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Preface

This book is devoted to one of the most interesting and rapidly developing
areas of modern nonlinear physics and mathematics – theoretical, analytical
and numerical, study of the structure and dynamics of one-dimensional as well
as two- and three-dimensional solitons and nonlinear wave packets described
by the Korteweg–de Vries (KdV), Kadomtsev–Petviashvili (KP), nonlinear
Schrödinger (NLS) and derivative nonlinear Schrödinger (DNLS) classes of
equations. Special attention is paid to generalizations (relevant to various
complex physical media) of these equations, accounting for higher-order dis-
persion corrections, influence of dissipation, instabilities, and stochastic fluc-
tuations of the wave fields.

We present here a coordinated approach to the theory, simulations, and
applications of the nonlinear one-, two-, and three-dimensional solitary wave
solutions. Overall, the content of the book is a systematic account of results
not only already known in the literature, but also those of new original studies
related to the theory of models allowing soliton solutions, and analyses of the
stability and asymptotics of these solutions. We give significant consideration
to numerical methods and results of numerical simulations of the structure
and dynamics of solitons and nonlinear wave packets. Together with deep
insights into the theory, applications to various branches of modern physics
are considered, especially to plasma physics (such as space plasmas including
ionospheric and magnetospheric processes), hydrodynamics, and atmosphere
dynamics.

Presently, the theory of one-dimensional nonlinear equations of the classes
considered by the authors is well developed, and the progress in studies of the
structure and evolution of one-dimensional solitons and wave packets is obvi-
ous. This progress was especially fast after the discovery of hidden algebraic
symmetries of the KdV, NLS, and other (integrable by the inverse scatter-
ing transform (IST) method) classes of one-dimensional evolution equations.
However, as soon as generalizations of these classes on more complex cases are
involved, especially in two and three dimensions, the corresponding systems
are often not completely integrable in the generally accepted mathematical
sense. Thus an analytic study can provide us, in the best case, with the mere
answer on the stability of multidimensional wave solutions and their asymp-
totics, and, by analyzing the system’s behavior in the phase space, can give
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us qualitative characteristics and classification of the solutions. The detailed
study of the structure and dynamics of multidimensional nonlinear waves,
not solvable analytically in the general case, thus demands development of
proper high-precision and highly effective numerical methods of integration
of the related nonlinear systems as well as numerous numerical simulations.
This type of research is now mostly represented in uncoordinated journal and
conference publications covering particular aspects of the problem, without
providing a unified systematic approach.

There is another, in our view, important reason, and that was also one
of the major incentives prompting us to write this book. Presently, despite a
number of works on mathematical properties of solitons, there is practically
no systematic monograph-type literature on the theory of multidimensional
KP- and DNLS-class equations, and especially on their applications to vari-
ous physical situations. Thus important general theoretical results often are
not recalled in applied calculations of physical phenomena in various physical
systems, leaving these classes of equations as well as their solutions as “exotic
objects” for narrow specialists in particular subjects. As an example, we can
mention effects related to dissipation, processes leading to developing instabil-
ities and formation of complex turbulent structures, higher-order dispersion
effects, influence on the evolution of wave packets of stochastic fluctuations
of the wave field, etc. On the other hand, almost all of the above effects are
intrinsic properties of nonlinear dispersive complex systems attracting wide
attention presently.

We cannot pretend to provide an exhaustive account of all the aspects
of the modern theory of “soliton equations” because of its continuing in-
tensive development; however, we hope that the present book does help fill
the existing gaps in the literature. Our book is practically the first time
for monographic literature to discuss in detail such problems as structure,
stability, and dynamics of the nonlinear wave solutions, especially those of
KP- and DNLS-classes, consistently taking into account effects, important
in the physics of real complex nonlinear media; we study problems of devel-
opment of relevant classification of allowed solutions in the phase space and
by characteristics of their asymptotics; we deeply consider the ideology and
realization of new, including so called spectral, approaches to numerical inte-
gration of the related multidimensional nonlinear systems, differing from the
known methods by their high efficiency and possibility to control evolution
of the solutions and soliton interaction in its dynamics.

The spectrum of applications presented in this book is sufficiently wide.
Together with well known examples associated with the evolution of hydro-
dynamic surface waves, ion-acoustic and magnetosonic plasma waves (for the
latter we also discuss a number of new results related to the account of rel-
ativistic effects as well as the influence of dissipation, stochastic fluctuations
of the wave field and higher-order dispersion corrections, which can lead to
formation of essentially new types of solutions), we discuss for the first time
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applications to the analysis of the dynamics of nonlinear solitary internal
gravity waves in the Earth’s ionosphere, including those generated by fronts
of solar terminator and the shadow of a solar eclipse; we investigate the action
of Raleigh waves off a seismic source on the plasma dynamics of the iono-
sphere’s F-layer; we study dynamics of multidimensional solitons in media
with changing in space and time dispersion characteristics (in particular, we
investigate the problem of the structure and deformations of two-dimensional
solitons propagating on the surface of a shallow water with changing profile
of the bottom). We hope that the considered applications together with ana-
lytical and numerical results presented in a consistent and invariant way will
help the interested reader apply the corresponding methods to the solution
of particular problems in his/her field of research.

We also note that content of this book is a result of generalization of
our teaching experience in the development of courses on the theory and
numerical modeling of the nonlinear wave dynamics for students at graduate
and post-graduate levels. This strongly influenced the structure of the book;
we also hope that the methodic selection and presentation of the content will
allow to use this publication as a reference book not only for students but
also for scientists in various fields of modern physics.

We thus address this publication to researchers working in the theory and
numerical simulations of dispersive complex media in such fields as hydrody-
namics, plasma physics, and aerodynamics. As a reference book, we expect
the monograph to be useful to graduate and post-graduate students majoring
in physics and mathematics, as well as to scientists interested in solitons and
nonlinear waves in other nonlinear dispersive complex systems.

It is our pleasure to thank many people to whom we owe a great deal.
Vasily Belashov is especially thankful to Vladimir Karpman for his stimula-
tion and long term collaboration on many research topics, Vladimir Petvi-
ashvili for his kind attention to the research and discussions stimulated this
book, as well as Oleg Pokhotelov, Yoshi-Hiko Ichikawa and Masashi Hayakawa
for their permanent interest to this work, numerous useful discussions and
support. Sergey Vladimirov thanks Vadim Tsytovich, a great mentor, from
whom he has drawn much inspiration, as well as Lennart Stenflo and Ming
Yu, his valued experts on nonlinear surface and plasma waves, for their in-
fluence, support, and close research collaboration over the years. We would
also like to thank Yuri Kivshar for his continuing and stimulating interest to
the topic.

This book was partially supported by the Australian Research Council
and the Russian Foundation for Basic Research (Grant No. 01-02-16116).

Kazan, Sydney, October 2004

V.Yu. Belashov

S.V. Vladimirov
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Introduction

In the recent four decades a new direction related to the investigation of
nonlinear phenomena and processes has been actively developing in various
areas of physics. The transition from linear to nonlinear description, justified
by the necessity to take into account finer details of the observed phenomena,
is the natural step in the development of any part of physics.

In the systems described by the wave equations, the nonlinearity, i.e., the
dependence of the behavior of the wave packet on its amplitude, related, in
particular, to the generation of harmonics with larger wave numbers, can
enhance dissipation or trigger instability of the wave packets. If the medium
is also dispersive, which leads to the dependence of the group velocity of the
waves on the wave numbers, the dispersion, mixing up the phases, can coun-
terbalance the effects of the nonlinearity. As a result, the established level of
oscillations in the dispersive nonlinear medium can be rather high. For some
branches of oscillations the balance between the nonlinearity and dispersion
is established and nonlinear waves and/or nonlinear solitary waves, i.e., soli-
tons [1], appear [2]. Solitons are usually defined as wave formations that are
localized in space, (locally) stationary, and stable with respect to interactions.
They are fundamental wave structures for the nonlinear wave processes in the
presence of dispersion and play an important role in the wide spectrum of
areas of research related to the wave physics, e.g., in hydrodynamics, plasma
physics, condensed matter, and optics [3–11].

The large variety of processes which is necessary to take into account in
the theoretical investigation of physical phenomena in dispersive media leads
to the high complexity of even relatively simple hydrodynamics models, which
in sufficiently complete formulation are described by complex sets of nonlin-
ear partial differential equations. In this context, the decisive influence on
the development of the theory of nonlinear waves was exerted by the idea
of Korteweg and de Vries [12] that it is possible to significantly simplify the
initial equations without compromising the main physics of the phenomena
described; this can be done by keeping the nonlinear and dispersive terms of
the same order of accuracy. It then often appears that the resulting equa-
tions are universal and can describe phenomena in various complex nonlinear
dispersive media.

This simplified model equation for surface waves on a shallow water,
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∂tu+ αu∂xu+ β∂3
xu = 0, (0.1)

where u = u(t, x), was derived for the first times by Korteweg and de Vries
in 1895 [12]; however, the term “soliton” was introduced in 1965 by Zabusky
and Kruskal [1] who demonstrated that the Korteweg–de Vries equation (KdV
equation) reveals hidden linear properties, allowing a solution in the form of a
nonlinear solitary wave propagating without changing its profile. It appeared
later that the KdV equation describes a wide class of one-dimensional nonlin-
ear physical systems with “real” dispersion when the wave frequency is given
by ω ≈ c0kx(1+ δ2k2

x) (here, c0 is the phase velocity of the wave and δ is the
“dispersion length”), and, in addition to hydrodynamics, appears in plasma
physics, magnetohydrodynamics, theory of lattices, etc. [2,3,13,14], i.e., it is
quite universal.

If the considered media are viscous and/or heat conducting, the dispersion
is “imaginary”, i.e., ω ≈ c0kx(1 − iνkx/c0) (here, ν is the viscosity), and the
approach of Kortweg and de Vries leads to the Burgers equation [15]

∂tu+ αu∂xu = ν∂2
xu. (0.2)

Solutions of the Burgers equation describe such formations as shock waves.
In the physics of plasmas, aero- and hydrodynamics, as well as in many

other areas of physics, there is obvious interest to the wave dynamics of
non-one-dimensional systems with the nonlinearity of the hydrodynamic type
where stable stationary structures in the form of non-one-dimensional solitons
can exist [7]. Many such systems are described by the class of equations given
by

∂tu+ αu∂xu+ β∂3
xu = R, (0.3)

where u = u(t, x, y, z) is the function of the wave field and R = R[u] is
some linear functional of u. The particular form of the right-hand side of
(0.3) is defined by the wave properties of the medium and the sign of its
dispersion. For example, sound waves in a plasma with weak dispersion when
the wave numbers of the harmonics in the wave packet are small and satisfy
the inequalities

kδ � 1 and k2
x � k2

⊥, (0.4)

while the dispersion relation in the linear approximation given by

ω ≈ c0kx

(
1 +

k2
⊥

2k2
x

+ δ2k2
x

)
, (0.5)

are described by equation of the type (0.3) with R = κ∇⊥w and ∂xw = ∇⊥u:

∂x

(
∂tu+ c0∂xu− c0δ

2∂3
xu+ χu∂xu

)
= ± (c0/2)∆⊥u. (0.6)

Equation (0.6) for u = u(t, x, y) and ∆⊥ = ∂2
y was first derived in 1970 by

Kadomtsev and Petviashvili [16]; it is called now the Kadomtsev–Petviashvili
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equation (KP equation). Later, the KP equation was generalized in the three-
dimensional case, with ∆⊥ = ∂2

y + ∂2
z [7]. For the ion-acoustic waves in a

plasma, when u stands for the ion velocity, c0 = cs = (Te/mi)1/2 is the
ion-acoustic speed (Te is the electron temperature in the energy units and
mi is the ion mass) and δ2 = r2D/2 = Te/8πnee

2 (rD is the electron Debye
length and ne is the electron number density), we have the positive sign on
the right-hand side of (0.6), corresponding to the “negative” dispersion (for a
number of other cases the dispersion can be “positive”, i.e., the negative sign
appears on the right-hand side of (0.6)). This type of dispersion is typical for
isotropic media, but can also appear in some anisotropic media. If the char-
acteristic frequencies of the ion-acoustic wave packet in a magnetized plasma
significantly exceed the ion cyclotron frequency ωBi = eB0/mic (here, B0 is
the external magnetic field and c is the light speed), the anisotropy can be
neglected, but in the opposite case ω � ωBi this assumption is inadmissible.
In the latter case, an additional term proportional to ωBii× v (here, i is the
unit vector in the x-direction, and v is hydrodynamic velocity) appears on
the right-hand side of the corresponding magnetohydrodynamic equations,
and the sign of the second term in the dispersion equation (0.5) (and, corre-
spondingly, the sign of the term in the right hand side of (0.6)) changes to
the opposite, i.e., negative. We obtain in this case the equation of the class
(0.3), but with R = κ∆⊥∂xu, known as the Zakharov–Kuznetsov equation
[17].

In a strongly magnetized plasma with B2
0 � 8πnT (here, nT stands

for the plasma kinetic pressure) in the frequency range ω � ωBi, the fast
magnetosonic waves (FMS waves) can propagate [3]. For FMS waves, taking
into account that c0 = vA = B0/(4πnm)1/2, where vA is the Alfvén velocity
and nm is the plasma density, the dispersion law is also described by (0.5) and
the equation for the dimensionless amplitude of the wave field h = B∼/B0

(B∼ is the magnetic field of the wave) can be also written in the form (0.6).
In the reference frame moving along the x-axis with the Alfvén velocity vA,
the wave equation is given by

∂th+
3
2
vA sin θh∂xh− vAδ

2∂3
xh = −1

2
vA

x∫
−∞

∆⊥hdx, (0.7)

where θ is the angle between the magnetic field B0 and kx and

δ2 =
c2

2ω2
pi

(
cot2 θ − me

mi

)
. (0.8)

Here, ωpi = (4πnie
2/mi)1/2 is the ion plasma frequency and ni is the ion

number density.
For gravity-capillary waves in a shallow water, the equation of the type

(0.3) also holds. We have in this case R = −(c0/2)∇⊥w, α = 3c0/2H, β =
−c0δ2, where c0 = (gH)1/2, H is the depth,
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δ2 =
1
6

(
3σ
ρg

−H2

)
, (0.9)

σ stands for the coefficient of the surface tension, and ρ is the density of the
fluid.

Generalizing equations (0.6) and (0.7), we write (0.6) in the reference
frame moving along the x-axis with the velocity c0 and obtain the KP equa-
tion in the standard form

∂x

(
∂tu+ αu∂xu+ β∂3

xu
)

= κ∆⊥u. (0.10)

Here, the sign of the ratio β/κ defines the character of dispersion. The KP
equation (0.10) describes many nonlinear physical systems (where the linear
dispersion law is given by (0.5)) and it is thus universal in the same sense as
the KdV equation.

The difficulty in the analytical solution of nonlinear problems is in the
proper choice of the effective sequence of methods to construct approximate
solutions of the nonlinear systems, asymptotic in a small parameter. The per-
turbation theory is severely impeded in the non-one-dimensional case because
nonlinear resonances, instabilities, secular effects, etc., can lead to singulari-
ties [18]. The discovery by Gardner, Green, Kruskal, and Miura in 1967 [19]
of the inverse scattering transform method (IST method) for the KdV equa-
tion and subsequent developments of this idea (we would single out here the
classic paper by Zakharov and Faddeev [20] as well as Refs. [21–24] where
non-one-dimensional generalizations of the IST method were considered) has
lead to active development of the theory of nonlinear waves [24–28]. In par-
ticular, the complete integrability of the KP equation (0.10) for ∆⊥ = ∂2

y was
proved [29,30], and using the “dressing method” the exact two-dimensional
soliton solution (first numerically found by Petviashvili [31]) was obtained
for β/κ > 0. The latter for α = −6, β = −1, and κ = −3 is given by

u(t, x, y) = 2∂2
x ln detB, (0.11)

where

Bnm = δnm

(
x− iνny − ξn − 3ν2

nt
)

+ (1 − δnm)
2

νn − νm
,

νK+l = −ν∗l , ξK+l = ξ∗l , n,m = 1, . . . , 2K, and l = 1, . . . ,K

(νn and ξn here define the amplitudes, phases, velocity vectors, and other
soliton parameters). The invariants were also found [24]:

J1 =
∫∫

udxdy, J2 ≡ P =
∫∫

u2dxdy,

J3 ≡ H =
∫∫ [

1
2
β (∂xu)

2 +
1
2
κw2 − u3

]
dxdy, (0.12)
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where ∂xw = ∂yu. The first invariant, J1 is related to the divergence form of
the KP equation, the second one, J2, is due to the translational invariance
of the KP equation and is its momentum P, and the third one, J3, is due to
the time invariance of the KP equation and is its Hamiltonian H.

Significant progress was also achieved for a number of other exactly inte-
grable models. In the context of problems considered in this book, the most
interest is paid to the non-stationary derivative nonlinear Schrödinger equa-
tion (DNLS equation) given in the one-dimensional case by [32,33]:

i∂th+ is∂x

(
|h|2 h

)
+ λ∂2

xh = 0. (0.13)

The DNLS equation describes, in the frequency range ω � ωBi, the evolution
of nonlinear finite amplitude Alfvén waves [34] propagating in a magnetized
plasma along the external magnetic field with the ratio of the kinetic plasma
pressure to the magnetic pressure p = 4πnT/B2

0 . Here, the dimensionless
function h(t, x) = (By + iBz)/2B0|1 − p|1/2 describes the right circularly-
polarized wave when λ = 1 and s = sgn(1−p). The change h→ −sh∗ with the
change of the dispersion sign on the opposite one (λ = −1) allows description
of the left circular-polarized wave. Note that (0.13) is obtained from the
full set of the one-fluid magnetohydrodynamics equations (MHD equations)
in the dimensionless units t → ωBit/2, x → x/rA, and r⊥ → r⊥

√
2/rA

(rA = vA/ωBi) in the reference frame moving along the x-axis with the
Alfvén velocity vA taking into account ∂x = ∂y = 0.

The DNLS equation is completely integrable, has infinite number of the
conservation laws, and can be solved by the IST method [35]. The evolution
of Alfvén waves in the model (0.13) was studied in terms of the sign of the
DNLS integral of motion, H/2, where the Hamiltonian is given by

H =

∞∫
−∞

[
1
2
|h|4 + s|h|2∂xϕ

]
dx, ϕ = arg(h).

It was established that the wave evolution can lead either to its spreading or
to formation of the one-dimensional Alfvén soliton, depending on the sign of
H. From the physical point of view, this means that there are two types of
the nonlinear wave dynamics [33]: the modulationally-stable case when H > 0
and an initial pulse is spreading, loosing its structure; and the modulationally-
unstable case when evolution of the modulational instability [36] ends by the
formation of the one-dimensional soliton [32]

h =
(
A

2

)1/2 e−Ax + ieAx

cosh2(2Ax)
e−iA2t, (0.14)

where A is the amplitude of the soliton.
Equation (0.13), similar to the KdV equation, can be generalized in the

non-one-dimensional situation. Thus, three-dimensional generalization of the
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DNLS equation was obtained [7,37,38] in the form of the set of coupled equa-
tions

∂x

[
∂th

± + ∂x

(|h|2h±)± i∂2
xh

±] = −∇2
⊥
(
h+ + h−

)
, (0.15)

where h± = hy ± ihz. In the case of the negative dispersion, solutions in the
form of the one-dimensional solitons were numerically found [7,37,38]; and no
numerical study of non-one-dimensional solutions was done. The exact two-
dimensional solitary solutions of the set (0.15) can in principle be obtained
by the IST method, similar to the case of the KP equation; it is necessary to
construct the corresponding Lax L̂–Â pair [24].

Successes in the theoretical investigation of nonlinear physical systems
having soliton solutions has stimulated experimental studies in various ar-
eas of the physics of nonlinear waves. Here, we would like to mention the
laboratory and space experiments on excitation, evolution, and interaction
dynamics of the ion-acoustic and Alfvén solitons as well as the experimental
studies of the structure of plasma shock waves [39–50], the modeling of the
solitons’ dynamics in the electric circuits [51,52], the experiments on surface
waves and internal waves in rotating vessels and hydro-trays [53,54], etc. This
in turn has raised new questions and demonstrated the urgency of the theo-
retical investigation of such problems as the stability of non-one-dimensional
solitons, the dynamics of their interaction, the nonlinear resonances and for-
mation of the bound states, the effects of small corrections in equations of
the class (0.3), the influence of dissipation on the structure and evolution
of the non-one-dimensional and nonlinear waves and solitons, the wave self-
influence effects (the wave collapse and the wave self-focusing), etc.

It was shown, in Refs. [16,55-57] for some particular cases (concrete values
of the coefficients) of the equation (0.10) with ∆⊥ = ∂2

y , and in Ref. [58] for
arbitrary α, β, and κ, that for the negative dispersion (β/κ < 0) the one-
dimensional solitons are stable whereas for the positive dispersion (β/κ > 0)
they are unstable with respect to growth of infinitesimal perturbations. The
case of very small k was studied [16] by the Krylov–Bogolyubov method; in
Ref. [55], the term ∂4

yyxxu was added on the right-hand side of the equation
and the problem was solved by the method of the variation of the action with
the Lagrangian integrated over x and the test functions in the solitary-like
form; in Ref. [56], the IST method was used, and in Ref. [57], the Lyapunov’s
functional method was used. In Ref. [58], the numerical investigation was
done. It was demonstrated that for β/κ < 0 the perturbation can easily
transfer from the soliton into the medium and spread in all directions while
for β/κ > 0 it is “locked” in the soliton. In the region of localization of the
perturbation, the soliton’s velocity differs from the velocity of an unperturbed
soliton. This, taking into account the spreading, leads to the growth of the
perturbation.

For two-dimensional and three-dimensional solitons of the KP equa-
tion, the stability analysis is highly non-trivial. The most illustrative study
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[59,60] by the method of investigation of transformational properties of the
Hamiltonian (0.12) of the equation (0.10) has demonstrated that the two-
dimensional soliton is stable with respect to two-dimensional perturbations.
It was also shown [60], using the perturbation method of the linearized (on
the background of the solution (0.11) with n = 1, 2, m = 1, 2, and l = 1)
equation (0.10), that in the case of translation along the x-axis, the two-
dimensional soliton is unstable with respect to the bending of its front (a
three-dimensional perturbation). Qualitatively, the reasons for this instabil-
ity are the same as in the case of the one-dimensional soliton [30,31]. However,
the investigation [60] of small three-dimensional perturbations corresponding
to the transverse translation demonstrates that the two-dimensional solitons
of KP equation (0.10) are stable in the long-wavelength limit . The conse-
quence of the stability of the two-dimensional KP solitons with respect to
two-dimensional perturbations is the fact that, as can be seen from expres-
sion (0.11) for n,m = 1, . . . , N , N = 4, 6, . . ., and from numerical simulations
[61], they elastically collide in their interactions, and the phase shifts after the
collisions (well known in the one-dimensional problems [12]) are identically
zero [24].

The character of the evolution of three-dimensional solitons in the model
(0.10), as was demonstrated for FMS waves [59], is determined by the sign
of the ratio β/κ. In the case of the positive dispersion, the growth of the
instability leads to a nonlinear deformation of the front’s structure, namely,
to pushing the field out of the soliton’s center and to its (the field) growth
on the soliton’s “wings” with subsequent formation of one/two collapsing
“cavitons” [59,63,64]. For the negative dispersion, the initially observed sub-
focusing of the wave field later transfers into the defocusing regime.

The three-dimensional generalization of (0.13), the 3-DNLS equation, was
obtained [65–69] in the form

∂th+ s∂x

(|h|2h)− iλ∂2
xh = κ

x∫
−∞

∆⊥hdx. (0.16)

In Refs. [50,70], on the basis of the method of the Hamiltonian’s deformations
on solutions, the problem of the stability of three-dimensional solutions of
(0.16) was investigated. It was demonstrated that the left-polarized as well as
right-polarized three-dimensional waves can be stable in some region of values
of the Hamiltonian of (0.16). An analysis of numerical results demonstrates
that the 3-DNLS equation can also have, in addition to the collapsing and
spreading solutions, a three-dimensional solution in the form of Alfvén soliton.
We stress here that equation (0.16), in contrast to DNLS equation (0.13), is
not completely integrable [65], and therefore cannot be solved analytically by
the IST method.

It is therefore clear that for three-dimensional problems of the above
classes, the application of effective methods such as the IST method and the
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perturbation theory can be difficult. Moreover, for a number of cases (e.g.,
3-DNLS equation) this is merely impossible since the application demands
introduction of some limitations to fix classes of the initial and boundary (if
effectively acting boundaries appear in the problem) conditions. In this situ-
ation, in order to obtain information on nonlinear processes in a wide range
of the system parameters, it appears necessary to use powerful methods of
computational mathematics developed to solve various problems in plasma
physics, as well as in hydro-, gas-, and fluid dynamics (see, e.g., Refs. [71–77]
as well as the literature cited therein). In the context of problems studied in
this book, we note the works in Refs. [31,58,64,78,79]. Numerical methods
also make sense for solution of many practically important applied problems
when the use of cumbersome and sometimes overly complicated analytical
methods appears unreasonable. Here we note that the first two-dimensional
soliton solutions of the KP equation as well as three-dimensional solutions of
the 3-DNLS equation were found numerically [31,65], as well as a number of
results we discuss in this book (see the corresponding references).

