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Preface

This book addresses the architecture, design, analysis, and implementation of scalable and
reliable continuous media streaming systems. This is an intermediate to advanced book aimed
at senior undergraduate students, postgraduate students, researchers, and developers of con-
tinuous media systems in the industry.

Continuous media refers to media data that have a time specification for correct presentation.
Common examples are video data and audio data, of which both require decoding and playing
back the data at specific time instants or rates. Streaming refers to the way data are delivered
from a server to a client for playback. In contrast to the download model, where a data object
such as a video file, are completely received before playback, in streaming the client software
begins playback before receiving the whole data object, and keeps receiving data from the
server during playback. Finally, the term system refers to the collection of components in a
complete continuous media streaming application, including the server, the network, and the
client.

Building continuous media streaming systems are not difficult. The real challenge is to
build systems that can scale up to support thousands or even millions of concurrent users.
Additionally, given the scale of these systems, individual component failures are inevitable.
Thus, it is essential that these systems are fault tolerant, i.e., with the capability to sustain non-
stop service when there are one or more component failures. Business issues aside, these are
the biggest hurdles to overcome before deploying large-scale commercial continuous-media
services such as video-on-demand can become feasible.

Continuous media systems are a relatively new technology area, with only a decade of
research. Thus it is no surprise that there is currently no book available that comprehensively
covers the area in general, and the two key challenges, namely scalability and reliability, in
particular. It is our intention to fill this gap with this book, drawing from cutting-edge research
conducted in the past decade by researchers around the world as well as our own research group.
In addition to theoretical issues, our research group had implemented several generations
of streaming systems, ranging from client-server unicast-based architecture, parallel-server
architectures, multicast-based architectures, to the latest peer-to-peer architectures. We have
also designed and developed systems for live video multicasting over the Internet, as well
as video streaming in 2.5G/3G and WLAN mobile networks. These experiences in building
practical systems, of which some have been deployed in commercial use, have brought us
insights into the many constraints and design tradeoffs that are otherwise not apparent in
theoretical studies. Many of these findings are incorporated into this book in the hope that the
presented materials not only will be useful to researchers, but also practitioners in the field.



xviii Preface

Structure of the Book

This book is composed of three parts. Part I of this book deals with the concepts, basic principles,
and issues in designing and implementing a media streaming system. The eight chapters cover
topics in media compression, media data storage and retrieval, I/O scheduling, fault tolerance,
as well as streaming protocols and algorithms. These chapters serve as introduction to, or
revision of, the fundamentals of media streaming systems for the readers and pave the way for
the rest of the book.

Part IT of the book focuses on the use of parallel-server architectures to tackle the two
key challenges in building large-scale media streaming systems, namely scalability and fault-
tolerance. The seven chapters cover various architectural and implementation alternatives and
their tradeoffs, as well as issues in system self-healing and expansion.

In addition to the server bottleneck, which can be addressed using the parallel-server archi-
tectures, the network itself can also become the bottleneck when the user population grows.
Part III of the book investigates the use of network multicast and multicast streaming algo-
rithms to address this challenge. The five chapters first introduce the principles of multicast
streaming, and then describe in detail different types of multicast streaming algorithms, their
tradeoffs, and issues in the implementation of a multicast streaming server.

Acknowledgements
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1

Introduction

Rapid advances in computing and the Internet have spawned many new services and applica-
tions. Among them, applications such as the World Wide Web (WWW) have achieved great
success and transformed many facets of the society. With the continuous improvements in
network bandwidth, computing power, and storage capacity, existing network services are
evolving from the delivery of texts and graphics towards sophisticated multimedia contents
combing high-quality audio and video.

Delivery of audio and video, however, poses far greater challenges than data applications
such as the WWW. Moreover, unlike web pages, multimedia contents often occupy signifi-
cantly more space for storage, and bandwidth for retrieval and delivery. Coupled with the
demand for serving thousands or even tens of thousands of concurrent users, the challenge
of designing scalable, reliable, and yet cost-effective multimedia systems has been an area
of intense research in the past decade.

In this introductory chapter we will first study the properties of multimedia data and
explain the key challenges in building high-performance yet cost-effective systems for
multimedia content delivery. The rest of the chapters in Part I will introduce the funda-
mental concepts in media compression, storage, retrieval, scheduling, fault tolerance, and
streaming.

1.1 Elements of a Multimedia System

In this book our focus is on systems for delivering multimedia data over a communication
network such as the Internet or broadband residential networks. This system approach is
desirable as it takes into account the interaction between various system components to achieve
the stringent performance required in multimedia data presentation.

Figure 1.1 shows a generic client-server model for end-to-end multimedia data delivery.
At the source we have encoded/compressed media data stored in storage devices such as
hard disks. Through media server software these media data are then retrieved according to
user requests from the disk to the main memory for transmission over the network. A media
application/transport protocol is used to deliver the media data to the client hosts, where the

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
© 2005 John Wiley & Sons, Ltd.



4 Scalable Continuous Media Streaming Systems
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Figure 1.1 Basic building blocks of a multimedia system

media data are first buffered in main memory and/or disk storage, and then eventually decoded
and presented to the end user.

A unique characteristic of this system model is that the system components involved work
in tandem in the data delivery process. Thus, a problem in any one of the system components
can degrade the performance of the whole chain. In the following text we will investigate these
system components and their interactions in more detail.

1.2 Media Data

The ‘multi’ in multimedia refers to multiple media of same or different types that are authored,
delivered, and presented together. There are clearly many different types of media, from the
simplest plain text, to formatted text, graphics, images, audio, video, or even tactile information.
We can broadly classify these diverse types of media into two main categories, especially in
the context of multimedia data delivery.

The first type — discrete media — refers to media data that have no explicit requirement for
presentation timings. For example, consider retrieving an image from a web server for display
in a web browser. Depending on the network bandwidth availability, the browser may take
a variable length of time to receive the image data before they can be decoded for display.
This may take, for example, from fractions of a second up to tens of seconds or even longer,
depending on the size of the image and the network bandwidth available. Obviously, it is
desirable to reduce this delay to as short a time as possible but as long as the image data are
all correctly received, rendered, and displayed, the request is considered to be successfully
completed. In other words, there is no restriction inherent in the media data that requires the
media data to be presented at a certain time or within a certain delay limit. This is also why
the network traffic resulting from delivering discrete media is also known as elastic traffic to
reflect the media’s ability to tolerate variations in delivery time.
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By contrast, the second type of media data — continuous media — does have explicit presenting
timing requirements embedded within the media data. The primary examples are audio and
video data. For example, video data are usually encoded into video frames to be displayed
sequentially at a certain frequency, such as 25 frames per second (fps) for the PAL video
standard or 29.9 fps for the NTSC video standard. Thus, to correctly display a video media
object, it is necessary not only to receive the video data correctly, but also to decode and
present them according to the specified timings. Failure to do so will substantially degrade the
perceived quality of the video data (e.g., resulting in jerky motions) even if the video data are
all correctly received [1]. Thus, network traffic for continuous media data are also known as
inelastic traffic because of the need to maintain the timing integrity.

Therefore, the challenge in multimedia data delivery in general and continuous media data
delivery, in particular, is to ensure the integrity in both data as well as presentation timing.
Moreover, multimedia content often comprises multiple media data streams composed accord-
ing to a synchronized presentation schedule. In such a synchronized multimedia data stream,
we then not only need to ensure the timing integrity in presenting a single media data stream,
but also the relative timing integrity between multiple synchronized media data streams as
well.

To solve the latter problem the system will need to schedule the data transmission of individ-
ual embedded media data objects, taking into account their relative presentation schedule and
the network bandwidth available in order to ensure the media data are available at the receiver
for synchronized playback. Alternatively, the multiple synchronized media data streams can
be multiplexed into a single data stream before delivery. The multiplexer can then take into
account the buffer size available at the decoder, as well as the timing relationships between
the embedded media data streams to interleave the media streams so that presentation timing
integrity is guaranteed (provided that the multiplexed media stream is received and buffered
according to the specification). This approach greatly simplifies the media server as the mul-
tiple media data streams can be treated as a single media data stream. The downside is less
flexibility, as the media stream composition is fixed and thus cannot be dynamically adjusted
(e.g., switching to a lower bit-rate stream when bandwidth is insufficient).

1.3 Media Delivery

Of the two types of media data discussed earlier, we will focus on the delivery of continuous
media in the rest of the book. We can broadly classify continuous media data delivery into two
categories — real-time delivery and soft-real-time delivery.

Real-time delivery refers to applications where the media data must be delivered from the
source and presented at the destination within a given delay budget. This is most common in
applications where there are interactions between users, such as in Internet phone or video
conferencing applications (Figure 1.2).

Take Internet phone [2] as an example, the one-way delay, i.e., the delay from capturing the
voice data from the speaking user to the time the voice data are played back to the listening
user should be no more than 150ms [3]. Longer delays will lead to talking collisions, i.e., both
users trying to speak at the same time as commonly experienced in long-distance telephone
conversations, and thus this degrades the service quality.

Clearly this real-time delivery requirement often conflicts with the requirements for data
integrity and timing integrity. In fact, for applications such as Internet phone, the requirement
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Figure 1.3  Soft-real-time continuous media data delivery in video-on-demand applications

for real-time delivery may even surpass that of data integrity and presentation timing integrity.
For example, it may be necessary to allow data loss (or even discard data) and/or playback
jitter in order to meet the given delay budget.

On the other hand, for soft-real-time delivery, there is no delay budget given. Instead, the
system must deliver the media data so that data integrity and presentation timing integrity are
preserved, while reducing the delay as far as possible. Examples of soft-real-time delivery
are video-on-demand (VoD) where a user can select and playback a video title from the video
collection available at a video server over the network as shown in Figure 1.3. These applications
are far more tolerable to longer start-up delays (e.g., in seconds) as long as smooth playback
is maintained after playback has started.
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1.4 Streaming versus Download

Delivering data over a network is not new and there are many different methods already
available. Among them, download is the most common method to deliver data from a server to
a client. The download model, depicted in Figure 1.4, is relatively straightforward: the client
first sends a request to the server indicating the data object to be downloaded; the server then
retrieves the data object (e.g., from the local file system) and start sending it over the network
to the client using some application/transport protocol. Take the WWW as an example, the
web browser first sends a HTTP GET request using TCP to a web server, which then retrieves
the required file object and sends it back over the same TCP connection using a HTTP reply
message. After completely receiving the data object, the client (e.g., web browser) then decodes
and displays the data object to the user.

The key characteristic of the download model is that the data object is first completely
received, and possibly cached either in memory buffer or in the local file system, before being
decoded and played back. Clearly, as the complete data object is available to the client, the
decoding processing and presentation can be done in the same way as local data objects. This
download model works well in many applications but, unfortunately, is not very suitable for
continuous media data delivery.

Let us reconsider the download process as shown in Figure 1.5. Ignoring processing time, the
delay from the instant the user initiates the request to the instant the requested data object can
be presented is determined by the size of the data object and the rate at which it is transmitted
across the network. For applications such as WWW, the data objects are often text-based
HTML web pages or small images/graphics, and thus the delay is relatively small.

Continuous media data objects, however, will likely be significantly larger and thus the delay
incurred in downloading, say, a video object will become unacceptably long. Take MPEG2
video as an example. A 2-hour MPEG?2 system stream (e.g., a movie) encoded at an average bit-
rate of 6Mbps will generate 5.4GB of data. Delivering this amount of data even over broadband
access networks, say, at 8Mbps, will take an unacceptably long time (e.g., 5.4GB x 8/8 =
1.5 hours) before playback can start.

The fundamental problem in the download model, as evident in Figure 1.6, is the re-
quirement to wait until the whole video object is downloaded before playback can begin.
While this requirement is necessary for many discrete media data types such as image or
graphic, continuous media such as video possess the unique characteristics that partial data
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Figure 1.6 Calculating the delay for downloading a 5.4GB video for playback

can also be decoded and played back. For example, video data are composed of video
frames, which can be played back once all the data of a frame have been received by the
client.

Taking advantage of this property of continuous media, we can then modify the download
model into a streaming model where data are being played back while data reception is in
progress, as depicted in Figure 1.7. Specifically, after sending a request to the server to begin the
streaming process, the client will wait for the first parcel of data to arrive and then begin
playback while receiving the second parcel of data, and so on. Thus, the data transfer and
the playback processes are pipelined, therefore significantly shortening the delay to begin
media playback.
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Compared to the download model, there are now two additional requirements for stream-
ing to work. First, the media object must be decomposable into smaller fragments that are
independently or progressively (i.e., making use of the current and already received frag-
ments) decodable and presentable. Most continuous media such as audio and video pos-
sess this property. Second, to ensure the timing integrity in presenting the media object,
we will need to ensure that each and every media fragment can be delivered to the client
before their scheduled playback time. This is also known as the continuity requirement and
is one of the key performance metrics used in designing and evaluating continuous media
systems.

With the rapid advances in networking technology one may wonder if in the future our
networks will be equipped with so much bandwidth that the transmission time will become
insignificant, even using the download model. This is indeed a valid question but in addition
to allowing playback to begin earlier, the streaming model also offers another significant
advantage — pipelining of multiple concurrent streams.

Specifically, media servers often need to serve many clients concurrently. When multiple
clients request service at around the same time, there are two options for the media server if
the download model is used — it can either serve the clients one after the other in a sequential
manner, or it can serve them simultaneously. In the former, all but the head-of-line client will
need to be queued and thus experience additional queueing delay when waiting for service. If
the download model is employed, then even in a very high bandwidth network the waiting time
will still be significant. In the latter case, serving multiple clients concurrently will reduce the
network bandwidth available to each client and thus increases the download time proportionally.

By contrast, the streaming model does not suffer from this problem as playback can begin
once an individually decodable fragment of media data is received (Figure 1.8). Moreover, as
the media data are often transmitted at the media playback data-rate, the start-up delay is in fact
independent of the number of clients requesting service simultaneously, as long as the media
server and network capacity are not exceeded. This unique multistream pipelining property
can significantly reduce start-up delay especially during high system utilizations.

Ch: T
VAN \

VAV

Figure 1.8 Multistream pipelining in the streaming model
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1.5 Challenges in Building Continuous Media Streaming Systems

The previous sections outlined the general architecture of continuous media systems and the
concept of media streaming. In this section we will discuss the main challenges in the design
and implementation of continuous media streaming systems.

1.5.1 Continuity

As briefly mentioned in Section 1.4, once we adopted the streaming model for media data
delivery, we will need to ensure that media data fragments are delivered to the client in time to
maintain playback continuity. A key decision then is to decide when to begin playback after
the streaming process is started. As depicted in Figure 1.9, once playback begins, the playback
time for all media data fragments will be fixed (ignoring interactive playback control). Thus,
if the client defers the playback start time, the whole playback schedule will be deferred as well,
thereby allowing more time for data delivery. We cannot, however, defer playback indefinitely
as that will increase the start-up delay experienced by the user — a crucial performance metric.
As we will see in the rest of the book, these two conflicting objectives will occur frequently in
the design of continuous media streaming systems.

1.5.2 Known and Unknown Variations

A continuous media streaming system comprises many system components. At the highest
level we have the media server and a number of media clients (Figure 1.10). For on-demand
streaming servers the media data are typically stored in local storage devices such as hard disks,
and then retrieved into memory for processing, and finally transmitted through the network
interfaces into the network to the clients. The media client will receive the data arriving through
a network interface, temporarily store them in memory buffers while waiting for decoding and

playback to the user.

Server

v

AV

—

Delay

" Once playback begins, the playback

schedule for all media data are set.

Figure 1.9 Relation between start-up delay and the playback schedule
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Figure 1.10 Known and unknown variations in a continuous media streaming system

If the many system components all operate in a clockwork manner with fixed and known
processing time, then there will be little problem in ensuring performance such as delay limit
and playback continuity. In reality, these system components seldom, if at all, operate in a
clockwork manner. Instead, the performance of the individual system components can and
does vary with time. Some of these variations are known while others are unknown and often
unpredictable.

Let us begin by considering the preparation of the media data. Data compression is almost
always needed to reduce the data rate of the raw media data (e.g., video in hundreds of Mbps)
to practical levels (e.g., compressed into a few Mbps). This compression process, which we
will cover in more detail in the next chapter, can introduce variations in terms of the amount of
data needed for decoding each fragments of the media. Take video, for example, while the raw
video frames are of the same resolution and size, the compressed video frames often consume
varying amount of bytes for storage and transmission (cf. Section 2.4). Note that for stored
video these variations are known and thus can be used in scheduling the media delivery process.

Once stored in the media server’s storage, these compressed media data will need to be
retrieved in the memory buffer for processing and transmission. The most common storage
devices in media servers are hard disks. Unlike memory-based storage, where 1/O throughput
and access time are relatively constant, disk through and access time can vary substantially
depending on the device characteristics, I/O access pattern, as well as the scheduler used in
managing the device. These issues will be addressed in Chapter 3.

After successful retrieval from storage, the media server will then process the data (e.g., by
adding control information in packet headers) and send them over the network. Depending on
the network infrastructure, the time it takes for the media data to traverse the network to arrive
at the media client can also vary. The variations are typically caused by temporary congestion
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Figure 1.11 Variations in the system can disrupt continuous media playback

in the network or changes in the path the data took to reach the client. For networks that
support quality-of-service (QoS) guarantees, the delay and delay variations can be known (and
controlled) a priori. Otherwise, for public networks such as the Internet, the delay and delay
variations are often unknown and unpredictable.

Finally, the media client, upon receiving the media data from the network, will buffer them
in local memory to wait for decoding and playback. The decoding process typically takes a
variable amount of time, and even the playback speed may sometimes vary. This is especially
significant in the PC environment where the decoder/player is implemented in software and
has to compete for processor time with other multi-tasking applications.

The above discussions illustrate the fact that variations in a media streaming system are the
norm rather than the exception. Any one of these variations can lead to media data arriving too
late for playback, i.e., losing playback continuity as depicted in Figure 1.11. In the subsequent
chapters we will illustrate some ways to compensate for these variations to ensure continuous
media playback.

1.5.3 Real-time Interactivity

In addition to stored media, some applications such as Internet phone and video conferencing
send live media streams encoded in real-time to participating users. Unlike stored media, which
a few seconds’ start-up delay is tolerable, these real-time applications cannot tolerate too long
a delay (e.g., 150 ms one way in voice call). This stringent delay requirement consequently
puts much tighter constraints on the design and implementation of the media streaming system.
It is worth noting that this real-time requirement often conflicts with other design goals, such
as continuity or efficiency, and thus careful trade-offs are needed to balance these conflicting
requirements.

1.5.4 Efficiency

Continuous media typically generate huge amount of data for storage and delivery. Thus, in
designing media streaming systems, efficiency in the various subsystems becomes crucial in
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determining the service’s cost-effectiveness. Many early continuous media streaming services,
video-on-demand in particular, have failed to reach wide acceptance partly because the cost
of provisioning the service is too high. Along with the recent advances in processor, storage,
and network technologies, the cost in storing and delivering vast amount of media data has
dropped substantially. Nevertheless, the cost in serving high-quality media contents such as the
emerging high-definition video to alarge number of users (e.g., in a city) are still very substantial
and thus the quest for ever more efficient media streaming system designs continues to be an
important research topic.

1.5.5 Scalability

Another challenge related to efficiency is scalability. Specifically, scalability refers to the limit
at which one can increase the service capacity of a system, and the rate of increase in the system
cost when the system capacity is scaled up. Consider a simple system with one media server
as shown in Figure 1.12a. When more and more clients join the system, the media server will
eventually become overloaded (Figure 1.12b), thus leading to unacceptable waiting time or
service quality. One possible solution is to add a new media server to the system, and replicate
all media contents to the new media server as shown in Figure 1.12c. This doubles the system
capacity at the expense of doubled system cost.

More generally, Figure 1.13 illustrates three types of cost/capacity relations when we scale
up the capacity of a system. In Case #1, the cost per unit capacity increases when one increases
the system capacity. For example, if we increase the capacity of a media server by replacing
it with a higher-capacity server, then it is quite common that the cost per unit capacity will
increase for servers of higher and higher capacity. This is due to the lack of economy of scale
in producing the very high capacity servers compared to the mass-produced commodity server
platforms.

In Case #2 the cost per unit capacity is constant. Our previous example of replicated media
servers falls within this type of scalability. Finally, in Case #3 the cost per unit capacity
decreases with increases in the system scale. This is obviously highly desirable as it implies
that a service operator can benefit from economy of scale in provisioning media streaming
services to a large user population. The multicast streaming architectures to be covered in Part
IIT of this book will cover many streaming architectures that achieve precisely this type of
scalability.

1.5.6 Reliability

In addition to scalability, service reliability is another important challenge in provisioning
large-scale media streaming services. Starting from the storage subsystem such as a disk
array, the failure of a disk will disrupt the operation of the media server unless fault-tolerant
mechanisms (e.g., RAID [2]) are employed. In addition to disk failures, the media server itself
is also susceptible to many potential failures, including memory failure (some of which can be
corrected using error-correcting memory chips), network interface failure, processor failure,
power failure, or simply due to hitting a bug in the media server software.
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Figure 1.12 Increasing the service capacity of a media streaming system

Clearly, many of the aforementioned failures will render a media server inoperable. To
enable the system to survive a server failure, we will need to introduce hardware/capacity
redundancy and fault-tolerant mechanisms into the system. The parallel server architectures in
Part II of this book provide one approach to addressing the reliability as well as the scalability
challenges.
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1.6 Engineering Trade-offs

In devising solutions to address the previous challenges, we often are faced with conflicting
design goals. Thus, for a given problem, there are often many possible solutions, each repre-
senting different engineering tradeoffs. In this section we attempt to illustrate this process of
engineering tradeoffs by considering five dimensions (Figure 1.14):

¢ Capacity — such as disk I/O throughput and network bandwidth utilization;

¢ Time — such as start-up delay and response time;

* Space — such as storage requirement and buffer requirement;

* Quality — such as media quality and service quality; and

¢ Complexity — such as computational complexity and implementation complexity.
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These five dimensions serve to illustrate the complexities and possibilities in engineering a
media streaming system and thus are not meant to be exhaustive nor the most important.

For illustrative purposes, we will consider the streaming of a media stream with time-varying
playback bit-rates as shown in Figure 1.15. We assume that the media stream is divided into
constant-duration segments of 7' seconds, i.e., the playback duration for each segment is the
same. The size of each segment, however, is variable. Let r; be the rate at which segment i (0,
1,...) is consumed in playback. Our goal is to deliver this media stream from a media server
to a media client over the network.

1.6.1 Trade-off in Capacity

For simplicity, we will assume that the media stream is the only traffic in the network, which
has a finite and fixed bandwidth available. We first consider a simple solution by trading off
network capacity. Specifically, knowing the bit-rates of all the media segments, we can simply
allocate network bandwidth according to the maximum bit-rate of all segments, i.e., we allocate
a network bandwidth of C = max{r; | Vi }, as illustrated in Figure 1.16.

The obvious shortcoming of this simple solution is that except for the segment(s) with peak
bit-rate, some of the allocated network bandwidth will be unused and thus wasted. With a fixed
amount of total network bandwidth available, this solution results in guaranteed delivery but
reduced usable streaming capacity.

1.6.2 Trade-off in Time

Observing the inefficiency of the previous solution we proceed to consider another dimension
of trade-off — time. Specifically, the media stream Figure 1.15 has its peak bit-rate in the first
segment. Thus, another strategy to stream the media is to send the initial segment at a bit-rate
lower than the playback bit-rate. Now this implies that the first media segment will take more
than T seconds to arrive at the receiver and so the playback must be delayed accordingly,
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Figure 1.17 Reducing the network bandwidth allocation by sending the first segment with peak bit-rate
at a lower bit-rate (a solution with trade-off in start-up delay)

as shown in Figure 1.17. Depending on the rate variability of the media stream, this strategy
can result in substantial savings in the network bandwidth allocated, at the expense of longer
start-up delay.

1.6.3 Trade-off in Space

In the two solutions discussed above we can observe that from time to time some network
bandwidth can still be unused (e.g., when a media segment has a very low bit-rate). To take
advantage of this we can perform work-ahead at the media server to send media data ahead of
their playback schedule to exploit the otherwise unused network bandwidth. This is illustrated
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Figure 1.18 Reducing the peak bit-rate by sending media data ahead of their playback schedule
(a solution with trade-off in client buffer space)

in Figure 1.18 with an admittedly contrived bit-rate pattern where the fifth media segment is
of lower than average bit-rate and the sixth media segment is of higher than average bit-rate.
Applying the work-ahead principle we simply start sending the sixth media segment im-
mediately after sending the fifth media segment. As there is more network bandwidth than is
needed to send the fifth segment, this work-ahead transmission can be done without affecting
the arrival time of the fifth segment. On the other hand, as the sixth media segment is now
transmitted earlier, there is more time for the transmission and so the average transmission rate
can be reduced as well. This can lower the peak bit-rate if the sixth media segment happens to
be the one with the highest bit-rate. Note that for sake of illustration, the example given here is
necessarily simplistic. In general, the media bit-rate profile can vary substantially in both short
and long time scales. However, by combining the principles of trading off time and space, the
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Figure 1.19 Reducing the peak bit-rate by skipping the transmission of some media data (a solution
with trade-off in media quality)

media bit-rate variability can be reduced very effectively. We will revisit this topic in Chapter 7
and investigate the streaming of variable bit-rate media in mixed-traffic networks.

1.6.4 Trade-off in Quality

So far we have assumed that the media server must send all media data to the media client. If we
remove this constraint, i.e., allowing some media data to be skipped, then we can also lower the
network bandwidth required in delivering the media stream. This is illustrated in Figure 1.19
where some of the media data in the segment with peak bit-rate are not transmitted.

With incomplete media data, however, the media client obviously will not be able to recon-
struct the original compressed media stream for playback. The amount of quality degradation
incurred depends heavily on the media encoding algorithm employed, the data skipping algo-
rithm used, the amount of data skipped, as well as the type of the skipped data (e.g., headers,
video data, audio data, etc.).

In addition to simply skipping data for transmission, another approach is to dynamically
reshape the media segments to a lower bit-rate before transmission. For example, knowing that
the sixth media segment in Figure 1.19 requires a bit-rate higher than the network bandwidth
available, the media server could re-encode the media segment to a lower bit-rate that is
within bandwidth limit. This re-encoding can be done, for example, by decoding the media
segment and then re-encoding it at a lower bit-rate (by discarding more information); or it can
be done using a media transcoder than can reduce the media bit-rate without going through
the complete decoding/encoding processes, resulting in less quality degradation and possibly
lower processing complexity as well. We further explore media transcoding in Section 2.5 and
adaptive streaming in Chapter 8.

1.6.5 Trade-off in Complexity

The final trade-off to be discussed is complexity. In multimedia streaming media data are
almost always compressed before transmitted over the network. Thus the choice of compression
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algorithm used will affect the resultant media bit-rate. Take video compression as an example.
There are many video compression algorithms available, such as MPEG2, MPEG4, and H.264.
In terms of compression efficiency, i.e., achievable compression ratio at a given video quality
level, itis generally agreed that MPEG2 < MPEG4 < H.264. However, the more efficient video
codec such as H.264 also demands substantially more computations in both the encoding and
decoding processes. Thus, choosing a more efficient compression algorithm such as H.264
will lower the network bandwidth required but will increase the computation complexity at
both the encoder and decoder.

Note that for stored media the encoder complexity is less of an issue as the encoding process
can be performed offline. However, if the media stream is encoded from a live source in real-
time, then the encoding complexity will become a significant constraint. Decoding, on the
other hand, is usually less complex than the encoder and thus presents less of an issue in the
choice of codec in a media streaming system.

1.7 Performance Guarantee

In the previous discussions we illustrated five common dimensions for engineering trade-off.
Regardless of the approach taken, the goal is to deliver the media data to the client in time for
playback, i.e., to provide performance guarantee. Common to all these different approaches is
the need to consider the worst-case scenario — in this case the peak bit-rate among all media
segments. This is typical in designs that provide deterministic performance guarantee, i.e., the
performance is met under all valid scenarios.

It is easy to see that deterministic performance guarantee often result in poor resource
utilization, especially if the worst-case scenario rarely occurs. Alternatively, if we relax the
requirement to meet performance under all valid scenarios, and instead guarantee that perfor-
mance is met most of the time, then we can often reduce the resource requirements substantially.
This approach is often known as probabilistic performance guarantee or statistical performance
guarantee. The trade-off then is between resource utilization and the probability of failing the
performance guarantee.

Finally, we should also mention a third type of performance guarantee (or lack thereof)
— best effort. By best effort it implies that the system will attempt to meet the performance
requirements using the available resources but there is no guarantee at all. Note that best effort
does not necessary mean poor service. Rather, it simply implies that the probability that any
given performance requirements is met is not known or controllable.

1.8 Admission Control

An issue closely related to providing performance guarantee is the need for admission control.
Specifically, when we consider the different engineering tradeoffs in Section 1.6 we have
always assumed that a given network bandwidth needs to be allocated before media streaming
can start. In other words, if the network utilization is so high that the required bandwidth is
not available, the media server will then reject the request for a new media streaming session
(Figure 1.20). This process is known as admission control and it is one of the key elements in
providing performance guarantee.
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Now let us examine the media streaming system in more detail as shown in Figure 1.21. The
first observation is that only performing admission control in the network may not be sufficient
to provide performance guarantee. In particular, the media server as well as the media client
also has finite resources available for media streaming. Moreover, at the media server these
resources are often shared among multiple concurrent media streams and possibly with other
services as well. At the client, on the other hand, there are likely multiple applications running
(in a multi-tasked operating system) that compete for the resources such as processor time,
memory, or even network bandwidth.

Therefore, if we want to provide absolute end-to-end performance guarantee it will be
necessary to investigate all the intermediate system components from the data storage all the
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way to the client’s display, and employ resource allocation together with admission control in
these system components to guarantee performance.

To support resource allocation and admission control, we first need to establish performance
models of the underlying system components that can relate the workload to the desired per-
formance metric (e.g., delay, buffer requirement, etc.). Using the performance models the
admission controller can then compute the performance metric using the new workload (as-
suming a new media session is admitted, for example) to see if the required performance is still
met. If so, then the resources are allocated and the new media stream is admitted. Otherwise
the new media stream is rejected for service, or put into a queue to wait for sufficient resources
to become available.

In practice, however, modeling the system components is often far from simple, especially if
the system component has dynamic interactions with other system components. Thus, another
approach to admission control called observational admission control has been proposed in
the literature [3]. In observational admission control the system performance model is not
known (or not accurately known). The admission controller simply measures the resource
utilization as well as various performance metrics of the system, and uses these measurement
results to estimate whether admitting a new media stream will result in overload. Clearly, this
observational approach will not be able to provide a deterministic guarantee. Nevertheless, for
complex system components that cannot be modeled accurately, this observational approach
can still improve an otherwise entirely best effort service.

1.9 Summary

In this chapter we have reviewed the basic concepts of continuous media streaming, from
the types of media data, media delivery, to the essential system components. Moreover, we
presented the many new challenges in the design and implementation of continuous media
streaming systems, as well as the common dimensions for engineering trade-offs. Finally, we
discussed three types of performance guarantees and their relation to resource allocation and
admission control. In the rest of the chapters in Part I we will present more detailed discussions
on several key topics in continuous media streaming, namely, media data coding, compression,
and adaptation (Chapter 2), storage and retrieval (Chapters 3, 4), fault tolerance (Chapter 5),
and media data streaming (Chapters 6, 7, 8).
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Media Compression

In multimedia streaming systems media are almost always compressed to reduce their data
rate. Thus, the choice and properties of the media codec will have a significant impact
on the media streaming process. In this chapter we first introduce the basic concepts in
media coding and compression, and then discuss the issues related to media streaming. In
particular, we investigate the issue of matching the media bit-rate to the network bandwidth
available, and study in some detail video transcoding techniques that can be used to reshape
the media bit-rate to fit within the varying available network bandwidth. Readers interested
in a more general introduction to the area of media coding and compression are referred to
the many excellent texts available [1-5].

2.1 Introduction

Compression of media data is a highly developed research area with many successful applica-
tions. The prime examples are the development of the various MPEG compression standards
for audio and video compression — MPEGI [6-10], MPEG2 [11-19], and MPEG4 [20-35].
These compression standards have since formed an essential component in the development
of Video CD, Digital Versatile Disc (DVD), HDTV broadcasting, and so on. In the following,
we briefly review the basic concepts in audio and video compression.

2.1.1 Digital Audio

Audio data are typically encoded in PCM at a certain data width and sampling frequency.
For example, Figure 2.1 illustrates the audio data sequence for CD audio, which employs a
sampling frequency of 44.1 kHz, with each sample represented by a 16-bit word. Thus, a
two-channel audio recording will generate data at a rate of 1.4 Mbps, not an insignificant
number even in today’s broadband access networks. Thus, researchers have since developed
many audio compression algorithms to reduce the audio bit-rate, with the MP3 [36, 37] being
the best known and most widely adopted.

In addition to the CD audio format, the industry has recently introduced (two actually)
new formats for next-generation audio distribution. The first one, called DVD audio [38], is
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Data rate R = 44.1 x 16 = 705.6 kbps (mono)
Data rate R = 2 x 705.6 = 1411.2 kbps (stereo)

Figure 2.1 A sequence of data samples in CD-quality digital audio

a natural extension of the PCM format but with a word length of up to 24 bits and sampling
frequency of up to 192 kHz. The medium is also capable of encoding surround sound with
up to 6 discrete channels of audio. The resultant data generation rate therefore can reach up
to 27 Mbps. Due to the extremely high data rate, the DVD audio standard supports the use of
a lossless compression algorithm called Meridian Lossless Packing (MLP) to reduce the data
rate by approximately a factor of 2.

Apart from the DVD audio standard, another industry group has introduced a second stan-
dard targeted to replace the CD format — Super Audio CD (SACD) [38]. Unlike CD and DVD
audio, SACD employs 1-bit delta sigma modulation at a sampling rate of 2.8 Mhz. Extensive
noise shaping is then employed to achieve very high signal-to-noise ratio and wide frequency
response performance. Again the standard supports surround sound of up to 6 channels, result-
ing in a raw data rate of up to 16.9 Mbps. The standard also includes a lossless compression
algorithm called Direct Stream Transfer (DST) to reduce the data rate by approximately a
factor of 2.

It is worth noting that both of the emergent audio formats employ only lossless compression
that does not discard any audio information in the compression process. This is clearly done
to preserve the highest audio quality, which is one of the major advantages of the new formats.
Nevertheless, the resultant data rate even at compressed format is still very substantial, and
thus whether lossy compression can be employed to reduce the bit-rate further and yet achieve
audio quality superior to the standard CD will be an interesting area of research.

2.1.2 Digital Video

In addition to audio, video is the other most commonly used continuous media. A digital video
sequence is divided into many video frames, each frame capturing one snapshot of the video
scene. The video frames are typically captured at periodic time intervals, such as 25 frames
per second (fps) in PAL-standard video and 29.9 fps in NTSC-standard video. In continuous
media system, however, there is more flexibility in the frame rate used, predominately due to the
often limited network/server bandwidth for delivering the video data. In these applications it is
common to use frame rates lower than the previous broadcast standards if network bandwidth
is limited. Clearly, the reduction in frame rate will generate fewer data but at the expense of
reduced visual quality (e.g., fast motion becomes jerky or jumpy).
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Figure 2.2 Compositions of digital video

Each video frame is further sub-divided into a two-dimensional grid of pixels (Figure 2.2).
The numbers of horizontal and vertical pixels are defined by the resolution of the video. Each
pixel further sub-divides into a number of color channels. The common color models employed
in digital video are RGB, YUV, and YCrBr. In compressed video such as MPEG, the YCrBr
color model is employed to exploit different properties of the human visual system (e.g., the
human eye is more sensitive to intensity changes, i.e., the Y component, than color changes,
i.e., the Cr and Br components).

The following are some common video standards and their basic properties:

e Common Interchange Format (CIF), (ITU-TS H.261):
¢ 352 x 288 for luminance (Y)
® 176 x 144 for chrominances (U, V)
¢ Raw data rate = 36 Mbps.
¢ Quarter-Common Interchange Format (QCIF):
® 176 x 144 for luminance (Y)
® 176 x 144 for chrominances (U, V)
* Raw data rate = 18 Mbps.
¢ Digitizing NTSC Video Signal:
e Sampling rate: Y(13.5 Mhz), U (6.75 Mhz), V (6.75 Mhz)
¢ Digitizing NTSC video signal
e Raw data rate = (13.5 + 6.75 4+ 6,75) x 8 = 216 Mbps
* Raw pixel resolution = 864 x 525 pixels (removing retrace, etc.)
¢ Active video area = 720 x 486 pixels
Sub-sampling (4:2:2) (reduce bit-rate by 33%)
Y (720 x 486), U (360 x 486), V (360 x 486)
® 8-bits per sample per signal channel
¢ Net raw data rate after sub-sampling = 168 Mbps.
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¢ High-Definition Video:
¢ Resolutions up to 1920 x 1080 pixels
* 30 fps
® 24 bits per pixel
* Raw data rate = 1.5 Gbps.
¢ Emerging Ultra-High-Definition Video:
¢ 4 times the resolution (and data rate) of HDTV.

2.1.3 Media Compression

From the previous discussions we can clearly observe that the raw data rates generated by high-
resolution audio and video are extremely high, even compared to today’s broadband network
technologies. Therefore, it is essential to apply compression to the media data to reduce the
storage and bandwidth requirements to economical levels. Many extremely successful media
compression standards have been developed over the years and some of them are summarized
below:

MPEG-1 [6-10]:

¢ VCR-quality video up to 8 Mbps

¢ Used in video-CD, CD-I and video-on-demand systems.

MPEG-2 [11-19]:

* Broadcast quality video from 3 to >10 Mbps

¢ Used in DVD, HDTYV, and video-on-demand systems.

* MPEG-3:

® Originally slated for HDTV but later dropped due to the incorporation of HDTV into
MPEG-2.

MPEG-4 [20-35]:

¢ Originally targeted at low-bit-rate video for video telephony systems.

* Now expanded to a broad range of bit-rates up to high-definition video.

® The advanced video coding standard in Part 10 [29] of the MPEG-4 standard is also known
as H.264. This advanced codec can achieve even greater compression ratio using more
sophisticated compression algorithms.

For audio and video compression a vast body of work has been conducted in the past several
decades and there are also many excellent texts and chapters available in the literature [1-5].
Thus, instead of repeating materials available elsewhere, we will focus on the impact of media
compression on media streaming.

2.2 Media Multiplexing

Figure 2.3 depicts the typical structure of an MPEG encoder. The encoder in fact comprises
two independent encoders, one for audio stream and one for video stream. These two media
streams are first encoded independently to produce the corresponding compressed audio and
compressed video streams, and then multiplexed together by the system encoder to a system
stream. The multiplexer serves the important function of adding presentation time stamps to the
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Figure 2.3 The encoding process in a typical MPEG media encoder

system stream and multiplexes the audio and video data streams according to their timing cor-
relations. This system stream can then be delivered over the network to the clients for playback,
where the reverse decoding process will occur, i.e., it first demultiplexes the system stream into
separate audio and video streams, and then decompresses them for synchronized playback.

In media streaming, the media multiplexer can reduce the complexity of the media server.
In fact, the media server can simply treat the multiplexed system stream as a binary bit stream
encoded at a combined system stream bit-rate, irrespective of the detail compression algorithms
and data format employed. This is a significant advantage as it decouples the media server
implementation from the media compression standard employed. In other words, we can reuse
without modification the same media server to stream media data compressed using new
compression algorithms when they become available. By the same token, we can also stream
multiple types of media streams encoded with different compression standards using the same
media server, thereby reducing cost and operational complexity.

Alternatively, a media server can also send the compressed audio and compressed video
data streams separately over the network (cf. Chapter 6), bypassing the MPEG multiplexer
altogether. In this case, the media server will then need to send the data streams in such a way
that audio and video data will arrive in time for synchronized playback. This usually requires
the media server not only to perform I/O, but also to inspect and interpret the contents of the
media streams to extract timing information to schedule data transmissions, and to construct
packet headers with presentation timing information.

In this model the media server implementation will be coupled to the media compression
standards employed, and it will also consume more processor cycles in processing the media
data. Nevertheless, this approach does give the media server more control over the data delivery
process. For example, the service provider could produce multiple versions of the media streams
at different bit-rates to cater for varying network bandwidth availability. In this case the media
server can begin streaming the highest quality media streams to a client, and then dynamically
switch to a lower quality (and thus lower bit-rate) media stream if the available network
bandwidth drops below a threshold to ensure continuous media playback. Network bandwidth
variations are common in the current Internet and thus the capability to dynamically adapt the
video content to avoid playback interruptions is an important and useful feature to the end
users (cf. Section 2.5).
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2.3 Temporal Dependencies in Compressed Video

Video encoders typically exploit three types of redundancies to reduce the compressed video
bit-rate, namely, spatial redundancy, temporal redundancy, and entropy. Spatial redundancy
refers to the correlation between pixels within the same video frame. This is also known
as intra-frame coding as only pixels within the same video frame are used in the encoding
process. The resultant encoded video frame, commonly called the I frame, can be decoded
independently.

Temporal dependency refers to correlations between adjacent frames. As the video captures
a snapshot of a video scene periodically at, say, 25 to 30 fps, adjacent frames will likely contain
very similar visual objects, often with some displacements due to motion of the objects or the
camera. Thus, the encoder can exploit this correlation by predicting a video frame from the
neighboring frames. In MPEG, for example, this is done through the use of predictive frames
(P frames) and bi-directional predictive frames (B frames) as shown in Figure 2.4.

Specifically, beginning with an intra-coded I frame, the encoder will first predict the P frame
using a process called motion estimation. In motion estimation the encoder will search for
similar blocks of pixels in the I frame and the to-be-encoded P frame. After the search is
completed, only the displacement of the block (due to motion) and the prediction errors are
encoded to form the data for the P frame. Thus, P frames can be encoded using substantially
fewer bits than an I frame. This encoded P frame will then be used to predict the next P frame
and so on until another I frame is introduced.

In addition to P frames, a number of B frames are also introduced between a pair of anchor
frames (I or P frame). These B frames, as shown in Figure 2.4, are predicted from both anchor
frames to further reduce the resultant bit-rate. Therefore, B frames usually consume the fewest
bits compared to P frames and I frames in the same video stream. Both P and B frames are
called inter-coded frames. Note that, unlike I frames, P and B frames cannot be decoded
independently. Instead, the required anchor frames must first be decoded and then used in
decoding the inter-coded frames. This has two implications to media streaming.

First, as shown in Figure 2.4, the temporal dependencies dictate that the B frames cannot
be decoded for playback unless all two anchor frames are received and decoded. Thus, if
the media server streams out the video data according to their temporal order, the client will
need to buffer up B frames to wait for the second anchor frame to arrive before decoding for
the B frames can proceed. In practice, the video encoder often re-orders the frame sequence
according to the decoding order as shown in Figure 2.5 to reduce the client buffer requirement.
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Figure 2.4 Temporal dependencies in compressed video
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Figure 2.6 Intra-coded I frames are inserted into the compressed video stream to limit error propagation
as well as to support random access

Second, when streaming video data over an unreliable network, some packets may be lost in
transit. If the lost packets cannot be recovered, then the affected video frame will suffer from
quality degradation. Worse still, if the packet losses affect anchor frames (I and P frames), then
the predicted frames will be affected as well. For data loss in a P frame, the predicted B frames
and the subsequent P frames will all be affected. Data loss in an I frame is worse as practically
all subsequent predicted frames up to the next I frame are affected.

Thus, to limit this error propagation problem, a video encoder will periodically introduce I
frames to break the temporal dependencies. As an example, the frame sequence in Figure 2.6
reintroduces an I frame, for every 11 predicted frames. Thus, in the worst case of losing some
data in the I frame, only up to 12 frames (including the I frame) are affected. With a video
frame rate of 25 fps, this translates into slightly less than half a second of quality degradation.

An I frame together with the predicted frames is called a group of pictures (GOP). Depending
on the encoder, the GOP structure, such as the number of B frames between anchor frames and
the number of P frames, is usually configurable by the user during encoding. Moreover, the
GOP structure is not necessarily fixed across the whole video stream. More advanced encoders
will attempt to align the GOP boundary with scene changes in the video content (e.g., when
switching camera) to improve visual quality and/or to further reduce the encoded video bit-rate.

2.4 Bit-rate Variations

Another side effect of media compression is bit-rate variations. As illustrated in the previous
section, different types of video frames (I, P, B) generally consume different amount of bits
after encoding. Thus, if we compute the average video bit-rate on a frame-by-frame basis,
then the video bit-rate will vary quite substantially across different frames. Figure 2.7 plots
the frame size versus frame number for a video encoded in MPEGI.

Not surprisingly, the I frames are generally larger than the P and B frames, evident in
Figure 2.7. For a media server this bit-rate variation creates a problem. Specifically, if the
media server is to transmit the video data in the exact bit-rate on a frame-by-frame basis,
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Figure 2.7 Small time scale bit-rate variations in a constant bit-rate encoded video

the outgoing data traffic will vary substantially. This will certainly make network resource
planning and/or allocation more complex. The varying traffic may even lead to occasional
packet loss due to instantaneous congestion in the network routers or at the client. The extent
of bit-rate variations is determined by the rate control algorithm in the video encoder, which
can be classified into two types — constant bit-rate encoding and constant quality encoding.

In constant bit-rate (CBR) encoding, the encoder will attempt to compress the video stream
to a constant average bit-rate for the whole duration of the video content. However, as discussed
earlier, different frame types inherently consume different amount of bits. Thus, in practice,
the average bit-rate is not computed in a frame-by-frame basis. Instead, the average bit-rate is
computed over a fixed number of frames, such as a GOP, and then the encoder will try to keep
the average bit-rate the same at the GOP level.

Alternatively, an encoder can also operate in a constant quality mode. Unlike the CBR
encoding mode where constant bit-rate is the goal, a constant quality encoder will attempt to
adjust the bit-rate to maintain a consistent visual quality over the whole video content. Recall
that a video encoder achieves some of its compression from removing temporal redundancies,
which is closely correlated to the amount of motions in the video content. Thus, for fast motion
scenes there will be less temporal redundancies and thus more errors in the predicted frame,
which then consumes more bits to encode. In CBR encoder, the available bit budget is fixed
due to the need to keep the rate constant, and so more information will be discarded, leading
to lower visual quality for fast-motion scenes.

By contrast, constant quality encoder will simply use more bits to encode the information
to maintain the same quality level, thus resulting in higher bit-rate for fast-motion scenes.
Consequently, constant quality encoders will produce compressed video stream of varying
bit-rates. Note that the rate variations can be of far longer range (in seconds or even tens of
minutes) than the duration of a GOP (typically less than 1 second). Streaming a variable bit-rate
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media stream will present additional complexities in terms of scheduling, I/O, and resource
allocation. We will return to this issue in Chapter 6 when we introduce bit-rate smoothing.

2.5 Media Adaptation

Once a media stream is compressed, it is typically stored in a media server awaiting user
requests for streaming. The media server typically will not further process the media data prior
to streaming. In some cases, however, the ability to reshape the media stream can be very
desirable.

Take media streaming in the current Internet as an example. As the Internet is a best-effort
network, it cannot provide any guarantee on bandwidth availability. Thus if the available
network bandwidth drops below the encoded media bit-rate, then the media streaming session
will often be disrupted — not uncommon in today’s Internet.

In another scenario, a public media server may need to serve the same content to clients
with different bandwidth availability, e.g., some may be connected via ADSL (1.5 Mbps) while
others may have high-speed connections. The service provider commonly will either encode
the media according to the lowest bit-rate of their target users (thus sacrificing quality for
users with better connections) or encode multiple versions of the same content at different
bit-rates for the users to choose. This latter approach is costly as the encoding process is often
labor-intensive and takes considerable time.

The previous two scenarios in fact are due to the same fundamental problem — matching the
media bit-rate to the bandwidth available. One emerging solution is to use layered video coding
where a video is encoded into one base layer and a number of enhancement layers [39-42]. The
base layer provides the lowest bit-rate video (with the lowest visual quality) while adding each
enhancement layer will progressively improve the visual quality. With layered video coding,
the server can then adjust the number of layers to transmit according to the bandwidth available
or according to the user’s connection speed.

Another solution is video transcoding. A video transcoder can convert a compressed video
from a high bit-rate stream to a low bit-rate stream by selectively dropping information in
the process. Unlike layered video coding, the output bit-rate is continuously adjustable, and it
does not require any modification to the decoder for playback. Common transcoding techniques
are requantization [43—44], spatial downscaling [45—48], and temporal downscaling [49]. Each
technique has different ranges of achievable bit-rate reductions (see Section 2.5.2) and hence the
choice of transcoding techniques will depend on the amount of bit-rate reduction required [50].

In the following, we investigate the achievable rate reductions using requantization and
spatial downscaling based on the MPEG1 compression standard. Experiments reveal that
neither requantization nor spatial downscaling alone can achieve a sufficiently wide range
of bit-rate reductions. Instead, by combining them and selecting the appropriate transcoding
techniques we can achieve a wide range of output transcoded bit-rate from 100% down to 20%
of the original media bit-rate.

2.5.1 Transcoding Techniques

In this session, we review requantization and spatial downscaling, two existing algorithms for
performing video transcoding.
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2.5.1.1 Requantization

The first way to transcode video to a lower bit-rate is by increasing the quantization step
size. One example is the Cascaded Pixel-Domain Transcoder (CPDT) [51], in which encoded
video is fully decoded back into its original pixel-domain representation and then re-encoded
using larger quantizers to reduce bit-rate. The computational complexity is high as a complete
decode—encode cycle, including the time-consuming motion estimation process, is needed.

Another approach proposed by Assuncdo and Mohammed [43] reuses the original motion
vectors in re-encoding, and thus eliminates the need for motion estimation. Additionally, by
computing motion compensation in the DCT domain using the MC-DCT function proposed
by Chang and Messerschmitt [52], the IDCT and DCT operations can also be eliminated.
Their results showed that it can achieve results comparable to CPDT with significantly lower
computational complexity.

2.5.1.2 Spatial Downscaling

In spatial downscaling, we reduce the video’s spatial resolution, e.g., from X by Y pixels to
X/2 by Y /2 pixels. Compared to requantization, spatial downscaling is far more complicated
because of two reasons. First, given four DCT macroblocks, we have to synthesize a downscaled
DCT macroblock. Second, as four macroblocks are combined into one macroblock, we cannot
simply reuse the original motion vector for the new combined macroblock.

Downscaling can be performed either in the pixel domain or in the DCT domain. In the pixel
domain approach, the four DCT blocks are decoded back to their original pixel representation,
downscaled by pixel averaging, and then re-encoded. In the DCT domain approach, four DCT
matrices can be downscaled to one DCT matrix without IDCT using the algorithm proposed
by Natarajan and Vasudev [53].

For the second problem, instead of performing motion estimation for the downscaled frames,
we can also reduce the computations by confining the search window to a few candidate motion
vectors [46,48] or compute the new motion vector directly from the four original motion vectors
[45, 47].

2.5.2 Transcoder Design

As the goal of the transcoder is to adjust the transcoded video bit-rate to match the available
network bandwidth, we first consider the feasible operating ranges for requantization and
spatial downscaling, shown in Figure 2.8 for two different MPEG-1 CIF (352 x 288) video
streams Education and Onthestrip.

There are two observations. First, spatial downscaling can achieve a wider range of
transcoded bit-rate compared to requantization, especially at the lower bit-rates. Second, there
are regions where both techniques are feasible, and requantization achieves higher PSNR,
especially at the higher bit-rates.

These observations suggest that to maximize visual quality, we should use requantization at
higher bit-rates and adopt spatial downscaling at lower bit-rates when requantization cannot
be used. These two observations are incorporated into the integrated transcoder presented in
this chapter.
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Figure 2.8 PSNR versus transcoded bit-rates using requantization and spatial downscaling

Specifically, the integrated transcoder comprises two parts. First, the original compressed
video is transcoded once offline using the largest quantizer value (e.g., 31 in MPEG-1) to find
the lowest bit-rate achievable by requantization. This is shown as the requantization threshold
bit-rate (RTB) in Figure 2.8.

Second, during online transcoding, this RTB parameter is used to determine the transcoding
technique to employ. In particular, if the desired output bit-rate is lower than RTB, spatial
downscaling is used, otherwise requantization is used to achieve better visual quality (i.e.,
PSNR).

Using this two-part design, we can eliminate the need to compute the PSNR versus bit-rate
curves, which is very computationally expensive, to determine the transcoding method to use
given a target bit-rate. Instead, we only need to perform transcoding once to obtain the RTB
for such purpose.
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Figure 2.9 Logical design of the integrated transcoder

2.5.3 Implementation Issues

Figure 2.9 depicts the logical design of the integrated transcoder. The switches S1 and S2
control whether requantization or spatial downscaling is activated. If requantization is used,
switches S1 and S2 will be connected to Al and A2 respectively, otherwise they will be
connected to B1 and B2 respectively to activate spatial downscaling. The following sections
present in more detail the algorithms used in the integrated transcoder.

2.5.3.1 Drift Compensation Loop

Both requantization and spatial downscaling introduce noises in the transcoded video frames.
As MPEG-1 makes use of predictive coding for B frames and P frames, these noises can
accumulate along frames in the same group of pictures (GOP), further degrading the visual
quality in the predicted frames. To prevent this problem, known as drift, we can feed back
the noises to the predictor to compensate for the prediction errors. This is known as drift
compensation.

For requantization, error is introduced during the requantization process where larger quan-
tization step sizes are used. To compensate for the quantization errors, we can dequantize
(Q,7") the quantized DCT coefficients and compute the quantization error by comparing to
the original DCT coefficients. The quantization error is then stored in the corresponding error
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buffer for the macroblock, which is then extracted using MC-DCT [52] and added to the next
predicted frame to compensate for the quantization error.

For spatial downscaling, as error is introduced in both quantization and DCT operations,
we need to perform both dequantization and inverse DCT to compute the aggregate errors. We
can then incorporate these errors into the residual errors in the motion compensation process
to prevent drifting.

2.5.3.2 Reconstruction of the Downscaled Motion Vectors

In spatial downscaling, instead of performing motion estimation again on the downscaled
frames, which is computationally expensive, we can use the AMVR algorithm proposed by
Bo et al. [45] to reconstruct the motion vectors for the downscaled frame. In AMVR, the
downscaled motion vector, denoted by MV, is computed from

-

mv,-Ai
= 2.1

4
A;
=1

MV =

N =

1

where my; is the original motion vector of the macroblocks i in the original N x N video, and
A; is the activity measurement associated with macroblock i. For simplicity, A; is taken to be
the number of non-zero AC coefficients in the macroblock i which can be readily obtained
when the coefficients are parsed [45].

2.5.3.3 Quantizer Regulation

In order to match the output video bit-rate to the target bit-rate, a quantizer regulator similar
to the quantization control scheme in the Test Model 5 (TMS5) [54] is incorporated to control
the quantizer scale in each macroblock.

Instead of using the original TM5 quantization control scheme directly in requantization,
we need to modify the quantizer regulation scheme so that the new quantizer scale will not be
smaller than the original one. Specifically, let ¢’ be the quantizer scale computed using the TM5
algorithm. Then the new quantizer scale, denoted by Q’, is obtained from max{q’, O}, where
Q is the original quantizer scale. This modification reduces bit-rate consumption as using a
quantizer smaller than the original one cannot improve visual quality and yet increases the
number of bits required to encode the quantized coefficient. Note that the same modification is
not required in spatial downscaling because DCT coefficients of the downscaled macroblocks
are reconstructed during downscaling.

2.5.4 Experimental Results

To evaluate experimentally the performance of the presented integrated transcoder, we imple-
mented the transcoder depicted in Figure 2.9 in software running under the Microsoft Windows
platform. We tested the transcoder using a variety of different videos. The results of two video
segments, referred to as Onthestrip and Education, are presented in this section. Both segments
are originally MPEG-1 encoded in CIF resolution with a frame-rate of 30 fps at 1.15 Mbps.
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2.5.4.1 PSNR Performance

Figure 2.10 compares the PSNR performance (in terms of PSNR versus output bit-rate) of
the integrated transcoder with requantization and spatial downscaling. The PSNR of the video
segments generated with integrated transcoding at bit-rates below RTB and above RTB is
essentially identical to that obtained by spatial downscaling and requantization individually.
The results confirm that the integrated transcoder can always generate video with PSNR higher
than or equal to that obtained from using either requantization or spatial downscaling alone.
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2.5.4.2 Bit-rate Conformance

Bit-rate conformance, defined as the ratio between the output bit-rate and the target bit-rate,
measures how well a transcoder can control the transcoding process to achieve the desired
output bit-rate.

Figure 2.11 plots the bit-rate conformance versus target bit-rate ranging from 100 kbps to
1.1 Mbps. The results show that requantization cannot adapt to the lower bit-rates (e.g., below
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670 kbps in Figure 2.11a). Both spatial downscaling and the integrated transcoder, on the other
hand, can cover the whole spectrum of target bit-rates. However, as results in the previous
section show, the integrated transcoder can achieve significantly better visual quality at target
bit-rates higher than the requantization threshold bit-rate discussed in Section 2.5.2.

With the integrated transcoder, we can control the output bit-rate to within 5% of the target
bit-rate, which in turn can range from 100% down to 20% of the original video bit-rate.
This provides ample flexibility for video streaming servers to adapt to and sustain video
playback under the ever-changing network traffic conditions in the Internet. More importantly,
the integrated transcoder does not require modification to the decoder and thus is compatible
with the vast installed base of MPEG-1 decoders and video players, thereby greatly simplifying
deployment of the integrated transcoder.

2.6 Summary

In this chapter we have briefly reviewed the basic concepts in media compression and reviewed
the common media compression standards. This area is vast and we only touch upon the surface
of the many interesting and challenging issues in media compression. With a view to streaming
the compressed media over a network to a client for playback, our focus is on the impact of
media compression on media storage, retrieval, and transmission. In these aspects the bit-
rate variations introduced by VBR encoding techniques substantially complicate the delivery
process, especially if the underlying network does not have some form of quality of service
control and guarantee.

The latest developments in layered video coding and video transcoding are promising solu-
tions to tackle this challenge. For example, the MPEG-1 transcoder presented in Section 2.5
can be used to adapt the video bit-rate anywhere from 100% to 20% of the original bit-rate,
with trade-offs in visual quality. Moreover, this transcoding process can be performed en-
tirely in software in real time using commodity processors, thus opening a new way to deliver
compressed media over networks with unpredictable bandwidths.
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3

Continuous Media Storage
and Retrieval

Continuous media data streams generate vast amount of data. Even after compression, the
data rate is often still substantial, especially if audio and video are encoded. In terms of
storage, the amount of storage space required in a, say, hard disk-based media server can
easily be estimated. Moreover, the recent advances in hard disk technology have signifi-
cantly reduced the price-per-byte storage cost. At the time of writing the cost for 100GB
of hard disk storage is less than US$100, and hard disk models of size up to 300GB are
already widely available. Thus, although it is still an issue to be considered in the de-
sign of media servers, the storage capacity issue is becoming less of a problem in recent
years.

By contrast, the I/O capacity of hard disk, while it has improved steadily over the years,
has not progressed at the same pace as storage capacity. While we can store many media
contents in a large hard disk, it may not have sufficient I/O capacity to satisfy the streaming
demand. Therefore, the challenge of improving disk I/O efficiency is still a relevant and
important research issue.

In this chapter, we review the hard disk technology with an emphasis on the impact to
media streaming. We present ways to model the hard disk to derive performance results
useful in designing media servers. Of particular emphasis are the design and engineering
of the disk scheduler, which has significant impact on disk I/O efficiency. We analyze the
trade-offs in disk scheduler design in both single-disk and multi-disk media servers.

3.1 Structure and Model of Hard Disk

Figure 3.1 depicts the basic mechanical structure of a hard disk. There are a number of disk
platters mounted on the same spindle rotating at a constant speed, ranging from 3,600 rounds-
per-minute (rpm) to over 15,000 rpm. Each disk platter is sub-divided into many concentric
tracks, which are further sub-divided into many sectors. A sector is the smallest unit for data
storage and retrieval. To read and write to the disk, a disk head is mounted on a disk arm which

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
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Figure 3.1 The mechanical structure of a hard disk

can position the disk head to any of the tracks in the disk surface. Note that each disk platter
has its own disk head and all these disk heads are moved in a synchronized manner.

To read data from a sector, the disk controller will first locate the position of the sector in
terms of the track number and platter number. Then it repositions the disk arm to move the
disk head to the destination track and then waits for the sector to rotate underneath the disk
head to begin transferring the data to memory.

To model this data retrieval process we consider two types of processing delay. First, there
are fixed delays that are independent of the amount of data to be retrieved, such as processing
delay at the disk controller, delay in acquiring the data bus for data transfer, and so on. For
simplicity we lump together these fixed delays and represent it by the disk parameter o.

Next we consider the variable delays. First, the time it takes to position the disk head to the
disk track containing the data to retrieve is called seek time, and is represented by the random
variable .. Note that seek time depends on two factors — the current location of the disk
head, and the destination track to move to. Second, once the disk head is in the right track, it
will need to wait for the disk sector containing the data to rotate underneath the disk head. This
is known as the rotational latency, and is represented by the random variable #4ency. Note that
rotational latency depends on the current sector the disk head happens to be in after seeking,
and the sector containing the data to be retrieved. The rotational latency also depends on the
speed at which the disk platter rotates. For example, if the disk platter is rotating at a speed
of W rounds per second, then the latency will range from 0 to W~! seconds, with an average
and worst-case latency of 0.5W~! and W~! seconds respectively. This is also why hard disk
manufacturers strive to increase the disk platter rotation speed to improve performance. Finally,
once the disk sector is reached, the actual data transfer will begin. The delay clearly depends
on the rate at which data is transferred — called the disk transfer rate, and the amount of data
to read (assuming it is placed in consecutive disk sectors). In practice, there are additional
complications such as the data to read may span more than one track, or span more than one
disk platter. We will ignore these complications for now and revisit them in Chapter 5.

Therefore, we can model the delay to retrieve a Q-byte data block from the disk using the
following equation:

Tread(n) = a + ,3\/5 + Tlatency + & (31)
Raisk
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where 7 is the number of tracks to seek, « is the parameter for fixed overhead, and S is the
proportionality constant for seek time. Seek time is proportional to the square root of n to
approximate the effect of physically accelerating the disk head.

3.2 Disk Scheduling

The previous disk model quantifies the time to retrieve one block of media data. A media server
often serves multiple media streams concurrently, with each stream issuing retrieval requests
periodically. In the simplest case, the system can process retrieval requests in the order they
are issued, i.e., first-come-first-serve (FCFS) scheduling. This simple disk scheduler, however,
can incur excessive overheads in seeking, as illustrated in Figure 3.2.

In this example three retrieval requests identified as 1, 2, and 3 are issued in that order by
on-going media streams. The data for streams 1 and 3 are located in the outer tracks while
the data for stream 2 are located in the inner track. As a result, the disk head will need to first
travel to the outer track to retrieve data for stream 1, and then travel all the way across the disk
surface to the inner track to retrieve data for stream 2, and finally travel all the way back to the
outer track to retrieve data for stream 3. In the worst case the service time to retrieve one data
block becomes

Y}Cfs = lread (Ntrack - 1) (32)

This is extremely inefficient as the data for stream 1 and 3 are in fact located in nearby tracks.
This contrived example illustrates the inefficiency of the FCFS scheduler, which is seldom
employed in media servers.

Most media servers instead employ round-based disk schedulers to reduce the disk seek
overhead. Figure 3.3 depicts a common retrieval and transmission scheduler serving requests
from multiple concurrent media streams, denoted by numeric 1 to 5. For simplicity, we assume
the media streams are homogeneous and have the same average data rate, denoted by R.
Therefore, in the simplest case, the scheduler will retrieve one fixed-size block of data, say, of
Q bytes, for each of the active streams in a service round of duration Q/R seconds.

Disk
Head l

Sl B

Disk Platter ‘

Request arrival order: @ @ @
Request service order: @ @ @

Figure 3.2 First-come-first-serve scheduling of disk retrieval requests
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Figure 3.3 Retrieval and transmission scheduling in a media server
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Figure 3.4 Using SCAN scheduler to reduce disk seek overhead

Note that the order of data retrievals within a disk service round is not fixed, and can vary
from round to round. Specifically, the service order is selected according to the scanning
direction of the disk head, which goes alternatively from the innermost track to the outermost
track in a round, and then back from the outermost track to the innermost track in the next round
(see Figure 3.4). This enables the retrievals to be performed without back-and-forth seeking
within a service round, thus reducing seeking overhead. This is known as the Circular-SCAN
(CSCAN) scheduler or elevator seeking.

Note that to use CSCAN we need to know which data blocks to retrieve before the beginning
of around. This is possible in a media server because most of the time a media stream retrieves
media data sequentially from the disk for transmission to the client, thus enabling the server
to know the future data retrievals given the media bit-rate and retrieval block size.

3.2.1 Performance Modeling

Using the disk model in equation (3.1), we can formulate the time required to complete a disk
service round using CSCAN. Assuming the disk serves k requests in a round, then the service
round length, denoted by #,,,,4(k), is given by

k

o 0

%m®=M+ZQ@+mm+——+@i (3.3)
= Raisk
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1 .andt’  are the seek time and rotational
latency incurred in serving request i; and tsfz’;f is the time to position the disk head to the last
track to prepare for the next scan. We will use this generic disk model for capacity dimensioning
in the next section.

where i denotes the ith request in a service round; ¢/

3.2.2 Capacity Dimensioning

The goal of capacity dimensioning is to determine the maximum number of concurrent me-
dia streams that can be sustained with deterministic performance guarantee so that proper
admission control can be performed to prevent system overload. Consider a system with a
homogeneous media bit-rate of R bytes per second and a constant request size of Q bytes.
Using double buffering as shown in Figure 3.3, data blocks retrieved in a disk service round
will be transmitted in the next round at the media bit-rate R. In other words, the retrievals in
a service round must be completed within a duration of Q/R seconds or else the transmission
will be delayed, possibly leading to playback jitter at the client. This is also known as the
continuity condition in the literature.
Formally, this condition can be expressed as

round (k) = % (34)

which must be met for all disk service rounds. In other words, the worst-case disk service
round length must not exceed the duration of one transmission round of Q/R seconds.

Now consider equation (3.3) again. The worst-case rotational latency can be computed from
the disk’s rate of rotation. If the disk spins at a rate of W cycles per second, then the worst-
case rotational latency is just one complete rotation, i.e., W1 seconds. For seek time, it can
be shown that worst-case seek overheads are incurred when requests are evenly spaced across
the disk surface, provided that the seek function is concave.

Modifying equation (3.3) with the previous worst-case values, we can compute the worst-
case service round duration:

Lo (k) = max {tround(k)}

round

=k+D|a+B Nirack — 1 +k Tlazenc-l-i (3.5)
k+1 " Raisk

and then dimension the disk streaming capacity accordingly:

C = max {k|trg‘;‘,’fd(k) < % k=1,2,.. } (3.6)
where C denotes the dimensioned worst-case disk capacity in number of concurrent media
streams.

Note that by using the worst-case values we guarantee that the disk will be able to sustain
C concurrent media streams regardless of the actual placement of the requested data blocks.
In other words, it does not matter whether a media stream’s data are stored sequentially from
sector to sector, track to track on the disk, or simply placed randomly over the disk surface.
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This is an advantage in storage and data management as the system operator can replace/update
the stored media data without worry of adversely affecting the disk’s streaming capacity.

Using the Seagate ST12400N SCSI-2 hard disk as an example, the disk transfer rate in
the disk specification is 3.35 MBps. If we only consider the disk transfer rate, then with a
media stream bit-rate of 1.2 Mbps, the disk will be able to support up to 22 concurrent streams.
However, if we account for worst-case disk seek and other overheads, then the resultant capacity
is only 12 streams. This serves to illustrate the impact of disk seek overhead on streaming
capacity.

3.3 Improving Disk Throughput

Knowing the performance impacts of disk seek, the natural question then is whether we can
reduce the disk seek overhead to achieve higher disk throughput. Let us revisit the equation
for computing the disk round time and normalize it by the number of data blocks retrieved:

F: k + 1 Nruc - 1
s = S [a +8 ﬁ} (oo + ) G

which represents the per-request service time under the worst-case disk seek scenario.

If we examine the system parameters in equation (3.7), we will find that there are three
non-configurable system parameters, namely the constant overhead «, disk raw transfer rate
Rgisk, and rotational latency Tjzency. These parameters are properties of the physical disk and
thus cannot be controlled by the server application. It is possible to eliminate rotational latency
by reading one full track of data at a time. However, this track-based retrieval technique has its
own problems such as large buffer/delay (see below) and disk zoning (Section 3.6) will make
track-based retrieval very complicated.

By contrast, the remaining components in the equation, namely, k — the number of data
blocks to retrieve in a service round, and Q — the size of the data block to retrieve, both can be
controlled by the server application. As the disk overheads are relatively fixed, we can improve
disk throughput simply by increasing the retrieval block size Q and/or retrieving more data
blocks in a service round (i.e., increasing k). Indeed, this is a simple yet effective method to
improve the disk throughput, illustrated in Figure 3.5 for two disk models.

But then there are also trade-offs. First, increasing Q and k will consume more memory
for buffering. Using the double buffering scheme, the total buffer size is equal to 2kQ and,
thus, the buffer requirement is proportional to the retrieval block size. Nevertheless, given the
decreasing cost of physical memory, this may not be the limiting factor in practice.

Besides buffer size, increasing Q and k will also increase the disk service round length as the
disk transfer time (i.e., Q/R;s) in equation (3.7) will increase proportionally. While this does
not affect on-going streams, the admission delay experienced by new users will be increased.

