar+B=0

or r = —A/2, since A* = 4B in the present case. This choice of 7 also
satisfies (17). Thus the general solution to (6) in this case is

Y} =ce” + cyte" = (e, + cyt),
where r = — A /2.
Example. Associated with differential equation
Yy +4y' +4y=0

is characteristic equation

rr+ar+4a=(r+20°=0
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with repeated roots r, = r, = —2. The general solution to the differential
equation is
y(1) = e (¢, + c,1).

NONHOMOGENEOUS EQUATIONS WITH CONSTANT
COEFFICIENTS

We can now find the general solution to any homogeneous second order linear
differential equation with constant coefficients. To solve a nonhomogeneous
differential equation, we need a particular solution to the complete equation.
We focus on that. If the complete equation is of the form

Y +Ay' +By=R

where B and R are constants, then a particular solution is the constant
function y = R/B. More generally, if the coefficients A4 and B are con-
stants, ene can use the functional form R to suggest the functional form of the
particular solution. This is called the merhod of undetermined coefficients,
If R is a polynomial of degrec n, one tries a general nth degree polynomial.
For example, to find a particular solution of
Y-y +2y=0 -1,
by
) =a* +bt* + ct + d.

Differentiate and substitute into the differential equation. Collecting terms,
20> + (2b - 3a)? + 2(c — b+ 3a)t+ (2b—c+2d) = - ¢.
For this to be satisfied for all ¢, the coefficients of like powers of ¢ on each

side of the equation must be equal, so
2a=1,
2hb—3a=0,
2(c—b+3a)= -1,
2b-c+2d=0.
Solving gives a = 1/2, b= 3/4, ¢ = —(5/4), and d = —11/8, so a particu-
lar solution is
y()=8£/2+362/4 - 5¢/4 - 11/8.

If R(¢) contains trigonometric terms or exponential terms, the trial solution

would contain such functional forms. For example, to find a particular solution

to
Y =3y =1+ 'sin2¢,
one would try a solution of the form

y=ar* + bt + c+ e'(k;sin2t + kycos21).
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Substituting into the differential equation and collecting terms gives
~3at’ + (20 - 3b)t + (& — 3¢) - 2(k, + k,)esin2¢
+ 2(k, — k,)e'cos2t = 12 + e'sin2¢,
Equating coefficients of like terms gives
-3a=1, 2a-3b=0, b-13c=0,
- 2(k, + k,) =1, 20k, - k,) =0,
which have a soiution
a=—-1/3, b= -2/9, c= —-2/27,
kKo=k,=-1/4.

Therefore, a particular solution is y(¢) = —12/3 — 2¢/9 — 2/27 — ¢'(sin2t
+ cos2i) /4.

A still more general technique for finding a particular solution is called the
variation of parameters method. It may be applied even in cases in which the
coefficients in the differential equation are not constant. Tt is developed as
follows. Suppose that y,(f) and y,(r) are known linearly independent solu-
tions of (2). Now consider the function

(1) = ei()) yi{2) + (1) pa(2), (18)

where the functions ¢, and ¢, are to be chosen so that (18) is a particular
solution to (1). Differentiating (18) gives

Y=oy +eay + oy + iy, (19)
Impose the restriction that
Ay + ey, =0 (20)
Differentiate (19), using (20):

»

Y=oyl +oy5 iy + ey, (21)

Substitate (18)-(21) into (1) and collect terms:
QT +Pyi+ Q) + (¥ + P+ Qn) + ey + 6y = R, (22)

But, since y, and y, are solutions to (2), the expression in parentheses in (22)
are zero, and (22) reduces to

ayn+ey =R (23)

Thus the functions ¢;(f) and ¢5(7) satisfy the pair of linear equations (20} and
(23), which can be solved algebraically for ¢; and ;. Integrate the results to
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find ¢, and ¢, and hence a particular solution (18) of (10). Then, the general
solution to (1) is

y(t) = a;p,(8) + a,3,(¢) + e, (2) ¥, (1) + (1)} 3.(2). (24)

where a, and a, are arbitrary constants.

Example, Solve
y 2y +y=et/r (25)
The characteristic equation of the homogeneous equation is

rP+2r+1=0

with roots r; = r; = —1. Thus, two linearly independemt solutions of the
homogeneous equation are

»(ty=e"' and ya(1) = te " (26)
A particular solution of the complete equation is

¥(1) = el ) (1) + ex()3:(7)

=e{t)e ' + ¢,(t)te’, (27)
where ¢j(¢) and c;3(#) satisfy (20) and (23), which are in this case
alle "+ cy{t)te " =0, (28)
—ci{)e "+ (e —te”") = e/t (29)
Solving algebraically, we find that
cft) = ~1/t  and () =1/ (30)
Integrating gives
e(t)=-In|t] and () = -1/r. (31)

Therefore, substituting from (31) into (27) gives the particular solution
y(it)=-Iln|tr|e‘—e". (32)

Combining (26) and (32) and collecting terms gives the general solution to
(25):
y(t) = e (a +ayr —Inje[}). (33)

Section 4

Linear nth Order Differential Equations

SOLUTIONS TO HOMOGENEOUS EQUATIONS

Let y"(¢) = d"y/di" denote the nth derivative of y(¢). Then, an nth order
homogeneous linear differential equation with constant coefficients has the
form

YP() + v TR() + () + o A, () + p,y(1) = 0
(1)
where the p; are given constants.