Regarding the KP equation, we would like to remark the following. In some
cases, the coefficient at the third derivative in equations of the class (0.3) can
be close (or even equal) to zero. This can happen, e.g., for the gravity-capillary
waves in shallow water when H → (3σ/ρg)1/2, for fast magnetosonic waves
(FMS waves) when θ → arctan(mi/me)1/2 (see expressions (0.8) and (0.9),
respectively). This situation, however, does not mean that the dispersion
disappears; indeed, the balance between the nonlinear and dispersive terms
can still be maintained in this case by taking into account the next term of
the expansion of the full dispersion equation in the wave number k. Thus
the Taylor expansion of the dispersion relation for waves on the surface of an
ideal incompressible fluid ω2 = gk tanh[(H2 − 3σ/ρg)1/2k] [3] in the limiting
case of shallow water (namely, kδ � 1, where δ = (|β|/c0)1/2) gives us

ω ≈ c0k

{
1 +

1
6
(
3σ̃ −H2

)
k2

+
1
6

[
H2

(
2
5
H2 − σ̃

)
− 1

12
(
3σ̃ −H2

)2]
k4

}
, (0.17)

where σ̃ = σ/ρg. The Fourier transform of (0.17) allows us to find the dis-
persion correction for an equation of the class (0.3). The correction is pro-
portional to the fifth derivative, it appears in the expression for R[u], and is
given by −γ∂5

xu, where the coefficient γ is [80]

γ =
c0
6

[
H2

(
2
5
H2 − σ̃

)
− 1

12
(
3σ̃ −H2

)2]
. (0.18)

For waves propagating in a magnetized plasma where B2
0 � 8πnT as well

as c0 = vA � c and ω � ωpi, the dispersion law in the linear approximation
is
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ω1,2 =
vAk

2
√

1 + c2k2/ω2
pe

⎧⎨
⎩
[
(1 + cos θ)2 +

c2k2

ω2
pi

cos2 θ
1 + c2k2/ω2

pe

]1/2

±
[
(1 − cos θ)2 +

c2k2

ω2
pi

cos2 θ
1 + c2k2/ω2

pe

]1/2
⎫⎬
⎭ , (0.19)

where ωpe = (4πnee
2/me)1/2 is the (unperturbed) electron plasma frequency.

Here, we consider the magnetosonic mode only, i.e., choose the upper (posi-
tive) sign in (0.19). Keeping the terms up to the forth order in k (inclusive)
in the expansion of (0.19), we obtain

ω ≈ vAk

{
1 +

c2k2

2ω2
pi

(
cot2 θ − me

mi

)

+
c4k4

8ω4
pi

[
3
(
me

mi
− cot2 θ

)2

− 4 cot4 θ
(
1 + cot2 θ

)]}
. (0.20)

Thus, analogous to the previous case, we find [81–83]

γ = vA
c4

8ω4
pi

[
3
(
me

mi
− cot2 θ

)2

− 4 cot4 θ
(
1 + cot2 θ

)]
. (0.21)

Note that an expansion, analogous to (0.20), can also be done for the Alfvén
mode corresponding to the negative sign in the dispersion relation (0.19).
This, however, is not physically justified since it does not correspond to re-
ality because the coefficient (in the dimensional units) iλr2A ≡ iλv2

A/ω
2
Bi at

the dispersion term in equations (0.13) and (0.16) does not tend to zero in
any case. As we can see from (0.17) and (0.20), the dispersion character de-
termined in a general case by a relation between the parameters β and γ can
sometimes have different signs for large and small wave numbers k. Thus the
situation is becoming more complex as compared to the standard KdV and
KP models.

It is often inadmissible to ignore dissipation, and the basic equation should
be complemented by the corresponding terms. For example, if we consider ion
oscillations in a plasma with frequencies much less than the electron plasma
frequency (in this case for Te � Ti their Landau damping is small), then
the dissipative effects related to the plasma relaxation lead to the imaginary
term −iνk2

x in the dispersion equation. Correspondingly, the Burgers term
ν∂2

xu [15] appears on the right-hand side of equations of the type (0.3) and
(0.16). It was demonstrated [3] that

ν = (ρ0/2ρ)
(
c2∞ − c20

)
τ

∞∫
0

ξϕ(ξ)dξ
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has the sense of the coefficient of the relaxation damping of the “sound”,
where c∞ and c0 are the velocities of the high-frequency and the low-
frequency sound, respectively (note that the latter is equal to cs = (Te/mi)1/2),
and ϕ(t, τ) is the function determining the relaxation process. If, on the other
hand, for ion-acoustic waves in a plasma the Landau damping is significant,
the dissipation can be taken into account by the corresponding integral term
[3] in the equation

R[u] = −L̂[u] = −κ
∞∫

−∞

dk
2π

|k|
∞∫

−∞
u(x′)eik(x−x′)dx′,

where κ = c0(πme/8mi)1/2. Below in this book, taking into account that
the hydrodynamic approximation is considered (and ω � ωpe), we limit our-
selves to the investigation of the influence on the structure and evolution of
nonlinear waves of only the viscous-type dissipative processes.

Taking into account the above arguments, we thus generalize the KP
equation using the higher order dispersion correction as well as the dissipative
term and obtain [81]

∂x

(
∂tu+ αu∂xu− ν∂2

xu+ β∂3
xu+ γ∂5

xu
)

= κ∆⊥u, (0.22)

where κ = −c0/2. This equation is universal in the same sense as the KdV
and KP equations, and corresponds to the following dispersion law:

ω ≈ c0kx

(
1 +

k2
⊥

2k2
x

− iνkx

c0
+

−βk2
x + γk4

x

c0

)
. (0.23)

The 3-DNLS equation (0.16), taking into account the viscous-type dissipative
processes, can be written as

∂th+ s∂x

(
|h|2 h

)
− iλ∂2

xh− ν∂2
xh = κ

x∫
−∞

∆⊥hdx. (0.24)

For this equation, with κ = −c0/2 and c0 = vA, and with the formal change
βkx = λ, γ = 0, and s = c0, relation (0.23) also holds.

Finally, various instabilities (determined by the particular character and
parameters of the medium where the waves propagate) leading usually to
rapid increase of perturbations with eventual formation of developed turbu-
lent structures and transfer of the wave energy into other degrees of freedom,
can be taken into account by introducing a term proportional to the fourth
derivative, δ∂4

x, into the left-hand side of equations (0.22) and (0.24). This
term is necessary because of the additional imaginary term −iδk4

x/c0 appear-
ing in the dispersion relation (0.23).

Regarding the model equations introduced above we would like to note
the following. The stationary soliton solutions of (0.22) for ν = κ = 0 were
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first obtained numerically by Kawahara [84]. It was demonstrated that for
β > 0 and γ > 0, the one-dimensional soliton acquires an oscillating struc-
ture. The two-dimensional equation of the type (0.22) with β = γ = 0 and
∆⊥ = ∂2

y was first considered by Zabolotskaya and Khokhlov [85] when de-
scribing propagation of two-dimensional nonlinear sound waves in a medium
with dissipation. The equation of the type (0.22), with ν = 0 and ∆⊥ = ∂2

y

when β ≥ 0, γ > 0, and κ < 0, for gravity-capillary waves in shallow water
was numerically investigated by Abramyan and Stepanyants [80] using the
method of stabilizing factor, suggested in Ref. [31] to find stationary solutions
of the two-dimensional KP equation. As a result, for the above parameters in
Ref. [80] solutions were obtained in the form of a stationary two-dimensional
soliton and a pair of solitons (a bisoliton) with oscillating tails. The cross-
sections of these solutions along the x-axis (i.e., at y = 0) were qualitatively
similar to the solutions obtained by Kawahara in the one-dimensional case
[84] as well as results found in experiments on modeling of nonlinear processes
described by the KdV equation with the fifth-order derivative for β = 0 in
electric lines [51]. However, the conditions and the dynamics of formation of
such structures remained unclear, as well as the character of solutions for
β < 0, |γ| > 0, and β ≥ 0, γ < 0 (note that for γ < 0 the method used in
ref. [80] diverges), their stability in the whole range of |γ| > 0 and β, and
the influence of dissipation on the structure and evolution of these nonlinear
waves. The three-dimensional equation of the type (0.22), having wide appli-
cations in the physics of nonlinear dispersive waves, was not investigated by
other authors before the works of Belashov and co-authors (see Ref. [83] as
well as references therein). The problems outlined above for two-dimensional
systems, as well as specific processes of the wave self-influence, described by
the three-dimensional KP equation [18,59,86,87], are especially important in
the three-dimensional setting.

The DNLS equation of the type (0.24) for ν = 0 and κ = 0 was first
investigated numerically by Dawson and Fontán [33], and analytically by
Kaup and Newell [35]. In the three-dimensional case for ν = 0 it was studied
by Petviashvili and Pokhotelov [7]. However, as we already noted above, only
one-dimensional solutions without accounting for dissipative processes were
considered in these works. The considered one-dimensional geometry did not
allow investigation of the effects of the wave self-influence, the stability of non-
one-dimensional solutions, and the influence of dissipation on the structure
and evolution of nonlinear Alfvén waves.

Note that exact analytic solutions of the generalized equations considered
in this book are not known. Therefore, we widely use numerical methods for
integration of nonlinear systems of the type (0.22) and (0.24). The analyti-
cal approaches to investigations of such systems are limited by qualitative,
asymptotic, and stability analyses of their solutions, as well as by studies
of some particular cases (important for applications) of external influence
of a medium on the structure and dynamics of multidimensional nonlinear
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waves and solitons [83]. The above approaches to investigation of non-one-
dimensional nonlinear systems of KP and DNLS classes constitute the main
content of the corresponding sections of this book.

The book consists of an Introduction, four Chapters, subdivided into Sec-
tions and subsections, and two Appendixes.

In Chap. 1, Sect. 1.1, we derive the Korteweg–de Vries equation (KdV
equation) from the full set of hydrodynamic equations. We realize the general
approach, Sect. 1.1.1, i.e., do not consider any particular type of a medium,
and work further with the general equations. We demonstrate that the KdV
model is universal in the sense that it describes the nonlinear wave dynamics
in any medium where the wave dispersion is of a certain sort, and consider the
scale transforms and the similarity principle for KdV equation, Sect. 1.1.2.
We also briefly consider some other one-dimensional equations of the KdV
class (see Sect. 1.1.3). In Sect. 1.2, we present fundamentals of the theory
of the inverse scattering transform (Sect. 1.2.1). The powerful IST method
enables us to analytically obtain general solutions of some classes of canon-
ical nonlinear equations. On this basis, we approach the problem of (exact)
analytical integration of the KdV equation (Sect. 1.2.2). In Sect. 1.2.3, we
consider generalization of the integral Gelfand–Levitan–Marchenko equation
(GLM equation) for the purpose of possible separation of the study of the soli-
ton and non-soliton parts of the solution. Then we consider the variational
principle which practically enables us to separate these types of solutions
(Sect. 1.2.4). The inverse scattering problem for the multidimensional cases
is considered later in Chap. 3 (see Sect. 3.2).

However, even development of such powerful and effective analytical ap-
paratus as the IST method does not remove the problem of numerical inte-
gration of the KdV equation as well as other equations of KdV-class from the
agenda. It is because, first, for arbitrary initial conditions it is not possible
to obtain an analytical solution in its closed form using the IST method. The
second reason is that there are models not integrated analytically among the
equations of KdV-class (for example, the Korteweg–de Vries–Burgers equa-
tion (KdVB equation) or KdV equations with additional terms describing,
e.g., instability of some type in the medium). Therefore, the problems of de-
veloping numerical codes and setting up numerical experiments for this class
of problems are highly important. In Sect. 1.3, by example of the KdV equa-
tion, we consider some difference schemes used for the numerical analysis and
present numerical solutions obtained with their help. These schemes are also
used to obtain solutions of other one-dimensional equations of KdV-class, and
some elements of these schemes will be further used (see Chap. 4) when study-
ing numerical methods of integration of the (1+2)- and (1+3)-dimensional
problems. Finally, in Sect. 1.4 we consider applications of the results obtained
for the KdV equation to description of the structure and dynamics of one-
dimensional waves in a plasma. Specifically, we study ion-acoustic waves in
an unmagnetized plasma, including weakly relativistic effects as well.
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In Chap. 2, Sect. 2.1, we present some generalizations of the KdV equa-
tion taking into account dissipative effects, higher order dispersion corrections
and instability (Sect. 2.1.1 and 2.1.2), as well as considering the modified KdV
equation (MKdV equation, Sect. 2.1.3). In Sect. 2.1.4, by example of surface
waves in a plasma, we present a KdV-type equation with higher order dis-
persive nonlinearity and discuss some types of solitary surface plasma waves.
Other problems related to evolution of generalized KdV solitons and classi-
fication of solutions of the generalized KdV equation, using methods of the
qualitative and asymptotic analyses, are discussed in Sect. 2.2. In particu-
lar, we consider evolution of solitons of the KdV equation generalized by
the terms accounting for dissipation, higher order dispersion correction, and
instability, Sect. 2.2.1). We also consider the soliton evolution in a medium
with stochastic fluctuations of the wave field within the limits of the stochas-
tic KdV equation (Sect. 2.2.2). Section 2.2.3 is devoted to the qualitative and
asymptotic analysis of all possible classes of solutions of the generalized KdV
equation.

In Sect. 2.3, we consider effects related to modulational interactions, where
change of the wave envelope occurs as a result of the modulational instability,
an instability of a wave with respect to its modulations. The final stage of
this instability, in the one-dimensional case, leads to the formation of enve-
lope solitons. The canonic equation describing this type of processes is the
nonlinear Schrödinger equation (NLS equation), with solution in the form of
an envelope NLS soliton. An important generalization of the NLS equation
including interactions via propagating low-frequency perturbations is called
the Zakharov system of equations or Zakharov equations, with numerous ap-
plications in plasma physics and nonlinear optics. Thus we first, in Sect. 2.3.1,
derive the NLS equation for the simplest case of slow modulations of Lang-
muir waves in an unmagnetized plasma. The inverse scattering problem for
the NLS equation is outlined in Sect. 2.3.2. Then in Sect. 2.3.3 we generalize
the NLS equation for faster modulations of the Langmuir wave in a plasma,
derive the Zakharov system of equations, and, in Sect. 2.3.4, demonstrate
its solution in the form of an envelope Langmuir soliton. In Sect. 2.3.5, we
consider an interesting case of a Langmuir near-sonic soliton and study the
influence of dissipative processes on its propagation. To conclude Chap. 2, in
Sect. 2.4 we introduce the derivative nonlinear Schrödinger equation (DNLS
equation), derive it from the plasma magnetohydrodynamic equations (MHD
equations) (Sect. 2.4.1), consider the DNLS equation as an integrability con-
dition for two linear differential equations (Sect. 2.4.2) and discuss stability
of such DNLS solutions as the DNLS soliton, Sect. 2.4.3. Finally, we present
some numerical approaches to study the dynamics of Alfvén soliton (Sect.
2.4.4) and consider results of numerical simulations of the soliton’s evolution
(Sect. 2.4.5).

In Chap. 3, we discuss generalization of the KdV equation on a weakly
non-one-dimensional case when the Kadomtsev–Petviashvili equation (KP
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equation) appears (Sect. 3.1.1). Furthermore, we consider various classes of
solutions of the KP equation and investigate the problem of their stability
in more detail (Sects. 3.1.2 and 3.1.3). Finally, we present some effective
methods of numerical integration of the KP equation (Sect. 3.1.4) used in
particular for study of the wave self-focusing phenomenon and the wave col-
lapse in the classic KP model. In Sect. 3.2, we present the dressing method,
an analytical integration of the KP equation by “dressing” of L–A pairs on
an example of the two-dimensional KP equation (Sect. 3.2.1). Furthermore,
in Sect. 3.2.2 we consider the method of three-dimensional inverse scattering
problem, 3-ISP, and investigate problems related to the wave self-influence
phenomena, namely, the wave collapse and wave self-focusing in the three-
dimensional KP model, Sect. 3.2.3.

In Chap. 4, we generalize the classic KP equation by introducing the
higher order dispersion correction, the terms describing dissipation of the vis-
cous type as well as an instability and stochastic fluctuations of the wave field
(Sect. 4.1). Thus we derive the generalized KP equation (GKP equation). We
then reduce this equation to a simplified form allowing its subsequent analy-
sis (Sect. 4.1.1). Furthermore, in Sect. 4.1.2, we derive the three-dimensional
derivative nonlinear Schrödinger equation (3-DNLS equation) from the full
set of the plasma one-fluid MHD equations, and then, using the scale trans-
forms, reduce it to the dimensionless form convenient for further analysis.
Also, a generalization of 3-DNLS equation in the presence of dissipation in
a medium is presented. Then, in Sect. 4.1.3, we study in detail the stability
of two- and three-dimensional solutions of the GKP and 3-DNLS equations.
In Sect. 4.2, on the basis of the results of Sect. 2.2, we study the structure
of (possible) multidimensional solutions of the GKP equation with an arbi-
trary nonlinearity exponent. We employ an approach taking into account the
asymptotics of the solutions along the direction of the wave propagation. The
study of the asymptotic behavior of solutions of 3-DNLS equation along the
direction of the wave propagation is a simpler problem because we can ex-
plicitly obtain exact solutions in the one-dimensional approximation [32,33].
We also present some considerations on the construction of the 8-dimensional
phase portraits for the systems described by the GKP equation on the basis
of the results of qualitative analysis of the generalized KdV-class equations.

In Sect. 4.3, we consider a few relatively simple methods of numerical
integration of the GKP- and 3-DNLS-class equations used in Sects. 4.4–
4.6 to study dynamics of multidimensional solitons and non-stationary wave
packets. The methods are based on the explicit and implicit finite-difference
schemes (Sects. 4.3.1 and 4.3.2) with O(τ2, h2

x,y) and O(τ2, h4
x,y) approxima-

tions. We consider also the dynamic spectral method (Sect. 4.3.3) including
first the Fourier transform of the basic equations in the space variables and
then the subsequent solution of the resulting first-order differential equations
by the Runge–Kutta method. For every algorithm, we formulate the stability
conditions. Unlike the schemes considered in Sect. 3.1, the methods presented
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here not only enable us to control the evolution of the solutions as well as the
dynamics of the solitons and their interactions, they, exhibiting the high accu-
racy characteristics, are less cumbersome than the iterative splitting method
and the hop-scotch method sometimes used for numerical integration of KP
equation. We consider all the methods on an example of the standard KP
equation aiming, first of all, to avoid the inconveniences of those considered
earlier as well as to compare all of them. When applied to the 3-DNLS equa-
tion, these methods, unlike the method based on the Ablowitz–Ladik scheme
for example, take into account the multidimensionality of the problem. To
conclude this section, we discuss comparative characteristics of the schemes
of different types obtained when testing the basic equations on the exact
solutions.

In Sect. 4.4, we consider numerical solutions of the two-dimensional GKP
equation written in the differential form and describing formation and in-
teraction of solitons. We also present the evolution of nonstationary wave
packets. Numerical integration of GKP equation is performed by using both
the dynamic spectral method and the implicit scheme with O(τ2, h4

x,y) ap-
proximation. The initial conditions are assumed in the form of the soliton
solutions of the KP equation (see Sect. 3.1.2) with various values of param-
eters defining the amplitudes, phases, velocities and other soliton charac-
teristics. The numerical integration is controlled by the conservation of the
momentum and Hamiltonian of the soliton solutions. We consider the struc-
ture of two-dimensional numerical solutions estimating their stability (Sect.
4.4.1), the interaction of two-dimensional solitons (Sect. 4.4.2), the influence
of the viscous-type dissipation on their evolution (Sect. 4.4.3), as well as the
evolution of two-dimensional solitons in a dispersive medium with stochastic
fluctuations of the wave field (Sect. 4.4.4) and the dynamics of solitons in a
medium with variable dispersion (Sect. 4.4.5). In Sect. 4.5, we numerically
investigate the structure and evolution of three-dimensional solutions of the
GKP equation (Sects. 4.5.1 and 4.5.3). We also study the 3-DNLS equation
(Sects. 4.5.2 and 4.5.3) in the axially-symmetric geometry. For numerical
integration, we use the methods presented in Sect. 4.3. In Sects. 4.5.1 and
4.5.2 we present results of the numerical study of the structure of solutions,
estimate their stability, and consider the dynamics of the evolution of the
three-dimensional axially-symmetric pulses in the GKP and 3-DNLS models,
respectively. Finally, in Sect. 4.5.3 we present numerical results of the investi-
gation of the influence of a viscous-type dissipation for the GKP and 3-DNLS
models on the evolution of the three-dimensional solutions obtained.

As we already mentioned above, equations (0.10) and (0.22) are universal
in the sense that they describe a wide class of nonlinear waves in dispersive
media in the absence and in the presence of dissipation, respectively. Such
situations occur, e.g., for the wave perturbations of the acoustic type such as
the ion-acoustic waves and magnetosonic waves in a plasma, surface waves
in shallow water, and internal gravity waves (IGW) in the Earth’s upper at-
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mosphere and ionosphere (applications in the one-dimensional case are given
in Sect. 1.4). Equations of the DNLS class (0.13), (0.16), and (0.24) directly
describe the nonlinear evolution of Alfvén waves in a magnetized plasma with-
out and with dissipation in the medium, respectively. In Sect. 4.6, we consider
applications of the results obtained for multidimensional cases to the investi-
gation of: (a) the propagation of nonlinear ion-acoustic waves in an unmag-
netized plasma, including the relativistic effects, Sect. 4.6.1; (b) the dynamics
of three-dimensional fast magnetosonic waves (FMS waves) propagating in
a magnetized plasma, Sect. 4.6.2; (c) the dynamics of two-dimensional soli-
tary nonlinear internal gravity waves, generated in the F-layer of the Earth’s
ionosphere by fronts of the solar terminator and the solar eclipse as well as by
seismic sources, and excitation by them of the traveling perturbations of the
plasma electron density (so-called traveling ionospheric disturbances, TID),
Sect. 4.6.3; and (d) the evolution of two-dimensional solitons of the gravity
waves and gravity-capillary waves on the surface of a shallow water with the
bottom relief varying in time and space, Sect. 4.6.4. The main results here
are obtained by the analytical and numerical methods detailed above in the
previous sections of the book.

Finally, in Appendixes we elaborate and present two technical problems.
In the first one, we investigate expansion of four-dimensional dynamic sys-
tems linearized in the vicinity of singular points (and the corresponding
canonical systems) into two sub-system. Similarly, we consider expansion of
three-dimensional dynamic systems into a two-dimensional system and one
equation that used in Sect. 2.2.3 when constructing the phase portraits of so-
lutions in four-dimensional and three-dimensional phase spaces, respectively.
In the second part, we investigate an algebraic equation of the fourth order
appearing when analyzing possible extrema of the Hamiltonian of the GKP
equation in Sect. 4.1.



1. KdV-Class Solitons

1.1 Korteweg–de Vries Equation and KdV-Class
Equations

In this section, we derive the KdV equation from the full set of hydrodynamic
equations. Here, we realize the general approach, i.e., we do not consider any
particular type of a medium (Sect. 1.1.1), and work further with the general
equations. We demonstrate that the KdV model is universal in the sense that
it describes the nonlinear wave dynamics in any medium where the wave
dispersion is of a certain class, and consider the scale transformations and
the similarity principle for the KdV equation (Sect. 1.1.2). We also briefly
consider some other one-dimensional equations of the KdV class.

1.1.1 Derivation of the KdV Equation

The fundamental equation describing the propagation of nonlinear waves in
the one-dimensional case in a medium with weak dispersion is the Korteweg–
de Vries equation (KdV equation) [12], with solutions as stable solitary wave
structures, i.e., solitons. Let us show how this equation can be derived.

Introduce, first of all, the generalized “density” ρ and generalized “sound”
velocity c(ρ), neglecting the medium’s dispersion for the moment.
• For the surface waves in the water the above are: ρ = H is the depth and
c(ρ) is the phase velocity of the waves; c(ρ) = c0 =

√
gH for small-amplitude

waves.
• For the ion-acoustic waves in a collisionless plasma: ρ is the plasma (gas)
density and c(ρ) is the phase velocity of the ion sound; c(ρ) = cs =

√
Te/mi

for the long-wavelength linear waves, where Te is the electron temperature in
energy units (Boltzmann constant equals unity), and mi is the ion mass.
• For the magnetosonic waves in a magnetized plasma: ρ = |B0| is (the
strength of) the external magnetic field and c(ρ) = vA = |B0|/

√
4πnm is the

Alfvén velocity, in this case usually the plasma density nm ≈ nimi where ni

is the ion density.
In the following, we work with equations involving these generalized func-

tions. We assume the dissipation is negligible and choose the following as the
basic the set of gas dynamics (or hydrodynamics) equations:
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∂tv + (v · ∇)v +
(
c2/ρ

)∇ρ = 0,

∂tρ+ ∇ · (ρv) = 0.
(1.1)

These are the equation of motion and the continuity equation for the gen-
eralized velocity and density, respectively. For the surface waves in shallow
water, v is the hydrodynamic velocity in the wave (the “mass” velocity);
for the ion-acoustic waves it is the ion velocity, for the magnetosonic waves
v = h ≡ B∼/|B0| is the wave magnetic field normalized to the external
magnetic field.