To see why, consider a user who initiates a new streaming session by sending a request to
the server using some control protocol. Upon receiving the request, the server will first verify
the data availability, allocate the system resources (e.g., buffers, state variables, etc.), and then
start retrieving data from the disk for transmission. Now as the user request can arrive at any
time, it will likely arrive in the middle of a disk service round. In this case the server cannot
serve the request in the currently on-going service round as this could lead to additional disk
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Figure 3.5 Effect of retrieval block size on the disk throughput

seeks that may violate the continuity requirement in equation (3.4). Consequently, the new
request can only start receiving service in the next service round and transmission will follow
after that as shown in Figure 3.3. Therefore, the total delay from receiving the new stream
request to the instant transmission begins will on the average amount to one and a half service
round, or 1.5¢7% (k).

While the buffer cost will likely reduce as memory cost goes down, the admission delay
is a key performance metric experienced by the end user and a user will only have so much
patience. Therefore, ultimately the admission delay rather than buffer cost will be the limiting
factor in stretching the service round to improve disk efficiency.

3.4 Grouped Sweeping Scheme

In the previous discussion we came to the conclusion that delay/buffer and disk throughput
work against each other and thus it appears that disk throughout can only be increased so far
as limited by the admission delay. However, this analysis was based on the SCAN/CSCAN
disk schedulers and, in particular, due to the constraint that a new request can only be served
in the next service round.

To tackle this problem, Yu et al. [1] proposed a more general disk scheduler called the
Grouped Sweeping Scheme (GSS). It shares the common principle with SCAN/CSCAN in
that retrievals are also served in a scanning fashion in fixed-duration service rounds to reduce
disk seek overheads. However, instead of serving all streams in a service round, GSS divides
active streams into groups, say, g groups. Streams within the same group are served using
SCAN/CSCAN, while the groups are scheduled for service in a round-robin manner. Thus, the
disk schedule is effectively divided into two levels of service rounds — a micro service round
that serves a group of streams, and a macro service round that comprises the micro service
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Figure 3.6 Illustration of the Grouped Sweeping Scheme with two groups

rounds of the g different groups. Figure 3.6 illustrates this GSS scheduler with two groups of
media streams.

There are two important characteristics in GSS. First, a media stream can join any one of the
groups as long as the group is not already running at full capacity. Second, transmission of a
data block lasts for a macro service round (i.e., g micro service rounds) to sustain a continuous
transmission of media data to the client while waiting for the next media block to be retrieved.

Using GSS, the retrieval of a data block can be completed in a shorter time than in the case
of SCAN/CSCAN. For example, suppose at full capacity the server can serve k concurrent
media streams. The service round length in SCAN will then be equal to 72" (k). However, if
we employ GSS with two groups, then each group will serve up to k/2 requests and so the
micro-round length will be equal to ¢, ,(k/2) while the macro-round length will be equal to
2t (k/2).

This shorter service round length is desirable in terms of buffer requirement. A buffer is
occupied from the time a service round begins to the time the data retrieval is completed. Thus,
comparing GSS to CSCAN, it is clear that the buffer-holding time is reduced from ¢, (k) to
tmax

ook /2), thus allowing the buffer to be reused more quickly for the next service round. With
g groups, it can be shown [1] that the buffer requirement of GSS is given by

k
Bgss = (k + ’72—‘) 0 (3.8)

Comparing GSS to CSCAN’s buffer requirement 2kQ, it is clear that we can reduce the buffer
requirement by using GSS with more groups (i.e., increasing g).

On the other hand, a new user joining the system running GSS may also experience shorter
admission delay. This is possible because the new stream can join any of the g groups to
receive service. If the new stream arrives in the middle of, say, micro-round serving group
i, for example, then it can simply join the next group ((i + 1) mod g) provided that it is not
already fully utilized. In this case the average delay is only 1.5¢7%" (k/g), which is shorter than
the corresponding delay under CSCAN (i.e., 1.5t (k).

From the previous discussion it seems that we should use GSS with as many groups as
possible to reduce buffer requirement and admission delay. Taking it to the limit for a server



Continuous Media Storage and Retrieval 51

with capacity of k concurrent streams we can at most divide them into g = k groups under
GSS. However, in this case the disk will serve the streams one by one in a round-robin manner,
effectively reducing to FCFS!

Knowing that FCFS has poor disk throughput, it raises the first trade-off in using more groups
under GSS. Specifically, with k requests divided into g groups, each micro-round will retrieve
only k/g data blocks. Since we are using worst-case analysis to dimension disk capacity, we
will assume that the k/g data blocks are evenly spaced across the full span of the disk surface.
Thus, with more groups, fewer requests are served in each micro-round, which in turn increases
the worst-case per-request seek distance. Obviously this added overhead will result in longer
service round length and thus reduces disk throughput.

The second trade-off is more subtle and only occurs under heavy system load. Specifically, if
anew stream arrives to find the next micro-round already fully occupied, then it will have to wait
for a group with available capacity to join. Note that this scenario will not occur if the number
of active streams in service is smaller than k/g, as none of the groups will be fully occupied. As
more and more streams join the system, more and more groups will be fully occupied. In the
worst case a new stream could arrive in the middle of the only group with available capacity,
and thus will need to wait until that particular group cycles back again in the next macro-round.
In this worst-case scenario the admission delay will become (g + 1) - t2% (k/g).

Nevertheless, the beauty of the GSS scheduler is that we can control the trade-off between
throughput and buffer requirement/admission delay by dividing the streams into different
number of groups. In fact, the GSS scheduler subsumes as special cases both the FCFS scheduler
(when g = k) and the CSCAN scheduler (when g = 1). The same principle will also find
applications in multi-disk (Section 3.5.3) and multi-server streaming systems (Part II of the
book).

3.5 Multi-Disk Storage And Retrieval

So far, we have only considered media storage and retrieval in a single hard disk. In practice,
the capacity of a single disk may not be sufficient to serve a large number of concurrent users.
While disk storage capacity is advancing rapidly, improvements in disk throughput are far
slower due to mechanical limits like spindle speed, disk seek, etc. Therefore in most, if not all,
media servers, an array of disks will be needed to provide sufficient streaming capacity. The
challenge then is how to efficiently store and retrieve media data from multiple disks.

3.5.1 Partition and Replication

First, if the disks are operated independently, i.e., each disk is accessed independently from
other disks using, say, a separate logical disk drive or filesystem, then we can simply distribute
the media objects such as movie files to the disks according to certain placement policy. For
example, we may place media object 1 in disk 1, media object 2 in disk 2, and so on. When a
user requests the streaming of media object 1, then the server will simply retrieve the media
data blocks from disk 1 for transmission to the user. Each disk in this case is independent and
thus the same disk schedulers discussed earlier in Sections 3.2 to 3.4 can be applied directly
without modification.
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Figure 3.7 Relative popularity of media objects following the Zipf law with ¢ = 0.237

However, this data partition approach has a significant shortcoming. Specifically, in most
applications (e.g., entertainment videos) the popularity of media objects can vary significantly.
Previous studies [2-3] using data collected from video rentals, for example, suggested that the
popularity in those scenarios follows the Zipf law [4]:

P; x 7 (3.9
where {P;|i = 1,2, ..., M} is the popularity of media object i, sorted in decreasing order
of popularity; and c is a constant characterizing the skewness of the popularities. A value of
¢ = O represents uniform popularity (i.e., P, = P; Vi,j), and increasing values of ¢ represent
increasing skewness. Figure 3.7 shows the relative popularity for a 10-media system following
the Zipf law with ¢ = 0.237. The difference between the more popular media objects and the
less popular media objects can be quite substantial.

The implication of the Zipf-distributed popularity is that a small portion of the media objects
often account for the majority of the user requests. Consequently, the disks storing the popular
media objects will have a much higher load than the disks storing unpopular media objects.
Researchers have long recognized this load imbalance problem and have proposed various
solutions, e.g., careful placement of media objects to even out the load of the disks, or replicating
the popular objects on multiple disks for load sharing. Interested readers are referred to the
literature for more detail of these approaches [5-7].

At the other extreme, if we replicate all media objects onto all disks in the server, then the
load balance problem can be eliminated altogether. However, this approach is only suitable
for systems with a small set of media objects, where the extra storage incurred in repli-
cation is available and is cost effective. For systems serving a library of, say, hundreds or
even thousands of feature-length movies, the multiplied storage costs will quickly become
prohibitive.
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3.5.2 Disk Striping

An alternative solution to partition/replication is through the use of striped disk array. The
principle is to distribute pieces of a media object over all the disks in the array so that the
load of each and every media object is equally shared by the disks in the array, illustrated in
Figure 3.8. Physically, the disks in a disk array are just ordinary disks, but managed as a single
logical storage device either by the disk array controller, by the software disk array module in
the operating system, or by the application directly.

If a hardware disk array controller is employed, then the disk array configuration is com-
pletely hidden from the operating system and the media server application. If the operating
system’s software disk array function is employed, then the disk array configuration is visible
to and controllable by the operating system, but still hidden from the media server application.
In both cases, the disk array will simply appear to the media server application as a single
logical disk drive with a large storage capacity and throughput as depicted in Figure 3.9.

These approaches eliminate the need to modify the media server software to support the
use of the disk array as it is completely transparent. However, the disk array controller and
the operating system’s software disk array module may not have been optimized for media
streaming applications. By contrast, if the media server implements multi-disk storage and re-
trieval functions directly (see Figure 3.10), then it can have complete control over the disk array
configuration (e.g., interleaving block size, disk scheduling, etc.) to optimize for streaming
applications. In the following discussions we assume this third approach, i.e., implementing
the disk array within the media server application, and present efficient ways to schedule the
media data retrieval process.
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Figure 3.8 Data placement in a striped disk array
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Figure 3.10 The media server implements a striped disk array directly from multiple independent disks

3.5.3 Multi-Disk Scheduling

Now that data blocks of a media object are spread over multiple disks, we can no longer
schedule each disk independently. We present in this section three multi-disk schedulers and
discuss their strengths and weaknesses.

3.5.3.1 Concurrent Schedule

Figure 3.11 depicts the first multi-disk scheduler — concurrent schedule, for a striped disk array
comprising three disks. Under the concurrent scheduler all disks in the array are synchronized
to retrieve data blocks for the same set of media objects in fixed-duration rounds. For example,
for a d-disk array with retrieval block size of Q bytes, a total of dQ bytes will be retrieved
for each media stream in a service round. Within each service round each disk performs its
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own seek optimization using CSCAN and the data blocks retrieved from all disks are then
sequentially transmitted in the next service round as shown in Figure 3.11.

As the disks effectively operate in parallel serving the same set of media streams, it seems
that the throughput will then be increased by d times for a d-disk array. Interestingly, the
actual achievable throughput under concurrent schedule can in fact be larger than d times the
throughput of a single disk.

Recall that in capacity dimensioning the constraint is that the worst-case time spent in a
service round must not exceed the transmission time for the data retrieved:

toan (k) < % = Tavg (310)

round
Extending this to a d-disk striped disk array we have

d
t;:;‘;;d(k/) = ?Q = dTavg 3.11)

Now since the number of tracks in the disk is the same no matter a disk is used independently
orinastriped disk array, the seek distance on a per-data-block basis must decrease if we increase
the number of blocks retrieved in a service round. In other words, we have in general

trona(dk) < dtgin (k) < dTy, (3.12)
Thus, by retrieving more data blocks in a service round, the striped disk array can achieve
lower seek overhead than operating the disks independently. This performance gain, however,
is offset by two trade-offs.

Assume that each disk has a capacity to retrieve k data blocks in a service round of 7,
seconds. Ignoring the performance gains due to reduced seek overhead, then in a d-disk array
each disk will retrieve dk data blocks in a service round of dT,,, seconds, or d’k data blocks
for the entire disk array. Therefore, the buffer requirement is equal to 2d*kQ bytes, half of
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which are used to store the retrieved data and the other half storing the data for transmission
as shown in Figure 3.12.

Now it becomes evident that this concurrent schedule does not scale up well. For example,
with QO = 64KB and k = 20, the per disk buffer requirement for 1-disk and 8-disk arrays
are 2.5MB and 20MB respectively. This gets worse as the array grows larger. Again, buffer
requirement may not be the limiting factor as memory cost has decreased dramatically over the
years. The real limiting factor is the start-up delay, which equals 1.5 times the service round
length. Thus for concurrent schedule the start-up delay increases linearly with the number of
disks in the array (i.e., dTyy,).

3.5.3.2 Offset Schedule

As illustrated in Figure 3.12, part of the reason for the increased buffer requirement is the
unnecessary buffer holding time after a data block is completely transmitted. The empty buffers
cannot be reused until the next disk service round starts. To eliminate this deficiency, we can
offset the schedules of the disks’ service rounds by 7, seconds as depicted in Figure 3.13
so that a new disk service round is started once every T,,, seconds, aligned with the instants
when empty buffers become available.

This offset schedule has the same buffer requirement for disk retrieval (d*kQ bytes) but the
buffer requirement for transmission is reduced from d?kQ bytes to dkQ bytes. Therefore, the
total buffer requirement is reduced from 2d*kQ to (d + 1)dkQ bytes. Using the same example
in the previous section (Q = 64KB, k = 20) the per-disk buffer requirement is reduced from
20MB to 11.25MB for an 8-disk array.

3.5.3.3 Split Schedule

Despite the reduction, the per-disk buffer requirement under offset schedule still increases with
the number of disks in the array. The ultimate solution is to divide the streams into d groups and
serve them in separate service rounds of shorter duration — split schedule, shown in Figure 3.14.
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The key in split schedule is that a media stream retrieves its data blocks from each disk not
in parallel as in the case of concurrent schedule and offset schedule, but in turns. For example,
if a media stream retrieves data block i from disk 0 in round j for transmission inround j + 1,
then in the next round j + 1 it retrieves data block i + 1 from disk 1 for transmission in round
Jj + 2, and so on. Compared to the previous two schedulers, this split schedule reduces the
service round length from d7,,, seconds to T,,, seconds. Therefore, in addition to reusing the
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empty buffers after transmission, the buffer requirement for data retrieval is also reduced from
d’kQ bytes to dkQ bytes, and the total buffer requirement becomes 2dkQ bytes, or 2kQ bytes
per disk — same as the single-disk case.

Therefore from the scalability perspective, a split schedule is linearly scalable in terms of
buffer requirement. Start-up delay is more complicated as it also depends on the utilization of
the disk array. Similar to the GSS scheduler discussed earlier in Section 3.4, a new user can
join any one of the d groups to receive service. Thus, if the disk array is lightly utilized (e.g.,
with fewer than k on-going streams), then the new stream can simply join the next service
round and the average delay will be the same as in the single-disk case, i.e., equal to 1.57,.
At higher utilization some of the groups may be fully occupied and in that case the delay will
be longer. We will revisit this issue in Chapter 11 where we derive the average admission delay
at a given system utilization.

3.6 Disk Zoning

So far in this chapter we have modeled a hard disk to be composed of multiple disk platters, each
further divided into tracks, and finally each track sub-divided into a fixed number of sectors.
This last assumption, however, is not necessarily true in practice. In the race to increase the
disk storage capacity, disk drive manufacturers have developed a technique called Zoned-Bit-
Recording (ZBR), which breaks the constant-size track assumption.

If we reconsider the physical disk geometry in Figure 3.1 we can easily see that an outer
track at the edge of the disk platter will have a larger circumference than the inner track closer
to the center of the disk platter. Therefore, if the same number of sectors are used (i.e., same
track size), then the recording density of the outer tracks will be lower than the inner tracks.
Disk drive manufacturer exploits this by allocating more sectors to outer tracks than the inner
tracks. In most cases the tracks are divided into multiple zones, with tracks in the same zone
having the same number of sectors per track — disk zoning. The number of sectors per track
increases as we go from the innermost zone to the outermost zone. This effectively increases
the storage capacity of the outer zones/tracks.

The immediate impact of disk zoning is that the disk transfer rate R4 is no longer a constant
parameter. As the disk spins at a constant angular velocity (e.g., 10,000 rpm), the transfer rate
will be higher for the outer tracks than the inner tracks due to the larger track size. Take Seagate
31200W, as an example. Its disk platter is divided into 23 zones with transfer rates ranging from
2.33 MBps for the innermost zone to 4.17 MBps for the outermost zone. Thus, the difference
in transfer rates can be quite substantial.

This creates a problem in disk capacity dimensioning as the disk transfer rate is one of
the parameters previously assumed to be a given constant. For worst-case capacity dimen-
sioning the obvious solution is to use the lowest transfer rate among all disk zones as the
parameter value in dimensioning the disk capacity. This guarantees that the continuity re-
quirement will be satisfied no matter which zone the requested data happen to be located.
However, this obviously will under-utilize the disk as the outer zones, due to their larger
storage capacity, account for a larger proportion of the disk’s storage. Over the years re-
searchers have come up with clever solutions to tackle this problem, principally by trading
off some storage and/or buffer for higher throughput. Interested readers are referred to the
works by Birk [8], Mourad [9], Ghandeharizadeh et al. [10], and Nerjes et al. [11] for more
detail.
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3.7 Summary

In this chapter we have covered the fundamental principles in continuous media storage and
retrieval, including issues in data placement, scheduling, capacity dimensioning, multi-disk
storage and retrieval, and disk zoning. In particular, we employed worst-case analysis technique
to design the disk schedulers and to dimension the streaming capacity. This worst-case approach
is simple to analyze and is able to guarantee the retrieval performance. However, as the worst-
case scenario rarely, if ever, occurs in practice, the over-engineering will necessarily result in
disk under-utilization. In the next chapter we depart from the worst-case approach to investigate
a statistical approach to capacity dimensioning, which can increase disk utilization as well as
solving the disk zoning problem.
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Soft Scheduling

Most of the existing disk schedulers employed in continuous media servers use worst-case
analysis in capacity dimensioning. As discussed in Chapter 3, this worst-case approach is
relatively simple to implement and yet can provide deterministic performance guarantees,
which is particularly desirable in media streaming applications. Nevertheless, the worst-
case scenario rarely, if ever, occurs in practice and so the disk ends up under-utilized. In this
chapter we investigate a statistical approach to capacity dimensioning — soft scheduling,
where performance guarantee is probabilistic rather than deterministic. By tolerating a very
small probability of capacity overflow, we can significantly increase the disk utilization.
This chapter presents a disk scheduler supporting soft scheduling, a number of performance
enhancement techniques, and evaluates the potential performance gains.

4.1 Introduction

For media servers serving stored data (as opposed to data captured in real time), the disk
scheduler plays a vital role in providing glitch-free services to the end-users. Many excellent
disk schedulers have been proposed in the literature and were reviewed in Chapter 3, including
the SCAN [5], Circular-SCAN (CSCAN) [5], and the more general Group Sweeping Scheme
(GSS) [4] schedulers. Using worst-case dimensioning techniques, these schedulers are simple
to implement and are capable of providing guaranteed performance.

Nevertheless, using worst-case dimensioning techniques — hard scheduling — also have
shortcomings. As the usable disk capacity (in terms of maximum number of concurrent streams
that can be supported) is dimensioned according to worst-case scenarios, the disk will often be
under-utilized during actual operation. Moreover, most modern disk drives employ disk zoning
to improve disk capacity. Zoning divides the disk surface into multiple zones, where each zone
has a number of consecutive cylinders having the same track size (in numbers of sectors per
track). As the disk rotates with a constant angular velocity, outer zones can be allocated more
sectors per track than inner zones. Therefore, one side-effect is that outer zones will have
substantially higher transfer rate than inner zones. If we adopt hard scheduling, then we would
need to dimension the disk streaming capacity according to the (lowest) transfer rate of the
innermost zone, and hence sacrifice additional disk bandwidth available in the outer zones.

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
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In this chapter, we investigate an alternative approach to disk-scheduler design — soft
scheduling. Specifically, by designing the disk scheduler with statistical performance guar-
antees instead of deterministic performance guarantees, we can use the disk I/O bandwidth
more efficiently and at the same time, still be able to satisfy the continuity requirement with
high probability. In addition, by placing data randomly instead of sequentially across the disk
surface, we can make use of the higher transfer rates of the outer zones in multi-zone disks
to achieve higher disk throughput. To further increase the usable disk capacity, we present a
Dual-Round Scheduling technique to schedule disk rounds in pairs so that overflows in the
next service round can be absorbed in the current service round, and an Early-Admission
Scheduling technique to enable the use of larger media block size for better disk efficiency
without adversely increasing the system response time. Finally, we present methods for de-
tecting and recovering from service round overflow. Results from a detailed simulation of five
disk drives will be used to explore the potential performance gains of the presented techniques
over hard-scheduling approaches.

4.2 Statistical Capacity Dimensioning

The worst-case dimensioning technique in hard scheduling enables the disk to provide de-
terministic performance guarantee. However, as with any worst-case techniques, the trade-off
would be lower disk utilization in practice as the worst-case scenario occurs very sparingly. For
example, ignoring rotational latency for the moment, the worst-case seek time under CSCAN
for a disk with a total of N tracks occurs with probability

N-1 1
Prin=—,i=1,2,...,kt = —— 4.1)
N -1

where n; denotes seek distance for the ith request (see Table 4.1 for a summary of notations).

For a disk with N = 5,001 tracks and k = 10, this computes into a probability of 1.0247%.
This is clearly negligible in practice and this motivates us to investigate soft scheduling to
provide statistical rather than deterministic performance guarantee.

In statistical capacity dimensioning, the objective is to find an operating point that provides
higher usable disk capacity than deterministic capacity dimensioning, subject to a given over-
flow probability constraint. Let F,,,4(, k) be the cumulative distribution function (CDF) for
the disk service round length, i.e.,

qund(ty k) =Pr {trwmd(k) = t} (42)

We can then define an overflow probability constraint ¢ that specifies the maximum acceptable
occurrence probability for violating the continuity condition in equation (3.4). Using this con-
straint and equation (4.2), we can then compute the usable disk capacity, denoted by C(¢), from

C(e) = max {k| (1 = Frouna(T, k)) < e,k =0,1,...} 4.3)

where 7, = Q/R is the maximum length of a service round. This is the maximum number of
requests that can be served in each service round with an overflow probability no greater than ¢.

Note that storage allocation for a media object must be pseudo-randomized under soft
scheduling, i.e., available disk blocks are randomly selected to store a media title. This
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Table 4.1 Summary of notations

Description Symbol Notes
Average media bit-rate R Parameter in bytes per second
(e.g., 150,000 Bps)
Media block size 0 Parameter in bytes (e.g., 65,336 bytes)
Length of a transmission cycle T, Computed from Q/R, in seconds
Disk transfer rate r Random variable in bytes per second
T Transfer rate for the ith request
Frmin Minimum transfer rate
(i.e. of innermost track)
Fixed overhead in disk read o Constant in seconds
Seek time in disk read tseek Random variable in seconds
tS" ek Seek time for the ith request
Rotational latency in disk read Uatency Random variable in seconds
tl’mem,y Rotational latency for the ith request
Head repositioning delay tfe”e‘i Random variable in seconds
Service time for a request trequest Random variable in seconds
trequest(i) Service time for request i
Length of a service round serving k tround(k) Random variable in seconds
requests
Disk platter rotation rate w Constant in cycles per second
Worst-case seek time for serving k ok (k) Computed, in seconds
requests
An upper bound for service round t o (k) Computed, in seconds
length serving k requests
Usable disk capacity under C Computed, in number of requests
hard scheduling (served in a service round)
Usable disk capacity under soft C(e) Computed, in number of requests
scheduling (served in a service round)
Usable disk capacity under Cprs(€) Computed, in number of requests
Dual-Round Scheduling (served in a service round)
Number of disk tracks N Parameter in numbers
Seek distance for request i n; Variable in number of tracks
Overflow probability constraint e Parameter
Extra number of buffers for Bearty Computed, in number of Q-bytes

Dual-Round Scheduling
Probability density function for
round length serving k requests
Probability distribution function for
round length serving k requests
Overflow probability for serving k
requests in a round
Size of track i
Probability of disk head located at
track i
Track number for request i

fraund(ts k)
Frouna(t, k)
Q(k)

Zj
pi

v;

buffers
Parameter

Parameter
Computed

Parameter in bytes
Computed

Parameter
Variable in seconds:
(Continued)
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Table 4.1 (Continued)

Description Symbol Notes
Residual service time of a round Rups for non-preemptive scheduling
Rps for preemptive scheduling
Arrival time for a new request thew Variable, in seconds
End time for the current service tdue Variable, in seconds
round
Seek function, including both seek fseek(k) k is seek distance in number of tracks
time and fixed overhead
Probability of round overflow under 8 Computed
First-Block Replication
Expected scheduling delay D Computed, in seconds
Scheduling delay constraint Dinax Parameter in seconds
Retrieval deadline for request i d; Computed, in seconds
Size of partial block retrieval during Qu Computed, in bytes

round overflow

randomization is necessary to prevent correlated overflows from one service round to the next.
To see why this randomization process is needed, let us assume that media blocks from a
media stream are stored sequentially in the disk. Now suppose a new stream joins the system
at round i and causes the service round to overflow (i.e., length of service round exceeding
T,). Then due to the sequential data placement, the next round will have requests in similar
locations, and hence will likely experience overflow as well. Randomized placement can
break up spatial correlation between requests from consecutive service rounds and thus avoid
correlated overflows.

In practice, the entire placement information for a media stream can be stored in an index
file. Assume 16 bits are used to store the beginning sector number for a media block. Then a
2GB media stream stored in 128KB blocks will consume 32KB to store the index file, which
is negligible compared to the size of the media stream. Hence, the server can simply load the
entire index file into the memory at the time of stream admission.

4.3 Dual-Round Scheduling

The previous soft-scheduling approach in general can achieve better usable disk capacity
than hard scheduling at the expense of a small probability of service round overflow. In this
section, we present a Dual-Round Scheduling (DRS) technique to further reduce this overflow
probability so that even more streams can be admitted.

4.3.1 Read-Ahead Algorithm

We observe that in practice the majority of the service rounds are shorter than the maximum
limit 7,. This is necessary to keep the overflow probability within the given threshold ¢. Now
during this slack time the disk is in fact idle. Thus, instead of wasting the otherwise unused
disk time, we can start the retrievals for the next service round earlier. In this way the next
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service round length will be extended beyond 7, seconds and consequently will reduce the
overflow probability.

Let the length for round x be 7, and further assume that the next round x + 1 is overflowed,
i.e., ty+1 > T,. If the length of round x is less than or equal to (27, — #,41), then we can
compensate for the longer service round x + 1 simply by starting it (¢, — 7,) seconds earlier
than normal.

Let B4, be the number of extra buffers (each Q bytes) available for storing these early-
retrieved media blocks. Then the disk scheduler can be modified as follows. If the current
round finishes early (i.e., round length shorter than 7, ), then the disk will immediately proceed
to retrieve data blocks of the next round. This process continues until either the extra buffers
are exhausted, or all data blocks in the next round are completely retrieved. On the other hand,
no special operation is needed if the current round does not finish early (either round length
equals 7, or round overflows). We analyze the capacity gain in Section 4.3.2 next, and derive
an upper bound for B, in Section 4.3.3.

4.3.2 Performance Modeling

To quantify the improvement, reconsider the round lengths for any two consecutive disk service
rounds. As data placement is random, the service round lengths for any two disk service rounds
are independent and identically distributed according to Fyuuq(t, k). Let frouna(t, k) be the
density function of Fy,4(t, k) and letF 2) 4(t, k) be the distribution of the sum of two service

Foun.
round lengths, which is the auto-convolution of Fj,,u4(t, k):

o0
FO (t,k) = / Fround(t = X, ) frouna(x, k)dx (4.4)
—00

Now consider an arbitrary service round i. With DRS, round i can overflow under two
conditions. First, if round (i — 1) does not overflow, then round i will overflow only if the
combined round lengths are longer than 27,:

Pr{(t; +1,_1) > 2T, |ti—y < T,} < Pr{(t; +t;i—1) > 2T}
4.5)
=1-F_

round

2T:, k)

Second, if round (i —1) does overflow, then it will be truncated to at most 7, (see Section 4.5.2).
In this case, round i overflows if it is longer than 7,:

Pri{t; > T.|t; 1 > 1.} = 1 — Founa(T, k) (4.6)
Hence the overflow probability of round i, denoted by €2(k), can be computed from
Qk) =Pr{t; > T,}

=Pr{(ti +t;i_1) > 2T 1t -1 < T} Pr{t; < T,}
+Pr{tl~ > Tr|ti—1 > Tr}Pr{ti_l > Tr} (47)

= [(1 = F2iT0) Frouna T3, 0] + [(1 = Frouna(Ty, 6)°]
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Finally, we can compute the usable disk capacity under DRS from

Cprs(e) = max {k|Q(k) <e,k=0,1,...} 4.8)

4.3.3 Buffer Requirement

To achieve the capacity gains, there is also a trade-off in DRS — the additional buffers used
to store the early-retrieved media blocks. To obtain an upper bound for the extra buffer re-
quirement, we note that in the worst case, the second disk service round will have a length of
toar (k) as given in equation (3.5). To prevent overflow, the server will have to start the service

roun .
round earlier by

Tearl_v = t;g;zd(k) - Tr (49)

Note that DRS cannot compensate for overflowed rounds with length longer than 27, as the
slack time for the previous round is bounded by 7.
Now the time to retrieve a media block of size Q bytes is bounded from below by

min __ Q

read —

(4.10)

"max

where 7,y is the maximum transfer rate (e.g., at the outer-most zone). Hence during the time
interval ey, we need at most

Buay = min { H‘”ﬂ , CDRs(e)} @.11)
read
extra buffers to store the early-retrieved media blocks.

To be fair, the extra buffers may also be used to increase the media block size Q, which also
increases disk efficiency, instead of using DRS. However, increasing the media block size will
result in longer service round length and, consequently, will increase the admission delay for
new streams. In practice, a system is likely to have been dimensioned to use the largest media
block size for maximum disk efficiency and hence increasing the block size further will not
be feasible. By contrast, DRS does not affect the scheduling delay as the media-block size is
unchanged and hence we can employ DRS to further increase the usable disk capacity in a
system with an already optimized media block size.

4.4 Early-Admission Scheduling

In conventional round-based scheduler such as SCAN and CSCAN, the media block size is one
of the key parameters in determining the achievable disk utilization. As current memory costs
continue to drop due to rapid increases in memory density, it may appear that one can keep in-
creasing disk utilization simply by choosing larger block sizes. However, in addition to memory
cost, the usable block size is also limited by the admission delay, as discussed in Section 3.3.

For example, in conventional round-based scheduler a new request arriving mid-way in
round i will receive service beginning in the next round (i 4 1). Due to double-buffering, the
retrieved block will be transmitted in round (i + 2). Hence, the worst-case admission delay is
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Transmission for new stream

starts at round i+2. \

[ u | u I u I u

I 1 1
Transmission | 1 ] 1 } I } i |

Disk Retrieval }I_”_II_I D I_I%I_II_I I_I%

New stream arrives Retrieval for new stream
during round /. starts at round i+1.

Figure 4.1 Admission scheduling in conventional round-based scheduler

two rounds and the average admission delay is 1.5 rounds (Figure 4.1). This admission delay
not only affects the start-up latency, but also affects the system response time when interactive
playback controls (e.g., seeking to a new playback point) are performed.

4.4.1 Admission Algorithm

Soft scheduling allows a new way of shortening this admission delay. The principle is to try
to admit a new stream into the current round rather than waiting for the next round to begin. If
admission to the current round is successful, then we can reduce the admission delay by one
service round as shown in Figure 4.2.

Let s; be the start time for round i. Consider a new stream arriving at time #, when service
round i is in progress. At that instant, the disk head is either moving to the next target track
(Case 1) or stationed in a track reading data (Case 2). Let n be the track number for the target
track (Case 1) or current track (Case 2). Assuming Poisson arrival and randomized placement,
the disk head would be equally probable to be located at any one of the N tracks for non-zoned
disks when a new request arrives. For zoned disks, the probability for the disk head to be
located at track n when a new stream arrives, denoted by p,, would be skewed by the track
size:

Zn
N-1

PR
j=0

Pn = (4.12)

where z; is the size of track j.
We consider the case where the disk head is scanning in the forward direction with increasing
track number. The case for reverse direction scanning is similar and thus is omitted here. To
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Transmission for new stream
starts at round i+1.

1 || |
Transmission | 1 } 1 ! 1 } : ]

Disk Retrieval

New stream arrives Retrieval for new stream
during round i. starts at current round .

Figure 4.2 Early-Admission Scheduling in soft scheduling

simplify notations, let fi(k), k =1,2,..., N — 1, be the seek function that includes both
seek time and fixed overhead. Let there be u existing streams (i.e., retrieving u data blocks per
round) when the new request arrives. Let #,,,, be the time the new request arrives and #4,. be
the latest time when the current service round must end.

Suppose the disk is retrieving data block for stream w when the new request arrives and the
data block for the new request is located in the scanning direction of the disk head, i.e., the
track number of the data block for stream u + 1 is equal to or larger than the track number of
data block for stream w. In this case, we can simply insert the new data block into the list of
remaining data blocks to be retrieved, sort it by their track number {v,,, vy41, - .., Uyt1}, and
then compute the residual service time, denoted by M, to complete the service round:

- 0 +1
R = Z <fseek(vj+l - Uj) + o + lfa;,,cv
J+ :

Jj=w

+fveek(N - vu+l) ~+ lresidual

4.13)

where the first summation term is the service time to retrieve the remaining data blocks; the
second term is the head-repositioning time; and the last term is the time to complete retrieving
the current data block w.

In the worst case equation (4.13) is bounded by

max {N} = Z <fseek(vj+1 —v;)+ % + Wl)
M i+
=] ' (4.14)
+fseek(N - Uu-H)
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If the worst-case residual service time does not exceed the service round end time #4,., then
this new request can be admitted into this round as if it had arrived before the round starts. We
can check for the overflow condition simply by

max {9” + thew = tdue (415)

Otherwise, the new request will have to wait for service in the next round.

On the other hand, if the media block for the new stream is located in an upstream location
where the disk head has already scanned past, then the disk scheduler has two options: it can
proceed to retrieve data blocks for existing streams first and then come back to retrieve data
block for the new request — non-preemptive schedule; or it can backtrack to retrieve data block
for the new request first before proceeding with the rest of the existing streams — preemptive
schedule.

We can compute the residual service time for non-preemptive schedule from

u—1
Q .
ERnps = Z (fseek(vj-‘rl - vj) +—+ tlizizl:cy

j=w rj+1

0 .
freek(Wu = Vi) + =+ eency (4.16)
u+1

+fseek(N - vu+l) + liesidual

where the first term is the time to retrieve data blocks for the existing streams; the second term
is the time to retrieve data block for the new stream; the third term is the head-repositioning
time; and the last term is the time to complete retrieving the current data block w.

Similarly, we can compute the residual service time for preemptive schedule from

0 +1
S}{ps = fseek(vw — Vyt1) + - + t]";tency
u+1

0 +1
+fxeek(vw+1 - Uu+1) + + tll:zjmwv
Fw+1 il

u—1
Q .
+ Z (fseek(vj-&-l - vj) + —+ t]{l;i;:’lC)'

Jj=w+l1 Fj+

4.17)

+fs€ek(N - vu) + bresidual

where the first term is the time to backtrack and retrieve data block for the new stream; the
second term is the time to retrieve data block for stream (w + 1); the third term is the time to
retrieve data blocks for the remaining streams; the fourth term is the head-repositioning time;
and the last term is the time to complete retrieving the current data block w.

By comparing max{,,,,} with max{N,}, the scheduler can choose the method with shorter
delay and then check for overflow using method similar to Egs. (4.14) and (4.15). If the
round does not overflow, then the new stream can be admitted into the current round, thereby
shortening the scheduling delay by one complete service round of 7, seconds.
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4.4.2 First-Block Replication

To further improve the chance of successfully admitting a new stream into the current round
and to simplify the disk scheduler, we can use a technique called First-Block Replication
(FBR) which replicates the first data block of a media stream to both the innermost track and
the outermost track. With this technique, we can guarantee that request for a new stream will
always be located downstream in the disk head scanning direction.

Moreover, as the disk head has to be repositioned to the platter edge at the end of a service
round, seek time for the new request is eliminated as well. The residual service time with FBR
can be computed from

u—1
. 0 J+1
N = Z (fseek(UjJrl - Uj) + Fie + tlatency

+fseek(N - Uu) + tresidual (4]8)
Q u+1

+ +1 latency

ry+1

and the scheduler can admit the new stream immediately if the round does not overflow.

The significance of FBR is that it guarantees that the data block of the new stream will be
located downstream in the scanning direction. Consequently, rather than using the worst-case
to estimate round overflow as in equation (4.14), we can approximate the probability of round
overflow by the round-length distribution

8 = Pr{overflow}

(4.19)
=1— Foua(Tr,u+1)
which is a conservative measure as the disk head has already scanned past some tracks.
Using equation (4.19) we can then compute the average scheduling delay under EAS+FBR
from

D =1.5T,6 +0.5T.(1 — 9)

~ 0.5T, 20
for small §.

Therefore, together Early-Admission Scheduling and First-Block Replication can reduce
the scheduling delay by two-thirds for small §. The trade-off is the additional storage required
to replicate the first data block of each media stream, which is relatively insignificant, given
the size of typical media streams. For example, the overhead for a one-hour MPEGI1 video of
bit-rate 150KB/s and block size 128KB is only 0.024%. Note that we can extend this FBR
technique to replicate additional blocks within a media stream, such as the first block in the
beginning of a seekable chapter to achieve similar admission-delay reduction when performing
interactive playback controls (e.g., chapter selection).

To quantify the gain of FBR, we assume that an admission delay constraint D,,,, is given
as part of the service requirement. Then we must ensure that the expected admission delay is
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smaller than D,,,,:

%(o.s +8) < Dinax @.21)

Rearranging gives the largest block size that can be used:

RDmax
05+6

Q< (4.22)

Note that we also need to round Q computed from equation (4.22) to integral multiples of disk
sector size.

4.5 Overflow Management

The previous sections focus on the cases when there is no overflow. In this section, we turn the
focus to operational issues in implementing soft scheduling and tackle the issue of overflow
detection and recovery.

4.5.1 Deadline-Driven Detection

The analytical models in Sections 4.2 and 4.3 give the probability of experiencing a round
overflow during system operation. This means that overflow can eventually occur and so the
system must detect any overflow condition and take corrective actions. To illustrate, consider
the scenario in Figure 4.3 where overflow occurs in round i. Consequently, transmission for
the last block retrieved in round i cannot proceed normally as it has missed the transmission
cycle. Moreover, schedule for the next round is also delayed, further increasing the likelihood
of overflow in subsequent rounds. Clearly, we need to contain the problems caused by overflow
to prevent overflow propagation.

Transmission cycle missed

D N ! : !
Transmission | U !— —— } 1 !

[z GBI - )

Disk Retrieval |
round j round j+1

Figure 4.3 An overflow in round i can delay the start of the next round, increasing the likelihood of
overflow in round i + 1
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To detect round overflow, we need to compare the round length with the limit 7,. It may
appear that the exact length of any disk round can be computed from

u—1
Q .
round = seek\Vj+1 — Vj - latency seek — Uy .
t Freek( )+ —— 1 )+ freek N = v,) (4.23)

j=0 Tj+1

given that we know a priori the locations of all the data blocks to be retrieved.

Unfortunately, the exact rotational latency cannot be computed in advance and consequently
the round length remains a random variable. Therefore, rather than computing the exact round
length, we can employ a Deadline-Driven Detection algorithm to detect overflow. Specifically,
the time to retrieve the ith block in a round, denoted by #,,45(i), is given by

. Q
trequest(l) = freek(Vi —vi—1) + V_ + tlalency (4.24)

Note that except for the latency term t}mncy, all the other terms in equation (4.24) are known.
Let ¢4, be the time when the current service round must end, and let d; be the time to start
retrieving block i. Then, to prevent overflow in reading block i, we must ensure that:

Tdye = di + trequest(i) + fseek(N - Ui) Vi (4‘25)

where the last term is head-positioning time under CSCAN. Hence, we can guarantee that
overflow will not occur if

di = ldue — <fveek(vi - vi—l) + fveek(N - vi) + I’g + %) (426)
1
where we replaced the rotational latency by the worst-case of one complete round of rotation.
The retrieval deadlines d; (i = 1,2..., u) can be computed at the beginning of a service
round. Before retrieving media block i, the system compares the current time ¢ against d;. If
the deadline is exceeded (i.e., t > d;), then it raises an overflow exception and proceeds with
corrective action, discussed in the next section.

4.5.2 Overflow Recovery

The goal of overflow recovery is to truncate the overflowed round to within 7, seconds. One
straightforward solution is to skip retrieving all those media blocks that have missed their
retrieval deadlines specified in equation (4.26). To reduce data loss, instead of dropping a data
block altogether, we can also retrieve a partial data block by reducing the amount of data to
read from Q to Q, such that

1
r+ <fseek(vi - Uifl) + fseek(N - Ui) + % + W) = Tdue (4‘27)
is satisfied. Rearranging, we can then obtain the reduced block size:
. 1
Qd = r' (tdue -1 — fveek(vi - vi—l) - fveek(N - vi) - W) (428)

Depending on the system design, the affected clients can handle data loss in several ways.
First, the client could attempt recovery by means of retransmission if that is supported by
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the system. The effectiveness of this approach will depend on the amount of client buffers as
well as the time required in performing the retransmission. Second, the client could reduce the
effect of data loss by error concealment. The effectiveness will depend on the coding algorithm
employed as well as the type of data lost. In practice, round overflow will be relatively rare as
not only is the overflow probability small, a service operator also rarely runs the media server
at 100% utilization.

4.6 Performance Evaluation

To compare the performance of soft scheduling and hard scheduling, we conducted extensive
simulations using detailed disk models obtained from the DiskSim simulator project [14,
15]. We simulated five modern disk drives from three manufacturers (Quantum Atlas-III,
Quantum Atlas-10K, Seagate Barracuda, Seagate Cheetah, IBM 9ES). The disk models include
parameters such as seek time, rotational latency, number of disk zones, number of cylinders
per zone, number of sectors per track in each zone, etc. Block sizes of 64KB, 128KB, 256KB,
and 512KB are simulated for each of the five disk models.

4.6.1 Service Round Length Distribution

Figure 4.4 shows the round length distribution for the Quantum Atlas-10K disk model
for round sizes of K = 10, 20, and 30 respectively. A remarkable observation is that the

0.08 T T T T T T T
K=20
0.06 -
K=10

o .
£ 004 —
8
-

0.021— -

0 i | | | L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Service Round Length (seconds)
— K=10 (Simulated)
””” K=10 (Normal Approx.)
— K=20 (Simulated)
””” K=20 (Normal Approx.)
— K=30 (Simulated)
””” K=30 (Normal Approx.)

Figure 4.4 Service round length distributions and the corresponding normal approximations
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distributions all resemble the normal distribution. The same observation holds for all five disk
models simulated. In retrospect, this is expected since the round length is a summation of
multiple random variables and hence would approach normal according to the central limit
theorem.

We take advantage of this observation and use the normal distribution in place of F 4 (k)
to compute numerical results in the following sections. As shown in Figure 4.4, the normal
approximation curves closely overlap with their simulated counterparts and hence justify their
use for computing numerical results.

4.6.2 Statistical Streaming Capacity

Once the round length distribution is known, we can compute the usable disk capacity from
equation (4.3). The first set of results is obtained from simulation with media bit-rates of
150KB/s (e.g., MPEG-1 video). Figures 4.5a and 4.5b show the normalized gains in disk
capacity versus overflow probability constraint for bit-rate of 150KB/s and block sizes of
64KB and 128KB respectively. Figures 4.6a and 4.6b show a similar set of results for bit-rate
of 600KB/s (e.g., MPEG-2 video) and block size of 256KB and 512KB respectively. Note that
the normalized capacity gain is defined as

c_C-c

C (4.29)

where C(¢) is the usable disk capacity under soft scheduling with overflow constraint € and C
is the usable disk capacity under hard scheduling. The lowest overflow probability constraint is
setto 1 x 10719, equivalent to a mean-time-between-overflow of 138.5 years assuming the disk
is operated continuously at full capacity 24 hours a day. Depending on the overflow probability
constraint, the block size, and the particular disk model, the capacity gains ranges from around
20% to over 40%.

To further investigate the effect of media block size on capacity gains, we plot in Fig-
ure 4.7 the capacity gains versus media block sizes for media bit-rate of 150KB/s and overflow
probability constraint of 107°. We observe that while the capacity gains vary according to
the chosen block size, the gains remain substantial for all block sizes, with all but one case
exceeding 25%.

4.6.3 Dual-Round Scheduling

To investigate the additional gains achievable using Dual-Round Scheduling, we compute the
normalized additional capacity gain from

_ Cprs(e) — C(¢)

Ce—c (4.30)

and plot the results in Figure 4.8 for block size of 64KB and bit-rate of 150KB/s. The results
clearly show that DRS can further improve capacity gains over single-round scheduling. Note
that there are ups and downs in the curves due to variations of the factor C(¢) in equation
(4.30). We also observe that, in general, DRS is more effective for smaller overflow probability
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Figure 4.9 Usable disk capacity versus scheduling-delay constraint (R = 150KB, ¢ = 107°%)

constraints. This is explained by the fact that it is more likely to have sufficient slack time in
a round to absorb overflow when the overflow probability constraint is small. Given today’s
low memory cost, DRS is an attractive option for achieving better capacity at the expense of
modest increase in buffer requirement.

4.6.4 Early-Admission Scheduling

To study the capacity gains from Early-Admission Scheduling, we compute the media block
size according to equation (4.22), and round it down to multiples of 64KB. The usable disk ca-
pacities for various combinations are shown in Figure 4.9. The horizontal axis is the admission
delay constraint used for computing the block size.

We observe that in all cases EAS can substantially increase the capacity, including both hard-
scheduling and soft-scheduling cases. For example, with an admission delay constraint of one
second, the usable disk capacity increases from 35 to 81 (131% increase) for hard scheduling
and increases from 47 to 107 (128% increase) for soft scheduling. The improvement in DRS
is similar. These dramatic increases in usable disk capacity are explained by the fact that the
admission delay is reduced by two-thirds under EAS. Therefore, substantially larger block size
can be used to improve disk efficiency.
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4.6.5 Buffer Requirement

Soft scheduling does not modify the way in which buffer is managed and hence has the same
buffer requirement as hard scheduling. For disk scheduling algorithms such as SCAN and
CSCAN, the buffer requirement will be two buffers per stream, one for disk retrieval and
one for transmission. If DRS is employed, then additional buffers will be required to stage
early-retrieved media blocks. Using the formulae in Section 4.3.3, we computed the per-stream
buffer requirement for various media block sizes and summarized the results in Figure 4.10.
Here we have two observations. The first observation is that buffer requirement in all cases
increases with larger media block size as expected. For single-round scheduling (SRS), buffer
requirement is independent of disk models. Differences between disk models in the DRS case
are due to differences in the service round length. The second observation is that the buffer
requirement of DRS is only modestly higher than SRS. This is because additional buffers are
only needed to stage retrievals whereas buffer requirement for transmission is not affected
by DRS. As an illustration, a PC media server with 512MB available memory will have
sufficient buffers for more than 1,000 concurrent streams (Quantum Atlas-10K, O = 128KB,
R = 150KB/s) using DRS. Hence, whether DRS should be employed would simply become

a cost-effectiveness issue (i.e., memory cost versus disk costs) to be worked out by the system
designer.
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4.7 Related Work

The principle of statistical multiplexing is not new and has been applied in many different
areas. In this section, we briefly review the related literature.

Vin et al. [7] proposed a statistical admission control algorithm for multimedia servers.
Their admission control algorithm used disk round-length distribution and request size
distribution to admit more streams than deterministic admission control algorithms. Their
simulation results showed that substantially more streams can be admitted compared to the
deterministic case. Instead of using empirical distributions, Chen and Little [8] took an ana-
lytical approach to derive the disk round length function and then use Chebychev’s Inequality
to obtain statistical bounds. By allowing a small probability of overflow, their results also
showed performance gains over conventional hard-scheduling algorithms. Note that both stud-
ies assumed disks without zoning. A more recent work by Nerjes et al. [9] incorporated
zoning into their analytical disk model and used the method of Chernoff bounds to obtain
tighter statistical bounds for the SCAN scheduling algorithm. These pioneering works on
statistical admission control all focused on achieving better usable disk capacity by exploit-
ing the statistical behavior of the disk’s service-round length. The key differences are in
the way the disk’s service-round length is modeled and in the way statistical bounds are
obtained.

Other researchers have studied the disk zoning problem in isolation of the admission control
problem. For example, Birk [10] proposed a data layout technique called Track-Pairing for me-
dia servers with multi-zone disks. Under Track-Pairing, a media stream is placed alternatively
between tracks in the outer zones and matching tracks in the inner zones. During retrieval,
tracks from both zones will be retrieved in a cycle so that a more uniform disk throughput can
be obtained. Another study by Ghandeharizadeh et al. [11] proposed a placement algorithm
called FIXB where media blocks are striped across all disk zones in a round-robin manner.
Media blocks are then retrieved from every zone in a disk cycle so all zones will be utilized
to contribute to the average throughput. There are also other methods such as Logical Track
[12] and deadline-driven techniques [13] for tackling this disk zoning problem but these stud-
ies did not investigate statistical admission control issues in the context of continuous-media
servers.

4.8 Summary

In this chapter, we presented a soft-scheduling approach to increase disk efficiency in
continuous-media servers. Our results obtained from detailed simulations demonstrated that
existing hard-scheduling approaches sacrifice substantial disk efficiency for scheduling sim-
plicity. This is particularly significant for disk drives with zoning. Capacity gains in the
range of 20% to 40% are achievable by soft scheduling. With the additional dual-round
scheduling technique, usable disk capacity can be further increased by another 10-20% de-
pending on disk models and system parameters. In addition, the Early-Admission Schedul-
ing technique allows the use of much larger block size without adversely increasing the
scheduling delay, thus further increasing disk efficiency. Finally, we also presented proce-
dures for detecting and recovering from round overflow, which are necessary for practical
implementations.
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Reliable and Fault-Tolerant
Storage Systems

In addition to streaming capacity, reliability is also an important issue in the deployment of
media streaming services. In particular, a high-capacity media server will likely be equipped
with a large disk array comprising many disks. Failure in any one of these disks, however,
will cripple the entire media server. This is why a RAID is often employed to enable the
media server to sustain the rare but possible disk failures.

Nevertheless, even though the media server can continue operation after a disk failure, the
failed disk and the data it contain will eventually need to be replaced. Otherwise the media
server will be susceptible to data loss in case of additional disk failures. In this chapter we
address this issue and investigate rebuild algorithms to automatically rebuild data stored in a
failed disk into a stand-by spare disk. The rebuild process is automatic, i.e., does not require
human intervention, and is transparent to the on-going streaming service. We investigate
both block-based and track-based rebuild algorithms and present buffer sharing techniques
to reduce the buffer requirement. Our results show that automatic rebuild of a failed disk
can be completed in a reasonable amount of time even at relatively high server utilization
(e.g., less than 1.5 hours at 90% utilization), thus contributing to improve the availability
of the media server.

5.1 Introduction

Since the introduction of media servers, a large number of researchers have investigated ways
to improve server capacity to cope with the bandwidth requirement in delivering high-quality
audio-visual contents to a large number of users. Apart from the challenge of capacity, another
challenge — reliability — readily comes into the picture when companies deploy paid services
to a large user population.

Specifically, a media server usually employs multiple disks in the form of a disk array for
media data storage and retrieval. Media data are then distributed evenly across all the disks
in small units so that data retrieval for a media stream will spread across all disks for load
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balancing. However, one downside of this disk-array-based storage is reliability. In particular,
failure of any one of the disks in the array will render the server inoperable due to data lost.
Worst still, the reliability will decrease further when one adds more and more disks to scale
up the system capacity, thereby limiting the system’s scalability.

This reliability problem has been investigated by many researchers in the last decade [1-8]
and a number of innovative solutions have been proposed and studied. While the exact method
varies, the basic principle is similar, i.e., by adding redundant data to the disks so that data lost
in a failed disk can be reconstructed in real time for delivery to the client.

A media server operates in normal mode when there is no disk failure, and switches into
degraded mode operation once a disk has failed. While existing solutions (e.g., using RAID)
can sustain disk failure without service interruption, operating the media server under degraded
mode is still a temporary measure because additional disk failures will result in system failure
and permanent data loss. Therefore, the media server needs to initiate a rebuild mode to
reconstruct data lost in the failed disk and store them on a spare disk to bring the server back
to normal mode operation. Once the rebuild process is complete, the media server can sustain
another disk failure without total system failure or permanent data loss. This gives the system
operator more time to repair or replace the failed disk with a new spare disk.

It is worth noting that today’s hard disks generally have fairly long mean-time-between-
failure (MTBF) ratings, ranging from 300,000 hours to nearly 1,000,000 hours depending on
the disk model. Consider a media server with 16 disks (including one parity disk) plus a spare
disk. The MTBEF for the disk array computed using a formula derived by Chen et al. [9] is over
42,000 years if the rebuild time is one hour and 4,200 years if the rebuild time is ten hours.
While an MTBF of 4,200 years may appear to be sufficient, Chen et al. [9] also pointed out that
the computed MTBF should be taken conservatively because disk failures in practice are not
necessarily independent and hence the likelihood of a second disk failure could be much higher
after the first disk failure. As the disk array MTBF is inversely proportional to the rebuild time,
it is therefore important to quickly rebuild the failed disk to prevent total system failure.

This chapter addresses this problem by investigating efficient rebuild algorithms to rebuild
the failed disk automatically and transparently in a media server serving constant-bit-rate
(CBR) media streams. Automatic refers to the fact that the rebuild process does not require hu-
man intervention such as locating and loading a back-up tape to restore data. Transparent refers
to the fact that the rebuild process itself can operate without any adverse effect on existing users.

The rest of this chapter is organized as follows. Section 5.2 reviews some previous works;
Section 5.3 presents and formulates the system model studied in this chapter; Section 5.4
presents and analyzes a block-based rebuild algorithm; Section 5.5 presents and analyzes a
track-based rebuild algorithm; Section 5.6 presents a pipelined rebuild algorithm to reduce
buffer requirement in track-based rebuild; Section 5.7 compares the presented algorithms
quantitatively using numerical results; and Section 5.8 summarizes the chapter and discusses
some future works.

5.2 Background

The problem of supporting degraded mode of operation in media servers has been investi-
gated by a number of researchers [1-8]. One approach makes use of data replications such
as mirroring to sustain disk failure. The idea is to place two or more replicas in different
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disks so that at least one copy is available after a disk failure. Examples include the rota-
tional mirrored declustering scheme proposed by Chen er al. [4], the doubly striped mirror-
ing scheme proposed by Mourad [6], and the random duplicated assignment proposed by
Korst [8].

Another approach makes use of parity encoding for data redundancy. A parity block together
with a number of data blocks forms a parity group. The entire parity group can be reconstructed
even if one of the blocks in the parity group is lost in a disk failure. Compared to replication,
parity encoding generally requires less redundancy overhead, but higher buffer requirement for
data reconstruction. This approach has been investigated by Tobagi et al. [1] in their Streaming
RAID architecture, by Cohen et al. [3] in their pipelined disk array, by Berson et al. [2] in their
non-clustered scheme, and by Ozden et al. [5] in their declustered parity scheme and prefetch
scheme.

In another work by Cohen and Burkhard [7], a segmented information dispersal (SID)
scheme was proposed to allow fine grain trade-off between the two extremes of mirroring and
RAID-5 parity encoding. Reconstruction reads under SID are contiguous, leading to better disk
efficiency. The authors showed that the SID schemes match the performance of RAID-5 and
schemes based on balanced incomplete block designs under normal mode, and outperforms
them under degraded mode of operation.

The previous studies all focus on the normal mode and degraded mode of operation. The
problem of rebuilding data in a failed disk to a spare disk in a media server has received little
attention. While there are many existing studies on disk rebuild, they have all focused on data
applications such as online transaction processing (OLTP) servers. Some examples are the
work by Menon and Mattson [10-11], Hou ef al. [12—-13], Thomasian and Menon [14-16],
Mogi and Kitsuregawa [17], and so on.

Disk rebuild in media server applications, however, differs from that of OLTP applications
in two major ways. First, OLTP applications generally do not have the stringent performance
requirement of a media server. In particular, performance of OLTP applications is commonly
measured using response time. While shorter response time is desirable, it is not a condition
for correct operation. Therefore, in disk rebuild, the focus is to balance service response time
with rebuild time. For example, one can use priority scheduling in OLTP applications to give
higher priority to normal requests to minimize their response time and to serve rebuild requests
with the unused disk time.

By contrast, a media server has to guarantee the retrieval of media data according to a
fixed schedule. Even a small delay beyond the schedule will result in service disruption.
Consequently, the rebuild process can take place only if normal media data retrievals can still
be completed on time. This requires detailed disk modeling and the use of worst-case analysis
to determine exactly how much disk time can be spent on the rebuild process. Unlike rebuild
algorithms for OLTP applications, the amount of disk time to spend on rebuild is determined
a priori, given the disk parameters. Moreover, retrievals for playback data and rebuild data
are scheduled to minimize disk-seek time instead of according to priority as in the OLTP
case.

Second, OLTP applications commonly employ the RAID-5 striping scheme to maximize I/O
concurrency [9]. On the other hand, media server applications commonly employ the RAID-3
striping scheme for reasons to be discussed in Section 5.3.1. This fundamental difference in the
striping scheme, together with the inherently round-based disk scheduling algorithm employed
in media servers, requires different designs for the rebuild algorithm.
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5.3 System Model

In this section, we present the system model used throughout the chapter. In particular, we
discuss the rationale for adopting the RAID-3 striping scheme instead of the RAID-5 striping
scheme; we present a storage allocation policy and I/O scheduling algorithm based on the
RAID-3 striping scheme; we present a detailed disk model; and explain a capacity dimensioning
procedure.

5.3.1 Disk Redundancy

In the pioneering study by Patterson et al. [18], a number of striping schemes are proposed to
support disk-level fault tolerance. Among them, RAID-5 is the most widely used in general
data and OLTP applications. RAID-5 is designed to maximize I/O concurrency by allowing
individual disks in a disk array to serve different requests simultaneously. This design choice
is particularly suitable for OLTP applications as request size is generally small and performing
I/Os in parallel can reduce response time.

For media servers, however, RAID-5 is less suitable for two reasons. First, media server
generally uses large data block size to maximize disk throughput. Moreover, minimizing
response time is less important as the disk schedulers typically operate in fixed-duration cycles.
As long as a block can be retrieved within the cycle, the exact response time is irrelevant.

Second, when a RAID-5 disk array operates in degraded mode with a failed disk, significant
overheads (up to 100% depending on the placement policy) will be incurred in the remaining
disks because reconstructing an unavailable block requires reading corresponding blocks from
the same parity group from all the remaining disks. While increases in response time due to this
overhead are not critical in OLTP applications, the same overhead will destroy the performance
guarantee required in a media server. This problem can be solved by performing striping at the
application level instead of at the storage level (cf. Section 3.5.2), with all blocks in a parity
group storing data from the same media stream. However, it is still necessary to retrieve the
entire parity group to reconstruct the unavailable block, and by doing so, the RAID-5 disk
array is practically operated as a RAID-3 disk array with block interleaving instead of bit
interleaving. In this case, the algorithms presented in this chapter will also be applicable.

For the previous two reasons, it is more common to employ the RAID-3 striping scheme for
use in media server applications. Unlike RAID-5, where each disk can serve a different I/O
request, all the disks in RAID-3 participates in serving an I/O request, thereby maximizing
disk throughput. More importantly, no additional overhead will be incurred by the remaining
disks during degraded mode. This is because each I/O always retrieves the entire parity group
from all the remaining disks and hence reconstruction can take place immediately. We will
focus on this RAID-3 striping scheme in the rest of the chapter.

5.3.2 Storage Allocation and I/O Scheduling

Table 5.1 summarizes the notations used in this chapter. Let N, be the number of disks in the
server where (Np — 1) of them store data while the remaining one stores parity. The storage is
divided into blocks of Q bytes as shown in Figure 5.1. Assuming the disks are homogeneous,
then a parity group comprises one block at the same location from each one of the Np disks.
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Table 5.1 Summary of notations

Description Symbol Notes
Average media bit-rate R, Parameter in bytes per second (e.g.,
150,000 Bps)
Media block size 0 Parameter in bytes (e.g. 65,336 bytes)
Length of a transmission cycle T, Computed from Q/R, in seconds
Number of disks Np Parameter
Disk storage capacity G Parameter in bytes
Number of recording surfaces in a disk Nauf Parameter in numbers
Number of tracks per recording surface Nyg Parameter in numbers
in a disk
Size of a disk sector S Parameter in bytes
Number of zones in a disk Nyone Parameter in numbers
Number of sectors per track in zone i Y; Parameter in numbers
Minimum number of sectors per track Yonin Parameter in numbers
Maximum number of sectors per track Yinax Parameter in numbers
Transfer rate in zone i X; Computed, in bytes per second
Minimum transfer rate Xomin Computed, in bytes per second
Disk platter rotation rate w Parameter in cycles per second
Fixed overhead in disk read o Parameter in seconds
Seek time in disk read tseek Random variable in seconds
Rotational latency in disk read trot Random variable in seconds
Transfer time in disk read Lr Random variable in seconds
Disk seek function fseer () Seek time for a seek distance of n tracks
Maximum number of requests that can be K Computed, in number of requests
served in a service round
Head-switching time in disk thsw Parameter in seconds
Total track-to-track seek time in serving track Random variable, in seconds
a request
Earliest completion time for retrieving track i e; Random variable, in seconds
Latest completion time for retrieving track i l; Random variable, in seconds
Minimum time for retrieving one track A Parameter in seconds
Deviation bound for track-retrieval Dagyn Parameter in seconds
completion times
Server load/utilization u Variable, in number of streams
Number of active streams for a server U Variable, in number of streams
Server utilization o Variable, real number ranging from 0 to 1
Number of rebuild blocks retrieved by a ny Computed, in number of media blocks
working disk in a round
Rate at which rebuild data are retrieved from Ry Computed, in bytes per second
the working disks
Rate at which lost data are rebuilt Riebuild Computed, in bytes per second
Buffer requirement for playback process B, Computed, in bytes
Bufter requirement for rebuild process B, Computed, in bytes
Total buffer requirement without buffer Bsum Computed, in bytes
sharing
Total buffer requirement with buffer sharing Bshare Computed, in bytes
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Figure 5.2 Reconstructing media data with erasure correction

The parity block is computed from the (Np — 1) data blocks using exclusive-or computation.
The storage is then allocated in whole parity groups instead of individual blocks to ensure that
data blocks within a parity group always store data from the same media stream. This RAID-3
striping scheme enables the system to mask the failure of any one of the Np disks to continue
operating through erasure correction processing (Figure 5.2).

Retrievals and transmissions are organized into rounds as shown in Figure 5.3. We assume
that all media streams are encoded with constant-bit-rate encoding at the same bit-rate. Short-
term bit-rate variations (e.g., due to I, P, B frame differences in MPEG) are assumed to be
absorbed by client buffers and hence the disk can simply retrieve exactly one media block
from each of the Np disks for each active media stream in each round. Note that this can
also be extended to support other bit-rates which are multiples of a base rate. These higher-
rate streams can be treated as multiple base-rate streams and hence we will ignore this minor
complication in the rest of the chapter.

With the previous disk scheduler, a complete parity group, including the (Np — 1) media
blocks and the associated parity block are all retrieved for each stream in a service round. This
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Figure 5.3 Retrieval and transmission scheduling algorithm

enables the server to sustain non-stop service even when one of the disks fails by computing
the unavailable media block using erasure-correction computation over the remaining blocks
in the parity group.

Let R, be the media bit-rate. Then the retrieved (Np — 1) media blocks will be transmitted
in the next service round and the service round length is thus given by

Np —1
T, = Wp — 1@ 5.1
R,
Under this scheduling algorithm, the total number of buffers required is given by
B,=KNpQ+ K(Np —1)Q (5.2)

where the first term is the buffer requirement for retrieval, the second term is the buffer
requirement for transmission, and K is the maximum number of requests that can be served in
a service round (see Section 5.3.4). Transmission requires fewer buffers because the retrieved
parity block is not transmitted and hence the buffer can be reused.

For a server with a large number of disks, the single parity disk may not provide sufficient
redundancy to maintain acceptable reliability. This problem can be solved by dividing the disks
into clusters where each cluster has its own parity disk (e.g., Streaming RAID [1]). Multiple
disk failures can be sustained as long as no more than one disk fails in a cluster. Results
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discussed in this chapter can be directly extended to these clustered schemes and hence we
will focus on single-cluster disk arrays in the rest of the chapter.

5.3.3 Disk Performance Model

To model the disk, we extend the disk model introduced in Chapter 3 by incorporating additional
details such as head-switching time and retrieval across track boundary. Let N4 be the number
of tracks per recording surface (or number of cylinders), N,sbe the number recording surfaces,
W be the disk rotation speed in rounds per second, S be the sector size in bytes, N, be the

number of zones, Y¥; (i = 1,2, ..., Nyp,.) be the number of sectors per track in zone i. Note
the disk transfer rate, denoted by X; (i =1, 2, ..., N,e), is also zone dependent and is given
by

X; =SY,w (5.3)

To simplify notations in later sections, we define

Xmin = min{X;|[i = 1,2, ..., Nyone} 64
Ymin = mln{Ylll =1, 27 ey Nzone} (55)
Yiax = max{Y;|i = 1,2, ..., Nype} (5.6)

and we shall leave out the subscript i in X; and Y; when representing random variables (i.e.,
X, Y) instead of system parameters.

To model disk performance, we first consider the time it takes to serve a request. Specifically,
disk time for retrieving a single request can be broken down into four components, namely,
fixed overhead (e.g., head-switching time, settling time, etc.) denoted by «, seek time denoted
by Zscer, rotational latency denoted by t,,,, and transfer time denoted by 7.

Lreqg = O + Lseek + tror + Ly (5.7)

Seek time depends on the seek distance and can be modeled by a seek function fy..x(n)
where 7 is the number of tracks to seek. For rotational latency, the random variable ¢,,, will
be uniformly distributed between 0 and W', Finally, the transfer time t comprises three
components:

Ly = % + thsw + track (58)

where the first term is the time it takes to read the media block of Q bytes from the disk surface;
the second term is the total head-switching time incurred if the media block spans more than
one track in the cylinder; the last term is the total track-to-track seek time incurred if the media
block spans more than one consecutive cylinder.

Take the Quantum Atlas-10K disk model as an example, transfer time for retrieving a 64KB
media block ranges from 4.59ms to 6.69ms depending on the zone, head-switching time is
0.176ms, and track-to-track seek time is 1.25ms. Therefore, unless one sacrifices some storage
(7-10% depending on zone) to prevent a media block spanning two tracks, the effect of track-
crossing should not be ignored.
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We note that the previous disk model is only an approximation and is chosen for the sake of
simplicity. The results can be extended to more detailed and complex models for more accurate
performance predictions.

5.3.4 Capacity Dimensioning

The goal of capacity dimensioning is to determine the maximum number of concurrent media
streams that can be sustained with deterministic performance guarantee. Based on the previ-
ous disk model, we first obtain an upper bound for the length of a service round. Rewriting
equation (5.7) by replacing t,5 with the transfer time formula in equation (5.8), we have

Treg = O + Lseek + thsw + tirack + tror + % 5.9

Assuming the use of CSCAN serving k requests per round and the seek time function is
concave, then the seek time overhead is maximized when the requests are evenly spaced along
the disk surface, i.e.,

t?el:])é = max {tyek} = freek(Nuk/(k + 1)) (5.10)

Note the use of (k 4 1) instead of k to account for the effect of head-repositioning delay in
CSCAN [19-20].

To determine an upper bound for #, and #,,., we note that a media block of size Q bytes
can span at most

s = [ Q/(S¥min)] (5.11)

recording surfaces. Therefore the worst-case total head-switching time can be computed from

thead} = thsw 5.12
max {fneqa} ’VSYmin—‘ h (5.12)
Similarly, the same request can span at most
Neyl = _Q (5.13)
SY, min N suf
cylinders. Hence, the worst-case total track-to-track seek time can be computed from
max {tfrack} = L ffeek(l) (5.14)
S Ymin N suf l

Finally, the maximum rotational latency is simply given by W~! while the maximum reading
time can be obtained from

9| _
max{}} = ‘ (5.15)
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While summing the previous upper bounds will also bound the request service time, we note
that most, if not all, modern disk drives support a read-on-arrival feature [3] (all five disk drive
models studied in Section 5.7 support read-on-arrival). Specifically, the service time model
assumes that if the disk head arrives to the track to find it passing through the middle of
the media block, it will wait until the first sector of the media block rotates back to the
head position before commencing reading. The read-on-arrival feature removes this restriction
and allows the disk to start reading data immediately even in the middle of the requested
media block. This avoids the worst-case scenario of waiting one complete rotation before
reading.

Therefore, for a service round of k requests, the round length will be bounded from above
by

0 0 0T,
1(k) = k PR [N PRI DU e % Fmax
® <“ e+ [SYmJ o [SYmmNWJ Jueet1) + [SYmJ T laeer

(5.16)

where the first term represents the worst-case time to read k requests using CSCAN and the
second term is the head-repositioning time.

Reconsider the scheduling algorithm in Section 5.3.2, the server needs to ensure that a
complete parity group must be retrieved within time 7, to maintain continuous transmission:

(k) < T, (5.17)

This timing constraint, also known as the continuity condition, determines the maximum
number of concurrent media streams, denoted by K, that can be supported by the server:

(Np — DO
R

v

K:max{klt,(k)f ,k=1,2,...} (5.18)

5.4 Automatic Data Rebuild

A system is said to operate under normal mode when there is no failure. The system switches
to degraded mode of operation once a disk failure occurs. Under this degraded mode of
operation, unavailable data are recomputed in real time from the remaining disks to sustain
service. Although still operational, the system must return to normal mode of operation as
soon as possible because any further disk failure will cripple the entire system. The goal of
data rebuild is to bring the system back to normal mode of operation by reconstructing data
lost in the failed disk into spare storage hardware.