Extending the definition given earlier, we say that the functions y(f),
Y1), ..., y(t) are linearly dependent on t; <t < ¢, if there exist con-
stants ¢, €3, ..., C,, not all zero, such that

clyl(t) + 6'2}’2(3‘) + - +C_,.,}’"(f) = 09

If no such set of n constants exists, the functions y,,..., y, are linearly
independent ou t, < t < 1,. A set of n linearly independent solutions of (1)

to=t=t.

always exists. If y,(#),..., y,(¢) is a set of linearly independent solutions of
(1), then the general solution is
y(r) ZCly](f) +cz)’2(‘) + - +Cnyn(t)' (2)

Following the lead suggested by the cases of n =1 and n = 2, we try
¥ =¢’" as a solution. Putting the trial solution in (1) (after computing the
relevant derivatives) yields

e (r"+pr" +pyrm i+ - +p,_r+p,) =0. (3)

Our proposed solution satisfies (1) if (3) is satisfied. Thus, r must satisfy the
characteristic equation

rf4pr"ly o p r+p,=0 (4)
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associated with (1). Polynomial equation (4) has, by the fundamental theorem
of algebra, exactly » roots. They need not be distinct or real.

Corresponding to each real nonrepeated root r of (4), there is a solution of
(1) of the form

y(t)y=¢".

Corresponding to a real root r that has multiplicity m—that is, repeated m
times—we have the m linearly independent solutions

y(ry=titte”,  j=1,...,m.

Complex roots come in pairs, whose elements are complex conjugates. As
before, corresponding to any pair of complex conjugate roots @ + bi are the
two real linearly independent solutions

e"cos bt and e“sin bt.

If complex roots are repeated, say of multiplicity ¢, we have the following 2¢
linearly independent solutions:

t/7le®cos bt  and t/~'e%sin bt, i=1,...,q.

Thus, in sum, the differential equation (1) has general solution (2), where
»(8), ..., y,(2) are n linearly independent solutions of (1) corresponding to
the n roots r, ..., r, of the characteristic equation (4),

Example. The differential equation
YU +4y® 4+ 13y@ 436y + 36y =0
has characteristic equation

4+ 13r2 + 36r+36 =0,
or

(r+2)%(r2+9) =0,

with the four roots —2, — 2, 3i, — 3/, The general solution of the differential
equation is therefore

y{t) = e (¢, + €,1) + c5c08 3¢ + c,5in 37,

NONHOMOGENEOUS EQUATIONS

A nonhomogeneous frth order linear differential equation with constant coeffi-
cients has the form

YO+ Py 4yttt 4p, vV +py = R(2). ()
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If y*(¢) is a particular solution to (5) and oyl + - +e,y (8 is the
general solution to the associated homogeneous system (1), then
y(0) =) + ey pi(8) + e3a(t) + -+ +e,p,(1) (6)

is the general solution of (5). Thus, the solution to (5) is composed of two
parts, namely the general sclution to the corresponding homogeneous equation
plus a particular selution to the nonhomogeneous equation. Since the former
has been discussed, we focus on the latter.

A particular solution to (5) can be found by the method of undetermined
coefficients suggested in the last section. One tries a particular solution of the
same general functional form as (5) and then seeks coefficient values so the
trial solution will satisfy the differential equation. For instance, to find a
particular solution to

y(3) — y(Z) +y= IZ,
we try
y=at’+ bt +c.

Substituting into the differential equation gives
at> + bt + ¢~ 2a =2
Equating coefficients of like powers of ¢ gives the particular solution
y=t14+12.
Since the terms of y and y’ are missing from
yO — p@ _ g2

our trial solution for this differential equation will be a fourth degree polyno-
mnial

() =at* +bP + ct* + dt +e.

Substituting, collecting terms, and equating coefficients of like powers of ¢
gives the particnlar solution

y(8) = —1*/12 - 2373 - 2¢2.

A general methed of finding a particular solution is the method of variation
of parameters, developed as in Section 3 of this appendix. It applies, even if
the coefficients p, are not constant, but requires knowing # linearly indepen-
dent solutions of the associated homogeneous equation.

Let y (1), ..., y,(¢) be linearly independent solutions of (1). Then, we
form

y(t) = elt)y,(¢) + -+ +c, () y.(7) (7)
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where the functions ¢,(f), ..., c,(¢} are to be found. Impose the restrictions
n " n 5
ey =0,3 ¢y =0,..., 3y ¢y =0 (8)
t=1 i=1 i=1

Substitute (7) and its derivatives into (5), taking into account restrictions (8).
This gives

2. ey = R(1). (9)
i=1
Now the n linear equations (8) and (9) can be solved algebraically for
€, ..., C,. Integrate the results to find ¢,, ..., ¢, and thereby, through (7), a
particular solution to (5).
Example. Solve
Py -y = 2,

The characteristic equation associated with the homogeneous partis 7> — r? =
0, which has roots
r=10, r, =0, ry=1.
Thus, three linearly independent solutions to the homogeneous equation are
yi{t) =1, ya{t) = ¢, y3(1) = e'.
The trial solution is
¥(1) = (1) + 16,(1) + €'cy(1),
where the coefficients satisfy (8) and (9):
(1) + 5(¢) + ¢5{1)e' = 0,
() + ci(t)e' = 0,
ci(t)e = 1%,
Solving and integrating:
=02 -1 =-1t =1t

/A -7, o=-1/3 = —e (P +21+2),

<
so a particular solution is
&)= -2~ 33 -2 - 212,

EQUIVALENT SYSTEMS

An nth order linear differential equation is equivalent to a certain system of 7
first order linear differential equations. For example, given

Yy + Ay + By =R, (7
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one can define x by
¥ =x. (8)
Then y” = x’. Substituting into (7 gives
x'+ Ax+ By =R, (9)

Thus, (87} and (9") constitute a pair of first order linear differential equations
equivalent to the single second order differential equation (7). (Equivalence
may be verified by starting from (87 and (9, differentiating (8" with respect
to ¢, and substituting from (9" into the result to get (7).)