Assuming that the gas motion is a potential one, i.e., v = ∇Φ, we inte-
grate the first equation of the set (1.1) and obtain

∂tΦ+
1
2

(∇Φ)2 +
c2(ρ− ρ0)

2ρ
+
c2z

ρ
= 0, (1.2)

where ρ0 =const. The continuity equation for the velocity, ∇ · v = 0, gives
the Laplace equation

∆Φ = 0. (1.3)

We supplement this set by the boundary conditions

∂tη + ∂xη∂xΦ+ ∂yη∂yΦ− ∂zΦ = 0,
∂tΦ+ (∇Φ)2 /2 +

(
c2/ρ

)
η = 0,

z = η (x, y, t) ,
∂zΦ|z=−ρ0

= 0,

(1.4)

where for a fluid, for example, the third and fourth conditions can be inter-
preted as the equation of the fluid surface and the boundary condition on the
bottom, i.e., at z = −H.

We have now the full set of equations. We then introduce small parameters
µ = v0/c � 1 and ε = ρ0/l � 1 (here, l is the characteristic linear scale of
perturbations and v0 is the amplitude of the particle velocity in the wave,
note also that ε2 ∼ µ), expand the equations into the series of µ and ε, and
convert the obtained expressions to dimensionless variables:

x′ = x/l, y′ = y/l, z′ = z/ρ0, t′ = c0t/l,

Φ′ = Φ/v0l, η′ = c0η/v0ρ0, c0 =
√
gρ0.

In the linear approximation in µ and ε2 we obtain

∂2
z′Φ′ + ε2

(
∂2

x′Φ′ + ∂2
y′Φ′) = 0,

∂t′Φ
′ +

µ

2

[
(∂x′Φ′)2 + (∂y′Φ′)2

]
+

µ

2ε2
(∂z′Φ′)2 + η′|z′=µη′ = 0, (1.5)

Φ′|z′=−1 = 0.

The first of these equations is obtained from the Laplace equation (1.3), the
second from the equation of motion for the potential Φ, and the third from
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the last boundary condition of set (1.4). Expanding the potential Φ in z′, we
obtain from Eqs. (1.5)

∂t′ϕ
′ +

µ

2
(∇ϕ′)2 + η′ = O

(
ε4, µ2, ε2µ

)
and

∂t′η
′ + µ∇ϕ′ · ∇η′ + µη′∆ϕ′ +∆ϕ′ +

ε2

3
∆2ϕ′ = O

(
ε4, µ2, ε2µ

)
,

where ϕ′ = Φ′|z′=0. Now return back to the old variables, introduce the new
potential ψ = ϕ+ρ2

0∆ϕ/3, where ϕ = v0lϕ
′−c0t, and write with the accepted

accuracy
∂tψ + (∇ψ)2 /2 + c2 + 2c0β∆ρ/ρ0 = 0,

∂tρ+ ∇ · (ρ∇ψ) = 0,
(1.6)

where β = c0ρ
2
0/6 and ρ = ρ0+η(t, x, y). Eqs. (1.6) are the equation of motion

for the potential ψ and the continuity equation for the generalized density
ρ. Here, β is the dispersion parameter, and the last equation, for example,
for waves on the fluid surface can be interpreted in the following way: the
height of the fluid level is a sum of the depth of the “tank” (where the fluid
is contained) and the height of the perturbation set by the equation of the
surface.

Now, if instead of the potential ψ we introduce the velocity

v(t, x, y) = ∇ψ(t, x, y)

and apply the gradient to the first equation of (1.6), we obtain

∂tv + (v∇)v + c2∇ρ/ρ0 + 2c0β∇∆ρ/ρ0 = 0,

∂tρ+ ∇ (ρv) = 0.
(1.7)

Set (1.7) represents the Boussinesq equations describing waves on the surface
of shallow water as well as waves in plasmas and other dispersive media. These
are three-dimensional nonlinear evolution equations, and it is generally very
difficult to solve them.

Assume that v0/c, (ρ−ρ0)/ρ0, and δ/λ are small (of the first order in µ),
ε2 (here, δ = (|β|/c0)1/2 is the effective dispersion length, and λ is the char-
acteristic wavelength). Further we suppose (as in standard hydrodynamics)
that

c2(ρ) = c20 (ρ/ρ0)
γ−1

, and γ = cp/cv,

and look for a solution of (1.7) written as

ρ(t, x) = ρ(v) + ϕ(t, x), (1.8)

where
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ρ(v) = ±c(v)dvρ,
c(v) = c0 + (γ − 1)v/2, (1.9)

and ϕ(t, x) is small (of the second order in µ, ε2). Then consider a wave
propagating in the positive direction of the x-axis. Neglecting the terms of
order higher than the second, we find that the function ϕ(t, x) satisfies the
equation

∂tϕ+ c0∂xϕ = 0.

Substituting (1.8) into (1.7), using expressions (1.9), and excluding the po-
tential ϕ from the obtained expressions, we have

∂tv +
(
c0 +

γ + 1
2

v

)
∂xv + β∂3

xv = 0. (1.10)

Converting now to new variables

ξ = x− c0t and u =
γ + 1

2
v,

we finally obtain from (1.10)

∂tu+ u∂ξu+ β∂3
ξu = 0. (1.11)

This is the Korteweg–de Vries equation (KdV equation) written in the refer-
ence frame moving with the velocity c0 along the x-axis. It is obvious that
this equation is much simpler than the initial three-dimensional set of hydro-
dynamic equations or Boussinesq equations.

We thus realized the marvelous ideas of Korteweg and de Vries that:
to investigate complex nonlinear equation(s), we can simplify them while
preserving their basic qualitative features; it is necessary, with the same order
of accuracy, to keep the terms leading to the opposite effects, in our case - to
maintain the balance of the nonlinear and dispersive terms.

It is very important that the KdV equation has an infinite number of
the integrals of motion; this determines its complete integrability. Consider
briefly this problem and rewrite the KdV equation (1.11) as

∂tu+ ∂x(u2/2 + β∂2
xu) = 0. (1.12)

Equation (1.12) has the form of the conservation law for the “momentum”
of the system,

J1 =

∞∫
−∞

u(t, x)dx = const. (1.13)

Analogously we can obtain the next integrals of motion for the higher orders
of u [3]:

∂t(u2/2) + ∂x

{
u3/3 + β

[
u∂2

xu− (∂xu)2
]}

= 0 (1.14)

and
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∂t(u3/3 − β∂2
xu) + ∂x

{
u4/4 + β

[
u2∂2

xu+ 2∂tu∂xu
]

+β2(∂2
xu)

2
}

= 0. (1.15)

Equation (1.14) can be interpreted as the conservation law for the “energy”
of the system [3], and equation (1.15), first obtained by Whitham [88], does
not have any obvious physical interpretation. Other conservation laws were
obtained by Kruskal, Zabusky and Miura [89] who also proved [90,91] that the
KdV equation has an infinite number of conserved integrals, i.e., invariants
given by

Jm =

∞∫
−∞

Qm(t, x)dx. (1.16)

For example, the first six invariants are [89–91]1

Q1 = u, Q2 = u2/2, Q3 = u3/3 − β(∂xu)2,

Q4 = u4/4 − 3βu(∂xu)2 + 2β2(∂2
xu)

2/5,

Q5 = u5/5 − 6βu2(∂xu)2 + 36β2u(∂2
xu)

2/5 − 108β3(∂3
xu)

2/35,

and

Q6 = u6/6 − 10βu3(∂xu)2 + β2
[−5(∂xu)4 + 18u2(∂2

xu)
2
]

+β3
[−108u(∂3

xu)
2/7 + 120(∂2

xu)
3/7

]
+ 36β4∂4

xu.

As we already noted, the infinite number of the conservation laws proves that
the KdV equation represents a completely integrable system; we will also see
that in the next section.

1.1.2 Universality of the KdV Model. Scaling Transformations
and Similarity Principle

It is important that the KdV equation is universal in the sense that it de-
scribes the propagation of nonlinear waves when the linearized wave disper-
sion law is given by

ω = c0k

(
1 − βk2

c0

)
. (1.17)

For example, this is the case for:
(a) Surface waves in shallow water where u is the amplitude of the hy-
drodynamic velocity (in some sense – the amplitude of the wave), β =
c0(H2 − 3σ/ρg)/6 for the gravity-capillary waves, and β = c0H

2/6 for the
gravity waves.

1 Detailed information on this problem including a general algorithm to calculate
the numerical factors in Qm can be found in Refs. [90,92].
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(b) Ion-acoustic waves in an unmagnetized plasma where u is the velocity of
the ion sound wave, β = csr

2
D/2, rD = (Te/4πnee

2)1/2 is the electron Debye
length, and ne is the unperturbed number density of plasma electrons.
(c) Magnetosonic waves in a magnetized plasma where u is the normalized
wave magnetic field perturbation,

β = vA
c2

2ω2
pi

(
me

mi
− cot2 θ

)
,

c is the speed of light, ωpi = (4πnie
2/mi)1/2 is the ion plasma frequency, me

is the electron mass, and θ is the angle between the direction of the wave
propagation (vector k) and the external magnetic field B0.2

The KdV equation is often written in a slightly different form, e.g.,

∂tu+ αu∂xu+ β∂3
xu = 0, (1.18)

which can be easily obtained from (1.11) via the scale transformations u →
αu, t→ t, and ξ → x. For the analytical (exact) integration using the inverse
scattering transform method (IST method) (see Sect. 1.2) the KdV equation
(1.11) is transformed by u → −6u, t → t, and ξ → x. In this case, the
equation for β = 1 is given by

∂tu− 6u∂xu+ ∂3
xu = 0. (1.19)

The negative sign of the dispersion term can be obtained by the change
u→ −u and x→ −x. The sign of α in (1.18) determines the “polarity” of the
solution (which can be positive, u > 0, or negative, u < 0), while the sign of
β determines the direction of the wave propagation. Thus the KdV equation
can be equally applied to a medium with the negative dispersion (when the
phase velocity of linear waves decreases with the increasing wavenumber) as
well as to a medium with the positive dispersion – the difference is only in
the direction of the x-axis. Furthermore, for the convenience of an ad hoc
study, we use various forms of the KdV equation.

The first solutions of the KdV equation were obtained numerically [1,93].
The studies showed that the equation can have two kinds of locally stationary
solutions:
(a) In the form of moving solitons; and
(b) Of the type of periodic cnoidal waves (see below).
Later in 1967 [19] it was shown that the KdV equation is a completely in-
tegrable Hamiltonian system (see Sect. 1.2) and its soliton solution, found
analytically for equation in the form (1.19), is given by [3]

u(t, x) =
a2

2
cosh−2

[a
2
(
x− x0 − a2t

)]
,

2 Note that in the case θ = π/2 and ne = ni = n0 (perpendicular propagation
of the wave in a two-component plasma), we have β = vAc2/2ω2

pe since ωpe =

ωpi

√
mi/me.
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where a2 is the amplitude of the soliton whose velocity is proportional to a2

and whose width is inversely proportional to the square root of the amplitude,
1/a. For the periodic cnoidal wave, the solution u(t, x) can be written using
Jacoby elliptic functions, namely, the elliptic cosine cn[f(x)] (note that the
name “cnoidal” originates here). In the following, we do not consider the
periodic cnoidal wave solutions.

Note that the KdV equation can have N -soliton solutions describing the
dynamics of interactions (collisions) of N solitons. We assume that

u(t, x) = 2∂2
x lnF (1.20)

(obtained as an exact solution using the IST method, see Sect. 1.2.1) and
(following [94]) choose the function F as

FN =
∑

µ̄

exp

⎡
⎣ N∑

i=1

µiξi +
N∑

1≤i<j

µiµjAij

⎤
⎦ , (1.21)

where the sum on µ̄ is for all sets µi (the element µi can take a value 0 or
1, i = 1, . . . , N). Furthermore, ξi = ki(x− x0i − k2

i t) and the factors Aij are
defined by

eAij =
(
ki − kj

ki + kj

)2

. (1.22)

Thus we obtain the N -soliton solution of the KdV equation. For example, for
N = 1 we have F1 = 1 + eξ1 from (1.21), and the solution is as that above
with a = k1; for N = 2 we have

F2 = 1 + eξ1 + eξ2 + eξ1+ξ2+A12 , (1.23)

where ξ2 = −(k2
2−k2

1)t+ξ1, and substituting (1.23) into (1.20), we obtain the
2-soliton solution where the phase delay appearing as a result of the solitons’
interaction is defined by the factor A12.

To conclude this brief remark on the construction of the soliton solutions,
we note that the choice of values of the constants x0i is quite arbitrary.
Thus, using the above direct method, we can also construct other classes of
solutions. For example, choosing exp k1x01 = −1 in (1.21) for N = 1, we
obtain a singular solution

u(t, x) = −k
2
1

2
sinh−2 k1

2
(
x− k2

1t
)
.

In the long-wavelength limit k1 → 0, we obtain the solution u = −2/x2 [26]
which is the first representative of the class of the rational solutions of the
KdV equation. Generally, by choosing proper phase constants in (1.21) we
can obtain a non-trivial limit for any function FN .

To obtain the criterion enabling us to distinguish solutions of the KdV
equation into two classes (the soliton and non-soliton types of waves), Karp-
man formulated the similarity principle in 1966 [93]. Here, we consider it on
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the basis of (1.18) with α = 1. We set up the initial value problem, i.e., write
the initial condition for the KdV equation as given by

u(0, x) = u0ϕ(x/l), (1.24)

where u0 is the initial amplitude and l is the linear size of the initial dis-
turbance. Changing u0 and l, we obtain a family of similar initial conditions
characterized by the dimensionless function ϕ(x/l). Introducing new variables

η = u/u0, ξ = x/l, and τ = u0t/l, (1.25)

we obtain from the KdV equation (1.18) with α = 1 and initial condition
(1.24) the equation

∂τη + η∂ξη + σ−2∂3
ξη = 0, (1.26)

where η(0, ξ) = ϕ(ξ) and
σ = l (u0/β)1/2

. (1.27)

It follows from (1.26) that solutions corresponding to the same value of σ
and the same initial function ϕ(ξ) are similar. For solitons,

u(x) = u0 cosh−2
[
(u0/12β)1/2

x
]
, (1.28)

we have
σ = σs =

√
12.

The parameter σ is, in fact, the index of nonlinearity of the problem, and σs

is in some sense a characteristic value: as numerical simulations [93] demon-
strated, for the same form of the initial function ϕ(ξ) in the cases σ � σs

and σ � σs, qualitatively different solutions are observed. We study them in
detail in the next sections (especially in Sect. 1.3.5) after we briefly consider
other equations of the KdV-class.

1.1.3 Other (1+1)-Dimensional KdV-Class Equations

Other (1+1)-dimensional3 KdV-class equations to be considered here are the
linearized KdV equation, the Burgers equation and the Korteweg–de Vries–
Burgers (KdVB) equation, as well as the generalized KdV equation with the
higher order dispersion correction (Kawahara equation [84]) and terms taking
into account dissipation and instability in a medium. Numerical solutions of
these equations are given below in Sect. 1.3 after considering the analytical
and numerical methods of integration of KdV-class equations.

3 This terminology, often used in the mathematical literature, refers to the num-
ber of independent variables, namely, the time and the space coordinate in the
present case.
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The linearized KdV Equation. Linear approximation to (1.18) is given
by the linearized KdV equation

∂tu+ c0∂xu+ β∂3
xu = 0. (1.29)

In the reference frame moving with the velocity c0 we obtain

∂tu+ β∂3
xu = 0. (1.30)

The general solution of this equation expressed via the Airy function is [3]

u(t, x) = π−1/2(3βt)−1/3

∞∫
−∞

Ai
[
x− x′

(3βt)1/3

]
u(0, x′)dx′, (1.31)

where

Ai(z) =
1√
π

∞∫
0

cos
(
υ3

3
+ υz

)
dυ (1.32)

has the following asymptotics

Ai(z) =

{
(z−1/4/2) exp

(−2z3/2/3
)
, z → ∞,

|z|−1/4 cos
(
(2 |z|3/2

/3) − π/4
)
, z → −∞.

Although we are able to conclude on the solution’s behavior from this general
solution, it is difficult to see the change of dynamics of an initial disturbance
(in the region of its localization) as a function of the dispersion parameter β
since it is necessary to construct the corresponding Airy function in this case.
Therefore numerical methods are better for the analysis of the structure and
evolution of the solution of the linearized KdV equation (1.30). The results
obtained numerically are given below in Sect. 1.3.

The Burgers equation. Consider the equation describing nonlinear waves
in a medium with the “viscous” type of damping,

∂tu+ u∂xu = ν∂2
xu. (1.33)

This equation was obtained and analyzed by Burgers in 1940 [15] and is now
called the Burgers equation. The general solution of this equation can also be
obtained analytically. Namely, if

u = −2ν∂x lnϕ(t, x), (1.34)

for the function ϕ then one can obtain the heat conductivity (diffusion) equa-
tion

∂tϕ = ν∂2
xϕ.

In this case, the solution of the Burgers equation with the initial condition
u(0, x) = ψ(x) can be written as (1.34), where [3]
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ϕ(t, x) =
1√

4πνt

∞∫
−∞

exp

[
− (x− η)2

4νt
− 1

2ν

η∫
0

ψ(η′)dη′
]
dη.

However, some additional condition(s) need to be imposed for convergence of
the integral on the right-hand side of this expression. In general, the structure
of solution (1.34) is not that transparent and it is difficult to estimate its
dynamics for various ν. In this regard, it is helpful to integrate the Burgers
equation numerically, and the corresponding results are also presented in
Sect. 1.3.

1.2 Inverse Scattering Transform and Analytical
Integration

In this section, we consider fundamentals of the theory of the inverse scat-
tering transform (Sect. 1.2.1), the powerful method that enables us to obtain
analytically general solutions of some classes of canonical nonlinear equations.
On this basis, we approach the problem of (exact) analytical integration of
the KdV equation in Sect. 1.2.2. In Sect. 1.2.3, we consider generalization of
the Gelfand–Levitan–Marchenko integral equation for the purpose of possible
separation of the study of the soliton and non-soliton parts of the solution.
Finally, we consider the variational principle which practically enables us to
separate the solutions (Sect. 1.2.4). The inverse scattering problem for the
multidimensional cases is considered later in Chap. 3 (see Sect. 3.2).

1.2.1 Fundamentals of the Inverse Scattering Theory

The inverse scattering transform (IST) method in its classic form is a very
convenient tool for solving the initial value (Cauchy) problem for nonlinear
evolution equations. Note that when the Cauchy problem is solved on a class
of functions decreasing sufficiently fast at infinity (u(r) → 0 when |r| →
∞), the IST method is as effective as the Fourier method for integration of
linear partial differential equations with the constant coefficients (when the
Fourier transform reduces the partial differential equation to an infinite set
of ordinary linear differential equations for Fourier harmonics). When the
equation’s coefficients do not depend on the coordinates, the equations for
the Fourier harmonics are independent and can be trivially integrated. The
situation is similar when the IST method is applied. The mapping of the
coefficient functions of a linear differential operator to the set of so-called
“scattering data” plays the role of the Fourier transform here.

For example, the KdV equation is integrated with the help of the transi-
tion from the potential of the one-dimensional Schrödinger equation ,

−d2
xψ + u(x)ψ = k2ψ,
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to the reflection coefficient r(k) on this potential. As the potential u(x)
evolves according to the KdV equation, the dependence of the reflection co-
efficient on time is trivial:

r(k, t) = r(k, 0) exp
(−8ik3t

)
.

Thus, the problem of integrating the KdV equation is converted to the prob-
lem of reconstruction of the potential u(x) for the given reflection coefficient,
i.e., the inverse of the (quantum) scattering problem.

Consider fundamental statements of the scattering theory for the one-
dimensional Sturm–Liouville operator (Schrödinger operator),

L̂ = −d2
x + u(x),

on the (whole) real axis −∞ < x < ∞. We assume that the real potential
u(x) is a sufficiently smooth function of x that turns to zero as |x| → ∞. We
consider the eigenvalue problem

L̂ψ ≡ −d2
xψ + u(x)ψ = λψ, (1.35)

where the eigenvalues λ = k2 is the (full) energy and k is the momentum of
the system, on the class of (limited on the whole x-axis) functions ψ(x). The
spectrum of the operator L̂ consists of two parts, discrete and continuous,
such that the continuous spectrum occupies the real half-axis λ > 0 (real k),
and the eigenvalues of the discrete spectrum are negative (corresponding to
the points of the imaginary axis k = iκn, n = 1, 2, . . . , N , κn > 0).

Changing λ on the right-hand side of (1.35) to k2, we write the equation
defining the eigenfunctions as

− d2
xψ + u(x)ψ = k2ψ. (1.36)

First, consider the characteristics of the continuous spectrum. For every real
k �= 0, the set of solutions of (1.36) constitutes the two-dimensional linear
space Gk. We fix two bases in Gk.

The first basis consists of solutions ψ1,2(x, k) of (1.36) determined by the
asymptotic conditions at +∞ in x:{

ψ1(x, k) = e−ikx +O(1),
ψ2(x, k) = eikx +O(1), x→ +∞.

The second basis consists of solutions ϕ1,2(x, k) determined by the analogous
conditions at −∞:{

ϕ1(x, k) = e−ikx +O(1),
ϕ2(x, k) = eikx +O(1), x→ −∞.

Due to the real character (zero imaginary part) of the potential, we have

ϕ1(x, k) = ϕ∗
2(x, k) and ψ1(x, k) = ψ∗

2(x, k). (1.37)
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It is also obvious that

ϕ1(x, k) = ϕ2(x,−k) and ψ1(x, k) = ψ2(x,−k). (1.38)

Vectors of either basis are the linear combination of vectors of the other:

ϕi(x, k) =
∑
l=1,2

Til(k)ψl(x, k), i = 1, 2.

The matrix T (k), introduced above, is called the transition matrix. 4 We have

T (k) =
[
a(k) b(k)
b∗(k) a∗(k)

]
.

Omitting the indices 1 and 2 of the functions ϕ and ψ, we write

ϕ(x, k) = a(k)ψ(x, k) + b(k)ψ∗(x, k). (1.39)

The Wronskian W (f1, f2) = f1dxf2 − f2dxf1 of any pair of the solutions f1
and f2 of (1.36) does not depend on x. It is clear thatW (ϕ,ϕ∗) = W (ψ,ψ∗) =
2ik. This relation together with (1.39) gives us

|a(k)|2 − |b(k)|2 = 1, (1.40)

i.e., we see that the transition matrix is a unimodular one: detT (k) = 1.

u(x)

incident wave

x

transmitted wave

Fig. 1.1. Sketch of the scat-
tering problem for a wave in-
cident on the potential u(x)

The functions a−1(k) and b(k)a−1(k) are the transmission coefficient and
the reflection coefficient, respectively, of the wave incident to the potential
u(x) from the right (see Fig. 1.1). In reality, the asymptote of the eigenfunc-
tion ϕ(x, k)/a(k), see (1.39), for x→ +∞ is given by

a−1ϕ(x, k) = e−ikx + ba−1eikx +O(1),

i.e., it is a superposition of the incident and reflected waves. At the other end
of the x-axis we have

4 Written as T (k) ≡ S(k) =

[
s11(k) s12(k)
s21(k) s22(k)

]
, this matrix is often called the

S-matrix or the scattering matrix.
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a−1ϕ(x, k) = a−1e−ikx +O(1),

i.e. only the transmitted wave propagates there. In other words, t(k) = a−1(k)
is the amplitude of the forward scattering and r(k) = b(k)a−1(k) is the am-
plitude of the backward scattering. It follows from (1.40) that the scattering
is unitary, i.e.,

|t(k)|2 + |r(k)|2 = 1.

An analysis of the analytic properties of the amplitude of the forward scat-
tering on the physical sheet of the Riemann surface (we omit details here
to save space) shows that (see Fig. 1.2) a(k) is an analytic function in the
upper semi-plane of complex k and has simple zeros at the points kn = iκn,
κ2

n = −λn; in addition, a(k) → 1 for |k| → ∞, Im k ≥ 0. These analytic
properties of the diagonal elements of the transition matrix are principally
important and, to a certain degree, universal. Analogous statements can be
made in the scattering theory for other differential operators.

The transition matrix T (k) gives us comprehensive information on the
continuous spectrum of the Schrödinger operator. The information on T (k)
is fully contained in the reflection coefficient

r(k) =
b(k)
a(k)

, (1.41)

that, in view of relations (1.37) and (1.38), can be determined only on the
semi-axis k > 0 since r(−k) = r∗(k). From (1.40) we can easily obtain

|a(k)|2 =
1

1 − |r(k)|2 , (1.42)

i.e., the modulus of the reflection coefficients uniquely defines |a(k)|. Knowing
zeros of the analytic (in the upper semi-plane) function a(k), it is possible to
find the unique argument arg[a(k)] by its modulus. Thus a(k) is reconstructed

Im k

Re k

a(k)      1
k  =iκn n

Fig. 1.2. Analytic proper-
ties of the amplitude of the
forward scattering a(k)
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according to the modulus of the reflection coefficient, and the function b(k)
is simply r(k)a(k).

Consider now characteristics of the discrete spectrum of the Sturm–
Liouville operator (Schrödinger operator) matching naturally the scattering
characteristics. The eigenfunctions corresponding to the eigenvalue λn = −κ2

n

satisfy the equation
−d2

xψ + u(x)ψ = −κ2
nψ.