A number of modern disks and disk controllers not only can detect a disk failure, but can
also predict a disk failure in advance. This early-warning signal can be used to initiate data
rebuild even before the actual failure occurs. However, there are also complications that must
be handled properly. First, if the data disks are updated (i.e., being written to) during the
rebuild process, then the spare disk will have to be updated accordingly as well. This is less
of a problem in a media server as the disks primary serve read requests. One can also disallow
updating until the rebuild process completes. Second, if the actual failure occurs in a disk other
than the predicted one, then the rebuild process will have to be aborted and then restarted to
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rebuild the disk that failed. Nevertheless, this is equivalent to the case without failure prediction
and hence will not degrade rebuild performance. For simplicity, we will not make use of this
failure prediction feature in the rest of the chapter.

5.4.1 Sparing Scheme

To support automatic data rebuild, a dedicated spare disk is reserved to store data reconstructed
in the rebuild process. The spare disk is connected to the server at all times but is not used
during normal mode and degraded mode of operation. In this sparing scheme, the recomputed
data will be stored in the spare disk, which will replace the failed disk once the rebuild process
is completed. Note that human intervention is still required to replace the failed disk with
another spare disk to cater for another disk failure but this is less time-critical.

5.4.2 Rebuild Algorithm

The challenge of automatic rebuild is to proceed with the rebuild process without interrupting
user services. Specifically, all retrievals in a disk service round must finish within 7, seconds
and the addition of rebuild requests must not violate this limit. Clearly, we can only utilize
unused disk capacity to serve rebuild requests. Once rebuild blocks from the surviving disks
are retrieved into memory, the server can then perform an erasure-correction computation to
reconstruct the lost media blocks and store them to the spare disk. This process repeats until all
the media blocks lost in the failed disk are reconstructed to the spare disk, which then simply
replaces the failed disk to bring the system back into normal mode of operation. The failed
disk will later be replaced or repaired manually and a new spare disk will be reinserted into
the system to prepare for the next rebuild cycle.

5.4.3 Analysis of Rebuild Time

A key performance metric in evaluating automatic data rebuild algorithms is rebuild time,
defined as the time required to completely rebuild data in the failed disk to the spare disk.
For a server with Np disks (one of which has failed) and one spare disk, the rebuild process
consists of reading (Np — 1) blocks for each parity group from the surviving (Np — 1) disks
and reconstructing the lost media block for storage in the spare disk. Note that this is true even
if the failed disk happens to be the parity disk because all (Np — 1) data blocks in a parity
group are required to recompute the parity block for storage in the spare disk.

Letu,0 < u < K,bethe number of active streams in the server. We define a server utilization
p,0 < p <1, as follows:

p= (5.19)

Now the number of rebuild blocks retrieved by a working disk in a service round, denoted
by np, will be given by

n,=K-—u (5.20)



94 Scalable Continuous Media Streaming Systems

which is the same for all disks. Given that there are (Np — 1) working disks, the rate at which
rebuild data are retrieved, denoted by R,, is then given by

_ om0 _ (Np— Dm0
7, (Np = D(Q/R))
= nyR, (5.21)

R rb

where the numerator is the total amount of rebuild data retrieved in a service round, and
the denominator is the length of a service round. Note that if R,; is only the rate at which
rebuild data are retrieved, the reconstruction process will consume (Np — 1) rebuild blocks
to reconstruct one lost media block. Therefore, the rebuild rate R,.;,4, defined as the rate at
which lost data are reconstructed, can be computed from R,;:

R, R
Riepuitla = d = sl (5.22)
(Np—1) (Np—1)
Using equations (5.19) and (5.20), we can simplify equation (5.22) into
(K —u)R,
Riebuita = ——
(Np — 1)
1 ) (5.23)
= P kg,
(Np — 1)

Equation (5.23) computes the achievable rebuild rate under a given server utilization. Let G
be a disk’s storage capacity. Assuming storage in the entire disk array is fully utilized, we can
then calculate the rebuild time from

G _ G(Np—1
Rrebuild KRU(l - ;0)

Trepuita = (5.24)

5.4.4 Buffer Requirement

Two types of buffers are required for a media server supporting automatic rebuild. First, the
server needs buffers for the normal retrieval and transmission of media blocks for playback
(henceforth called playback buffers). Second, the server also needs buffers to support the rebuild
process (henceforth called rebuild buffers).

The playback buffer requirement is given by equation (5.2) in Section 5.3. To determine the
requirement for rebuild buffers, we consider the rebuild process depicted in Figure 5.4. Note
that write operations on the spare disk are scheduled using the same periodic scheduler as read
operations on the data disks. Rebuild blocks retrieved in a round are used to reconstruct the
lost media blocks for writing to the spare disk in the next round. This algorithm simplifies the
server implementation as the same scheduler can be used for both read and write operations.

For every unavailable media blocks reconstructed, (Np — 1) blocks must be retrieved for
erasure-correction computation. Therefore, the buffer requirement for rebuild is given by

B, =K(Np—-1DQ+KQ (5.25)
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Figure 5.4 Block-based automatic data rebuild.

where the first term is the buffer requirement for retrieval and the second term is the buffer
requirement for storing the reconstructed media data blocks. The multiplication factor K
represents the maximum number of blocks that can be retrieved in a round for rebuild. The
total buffer requirement can then be computed from the sum of equations (5.2) and (5.25):

Bsum - Bp + Br
— K3Np — O (5.26)

It may occur to the reader that while simple in implementation, this periodic write scheduler
is inefficient in buffer usage because reconstructed blocks are buffered for up to one cycle
before writing to the spare disk. However, we discover that a simple buffer-sharing scheme
will completely eliminate the additional buffer requirement.

Specifically, we notice that the server would need fewer buffers for playback and more
buffers for rebuild when the utilization is low, and vice versa. This motivates us to investigate
buffer-sharing between the retrieval process and the rebuild process. Specifically, the server
can allocate a pool of, say, Ny buffers (each Q bytes) during initialization and then allocate
the buffers to the retrieval process and the rebuild process in an on-demand manner.
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Now consider the retrieval process. Given u active streams, the number of playback buffers
required is given by

B,(p) =u@Np — HQ (5.27)
For the rebuild process, the buffer requirement when there are u active streams is given by
B, = (K —u)NpQ (5.28)
Hence, the combined buffer requirement with buffer sharing is then given by

Bgrare = u(2Np — 1D)Q + (K —u)NpQ
= ((Np — Du+ KNp) O
<Q@Np—-1DKQ Vu (5.29)

which surprisingly just equals the buffer requirement for the retrieval process. Therefore, with
the proposed buffer-sharing scheme one can use the same round-based disk scheduler for both
reading and writing without any additional buffer.

5.5 Track-Based Rebuild

Most, if not all, modern disk drives employ zoning to increase disk storage capacity as discussed
in Section 3.6. A side-effect of zoning is the variation in track size. In particular, inner tracks
have less storage capacity than outer tracks. Due to this uneven track-size problem, the disk
scheduler in most continuous-media server designs retrieves media units in fixed-size blocks
instead of tracks. While reading the entire track can eliminate the rotational latency, the amount
of buffer required to maintain a balanced disk schedule is often prohibitively large [6].

Unlike the retrieval process, the rebuild process is a non-real-time process that does not
require data retrieval at a constant rate. Consequently, we can employ track-based retrieval for
the rebuild process to improve rebuild performance and keep using block-based retrieval for
the streaming process to maintain low buffer requirement.

5.5.1 Rebuild Algorithm

Figure 5.5 depicts the track-based rebuild algorithm. In reading data from the data disks,
playback data are still retrieved in fixed-size blocks but rebuild data are retrieved in tracks.
This allows the elimination of rotational latency during rebuild data retrieval.

Specifically, in block-based retrieval, the disk head must wait for the required disk sec-
tor to rotate to beneath the disk head before data transfer can begin. In the worst case
where the required sector has just passed over the disk head after searching is com-
plete, the disk will have to wait for one complete round of rotation before beginning data
transfer.

By contrast, under track-based retrieval, the disk head can start data transfer as soon as
seeking is completed because the entire track is to be retrieved. Clearly, the reading time is
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Figure 5.5 Track-based automatic data rebuild.

simply the time for one disk rotation, i.e., W~!. After reading the corresponding tracks from
all (Np — 1) disks, the server can then reconstruct the lost track and write it to the spare disk.

Additionally, the rebuild process rebuilds tracks sequentially starting from one end of the
disk surface with all track retrievals performed back-to-back in one go. For example, let
yi,i=0,1,...,(u—1)and y; < y; fori < j, be the track numbers for the u data blocks to
be retrieved for playout in a round. Suppose that the next track to rebuild is track number x
and a total of v tracks are to be rebuilt. Then the order of retrievals will be yo, yi, ..., i, X,
Yjs.--> Yu—1, Where y; < x < y;. In other words, all v tracks are retrieved in one go between
the retrievals of block i and j. Consequently, the seek time between track retrievals is reduced
to tser(1). The rebuild process will retrieve as many tracks as possible in a round for rebuild
as long as retrieval performance for normal data blocks can still be guaranteed.

5.5.2 Analysis of Rebuild Time

To model the rebuild process, let u (1 < K) be the number of media blocks to retrieve for
playback and v be the number of tracks to retrieve for rebuild in a service round. Using the
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disk model in Section 5.3.3, the modified service round length is bounded from above by

tr(ll, U) =u (Ol + fseek(Ntrk/(u + 2)) + lri—‘ Thsw + IVSmeNst

S Ymin —‘ fseek( 1 )

+ IVSYQ —‘ Wl) + freek(Nu/(u +2)) + v (Ol + thew + W*l)

+ ’VUTl—‘ t‘veek(l) + f?eek(Ntrk/(u + 2)) (530)
The first term is the service time for reading # media blocks; the second term is the additional
seek time due to rebuild; the third term is the time for reading v tracks, the fourth term is the
track-to-track seek time for reading rebuild tracks, and the last term is the head-repositioning
delay.

Now invoking the continuity condition in equation (5.17), we can determine the maximum
number of tracks that can be retrieved for rebuild given there are already u data requests in a
round, denoted by V (u), from

(5.31)

V(u) =max{v|t,(u, v) < M,v =0,1, }

R,
Given a disk with Ny, recording surfaces and N, tracks per surface, the rebuild time can then
be computed from

Ntrstuf . (ND - 1)Q
V(u) R,

Thebuita = (5.32)

5.5.3 Buffer Requirement

Under track-based rebuild, tracks retrieved in a service round will be consumed by the recon-
struction process to compute the lost tracks for writing to the spare disk in the next service
round. With a sector size of § bytes and up to Y,,,, sectors per track, the maximum buffer
requirement for rebuild can be obtained from

B, = V(O)(ND - 1)SYmax + V(O) SYmaX (533)

where the first term is the buffer for reading from the (Np — 1) working disks and the second
term is the buffer for writing to the spare disk.
Without buffer sharing, the total buffer requirement would be the sum of equations (5.2) and
(5.33):
B = Bp + B,

= KQ2Np — 1)Q + V(O)NpSYmax (5.34)

Using buffer-sharing technique, we can compute the combined buffer requirement at a given
server utilization from

Bshare(u) = M(ZND - 1)Q + V(M)NDSYmax (535)
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and the maximum buffer requirement can be computed from
Bgpare = max {Bshare(u)|u =0,1,..., K} (536)

Intuitively, the larger the track size (i.e., SY,,.) compared to the block size (i.e., Q), the
more likely that the buffer requirement will be dominated by the rebuild process, and vice
versa. In the next section, we present a novel pipelined rebuild algorithm to reduce this buffer
requirement.

5.6 Pipelined Rebuild

The possibility of track-based rebuild in multi-zone disks stems from the fact that rebuild
requests are non-real-time and hence can be served at variable rates. Another observation is
that tracks are always retrieved sequentially to avoid seek overhead. This sequential property
differs from normal data requests where the order of retrieval can change from round to round
due to the CSCAN algorithm. We present in this section a pipelined rebuild algorithm to take
advantage of this sequential property to reduce the buffer requirement to insignificant levels.

5.6.1 Buffer Requirement

Figure 5.6 depicts the pipelined rebuild algorithm. The scheduling algorithm for retrieving data
from the data disks are the same as track-based rebuild. The difference is in scheduling the
write operations to the spare disk. Specifically, tracks reconstructed from track-based rebuild
are buffered until all track retrievals are completed before writing to the spare disk. By contrast,
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Disk N1
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D Media block for playback

\ -
& Tracks read for rebuild ?"ﬂ Reconstructed tracks

Figure 5.6 Pipelined rebuild under ideal scenario of synchronized disks
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in pipelined rebuild as soon as a track is retrieved from each of the (Np — 1) surviving disks,
the server will reconstruct the lost track and store it to the spare disk immediately. In this way,
the track reading and writing processes operate simultaneously in a pipelined manner.

Under this pipelined rebuild algorithm, the rebuild buffer requirement is reduced to

B, = (ND - 1)SYmax + SYmax (537)

where the first term is the buffer required for reading and the second term is the buffer required
for writing.

However, the scenario in Figure 5.6 is idealized with the assumption that track retrievals
for all surviving disks complete at the same instant. In practice, this is unlikely to be the case
due to variations in disk rotational latencies incurred in reading media blocks prior to reading
the rebuild tracks. To account for this disk asynchrony, we introduce a deviation bound Dy,
defined as the maximum difference between the time the first track retrieval completes and the
time the last track retrieval completes.

Mathematically, let #; ; be the retrieval completion time for reading rebuild track 7, i =
0,1,..., Ny, bydisk j, j =0,1,...,(Np — 1), as shown in Figure 5.7. We define a track
group as the set of corresponding tracks from all (Np — 1) surviving disks that forms a parity
group. For example, track group i comprises track i from each of the (Np — 1) disks.

Let ¢; and /; be the earliest completion time and latest completion time respectively for track
group i:

e = min{t,-,j IVj} and [; = max{t,-,j Vj} (5.38)
Then Dy, can be computed from

Dygsyn = max{l; — e;|Vi) (5.39)

[ITTETTITTE,
ot (LI NTTTTITTTITTIT,
Disk 2 | Disk Failed o | [] media biocks for piayback
ocs (LINE TTTTTTTTITI
oscs (UNBRLTTTITTITINNT

\\ Earliest completion time (g}

N Latest completion time (/)

I:I Tracks yet to be retrieved

|
Tracks in track group i

Tracks buffered due to disk asynchrony

Figure 5.7 A snapshot of track retrievals at time ¢t = /; with disk asynchrony
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Let b, be the number of buffers (each SY,,,, bytes) allocated for the rebuild process. Then
at time ¢t = [;, all (Np — 1) tracks for track group i are completely retrieved. Due to disk
asynchrony, some of the disks may have completed retrieving track i earlier than /; and have
started reading subsequent tracks. In particular, the earliest time for a disk to start reading
tracks i + 1 will simply be equal to ¢;. Let A be the minimum time for retrieving a track:

A=a+thy +W! (5.40)

Then a disk can retrieve up to track

it P‘ gﬂ (5.41)

by time ¢ = [;. In the worst case, all but the last disk have performed early retrievals and the
buffer requirement (in number of tracks) will be given by

li—e,-

by = (Np — 1)+ [ 1 (Np —2)+ 1 (5.42)

where the first term is the buffers for reading track group i; the second term is the buffers for
early retrievals; and the last term is the buffer for writing to the spare disk.
Finally, the maximum buffer requirement can be obtained from

l,-—e,-

B,:max{(ND—l)—i-[ —‘(ND—2)+1‘Vi}SYmaX

= ((ND -D+ [%—‘ (Np —=2)+ 1) S¥max (5.43)

of which equation (5.37) becomes a special case of equation (5.43) with D, = 0.

5.6.2 Active Disk Synchronization

In deriving the buffer requirement in equation (5.43), we assumed that disks that completed
reading a track earlier than others will continue reading the subsequent tracks. While this
appears to be making efficient use of disk time, it is in fact counter-productive. Unlike trans-
action processing (OLTP) applications, residual disk time in a continuous-media server will
not be used for retrieving additional media blocks due to the periodicity of the disk schedule.
Therefore, even if there is residual disk time after reading all media blocks and rebuild tracks,
the disk will just sit idle until the next service round.

This observation motivates us to introduce an active disk synchronization (ADS) scheme
to further reduce the buffer requirement in equation (5.43). Specifically, track retrievals for
the surviving disks under ADS are actively synchronized according to the slowest disk. For
example, in reading track group i, all disks will start their retrieval for track i at time r = [;_;
instead of #;_; ; for disk j as shown in Figure 5.8. Note that the added delay will not affect
the normal retrieval process or the rebuild process as they are dimensioned according to the
worst-case scenario.
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Theoretically, with ADS the deviation-bound D, will become zero. In practice, small
deviations might still exist because the server is likely to send disk commands serially to each
of the surviving disks. Assuming this deviation is small compared to A, then

Dasvn
[TW =1 for Dyy, < A (5.44)

and the buffer requirement is reduced to

B, = 2Np — 2) S¥max (5.45)

5.7 Performance Evaluation

Using the performance models derived in the previous sections, we present in this section
numerical results computed for five disk drive models to quantitatively compare the studied
algorithms. The disks’ parameters are extracted from the disk specifications in Ganger ef al. [21]
and summarized in Table 5.2. Unless stated otherwise, the results are computed using a disk
array configuration of four data disks, one parity disk, and one spare disk.

5.7.1 Comparison of Rebuild Time

Figures 5.9 and 5.10 show the rebuild time versus server utilization for block-based rebuild
and track-based rebuild respectively. We observe that the rebuild time increases modestly
until around a utilization of 0.8, after which it increases rapidly due to the limited capacity
available for rebuild. For example, rebuild time for the Quantum Atlas-10K disk increases from
44.4 minutes at p = 0.5 to 221.9 minutes at p = 0.9 for block-based rebuild. Comparing
Figure 5.9 with Figure 5.10, it is clear that track-based rebuild significantly outperforms block-
based rebuild. With the same disk model, the rebuild time for track-based rebuild is only
12.8 minutes at p = 0.5 and 87.7 minutes at p = 0.9.

This result is encouraging, as rebuilding a failed disk requires less than 1.5 hours even at a
server utilization of 0.9. Given that a service provider is likely to dimension a system to operate
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Table 5.2 Parameters of five disk models

Quantum Quantum Seagate Seagate

Parameter Atlas-III Atlas-10K Barracuda Cheetah IBM 9ES
No. of tracks 8057 10042 5172 6581 11474
No. of surfaces 10 6 5 8 5
Fixed overhead 0 ms 0ms 0 ms 0 ms 0 ms
Head-switching time 0.999 ms 0.176 ms 0.1 ms 0.195 ms 0.062 ms
Spinning speed 7200 rpm 10025 rpm 7200 rpm 10033 rpm 7200 rpm
Sector size 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes

Max track size
Min track size
Disk capacity
Track-to-track seek

256 sectors
168 sectors
9.1GB
1.663 ms

334 sectors
229 sectors
9.1GB
1.245 ms

186 sectors
119 sectors
2GB
1.943 ms

195 sectors
131 sectors
4.5GB
0.636 ms

390 sectors
247 sectors
9GB
1.086 ms

Source: Ganger et al. [21]
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Figure 5.9 Rebuild time versus server utilization for block-based rebuild (Q = 64KB, Np = 5)
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Figure 5.10 Rebuild time versus server utilization for track-based rebuild (Q = 64KB, Np = 5)

well below such a high utilization to minimize blocking, the rebuild time in practice is likely
to be even shorter.

5.7.2 Sensitivity to Server Utilization

Figure 5.11 plots the reduction in rebuild time by track-based rebuild versus server utilization.
We observe that track-based rebuild consistently achieves significant rebuild-time reductions
over a wide range of server utilization. This result demonstrates that performance gain of the
track-based rebuild algorithm is stable with respect to server utilization.

5.7.3 Sensitivity to Media Block Size

In Figure 5.12, we plot the rebuild time versus the media block size at three server utilizations
of 0, 0.25 and 0.5 respectively. We observe that rebuild time for block-based rebuild decreases
with increases in media block size as larger block size increases the overall disk efficiency. By
contrast, rebuild time for track-based rebuild is relatively insensitive to the media block size
used as retrievals are done in whole tracks instead of blocks.

Figure 5.13 plots the reduction in rebuild time versus the media block size. As expected, the
reduction decreases for increases in media block size as rebuild performance for block-based
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Figure 5.11 Comparison of rebuild time reduction by track-based rebuild (Q = 64KB, Np = 5)

rebuild improves. However, even at a very large block size of 640KB, track-based rebuild still
outperforms block-based rebuild by about 30%.

5.7.4 Buffer Requirement

We plot the buffer requirement for the studied algorithms versus number of disks in Figure 5.14
for the Quantum Atlas-10K disk model. We observe that track-based rebuild without buffer
sharing has the largest buffer requirement as expected. However, even with buffer sharing
track-based rebuild still requires more buffers than block-based rebuild. This is due to the fact
that the block size (64KB) used is smaller than the track size (varies from 114.5KB to 167KB)
and hence the rebuild buffers dominate the buffer requirement.

By contrast, the pipelined rebuild algorithm has only a slightly larger buffer requirement than
the best scheme — block-based rebuild with buffer sharing. For a five-disk server, pipelined
rebuild requires only 0.7MB to 1.5MB more buffers than block-based rebuild with buffer
sharing (see Table 5.3). Note that block-based rebuild with buffer sharing is already optimal
because the same server will require just as much buffer without the rebuild option. Therefore,
with pipelined rebuild, we can achieve a significant gain in rebuild performance through track
rebuild and at the same time avoid the large buffer requirement.
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Figure 5.12 Rebuild time versus media block size (Quantum Atlas-10K)

5.8 Summary

In this chapter we have investigated two algorithms for rebuilding data lost in a failed disk to a
spare disk automatically and transparently. We first presented a block-based rebuild algorithm
derived from the conventional CSCAN disk scheduler and analyzed its performance. A buffer-
sharing scheme was then introduced to eliminate the additional buffer requirement during
rebuild. Next, we presented a track-based rebuild algorithm that can reduce the rebuild time
by 70-80%. The large buffer requirement incurred in track-based rebuild is then reduced to
insignificant levels by a novel pipelined rebuild algorithm. Numerical results show that it is
feasible to completely rebuild a failed disk using the presented rebuild algorithms in a practical
amount of time without causing any performance degradation to the media server.

While the algorithms presented in this chapter are designed for media servers serving CBR
media streams, they can also be extended to media servers serving variable-bit-rate (VBR)
media streams. One possibility is to replace fixed-size block retrievals with variable-size block
retrievals, with the block size corresponding to the video bit-rate. As long as the sizes of the
blocks to be retrieved in a disk round is known, we can use the same worst-case analysis as
in Section 5.5 to determine how much disk time to allocate for rebuild. The rest of the rebuild
process will be similar.
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Table 5.3 Buffer requirements (Q = 64KB, Np = 5)

Quantum Quantum Seagate Seagate

Rebuild Algorithm Atlas-IIT Atlas-10K Barracuda Cheetah IBM 9ES

Block-based rebuild w/o 107 MB 161 MB 67 MB 175 MB 126 MB
buffer sharing

Block-based rebuild with 69 MB 104 MB 43 MB 112 MB 81 MB
buffer sharing

Track-based rebuild w/o 182 MB 326 MB 132 MB 244 MB 272 MB
buffer sharing

Track-based rebuild with 114 MB 222 MB 89 MB 132 MB 191 MB
buffer sharing

Pipelined rebuild 70 MB 105 MB 44 MB 113 MB 83 MB

In addition to the rebuild algorithms studied in this chapter, there are also other techniques
that may further improve rebuild performance. In particular, when serving active media streams
in rebuild mode, the system has to recover lost data blocks for playback purpose. By storing
these already reconstructed data blocks to the spare disk, one may be able to further shorten
the rebuild time.

However, storing individual data blocks to the spare disk might also adversely affect disk
efficiency in track-based rebuild. First, compared to track-based rebuild, more time is spent
seeking rather than data transfer in block-based rebuild. Hence, the reduction in reading from
the data disks is offset by the loss in disk efficiency in the spare disk. Second, depending on
the placement policy, rebuilding individual blocks may also require changes to the track-based
rebuild algorithm as some tracks will have some of the blocks already reconstructed. Therefore,
the performance impact is not obvious and more work is required to determine the applicability
of such technique.
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Media Data Streaming

In the previous chapters the focus was on retrieving media data from the disk storage to
the main memory for transmission to the client. In this chapter we follow the data flow to
investigate issues in streaming the media data over the network to the client hosts. We can
separate the media streaming problem into two aspects: protocol and scheduling. The former
covers the issues in the design of the transport/application layer protocols between the media
server and the media client. Some key issues include resource identification, playback
controls, media data synchronization, authentication, and digital rights management, etc.
The latter covers the data transmission issues such as scheduling media data transmission
to sustain continuous media playback, transmission of variable-bit-rate media streams, and
adaptation of the media stream to changing network conditions.

This chapter addresses the protocol issues, discusses the feasibility of streaming media
data using the existing Internet transport protocols (TCP/UDP), and gives a brief overview of
the recently standardized Internet streaming protocols RTSP, RTP, and RTCP. The schedul-
ing issues will be addressed in Chapters 7 and 8.

6.1 Streaming over TCP/UDP

Before discussing the specialized streaming protocols, let us first investigate the feasibility of
using the existing Internet protocols for streaming applications. If we consider the transport
layer protocols, then the Internet already supports the Transmission Control Protocol (TCP) [1]
and the User Datagram Protocol (UDP) [2]. TCP is the transport protocol used by most of the
Internet applications, including the WWW, FTP, telnet, and so on. It is a connection-oriented
protocol that has built-in error control, flow control, and congestion control [3, 4]. In other
words, TCP shields the application from much of the complexities in managing traffic flowing
through the Internet. This greatly simplifies application development and TCP also possesses
a desirable property — it shares network resources with other competing traffic flows in a fair
manner [5]. So, given the many desirable features of TCP, the natural question is, can we
simply stream media data over TCP as depicted in Figure 6.1?

The answer depends on the bandwidth requirement, network characteristics, and the desired
quality of service. For example, if network bandwidth is abundant compared to the media data
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Figure 6.1 Media streaming over the Transmission Control Protocol (TCP)

rate, then streaming media data over TCP will likely work well. In fact, many web portals simply
host media contents using ordinary web servers. Thus, when the client application requests
the media content using the Hyper-Text Transfer Protocol (HTTP) [6], the web server simply
sends back the media content over HTTP, which in turn makes use of TCP for data delivery.

In this case the web server does not explicitly stream the media content as it simply sends
the media object as fast as TCP will allow, regardless of the media object’s intrinsic data rate.
The client application after receiving certain amount of data often can begin playback without
waiting for the whole media object to be completely received. As long as the media data flow
can keep up with the playback data rate, the end result is very much like streaming.

Streaming over HTTP/TCP has many obvious advantages. First, since the web server is used
to serve media contents, the service provider will not need to invest in expensive specialized
media servers. Second, deployment is simplified as the traffic is treated in the same way as
ordinary web traffic, thus enabling them to transparently traverse firewalls and gateways. Third,
the wide support for HTTP enhances compatibility with the client applications. Most media
player software supports pseudo-streaming over HTTP/TCP protocol in addition to their own
proprietary streaming protocols.

The downside of HTTP/TCP streaming, however, is in performance. At the application level,
the web server is not designed to deliver time-sensitive media data and thus it may not always be
able to sustain a smooth and jitter-free media playback, e.g., when the web server load is high. At
the transport level, TCP’s features have been developed for generic applications and thus have
no provision for time-sensitive and bandwidth-sensitive applications such as streaming media.

For example, TCP’s congestion control algorithm ramps up the transmission speed slowly
after connection set-up (i.e., the slow-start algorithm), regardless of the bandwidth demand
of the application [3, 4]. Moreover, the error control feature in TCP enforces correct and in-
sequence data delivery. This means that if a TCP segment is lost, the TCP sender will simply
keep retransmitting the lost segment until either an acknowledgement is received from the
TCP receiver (see Figure 6.2) or it gives up trying and shuts down the connection. In a media
streaming application this may not always be desirable as media data have intrinsic timing
information, i.e., they have to be played back at a certain time or the data will become useless.
Consequently, if the retransmitted data arrive after the playback deadline, the data will no
longer be useful and are discarded by the receiver. In this case the bandwidth consumed in
retransmitting the data is simply wasted.

Worst still, TCP’s congestion control algorithm will interpret packet loss as an indication
of network congestion and thus throttle back its transmission rate by means of reducing the
congestion window size [3, 4]. This could end up stalling the sender from sending any more data
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until the congestion window grows back to normal after receiving a number of acknowledge-
ments from the receiver. Again, this sender throttling will cause problems in media streaming
as deferring transmission of the media data may cause them to miss the playback deadline,
thus rendering them useless even if they are eventually received by the client.

The User Datagram Protocol (UDP), on the other hand, does not suffer from the problems
of TCP as it is a relatively simple protocol that transfers datagrams without flow control,
congestion control, or any error control at all. Therefore, the protocol itself will not introduce
additional delay (ignoring processing time and packetization delay) like the flow control and
congestion control algorithm in TCP, making it suitable for delivering time-sensitive media
data. Nevertheless, in media streaming it is sometimes still necessary to perform flow control, to
react to network congestion, as well as handling packet losses. The key is that when performing
these functions the timing and bandwidth requirement of the media data must be taken into
account. This can be achieved by implementing another layer of streaming protocol on top of
UDP, where the streaming protocol will handle the streaming-specific functions while UDP is
simply used to deliver the data and control messages. We review in the next section some of
the more popular streaming protocols in the Internet.

6.2 Specialized Streaming Protocols

Over the years a number of streaming protocols have been developed both by commercial com-
panies and the Internet community. On the commercial side, streaming solution companies
often develop their own proprietary streaming protocols for use in their streaming products.
For example, Microsoft developed a Microsoft Media Services (MMS) for use in its Windows
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Media streaming solution. MMS employs TCP for the exchange of control messages and can
send the media data over either UDP or TCP. RealNetworks also developed their own Real-
Networks Data Transport (RDT) for use in their streaming solution. Because of the proprietary
nature of these protocols we will not cover them further in this chapter.

On the other hand, the Internet community has also developed open standards for media
streaming. This includes the Real Time Streaming Protocol (RTSP) defined in RFC 2326 [7],
the Real-time Transport Protocol (RTP) and the RTP Control Protocol (RTCP), first introduced
in RFC 1889, later revised in RFC 3550 [8], which became an official standard in May 2004.

6.2.1 Real-Time Streaming Protocol (RTSP)

The Real-Time Streaming Protocol (RTSP) is an application-layer protocol designed to control
the delivery of media data (e.g., play, pause, and seek) with embedded timing information, such
as audio and video. The protocol is independent of the lower-layer protocol. Thus, RTSP can
be carried over TCP, UDP, or other transport protocols. The syntax of RTSP shares many sim-
ilarities with HTTP/1.1, thus simplifying implementation and deployment. However, besides
the syntax similarities, RTSP differs from HTTP in many important ways.

First, unlike HTTP, RTSP is a stateful protocol, thus requiring the host to maintain state
information of a streaming session across multiple RTSP requests. Second, both the RTSP
server and client can issues RTSP requests. Finally, the media data are to be delivered out-of-
band, i.e., using a separate protocol such as, but not limited to, the Real-time Transport Protocol.

In a typical streaming application (see Figure 6.3), the client will first obtain a presentation
description file using out-of-band methods (e.g., through the web using HTTP). The presen-
tation description file describes one or more presentations, each composed of one or more
synchronized media streams. The presentation description file also contains properties of the
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media streams, such as the encoding format, to enable the client to select and prepare for
playback of the media. Each controllable media stream is identified by a separate RTSP URL,
which is similar to HTTP UTL in that it identifies the server hosting the media stream and the
logical path identifying the media stream. Note that the media streams in a presentation may
come from multiple servers and each stream is controlled via a separate RTSP session. The
interested readers are referred to RFC 2326 for the specification of the protocol.

6.2.2 Real-Time Transport Protocol (RTP)

RTP is designed for transporting data in real-time applications such as audio and video confer-
encing. The protocol has been designed to be independent from the lower-layer protocol which
ultimately carries the RTP packets. In the Internet RTP packets are often carried over UDP
datagrams, which provides multiplexing of RTP flows within the same host (using different
UDP port numbers for different flows). RTP also supports data delivery over both unicast and
multicast network transports (e.g., IP multicast). A control protocol — RTP Control Protocol
(RTCP) —is defined as part of the standard to provide control functions such as synchronization,
reception statistics reporting (e.g., loss and delay jitter), participants monitoring, etc.

It is worth noting that RTP/RTCP on their own do not provide quality-of-service control/
guarantee or perform network resource reservations. The protocols are designed to provide the
necessary framework, such as header fields (sequence number, payload identification, etc.) in
RTP and quality feedbacks (loss and delay jitter) in RTCP, for developers to implement their
own quality-of-service mechanisms which are likely to be network- and application-specific.
Thus, the RTP/RTCP protocols are often extended and integrated into the application instead
of existing as standalone general purpose transport protocols like UDP and TCP.

Another point worth noting is that the standard RFC 3550 does not define how the media
data is to be stored inside the RTP payload. This is specified in a profile specification in separate
RFCs, such as RFC 3551 (a profile for audio and video data) [9].

Figure 6.4 depicts the header format for RTP packets. The header is divided into a 12-byte
fixed header that exists in all RTP packets, and a variable part containing optional headers such

8 bits 9 8 bits 9 8 bits 9 8 bits
v[ex] cc M PT | Sequence Number
Timestamp
Synchronization Source (SSRC) Identifier

Fixed part of 12 bytes, variable optional headers.
¢ V is the version number (V=2 in current RTP version)

¢ P is padding bit, set if there are padding bytes in the payload.
¢ X set if there is one header extension after the fixed header.

* CC counts the number of contributing source identifiers

following the fixed header.
* M used as a marker (e.g., for frame boundary), defined by a profile.
¢ PT is the payload type as defined in the profile.

Figure 6.4 Format of the RTP packet header
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as the contributing source identifiers (typically inserted by RTP mixers), followed by the media
data payload. A payload type field is included in every RTP packet to enable the sender (or a
RTP mixer) to dynamically switch to a different encoding format in the middle of a session.
This feature will be useful in media adaptation, e.g., switching to a lower bit-rate codec when
available network bandwidth drops. Every RTP packet also includes a sequence number and a
timestamp. The sequence number specifies the position of the payload within the media stream
being carried by the RTP flow. Thus, the receiver can always resequence the incoming data
into a proper media data stream even if out-of-order data delivery occurs in the underlying
network.

If a multimedia stream contains multiple media streams, such as an MPEG system stream
that includes an audio stream and a video stream, then the individual media streams should
be delivered over separate RTP flows, in this case, one for audio and one for video. Note
that the timestamp used in each RTP flow is not measured in real time but a sampling instant
derived from a clock that increments monotonically and linearly in time. The clock frequency
is application and payload format dependent. Thus, the timestamps from, say, an audio stream
and a video stream may not be directly comparable. Instead, the sender will periodically send
Sender Report packets using RTCP to communicate to the receivers the proper interpretation
of the timestamps for synchronization purpose. There are many other features in RTP/RTCP
and it is beyond the scope of this chapter to cover all the features. Interested readers are referred
to RFC 3550 for more details.

The RTSP/RTP/RTCP protocols have since gained increasing support from the Internet
community as well as from commercial vendors. Many commercial streaming products now
also support RTSP/RTP/RTCP streaming in addition to their proprietary streaming protocols.
Nevertheless vendors have kept some advanced features within their proprietary protocols,
such as multi-rate-encoded media streams used in adaptive media streaming.

6.3 Summary

Media data transmission comprises two separate issues — protocol and scheduling. With the
standardization of RTSP/RTP/RTCP set of protocols, more and more media streaming appli-
cations will support this set of Internet standards, thereby enhancing the inter-operability of
media servers and clients from different vendors. Scheduling, on the other hand, is a more
complex problem involving issues in admission control, resource allocation/reservation, and
data transmission scheduling. Ideally, if the media data have a fixed playback data rate, and
the network supports resource allocation (i.e., ability to allocate and guarantee a given amount
of bandwidth from a source to a destination for the duration of the media streaming session),
then the problem of transmission scheduling is nothing more than keeping the transmission
rate the same as the playback data rate.

In practice, both assumptions may be invalid — the media playback data rate may not be
constant and the available network bandwidth may also fluctuate. For example, the choice
of media encoder (CBR versus VBR codec) determines if the media playback data rate will
vary; and the underlying network architecture, e.g., whether it is a best-effort network or
one supporting QoS guarantee, determines if the available network bandwidth will fluctuate.
In Chapter 7 we investigate the scheduling problem for streaming variable bit-rate media
over a mixed-traffic network that supports resource allocation/reservation. This scenario is
representative of residential broadband networks operated by a service provider, who have
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control over the design and operation of the physical network. For best-effort networks such
as the Internet, resource reservation is obviously unavailable and thus we need to approach the
media streaming problem from another angle — adapting the media to the network bandwidth
available, which will be covered in Chapter 8.
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Streaming Variable Bit-Rate
Media Streams

Compared to streaming constant bit-rate media streams, it is substantially more complex to
stream variable bit-rate media streams due to the inherent bit-rate variations and the need
to maintain playback continuity at the media client. If the network supports bandwidth
reservation, then the challenge is to determine how much bandwidth to reserve for streaming
the VBR media stream. Obviously it will be wasteful to reserve the peak bandwidth of the
VBR media stream for the entire duration of the media stream, and so it is necessary not only
to reserve bandwidth, but also to adjust the amount of bandwidth from time to time to reduce
bandwidth wastage. In this chapter we first introduce media bit-rate smoothing techniques to
smooth out the rate variations for more efficient bandwidth utilization. Next, we investigate
media streaming in mixed-traffic networks where traffics from data services as well as other
continuous media streams compete for the same pool of network resources. We develop a
monotonic decreasing rate scheduler that can guarantee streaming performance in mixed-
traffic networks and evaluate its performance.

7.1 Introduction

Future broadband networks will support a wide variety of services with very different traffic
characteristics. Among them, multimedia applications such as video-on-demand (VoD) are ex-
pected to consume a significant portion of the bandwidth. Therefore, the efficient transmission
of delay-sensitive variable bit-rate (VBR) video data [1] is likely to be one of the key challenges
in managing resources in such networks. Apart from the frame-by-frame bit-rate fluctuations
that are also found in constant bit-rate (CBR) videos, VBR videos tend to exhibit long-range
bit-rate variations in time scale of minutes. Such fluctuations complicate the admission of video
streams and the scheduling of video data transmission to provide performance guarantee.

To tackle this problem, researchers have studied various ways to reduce the bit-rate variations
of prerecorded VBR videos — video bit-rate smoothing [2—14]. Video bit-rate smoothing is a
technique to reduce bit-rate variations in the retrieval and transmission of VBR encoded videos.
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Figure 7.1 A feasible piecewise-smooth transmission schedule for VBR video delivery

The principle of smoothing is work-ahead, i.e., by transmitting data at a bit-rate higher than the
playback bit-rate during periods of lower playback rates. Excess video data are then buffered at
the client side so that the transmission bit-rate can be reduced during periods of high playback
rates by consuming video data from the buffer for playback. Note that smoothing not only
reduces bit-rate variations, but also reduces the peak data rate as well.

Let A(?) be the cumulative data consumption function for a video (see Figure 7.1), defined
as the amount of data that needs to be accumulated at the client for playback 7 seconds after
playback starts. Let S(¢) be the transmission schedule for the video, defined as the amount of
data transmitted to the client  seconds after playback starts. Ignoring network delay, processing
delay, and interactive playback controls, it is clear that a feasible transmission schedule must
not be lower than A(¢) for all 7 so that the client will not run out of video data during playback:

S(1) = A1) (7.1)

On the other hand, if the client buffer size is limited to, say, b bytes, then the transmission
schedule cannot be too aggressive either, or else client buffer overflow will occur. This buffer
constraint can be represented by a function B(¢) defined as

B(t)=A(@)+b (7.2)
and thus to prevent buffer overflow we must ensure that
S(1) = B(1) (7.3)

Together, the two curves A(¢) and B(¢) define the feasible region for all feasible transmission
schedules:

B(t) = S(1) = A(») (7.4)

Clearly, there is an infinite number of feasible transmission schedules than can fit within
the feasible region. Thus, one can pick a transmission schedule to optimize various measures
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of the system’s performance. For example, McManus and Ross [2] suggested dividing the
entire video stream into fixed size intervals and then transmitting each interval with a constant
bit-rate to enable control of the rate adjustment frequencies. Feng et al. investigated smoothing
algorithms to minimize the number of rate increases [3], and to minimize the number of rate
changes [4]. In another two studies by Feng [5, 6], the author observed that in some cases, an
algorithm targeted at minimizing a certain parameter might make too aggressive prefetches or
allow too large buffer residency times. The author then proposed a rate-constrained smoothing
algorithm [5] and a time-constrained smoothing algorithm [6] to solve these problems. Chang
et al. suggested that transmitting at a constant rate yields lower overhead and complexity.
Therefore, they proposed a smoothing algorithm that switches a single constant transmission
rate on and off to adapt to the video bit-rates [7]. Salehi ez al. investigated the optimal smoothing
algorithm [8] that produces smoothing schedules with minimum peak rates and rate variations.
Interested readers are referred to the excellent study by Feng and Rexford [10] for a detailed
survey and comparison of various smoothing algorithms.

Besides smoothing algorithms based on finding a path inside the feasible region, there are
also other related studies in this area. For example, Zhang [9] proposed smoothing using
buffers located in multiple intermediate nodes in the network. Zhao and Tripathi [11] proposed
an algorithm to multiplex smoothed VBR streams to further reduce bit-rate variations. Liu
et al. [12] observed that scene changes in a video usually correlate with bit-rate variations, and
thus proposed an algorithm to detect scene changes to allocate a constant bit-rate for each scene.
For real-time videos, Rexford et al. [13] proposed an online, lossless smoothing algorithm that
uses a sliding window. Liew and Tse [14] proposed using client buffer occupancy to control
encoding parameters for smoother encoder output. In another study, Duffield et al. [15] used
network status feedback to control the encoding parameters.

7.2 Streaming in Mixed-Traffic Networks

After smoothing is performed, the transmission schedule of a VBR video will be reduced
to a series of constant-rate segments (see Figure 7.1). The media server can then reserve
bandwidth for these segments before transmitting them over the network to the client. As
long as the bandwidth reservations are successful, timely delivery of the video data to the
client can be guaranteed. However, two factors in practice often affect the effectiveness of this
approach.

First, although the bit-rate of each smoothed segment is constant, the system still needs
to successfully complete the bandwidth reservation process before the next segment can be
transmitted. The adjustments needed may contain both downward adjustments (switching from
a higher bit-rate to a lower bit-rate), and upward adjustments (switching from a lower bit-rate to
a higher bit-rate). The former case is straightforward as less network resource will be required,
but the latter case is more complicated. In particular, if the network concurrently carries traffic
from other applications (e.g., Web, FTP, other video streams, etc.), it is conceivable that the
upward adjustments could fail when the additional bandwidth is not available at that moment.
Clearly this will result in either disruption of the video stream or severe quality degradation
such as playback jitter. As the instantaneous bandwidth consumption in a network with mixed
traffics is inherently unpredictable, this problem is unavoidable unless one dedicates a portion
of the network resources to a video stream. However, this clearly will result in significant
over-engineering and thus defeat the whole purpose of smoothing in the first place.
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Second, the processing delay of bandwidth adjustment may introduce a subtle problem.
Regardless of the resource reservation protocols adopted, a sender (e.g., a video server) that
desires to adjust a connection’s bandwidth must first send protocol messages to one or more
network controllers (e.g., routers). The network controllers may in turn need to contact other
controllers along the path of the connection before the request can be granted or denied. In any
case, this process will take time and the time it takes will depend on a lot of factors, such as
the network topology, the reservation protocol adopted, the current utilization of the network,
the number of resource-reservation requests being processed, loss of control messages, etc.
The point is, not only the processing itself takes time, the time it takes also varies. This creates
another problem in upward bit-rate adjustments as delay or even transmission losses may
occur if an adjustment cannot be completed in time. Conceivably one can issue the upward
adjustments well ahead of time to prevent delay/loss but estimating the correct lead-time is by
no means trivial.

We address the two previously discussed problems in this chapter by developing a scheduler
for transmitting VBR videos that can provide deterministic performance guarantee in a mixed-
traffic network and is immune to random delays in processing network resource reservation
requests. The principle of the scheduler, called Monotonic Decreasing Rate (MDR) scheduler,
is to eliminate upward bit-rate adjustments altogether. That is, the transmission schedule is
composed of a series of segments, of which each segment is assigned a bit-rate strictly lower
than the previous segment. Now without the need for upward bit-rate adjustment, resource
reservations are guaranteed to be successful. Moreover, the timing of the bit-rate adjustments
is no longer critical as video data transmission will not be affected by a later-than-expected
downward bit-rate adjustment.

Intuitively, one will expect the MDR scheduler to require more client buffer as video data
are transmitted more aggressively than other smoothing algorithms. Using real-world VBR
video bit-rate traces, we quantify the trade-off and show that for some video streams, the
buffer requirement is indeed increased when compared to smoothing algorithms. To tackle this
problem, we develop an Aggregated Monotonic Decreasing Rate (AMDR) scheduler to enable
one to control the buffer requirement to the same level as smoothing algorithms. Surprisingly,
simulation results show that the AMDR scheduler can achieve performance comparable to
existing smoothing algorithms even when equipped with the same buffer requirement. Thus,
using the AMDR scheduler, one can provide performance guarantee in streaming VBR videos
over mixed-traffic networks with no trade-off in terms of admission complexity, network
utilization, client waiting time, and client buffer requirement.

7.3 Monotonic Decreasing Rate Scheduler

As discussed in Section 7.2, the fundamental limitation of existing smoothing algorithms is
the need for upward rate adjustments, of which correct operation depends on the successful
and timely completion of network resource reservations. To remove this limitation, we can
use only downward rate adjustments in the transmission schedule. In other words, the initial
transmission rate will be the highest, with each subsequent rate lower than the previous one.
We call this algorithm the monotonic decreasing rate (MDR) scheduler for obvious reasons.

In this chapter, we focus on prerecorded videos. The MDR schedule for a video is computed
offline and is stored with the video for use during video streaming. We present an algorithm to
compute the MDR schedule in the next section and derive several properties of the algorithm
in Section 7.3.2 to Section 7.3.4.
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7.3.1 Computing the MDR Schedules

Compared to existing smoothing algorithms, the MDR property introduces an additional con-
straint — only downward rate adjustments can be used. Note that although this reduces the
set of possible schedules within the feasible region, it still does not uniquely determine the
transmission schedule for a given video. In fact, there are still an infinite number of possible
MDR schedules within the feasible region.

To select a MDR schedule, we need to consider the resultant resource requirements. The
choice of the MDR schedule can affect the peak transmission rate and the client buffer re-
quirement, both of which should be minimized. Interestingly, it turns out that we can always
compute a MDR schedule that has minimum peak rate and minimum client buffer requirement,
among all possible MDR schedules.

We define a MDR transmission schedule with the set of rate-time tuples: {r;, T;|i =
1,2,...,n}, where r; and T; are the transmission rate and commencing time for the ith
segment in the transmission schedule as depicted in Figure 7.2; and n is the total number of
segments in the MDR transmission schedule. For a MDR transmission schedule, the rates will
be monotonic decreasing, i.e., r; > r;, forall i, j wheren > j > i > 1.

To compute the schedule, we begin from the origin as depicted in Figure 7.2, and assign the
first segment with the highest transmission rate, i.e.,

w‘w . o} (7.5)

ry =max{

and mark the time, denoted by T, at which the rate is maximized. The tuple {r;, T;} then
represents the first segment of the MDR transmission schedule. Next, we repeat this process
with T as the starting point to obtain {r,, 7> }, and so on. In general, the transmission rate for
the next segment can be computed from

(7.6)

Tigl =max{w'\7’t > Ti}

r;: transmission rate for segment i

-

-
gy
-

Second bit-rate reduction point: 7,

Accumulated Data

First bit-rate reduction point: 7|

A()

v

Time

Figure 7.2 A monotonic decreasing rate schedule generated by the MDR scheduler
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until it reaches the end of the video. It can be shown (see Appendix) that the above pro-
cedure guarantees that the generated transmission schedules are monotonic decreasing. The
transmission schedule is then defined from the resultant rate-time tuples {r;, 7; }:

t
S(t) = /S(‘L’)d‘[, where s(t) =r;, for T; <t < Ty 7.7)
0

The rate-time tuples are then stored together with the video data. The video server will
simply schedule the transmission of the video according to this MDR transmission schedule.
Its monotonicity property ensures that once a stream is admitted, there will always be sufficient
system bandwidth for the whole duration of the video stream, even if there are other random
traffics such as web, file transfer, etc., in the system.

This MDR scheduler has several additional desirable properties, namely modest admission
complexity, minimum peak rate, and minimum client buffer requirement. These are discussed
in the following sections.

7.3.2 Admission Complexity

We first consider admission complexity, defined as the number of computations needed to
determine if a new video stream can be admitted to a system with finite bandwidth. For existing
smoothing algorithms with transmission schedules consisting of both upward and downward
rate adjustments, it is necessary to check the system’s bandwidth availability to determine if
admitting the new stream will exceed the system capacity.

Let U be the total system capacity and U () be the system utilization at time 7. Suppose the
new stream request arrives at time #y, then the system can admit the new stream if and only
if there is sufficient system capacity available for the entire duration of the new video stream,
ie.,

Ut)+ St —1) < U, foralltfromtyto (fp + L) (7.8)

In practice, we do not compute equation (7.8) in the continuous time domain as I/O schedules
are likely to be organized into service rounds (e.g., disk retrieval rounds). Let § be the round
length. Then, for a video of length L, there will be w = L /§ rounds. For clarity, we refer to the
system scheduler’s cycles as rounds, counting from zero from the start-up of the system; and
refer to a video title’s data unit to be retrieved and transmitted in a round as a block, counting
from zero from the beginning of the video.

Letu;(i = 0,1, ...) be the system’s utilization in round i, and v;(j =0, 1,...,w — 1) be
the transmission rate of block j of the video, which can be computed from the transmission
schedule {r;, T;}. Then, for anew client arriving at round A, the admission process will require w
additions to compute the new aggregate bandwidth utilization for round A toround A + w — 1:

W=t +via, i=AA+L . A+w—1 (7.9)

and w comparisons to determine if the network capacity is exceeded in any of those w rounds.
The admission complexity is then of order O(2w) for a successful admission.
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For an unsuccessful admission, the complexity will be lower as the admission test in equa-
tion (7.9) can be stopped once the system utilization is exceeded in any of the w rounds. In this
case, the client will have to wait until the next round to repeat the admission test. This process
repeats until either the client is admitted or the client leaves the system due to excessive wait.
Therefore, the admission complexity is further multiplied by the waiting time.

By contrast, the MDR scheduler requires a very simple admission test with only one single
computation. As MDR schedules are all monotonic decreasing, this implies that the available
system bandwidth utilization u; is a non-increasing series. It follows that if the first transmission
rate can be accommodated, i.e.,

up+vyg < U (7.10)
then the rest of the schedule is guaranteed to not exceed the system capacity as well:

Ui +vi_y, i=AA+1,...,A+w-—1
< up + vi_4, - u; is non-increasing
<ug+vy, -~v;(j=0,1,..., w— 1)is non-increasing

=U, ~(7.10) (7.11)

If the admission is successful, then the system utilization u}s will be updated according
to equation (7.9). Otherwise, the admission test will be repeated in the next round. There is
one key difference compared to general smoothing algorithms: the system utilization update
needs to be performed once only, even if the client has to wait and perform multiple rounds
of admission tests. This is because the admission test can be completed using equation (7.10)
without computing equation (7.9) under the MDR scheduler. This leads to significantly lower
complexity in the admission process.

7.3.3 Peak Transmission Rate

The first rate in a MDR schedule is the peak transmission rate. Compared to the video’s data
consumption function A(t), this peak rate r; is bounded from the above by the consumption
function’s peak rate:
{ dA(t) }
ro <max{ ——=|Vt > 0 (7.12)
dt

The equality will only occur when the peak rate of the cumulative data consumption function
appears right at the origin. In this case, any feasible transmission schedule with zero start-up
delay will have a start-up rate larger than or equal to the start-up rate of the cumulative data
consumption function. This is stated in Theorem 7.1:

Theorem 7.1. The MDR scheduler generates schedules with the minimum peak rate among
all feasible schedules with zero start-up delay.

Proof. The peak rate of a MDR schedule is the first rate 7, so it is sufficient to prove that
S(¢) has the smallest slope among all feasible schedules for # in 0 < ¢ < T;. We prove this by
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contradiction. Let Y (¢) be a feasible schedule with zero start-up delay:
Y(t)> A@®) (7.13)

and has bit-rate no larger than the MDR schedule S(#) before the first bit-rate reduction point
T1 N i.e.,

Y(i)<S§(@#), forO0<t<T (7.14)

As S(t) is a straight line in the range (0, 7), equality in equation (7.14) holds only if Y (¢)
is equivalent to S(¢). As we assumed they are different, that implies

Y'(t) < S'(t), forO<t<T, (7.15)

Integrating equation (7.14) on both sides with respect to #:

T T,
/Y’(r)dt < /S’(t)dt (7.16)
0 0
and we obtain
Y(T) < S(T)
= A(TY) (7.17)

which implies there will be a buffer underflow at the point 7. This contradicts our assumption
that Y (¢) is a feasible schedule and thus the result follows. [ |

7.3.4 Client Buffer Requirement

Similar to video smoothing, the MDR scheduler also requires the client to buffer video data
ahead of their playback schedule. Given a MDR schedule S(#), the buffer requirement is the
maximum difference between the transmission curve S(¢) and the data consumption curve
A(1):

B = max {S(¢t) — A(¢)|Vt = 0} (7.18)

As discussed in Section 7.3.1, there are infinitely many feasible transmission schedules that
are also monotonic decreasing. The one defined in Section 7.3.1 however, has the minimum
client buffer requirement as stated in Theorem 7.2:

Theorem 7.2. The MDR scheduler generates schedules with the minimum buffer requirement
among all feasible monotonic decreasing rate schedules.

Proof. We will prove by contradiction. Let X(f) be a feasible monotonic decreasing rate
schedule, i.e.,

X(t) = A(t) (7.19)
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Assume X(¢) has lower buffer requirement than the MDR transmission schedule S(¢), then
3ty such that S(#y) > X(t9) > A(tp) (7.20)
We know that S(¢) must coincide A(¢) at the bit-rate reduction points, i.e.,
S(T;) = A(T;), fori=1,2,...,n (7.21)

where n is the number of bit-rate reduction points. Now X (¢) cannot be lower than S(¢) at the
bit-rate reduction points {7; | i =0,1,2...n}. This implies that the 7, in equation (7.20)
cannot be the bit-rate reduction points:

to# T, fori=12....n (7.22)

However, as S(¢) is constructed with straight lines connecting the bit-rate reduction points,
X (t) cannot be lower than S(¢) in between two consecutive bit-rate reduction points either:

to & (T_y, T)), fori=23,....n (7.23)

Otherwise X (¢) will be convex in the range (7;_;, T;), which contradicts with the assumption
that X (#) has monotonic decreasing rates. From equations (7.21) and (7.22), we conclude that
to does not exist and the result follows. |

7.4 Performance Evaluation

We evaluate performance of the MDR scheduler and compare it to Optimal Smoothing [1] in
this section. To obtain realistic performance results, we collected the video bit-rate traces of
274 different videos from DVD movies for simulation. These are full-length (average 5,781
seconds long and 4,348 MB in size), MPEG-2 encoded videos with an average bit-rate of
6.02 Mbps. The bit-rate varies from below 0.5 Mbps to over 18 Mbps. Long-range (minutes to
tens of minutes) bit-rate variations are common in these real-world MPEG-2 encoded videos.

We implemented the MDR scheduler presented in Section 7.3.1 in software and used it to
compute the transmission schedule for the videos. We also implemented the Optimal Smoothing
algorithm [1] for comparison purposes. The generated transmission schedules are then fed into
a simulator developed using CNCL [16] to obtain simulation results.

The simulation model consists of a system with clients connecting through a 1 Gbps backbone
network to a server storing the 274 VBR videos. We assume that the backbone network is the
bottleneck of the system. For simplicity, we ignore delay and loss in the network. New stream
requests are generated according to a Poisson process with various mean inter-arrival times
to simulate different system utilization. A new stream request randomly selects a video from
the 274-video collection with uniform probability. Note that we adopt the uniform popularity
instead of the Zipf popularity model [17] because the video titles have varying bandwidth
requirements and lengths. Consequently, using the Zipf popularity will result in large variations
in the simulation results, depending on which of the video titles happened to be picked as the
hot titles. To obtain more consistent results for comparison, we therefore adopt the uniform
popularity model.
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Table 7.1 Comparison of admission complxity between the Optimal Smoothing and the MDR
schedulers

Unsuccessfull Admission # Successfull Admission
Scheduler Comparisons Additions Comparisons Additions
Temporal smoothing
complexity at p = 0.6* 0.00 (0.00) 0.00 (0.00) 5782.52 5782.52
complexity at p = 0.7* 0.00 (0.00) 0.00 (0.00) 5782.20 5782.20
complexity at p = 0.8* 0.19 (0.17) 0.19 (0.17) 5782.04 5782.04
complexity at p = 0.9* 5.32 (4.89) 5.32 (4.89) 5782.08 5782.08
MDR scheduler
complexity at p = 0.6* 0.00 (0.00) 0.00 (0.00) 1 5782.60
complexity at p = 0.7* 0.00 (0.00) 0.00 (0.00) 1 5782.28
complexity at p = 0.8* 0.17 (0.17) 0.17 (0.17) 1 5782.11
complexity at p = 0.9* 4.83 (4.83) 4.83 (4.83) 1 5782.16

Notes: *Numerical results are measured as the average number of computations required to admit a
client at a given average network utilization (p), averaged over requests for all 274 videos.

# Numbers in parentheses are the average number of unsuccessful admission tests performed for each
request.

To admit a new stream, network resource reservations are performed according to the gen-
erated transmission schedules on a per-stream basis. Admission test for schedules generated
by optimal smoothing is performed with a round length of one second (cf. Section 7.3.2). Each
simulation run simulates a duration of 3,000 days. We summarize the results in the following
sections.

7.4.1 Admission Complexity

Table 7.1 compares the admission complexity of Optimal Smoothing and the MDR sched-
uler. The simulation results are obtained from counting the average number of computations
required to admit a new client. We separate the computations incurred in unsuccessful and
successful admissions. For unsuccessful admissions, the computation complexity is compa-
rable for the MDR scheduler and the Optimal Smoothing scheduler. By contrast, the MDR
scheduler requires significantly fewer computations than the Optimal Smoothing scheduler for
successful admissions, which dominates the total admission complexity.

7.4.2 Waiting Time versus System Utilization

To evaluate the bandwidth efficiency of the MDR scheduler, we collected the mean and worst-
case client waiting times for both schedulers and plot the results in Figure 7.3 a,b for three
system bandwidth settings. The results show that the MDR scheduler achieves performance
similar to Optimal Smoothing for all three system bandwidth settings and across system uti-
lization from 10% to 90%. This suggests that the MDR scheduler can guarantee VBR video
delivery in mixed-traffic networks with negligible trade-off in latency — the key performance
metric experienced by the end users.
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7.4.3 Client Buffer Requirement

Although Theorem 7.2 shows that the generated MDR schedule always has the minimum buffer
requirement among all monotonic decreasing rate schedules, the actual buffer requirement still
depends on A(t) or the bit-rate profile of the video. Figure 7.4 shows the distribution of client
buffer requirements for the 274 videos tested. The average amount of client buffer required is
76.4 MB. Of the 274 tested videos, 78% require no more than 100 MB of client buffer and
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Figure 7.4 Distribution of client buffer requirement for MDR transmission schedules

92% require no more than 140 MB of client buffer. The worst-case client buffer requirement is
394.5 MB. This result is strikingly close to the 20/80 rule, also known as the Pareto’s principle
—78% of videos require no more than 20% (100 MB/394.5 MB) of client buffer.

With the trend towards integrating multiple information and entertainment services ranging
from the Web, network gaming, to digital video recorder into a home entertainment center de-
vice, the added buffer requirement can easily be accommodated. Nevertheless, the 20/80 obser-
vation does suggest that the client buffer utilization will be low most of the time. We investigate
in the next section an alternative solution that provides better control on the buffer requirement.

7.5 Aggregated Monotonic Decreasing Rate Scheduler

Results from the previous section show that the MDR scheduler can achieve performance com-
parable to Optimal Smoothing, and yet can provide guaranteed video delivery in a mixed-traffic
network. The trade-off, as Section 7.4.3 reveals, is the increased client buffer requirement,
which in a few rare cases reaches close to 400 MB. While even this amount of client buffer can
easily be accommodated in future home entertainment centers with built-in hard disk, there
are still two inefficiencies.

First, our results show that 78% of the video titles in our collection of 274 full-length video
titles require no more than 20% of the worst-case buffer requirement. This suggests that the
client buffer utilization will be low most of the time and most of the reserved buffer space will
be unused.

Second, although video titles with exceedingly large client buffer requirements are rare,
the MDR scheduler cannot prevent such cases as the buffer requirement depends on the indi-
vidual video’s bit-rate profile. In other words, the worst-case buffer requirement is, in theory,
unbounded.

To tackle these two deficiencies, we introduce in this section an Aggregated Monotonic
Decreasing Rate (AMDR) scheduler that applies the MDR principle to aggregated network
flows so that relaxed transmission schedules can be used to accommodate those rare video
titles that otherwise require very large buffer requirements.
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7.5.1 Bandwidth Reservation

The large buffer requirement in those rare videos is a result of the MDR scheduler’s mono-
tonicity property. However, as we proved in Section 7.3.4, the MDR scheduler already achieves
minimum buffer requirement among all monotonic decreasing rate schedules, implying that
the only way to reduce the buffer requirement is to relax the monotonicity requirement.

Under the AMDR scheduler, the client buffer requirement, say B, is specified by the service
provider as a design parameter. For videos with buffer requirements smaller than or equal to B,
they are delivered using the original MDR schedules. By contrast, for videos that have buffer
requirements larger than B, they are delivered using buffer-constrained schedules generated
using temporal smoothing algorithms such as Optimal Smoothing.

Now obviously temporal smoothing in general does not guarantee monotonicity and this
implies that we can no longer guarantee video delivery for these videos in a mixed-traffic
network. To tackle this problem, we can over-allocate bandwidth for these video streams
such that the reserved bandwidth allocations are kept monotonic decreasing. For example,
consider the transmission schedule {r;, 7; |i = 1, 2, ..., n} generated by a temporal smoothing
algorithm with buffer constraint B. For the rare videos, there exists i, j such that r; < r; for
i < j. We can maintain the monotonicity property by applying the following procedure to the
transmission schedule:

s,-:{r"’ i >rie o p 3 (7.24)
ri+1, otherwise
to obtain the bandwidth reservation schedule {s;, 7; | i = 1,2, ...,n} as shown in Figure

7.5. Note that the transmission schedule is not changed, only the bandwidth reservations are
modified to maintain the monotonicity property, albeit at the expense of some unused network
bandwidth.
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Figure 7.5 Preserving the monotonicity property by over-allocating bandwidth
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To reduce the inefficiency due to bandwidth over-allocation, we observe that a video server
often serves many video stream simultaneously. The data for these video streams typically go
through the same backbone network before reaching the access networks. For a network link
carrying more than one video stream, if we can ensure that the aggregate traffic conforms to
the monotonicity property, the delivery of the individual streams is also guaranteed, even with
mixed network traffics. In this case, we are applying the MDR principle to the aggregate traffic
flow instead of individual video streams.

When a video stream with a transmission schedule generated by the MDR scheduler is
admitted to the system, say at round A, we simply add the transmission schedule to the
aggregate bandwidth utilization to obtain the new system utilization:

u =u; +vi_a, Ii=AA+1,...,A+w-—1 (7.25)

The bandwidth reservation schedule will then be set equal to the system utilization, i.e., s; = u;.

On the other hand, when a video stream with transmission schedule generated by the Optimal
Smoothing algorithm is admitted to the system at round A, we will need to perform an additional
step to maintain monotonicity for the aggregated bandwidth reservations. We first compute the
system utilization using equation (7.25). Then we apply a procedure similar to equation (7.24)
to compute a MDR bandwidth reservation schedule by over-allocations:

s,-:{“"’ Wui > w0 At w—3.... . A (7.26)
uj+1, otherwise

as shown in Figure 7.6. Again, the bandwidth over-allocations only affect the amount of network
resources reserved. The individual video stream’s transmission schedule is not affected.

7.5.2 Admission Complexity

The admission complexity of the AMDR scheduler depends on whether the requested video is
delivered using a MDR transmission schedule or an Optimal Smoothing transmission schedule.
For the MDR case, the admission complexity is the same as in the original MDR scheduler,
i.e., one computation for the admission test, and O(w) computations for updating the system
utilization series.

For the Optimal Smoothing case, the admission complexity is higher than the MDR case
but, interestingly, lower than the original Optimal Smoothing case. This is because in the
AMDR scheduler, the bit-rates in the bandwidth reservation schedule {s;} are non-increasing.
This enables the system to perform the admission test by checking only the initial rate and the
rate-increasing rounds.

Again, assume the client arrives at time slot A, with a transmission schedule {v;}. We define
a round / in the transmission schedule as rate increasing if v; > v;_;. Let there be g such
rate increasing rounds, with the round number denoted by h;,i = 1,2, ..., g. To simplify
notations, we also define sy = 0 to represent the initial round. With these notations we can
then define the admission test as:

Sh4A +op, <U, fori=0,1,...,¢g (7.27)
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The monotonicity property of the bandwidth reservation schedule implies that

Siva+ Vi U = Sitap1 + v =U (7.28)

Starting withi = ho, hy, ..., hg, and then applying equation (7.28) recursively we can show
that if a new stream’s transmission schedule satisfies equation (7.27), the whole transmission
schedule can be added to the bandwidth reservation schedule without exceeding the system
capacity.

The admission test therefore requires (g + 1) additions and comparisons, instead of the w
(w >> g) additions and comparisons in the original temporal smoothing case. Once the ad-
mission test is successful, then the new stream’s transmission schedule will be added to the
aggregate system utilization using equation (7.25) and then the system can compute the new
bandwidth reservation schedule according to equation (7.26).

Assume a proportion of ¢(0 < a < 1) of the video collection can be admitted using MDR
schedules under a given client buffer size constraint. Then, for successful admissions, the
admission complexity is equal to O(1 + (1 — «)(g + w)) comparisons and O(w) additions.
For unsuccessful admissions, again the complexity will be lower as the admission test is
stopped as soon as the system utilization is exceeded in a time slot.
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7.5.3 Performance Evaluation

We evaluate the AMDR scheduler’s performance in this section using simulation. The sim-
ulation set-up is identical to the one in Section 7.4 except for two differences: (a) the MDR
scheduler is replaced by the AMDR scheduler; and (b) the client buffer size is fixed.

Table 7.2 shows the admission complexity for the AMDR scheduler and the Optimal Smooth-
ing scheduler. Comparing the results with those in Table 7.1, we observe that the AMDR sched-
uler requires more computations than the MDR scheduler. This is because we have set a client
buffer size constraint of 32 MB for the AMDR scheduler and consequently a proportion of the
videos are scheduled using the Optimal Smoothing scheduler, which requires more admission
computations. Nevertheless, the resultant admission complexity is still less than the Optimal
Smoothing scheduler for both successful and unsuccessful admissions.

Next we investigate the impact on the client waiting time. Figure 7.7 plots the mean and
worst-case client waiting times versus client buffer size for a system utilization of 90%. We
also simulated lower system utilization settings of 60% to 80% but both schedulers perform
nearly identically and so the results are not shown here. From Figure 7.7, we observe that with
smaller buffer sizes, both AMDR and Optimal Smoothing achieve similar waiting time. At
larger buffer sizes, AMDR slightly outperforms Optimal Smoothing and ultimately converges
to the MDR curve that has no buffer size constraint. The performance difference between
AMBDR and Optimal Smoothing is due to the fact that MDR schedules are more aggressive at
the beginning of the video stream, where the transmission bit-rate is highest. This results in
more work-ahead as compared to Optimal Smoothing and thus the MDR scheduler is able to
utilize any unused bandwidth to reduce the bit-rate requirements down the road.

As the AMDR scheduler over-allocates bandwidth to maintain a MDR schedule, it may
become less efficient when the system capacity is small. To investigate this issue, we repeat

Table 7.2 Comparison of admission complexity between the Optimal Smoothing and the AMDR
schedulers (client buffer size fixed at 32MB)

Unsuccessfull Admission # Successfull Admission
Scheduler Comparisons Additions Comparisons Additions
Temporal smoothing
complexity at p = 0.6* 0.00 (0.00) 0.00 (0.00) 5782.52 5782.52
complexity at p = 0.7* 0.01 (0.00) 0.01 (0.00) 5782.20 5782.20
complexity at p = 0.8* 4.15 (0.20) 4.15 (0.20) 5782.04 5782.04
complexity at p = 0.9* 74.00 (5.15) 74.00 (5.15) 5782.08 5782.08
AMDR scheduler
complexity at p = 0.6* 0.00 (0.00) 0.00 (0.00) 5008.15 5781.70
complexity at p = 0.7* 0.00 (0.00) 0.00 (0.00) 5007.47 5781.38
complexity at p = 0.8* 0.20 (0.20) 0.20 (0.20) 5007.15 5781.22
complexity at p = 0.9* 5.19 (5.17) 5.19(5.17) 5007.08 5781.26

Notes: *Numerical results are measured as the average number of computations required to admit a
client at a given average network utilization (p), averaged over requests for all 274 videos.

# Numbers in parentheses are the average number of unsuccessful admission tests performed for each
request.
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the simulations for a range of system capacity from 100 Mbps to 1 Gbps and plot the mean
and worst-case waiting times in Figure 7.8. Comparing different schedulers, we observe that
AMDR and Optimal Smoothing have nearly identical performance while the MDR scheduler
consistently achieves lower waiting time. This is expected, as the MDR scheduler is not subject
to buffer size constraint, which in this case equals to 32 MB. Comparing the waiting time
against the system bandwidth, we can see that the waiting time increases significantly at lower
system bandwidth settings. Nevertheless, the differences between the AMDR scheduler and
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the optimal smoothing scheduler are negligible even for extremely small system bandwidth
(e.g., 100 Mbps). This shows that the overhead incurred in maintaining a MDR schedule in
the AMDR scheduler is negligible.