More generally, given (5), one can define successively the functions
Zisevor Zuoqa DY

y‘ =Z]5
(y” =)Z{ ZZZ,
(" =)z =z,

(V"0 =)z, =2, . (10)
Substituting from (10) into (5), one gets
Lyt PiZac i F T a0t FD, 2 = R (11)

Now (10) and (11) constitute a system of » first order linear differential
equations in the » functions y, z,,..., z,_,. Equivalence between (10) and
(11) and (5) is verified by substituting the equivalent expressions in terms of y
and its derivatives from (10) to (11) to get (5). Since a system of # first order
linear differential equations is equivalent to a single nth order linear differen-
tial equation, results and methods developed for one imply corresponding
results and methods for the other.




Section 5

A Pair of Linear Equations

We consider the system of two linear first order differential equations
dx/dt = ayx(t) + b, y(1) + p(2),
dy/dt = a,x(t) + b y(t) + (1), (1)

where @), a,, b, b, are given constants, p(¢) and g(¢) are given functions,
and x(¢) and yp(f) are to be found. The solution will be two functions
x(r}, y(2) that satisfy both equations. Recall that the solution of a single linear
differential equation is the general solution to the related homogeneous equa-
tion plus a particular solution to the nonhomogeneous equation. A similar
theorem applies here.

The homogeneous system corresponding to (1) is

defdt =ax+ b,y,
dyv/dt = a,x + b, y. (2)

One method for solving the system (2) is to reduce the pair to a singie second
order linear differential equation and apply the method of Section 3. Differenti-
ating the first equation of (2) totally with respect to ¢ yields

x=ax +by.
Substitute for x’, y‘, ¥ from (2) and collect terms to get
x* ~ (a + by)x" + (ab, — bya,)x = 0. (3)
Hence, if the roots of the characteristic equation

rP—(a, +b,)r+ab,~ ba,=0 (4)
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associated with (3) are real and distinct, then the solution of (3) is
x(t) = c,e™ + c e, (5)

where r, and r, are roots of (4).
Rearranging the second equation of (2), we get

y=(x"—-ax)/b,. (6)
Substituting the known first for (5) for x (and hence x") gives
y(1) = [(’t —aj)e e’ + (r, - “l)fzerzr]/bl- (7)

Thus, the general solution to (2) is (5) and (7) if the roots of (4) are real and
distinct. The method of finding the general solution in the case of repeated or
complex roots is similar.

A second method of solving (2) directly is available. Our discussion of the
solution to the single equation further suggests that we try x(f) = Ae”,
y(t) = Be™ as particilar solutions to (2). Substitution of these proposed
solutions into (2) yields

rde” = a, Ae” + b, Be",
rBe" = a, Ae™ + b, Be"’. (8)

Divide by e throughout (8), collect terms, and rewrite in matrix notation:

a —-r b, A 0
[ a, by~ r] [ B|™ |o ©)
2 2
In order that the solution to (9) be other than 4 = B = 0, the coefficient
matrix in (9) must be singular, or equivalently, its determinant must be zero.

a - r b,

a, b, —r =90 (10)

Expanding (10) yields a quadratic equation in r:
r?—r(a, + b)) + a,b, — a,b, = 0, (11)

referred to as the characteristic equation of (2). Note that this is exactly the
characteristic equation (4) found above! It has roots

1,2
r=(a,+0,)/2 % [(a +b,) - 4(a,b, - a,0)] 2. (12)
Note for future reference that (12) implies that the two roots r, and r, satisfy
nry=ab, — ab,,

rn+r=a +b,. (13)
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If r, # r,, the general solution to (2) is
x{t) = Ae"" + Ay’
»(1) = Bie™ + Bye’™, {14)

where A, and A, are determined from initial conditions, (12) defines », and
7y, and B, and B, re determined from (8):

B]=(r1—a1)A1/b1, Bz= (fz_al)Az/bl- (15) :-f:

This agrees with the solution (4) and (7) found above.
If the two roots in (12) are identical, then as before we try solutions of the
form x(¢) = (A, + A,)e”, y(¢) = (B, + B,t)e". The result is

x(t) = (A4, + A, t)e”
y(6) = [(r = a)( A, + Ayt) + A"/ by, (16)

where the coefficients B, have been determined in terms of A,, A,, and the
parameters of (2). If the roots are complex conjugates, the solution can be
stated in terms of real trigonometric functions in a fashion similar to that
employed earlier,

We have now indicated how to find the general solution to the homogeneous
system (2). There is a theorem that asserts that the general solution to the
nonhomogeneous system (1) is the sum of the general solution to (2) and a
particular solution to (1). A particular solution to (1) can be obtained by, for
instance, the method of variation of parameters. In case p and g are constants,

then a particular constant solution x, y, can be found by solving the system of 3

equations

ax.,+b,y,+p=90,

a,x,+ by, +g=0 (17)

Extension to systems of several linear first order differential equations is 3

straightforward.

EQUILIBRIUM BEHAYIOR

A point x,, y, at which x’ = »' = 0 is called an equilibrium point, steady
state, or stationary point. An equilibrium is srable if im,_ _ x(#) = x, and 2
lim,_,»(#) = y,. For system (1) with p and g constant, there are several 1

Cascs.