The discrete spectrum of the Schrödinger operator, as it is known, is simple:
all solutions of this equation can be obtained from any one by multiplying it
by a constant. At infinity, the eigenfunctions have the asymptotes

ψ → c± exp (∓κnx) . x→ ±∞.

Fix the eigenfunction ϕ(n)(x) at −∞ in x by its asymptote

ϕ(n)(x) = eκnx +O(eκnx).

When x→ +∞ the eigenfunctions are given by

ϕ(n)(x) = bne−κnx +O(e−κnx); (1.43)

obviously, they are real, and therefore the factors bn are also real. If we
arrange the eigenvalues λn in a usual way in order of increasing λn (i.e.,
decreasing κn), namely,

λ1 < λ2 < . . . < λN < 0

(here, λ1 is the energy of the ground (basic) state of a quantum system and
the corresponding function ϕ(1) is the wave function of this state), then ϕ(1)

has no zeros and ϕ(n) crosses zero exactly (n− 1) times. Thus

bn = (−1)n−1 |bn| .
The positive quantities |bn| consist additional (to the eigenvalues λn) char-
acteristics of the discrete spectrum. These characteristics together with the
reflection coefficient r(k) and the set of eigenvalues λ1, λ2, . . . , λN fully de-
termine the spectrum of problem (1.36). The set

S = {r(k), κn, |bn| , n = 1, 2, . . . , N}
is called the scattering data. Mapping u(x) → S of potentials u(x) to the
scattering data is uniquely reversible. The procedure of reconstruction of the
potential u(x) on S is the subject of the inverse problem of the scattering
theory.

The analytic properties of the special solutions of the Schrödinger equa-
tion introduced via the scattering data enable us to write the integral equa-
tions equivalent to (1.36) on the functions

χ+(x, k) = ϕ(x, k)eikx and χ−(x, k) = ψ(x, k)e−ikx
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using the Green’s function. The function χ+(x, k) can be analytically contin-
ued to the upper semi-plane k (i.e. to Im k > 0), and the function χ−(x, k)
can be analytically continued to the lower semi-plane k. Thus for |k| → ∞
we have

χ+ (x, k) = 1 +
1

2ik

x∫
−∞

u(x′)dx′ +O

(
1
k2

)
,

χ− (x, k) = 1 +
1

2ik

∞∫
x

u(x′)dx′ +O

(
1
k2

)
. (1.44)

For the Schrödinger operator, the most known form of the IST equation,
i.e., of the equation describing the transition from the scattering data S to
the potential u(x), is the Gelfand–Levitan–Marchenko equation (GLM equa-
tion). Now we are ready to obtain this equation. The procedure involves the
following steps:

1. First of all, we note that Fourier transform of the function χ−(x, k) (ana-
lytic in the lower semi-plane k) is cut off. Thus the function χ−(x, k) can
always be written as

χ− (x, k) = 1 +

∞∫
0

A(x, y)e−ikydy.

2. For the function ψ(x, k), this means that there is a function K(x, y) such
that

ψ (x, k) = e−ikx +

∞∫
x

K(x, y)e−ikydy. (1.45)

Obviously, K(x, y) = A(x, y − x).
3. It follows from (1.45) that there exists a linear operator transforming the

solution of Schrödinger equation with the zero potential (the plane wave
solution e−ikx) to the solution of this equation with the potential u(x). The
function K(x, y) is called the kernel of the transformation operator and it
is real because ψ(x,−k) = ψ(x, k) for Im k = 0.

4. Consider now equality (1.39). We multiply it by ratio e−iky/a(k) and inte-
grate in all real k:

∞∫
−∞

[
ϕ(x, k)
a(k)

− e−ikx

]
eikydk

=

∞∫
−∞

[
ψ(x, k) − e−ikx + r(k)ψ∗(x, k)

]
eikydk. (1.46)
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(Note that the underlined terms sum up to zero and they are introduced
because of convenience of further transformations – in fact, we just added
to the both sides of (1.39) the term a(k)e−ikx).
Calculation of the integral on the left-hand side of (1.46), taking into ac-
count that the function under the integral has, in the upper semi-plane,
only a finite number of simple poles and decreases for |k| → ∞, gives us

2πi
N∑

n=1

ϕ(x, iκn)e−κny

a′(iκn)
,

where a′ is the k-derivative of the function a(k) for k = iκn. Taking into
account (1.43), taking place for the discrete spectrum, which can be written
as

ϕ(x, iκn) = bnψ
∗(x,−iκn) = bnψ(x,−iκn) (1.47)

(the functions ϕ, ψ and ψ∗ on the imaginary axis are obviously equivalent),
and (1.45) for k = iκn, n = 1, . . . , N , we obtain for the integral on the left-
hand side of (1.46) the expression

2πi
N∑

n=1

bne−κn(x+y)

a′(iκn)
+ 2πi

∞∫
x

K (x, z)
N∑

n=1

bne−κn(z+y)

a′(iκn)
dz.

Substituting now formula (1.45) into the right-hand side of (1.46) and
introducing the new notation,

F(x) ≡
N∑

n=1

bne−κnx

ia′(iκn)
+

1
2π

∞∫
−∞

r(k)eikxdk, (1.48)

we obtain finally the GLM equation given by

K(x, y) + F(x+ y) +

∞∫
x

K(x, z)F(z + y)dz = 0. (1.49)

5. It follows from expression (1.45) that the asymptotic expansion for the
function χ−(x, k) gives us

χ−(x, k) = 1 +
1
ik

K(x, x) +O

(
1
k2

)
, |k| → ∞.

Comparing that with (1.44) we can express the potential u(x) by the kernel
of the transformation operator

u(x) = −2dxK(x, x). (1.50)

Thus, to determine the potential u(x), it is necessary to solve the integral
GLM equation, i.e., to obtain the kernel of the transformation operator via
the scattering data fully contained in the function F(x), see (1.48). Now,
having considered the fundamentals of the theory of scattering, we are able
to proceed to the integration of the KdV equation using the IST method.
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1.2.2 Integration of the KdV Equation Using the IST Method

Generally speaking, the IST method is the result of the outstanding obser-
vation by Gardner, Green, Kruskal and Miura who found [19] that solutions
of the KdV equation can be associated with the potential of the Schrödinger
equation.5 Consider therefore the Schrödinger equation of the form

− d2
xf + u(x, t)f = k2f, (1.51)

with the potential u(x, t) decreasing at x-infinity. We note that the function
f can be a special solution of problem (1.51), e.g., with the asymptote

f(x, k) = e−ikx +O(1), x→ −∞,

i.e., the solution ϕ(x, k) defined in the previous section.
If the potential u(x, t) depends on t, the function ϕ(x, k) also depends on

t and then the scattering data become functions of t, too. The asymptote of
ϕ(x, k) at x→ +∞ is then given by

ϕ(x, k, t) = a(k, t)e−ikx + b(k, t)eikx +O(1). (1.52)

In the case of an arbitrary dependence of u(x, t) on t, it is obviously not
possible to find the general dependence of the scattering data on t. However, if
u(x, t) changes in time as a solution of the KdV equation, ∂tu−6u∂xu+∂3

xu =
0, then the “coefficient functions” a(k, t) and b(k, t) satisfy the Gardner–
Green–Kruskal–Miura (GGKM) equations [19]

ȧ(k) = 0 and ḃ(k, t) = 8ik3b(k, t) (1.53)

(here, the dot stands for the time derivative), and the dependence of ϕ(x, k, t)
on t is given by the equation

ϕ̇(x, k, t) = −Âϕ(x, k, t) + 4ik3ϕ(x, k, t), (1.54)

where the operator Â is

Â = 4d3
x − 3 (udx + dxu) . (1.55)

The inverse is also true: if the scattering data change in time as the GGKM-
equation solutions then the potential u(x, t) (uniquely defined by them) sat-
isfies the KdV equation. The simplest way to prove that is to note that the
KdV equation is identical to the equation for the operators L̂ = −d2

x +u and
Â:

˙̂L =
[
L̂, Â

]
= L̂Â − ÂL̂. (1.56)

5 Later this method was naturally extended to other evolution equations, e.g., the
nonlinear Schrödinger (NLS) equation and the sin-Gordon equation.
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Indeed, ˙̂L is just the multiplication operator ∂tu, and the commutator [L̂, Â],
as simple calculations demonstrate, is the multiplication operator 6u∂xu −
∂3

xu, so that (1.56) coincides with the KdV equation, ∂tu = 6u∂xu− ∂3
xu.

The representation of the evolution equations by (1.56) is called the Lax
representation or Lax L̂–Â pair representation. With the help of the Lax
representation it is not difficult to obtain for ϕ(x, k, t), instead of (1.54), the
following expression:

ϕ̇(x, k, t) = ȧe−ikx + ḃeikx =
(−4d3

x + 4ik3
) (
ae−ikx + beikx

)
,

which is equivalent to (1.53). Note that the functions a and b fully define the
time dependence of the amplitude of the backward scattering

r(k, t) = r(k, 0)e8ik3t =
b(k, t)
a(k, t)

,

characterizing the continuous spectrum. Analogously we can solve the prob-
lem of the time evolution of the scattering data κn(t) and bn(t) (n = 1, . . . , N)
for the discrete spectrum:

1. It follows from the first equation of (1.53) that iκn are the zeros of an
analytic function a(k) independent of t, i.e., κ̇n = 0;

2. The dependence of bn(t) can be obtained from (1.54) because by definition
bn is a factor in the asymptotic expansion of the function ϕ(x, iκn), where

ϕ(x, iκn) = bn(t)e−κnx +O
(
e−κnx

)
, x→ +∞.

Substituting this asymptotic equation into (1.54), we obtain for k = iκn that
ḃn = 8κ3

nbn. Thus the time evolution of the scattering data is given by

Table 1.1. Scheme of solution of the initial value problem for the KdV equation

Consists of calculation of the scattering data S(0), with
u(x, 0) Ist stage the initial condition u(x, t)|t=0 = u(x, 0), by finding

the eigenfunctions of the Schrödinger operator
with the potential u(x, 0).

⇓
Involves solving the initial value problem in terms of

S(0) IInd stage the scattering data. The problem is trivial and its
solution is given by (1.57).

⇓
Takes place when using the GLM equation, the inverse

S(t) IIIrd stage problem is solved, i.e., the potential u(x, t) in the
Schrödinger operator is determined with S(t) as the
scattering data.

⇓
u(x, t) Each stage implies solution of a linear problem only.
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S(t) =
{
r(k, 0)e8ik3t, κn, bne8κ3

nt, n = 1, . . . , N
}
. (1.57)

We in fact integrated the KdV equation by means of the (implicit) change
of the variables u(x) → S. The inverse change S(t) → u(x, t) gives us the solu-
tion of the KdV equation. Overall, the scheme of solution of the initial value
problem for the KdV equation is given by Table 1.1. This scheme, despite the
absence of a general analytical solution for both direct and inverse problems,
enables us to find very important exact solutions of the KdV equation ana-
lytically, in particular, the one-soliton solution, and, in a more general case,
the N -soliton solutions describing interactions (collisions) of KdV solitons.

1.2.3 Generalization of the GLM Equation

Consider the Sturm–Liouville operator (Schrödinger operator)

Ĥj = −d2
x + uj(x), −∞ < x <∞, (1.58)

where uj(x) is an element in the class of the scattering potentials. We sup-
pose that uj(x) → 0 (when |x| → ∞) sufficiently fast and, therefore, the
standard theory of scattering is applicable. Then the spectrum of the opera-
tor Ĥj consists of the continuous and discrete parts. The continuous spectrum
occupies the real semi-axis λ = k2 ≥ 0, and the discrete spectrum consists of
the negative λ = k2 < 0 non-degenerated point-like eigenvalues (we assume
that their number is finite). We name the eigenfunctions of the continuous
spectrum describing the scattering as ϕj(x, k). They satisfy the Schrödinger
equation

Ĥjϕj(x, k) = k2ϕj(x, k) (1.59)

with the boundary conditions{
ϕj(x, k) = e−ikx + ba−1eikx, x→ +∞,
ϕj(x, k) = a−1e−ikx, x→ −∞.

(1.60)

Recall that t(k) = 1/a(k) is the amplitude of the forward scattering, and
r(k) = b(k)/a(k) is the amplitude of the backward scattering for the potential
uj .

For the direct and inverse scattering problems, another set of eigenfunc-
tions, namely, in the form of the Jost function satisfying the Schrödinger
equation (1.59), but with another boundary condition,

ψj(x, k) = eikx, x→ −∞, (1.61)

is also important (see Sect. 1.2.1). They are in fact pseudo-eigenfunctions
because they are not quadratically integrated in general. The functions r(k),
a−1(k), and ψj(x, k) satisfy the relations
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r(−k) = r∗(k),
a−1(−k) =

(
a−1

)∗ (k),
ψj(x, k) = ψ∗

j (x,−k).
Note that the functions ψj and ψ∗

j are linearly independent. It is obvious that
(see Sect. 1.2.1)

ϕj(x, k) = ψj(x, k) + rj(k)ψ∗
j (x, k).

The discrete spectrum that the operator Ĥj can have consists of a finite
number of the point-like eigenvalues represented by

λjn = −κ2
jn, κjn > 0. (1.62)

The corresponding eigenfunctions (note that they are true eigenfunctions in
contrast to ψj which, as noted above, are “pseudo-eigenfunctions”) satisfy
the Schrödinger equation

Ĥjϕjn(x) = λjnϕjn(x) (1.63)

together with the asymptotic condition

lim
x→±∞ϕjn(x) = c±e∓κjnx, c+ = bn, c− = 1, (1.64)

where the normalization factors are

|bn| =

∞∫
−∞

[ϕjn(x)]2 dx. (1.65)

In the inverse problem, we begin with the spectral data

S = {r(k), κn, |bn| , n = 1, 2, . . . , N}
to obtain the scattering potential uj(x) by using the GLM equation which
was written in the previous section as

K(x, y) + F(x+ y) +

∞∫
x

K(x, z)F(z + y)dz = 0, (1.66)

where F(x) is fully defined by the scattering data and the problem is, there-
fore, to determine the transform kernel K(x, y). The purpose of generalization
of the GLM equation (1.66) is to introduce the “basic potential” um(x). To
do that we represent the potential uj(x) as [95,96]

uj(x) = um(x) + ujm(x). (1.67)

We assume that the spectral data S are known. The number of the point-like
eigenvalues for um(x) is generally not equal to that of uj(x), i.e., the number
of values of n in κmn is in general not equal to that in κjn. Using the GLM



1.2 IST and Analytical Integration 37

equation (1.66) it is possible to obtain um(x) as well as the eigenfunctions
ψm(x, k) and ϕmn(x). Let Km(x, y) be the kernel of the GLM equation for
um(x). Then we can represent the “pseudo-eigenfunctions” of the discrete
spectrum ϕjn(x) satisfying the Schrödinger equation

Ĥmϕ̈jn(x) = −κ2
jnϕ̈jn(x)

as those given by

ϕ̈jn(x) = eκjnx +

x∫
−∞

Km(x, y)eκjnydy (1.68)

(compare with (1.45) of the previous section). If the basic potential um(x) is
a sufficiently short-range one then we can show that

ϕ̈jn(x) = ψm(x,−iκjn), (1.69)

where the right-hand side is obtained from ψm(x, k) through analytic continu-
ation. The functions ϕ̈jn(x), as we noted above, are the “pseudo-eigenfunctions”
of the operator Ĥm since they are not quadratically integrated in general (al-
though they satisfy the equation on the eigenfunctions of the operator Ĥm

with the discrete eigenvalue −κ2
jn). An exception is the case when κjn = κml

for some n and l. Then
ϕ̈jn(x) = ϕml(x) (1.70)

and the pseudo-eigenfunction becomes the true eigenfunction for the operator
Ĥm.

Now we can write the generalized GLM equation. Introduce (instead of
F(x, y) in the GLM equation (1.49)) the function [95]

Ωjm(x, y) =
1
2π

∞∫
−∞

ψ∗
m(x, k) [rj(k) − rm(k)]ψ∗

m(y, k)dk

+
∑

n

ϕ̈jn(x)ϕ̈jn(y)
|bjn| −

∑
n

ϕmn(x)ϕmn(y)
|bjn| (1.71)

and require that the GLM kernel Kjm(x, y) satisfies the one-dimensional
generalized GLM equation, i.e.,

Kjm(x, y) = −Ωjm(x, y) −
x∫

−∞
Kjm(x, z)Ωjm(z, y)dz. (1.72)

Then, as was shown in Sect. 1.2.1, we have

ujm(x) = −2dxKjm(x, x) (1.73)
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(compare the latter with (1.50)) and the functions ψj(x, k) and ϕjn(x) are
determined by [95]

ψj(x, k) = ψm(x, k) +

x∫
−∞

Kjm(x, y)ψm(y, k)dy, (1.74)

and

ϕjn(x) = ϕ̈jn(x) +

x∫
−∞

Kjm(x, y)ϕ̈jn(y)dy. (1.75)

The function Ωjm(x, y), as we see from (1.71), is fully determined by the
scattering data. It is not difficult to see from the obtained expressions that
if we take rm(k) ≡ 0 (where rm(k) is the reflection coefficient for the basic
potential) in the spectral data for um(x) and assume the absence of bound
states (note that solitons appear as the result of the bound states), then we
obtain um(x) ≡ 0 and the generalized GLM equation (1.72) together with
Eqs. (1.73)–(1.75) converts to the initial one-dimensional GLM equation with
the properly defined functions ψj(x, k) and ϕjn(x).

In the case of the KdV equation it is necessary to introduce the parameter
t into the scattering data. We have

rm(k, t) = rm(k)e−i8k3t, |bmn(t)| = |bmn| e8κ3
mnt,

and
rj(k, t) = rj(k)e−i8k3t, |bjn(t)| = |bjn| e8κ3

jnt.

Then the parameter t is included in the function Ωjm(x, y, t) (1.71) as well
as the generalized GLM equation (1.72). In this case, instead of (1.73), we
have

ujm(x, t) = −2dxKjm(x, x, t).

Thus, t is included in the potentials um(x, t), uj(x, t), and ujm(x, t), where
the first two satisfy the KdV equation

∂tu+ 6u∂xu+ ∂3
xu = 0.

Instead of (1.67) where the basic potential um(x) is introduced, we now have

uj(x, t) = um(x, t) + ujm(x, t). (1.76)

Thus we see that the generalized GLM equation allows us to separate
um(x, t), the soliton part of the solution of KdV equation, from ujm(x, t),
the part corresponding to the continuous spectrum. When t→ ∞, because of
the effect of dispersion, ujm(x, t) → 0, and the potential u(x, t) disintegrates
into a (finite) number of solitons [96].

To be able to explain numerical results obtained for solitons of the KdV
equation in the “non-stationary stage” [96] (see Sect. 1.3.5), consider here
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correlations of the potentials ujm(x, t) and um(x, t) in the region of small x
for t � ∞, i.e., in the initial stage of dispersive spreading of the potential
ujm(x, t). Choose in Ωjm(x, y, t) (1.71)

rm(k) = 0, |bmn| = |bjn| , and κmn = κjn (1.77)

for all j (thereby we choose the necessary spectral data). Then um(x, t) is
the soliton part of the solution (the non-reflective potential), and ujm(x, t) is
its non-soliton part corresponding to the continuous spectrum. The particu-
lar form of the solution is defined by the right-hand side of (1.71). The Jost
function ψm(x, k) for the potential um(x, k) can be found explicitly but de-
tailed analysis of (1.71) and (1.72) is difficult. Nevertheless, proceeding from
the known asymptotic relations for ψm(x, k) for x ≥ 0 and accounting for the
dependence of the reflection coefficient rj(k, t) on t, we can conclude from the
right-hand side of (1.71) (for the scattering data (1.77)) [96] the following:

1. A part of the solution determined by the potential ujm(x, t) is an oscillating
wave packet where the amplitude of the oscillations decreases in time due
to dispersive spreading.

2. Since the “momentum”
∫∞
−∞ uj(x, t)dx conservation takes place for the

KdV equation, we can write

∂t (uj) + ∂x

[
3u2

j + ∂2
x (uj)

]
= 0.

Substituting here the expression for uj(x, t) from (1.76) and taking into
account that uj and um satisfy the KdV equation, we obtain [96]

um(x, t) · ujm(x, t) = const. (1.78)

In the region of small x > 0 when t� ∞, we see that the decrease of the
potential ujm(x, t) with time leads to the increase of the potential um(x, t),
corresponding to the soliton part (i.e., growth of the amplitudes of the solitons
is observed) until the oscillating tail shifts as a whole to the region of negative
x. With ujm decreasing to zero in the region x > 0, the soliton parameters
determined by the potential um tend to be constant values. For more detailed
investigation of the behavior of the potential ujm(x, t) corresponding to the
non-soliton part of the solution (the non-reflective potential), one can use the
variational principle first proposed for this purpose by Moses [95], as shown
below.
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1.2.4 The Variational Principle

Following Refs. [95,96] we introduce the functional

G(N, x) = −2

{ x∫
−∞

N(x, y)dy

[
2Ω(x, y) + N(x, y)

+

x∫
−∞

Ω(y, z)N(x, z)dz

]
+Ω(x, x)

}
, (1.79)

where N(x, y) is the test function for the transformation kernel K(x, y). The
variational principle states [95]:

Theorem. The functional G(N, x) has an absolute maximum for all x if
and only if N(x, y) = K(x, y), i.e., the test function N(x, y) is a solution
of the generalized GLM equation, namely:

max {G(N, x)}
x∈]−∞,∞[

= G(K, x), N(x, y) = K(x, y).

Besides, the absolute maximum of G(K, x) is equal to the area bound by
the curve ujm(x):

x∫
−∞

ujm(x′)dx′ = G(K, x).

This theorem allows us to calculate the potential ujm(x) with increased ac-
curacy. For such calculations, it is necessary: (a) to have an algorithm provid-
ing the test functions; and (b) to foresee the process allowing only increasing
G(N, x) when testing the possible (test) functions in the computational pro-
gram.

For example, for fixed x we can construct the histogram on y for N(x, y),
which is varied in such a way that the functional G(N, x) is increased6 (see
Fig. 1.3). The same operation is repeated for the set of x-values for G(N, x)
increasing from set to set. Furthermore, it is necessary to introduce time so
that ujm(x, t) is a part of the solution of the KdV equation corresponding to
the continuous spectrum, and um(x, t) is its purely soliton part. Then one can
obviously use the variational principle considered above. The functional now
depends on x and t: G = G(N, x, t), and this corresponds to the continuous
part of the spectrum, i.e., there should be the integral

6 For example, one can construct an algorithm changing the height of each column
of the histogram according to some procedure, then changing the widths of the
columns using the best from the former histograms as the initial approximation.
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Fig. 1.3. Example of the
histogram on y for N(x, y)
(x =const)

∫ x

−∞
ujm(x′, t)dx = G(K, x, t)

and there must be the maximum for all x and t, namely,

max {G(N, x, t)}
x∈]−∞,∞[,0≤t<∞

= G(K, x, t), N(x, y, t) = K(x, y, t).

Thus the variational principle provides new methods for computation of the
continuous part of the wave solution, whereas the “classic” GLM equation is
unable to separate the non-soliton part of the solution.

1.3 Numerical Integration of (1+1)-Dimensional
KdV-Class Equations

As we already noted above, solutions of the KdV equation were first ob-
tained numerically [1,93]. Later in 1967, Gardner, Green, Kruskal, and Miura
[19] found the method to solve the KdV equation analytically using the IST
method (see the previous section), and obtained exact solutions in the form
of solitons.

However, even development of such powerful and effective analytical ap-
paratus as the IST method does not remove the problem of numerical inte-
gration of the KdV equation as well as other equations in the KdV-class from
the agenda because, first, it is not possible to obtain an analytical solution in
its closed form using the IST method with arbitrary initial conditions, and,
second, among the equations in the KdV-class there are models not integrated
analytically (for example, KdV–Burgers equation (KdVB equation) or KdV
equations with additional terms describing, for example, instability of some
type in the medium). Therefore, developing numerical codes as well as setting
up numerical experiments for this class of problems is highly important.

In this section, using the example of the KdV equation (1.18) we consider
some difference schemes used for the numerical analysis and present numeri-
cal solutions obtained with their help. These schemes are also used to obtain
solutions of other one-dimensional equations in the KdV-class, and some el-
ements of these schemes will be further used (see Chap. 4) when studying
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numerical methods of integration of the (1+2)- and (1+3)-dimensional prob-
lems.

1.3.1 Explicit Difference Schemes

For the KdV equation written in the form (1.18), we first consider the three-
layer explicit scheme with O(τ2, h2) approximation:

un+1
i = un−1

i − ατ

h
un

i

(
un

i+1 − un
i−1

)
−βτ
h3

(
un

i+2 − 2un
i+1 + 2un

i−1 − un
i−2

)
. (1.80)

As we can see from the above difference equation, the scheme is realized
on the 5-point template (Fig. 1.4). This scheme was used to obtain some
of the first numerical solutions of the KdV equation in 1965–1968 [1,3,93].
Investigation of the stability of scheme (1.80) using Fourier analysis gives the

n-1

n

n+1

i-2 i-1 i i+1 i+2

x

t

u
i
n

Fig. 1.4. Template for the
difference scheme (1.80): n is
the number of the time layer,
and i is the number of the
space layer

condition
τ

h
max

∣∣∣∣sin kh
(
αu− 4β

h2
sin2 kh

2

)∣∣∣∣ ≤ 1,

that is,
τ

h

(
α |u| + 3

√
3β

2h2

)
≤ 1,

or, for sufficiently small steps

τ ≤ 2h3

3
√

3β
∼= 0.384

h3

β
. (1.81)

Calculations demonstrate that this condition is quite accurate. For example,
for β = 2 × 10−4, α = 1, and h = 0.01, the stability of the scheme is
maintained for the time step τ = 1.91 × 10−3, and the scheme is already
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unstable when τ = 1.93 × 10−3. Inequality (1.81) gives τ = 1.92 × 10−3 in
this case.