7.6 Summary

By scheduling the transmission of video data in a monotonic-decreasing manner, we can deliver
VBR videos in a mixed-traffic network with deterministic performance guarantee. This enables
the service provider to exploit the available bandwidth to support other non-delay-sensitive data
services and thus improves network utilization. Extensive simulations using 274 real-world
VBR video bit-rate traces showed that the MDR scheduler can achieve good performance in
terms of waiting time under the same network utilization, and is comparable to that of Optimal
Smoothing, while still be able to guarantee playback continuity. For applications that require
a bounded client buffer requirement, the AMDR scheduler can be applied and results showed
that the performance is nearly identical to Optimal Smoothing even for a buffer size as small as
32 MB. Thus, using the AMDR scheduler one can provide performance guarantee in streaming
VBR videos over mixed-traffic networks with no trade-off in terms of admission complexity,
network utilization, client waiting time, and client buffer requirement.

Appendix
Proof of MDR Scheduler’s Monotonicity Property

Theorem 7.3. Transmission schedules generated by the MDR scheduler are guaranteed to
comprise monotonic decreasing rates.

Proof. We prove the theorem by contradiction. Let r; and r;4; be the transmission rate of
the ith and (i 4 1)th segments of a feasible schedule S(¢) generated by the MDR scheduler.
Graphically, let 7 be the slope of the line connecting S(7;_;) and S(7;), where T;_; and T;;
are the (i — D)th and (i + 1)th rate reduction points.

Assume r; < r;41, i.€., the rate allocated are not monotonic decreasing. Then we have:

S(T)) = S(Tie)  S(Tiv1) — S(T)

< (7.29)
T, — T Tiyi— T,
or
[S(T) — S(Ti-DITi1 — T) < [S(Ti41) — S(THIT; — Ti-1) (7.30)
We expand equation (7.30) to obtain.
S (T)Tips — S(THT; — S(Ti-)Ti1 + S(Ti-DT;
< ST+ DT = ST ) Ti-1 — S(THT; + S(T)HTi (7.31)

We cancel the S(7;)7; term on both sides and after rearranging we obtain:

S(T)Tit — STi-)Tiy — S(TDTioy < S(Tix )T — S(Tip)Ticy — S(Ti-)T; (7.32)
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Add S(T;_1)T;_; to both sides and we obtain:
S (T)Tip1 — S(Ti-DTipy — S(THTi—1 — S(Ti-DTi—y
< S(Tx)Ti = S(Tix)Ticy — S(T-)Ti — S(Ti-1)Tiy (7.33)
Then factorize equation (7.33) to get:
[S(T) = S(Ti-DI(Tig1 — Ti-1) < [S(Tipr) — S(Ti-DIT; — Tiy) (7.34)
which is equivalent to

ST) = S(Tiey) _ S(Tiv) = STicy) _

< r (7.35)
T, — T Ty — T

Since the transmission schedule coincides with the data consumption curve at bit-rate re-
duction points, i.e., S(T;) = A(T;) for all i, we have

AT — ATi-) _ Aiq) — ATi-1)

(7.36)
T, — T Tit1 —Tin
Now according to the MDR scheduler (cf. equation (7.6)):
A(t) — A(T;—
r; = max { M‘Vr > Ti_l} (7.37)
=T,
From equation (7.36), we must have r; equal to
A(T;iy1) — A(T;

= (Ti+1) (Ti-1) (738)

Ty — T

which violates the definition of r;. This contradicts the assumption that the schedule S(z) is
generated by the MDR scheduler and therefore the schedule with increasing rates cannot be
generated by the MDR scheduler and the result follows. [ ]
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Adaptive Media Streaming

In this chapter we consider networks where only best-effort service is supported. This type
of network, including the Internet, does not guarantee the delivery of data from the media
server to the media client. Moreover, even if the data are successfully transported to the
client, the time it takes can vary. The media server has no control over the amount of
bandwidth available and can only use whatever is available at the time. Obviously, it will
be very challenging to stream high-quality media over such best-effort networks and at the
same time maintain playback continuity.

As the network provides no guarantees whatsoever, the only alternative is to adapt the me-
dia stream to the network bandwidth available. This is made possible by using layered-video
codec or media transcoders as discussed in Chapter 2. In this chapter, we develop an adap-
tation algorithm to adjust the output bit-rate of multi-layer-encoded media or transcoders
according to the measured available network bandwidth and the estimated client buffer
occupancy. With this adaptation algorithm, the media server can then adjust the bit-rate of
the media stream dynamically (e.g., reducing bit-rate when available bandwidth drops) so
that playback continuity at the client can be improved.

8.1 Introduction

The lack of end-to-end quality-of-service (QoS) support in today’s Internet has caused signifi-
cant difficulties for the deployment of media streaming services such as video broadcasting
and video-on-demand. In particular, when the network becomes congested, significant packet
losses will arise, leading to corrupted or even dropped video frames.

Given QoS support is unlikely to be widely available in the near future, researchers have
resorted to another approach to tackle this problem. Specifically, a number of pioneering
researchers have investigated algorithms to adapt the video bit-rate to the network bandwidth
available [1-6]. For example, when the network becomes congested, the sender will reduce the
bit-rate of the encoded video to alleviate the congestion. Clearly, reducing the bit-rate will also
degrade the visual quality. Nevertheless, reducing the video bit-rate in a controlled manner at
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the sender will result in far better visual quality than attempting to recover from data loss at
the receiver.

To perform video adaptation we must tackle two fundamental challenges. First, the sender
must be able to dynamically control or convert the video bit-rate to the desired value. This can
be accomplished by means of scalable video coding [7] and transcoding [8—10] as discussed
in Chapter 2. Second, an adaptation algorithm is needed to estimate the network bandwidth
available, and subsequently determine the bit-rate to be used for converting and transmitting the
video stream. This chapter focuses on the second challenge, i.e., design of the rate adaptation
algorithm.

This problem has been studied by a number of researchers, including the studies by Rejaie
et al. [4] and Assun¢do and Ghanbari [5] who adopted UDP as the network transport; and
the studies by Cuetos and Ross [1], Cuetos et al. [2], and Jacobs and Eleftheriadis [3] which
adopted TCP as the network transport.

A common property of these adaptation algorithms is the existence of a configurable op-
erating parameter [1-2], which is typically used in the feedback loop of the algorithms. Not
surprisingly, as will be illustrated in Section 8.6, the choice of this operation parameter can
significantly affect the performance of the rate adaptation algorithm. Unfortunately, to opti-
mize this parameter for the best performance will require a priori knowledge of the available
network bandwidth over the entire duration of the video session. This is clearly not possible in
practice and thus poses significant difficulties to deploying these rate adaptation algorithms.

In this chapter, we address this issue by presenting a rate adaptation algorithm that does not
have any configurable parameter. In other words, prior knowledge of the available network
bandwidth is not needed to run the rate adaptation algorithm. Our results show that compared
to the existing algorithms, the presented algorithm can achieve comparable or even better
performance and does so without the need to tweak any operating parameters.

8.2 Related Work

In this section, we review some related work on adapting video to cope with the bandwidth
fluctuations in the Internet. Assungdo and Ghanbari [5] and Kanakia et al. [6] proposed adapting
the data pumping rate and hence the bit-rate of video by adjusting the quantizer scales of the
frames. The data pumping rate is controlled dynamically based on the buffer occupancy of
the bottleneck switch. The idea is to maintain the buffer occupancy of the bottleneck switch
at a safe level to avoid losses of video packets due to buffer overflow. Their approach can
effectively adapt to network congestion and reduce packet losses. The only limitation is that
we need to know the buffer occupancy at the bottleneck router. This may require modification
to the router firmware to support this function.

Rejaie et al. [4] proposed an adaptive streaming scheme running on its proprietary RAP
congestion control protocol [ 11] with the support of multi-layer-encoded videos. They proposed
the criteria for adding or dropping a layer of video based on the current sending rate of its
rate-based RAP congestion control protocol. This approach requires the commercial streaming
player software to support playback of layered-encoded video.

Jacobs and Eleftheriadis [3] proposed a video adaptation scheme that controls the video
bit-rate using transcoding. The proposed system runs on a custom-designed semi-reliable
congestion control protocol. The main idea of the adaptation algorithm is to maintain the
server buffer occupancy at a certain level. The algorithm assumes that video data are input
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into the server buffer at its playback rate and injected into the network at the rate that its
congestion control algorithm allows. Therefore, when the server buffer builds up, it infers
that the available network bandwidth drops and thus reduces the video bit-rate to decrease the
server buffer occupancy. Its use of transcoding to control the video bit-rate and server-side
information to decide the appropriate video bit-rate makes it readily deployable on existing
streaming platforms.

Cuetos et al. [1, 2] proposed an adaptive rate control for streaming Fine-Grained Scalable
(FGS) video. It adapts the video by controlling the video bit-rate of the enhancement layer of
the FGS-coded video based on the client buffer occupancy and network bandwidth information.
The heuristic rate control algorithm aims to maintain the client buffer occupancy at around
the target level, while at the same time minimizing the video bit-rate variation introduced
by adaptation. Although the control algorithm was originally designed to work with FGS-
coded video, it can also be applied to non-FGS videos using transcoding techniques. The only
limitation is the need to configure a system control parameter which can substantially affect
the algorithm’s performance. Our results show that the optimal value of the parameter can vary
considerably over a wide range under different network traffic patterns (cf. Section 8.6) and
so it may be difficult to optimize the algorithm for use in the Internet, where network traffic
patterns are generally very difficult to predict.

8.3 System Model

In this chapter we consider a video streaming system that streams pre-encoded video data using
TCP as the network transport to the receiver for playback. Despite the shortcomings of TCP in
the context of media streaming (cf. Section 6.1), due to its aggressive congestion control and
enforced error-recovery, it does possess a number of appealing features.

First, TCP is intrinsically TCP-friendly and thus fairness with other TCP traffics is automati-
cally guaranteed. Second, using TCP the sender can stream video using, say, the standard HTTP
protocol to the client. As most, if not all, video players in the market support HTTP-based
video streaming and playback, compatibility is greatly enhanced. Third, for security reasons,
many companies and ISP block or throttle UDP traffic at their firewalls and gateways, thus
making UDP-based video streaming impossible. By contrast, TCP/HTTP streaming can pass
through firewalls in the same way as web traffic. Finally, to perform bandwidth estimation, the
sender will need some form of feedbacks from the client. If we use the UDP transport, then the
client will need to be modified to send explicit feedbacks to the sender to enable bandwidth
estimation so that rate adaptation can be performed. By contrast, TCP with its built-in flow
control already can provide implicit feedbacks to the sender and thus no modification to the
client is necessary. Again, this will greatly enhance the compatibility of the rate-adaptation
algorithm to the existing video player software. Nevertheless, the rate-adaptation algorithm
presented in this study can also be applied to UDP-based video streaming with appropriate
support from the client’s player software, such as streaming over RTP and using RTCP to
report reception statistics back to the server.

Figure 8.1 shows the key components in the video streaming system. Assume the video
data are encoded at a constant bit-rate of 7, bps. The rate controller can convert the encoded
video to any bit-rate between ry,,x and 7y, (€.g., using scalable video coding [7] or transcoding
[8—10]). Note that there is a lower limit r,;, on the achievable video bit-rate in the model, for
example, the bit-rate of the base layer in FGS encoded video [7] or the lowest achievable
bit-rate in transcoding [8—10] (cf. Section 2.5).
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Figure 8.1 Block diagram of the system model

In practice, even with a transcoder, the video bit-rate may not be changed at any arbitrary
time due to the structure of the coding algorithm (e.g., group of pictures). Thus, in the system
model we assume video transcoding is performed in discrete video segments of fixed playback
duration of M seconds. The rate controller will then determine the target bit-rate for the next
video segment based on estimation of the client’s buffer occupancy. We denote the average
bit-rate for the kth video segment by ry.

The transcoded video segments are then transmitted to the client using TCP. Note that the
server does not limit the transmission rate here and simply sends the transcoded video data as
fast as TCP will allow. This ensures that available network bandwidth is fully utilized. Here,
we assume that the total size of server buffer in between the media server application and the
network (e.g., the buffer inside the socket library and TCP) is a known constant, denoted by Z.

At the receiver, many existing video players will prefetch a certain amount of video data
before starting playback to absorb the inevitable bandwidth fluctuations. We denote the play-
back duration of the prefetched video data by B, seconds. Depending on the specific player
software, B, can be a fixed value known to the server, or it can be configurable by the users. If
it is the latter case and the existing player software does not report this value to the server, the
server will simply assume the worst case of no prefetch, i.e., B, = 0 second, in performing
rate adaptation.

In the case of client buffer starvation during video playback, it is assumed that playback
will be paused until B, seconds’ worth of video data is again buffered at the client as depicted
in Figure 8.2. Let G be the video frame rate. After the late arrival of frame i, the playback
is paused and the client will have to rebuffer frames i to (i + B, x G — 1) before resuming
playback. This rebuffering mechanism is common among commercial video player software
such as Microsoft’s Media Player and RealNetworks’ Video Player.

8.4 Client Buffer Occupancy and Network Bandwidth Estimation

The objective of the rate adaptation algorithm is to prevent playback starvation caused by client
buffer underflow. To prevent buffer underflow, the server will need to estimate the available net-
work bandwidth as well as the client buffer occupancy, in terms of seconds’ worth of video data.
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Figure 8.2 Rebuffering after buffer underflow at the client

Estimation of the client buffer occupancy is performed every time the server completes
submitting a video frame to the network transport for delivery. For example, if the common
socket library is used, then this is equivalent to completing all send function calls for the video
frame. Let #; be the completion time of submitting video frame i for transmission, and let f;
be the index of the oldest frame (i.e., with the smallest index number) that has not yet been
completely received by the client at time #;. Now as the server will submit data for transmission
as fast as the transport allows, we can assume that the intermediate buffer at the server is always
full, i.e., there are Z bytes of data accumulated awaiting transmission. Thus, we can estimate
fi from

fi=maxn sty s >Z (8.1)
k=n

where s; is the size of frame i.

Similarly, after frame i + 1 is submitted for transmission, we can compute f; ;| using equa-
tion (8.1). Now if f; | > f;, then we know that frame f; to frame f; . ;—1 must have arrived
at the client during the time from ¢; to ¢; , ;. Assume in this short interval the frames arrive at the
client at a constant rate. Then we can estimate the arrival time of frame k, denoted by 7}, from

To= i+ 1) ke Ui fin — 1) (82)
fz +1— fi

Note thatin equation (8.2) we ignored network and processing delays in receiving ACKs from
the client. Our simulations show that this does not have significant impact on the algorithm’s
performance.

Knowing the arrival time of each video frame, we can then proceed to estimate the client
buffer occupancy. First, we denote K as the first frame buffered at the client during the initial
prefetch period or the rebuffering period. K is initialized to 1 before streaming begins, and
when rebuffering occurs, K is set to be the frame that arrives late, e.g., K = i in the example
shown in Figure 8.2. Let B; (in seconds of video data) be the client buffer occupancy when
frame i arrives at the client. Then we can estimate the client buffer occupancy B; according to
the following rules:
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Figure 8.3 Two ways to estimate B; wheni > K + B, x G — 1

Case 1 (i < K + B, x G — 1): In this case, frame i belongs to the initial prefetch part of
the video or the rebuffering period, i.e., the player has not yet started/resumed decoding the
received video data. Thus the buffer occupancy is simply equal to:

B=Gi—-K+1))/G (8.3)

Case 2 (i > K + B, x G — 1): In this case, the way to estimate B; depends on whether or
not frame i has arrived before all the data in the client buffer is consumed as illustrated in
Figure 8.3. If (T;—; + B;—1) — T; > 0, that means frame i has arrived before the client buffer

becomes empty, then B; is estimated as:
Bi=Bia+T-)-T,+1/G 3.4

Otherwise, if (T;_1 + B;—1) — T; > 0, that means the client buffer has been empty for a period
of time before frame i arrived, then B; is simply equal to the time value of a frame, i.e.:

B =1/G (8.5)

where K is settoi.

The previous derivations enable us to estimate B; at the instant frame i arrives at the client.
However, a subtle complication arises due to buffering inside the server. Specifically, in order
to determine the bit-rate for frame i 4 1, we need to estimate the client buffer occupancy when
frame i arrives at the client. However, due to buffering inside the server, some previous frames
including frame i may not have been transmitted yet so we will need to estimate the arrival
times of these frames inside the server buffer.

Let n; be the index of the last frame of segment i, we have to predict B, at time #,, while
frame f,, to frame n; are still in the server buffer and then use the predicted B,, to perform
adaptation of segment i 4+ 1. Assuming the remaining data in the server buffer at time #,, will
arrive at the client at a constant rate of D;,;’, which is also the estimated TCP throughput for
sending the segment i 4 1, the arrival times of the remaining frames are estimated as follows:

1

T, =t, +
T Dy

k
> Filtn)Vke [ f,.ni] (8.6)

j:f/xi
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where F;(¢) is the remaining amount of data of frame i at time ¢. With #, k € [ f,,, n;], we can
then estimate B,,.

To estimate D; ', we simply take the rate at which segment / was submitted into the server
buffer as the estimated value, i.e.,

ni
Sk

Dy = 8.7)

tn,- - tn,-_l

This is because the rate at which data are submitted into the server buffer is equal to the rate
at which data leave the server buffer, and so it reflects the transmission rate.

8.5 Rate Adaptation

Armed with a mean to estimate the client buffer occupancy and network bandwidth, the next
challenge is to devise an adaptation algorithm to control the video bit-rate to prevent client
buffer underflow.

8.5.1 Segment-Based Rate Control

As video data are transcoded and transmitted in fixed-duration segments, the server must de-
termine the target bit-rate before transcoding a video segment for transmission. The server
determines the target bit-rate based on two factors, namely, the estimated client buffer occu-
pancy and the estimated network bandwidth available, both can be estimated using techniques
described in Section 8.4.

Suppose segment i has just been submitted to the server buffer, with the estimated D; 1’
and B,,, we can predict the client buffer occupancy after transmitting the segment i 4 1 to the
client, i.e., B from:

Niy1°

MFH_]

D1’

B =Bn,-+M_

(8.8)

Nt

where the last term is the predicted time taken to send the whole (i + 1)th segment to the client.
Rearranging equation (8.8), we can obtain

=11 B = Buy Dy’ (8.9)
P T BN ]
i+1 M i+1

From equation (8.9), we can relate the video bit-rate r;,; with the estimated client buffer
occupancy (represented by By, . ,). Our goal is to adjust the video bit-rate to maintain the client
buffer occupancy to above a given threshold By so that short-term bandwidth variations can be
absorbed. In practice, By = B, when B, is known, otherwise it can be configured according
to properties of the system/network or according to experiments. Simulations show that the
system performance is not sensitive to this setting.
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Now if B,, < By, then it implies that the client buffer occupancy is below the thresh-
old. Hence the server will reduce the video bit-rate to raise the buffer occupancy to By by
substituting B, ., = Br in equation (8.9) to obtain:

M1
Br— B,
rigr=|1- 7 Dy (8.10)

Otherwise if B,, > Br, then it implies that the client buffer occupancy is above the threshold.
In this case the server will simply maintain the current client buffer occupancy by setting
B,,,, = B,, in equation (8.9) to obtain r;;;. This is a conservative strategy to reduce the
likelihood of buffer underflow. Thus, we have:

riq1 = Diy1’ (8.11)

Finally, the server checks and limits the computed video bit-rate to the feasible range
[Fmins Tmax] bY

Tig1 = Min{7max, Max {Fmin, 7i4+1}} (8.12)

Note that in contrast to previous works [1-3], this adaptation algorithm has no control
parameter that requires either offline or online optimization. This has practical significance as
it is not easy to optimize the control parameters without knowledge of the available network
bandwidth.

8.5.2 Preemptive Rate Control

In our trace-driven simulations, we find that the available network bandwidth can occasionally
drop drastically to a very low value. These sudden bandwidth drops do not appear to be
predictable and thus can result in client video playback starvation.

The fundamental problem is that the adaptation algorithm is executed only when a new
video segment is to be transmitted. Thus, if bandwidth drops significantly, then the trans-
mission of the current video segment will stall. The adaptation algorithm cannot react in
this case as the current video segment has not yet been completely transmitted. Meanwhile
the client will continue consuming video data for playback and thus may run into buffer
underflow.

To tackle this problem, we can use a preemptive scheduling technique to shorten the delay for
the adaptation algorithm to react to changing network conditions. Instead of waiting indefinitely
for a video segment to be completely submitted into the server buffer, the scheduler will timeout
after Mr;1/D;1" seconds, which is the expected time required to submit the (i + 1)th video
segment into the server buffer. If not all video data can be submitted, then the remaining
yet-to-be-submitted data will be discarded and the remaining video segment transcoded again
according to the new estimates on the client buffer occupancy and the available network
bandwidth.

Note that preemptive rate control requires the video transcoder to be able to adjust the video
bit-rate in between a video segment. The implementation will be highly dependent on the video
compression algorithm employed and further study is required to identify the constraints and
tradeoffs of this technique.
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8.6 Performance Evaluation

In this section, we use a trace-driven simulator written in ns-2 [12] to evaluate the performance
of the presented adaptation algorithm (denoted by AVS) and compare it with the current state-
of-the-art algorithm proposed by Cuetos and Ross [1-2] (denoted by CR).

Figure 8.4 depicts the simulated network topology. We use the common NewReno TCP [13—
14] as the transport protocol to deliver the video data to the client. Cross-traffic is generated
from a packet trace file obtained from Bell Labs [15-16].! The trace file captured 94 hours of
network traffic passing through a firewall. We divide the 94-hour trace file into 94 1-hour trace
files and run a simulation for each 1-hour trace file to evaluate the algorithms’ performance
under different cross-traffic scenarios.

Both the streaming traffic and the cross-traffic share a link of R Mbps as shown in Fig-
ure 8.4. For each simulation, we adjust R so that the network has just sufficient bandwidth to
stream the video, i.e., R = rm.x + ¢, where ¢ is the average data rate of the cross traffic. We
summarize the system settings in Table 8.1.

We use two performance metrics, namely, rebuffering ratio and average video bit-rate, to
evaluate the algorithms’ performance. Rebuffering ratio is defined as the proportion of frames

Streaming Server Streaming Client

Video Stream

R Mbps, 100ms

Cross-Traffic

Avg_rate=c
Cross-Traffic Generator Cross-Traffic Receiver

Figure 8.4 Network topology used in simulations

Table 8.1 System parameters used in simulations

Parameters Value
Prefetch duration 5 seconds

M 1 second
Fmax 1.1 Mbps
Fmin 200 kbps
Video Length 3000 seconds

TCP MSS 1500 bytes
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received during rebuffering periods. Playback of these frames is delayed so their amount
represents the quality degradation resulting from buffer underflow. Average video bit-rate,
on the other hand, represents video quality. Higher average video bit-rate generally produces
better visual quality during playback.

8.6.1 Sensitivity to Prefetch Duration

The presented rate adaptation algorithm makes use of knowledge of the client’s initial prefetch
duration in estimating the client buffer occupancy. However, if this is not known, then it simply
assumes no prefetch is performed. To investigate the performance impact of such knowledge,
we run two sets of simulations for all 94 traffic traces, one set with the prefetch duration
known to the server and the other set simply assuming no prefetch. In both cases the client has
a prefetch duration of 5 seconds.

Figure 8.5 shows the rebuffering ratio and average video bit-rate for all 94 traces for the
two cases. The result is a bit surprising as the rebuffering ratios of all traces drop by 50% on
average, when the prefetch duration is not known, while the average video bit-rates for the case
when the prefetch duration is not known drops only 2% on average. Not knowing the prefetch
duration, the algorithm will simply assume the client does not prefetch, which means that the
estimated client buffer occupancy will be lower than the actual one. As a result, the algorithm
will become more conservative and the client buffer occupancy will be maintained at a higher
level than expected, thus reducing the likelihood of buffer underflow.
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Figure 8.5a Effect of knowledge of prefetch on the rebuffering ratio
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Figure 8.5b Effect of knowledge of prefetch on the transcoded video bit-rate

8.6.2 Effectiveness of Preemptive Rate Control

To investigate how much performance gain can be obtained from preemptive rate control, we
run two sets of simulations for all 94 traffic traces, one with segment-based rate control and
the other with preemptive rate control and plot the results in Figure 8.6.

In all 94 traces, preemptive rate control achieves lower underflow ratios compared to
segment-based rate control. On average, the rebuffering ratio is reduced by 43% when preemp-
tive rate control is used while the average bit-rate is only 2% lower. Nevertheless, preemptive
rate control does require more complex transcoders and thus further investigation is needed to
quantify the gains and the tradeoffs.

8.6.3 Comparison with the CR Algorithm

In this section, we compare the presented rate adaptation algorithm (the AVS algorithm) with
the current state-of-the-art algorithm proposed by Cuetos and Ross [1-2] (the CR algorithm).
In the CR algorithm, there is a control parameter « (0 < o < 1) that can affect the algorithm’s
performance. To find the optimal value for «, it is necessary to know the network bandwidth
availability over the entire duration of the video session. This is clearly not possible in practice.

Thus, to obtain performance results for the CR algorithm, we ran 2,000 simulations with
the control parameter o varied from O to 1 with a step size of 0.0005. We find that the optimal
value for « depends heavily on the particular traffic trace chosen, and can range from 0 to 0.25
over the 94 traces. The optimal value for « is defined as the value that brings the rebuffering
ratio to within 1% of the minimum and gives that maximum average video bit-rate.

As the optimal « is not known a priori, in comparing CR with AVS, we use the rebuffer-
ing ratio and the video bit-rate averaged over all 2,000 simulations, as well as the optimal
results for comparison. The results are shown in Figure 8.7a, 8.7b. We observe that the AVS
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algorithm gives lower rebuffering ratio in most traces than the average-case performance of CR.
Averaging over all 94 traces, the AVS algorithm can achieve 20% lower rebuffering ratio than
the CR algorithm, while the average video bit-rate is only 0.7% lower than the CR algorithm,
showing that both algorithms can make efficient use of the network bandwidth.

Although the optimal rebuffering ratio of the CR algorithm is much lower, it requires offline
optimization which is impossible in practice. By contrast, the AVS algorithm does not require
any a priori knowledge of the network bandwidth available or tuning of any control parameter
and thus will be simpler to deploy.

8.7 Summary

In this chapter we presented a rate adaptation algorithm for streaming video over the Internet
which only supports best-effort service. The algorithm has two unique features to maximize
its compatibility with existing video player software. First, we showed that the rate adaptation
algorithm can be applied to streaming video over TCP/HTTP, which is compatible with most
of the existing video player software. Second, the rate adaptation algorithm performs net-
work bandwidth and client buffer occupancy estimations using only local information. Thus,
explicit feedbacks from the client are not needed and hence existing video player software
can be supported. Moreover, the presented algorithm does not need any parameter tuning or
a priori knowledge of the available network bandwidth to perform well, thus simplifying the
deployment of the adaptation algorithm in practice.

Note

1. Network traces used in the simulations belong to the NLANR project sponsored by the
National Science Foundation and its ANIR division under Cooperative Agreement No.
ANI-9807479, and the National Laboratory for Applied Network Research.
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Architectures






9

Taxonomy and Architectural
Alternatives

In Part I we covered the basic principles and concepts in media streaming based on the
client-server model. Two issues in particular recur frequently in the discussions — capacity
and reliability. Capacity dimensioning is crucial in a media streaming system as predictable
performance is often needed to sustain continuous media playback at the clients. When
the maximum server capacity is reached, the server will need to deny new user requests
so that the performances of existing streams are not adversely affected. As discussed in
Chapter 3, we can expand the server’s streaming capacity by employing striped disk array
and multi-disk scheduling. Nevertheless, we cannot keep adding more disks to an existing
media server to expand the streaming capacity because the server will eventually run into
other bottlenecks in the server host, such as the I/O bus capacity or CPU processing limit.
Thus, the capacity of a single media server is still ultimately limited.

On the other hand, reliability is also an important issue in practice, especially when
providing paid streaming services to a large user population. Within the media server
we can improve reliability by using technologies such as error-correcting memory chips,
redundant power supplies, and RAID storage. However, failure at the server level, such as
those caused by software bugs, hardware failure, and so on, will not be recoverable. Current
solutions such as stand-by systems can be used to restore the system but in addition to the
high costs of fully-replicated hardware, the on-going streams will also likely need to be
restarted in the process of switching to the stand-by systems.

The previous discussions illustrate the limitations of the single-server architecture in im-
plementing media streaming services. In Part II we depart from this architecture to investi-
gate an alternative: parallel server architectures, that offer promising solutions to the above-
mentioned scalability and reliability limitations. In this chapter we give an overview of the
issues in designing streaming systems around parallel server architectures, and present a tax-
onomy to classify the many possible architectural alternatives. Subsequent chapters will in-
vestigate in more detail several architectures which provide different engineering tradeoffs.

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
© 2005 John Wiley & Sons, Ltd.
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9.1 Introduction

A media server is essentially a data mover, retrieving media data from the storage devices (e.g.,
hard disks or RAID) and then sending them over the network to the clients for playback. Thus,
the primary challenges in a media server are capacity and reliability.

Despite the rapid advances in computing and network hardware, the capacity of commodity
server hardware is still rather limited. Considering the emergence of high-definition television
(HDTV) where a single stream can consume tens of Mbps of bandwidth, there remain consid-
erable challenges to building high-capacity yet cost-effective media servers. Server reliability,
on the other hand, has been advancing at a much slower pace, partly due to the nature of the
problem and the cost of many solutions.

Many existing media servers, such as video servers used in video-on-demand (VoD) services,
are built around the single-server architecture, i.e., with the streaming server running in an
independent server machine equipped with storage devices and networking interfaces. This
single-server architecture is well understood and widely adopted not only in streaming servers,
but also in many other types of servers, such as a web server, an FTP server, and so on. In
bandwidth-demanding applications such as VoD, however, the single-server architecture will
quickly run into scalability and reliability limitations.

First, the capacity of a single server cannot be expanded indefinitely, even if striped disk
array is employed. If we keep adding more disks to the server, we will eventually run into
other system bottlenecks, such as the I/O bus capacity, the processor’s capacity, memory limit,
and so on. Conceivably, we can upgrade the server hardware to higher-performance hardware
platforms such as massively-parallel systems [1, 2] but the costs will be substantially increased.

Another approach is to replicate all the data to a new server to increase the system’s capacity.
This will double the cost of the system but nonetheless provides a linear scalability path.
However, in applications where the storage requirement is large, such as in movie-on-demand
applications, the multiplied storage cost could become significant. To reduce storage overhead
in replication, we can selectively replicate the media objects such as videos based on their
viewing popularity [3-7]. The more popular videos will be replicated across more servers to
increase streaming capacity while keeping fewer copies of the less popular videos to reduce
storage cost. This approach will be effective if the video popularity is known. Otherwise the load
of the servers may not be balanced, thus leading to unnecessary request blockings. Moreover,
the popularity itself may change during the lifetime of the video [6] and so reshuffling of the
video titles between the servers will be needed from time to time.

Second, in terms of reliability, a single-server streaming system simply cannot survive server-
level failures. If replicated servers are available, then the users being served by the failed server
can be moved to the other replicated servers. Nevertheless this switchover process is likely not
transparent and will cause at least temporary playback interruptions. Moreover, with a failed
server, the system streaming capacity will be reduced and so some users may not be able to
resume service immediately. As the system scales up with more and more servers, this problem
will only get worse.

Interestingly, we encountered similar load balancing and reliability problems when we
discussed multi-disk media servers in Section 3.5. In that context the solution was to employ
striped disk array and RAID, which can achieve perfect load balance irrespective of the access
popularities of the media objects, and be able to sustain non-stop service even when during
a disk failure. In Part II of this book we will investigate applying similar principles to multi-
server media streaming systems — parallel server architectures — and study their performance
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advantages and the associated tradeoffs. While our focus is on video streaming, the same
principles and architectures will also be applicable to other types of streaming systems.

In the rest of this chapter we will introduce a framework for the design of parallel video server
architectures. We address three central architectural issues: video distribution architectures,
server striping policies, and video delivery protocols for parallel video servers. We present
possible design alternatives and review the existing designs [8-18] in the literature in the
context of the framework.

9.2 Parallel Video Distribution Architectures

The essence of parallel video servers is the striping of data across an array of servers. Since the
data consumer (such as a video decoder) expects a single stream of video data, data streams from
each server must first be resequenced and merged. We use the name proxy to refer to the system
module responsible for resequencing and merging data from multiple servers into a coherent
video stream for delivery to a client. In addition, the proxy can make use of data redundancy
to mask server failures and hence achieve server-level fault tolerance (see Section 9.4.3).

The proxy is a software and/or hardware module that knows the configuration of the system
(such as the number and addresses of servers, locations of data, striping policy, etc.). There
are three ways to implement the proxy: (1) at the server computer — proxy-at-server; (2) at an
independent computer — independent proxy; and (3) at the client computer — proxy-at-client.
Note that we use the term computer to refer to the hardware performing the proxy function. In
practice, this hardware may or may not be a computer in the general sense.

9.2.1 Proxy-At-Server

Figure 9.1 shows the proxy-at-server architecture. There are N server computers and each com-
puter performs both as storage server and proxy. As there are likely more clients than servers,
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Figure 9.1 The proxy-at-server architecture
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each proxy will have to serve multiple clients simultaneously. The servers are connected locally
by an interconnection network. The proxies combine data retrieved from the local storage and
data received from other servers into a single video data stream for transmission to the clients.

In this architecture, the details of the system configuration can be completely hidden from
the clients. One drawback of this approach is processing and communications overhead. For
example, to deliver B bytes of video data from the video servers to a client, Bbytes of data
must first be read from one or more servers’ local storage, and then transmitted via network
to the client’s proxy (unless the proxy happens to share the same host as the video server,
which then requires no transmission). Finally, the proxy processes the data and transmits to the
client. If we assume requests are serviced evenly by all Ng servers, then on the average we need
B(2Ng—1)/Ng bytes of data transmission (server-to-proxy, proxy-to-client) and B(2Ng—1)/Ng
bytes of data reception (proxy and client) for every B bytes of data delivered from the storage
servers to a client.

9.2.2 Independent Proxy

Alternatively, separate computers can be used to run the proxies. Figure 9.2 shows the inde-
pendent proxy architecture using this approach. The back-end storage servers and the proxy
computers are connected locally by an interconnection network. Each proxy connects to mul-
tiple clients via another external network. Similar to the proxy-at-server architecture, this
independent proxy architecture also hides the server complexity from the clients. Moreover,
separating the proxy from the server eliminates interference between the two processes and
hence may simplify the server and proxy implementations.

Under the independent proxy architecture, data are first retrieved from the back-end server’s
local storage and then transmitted to the proxy. The receiving proxy then processes and
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transmits the data to the clients. Therefore, to request B bytes of data, we need 2B bytes
of transmission and 2B bytes of reception. Hence, this approach requires even more pro-
cessing and network bandwidth than the proxy-at-server architecture. Moreover, additional
hardware and network links are required to host and connect the proxies.

9.2.3 Proxy-At-Client

The third approach is to integrate the proxy into the client, as shown in Figure 9.3. This
can be done by adding a proxy software module into the operating system or within the
application. Under this architecture, a proxy requests the servers to send data directly to the
client computer. After processing by the proxy, video data are then passed directly to the client
application without further network communications. Hence, to retrieve B bytes from the
servers, we only need B bytes of transmission from the servers and B bytes of reception at the
client.

Compared to the proxy-at-server and independent proxy architectures, the proxy-at-client
architecture requires only half the amount of data transfer and does not need separate hardware
for the proxies. The primary advantage of the proxy-at-server and independent proxy archi-
tectures is client transparency, i.e., the complexity of communicating with multiple servers is
hidden by the proxy. However, some experimental studies [13, 14] have shown that the extra
complexity involved is negligible, even when running the client in low-end PC machines.

On the other hand, if the computer running a proxy fails (hardware failure, network failure,
etc.) under the proxy-at-server and the independent proxy architecture, the service of all clients
serving by the proxy will be disrupted. Conversely, the same situation will only affect a single
client in the proxy-at-client architecture because each proxy serves only one client and the
proxy runs at the client host.
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9.2.4 Architecture of Existing Works

The proxy-at-server architecture has been investigated in the studies by Reddy [16], Tewari
et al. [17], and Wu and Shu [18]. In Tewari’s paper, they called this the flat architecture. They
also considered a two-tier architecture that is equivalent to the independent proxy architecture.
They called the proxy a delivery node, which retrieves video data from back-end storage nodes,
and delivers a single video stream to the client. The independent-proxy architecture has also
been investigated in another study by Buddhikot and Parulkar [11]. Unlike the previous works,
they implemented the proxy functionality in their custom ATM Port Interconnect Controller
(APIC), which also functions as the interconnection network linking the storage nodes and
the external network. Lougher et al. [15] also investigated a striping server in a hierarchical
network topology to perform the proxy functions. Finally, the proxy-at-client architecture has
been investigated in the studies by Bernhardt and Biersack [9], Bolosky et al. [10], Freedman
and DeWitt [12], and Lee and Wong [13, 14].

All three architectures are scalable in the sense that more servers and proxies can be added
to the system to support more concurrent video sessions. However, the proxy-at-server and
independent-proxy architectures suffer from the problem that a proxy failure will affect the
clients connected to it. Conversely, systems based on the proxy-at-client architecture do not
have the proxy reliability problem and hence only back-end storage server failures need to be
considered. In the subsequent chapters we will primarily focus on the proxy-at-client archi-
tecture.

9.3 Server Striping Policies

Striping is a general technique for distributing data over multiple devices to improve capacity
(or throughput) and potentially reliability. Disk array and the Redundant Array of Inexpensive
Disks (RAID) [19] are among the most successful applications of the striping principle. There
are also other applications, including network striping [20], and tape striping [21]. In a parallel
video server, we stripe video data over multiple servers to increase the system’s capacity and
potentially improve the system’s reliability using data redundancy. We call this server striping
in accordance with previous work in other areas. Striping a video stream across all Ng servers
is commonly called wide striping, and striping over a subset of the Ny servers is called short
striping [17]. Unless stated otherwise, we will assume wide striping in the following sections
and discuss the key design alternatives.

9.3.1 Time Striping

A video stream can be viewed as a series of video frames. Therefore, we can stripe a video stream
in units of frames across multiple servers — time striping. Figure 9.4 depicts one example of
how video units are striped using time striping. Assume that a stripe unit contains L frames, and
the video plays at a constant frame rate of F frames per second. Then in each round of Ny L/F
seconds, L frames will be retrieved from each server and delivered to a client. In general, the
striping size L neither need to be an integer, nor equal to or larger than 1. In particular, if L < 1,
then it is called sub-frame striping [9]. Conversely, we simply call it frame striping for L >1.
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Figure 9.4 Striping a video stream over five servers using time striping

Existing studies using the time striping approach include those works by Biersack et al.
[8, 9], and Buddhikot and Parulkar [11]. The study by Bernhardt and Biersack [9] adopted
time striping with a granularity of one frame and also one segment of a frame — sub-frame
striping. For sub-frame striping, a frame is sub-divided into k equal-size units and then dis-
tributed across the servers in a round-robin fashion. The key advantage of sub-frame striping
is that load balance is guaranteed for both CBR and VBR video streams as each frame is
striped equally across all servers. Conversely, the study by Buddhikot and Parulkar [11] used
a stripe unit of k (k >1) frames. They suggested solving the load balance problem by group-
ing more frames into a stripe unit to obtain a more uniform stripe unit size (see Section
9.3.4).

9.3.2 Space Striping

Time striping divides a video stream into fixed-length (in time) stripe units. Another approach
is to divide a video stream into fixed-size (in bytes) stripe units — space striping. Space striping
simplifies storage and buffer management in the servers because all stripe units are of the same
size. Moreover, the amount of data sent by each server in a service round is also the same.
Unlike time striping, we do not need to know the frame structure in order to perform striping,
thus decoupling the striping algorithm from the encoding format.

This space striping approach has been employed in many studies [10, 12—18]. Depending
on the system design, the stripe unit size can range from tens of kilobytes to hundreds of
kilobytes. In most of the studies, a stripe unit is assumed to play back in a constant length of
time. However, in most video compression algorithms such as MPEG, a fixed-size stripe unit
will likely contain a variable number of frames and/or partial frames. Moreover, if the video
is compressed using constant-quality compression algorithms (cf. Section 2.4), then the video
bit-rate will become variable as well. Consequently, the decoding time for a stripe unit at the
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client will be variable and this may cause playback starvation unless sufficient buffering is
done at the client before playback begins.

9.3.3 Placement Policies

In the previous discussions, we have assumed a round-robin placement of the stripe units across
the servers in the system. If we denote the stripe units of a video stream using vy, vy, . . ., etc.,
then stripe unit v; will be stored in server (i mod Ng). However, a minor problem with this
policy is that server i will likely store more stripe units than server j, fori < j. This is because
the length of a video is not always an integral multiple of the size of a stripe. Therefore, the
last stripe will likely contain less than Ny stripe units, filling from server zero. To balance
the storage, we can modify the round-robin policy to start striping a new video stream from
different servers.

Apart from round-robin placement, Tewari et al. [17] also investigated a random-placement
policy where the order within a stripe is permuted pseudo-randomly. They pointed out that
the round-robin placement policy can introduce a convoy effect when one server becomes
overloaded. That is, the overloading condition will shift from one server to the next due to the
round-robin placement. By permuting the order of the stripe units in each stripe, this convoy
effect can be avoided.

9.3.4 Redundancy

As discussed in Section 9.1, one of the principal advantages of parallel server architectures is
the potential to achieve server-level fault tolerance analogous to the RAID architecture in disk
arrays. Ideally, we want the system to be able to maintain continuous video playback for all
active streams even when one or more servers fail.

To achieve this, we will need to introduce data and capacity redundancies into the parallel
servers. In the simplest form, we can extend the striping algorithm to include a parity block
for row of data blocks as depicted in Figure 9.5. The parity units are computed using the rest
of the stripe units in the same stripe. When a server fails, the lost stripe unit stored in the failed

So S S, S, S, Parity Calculation
Stripe ——»: | Vo | | v, | | v, | | Vs | | Po | Po=Vo® v,® v,® v,
| iz | | Vs | | A\ | | P | | V7 | P=Vv,® vs® v® v,
Stripe unit —T
Vg | | Vo | | P2 | | Vi | | Vi | Po=Vs® V@ v, (@ vy
| Vi2 | | 2 | | Vi3 | | Via | | Vis | P= V@ V@ v @ vy
Parity unit
2Py | | Vi | | Vi7 | | Vig | | Vi | D= Vi@ Vi;® Vi@ vy

Figure 9.5 Adding redundant data to support server-level fault tolerance
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Figure 9.6 Recovering stripe units lost due to failure of server 2

server can be computed from the parity unit together with the remaining stripe units as shown
in Figure 9.6.

For single-failure protection, simple parity computed from exclusive-or between the data
stripe units can be used. Higher level of redundancies can be achieved by the use of more sophis-
ticated erasure-correction codes such as the Reed-Solomon Erasure Correction code [22, 23].
Note that to perform erasure-correction computation, stripe units of the same stripe must be
of the same size. Therefore, time striping algorithm which results in variable stripe unit sizes
cannot easily be supported. Conversely, space striping has fixed stripe size and hence can easily
be extended to incorporate redundancy.

9.4 Parallel Video Delivery Protocols

In this section, we focus on ways to deliver video data from multiple servers to a video client.
The parallel video delivery requirement poses challenges in designing the application protocol’s
flow control, error control, and synchronization. In the following, we first consider the client
pull versus the server push service model, and then discuss synchronization and fault-tolerance
issues.

9.4.1 Client Pull versus Server Push

In VoD systems, there are generally two ways to request and deliver video data from a server
to a client. Most studies on VoD systems let the video server send video data to the client at
a controlled data rate. The client receives and buffers the incoming video data for playback
through a video decoder. As shown in Figure 9.7a, once the video session has started, the video
server will continue the data transmissions until the client specifically sends a request to stop
it. Since the server pushes video data to the client at a controlled rate, this approach is called
server push.

A second approach is the traditional request-response model in which the video client sends
a request to the server for a particular piece of video data. As shown in Figure 9.7b, upon
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Figure 9.7 Two approaches to data delivery: server push and client pull

receiving the request, the server will retrieve the data from the disk and send it back to the
client. This approach is called client pull for obvious reasons.

9.4.2 Inter-Server Synchronization

Most of the studies on single-server VoD systems employ the server-push delivery model.
This model allows the system designer to devise periodic schedules at the server for reading
data off the disk and then transmitting to the client. If we extend the server-push model to
a parallel video server, a new problem arises due to the parallel transmissions from multiple
independently running servers.

For example, let us consider a system with Ny servers using fixed-size space striping. To
start a new video session, a client will send a request to the proxy, which in turn will send
requests to all Ny servers to start a new video session. Due to variations in processing delay,
network delay, and scheduling delay, the servers will start transmitting data at different time
instances. It is possible that the first stripe unit will arrive at the proxy later than the subsequent
stripe units. Consequently, the proxy has to buffer the later stripe units to wait for the first
stripe unit to arrive for playback, thereby increasing the client buffer requirement and start-up
delay.

This synchronization problem has been investigated by Biersack et al. in [8]. For scenarios
where network delays between servers and a client are different, they proposed adding different
delays to the starting times of each server to compensate for delay differences. They also
extended this model to include bounded network delay jitters. In another study by Buddhikot
and Parulkar [11], they designed a closely-coupled system in which each storage node is
connected by a custom high-speed interconnection network (APIC). The proximity of the
storage nodes enables them to be accurately synchronized through the common APIC. We will
return to this synchronization issue in subsequent chapters.
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9.4.3 Detecting and Masking Server Failures

In Section 9.3.4 we discussed how data redundancy can be introduced among the servers to
support server-level fault tolerance. The redundant data enable the receiver to mask a server
failure by computing lost stripe units stored in the failed server from the parity units together
with the remaining stripe units. Using concepts similar to Forward Error Correction (FEC),
the servers can send redundant data along with normal data to the receiver at all times. In this
way, the receiver can recover lost packets using the received data together with the redundant
data. This approach can be extended to parallel video servers to recover stripe units lost in
failed servers.

FEC has the distinct advantage that the receiver does not need to detect a server fail-
ure. As redundant data are always transmitted and received by the receiver, lost stripe units
can readily be recovered if a server fails. However, like the case in network communica-
tions, FEC incurs constant transmission overhead even when no server fails. According to
coding theory, we need one redundant symbol for every lost symbol we want to recover.
Therefore, if we use K to denote the number of lost symbols we want to recover per par-
ity group (or stripe), the transmission overhead will be K/(Ng — K). Note that this overhead
could become significant for systems having a small number of servers, or a high level of
redundancies.

Alternatively, for redundancy levels larger than one (i.e., K > 1), we can adopt a Progressive
Redundancy Transmission (PRT) algorithm to reduce the transmission overhead. Specifically,
PRT initially does not transmit all available redundant data but only a portion of them. When
a server failure is detected, PRT dynamically requests the servers to begin transmitting an
additional redundant unit per stripe. For example, let K = 3, then the system can be configured
to initially transmit only one redundant unit. When a server fails, the system will be able to mask
the failure immediately using the available redundant unit. At the same time the remaining
servers will begin transmitting one more redundant unit per stripe to prepare for a second server
failure, and so on. As servers seldom fail simultaneously (unless hit by natural disasters), this
PRT algorithm can keep the transmission overhead low while still allowing the system to
survive multiple server failures.

The challenge in PRT is to devise a way to detect server failures quickly and reliably.
The detection method must be quick enough to ensure that video playback continuity can
be sustained while the system request redundant data for recovery. On the other hand, the
detection method must not generate too many false alarms to avoid sending unnecessary many
redundant data to the clients. In Chapter 14 we take a closer look of FEC and PRT by modeling
their availability to quantify the tradeoffs.

9.5 Summary

In this chapter, we have introduced a framework for the design of parallel video server archi-
tectures. We presented design alternatives, and reviewed existing literatures on three central
architectural issues, namely video distribution architectures, server striping policies, and video
delivery protocols. Table 9.1 summarizes the design choices adopted in some of the previous
studies. In the next three chapters, we investigate in detail two specific parallel architectures —
the concurrent-push architecture and the staggered-push architecture.
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Table 9.1 Summary of design choices studied by various researchers

Video distribution Server striping Videodelivery  Server fault
Researchers architecture policy protocol tolerance
Biersack et al. proxy-at-client time striping server push striping w/
(Video Server parity; FEC
Array)
Bolosky et al. (Tiger  proxy-at-client space striping server push mirroring with
Video Fileserver) declustering
Buddhikot er al. independent proxy time striping server push -
(MARS)
Freedman et al. proxy-at-client space striping - -
(SPIFFI)
Lee et al. (Server proxy-at-client space striping client pull striping w/
Array and RAIS) parity; FEC
and PRT
Lougher et al. independent proxy space striping - -
Reddy et al. proxy-at-server, space striping server push -
independent proxy
Tewari et al. proxy-at-server, space striping server push -
(clustered video independent proxy
server)
Wu and Shu proxy-at-server, space striping and  server push -
independent proxy time striping
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A Concurrent-Push Parallel
Server Architecture

This chapter presents and analyzes the performance of a concurrent-push parallel server
architecture for building high-capacity streaming servers from many low-cost commodity
servers. The architecture adopts server striping for load balancing and extends the server-
push service model for use in the parallel-server architecture. This architecture is particularly
suitable for deployment in networks that support resource allocation and QoS control as
the data flows generated from the servers have a constant data rate. This architecture can
potentially be scaled up to more than ten thousand concurrent streams.

10.1 Introduction

In this chapter, we investigate a concurrent-push parallel server architecture for designing
scalable media streaming systems such as video-on-demand (VoD) systems. We employ server
striping to achieve load sharing across multiple servers without requiring the additional storage
overhead incurred in replication. Furthermore, by striping using a small unit size, the system is
insensitive to skewness in the videos’ popularities. This architecture allows one to incrementally
scale up the system capacity to more concurrent users by adding (rather than replacing) more
servers and redistributing (rather than duplicating) video data among them.

In the following, we present and analyze quantitatively the concurrent-push scheduling
algorithm for scheduling disk retrieval and network transmission in parallel video servers. We
show that a simple extension of the server-push service model for parallel video servers does not
perform well and introduce an Asynchronous Grouped Sweeping Scheme (AGSS) to improve
the system performance. Next, we present a Sub-Schedule Striping (SSS) scheme to further
increase the scalability of the architecture. Using numerical results with realistic assumptions,
we show that the resultant architecture can be scaled up to more than ten thousand concurrent
users.

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
© 2005 John Wiley & Sons, Ltd.
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Figure 10.1 Architecture of a (5-servers) parallel video server

10.2 System Architecture

A parallel video server is composed of multiple independent servers connected by an inter-
connection network (Figure 10.1). Each server has separate CPU, memory, disk storage, and
network interface. This approach ensures that the scalability of the system will not be limited
by resource contention. The interconnection network can be implemented using off-the-shelf
packet switches like Ethernet switches or ATM switches. We denote the number of servers
in the system by Ny and the number of clients by N¢. Hence the client—server ratio, denoted
by A, is N¢/Ng. The following sections summarize the server striping algorithm, the service
model, and the scheduling algorithm employed.

10.2.1 Server Striping

The principle behind the parallel video server architecture is the striping of a video stream
across all servers in the system. A server’s storage space is divided into fixed-size stripe units of
O bytes each. Each video title is then striped into blocks of Q bytes and stored into the servers
in a round-robin manner as shown in Figure 10.1. This fixed-size block striping algorithm is
called space striping, as opposed to striping in units of video frames, called time striping (cf.
Section 9.3.1).

Space striping significantly simplifies the process of striping video streams encoded using
inter-frame compression algorithms (e.g., MPEG), where frame size varies considerably for
different frame types. Since a stripe unit in space striping is significantly smaller than a video
title (kilobytes versus megabytes), this enables fine-grain load sharing (as opposed to coarse-
grain load sharing in data partition) among servers. Moreover, the loads are evenly distributed
over all servers independent of the skewness in video retrievals.

10.2.2 Service Model

Service model refers to the way video data are scheduled and delivered to the client. There
are two service models in common use: client pull and server push. In the client-pull model, a
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Figure 10.2 Scheduling disk retrieval and network transmission at server

client periodically sends a request to a server to retrieve video data. In this model, the data flow
is driven by the client. In the server-push model, the server schedules the periodic retrieval and
transmission of video data once a video session has started.

The server-push model is common among studies on single-server VoD systems [1-5]. This
model allows one to design periodic schedulers [5] to optimize disk and network utilization. In
the next section, we present an extension of this service model for use in parallel video servers.

10.2.3 Scheduling Algorithm

The parallel server architecture employs a concurrent-push algorithm to schedule disk retrievals
and network transmissions at the servers. The principle behind the concurrent-push algorithm
is to let all servers continuously transmit data to a client concurrently. We assume that the
average video rate is homogenous for all clients, and is denoted by Ry . Since there are a total
of Ng servers, each server only needs to transmit at a reduced rate of Ry/Ng to maintain an
aggregate data rate of Ry.

Figure 10.2 depicts the scheduling algorithm for disk retrievals and network transmissions at
each server in the system. For each video session, one block of Q bytes video data is retrieved
into a disk buffer in each disk service round. To reduce seek overhead, requests within a
service round can be served using the SCAN or the C-SCAN disk-arm scheduling algorithms
(cf. Chapter 3). The retrieved video block is then passed to a network buffer for transmission
in the next round. Therefore, if the disk service round is shorter than one transmission round, a
video block will always be ready for transmission. We analyze the performance of the system
under this scheduling algorithm in the next section.

10.3 Analysis of the Concurrent-Push Algorithm

In general, the internal clock of each autonomous server in the system is not precisely synchro-
nized. Therefore, the scheduling algorithm must take this server asynchrony into account and
compensate accordingly. We define clock jitter as the difference between the internal real-time
clocks of two servers. Many algorithms for controlling clock jitter between distributed com-
puters have been studied [6, 7] and hence will not be pursued further here. We simply assume
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that the maximum clock jitter between any two servers in the system is bounded and is denoted
by 7. For simplicity, we ignore network delay jitter in this study. Assuming that network delay
jitter is bounded (which is true in ATM networks with QoS guarantees), it is easy to see that
the effect of network delay jitter can be incorporated into our performance model in the same
way as clock jitter, and the same derivations are still valid.

In the following sections, we derive three key performance metrics for evaluating the parallel
video server architecture, namely, server buffer requirement, client buffer requirement, and
system response time.

10.3.1 Server Scheduling

Under concurrent push, the client will be receiving Ny video blocks simultaneously at an
aggregate rate of Ry. The average filling time, defined as the time to completely transmit a
video block of Q bytes, is given by

_ Ns0O

Tr = 10.1
S (10.1)

On the other hand, each server will be serving at most ANy concurrent video sessions.
Under the SCAN disk scheduler, A Ny video blocks will be retrieved in each service round
for transmission at a rate of Ry /Ng per video stream. Hence the duration of a service round is
equal to T in equation (10.1) and two buffers are needed for each video stream for a total of
2A Ny Q bytes buffers at each server.

As server clocks are not synchronous, the service round of the servers may not be aligned
(see Figure 10.3). Without loss of generality, we assume a video title is striped with block
zero storing at server zero. Let T; ; be the time server i (0 <i < Ny) starts transmitting the
(jNs + i)th block of a video stream. Then we can formally define transmission jitter as:

§ =max {|T;; — Ti ;| IVi, k, j} (10.2)

It may appear that the maximum clock jitter T also bounds the transmission jitter. However, it
turns out that the transmission jitter not only depends on the clock jitter, but also depends on
the arrival time of a new video session request as depicted in Figure 10-4. We derive the upper
bound for the transmission jitter in Theorem 10.1:
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Figure 10.3 Service round misalignment between different servers
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Figure 10.4 Transmission jitter depends on both clock jitter and request arrival time

Theorem 10.1. Assume that new-session requests arrive at all servers at the same time, then
the transmission jitter is bounded by

§<Tr (10.3)

Proof. Please refer to the Appendix. [ ]

This bound on transmission jitter will be used to derive the amount of buffer required at the
client to prevent buffer underflow and overflow respectively.

10.3.2 Video Block Consumption Model

Many studies on VoD systems assume that video data are consumed periodically by the video
decoder. However, our experience in programming some off-the-shelf hardware and soft-
ware video decoders reveals that the decoder consumes fixed-size data blocks only quasi-
periodically.

Given the average video data rate, Ry, and block size, Q, the average time for a video
decoder to consume a single block is

0

% (10.4)

Tavg =

To quantify the randomness of video block consumption time, we first define a few notations.

Definition 10.1. (a) Let T; be the time the video decoder start decoding the ith video block,
then the decoding-time deviation of video block i is defined as

Tpv(i) =T, — iTuvg -1 (105)

and decoding is late if Tpy (i) > 0 and early if Tpy(i) < 0.
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(b) The maximum lag in decoding, Ty, and maximum advance in decoding, Tg, are defined
as:

Ty = min{Tpy()|Vi > 0} (10.7)

(c) The peak-to-peak decoding-time deviation is defined as
Tpy =T, — Tk (10.8)

Assume the bounds 77 and T are known, the time between the consumption of two video
blocks i and j (j > i) will be bounded by

max{((j — )Tag — Tpv), 0} = 1 < (( — D)Tavg + Tov) (10.9)

We use buffers at the client to absorb these variations to prevent buffer underflow and buffer
overflow during playback. Let there be L = (Y + Z) buffers (each Q bytes) at the client,
organized as a circular buffer. The client starts video playback once the first Y buffers are
completely filled with video data. We prefill buffers before playback to avoid buffer underflow,
and reserve the last Z buffers for incoming data to avoid buffer overflow.

10.3.3 Buffer Needed to Prevent Underflow

Since all Ny servers transmit data to a client concurrently, the client will be receiving Ny
video blocks simultaneously. Hence Y must be multiples of Ng. We let y = Y/Ng and consider
groups of Ny buffers in the follow derivations (i.e., group zero consists of blocks 0 to Ng—1,
group one consists of blocks Ng to 2Ng—1, and so on.).

Among the Ny servers, let the earliest transmission for the first round start at time £y, then
the last transmission for the first round must start at time ¢y + §. Therefore, the time for video
block group i to be completely filled, denoted by F'(i), is bounded by

(G+DTp+1t0+ f)<SFO) <+ DTr+1t+8+ 1) (10.10)

where fT (f* > 0)and f~ (f~ < 0) are used to model the maximum transmission time devi-
ation due to randomness in the system, including transmission rate deviation, CPU scheduling,
bus contention, etc.

Since the client starts playing the video after filling the first y groups of buffers, the playback
time for video block group 0 is simply F(y—1). From Section 10.3.2, setting Ty = F(y—1)
then the playback time for video block group i, denoted by P(i), is bounded by

{iNsTavg + F(y - 1)+ TE} = P(l) = {iNsTavg + F(y - 1)+ TL} (1011)

To guarantee video playback continuity, we must ensure that a video block group arrives
before playback deadline. In the worst-case scenario, the latest filling time must be smaller
than the earliest playback time, i.e.

max{F (i)} < min{P (i)} (10.12)
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Now for the L.H.S., noting that Ns7,,, = Tr (cf. equations (10.1) and (10.4)) we then have
max{F (i)} = (i + DT + to + max{8} f* (10.13)
Using the upper-bound for § from Theorem 10.1 we obtain
max{F(@)} =G+ DTp+to+Tr+ fF (10.14)
= +2)Tr+0+ f*
Similarly, the R.H.S. is
min{P(i)} = iNsTye + min{F(y — 1)} + Tg (10.15)
=iTr+yTr+to+ f~ + T
Merging equations (10.14) and (10.15), we then have
(+2Tr+to+ fH <G+ WTr+to+ f~ + Tk (10.16)
Rearranging, we can then obtain y:

t T
y>2+£——%——£ (10.17)
F

Knowing the number of groups required, we can then obtain Y from

f+_f_TE—‘NS

10.18
T, ( )

Y:[2+

10.3.4 Buffer Needed to Prevent Overflow

On the other hand, to guarantee that the client buffer will not be overwhelmed by incoming video
data, we need to ensure that the ith video block group starts playback before the (i 4+ /—2)th
video block group is completely received, where [ = L/Ng. This is because the client buffers
are organized as a circular buffer, and we must have at least one group of Ny free buffers
available for video blocks arriving simultaneously from Ny servers. Therefore, we need to
ensure that the earliest filling time for group (i 4+ /—2) must be larger than the latest playback
time for group i:

min{F(i + 1 — 2)} > max{P (i)} (10.19)

Using derivations similar to the previous section, we can obtain the number of buffers needed
to prevent buffer overflow as:

+ _ —
Z= [2 + ﬂ] N, (10.20)
Tr
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10.3.5 System Response Time

Response time is defined as the time from the user request for a new video session to the time
actual video playback starts. This delay comprises two components: scheduling delay, and
prefill delay. Scheduling delay is the time from a client sending a new-session request to the
time transmission starts at the server. It is easy to see that the worst-case scheduling delay is
two service rounds (see Figure 10.2):

2N,
Dy — sQ
Ry

(10.21)

Prefill delay is the time from the server starts transmission to the time the first y groups of
client buffers are fully filled with data. Using equation (10.10), the worst-case prefill delay can
be obtained from

Dp = max{F(y — 1)} — 1o (10.22)
or
Dp = yTr + max{8} + [T =(y+ DTr + (10.23)
— (3 + [u—‘> Tr + f+
Tr

10.4 Asynchronous Grouped Sweeping Scheme

The results in the previous section reveal an important characteristic of the concurrent push
algorithm, namely, the server buffer requirement, the client buffer requirement, and the response
time all increase with the number of servers in the system. Therefore, the scalability of the
system will either be limited by the economy of memory buffers or the tolerance of the system
response time by the user. In this section, we propose an extension of the Grouped Sweeping
Scheme (GSS) [8], called Asynchronous Group Sweeping Scheme (AGSS) to substantially
reduce server buffer requirement, and scheduling delay.

10.4.1 Extending the Grouped Sweeping Scheme

The original GSS algorithm [8] is designed for scheduling retrieval requests in a magnetic disk.
The traditional First-In-First-Out scheduling algorithm has poor disk utilization in continuous-
media applications because in the worst case the disk arm may need to seek back and forth
between the innermost track and the outermost track, thus wasting a lot of time in seeking
(cf. Chapter 3). Instead, some systems use the SCAN scheduling algorithm to reduce seek-
time overhead by serving requests while the disk arm scans across the disk surface. However,
this approach requires two buffers per stream because requests may be served out of order and
in the worst case, two requests for the same stream may be served in a back-to-back manner.
The GSS algorithm is designed to strike balance between minimizing seek-time overhead
and minimizing buffer requirement by serving streams in groups. Streams within a group are
served using SCAN to reduce seek-time overhead while the groups are served in a fixed order to
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reduce buffer requirement. By varying the number of groups, one can trade-off disk utilization
against buffer requirement.

To extend GSS for use in parallel video servers, we propose dividing a service round into
G = gNjy groups, where g can be determined using the single-server model [8] to minimize
buffer requirement while still meeting the playout requirement. Assume that a single server
can serve at most A video sessions, then each group serves up to (A/g) video sessions. It is
easy to see that this holds for two or more servers as well. Therefore, the number of disk buffers
needed is reduced from A Ny to A, though we still need A Ng network buffers because a video
block is transmitted at a lower data rate of Ry/Ng. Under this extended GSS algorithm, the
total amount of server buffer required will be

1
Bserver = QNSA (1 + E) (10.24)

10.4.2 Uneven Group Assignment and Admission Scheduling

The AGSS algorithm described in the previous section has a subtle problem when the servers
in the system are not clock-synchronized. Figure 10.5 illustrates the problem using the arrivals
of two new-session requests. As shown in Figure 10.5 while server zero assigns the two new
sessions into different groups, server one assigns them into the same group. This can occur
because each server assigns the new session to a group according to its own internal clock,
which may be different from other servers due to clock jitter. Eventually, the group occupancy
among servers may deviate in such a way that one server can accept a new video session im-
mediately while others have to wait for an available group, thereby increasing the transmission
jitter.

To reduce the transmission jitter (which also reduces buffer requirement at the client), we
propose adding an admission scheduler to handle group assignment for new-session requests.
To initiate a new video session, a client will first send a request to the admission scheduler,
which maintains the same clock jitter bound with the servers. As new sessions are assigned
solely according to the admission scheduler’s clock, the scenario depicted in Figure 10.5 will
not occur. To ensure that the assigned group has not started in any of the servers due to clock

SEZZ ZZZ 7 Z =

Transmission T T

Server 0

Retrieval T T

Transmission T

Server 1

Retrieval 1

2nd new video session
———— 1stnew video session

Figure 10.5 Uneven service round assignments
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jitter, the admission scheduler adds an extra delay to the assignment, stated in the following
theorem:

Theorem 10.2. [f the admission scheduler delays the start of a new video session by
G
Q= ’7——‘ +1 (10.25)
Tr
groups, then it guarantees that the assigned group has not started in any of the Ng servers.
Proof. Please refer to the Appendix. [ |

Note that if the assigned group is full, the admission scheduler will sequentially check the
subsequent groups until an available group is found.

10.4.3 Client Buffer Requirement

As the admission scheduler already guarantees that a new video session will be assigned to
the same group in all servers, the scenario in Figure 10.5 could not occur and the transmission
jitter will be the same as the clock jitter. Hence, the client buffer requirement derived in Section
10.3 becomes

+ _
Y:’71+r+f f TE—‘NS (10.26)
Tr
zz[1+t+f+_f_+TﬂN5 (10.27)
Tr

10.4.4 System Response Time

The scheduling delay under the AGSS algorithm depends on the occupancy of the AGSS
groups. Specifically, if a group as calculated from Theorem 10.2 is fully occupied, the new
video session must be delayed until the next available group. In the worst case, the transmission
of the first video block is delayed for (Ng + €2) groups:

. G (0]
Dg = <N5 + ’VT—F—‘ + 1) Ry (10.28)

To better evaluate the scheduling delay, we derive the average scheduling delay under a given
system load. Assume that video sessions start independently and with equal likelihood at any
time. Then a video session can be assigned to any one of the G groups with equal probability.
Let there be n active video sessions and G groups, then the number of ways to distribute these
n video sessions among G groups is a variant of the urn-occupancy distribution problem [9]
and is given by

& (G (G+n—jA+1—1
N, G, A) = ;(—1)1 (j )( o ) (10.29)

To obtain the probability of having m fully-occupied groups, we first notice that there are (2)
possible combinations of picking m fully-occupied groups among G groups. Given that there
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are n active video sessions and m fully-occupied groups, the number of ways to distribute
the remaining (n — mA/g) video sessions among the remaining (G — m) groups with none of
those groups fully occupied can be obtained from equation (10.29) as N(n — mA/g, G —m,
(A/g) — 1). Hence the total number of ways for exactly m of the groups fully occupied is
given by

A

G A
)N(n—m—,G—m,——l) (10.30)
8 8

m

Npy(n, m) = (

The probability of having m fully-occupied groups given n active video sessions can then be
obtained from

Npu(n, m)

Pfull(n, m) = m

(10.31)
Knowing this, we can derive the average scheduling delay in the following way. Given m out
of G groups are fully occupied, the probability for the assigned group to be available (not fully
occupied) is given by

(10.32)

Hence Py = (1 — V) will be the probability of the assigned group being fully occupied. It can
be shown that the probability for a client to wait k additional groups provided that the first k
assigned groups are all fully occupied is

G—m

—_, 1<k 10.33
% <k=m (10.33)

Vie = Pr{(k + 1)th group available | P;} =

and the probability for the first k groups all being fully occupied is

k—1

—k (G — k!

P=T] (%= _ MG =R (10.34)
L6 =i)~ cim—n

Hence, we can solve for the probability of a client having to wait k additional groups, denoted
by W, from
G — (G —k—1)!
W, = Pr{(k + 1)th group free | P} P, = 2 — ™M Y ck<m
G!(m — k)!

(10.35)
Therefore, given the number of groups that are fully occupied m, the average number of groups
a client has to wait can be obtained from

m TG
Wavg(m) = Zka + ’VT_F—‘ +1 (10.36)
k=1

Similarly, given the number of active video sessions 7, the average number of groups a client
has to wait can be obtained from equations (10.31) and (10.36) as follows:

G-1
Mayg(n) =Y Wayg(j) Pran(n, j) (10.37)

j=1
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And the corresponding average scheduling delay given a system utilization of n is

M(IV
Ds = MaemQ (10.38)
Ry
As the admission scheduler reduces the transmission jitter to equal to the clock jitter, the
new prefill delay can be obtained by replacing § with 7 in equation (10.23):

1),,=<2+F+f+ ;Ff__TED Tp + £+ (10.39)

10.5 Sub-Schedule Striping Scheme

The AGSS algorithm presented in the previous section substantially reduces the server buffer
requirement as well as the scheduling delay. However, the client buffer requirement and,
consequently, the prefill delay are only slightly reduced as a side effect of the admission
scheduler. In this section, we consider another modification to the concurrent-push algorithm
that can substantially reduce the client buffer requirement and the prefill delay.

Specifically, the analysis in Section 10.3 reveals that the main reason for the increase in
client buffer requirement with the number of servers stems from the increase in the average
filling time in equation (10.1). This suggests that we can reduce the buffer requirement by
using smaller striping size Q. However, as the server retrieves data from the disk in units of Q
bytes, reducing the striping size will adversely affect disk retrieval efficiency.