Case I4. The roots of (12) are real and distinct, with r, < r, < (. From
(14), the equilibrivm is stable in this case. It is called a stable mode. From :
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(13), the Routh-Hurwitz conditions
ab,—ab, >0, a +b,<0 (18)

hold. These conditions are necessary and sufficient for stability of (1).

Case IB. The roots are real and distinct, with r, > r, > 0. Since both roots
are positive, the solution x(7), ¥(#) in (14) grows without bound as ¢
increases. The equilibrium x_, y, is an unstable mode.

Case IC. The roots are real and distinct, with 7, > 0> r,. If 4, # 0, then
the term in (14) with positive root will dominate the solution and both x(¢) and
y(t) grow without bound. However, if 4, = 0 and A, # 0, then the solution
(14) will converge to the equilibrium (x,, y,) as ¢ increases. This equilibrium
ts called a saddlepoint.

Case ID. The roots are real and distinct, with r; =0>r,. From (13),
a, /b, = a, /b, in this case, so that equations {17) are either inconsistent or
redundant. In the former case there is no equilibrium. In the latter, any point
satisfying @, x; + b, y, + p = 0 is an equilibrium. The initial condition deter-
mines which of these equilibria will be approached as ¢ increases.

Case IE. The roots are real and distinct, with r, = 0 < #,. This is similar to
Case ID, except that the solution x(f), y(¢} moves away from the equilibria
(unless x(0) = x,, y(©0) = y.).
Case II, The roots are complex conjugates:
r.rp=ax bi
where
12
a=(a + b,})/2, b= [4("13’2 - ayb) — (a, + bz)z] /2. (19)

The solution is of the form

x(t) = e®(kcos bt + k,sin bt) + x,,

(1) = e"(c,cos bt + c,sin bt} + y,. (20)
There are several possibilities.
Case I1A. The roots are pure imaginaries, with @ = 0. The solution x(#), (1)

oscillates within fixed bounds. In the x, y space, the trajectories are ellipses
about x, y,.

Case IIB. The roots are complex, with negative real parts, and @ < 0. The
solution (20) cscillates and tends toward x_. y,. The equilibrium is called a
stable focus,
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Case IIC. The roots are complex, with positive real parts, and @ > 0. The
solution (20) oscillates and moves away from x,, y, (unless x(®) = x,,
YO = y.). The equilibrium is an wnstable focus.

Case III. The roots are real and equal, r, = r, 0. The solution is (16). The
equilibnum is stable if r < 0 and unstable if r > 0.

One can sketch the behavior of the solution in the { x, y) plane where a point
represents (x{¢), ¥(¢)) and movement in the direction of the arrow represents
movement with advancing time.

In nonlinear systems, there is an additional sort of equilibrium, called a
limit cycle. This is a closed curve in the x, y plane. A stable limit cycle is
one toward which trajectories converge. An unstable limit cycle is one from
which trajectories diverge.

NONLINEAR SYSTEMS

Some insight in the nature of an equilibrium of a nonlinear differential equation
systern can be obtained by study of the approximating linear differential
equation system. For example, suppose the system

x =flx,y), y =g(x¥) (21)
has an isolated equilibrium at (x, y,). That is, (x,, ) satisfies
fAx, 3} =0,  g(x:,y)=0, (22)

and there is a neighborhood of (x,, y,) containing no other equilibria of (21).
(Thus limit ¢ycles are not under consideration here.) The approximating linear
differential equation system in the neighborhood of (x,, y,) is found by
expanding the right side of (21) around {x,, »,) by Taylor’s theorem, retaining
only linear terms. Thus,

x' =f(xj’ ys) +fx(xs‘ ys)(x—xs) +fy(xs’ ys)(y _ys)
y’ = g(xs’ ys) +gx(xs' y.r)(x _xs) +gy(xs’ ys)(y _ys)'
But, in view of (22), this reduces to

L

X

al(x - xs) + bl(y - y.r)
¥ o= ay(x—x) + by{y-y), (23)

where the constants are

al=fx(xs'ys)! 02=gx(xs’ys}
b, =fy(xs'ys)! bz =gy(xs"ys)' (24)
In the neighborhood of (x,, y,), the solution to (21) behaves like that of (23)

in the same neighborhood, and the behavior of (23) can be determined
following the analysis for (1).

Section 5. A Pair of Linear Equations 349

EXERCISE

Show the solution to the system
X =ax+by+ez,
Y =ax+bhy+eoz,
T =@x+by+ ez

x(t) = Aje"" + Ao + Ao,
y(1) = Bie™ + B¢’ + B,e'¥,
z(t) = Cie"" + Cye"' + Cye'¥,
where r,, r, and 7, are roots of the determinant equation
a —r b, |

s by —r c; |=0
a; by €3~ r

provided the roots are distinct.



Section 6

Existence and Uniqueness of Solutions

One way to verify that a solution to a differential equation exists is to proc!uce
it. However, if the equation is not readily solved, or if it contains functions

that are not fully specified, then it is desirable to have a theorem assuring the

existence of a solution.