Consider now the three-layer explicit scheme with O(τ2, h4) approxima-
tion. Since here the approximation of the x-derivatives is used by finite differ-
ences of higher order than in the previous scheme, we introduce the 7-point
template (Fig. 1.5). The scheme is given by

n-1

n

n+1

i-2 i-1 i i+1 i+2

x

t

u
 i
 n

i+3i-3

Fig. 1.5. Template for the
difference scheme (1.82)

un+1
i = un−1

i +
ατ

6h
un

i

(
un

i+2 − 8un
i+1 + 8un

i−1 − un
i−2

)
+
βτ

4h3

(
un

i+3 − 8un
i+2 + 13un

i+1 − 13un
i−1 + 8un

i−2 − un
i−3

)
. (1.82)

According to Fourier analysis, the scheme is stable when the condition on
the steps τ and h,

τ

h
max

∣∣∣∣
[
4β
h2

(
1 + sin2 kh

2

)
sin2 kh

2

−
(

1 +
2
3

sin2 kh

2

)
αu

]
sin kh

∣∣∣∣ ≤ 1,

are satisfied. For sufficiently small steps h, we then obtain

τ ≤ 108h3

(43 + 7
√

73)
√

10
√

73 − 62β
∼= 0.216

h3

β
. (1.83)

A comparison of conditions (1.83) and (1.81) shows that the stability condi-
tion is more strict for the scheme with the higher approximation order.

1.3.2 Implicit Difference Schemes

For the example of an implicit difference scheme, consider first the implicit
scheme with O(τ2, h4) approximation [81,83]:
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un+1
i − un

i

τ
=

α

24h
[
un

i

(
un+1

i+2 − 8un+1
i+1 + 8un+1

i−1 − un+1
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)
+un+1

i

(
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)]
+

β

16h3

(
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i−3

+un
i+3 − 8un

i+2 + 13un
i+1 − 13un

i−1 + 8un
i−2 − un

i−3

)
. (1.84)

Note that if we approximate the derivatives using the finite differences of
another order, we obtain an implicit scheme of that approximation order. We
see that in scheme (1.84), it is impossible to explicitly express the value of the
function on the knot in the given time layer using the values of the function in
the previous time layer (whence follows the name “implicit scheme”). Implicit
schemes for sufficiently small steps h are absolutely stable and can be realized
using the sweep method. In particular, for scheme (1.84), the method of the
monotonous 7-point sweep (discussed below) is highly effective.

Let us represent (1.84) as
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N−5 = hn

N−2, i = N − 2,
−a3

N−1u
n
N + a4

N−1u
n
N−1 − a5

N−1u
n
N−2

+a6
N−1u
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N−3 − a7

N−1u
n
N−4 = hn

N−1, i = N − 1,
a4

Nu
n
N − a5

Nu
n
N−1 + a6

Nu
n
N−2 − a7

Nu
n
N−3 = hn

N , i = N.

Here, for 3 ≤ i ≤ N − 3,

hn
i = −bi

(
un−1

i+3 − 8un−1
i+2 + 13un−1

i+1 − 13un−1
i−1 + 8un−1

i−2 − un−1
i−3

)
+ un−1

i ,

and

n = 1, 2, . . . , N1, bi = a7
i ,

a1
i = −τβ/16h3, a7

i = −a1
i ,

a2
i = (τ/2h)

(
β/h2 − αun−1

i /12
)
, a6

i = −a2
i , (1.86)

a3
i = (τ/h)

(
αun−1

i /3 − 13β/16h2
)
, a5

i = −a3
i ,

a4
i = 1 + (ατ/24h)

(
un−1

i+2 − 8un−1
i+1 + 8un−1

i−1 − un−1
i−2

)
,

where N1 stands for the number of the time layers. The values hn
i for i =

0, 1, 2 and i = N − 2, N − 1, N are defined by
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hn
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0u
n−1
1 + a4
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hn
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n−1
N + a4

N−1u
n−1
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n−1
N−2

+a6
N−1u

n−1
N−3 − a7
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n−1
N−4,

hn
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n−1
N − a5

Nu
n−1
N−1 + a6

Nu
n−1
N−2 − a7

Nu
n−1
N−3.

The coefficients a1
i , . . . , a

7
i for i = 0, 1, 2 and i = N −2, N −1, N are obtained

from the boundary conditions of the problem (see below in this section).
The set (1.86) is solved using the monotonous 7-point sweep method; the
procedure of developing the corresponding equations is analogous to the case
of the 5-point sweep method considered in detail in numerous monographs
and textbooks (see, for example, Ref. [97]). Therefore, here we present the
algorithm in its final form [83,98].

The algorithm of monotonous 7-point sweep method for scheme (1.84) is
based on the expressions

αi+1 = (1/∆i)
{
a3

i − a5
iβi + a6

i (βiαi−1 − δi−1) − a7
i

× [αi−2 (βiαi−1 − δi−1) − βi−2βi]} , for i = 3, 4, . . . , N − 1;
α1 = a3

0/a
4
0, α2 = (1/∆1)

(
a3
1 − a5

1β1

)
,

α3 = (1/∆2)
[
a3
2 − a5

2β2 + a6
2 (β2α1 − δ1)

]
;

βi+1 =
1
∆i

[
a2

i − a5
i δi + a6

iαi−1δi − a7
i (αi−2αi−1δi − βi−2δi)

]
,

for i = 3, 4, . . . , N − 2;
β1 = a2

0/a
4
0, β2 = (1/∆1)

(
a2
1 − a5

1δ1
)
,

β3 = (1/∆2)
(
a2
2 − a5

2δ2 + a6
2α1δ2

)
;

δi+1 = a1
i /∆i, for i = 3, 4, . . . , N − 3; (1.88)

δ1 = a1
0/a

4
0, δ2 = a1

1/∆1, δ3 = a1
2/∆2;

γi+1 =
1
∆i

{
a5

i γi − a6
i (αi−1γi + γi−1) + a7

i [αi−2 (αi−1γi

+γi−1) −βi−2γi + γi−2] − hi} , for i = 3, 4, . . . , N ;
γ1 = −h0/a

4
0, γ2 = (1/∆1)

(−h1 + a5
1γ1

)
,

γ3 = (1/∆2)
[−h2 − a6

2 (α1γ2 + γ1) + a5
2γ2

]
;

∆i =
{
a4

i − a5
iαi + a6

i (αiαi−1 − βi−1) − a7
i [αi−2 (αiαi−1

−βi−1) − βi−2αi + δi−2]} , for i = 3, 4, . . . , N ;
∆1 = a4

1 − a5
1α1, ∆2 = a4

2 − a5
2α2 + a6

2 (α2α1 − β1)

for the sweep coefficients αi, βi, γi, and δi. Then, using the expressions
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ui = αi+1ui+1 − βi+1ui+2 + δi+1ui+3 − γi+1,
for i = N − 2, N − 3, . . . , 0,

uN−1 = αNuN − γN , uN = −γN+1,
(1.89)

we obtain the unknown quantities ui one after another. Note that the sweep
coefficients αi and βi in (1.89) and (1.89) should not be mixed up with the
coefficients α and β of the original differential problem (1.18).

It is well known that the implicit difference schemes, theoretically, are ab-
solutely stable. In our case of the nonlinear equation, however, the function
ui is included into the expressions for ai (1.87). Therefore there are limi-
tations on the correctness of the algorithm. In particular, the algorithm of
the monotonous sweep method is correct when the following conditions are
fulfilled [83,98]:∣∣a7

i

∣∣ > 0, 3 ≤ i ≤ N ;
∣∣a6

i

∣∣ > 0, 2 ≤ i ≤ N ;∣∣a5
i

∣∣ > 0, 1 ≤ i ≤ N ;
∣∣a3

i

∣∣ > 0, 0 ≤ i ≤ N − 1; (1.90)∣∣a2
i

∣∣ > 0, 0 ≤ i ≤ N − 2;
∣∣a1

i
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and ∣∣a4
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0

∣∣ , ∣∣a4
1

∣∣ ≥ ∣∣a5
1
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∣∣ , 3 ≤ i ≤ N − 3.

These conditions impose restrictions on KdV equation (1.18). Indeed, for
3 ≤ i ≤ N − 3, we have to satisfy the conditions given by

un−1
i �= 12β

αh2
and un−1

i �= 39
16αh2

. (1.92)

These inequalities are satisfied for a sufficiently small step h ≤ 0.2. Also, the
last inequality of (1.92) should be satisfied for the coefficients (1.87). If the
wave amplitude un−1

i ≤ 30 (i.e., it changes within reasonable limits), then

∣∣a4
i

∣∣ ≥ τ

4h

(
11β
h2

− 3αun−1
i

)
. (1.93)

Furthermore, if the following inequality is satisfied for a sufficiently smooth
function un−1:

ατ

24h
(
un−1

i−2 − 8un−1
i−1 + 8un−1

i+1 − un−1
i+2

) ≤ 1, (1.94)

then follows the restriction [81,83,98]
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τ ≤ 4h
[
α

6
(
un−1

i−2 − 8un−1
i−1 − 18un−1

i + 8un−1
i+1 − un−1

i+2

)
+

11β
h2

]−1

∼= 4h
3|αu| ,

(1.95)
where u = max

i,n
|un

i |, that should be taken into account in calculations. In

reality, as numerical simulations demonstrate, the given restriction on the
time step is too strict since the adequate accuracy of the solution has been
observed already for h = 0.1 and τ = 0.0025. For i = 0, 1, 2 and i = N −
2, N − 1, N , in order to satisfy the conditions in (1.91), it is sufficient to
choose proper boundary conditions, as described in the next section.

Consider now another implicit scheme with O(τ2, h2) approximation:

un+1
i − un

i

τ
+

α

4h
[
un

i

(
un+1

i+1 − un+1
i−1

)
+ un+1

i

(
un

i+1 − un
i−1

)]
+

β

4h3
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un+1

i+2 − 2un+1
i+1 + 2un+1

i−1 − un+1
i−2

+un
i+2 − 2un

i+1 + 2un
i−1 − un

i−2

)
= 0. (1.96)

Analogously to what was done for the scheme (1.84), we represent (1.96) as
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Here, for 2 ≤ i ≤ N − 2, we have
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i = 1 + (ατ/4h)

(
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i+1 − un−1
i−1

)
.

For i = 0, 1 and i = N − 1, N in (1.98) we have
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The coefficients a1
i , . . . , a

5
i are determined by boundary conditions of the

problem (see the next section). The set (1.98) can be effectively solved us-
ing the non-monotonous sweep method. We consider here neither the non-
monotonous 5-point sweep method nor the final calculation expressions since
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there are plenty of monographs and textbooks devoted to realization of var-
ious sorts of non-monotonous sweep methods. Here, we only note that the
scheme (1.96) is correct under the condition that the matrix A of the set
(1.98) is non-degenerated, i.e., detA �= 0.

Thus we considered here some examples of explicit and implicit difference
schemes constructed directly for the KdV equation. Some remarks regard-
ing their adaptation to other KdV-class equations as well as the problem of
boundary conditions are given below in the next section.

1.3.3 Remarks on Numerical Integration

1. In the case when the study of KdV-class equations involves some sort of
an additional term, this term must be included into the difference schemes
considered above with the appropriate order of approximation of the deriva-
tive. For example, if we investigate the KdVB equation with the term (on
the right-hand side of the equation) describing wave damping as a result of
a dissipative process in the medium, ν∂2

xu, it is necessary to include that
term into the difference scheme with approximation of the appropriate or-
der. For the scheme (1.80) this term is given by

2ντ
h2

(
un

i+1 − 2un
i + un

i−1

)
. (1.99)

2. If some term is absent in the considered equation (as compared to the KdV
equation) then it is sufficient to assume in the difference scheme that the
corresponding coefficient equals zero (e.g., in the classic Burgers equation
when β = 0; of course, in this case it is still necessary to include the term
(1.99)) in the right-hand side of the difference equation. Thus, difference
schemes (1.80), (1.82), (1.84) and (1.96) are general (in a certain sense) for
the whole class of (1+1)-dimensional equations of the KdV type. Below,
when presenting numerical methods for multidimensional equations (Sects.
3.1 and 4.3) we will also see that the schemes considered above are used
there as their inalienable elements.

3. This remark is related to the boundary conditions of the problem. We note
that although we solve the initial value problem for all presented cases, we
should still impose constraints at the boundaries of the one-dimensional
grid because of the limits of the region of numerical integration, i.e., the
problem acquires features of the initial-boundary problem. Naturally, the
difference derivatives in the schemes must be defined for i = 0, 1, 2 and
i = N − 2, N − 1, N . In this case, terms approximating the function u at
the points corresponding to the limits of the integration region (where
the function u is not defined) on the x-axis, appear in these schemes;
accordingly, it is necessary to impose some conditions defining the function
at these points. Here, different variants are possible, and the following
discusses two possibilities most often used.
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In the case when the initial condition u(0, x) = ψ(x) has the asymptotics
|ψ(x)| → 0 for |x| → ∞ (tending to zero sufficiently fast with the increasing
modulus x, e.g., exponentially where ψ(x) ∼ exp(−x2) for |x| → ∞),
we can use on the boundaries of the integration region the so-called zero
boundary conditions

u(t, x) = ∂xu(t, x) = ∂2
xu(t, x) = ∂3

xu(t, x) = 0.

If the condition on the (space) localization of the function ψ(x) defining the
initial condition does not take place, the boundary conditions become more
complex. For example, when the initial condition is ψ(x) = a cos(mx+ϕ),
the periodic boundary conditions are usually used (they are given here for
the grid i = 0, 1, . . . , N):{

uN+1 = u1, uN+2 = u2, uN+3 = u3,
u−1 = uN−1, u−2 = uN−2, u−3 = uN−3.

In other cases, especially when solutions have more complex asymptotics
with a slow tendency of the function u approaching zero at infinity, we
can also use other boundary conditions. For example, the condition of the
“total absorption” at the boundary or the impedance boundary condition
of the Leontovich type is often used for simulations of more complex mul-
tidimensional evolution equations (see Sect. 4.3.2 for details).

Having considered various methods and schemes of numerical approach
to the integration of (1+1)-dimensional KdV-class equations based on the
finite-difference approximation of the derivatives, we now discuss their char-
acteristics related to the calculation’s accuracy and productivity, in terms of
the time expenses and demands on the computer memory. After that we can
consider numerical solutions obtained by use of these schemes.

1.3.4 Test of Numerical Methods, Their Comparative
Characteristics, and Use

To test the above difference schemes (1.80), (1.82), (1.84), and (1.96), we
investigate their characteristics related to integration in the space coordinate
x. As an initial condition we use the exact solution of the KdV equation

u0(x) =
3v
α

cosh−2

[√
v

2β
(x− x0)

]
,

where we choose v = α = 6 and β = 1. The control of the accuracy for
all time layers is fulfilled by a comparison of the numerical solution with
the above exact (analytical) solution. At each time step τ , we calculate the
relative mean deviation ε,

ε =
|unum

τ − uexact
τ |

uexact
τ

,
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as well as the mean-square-root deviation of the numerical solution from the
exact one,

s =

[
1
N

N∑
i=1

∣∣∣(unum
i )2 − (

uexact
i

)2∣∣∣
]1/2

.

For example, for t = 0.4 (the soliton is near the boundary of the integration
region) the scheme (1.84) with h = 0.1 and τ = 0.0025 gives us

ε = 6.38775 × 10−3 and s = 1.74663 × 10−4.

This result is quite acceptable and is approximately on an order of magnitude
better than the corresponding results for schemes proposed for the solution
of the KdV equation in Refs. [79,93].

Comparative analysis of the results of numerical calculation employing
the difference schemes (1.80), (1.82), (1.84), and (1.96) allows us to make the
following conclusions. The schemes (1.82) and (1.84) naturally demonstrate
the best accuracy characteristics. Conditions on the time grid step for these
schemes are approximately the same and are less restrictive than those for
scheme (1.80). Better possibilities to choose the time step in scheme (1.96)
allow us to considerably decrease the necessary computer time as compared
to other schemes. Obviously, the implicit schemes (1.84) and (1.96) have
another advantage over the explicit schemes (1.80) and (1.82), viz., their two-
layer structure ensures less requirements to the computer memory resources.
For the same time steps τ as in the implicit schemes, explicit schemes (1.80)
and (1.82) are more preferable because of their lesser time expenses. Their
three-layer structure, however, imposes severe requirements on the computer
memory resources. These schemes can be effectively used for calculations on
small time scales in the investigation of evolution of the initial condition
at the “non-stationary stage” when there is a “birth” and the subsequent
formation of locally stationary objects – solitons (see the next section).

1.3.5 Numerical Solutions of Some KdV-Class Equations

Consider now numerically obtained solutions of the KdV equation as well as
some other equations in the KdV class. We begin with the linearized KdV
equation (1.30) and Burgers equation (1.33) considered in Sect. 1.1. Although
exact analytical solutions can be found for these equations, see (1.31) and
(1.34), they are not transparent and are not convenient for detailed analysis
of the dynamics of an initial disturbance.

For the fast decreasing initial disturbance for |x| → ∞, numerical inte-
gration of linearized KdV equation (1.30) results in the following. The local
wave number is given by

k(x, t) =
∣∣∣∣ x3βt

∣∣∣∣
1/2

,
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and the local frequency is defined by ω = −βk3, as can be seen from the
dispersion law for the linearized KdV equation. Evolution of the single initial
disturbance

u(0, x) = u0 exp(−x2/l2) (1.100)

(here, u0 and l are arbitrary parameters determined by the convenience of
numerical calculation for a particular size of the region of the numerical
integration) leads to formation of the oscillating wave packet shown in Fig.
1.6. In the case where β > 0, the “fast” oscillations are in the region x < 0,

0 0x x

u u
(a) (b)

Fig. 1.6. Numerical solution of the linearized KdV equation. a. β > 0 b. β < 0

i.e., the short wavelength oscillations fall behind the large wavelength ones.
If β < 0 (note that it is generally easy to convert equation (1.30) with β < 0
to the equation with β > 0 by changing x→ −x), the fast oscillations are in
the region x > 0, i.e. the short wavelength waves are propagating forward.
Thus the change x→ −x is equivalent to the change of the dispersion sign.

For numerical integration of the Burgers equation (1.33), we consider evo-
lution of the initial disturbance u(0, x) = ψ(x) decreasing at |x| → ∞. Fol-
lowing Ref. [3] we assume that

∞∫
−∞

ψ(x)dx = C <∞, (1.101)

and the profile of the initial condition can be arbitrary in other respects. We
note only that for any t [3]

∞∫
−∞

u(t, x)dx =

∞∫
−∞

u(0, x)dx = C;

this is easy to prove by writing the Burgers equation in the divergence form,

∂tu+ ∂x

(
1
2
u2 − ν∂xu

)
= 0,

and then integrating both parts in x from −∞ to +∞. Thus, the area bound
by the function ψ(x) does not vary with time, i.e., it is the integral of motion.
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Consider now the results of numerical simulations of the Burgers equa-
tion. Choosing for simplicity of numerical realization of the algorithm (the
simplicity of the boundary conditions), the initial condition in the form of
the single disturbance (1.100) as in the case of the linearized KdV equation,
we obtain for large t the result presented in Fig. 1.7. For ν → 0 (see curve 1

u

x0

1

2

(2Ct)
1/2

(2C/t)
1/2

∆ u Fig. 1.7. Numerical solution
of Burgers equation. Curve 1
corresponds to ν = 0.0001,
curve 2 corresponds to ν =
0.1

in Fig. 1.7), the profile of the solution is a triangle with the shock wave struc-
ture at its front. The jump of u at the shock wave is

√
2C/t, i.e., it decreases

as the (inverse) square root of time; the basis (width) of the profile, on the
contrary, increases as the square root of time, so the area of the profile is a
constant equal to C.

For finite ν (see curve 2 in Fig. 1.7), we obtain another solution, namely,
the stationary wave traveling (without deformation) with a constant velocity
w:

u = f(x− wt).

The jump of the wave, ∆u, and the width of the transition region, δ = 2ν/∆u,
are determined by the parameter ν of the problem, i.e., by the dissipation
factor defining the level of damping. We note that for ν → 0 the parameter
δ also tends to zero, and in this limit we come again to the solution of type
(a) of Fig. 1.7.

The results shown in Fig. 1.7 correspond to the case C > 0, i.e., when the
area of the profile of the initial perturbation is positive. If C < 0 then the
change (in the Burgers equation) u→ −u, x→ −x, and t→ −t allows us to
return to the solutions considered above.

We consider now numerical solutions of the KdV equation itself, and also
discuss, in general, the influence on the structure and dynamics of its solutions
of the terms taking into account dissipation and instability7. For the analysis
of numerical solutions we use the similarity principle formulated above in
Sect. 1.1. Consider solutions of (1.11) corresponding to the most typical initial
disturbances decreasing for |x| → ∞. The evolution of disturbances of a

7 Sections 2.1 and 2.2 below are specially devoted to detailed investigation of this
problem.
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similar type within the limits of the KdV model was studied numerically for
the first time by Berezin and Karpman in 1966 [93].

Choosing the initial disturbance as a single pulse (1.100), we consider the
dependence (for this initial condition) of the character of solutions on the
parameter

σ = l

(
u0

β

)1/2

(see (1.18) of Sect. 1.1). Numerical experiments of Ref. [93] (also repeated
by us when testing the numerical schemes for more complicated generalized
equations, see Chap. 4) show that for the sufficiently large σ � σs =

√
12,

the initial wave pulse practically fully disintegrates with its evolution into
individual solitons – see Fig. 1.8 (in addition to the solitons, an oscillating
tail is also formed as the wave packet of a small ampitude). We note that
solutions of the same type was obtained by Zabusky and Kruskal in 1965 [1]
for the periodical initial condition u(0, x) = cos(πx). It follows from numerical

2

4

6

0 0

6

12

1 2 1 2

(a) (b)

xx

u u

Fig. 1.8. Numerical solution of KdV equation for β > 0. a. σ = 5.9; b. σ = 16.5

calculations that the initial condition (1.100):
for 4 < σ < 7, decays into 2 solitons,
for 7 < σ < 11, decays into 3 solitons,
for σ ∼ 11, decays into 4 solitons,
for σ ∼ 16, decays into 6 solitons,

i.e., with increasing σ (decreasing β) the corresponding initial disturbance
decays into a growing number of solitons. This is clear because the decrease
of the dispersion parameter β corresponds to the increasing role of nonlinear
effects as related to the dispersion effects. We note that in the evolution of
the solution, the integral

∞∫
−∞

u(t, x)dx
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Fig. 1.9. Duration of the stage of
the “non-stationary” evolution as a
function of the number of the KdV
soliton

is conserved, i.e. it is the integral of motion.
The evolution of an initial disturbance in the case when σ � σs has two

stages which can be conditionally defined as:

1. The “non-stationary stage” corresponding to decay of the initial distur-
bance and to formation of individual solitons, i.e., solitary structures with
the unchanging shape propagating with the constant velocities and ampli-
tudes.

2. The stage of the stationary evolution, i.e. propagation of the solitons as
stable solitary wave structures.

Up till 1985 practically all analytical and numerical investigations (con-
structions of exact solutions, investigations of collisional dynamics of solitons,
etc.) were primarily limited to studies of the solutions on the second stage of
the evolution, i.e., studies of the evolution and dynamics of already formed
soliton structures. In 1984, Belashov [96] succeeded in analytical and numer-
ical investigation of the evolution of solitons of the KdV equation on the
non-stationary stage, i.e., he studied dynamics of the formation of solitons as
(subsequently) stationary wave objects. The analytical study was based on a
generalization of the IST method for the KdV equation considered in Sect.
1.2.3. The numerical studies were done on the basis of scheme (1.82) of nu-
merical integration of the KdV equation. The results of these investigations
demonstrated that:

1. The duration of the stage of the “non-stationary” evolution for every soli-
ton of the solution u(t, x) is different and increases exponentially with the
increasing “number” of the soliton (see Fig. 1.9).

2. The velocities of the solitons on the “non-stationary” stage decrease to
their stationary values determined by the asymptotic expression

vn(t, x) = lim
t→∞

[
un(t, x)

3

]
,

where un is the amplitude of the nth soliton (Fig. 1.10).
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Fig. 1.10. Change of the soliton ve-
locities on the stage of the “non-
stationary” evolution

3. The growth dynamics of the soliton amplitudes also reveals the exponential
character, with the exponent depending on the number of the soliton (Fig.
1.11).

It is interesting to note that the changes of the amplitudes and velocities
(to their stationary asymptotic values) are inversely proportional to each
other at this stage, while in the limit t → ∞ the amplitudes and velocities
are directly proportional:

vn =
un

3
.