To solve this problem, we propose decoupling the transaction size for disk retrieval and
transmission from the striping size — sub-schedule striping (SSS). In particular, we maintain
the disk transaction size at Q bytes but use a striping size (denoted by U) inversely proportional
to the number of servers in the system (Figure 10.6):

U= Q/Ng (10.40)
S, 50
S, 6|1 |
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S, 712 9(8|7|6/5| [4[3[2|1|0 :> Playout
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Q bytes Ubytes

(Transaction Size)  (Striping Size)

Figure 10.6 Data organization in sub-schedule striping
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Hence the disk will retrieve N stripe units in a single transaction. Note that the client continues
to consume video data in blocks of Q bytes and hence the video-block consumption model
in Section 10.3.2 remains valid. However, a video block now contains stripe units transmitted
from all Ng servers (Figure 10.6) rather than from a single server as in the original algorithm.
Consequently, the client buffer size Y and Z no longer need to be multiples of N.

Sub-schedule striping requires no modification to the server as the transaction size remains
the same. Therefore, the server buffer requirement, as well as scheduling delay are the same
as before.

To model the effect on the client buffer requirement, we note that a Q-bytes video block
comprises fragments from all Ny servers. Hence, the filling time for a video block would be
affected by the transmission jitter among servers. Specifically, the filling time for video block
i of a video stream started at time #; is bounded by

((+ DT +10+ )< fO < ((+DTug+t0+ fH+7) (10.41)

Using similar derivations, the client buffers needed to prevent underflow and overflow can
be found to be:

T,
Y>1+<f ! E+f) (10.42)
Tavg
tT—fT 4T
Z>l+<f S+ L+T> (10.43)
Tavg
and the time to prefill the first Y client buffers is
Dp=YTue+ fT+7 (10.44)

Now both the client buffer requirement and prefill delay no longer depend on the number of
servers in the system.

10.6 Performance Evaluation

In this section, we evaluate the performance of the parallel video server architecture studied in
this chapter using numerical results. Table 10.1 lists the values for the key system parameters
used in the calculation. The parameters Tr and 7, are determined empirically by collecting
the video block consumption times of a hardware MPEG-1 decoder.

10.6.1 Server Buffer Requirement

Figure 10.7a plots the per-server buffer requirement versus the number of servers in the system.
We can observe that AGSS substantially reduces the buffer requirement. Sub-schedule striping
has no effect on the server buffer requirement. Despite the reduction achieved by AGSS, the
server buffer requirement still increases with the number of servers. This poses one limitation
on the ultimate scalability of the system (to be discussed in Section 10.6.4). Depending on
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Table 10.1 System parameters used in performance evaluation

System parameters Symbol Value
Video block size 0 65,536 Bytes
Video data rate Ry 150 KB/s
Maximum advance in decoding time Te —130 ms
Maximum lag in decoding time T, 160 ms
Client—server ratio A 10
Transmission time deviation o ft 0 ms
Server clock jitter T 100 ms
AGSS parameter g 1

the relative cost of memory and disk bandwidth, one can reduce system cost by trading disk
efficiency for smaller server buffer requirement.

10.6.2 Client Buffer Requirement

Figure 10.7b plots the client buffer requirement versus the number of servers in the system.
Figure 10.7b shows that AGSS substantially reduces the client buffer requirement but it still
increases linearly with the number of servers. With the addition of sub-schedule striping, the
client buffer requirement is constant, regardless of the number of servers in the system. This
is a crucial property as it would be impractical to upgrade all clients whenever more servers
are added to the system in practice.

From equations (10.42) and (10.43), it is easy to see that the client buffer requirement is
insensitive to the server clock jitter. As an example, for a 16-server system with AGSS and
sub-schedule striping, the client buffer requirement is only 384 KB for a server clock jitter as
large as 1,000 ms.
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Figure 10.7a Server buffer requirement versus number of servers
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Figure 10.7b Client buffer requirement versus number of servers

10.6.3 System Response Time

We first plot scheduling delay versus the number of servers in the system in Figure 10.8a.
The case for sub-schedule striping is not plotted, as sub-schedule striping has no effect on the
scheduling delay. Note that the worst-case scheduling delay is substantially reduced by AGSS,
especially for large number of servers. Moreover, the average scheduling delay with AGSS is
even smaller and stays relatively constant, regardless of the number of servers in the system.
For example, with AGSS striping in a 16-server system, the average delay is only 1.26 seconds
for system utilization as high as 90% even though the worst-case scenario is 9.18 seconds.
The worst-case delay is even larger (13.98 seconds) without AGSS. Hence with AGSS, we can
maintain a reasonably short scheduling delay by operating the system to within, say, 90% of
the total capacity.

Figure 10.8b plots the prefill delay versus the number of servers in the system. The results
show that the prefill delay is also reduced by AGSS because the worst-case transmission jitter
T is larger than the clock jitter . More importantly, by using sub-schedule striping, the prefill
delay becomes completely independent of the number of servers in the system.

Finally, we plot the total system response time in Figure 10.9. Clearly the proposed AGSS
and sub-schedule striping can effectively maintain a small system response time (1.8 seconds
for Ng = 16 at 90% utilization) even if the number of servers is large.

10.6.4 Scalability

The results in the previous sections have shown that both the client buffer requirement and
the system response time can be kept low irrespective of the number of servers in the system.
Server buffer requirement is the only factor that increases with more servers. This factor will
certainly limit the ultimate scalability of the system. Nowadays, it is common to install 256 MB
or more memory in a PC-based server as memory price has dropped substantially. Under our
system parameters and ignoring operating system overhead, a 256MB memory size will limit
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the scalability of the parallel video server architecture to a maximum of 408 servers serving
a total of 3,672 concurrent video sessions at 90% utilization. If 1GB memory is available, the
architecture can be scaled up to 14,400 concurrent video sessions using a client—server ratio
of 250 at 90% utilization.

A second, more subtle limiting factor is due to the sub-schedule striping scheme. Under this
scheme, the client must resequence the incoming data by copying U-bytes stripe units into the
client buffer (Figure 10.6). Hence the processing overhead will likely increase with smaller
striping size. Our previous experiences showed that processing overhead remains practical for
software implementations running in even low-end PCs for striping size as small as 1KB. This
limits Ng to 64. For larger systems, we can use more powerful server hardware with a larger
client—server ratio to avoid reaching this limit. In the previous example with 1GB memory,
we increase the client—server ratio to 250 to limit to a total of 64 servers. Clearly the rapid
improvement in CPU speed will undoubtedly extend this limit.

10.7 Summary

In this chapter, we have presented and analyzed a concurrent-push parallel video server archi-
tecture for designing scalable video-on-demand systems. The proposed architecture employs
fixed-size block striping and the server-push service model. To schedule disk retrievals and
transmissions, we introduced a concurrent-push scheduling algorithm where video data are
continuously transmitted from all servers to a client station. This constant-bit-rate traffic pro-
duced by the algorithm enables us to take advantage of the quality-of-service guarantees
provided by the networks. To extend the scalability of the architecture, we introduced the
Asynchronous Grouped Sweeping Scheme and the Sub-Schedule Striping Scheme into the
architecture. Results showed that the resultant architecture can be scaled up to more than ten
thousand concurrent users with acceptable buffer requirement and system response time.
Building video-on-demand systems upon parallel server architecture not only breaks through
the capacity limit of a single server, but also opens the way to fault-tolerant system designs.
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In the next chapter we develop fault-tolerant algorithms for the concurrent-push architecture
so that even server failures can be sustained without disruption to ongoing video streams.

Appendices
A.1 Proof of Theorem 10.1

Assume server zero starts the first service round at time #y. Since the server clocks are not
precisely synchronized, we let d; be the clock difference between server i and server zero.
Hence dp=0 and max{|d; —d;| | Vi, j} =t and serveri will start service round j at time
(to + d;+ jTF). Let t,,, be the time a new-session request arrive at the servers. Then the request
will arrive at server i during round v;:

tnew — (& di
v = \‘ﬂj (10.45)
Tr

and the first video block will be retrieved at round (v; + 1) and transmitted at round (v; + 2).
Hence the transmission jitter between server i and server k for stripe j can be expressed as:

Sik,j =@ +di + W +2+ j)Tr) — (o +di + (v +2+ j)TF) (10.46)

Substituting equation (10.45) into (10.46) we have

Tnew — (£ d; thew — (I d
Sikj=\di + M Tr ) — | di + M Tr (10.47)
TF TF

Without loss of generality, we can assume d; > dj and let H = W Then we have

5 (di — di)
ikj =i+ H]Tp)— |d + | H+ — Tr (10.48)
F
— (A —do) + T (LHJ - {H + MJ)
Tr
Noting that |x + y] > |x] + |y] we have
d; —d
Sikj <(di—d)+Tr (LHJ —|H] - {(T—ﬂj) (10.49)
g (di —dy)
=(di —dy) — Tr {7& J
Finally, making use of the result that |[x/y] y > (x — y) we can then obtain
d; — d,
Sik,j =i —dp) —Tr \;%J (10.50)
= (di —di) —(di —dr) —TF)

:TF

and the result follows.
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A.2 Proof of Theorem 10.2

Let the new session request arrive at the admission scheduler at time ¢ during group
Unew = [#G/TF]. Then due to clock jitter, the current group at other servers can range from
Lt —t)G/TF] to [(t + v)G/TF]. To guarantee that the assigned group has not started in
any of the servers implies assigning a group larger than the largest current group in any of
the servers, i.e. Sy = [(t + T)G/TF] + 1. Applying the inequality |x + y| < [x] + [y] we
have

Spew < [tG/Tr] + [tG/Tp] +1 (10.51)

Substituting into v, We have Syey < Unew + [TG/Tr] + 1 and the results follows. |
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Fault-Tolerant Algorithms for the
Concurrent-Push Architecture

One potential problem with the concurrent-push architecture, and any parallel server archi-
tectures in general, is reliability. As the system distributes video data over multiple servers,
failure of a single server will cripple the entire system. Worst still, as the system is scaled
up to more users, more servers will be needed and consequently the system-wide reliabil-
ity will decrease accordingly. Drawing similar principles from disk array researches, we
present in this chapter fault-tolerant algorithms to improve the system reliability.

In particular, we address three key problems pertaining to supporting fault tolerance in
the concurrent-push architecture, namely, redundancy management, redundant data trans-
mission protocol, and real-time fault masking. First, redundant data based on erasure codes
are introduced to video data stored in the servers, which are then delivered to the clients
to support fault tolerance. Despite the success of distributed redundancy striping schemes
such as RAID-5 in disk array implementations, we discover that similar schemes extended
to the server context do not scale well. Instead, we develop a redundant server scheme that
is both scalable and consumes less server buffer. Second, two protocols are introduced to
control the transmission of redundant data to the clients, namely, forward erasure correction
(FEC) and progressive redundancy transmission (PRT). These two protocols achieve differ-
ent tradeoffs between bandwidth overhead, implementation complexity, and client buffer
requirement. Finally, we derive the amount of client buffers required so that non-stop,
continuous video playback can be maintained during server failure.

11.1 Redundancy Management

To support server-level fault tolerance, we need redundant data so that a client can re-compute
the unavailable video data after server failures. The problem of correcting data errors has been
studied extensively in the literature. According to coding theory [1], one can encode a set
of symbols with redundancies so that errors occurring within the set can be corrected later.
However, server failure is slightly different in the sense that there is really no error in the
coding sense. Instead, a server failure introduces erasures — the absence of data.

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
© 2005 John Wiley & Sons, Ltd.
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Errors and erasures are different, because, for errors, data are still being received but the
content may be corrupted. In case of erasure, the expected data are simply missing and hence no
erroneous data will be received. Here we have implicitly assumed that the server is fail-stop, i.e.,
it stops sending out data upon failure. This type of failure could be caused by disk subsystem
failure, network failure, power loss, or even software crashes. In any case, erasures are intro-
duced into the video stream because data stored in the failed server will become unavailable.

According to coding theory, to recover an erased symbol (a unit of data) in a codeword (also
called a parity group, or a stripe), one needs to encode the data with at least one redundant
symbol per codeword. One well-known coding algorithm called Reed-Solomon Erasure cor-
rection (RSE) code [2, 3] can encode data with any codeword size and level of redundancies.
If one needs to protect the system from only single-server failure, then an even simpler code —
parity — can be used instead. For simplicity, we assume in this chapter a generic code where
each additional redundant symbol can recover one erasure.

Drawing related principles from RAID [4], Figures 11.1 and 11.2 depict the proposed
redundant striping policies for block striping and sub-schedule striping. The basic idea is the
same — introduces one or more redundant stripe units in every stripe. The redundant units are
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Figure 11.2 Fixed-size sub-schedule striping with redundancy of one
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precomputed and distributed to the servers in a round-robin manner similar to a RAID-5 disk
array. Note that a parity group spans all servers and hence the parity group size equals the
number of servers in the system.

In Chapter 9, we introduced two approaches for transmitting redundant data to the clients,
namely, forward erasure correction and progressive redundancy transmission. These two
schemes represent different tradeoffs: FEC simplifies system implementation and has lower
client buffer requirement and start-up delay in certain cases, at the expense of network band-
width overhead during normal operation (i.e., no failure); PRT reduces this bandwidth overhead
at the expense of more complicated system implementation and potentially larger buffer re-
quirement and start-up delay. We present a FEC-based transmission scheme for concurrent
push in the next section, and a PRT-based transmission scheme in Section 11.3.

11.2 Forward Erasure Correction (FEC)

As the name suggests, servers under FEC transmit redundant data regardless of server failure.
As redundant data are always received, the client can re-compute unavailable data by erasure
correction computation (see Figure 11.3 for the case under sub-schedule striping). Hence,
one does not need to detect server failure for the sake of maintaining non-stop operation, and
consequently system reconfiguration is also unnecessary. Clearly, this can greatly simplify the
implementation and avoid other complications such as false alarm or undetected failure. The
tradeoff is extra network bandwidth required to deliver redundant data during normal-mode
operation. Specifically, with Ng servers and a redundancy level of K (i.e., up to K simultaneous
server failures can be sustained), the network bandwidth overhead incurred will be given by

K
Hppe = m (11.1)
For a small-scale system (i.e., Ng small) with high level of redundancy (i.e., K large), this
overhead could become prohibitive. For example, with Ng = 3 and K = 1, the overhead would
become 50%. Considering that a VoD system is expected to operate mostly in normal mode,
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this overhead may not be acceptable for systems with a small number of servers. The PRT
scheme discussed in the next section is designed to reduce this bandwidth overhead.

11.3 Progressive Redundancy Transmission (PRT)

In PRT, the system does not transmit all the redundant data. Instead, the server transmits only
a subset of the redundant data and then activates more redundant data transmissions when
a server failure is detected, thus reducing the network bandwidth overhead incurred during
normal-mode operation. Obviously the system must be able to detect server failures quickly
so that the system can be reconfigured to send additional redundant data. By contrast, this
extra step of failure detection is not needed in FEC. For simplicity, we will focus on a special
type of PRT algorithm where none of the redundant data are transmitted until a server failure
is detected. We will revisit the more general PRT algorithm in Chapter 13 when we compare
FEC and PRT in details.

In a system with Ny servers and a video data rate of Ry, each server only needs to transmit
at a rate of Ry /Ng — we call it Min-Rate transmission. Upon a simultaneous x-server failure
(0 < x < K), the surviving servers will have to increase the transmission rate from Ry /Ny
to Ry /(Ns — x) to maintain the same aggregate video bit-rate. This Min-Rate transmission
scheme thus requires dynamic reconfiguration of the server scheduler as well as network band-
width allocations. Alternatively, the system can maintain the transmissionrate at Ry (Ng — K ) —
we call it Std-Rate transmission, even when there is no failure. The servers just skipped transmit-
ting the redundant units. When an x-server failure occurs, the system will simply reconfigure x
of the servers to start transmitting redundant data, thereby maintaining enough data for erasure
correction at the clients. This approach eliminates the need to dynamically reconfigure the
server scheduler and network connections.

If the network does not require per-channel resource allocation (e.g., FastEthernet), Min-Rate
transmission will have no advantage over Std-Rate transmission, as the average rate is the same
for both schemes. On the other hand, if the network requires per-channel resource allocation
such as CBR service in Asynchronous Transfer Mode (ATM), then under Min-Rate trans-
mission the servers will need to re-negotiate a higher bandwidth allocation from the network
upon detecting a failure. However, reconfiguring hundreds or even thousands of connections
simultaneously could overload the network management center, which in turn could delay the
reconfiguration process significantly. Therefore, we conclude that the Min-Rate transmission
scheme does not offer significant advantages over Std-Rate and is difficult to implement effi-
ciently. By contrast, the Std-Rate transmission scheme is much simpler to implement, and so
we will only consider the Std-Rate transmission scheme in the rest of the chapter.

11.3.1 Failure-Detection Protocol

As discussed in the previous section, failure detection is necessary in PRT because redundant
data are not normally transmitted. The goal then is to detect a server failure quickly and
accurately, so that the remaining servers can be reconfigured to begin transmitting redundant
data. If the detection delay, defined as the time from a server fails to the time the remaining
servers are notified of the failure, is too large, then video playback hiccups can occur at the
clients. On the other hand, the detection algorithm should not be overly sensitive in order
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to avoid false alarms. We present below an admission-scheduler-based (ASB) protocol for
detecting server failures.

In our previous investigations, we found that incoming control requests could be delayed
for a substantial amount of time (e.g., more than one second) due to intense I/O activities at
the servers. Consequently, it would be more difficult to implement server-based fault-detection
protocols that can quickly detect a failure. This motivates us to implement fault-detection
at the admission scheduler rather than at the servers. The admission scheduler is originally
introduced to tackle the uneven group assignment problem arising from server clock jitters (cf.
Section 10.4). For fault detection, we extend the admission scheduler to simulate a video client.
Unlike real video clients, however, received video data are simply discarded at the admission
scheduler after bookkeeping is done, and the scheduler never performs any interactive control
nor will the stream ever terminate (until system shutdown). At the servers, video data destined
to the admission scheduler are not retrieved from the disks, but rather generated on-the-fly.
Since the generated video data will not be interpreted at the admission scheduler, the server can
avoid disk overhead by sending the same buffer repeatedly after updating header information
such as stream offset or sequence number.

When a server fails, it simply stops transmitting data. Hence, a server failure can be inferred
by the lack of video data received at the admission scheduler. We assume that the admission
scheduler is located close to the servers so that worst-case arrival deadlines are known for each
and every video packet. Then the admission scheduler can declare a server to have failed if the
arrival deadline is exceeded by a threshold of say, T, seconds. This threshold is introduced to
reduce the possibility of false alarms caused by unexpected data delivery delays or occasional
packet losses.

Note that the admission scheduler itself could also fail. However, this type of failure will
be less problematic because (a) while new streams cannot be started, the failure will not affect
existing streams; and (b) compared to the video servers, the admission scheduler is much
simpler and hence potentially far more reliable. For example, the admission scheduler can be
diskless so that disk failure can be avoided. ECC memory can be used to protect from memory
faults, etc.

11.3.2 Server Reconfiguration for Block Striping

Upon declaring that a server has failed, the admission scheduler will send messages to
the surviving servers to notify them of the failure. The delay incurred will obviously be
implementation-dependent. For simplicity, we assume that the failure-detection delay is
bounded and the maximum is given by Tp seconds. Upon receiving the failure notification,
the servers will initiate a reconfiguration process to begin transmitting redundant blocks and
to retransmit the necessary redundant blocks.

Figure 11.4 depicts the scenario for reconfiguring a 5-server system under block striping.
Note that we consider only one video stream for illustration and analysis while in practice the
same process occurs for all active video streams. All algorithms and procedures still apply and
no modification is needed for the multi-stream case. Note also that redundant video blocks are
always retrieved, just not transmitted when there is no failure. One might notice that during
normal operation, some disk bandwidth would then be wasted in retrieving redundant blocks
that are not needed. It is conceivable that one can reuse this wasted bandwidth to serve extra
video sessions during normal operation. However, these sessions will have to be disconnected
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Figure 11.4 Server reconfiguration under PRT with block striping

upon server failure. More investigations are therefore needed to quantify the gains and the
associated tradeoffs.

Now assuming that failure occurs during service round j, then the servers will receive the
failure notification latest by round

k=j+ ’V_—‘ (11.2)

where TF is the length of a service round defined in equation (11.4) below.

Knowing the failure, the servers will transmit redundant video blocks in addition to video
blocks in the nextround (k + 1) if there is one (e.g., P4 in Figure 11.4). However, the (k — j+ 1)
stripes that are transmitted after the failure but before the failure is detected will have no
redundant blocks transmitted (e.g., stripes 2 and 3). To enable the client to re-compute the lost
stripe units, it is therefore necessary to retransmit the required redundant units (e.g., P2 and
P3) for these stripes.

In a system with Ny servers and K redundant blocks per stripe, a maximum of (k — j + 1)K
redundant blocks will have to be retransmitted. Note that this is the maximum because re-
transmission is not needed for lost redundant blocks. Assume the failure is a simultaneous
K -server failure (worst-case scenario), leaving (Ng — K) working servers, the remaining
servers can then retrieve and transmit (Ng — K) redundant units in a service round. Hence, a
maximum of

Ne [(k—j+ I)KW _ ((fTD/Tﬂ - DKW 113

(Ns — K) (Ns — K)
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additional service rounds are required to retransmit the necessary redundant units. Conse-
quently, transmission of subsequent stripes will be delayed by at most N rounds.

Now consider the recovery of stripe j (e.g., stripe 2 in Figure 11.4). At the time (round k)
the failure is detected, the current disk cycle is already retrieving stripe units for the next
transmission cycle k + 1. Hence, redundant units for stripe j can only be scheduled for
retrieval in the next disk retrieval cycle, which in turn will be sent in transmission round k +
2. Therefore, delivery of the redundant block required to recover stripe j will be delayed by

N-%hﬁ+m—<FJ2@—w+a (11.4)
rEETITEE o — 1 '

service rounds. For a transmission rate of Ry/(Ng — K) Bps under Std-Rate transmission,
the time it takes to transmit a video block of Q bytes, i.e., length of a service round, is
equal to

_ OWNs —K)

T,
F Ry

(11.5)

Therefore, using equations (11.4) and (11.5) we can compute the delay for delivering the
redundant block for stripe j from

RyTp —‘+2) O(Ns — K) (11.6)

Dy =NrTr=|| ——————
oo ((Q(Ns—-K) Ry

Provided that (Ng — K) > K, equation (11.6) also bounds the delay for all stripes. To see
why, begin with equation (11.3):

NR:[&—j+DK1
(Ns — K)

<Gk—j+D. ~ (Ns—K) =K) (11.7)
<k—j+2)=Ng

This shows that the delay experienced by stripes {i|i > k + 1} transmitted after the failure is
detected (Ng) is smaller than the delay experienced by stripe j (Nf). Therefore, the worst-case
delay in equation (11.6) also bounds the delay for all stripes.

The additional delay will likely lead to video playback hiccups for the clients. If tempo-
rary service interruption can be tolerated, then the clients can simply suspend playback for
Dy seconds to resynchronize with the new transmission schedule. Otherwise, we can intro-
duce additional buffers at the client to sustain non-stop video playback during reconfiguration
(Section 11.5).

11.3.3 Server Reconfiguration for Sub-Schedule Striping

Figure 11.5 depicts the server reconfiguration process for sub-schedule striping, with Ng =5
and K = 1. Instead of considering service rounds, we consider micro-rounds — defined as the
period for transmitting a stripe. Hence, a system with Ny servers will have Ng micro-rounds
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Figure 11.5 Server reconfiguration under PRT with sub-schedule striping

per service round. Note that in each service round, a server retrieves

Ns

=0— 11.8
Os Q(NS—K) (11.8)

bytes of video data (instead of Q bytes in block striping) for every video stream and the length
of a service round is

Ng

Tg=Tr———
ST (Ng — K)

(11.9)

seconds (instead of T seconds in block striping).
We assume that a K-server failure occurs during micro-round j and is detected in micro-
round k. Similar to equation (11.2), we can obtain k from

(11.10)

Once notified of the failure, the servers will begin transmitting redundant units for subsequent
stripes (> k). As each stripe contains K redundant units, the system needs to retransmit up to
(k — j + 1)K redundant units. This will require up to

(11.11)
(Ns — K) (Ns — K)

ne ((k —j+ DKW _ [(RNS — K)Tp/Trl + 1)11
micro-rounds for retransmitting the redundant units.

Note that this process has two subtle constraints. First, retransmission cannot start immedi-
ately in the next service round because the servers need another service round to retrieve the
required redundant units. Second, even if ng < Ny, the last service round for retransmission
cannot be shortened because the disk requires a full service round to retrieve video blocks for
transmission in the next round.
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Similar to the block-striping case, the worst-case delay will be experienced by the stripe that
is being transmitted when the failure occurs, provided that (Ng — K) > K. The worst-case
delay can be up to

Nrp=k—j+(Nsg—1)+ Ng

_ [—(NS - K)TD] FoNs—1 (11.12)
Tr

_ | R 1= 2 N

—[ 0 —‘+2NS Lo Tr = 2 (Ns = K)

micro-rounds, where (k — j) is the worst-case delay due to failure detection, (Ng — 1) is the
worst-case delay to wait for the current service round to end, and Ny is the delay due to the
first constraint discussed previously. Noting that the length of a micro-round is equal to Ts/Ng
seconds, the delay is then given by

_n.Is _ (| RvIp 1\ 2
DF_NFNS_G 5 —‘+2N5 1) R (11.13)

seconds.

11.4 Analysis of Forward Erasure Correction

In this section, we derive the amount of client buffer needed to support fault tolerance under FEC
so that non-stop playback can be sustained. Client buffers are originally introduced to absorb
jitters in video-block playback times and delivery delays. To support fault tolerance using FEC,
we need additional client buffers to store a complete stripe (with redundant units) for erasure-
correction computation. The derivations in the following sections are based on the model
introduced in Chapter 10. The overall approach is to obtain upper and lower bounds for stripe
unit arrival times and stripe unit consumption times. Then, using the continuity condition,
i.e., the latest arrival time for a stripe unit must not be later than the earliest consumption time,
we can obtain the number of buffers required to prevent buffer underflow. We can obtain the
number of buffers required to prevent buffer overflow in a similar way.

11.4.1 Buffer Requirement under Block Striping

We first consider the case for block striping. Let there be L = (Y + Z) buffers (each Q bytes)
at the client, organized as a circular buffer. Video playback starts once the first Y buffers
are completely filled with video data. The client prefills the first ¥ buffers to prevent buffer
underflow, and reserves the last Z buffers for incoming data to prevent buffer overflow.

Since all Ny servers transmit data to a client concurrently, the client will be receiving
N video blocks simultaneously, of which (Ng — K) blocks contain video data and the rest
contain redundant data. This suggests that ¥ must be multiples of Ng. Therefore, we consider
groups of Ng buffers (i.e., group zero consists of blocks 0 to Ny —1, group one consists
of blocks Ng to 2Ng — 1, and so on.) and let y = Y/Ng be the number of buffer groups
prefilled.
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Using techniques similar to Chapter 10, we can obtain (see Appendix A.1 for derivations):

T fT T,
Y:[1+T+f / E—‘NS (11.14)
(NS - K) Tavg
for the number of buffers needed to prevent underflow, and
T fT4T
Z=’71+T+f S+ L—‘NS (11.15)
(NS - K) Tavg

for the number of buffers needed to prevent overflow. Note that T, T are jitter bounds for
video block consumption, T is the clock jitter among servers, f* (fT > 0)and £~ (f~ < 0)
are used to model the maximum transmission time deviation due to randomness in the system,
including transmission rate deviation, CPU scheduling, bus contention, etc. See Table 11.1 for
a summary of the symbols used in this chapter.

By setting K = 0 in equations (11.14) and (11.15), the equations reduce to the non-fault-
tolerance version in Chapter 10. The total client buffer requirement is thus given by

BS __ T+f+_f__TE -E+f+_f—+TL—‘)
BFEC a <2+ ’7 (Ns — K) Tavg —‘ + ’7 (Ng — K) Tavg NsQ (11.16)

Note the independence of equation (11.16) from T, as failure-detection and consequently
server reconfiguration is not needed under FEC. However, we can also observe that the buffer
requirement will increase when more servers are added to the system, suggesting that more
buffers will be needed when scaling up the system.

11.4.2 Buffer Requirement under Sub-Schedule Striping

Under sub-schedule striping, each video block (Q bytes) at a server comprises multiple stripe
units (U bytes each) and the size of a video block is given in equation (11.8). The client buffers
now comprises L = Y + Z buffer units, each of Qg bytes. Again, we consider stripe units in
groups of Ny units, i.e., group i comprises stripe units {i,i + 1, ..., (i + 1)Ng — 1}. Then a
group of Ny stripe units will correspond to exactly one buffer unit at the client. Using similar
techniques (see Appendix A.2 for derivations), the buffer requirements can be found to be

Y:ﬁﬁ_f__&+T1+l (11.17)
Tavg

and

z:[f+_f'+n+f1+1 (11.18)

Tavg

Surprisingly, these are the same as the non-fault-tolerant case. This counter-intuitive result is
explained by the fact that each group of buffers here has the size of Qg bytes instead of Q
bytes in the non-fault-tolerant case. Hence, the system does indeed need additional buffers to
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support fault tolerance and the total client buffer requirement is given by

+_ +_ -
B£§%=<2+P+f ! TEFP” d +TLD 05 (1119
Tavg Tavg

11.5 Analysis of Progressive Redundancy Transmission

Unlike FEC, PRT requires additional buffers to sustain continuous video playback during
system reconfiguration. Incorporating this requirement, we derive the corresponding buffer
requirement for block striping and sub-schedule striping in the following sections.

11.5.1 Buffer Requirement under Block Striping

A client operating under PRT will simultaneously receive (Ng — K) instead of Ng video
blocks. Therefore, a group of video blocks comprises only (Ng — K) video blocks. Unlike
FEC, derivations for the buffer requirements depend on whether the failure occurs before
or after video playback starts. For the case where the failure occurs before video playback
starts, the playback schedule will be delayed because playback cannot start until the required
number of buffers are prefilled. The buffer requirements are found to be (see Appendix A.3
for derivations)

T+ [T — Tk
efore — 1 11.20
Vi ’V * (NS_K)Tavg —‘ ( )
and
N 1+T+f+_f_+TL+DF (1121)
Before = (NS_K) Tavg .

For the case where the failure occurs after video playback starts, the playback schedule will
not be affected. The buffer requirements are found to be

e s
and
Hence, the client buffer requirement is either
IBefore = YBefore + ZBefore (11.24)

or

Lafier = Yafier + ZAfter (11.25)
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whichever is larger. However, from equation (11.6): Dy = NpTr and Tr = (Ng — K)Tp,.
Therefore, the two equations are in fact equivalent. The total client buffer requirement is thus
given by

Bs T+ frt—f =Tk z+f+—f—+TL‘D B
BPRT_ <2+NF+’7 (NS_K)Tavg —‘4_’7 (NS_K)Tavg (NS K)Q
(11.26)

11.5.2 Buffer Requirement under Sub-Schedule Striping

To derive the client buffer requirement for sub-schedule striping, we again consider stripe units
in groups of (Ng — K), i.e., group i comprises stripe units {i,i + 1, ..., (i + Ngs — K — 1)}.
Now unlike FEC, each group of stripe units has the size of Q bytes, instead of Q¢ bytes under
FEC. Hence, the client buffer comprises L = Y + Z buffer units, each of Q bytes. Proceeding
the derivations in the same manner (see Appendix A.4 for details), we can obtain the total
buffer requirements from

o +_ -
Bﬁ§§=<2+NF+P+f f T‘ﬂ+r+f s +TLDQ (11.27)
Tavg Tavg

From equation (11.12), we can see that N is proportional to Ny. This implies that the buffer
requirement is also proportional to Ng. As sub-schedule striping (cf., Section 10.5) is originally
introduced to maintain a constant client buffer requirement independent of system scale (i.e.,
Ny), the extension to PRT appears to have defeated this goal. We introduce a redundant server
scheme in the next section to tackle this problem.

11.6 Redundant Server Scheme

A closer look at Figure 11.5 will reveal why buffer requirement increases with system scale in
PRT. First, retransmission of redundant stripe units cannot start in the current service round.
This incurs a worst-case delay equal to (Ns — 1)7,,, seconds, which obviously is proportional
to the system scale. Second, retransmissions cannot start even in the next service round due to
the need to retrieve redundant stripe units, incurring another delay of Ng7,,, seconds, which
again is proportional to the system scale.

The key to the previous two observations is in the server scheduler. First, under the AGSS
scheduler (cf., Section 10.4), redundant units are discarded together with the video data units
once the service round ends to allow buffer reuse. Hence, if the failure-detection period spans
two service rounds as shown in Figure 11.6, redundant units for the previous round will have
been discarded by the time the failure is detected, rendering immediate retransmission of
redundant stripe units impossible.

To tackle this problem, one can modify the AGSS scheduler so that redundant units are
retained longer to cater for server failure. However, we propose a redundant server scheme
(RSS) to store all redundant units centrally in one or more (K to be exact) redundant servers
instead of distributing them over all servers. RSS has three advantages over simply increasing
the buffer holding time in AGSS.



Fault-Tolerant Algorithms for the Concurrent-Push Architecture 205

First, RSS requires only the redundant servers, instead of all servers, to have the additional
memory to buffer redundant units. Therefore, the total server buffer requirement is reduced.
Second, redundant units can be stored continuously on the disks in the redundant servers so
that retrievals are much more efficient. By contrast, redundant units in the original distributed
scheme are scattered on the disk and hence a separate disk I/O is required to retrieve each
redundant unit. Third, under RSS, retransmission of the redundant units can start as soon as the
failure is detected, without the need to wait for the current stripe unit to complete transmission.
This is possible because the redundant servers are idle before a failure is detected.

Assume failure occurs at time ¢ during the transmission of stripe j, then it will be detected
latest by time (¢ + Tp). Since retransmission of redundant stripe units can start immediately
upon failure detection as shown in Figure 11.7, the required redundant unit will be transmitted
by time (s + Tp + T,.g). Now let ¢; be the time for which transmission of stripe j ends. Then,

The retrieved redundant units have
been discarded here because the
failure is not yet detected.

Failure occurs here Failure detected here

Transmission [ /‘y‘f ‘
P |:|/ D/" %/
Retrieval |7—| } | |

Hence the needed redundant units
have to be retrieved again.

Figure 11.6 The AGSS scheduler discards retrieved video blocks once transmission is completed
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Figure 11.7 Transmission scenario for the redundant server scheme
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it is easy to see that
tr <t; <ty+ Tuy (11.28)

Since the client will need to wait for the redundant unit before stripe j can be re-computed,
the delay incurred in receiving stripe j will be given by

(ty +Tp + Tug) —1; < (1 +Tp) — 15

=Tp + Ty (11.29)

which, finally, is independent of the system scale. Using derivations similar to Section 11.5,
we can obtain the client buffer requirement from

+_ - _ +_ -
Bﬁ1§§=<3+r+f f TEJFTDWJFPHC f +TL—DQ (11.30)
Tavg Tavg

for the case where failure occurs after playback has begun and

+ _ £ _ + _ £
Tavg THVE

for the case where failure occurs before playback begins.

To support immediate retransmission of redundant units, the redundant servers will need to
retain redundant units longer than in the original AGSS scheduler. In particular, the server will
need to keep retrieved redundant units (in blocks of Ny units) for

T,
D 1+1 (11.32)
NSTavg

service rounds (instead of one round in AGSS). Hence, the buffer requirement for the redundant
servers will be given by

Bone = ONsA (14~ 1| 12 (11.33)
server — S G NS Tavg .

where A is the client—server ratio and G is the number of groups per service round.

11.7 Numerical Results

Based on the performance models derived in the previous sections, we compute and present
numerical results in this section to illustrate the system resource requirement under various
scenarios and study the sensitivity to key system parameters. Table 11.1 lists the values for
the system parameters used in the calculation. The parameters Tr and T; are determined
empirically by collecting the video block consumption times of a hardware MPEG decoder.
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Table 11.1 System parameters used in computing numerical results

System Parameters Symbol Value
Video block size 0 65,536 Bytes
Video data rate Ry 150 KB/s
Maximum advance in decoding time Te —130 ms
Maximum lag in decoding time T, 160 ms
Transmission time deviation o ff 0 ms
Server clock jitter T 100 ms
Failure-detection delay Tp 2s
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Figure 11.8 Client buffer requirement versus level of redundancy

11.7.1 Buffer Requirement versus Level of Redundancy

Figure 11.8 plots the client buffer requirement versus the level of redundancy. There are a
total of (8 + K) servers in the system. There are two observations. First, sub-schedule striping
in general requires less client buffer than block striping. Second, sub-schedule striping with
PRT and RSS is the only scheme that has constant client buffer requirement irrespective
of redundancy level. Even the buffer requirement for the FEC case increases with K. This
is explained by the fact that under FEC, the client must receive and process video data in
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Figure 11.9 Client buffer requirement versus failure-detection delay

parity groups. Hence as K increases, so do the parity group size and, consequently, the buffer
requirement. By contrast, redundant stripe units are not transmitted until failure is detected
under PRT with RSS. Therefore, the buffer requirement does not depend on K at all.

11.7.2 Buffer Requirement versus Failure-detection Delay

Figure 11.9 studies the sensitivity of buffer requirement with respect to failure-detection delay
for various PRT system configurations. FEC is not plotted because the buffer requirement is
independent from the failure-detection delay. For all cases in Figure 11.9, the buffer requirement
increases with longer failure-detection delay. The results show that sub-schedule striping again
achieves lower buffer requirement in general, with PRT/RSS achieving the smallest buffer
requirement.

11.7.3 Buffer Requirement versus System Scale

Figure 11.10 plots the client buffer requirement versus the number of servers in the system
(i.e., system scale). The level of redundancy is one (i.e., K = 1) and the failure-detection delay
is 2 seconds. The first result is that block striping is not scalable. This extends the results
in Chapter 10 for the non-fault-tolerant case to FEC and PRT. The second result is that sub-
schedule striping with PRT is also not scalable, although the slope is smaller than block striping.
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Figure 11.10  Client buffer requirement versus number of servers

Finally, we can observe that only sub-schedule striping under FEC, and under PRT with RSS
are scalable, the latter being completely independent of the system scale. Interestingly, buffer
requirements under FEC decrease for more servers and approach the non-fault-tolerant case.
This is because the level of redundancy is fixed and hence the redundancy overhead incurred
decreases when more servers are added.

11.8 Summary

In this chapter, we have investigated protocols and algorithms to support server-level fault
tolerance in the concurrent push architecture. In particular, we presented and analyzed two
fault-tolerant protocols: FEC and PRT, and two striping policies: block striping and sub-
schedule striping. The first result is that FEC is simpler in implementation, does not require
failure detection, and inherently scalable to any number of servers under sub-schedule strip-
ing. The only downside is additional network bandwidth overhead during normal operation.
Surprisingly, analytical results show that PRT is not scalable if redundant data is distributed
over all servers (similar to RAID-5 in disk arrays), even with sub-schedule striping. To tackle
this problem, we propose storing redundant data centrally in redundant servers to avoid the
reconfiguration delay. We increase the buffer holding time at the redundant servers to enable



210 Scalable Continuous Media Streaming Systems

quick redundant data transmission. Analytical results prove that this redundant server scheme
enables PRT to become scalable to any number of servers. Finally, we compute numerical
results to show the feasibility of the proposed architecture under real-world conditions. With
the proposed architecture, a concurrent-push-based parallel video server will be able to sus-
tain multiple simultaneous-server failure and yet, can maintain non-stop, continuous video
playback for all clients.

Appendices
A.1 Derivations of Buffer Requirement for Block Striping under FEC

Among the N servers, assume the earliest transmission for the first round starts at time 7, then
the last transmission for the first round must start at the latest by time ¢y + 7, where 7 is the
clock jitter among servers. The time for video block group i to be completely filled, denoted
by F(i), is therefore bounded by

((+DTr+to+ f)<FO<((+DTr+to+7+ ") (11.34)

where T is as given in equation (11.4) and f* (f* > 0)and f~ (f~ < 0) are used to model
the maximum transmission time deviation due to randomness in the system, including transmi-
ssion rate deviation, CPU scheduling, bus contention, etc.

Since the client starts playing the video after filling the first y groups of buffers, the playback
time for video block group 0 is simply equal to F(y — 1). Hence, the playback time for video
block group i, denoted by P(i), is bounded by

(iNsTuog + F(y = )+ Tg) < P(i) < (iNsTag + F(&y — D+ 1) (11.35)
where
0
Tiwe = — 11.36
5= R, (11.36)

is the average playback time for one video block, and Tg, Ty are the jitter bounds for video
block consumption variations.

To guarantee video playback continuity, we must ensure that a video block group arrives
before its playback deadline. In the worst-case scenario, the latest filling time must be smaller
than the earliest playback time, i.e.,

max{F (i)} < min{P (i)} (11.37)
For the L.H.S., noting that Tr = (Ng — K) T,y (cf. equations (11.4) and (11.16)) we then have
max{F(i)} = + 1) (Ns — K) Tupg + 10+ 7+ f* (11.38)

Similarly, the R.H.S. is

min{P(i)} = i NsTyne + min{F(y — 1)} + Tg (11.39)
= iNSTavg+y(NS_K)szg+t0+f7+TE
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Substituting equations (11.38), (11.39) into equation (11.37) gives

(G4+1D(Ns — K)Tog +to+ 7+ f7)

) 3 (11.40)
S(ZNSTavg+y(NS_K)Tavg+t0+f +TE)
Rearranging we can then obtain y:
t_ T,
yo14l — Tt (11.41)
(NS - K) Tavg
Knowing the number of groups required, we can then obtain Y from
t_fT =T
Y=[1+T+f f EWNS (11.42)
(NS - K) Tavg

On the other hand, to guarantee that the client buffer will not be overflowed by incoming video
data, we need to ensure that the ith video block group starts playback before the (i + 7 — 2)th
video block group is completely received, where [ = L/Ng. This is because the client buffers
are organized as a circular buffer, and we must always have at least one group of Ny free buffers
to receive video blocks arriving simultaneously from Ng servers. Therefore, we need to ensure
that the earliest filling time for group (i 4+ [ — 2) must be greater than the latest playback time
for group i:

min{ F(i + [ — 2)} > max{P(i)} (11.43)

Using similar derivations, we can obtain the number of buffers needed to prevent buffer
overflow as:

tfTHT,
Z=P+T+f f‘+LWM (11.44)
(NS - K) Tavg
A.2 Derivations of Buffer Requirement for Sub-Schedule Striping
under FEC
The filling time for group i of a video stream started at time 7, is bounded by
((+DTog+to+ )< FO < ((+ DTag+to+ f+7) (11.45)

Since the client starts video playback after filling the first ¥ groups of buffers, the playback
time for video block group 0 is simply equal to F(Y — 1). Hence, the playback time for video
block group i, denoted by P(i), is bounded by

(iTuvg + F(OY = 1)+ Tg) < P(i) < (iTurg + F(Y = 1)+ T7) (11.46)

Substituting the upper bound of equation (11.45), and the lower bound of equation (11.46)
into the continuity condition in equation (11.37) gives

(G4 D) Targ + 10+ [+ +7) < (iTung + min{F(Y = 1)} + T) (11.47)
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or
((+ D Tog+to+ fH+7) < (iTavg + (YTuwg +t0+ ) + Tk) (11.48)

Rearranging, we can obtain ¥ from

Y:[ﬁ_f_TEJ”—‘H (11.49)
Tavg

Using similar derivations, we can obtain Z from

z:[ﬁ_f”rT“LﬂH (11.50)

Tavg

A.3 Derivations of Buffer Requirement for Block Striping under PRT

Assume that a failure occurs during the transmission of group j, then for those groups received
before a failure (i.e., 0 < i < j), the filling time is bounded by

((+DTr+to+ f)<Fy@) < ((+DTr+to+7+f1), 0<i<j (1151

However, groups transmitted after the failure (i > j) will be deferred due to server reconfigu-
ration. According to Section 11.3.2, the worst-case delay due to reconfiguration is Dy seconds.
Hence, the maximum filling time is bounded by

((+DTr+to+ f~+Dp) < Fr@) < ((+DTr+t0+t+ fT+Dp), i=j
(11.52)

Merging (11.51) and (11.52) gives bounds for the general case:
((G+DTr+t0+ f)<FO<((+DTp+to+t+ fH+Dp), Vi (11.53)

The bounds for P (i) depend on whether a failure occurs before or after playback has begun.
Specifically, if a failure occurs before playback begins, then playback will be delayed up to
Dr seconds due to the need to reconfigure the servers to complete the prefill process:

(l (NS - K)Tavg + FF(y - 1)+ TE) = PBefore(i) = (l (NS - K)Taug + FF(y - 1)+ TL)
(11.54)

Otherwise, if the failure occurs after playback has begun, then the playback schedule will not
be affected:

(i (Ns = K) Tavg + Fx(y — 1) + Tg) < Papier(i) < (i (Ns — K) Tapg + Fy(y — D)+ T1)
(11.55)

Now if the failure occurs before playback begins, then invoking the continuity condition
gives

max {F(i)} < min {PBefore(i)} (11.56)
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or

((+DTr+10+ 1+ f* 4 Dr) < (i (Ns — K) Topg +min {Fp(y — 1} + Tg)
(11.57)

Substituting the lower bound of equation (11.52) into equation (11.57) and noting Tp =
(Ns — K)T,,, we get

((l + 1)(NS_K)Taug+t0+T+f++DF) = (i(NS_K)Tavg+(y(NS_K)Taug+tO
+/f~ 4 Dr) 4+ Tk) (11.58)

Rearranging, we can obtain y from

(11.59)

T+ ft—f—T
YBefore = ’714‘ f f E—‘

(NS - K) Tavg

Similarly, if the failure occurs after playback has begun, then the continuity condition
becomes

max {F(i)} < min {PAﬁer(i)} (11.60)

or

(G + 1)TF+to+T+f++DF) < (i (Ns — K) Ty + min {Fy(y — D} + Tg)
(11.61)

Solving, we can obtain y from

+ _
tHf—F TEJ’DFW (11.62)

oy = | 1
Ve ’7 + (NS - K) Tavg

Similarly for Z, we also need to consider the two cases. First, for the case where failure
occurs before playback begins, we have

min{F (i +1 —2)} > max{Pgefore(i)} (11.63)

or

((l+l_ 1)(NS_K)Tavg+t0+f_) > (i(NS_K)Taug +maX{FF(y_ l)}+TL)

(11.64)
Substituting the upper bound of equation (11.52) into equation (11.64), we have
((l +1- 1)(NS - K) Tavg +t+ f_) > (iNSTavg + (y (NS - K) Tavg + 1o
+1+ fT+Dp)+Ty) (11.65)
Rearranging we can obtain z = (I — y) as
T+ ft—f + T+ D
ore = | 1 11.66
ZBefore ’7 + (Ns — K) Tavg —‘ ( )
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For the second case, playback is not delayed by the failure. Hence we have
min{F( + [ — 2)} > max{ Pyper(i)} (11.67)

or

(G4+1=1)(Ns = K)Tupg + 10+ f7) > (i (Ns — K) Tapg + max {Fy(y — D} + T1.)
(11.68)

Substituting the upper bound of equation (11.51) into equation (11.68), we have

(G4+1=1D(Ns = K)Tupg + 10+ f7) > (iNsTag + (y (Ns — K) Tupg + 10+ 7

+ fH)+1T1) (11.69)
Rearranging we can obtain z = (I — y) as
T+ frt—fT+TL
o= | 1 11.70
ZAft ’7 + (Ns — K) Tong —‘ ( )

A.4 Derivations of Buffer Requirement for Sub-Schedule Striping
under PRT

Assuming failure occurs during transmission of group j, then the filling time for group i of a
video stream started at time £, is bounded by

((+ DT +t0+ )< Fv@OD < ((+DTag+to+ fT4+7), 0<i<j
(11.71)

((4+DTwg+to+ f~+Dp) S Fp@) < (( 4+ DTwg+t0+ fT+7+Dp), i>]
(11.72)
Merging equation (11.71) and equation (11.72) gives the universal bounds for F'(i):
((4+ DT +10+ 7)< F@O) < ((+DTwg+to+ fH+7+Dp), Vi (11.73)
Similarly, the playback schedule is bounded by
(iTavg + FF(Y - 1) + TE) = PBefore(i) = (iTavg + FF(Y - 1) + TL) (1174)
for the case where failure occurs before playback begins, and
(iTavg + FN(Y - 1) + TE) = PAfter(i) = (iTuvg + FN(Y - 1) + TL) (1175)

for the case where failure occurs after playback has begun.
Invoking the continuity condition, we can obtain the corresponding bounds for Y as follows:

T
YBeﬂ,,e:W f E+T—‘+1 (11.76)
Tavg
T f—T D
YAﬂer=W ] —JEtet ﬂ+1 (1L.77)
avg
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Using similar derivations, we can obtain the corresponding bounds for Z as follows:

T D
Zbefore = flo Attt bed (11.78)
Tavg
T
zAﬁerz[f fT+ “Lﬂﬂ (11.79)
avg
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A Staggered-Push Parallel
Server Architecture

The concurrent-push architecture discussed in the previous two chapters is designed to take
advantage of network-level QoS services and is also readily scalable to over ten thousand
concurrent streams. In practice, however, not all broadband networks support resource
reservation or QoS control. In this chapter we develop an alternative approach to schedule
the transmissions of media data from the parallel servers —a staggered-push approach. While
media servers in the concurrent-push architecture transmit media data simultaneously in
proportionally reduced bit-rate, the media servers in staggered push effectively transmit
data to the same client in turns, with only one of the servers sending data at any time. As a
result, the data traffic will be more bursty and this is also why staggered push cannot easily
take advantage of network resource reservation services.

In return, the staggered-push architecture can achieve linear scalability, i.e., the per-
stream server resource requirements (e.g., buffer requirement) are invariant to the scale
(number of servers) of the system. This chapter presents this staggered-push architecture,
explains its admission, scheduling, and buffer management schemes, and analyzes its per-
formance.

12.1 Introduction

In this chapter we present and analyze quantitatively a staggered-push architecture for schedul-
ing disk retrieval and network transmission in parallel video servers. We prove a remarkable
property of the staggered-push architecture — the system can be scaled up linearly to an ar-
bitrary number of servers as long as the network has sufficient capacity. We discover that for
loosely coupled servers like PC or workstation clusters, server—clock asynchrony could lead
to inconsistent schedule assignments among different servers. To tackle this problem, we in-
troduce an external admission scheduler to centralize admission control and perform schedule
assignments. Apart from inconsistent schedule assignments, we discover that server—clock
asynchrony could also lead to overlapping between data transmitted from different servers.

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
© 2005 John Wiley & Sons, Ltd.
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This could induce network congestion, leading to video packets being dropped at the network
switches and routers. Worse still, the client may not be able to cope with the aggregate data
rate even if the network can successfully deliver the data. To tackle this problem, we introduce
an over-rate transmission scheme that can effectively prevent traffic overlapping. To evaluate
the strengths and weaknesses of the proposed architecture, we use numerical results to com-
pare and contrast staggered-push architecture with the concurrent-push architecture covered
in Chapters 10 and 11 using the same system parameters and assumptions.

12.2 System Architecture

Figure 12.1 shows the architecture of a parallel video server, comprising multiple autonomous
servers connected by an interconnection network. We denote the number of servers in the
system by Ng and the number of clients by N¢. Hence the client—server ratio, denoted by A,
is N¢/Ns. Each server has separate CPU, memory, disk storage, and network interfaces. A
server’s storage spaces are divided into fixed-size stripe units of Q bytes each. Each video title
is then striped into blocks of Q bytes and stored into the servers in a round-robin manner as
shown in Figure 12.1.

To schedule disk retrievals and network transmissions at the servers, we propose a staggered-
push algorithm where the servers transmit bursts of data to a client in a round-robin manner at
the average video bit-rate. Let Ry be the average video rate and assume it to be the same for all
clients. Then the transmissions from the servers are staggered so that only one of the servers
transmits to a receiver at any given time, depicted in Figure 12.2. In this way, there will be at
most A = N¢ /Ny video blocks being transmitted concurrently at a server. Note that while one
can potentially reduce server buffer requirement by transmitting at a rate higher than Ry, the
client in turn will have to be capable of receiving at such a high data rate. This is less practical
as client network connection usually has lower bandwidth and the client device (e.g., set-top
box) will likely have limited processing capability.

To support staggered push, the server scheduler is divided into two scheduling levels: micro-
round and macro-round as shown in Figure 12.3. Video blocks retrieved in one micro-round
will be transmitted in the next micro-round. Let T be the average time needed to completely
transmit a video block of Q bytes. Since a video block is transmitted at a rate equal to the

==+ | Server S, Client C,
-+ | Servers, Client C,
Interconnection Client C,
e Server Sz Network
Client C,4
==+ | Server S,
~+ | Server§, Client Cy

Figure 12.1 Architecture of a (5 servers) parallel video server
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Figure 12.3 Two-level scheduler for staggered push

video data rate Ry, we can obtain Ty from
Tr = Q/Ry (12.1)

In an Ng-servers system, each macro-round consists of Ng micro-rounds, and each micro-
round transfers A video blocks. Hence, the disk will transfer up to NgA = N¢ video blocks
in one macro-round, with one block per video stream.

12.3 Schedule Assignment

Unexpectedly, the two-level scheduling scheme may result in inconsistent schedules among
different servers if admission is performed independently at each server. Specifically, as servers
are loosely coupled, the internal clock of each server in the system will not be precisely
synchronized. We define clock jitter as the difference between the internal real-time clocks of
two servers. Many algorithms for controlling clock jitter between distributed computers have
been proposed [ 1-3] and hence will not be pursued further here. We assume that the maximum
clock jitter between any two servers in the system is bounded and is denoted by .

With the presence of clock jitter, one server could assign two new video sessions to start with
the same micro-round while another server could assign them to two different micro-rounds
as shown in Figure 12.4. This can occur because each server assigns new sessions to micro-
rounds according to its own internal clock, which differs from other servers due to clock jitter.
As a single micro-round can serve only up to A video sessions, eventually one server could
experience micro-round overflow although another server can admit the new video session
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(Figure 12.5). While one can delay the new video session at the overflowed server until the
next available micro-round, the transmission schedule will be delayed significantly and will
result in severe traffic overlapping with transmissions from another server (see Section 12.4).

To solve this inconsistent schedule assignment problem, we introduce an external admission
scheduler between the servers and the clients to centralize schedule assignment. To initiate a
new video session, a client will first send a request to the admission scheduler. Using the same
clock-synchronization protocol, the admission scheduler maintains the same clock jitter bound
with the servers. As new sessions are assigned solely according to the admission scheduler’s
clock, the scenario depicted in Figures 12.4 and 12.5 will not occur. However, to ensure that
the assigned micro-round has not started in any of the servers due to clock jitter, the admission
scheduler must add an extra delay to the assignment:

Theorem 12.1. [f the admission scheduler delays the start of a new video session by

T
A= [T—J (12.2)

micro-rounds, then it guarantees that the assigned micro-round has not started in any of the
Ng servers.
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Figure 12.6 Worst-case delay in the admission process

Proof. Please refers to Appendix A. [ ]

For example, let 74 be the local time the new request arrives at the admission scheduler. Then
the admission scheduler will attempt to admit the request to micro-round

t
na = {AJ +14A (12.3)
Tr

Note that we need to add one to n4 because a new request cannot join the current micro-
round (it has started already). If the assigned micro-round is full, the admission scheduler will
sequentially check the subsequent micro-rounds until an available micro-round is found. In
the worst case shown in Figure 12.6, the transmission of the first video block will be delayed
for (Ng + A + 1) micro-rounds:

Dg = Ty (NS + [Ti] n 1) (12.4)

F

To better evaluate the delay incurred, we can derive the average scheduling delay under a
given server load. Assume that there are n (0 < n < ANjy) active video sessions, then it can
be shown that (see Appendix A.2) the average scheduling delay is given by

0N (B k(Ns — jMNs—k=1! [ Niur(n, j)
Ds =, 2 (Z e ) (es) e

j=1 \k=I

where

Ns .
B (Ns\ (Ns4+n—j(A+1)—1
N(n, N5, A) = ,»E:o (—1) (j ) ( VA ) (12.6)
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and

Npa(n, m) = (Zf) N(n —mA, Ng —m, A — 1). (12.7)

12.4 Traffic Overlapping

If server clock jitter is greater than zero, then transmissions from two or more servers destined
to the same client will overlap and multiply the transmission rate in the overlapping interval
(Figure 12.7). This could cause congestion at the network and the client, resulting in the packet
being dropped.

To avoid traffic overlapping, we can sacrifice some server and network bandwidth, and
transmit video data at a rate higher than Ry, say Rogrr (Figure 12.8). We call this scheme over-
rate transmission (ORT) for obvious reasons. The transmission window will then be reduced
to a time interval of

T, = Q (12.8)
Rorr
We can guarantee that there will be no transmission overlapping by ensuring that
T,+1 < TF (12.9)

Rearranging, we can then obtain the minimum transmission rate needed to avoid traffic over-
lapping:

Ry
Ropr > —2Rv (12.10)
0 — Ryt
(] (I} [}
K NN LS N\ .
Server 0 ™~ L - >
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Figure 12.7 Traffic overlapping due to server clock jitter
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Figure 12.8 Preventing traffic overlap by over-rate transmission
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Since the transmission rate must be positive and less than infinity, we have the condition
that

T<—==Tp (12.11)

In other words, the server clock jitter must be smaller than a micro-round. Note that under this
condition, traffic overlapping involves at most two servers and the data rate is doubled to 2Ry in
the overlapping region. As Rogrin equation (12.10) can become very large when the denomina-
tor becomes small, the useful operating range for over-rate transmission is actually limited by:

RORT < 2RV (1212)

Substituting equation (12.10) into equation (12.12) and rearranging we can then determine
the maximum clock jitter for which ORT is applicable:

0
—— =0.5T 12.13
T < R F ( )

14
Therefore, ORT can prevent traffic overlapping if clock jitter is less than half of a micro-round.
With ORT, the maximum network bandwidth needed at each server will be increased to
AQRy

Corr = ARopr = ——— 12.14
ORT ORT 0 — Ryt ( )

12.5 Buffer Management

In this section, we present buffer management algorithms for the server and the client, and
derive the respective buffer requirements. For simplicity, we ignore network delay and delay
jitter. However, the effect of network delay and delay jitter can be incorporated in the same
way as clock jitter and the same derivations are still valid.

12.5.1 Server Buffer Requirement

There are Ng micro-rounds in a macro-round, therefore the duration of a macro-round, denoted
by Tk, is given by
_ NsQO

Tk = 12.15
R= R0 ( )

As buffers are released after each micro-round, this scheduler requires only 2 A Q buffers for
each server, regardless of the number of servers and clients in the system. Therefore, existing
servers do not need any upgrade when one scales up a system by adding more servers.

12.5.2 Client Buffer Requirement

Many studies on VoD system have assumed that video data are consumed periodically by the
video decoder. However, as previously discussed in Section 10.3.2, hardware and software
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video decoders consume fixed-size data blocks only quasi-periodically. Given the average
video data rate, Ry, and block size, Q, the average time for a video decoder to consume a
single block is

Q

= 12.16
Ry ( )

Tavg =
To quantify the randomness of video block consumption time, we employ the consumption
model proposed in Section 10.3.2, reproduced below for sake of completeness.

Definition 12.1. Let T'; be the time the video decoder starts decoding the ith video block, then
the decoding-time deviation of video block i is defined as

Tpy(@)=T; — iTavg —To (12.17)

and decoding is late if Tpy (i) > 0 and early if Tpy (i) < 20. The maximum lag in decoding,
denoted by Ty, and the maximum advance in decoding, denoted by Tg, are defined as follows:

T, = max{Tpy(i)|Vi > 0} (12.18)
Tr = min{Tpy(i)|Vi > 0} (12.19)

The bounds 7}, and T are implementation-dependent and can be obtained empirically. Know-
ing these two bounds, the playback instant for video block i, denoted by p(i), is then bounded
by

max{(To + i Tuvg + Te). 0} < p(i) < (To + i Tug + Tp) (12.20)

Buffers are used at the client to absorb these variations to prevent buffer underflow (which
leads to playback hiccups) and buffer overflow (which leads to packet dropping). Let L¢ =
(Y + Z) be the number of buffers (each of Q bytes) available at the client, organized as a
circular buffer. The client prefills the first ¥ buffers before starting playback to prevent buffer
underflow, and reserves the last Z buffers for incoming data to prevent buffer overflow.

We first determine the lower bound for Y. Let 7y be the time (with respect to the admission
scheduler’s clock) when the first block of a video session begins transmission. Let d; be the
clock jitter between the admission scheduler and server i. Without loss of generality, we can
assume that the video title is striped with block zero at server zero. Then the time for block i
to be completely received by the client, denoted by f (i), is bounded by

G+ DTr+1t0+ f +dmoaing) < f@) <+ DTr+10+ [T+ dmodaing)
(12.21)

where fT and f~ are used to model the maximum transmission time deviation due to ran-
domness in the system, including transmission rate deviation, CPU scheduling, bus contention,
etc.

Since the client begins video playback after filling the first Y buffers, the playback time for
video block 0 is simply equal to f(¥Y —1). Setting Ty = f(¥Y —1) in equation (12.20) then the
playback time for video block i is bounded by

(f¥ =D+ iTwg +Tp) < p() < (fY = D) +iTayy + T1) (12.22)
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To guarantee video playback continuity, we must ensure that all video blocks arrive before
their respective playback deadlines. Therefore, we need to ensure that for all video blocks, the
latest arrival time must be smaller than the earliest playback time:

max{f(i)} < min{p(i)} Vi >0 (12.23)
Using the bounds from equation (12.21) and (12.22), we can rewrite equation (12.23) as
G+ DTr+t0+ [T +dmoaing <iTwg+ Y = 1)+ Tk (12.24)

or

G+ DTr+t0+ fT +dmoding <iTwg+YTr+1t0+ f~ +dmodv—1,n5) + Tk
(12.25)

From equations (12.1) and (12.16) we know that 7;,,, = T, rearranging and solving for Y,
we then obtain

T f~—-T d mod (i —dn _
¥ - 1+(f f £+ ( ;d(,NS) od (¥ l,Ng))) (12.26)
F
Since max{|d; —d;| | Vi, j} = t,the worst case is
T—f =T
Y>1+<f fT E+T> (12.27)
F

which is the number of buffers that must be prefilled before beginning video playback.

Similarly, to guarantee that the client buffer will not be overwhelmed by incoming video
data, we need to ensure that the ith video block starts playback before the (i + L —2)th video
block is completely received. This is because the client buffers are organized as a circular
buffer. Therefore, we need to ensure that

min{ f(i + Lc — 2)} > max{p(i)} Vi > (Lc — Z) (12.28)

Again using the bounds from equations (12.21) and (12.22), we can rewrite equation (12.28)
as

(i+Lc—DTp+1to+ f~ +dmodi+Lc-2.Ng) > iTayg + f(Le —Z - 1)+ T (12.29)
or

(i+Lc—DTr+1t0+ f~ +dmod+Le—2.N5) > iTavg + (Le — 2)Tr + 1o+ f7
+dmod (Le—z—1.n5) + 1L (12.30)

Similarly, rearranging and solving for Z we obtain

(12.31)

Z>14+ <fJr — [T+ T + (@ mod (Le—z—1,n5) — d mod (i+L(;—2,NS)))

Tr
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Again noting that max{|d; —d;| | Vi, j} = 7, the worst case is
tfT4T
Z>1~|—(f fT+ L+T> (12.32)
F

which is the number of empty buffers needed to avoid client buffer overflow.

12.5.3 System Response Time

Another key performance metric of a VoD service is system response time, defined as the time
from initiating a new request to the time video playback starts. Ignoring system administration
and network delay issues, system response time consists of two components: scheduling delay
and prefill delay. Scheduling delay is the delay incurred at the admission scheduler plus the
delay incurred at the server scheduler, as derived in Section 12.3. For prefill delay, we note that
the client prefills the first Y video blocks before starting video playback. Hence, the average
prefill delay can be obtained from

o

Dp =
P RV

(12.33)

and the system response time is simply the sum Dg + Dp.

12.6 Performance Evaluation

In this section, we evaluate the performance of the staggered-push architecture using numerical
results. All results are computed using the derivations in Sections 12.3 to 12.5 with the system
parameters listed in Table 12.1.

12.6.1 Design Example

To illustrate performance and resource requirements of the architecture, we first consider a
design example in this section. We assume that there are 8 servers in the system, with a
client—server ratio of 50 (i.e., up to 400 concurrent streams). Using the parameters in Table
12.1, the server buffer requirement is calculated to be 6.25MB. Compared to the amount of
memory in today’s PC, this buffer requirement is relatively small. Moreover, as conventional
PCs can be expanded to 1GB or more memory, in theory a client—server ratio of over 8,000

Table 12.1 System parameters used in performance evaluation

System Parameters Symbol Value
Video block size 0 65,536 Bytes
Video data rate Ry 150 KB/s
Maximum early in decoding time Te —130 ms
Maximum late in decoding time T 160 ms
Client-Server ratio A 10
Transmission time deviation o fr 0 ms

Server clock jitter T 100 ms
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Figure 12.9 Server buffer requirement versus system scale

can be supported. Hence, server buffer requirement will not become a limiting factor to the
system’s scalability.

Using the same parameters, the client buffer requirement is calculated to be 256KB. This
translates into an average prefill delay of 1.41 seconds. To determine the system response time,
we assume that the system is at 90% utilization. Then the corresponding scheduling delay
will be 0.735 seconds. Together with prefill delay, the average system response time becomes
2.146 seconds, well within acceptable limits. We perform more detailed sensitivity analysis
with respect to key system parameters in the following sections.

12.6.2 Server Buffer Requirement

Figure 12.9 plots server buffer requirement versus system scale (i.e., number of servers) for
both concurrent push and staggered push. This graph clearly shows the remarkable property of
staggered push — constant server buffer requirement irrespective of system scale. By contrast,
server buffer requirement increases with system scale under concurrent push, even with AGSS
and SSS. When concurrent push is scaled up to 12 servers, server buffer requirement increases
to 40.6MB compared to just 6.25MB under staggered push. Hence the ultimate scalability of
the concurrent push architecture will be limited by server buffer, while the proposed staggered-
push architecture can be scaled up without any upgrade to the existing servers.

12.6.3 Client Buffer Requirement

Figure 12.10 plots client buffer requirement versus system scale for both concurrent push and
staggered push. We observe that concurrent push is not scalable without SSS, while staggered
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push has a constant client buffer requirement that will not limit scalability. Note that although
client buffer requirement in concurrent push can be controlled to a constant by SSS (cf. Section
10.5), the system scalability is still limited as client processing overhead due to SSS increases
with system scale. It is particularly important to maintain a constant client buffer requirement
in practice as it would be very expensive (if not impossible) to upgrade every existing client
devices (e.g., set-top box) whenever the system is scaled up.

In Figure 12.11, we analyze the sensitivity of client buffer requirement to server clock jitter.
As the results indicate, the buffer requirement is relatively insensitive to clock jitter, even if
the jitter is increased to one second. Hence one can safely employ the existing software-based,
distributed clock-synchronization protocols in staggered push.

12.6.4 System Response Time

Figure 12.12 plots the system response time versus system scale. While the worst-case system
response time increases linearly with more servers, the average system response time remains
low (~2 seconds) for a utilization of 90%. This suggests that we can maintain a low system
response time simply by limiting the system to, say, 90% utilization through admission control.

In Figure 12.13, we study the sensitivity of system response time to server clock jitter.
As expected, the system response time increases for larger clock jitter values (cf. Theorem
12.1). However, given that server clock jitter can readily be controlled to within 100ms [1],
the average system response time is still only 0.735 seconds for an 8-servers system at 90%
utilization.
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Figure 12.13 System response time versus server clock jitter

12.6.5 Server Bandwidth Overhead

Figure 12.14 plots the ORT transmission rate versus server clock jitter for block sizes of
Q = 64KB, 128KB, and 256KB. As clock jitter can be readily controlled to within 100ms by
distributed software algorithms, the results show that over-rate transmission is applicable in
all three cases. For example, with Q = 64KB, ORT will transmit at 1.556Mbps instead of the
video bit-rate at 1.2Mbps, incurring a bandwidth overhead of 29.7%. Increasing the block size
to 256KB reduces the ORT transmission rate to 1.273Mbps, or a bandwidth overhead of only
6%. Thus, the system designer can adjust the block size to balance between bandwidth cost
and memory cost. In any case, compared to uncontrolled traffic overlapping which results in
doubled transmission rate at 2.4Mbps, bandwidth under ORT is clearly substantially lower.

12.7 Network Resource Reservations

As the results in the previous section show, the staggered-push architecture can be scaled up
to any number of servers, provided that the network has sufficient capacity. Compared with
the concurrent-push architecture, staggered-push architecture achieves linear scalability at the
expense of bursty network traffic (and slightly larger delay and client buffer requirement). In
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Figure 12.14 Transmission rate versus server clock jitter

particular, if we consider the network traffic between a server and a client, it is easy to see
that the traffic will be in the form of bursts with an average inter-burst interval of (Ns—1)TF
seconds. By contrast, servers in concurrent push transmit to a client continuously at a constant
rate, allowing easy integration with QoS offered by existing networks. Staggered push will not
be able to make use of QoS available in today’s QoS-enabled networks.

In practice, if the VoD system is deployed in dedicated networks with a priori bandwidth
planning, then staggered push can still be used effectively. This is because the over-rate trans-
mission scheme already guarantees that network congestion due to traffic overlapping will not
occur, and the aggregate traffic going from the servers to a client will be close to constant bit-
rate, with small gaps in between (due to over-rate transmission).

12.8 Summary

In this chapter, we have presented and analyzed a staggered-push parallel server architecture for
implementing linearly scalable media streaming systems. The architecture employs fixed-size
block striping for data storage, and a staggered-push scheduling algorithm for co-ordinating
transmissions among multiple autonomous servers. We incorporated the effect of server clock
jitter to address the inconsistent schedule assignment problem and the traffic overlapping
problem. We tackled the former problem by an external admission scheduler and the latter
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problem by an over-rate transmission scheme. Our results showed that the over-rate trans-
mission scheme can effectively prevent traffic overlapping with a small bandwidth overhead
under clock jitter bounds achievable by existing software-based synchronization algorithms.
Moreover, we showed that the server buffer requirement, the client buffer requirement, and
the server bandwidth requirement are all independent of the number of servers in the system.
The average system response time, though it increases slightly with more servers, remains
acceptable if we limit the system to less than full utilization. These results demonstrate that
the proposed architecture can be scaled up to large number of users without costly upgrade to
the existing servers and clients.