Theorem 1. Suppose f(i, y) is a single valued continuous func.rfon with a
continuous partial derivative f (t, y) on a rectangular domain D

et =a, |y=p|=b

around the point t,, y,. Let M be the upper bound of | f(1, y)| in D .

and let h be the smaller of a and b/M. Then there exists a unique

continuous function of t defined for all t such that |t — 1| < h that.

satisfies the differential equation dy /dt = f(1, ¥} and is equal to yo &t
iy-

If the differential equation involves a parameter p,

dy/dt = f(t, y; p),

where f(t, y; p) is single valued, continuous, and continuously differentiable
with respect to its arguments in D for p, < p = p,, then the solution depends
continuously upon p and is differentiable with respect to p when |1 — 1 <
h,

Remark 1. Existence and uniqueness of the solution are assured only in 8 ¢

neighborhood of (1,. y,). For example, the solution of dy Jjdt =
with (1o, ¥o) = (1, = 1) is ¥ = ~1/¢, but this is not defined at 1 = 0.
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The results of Theorem 1 may be extended to a system of first order
differential equations:

dyi/dt=f}(r!yl!y2!"'!yn), i=1,...,n. (1)

Theorem 2. Suppose the functions f{t,y,, y,.... P i=1,000,n,
are single valued, continuous, and continuously differentiable in their
last n arguments on the domain D defined by |t — 1,] < a and | Y —
yil=b, i=1,...,n Let M be the greatest of the upper bounds of
JioJoo oo o fy in this domain. Let h be the smallest of
a, b /M,..., b,/M. Then there is a unique set of continuous solutions
of the system of Equations (1) for t such that |t — t,| < h and that the
solutions assume the given values y5, ..., y% at t = t,.

Remark 2. Since the differential equation of order n,
d"yx/dt" = f(¢t, p,¥', ...,y V) (2)
is equivalent to the set of first order equations
dy/dt =y,, dy fdi=y,,...,
dy, J/dt=y,_ . Ay, jdt=f{t,y,y...., 1),

it follows that if f Is continuous and is continuously differentiable in its
last n arguments, then (2) has a unigue continuous solution that,
together with its first n — 1 derivatives (which are also continuous), will
assume an arbitrary set of initial conditions for t = .

If the functions f; in (1) are linear in y,,..., y,, then the existence of
solutions on a larger domain can be established.

Theorem 3. If in (1), we have
dy;/dt=f,= 3 a,(t)y,+b(t), i=1,....n, (3)
=l

and if the coefficients a(t), i=1,....n, j=1,...,n, and b(1),
f=1,...,n, are continuous on t, < t < t,, then there is a unigue set
of continuous functions y(t), ..., y, (1) having continuous derivatives
on ity <1 =< { that satisfy (3) and have prescribed values

y(t%) = koo ya(27) =k,

at a point t* of to <t = 1.

Remark 3. The problems just given are all initigl-value problems. The
given data all pertain to a single point, say, y(ty), i=1,....n, for
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problem (1), or (¥(fo), ¥'(Lo), - - . » Y~ V(tp)) for problem (2). In dif-
ferential equations arising from calculus of variations or optimal control
problems, the boundary conditions typically are divided between speci-
fications at two points in time. Thus, for a second o;der equation,
instead of y(t,), ¥'(1,) we may be given y(1,) and y(t,). These situations
are calfeg }l’?fr);ird};ryovalue problems. Conditions under which the gen- References
eral boundary value problem has a solution are more difficult.
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Subject Index

A
Active constraints, 200
Adjoint equation, 127, 145, 160
Adjustment equation, 96
Admissible curve, 52, 72
Admissible function, 14, 48, 52, 53
Advertising, 7, 98-99, 173, 180-183, 184,
212-215

Appropriate solution concept, 184
Area

maximum, §, 47, 50

minimum, 31-32
Assets

risk, 269

riskless, 269

value of, 139
Autonomeus equations, 102, 166
Autonomous formulation, 228
Autonorous problem, 131

infinite horizon, 95-96, 97, 174-184, 262,

270

most rapid approach paths, 215-216
Auxiliary equation, 127, 160
Averaging condition, 212, 216, 217

B
Bang-bang control variable, 202-208
Bernoulli equation, 284
Bliss point, 110, 162
Belza, problem of, 228
Boundary conditions, 49, 61, 62, 73, 80, 329
in calculus of variations, 352
in optimal control, 352
transversality conditions for, 174

Boundary requirements, 54
Boundary value problems, 352
Bounded controls, 185-194
Brachistrone problem, ¢, 32-33
Brownian motion, 264

Budget constraint, 62

C

Caiculus of variations

application of, 3-4

origin of, 3

tools of, 4

use of, 9
Calculus techniques, 291-293
Candidate function, 57, 112
Capital, 6, 106, 150

accumulation of, 110, 123

consumed, 106

decay, 6, see aiso Decay

equity, 146

invested, 107

reinvestment rate, 6
Capital /output ratio. 151
Capital per capita, 106
Central planner, 105
Chain nile, 106, 291
Characteristic equation, 176, 333-336,

339-340, 344, 345

City design, 82-85
Closed-form solution, 84
Closed-loop strategies, Nash equulibrium, 288
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Coefficients
constant, 328-329, 333-338
equating, 341
vndetermined, 336, 341
values, 341
variable, 329-331
Collecting terms, 341
Comparative dynamics, 168-170
Comparison controls, 125
Comparison curve, admissible, 72
Comparison functions, 53, 57-59, 78, 112
Comparison path, 13, 79, 80, 134
Complementary slackness conditions, 82
Concave function, 42, 44, 133, 134, 178, 180,
223, 298-302, 304
Conditional probability density of failure, 56
Constant coefficients, 328-329
homogeneous equations with, 333-336
nonhomogeneous equations with, 336-338
Constraint gualification, 47, 48, 49, 66-68,
195, 197, 200, 316-317
appending of, 48
finite, 114-115
inequality, 90-94
isoperimetric, 114
Constraint variable, state inequality, 230-239
Consumption, 6
steady state level of, 110
Consumption planning, 6, 105108, 122-123,
151, 222-223, see aiso Growth;
Pollution
certain lifetime, 6, 2628
uncertain lifetime, 61-63
with uvncertain return on assets, 269-270
Contact rate, 180
Continuous control, 202, 203
Continuous function, 14, 16, 88
differentiable, 16, 41, 86-87
Continuous time dynamic programming, 263
Control function, in dynamic programming, 260
Control variable, 121, 142, 143, 145, 274
bang-bang, 202-208
bounded, 185-194, 217
comparison, 125
constrained, 195-201
discontinuous, 202-208
optimal, 259
singular, 209
stochastic, 264-271
vatue of, 248, 249
Convex function, 26, 44, 298-302, 306
Convex region, closed, 133
Corners, 86-89
discontinuities in, 202-208
Costate, 120, 127, 170
Coumot duopoly, 277-278, 281
Cumulative effort, growth of, 73