We note again that all numerical results obtained for the “non-stationary”
stage can be naturally interpreted within the limits of the (properly modified)
IST theory.

u1

u2

u3

u4

u

t

Fig. 1.11. Evolution of the soliton
amplitudes on the stage of the “non-
stationary” evolution

Consider now solutions of the KdV equation in the opposite limiting case
when σ � σs. As demonstrated in Ref. [93], the “non-soliton” solutions
corresponding to disturbances not decaying into solitons are observed in this
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case. These solutions are fast-oscillating wave packets as shown in Fig. 1.12,
looking qualitatively like the self-similar solution [3] (see below), although
such a packet can differ quantitatively from the self-similar solution by the
law with which the amplitude decreases in time and space. It is clear that

0 1

0.5

1.0

u

x

Fig. 1.12. Solution of the KdV
equation with σ = 1.9 (β > 0)

for β < 0, the picture is qualitatively opposite – a “train” of fast oscillations
goes forward from the main maximum since with the change x → −x we
obtain the same KdV equation (1.11) but with β < 0. We also note that for
some initial conditions, one can observe a solution of the clearly pronounced
mixed type having (alongside with the solitons, propagating as the locally
stationary objects) an oscillating “tail” falling behind from the solitons of
the form similar to that shown in Fig. 1.12.8

Now, a few words about the self-similar solution of the KdV equation. If
we consider a series of initial disturbances with l → 0 in (1.24) (see Sect. 1.1)
but take into account that u0l

2 =const, then solutions for the same β appear
to be similar since the parameter σ remains constant. Such a limit solution
is given by [3]

u(t, x) =
β

(3βt)2/3
ψ

[
x

(3βt)1/3

]
. (1.102)

Substituting this solution into the KdV equation (1.11), limiting our study
by the solutions ψ(z) exponentially decreasing at z → ∞, and also assuming
that ψ(z) = f ′(z), we obtain the Airy equation (for the function f(z)),

f ′′(z) − zf(z) = 0.

Its solution for z → ∞ is the Airy function Ai(z) (1.32). Thus the asymptotics
of the considered solutions for the function ψ(z) is given by [3]

8 It is necessary, however, to state that, as was shown in Ref. [96] where evolution
of the solitons on the “non-stationary” stage was studied in detail, in reality
the non-soliton oscillating part of the solution is always present. The difference
consists only in the comparative amplitudes of the solitons and the “tail.”
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ψ(z) = c
dAi(z)
dz

≈ − c

2
z1/4 exp

(
−2

3
z3/2

)
as z → +∞.

Behavior of such solutions for not too large z > 0 and z < 0 was investi-

0

3

0.5

u

x

Fig. 1.13. Self-similar solution of
the KdV equation with β < 0 for
σ = 10 (z < 0)

gated numerically [93]. The studies showed (see Fig. 1.13) that the solution
is qualitatively similar to the solutions of the linearized KdV equation (see
Sect. 1.1) as well as the KdV equation with finite l in the initial condition and
σ � σs. Physically, the self-similar solution (1.102) describes the evolution
of initial disturbances given by

∂x

[(
C

π1/2

)
exp

(−x2/l2
)]

for x � l and t1/3 � l/β1/3, where C = u0l
2 =const, i.e., u0 = C/l2 is the

characteristic velocity.
Consider now the character of the solution of the KdV equation with the

initial condition taken as a “smoothed step,”

u(0, x) =
c

1 + exp(x/l)
, (1.103)

where l gives the width of the front of the initial disturbance. As a result,
the step (1.103) evolves into the wave “train” (Fig. 1.14). The amplitude of
the first oscillation achieves its stationary value proportional to c. This result
was obtained in Ref. [93] by employing the implicit scheme represented by
(1.84).

We see that various initial disturbances lead, within the limits of the KdV
model, to different sorts of soultions. The form of a particular solution is de-
fined (for the same initial condition) by the dispersion parameter β (or σ
in the KdV equation (1.26)). Thus we demonstrated in the above examples
that numerical methods presented here can be effectively used for numerical
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Fig. 1.14. Solution of the
KdV equation for the initial
condition (1.103) with c = 4
at t = 0.9. Curve 1 – without
dissipation, curve 2 – with
dissipation, see (2.2) in Sect.
2.1

integration of the KdV-class equations. More KdV-class equations generaliz-
ing the KdV model and taking into account the dissipation, instability, and
higher order dispersion correction are considered below in specially dedicated
sections of Chap. 2.

1.4 Ion-Acoustic Waves in Plasmas

In this section we consider applications of the results obtained for the KdV
equation in the previous sections to description of the structure and dynamics
of one-dimensional waves in a plasma. We consider ion-acoustic waves in an
unmagnetized plasma and we also include discussions on weakly-relativistic
effects.

1.4.1 The Ion-Acoustic Waves

In the Introduction section, we already mentioned that both the KdV-class
and KP-class equations are universal in the sense that they describe a wide
class of nonlinear wave motions in dispersive media. In Sect. 1.1 we demon-
strated the above for the KdV equation (1.11) when the dispersion law in the
linear approximation can be written as

ω = c0k

(
1 − βk2

c0

)
, (1.104)

where c0 is the phase velocity of the wave and the factor β is determined by
the particular type of the medium considered. In this section, we consider one
of numerous applications of the KdV-class equations and study ion-acoustic
waves in an unmagnetized plasma, when the dispersion parameter and the
phase velocity are given by

β = c0r
2
D/2 and c0 = cs = (T/mi)1/2. (1.105)

Here, rD = (Te/4πnee
2)1/2 is the electron Debye length, Te is the electron

temperature (in energy units such that the Boltzmann constant is unity), ne
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is the unperturbed electron density, cs is the speed of the ion sound, T is
the effective temperature (e.g., equal to Te when Ti � Te), and mi is the ion
mass.

The ion-acoustic wave is a mode commonly occurring in both collision-
less and collisional plasmas. Physically, in a collisionless and non-isothermal
plasma where the electron temperature is much larger than the ion temper-
ature (Te � Ti), these waves are driven by the electron pressure and ion
inertia, the coupling between the species being achieved by the electrostatic
forces. Although the dispersion relation remains similar to that of the colli-
sionless case, the physics of the ion-acoustic waves in a collision-dominated
plasma is more complicated, since both electrostatic and collisional effects en-
ter into play [99]. For example, collisions between the dissimilar particles can
also couple the dynamics of the ions and the electrons. Thus, the collisional
ion-acoustic waves can involve both plasma and neutral-fluid properties. Fur-
thermore, collision-driven resistive and dissipative instabilities can occur if
external free-energy sources, such as external currents, density and veloc-
ity inhomogeneities, etc., are present [100–103], and the waves can become
nonlinear and/or turbulent.

1.4.2 Nonrelativistic Approximation

Assume that a plasma has two fully ionized components (electron and ion)
and can be approximated by two-fluid hydrodynamics when the electron and
ion components are described by the equation of motion and the continuity
equations of type (1.1):

∂tve,i + (ve,i · ∇)ve,i = −(nme,i)−1∇pe,i − (ee,i/me,i)∇ϕ,

∂tne,i + ∇ · (ne,ive,i) = 0.
(1.106)

In addition, instead of the Laplace’s equation (1.3), we have the Poisson’s
equation for the electric potential ϕ:

∆ϕ = −4πe(ni − ne). (1.107)

In these equations, the subscripts e, i stand for the particle type (electron or
ion, respectively) and for simplicity we assume that −ee = ei ≡ e. Further-
more, we suppose that the plasma is non-isothermal, i.e., its (electron and
ion) components have distinctively different temperatures, Ti � Te (and,
correspondingly, the different pressures, pe,i ∼ ne,iTe,i), and consider the
low-frequency branch of the oscillations when the condition

τ−1 � ωpe =
(
4πnee

2/me

)1/2

is satisfied. Assume also that the electrons are Boltzmann-distributed, i.e.,
their relaxation time is very short compared to the period of the ion plasma
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oscillations [3]. In the limit Ti � Te the low-frequency oscillations are weakly
damped, and one can further assume that Ti = 0 (and therefore in the fol-
lowing section, T can stand for the electron temperature Te).

Thus omitting the index i for the ion velocities and number densities, we
can rewrite Eqs. (1.106) and (1.107) as

∂tv + (v · ∇)v = −(e/mi)∇ϕ,

∂tn+ ∇ · (nv) = 0, (1.108)
∆ϕ = 4πe [n0 exp(eϕ/T ) − n] .

For the long wavelength ion-acoustic waves when krD � 1 (the condition
of weak dispersion), the dispersion relation (1.12) is valid. Now, using the
technique used above in Sect. 1.1 to derive the KdV equation, we can easily
obtain the Boussinesq equations for the ion-acoustic wave,

∂tv + (v · ∇)v = −c2s∇ lnn− (2csβ/n0)∇∆n,

∂tn+ ∇(nv) = 0
(1.109)

(compare with (1.7) in Sect. 1.1), where β and cs are defined by (1.105).
Consider the wave propagating along the x-axis when the x-component

of the ion velocity is much smaller than the phase velocity cs. In this case,
following the results of Sect. 1.1, we obtain the KdV equation for propagation
of the ion-acoustic wave in the x-direction:

∂tv + cs∂xv − csδ
2∂3

xv + v∂xv = 0, (1.110)

where δ2 = r2D/2 = β/cs, which is similar to (1.10). After the homothetic
transformation and transition to the reference frame moving along the x-axis
with the velocity cs, we obtain the KdV equation in its standard form

∂tu+ αu∂xu+ β∂3
xu = 0, (1.111)

where u is the velocity of the ion “sound,” and the factor at the nonlinear
term is α = 3cs/2n [3].

Turning to (1.110), we note that the term cs∂xv describes the wave prop-
agating in the x-direction with the velocity cs, while the dispersion and non-
linear terms are responsible for slow changes of the sound wave field on the
background of the fast wave motion with the velocity cs. Such type of sound
waves is mostly characteristic of isotropic media (e.g., plasma without mag-
netic field), but sometimes it takes place in an anisotropic medium as well.
For example, if the characteristic frequencies of the ion-acoustic wave packet
are much larger than the ion-cyclotron frequency, ωBi = eB0/mic, appearing
in a magnetized plasma, the plasma anisotropy can be neglected and one can
still reduce (1.110) to the KdV equation (1.111). In the opposite case, when
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ω � ωBi, the effects of the anisotropy cannot be neglected and it is necessary
to consider a non-one-dimensional model9 (see, for example, Sect. 4.6).

Finally, we note that it is not necessary to specially integrate (1.111), since
all results of the previous sections can be applied directly to this case of the
ion-acoustic waves in a collisionless unmagnetized plasma. What is necessary
is merely to interpret them properly, taking into account the physics behind
the terms and factors of this equation.

1.4.3 Weakly-Relativistic Effects

As we demonstrated above, ion-acoustic waves in a plasma can be described
by the KdV equation (1.111). If velocities of plasma particles approach the
speed of light, the relativistic effects should be taken into account when con-
sidering propagation of the one-dimensional solitary ion-acoustic wave. It
appears that the relativistic effects can strongly influence the phase velocity,
the amplitude, and the characteristic length of the wave.

Using the reduced perturbation method [104] for the one-dimensional ion-
acoustic solitary waves in a weakly relativistic collisional plasma, we can
obtain the KdV equation of type (1.111) by taking into account the relativistic
factor u/c:

∂τΦ1 + α (ϑ1)Φ1∂ξΦ1 +
1
2
β (ϑ1) ∂3

ξΦ1 = 0, (1.112)

where Φ1 = ϑ
1/2
1 u1 is the first-order perturbation of the electrostatic potential

Φ = εΦ1+ε2Φ2+. . . (ε is the small expansion parameter), u1 is the first-order
perturbation of the particle velocity (u = u0 + εu1 + ε2u2 + . . .), and

α (ϑ1) = β (ϑ1)
(
1 − ϑ2/ϑ

3/2
1

)
, β (ϑ1) = ϑ

−1/2
1 ,

ϑ1 = 1 + 3u2
0/2c

2, ϑ2 = 3u0/2c2.
(1.113)

Equation (1.112) is written for the reference frame moving along the x-axis,
ξ = ε1/2(x − λt) and τ = ε3/2t, where λ is the phase velocity. Note that
the factor at the nonlinear term is positive, α > 0, because of ϑ1 � ϑ2. In
this case we can obtain a stationary solution in the form of a solitary wave.
Introducing a new variable ζ = kξ − ωτ and substituting it into (1.112), we
write the solution for the one-dimensional wave in the form of the ion-acoustic
soliton:

Φ1 = Φ0 cosh−2

(
ζ

kW

)
. (1.114)

Here, the amplitude Φ0 and the characteristic scale W are given by

9 On the right-hand side of the equation of motion (1.107), an additional term
proportional to ωBix̂× v (where x̂ is the unit vector of the x-axis) appears and
it is necessary to include an additional term that is proportional to k2

⊥/2k2
x into

dispersion relation (1.104) (see also comment in Sect. 4.6.1).
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Φ0 =
3δ

α (ϑ1)
and W =

[
2β (ϑ1)

δ

]1/2

, (1.115)

where δ = ω/k and the boundary conditions are Φ1 → 0, ∂n
ζ Φ1 → 0 for

n = 1, 2 and |ζ| → ∞. The dispersion law for the described waves has the
form ω = 2β(ϑ1)k3.

Table 1.2. Comparison of results (1.113)–(1.115) with those of Refs. [105,106]

Parameter Eqs. (1.113)–(1.115) u0/c = 0 u0/c �= 0
[105,106] [105,106]

λ u0 + ϑ
−1/2
1 1 u0 + ϑ

−1/2
1

α (1 − ϑ2/ϑ
3/2
1 )/ϑ

1/2
1 1 (1 − ϑ2/ϑ

3/2
1 )/ϑ

1/2
1

β ϑ
−1/2
1 1 ϑ

−1/2
1

Φ0 3δϑ
1/2
1 /(1 − ϑ2/ϑ

3/2
1 ) 3s 3sϑ

1/2
1 /(1 − ϑ2/ϑ

3/2
1 )

W ϑ
−1/4
1 (2/δ)1/2 (2/s)1/2 ϑ

−1/4
1 (2/s)1/2

We can see from (1.113) that factors at the nonlinear term as well as at
the dispersion term are determined by the relativistic factor ϑ1, and relations
(1.115) show the dependence of the amplitude and the characteristic scale of
the KdV ion-acoustic soliton on the (weakly) relativistic effects. Comparison
of results following from (1.113)–(1.115) with those for the two extreme cases
u0/c = 0 and u0/c �= 0 considered in Refs. [105,106] is given in Table 1.2.
Here,

s = ω/k ∼= v0 + ϑ
−1/2
1

(
1 − k2/2

)
,

where v0 is the ion velocity (if v0 ∼ 0 and the relativistic effects are absent
then s ∼= 1 − k2/2). We see from Table 1.2 that the results obtained above
also include the cases considered in Refs. [105,106].

Consideration of effects in a weakly-collisional and weakly-relativistic
plasma is justified by a number of phenomena in a plasma where high en-
ergy flows of a particles should be taken into account. In particular, when
the kinetic energy of ions, Mu2

0/2, reaches 4.7MeV for u0/c ≈ 0.1, a weakly-
relativistic ion-acoustic solitary wave starts to form, thus describing the mo-
tion of high energy protons with the velocity approaching the speed of light,
as observed in the Earth’s magnetospheric plasma [107]. Investigation of the
relativistic nonlinear waves also has application in laser plasma physics [108]
and astrophysics [109].



2. Generalized KdV Equations. NLS and
DNLS Equations

2.1 Generalized KdV Equations

In this section we consider some generalizations of the KdV equation, taking
into account dissipation processes, higher order dispersion corrections and in-
stability (Sect. 2.1.1 and 2.1.2), as well as consider modified KdV equations
(Sect. 2.1.3). In Sect. 2.1.4, on example of surface waves in a plasma, we
present a KdV-type equation with higher order dispersive nonlinearity and
discuss some types of solitary surface plasma waves. Other problems related
to evolution of the generalized KdV solitons and classification of solutions of
the generalized KdV equation, using methods of the qualitative and asymp-
totic analyses, are discussed in Sect. 2.2.

2.1.1 The KdV–Burgers Equation. Some Applications

Consider the influence of terms related to dissipation (as well as possible
instability in a medium) on the structure of the KdV equation.
Dissipation. The KdV–Burgers (KdVB) Equation. The influence of
dissipation in a medium leads to appearance of the new term −iµk2c0 in the
dispersion relation (1.17). Thus the dispersion law takes the following form:

ω = c0k
(
1 − iµk − βk2/c0

)
. (2.1)

The KdV equation with such type of dissipative term,

∂tu+ u∂xu+ β∂3
xu = ν∂2

xu, (2.2)

where ν = c0µ, is called the Korteweg–de Vries–Burgers equation (KdVB
equation). This equation describes propagation of nonlinear waves and soli-
tons in media with the viscous-type dissipation, in this case ν > 0. The KdVB
equation can be obtained, for example, by the same way as in Ref. [3] (see
also below).

As was shown in Refs. [3,83], the dissipative factor ν for ion-acoustic waves
in an unmagnetized plasma is given by

ν = (ρ0/2ρ)
(
c2∞ − c20

)
τ

∞∫
0

ξϕ(ξ)dξ,
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and describes the relaxation damping of “sound” where c∞ and c0 are the
velocities of the high- and low-frequency waves, respectively (the latter co-
incides with cs = (Te/mi)1/2); here, ϕ(t, τ) is the function determining the
relaxation process. If, on the contrary, the collisionless Landau damping is sig-
nificant for the considered ion-acoustic waves in a plasma, the dissipation can
be accounted by introducing (into the right-hand side of the KdV equation)
the integral [3,83]

L̂[u] = σ

∞∫
−∞

dk
2π

|k|
∞∫

−∞
u(x′)eik(x−x′)dx′, (2.3)

where σ = c0(πme/8mi)1/2. In this case the dispersion law is given by

ω = c0k

(
1 − iσ|k|

c0
− βk2

c0

)
, (2.4)

and we obtain the following generalization of the KdV equation:

∂tu+ u∂xu+ β∂3
xu = −L̂[u]. (2.5)

Using the relation [3]

iπ|k|
k

= P

∞∫
−∞

dz
z

eikz,

where P stands for the principal value, we can write [92]

L̂[u] =
σ

π
P

∞∫
−∞

dx′

x− x′
∂x′u(x′). (2.6)

We note here that the damping coefficient σ in relations (2.3)–(2.6), simi-
lar to the factors ν and µ in (2.1) and (2.2), can only be positive; that is
natural according to its physics. Furthermore in our study of the influence
of dissipation on the structure and evolution of nonlinear waves, we limit
ourselves, unless it is specifically mentioned, to the hydrodynamic approxi-
mation when, for example, for plasma ω � ωpe, in other words, the inverse
time of the (ion) oscillations is much less than the electron plasma frequency,
i.e., τ−1 � (4πn0e

2/me)1/2. In this case for Te � Ti the Landau damping is
small.

The presence of dissipation/absorption in a medium leads to the exponen-
tial wave damping, with the damping rate proportional to the factor ν in the
KdVB equation. In this case, the tail oscillations of a soliton are smoothed.
Thus, when simulating evolution of the initial “step” (see above), for exam-
ple, the oscillation region at the front of the shock wave is narrowed and
becomes finite (line 2 in Fig. 1.14, Sect. 1.3).
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Instability. When introducing the term describing an instability in the
medium, for example, in the form αu into the right-hand side of the KdVB
equation (2.2), we can in principle achieve stabilization of solitons since the
instability leading to the exponential increase of the wave amplitude is sup-
pressed by the dissipation effects. An instability can also be included into
the KdVB (or KdV) equation with the help of a small additional differential
term, for example, in the form of −δ∂4

xu, into the right-hand side of the equa-
tion. The effect of such type of the instability on the structure and evolution
of solutions is discussed in detail in Sect. 2.2, where evolution of solitons of
the generalized KdV equation is studied.

Strongly Dissipative Waves in a Plasma. Consider nonlinear propaga-
tion of ion-acoustic waves in a collision-dominated plasma, taking into ac-
count variations of the particle densities, fluid velocities, as well as temper-
atures in the wave field [99]. It was found that the propagation is governed
by the KdVB equation [99], similar to that for the weakly collisional plasmas
[110]. The scaling and therefore the physics are completely different from
the collisional case, however. Also, in contrast to the latter, where the non-
linearity originates mainly from ion convection and electron pressure, it is
dominated here by the thermal forces and inter-particle heat transfer. As
a result, there is no regime of weak dissipation, and KdV solitons cannot
propagate in such a system.

Unlike the case for a nearly collisionless plasma, where the electrons are in
thermal equilibrium and are governed by the Boltzmann distribution, the full
dynamics of both the ions and electrons must be considered here. Accordingly,
we start with the equations for the fluid velocities, ve and vi, of the electrons
and ions [111]:

mene(∂t + ve · ∇)ve;j = −∇jneTe −∇lπ
(e)
lj − eneEj +Rj , (2.7)

and
mini(∂t + vi · ∇)vi;j = −∇jniTi −∇lπ

(i)
lj + eniEj −Rj . (2.8)

Equations (2.7) and (2.8) are completed by the continuity equations

∂tne,i + ∇ · (ne,ive,i) = 0, (2.9)

and the energy balance equations

3
2
ne,i(∂t + ve,i · ∇)Te,i + ne,iTe,i∇ · ve,i

= −∇ · q(e,i) − π
(e,i)
lj ∇jve,i;l +Qe,i. (2.10)

In the above equations, the terms ∇nT represent the pressure forces of the
electron and ion gases, and the stress tensors π(e,i)

lj are given by (the coef-
ficients here as well as below are obtained by integrating the corresponding
kinetic equations [111])
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π
(e)
lj = −0.73

neTe

νe
w

(e)
lj , π

(i)
lj = −0.96

niTi

νi
w

(i)
lj , (2.11)

with the rate of strain tensors w(e,i)
lj given by

w
(e,i)
lj = ∇jve,i;l + ∇lve,i;j − 2

3
δlj∇ · ve,i. (2.12)

Furthermore, the friction force R between the electrons and ions is

R = Ru + RT , (2.13)

where Ru is associated with the force of relative friction (for ω � νe),

Ru = −0.51nemeνeu, (2.14)

which depends only on the relative velocity u = ve−vi between the electrons
and ions. Note that the effective collision frequency here is νeff � νe. Let
us also stress that in the opposite limit, namely ω � νe, one can obtain
the mathematically similar relation Ru � −nemeνeu. However, in this case
serious questions on the validity of the hydrodynamic description arise [111].

The thermal-gradient frictional force RT apppearing in (2.13) is given by

RT = −0.71ne∇Te. (2.15)

Furthermore, the heat fluxes q(e,i) are

q(e) = q(e)
u + q(e)

T = 0.71neTeu − 3.16
neTe

meνe
∇Te (2.16)

and
q(i) = −3.9

niTi

miνi
∇Ti. (2.17)

Finally, the heating powers Qe,i are

Qe = −R · u −Qi and Qi = 3
me

mi
neνe(Te − Ti). (2.18)

The linear dispersion was found [99] to be

ω ≈ vsk − i5A
v2

Tek
2

νe
− 5Bkvs

v2
Tek

2

ν2
e

, (2.19)

where vs = (10Te/3mi)1/2 is the velocity of the collisional ion sound (note
the factor 10/3 is absent in the case of nearly collisionless ion sound waves
propagating with the velocity cs = (Te/mi)1/2), vTe = (Te/me)1/2 is the
electron thermal velocity,

A =
3.16
3

+
(

3.9
3

+
9.6
3

)
νeme

νimi
,
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and

B =
3mi

10me

(
3.16
3

+
3.9
3
νeme

νimi

)2

.

Equation (2.19) gives the frequency of the ion-acoustic waves in a collision-
dominated plasma. We see that the waves exhibit collision-driven damping
and dispersion, and that the contributions of the stress tensor as well as the
temperature perturbations, usually neglected, are significant.

Furthermore, it is convenient to define the electrostatic potential ϕ by
E = −∇ϕ. Thus we obtain [99]

(∂t + ∂x − ∂2
x + 5∂3

x)ϕ+ ∂x(ϕ)2 = 0, (2.20)

where t, x, and ϕ have been normalized by 3.16me/15miνe, 3.16mevs/15miνe,
and (5+2 · 0.71)miv

2
s/2e, respectively. We also have assumed for convenience

that νeme � νimi, so that, for example, A ≈ 3.16/3. Equation (2.20), which
does not contain any dimensionless parameters, is the KdVB equation. Unlike
the KdVB equation for a weakly-collisional plasma, Eq.(2.20) is not reducible
to a simple KdV equation in any limit. This is because the scaling (i.e., the
normalization parameters) is fixed in the present problem, as is evident from
the absence of free parameters which can be rescaled in order to neglect
the dissipation term. Thus, the corresponding solutions, namely, shock-like
structures (shock waves) with oscillating downstream tails, usually attributed
to weakly collisional plasmas [100,103,110], occur in a strongly collisional
plasma as a rule. It also follows that an ion-acoustic soliton of KdV type
cannot appear in such a plasma. Physically, this result is expected, since when
collisional effects dominate, dissipation is inevitable. The fact that thermal
forces and inter-particle heat transfer dominate the nonlinear mechanism
is also expected in some sense, since dissipation, similar to dispersion, is
particularly sensitive to the large gradients associated with the shock wave.