Appendices
A.1 Proof of Theorem 12.1

Let #; be the local time a new request arrives at server i (0 <i < Ng), t4 be the local time
the new request arrives at the admission scheduler, and A be the extra scheduling delay (in
number of micro-rounds). Then the admission scheduler will attempt to admit the request
to micro-round n,4 as given in equation (12.3). For server i, the new request arrives during
micro-round n; = |f;/ Tr]. Hence, the problem is to find A so thatny > n; for0 <i < Ny,
i.e., the assigned micro-round has not been started in any of the servers. Using this condition,
we can then obtain the following inequality:

nay > n (12.34)

Expanding gives

Aliiias |t 12.35

Rearranging gives

A= V—J _ VAJ _1 (12.36)
| " |7y

Applying the inequality |x] — |y] < [x — y]: x, ¥y > 0, to R.H.S. of equation (12.36) we

can then obtain
t; t 1 t
Sl Al <A (12.37)
Tr Tr T Tr

Since clock jitter is bounded: |t; — 14| < 7,for0 <i < Ng, we can rewrite equation (12.37)

in terms of 7:
t; t
LA D L (12.38)
Tr Tk Tr
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Hence, if

T
A > ’7——‘ -1 (12.39)

Tr

or at least
A=|Z (12.40)
=7 )

then the assigned micro-round is guaranteed not to have started in any of the servers. [ |

A.2 Derivation of the Average Scheduling Delay

Assume that video sessions start independently and with equal likelihood at any time. Then
a video session can be assigned to any one of the Ng micro-rounds with equal probability.
Assume that there are n active video sessions, then the number of ways to distribute these n
video sessions among Ng groups is a variant of the urn-occupancy distribution problem [4]
and is given by

Ng .
xS, Ns\(Ns+n—ja+1—1
N(n,NS,A)_jE:O( 1)f<j )( Ny 1 > (12.41)

To obtain the probability of having m fully-occupied micro-rounds, we first notice that
there are (]:]n 5) possible combinations of having m fully-occupied micro-rounds. Given that,
the number of ways to distribute (n — mA) video sessions among (Ng — m) micro-rounds
with none of those micro-rounds fully occupied can be obtained from equation (12.41) as
N(n —mA, Ng —m, A—1). Hence, the total number of ways for exactly m of the micro-
rounds fully occupied is given by

Ng
m

Nyar(n, m) = ( ) N —mA, Ns—m, A — 1) (12.42)

Hence, the probability of having m fully-occupied micro-rounds given n active video sessions
can be obtained from

Npa(n, m)

Pu ) ==
1) = o N, A)

(12.43)

Assume that m out of Ng micro-rounds are fully occupied, then, the probability for the
assigned micro-round to be available (not fully occupied) is given by

Ns—m
N

Vo = (12.44)

Hence, Py = (1 — Vj) will be the probability of the assigned micro-round being fully occu-
pied. Now provided that the assigned micro-round is fully occupied, the probability that the
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next micro-round is available is

Ns—m

Vi = Pr {next round available| Py} =
Ng—1

(12.45)

This is also the probability for a client to wait one additional micro-round provided the
assigned micro-round is already fully occupied. It can be shown that the probability for a client
to wait k additional micro-rounds provided that the first k£ assigned micro-rounds are all fully
occupied is

N —
STM Y <k<m (12.46)

Vi = Pr{(k 4 1)th round available| P} = <k<
Ng —k

We already know Py, and it can be shown that the probability for the first £ micro-rounds
all being fully occupied is given by

i —i I(Ns — k)!
szl_[(m l.>=m(5 o ck<m (12.47)
i=0 Ns—l Ns'(m—k)'

Hence, we can solve for the probability of a client having to wait k additional micro-rounds
from

Wi = Pr{(k + 1)th round free| P;} Py (12.48)
Ng — I((Ng —k —1)!
_ (Ns —m)m!(Ns )’ l<k<m
Ng!l(m — k)!

Therefore, given m — the number of micro-rounds that are fully occupied — the average
number of micro-rounds a client has to wait can be obtained from

Ns
Wasgm) = 3 kWi + ([LW + 1) (12.49)
k=1 Tr

where the second term accounts for the additional delay as described in Theorem 12.1. Sim-
ilarly, given n — the number of active video sessions — the average number of micro-rounds a
client has to wait can be obtained from

Ns—1
Mavg(n) = Wuvg(j)Pfull(nv ]) (1250)
=1

J

And the corresponding average scheduling delay given a system utilization of # is

Maye(n) Q

Dg =
N Ry

(12.51)

Substituting equations (12.43), (12.48), (12.49), and (12.50) into equation (12.51) gives the
desired result. ]
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FEC versus PRT

With data and capacity redundancy, a parallel-server streaming system can sustain server-
level failures using either the Forward Erasure Correction (FEC) protocol or the Progressive
Redundancy Transmission (PRT) protocol. Except for the need for failure detection, PRT
is superior to FEC as it consumes significantly less bandwidth overhead for redundant data
transmission. Nevertheless PRT may also reduce the reliability of the system if multiple
servers fail within a short time. This chapter investigates this issue, and more generally, com-
pares the reliability of FEC and PRT under the same conditions so that fair and meaningful
comparisons can be made. Surprisingly, we discover that by allowing a small trade-off in
storage overhead, PRT not only can maintain similar or even better system-level reliability,
but also reduces the bandwidth overhead in sending the redundant data by more than 50%.

13.1 Introduction

One challenge inherent in all parallel server architectures is fault tolerance. In particular, server
failure, while uncommon, can cripple the entire system if redundancies are not incorporated.
To tackle this problem, we can employ erasure correction code to enable the client to recover
data lost in failed servers (cf. Chapter 11). If the recovery is done in real-time, then the process
can even be made transparent to the end user — non-stop streaming, which is highly desirable
from a service-provisioning point of view.

Note that to enable the client to perform erasure correction computations, the servers need to
send the redundant data units in addition to the normal data units to the clients. We introduced
two such redundant data transmission protocols — Forward Erasure Correction (FEC) and
Progressive Redundancy Transmission (PRT) in Chapter 9 and subsequently applied them to
the concurrent-push architecture in Chapter 11.

Qualitatively, the PRT protocol is more complex as it requires the detection of server failure
and the dynamic reconfiguration of the system to transmit more redundant data. Moreover,
as fewer redundant data are transmitted, one would expect PRT to be less reliable than FEC.
In this chapter we investigate this reliability issue quantitatively by modeling the system as a
continuous-time Markov chain to derive its mean-time-to-failure (MTTF), incorporating the
effects of server failure rate, server repair rate, failure detection and system reconfiguration

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
© 2005 John Wiley & Sons, Ltd.
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Figure 13.1 Data placement and transmission in a parallel streaming server

time. Surprisingly, instead of having a lower reliability than FEC, we discover that we can
configure PRT to outperform FEC (achieving longer MTTF) and consume significantly less
transmission bandwidth overhead (half that of FEC). We first introduce the system model in
the next section and then analyze the two redundant data transmission protocols.

13.2 System Model

Figure 13.1 depicts the generic system model for a parallel streaming server. Let Ng be the
number of servers in the system. Each server (denoted by S;,i =0, 1,..., Ny — 1) is au-
tonomous, and equipped with its own CPU, memory, disk storage, and network interface. This
ensures that any server failure will not spread to other servers. Specifically, we assume the
servers to fail independently and, when they fail, they simply stop all data transmissions.

A media object such as a video stream is first divided into fixed-size data blocks of Q bytes
each, denoted by {b;|i = 0, 1,...}. To generate redundant data we use a (Ns, K) erasure
correction code and compute K redundant data blocks for every (Ng — K) data blocks. For
example, K redundant blocks (i.e., blocks marked with ‘P’ in Figure 13.1) are computed from
datablocks {b;|i =0, 1,...,(Ns — K—1)} and together they form a parity group. Each of the
data/redundant blocks in a parity group will be stored in a separate server in the system. The
client can recover all (Ng — K) data blocks as long as any (Ng — K) data/redundant blocks of
a parity group are available, thus enabling it to tolerate up to K simultaneous server failures.

13.3 Forward Erasure Correction

In the FEC protocol, all Ng data blocks in a parity group are transmitted to the clients at all
time, irrespective of server failure. This protocol is simple to implement as the server schedules
are fixed irrespective of individual server failures. The system does not even need to detect
server failures or to reconfigure the system for degraded-mode operation. The client simply
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performs erasure correction computation to recover the data blocks whenever Ny — K video
blocks of a parity group are received.

13.3.1 System Reliability

To quantify the amount of redundancy needed to achieve a given target system MTTF, we
can model the system using a continuous-time Markov chain. We assume server failures are
independent and exponentially distributed with a MTTF of 1/A. Failed servers are repaired
immediately and independently with a mean-time-to-repair (MTTR) of 1/u. Thus, the system
forms a Markov chain with state & representing the state with /4 failed servers (see Figure 13.2,
for an example). Assume the system is configured with K redundant blocks per parity group,
then the system fails when more than K servers fail, i.e., when the Markov chain enters the
absorbing state 1 = K + 1. Otherwise, servers in the system in state 4 will have an aggregate
failure rate A;, given by

An = A(Ng —h) (13.1)
and an aggregate repair rate u;, given by

Un = hu. (13.2)

Thus, the MTTF of the system is equivalent to the first passage time for the system to reach
state & = K + 1 from the initial state 7 = 0. It can be shown that the MTTF for a system with
Ny servers and K redundancies using FEC is given by

j—1
K i H Mi—1
=0

MTTFppe =Y | Y~ — (13.3)

i=0 j=0 1_[)\’[71
[=0

Therefore, using equation (13.3) we can determine the amount of redundancy needed for a
given target system MTTF.

Ay A 4 A
G
Ay 22 Hs
@ : state with 4 servers failed and & level of redundancy
A,  :aggregate server failure rate with / server failed
M,  :aggregate repair rate with / server failed

Figure 13.2 A Markov chain mode for FEC with K = 3
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13.3.2 Bandwidth Overhead

The price to pay for the low-complexity FEC protocol is transmission overheads. In particular,
with Ny servers and a redundancy level of K, the bandwidth overhead incurred — defined as
the ratio of extra bandwidth needed over the media bit-rate, is given by

K

N 13.4
N K (13.4)

Hpge =

For a small-scale system (i.e., Ny small) with a high level of redundancy (i.e., K large),
this overhead could become substantial. For example, with Ng = 6 and K = 2, the bandwidth
overhead becomes 50%. Considering that most systems are expected to operate in normal
mode most of the time with no server failure, this bandwidth overhead is clearly significant.

13.4 Progressive Redundancy Transmission

Generally speaking, media servers are usually high-end PCs with good host-level reliability
(e.g., equipped with ECC memory, redundant power supply, RAID disk storage, etc.). Thus,
typical server MTTF is likely to be in the range of tens of thousands of hours. Therefore,
although over a long time span the system may run into multiple server failures, it is highly
unlikely that more than one server will fail simultaneously within a short time interval (e.g.,
tens of seconds) unless catastrophic failure occurs (e.g., fire, earthquake, etc.).

Therefore, instead of sending all K redundancies at all times as in FEC, the system can
initially transmit only k (k < K) of the K redundancies, thus reducing the bandwidth overhead
to k/(Ns — K) — Progressive Redundancy Transmission (PRT). Clearly, in this case the client
can only recover from up to k simultaneous server failures. However, in PRT the system will
activate transmission of more redundant data as server failures are detected. Thus, after, say,
w server failures, the number of redundant data transmission will be increased from k to
(k 4+ w). The key is to complete the reconfiguration quickly so that additional redundant data
transmissions are activated before too many server fail.

On the other hand, whenever a server is repaired and becomes operational again, the system
will deactivate an existing redundant data transmission, until the number of excess redundancies
(i.e., number of transmitted redundant data minus number of failed servers) transmitted reduces
back to k.

To implement PRT we need to address two issues. First, the system must be able to detect
server failure so that it can reconfigure the system to activate transmissions of additional
redundant data. The detection can be done using a number of existing protocols such as
heartbeat protocol [1], or by monitoring the streaming traffic in the network (cf. Section 11.3.1).
Once a failure is detected, the system can be reconfigured through some control protocols. For
simplicity, we lump together the system reconfiguration time and the failure detection time
and henceforth refer to the latter term only.

Intuitively, the detection time should be short so as to reduce the risk of encountering
additional server failures before reconfiguration is completed, but not too short to prevent
generating too many false alarms. In particular, if more than k servers fail before reconfiguration
is completed, then the system will still fail, even if the number of redundancies available is
larger (K > k). This leads to the second problem: quantifying the impact of detection delay to
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the system MTTF. In other words, we need to derive the system MTTF in terms of the failure
rate, repair rate, total number of redundancies, initial number of redundancies transmitted,
and the detection delay in order to choose the appropriate system parameters to meet a given
system MTTF requirement.

13.4.1 System Reliability

Again we model the system as a continuous-time Markov chain with state denoted by (4, k),
where £ is the number of failed servers and k is the number of redundancies activated for
transmission. Let Kp,,x be the total number of redundancies in the system and K, be the
excess number of redundancies to be transmitted. Figure 13.3 illustrates an example with
Kmin = 2 and Kox = 4. In general, there are three types of state transition. Specifically, the
system will transit from state (h, k) to state (h + 1, k) at a rate of A;, when an additional server
fails. After the failure is detected, with a mean detection time of 1/w, the system will activate a
new redundancy transmission and transit to state (k + 1, k 4 1), thus bringing the number of
excess redundancies back to Ky,;,. When a failed server is repaired at a rate of , in state (h, k),
then the system will transit from state (4, k) to state (h — 1, k) if (k — h) < Kuin. Otherwise,
i.e., (k — h) = Knin, it will transit from state (h, k) to state (h — 1, k — 1) by deactivating one
redundancy currently being transmitted. This again brings the number of excess redundancies
back to Kppin.

Note that there is a subtle problem associated with this model. In FEC, since all the servers
in the system are operating, server failure will only occur in servers actively transmitting video

@ : state with £ servers failed and £ level of redundancy

A,  :aggregate server failure rate with & server failed
M,  :aggregate repair rate with 4 server failed
@  :detection rate

Figure 13.3 A Markov chain for PRT with Ky, = 2 and Kpex = 4
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data. However, in PRT, not all servers are actively transmitting data. When an idle server fails,
it will undergo repair and then return to the normal state after some time. The difference is
that when an idle server fails, the operation of the system is not affected since none of the
data transmissions are affected by the failure. By contrast, failure of an active server will
require the system to increase the level of redundancy transmitted. Thus, the failure of an idle
server is equivalent to the failure of an active server with an additional redundancy activated
immediately, i.e., the failure detection time is equal to zero. The previous Markov chain model,
which assumes a failure-detection time of 1/w, is therefore a conservative estimation of the
system MTTF. Nevertheless, our numerical results show that such differences are negligible
and so we will ignore this subtle complexity.

Using the Markov chain model, we can then derive the system MTTF from the first passage
time of the Markov chain to reach any of the absorbing states (e.g., states (3, 2), (4, 3), and
(5, 4) in Figure 13.3). For systems with small K, and Ky,.x, we can solve the Markov chain
analytically to obtain the equation for the system MTTF. For example, when K, = 1 and
Kiax = 2, the system MTTF is given by

a4+ 201 A A + A% Ao + Adow + Aoy ? + i o + Aoji o

+u12 s + wi + wA + 1roAr + WAoA + WAgry + AgAlA
MITF — TR oM2 2101+ (1Aod oA oh2 + Aorido (13.5)
Aori(pipy + (iAy + Ajdo + whs)

However, for a system with larger values of K, and Ky,.x, the number of equations in-
volved increases drastically. Although still solvable in principle, the process soon becomes too
tedious to perform manually. Therefore we resort to using mathematical software packages
(e.g., Maple [2]) to compute the symbolic solutions. For still larger values of Ky, and Ky,
even this computation time can become too long. Also the resultant analytic solutions are often
too complicated to be useful. For example, the solution for system MTTF of the configuration
in Figure 13.3 with K,j, = 2 and Ky,.x = 4 has 474 terms in the numerator and 66 terms in
the denominator. In these cases we need to resort to computing the results numerically instead
of symbolically.

13.4.2 Modeling the Failure-Detection Time

So far we have assumed that the failure-detection time is exponentially distributed. In practice,
the exact distribution of the failure-detection time will depend on the failure detection protocol
employed and thus may not conform to the exponential distribution. To investigate the impact
of the type of distribution for the failure-detection time, we extend the model by representing
the failure-detection time as an Erlang-k random variable. Thus, by varying the parameter k we
can obtain a series of different probability distributions, ranging from exponential distribution
(for k = 1) to normal distribution (for large k).

To extend the system model to use Erlang-k distributed failure-detection time, we decompose
the Erlang-k distribution into a series of k independent exponential random processes, each
having a rate equal to kw as shown in Figure 13.4 for k = 2. Thus, the mean detection time
for the Erlang-k process is exactly the same as the exponential process in the original model.

Similarly, the system MTTF is the first passage time to reach any of the absorbing states, i.e.,
states {(Kmin + i, Kmin+7— 1, /)i =1,2,...,(Kmax — Kmin+ 1), j =0,1,...,k— 1}in
this generalized Markov chain model. For small values, of Ng, Kpin, and Ky.x, we can solve
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Ay

@I@ 0

: state with /4 servers failed, & level of redundancy and detection process d

Hy

A : aggregate server failure rate with 4 server failed
H, : aggregate repair rate with 4 server failed
w : mean detection rate

Figure 13.4 A Markov chain for PRT with K, = 2, K.« = 4 and Erlang-2 detection time

it analytically to obtain the first passage time directly. For larger values, the resulting solutions
are very complex and again we make use of Maple to obtain numerical solutions.

For the sake of verification, we have also developed a simulation program to measure the
system MTTF. For large values of K, and K.y, the simulation time required is extraordinary
long. But for smaller values of Ky, and Ky, the simulation time is manageable and the
simulation results do confirm the correctness of the numerical results obtained from Maple.

13.5 Performance Evaluation

Using the reliability models in Sections 13.4 and 13.5, we answer in this section the question
of how much bandwidth overhead can be saved by PRT under the constraint that the system
reliability is at least as good as FEC. Table 13.1 summarizes the system parameters used in
computing the following numerical results.
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Table 13.1 System parameters used in computing numerical results

System parameter Symbol Value
Average Failure-Detection Time 1w 6 sec
Node MTTF 1/x 50,000 hrs
Node MTTR 1/e 48 hrs
Number of Servers Ng 64
1E+65 | -FEC
[] —
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Figure 13.5 System MTTF of PRT and FEC with average detection time equal to 6 seconds

13.5.1 Effect of Detection Time Distribution

In Section 13.4, we use the Erlang-k distribution to model different types of distributions for
the failure detection time. We have computed the MTTF of a system with K;, = 10 and
Kax = 32 for different values of k and find that differences in the shape of the detection time
distribution have negligible effect on the system MTTF. For example, with a mean detection
time of 1/w = 60 seconds, the system MTTF is increased by only 8.7%10~% % when & is
increased from 1 to 10. This observation reflects the fact that the detection time is many orders
of magnitude smaller than the server MTTF (e.g., tens of seconds versus tens of thousands of
hours) and thus changes in its distribution have little effect on the system MTTF. Therefore,
we will simply use the Erlang-1 distribution, i.e., exponential distribution, to compute the
numerical results in the following sections.

13.5.2 Bandwidth Overhead Reduction

Figure 13.5 compares the system MTTF of FEC and PRT versus the level of redundancy in the
system (i.e., K for FEC and K.« for PRT). For FEC, the system MTTF increases exponentially
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with more redundancies as expected. For PRT, a total of 10 curves are plotted, each with a
different setting of Ky, ranging from 1 to 10, representing the number of redundancies that
are actively transmitted. There are two observations. First, the system MTTF of PRT for small
values of K. is similar to that of FEC with K = K;,,x. However, beyond a certain number
of redundancies, the system MTTF levels off. This implies that for PRT with a given K,
there is an upper limit on the achievable system MTTF even if we increase Kp,x indefinitely.
Beyond that limit any additional redundancies are simply wasted.

Second, the plateau of the curves for PRT is determined by the number of redundancies
actively transmitted — Ky, with larger Ky, resulting in higher achievable system MTTF.
This implies that to achieve a target system MTTF, there is a lower limit on K, below which
the required MTTF can never be achieved, regardless of the total number of redundancies
in the system. The key is that the minimum K, required will still be substantially smaller
than the corresponding number of redundancies K required to achieve the same system MTTF
in FEC.

For example, FEC with K = 7 achieves a system MTTF of 10'> hours. Now consider the
PRT curve in Figure 13.6 with Ky,i, = 2 and Kp.x = 7 the system MTTE, is only 10 hours
which is lower than FEC. To increase the system MTTF, we can either increase Kp,x or
increase Kpi,. In this case, increasing Kp,,x does not work because the system MTTF levels
off to a plateau below the required system MTTF. However, increasing K, to 3 does not
work either because the resultant system MTTEF is still below 10' hours. This is expected as
failure detection in PRT incurs a delay in responding to a server failure. Thus, with the same
number of total redundancies K = Kpx, it must have a lower system MTTF compared to
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Figure 13.6 Bandwidth ratio (K;;,/K) versus average detection time for 64 servers
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FEC if Knin < Kmax. To compensate, we can increase K,,x from 7 to 8 and the system MTTF
will become 107 hours with K, = 3, exceeding the system MTTF of FEC with K = 7.
Therefore, in this example we can reduce the bandwidth overhead from K = 7 redundancies
in the case of FEC to K,;, = 3 redundancies in the case of PRT.

We further illustrate the bandwidth overhead savings in Figure 13.6 by plotting the bandwidth
ratio, defined as the ratio K,in/ K, versus the average failure-detection time. In all cases PRT
achieves the same or a better system MTTF compare to FEC. We can observe that the reduction
in bandwidth overhead is very significant, at least half of the bandwidth overhead is saved
and the savings increase with shorter failure-detection time. Considering failure detection in
practice is likely to be in the order of seconds, this result clearly shows the feasibility and
superiority of the PRT protocol.

13.5.3 Storage Overhead

Compared to FEC, the PRT protocol has one trade-off. Reconsidering the previous example
with K =7 in FEC, we need to configure PRT with K, =3 and K;,x = 8 to achieve
the same or a better system MTTF than FEC. While the bandwidth overhead is reduced by
(7—3)/7 = 57%, the fact that K5« is larger than K means more redundancies will need to
be stored, though not all are actively transmitted. In this case the additional storage overhead
in PRT is equal to (K — K)/K = 14%.

Figure 13.7 plots the percentage increase in storage overhead due to PRT versus the target
system MTTF requirements. From the results we can see that the additional storage requirement
decreases rapidly with higher target system MTTF. With the rapid decrease in storage cost,
most hard disks are I/O bound rather than storage bound. Thus, the added storage requirement
can be easily absorbed with little to no impact on the total cost of the system.
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Figure 13.7 Percentage increase in storage due to PRT for different system MTTF requirement
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Figure 13.8 Reduction in bandwidth overhead versus number of servers with six different MTTF
requirements

13.5.4 Scalability

Finally, we investigate the scalability of the PRT protocol. Specifically, we want to know if
PRT can maintain the reduction in bandwidth overhead when we scale up the system to more
servers. We plot in Figure 13.8 the bandwidth overhead reduction achieved by PRT versus the
number of servers in the system for six different MTTF requirements. The results clearly show
that the bandwidth overhead reduction achieved by PRT in fact increases with the system scale,
suggesting that the PRT protocol is indeed scalable.

13.6 Summary

In this chapter, we modeled and compared the reliability of two redundant data transmission
protocols, namely Forward Erasure Correction (FEC) and Progressive Redundancy Transmis-
sion (PRT). Surprisingly, the PRT protocol can achieve over 50% reduction in transmission
bandwidth overhead while maintaining the same or better system reliability. The key is to
encode the data with more redundant data (compared to FEC) but only transmit some of them
initially. As the failure-detection time is far shorter than the server MTTF, the chance of ex-
periencing multiple server failures within a short time, which could lead to system failure in
PRT, is very small. The only trade-off in PRT is increased storage requirement, which is rela-
tively small (e.g., storage overhead < 20% for K > 5) and thus can easily be accommodated
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in practice. The reduced bandwidth overhead will translate into lower requirement on disk
throughput, server processing requirement, network bandwidth requirement, as well as client
access bandwidth requirement. This enables substantial cost savings across the whole system.
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Algorithms for Server Rebuild

In the previous chapters we have introduced the many desirable features of parallel streaming
servers such as scalability and fault tolerance. In this and the next chapter we will address
two practical issues resulting from the use of striped server storage. First, in this chapter
we investigate the issue of server data rebuild and in Chapter 15 the issues in expanding a
parallel server system.

Armed with redundant data and streaming capacity, a parallel streaming server can sustain
server-level failures and maintain non-stop media playback. However, the failed server will
eventually need to be repaired, or if repair is not feasible or desirable, replaced by a new
server. In the latter case we will need to load the appropriate media data into the new server
so that it can share the streaming workload — the server data rebuild problem. This chapter
investigates this and analyzes algorithms for rebuilding data in a failed server into a new
server transparently so that existing streaming sessions are not adversely affected.

14.1 Introduction

Armed with data and capacity redundancy, a parallel streaming server can operate in degraded
mode without causing any interruption to the existing streaming sessions. However, the failed
server will still need to be repaired or replaced and in the latter case we will also need to load
appropriate media data into the new server so that it can share some of the streaming workload.
This is referred to as the server data rebuild problem.

In the context of disk arrays and RAID [1], a similar data rebuild problem also exists, and
in Chapter 5 we have investigated rebuild algorithms for disk arrays. Despite the similarities,
parallel server differs from RAID in that bandwidth of the communications links is far more
limited. For example, when considering RAID in Chapter 5 we assumed that the data bus
connecting the hard disks and the main system was not the bottleneck and so the disks could
retrieve and stored data into the system memory buffers as fast as the disk would allow. While
this is a reasonable assumption in RAID, in parallel server the network linking up the servers
will likely have more limited bandwidth, e.g., 1 Gbp using Gigabit Ethernet [2] switches. Thus,
the network may become the bottleneck in the data rebuild process.

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
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14.1.1 Sparing Schemes

Figure 14.1 shows the use of a spare server to store rebuilt data — hot sparing. Note that the
spare server is not used under normal mode operation. When a server fails, the data in the
failed server are then rebuilt and stored in the spare server. When the rebuild process finishes,
the spare server simply replaces the failed server as shown in Figure 14.2.

Figure 14.3 shows another approach of allocating spare units — distributed sparing, in which
the spare stripe units are distributed over all the servers. During normal mode operation, all
servers participate in serving client requests. After a server has failed, data in the failed server
are then rebuilt and stored in the spare stripe units. Unlike hot sparing, the rebuilt system has a
different configuration from the original configuration (Figure 14.4). Therefore, an additional
phase called system restoration is required to copy all rebuilt data onto another spare server.
That spare server can then replace the old server to resume normal system operation.

Spare

Server
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Figure 14.1 Storage configuration for hot sparing
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Figure 14.2 Storage configuration after lost-data rebuild in hot sparing
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Figure 14.4 Storage configuration after lost-data rebuild in distributed sparing

Distributed sparing has the advantage that all servers are utilized under normal mode. How-
ever, the extra restoration phase increases system repair time considerably because the network
and server throughout are limited. Therefore, we consider only hot-sparing in this chapter.

14.1.2 Data Rebuild Computation

To rebuild the data in the failed server, we can perform erasure correction computation using
the remaining data and redundant data units. To do this, we will need to send the remaining
data and redundant units to a host to perform the erasure correction computation. These data
transmissions obviously will add to the streaming workload of the remaining servers. To avoid
adversely affecting the on-going streaming sessions, it is therefore necessary to use only the
residual capacities in the retrieval and transmission schedulers for such a purpose.

In the following we investigate five rebuild algorithms — disk migration, reloading data from
back-up, baseline rebuild, distributed rebuild, and mixed distributed-baseline rebuild. The first
two are simple solutions which also require extra equipment and/or human intervention in the
process. The last three algorithms are automatic and transparent, automatic in the sense that
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no human intervention is required and transparent in the sense that existing streaming sessions
are not affected in any way.

For simplicity, we consider only single-server failure in the rest of the chapter but the analysis
can readily be extended to cover multiple-simultaneous server failures. Let Ng be the number
of servers in the system, U be the storage capacity of each server, and Ss be the effective server
transfer capacity. The effective server transfer capacity Sg is the maximum data rate at which
a server can transfer data to/from the network. That is, if a server has an effective transfer
capacity of S = 600Mbps, and the server is sending data at a rate of 200Mbps, then the server
will only be able to receive data up to a rate of 400Mbps.

14.2 Disk Migration

It is possible that a server failure may not be caused by (unrecoverable) disk failures. In this
case, we may simply disconnect the disk subsystem from the failed server and connect it to the
spare server. This process is simple but requires human intervention to first identify the source
of the failure, and then to migrate the disk subsystem to the spare server. It is also possible to
use an electronic wiring network to connect a disk subsystem to two or more servers, including
a spare server (e.g., using twin-tailed disks). The migration of disk units can then be done
electronically.

14.3 Reloading Data from Back-up

If the media data in the system are also stored in a back-up storage, then we can simply load the
required media data from the back-up media to the spare server. This can be done automatically
without affecting the remaining active servers. The rebuild rate will then be equal to the transfer
capacity of the back-up device or the spare server, whichever is smaller.

While this scheme is simple and efficient, the mechanisms needed to automate the process
(selection and loading of media data) are not inexpensive, such as large juke-boxes or robotic
tape libraries. Moreover, management of the back-up data will be more complex as old media
data are removed and new ones uploaded to the servers from time to time. Finally, if the media
data streams are backed up sequentially, then considerable searching will be needed when
loading the media data into a spare server due to the server stripping scheme used.

For comparison with other rebuild algorithms, we assume the back-up device has infinite
throughput and capacity. Therefore, the rebuild rate is bounded by the server throughput, or

Rreioad = Ss (141)

which is also the maximum rate that can be achieved by any data rebuild algorithm.

14.4 Baseline Rebuild

The two methods discussed earlier both require extra hardware/software and/or human operator
support. This section presents the first automatic algorithm — baseline rebuild, that requires
neither extra hardware/software support nor human intervention. The principle is to utilize the
idle capacities in the remaining servers to send data/redundant units to the spare server, which
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Figure 14.5 The baseline rebuild algorithm

then rebuilds the data lost in the failed server (Figure 14.5). This algorithm is similar to the
baseline rebuild scheme in disk arrays [3].

To recover an unavailable data unit we need to perform erasure correction using the remain-
ing (Ng — 1) data/redundant units. Since we want to keep the process transparent to normal
streaming sessions, we can only utilize the servers’ idle capacities. Assuming the system is
running at a utilization of p €[0,1], the average available transfer rate from each server will
be equal to Sg(1 — p). The aggregate data transfer rate of the remaining (Ng — 1) servers is
therefore equal to

r=_S8s(1-p)Nsg—1) (14.2)

Now as the spare server has a transfer capacity of Sy, the aggregate data rate r will exceed the
spare server’s transfer capacity if p is less than (1 — /(Ng — 1)). This is stated in the Theorem
14.1 which computes the upper limit on the baseline rebuild rate.

Theorem 14.1. The data rebuild rate of baseline rebuild, denoted by Rpyseiine is bounded by
the capacity Ss of the spare server and is given by

Ss/(Ns — 1) forp < (1 —1/(Ns—1))

Sg(1 —p) forp > (1—1/(Ng— 1)) (14.3)

Rpasetine = {

Proof. Case 1: p < (1 — 1/(Ng — 1))
From equation (14.2):
r=S8s(I—p)Ns—1)
> Ss(1 =1 —=1/(Ns = D)) (Ns —1)
= Sg
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Although the aggregate transfer rate from the remaining servers is greater than Sg, the spare
server can only accept data at a rate of Sg. Using erasure correction the spare server will rebuild
one data unit for every (Ng — 1) data/redundant units received. We have therefore a rebuild
rate Rpuseiine = Ss/(Ng — 1) at the spare server.

Case2: p > (1 —1/(Ns — 1))

From equation (14.2):

r=38s(1—-p)(Ns—1)
=S - —=1/(Ns = D)(Ns — 1)
= SS
As the transfer rate from the remaining servers is less than Sg, the corresponding rebuild rate
at the spare server is Rpgeiine = ¥/ (Ns — 1) = Sg (1—p). ]

The rebuild time for a server with storage U is then given by

(Ns — HU
Tase ine — - 14.4
baseline = min {Ss, Ss(1 — p)(Ns — 1)} (144

14.5 Distributed Rebuild

In baseline rebuild, the transfer capacity of the spare server can become the bottleneck even
if the remaining servers have abundant idle capacities available. An alternative approach is to
rebuild the unavailable data units before transferring them to the spare server. In this way, only
the rebuilt data are sent to the spare server and hence the limited transfer capacity of the spare
server can be better utilized.

To achieve this, we can employ a distributed rebuild scheme to distribute the rebuild compu-
tations over all the remaining servers. We first divide the unavailable data into (Ng — 1) equal-
size subsets, with each subset then rebuilt by one of the remaining (Ng — 1) servers, as shown
in Figure 14.6. The server responsible for a subset will receive the required data/redundant
units from the other (Ng — 2) servers, rebuild the unavailable units, and then send the rebuilt
units to the spare server for storage.

To derive the rebuild rate of the distributed rebuild algorithm, we first note that the sum
of transfer rates in and out of the remaining (Ns — 1) servers is equal to Sg(1 — p)(Ng — 1).
Second, to rebuild each data unit we need 2(Ng — 2) transfers (half for transmission and the
other half for reception) of data/redundant units from the other (Ng — 2) servers to the rebuild
server — the server responsible for rebuilding the unavailable data unit. Note that we need only
(Ng — 2) transmissions instead of (Ng — 1) because the rebuild server already has one of the
data/redundant units stored locally, and so no transfer over the network is needed. Therefore,
we can compute the rebuild rate R igyipyreq from

Ss(1 = p)(Ns —1)  Ss(1 —p)(Ng — 1)
2(Ns—2)+1 2Ng —3

Ristributed = ( 145)

which is also the data rate at which rebuilt data are sent to the spare server.



Algorithms for Server Rebuild 255

So S Sk Sns-1 §Spare Server

Figure 14.6 The distributed rebuild algorithm

Interestingly, being the bottleneck in baseline rebuild the spare server is no longer the
limiting factor in distributed rebuild. The following theorem shows that the rebuild data rate
Riiswriburea 18 always smaller than the transfer capacity of the spare server, regardless of the
system utilization p.

Theorem 14.2. In distributed rebuild, the rate of data transfer from the active servers to the
spare server will never exceed the capacity of the spare server.

Proof. We note that (Ng— 1) < 2(Ng— 3) for all Ng > 2 in (14.5) thus Ryisiutea < Ss(1—p)
Ss. ]

The corresponding rebuild time in distributed rebuild is thus given by

U UQNs-3)
Raistriburea  Ss(1 — p)(Ns — 1)

Tiistributed = (14.6)

14.6 Mixed Distributed Baseline Rebuild

In distributed rebuild, the spare server is never fully utilized. This is due to the fact that for
every data unit rebuilt, a total of (2Ng — 3) data/redundant units will need to be transferred
among the remaining active servers. By contrast, the ratio is only (Ng — 1) in baseline rebuild,
albeit at the cost of (Ng — 1) times more capacity required at the spare server. In other words,
in baseline rebuild the remaining servers are underutilized while in distributed rebuild the
spare server is underutilized. This suggests a mixed algorithm to rebuild part of the data using
distributed rebuild and the rest by baseline rebuild to maximize the server utilizations to reduce
the rebuild time.
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14.6.1 Rebuild Rate Analysis

To analyze the mixed distributed-baseline rebuild, we allocate a fraction (0 < u < 1) of the
server capacity to distributed rebuild, and the remaining fraction (1 — ) to baseline rebuild.
Assuming all idle capacities in the remaining servers are employed for data rebuild, then the
aggregate rate at which data are transferred to the spare server will be equal to

Ss(I —p)(Ns — D)

"
Ryivea = INs 3 + Ss(1 = p)(1 — ) (14.7)

where the first and second terms are the rebuild data rates generated from distributed rebuild
and baseline rebuild respectively.
Differentiating equation (14.7) with respect to u, we obtain

dRmixed
dp

Ng—1

<0 VNg=>3

Therefore, for systems with three or more servers reducing u (i.e., allocating more idle capacity
to baseline rebuild) always increases the aggregate data rebuild rate. When Ny = 2, the rebuild
rate is independent of u and simply equal to Sg(1 — p). To find the lower bound for u, we
invoke the constraint that the aggregate rate at which data are transmitted to the spare server
cannot exceed Sg:

Ss(I —p)(Ns — 1)
2Ng —3

K 851 = p)(Ns — 1)(1 = ) < S5 (14.9)

Solving for ©, we can then obtain its lower bound subject to the spare server’s capacity
constraint and the constraint that ;& > 0:

(=C=pWNs=D) v 1)
w=1 (=pWNs =1 (555 1) (14.10)

0, otherwise

Using this allocation ratio all idle capacities in the system will be fully utilized. Substituting
equation (14.10) into equation (14.7) gives the maximum rebuild rate:

Ss[1+ (1 - p)Ns — 1]
Rynived = 2Ns — 1) forp = (1 =1/(Ns = 1) (14.11)
Ss(1 — p) otherwise

14.6.2 Optimality

In this section, we derive the optimal rebuild rate for a system and show that the mixed
distributed-baseline rebuild scheme can achieve this optimal rate. We assume that (1) unavail-
able data are rebuilt automatically without human intervention using erasure-correcting code
computation; (2) all processing is performed by the remaining active servers and the spare
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server; and (3) the transfer capacity of the spare server is all used in rebuild. The first assump-
tion excludes manual and hardware replacement schemes. The second assumption excludes
the use of back-up devices to reload data into the spare server. The third assumption guarantees
the transfer capacity available at the spare server. Note that the rebuild of unavailable units is
performed either at the spare server, the remaining (Ns — 1) servers, or partially done at both.
Therefore, we have the next lemma.

Lemma 14.1. For any unavailable data unit rebuilt and stored into the spare server, we need
at least (Ns — 1) transmissions from the remaining active servers.

Proof. If the unavailable data unit is rebuilt by the spare server, then the (Ng — 1) data/redundant
units of the same parity group will need to be sent to the spare server, resulting in (Ng — 1)
transmissions.

If the unavailable data unit is rebuilt by one of the remaining servers, then (Ng — 2)
data/redundant units from servers other than the rebuild server and the spare server will need to
be sent to the rebuild server, resulting in (Ng — 2) transmissions. After that, the rebuild server
will send the rebuilt data unit to the spare server for storage, incurring one more transmission.
Together the whole process thus generates (Ng — 1) transmissions. |

Each server contributes its idle transfer capacity to the rebuild process either for transmission,
reception, or both. Let ¢ {0 < ¢ < 1} be the proportion of transfer capacity each server has
used for transmission in the rebuild process. The sum of the transmission capacities of the
remaining servers is then equal to

@Ss(1 = p)(Ns — 1) (14.12)

Note that the transmitted data will have to be received. Therefore, the total reception capacities
must be at least as large as the total transmission capacities, i.e.,

(I = @)Ss(1 = p)(Ng — 1) + S5 = ¢Ss(1 — p)(Ns — 1) (14.13)

where on the L.H.S. the first term is the reception capacities of the remaining servers and the
second term is the reception capacity of the spare server.

Now Lemma 14.1 shows that the rebuild rate is proportional to the sum of transmission rates
by the remaining servers. Therefore, to maximize the rebuild rate we need to maximize the
transmission capacity of the system, subject to the constraint in equation (14.13). Noting the
constraint 0 < ¢ < 1 we can solve for ¢ by rearranging equation (14.13) to give

14+ (1= p)(Ns — 1)
, fi <({I-1/(Ng—1
o= | 20— pvg—p = mVEs = D) (14.14)

1, otherwise

Next we substitute equation (14.14) into equation (14.12) and invoke Lemma 14.1 to obtain
the maximum achievable data rebuild rate:
Ss[1 1—p)(Nsg—1
s[1+ 1 —p)(Nsg —1)] forp < (1 — 1/(Ns — 1))
Ry = 2(Ns — 1) (14.15)
Ss(1 — p) otherwise
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which is exactly the same as equation (14.11). We state the result in the following theorem:

Theorem 14.2. The mixed distributed-baseline rebuild scheme achieves the optimal rebuild
rate and hence requires the minimum amount of rebuild time.

Proof. The result follows directly from equations (14.11) and (14.15). |

14.6.3 Controlling the Rebuild Time

The previous sections focus on deriving the rebuild rate and time. It is clear that the rebuild
time increases with server utilization p. To control the rebuild time, the server could limit its
utilization p to reserve transfer capacities for the rebuild process.

First, by setting p = 0 in equation (14.15) we can obtain the minimum achievable rebuild
time:

U  2(Ns—1U
Rmaxlp:() NgSs

Tnin = (14.16)

Second, if we want to complete the rebuild process by time #(¢ > T,,;,), we will need to limit
the server utilization p to

1 2U U(Ns—1)
1+ —— for Ty <t < ——
Ns —1 tSs Ss
o< (14.17)
U . V0=
tSg Ss

by means of admission control.

14.7 Numerical Results

To illustrate and compare performances of the rebuild algorithms we consider a system of
Ng = 5 active servers and one spare server. Each server has 200GB storage, so the system has
a total of 1TB storage, including the redundant units. We assume a server transfer capacity of
600Mbps, e.g., using Gigabit Ethernet links.

Figure 14.7 plots the data rebuild rate versus server utilization for all the rebuild algorithms.
We include the data rebuild rate for reloading data from back-up for the sake of compari-
son. Note that this data rebuild rate is also the upper bound. We observe that for baseline
rebuild, the data rebuild rate is constant at Sg/(Ng — 1) for p < (1 — 1/(Ng — 1)), even if the
remaining active servers are lightly loaded and have idle capacities available. As the system
utilization approaches one, the rebuild rate drops quickly. Distributed rebuild performs better
than baseline rebuild when the server utilization is low (e.g., p < 0.55), but it deteriorates
earlier when the system utilization increases. This is because in distributed rebuild the active
servers need to receive data transmissions from other servers in addition to sending data to
other servers, and thus consume considerably more transfer capacity than baseline rebuild.
Finally, as expected, the mixed distributed baseline rebuild gives the best performance in all
cases.



Algorithms for Server Rebuild 259

800

600 —

400 |- -

Data Rebuild Rate (Mbps)

200

0 0.2 0.4 0.6 0.8 1
System Utilization

XXX Reload from back-up

+++ Baseline rebuild

B88 Distributed rebuild

—©— Mixed distributed-baseline rebuild

Figure 14.7 Data rebuild rate versus system utilization

Figure 14.8 shows the time required to completely rebuild a server’s worth of data (200GB).
Interestingly, for system utilization p > 0.75 performances of the baseline rebuild algorithm
and the mixed distributed baseline algorithm converge. This is because at high system utilization
the remaining active servers become the bottleneck, and so it is better to switch to the baseline
rebuild algorithm which consumes less transfer capacities of the active servers than distributed
rebuild. In this case the mixed distributed baseline algorithm simply allocates all transfer
capacity to baseline rebuild.

Finally, we plot in Figure 14.9 the rebuild time versus the number of servers in the system
under a system utilization of p = 0.5. The key observation is that the baseline rebuild algorithm
is not scalable — the rebuild time increases with the number of servers in the system. This is
because in baseline rebuild the maximum rebuild rate is limited by the transfer capacity of the
spare server. Thus, as the number of servers increases, so will the number of data/redundant
units that need to be sent to the spare server to rebuild an unavailable data unit, thereby resulting
in longer rebuild time.

By contrast, the rebuild times of distributed rebuild and mixed distributed baseline rebuild
do not increase significantly with increases in the number of servers and so are much more
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Figure 14.8 Rebuild time versus system utilization

scalable. For example, under a system utilization of p = 0.5, a mixed distributed baseline
rebuild can complete the rebuild process in 2.61 hours and 2.87 hours for a 16-server and
64-server system, respectively. Thus, if no new server failure occurs within this period, the
system can then resume normal operation and be ready to sustain a new server failure in the
future.

14.8 Summary

In this chapter we addressed the issue of rebuilding the data lost in a failed server to a spare
server so that the system can resume normal operation. Using a model incorporating the transfer
capacity of the servers, the system utilization, and other system parameters, we showed that the
mixed distributed-baseline rebuild algorithm can achieve the maximum rebuild rate. Moreover,
the algorithm is completely automatic, and transparent to existing streaming sessions. The
numerical results showed that such a data rebuild process can be completed in a reasonably
short time (a few hours) and thus can enhance the reliability of the system.
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Algorithms for System Expansion

One of the desirable features of parallel server architectures is the incremental scalability,
i.e., we can progressively add more servers to increase the system streaming capacity. In
practice, a service operator will likely begin with a smaller system, and then gradually add
more servers when the user population grows. This system expansion, however, creates
two new challenges. First, as the media data are already stored among the existing media
servers, we will need to redistribute some of the media data to the newly added servers so
that they can share the streaming workload. Second, for fault tolerance, in addition to the
media data, there will also be redundant data encoded from the media data using erasure
correction codes. After adding more servers and redistributing the media data, however, the
original redundant data unfortunately will become invalid as the size of the parity group
has increased. Hence, we will need to update the redundant data so that the system’s fault-
tolerant capability can be maintained. This chapter presents new algorithms to solve these
two challenges.

15.1 Introduction

There are two challenges in expanding a parallel streaming server with more servers. First,
the newly added servers cannot share the streaming workload until a portion of the media data
have been redistributed to them from the existing media servers. We call this process data
reorganization. While simple algorithms can easily be devised, our results show that they are
very inefficient and incur significant overheads in transferring data between the existing and
the new servers. To tackle this problem we present in Section 15.3 a Row-Permutated Data
Reorganization (RPDR) algorithm that can efficiently reorganize data in a parallel streaming
server. Compared to the trivial algorithm, RPDR can reduce the reorganization overhead by
over 70%. More importantly, RPDR can guarantee streaming load balance after the data have
been reorganized.

Second, if the parallel streaming server employs redundant data to support fault tolerance,
then the redundant data will also need to be updated after the media data are reorganized.
We call this the redundant data update problem. In Section 15.4 we present a Sequential
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Redundant Data Update (SRDU) algorithm for updating redundant data in erasure-coded
distributed storage. This algorithm exploits the structure of Reed-Solomon erasure correction
codes to enable the reuse of old redundant data in generating the new redundant data. This
enables the algorithm to cut down the amount of data transfer by as much as 70% for the SRDU
algorithm. It is worth noting that the algorithms presented in this chapter are not limited to
parallel server systems, but are also applicable to any striped data storage, such as disk arrays,
RAID [1], or even the emerging peer-to-peer systems. For this reason we will use the term
“node” to refer to a device in the striped storage, e.g., a server in a parallel streaming server, a
disk in a RAID, or a user host in a peer-to-peer streaming system.

15.2 Related Work

The problem of data reorganization has been studied previously in the context of disk arrays
[2-3]. The study by Ghandeharizadeh and Kim [2] is the earliest study on data reorganization
known to the author. They investigated the data reorganization problem in the context of adding
disks to a continuous media server. They studied the round-robin data striping commonly found
in disk arrays and proposed techniques to perform data reorganization online, i.e., without
disrupting on-going video streams. Due to the round-robin placement requirement, a large
portion of the data blocks will need to be redistributed to maintain the data placement order when
a new disk is added, thus incurring significant data reorganization overhead. The advantage
is that this approach can maintain perfect streaming load balance when data reorganization is
completed.

In a more recent study by Goel et al. [3], an algorithm called SCADDAR for data placement
and data reorganization is proposed for use in disk arrays. In this algorithm, each data block
is initially randomly distributed to the disks with equal probabilities. When a new disk is
added to the disk array, each block will obtain a new sequence number according to their
randomized SCADDAR algorithm. If the remainder of this number is equal to the disk number
of the newly added disk, the corresponding block will be moved to this new disk. Otherwise,
the block will stay on the original disk. As SCADDAR no longer needs to maintain a strict
round-robin placement order, it can reduce the reorganization overhead to levels approaching
the theoretical lower bound.

However, the SCADDAR algorithm did not consider streaming load balance. If we ap-
ply SCADDAR to a streaming server, then the pseudo-random placement policy can re-
sult in significant streaming load imbalance, especially after a large number of disks have
been added to the system. This load imbalance complicates data transmission scheduling
and may also reduce the usable streaming capacity and/or increase the response time of the
system.

Interestingly, the previous two studies can be considered as two extremes of the trade-off be-
tween data reorganization overhead and streaming load balance. In particular, Ghandeharizadeh
and Kim’s algorithm achieves perfect load balance at the expense of substantial data re-
organization overhead, while the SCADDAR algorithm achieves near-minimal data reor-
ganization overhead at the expense of load imbalance. The Row-Permutated Data Reor-
ganization described in Section 15.3, by comparison, can achieve perfect streaming load
balance and yet incurs significantly lower reorganization overhead than the round-robin
algorithm.
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15.3 Row-Permutated Data Reorganization

We present in this section the Row-Permutated Data Reorganization algorithm to redistribute
media data after a new node is added to the system. We use two performance metrics, namely,
data reorganization overhead and streaming load balance to compare its performance with the
round-robin data reorganization algorithm [2] and the SCADDAR algorithm [3].

15.3.1 Placement Policy

In striped storage a media object is first divided into fixed-size blocks, denoted by v; ;, where
ie€0,1,...1isthe groupnumberand j € 0, 1, ..., (N — 1) is the media block number within
the same group. To maintain streaming load balance it is necessary to ensure that every block
in the same group resides in a different node of the system.

As Ghandeharizadeh and Kim’s study [2] showed, the data reorganization overhead in-
curred in maintaining the round-robin data placement order is very high. This is illustrated
in Figure 15.1 which shows the data placement before and after adding a node to a 4-node
system. The shaded data blocks all have to be moved from one node to another to restore
the round-robin placement in the new 5-node configuration. This obviously incurs significant
overhead.

In streaming applications, the client will process and play back media data sequentially
(ignoring interactive playback control). This implies that if the client always receives one
group of media data before playback, then the exact order in which the data blocks arrival at
the client will become irrelevant. Therefore, instead of enforcing the round-robin placement
order we can relax the constraint to reduce the number of block movements — row-permutated
placement policy.

| 0,0 || 0,1 |13 | Y0,

; HES . 400 | O T | f
1IN Y Y O 1 TV 1 O T Y A A
1 TN 1 O 1 Y Leno | [ i 222 | [ |1 [ 224
1 2% ] O O Lo Lo [ ][ sa |11 [sa].
11 1 Y 1 Y A I
) 7y 1y n3 1y ny 4] 7y ny n
— _ — _
~ ~
Before reorganization After reorganization

Figure 15.1 Reorganization under round-robin placement (from 4 to 5 nodes). The shaded blocks all
need to be relocated to form the new configuration
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Divides media data stream into fixed-size blocks
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Figure 15.2 The row-permutated placement policy

Specifically, in a N-node system the first N media data blocks {vo ; | j =0,1,..., N — 1}
will be distributed to all N nodes in pseudo-random order, with each node storing exactly
one of the N data blocks as shown in Figure 15.2. This process repeats for the next N data
blocks {vy ;| j =0,1,..., N — 1}, and so on until all data blocks are distributed. As long as
the client receives a whole parity group before decoding it for playback, this row-permutated
placement policy can achieve perfect streaming load balance, same as the original round-robin
placement policy.

15.3.2 Data Reorganization

To determine which data blocks will need to be moved after adding a new node, we first
re-index all the media data blocks according to the new configuration. Figure 15.3 shows an
example of reorganizing from a 4-node system to a 5-node system. For example, media blocks
v1,0 and vy ; will be re-indexed to v 4 and v o respectively in the 5-node configuration.

If we consider the first group of media blocks in the new configuration, we can see that node
n; now needs to send two media blocks vy ; and vy 4 while the new node is not used. This is
the reason why load imbalance will occur if the data blocks are not reorganized.
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Figure 15.4 Reorganizing the first group of media data blocks

Since we do not need to maintain the strict round-robin placement order under RPDR, we

can simply move the excess block from the overflow node to the underflow node. For example,
we move data block vg4 from node n; to node n4 as shown in Figure 15.4 to restore the

streaming load balance of the new 5-node configuration.

As a further illustration, we consider the second group of data blocks in Figure 15.5. Now
there are two overflow nodes ng and n,, as well as two underflow nodes n; and n4. To restore
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to form the new configuration

streaming load balance we move block v; 3 from ng to n4 and block v; 4 from 7, to n;. Thus,

we need two block movements to reorganize this second group.

Repeating this process we can then reorganize the whole system. Figure 15.6 shows the
required block movements for the first four groups of media data blocks. Comparing it to

Figure 15.1, we can clearly see the savings in block movements (e.g., from 16 down to 5). In the
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next section, we relax the streaming load balance constraint to further reduce the reorganization
overhead.

15.3.3 Multi-Row-Permutated Data Reorganization

While perfect streaming load balance is desirable, the cost of data reorganization, which
itself consumes system resources, can still be substantial. Depending on the particular system
configuration (e.g., disk throughput, network bandwidth, system utilization, etc.), it may be
desirable to trade off some streaming load balance to further reduce the data reorganization
overhead.

By relaxing the streaming load balance constraint, we generalize the row-permutated data
reorganization algorithm into a multi-row-permutated data reorganization (m-RPDR) algo-
rithm, which also subsumes the original RPDR as the special case 1-RPDR. In m-RPDR we
process the media blocks m groups at a time. Moreover, we redefine node overflow to occur
only if more than m blocks from the m groups are stored in the same node. Similarly, a node
underflows if it stores fewer than m blocks from the m groups under consideration.

Figure 15.7 illustrates the reorganization of the first two groups using 2-RPDR. In this
example, nodes ny and n, overflow and so we move media data blocks v; 3 and v; 4 to ny to
restore streaming load balance. Comparing to reorganizing the same two groups using 1-RPDR
(Figure 15.4 and Figure 15.5), the number of block movements is reduced from 3 to 2. The
trade-off is in streaming load balance. As shown in Figure 15.7 node n4 stores media data
blocks v; 3 and v; 4, and node n; stores blocks vp ; and vy 4. Thus, if the system sends a group
of N data blocks in each service round, then in the first service round node n; will need to
send two data blocks while node n4 will be idle, and vice versa in the second service round.

ng, ny overflow while 7, underflows. Blocks v 3and vy 4 are moved to ny.

I N 1 Y
2-RPDR 3 ‘ ' H
TS T 3 O | Y
Re-organize ;
5 ‘|12«3|::|12«2 ‘|724|33|‘3.0|
| Y31 || ”>2|33 | Y34 || Y33 |
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Group 0-1 before reorganization Group 0-1 after reorganization

Figure 15.7 Reorganizing group O and 1 using the 2-RPDR algorithm
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Therefore, to employ m-RPDR the system will need to be designed with this load imbalance
in mind to guarantee streaming performance.

15.3.4 Performance Analysis

In this section, we evaluate and compare the multi-row-permutated data reorganization algo-
rithm with the round-robin [2] and the SCADDAR [3] algorithms, both originally proposed for
disk arrays. The performance metrics used for comparison are data reorganization overhead
and streaming load balance.

The results are computed numerically for a media object of B = 4,000 blocks. Unless stated
otherwise the system begins with a single node and then incrementally grows to 200 nodes
by adding new nodes one by one. Each data point is averaged over 50 results obtained from
using different random seeds for the random number generator (used in SCADDAR and the
m-RPDR algorithms).

15.3.4.1 Data Reorganization Overhead

Data reorganization overhead is defined as the number of data blocks that need to be redis-
tributed to bring the system back to streaming load balance. This metric can reflect the time,
memory and bandwidth requirement incurred by the reorganization process.

For a system with B blocks already evenly distributed to n nodes, the minimum number of
blocks that need to be redistributed when a new node is added is equal to B/(n + 1), provided
that perfect storage balance is to be maintained. Note that this lower bound does not consider
streaming load balance. The SCADDAR algorithm in some cases incurs less overhead than
the lower bound because SCADDAR does not guarantee storage balance.

For round-robin placement, we can derive the approximate reorganization overhead analyt-
ically. Consider expanding a system from (n — 1) nodes to n nodes. If we divide the media
blocks into groups of LCM(n — 1, n) blocks, where the function LCM(n — 1, n) computes
the least common multiple of n — 1 and n, then the first (n — 1) blocks in each group will
not need to be moved (see Figure 15.1 for an example). All other blocks in the group will
need to be relocated. Therefore, the reorganization overhead in round-robin placement is
given by

LCMn—1,n)—(n—1) _ 3 m—1Dn—-—m-—1)
( LCM(n — 1, n) >_< (n—Dn )

— B <1 - 1) (15.1)
n

For the SCADDAR algorithm the reorganization overhead has been shown to approach the
theoretical lower bound of B/n and the exact values can be obtained from simulated calcu-
lations. Similarly, we also obtain the reorganization overhead of m-RPDR using simulated
calculations. Figure 15.8 compares the reorganization overhead of round-robin, SCADDAR,
and m-RPDR form =1, 2, 5, and 10.

There are three observations. First, the round-robin algorithm and the SCADDAR algorithm
have the highest and lowest reorganization overhead respectively. Moreover, the differences
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Figure 15.8 Comparison of reorganization overhead versus system size

increase when the system grows larger. This is because for the SCADDAR algorithm the
overheads approximately equal to B/n and so decreases as the system grows. By contrast,
overheads of the round-robin algorithm approach B as n increases (cf. equation (15.1)).

Second, the reorganization overheads of the m-RPDR algorithms are lower than the round-
robin algorithm but higher than the SCADDAR algorithm. In particular, a larger value of m
will result in lower reorganization overhead, thus providing a tool to trade off streaming load
balance for lower reorganization overhead.

Third, the 1-RPDR algorithm can achieve lower overhead than the round-robin algorithm
and yet can still achieve perfect streaming load balance. Thus, the 1-RPDR algorithm can be
used in place of the round-robin algorithm whenever perfect streaming load balance is required.

So far we have assumed that the system is reorganized whenever a new node is added to
the system. In practice, it may be desirable to add multiple nodes to the system at the same
time to amortize the administrative overheads. Interestingly, performing data reorganization
simultaneously for multiple nodes can also result in lower per-node reorganization overhead
compared to adding them one by one.

Figure 15.9 illustrates the potential savings from performing data reorganization for k =
1,2, 3, and 5 new nodes. The results clearly show that the per-node reorganization overhead
decreases significantly (note that the vertical axis is in logarithm scale) for larger values of k.
Moreover, the savings are most significant when switching from k = 1 to k = 2, suggesting
that adding nodes to the system two-at-a-time can be an efficient strategy to expand the system
incrementally.
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15.3.4.2 Streaming Load Balance

Most media streaming systems retrieve and transmit media data blocks in fixed-duration service
rounds (cf. Chapter 3), thus if the media blocks are not distributed evenly across all nodes some
nodes will be overloaded while others will be underutilized. Among the data reorganization
algorithms, only the round-robin and the 1-RPDR algorithms can achieve perfect streaming
load balance. All other algorithms, including SCADDR and m-RPDR with m > 1, will result
in some degree of load imbalance.

To quantify streaming load balance, we count the number of overflow media blocks for each
algorithm after data reorganization is completed, and then plot the proportion of overflow media
blocks in Figure 15.10. As expected, both round-robin and 1-RPDR achieve zero overflow. The
SCADDAR algorithm results in over 35% overflow blocks. The m-RPDR algorithm, on the
other hand, results in fewer overflows depending on the choice of m. Finally, another desirable
feature of m-RPDR is that it can guarantee that the maximum number of overflow blocks in
each service round will not exceed m. This enables one to incorporate the overflow effect either
by design or through admission control.

15.4 Sequential Redundant Data Update

In data reorganization we have ignored the redundant data, which will become invalid once data
reorganization is performed. Obviously, to maintain the system’s fault tolerance capability we
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will need to update the redundant data blocks according to the newly reorganized data place-
ments. In this section we develop a Sequential Redundant Data Update (SRDU) algorithm that
exploits structure of the Reed-Solomon erasure correction (RSE) code [4—6] to substantially
reduce the number of block movements required in redundant data update.

15.4.1 Redundant Data Regeneration

Figure 15.11 depicts the placement of data and redundant blocks in a system of 6 nodes. There
are two redundant data blocks per parity group, denoted by c; o and ¢; ; for parity group i.
This enables the system to survive two node failures. Note that while the round-robin data
placement order is shown in Figure 15.11, it is not a requirement. The exact ordering of the
data blocks within a parity group is irrelevant to redundant data block generation. Thus, the
RPDR algorithm is also compatible with redundant data generation.

After adding a new node to the system and reorganizing the data blocks, the new data
block placements become the one shown in Figure 15.12. Again the order of data block
placements is arbitrary and irrelevant to the process of redundant data generation. Under this
new configuration the original redundant data {c; ; |7, j € 0, 1, ...} will need to be updated.

In general, for a system of N nodes and / redundancies, we will need all (N — h) data blocks
in a parity group to compute the corresponding /# redundant blocks. As data and redundant
blocks of the same parity group are all stored individually in separate nodes, the system will
need to send all data blocks to the redundant nodes to generate the new redundant blocks. This
simple algorithm is clearly very inefficient.
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Data placement after adding one data node
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On the other hand, if a central archive server storing a copy of all media data is available,
then it can simply regenerate the new redundant data blocks locally and send them to the
redundant nodes to replace the obsolete redundant data blocks. In this case, the number of
block movements required will be equal to (B /(N — h)). Nevertheless maintaining this central
archive server will incur additional costs and complicate management of the system. Depending
on the particular application this approach may not be cost-effective.

15.4.2 Reuse of Original Redundant Data

To understand how we can reduce the redundant data update overhead, we first need to study
the computation of the redundant blocks using the RSE code. Let B be the total number of
fixed-size media data blocks in the system and denote the jth block of a media object by v;.
For simplicity we consider only one media object in the rest of the section. The results can be
readily extended to multiple media objects.
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Let (N — h) and & be the number of data nodes and redundant nodes in the system respec-
tively. Assuming the number of redundant nodes in the system is fixed, then we can apply the
(N, h)-RSE code to compute the /4 redundant data blocks in each group of (N — &) data blocks
using

[ fin fiz fis oo finen dio
fa fa2 o3 oo fon-n di

LSha Su2 Sus oo Jun—n | [ din-n—1

1 1 1 1 dio
1 2 3 ... N-nh di |
=|. . . . . (15.2)
_1 21171 3h71 (N _ h)hfl di,N—h—l
i €i,0
Ci1

L Ci.h—1

where the F, D, and C are the Vandermonde matrix [4], the media data vector, and the
redundant data vector respectively; and d; ;, ¢; x represent data block j (j =0,1,..., N —
h — 1) and redundant block k¥ (k =0,1,...,h — 1) of parity group i. Elements in F are
constants computed from f; ; = j ~!. Note that the matrix multiplication in equation (15.2) is
computed over Galois Fields of 2" where N < 2". For example, by setting w = 16, then the
code can support up to 65,535 nodes.

Reconsider the generation of a redundant data block before and after addition of one data
node in Figure 15.11 and Figure 15.12 respectively. We can observe that in many cases,
the reorganized parity group still comprises some data blocks from the original parity group
before reorganization. For example, in expanding a system from N nodes to N + 1 nodes,
the first parity group will be reorganized from the composition of {vg, vy, ..., Vy_p—1} tO
{vo, v1, ..., UN_n—1, Un—pn}, Which differs by only one data block vy_;. This means that the
resultant matrix computations in equation (15.2) will differ by only one variable in the data vec-
tor. This raises the question of whether we can reuse the original redundant data in computing
the new redundant data, discussed next.

Consider the original configuration in Figure 15.11. The first two redundant data in redundant
node ry, denoted by cp | and ¢ |, are computed from

3
o1 = Z f2j1v; (15.3)
=0
and
.
cl = Z frj—as1vj (15.4)
=4

respectively according to equation (15.2).
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After a new node is added, the system will be reorganized to that in Figure 15.12. Now the
two new redundant data block, denoted by 06,1 and C/1, 1» are computed from

4
Cou = fajt1v) (15.5)
=0
and
9
¢y = Z J2,j-5+41V; (15.6)
Jj=5

Comparing equation (15.5) with equation (15.3) we can observe that they share four common
terms in v; — v, V1, V2, v3. Hence we can rewrite equation (15.5) as follows:

3
1 = ZfZ,j-ij + f2,504

Jj=0

=co,1 + f254 (15.7)

In other words, we can compute ¢;, ; using the original redundant data o ; plus data block vy.
Thus, instead of sending all five data blocks to redundant node r; to perform redundant data
update, we now only need to send one data block, i.e., v4, thereby dramatically reducing the
overheads in updating the redundant data c;, ;.

15.4.3 Parity Group Reshuffling

In some cases, the previous straightforward reuse technique may not be applicable due to
differences in the coefficients f; ;. For example, ¢} ; is computed from vs to vg and share
common terms in vs, vg, and vy with ¢; ;. Thus, it appears that we can reuse the common terms
and send only vg and vy to 71 to compute ¢; ;. However, comparing the equations for ¢} ;:

9
€l = Zfz,;‘fSJrlvj
=5
= (f2,105 + f2206 + f2,3V7) + f2,408 + f2,509 (15.8)

and for ¢ ;:

;
cL1 = E Sf2.j-ar1v;
j=4

= f2.1v4 + (f2,2V5 + f2306 + f2.4V7) (15.9)

we found that the common terms vs, vs, and v7 now have different coefficients f; ; (e.g., f2,1vs
versus f>,vs). As a result, we cannot reuse ¢;,; in computing ¢ .
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To tackle this problem, we can reshuffle the order of the elements in the data vector for
computing ¢} , to obtain

c11 = faavs + (fa2vs5 + fa3vs + f2.4v7) + fa509 (15.10)

which then allows us to reuse ¢ ; in the computation:

7
ciq = fuivs + (Z Srj-at1vj — f2,1U4) + f2.509
=4
= fa1vs + (c1,1 — f2,104) + f2,509 (15.11)

This reduces the number of data block transmissions from 5 to 3. Note that the client will
also need to use the reshuffled order when decoding the parity group for playback. This parity
group order information can either be generated dynamically, or sent along the video data
blocks as meta-data.

Interestingly, there may be more than one way to reuse redundant block in updating the
redundant data, and possibly with different redundant update overhead. For example, consider
the computation of ¢ ;:

11
C1 = Zfz,j—8+lvj
=
= (f2,1v8 + f2,2v9) + f23v10 + f2.4V11 (15.12)

If we reshuffle the order of computations for ¢/ | to

¢ = (faavg + f2200) 4+ fo305 + faavs + fa507 (15.13)

then we can reuse ¢; | in the computation:

11
¢y = (Z J2.j-8+10; = f23010 — f“““)
j=8

+ f23V5 + fa.ave + fa507 (15.14)
= (c2,1 — f2,3V10 — f2,4V11)

+ f2,305 + f2,4v6 + fo507

Howeyver, in this case the number of data block transmissions is five, two blocks more than that
of reusing c ;. Thus, in the SRDU algorithm, the system will first compute the redundant data
update overhead for all reusable redundant blocks and select the one with the lowest overhead
for reuse.
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15.4.4 Reuse of Cached Data Blocks

In addition to reusing old redundant data, we can also reduce data block movements by caching
and reusing data blocks already received by the redundant node. Reconsider the previous
example of computing c’].l (cf. equation (15.11)), the data blocks needed are vy, vg, and vg.
However, v4 has already been sent to the redundant node when computing c;, ; (cf. equation
(15.7)) and thus can simply be reused if it is cached. As a redundant block is computed from a
parity group of (N — h) data blocks, we only need to cache the (N — &) most recently received
data blocks.

15.4.5 Redundant Data Update Overhead

In this section we evaluate performance of the SRDU algorithm using simulation. Beginning
with a small system, we add new nodes to the system and then apply the SRDU algorithm to
update the redundant data blocks. Performance is measured by the number of data blocks that
need to be sent to the redundant nodes for redundant data update — or simply called redundant
data update overhead. The total number of data blocks is 40,000 and is fixed throughout the
simulation. For simplicity the redundant data update overhead for updating one redundant
node is presented. We will return to the issue of updating multiple redundant data nodes in
Section 15.5.

In the first experiment, we investigate the redundant data update overhead in continuous
system growth. We begin with a system of five data nodes and one redundant node. Then we
add a new node to the system one by one, each time the redundant data blocks are completely
updated using the SRDU algorithm. This continues until the system grows to 400 data nodes.
Figure 15.13 plots the redundant data update overhead versus data node size from 6 to 400.
As expected, the simple algorithm (sending all data blocks to the redundant node) performs
the worst. On the other hand, regenerating redundant data using a centralized archive server
incurs the least overhead. These two curves serve respectively as the upper bound and lower
bound for redundant data update overhead.

Surprisingly, direct reuse of the original redundant data does not result in significant sav-
ings. This is because the algorithm maintains the same data order within the parity group
in computing the redundant data, and thus significantly reduces the opportunity for redun-
dant data reuse. Once this restriction is relaxed by reshuffling the parity group, the redun-
dant data update overhead is reduced by half to around 20,000 blocks. Reuse of cached data
blocks further reduces the overhead by half to around 10,000 blocks. With all three techniques
applied, the SRDU algorithm can reduce the redundant data update overhead by as much
as 70%.