Subject Index

Cumulative sales, 129
Current value, 164172
multiplier, 165-166

D
Decay, 6, 7, 140, 141, 255, 256
exponential, 10, 123
time derivative of, 258
Definite, negative, 301
Delayed response, 248-252
Demand function, 278
Diagrammatic analysis, 102-111, 118,
166-172, 192-193
Differentiable function, 41, 126, 310, 312
continuous, 14, 16, 47, 86-87
sufficient, 261
Differentiable relation, 72
Diffarential constraint, 115
Differential equations, 128, 140, 255, 325-352
linear approximation to, 109, 118, 167,
175-176, 177, 298
methods of solution of, 325-326
boundary conditions, 329
closed-form, 84
existence and uniqueness of solutions,
350-352
general, 328
integrating factor, 329
separation of variables, 326
undetermined coefficients, 336, 341
variation of parameters, 337-338,
341-342
partial, 261-262
second order, 17, 18
types of, and solutions, 328-331
exact, 326-327, 328
homogeneous, 330
linear nth order, 339-343
linear second, 332-338
linear systems, 326, 344-348
nonhomogeneous, 330
nonlinear systems, 326, 348-349
stochastic, 266-268
Differential games, 272-288
Discontinuities, 202-208
Discount rate, 107
Discounting, 10, 24-26, 62, 164-170,
221-223, 256, 269
Discrete optimization, 4-5, 12-13, 313-319
Distance, minimum
between line and curve, 162
between point and line, 54
between two points, 7, 34, 130-131
Dividend, 238
Double integrals, 152-118
DuBois-Reymond equation, 17
Duopoly, Cournot, 277-278, 281

Subject Index

Durability, 253, 255
Durable goods, 7, 173, see also Investment
Dynamic optimization, 9

continuous, 5-10
Dynamic organization problem, solution of, ¢
Dynamic programming, 4, 9, 259-263

E
Earnings, discounted, 194
Fconomics, application of calculus of variations
to, 105
Education, see Human capital; Investment
Endpoint conditions, 50, 155-163
Endpoint problems, fixed, 48, 147-154
Envelope theorem, 172, 173
Equality constrained endpoint, 66
Equality constrained optimization, 307-312
Equality constraints, 195
Equating coefficients, 341
Equilibrium, equilibria, 177, 331
global stability of, 184
multiple, 179
Nash, 273-276
stable, 346
Equilibrium behavior, 346-348
Equilibrium point, 346
Equilibrium price, 281
Equity capital, 146
Equivalent systems, linear differential equation,
342-343
Estate utility, 62
Eular equation, 14-20, 41, 42, 48, 53, 60, 117
augmented integrand in, 50
for calculus of variation problem, 132
canonical form of, 18, 127
constants of integration for, %0
examples and interpretations, 21-27
as identity, 35-36
Legendre condition and, 44
maximizing path and, 44
satisfying of, 59
solution to, 43, 104, see aise Extremals
special cases of
F linear in x', 35-38
¢ absent from F, 31-34
{, x shsent from F, 34
x absent from f, 30-31
x' absent from F, 34-35
two interdependent, 113
Euler’s theoremn on homogeneous functions,
293
Existence, 9, 220, 350-352
Expenditures, discounting of, 164, see also
Discounting
Extremals, 19, 21, 36-37, 50, 56, 61, 80, 89

73

F
Failure, probability density of, 55, 56
Failure rate, 190
Farka's lemma, 158-159, 200, 317-318
Feedback form, 262
Feedback strategies, Nash equilibrium,
274-278
Finite constraint, appended, 114
Finite horizon, optimal, 110
First variation, 41
Fishing, 101, 183, 272, 285-286
Fixed endpoint problems, 147-154
Free end value, 32-356, 73, 159, 160, 161
Free horizon-transversality conditions, 57-64
Free terminal time, 247
Free terminal value, 247
Fritz John theorem, 319
Fundamental theorem of calculus, 245
of integral calculns, 291-293
Future generations, utility of consurption of,
110

G
Generalized momenta, 18
Global stability, 184
Golden rule, 110, 111
Goodwill, 7, 98, 173, see aise Advertising
Green's theorem, 100, 101, 1186, 321-322
Growth, 6, 73, 105-110, 122, 151, 212-213,