2.1.2 Higher Order Dispersion Corrections

Consider influence of the higher order dispersion corrections on the structure
of solutions of the KdV equation; these corrections sometimes arise naturally
in the equation when studying propagation of nonlinear waves in some par-
ticular physical media. They are especially important when the factor β at
the third-order dispersion term is very small or even equal to zero, e.g., for
waves on the surface of a shallow fluid that takes place when H2 → 3σ/ρg; for
FMS waves propagating in a magnetized plasma – when tan−2 θ → me/mi

(see Sect. 1.1). Note that β → 0 does not necessarily mean that dispersion
in a medium is completely absent; usually it only indicates that in the ex-
pansion of the full dispersion equation in k (just how expressions (1.17) and
(2.1) have been obtained), it is necessary to take into account the next or-
der dispersion term to maintain the balance between the nonlinearity and
dispersion (determining the existence of a soliton solution).
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In this case, the dispersion equation can be written as

ω = c0k

(
1 − βk2 − γk4

c0

)
, (2.21)

so that such generalized KdV equation is given by

∂tu+ u∂xu+ β∂3
xu+ γ∂5

xu = 0. (2.22)

This equation is called the Kawahara equation [84]. In this case the inflection
point appears on the dispersion curve, and the dispersion dependence ω =
ω(k) becomes more complicated (see Fig. 2.1). As we can see from Fig. 2.1,
the opposite dispersion signs appear in the regions of short and long waves:
indeed, for small wave numbers k when sgn(β) = sgn(γ), the wave dispersion
is negative, and for large wave numbers k it is positive for β, γ > 0, and
negative for β, γ < 0.

0

ω

k

KdV

K

Fig. 2.1. Dispersion character for
equation (2.22), the curve K

0 3 6 x

u

-3-6

Fig. 2.2. Solutions of the Kawahara
equation for different signs of the
dispersion factors: 1 for γ > 0 and
β ≤ 0; 2 for γ > 0 and β > 0
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Numerical simulations demonstrate that the Kawahara equation (2.22)
can have two classes of solutions, see Fig. 2.2. In the case γ > 0 and β ≤ 01, a
soliton forms, with the monotonous exponential asymptotics which is similar
to the asymptotics of the standard KdV soliton. However, in the case γ > 0
and β > 0, the soliton asymptotics acquires the oscillating character (see also
Sect. 2.2). In this case the velocity V of such a soliton satisfies the conditions
V < 0 and V < V ph

min where V ph is the phase velocity of the small amplitude
waves. From the dispersion relation (2.21), we obtain V ph = −βk2 +γk4, and
therefore the upper limit of the soliton velocity is V < V ph

min = −β2/4γ.
Kawahara investigated in detail the asymptotics of the oscillating solu-

tions of a soliton type in 1972 [84].2 Later in 1991, Karpman and Belashov
[113,114] obtained analogous results for a two-dimensional analogue of the
KdV equation generalized by the higher dispersion correction, namely, the
generalized KP equation (GKP equation) (see Chap. 4 for details). In par-
ticular, numerical studies [113] showed that in the one-dimensional limit the
amplitudes and wave lengths of the oscillations depend on β|γ|−1/2, namely,
the amplitudes of the oscillations decrease and the wave lengths increase
when the ratio (β|γ|−1/2) decreases. For β|γ|−1/2 → 0, the asymptotics of
the soliton approaches the monotonous one. We note that in the limit γ → 0
for β = const, the Kawahara equation (2.22) converts to the usual KdV equa-
tion.

Finally, we note that more detailed analysis of all asymptotic cases in-
cluding dependencies on the dispersion coefficients β and γ can be found in
Sect. 2.2 and Sect. 4.4 (in particular, see upper part of Fig. 4.11). Results
of numerical simulations of the evolution of solitons of the generalized KdV
equation are considered in detail in Sect. 2.2.

2.1.3 Modified KdV Equations

Applying to the KdV equation ∂tu+ 6u∂xu+ ∂3
xu = 0 (which is (1.19) with

the change u → −u) the Miura transform u = v2 + ∂xv (this in fact means
that we change the quadratic nonlinearity by the cubic one), we obtain the
so-called modified KdV equation (MKdV equation):

∂tv + 6v2∂xv + ∂3
xv = 0. (2.23)

This equation, like KdV equation, possesses an infinite number of the poly-
nomial conservation laws.3 The prove of such connection of these equations
1 Note that the case of the opposite signs of β and γ can be simply obtained from

x → −x, u → −u, and therefore we consider here only the cases of either the
same or the opposite sign of the dispersion factors.

2 For a more complex generalized KdV equation the asymptotic analysis was done
by Belashov and Tunina in 1997, see Ref. [112] and Sect. 2.2 for details.

3 Note that modified equations of a more general class ∂tw + 6wp∂xw + ∂3
xw = 0,

with a higher power of nonlinearity p = 3, 4, . . ., have only three of the polynomial
conservation laws [13].
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(obtained using the direct comparison of the conservation laws) is based on
the following Miura statement [115]:

Theorem. If v is a solution of the modified KdV equation Qv = 0, then

u ≡ v2 + ∂xv (2.24)

is the solution of the KdV equation Pu = 0 where the differential opera-
tors are

Q ≡ ∂t + 6v2∂x + ∂3
x and P ≡ ∂t + 6u∂x + ∂3

x.

Proof. Substituting (2.24) into the left-hand side of the KdV equation we
obtain

Pu = (2v + ∂x)Qv,

thus, if Qv = 0 then u satisfies the KdV equation.
It is interesting to note that unlike the KdV equation, the interchange

v → −v in (2.23) does not change the MKdV equation, therefore the lat-
ter describes solutions of positive as well as negative polarity without its
change. Similar property takes place for generalized MKdV equations for any
even nonlinearity power (we discuss this problem in detail in Sect. 2.2.3 for
arbitrary nonlinearity index p).

The transform (2.24) can be used to prove the existence of the infinite
series of conservation laws for both KdV and MKdV equations. Such a proof,
based on generalization of (2.24),

u ≡ w + ε∂xw + ε2w2,

where w satisfies the Gardner equation

∂tw + 6(w + ε2w2)∂xw + ∂3
xw = 0,

was given in [90]. The transform (2.24) is analogous to the Cole–Hopf trans-
form which converts the Burgers equation into the heat conductivity (or dif-
fusion) equation (see Sect. 1.1.3 and Ref. [2]). In our case, however, the trans-
form (2.24) links two nonlinear equations, one of which (KdV) can be solved
by the IST method, see Sect. 1.2.

Using the direct method of finding exact solutions of nonlinear evolution
equations proposed by Hirota [94] and supposing that v → 0 for |x| → ∞ we
can obtain the one-soliton solution of the MKdV equation (2.23) given by

v(t, x) = k cosh−1 ξ, (2.25)

where ξ = k(x− x0 − k2t). Now, we can construct the one-soliton solution of
the KdV equation using the transform (2.24)
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u(t, x) =
k2

2
cosh−2 ξ

2
(2.26)

(compare with the solution of (1.19) given in Sect. 1.1.2). We can see in (2.25)
and (2.26) that the amplitudes of the MKdV and KdV solitons are k and k2,
their widths, 1/k, are therefore inversely proportional to the amplitude and
to the square root of the amplitude, respectively, and the velocities of the
solitons are proportional to k2 in both cases.

Note, that a result similar to (2.26) can be easily obtained using the
direct Hirota method. This method also enables us to construct the N -soliton
solution of the MKdV equation which is given by [26]

v = i∂x

(
ln
f∗

N

fN

)
, (2.27)

where

fN =
∑

µ̄

exp

⎡
⎣ N∑

i=1

µi

(
ξi + i

π

2

)
+

N∑
1≤i<j

µiµjAij

⎤
⎦ (2.28)

(compare with (1.21)). The factors Aij are defined by

eAij =
(
ki − kj

ki + kj

)2

. (2.29)

For example, for the one-soliton solution we have f1 = 1 + eξ+iπ/2, and for
two-soliton solution we obtain

f2 = 1 + eξ1+iπ/2 + eξ2+iπ/2 + eξ1+ξ2+iπ+A12 . (2.30)

Now, using the Miura transform we can construct the N -soliton solution of
the KdV equation obtaining, as a result of this procedure, expressions given
in Sect. 1.1.2.

Regarding the problem of existence of other classes of solutions of the
MKdV equation, consider the results also obtained by the same direct
method. Suppose that the asymptotic boundary conditions are non-zero, i.e.,
v → v0 for |x| → ∞, and following [116,117] instead of (2.27) we obtain

v = v0 + i∂x

(
ln
GN

FN

)
, (2.31)

where GN and FN are defined by the same expressions as (2.28), with the
change iπ/2 → ϕi and iπ/2 → ψi, respectively, where ϕ and ψ are defined by

eϕj = 1 − ikj/2v0, eϕj = 1 + ikj/2v0,

and ξi = ki

[
x− (6v2

0 + k2
i )t− x0i

]
. Thus, assuming that

F1 = 1 + eη1+ϕ1 ,
G1 = 1 + eη1+ψ1 ,
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we obtain the one-soliton solution of the MKdV equation (2.23) in the implicit
form [26]:

v = v0 +
k2
1√

4v2
0 + k2

1 cosh ξ1 + 2v0
. (2.32)

Assuming that

F2 = 1 + eξ1+ϕ1 + eξ2+ϕ2 + eξ1+ξ2+ϕ1+ϕ2+A12

and
G2 = 1 + eξ1+ψ1 + eξ2+ψ2 + eξ1+ξ2+ψ1+ψ2+A12 ,

where eA12 is defined by (2.29), we arrive at the two-soliton solution, etc.
Now set up the problem of finding the rational soliton solutions of the

MKdV equation. Consider the limit kj → 0 with the proper choice of the
phase constants. For N = 1 we choose ek1x01 = 1. Then we obtain

F1, G1 ∼ −k1

(
x− 6v2

0t±
i

2v0

)
(2.33)

(the upper and the lower signs correspond to functions F1 and G1, respec-
tively) which lead to the one-dimensional non-singular rational solution [26]

v = v0 − 4v0
4v2

0 (x− 6v2
0t)

2 + 1
. (2.34)

For N = 2, we choose

ek1x01 = −ek2x02 =
k1 + k2

k1 − k2

(
1 +

k1k2

8v2
0

)
,

assume ki → 0, and analogously obtain

F2, G2 ∼ −1
6
k1k2(k1 + k2)

[
η3 + 12t− 3

4v2
0

η ± 3i
2v0

(
η2 +

1
4v2

0

)]
, (2.35)

where η = x−6v2
0t. Substituting (2.35) into (2.31), we also obtain the solution

in another form of the non-singular rational soliton [26]:

v = v0 −
12v0

[
η4 + (3/2v2

0)η2 − 3/16v4
0 − 24ηt

]
4v2

0 [η3 + 12t− (3/4v2
0)η]2 + 3 (η2 + 1/4v2

0)2
. (2.36)

Finally, we note that the MKdV equation can have one more class of so-
lutions of the form of a so-called compacton [118]. Unlike the solitons, which,
although highly localized, still span infinitely, these solitary waves have com-
pact support, and they vanish identically to zero outside a finite region. More-
over, their collisions are elastic, like those for solitons. The compacton-like
solution of (2.23) presented for the first time in Ref. [119]4 is given by
4 Note that in Ref. [119], the compacton-like solution is presented for the MKdV

equation ∂tv + v2∂xv + ∂3
xv = 0.
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v(t, x) =
8√
3

k cos2 k(x− 4k2t)
[1 − 2 cos2 k(x− 4k2t)/3]

(2.37)

within the region
∣∣x− 4k2t

∣∣ ≤ π/2k, and zero outside this region. We can
see that for this solution both the width and the amplitude are proportional
to the square root of the velocity. The evolution of solution (2.37) is similar
to that of the MKdV solitons. It is necessary to stress the fact that the sec-
ond derivative of (2.37) is discontinuous at the boundaries, but v(t, x) is the
strong solution of (2.23), the feature similar to that of the compacton. Thus
the judicious truncation of the well-known periodic solution, by confining it
within the fundamental strip, leads to the compact support for (2.37).

Stability of the compacton solutions of a more general class of equations,
namely

∂tu+ ∂x(up) + ∂3
x(uq) = 0,

was considered in Ref. [120]. It was shown there by using the linear stability
analysis, as well as the Lyapunov stability criterion, that these solutions are
stable for arbitrary nonlinear parameters p and q. However, as was noted in
Ref. [119], the analysis requires an additional check for the MKdV equation.

To conclude, we note that the MKdV equation can be further generalized
analogously to the KdV equation, taking into account possible dissipation,
instability, and the higher order dispersion effects. We consider this prob-
lem in detail below in Sect. 2.2 where the MKdV equation is studied as a
particular example of the more general case of generalized KdV equations.

2.1.4 Higher Order Dispersive Nonlinearity

In this section, we demonstrate how a new KdV-type nonlinear evolution
equation, which admits a solitary wave solution, appears for surface waves in
a plasma [121–124].

Nonlinear Surface Plasma Waves. Consider a semi-infinite cold plasma
(0 < z < ∞) containing free electrons in a positively-charged background
of heavy or lattice ions. The plasma is bounded at z = 0 by a dielectric of
constant permittivity εd. In this case, p-polarized electromagnetic waves with
the field components By, Ex, and Ez can propagate along the x-direction on
the interface. Making use of the z-direction structure of the linear mode, one
can express the electric fields associated with the nonlinear surface waves and
apply the corresponding boundary conditions [124,125]. The thickness of the
surface layer at z = 0 is assumed to be smaller than any other characteristic
length.

From the Maxwell equations, the electric field is written E in terms of
the current density j. To describe the electron dynamics, we use the cold
plasma fluid equations. To the second order, the quantities needed to obtain
the Fourier components of the nonlinear current densities are
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vnl
ω,k(z) =

ie2

2m2
eω

∫
∇
(

E1 · E2

ω1ω2

)
d(2)ωd(2)k, (2.38)

and

(nlvl)ω,k(z) =
ie2

2m2
e

∫ [
E1∇2 ·

(
n0E2

ω1ω2
2

)

+E2∇1 ·
(
n0E1

ω2
1ω2

)]
d(2)ωd(2)k, (2.39)

where d(2)ω = dω1dω2δ(ω − ω1 − ω2), d(2)k = dkx,1dkx,2δ(kx − kx,1 − kx,2),
and the right hand side of (2.38) contains contributions from the convective
derivatives as well as the v×B force terms in the momentum equation. Here,
Ej = E(z;ωj , kx,j) and ∇j = ẑ∂z + ikx,jx̂. Thus, the Fourier component of
the second order current density is given by

jnl
ω,k(z) = − ie3

2m2
e

∫ [
n0∇

(
E1 · E2

ωω1ω2

)
+ E1∇2 ·

(
n0E2

ω1ω2
2

)

+E2∇1 ·
(
n0E1

ω2
1ω2

)]
d(2)ωd(2)k. (2.40)

Furthermore, we apply the inverse Fourier transform to the corresponding
equations; defining a pseudo-potential ϕ by Ex = −∂xϕ (note that ϕ is not
the usual electrostatic potential in this case), we obtain

(∂t + ∂x)ϕ+
εd

2
∂3

x

(
ϕ+ ϕ2

)
= 0, (2.41)

where we have normalized t, x, and ϕ by ω−1
pe , c/ωpeε

1/2
d , and mc2/3eεd,

respectively.
Equation (2.41) appears as a new type of evolution equation governing

the nonlinear surface waves in a plasma [124]. Unlike the KdV equation con-
sidered above, the nonlinear term here incorporates dispersive characteris-
tics. This and similar equations have been discussed in [121,122,124,126].
Depending on the initial conditions, (2.41) admits solutions describing the
quasi-stationary propagation of finite amplitude surface waves. In particular,
for V > 1, it has the localized propagating solution

ϕ = −3
4

cosh−2

[
ξ − ξ∗ ∓ 3

2

(
4
3
ϕ+ 1

)1/2
]
, (2.42)

where ξ = (x− V t)/L, L2 = 2εd/(V − 1), and ξ∗ is an integration constant.
Equation (2.42) is transcendental in ϕ, but it can be inverted to yield

ξ = ±3
2

(
4
3
ϕ+ 1

)1/2

± cosh
(
−4

3
ϕ

)1/2

, (2.43)
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where ξ∗ = 0. We note that the latter, as well as the square root, can take
on either the positive or the negative sign. Equation (2.43) can be easily
evaluated numerically, with the upper and lower signs corresponding to ξ >
0 and ξ < 0, respectively. The solution is shown in Fig. 2.3. The soliton
resembles the well-known cosh−2(ξ) profile, but it is broader at the center
because of the amplitude-dependent rescaling of the argument of the cosh−2

function by the additional term 3 (1 + 4ϕ/3)1/2
/2. The dashed curve in Fig.

2.3 represents the expression (2.42) without the rescaling term. It is not the
KdV soliton profile because of the very different amplitude-width relation.

ξ

ϕ

Fig. 2.3. The soliton represented by
(2.43). The dashed curve is for the
function −(3/4) cosh−2(ξ) which is,
however, not the KdV soliton pro-
file because of the difference in the
amplitude-width relations

Alternatively, one can construct functions such as

ξ = −2ξ0 + cosh
(
−4

3
ϕ

)1/2

− 3
2

(
4
3
ϕ+ 1

)1/2

, −1
2
< ϕ < 0, (2.44)

ξ = ∓ cosh
(
−4

3
ϕ

)1/2

± 3
2

(
4
3
ϕ+ 1

)1/2

, −3
4
< ϕ < −1

2
, (2.45)

and

ξ = 2ξ0 − cosh
(
−4

3
ϕ

)1/2

+
3
2

(
4
3
ϕ+ 1

)1/2

, −1
2
< ϕ < 0, (2.46)

which also satisfies the required curvature change at ϕ = −1/2, but has
isolated singular first derivatives at these points. Note again that ξ is double-
valued since ϕ is symmetric in ξ. Figure 2.4 gives the profile of the soliton
represented by (2.44)–(2.46). Again, the dashed curve represents the inverse
hyperbolic-secant profile in the absence of the amplitude-dependent part of
the argument.

In the original units, the amplitude of the soliton depends only on the
dielectric properties of the bounding medium, while the width of the solution
(2.42) is independent of the latter. In fact, unlike the KdV soliton, the ampli-
tude, speed, and width of the solitons represented by (2.42) are not related
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ξ

ϕ

Fig. 2.4. The soliton represented by
(2.44)–(2.46). The dashed curve is
for the function −(3/4) cosh−2(ξ)

to each other. It is not known if other localized solutions also exist. Further-
more, although the velocity is larger than the speed of light (= c/ε

1/2
d ) in

the bounding medium, no radiation into the dielectric wall seems to occur,
although within our ordering the formulation does not preclude coexisting
electromagnetic waves with similar spatial scales.

The interaction properties and stability behaviors of the soliton found here
are still unknown and remain to be investigated. The mathematical properties
of the new nonlinear evolution equation (2.41), in particular with respect to
its conservation properties and the inverse scattering method, should also be
of interest.

Nonlinear Surface Plasma Waves on a Boundary of a Partially-
Ionized Plasma. Many experiments are associated with surface waves on
the boundary of ionizing plasmas [127–131]. The latter are low-temperatu-
re plasmas in which ionization and recombination processes are dominant.
They appear near the wall regions of most plasmas since impurity atoms or
particles are present there and the cooling effect of the wall prevents their full
ionization. Due to the relatively large amplitudes observed for the ionizing
surface waves, the nonlinear properties of the latter are of particular interest.

Here, a simple model [123] for studying nonlinear ionizing surface wave
propagation in a partially-ionized low-temperature plasma, in which colli-
sional effects such as ionization, recombination, and friction are dominant,
is presented. We consider the lowest order (namely, the second order in the
fields) nonlinear problem and investigate the evolution of finite amplitude
electromagnetic surface waves. We show that the waves are governed by the
above nonlinear equation with the “dispersive” nonlinearity in this case as
well.

Consider a semi-infinite (0 < z < ∞) partially-ionized low-tempera-
ture plasma in a positively-charged background of ions and neutral particles.
Again, the plasma is bounded at z = 0 by a dielectric of constant permittivity
εd. The evolution of the electron density in the plasma is governed by the
equation
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∂tne + ∇ · (vene) = ne(N − ne)〈σ(ve)ve〉 − βn2
e + νine, (2.47)

where N is the density of the neutral particles, σ is the electron-neutral colli-
sion cross-section (which is, in general, dependent on the electron velocity ve),
the angular brackets denote averaging over the directions of the latter, and
β and νi are the recombination and (external) ionization rates, respectively.
For simplicity, we assume that the coefficients σ, β, and νi are constants. For
a collision-dominated plasma, the term with the divergence of the flux can
be neglected.

The evolution of the electron fluid velocity ve is governed by the usual
cold plasma fluid momentum equation

∂tve + (ve · ∇)ve = − e

me
(E +

1
c
ve × B) − νenve. (2.48)

Noting that the right hand side of (2.47) is of lower order for a low-temperatu-
re collisional plasma, we obtain from (2.47) the steady-state, or unperturbed,
electron density,

n(0)
e =

νi

β
, (2.49)

which arises from an imbalance of recombination and ionization. From (2.48),
we obtain the electron velocity

v(1)
e;ω,k(z) = − ieEω,k(z)

me(ω + iνen)
. (2.50)

Thus, the linear (electron) current density is

j(1)ω,k(z) = −en(0)
e v(1)

e;ω,k(z) =
i

4π
ω2

peEω,k(z)
ω + iνen

. (2.51)

The nonlinear electron velocity is

v(2)
e;ω,k(z) =

ie2

2m2(ω + iνen)

∫ ∇(E1 · E2)
(ω1 + iνen)(ω2 + iνen)

d(2)ωd(2)k. (2.52)

The right-hand side of (2.52) contains contributions from the convective
derivative as well as the v × B and frictional force terms in the electron
momentum equation. For the x-component of the nonlinear current density,
we obtain (compare with (2.40))

jnl
x;ω,k(z) =

e3n
(0)
e

2m2
e

∫
Ex,1Ex,2

(ω1 + iνen)(ω2 + iνen)

×
(
k

ω
+

iNσi/3
ω1 + iνi

+
iNσi/3
ω2 + iνi

)
d(2)ωd(2)k. (2.53)

Consider two limiting cases: (a) when the frequencies of the waves are
much smaller than the (external) ionization frequency νi, ω1,2 � νi, and
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(b) the opposite case, when ω1,2 � νi. Introducing a pseudo-potential ϕa

defined by Ex = −∂xϕa (compare with the previous section), we obtain for
the case (a) (ω1,2 � νi) again the equation (2.41), but here the normalization
factors of t, x, and ϕa are ω−1

pe , c/ωpeεd, and mc2/eεd(1 + 2cNσi/3νi
√
εd),

respectively. For the case (b) (ω1,2 � νi), we first assume Nσi � kx, which
implies that the width of the soliton is much larger than the electron mean free
path for collisions with the neutrals. We now define, in contrast to the case
(a), a non-potential function ϕb by Ex = −∂2

xϕb. It can easily be verified that
the function ϕb, when normalized by 3mc2/eεdNσi, also satisfies (2.41). It is
clear, however, that the result (due to the different orders of the derivatives
in the definitions of ϕa and ϕb) of the case (b) differs considerably from that
of the case (a). Thus, we have solutions similar to those considered above. It
should be stressed, however, that because of the different underlying physics,
these results are physically very different from each other.

Coupled Solitary Waves in Plasma Slabs. Of special importance to a
solid-state plasma is the problem of wave propagation in certain dielectric or
other electronic materials, in which the free electrons can support symmetric
and antisymmetric surface plasmons at the boundaries. Here, we show that
interaction of finite-amplitude symmetric and antisymmetric surface plas-
mons on a plasma slab, which models an electronic device, can result in the
coupled propagation of surface solitons of the type represented by (2.41).
Let us consider a slab, sharply bounded at z = ±a by a linear dielectric
with constant permittivity εd, containing free electrons in a stationary (i.e.,
within the time scale of interest), positive background of heavy or bounded
(lattice) ions. It is well known from the linear theory that in this case, ei-
ther symmetrical or antisymmetrical (depending on the relative signs of Ex

at z = ±a) p-polarized electromagnetic surface waves can propagate on the
boundaries. That is, Ex(a) = ±Ex(−a) for the symmetric (upper sign) and
antisymmetric (lower sign) surface modes, respectively.

We are interested in the lowest order nonlinear problem. Making use of
the z-direction mode structure from the linear theory [132,133], we can write
the electric field of the nonlinear symmetrical surface modes in the form

Ex,p(z) = El
x,p

cosh(αpz)
cosh(αpa)

+ Enl
x (z) (2.54)

in the plasma, and
Ex,d(z) = El

x,d exp[αd(a∓ z)] (2.55)

in the dielectric. Here, αp,d = (k2
x−ω2εp,d/c

2, εp = 1−ω2
pe/ω

2, and the upper
and lower signs denote the regions z > a and z < −a, respectively, of the
bounding-dielectrics. Similarly, for the antisymmetric mode we let

Ex,p(z) = El
x,p

sinh(αpz)
sinh(αpa)

+ Enl
x (z), (2.56)

and
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Ex,d(z) = ±El
x,d exp[αd(a∓ z)]. (2.57)

As mentioned, the bounding dielectric is linear. We have also made use of the
fact that the lowest order field structure in the plasma is that from the linear
theory. In the following, we outline the derivation of the equation governing
the nonlinear evolution of the electric field for the symmetric mode. The
procedure for the antisymmetric mode is similar. We shall again take into
consideration the singular surface currents [124] at the walls.