In the previous experiment, we completely update all redundant data blocks before adding
another new node. Clearly this is inefficient if new nodes are added frequently or added to
the system in a batch. To address this issue, we conduct a second experiment where multiple
nodes, say W, are added to the system before the redundant data are updated. Figure 15.14
plots the redundant data update overhead versus the batch size W for initial system size of
80 nodes. The results show that we can reduce the per-node redundant data update overhead
significantly by batching redundant data update for multiple new nodes.
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15.5 Multiple Redundant Nodes Update

In larger systems more than one redundant node will be needed to achieve good system relia-
bility. We can update the individual redundant data blocks in each parity group independently.
However, if we jointly update the multiple redundant data blocks, then it is possible to achieve
further savings. In the following we assume there are N nodes, of which 4 of them are redundant
nodes storing redundant data blocks.

15.5.1 Redundant Data Regeneration

We first consider the trivial redundant data regeneration algorithm (cf. Section 15.4.1) depicted
in Figure 15.15. Instead of repeatedly sending all data blocks to the redundant nodes rg, ry, . . .,
we can designate one of the redundant nodes, say rg, to compute the redundant data for the other
redundant nodes {c; ; |{ =0, 1, ...; Vj # 0} in addition to computing its own redundant data
{cioli =0,1,...}. This is possible as all the elements in the RSE code computation equation
(15.2) are already available. Afterwards it simply sends the computed redundant data blocks
to the appropriate redundant nodes, thereby saving a significant number of data movements as
shown in Figure 15.15.

For a media object of B data blocks, this algorithm will need to send B data bocks to
the redundant node ry, which then sends (B/(N — h)) computed redundant blocks to each
additional redundant node. Therefore, the total redundant data update overhead is equal to
B + (h — 1)(B/(N — h)). Note that it is not necessary to designate a single redundant node to
compute all the redundant blocks. Instead we can divide the computations equally among all
the redundant nodes to balance the load and overhead across them. The resultant redundant
data update overhead will be the same.

On the other hand, if there is a central archive server storing a copy of all the media
data blocks, then it can regenerate locally all the updated redundant data blocks {c; ; |i =
0,1,...;j=0,1,..., h — 1} and then transmit them to the redundant nodes (Figure 15.16).
In this case the redundant data update overhead is equal to #(B/(N — h)). Obviously this is
also the lower bound.
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15.5.2 Sequential Redundant Data Update

When updating multiple redundant nodes in SRDU, we observe that the data blocks required
are in fact the same for all the redundant nodes. For example, consider the computation of the
redundant block c; ; in the redundant node r;. The equation for computing ¢ ; is

€o,j = Co,j + fi+1,50a + fi+1,6Vs (15.15)

where v4 and vs are the required data blocks and are the same for all j’s.
Therefore, if the data blocks v4 and vs have already been sent to redundant node ry, then it
can compute partial results for the other redundant nodes:

Pj = fi+1.5v4 + fit16Vs, Vj #k (15.16)

and then send them to the other redundant nodes {r; | Vj # k} to complete the redundant data
update computation:

o, =coj+pj,Vi#k (15.17)

as shown in Figure 15.17. In this case, the overhead is reduced from sending two data blocks
v4 and vs to sending just the partial result p;. In general, we always need to send only the
partial results no matter how many data blocks are required. Therefore, the total redundant
data update overhead is equal to the SRDU overhead in updating one redundant node plus the
overhead in transmitting the partial results: (& — 1)(B/(N — h)).

Table 15.1 summarizes the total redundant data update overhead of the algorithms discussed
earlier. An important observation is that the overhead is dominated by the overhead in updating
the first redundant node due to the large number of data blocks required to generate the new
redundant data blocks. Once these are cached in the redundant node, new redundant blocks of
other redundant nodes can be computed with much lower overhead.

Consider an example of adding one data node to a system with 199 data nodes. Figure 15.18
plots the total redundant data update overhead versus number of redundant nodes in the system.
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Table 15.1 Total overhead in studied algorithms

Algorithms Total Overhead
Redundant Data Regeneration B+ (h—1)(B/(N — h))
Regeneration by archive server B/(N —h)+ (h — 1)(B/(N — h))
Sequential Redundant Data Update (SRDU) Block movement under SRDU+

(h —1)(B/(N = h))

Required data blocks are sent to 7,

Pi-1
7y computes its own redundant data and
partial results p; for other redundant nodes.

Figure 15.17 Update of multiple redundant nodes in SRDU
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The overhead of SRDU with one redundant node is 11,123 blocks while the total overhead
for 10 redundant nodes is only 12,923 blocks. Therefore, the overhead for updating additional
redundant nodes can be substantially reduced by computing and sending partial results.

15.6 Summary

In this chapter, we investigated the system expansion problem in systems employing striped
storage, such as disk arrays, RAID, parallel servers, and even peer-to-peer systems. We pre-
sented efficient algorithms to carry out the two essential operations in expanding the system
to include more nodes, namely a Row-Permutated Data Reorganization (RPDR) algorithm
for reorganizing and redistributing media data blocks to the new nodes so that streaming load
balance can be restored; and a Sequential Redundant Data Update (SRDU) algorithm for the
efficient update of redundant data to support the new data organization after one or more new
nodes are added.

Note that this chapter did not address issues in the transmission of the data blocks, redundant
blocks, and partial results during the redundant data update process. As the system is online
serving active media streams, some of the nodes from time to time may not have sufficient
bandwidth to receive or transmit the data blocks. Thus proper scheduling must be done to avoid
congesting a receiver node while maximizing utilization of the idle bandwidth in the system
to shorten the system reorganization time.
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Overview of Multicast Streaming

The parallel server architectures solved the scalability problem of the media streaming server
by combining multiple low-cost media servers into one high-capacity streaming system. In
very-large-scale systems such as providing video-on-demand services to millions of users,
the resultant network traffic generated will be very substantial. For example, to stream a
media of 4Mbps (e.g., high-quality video encoded in MPEG2 or MPEG4) to just 10,000
users, we will need an aggregate bandwidth of 40Gbps which only optical fiber can carry
in today’s networks.

Interestingly, as many studies have shown, most users will probably request a small
portion of popular media contents, such as popular songs, movies, or documentaries. Thus,
within the huge volume of network traffic there are in fact a great deal of duplicated data
being transferred from the servers to the clients. Now if the data are the same, can we send
a single copy instead of sending many duplicated copies to the clients?

This is the question being addressed in Part III of the book. In particular, we investigate
the use of network multicast to deliver media data from the servers to the clients. Unlike
the unicast model used in today’s Internet, network multicast allows a sender to multicast
a single packet to be received by multiple receivers. This has the potential to significantly
reduce the network traffic in sending duplicated media data to a large number of users.
In this chapter, we give an overview of network multicast in general, and IP multicast
in particular, and discuss how media streaming can be carried over network multicast. In
the subsequent chapters we will cover in more detail three classes of multicast streaming
algorithms, namely, closed-loop algorithms, open-loop algorithms, and hybrid algorithms.

16.1 Introduction

Today’s Internet employs a form of data delivery known as unicast. In unicast a sender sends
a data packet through the network which is eventually received by one and only one receiver,
thus unicast is also known as point-to-point communications. This unicast data delivery model
works well for a wide variety of applications, including the World-Wide-Web, email, file
transfer, and even streaming continuous media such as audio and video.

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
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Figure 16.1 Sending the same content to four receivers using unicast data delivery

Nevertheless, the point-to-point delivery mechanism in unicast may impose challenges
in some applications. Take TV broadcasting as an example. Traditional TV broadcasting is
done over the air using the wireless transmission medium, which is inherently a broadcasting
medium, i.e., the signal can be received by any receivers within range. This is an important
characteristic not only from a technical point of view, but also from an economic point of view.

Specifically, in TV broadcasting the set-up cost and the operating cost are relatively constant
regardless of the number of receivers (assuming sufficient coverage) tuning to the broadcasting
channel. This allows the operator to benefit from the economy of scale such that the per-user
cost can be reduced to a sufficiently low level to make the operation economically feasible
(and profitable).

Now imagine provisioning similar video broadcasting services in the Internet. As the Internet
does not support broadcast, the service provider will need to set up media servers to stream
the contents to the individual receivers as illustrated in Figure 16.1. Suppose there are four
receivers linked up to the media server as shown in Figure 16.1, then the media server will
need to send four separate streams of data, identified by “a”, “b”, “c”, and “d” in Figure 16.1
to each of the four receivers. This is radically different from the TV broadcasting model as the
media server in this case consumes four times the bandwidth of the data rate of the content.
This means that the media server capacity, as well as the intermediate network links, will all
need multiple times the bit-rate of the media content to carry the contents to the receivers.

Obviously, this is far less efficient than broadcasting from an engineering point of view.
Moreover, the cost to the server provider will likely increase near linearly with the number of
receivers, thus lacking the economy of scale inherent in broadcasting. The alternative is to use
native network multicast [1-6].

Figure 16.2 illustrates the delivery of content to four receivers using multicast data delivery.
Compared to the unicast model in Figure 16.1, we can see that the media server and all the
intermediate network links now only need to carry one copy of the media data to the multiple
receivers. When a multicast packet reaches a router, the router will replicate and send over each
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Figure 16.2 Sending the same content to four receivers using multicast data delivery

outgoing link a copy of the packet, without incurring any additional bandwidth overhead at
the upstream links/routers or the media server. In other words, the cost to the service provider
will not scale up linearly with the number of receivers in the system. In fact, the media server
cost is fixed, irrespective of the size of the user population. Depending on the pricing model,
the network cost may still increase when there are more receivers because more bandwidth
will be consumed in the downstream networks but nonetheless the total network bandwidth
consumed will still be substantially lower than using the unicast delivery model.

The current Internet, however, does not yet support native multicast due to a number of
practical limitations. First, as Figure 16.2 illustrates routers/switches in the network must all
have multicast capabilities to support end-to-end multicast data delivery. The early routers
deployed in the Internet do not support native multicast, and the replacement of them by newer
multicast-capable routers (which are only widely available in recent years) will likely take a
long time.

Second, in addition to having multicast-capable routers, we also need to configure the routers
to enable multicast, such as setting up appropriate multicast routing protocols, addressing
allocation schemes, installing multicast-capable network monitoring systems, etc. This is a
very difficult issue to resolve in the Internet as the Internet is not owned by a single party and
so co-operation from many Internet service providers will be needed. Therefore, this becomes
an administrative and business issue rather than a technical issue. It is worth noting that the
Internet2 [7-8] does have native multicast support although it is not yet available to the general
public. Nevertheless it shows the feasibility of multicast data delivery in the global Internet
once the administrative and business issues are resolved.

Finally, to make use of network multicast, the application software (e.g., media server
software and media client software) will need to be modified accordingly. This is less of an
issue compared to enabling multicast in the network as many programming libraries (e.g.,
sockets) already have support for multicast data delivery.
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16.2 Operational Issues

To facilitate discussion of the multicast streaming algorithms to be covered in the subsequent
chapters, we will first review the interactions between the media server/client and the network.
In the following we will use IP multicast [1-5] as an example to illustrate the operations of
multicast application.

First, the network is likely to comprise a number of routers, linking up the media server to the
media clients as illustrated in Figure 16.2 for a small-scale network. The network routers will
run two types of protocols, one or more control protocols to manage the routes for forwarding
multicast data; and the IP protocol to transport the multicast data to the intended recipients.

Over the years anumber of multicast routing protocols have been developed, such as DVMRP
[9], MOSPF [10], PIM-SM [11], CBT [12], and so on. It is beyond the scope of this book to
cover these routing protocols and interested readers are referred to the literature for more
details. We will simply assume that the network has been properly configured to run one or
more of the routing protocols, and thus be capable of forwarding multicast data packets from
the sender to all the receivers.

Second, similar to the concept of a channel in terrestrial TV broadcasting, a network multicast
group address serves similar purposes. In IP multicast the address range from 224.0.2.0 to
238.255.255.255 is reserved for multicast data delivery (see Figure 16.3). Unlike an ordinary
IP address, which identifies a unique network interface of a host in the Internet, an IP multicast
group address is not bound to a specific host or network interface. Instead, similar to a channel
in terrestrial TV broadcasting, any multicast-capable receivers can ‘tune’ into the channel
and start receiving the multicast data by joining the multicast group. This join-group action
is performed by the software application (e.g., by calling an appropriate API in the socket
programming library) and then executed by the operating system by sending out an IGMP
[13, 14] join-group request. The router, upon receiving the request, will set up the multicast

) > 31
| 0 | Class A Address | 0.0.0.0 - 127.255.255.255
| 1 | 0 | Class B Address | 128.0.0.0 — 191.255.255.255
| 1 | 1 | 0 | Class C Address | 192.0.0.0 —223.255.255.255
4| 1 | 1 | 1 | 0 | Multicast Address | 224.0.0.0 —239.255.255.255
| 1 | 1 | 1 | 1 | 0 | Reserved | 240.0.0.0 —247.255.255.255
224.0.0.0 —224.0.0.255 Pre-assigned protocol addresses (routing, topology discovery, etc.)
224.0.1.0 -224.0.1.255 Addresses assigned to application protocols.
224.0.2.0 — 238.255.255.255 Open for use by multicast applications.
239.0.0.0 —239.255.255.255 Administratively scoped addresses.

Figure 16.3 Multicast address range in IP Multicast
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data flow with its upstream counterparts and begin forwarding to the receiver a copy of the
data currently being multicast to the requested group address. A host can also join more than
one multicast group at the same time to receive data from multiple groups simultaneously.

Note that in IP multicast the data delivery model is many-to-many, i.e., any host can
send/receive data to/from the multicast group. Any data sent to the multicast group (i.e.,
with the multicast group address as the destination address in the IP packet header) will be
forwarded to all hosts that have joined the multicast group, including the sender itself. To leave
a multicast group, the application again can call an appropriate API function provided by the
operating system, which will stop forwarding data from the multicast group to the application.
Note that depending on the version of IGMP used [13, 14], the router may keep forwarding
multicast data to the host (which are then discarded by the operating system) for a period of
time until it discovers that the host no longer wants to receive data from the multicast group.

From the above discussions we can see that IP multicast involves processing at the appli-
cation, the operating system, and the routers. The implication is that the processing will take
some time to complete, depending on the implementation. For example, after the media client
calls an API function to join a multicast group, it will take some time for the operating system
and the network routers to set up the multicast dataflow and then forward the multicast packets
to the receiving host. Thus, when implementing a multicast streaming application, we will
need to take such processing delay into account in order to provide smooth and glitch-free
playback to the end user.

16.3 Multicast Media Streaming

Generally speaking, we can classify multicast media streaming into three categories: broadcast-
ing, on-demand multicast streaming, and interactive multicast streaming. Media broadcasting
is similar to the terrestrial counterpart in that the objective is to deliver the media contents to
anyone who wants to receive the data subject to conditions set forth by the service provider
(e.g., subscription, geographical boundary, etc.).

In this broadcasting model the viewer can choose among the list of available media broad-
casting channels which channel to view and when to view. However, the user has no control
over the contents being broadcast in a channel and can only receive whatever is being broad-
cast in the channel. This is illustrated in Figure 16.4 where two clients join the same multicast
channel at different times. Client j having joined the multicast channel later will have missed
the content segment “A” and can only play back segment “B” and onwards. Moreover, like the
TV, the user cannot alter the playback schedule, such as jumping to a future playback point.
However, limited controls such as pause/resume or even rewinding to a previous playback
point (or time-shifted playback) can be made possible by storing in local storage (e.g., hard
disk) the media data that have already been played back.

In on-demand multicast streaming the user is allowed to choose when to begin playback of
the selected contents similar to unicast-based video-on-demand services. While this is common
in unicast-based streaming systems (also known as true-video-on-demand or TVoD), allowing
the users to choose their own playback schedule inherently conflicts with the nature of network
multicast (see Figure 16.5), where every user of the same multicast group receives the same
set of media data. Researchers have conducted many studies in recent years to address this
challenge, and some of the techniques will be presented in subsequent chapters.
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Figure 16.5 A single multicast stream cannot support different viewing schedules

The general principle is the same — by tradeoffs in one or more dimensions so that different
users can share the same multicast data transmissions. The tradeoffs can be in time, e.g., by
delaying the playback of some users to synchronize their playback schedule; in space, e.g.,
by caching multicast data locally for later playback; in quality, e.g., by changing the media
playback rate so that multiple streams can eventually be merged into a single stream; and so on.

Finally, interactive multicast streaming presents the biggest challenge to system designers.
When a user performs an interactive playback control, such as jumping to a different playback
point in the media stream, the system cannot change the transmission schedule of the multicast
data stream because it is likely being shared by many other users (who have not performed
the same interactive playback control). This means that the break-away user will no longer be
able to continue playback at the new playback point unless the required data can be received
from another source as illustrated in Figure 16.6. Obviously the system can send the required



Overview of Multicast Streaming 293

v

Multicast Ch x:

» time

Client 7 Playback:

Client performs a jump to playback segment “C”

Client begins playback

Figure 16.6 A client changing the playback point can no longer receive data from the same multicast
channel

data to this user using a separate data stream but then the new data stream is not shared with
other users, thus defeating the efficiency gains of using multicast in the first place. This is still
an open problem that warrants more research.

16.4 Techniques for On-Demand Multicast Streaming

To support on-demand multicast streaming, it is necessary to trade off other dimensions such as
time, space, and quality to permit multiple clients to share the same multicast data transmissions.
The principles are to schedule the transmission, reception, and playback of media data to
enhance sharing of multicast data among multiple clients. These techniques can be broadly
classified into three categories: closed-loop, open-loop, and hybrid algorithms.

In closed-loop algorithms, the multicast media streams are dynamically scheduled according
to the user arrival pattern to merge them into as few shared multicast data streams as possible.
An important characteristic of closed-loop algorithm is that the transmission schedule may
be modified as new clients arrive and as existing clients depart to exploit any opportunities to
merge more clients into fewer multicast channels.

By contrast, in open-loop algorithms (also known as periodic broadcasting), all multicast
transmissions are prescheduled in a fixed pattern irrespective of the user arrival pattern. Thus,
the bandwidth requirement at the media server is fixed regardless of the number of users in the
system. In other words, open-loop algorithms in principle can serve as many concurrent users
as the network will allow. Unlike closed-loop algorithms where transmission schedules are
dynamically determined at the media server (or a separate scheduler), in open-loop algorithms
the complexity is shifted to the clients, who will need to determine which media data and
when to receive media data from one or more multicast channels to sustain continuous media
playback.

Comparing closed-loop and open-loop architectures, the performance (e.g., start-up latency)
of closed-loop architectures depends on the system load (i.e., user arrival rate), and generally
the performance deteriorates with higher system load. By contrast, open-loop architectures
have invariant performance irrespective of the system load. Consequently, at light system
load closed-loop architectures can achieve better performance while open-loop architectures
perform better at high system load.
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16.5 Summary

This chapter has presented an overview of network multicast in general and multicast stream-
ing in particular. The focus of Part II will be on techniques to support on-demand multicast
streaming, which are classified into closed-loop algorithms (Chapter 17), open-loop algorithms
(Chapter 18), and hybrid algorithms (Chapter 19). In Chapter 20 we address the I/O issues in
implementing hybrid media servers supporting both periodic and aperiodic data retrievals.
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17

Closed-Loop Algorithms

This chapter presents closed-loop algorithms to support on-demand multicast streaming.
In closed-loop algorithms, the transmission schedule, reception schedule, and/or playback
schedule are dynamically adjusted according to the current workload, i.e., number of active
media streams, their playback points, etc. The objective is to merge as many clients onto as
few multicast data streams as possible to reduce resource utilization. This chapter illustrates
this closed-loop approach by describing the techniques of batching, patching, prefix caching,
and piggybacking. These techniques not only can be applied individually, but also can be
combined to achieve even more performance gains.

17.1 Introduction

In this chapter we present four techniques to improve the efficiency of using multicast to
support on-demand media streaming. Compared to media broadcasting, on-demand media
streaming allows the users to begin viewing a selected content at their chosen time. This model
is applicable to many applications, such as video-on-demand, online education, digital library,
and so on. Supporting arbitrary start times for different users, however, conflicts with the
constraint of network multicast, where all users of the same multicast group will receive the
same set of media data.

To resolve this conflict, we will need to accept trade-offs in other dimensions. The following
sections describe four techniques to improve multicast efficiency by trade-offs in different
dimensions. These four techniques are chosen to illustrate the possibilities of different trade-
offs and the resultant performance gains, and as such are not meant to be exhaustive. In
fact, there are many other sophisticated closed-loop algorithms in the literature which are not
covered in this chapter. We will briefly discuss some of them in Section 17.6 and interested
readers are referred to the literature for more details.

17.2 Batching

Batching is a general technique that has been applied to many engineering problems. The
principle is to group together similar tasks so that they can be processed in a more efficient

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
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way. In multicast media streaming, the batching technique can also be applied to improve the
bandwidth efficiency of multicast, i.e., to increase the sharing of multicast data by more users
[1-4].

Figure 17.1 illustrates the batching principle using a media server with a capacity of four
concurrent multicast channels — a channel represents the retrieval and transmission capacity
to support one multicast media stream (we assume all multicast channels are of the same data
rate). In Figure 17.1 all four multicast channels are busy serving on-going streaming sessions.
As users arrive to find the server busy, they will queue up in a first-in-first-out (FIFO) queue. The
numbers in the box in Figure 17.1 represents the identity of the media object being requested.
Thus, the four on-going channels are streaming data from media object “2”, “4”, “5”, and “8”
respectively.

Now suppose after some time the media channel streaming media object “8” is completed
and thus becomes available again as shown in Figure 17.2. Then in a unicast-based media
streaming system the server will simply pick the head-of-line user, i.e., the one requesting
media object “9”, and serve it using the free channel. However, if we take a closer look at the
users waiting in the queue, then we can find that there is another user in the third position of the
queue who is also requesting media object “9”. Thus instead of dedicating the free channel to
serve the head-of-line user, we can serve both users simultaneously using multicast streaming.
The two users can then simply join the same multicast group and the network will forward the
media data to both of them.

In this case the system served two users using just one multicast media stream instead of two
unicast media streams. Conceivably, we can achieve better efficiency if there are more users
in the queue and/or there are fewer choices of media objects. Note that to the end user the only
trade-off is the added complexity of supporting multicast in the client application (ignoring
interactive playback control).

Obviously, in practice there may not be many users waiting in the queue when a channel
becomes available. If there is only one queueing user requesting a media object, then multicast
will not offer any advantage over unicast. One way to further improve the batching efficiency
is to artificially delay users to wait for more users to join the batch, even if a free channel is
available.

On the other hand, the system is also not limited to serve the waiting users in a FIFO manner.
Reconsidering the example in Figure 17.1, we can observe that while there are two queueing
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users requesting media object ““9”, there are five other queueing users requesting media object
“3”. In other words, if the system allocates the available multicast channel to serve media object
“3” instead of “9”, even more bandwidth resources will be saved (four instead of one). More
generally, instead of using a single queue, we can use separate queues assigned to individual
media objects as shown in Figure 17.3. When a free channel becomes available, the system will
simply serve the media object with the most number of users waiting to maximize batching
efficiency. This technique is called Maximum Queue Length (MQL) [1].

The MQL queueing discipline, however, introduces another issue. Suppose that one of the
media objects is very unpopular and rarely get requested by any user. If a user happens to
request this unpopular media object during a period of heavy system load, i.e., there are many
waiting users, then it may experience a very long delay before it can receive service. Thus,
under the MQL queueing discipline the waiting time will be shorter for popular media objects
and longer for unpopular media objects, creating a fairness issue.

This fairness issue and other related issues have been addressed in other studies. Interested
readers are referred to the work by Dan et al. [1-2], Aggarwal et al. [3], Shachnai and Yu [4],
and Liao and Li [5] for more details.

17.3 Patching

Unlike batching, patching (or stream merging) [5—17] is a technique to enable a client to share
media data from an existing on-going multicast stream. Figure 17.4 illustrates the patching
technique for a client arriving at time #,. Instead of starting a new media stream to serve this
client, we can apply patching to enable the client to share data from an existing multicast stream
started earlier at time #. Referring to Figure 17.4, the new client upon arrival immediately



298 Scalable Continuous Media Streaming Systems

3l7[sls[sfsle]7[s[]s]
2o

Serve the longest queue first.

Media title 8 completed

4-Streams
Media Server

£
-

FIFO Queues

Figure 17.3 Maximal queue length batching

(=]
<~
I
o~
v

On-going multicast stream: A | B

Patching stream:

time

v

Client Playback: | A | B

Buffered Data: /

v’

%, : Time when the multicast media stream begins.

¢, : Client arrival time

w : Waiting time for an available patching stream.

¢, : Time when a patching stream is started, also playback begins.
L Time when the patching stream is terminated (tqz t,+ w)

Figure 17.4 Operation of the patching technique



Closed-Loop Algorithms 299

begins caching media data from the on-going multicast stream, and waits for the system to
allocate a patching stream. The patching stream, once available, will transmit those media data
that the client has missed from the on-going multicast stream, i.e., the “A” segment. Using the
media data received from the patching stream the client then begins playback.

Eventually, the patching stream will complete the transmission of the ‘A’ segment, which
includes media data from the beginning to playback time (¢, — #y). After that, the client can
continue playback using the cached data and data received from the on-going multicast stream.
Thus the client is effectively merged to the on-going multicast stream. Compared to starting a
new media stream, the cost is reduced from a full stream of L seconds — length of the media
content, to the patching stream of (¢, — #p) seconds.

Note that patching is orthogonal to batching and thus they can be used together to achieve
even better efficiency. For example, if more clients arrive during the waiting time for an
available patching stream (i.e., within [, ,] in Figure 17.4), then they can be served using the
same patching stream as shown in Figure 17.5. Two clients arrive at time #, and ¢, respectively,
missing the ‘A’ and ‘AB’ portions of the on-going multicast stream respectively. The clients
are batched together to use the same patching stream to begin playback. Note that in this case
the patching stream will need to be extended to transmit segment ‘B’ required by client 2 in
addition to segment ‘A’ required by both clients. In general, the duration of the patching stream
will be determined by the last client arriving before the patching stream begins.

Patching has two trade-offs. First, during the patching duration the client will need to receive
two media streams simultaneously. This obviously doubles the client’s bandwidth requirement.
Second, the client will need additional buffers to cache the data received from the on-going
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Figure 17.6 Transition patching — patching from both full and patching streams

multicast stream. Assuming the client discards media data after playback, then the extra buffer
needed will be equal to (#, — 7o) R bytes, where R is the media bit-rate.

17.3.1 Transition Patching

In addition to sharing data from a full-length on-going multicast stream, it is possible to share
data from another patching stream as well — transition patching [11]. Figure 17.6 illustrates
the transition patching technique. There are three clients, denoted by r,, r}, and r., that arrive
at the system at time instants ¢,, f,, and #, respectively requesting the same video. We assume
that the length of the media object is L seconds, encoded at a constant bit-rate of R bps. To
facilitate discussion, we divide the media object into 7 logical segments (D; to D7) and denote
the group of segments from the rth segment to the sth segment by [D,, D].

Assuming the system is idle when client r, arrives, then the system will assign a regular
stream (R-stream), denoted by S, to stream the whole media object from the beginning to the
end (i.e., [Dy, D7]) to client r,. The cost of serving client r, is thus equal to the bandwidth-
duration product LR. For client r, arriving at time t,, it clearly cannot begin playback by
receiving data from stream S, as it has missed the first (¢, — 7,) seconds of the media object, i.e.,
[Dy, Ds]. Instead of starting another R-stream for client r,, the system then assigns a patching
stream (P-stream) S}, to transmit only the first (z;, — 7,) seconds (i.e., [D1, D3]) of missed media
data to enable client r;, to begin playback. This is the patching technique described previously.

Now consider client r, arriving at time 7.. We note that for client r,, it has already missed
media segments [D;, D4] multicast from the R-stream S,. To patch these missed media seg-
ments, we can apply transition patching as shown in Figure 17.6. We divide the process into
three phases. In Phase 1, a P-stream S, is allocated to stream the initial media segment D,
to client r. to begin playback. At the same time, the client caches media segment D, being
multicast by the P-stream S;. In Phase 2, the P-stream S, is released and the client begins
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caching media segments [Dg, D;] from the R-stream S,. Note that the client also continues
to receive media segments [D3, Ds] from the P-stream S,. Finally, in Phase 3 the remaining
P-stream S}, is released and the client simply continues playback using cached data and data
received from the R-stream S,.

This transition patching technique differs from simple patching in two aspects. First, the P-
stream S, allocated for client r. is occupied for a duration of (7. — #;) seconds, which is shorter
than the duration when simple patching is used, i.e., (. — t,) seconds. Second, the P-stream S,
is extended from (#, — #,) seconds to (2¢t, — t, — t;) seconds to support client r.. This stream
is called a transition stream (T-stream) [11]. Thus, the net gain in resource reduction is equal
to (((tc - ta) - (tc - tb)) - ((2tc — 1y — tb) - (tb - ta))) = 3tb - 2t(' — Iy

For example, suppose L, t,, t, and t. equal to 7200, 0, 200 and 250 seconds respectively.
Then the costs of supporting r,, r, and . are 7200R, 200R and 150 R respectively, representing
resource savings of 97.22% and 97.92% for clients r, and r..

17.3.2 Recursive Patching

In transition patching we allow a client to share data from an existing patching stream in
addition to a full stream. If there are multiple on-going patching streams it is possible to
further reduce resource consumption by allowing the client to share data from more than one
patching streams — recursive patching. Figure 17.7 illustrates the recursive patching technique
using a fourth client r; which arrives at the system at time #; in addition to the three clients
4, Ty, and r. considered in Figure 17.6. To facilitate discussion, we divide the whole media
stream into 6 segments denoted by D, to Dg.

As client r; has already missed the initial (¢; — 7,) seconds of the media stream, the cost
of serving this client using simple patching will be equal to (t; — #,)R bytes. If we apply
transition patching by sharing data from the patching stream S, then the cost will become
(3t — 2t. — t,)R bytes.

Now consider the use of recursive patching, which in this case is divided into four phases as
shown in Figure 17.7. In Phase 1, the client caches media segment D, from S, while playing

ta % Lt R
Full Stream - §, iDJDzl D; [ D ] : ‘ Ds: I D
Patching Stream - S, | (DI D, [ D ] D;
Patching Stream - S, '
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Figure 17.7 Operation of 4-phase recursive patching
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back media segment D using data received from S,. In Phase 2, client r; continues to receive
media segment D3 from S, but releases S; and replaces it with S, to receive media segment
D4. In Phase 3, client r; continues to receive media segment D5 from S, but releases S, and
replaces it with S, to receive media segment Dg. Finally, in Phase 4 the client releases the
remaining P-stream S, and continues playback till the end of the media stream by receiving
data from S§,,.

Therefore, the additional cost (i.e., excluding the cost of the existing streams) to serve r, is
equal to [(5t; — 2t — 21, — t,) — (31, — 2, — t,)]R = 5(t; — t.)R. Compared to the cost of
(3t; — 2t. — t,) R bytes in transition patching, there is a gain of (3¢, — 2t; — t,) R bytes. For
example, if #; equals 260 seconds, the cost of serving r,; is SOR, resulting in 99.31% resource
saving over serving with a new regular stream.

Note that for the example in Figure 17.7, the client caches up to two streams at any time
so the client bandwidth requirement is the same as simple patching and transition patching. In
the recursive patching process, the client caches media data through a total of three P-streams
and one R-stream. In general, a client can cache media data through even more P-streams as
long as there are eligible P-streams that will result in further resource savings.

More generally, if a client caches data from k streams (i.e., one R-stream plus k — 1 P-
streams) to complete the recursive patching process, then we call it k-phase recursive patching
(kP-RP). It is worth noting that simple patching and transition patching are equivalent to 2P-RP
and 3P-RP respectively under this definition. We illustrate the performance differences in the
next section.

17.3.3 Performance Gains

To illustrate the performance gains of various patching techniques, we developed a simulator to
generate numerical results for comparisons. We assume Poisson client arrivals and all clients
play back the media stream from the beginning to the end without performing interactive
playback operations. For simplicity, we ignore network delays and processing delays in the
simulator. Table 17.1 lists the system parameters used in generating the numerical results.
With the system resources (i.e., number of multicast channels) fixed we use start-up latency —
defined as the time from client arrival to the time playback can begin, as the performance
metric for comparison.

Figure 17.8 plots the start-up latency versus arrival rate ranging from 0.1 to 1 client/second.
There are three curves plotting the start-up delay for 3-phase, 4-phase, and 5-phase recursive
patching respectively.

Compared to transition patching (i.e., with k = 3), 4-phase recursive patching can achieve
significantly lower start-up latency under the same system load. For example, the latency is

Table 17.1 Parameters used in simulations

Parameter Range of values
Request arrival rate (arrivals/sec) 0.1-1.0
Media stream length (seconds) 7,200

Number of server channels 20




Closed-Loop Algorithms 303

Start-up Latency (seconds)
w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival Rate (per second)

Figure 17.8 Performance of k-phase recursive patching

reduced by 78%, 67% and 62% at arrival rates of 0.3/s, 0.6/s and 0.9/s respectively. The
improvement is particularly significant at higher arrival rates. This can be explained by the
observation that at higher arrival rates, the streams are more closely spaced in time and thus
enable more data sharing through recursive patching.

The latency is further reduced when 5-phase recursive patching is employed although the
reduction is less significant. Compared to transition patching, SP-RP can achieve latency
reductions of 81%, 78% and 70% at arrival rates of 0.3/s, 0.6/s and 0.9/s respectively. Larger
values of k will likely result in further resource reductions but the marginal improvements will
decrease.

The patching techniques illustrated in this section are by no means exhaustive. In addition to
applying patching during start-up of a new media stream, it is also possible to further reduce the
resources consumption by continuously merging existing on-going streams. Interested readers
are referred to the literature [5—17] for more details.

17.4 Caching

In actual deployment of media streaming services over a large geographical area it is common
to structure the network in a hierarchical manner. In particular, the operator may place the
media servers in the central office, which links up with the customers through a high-speed
WAN connection. Once reaching the customer neighborhood, the regional distribution network
will deliver the media data to the individual customer.

In this scenario, the media data will go through two types of networks, the long-distance
WAN link and the short-distance residential network. Obviously, the bandwidth cost will be
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Figure 17.9 Using a prefix proxy to cache and serve the initial portion of the media stream

much higher for the WAN link than the residential network. This motivates the use of regional
caches to reduce the amount of data transferred over the WAN link.

One immediate application of caching is to integrate it with patching. Observe that in
patching the patching streams are primarily used to send the initial portion of the media stream —
called the prefix of the media stream. Thus, if the prefix data are stored in the cache as shown
in Figure 17.9, the patching streams can then be served entirely from the cache through the
prefix proxy. In this way only full streams that are shared by many users will be transferred
over the costly WAN link while the numerous patching streams are served by the prefix proxy.
Because of the proximity of the prefix proxy to the clients, the latency in starting the patching
streams can also be shortened.

More generally, we can extend caching beyond just the media prefix. Prefix caching, however,
is particularly effective as the prefix duration is short and common across all clients requesting
the same media stream, thus reducing the cache size requirement. If the prefix is sufficiently
small, it is even possible to bypass the disk altogether and simply store the prefix in physical
memory, thus eliminating another potential I/O bottleneck. Interested readers are referred to
the literature for many sophisticated caching strategies [18-21].

17.5 Piggybacking

The previous techniques are all based on changing the transmission schedule or the reception
schedule to merge clients onto a shared multicast data stream. In the fifth technique described
in the following, called piggybacking, the principle is to change the playback schedule so that
multiple clients will eventually converge to the same playback point, at which they can be
merged and served using a single multicast data stream [22-25].

To change the playback schedule it means the client plays back the media stream either
faster or slower than normal playback speed. Note that here playback speed does not equate
to data rate. For example, in video the media playback speed is typically defined in frames
per second (fps). Thus to increase playback speed the client can display the video frames in
a frame rate higher than normal, which also consume media data at a higher data rate, or the
media server can send a video stream with frames discarded periodically, thus achieving higher
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Figure 17.10 Illustration of the piggybacking technique

playback speed (relative to the actual event recorded by the video) without consuming media
data at higher data rate. On the other hand, to decrease the playback speed, the client can simply
reduce the playback frame rate, which also results in lower media data consumption rate.

Figure 17.10 illustrates the piggybacking process. There are two clients ¢, and ¢, in the
system initially in different playback points of the media stream. To merge them into a single
multicast stream we can increase the playback rate of client ¢, from the normal speed r
to r + A where A > 0. Thus the difference in playback point between the two clients will
decrease and eventually client ¢, will catch up with client ¢, at the same playback point. At
this time the system can then use a single multicast stream to serve both clients, which now
continue playback at the same playback speed.

In addition to speeding up the playback speed of the latecomer, we can also slow down
the playback speed of the early-starter (e.g., client ¢, in Figure 17.10), or apply both speed-
up and slowdown simultaneously. Clearly, the larger the rate increase/decrease (i.e., A in
Figure 17.10), the faster the clients can be merged. However, too much playback rate variation
will be noticeable or even objectionable to the end users. Previous studies have suggested
that playback rate variation up to 5% can be applied without objectionable effect on the end
users, and this can be further extended using advanced signal processing techniques such as
time-scale modification for audio [26-29].

17.6 Summary

In this chapter we have reviewed four orthogonal closed-loop algorithms for multicast stream-
ing, namely batching, patching, caching, and piggybacking. These four approaches are com-
plementary and hence can be combined to form even more sophisticated architectures. For
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example, Liao and Li [5], Hua et al. [8], and Cai et al. [9] have investigated integrating batching
with patching to avoid the long start-up delay due to batching. Gao and Towsley [30] proposed
a controlled multicast technique that integrated patching with dynamically scheduled multicast
streaming. This is further refined by Gao et al. [31] in their catching and selective catching
schemes. In another study, Ramesh et al. [32] proposed the multicast with cache (Mcache)
approach that integrated batching, patching, and prefix caching. They proposed placing re-
gional cache servers close to the users to serve the initial portion (prefix) of the videos. In this
way, a client can start video playback immediately by receiving prefix data streamed from a
regional cache server. The server will then dynamically schedule a patching channel for the
client to continue the patching process beyond the prefix, and also identify an existing multicast
channel for the client to cache and eventually merge into. This architecture has been shown to
outperform prefix-cached versions of dynamic skyscraper, GDB, and selective catching. We
refer interested readers to the literature for more details of these advanced closed-loop and
hybrid algorithms.
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Open-Loop Algorithms

This chapter introduces open-loop multicast streaming algorithms that all have fixed media
transmission schedules irrespective of the workload of the system. This implies that the
complexity will be shifted to the clients, where the reception schedules and the playback
schedules are to be optimized to selectively receive media data from one or more of the
multicast channels to sustain continuous media playback. We first define a taxonomy and
then briefly review some of the existing open-loop algorithms. Next we present a Conso-
nant Broadcasting algorithm in detail to illustrate the design constraints and performance
trade-offs in open-loop algorithms. Finally, we present numerical and experimental results
to illustrate the characteristics, performance, and practical issues of open-loop multicast
streaming algorithms.

18.1 Introduction

Open-loop architectures, also known as periodic broadcasting, have fixed schedules for all
media streaming channels irrespective of the user arrival pattern. A new user will receive
media data from one or more of the pre-scheduled multicast channels to sustain continuous
playback. This implies that the server load is constant regardless of the number of concurrent
users in the system. Therefore as long as the network can support it, in principle, there is no
limit to how many users an open-loop multicast streaming algorithm can support.

In the past decade researchers have developed many innovative open-loop multicast
streaming algorithms. Some examples are the Pyramid Broadcasting scheme proposed by
Viswanathan and Imielinski [1], the Skyscraper Broadcasting scheme proposed by Hua and
Sheu [2], the Greedy Disk-Conserving Broadcasting scheme proposed by Gao et al. [3], the
Staircase Data Broadcasting scheme proposed by Juhn and Tseng [4], the Harmonic Broad-
casting scheme proposed by Juhn and Tseng [5], the Poly-harmonic Broadcasting scheme
proposed by Paris er al. [6], the Pagoda Broadcasting scheme proposed by Paris et al. [7], and
many others [8§—11]. Interested readers are referred to the study by Hu [12] for a comprehensive
study of the existing periodic broadcasting schemes.

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
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In the next section, we first describe a taxonomy to classify the design dimensions of open-
loop multicast streaming algorithms, and in Section 18.3 we present a known performance
bound of open-loop algorithms in general. To further illustrate the design choices and perfor-
mance trade-offs, we present in Section 18.4 the design of the Consonant Broadcasting algo-
rithm. In addition, we also address some practical issues in deploying open-loop algorithms in
a multicast-enabled network (e.g., using IP multicast) and present some experimental results
obtained from a system implementation.

18.2 A Taxonomy

Fundamental to all periodic broadcasting schemes are four design dimensions. First, a media
stream is divided into a number of smaller segments according to a data partition scheme.
Second, the system (i.e., server and network) bandwidth is divided into a number of logical
channels according to a bandwidth partition scheme. Third, a predetermined and fixed broad-
casting schedule defines when the server should broadcast (or multicast, we will use these two
terms interchangeably in the rest of the chapter) a media segment over which logical channels.
Fourth, a client reception schedule defines when a client should receive media data from which
logical channels.

Different designs of the four design dimensions result in different trade-offs between the
three system resources, namely, system bandwidth, client access bandwidth, and client buffer
requirement. Clever designs of the four design dimensions can result in significant resource
savings compared to current unicast-based video streaming systems. More importantly, the
resource requirements and performances of these periodic broadcasting systems are indepen-
dent of the system scale. In other words, the same system can potentially serve an unlimited
number of concurrent users, as long as the network infrastructure can accommodate them.
This property is instrumental to deploying metropolitan-scale media streaming services as it
reduces the per-user system cost when more users are added, thereby allowing the service
provider to achieve the crucial economy of scale.

In this section, we review some of the existing periodic broadcasting schemes [2—4, 6, 7],
and present some known performance bounds. Due to space limitations, interested readers are
referred to the study by Hu [12] for a more comprehensive study and comparison of the existing
periodic broadcasting schemes. We summarize in Table 18.1 the notations used throughout
this chapter. Note also that we use broadcast and multicast interchangeably in this chapter.

18.2.1 Fixed-Segment Fixed-Bandwidth Schemes

In fixed-segment fixed-bandwidth schemes, a media stream is divided into fixed-size me-
dia segments. These segments are then broadcast over a group of fixed-bandwidth channels
according to its broadcasting schedule. A notable example is the Pagoda Broadcasting scheme
[7] proposed by Paris et al. in 1999. A media stream is divided into N fixed-sized me-
dia segments, based on the number of channels K, obtained from solving the equation
N=4-(5""")—1if K isevenor N=2-(57)—1if K is odd. Each media segment
is then broadcast over a fixed-bandwidth channel according to its broadcasting schedule at a
defined broadcasting frequency.
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Table 18.1 Summary of notations

Symbol Definition

L The length of the video (sec)

b The playback rate of the video (Mbps)

K The total number of logical channels

L; The size of the ith video segment (sec)

N The total number of video segments

B The total network bandwidth (Mbps)

B; The network bandwidth for the video segment L; (Mbps)
C The client access bandwidth constraint (Mbps)
T The maximum start-up latency (sec)

H The maximum client buffer requirement (Mb)

The client receives from the beginning of a media segment as soon as it encounters it in any
of the broadcasting channels. In the worst case, the client has to receive data from all channels
simultaneously. The maximum start-up latency 7 is equal to the broadcast duration of the first
media segment L.

18.2.2 Variable-Segment Fixed-Bandwidth Schemes

Variable-segment fixed-bandwidth schemes (e.g., [1-3]) divide a media stream into variable-
size media segments for broadcast over fixed-bandwidth network channels (e.g., b Mbit/sec).
A notable example is the Skyscraper Broadcasting scheme [2] proposed by Hua et al. in
1997 as an improvement on the Pyramid Broadcasting scheme proposed by Viswanathan
and Imielinski [1]. Unlike the Pyramid Broadcasting scheme, where the media segment sizes
increase according to a geometric series, the Skyscraper Broadcasting scheme divides a media
stream into N video segments according to a predefined data partition function. They also
limited the maximum media segment size to a given length W to reduce the client buffer
requirement. The network bandwidth B is then divided equally into N channels (i.e., same as
the number of media segments), each with a bandwidth equal to the media playback bit-rate
b. Video segment L; (i =0, 1,..., N — 1) is then repeatedly broadcast over channel i.

The client always caches media data from the beginning of a media segment (instead
of from anywhere in between). The client begins by caching data from the next broadcast
of the media segment L. Then it caches the subsequent media segments L; in the order of
i = 1,2,..., N — 1 at the earliest time after it started playing back the media segment L;.
The client receives data from up to two channels simultaneously and the maximum start-up
latency T is equal to the broadcast duration of the first media segment L. The client buffer
requirement is equal to Lob(W — 1) [2].

Another notable example is the Greedy Disk-Conserving Broadcasting scheme [3] proposed
by Gao et al. in 1998. It is a greedy algorithm that minimizes the number of server channels
needed to guarantee a given maximum start-up latency 7 and client I/O bandwidth requirement.
Unlike the Skyscraper Broadcasting scheme, GDB allows the client to receive media segments
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from n—1 channels simultaneously, where n is defined as the order of this scheme (denoted as
GDBn). Again the maximum start-up latency 7 is equal to the broadcast duration of the first
media segment Ly and the client buffer requirement is equal to Ly - b - ( ngBW(N )y—1) [3],
where ngB(n)(N ) is the largest media segment size.

18.2.3 Fixed-Segment Variable-Bandwidth Schemes

Alternatively, we can broadcast fixed-size media segments over variable-bandwidth channels.
Notable examples include the Harmonic Broadcasting scheme proposed by Juhn and Tseng
[5] in 1997 and the Poly-harmonic Broadcasting scheme [6] proposed by Paris et al. in 1998.

In the Poly-harmonic Broadcasting scheme, the media stream is partitioned into N equal-
size media segments. Given the desired start-up latency 7' and a control parameter m, one can
choose N by solving the equation 7 = (m - L)/N. The network bandwidth B is then divided
into N channels (i.e., same as the number of media segments), with the bandwidth for channel
i equalto B; = mLH, i=0,1,..., N — 1. Media segment L, is then repeatedly broadcast over
channel i. The client, on the other hand, is required to cache media segments from a// channels
simultaneously once it enters the system.

The Poly-harmonic Broadcasting scheme can achieve near-optimal performance when m
is large. There are, however, also a few practical issues. First, as the client must receive all
channels simultaneously, the client’s access network bandwidth requirement is very large (same
as the server bandwidth requirement). This may not be practical in all wired systems as in some
cases the access bandwidth is substantially more limited than server bandwidth (e.g., ADSL,
cable modem). Second, using a large value of m, while it improves performance, will generate
a huge number of media segments, each requiring its own network channel for transmission.
For some types of network (e.g., IP multicast), this may become a bottleneck as the number
of network channels is limited (e.g., [P multicast addresses). We address these issues in the
Consonant Broadcasting scheme described later in this chapter.

18.2.4 Variable-Segment Variable-Bandwidth Schemes

The final type of broadcasting scheme is to have both variable segment size and variable channel
bandwidth. Juhn and Tseng proposed the first variable-segment variable-bandwidth scheme
called Staircase Data Broadcasting [4] scheme in 1997. In Staircase Data Broadcasting, a
media stream is first partitioned into N equal-size media segments, based on the number
of channels K, derived from the equation N = Zj‘:ol 2/ = 2K _ 1. The network bandwidth
B is then divided equally into K channels, with the same bandwidth b for the ith logical
channel. For each media segment L;,itis further divided into 2! continuous media sub-segments
fori =0,1,..., K — 1. Similarly, each logical channel i is further sub-divided into 2’ sub-
channels, each with a bandwidth of /2. Finally, each sub-segment is then broadcast repeatedly
over a separate sub-channel.

The client begins by receiving data from the first occurrence of the beginning of media
segment L attime #. The 2! continuous media sub-segments L; ;, j =0,1,..., 2 — 1, within
channel i(i =0,1,..., N — 1) are then cached at time 7o+ (L - j)/N. The client access
bandwidth requirement is equal to 2b, the maximum start-up latency 7 is equal to the broadcast
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duration of the first media segment, and the client buffer requirement is bounded by 25% of
the size of the media object.

18.3 Performance Bounds

Common to all periodic broadcasting schemes, the key system parameters are start-up latency,
network bandwidth, client access bandwidth, and client buffer requirement. Different schemes
can be considered as achieving different trade-offs among these four parameters, and thus the
natural question is whether bounds on the system’s performance exist.

This question has been investigated independently by Hu [12], and Birk and Mondri [13],
and others. Although the approaches and the derivations are different, all studies arrive at the
same result. Specifically, given a start-up latency of 7', it can be shown that the minimum
network bandwidth needed for any periodic broadcasting scheme, is given by

szdmi%z) (18.1)

assuming there is no constraint on the client access bandwidth.
Additionally, for any optimal periodic broadcasting scheme achieving the performance
bound in equation (18.1), it can be shown that the client buffer requirement is equal to

L

dt L+T
t/-b-/ =t’-b-ln(L), 0<t <T

t+T T

H({) = 0 (18.2)

) dt ) L+T
t-b-f =t -b-In(——), T<t<T+L

t+T t

t'—T

where ¢’ is the elapsed time after the client has entered the media streaming system and ¢ is the
time relative to the start of media stream. The upper bound of this client buffer requirement is
37% of the size of the media stream. Note that this is only a sufficient condition so it is still
possible for a periodic broadcasting scheme to achieve lower client buffer requirement at the
expense of increased latency or bandwidth.

18.4 A Generalized Consonant Broadcasting Algorithm

Starting from this section, we use an open-loop algorithm called Consonant Broadcasting (CB)
to illustrate the design and trade-offs of open-loop multicast streaming algorithms. An impor-
tant feature of CB is that it can be used in networks with limited client access bandwidth, which
is the norm in typical metropolitan broadband networks. Figure 18.1 shows CB’s broadcast-
ing schedule and reception schedule. We divide a media stream into N equal-size segments
and repeatedly broadcast them in separate variable-bandwidth multicast channels, i.e., media
segment L; is multicast in the ith logical channel, fori =0, 1,..., N — 1. Thus CB belongs
to the category of fixed-segment variable-bandwidth schemes. We assume the media stream is
constant-bit-rate encoded and thus the playback duration for each media segment is the same,
denoted by U seconds.
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Figure 18.1 Bandwidth partition scheme and reception schedule in Consonant Broadcasting withm = 2

To determine the bandwidth for the logical channels, we need to first set a target latency
T in multiples of media segment duration U and the number of segments N in the following
equation:

T = N (18.3)
where m is a configurable parameter to trade off between performance and system complexity.
Given the same target latency T, increasing m will result in larger value of N (i.e., dividing the
media stream into more segments of shorter duration) and this in turn will reduce the bandwidth
requirement, and vice versa. While larger m is desirable from the bandwidth point of view, some
network technologies (e.g., IP multicast) have limited number of logical multicast channels
(e.g., multicast IP addresses) and thus m cannot be too large. We will return to this issue in
Section 18.6.

Next, each media segment is multicast over a separate logical transmission channel (e.g., an
IP multicast group address) in the network. There are two types of logical channels, namely
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Type-1, and Type-II channels. We define their respective bandwidth partition schemes and
reception schedules in the following chapters.

18.4.1 Type-I Channels
The set of Type-I channels begins with the first channel, with a bandwidth allocation of

b
By = — (18.4)
m

Subsequent channels are allocated with progressively less bandwidth as given by

b
B, = , i=0,1,....,n—1 18.5
o i ni (18.5)

for the ith channel, where n; is the total number of Type-I channels. We can solve for n; so
that the following two constraints are both satisfied:

ni—1

Z B, <C and
i=0

The first constraint represents the requirement that the aggregate bandwidth must be smaller
than the client access bandwidth. This allows the client to receive all Type-I channels simul-
taneously. The second constraint represents the requirement that we should allocate as many
channels as the client access bandwidth will allow maximizing utilization of the client access
bandwidth.

It is worth noting that if we remove the client access bandwidth constraint C, the number
of Type-I channels n; will simply equal to N, i.e., all channels are of Type-1. In this special
case, the bandwidth partition scheme in equation (18.5) will be identical to the Poly-harmonic
Broadcasting scheme [6]. Therefore, Poly-harmonic Broadcasting can be considered as a
special case of Consonant Broadcasting when there is no client access bandwidth constraint.

Figure 18.1 illustrates the operation of Type-I channels (channels O to 3). When a client
enters the system to start a new media stream, it will immediately start caching data from all
Type-I channels simultaneously. The client can start playback after a latency of 7' seconds as
the first media segment Ly will be completely received by then.

In general, let £y be the time the client enters the system, and let ¢; be the playback time for
media segment L;, which can be computed from

n
B >C (18.6)
=0

i

ci=ty+m+i)-U, i=0,1,...,n—1 (18.7)

As the client caches all Type-I channels immediately at time #y, it will have completely
received media segment L; by the time s; given by
(L-b)/N

SO =01, =1 18.8
b/m+i) ”1 (18.8)

s =ty +

L
=th+@m+i)-U, ~~—=U
o+ (m+1) N

which precisely meets the playback schedule ¢;’s and thus playback continuity is guaranteed.
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18.4.2 Type-II Channels

Type-Il channels are divided into groups of consecutive channels as shown in Figure 18.1. When
aclient completes receiving a media segment, the corresponding channel will be released. With
the increased available client access bandwidth, the client can then begin to receive a group of
Type-II channels. Channels within the same group have their bandwidth allocated according
to equation (18.9) and subject to the same client access bandwidth constraint. For the example
in Figure 18.1, at time (#p + (m + 1)U), the client completes receiving media segment L
(releases channel 1) and then begins receiving data from channels 6 and 7. These two channels
form the group 1 of Type-II channels.

It may appear that it is simpler to reallocate all the available bandwidth to a single channel
instead of a group of channels. However, doing so will unnecessarily increase the bandwidth
requirement because there is more than enough time to transmit the new media segment. To
see why, consider video segment L4 being broadcast in channel 4 in Figure 18.1. Channel O is
released at time #p + 2U and media segment L4 will be playback at time ¢y + 6U, thus we have
4U seconds to transmit the media segment. However, since the bandwidth released by channel
0 is equal to b/2, media segment L, will be transmitted completely in just 2U seconds if all
the available bandwidth is allocated for this logical channel. The extra 2U seconds available
are then wasted and the network bandwidth is unnecessarily increased.

We tackle this deficiency by transmitting a media segment in a just-in-time manner. For
the previous example, we can transmit video segment L4 using the lowest possible bit-
rate, i.e., b/4, to meet the playback schedule. Then we allocate the remaining bandwidth
to the next media segment using the same just-in-time scheduling procedure until no more
media segment transmissions can be added. These channels then form a group of Type-II
channels.

Let ny ; be the number of channels in group j, where j = 0, 1, ..., etc. Then the bandwidth
allocation for channels in group j is given by

b
B; = -, fori >n, (18.9)
J

and the number of channels in group j can be determined from solving for n, ; in

ni+nag...+ny j—1 ni+nag...+ny
> B; <C and > B>C (18.10)
i=j+1 i=j+1

which represents the client bandwidth constraints.

To prove playback continuity for media segments broadcast in Type-II channels, we consider
an arbitrary Type-II channel i in group j. As the client begins receiving all channels in group
J at the same time and it takes (U - b)/B; seconds to completely receive media segment L;,
we can then compute the time s; at which media segment L; is ready for playback from

fo+(m+j)-U (18.11)
U-b

si=to+m+j)-U+ (18.12)

i
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Substituting B; from equation (18.9) into equation (18.12) we obtain

si=to+m+j)-U+G—j)-U (18.13)
=t+m+i)-U=c

which is equal to the playback schedule and thus playback continuity for media segments
broadcast in Type-II channels is also guaranteed.

18.4.3 Client Buffer

As Figure 18.1 illustrates, the amount of media data accumulated in the client buffer can vary
during the media streaming session. Assume a client arrives at the system at time fy. Let #;’s
be the time instants at which a change in the reception schedule occurs, e.g., when the client
releases an existing channel (i.e., media segment completely received) and begins toreceive data
from a new group of Type-II channels. As media segments are of the same size U and channel
bit-rates are integral fractions of the media bit-rate b, we can compute #; (i = 1,2, ...) from

ti=T+G—1)-U (18.14)

In particular, at time #;, the client begins playback of media segment L;_; and begins to
receive group i —1 of Type-II channels (see Figure 18.1).

Let H; be the amount of media data accumulated but not yet played back at time ¢;. Then
Hy = 0, and we can compute H; from

ni—1

H, = Zm~U~Bi (18.15)
i=0

where n; is the total number of Type-I channels received and the B;’s are their respective
bit-rates. Similarly, we can compute H, from

ni+nao—1
Hy=H -U-b+ Y U-B (18.16)
k=1
where the first term is the buffer occupancy at time #;, the second term is the amount of media
data consumed, and the last term is the amount of media data received from time #; to £, (i.e.,
U seconds).
In general, we can compute H; (i > 2) recursively from

ny+nzo+...+ni—2—1
H=H_ —U-b+ > U - By (18.17)
k=i—1
As both media data consumption rate and total reception rate are constant within a given
time interval from ¢; to #; 4 1, the maximum client buffer requirement must occur at one of the
time instants given by the #;’s. Hence we can determine the maximum client buffer requirement
H simply by finding the maximum H;:

H=max{H;|Vi=0,1,...} (18.18)



318 Scalable Continuous Media Streaming Systems

18.5 Performance Comparisons

To illustrate the performance trade-offs in various open-loop algorithms, we present in this
section performance results of Consonant Broadcasting together with Skyscraper Broadcast-
ing (SB), Greedy Disk-Conserving Broadcasting (GDB), Staircase Data Broadcasting (SDB),
Poly-harmonic Broadcasting (PHB), and Pagoda Broadcasting (PB). In computing the numeri-
cal results, we use a media stream of length L = 72,00 seconds (2 hours) and assume the client
access bandwidth is equal to twice the media bit-rate, i.e., 2b. For example, if the media bit-
rate is 3Mbps, then the client access bandwidth is 6Mbps, within the limit of current 10Mbps
Ethernet. All open-loop algorithms are optimized using procedure proposed by the original
studies [2—4, 6, 7] to configure their operating parameters. The following sections compare
these algorithms in terms of start-up latency and client buffer requirement, with respect to the
network bandwidth required.

18.5.1 Start-up Latency versus Network Bandwidth

Start-up latency is defined as the maximum time from a client entering the system to the time
media playback starts. With a client access bandwidth of 2b, we plot in Figure 18.2 the start-up
latency versus the network bandwidth ranging from 2b to 10b.

The results in Figure 18.2 show that PHB achieves the lowest start-up latency, close to the
theoretical lower bound when configured with large value of m (e.g., 16). Similarly, PB also
achieves very good performance, comparable to CB with m = 1. However, unlike the other
schemes, we did not apply the client access bandwidth constraint in computing results for PHB

Startup latency (minutes)
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Figure 18.2 Start-up latency versus network bandwidth at large latency range
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Figure 18.3 Start-up latency versus network bandwidth at small latency range

and PB and thus the results are not directly comparable. Nevertheless, this result shows the
performance loss due to limited client access bandwidth.

Except for PHB and PB, CB achieves the lowest start-up latency. This is true even form = 1,
which generates the least number of media segments (and hence system complexity) given
the same system parameters. Increasing m can further reduce the start-up latency but at the
expense of higher system complexity. For a network bandwidth of 56, CB with m = 4 achieves
start-up latency 81%, 74%, and 60% lower than SB, GCB, and SDB respectively.

Figure 18.3 compares the start-up latency of the broadcasting schemes for larger network
bandwidth ranging from 2b to 20b. At this range the start-up latency is reduced to seconds,
well within the response time required in an on-demand media streaming service. Again the
observation is consistent with the results in Figure 18.2, showing that CB achieving the lowest
start-up latency. For example, with a network bandwidth of 105, CB with m = 4 can achieve
a start-up latency of only 2 seconds, which is 96%, 95%, and 72% lower than SB, GCB, and
SDB respectively.

18.5.2 Start-up Latency versus Client Access Bandwidth

Figure 18.4 plots the start-up latency versus the client access bandwidth ranging from 2b to
6b, where b is the media bit-rate. The network bandwidth is equal to 6b. There are three
observations.

First, CB clearly outperforms the other schemes, especially when the client access bandwidth
is low. This is a significant property as the client access network in practice will likely have
substantially lower bandwidth than backbone networks. Second, the performances, of PHB
and PB degrade significantly when the client access bandwidth is reduced. This is because both
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Figure 18.4 Start-up latency versus client access bandwidth (network bandwidth = 6b)

broadcasting schemes require a client access bandwidth to be equal to the network bandwidth.
Therefore, if the client access bandwidth is the bottleneck, the network bandwidth in fact
cannot be fully utilized, leading to the performance degradation.

Finally, we note that the performance of PHB and CB converge when the client access
bandwidth is increased to 6b, i.e., same as the network bandwidth, as CB reduces to PHB
when the client access bandwidth constraint is removed.

18.5.3 Client Buffer Requirement

Figure 18.5 plots the maximum client buffer requirement versus the network bandwidth, rang-
ing from 2b to 10b. The client buffer requirement is normalized and expressed as the ratio of
the size of the media stream. For example, a ratio of 0.3 means that the client buffer must be
large enough to store up to 30% of the whole media stream.

We can observe from Figure 18.5 that the maximum client buffer requirement for all the
schemes are comparable, and varies within a range from 0.2 to 0.5. For example, at a network
bandwidth of 55, the maximum client buffer requirements are 27%, 43%, 24%, and 32% for SB,
GDB, SDB, and CB (withm = 4) respectively. The only broadcasting scheme that consistently
achieves lower client buffer requirement is SDB. Therefore, the client buffer requirements of
these broadcasting schemes are comparable.

18.6 Grouped Consonant Broadcasting

Results in the previous section show that the performance of CB continues to improve for
larger values of the system parameter m in equation (18.3). The trade-off, however, is increased
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system complexity in terms of the number of channels required for broadcasting the media
segments.

For example, given a client access bandwidth constraint of 26 and network bandwidth of
8.98b, CB with m = 4 can achieve a start-up latency of only 5.76 seconds but this requires
5,000 network multicast channels. In networks with limited number of multicast channels
(e.g., group addresses in IP multicast), this requirement can become a significant bottleneck.
To tackle this problem, we present in the following chapter a Grouped Consonant Broadcasting
(GCB) scheme to dramatically reduce the number of network channels required, with a small
trade-off in performance.

18.6.1 Bandwidth Partitioning and Reception Schedule

Type-I channels in GCB are the same as the original CB as defined in equations (18.5) and
(18.6). The difference is in the design of the Type-II channels. In CB, reception of Type-II
channels in the same group begins at the same time but ends at different times due to the just-
in-time scheduling principle. While this technique can reduce the bandwidth requirement, it
also requires the use of a separate network transmission channel (e.g., an IP multicast address)
for each of the Type-II channels.

To reduce the number of channels needed, we modify CB such that reception of Type-II
channels in the same group all begins and ends at the same time as shown in Figure 18.6.
Consequently, individual Type-II channels in the same group no longer need to be multicast
over a separate network channel, but can be transmitted over a single shared channel.

Let ny be the total number of Type-I channels and n; ; be the number of Type-II channels in
group j (j =0, 1, ...) respectively. Then the bandwidth allocation of each channel in group j,
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Figure 18.6 Bandwidth partition scheme and reception schedule in Grouped Consonant Broadcasting
withm =2

denoted by W, is given by

b
W, = — (18.19)
T g hy
where g; and & ; represent respectively the completion time and the start time for receiving the
video segments in the group relative to the time video playback begins, in unit of U seconds,

and are given by

- ni, forj =0
817\ mi+nuo+...+n 1, otherwise (18.20)
"= 8 orssm (18.21)

T +nyo+ ...+ N2 01, for j > n
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We can determine the number of channels in group j from solving for n, ; in

ni+nyo+...4ny j—1 nytnzot...+na
> B; <C and > B >C (18.22)
i=hji i=hji
where B; = W, forall i’s in the range g; <i < gj41.
To prove playback continuity for media segments broadcast in Type-II channels, we consider
an arbitrary Type-II group, say group j, comprising media segments {L; | g; < i < gj4+1}. As
the client begins receiving all channels in group j at time

to+(m+h;)-U (18.23)

and it takes (U - b)/ W; seconds to completely receive the media segments, the time s; at which
all media segments in the group is ready for playback can be computed from

U-b

sj=to+(m+hj)-U+ : (18.24)
J
Substituting W; from equation (18.19) into equation (18.24) we obtain
si=to+m-+h;) - U+(g;j—h;j)-U
=th+m+g;)-U
<to+(m+1i)- U, forg; <i<gjn (18.25)

which is equal to or earlier than the playback schedule and thus guaranteeing playback conti-
nuity.

18.6.2 Client Buffer Requirement

Compared to CB, GCB generally requires more client buffer because all but the first media
segments in a Type-II group are not transmitted in a just-in-time manner. Instead, they are
transmitted at a higher rate so that reception can be completed at the same time as the first media
segment. Consequently, these media segments are received completely before the playback time
and thus occupy more client buffer.

Specifically, the client will play back media segment L; at time #y + (m + i) - U, where £,
is the time the client entered the system. We define H; as the amount of media data received
but not yet played back at time #; as defined in (18.14). As channel switching occurs only
at the time instants fo + (m +h;) - U for j =0, 1, ..., we only need to consider the buffer
occupancy at these instants. We can compute Hj,; recursively from

ni—1

Z m-U- Bk, .
k=0 forj =0
Hh/+1 = nitnyot...+ny ;o1 —1 fOrj >0
Hy, y1—(hj—hj1)-U-b+(hj—hj1)- > U - By),

k=h;
(18.26)
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Figure 18.7 Start-up latency versus network bandwidth

where in the second case the first term is the buffer occupancy at time #,,_,+1 (i.e., when
the last channel is released), the second term and the last term are the amount of media data
consumed and the amount of media datareceived fromtime #,,_, y1 tot;; 11 (i.e.,(h; —hj—1) - U
seconds) respectively. The maximum client buffer requirement can then be computed from
H = max{H,,|Vj}.

18.6.3 Performance Trade-offs

As most Type-II channels in GCB are transmitted at higher than necessary bit-rate, we can
expect it to require more network bandwidth as well as client buffer to achieve the same
latency in CB. We first consider the bandwidth trade-off in Figure 18.7. The results clearly
show that GCB has larger latency than CB at the same network bandwidth setting. However,
the differences decrease significantly when m is large. For example, the network bandwidth
required to achieve the same latency of 15 seconds is 7.48b and 8.47b respectively for CB and
GCB with m = 2, and 7.14b and 7.23b respectively for CB and GCB with m = 16.

We also observe similar trade-offs in client buffer requirement as shown in Figure 18.8. As
expected, GCB always requires more client buffer than CB under the same setting. Nevertheless
the differences are again significantly smaller when m is large. Another observation is that
variation in the client buffer requirement with respect to network bandwidth is substantially
larger in GCB. Thus, more careful planning is needed to strike a balance between client buffer
requirement and network bandwidth requirement.

In contrast to the two trade-offs, GCB gains in terms of the number of network transmission
channels required. Figure 18.9 plots the number of channels required to achieve a given latency
for CB and GCB. The results clearly show the significant reduction achieved by GCB. For
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Figure 18.8 Client buffer to video size ratio versus network bandwidth

example, with a latency constraint of 15 seconds, CB and GCB requires 1,920 and 104 channels
respectively with m = 4, and 7,680 and 434 channels respectively with m = 16. The trade-offs
in network bandwidth and client buffer requirement in these two cases are 5.47% and 2.76%
respectively for m = 4, but only 1.27% and 1.28% respectively when m = 16.

On the other hand, if the number of network channels available is the limiting factor, then
GCB can achieve lower network bandwidth requirement than CB for a given start-up latency by
observing the result in Figure 18.10. For example, given a maximum of 64 channels and start-
up latency of 3.75 minutes, GCB requires 4b network bandwidth, while CB requires 4.12b.
Moreover, in Figure 18.11, we observe that, by further increasing the network bandwidth, CB
cannot achieve lower start-up latency as the number of network channels limits the number of
video segments N defined in equation (18.3), however, GCB is not subject to this limitation.
Thus GCB will be particularly useful for networks having very limited supply of network
transmission channels (e.g., IP multicast). Otherwise, CB can be employed to achieve better
performance.

18.7 Implementation and Benchmarking

In this section we address some practical issues in the implementation and deployment of open-
loop multicast streaming algorithms. Using CB/GCB as an example we explain the issues we
encountered during implementation of the system and describe some experimental results
obtained from benchmarking.

We developed the CB/GCB system implementation in C++, which runs in the Red Hat
Linux 7.0 operating system. We use UDP over IP multicast as the network transmission protocol
and set up a testbed with off-the-shelf PCs connected by an IP-multicast-ready FastEthernet
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switch. The media server sends each of the channel or (group of channels in GCB) in CB/GCB
using UDP over a separate IP multicast address. Each media packet carries 1,400 bytes of
MPEG-1 compressed video data and an 8-byte header comprising sequence number. The packet
size is chosen to match Ethernet’s maximum frame size to prevent datagram fragmentation.
To begin a media streaming session, the media client software joins the corresponding
multicast groups as defined by the CB/GCB algorithm by sending out an IGMP Join Group
requests. The IGMP request will be handled by the network switch and thus has no effect on
the video server. Upon receiving the IGMP request the network switch will begin forwarding
to the client packets of the requested multicast group. The client then re-sequences the received
packets based on the sequence number embedded in the packet header. Once a media segment
is completely received, the client will send an IGMP Leave Group request to the network
switch, which then stops the forwarding of data belonging to the requested multicast group.

18.7.1 Practical Issues

Implementing the system prototype reveals a number of practical issues not found in the
theoretical model. First, the time in joining and leaving an IP multicast group is not precise
but subject to delay variations in packet transmission and request processing. In joining a
multicast group, the client may experience a small delay before data packets of the media
segment are received. In a small local area network such as our experimental test-bed, the
channel switching latency is in the order of 10~3 seconds. Given that the client has buffered
media segment L, comprising multiple seconds of media data before commencing playback,
this channel switching delay can readily be absorbed. For a larger network that involves
multicast routing, the channel switching delay will be larger and thus extra measures (e.g.,
increasing the amount of prefetch data before playback commence) may be needed to prevent
playback starvation during channel switching.