222-223, see also Consumption

H
Hamilton-Jacobi-Bellman equation, 261
Hamilton-Jacobi equation, 82
Hamilton's Principle of Stationary Action, 33
Hamiltonian, 18, 81, 127, 129, 130, 134, 144
concave, 178, 180
current value, 165, 166, 222, 223, 251
feedback strategies, 275
Hessian matrix of, see Hessian matrix
jump in, 235
maximized, 148, 157, 220, 221-222, 223,
237
open-loop Nash equilibrium, 277
Hessian matrix, 301, 306, 311
bordered, 311-312
Higher derivatives, 118, 229
Higher-order terms, 78
Homogeneous equations, 330
with constant coefficients, 333-336
solutions to, 339-340
Bomogeneous function, 109, 293
Homogeneous system, 344-346
Horizontal demand function, 278
Human capital, 7, 194, see aiso Investment
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I
Identity, 35-36
Immediate response problem, 248
Impticit function theorem, 307
Inequality, 175
Inequality constrained optimization, 313-319
Ineguality consiraints
endpoints, 77-85
in ¢, x, 90-94
Infinite horizon autonomous problem, 95-96,
97, 262, 270
equilibria in, 174-184
Infinite horizon capital accumulation, 110
Infinite time horizon, 269
Influence equation, 127
Initial condition, 329
Initial value, 52, 351-352
Integral
differentiation under, 15
value of, 52
Integral calculus, 211
fundamental theorem of, 291-293
Integral constraint, 47, 49, 50
Integral state equations, 253
Integrand, 133, 137, 147
augmented, 49-50
Integrating factor, 329
Integration, 125
by parts, 72, 97, 143, 198, 292
of stochastic differential equation, 266
variable of, 292
Interior interval, 246
Inventory, see Production planning
Investment, 6, 7, 37, 99, 107, 123, 140, 152,
168-169, 173, 200, 211-212, 269
[soperimetric constraint, 47-50, 114, 228-229
It, stochastic calculus, 265-271

J
lacobi condition, 46
Jacobian matrix, 312
Jump condition, 234, 237, 239
in state variable, 240-246

K
Knowledge, 281
Kuhn-Tucker necessary conditions, 133, 134
Kuhn-Tucker thecrem, 9, 199-200, 220, 317,
318-319

L
Lag, 248-252
Lagrange. problem of, 228
Lagrange muluplier, 48-49, 50, 124, 136,
309-310

Subject Index

Lagrangian, 308-314

Land use, 83

Legendre condition, 42-44, 54, 60

Leibnitz’'s rale, 15, 19, 58, 71, 292

Lemma, 16-17, 19, 20, 43, 222
Farkas®, 158-159, 200, 317-318
proof of, 44-45

Limit cycle, 348

Line integrals, 320-321

Linear differential eguations, second order,

332-338

Linear functions, 293

Linear terms, 78

Linearly dependent fonction, 339

Linearly independent function, 339

M
Machine maintenance, 190-193, 207-208
Mangasarian’s theorem, 221
Marginal cost equation, 140
Marginal profit, 140
present value of, 48
Marginal utility, 105, 107
Maxima, 45
Maximization, 19, 77, 127, 135, 25
subject to state equations, 273
Maximizing behavior, 247
Maximizing path, 44
Maximum principle, 121, 218-220, 303-306
local maximum, 304
strict global, 303
strict local maximum, 303
Mayer, problem of, 228
Mean-value, theorems, 204 -297, 305
Methed of undetermined coefficients, 336
Minima, 45
Minimization, 134, 135
Minimum principle, 303-306
Minor(s), principal, 301
Modifications, 186
Moementa, 18, 81
generahized, 81
Monopolist, 244-247, 286
Most rapid approach path, 97-101, 215-216
Multiplier
current value, 165-166, 213
mterpretation of, 136-141
Lagrange, 48-49, 50, 124, 136, 309-310
state vanable, 234
Multiplier equation, 126, 127, 144, 156
Multiplier function, 124, 143-144, 151-152
Myopic rule, 212

Subject Index

N
Nash equilibriom, 273-274
closed-loop strategies, 288
feedback strategies, 274285
open-loop strategies, 274, 275, 276-278,
281, 286, 287
Necessary conditions
in calculus of variations, 16, 48, 49, 52, 59,
60, 72, 80, 86, 114, 146
in inequality constrained optimization,
313-314, 315
Kuhn-Tucker, 133, 134
in Nash equilibrium, 288
in optimal control, 124-130, 137, 144-146,
148-149, 156, 159-160, 187, 197-200,
201, 213, 221, 231, 232, 236-237, 238,
239, 241, 247-250, 253-254, 257, 268,
275,277
Negative definite, 301
Negative semidefinitz, 301, 306
Neoclassical growth model, 105-110
New conditions, 247
New product development, 28]-285
Newton's Second Law of Motion, 33-34
Nonhomogeneous equations
with constant coefficients, 336-338
differential, 330, 340-342
Nonlinear differential equations, 348
Nonlinear programming
equality constrained, 307-312
inequality constrained, 313-319
nonconstrainad, 303-306
Nonnegativity condition, 140, 158, 206, 314
of state variable, 230
Nonnegativity restriction, 230
Nonpositive derivative, 299

0
Ohjective, value of, 71, 227-228
0il, 246-247
Open-loop strategies, Nash equilibrium, 274,
275, 216-278, 281, 286
Optimal control, 3, 121, 169-170, 253
application of, 9
problems, 121
stochastic, 264-271
tools of, 4
vector of, 145
Optimal function. 52
Optimal path, 157
Optimal value function, 259-260
current. 271
interpretation of, 136-141
Optimality condition, 9, 42, 54, 126, 127, 144,
159
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of most rapid approach path, 99-100
principle of, 259
verification of, 13
Optimization problem, 9, 47, 77
constrained, 48
equality constrained, 307-312
inequality constrained, 313-319
Optimizer, 247
Optimizing function, 86
Optimizing values, 170
Ordinary condition, 247
QOutput, 6, 151
investing of, &
production of, 6
Output per capita, 106

| 4
Parabola, 205
Parameter
marginal value of, 50
variation of, 337-338, 341-342
Particle, motion of, 8-9, 33
Patent, 231
Path constraints, 85-89, 230-239
Payoff, 97
short distance decrease in, 98
Phase diagrams, see Diagrammatic analysis
Piecewise functions
continuous, 202
stnooth, 86
Pollution, t54, 172, 236
Polynomial equation, 340
Positive root, 269
Price, pricing, 81, 223-225, 272, 287
equilibrium, 281
limit, 250-251
monopolistic, 39, 287
new product, 129
reduction in, 248
ralated to durability, 256
Principal minors, 301
Principie of least action, 33
Principle of optimality, 259
Probability density function, 62
of failure, 55, 56
Product
durability, 253, 255
new, development of, 281-285
quality, 244, 245, 256
Product rule, 292
Production planning
main examples of, 5-7, 12-13, 5-10,
21-27, 36-37, 89, 122, 129, 149,
187-189, 244-247 276-285
other examples of, 93-94, 205-207,
287-288
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Profit, 223, 224
marginal, 48, 140
maximization of, 129, 244
present value of, 99

Q
Quadratic equation, 333
Quadratic form, 301, 306
Quality, 244, 245, 256
Quasiconcave function, 301-302

R

Research and development, 73-74, 75-76
Resource

allocation, 197

extraction, 39, 47-48, 50, 63, 150-151
Response

delayed, 248-252

immediate, 248-252
Revenues, 123

maximum, 98
Rewards, 73, 74, 97

future values of, 164
Riccati equation, 286
Right side, variable, 329
Road building, 83-85, 209-211
Roots, 109, 168, 176-177, 340

complex, 340

positive, 269

real and distinct, 347
Routh-Hurwitz condition, 346~347

5

Saddlepoint, 174, 177, 178, 183, 347
Sale(s), 248

cumulative, 129
Sale date, 190-193
Salvage term, 138, 145, 155, 158
Salvage value, 71-74
Schedules

checking, 54-56

shipments, 93-94
Second order conditions, 41-46, 114
Second variation, 42
Seif-financing, 200
Semidefinite, negative, 301, 306
Sensitivity analysis, 79-85
Separation of variables, 326
Shadow prices, 81
Shipments schedule, 93-94
Singular solutions, 209-215
Slackness conditions, complementary, 82
Smooth density function, 54
Smooth function, 86

Subject Index

Spending, rate of, 73
Square root function, 168
Stability, global, 184
Stable focus, 347
Stable limit cycle, 348
Stable node, 346
State, 170
State equation, 122, 125, 126
current value of, 252
integral equation, 253
maximijzation problems subject to, 273
optimal change in, 246
switches in, 246-247
State function, 125
State variable, 97, 121-125, 142, 143,
145-147
inequality constraints, 230-239
in infinite horizon autonomous problem, 174
jumps in, 240-246
value of, 157, 158, 248-249
fixed, 155
free, 155
marginal, 138, 139
optimai, 145
Static problem, 4
Stationary state, see Steady state
Status of a systern, inspection of, 54-56
Steady state, 95, 104, 108-110, 147, 167-168,
306, 346
analysis of, 11{, 168
characterized, 174- 184, 330-33]
Stochastic optimal control, 264271
Stock
of capital, 106
jump in, 240
Strict local maximum, 303
String length, 50
constraint on, 47
Study-work program, 194
Subgame perfect, 275
Sufficient conditions
in caleulus of variations, 42
in optimal control, 133-135, 221-226, 234,
261
Switches, in state equations, 246-347
System, checking of, 54-56

T

Taste index, 244, 245, 246

Tax schedule, 247

Taylor series expansion, 109, 137, 152, 156,
168, 265, 295-297, 301, 305, 316

Taylor’s theorem, 78, 303

Technical advances, 154

Terminal conditions, See Transversality
conditions

Subject Index

Terminal position, 114
Terminal time, 113
free, 247
Terminal value, 52, 114, 227, 228
free, 247
Time, 121-122, 141, 146, 241
approximation, discrete, 12
artificial, 241
continuoys, 5§
continuous optimization problem, 13
continuous time dynamic programming, 263
infinite time horizon, 269
natural, 241, 242
piecewise continuous functions of, 202
state variable at, 138
terminal, 113, 247
Time derivative of decay, 258
Time intervals, 93
Time lag, 252
Transition equation, see State equation
Transversality conditions, 13, 54, 110, 128,
155, 226, 277
current value multipliers, 165-166
equality constraint, 66, 73, 160, 161
free end value, 54, 55, 73, 159, 160, 161
free horizon, 57-64, 73, 160, 161
inequality constraint, 77-88, 158
infinite horizon, 174, 184
salvape value, 72
Tumnpike theorems, 110

U
Uncertainty
human lifetime, 61-63
machine failure time, 54-56, 190-193
return on assets, 167
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rival entry time, 75
Unstable focus, 348
Usnstable limnit cycle, 348
Unstable node, 347
Utility, 6, 62
Utility-of bequest fanction, 62
Utility-of consumption function, 62

Y
Value(s), 52
discounted, 164
Value formulation, objective, 227-228
Vaniable, 126, 142-146, 3129-331
function of
concave, 299
maximum of, 304
right side, 329
separation of, 326
Variable of integration, 255, 292
Variation, 78, 80, 97, 148, 156, 199, 200-201
See also Calculus of variations
first, 41
of parameters, 337-338, 341-342
second, 42
Vector control function, 145
Vector notation, 145
Vector state, 145

w
Wealth, 269-270
Weierstrass condition, 46
Weierstrass-Erdmann corner conditions, 87-88
Weierstrass theotem, 303
White noise, 264
Wiener process, 264-265