Similarly, the client may not be able to leave a multicast group immediately after receiving
a media segment, and thus additional duplicate data packets may continue to arrive at the
receiver. The client can detect and discard these duplicate packets. Alternatively, the client can
simply process them normally as there is no harm overwriting existing data with the same data.
However, these duplicate data do incur additional bandwidth usage at the client access link.

Another aspect where the implementation deviates from the theoretical model is in data
transmission. Specifically, we have thus far modeled the transmission of media data as a
continuous bit-stream, i.e., using a fluid-flow like model. In practice, the server must packetize
media data into discrete UDP datagrams for transmission. In our implementation, we use
a datagram size of 1,408 bytes (1,400-byte video data plus 8-byte header) excluding UDP
and IP headers. Thus, with a configuration of N = 1,000 in our experiments, the inter-packet
transmission time can vary from the order of 1072 seconds (e. g.,0.02 seconds) to a few seconds
(e.g., 5.7 seconds) depending on the broadcast duration.

Our experiments show that the large deviations in the inter-packet transmission time can
result in substantial variations (~20% bit-rate variation averaged over a 1 second interval) in
the bit-rate of the aggregate network traffic. We tackle this problem in GCB by combining
all the media segments within the same group into a single data block, and then perform
packetization for the combined data block instead of individually packetizing each media
segment for transmission. Our experiments show that this can reduce the bandwidth variation
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to negligible levels (order of 10~! percentage bit-rate variation averaged over 1 second interval)
without any impact on other parts of the system.

18.7.2 Experimental Results

We conducted extensive benchmarking experiments to collect three performance results,
namely start-up latency, aggregate bit-rate of all channels, and peak aggregate reception bit-rate
to compare with the theoretical calculations. In all experiments, we use the system parameters
of L =4,401,C = 2.84,m = 2and b = 1.42. The media stream is a MPEG-1 encoded system
stream multiplexing one video stream with one audio stream. We conducted benchmarks for a
total of 7 GCB system configurations, with the number of media segments N ranging from 50
to 1,000. For each configuration, we obtain the performance data by averaging data collected
from 20 benchmark runs. The results are summarized in Table 18.2.

We first consider start-up latency that is measured from within the client software. The results
show that the experimental results agree closely with the theoretical calculations. The minor
differences are likely due to network delay and software processing delay. Next, we measured
the aggregate network bit-rate of all channels using a hardware protocol analyzer connected to
the Ethernet switch’s mirroring port, which forwards all packets passing through the switch.
The measured results exhibit a consistent 5% increase in bandwidth usage compared to the
theoretical calculations. This increase is due to the header overheads in the application-layer
protocol (8 bytes), UDP (8 bytes), IP (24 bytes), and Ethernet (18 bytes). With a UDP datagram
payload of 1,400 bytes, the combined header overhead is equal to (8 + 8 + 24 + 18)/1458 =
4%, which closely matches the measured results.

Finally, we measure the aggregate reception bandwidth usage in the client access link, again
using a hardware protocol analyzer. Unlike the aggregate network bit-rate, the reception bit-
rate is not constant and does vary depending on which media segments are being received.
Nevertheless, we are more interested in the peak bandwidth usage and thus we measure the
maximum bandwidth usage averaged over a 10-second window. The results show similar
header overhead-induced bit-rate increases (~5%) for configurations with N up to 200. For
larger values of N, the differences widen further up to 9.51%. Our study of the log data shows
that two factors lead to the bit-rate increase.

Table 18.2 Comparison of theoretical and experimental results (with m = 2)

Config Latency Aggregate Bit-rate of all channels  Peak aggregate reception bit-rate

N/Ng* Theory Measured Theory Measured Difference (%) Theory Measured Difference (%)

50/19 176.04 176.10  5.8208 6.11 +4.97 2.84 2.98 +4.93
80/21 110.03 110.05  6.8302 7.17 +4.97 2.84 2.98 +4.93
100/22 88.02  88.04  7.2779 7.64 +4.98 2.84 2.98 +4.93
200/28 44.01  44.05 8.6611 9.10 +5.07 2.84 3.00 +5.63
500/33  17.60 18.00 10.6277  11.16 +5.00 2.84 3.05 +7.39
800/37 11.00 1120 11.5828  12.16 +4.98 2.84 3.11 +9.51
1000/38  8.80 9.00 12.1096 12.71 +4.96 2.84 3.09 +8.80

Note.* N and Ng are the number of video segments and number of channels respectively.
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First, larger values of N result in more frequent channel switching, and as discussed earlier
in Section 18.7.1, there is some delay from the time the client leaves a multicast group to the
time the network switch stops forwarding the multicast data. This results in some duplicated
data being transmitted to the client, only to be discarded by the client’s operating system. The
second reason is due to the specific network switch we used in the experiment. Our results show
that there seems to be bugs in the switch’s hardware, resulting in some random multicast data
transmitted to the client after the switch has pruned the multicast tree. This specific problem
is easy to miss because the random multicast data will be discarded by the client’s operating
system (as the client has left the multicast group already) and thus will not cause any data
transmission or application error. We expect this problem to be resolved in future revisions of
the switch hardware.

18.8 Summary

In this chapter we have reviewed some open-loop multicast streaming algorithms in the con-
text of a taxonomy, which classifies the algorithms according to the media segmentation and
transmission bandwidth schemes adopted. To further illustrate the design and trade-offs in de-
veloping an open-loop algorithm, we described in detail as well as analyzed the performance
of the Consonant Broadcasting algorithm. We also addressed some practical issues in the im-
plementation and deployment of the Consonant Broadcasting algorithm, which are likely to
be applicable to other open-loop algorithms as well.

Unlike the closed-loop algorithms, the resources consumed by open-loop algorithms are
fixed irrespective of the system load, i.e., number of concurrent users. The upside is that open-
loop algorithms will be very cost-effective in serving popular media streams (e.g., popular
movies) of a large user population. The downside, however, is that for unpopular media streams
the resources requirement could exceed those of closed-loop algorithms, which are more
efficient when the system load is lighter. In the next chapter, we illustrate a hybrid approach
to multicast streaming, combining elements of both open-loop and closed-loop algorithms in
the same architecture.
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A Hybrid Architecture

This chapter illustrates a hybrid approach to developing multicast media streaming systems.
In particular, we describe the design, analysis, and implementation of a Super-Scalar Video-
on-Demand (SS-VoD) system that integrates the techniques of batching, patching, and
periodic broadcasting. Instead of striving for maximum multicast efficiency, we focus on a
number of practical issues in designing the SS-VoD architecture, such as implementation
and deployment complexity, buffer requirement, multicast channel switching frequency,
support of interactive playback controls, etc. As well as describing the design choices,
we also devise a technique to model this relatively complex system so that approximate
performance results can be obtained without requiring lengthy simulations. Finally, we
briefly describe the implementation of the system and present some experimental results.

19.1 A Super-Scalar Architecture

Figure 19.1 depicts the overall architecture of the Super-Scalar Video-on-Demand (SS-VoD)
system. The system comprises a number of service nodes connected via a multicast-capable
network to the clients. The clients form clusters according to their geographical proximity.
An admission controller in each cluster performs authentication and schedules requests for
forwarding to the service nodes.

Each service node operates independently of the rest, having its own disk storage, memory,
CPU, and network interface. Hence a service node is effectively a mini video server, albeit
serving a small number of video titles to the entire user population. This modular architecture
can simplify the deployment and management of the system. For example, since the configu-
ration of each service node is decoupled from the scale of the system and each service node
carries just a few movies, a service provider simply deploys the right number of service nodes
according to the desired video selections. Additional service nodes can be added when more
movie selections are needed, with the existing nodes remain unchanged.

SS-VoD achieves scalability and bandwidth efficiency with two techniques. The first tech-
nique is through the use of multicast to serve multiple clients using a single multicast channel.
However, simple multicast such as those used in a near-video-on-demand (NVoD) system,

Scalable Continuous Media Streaming Systems Jack Y. B. Lee
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Figure 19.1 The super-scalar video-on-demand architecture

where the same video is repeatedly multicast over several channels in a time-staggered man-
ner, limits the time during which a client may start a new video session. Depending on the
number of multicast channels allocated to a video title, this start-up delay can range from
a few minutes to tens of minutes. To tackle this initial delay problem, we employ batching
and patching to enable a client to start video playback at any time using a dynamic multicast
channel until it can be merged back into an existing multicast channel. The following sections
present these techniques in detail.

19.1.1 Transmission Scheduling

Each service node in the system streams video data into multiple multicast channels. Let M
be the number of video titles served by each service node and let N be the total number of
multicast channels available to a service node. For simplicity, we assume N is divisible by M
and hence each video title is served by the same number of multicast channels, denoted by
Ny = N/M. These multicast channels are then divided into two groups of N static multicast
channels and Np = Ny — Ng dynamic multicast channels.
The video title is multicast repeatedly over all N static multicast channels in a time-staggered
manner as shown in Figure 19.2. Specifically, adjacent channels are offset by
L
=N
seconds, where L is the length of the video title in seconds. Transmissions are continuously
repeated, i.e., restart from the beginning of a video title after transmission completes, regardless
of the load of the server or how many users are active. These static multicast channels are used
as the main channel for delivering video data to the clients. A client may start out with a

dynamic multicast channel but it will shortly be merged back into one of these static multicast
channels.

Tr (19.1)
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Figure 19.2 Transmission schedules for static and dynamic multicast channels

We note that while using more sophisticated open-loop multicast algorithms (cf. Chapter 18)
can achieve better resource savings, they often require more client-side bandwidth and client-
side buffer. More importantly, these multicast schedules require the client to switch between
multiple multicast channels during a video session to achieve the resource savings. For large-
scale systems comprising millions of users, the channel switching overhead can present a
significant burden to the network.

Let us use IP multicast as an example. A client wishing to switch from one multicast channel
to another will need to send an IGMP message to the edge router to stop it from forwarding
data in the current multicast group. Another IGMP message will then be sent to request the
edge router to start forwarding data from the new multicast group. Unlike processing data
packets, these control messages and group management processing are performed in software
running on the router CPU. Hence, the more channel switching it requires, the more chance
that a router could become overloaded. This could lead to missed schedule and/or data loss,
resulting in client playback hiccup and/or visual quality degradation.

Another advantage of using the simple staggered multicast schedule in SS-VoD is in the sup-
port of interactive playback control. In particular, interactive controls such as pause-resume,
slow motion, and seeking can be supported in SS-VoD without incurring any additional re-
sources or processing at the video server, nor any additional buffer at the client (cf. Section
19.2).

The next section presents the admission procedure for starting a new video session and we
explain in Section 19.1.3 how the client is merged back into one of the static multicast channels.

19.1.2 Admission Control

To reduce the response time while still leveraging the bandwidth efficiency of multicast, SS-
VoD allocates a portion of the multicast channels and schedules them dynamically according
to the request arrival pattern.

Specifically, a new request always goes to the admission controller. Knowing the complete
transmission schedule for the static multicast channels, the admission controller then deter-
mines if the new user should wait for the next upcoming multicast transmission from a static
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multicast channel, or should start playback with a dynamic multicast channel. In the former
case, the client just waits for the next multicast cycle to begin, without incurring any addi-
tional load on the backend service nodes. In the latter case, the admission controller performs
additional processing to determine if a new request needs to be sent to the appropriate service
node to start a new dynamic multicast stream.

Figure 19.3 depicts the state-transition diagram for the admission procedure. Beginning
from the IDLE state, suppose that a new request arrives at time a;, which is between the start
time of the previous multicast cycle, denoted by t,,, and the start time of the next multicast
cycle, denoted by #,, ;. Now a predefined admission threshold, denoted by §, determines the
first admission decision made by the admission controller: the new request will be assigned to
wait for the next multicast cycle to start playback if the waiting time, denoted by wj, is equal
to or smaller than 26, i.e.

W; =ty —a; < 28 (19.2)

We call these requests statically-admitted and the admission controller returns to the IDLE
state afterwards. This admission threshold is introduced to reduce the amount of load going to
the dynamic multicast channels. Optimization procedures for this admission threshold will be
presented in Section 19.3.3.

If equation (19.2) does not hold, then the admission controller will proceed to determine if a
request needs to be sent to the appropriate service node to start anew dynamic multicast stream —
dynamically-admitted. The service nodes and admission controllers each keep a counter-length
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tuple: {Ac, Ap}, where Ac = {0, 1} is the counter,and A;,0 < A; < (Tg — 26), is the length
of service for each video title being served. Therefore, each service node will have M such
admission tuples and each admission controller will have MK such admission tuples, where K
is the total number of service nodes in the system. Both the counter and the length fields are
initially set to zero.

Now with the admission tuples, the admission procedure proceeds as follows. For requests
that cannot be statically-admitted, the admission controller will first check the counter in the
admission tuple for the requested video title. If the counter A¢ is zero, then the counter is
incremented by 1, and the length field is set according to

AL =a; —t, (19.3)

which is the length of time passed since the beginning of the last multicast. In other words, this
particular client will occupy the dynamic channel for a duration of A; seconds for patching
purpose. At the same time a START request carrying the requested video title and the length
field A; will be sent to a service node and the admission controller enters the STARTED state.

If another request for the same video title arrives during the STARTED state, say, at time a; 1,
the admission controller will not send another request to the service node, but will just update
the local length field according to

Ap = Qi1 — Ipy (194)

This process repeats for all subsequent requests arrived during the STARTED state. As a result,
only one START request will be sent to the service node regardless of how many requests are
received during the STARTED state, thereby significantly reducing the processing overhead at
the service node.

At the service node side, upon receiving a START request from the admission controller,
the service node will wait for a free channel from the Np dynamic multicast channels to start
transmitting the video title for a duration of A; seconds as shown in Figure 19.4. Once a
channel becomes available, a START reply will be sent back to all admission controllers to
announce the commencement of the new transmission.

The admission controllers, upon receiving the START reply, will do one of two things. If
the local counter value is 1, then both the counter and the length fields are zeroed and the
admission process is completed. If the counter is greater than 1, then the admission controller
will send an EXTEND request to the service node to extend the transmission duration according
to the value of the local length field A . Note that in this case, the length field at the admission
controller will be larger than the length field at the service node because only the length field at
the admission controller is updated for subsequent requests for the same video title. The length
field at the service node is always the one for the first request. After receiving EXTEND requests
from the admission controllers, the service node will update the transmission duration to the
largest one among all EXTEND requests. Transmission will stop after the specified transmission
duration expires. Note that the service node does not need to wait for any EXTEND request to
begin streaming. Streaming will begin as soon as a free dynamic channel becomes available.
The purpose of the EXTEND request is to increase the transmission time of the dynamic channel
to cater for subsequent requests in the same batch that require a longer patching duration.
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Figure 19.4 State-transition diagram for a service node

It may appear that the previous admission procedure is unnecessarily complex and the
clients would be better off sending requests directly to the service nodes. However, this direct
approach suffers from poor scalability. In particular, recall that each service node serves a few
video titles to the entire user population. Therefore, as the user population grows, the volume
of requests directed at a service node will increase linearly and eventually exceed the service
node’s processing capability.

By contrast, an admission controller generates at most two requests, one START request
and one EXTEND request, for each dynamically-started multicast transmission, irrespective of
the actual number of client requests arriving in an admission cycle (i.e., from receiving the
first request in a batch to sending the EXTEND request). Given that the number of admission
controllers is orders of magnitude smaller than the user population, the processing requirement
at the service nodes is substantially reduced. For extremely large user populations where even
requests from admission controllers can become overwhelming, one can extend this request-
consolidation strategy into a hierarchical structure by introducing additional layers of admission
controllers to further consolidate requests until the volume becomes manageable by the service
nodes.

19.1.3 Channel Merging

According to the previous admission control policy, a statically-admitted client starts receiv-
ing streaming video data from a static multicast channel for playback as depicted in Fig-
ure 19.5. For dynamically-admitted clients, video playback starts with video data received
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from a dynamically-allocated multicast channel. To merge the client back into an existing
static multicast channel, the client concurrently receives and caches video data from a nearby
(in time) static multicast channel as illustrated in the timing diagram in Figure 19.6. Eventu-
ally, playback will reach the point where the cached data began and the client can then release
the dynamic multicast channel. Playback then continues using data received from the static
multicast channel.
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Figure 19.7 Timing diagram for admitting a group of dynamically-admitted users

As an illustration, consider a dynamic multicast channel serving n dynamically-admitted
clients as shown in Figure 19.7. Let @; be the time client i arrives in the system and the nearest
multicast cycle starts at #,,, and t,,| respectively, where t,, < a; < ay...< a, < (ty+1 — 26).
Each client upon arrival will begin caching data from a static multicast channel while waiting
for an available dynamic channel to begin playback. Note that the later a client arrives in the
batch, the longer it must receive data from the dynamic multicast channel to make up for the
missed data transmitted by the static multicast channel. Eventually all clients in the batch will
reach their cached data position and the dynamic multicast channel is released. Therefore, the
channel holding time of the dynamic multicast channel is equal to (a, — t,,), i.e., dominated
by the last client joining the batch.

Compared to TVoD systems, a SS-VoD client must have the capacity to receive two multicast
channels concurrently and have a local buffer large enough to hold up to Tk seconds of video
data. Given a video bit-rate of 3Mbps (e.g., high-quality MPEG4 video), a total of 6Mbps
downstream bandwidth will be needed for the initial portion of the video session. For a two-
hour movie served using 25 static multicast channels, the buffer requirement will become
108MB. This can easily be accommodated today using a small hard disk in the client, and in
the near future simply by using memory as technology improves.

19.2 Interactive Controls

To provide a complete VoD service, interactive playback controls such as pause-resume, slow
motion, seeking, etc. will also need to be supported. Among these, pause-resume is likely to be
the control most frequently performed in typical movie-on-demand applications. Intuitively,
performing an interactive control in SS-VoD essentially breaks the client away from the current
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static multicast channel and then restarts it at another point within the video stream. Hence a
simple method to support interactive control is to treat them just like a new request. Clearly,
this approach will increase loads at the dynamic multicast channels and result in increased
waiting time for both new session and interactive control requests. As there is no generally
accepted user-activity model, we do not attempt to quantify the performance impact of this
approach in this study.

In the following sections, we present algorithms that take advantage of the staggered static
multicast schedule to support pause-resume, slow motion, and seeking in SS-VoD in aresource-
free way. In other words, no additional server resource or client buffer is needed to support
these interactive controls in SS-VoD.

19.2.1 Pause—Resume

We use a simple channel-hopping algorithm to implement pause—resume in SS-VoD. Specifi-
cally, since a client has a buffer large enough to cache T seconds of video, it can just continue
buffering incoming video data after the user has paused playback. If the user resumes playback
before the buffer is full, then no further action is required. By contrast, if the buffer becomes
full, then the client simply stops receiving data and enters an idle state.

When the user resumes playback, the client can resume playback immediately and at the
same time determine the nearest multicast channel that is currently multicasting the video.
Since a movie is repeated every Tk seconds and the client buffer already contains Tk seconds’
worth of video data, we can guarantee that the client can locate and merge back into an existing
static multicast channel.

19.2.2 Slow Motion

Slow motion is playback at a rate lower than the normal playback rate. As video data are always
being transmitted and received at the normal video bit-rate, it is easy to see that once slow
motion is started, data will begin to accumulate in the client buffer. Now if the user resume
normal speed playback before the buffer is full, then no additional action needs to be undertaken.

However, if playback continues in slow motion state for a sufficiently long time, the client
buffer will eventually be completely filled with video data. Note that at the instant when the
buffer becomes full, the buffer will contain Tk seconds’ worth of video data. This is equivalent
to the buffer full state in performing a pause operation. The only difference is that in performing
a pause, the client will stop receiving data until the user resumes playback, at which time a
nearby (in time) multicast channel will be located to merge back into. For slow motion, however,
playback continues at that instant and hence it is necessary to immediately locate a nearby
multicast channel other than the current one to merge back into. As any play point is at most T
seconds away due to the staggered static multicast schedule, the T seconds’ worth of data in
the buffer guarantees that the client can locate and merge back into a static multicast channel.
If slow motion continues after merging, then data will begin to accumulate in the buffer again
and the cycle repeats until normal playback speed is resumed.

Using this algorithm, slow motion at any rate slower than the normal playback rate can be
supported without the need for any additional resource from the server. Client buffer require-
ment also remains the same.
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19.2.3 Seeking

Seeking is the change from one playback point to another. Typically, the user initiates seeking
either by giving a new destination time offset or by means of using a graphical user interface
such as a slider or a scroll bar. SS-VoD can support different types of seeking depending
on the seek direction, seek distance, and the state of the client buffer and static multicast
channels. Specifically, due to patching, the client buffer typically has some advance data cached.
Moreover, some past video data will also remain in the client buffer until being overwritten
with new data. Hence, if the new seek position is within the range of video data in the client
buffer, seeking can be implemented simply by changing the playback point internally.

Now if the seek position, denoted by ¢, lies outside the client buffer, then the client may
need to switch multicast channels to accomplish the seek. Let#;,i =0, 1, ..., Ng — 1 be the
current playback points of the N static multicast channels and assume the client is currently
on channel x. Then the client will choose the nearest channel to restart playback by finding
the channel j so that the seek error ¢ = min{|t; — |, |, — ¢;|} is minimized. Note that the
current channel may happen to be the nearest channel and in this case, the client simply seeks
the oldest data in the buffer if ¢ is earlier than the current playback point, or seeks the newest
data in the buffer otherwise.

Clearly in the previous case the seek operation may not end up in the precise location
specified by the user and the seek error can be up to Tx/2 seconds. In return, this seeking
algorithm can be supported without incurring server overhead or additional client buffer. If
more precise seeking is needed, then one will need to make use of a dynamic multicast channel
to merge the client back into an existing static multicast channel. Further research will be
needed to develop efficient yet precise seeking algorithms.

19.3 Performance Modeling

In this section we present an approximate performance model for the SS-VoD architecture.
While an exact analytical solution does not appear to be tractable, we were able to derive an
approximate model that can be solved numerically. The purpose of this performance model is to
assist system designers to quickly evaluate various design options and to perform preliminary
system dimensioning. Once the approximate system parameters are known, one can turn to a
more detailed simulation to obtain more accurate performance results.

The primary performance metric we use in this study is start-up latency, defined as the time
from when a client submits a request to the admission controller to the time when the beginning
of the requested video starts streaming. For simplicity, we assume there is a single video title
stored in a service node and ignore network delay, transmission loss, and processing time at
the admission controller.

In the following sections, we will first derive the average waiting time for statically-admitted
clients and dynamically-admitted clients, and then investigate the configuration of the admis-
sion threshold and the channel partitioning policy. We will compare results computed using
this approximate performance model with the simulation results in Section 19.4.1.

19.3.1 Waiting Time for Statically-Admitted Clients

As described in Section 19.1.2, there are two ways to admit a client into the system. The first
way is admission through a static multicast channel as shown in Figure 19.5. Given that any
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clients arriving within the time window of 2§ seconds will be admitted this way, it is easy to
see that the average waiting time for statically-admitted clients, denoted by Wg(§), is equal
to half of the admission threshold:

Ws(5) = & (19.5)

assuming it is equally probable for a request to arrive at any time within the time window.

19.3.2 Waiting Time for Dynamically-Admitted Clients

The second way to admit a new client is through a dynamic multicast channel as shown in
Figure 19.6. Unlike static multicast channels, dynamic multicast channels are allocated in an on-
demand basis according to the admission procedure described in Section 19.1.2. Specifically,
if there are one or more free channels available at the time a request arrives, a free channel will
be allocated to start transmitting video data to the client immediately and the resultant waiting
time will be zero.

On the other hand, if there is no channel available at the time a request arrives, then the
resultant waiting time will depend on when a request arrives and when a free dynamic multicast
channel becomes available. Specifically, requests arriving at the admission controller will be
consolidated using the procedure described in Section 19.1.2 where the admission controller
will send a consolidated START request to a service node to initiate video transmission.

Figure 19.8 illustrates this admission process. This example assumes that there is no request
waiting and all dynamic multicast channels are occupied before client request 1 arrives. After
receiving request 1, the admission controller sends a START request to a service node to initiate
a new multicast transmission for this request. However, as all channels are occupied, the
transmission will not start until a later time #; when a free channel becomes available. During
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Figure 19.8 Classification of dynamically-admitted users
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this waiting time, additional client requests such as requests 2, 3, and so on, arrive but the
admission controller will not send additional START requests to the service node. This process
repeats when a new request arrives at time #,.

Based on this model, we first derive the average waiting time experienced by a START request
at the service node. For the arrival process, we assume that user requests form a Poisson arrival
process with rate A. The proportion of client requests falling within the admission threshold is
given by

26

Py = —
S T

(19.6)
and these clients will be statically-admitted.

Correspondingly, the proportion of dynamically-admitted clients is equal to (1 — Ps). We
assume that the resultant arrival process at the admission controller is also Poisson, with a rate
equal to

Ap = (1 — P)r (19.7)

Referring to Figure 19.8, we observe that the time between two adjacent START requests is
composed of two parts. The first part is the waiting time for a free dynamic multicast channel,
and the second part is the time until a new dynamically-admitted client request arrives. For
the first part, we let W (8) be the average waiting time for a free dynamic multicast channel
given §. To derive the second part, we first note that the mean inter-arrival time between the
two requests (request x and y in Figure 19.8) immediately before and after a free dynamic
channel becomes available, called event E, is equal to 2/A p, or twice the normal mean inter-
arrival time. This counter-intuitive result is due to the fact that longer interval is more likely
to be encountered by the event E. With an inter-arrival time that is exponentially distributed
with mean 1/Ap, the length-biased mean inter-arrival time as observed by the event E will
become 2/Ap [1]. Next we observe that the event E is equally likely to occur within the interval
between the two requests, thus the mean time until the next arrival is simply half the length of
the interval, or 1/Ap.

Therefore, the inter-arrival time for START requests is given by

A_ls = Wc(s) + i (19.8)
where Ag is the arrival rate for START requests. For simplicity, we assume that the arrival
process formed from START requests is also a Poisson process.

For the service time of START request, it depends on the last user joining the batch (Fig-
ure 19.7). In particular, the service time of the last user equals to the arrival time a, minus the
time 7, for the previous multicast of the requested video title. The service time, denoted by s,
can range from 0 to (T — 26). We assume the service time s is uniformly distributed between

O0<s<Tr—25 (19.9)

Therefore, the dynamic multicast channels form a multi-server queueing system with Poisson
arrival and uniformly distributed service time. As no close-form solution exists for such a
queueing model, we turn to the approximation by Allen and Cunneen [2] for G/G/m queues
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to obtain the average waiting time for a dynamic multicast channel:

Ec(Np,u) (C% + C}
We(8) = T 19.10
c(4) No(l—p) < > s ( )
where Ci = 1 is the coefficient of variation for Poisson process,
(T — 26)2 2\ 1
C:= = - 19.11
5 12 Tr — 28 3 ( )

is the coefficient of variation for uniformly-distributed service time, and Ty is the average
service time, given by

Tr — 26
2

s (19.12)

Additionally, u = AgTs is the traffic intensity, p = u/Np is the server utilization, and
Ec(Np, u) is the Erlang-C function:

. MND/ND!
E-(Np,u) = Np1 jF (19.13)
ulNo /Np!+ (1 —p) > T
=0 k!

Since the traffic intensity depends on the average waiting time, and the traffic intensity is
needed to compute the average waiting time, equation (19.10) is in fact recursively defined. Due
to equation (19.13), equation (19.10) does not appear to be analytically solvable. Therefore,
we apply numerical methods to solve for W (8) in computing the numerical results presented
in Section 19.4.

Now that we have obtained the waiting time for a START request, we can proceed to compute
the average waiting time for dynamically-admitted client requests. Specifically, we assume the
waiting time for a START request is exponentially distributed with mean W (5). We classify
client requests into two types. A Type-1 request is the first request that arrives at the beginning of
the admission cycle. Type-2 requests are the other requests that arrive after a Type-1 request.
For example, request 1 in Figure 19.8 is a Type-1 request, and request 2 and 3 are Type-2
requests.

We first derive the average waiting time for Type-2 requests. Let W,(§) be the average
waiting time for Type-2 requests which can be shown to be (please refer to the Appendix):

Was) = wees) (1 - (TR 2?;) {iWC(B) (T = 20) =G5 (19.14)
1—e Wg(a) WC(S)

Next for Type-1 requests, the average waiting time, denoted by W;(8), is simply equal to
We(8). Therefore, the overall average waiting time, denoted by Wp(§), can be computed from
a weighted average of Type-1 and Type-2 requests:

W1(8) + M, (5)W2(8)

Wp(8) = 30 (19.15)
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where M;(8) is the expected number of Type-2 requests in an admission cycle and can be
computed from

M5(8) = We(d)rp (19.16)

19.3.3 Admission Threshold

In the previous derivations, we have assumed that the admission threshold value is given a pri-
ori. Consequently, the resultant average waiting time for statically-admitted and dynamically-
admitted users may differ. To maintain a uniform average waiting time for both cases, we can
adjust the admission threshold so that the average waiting time difference is within a small
error €:

8 = min {x| (Wg(x) — Wp(x)) <&, Tg > x > 0} (19.17)

As adjusting the admission threshold does not affect existing users, the adjustment can
be done dynamically while the system is online. In particular, the system can maintain a
moving average of previous users’ waiting time as the reference for threshold adjustment. This
enables the system to maintain a uniform average waiting time for both statically-admitted and
dynamically-admitted users. The term /atency in this chapter refers to this uniform average
waiting time.

19.3.4 Channel Partitioning

An important configuration parameter in SS-VoD is the partitioning of available channels for
use as dynamic and static multicast channels. Intuitively, having too many dynamic multicast
channels will increase the traffic intensity at the dynamic multicast channels due to increases in
the service time (cf. equations (19.1) and (19.12)). On the other hand, having too few dynamic
multicast channels may also result in higher load at the dynamic multicast channels. We can
find the optimal channel partitioning policy by enumerating all possibilities, which in this case
is O(N). Unlike the related Unified Video-on-Demand (UVoD) architecture [3], where the
optimal channel partition policy is arrival-rate dependent, we found that the optimal channel
partitioning policy is relatively independent of the user arrival rate in SS-VoD. This will be
studied in more detail in Section 19.4.2.

19.4 Performance Evaluation

In this section, we present simulation and numerical results to evaluate performance of the
SS-VoD architecture. We first validate the analytical performance model using simulation
results and then proceed to investigate the effect of the channel partitioning policy, to com-
pare latency and channel requirement between TVoD, NVoD, UVoD [3], with SS-VoD, and
finally investigate the performance of SS-VoD under extremely light loads. The focus of the
comparisons is on the server and backbone network resource requirements, represented by
the number of channels required to satisfy a given performance metric such as latency. Note
that for simplicity, we do not distinguish between unicast and multicast channels and assume
they have the same cost. In practice, a multicast channel will incur higher costs in the access
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network where the network routers will need to duplicate and forward the multicast video data
to multiple recipients. Nevertheless, this additional cost is not present at the server (e.g., using
IP multicast) and at the backbone network before fanning out to the access sub-networks and
therefore will be ignored in this study.

19.4.1 Model Validation

To verify accuracy of the performance model derived in Section 19.3, we developed a simulation
program using CNCL [4] to obtain simulation results for comparison. A set of simulations
is run to obtain the latency over a range of arrival rates. Each run simulated a duration of
1,440 hours (60 days), with the first 24 hours of data skipped to reduce initial condition effects.
There is one movie in the system, with a length of 120 minutes. We divide available multicast
channels equally into static-multicast and dynamic-multicast channels. We do not simulate
user interactions and assume all users play back the entire movie from start to finish.

Figure 19.9 shows the latency versus arrival rate ranging from 1 x 1073 to 5.0 requests per
second. We observe that the analytical results are reasonable approximations for the simulation
results. Athigh arrival rates (e.g., over 1 request per second), the analytical results over-estimate
the latency by up to 5%. As discussed in the beginning of Section 19.3, the analytical model is
primarily used for preliminary system dimensioning. Detailed simulation, while lengthy (e.g.,
hours), is still required to obtain accurate performance results.
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Figure 19.10 Effect of channel partitioning on latency

19.4.2 Channel Partitioning

To investigate the performance impact of different channel allocations, we conducted simu-
lations with the proportion of dynamic multicast channels, denoted by r, ranging from 0.3 to
0.7. The results are plotted in Figure 19.10. Note that we use a normalized latency instead of
actual latency for the y-axis to facilitate comparison. Normalized latency is defined as

v (19.18)
min {w(r), Vr}

where w(r) is the latency with r x N dynamic multicast channels.

We simulated three sets of parameters with N = 20, 30, and 50 for two arrival rates, namely,
heavy load at 5 requests/second and light load at 0.5 requests/second. Note that normalized
latency obtained from two different values of N cannot be compared directly as the denominator
in equation (19.18) is different.

Surprisingly, the results show that in all cases the latency is minimized by assigning half
of the channels to dynamic multicast and the other half to static multicast. For comparison,
UVoD exhibits a different behavior and requires more channels allocated for static multicast
to minimize latency at high loads as shown in Figure 19.11 for a 50-channel configuration.

UVoD’s behavior is explained by the observation that at higher arrival rates, the waiting
time for a free unicast channel increases rapidly near full utilization. Therefore, it is desirable
to allocate more multicast channels to reduce the traffic intensity (arrival rate x Tx) routed to
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Figure 19.11 Comparison of optimal channel allocation in SS-VoD and UVoD

the unicast channel to prevent operating the unicast channels near full utilization. By contrast,
the same situation does not occur in SS-VoD because a dynamic multicast channel can batch
and serve multiple waiting requests. Moreover, the batching efficiency increases for longer
waiting time, thus compensating for the increases in the arrival rate. This remarkable property
of SS-VoD greatly simplifies system deployment as one will not need to reconfigure the system
with a different channel partition policy if the user demand changes.

19.4.3 Latency Comparisons

Figure 19.12 plots the latency for SS-VoD, UVoD, TVoD, and NVoD for arrival rates up to
5 requests per second. The service node (or video server for TVoD/NVoD) has 50 channels and
serves a single movie of length 120 minutes. The first observation is that except for NVoD, which
has a constant latency of 72 seconds, the latency generally increases with higher arrival rates as
expected. For TVoD, the server overloads for arrival rates larger than 1.16 x 10~ requests per
second. UVoD performs significantly better with the latency asymptotically approaches that
of NVoD. SS-VoD performs even better than UVoD, and the latency levels off and approaches
5.6 seconds, or a 92% reduction compared to UVoD.

It is also worth noting that the performance gain of SS-VoD over UVoD does not incur any
trade-off at the client side. Specifically, the buffer requirement and bandwidth requirement are
the same for both SS-VoD and UVoD. The only differences are the replacement of the dynamic
unicast channels in UVoD with dynamic multicast channels in SS-VoD, and the addition of the
more complex admission procedure in the admission controller.
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19.4.4 Channel Requirement
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Figure 19.13 Comparison of channel requirement for different arrival rates

Channel requirement is defined as the minimum number of channels needed to satisfy a given
latency constraint at a certain arrival rate. Figure 19.13 plots the channel requirements of SS-
VoD, UVoD, TVoD, and NVoD versus arrival rates from 0.01 to 5 requests per second. The
latency constraint is set to 10 seconds.
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The number of channels required for NVoD is a constant value and equal to 360. The channel
requirement of TVoD increases with the arrival rate and quickly exceeds that of NVoD. The
channel requirements of SS-VoD and UVoD are significantly lower than both TVoD and NVoD.
For higher arrival rates, SS-VoD outperforms UVoD by a wide margin. For example, the channel
requirements at one request per second are 114 and 36 for UVoD and SS-VoD respectively;
and the channel requirements at 5 requests per second are 225 and 38 for UVoD and SS-VoD
respectively. This result demonstrates the performance gain achieved by replacing the dynamic
unicast channels in UVoD with dynamic multicast channels in SS-VoD.

19.4.5 Performance at Light Loads

The previous results are computed using relatively high arrival rates. Intuitively, the perfor-
mance gains will decrease at lower arrival rates as fewer requests will be served by a dynamic
multicast channel. To investigate this issue, we define a percentage of channel reduction over
TVoD, denoted by G, as

_ min{n|Wrp(n) <1,Vn=0,1,...} —min{n|Wkn) <1,Vn=0,1,.. .}
- min {n|Wryp(m) < 1,Vn =0,1, ...}

x 100%

(19.19)
where Wry,p(n) and W (n) are the latency, given there are n channels, for TVoD and SS-VoD/
UVoD respectively.

Figure 19.14 plots the channel reduction for arrival rates from 1 x 10~* to 0.01 for SS-VoD
and UVoD. The results show that SS-VoD requires fewer channels than TVoD as long as arrival
rates are over 1.8 x 10~* requests per second. Note that at this low arrival rate, both TVoD and
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Figure 19.14 Channel reduction over TVoD at very low arrival rates
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Figure 19.15 Performance trade-off for using worst-case service time for dynamic channels

SS-VoD require only six channels. This suggests that SS-VoD will likely outperform TVoD in
practice.

19.4.6 Simplicity versus Performance Trade-off

The admission controller is among the more complex components in the SS-VoD architecture.
One way to simplify the admission controller is to use a constant service time of T — 2§
seconds for the dynamic channels. As this is the worst-case service time, the admission con-
troller no longer needs to maintain the counter-length tuple {A¢, A} and also does not need
to send an EXTEND update request to the service node. The trade-off for this simplification is
increased channel requirement as the dynamic channel will be occupied for a time longer than
necessary. Figure 19.15 compares the two cases, showing that using the worst-case service
time of T — 28 seconds results in resource increases of over 30%. This shows that the more
complex admission procedure is still desirable unless system complexity must be minimized.

19.5 Implementation and Benchmarking

We implemented a SS-VoD prototype using off-the-shelf software and hardware. There are
three components in the prototype: service node, admission controller, and video clients. Both
the service node and the admission controller are implemented using the C++ programming
language running on Red Hat Linux 6.2. Two client applications have been developed, one is
implemented using the Java programming language and the Java Media Framework (JMF) 2.1,
while the other is implemented using C++ on the Microsoft Windows platform. Both the
service node and the admission controller are video format independent. The Java-version client
supports MPEGI streams, while the Windows-version client supports MPEG1, MPEG?2, as
well as basic MPEG4 streams. We also implemented the interactive playback controls presented
in Section 19.2, namely pause-resume, slow motion, and seeking.
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Figure 19.16 Comparison of latencies obtained from analysis, simulation and benchmarking

With the SS-VoD prototype, we conducted extensive experiments to obtain measured bench-
mark results to verify against the analytical and simulation results. We developed a traffic
generator in order to simulate a large number of client requests. The service node runs on
a Compaq Proliant DL360 serving one movie of length 120 minutes with 30 channels, each
at 1.5Mbps. The clients are ordinary PCs and all machines are connected using a layer-3
IP switch with hardware IP multicast support. We measured the start-up latency for arrival
rates ranging from 1 to 5 requests per second. Each benchmark test runs for a total of six
hours. Benchmark data collected during the first hour is discarded to reduce initial condition
effect.

Figure 19.16 compares the start-up latencies obtained from analysis, simulation, and bench-
marking respectively. We observe that the benchmarking results agree very well with the
analytical results and simulation results. Note that the latencies obtained from benchmarking
are consistently larger than those obtained from simulation. We believe that this is due to the
non-zero processing delay and network delay in the system, both of which have been ignored
in the simulation model.

19.6 Summary

In this chapter, we investigated a Super-Scalar Video-on-Demand (SS-VoD) architecture that
can achieve super-linear scalability by integrating techniques of batching, patching, and pe-
riodic broadcasting. In designing the SS-VoD architecture the focus is on its practicality and
the implementation and deployment complexities. For example, instead of adopting more so-
phisticated open-loop algorithms to schedule the static multicast channels, we employed the
simple staggered periodic multicast schedule that enables us to implement interactive play-
back control such as pause-resume, slow motion, and seeking in a simple yet efficient way.
Moreover, the staggered schedule also requires significantly lower client buffer requirement
and more importantly, eliminates the need to switch multicast channels during a video session.
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On the other hand, hybrid multicast streaming architectures present unique challenges to
media server design due to the use of both periodic and aperiodic media retrievals. In the
next chapter we address the issues in designing efficient media streaming server that supports
hybrid multicast streaming algorithms.

Appendix

In this Appendix, we derive the mean waiting time for Type-2 users, denoted by W,(§). The
complication is due to length biasing as a Type-2 user is more likely to observe a longer Type-1
wait than a shorter Type-1 wait. First, we compute the waiting time distribution for Type-1
users, denoted by fc'(t), as observed by a Type-2 user using the results from Kleinrock [1]:

_ #fe®
W)

fe'() (19.20)

where fc(t), and W (8) = E[ fc(¢)] is the actual waiting time distribution and mean waiting
time of Type-1 users respectively. Let W¢'(8) be the mean of f¢'(¢):

Wc'(8) = /'00 tfc’(1)dt (19.21)

o0

Substituting equation (19.20) into equation (19.21) we then have:

00 (2
t fC(t)dt

Wc'(8) = We®)

(19.22)

We note that the waiting time can only range from zero to (Tx — 2§), so we can rewrite
equation (19.22) as:

: 0722 fe ()
= —_ 19.2
Wc'(8) /0 Weld) dt (19.23)

Motivated by simulation results, we assume that f¢(¢) is truncated exponentially distributed:

—(Tg—28) -1 ,,
fey = (1= e W) We@) e (19.24)

Substituting equation (19.24) into equation (19.23) we have

) Tp—25 2o
We'(5) = f dr (19.25)
N O

Solving the integral and after a series of simplifications equation (19.25) becomes

We'(8) = 2wes) (1 — (L TR 2? / i)WC((S) Tz = 20) = (19.26)
1—e wgw) Wc(é)
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Finally, as a Type-2 user is equally likely to arrive any time during a Type-1 wait, the mean
waiting time is simply equal to half of the Type-1 mean wait:

Wc'(8) L+ (Tr = 20)/2Wc(8) | (T — 28) =

Wa(8) = = We) (1 - s o | (19.27)
‘ | We(d)
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Efficient Server Design for Hybrid
Multicast Streaming

This chapter investigates the issues in designing efficient media servers for hybrid multicast
streaming algorithms that integrate both closed-loop and open-loop algorithms. Existing
media server designs are either optimized for closed-loop algorithms, which generate ape-
riodic data retrievals or optimized for open-loop algorithms, which generate periodic data
retrievals. However, hybrid architectures such as the Super-Scalar Video-on-Demand (SS-
VoD) system in Chapter 19 require both periodic and aperiodic data retrievals which the
existing server designs are sub-optimal. This chapter presents an efficient server design to
address this problem, which can achieve up to 60% capacity gains compared to conventional
server designs.

20.1 Introduction

In Chapter 19 we presented a Super-Scalar Video-on-Demand (SS-VoD) architecture combin-
ing the batching, patching, and periodic broadcasting for implementing scalable and efficient
VoD services. In a SS-VoD system, multicast channels are divided into two types — static
channels and dynamic channels. Each channel transmits video data at the video playback rate
using network multicast. Static channels are organized in a time-staggered manner to stream
the whole video repeatedly and periodically. Dynamic channels are scheduled with batching
and patching to enable clients to begin playback quickly. By simultaneously caching data from
a static channel, the client can eventually merge back to an existing static channel and release
the dynamic channel for reuse by other clients.

In this chapter, we present an efficient disk-array-based server design for implementing the
video server in a SS-VoD system. The video server in a SS-VoD system is unique in that there
are both statically scheduled and dynamically scheduled video channels. Existing video servers
in general [1-5], and disk schedulers in particular [6-9], are designed either for systems with
statically scheduled video channels (i.e., open-loop algorithms in Chapter 18), or for systems
with dynamically scheduled video channels (i.e., closed-loop algorithms in Chapter 17). The
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former simply cannot be applied to a SS-VoD system as the video placement policy and I/O
scheduler typically do not allow random data retrievals. The latter, on the other hand, can still
be applied to a SS-VoD system but the efficiency will be sub-optimal as the static channels’
periodic retrieval patterns are not exploited to increase retrieval efficiency.

To support both static batching channels and dynamic patching channels, we develop a new
video placement policy and retrieval algorithm that can support random data retrievals, while
still be able to exploit the periodic retrieval pattern to increase disk efficiency. To tackle the
disk-zoning problem, we develop a Weighted Group Segment Pairing Scheme (WSGP) based
on SGP [8] for video placement. By pairing an outer zone with an inner zone and allocating
video data according to the zone’s storage capacity, we can achieve increased disk utilization
without sacrificing disk storage capacity.

Compared to conventional server designs using round-based schedulers, this efficient server
design can increase the system capacity by as much as 60% with the same buffer requirement.
This chapter presents details of this new server design, derives a performance model, and
analyzes it using numerical results.

20.2 Background

Video server design has been studied extensively in the literature. Gemmell et al. [2] provide an
excellent overview of the area, explaining the key challenges and reviewing existing solutions.
Most of the existing server designs for TVoD systems are centered around round-based algo-
rithms, such as the CSCAN scheduler [7] and the Grouped Sweeping Scheme (GSS) scheduler
[6]. Common among these round-based schedulers is the assumption that there is no correla-
tion between the active video streams, i.e., the video streams play back video independently
at arbitrary schedules. While this assumption is valid and necessary for TVoD systems, it is
sub-optimal for a SS-VoD system where some of the multicast video streams are prescheduled
and thus have a fixed temporal relation with one another.

At the other extreme of the spectrum is NVoD systems where all video streams are broad-
cast repeatedly and periodically in a fixed schedule. Armed with complete knowledge of the
broadcasting schedules, one can then design an optimized video placement and disk retrieval
scheme to increase disk efficiency. The principle is to take advantage of the fixed temporal
relation between broadcast video streams and place video data in an interleaved manner so
that the server can retrieve video data continuously with minimal disk seeking.

For example, Chen and Manu [8] proposed a video placement policy called Segment Group
Pairing (SGP) to allocate video data in zone-bit-recording (ZBR) disk for NVoD servers. With
SGP, data blocks that are to be retrieved in the same round are divided evenly into two groups.
The first group is stored continuously in the outer zone while the second group is stored
continuously in the inner zone. This continuous placement reduces seeking overhead in data
retrieval. In a service round, the disk head will first retrieve the group of blocks located in the
outer zone and then seek the inner zone to retrieve the remaining data blocks. This scheme
enables the data rates of both zones to be averaged and thus results in a higher deterministic
disk throughput.

Nevertheless, this algorithm did not account for capacity differences among different zones.
In particular, inner zones usually have lower capacity compared to outer zones. As aresult, SGP
will likely fill up the inner zone before the outer zone is fully utilized and thus the remaining
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storage capacity in the outer zones becomes unused. To tackle this limitation, we extend the
SGP policy to account for zone capacity differences. This new policy, called Weighted Segment
Group Pairing (WSGP), allocates data blocks to the inner and outer zones in proportion to the
zone capacities, thus eliminating the above-mentioned limitation.

Nevertheless, the WSGP policy still does not address the problem of supporting both ran-
dom and periodic video streams. In our server design, we develop a new placement pol-
icy and I/O scheduler incorporating the virtues of CSCAN/GSS for random video streams,
and data interleaving for periodic video streams. In the next section, we first devise a GSS-
based server design and then introduce our new server design in Section 20.4. We then
compare their performances using numerical results in Section 20.5 and give a summary in
Section 20.6.

20.3 A GSS-based Server Design

In this section, we apply the well-known Grouped Sweeping Scheme (GSS) scheduler for use
in a SS-VoD server. This design will serve as a baseline to compare the efficient server design
to be presented in Section 20.4.

Let N be the number of disks in the system, assuming the disks are homogeneous. The
disk’s storage is divided into fixed-size blocks of Q bytes each, and a service group is defined
to consist of all the data blocks at the same location from each of the N disks.

Video data are striped across the N disks as shown in Figure 20.1, effectively forming a
RAID-4 [10] disk array without parity. Denote the jth data block of video i by b; ;. Then, the
first N blocks of video i, [b; 1, bi 2, b; 3 ... b;, y] are allocated to the first service group. This
storage allocation scheme ensures load balance among all N disks.

Figure 20.2 depicts the Grouped Sweeping Scheme (GSS). In GSS, a macro-round is divided
evenly into G micro-rounds, with each micro-round serving a separate group of video streams.
Assuming all the videos are encoded using constant-bit-rate (CBR) encoding method with the
same bit-rate Ry, then in each micro-round the server retrieves one data block from each disk
for each channel, and this data block is then multicast over the next G micro-rounds (i.e., one

bi,l bi,z bi,3 . bi,N—2 bi,N—l bi,N
bi,N+l bi,N+2 bi,N+3 . bi,2N—2 bi,ZN—l bi,2N
bi,2N+l bi,2N+2 bi,2N+3 . bi,3N—2 bi,SN—l bi,3N

131 101
5900 000

Disk1 Disk2 Disk3 - Disk N-2 Disk N—1 Disk N

Figure 20.1 Allocation of video blocks among disks for video i
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macro-round). Reducing G we can pack more video streams in a group and this results in
increased disk efficiency, albeit at the expense of increased buffer requirement and scheduling
delay and vice versa. In the extreme case with G = 1, GSS reduces to SCAN; and in the other
extreme case with G = n, where n is the maximum number of streams that the system can
support, GSS reduces to first-come-first-serve.

In SS-VoD, static channel starts once every T seconds, where T is given by

T, L 20.1

R = (20.1)
and L is the length of the video title in seconds. However, transmission in GSS can only
start at the beginning of a micro-round and hence does not necessary match the transmission
schedule of the static channels. In particular, when Ty is not divisible by the micro-round
time, some of the static channels will not be able to transmit precisely at the scheduled time.
To avoid this problem, we can use additional buffers to perform read-ahead to absorb the
time differences. However, this will increase the buffer requirement up to 50% and is thus not
desirable. Alternatively, we can choose the value of G and Q so that T is an integer multiple
of the duration of a micro-round to avoid the additional buffer requirement. For each video
stream, N data blocks, one from each disk, are retrieved in a micro-round for transmission
over the next G micro-rounds. Thus, the service round length 7, is given by

_NQ

T, )
r RV

(20.2)
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and the total server buffer requirement [6] is given by

1
Bgerver = CNQ(1 + 5), (20.3)

where C is the total number of multicast channels in the server.

As the static channels’ offset Ty is integer multiples of the micro-round length, it is easy
to see that the static channels will be equally distributed to all G groups. The remaining disk
capacity is then used to support dynamic channels.

20.4 An Efficient Server Design

In SS-VoD, there are two types of multicast channels — static and dynamic multicast channel.
Static multicast channels stream the whole video while dynamic channels serve clients with
up to the first T seconds of the video only. In terms of data access pattern, static channels
retrieve data in a fixed schedule. By contrast, the data access pattern of dynamic channels is
random. In this section, we present an efficient design for the SS-VoD server. Specifically,
this efficient server design has three distinctive features. First, the disk storage is organized
using an improved Weighted Segment Group Pairing (WSGP) scheme to exploit disk zoning
to increase disk throughput and storage utilization. Second, an interleaving data placement
policy is used to store video data to be transmitted over the static channels to exploit the static
channels’ periodicity. Third, the first Tk seconds of the videos are replicated for placement in
the outermost zones to increase disk throughput for serving the dynamic channels. We design a
new scheduler to schedule the data retrievals for both static and dynamic channels and quantify
its performance. These are presented in details in the following sections.

20.4.1 The Weighted Segment Group Pairing (WSGP) Scheme

Today’s hard disks commonly employ zone-bit-recording (ZBR) technique to increase disk
capacity. In zoning, outer tracks are equipped with more sectors than inner tracks to exploit
the increased disk surface area available. With a constant rotation speed, the data transfer rate
of the outer zone is also higher than the inner zones. Traditional deterministic performance
analysis limits one to using the lowest data transfer rate in the innermost zone for system
dimensioning and thus wastes the higher transfer rate available in the outer zones.

To improve disk throughput, we devise a Weighted Segment Group Pairing (WSGP) scheme
based on the Segment Group Pairing (SGP) proposed by Chen and Manu [8]. In WSGP, the
group of data blocks to be retrieved in the same round (i.e., a G ;) is divided into two sub-
groups, denoted by G}’ . and Gi - The first group is placed in an outer zone with higher
transfer rate and the second group is placed in an inner zone with lower transfer rate. For a
disk with Z zones, zone h and zone (Z — h + 1) are paired together and the two sub-groups,
G} , and Gi «» are allocated to these two zones respectively. In the original SGP [8] the groups
are of equal size. This is undesirable as the zones often have different capacities and the extra
capacity in the larger zone will be wasted. Thus, we extend SGP to WSGP by dividing the
group into sub-groups of sizes proportional to the zone capacities. Results show that with
WSGP, we can achieve 100% disk storage utilization while achieving the same throughput as
SGP.
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Figure 20.3 Data access pattern and placement of static channels

20.4.2 Interleaving of Data Blocks

Next we consider the interleaving data placement policy for serving the static channels. Con-
sider a system with N = 2, Ny = 4 and k = 120 as shown in Figure 20.3, illustrating the data
access pattern for the static channels. We observe that data blocks b; ;, b;, j 1 30,bi, j +60, bi, j +90
of video i stored in disk 1 and data blocks b;, 1, b;, j +31, bi, j + 61, bi, j +91 stored in disk 2 are
always retrieved together in the same service round, with j € [1, 3, 5, ... 29]. Thus, by placing
these data blocks in a continuous portion of the disk surface, we can effectively eliminate the
disk seeks required in conventional round-based schedulers. However, this placement policy
only works for static channels where the transmission schedules are known and fixed. We
address data retrievals for dynamic channels using replication in the next section.

20.4.3 First Tg Seconds Replication

Data retrievals for dynamic channels are more random in nature and hence the interleaving data
placement policy offers no advantage. Moreover, with the WSGP policy in place, serving the
dynamic channels using the interleaving data placement policy will result in the disk constantly
seeking between outer tracks and inner tracks, further degrading disk throughput. To tackle
this problem, we note that dynamic channels have one crucial property — it only serves up to
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Figure 20.4 Data layout for a disk with Z = 9 and Z 4, = 3

the first T seconds of a video. Therefore, we propose replicating the first Tk seconds of each
video in the outermost zones of the disk, thereby taking advantage of the higher transfer rate
of the outermost zones. Assume the first Z gy, zones are used to store the replicated video data,
then the WSGP algorithm will begin pairing zone (Zg4y, + 1) and Z. Figure 20.4 illustrates the
overall data layout.

20.4.4 An Integrated Scheduler

To support data retrievals for both static and dynamic channels, we devise a new integrated
scheduler based on the three design features previously discussed. The integrated scheduler
is still round-based but each round is divided into two parts — a static round and a dynamic
round as shown in Figure 20.5. In a static round, two continuous data retrievals are performed,
one for an outer-track block and one for an inner-track block. The retrieved data will then be
used for transmission over the static channels. The dynamic round is further sub-divided into
Gp dynamic micro-rounds and the dynamic channels are then assigned to these Gp dynamic
micro-rounds as in the GSS case. Retrievals within a dynamic micro-round will be executed
using SCAN and the retrieved data will be transmitted over the dynamic channels. The buffer
requirement of this scheduler is thus given by

NQ(@2Ns + Np) (20.4)

as illustrated in Figure 20.6.
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This scheduler, however, has a subtle problem. We found that the server buffer requirement is
dominated by the memory used to cache data for the static channels, which involved continuous
retrievals for two large data blocks, and this increases the buffer requirement significantly. To
reduce the buffer requirement, we sub-divide the static round into G g micro-rounds of equal
durations, where G s equals to the number of videos. In each static micro-round, static channels
belonging to the same video are scheduled and data are transmitted at the end of the static
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micro-round. Since different groups retrieve data from different zones of the disk, the static
micro-round will be of different durations.

As illustrated in Figures 20.7 and 20.8, and using derivations similar to GSS we can derive
the new total buffer requirement, which is reduced to

1 1
NO (NS (1 + G—S> + Np (1 + G—D>> . (20.5)

In practice, this modification can reduce the buffer requirement of static channels by as
much as 40%. In the next section we evaluate and compare performance of the proposed server
design with the GSS-based server design.

20.5 Performance Evaluation

In this section, we evaluate the performance of the presented efficient server design and com-
pare it against the GSS-based server design. Table 20.1 lists the key system parameters used in
the numerical calculations and Table 20.2 gives the specification of the disks used in perfor-
mance evaluation.



Table 20.1 System parameters used in performance evaluation

System parameter Symbol Value
Video data rate Ry 4Mb/s (MPEG?2)
Number of disk N 8

Length of video L 7200s

Static channel per video Ny 20
Dynamic channel per video Np 20

Table 20.2  Specification of different disks used in performance evaluation

Disk Parameter Value
Disk Model Atlas 10K Barracuda Cheetah 9LP IBM 18es
Disk rotation speed (rpm) 10,025 7,200 10.045 7200
Full strobe seek time (ms) 10.828 16.679 10.627 12.742
Track-to-track seek time (ms) 1.245 1.943 0.831 1.086
Head switching time (ms) 0.176 0.100 0.030 0.062
Number of data surfaces 6 5 12 5
Blocks per disk 17,938,986 4,110,000 17,783,240 17,916,240
Total number of tracks 10,022 5,172 6,962 11,474
Number of zones 24 11 11 55
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Figure 20.9 Server capacity versus server buffer constraint for four hard disk models

20.5.1 Server Capacity

Figure 20.9 plots the server capacity versus the server buffer size constraint for our efficient
server design and the GSS-based server design for four different disks. Compared to GSS-based
design, our design can increase the server capacity by up to 60%. Moreover, the performance
gain increases to about 40% on average when the buffer available is more than 1GB as ev-
ident in Figure 20.10. This is because the interleaved data placement policy reduces disk
seeks substantially and thus the gain in I/O efficiency due to larger block size becomes more
significant.

20.5.2 Utilization of Disk Capacity

The major advantage of using WSGP is that while achieving full utilization of disk storage
capacity, it provides similar performance improvement as SGP. Results show that with the same
system configuration, SGP can only utilize 91% storage capacity of the disk while WSGP can
achieve 100% utilization.
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20.6 Summary

In this chapter, we presented an efficient disk-array-based server design for the Super-Scalar
VoD system. We proposed a placement scheme to exploit disk zoning and the characteristics of
static and dynamic channels. Coupled with an integrated scheduler, we were able to increase
the server capacity by as much as 60% compared to the conventional GSS-based server design.
While the server design presented in this chapter is specifically targeted for use in a SS-VoD
system, the design principles are general and thus can be applied to other multicast video
streaming architectures with both periodic and aperiodic multicast streaming channels.
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constant-quality, 32, 165
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Compression (Continued )
inter-frame, 30
intra-frame, 30
layered video coding, 33, 141
lossless, 26
lossy, 26
standards, 25, 28
variable-bit-rate, 32, 165
Concurrent push architecture, 173
compare to staggered push, 226-230
Concurrent schedule, 54. See also multi-disk
scheduling
Congestion control
RAP, 142
TCP, 112
Consonant Broadcasting (CB), 313. See also
multicast streaming
Constant-bit-rate encoding, 32. See also
compression
Constant-quality encoding, 32, 165. See also
compression
Continuity
condition, 47
playback, 10-11
Continuous media, 5.
C-SCAN, 46. See also disk scheduling
algorithm
Cumulative data consumption function, 120

Data partition scheme, 310
Data rebuild
for disk, 92
for server, 249
Data reorganization, 263, 265
overhead, 270
Data units (blocks), see erasure(s)
Deadline-Driven Detection, 71
Decoding time deviation, 177
peak-to-peak, 178
Degraded mode operation, 84
Delay budget, 5
Detection delay, 196
effect on buffer requirement, 208
modeling of, 240-241
Deterministic performance guarantee, 21.
See also QoS guarantee

Deviation bound, disk asynchrony,
100
Direct Streaming Transfer (DST), 26
Discrete media, 4. See also continuous
media
Disk
arm, 43
controller, 44
head, 43
platter, 43
sector(s), 43
track(s), 43
Disk migration, 252
Disk model, 43, 90
parameters, 103, 364
read-on-arrival, 92
rotational latency, 44
seek time, 44
transfer rate, 44
worst-case seek time, 47, 62, 91
zoning, 58, 61
Disk scheduling algorithm
asynchronous grouped sweeping scheme
(AGSS), 180
C-SCAN, 46
first-come-first-serve (FCFS), 45
grouped sweeping scheme (GSS), 49
integrated scheduler for hybrid server,
361
Distributed rebuild, 254
Distributed sparing, 250. See also sparing
scheme(s)
Download model, 7
Drift compensation, 36
Dual-round scheduling (DRS), 64
DVD Audio, 25
Dynamic multicast channel, 332
Dynamically admitted, 334
waiting time for, 341

Early-Admission Scheduling (EAS), 66
non-preemptive schedule, 69
preemptive schedule, 69

Elastic traffic, 4

Elevator seeking, 46. See also disk

scheduling algorithm
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Erasure(s), 194
correction process, 88
Reed-Solomon Erasure Correction (RSE)
code, 275
Erlang-k distribution, 242
Excess redundancies, 240

Fail-stop, 194
Failure-detection protocol, 197, 230
admission-scheduler-based (ASB)
protocol, 197
detection delay, 196
Filling time, average, 176
First-Block Replication (FBR), 70
First-come-first-serve (FCFS), 45. See also
disk scheduling algorithm
Forward erasure correction (FEC), 169, 195,
238

Group of pictures (GOP), 31

Grouped consonant broadcasting (GCB),
320

Grouped Sweeping Scheme (GSS), 49. See
also disk scheduling algorithm

H.264, 28. See also compression, standards
Hard scheduling, 61

High-Definition Video, 28

Hot sparing, 250. See also sparing scheme(s)
Hyper-Text Transfer Protocol (HTTP), 112

I frame(s), 30
IGMP
join group, 290, 327
leave group, 327, 333
Independent proxy, 162
Inelastic traffic, 5
Interactive control, 339
pause-resume, 339
seeking, 340
slow motion, 339
Interactive multicast streaming, 287
Inter-frame compression, 30. See also
compression
Internet phone, 5
Internet2, 289

Intra-frame compression, 30. See also
compression
IP multicast, 290

Layered-video codec, 33, 141. See also
compression
Lossless smoothing algorithm, 121

Macro-round, 50, 218, 357
Maximum advance, 178
Maximum lag, 178
Maximum Queue Length (MQL), 297
MDR transmission schedule, 123
Media adaptation, 33
Media delivery
real-time, 5, 13
soft-real-time, 5-6
Media multiplexing, 28
Meridian Lossless Packing (MLP), 26
Micro-round, 50, 199, 218, 357
Microsoft Media Services (MMS), 113. See
also streaming protocol(s)
Min-Rate transmission, 196
Mixed-distributed-baseline rebuild, 255
Monotonic Decreasing Rate Scheduler
(MDR), 122
MPEG multiplexer, 29
MPEG-1, 28
MPEG-2, 28
MPEG-3, 28
MPEG-4, 28
MTTF (mean time to failure), 237, 239
MTTR (mean time to repair), 239
Multicast address (group), 290
Multicast routing protocols, 290
Multicast streaming
broadcasting, 287
interactive multicast streaming, 287
on-demand multicast streaming, 287
Multi-disk scheduling
concurrent schedule, 54
offset schedule, 56
split schedule, 56
Multi-row-permutated data reorganization
(m-RPDR), 269
Multistream pipelining, 10
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Non-stop service
despite disk failure, 89
despite server failure, 193
Normal mode operation, 84
Normalized capacity gain, 74
Normalized latency, 346
NTSC, 27
NVoD (Near-Video-on-Demand), 331-332

Observational admission control, see
admission control

Offset schedule, 56. See also multi-disk
schdeuling

On-demand multicast streaming, 287. See
also multicast streaming

Open-loop algorithm(s), 309. See also
multicast streaming

Overflow probability constraint, 62

Overflow recovery, 72

Over-rate transmission (ORT), 222

P frame(s), 30
Parity group, 85, 238, 273, 275
reshuffling, 276
Partition, data, 51
Patching, 297. See also multicast streaming
recursive, 301
transition, 300
stream (P-stream), 300
Pause-resume, 339. See also interactive
control
Performance guarantee
best effort, 21
deterministic, 21
probabilistic (statistical), 21
Periodic broadcasting, 309. See also
multicast streaming
Piggybacking, 304. See also multicast
streaming
Pipelined rebuild, 99. See also data rebuild
Placement policy
randomized, 62, 166
round-robin, 165, 166, 174, 218, 265
row-permutated, 265, 269
weighted segment group pairing (WSGP)
scheme, 359

Playback buffers, 94
Prefetch, 113, 144, 150, 178. See also prefill
delay
Prefill delay, 180, 185, 226. See also
prefetch
Prefix, 304
caching, 304. See also caching
proxy, 304
Probabilistic performance guarantee, 21. See
also performance guarantee
Progressive redundancy transmission (PRT),
169, 196, 203, 240
Proxy-at-client, 163
Proxy-at-server, 161

QoS guarantee, 13, 141, 176. See also
performance guarantee

Quantizer regulation, 37

Quarter-Common Interchange Format
(QCIF), 27

Read-on-arrival, 92. See also disk model
RealNetworks Data Transport (RDT), 114.
See also streaming protocol(s)
Real-time delivery, 5, 13
Internet phone, 5
video conferencing, 5
Real-time streaming protocol (RTSP), 114.
See also streaming protocol(s)
Real-time transport protocol (RTP), 115. See
also streaming protocol(s)
Rebuffering ratio, 149
Rebuild
buffers, 94
rate, 94
time, 93
Rebuild algorithms
baseline rebuild, 252
distributed rebuild, 254
mixed-distributed-baseline rebuild, 255
Rebuild mode operation, 84
Reception schedule, 310
Recursive patching, 301. See also multicast
streaming
Redundant Array of Inexpensive Disks
(RAID), 86
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Redundant data update, 272
for multiple redundant nodes, 280
overhead, 278
Redundant server scheme (RSS), 204
Redundant units (blocks), see erasure(s)
Reed-Solomon Erasure Correction (RSE)
code, 275. See also erasure(s)
Regular stream (R-stream), 300
Reliability
challenge, 14
parallel server architecture, 193
storage systems, 83
Replication, 51
Requantization threshold bit-rate (RTB), 35
Resource allocation, 23, 131, 196, 230
Resource reservation, see resource allocation
Response time, system, 180, 226
Rotational latency, 44. See also disk model
Round-robin placement, 165, 166, 174, 218,
265. See also placement policy
Row-permutated data reorganization
(RPDR), 265, 269. See also
placement policy
RTP control protocol (RTCP), 115. See also
streaming protocol(s)

SCADDAR, 264. See also placement policy
Scalability, 14
Schedulig delay, 180
Seek
disk seek, 44
interactive control, 340
Server failure, see fail-stop
Server push, 167, 174. See also service
model
Server rebuild, 249. See also data rebuild
Service group, 357
Service model, 174
client pull, 167, 174
server push, 167, 174
Short striping, 164. See also striping
Skewness, video popularity, 174. See also
Zipf
Slow motion, 339. See also interactive
control
Smoothing, of video bit-rate, 119

Soft scheduling, 61. See also disk scheduling
algorithm
Soft-real-time delivery, 5—6
video-on-demand, 6
Sparing scheme(s), 93, 250
distributed sparing, 250
hot sparing, 250
Split schedule, 56. See also multi-disk
scheduling
SS-VoD (Super-Scalar Video-on-Demand),
331. See also multicast streaming
Staggered push, 217
Start-up latency, 302, 318, 340
Static multicast channel, 332
Statically admitted, 334
waiting time for, 340
Statistical capacity dimensioning, 62. See
also capacity dimensioning
Statistical performance guarantee, 21
Std-Rate transmission, 196
Streaming
in mixed-traffic networks, 121
model, 7
streaming protocol(s)
Microsoft media services (MMS), 113
RealNetworks data transport (RDT), 114
Real-time streaming protocol (RTSP), 114
Real-time transport protocol (RTP), 115
Striping
disk striping, 53
network striping, 164
server striping, 164
short striping, 164
space striping, 165
sub-frame striping, 165
sub-schedule striping, 184
tape striping, 164
time striping, 164
wide striping, 164
sub-schedule striping (SSS), 184
Super Audio CD (SACD), 26
Synchronization
active disk synchronization (ADS),
101-102
media streams, 5
server, 168
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System expansion, 263
data reorganization, 265
redundant data update, 272
System reconfiguration, 196
System restoration, 250

Taxonomy
open-loop multicast streaming
algorithms, 310
parallel server architecture, 159
Temporal dependencies, in compressed
video, 30
Test Model 5 (TMS), 37
Time-scale modification, 305
Track group, 100
Track-based rebuild, 96
Track-based retrieval, 48
Trade-off, 16
capacity, 17, 51, 62, 269, 324
complexity, 20-21, 296, 350
quality, 20, 33, 304
space, 18, 48, 51, 66, 122, 237,299
time, 17, 48, 295
Traffic overlapping, 222
Transcoder, 33
design, 34
implementation issues, 36
Transcoding techniques, 33
requantization, 34
spatial downscaling, 34
Transition patching, 300

Transition stream (T-stream), 301
Transmission control protocol (TCP), 111
congestion control, 112
Transmission jitter, 176
Transmission overhead, of FEC, 169,
240
Transmission schedule, 120, 124
TV broadcasting, 288. See also broadcasting
TVoD (True-Video-on-Demand), 291

Uneven group assignment, 181

Unicast, 287

User Datagram Protocol (UDP), 113
UVoD (Unified Video-on-Demand), 344

Vandermonde matrix, 275
variable-bit-rate encoding, 32, 165. See also
compression
Video
composition, 26
standards, 27
block consumption model, 177, 224
conferencing, 5
placement problem, 52

Weighted segment group pairing (WSGP)
scheme, 359
Wide striping, 164. See also striping

Zipf, 52
Zoned bit recording (ZBR), 58, 61
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