Consider the coupling to the antisymmetric waves. Since the nonlinear
current density is quadratic in the fields, the simultaneous presence of an
antisymmetric mode can affect the evolution of the symmetric mode. From
the Maxwell equations, we obtain for the antisymmetric mode the relation

Ea,l
z,p =

ikx

αp
Ea,l

x,p coth(αpa), (2.58)

where the superscript a denote quantities associated with the antisymmet-
ric waves. In the following, the symmetric mode shall be denoted by the
superscript s. Thus, taking into consideration both the antisymmetric and
symmetric components of the electric fields, and again defining the pseudo-
potential ϕ by El

x,p = −∂xϕ, we finally obtain

(∂t + ∂x)ϕs +
εd

2
coth2

(ωpa

c

)
×∂3

x

[
ϕs + ϕ2

s +
(

1
3

+
2
3

coth2
(ωpa

c

))
ϕ2

a

]
= 0 (2.59)

and

(∂t + ∂x)ϕa +
εd

2
tanh2

(ωpa

c

)
×∂3

x

[
ϕa + 2

(
1
3

+
2
3

tanh2
(ωpa

c

))
ϕaϕs

]
= 0, (2.60)

where we have normalized t, x, and ϕa,s with ω−1
pe , c/ωpeεd, and mc2/3eεd,

respectively. The linear parts of (2.59) and (2.60) describe the linear propa-
gation of the symmetric and antisymmetric electromagnetic surface waves in
an electronic plasma slab [132,133].

Equations (2.59) and (2.60) resemble coupled KdV equations, except that
here, as in the evolution equations considered above, the nonlinear terms also
contain higher spatial derivatives. That is, again, the nonlinear and dispersive
characteristics of the waves are strongly coupled. The equations admit various
nonlinear solutions, in particular the quasi-stationary coupled solitons

ϕs = ϕ0 cosh−2 [(x− V t)/L+ f(ϕs)] , (2.61)

and
ϕa = Bϕs, (2.62)
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where V > 1 is a constant, ϕ0 = −9/(8(1 + 2h)), h = tanh2(ωpea/c), L2 =
2εdh/(V −1), f(ϕs) = −2ϕ0(1−ϕs/ϕ0)1/2, and B2 = [2h2(1+2h)−3]h/(2+
h). Note that B > 0 is to be taken, so that in the limit a→ ∞, one recovers
ϕs + ϕa → 2ϕ, where ϕ is the solution for the semi-infinite plasma case.

Thus, the new type of solitary waves discussed here can propagate in a
coupled manner on the surfaces of a dielectric slab. Again, their widths are
dependent on the properties of the container material as well as the speed.
This phenomenon can be useful in the diagnostics of electronic materials as
well as for information transmission, and may also affect the properties of
interfacial double layers [134], which are of recent interest in several branches
of physics and chemistry. The stability and interaction characteristics of these
solitons are still unknown, however, and have to be investigated before any
practical application can be attempted.

2.2 Structure and Evolution of Solutions of Generalized
KdV Equations

In this section, we consider evolution of solitons of the KdV equation gener-
alized by the terms accounting for dissipation, higher order dispersion cor-
rection, and instability (Sect. 2.2.1), and also consider the soliton evolution
in a medium with stochastic fluctuations of the wave field within the limits
of the stochastic KdV equation, Sect. 2.2.2. Section 2.2.3 is devoted to the
qualitative and asymptotic analysis of all possible classes of solutions of the
generalized KdV equation.

2.2.1 Evolution of Solitons of Generalized KdV Equations

Consider now evolution of solitons of the generalized KdV equation, taking
into account dissipation, instability, and higher order dispersion effects in a
medium. The equation can be written as

∂tu+ u∂xu− ν∂2
xu+ β∂3

xu+ δ∂4
xu+ γ∂5

xu = 0. (2.63)

Here, ν and δ are the constants characterizing dissipation and instability
(self-excitation) in the medium, respectively, β and γ are the factors at the
dispersion terms of the third and fifth order, respectively. They can have, in
principle, any sign, but we suppose that β > 0 and |γ| ≥ 0. It is easy to see
that the case β < 0 and γ > 0, for example, can be obtained from the case
β > 0 and γ < 0 by the simple transform x→ −x, u→ −u).

The generalized KdV equation (2.63) describes long-wavelength waves
in various physical systems, such as surface waves in a viscous fluid flowing
down an inclined plane [135] and unstable drift waves in a plasma (dissipative
trapped-ion wave modes with dispersion due to the finite ion banana width)
[136]. For these applications it is usually assumed that γ = 0 [137] and,
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therefore, the dispersion effects of the high order are not included. Equation
(2.63) was also effectively used to study nonlinear soliton-like internal gravity
waves in the F-layer of the Earth’s ionosphere [81,138–140] including effects
caused by powerful seismic processes and volcanic eruptions [141–143], as well
as the motion of perturbation sources as the fronts of the solar terminator
and the solar eclipse [81,140,144]. In the case β = γ = 0, (2.63) reduces to
the equation describing chemical reactions with the turbulent-like behavior
[145–147].

It is not difficult to obtain the dispersion relation for the linearized version
of (2.63) by considering the Fourier mode: u ∼ exp [−i(kx− ωt)]

ω = c0k

[
1 +

ik
c0

(
ν + δk2

)− k2

c0

(
β − γk2

)]
, (2.64)

where k ≡ kx. It is clear that in the case β = γ = 0, the small-amplitude
sinusoidal waves are linearly unstable (in the “soliton” sense) for both long-
wavelength (growing) and short-wavelength (damped) waves.5 The maximum
growth rate is observed for the wave number kmax = (ν/2δ)1/2 [137]. How-
ever, the simultaneous presence of the instability and dispersion indicates the
possibility of a steady state, because the energy influx due to the wave’s self-
excitation is transferred through the mode coupling to the short wavelength
modes and is balanced by the damping due to the term with the fourth-order
derivative. It is also interesting to investigate the role of the higher order
dispersion term in this process because, as it was established in Ref. [148],
this type of term starts to play a dominant role when the smaller-scale modes
in the wave field appear.

Equation (2.63) with γ = 0 was first investigated numerically by Kawa-
hara [137]. It was observed that for the strongly dispersive case, the temporal
evolution of the initial disturbance in the form of both the Gaussian random
noise and the periodic function cosπx is ended by the formation of a row of
one-dimensional solitary pulses of equal equilibrium amplitudes. The width
of each pulse is determined by the relative influence of the instability and the
dissipation effects, and the equilibrium amplitudes increase as the effects of
dispersion increase.

Having in mind the results of Ref. [137], we investigate numerically in more
detail the role of all terms of the full generalized equation (2.63). Mainly,
we use the explicit scheme with O(τ2, h4) approximation (1.82) with N =
1001 and h = 0.01 (see Sect. 1.3), taking into account the difference terms
approximating the second, fourth and fifth derivatives, namely,

∂2
xu ≈ − 1

12h2
(ui+2 − 16ui+1 + 30ui − 16ui−1 + ui−2) ,

∂4
xu ≈ 1

2h
(∆3

i+1u−∆3
i−1u), and ∂5

xu ≈ 1
2h2

(∆3
i+1u− 2∆3

iu+∆3
i−1u),

5 In the terminology of Ref. [137] the damped small amplitude waves are stable.
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where ∆3
i is the difference approximation of the third derivative. Two types

of boundary conditions are chosen: zero and periodical. Different initial con-
ditions are assumed for different runs of numerical simulations (cf. Table
2.1). We see that the cases B1 and C1 correspond to those considered in Ref.

Table 2.1. The cases investigated numerically

Run Initial condition ν β δ γ

A1
A2
A3
A4

u(x, 0) = e−36x2

0
0
0.01
0.01

2.3 × 10−3

0
0
10−6

5 × 10−6

−10−4

10−4

−10−4

10−4

B1
B2
B3

Gaussian
random
values

−0.01 0 5 × 10−6
0
10−4

−10−4

C1
C2
C3

Gaussian
random
values

−0.01 4.8 × 10−4 5 × 10−6
0
10−4

−10−4

D1
D2
D3
D4

u(x, 0) = e−x2/l2

< 0
< 0
> 0
> 0

� l2/12 > 0

≤ 0
> 0
< 0
> 0

[137], and the rest in the series B and C correspond to the problem of the
influence of a small dispersion correction on the dynamics of the soliton-like
solutions. We have run all series of the numerical experiments and obtained
the following results.

Figures 2.5 and 2.6 show temporal evolution of the pulse u in the simula-
tion runs A1,2 and A3,4 for the different and the equal signs of β and γ when
ν = δ = 0 and ν, δ �= 0, respectively. Figure 2.7 shows temporal evolution of
an initially stochastic (Gaussian random) wave in runs B1 and B2. We can
see from Fig. 2.7a that, similar to simulations [137], the energy is transferred
over time from the high frequency wave components (with k ∼ kmax) to the
low-frequency components which gradually acquire the roughly triangular
shape and interact with each other without any further growth of the aver-
age amplitude. The wave field is not regular in this case and has no organized
structure up to the time moment t = 6.0 (compare with the results [137]).
As was noted previously [137], this is a reproduction of the turbulent-like
behavior in chemical reactions.
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Fig. 2.5. Temporal evolution of initial pulse u(x, 0) = exp(−36x2) for two cases.
a. run A1. b. run A2
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Fig. 2.6. Temporal evolution of initial pulse u(x, 0) = exp(−36x2) for two cases.
a. run A3. b. run A4
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Fig. 2.7. Temporal evolution of an initially random wave for two cases. a. run B1.
b. run B2

If we take into account the higher order dispersion processes, we obtain
a different character of the wave evolution, Fig. 2.7b. In the case when the
dispersion correction is positive, γ > 0, we observe that the role of the small
correction is in selection with time of the small-scale wave structures, run B2
and case (b) in the figure. In the opposite case, where γ < 0, i.e., when the
dispersion is negative for all wave numbers k (run B3), we observe the same
qualitative character of the evolution as in Fig. 2.7a. Such sort of behavior
generally agrees with the results presented in Figs. 2.5 and 2.6.

Figure 2.8 shows the results of runs C1 and C2 of numerical simulations,
for the same initial condition. In this case, temporal evolution of the initially
(Gaussian) random wave in the case (a) corresponds qualitatively to the
results of Ref. [137]. We can see that, similar to simulations [137], the energy
is also first transferred to the lower frequency region and the wave amplitudes
grow while interacting with each other with time up to t ≈ 0.4, and a row
of pulses of equal amplitude is formed at t ≈ 4.0. We note that when the
amplitudes of the pulses become equal, the row (composed of the pulses)
starts to travel as a whole (see also [137]). This is a manifestation of the
role of dispersion effects in the self-organization process – formation of an
organized structure from chaos in a nonlinear medium.

Taking into account finer dispersion effects, we arrive at the following
results. Similar to the results of run B2, we observe that the influence of the
higher order dispersion effects is manifested in the selection of small wave
scales for β, γ > 0 when the sign of the dispersion for a large k is the opposite
to that for a small k, run C2 and case (b) in Fig. 2.8. When β and γ have the
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Fig. 2.8. Temporal evolution of an initially random wave for two cases. a. run C1.
b. run C2

opposite sign, as in run C3, the dispersion is negative for all wave numbers
k, and we have the case qualitatively similar to that presented in Fig. 2.8a.

Our studies also include the case of stronger dispersion for the initial
condition in the form of one pulse u(x, 0) = exp(−x2/l2) and various values
of factors in (2.63), in simulation runs D (see Table 2.1); for ν < 0, β, δ > 0,
and γ = 0, the series D1, that corresponds to the case considered [137]
for the initial condition u(x, 0) = cosπx. For all situations considered, at
the initial stage of evolution we observe formation of multi-soliton solutions
from the initial pulse up to t ∼ 0.4.6 The dynamics of the evolution at this
stage is similar to that at the “non-stationary” stage when the solitons of the
standard KdV equation are formed (see Sects. 1.2.3 and 1.3.5). The difference
between the cases γ < 0 and γ > 0 (when β > 0) is the same as in simulation
runs A1 and A2 (see above): in the last case, the solitons acquire oscillating
structure of their tails and fronts in the process of their formation. Nonlinear
effects then start to dominate, and the non-stationary pulses interact with
each other while growing up to t ≈ 4.0. Then the formed pulses with smooth
(γ < 0) and oscillating (γ > 0) asymptotics almost align into a row of the
soliton-like pulses of equal amplitude and travel as a whole without changing
their form. Note also that in the case ν > 0 we observe that the profiles of
the soliton-like pulses are steeper in the direction of their propagation, in
contrast to the case ν < 0.

6 Recall that decrease of the dispersion parameter β in the KdV equation leads to
formation of the multi-soliton solutions (see Sect. 1.3.5).
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Concluding the results obtained in all these simulations, we state the
following. The results of simulation runs A1 and A2 clearly demonstrate
the formation and evolution of the solitons of the generalized KdV equation
for ν = δ = 0, with monotonous and oscillating asymptotics considered in
Sect. 2.1.1. When ν > 0 and δ > 0, the fronts of such solitons become
steeper, as shown in runs A3 and A4. Runs B1, C1, and D1 of our numerical
simulations as well as Ref. [137] show that rows of soliton-like pulses are
formed in these cases. The saturated amplitudes of the pulses are constant for
a fixed set of ν, β, δ, and γ irrespective of the form of the initial condition, but
the number of pulses that are formed depends on both the initial condition
and the value of the dispersion parameter β. For γ = 0, this result was
first obtained in Ref. [137] which showed, for example, that for the initial
sinusoidal condition, five pulses appear for β = 2.0 × 10−3, and nine pulses
for the “stochastic” initial condition with other conditions unchanged. When
γ = 0, the equilibrium amplitude increases and each soliton-like pulse begins
to resemble the usual KdV soliton when the dispersion becomes strong. Vice
versa, with the dispersion decreasing, the symmetry of every pulse is broken
because of the steepening of its front. The higher order dispersion correction
leads to formation of small scale oscillations on the tails and fronts of the
soliton-like pulses in the case where γ > 0. In the opposite case we have the
larger structures with smooth asymptotics of the pulses.

We note here the following result obtained by Kawahara: if we introduce
the parameter ε ≡ β/(νδ)1/2 representing the relative contribution of the
dispersion then, although the critical value of ε for the transition from a
turbulent-like to an equilibrium state occurs was not yet fixed, the equilibrium
soliton-like pulses exist at least for ε ≥ O(1) [137]. Our simulation runs B1
and C1, as well as in simulations reported in [137], yield ε = 2.15 and ε = 8.89,
respectively.

There are also other possibilities to investigate possible solutions of the
generalized KdV equation (2.63). For example, it is possible to consider the
case when β∂3

x ∼ u∂xu � ν∂2
xu ∼ δ∂4

xu ∼ γ∂5
xu ∼ O(ς), which is close to

the case of the usual KdV equation and becomes its equivalent in the limit
when ν → 0, δ → 0, and γ → 0. This case can be investigated, for example,
by using the two-time asymptotic expansion [92,149]. In particular, for γ = 0
studies in [137] obtained

u(t, x; ς) = u(0)(η, t, T ) + ςu(1)(η, t, T ) +O(ς2), (2.65)

where

η ≡ [N(T )/12β]1/2

⎡
⎣x−

t∫
0

(N0 +N(T )/3) dt

⎤
⎦ , (2.66)

T ≡ ςt is the small time scale, η is the (normalized) new space coordinate in
the moving reference frame, and N is assumed to vary slowly in time. Sub-
stituting Eqs. (2.65) and (2.66) to the soliton solution of the KdV equation
[137],
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u(t, x) = N0 +N cosh−2
[
(N/12β)1/2 (x− (N0 +N/3)t)

]
, (2.67)

we can obtain the ordinary differential equation for N(T ), namely,

dTN =
4δ

189β2

(
21νβ
5δ

−N

)
N2, (2.68)

and investigate temporal evolution of the parameters of the solution (2.67)
of the perturbed KdV equation.7 For γ �= 0, similar analysis becomes more
complicated, and another approach should be used (see Sect. 2.2.3).

To conclude, we note that all the cases considered above for the general-
ized KdV equation (2.63) do match well the scheme based on classification
of possible solutions by their phase portraits and asymptotics. This method-
ology is considered below in Sect. 2.2.3.

2.2.2 Soliton Evolution in Media with Stochastic Fluctuations of
the Wave Field

Introductory Notes. From the point of view of possible applications, one
of important problems of generalization of equations describing wave pro-
cesses in real physical media is that related to the proper account of possible
random factors. In reality, indeed, there are often small-scale as well as large-
scale fluctuations of the basic wave characteristics caused by numerous factors
of various origin (like dynamic chaos, developed turbulence, etc.). Their com-
bined influence on the medium is obviously of the chaotic character. With a
good approximation we can consider this influence as that of stochastic fluc-
tuations of the wave field. Naturally, such fluctuations directly influence the
propagation of regular oscillatory and solitary waves induced in the medium
by various sources (such as, in the ionosphere plasma, the solar terminator,
solar eclipse, man-made explosions, magnetic substorms, and volcanic erup-
tions). This section is devoted to the theoretical study of such an influence.

To exclude from our consideration the influence of other factors such as
dissipation and instabilities of various types (defined by the particular type of
the medium), which can obscure the effects of the stochastic field fluctuations
on the propagation of the nonlinear waves, we consider below the problem
within the frames of the “classic” KdV equation, taking into account the
term describing the stochastic fluctuations of the wave field [151]:

∂tu− 6u∂xu+ ∂3
xu− η(t) = 0. (2.69)

As it is known from previous sections, (2.69) with η(t) = 0 describes evolution
of nonlinear waves and solitons in various dispersive media. For clarity, we
consider the influence of stochastic fluctuations of the wave field on a KdV
soliton since for η(t) = 0 it is a stable structure propagating in the medium

7 For details see Refs. [137,150].
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without change of its shape and profile. The approach applied below is general
enough (thus we use it for any type of wave described not only by the KdV
equation but also the more general KP equation).

The stochastic term η(t) in (2.69) describes the external noise when the
characteristic length of a soliton, ls, is much smaller than the coherent length
of the noise, ln. This is a particular case of a more general one when the
external noise is described by the term η(x, t). Being the simplest case for
analytical investigation, it still allows us to obtain an exact result and pro-
vides us information which is useful for the study of more general cases when
ls > ln or ls < ln.

Equation (2.69) (the so-called stochastic KdV equation) was first inves-
tigated by Wadati [152], and here we generally follow his approach. Also,
the problem of the structure and dynamics of multidimensional solitons of
the KP equation class is discussed in detail later in Sect. 4.4. Thus we now
consider the influence of the stochastic fluctuations of the wave field on the
soliton dynamics in the one-dimensional case.

General Approach. First, we note that (2.69) is related to the KdV equa-
tion,

∂tU − 6U∂ξU + ∂3
ξU = 0, (2.70)

via the Galilean transform:

u(t, x) = U(t, ξ) +W (t), W (t) =

t∫
0

η(t)dt, (2.71)

where

ξ = x+m(t) and m(t) = 6

t∫
0

W (t)dt.

Therefore (2.69) represents an integrable system and can be integrated us-
ing the IST method (see Sect. 1.2 and Ref. [24], for exmaple). Following an
analysis as shown in [152] we also assume that the external noise η(t) is
Gaussian,

〈η(t1)η(t2) . . . η(tn)〉 = 0 (n odd),
= ΣΠ 〈η(ti)η(tj)〉 (n even), (2.72)

as well as white, i.e., 〈η(t)η(t′)〉 = 2εδ(t− t′). The angle brackets here stand
for statistical average and the symbol ΣΠ, as in Ref. [152], means that we
choose n/2 pairs (ti, tj), compose the averages of every pair (n/2)〈η(ti)η(tj)〉,
and sum over all different (n− 1)!! choices. In this case for W (t) we have

〈W (t)〉 = 0, 〈W (t1)W (t2)〉 = 2εmin(t1, t2),
〈exp [cW (t)]〉 = exp

[
c2
〈
W 2(t)

〉
/2
]
,

(2.73)
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where c =const. Now let us consider the problem in a more general setup.
Let the functional of U(t, ξ) be given by

F [U(t, ξ)] = F [U(t, ξ), ∂ξU(t, ξ), . . .] = F (t, ξ). (2.74)

Consider the Fourier transform

F (t, ξ) =
1
2π

∞∫
−∞

dkF̃ (t, k)eikx and F̃ (t, k) =

∞∫
−∞

dxF (t, ξ)e−ikx,

and obtain (taking into account fluctuations of ξ) [151]

F̃ (t, k) = F̃0(t, k)eikm(t), (2.75)

where

F̃0(t, k) = F̃ (t, k)
∣∣∣
m=0

=

∞∫
−∞

dxF (t, x)e−ikx. (2.76)

Taking the statistical average we have〈
F̃ (t, k)

〉
= F̃0(t, k)G̃(k). (2.77)

Here, for G̃(k) = 〈exp [ikm(t)]〉 we can write the following using (2.72) and
(2.73):

G̃(k) = exp
[−k2

〈
m2(t)

〉
/2
]
,

〈
m2(t)

〉
= 24εt3, t > 0. (2.78)

Equation (2.77) shows that the averaged spectrum (2.75) of the functional
F [U(t, ξ)] is the product of F̃ (t, k) without noise (2.76) and the Gaussian
distribution (2.78). Thus we have

〈F [U(t, ξ)]〉 = 〈F (t, ξ)〉 =
1
2π

∞∫
−∞

dkF̃0(t, k)G̃(k)eikx. (2.79)

Using the convolution theorem we can also obtain from solution (2.79) [152]

〈F [U(t, ξ)]〉 =

∞∫
−∞

dsF [U(t, s)]G(x− s), (2.80)

where

G(s) =
1
2π

∞∫
−∞

dkG̃(k)eiks =
[
2π
〈
m2(t)

〉]−1/2
exp

[−s2/2 〈m2(t)
〉]
.

The newly obtained expressions (2.79) and (2.80) can now be used for inves-
tigation of the dynamic behavior of the solitons of Eq. (2.69).
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KdV Soliton Dynamics. As an example, consider the case where F [U(t, ξ)]
(2.74) is a functional of the one-soliton solution of the stochastic KdV equation
(2.69). Note that calculating F̃0(t, k) and G̃(k) by using expressions (2.76)
and (2.78), one can easily find 〈F̃ (t, k)〉 and then obtain 〈u(t, x)〉. Here we
use, however, a more visible and simple technique proposed by Wadati [152].
Consider the solution

U(t, x) = −2ν2 cosh−2
[
ν(x− x0) − 4ν3t

]
, (2.81)

where ν =const is an an eigenvalue corresponding to the soliton (see Sect.
1.2). Considering the change ξ = x+m(t) as well as (2.71), write the solution
as

u(t, x) = W (t) − 2ν2 cosh−2

[
ν(x− x0) − 4ν3t+ 6ν

∫ t

0

W (t′)dt′
]
.

Furthermore, taking the statistical average and using (2.72) and (2.73), we
obtain

〈u(t, x)〉 = −2ν2

〈
cosh−2

[
ν(x− x0) − 4ν3t+ 6ν

∫ t

0

W (t′)dt′
]〉

= 8ν2
∞∑

n=1

(−1)nn

〈
exp

[
2n
(
ν(x− x0) − 4ν3t+ 6ν

∫ t

0

W (t′)dt′
)]〉

.

The second and third relations of (2.73) give us [152]〈
exp

[
12nk

∫ t

0

W (t′)dt′
]〉

= exp
[
1
2

(12nk)2
∫ t

0

dt1
∫ t

0

dt2 〈W (t1)W (t2)〉
]

= exp
(
48n2ν2εt3

)
, t > 0.

Thus we have

〈u(t, x)〉 = 8ν2
∞∑

n=1

(−1)nnena+n2b, (2.82)

where
a = 2

[
ν(x− x0) − 4ν3t

]
and b = 48ν2εt3. (2.83)

We note that expression (2.82) has been obtained under the assumption that
the “noise” is Gaussian. For a non-white type of the “noise”, the expression
for b is more complex. Thus we obtain from (2.82) [152]

∂b 〈u(t, x)〉 = ∂2
a 〈u(t, x)〉 and 〈u(t, x)〉 |b=0 = −2ν2 cosh−2(a/2). (2.84)

It follows from the first equality of (2.84) that the dynamic behavior of the
soliton of the stochastic KdV equation is described by the diffusion equation
where b plays the role of time and a plays the role of the space coordinate.
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We note that (2.82) can be written in the form of a Fourier transform, and
then the solution of (2.84) is given by [152]

〈u(t, x)〉 = −8ν2

∞∫
−∞

dk
2π

πk

sinhπk
e−bk2+iak. (2.85)

Expression (2.85) provides a spectral representation of the solution of the
stochastic KdV equation with the stochastic Gaussian fluctuations of the
wave field; in this case, the Fourier transform of the statistical average
〈u(t, x)〉 is the product of a pure soliton part ∝ −8ν2πk/ sinh(πk) and the
diffusion part ∝ exp(−bk2). Using the convolution theorem, we can rewrite
the solution (2.85) as [152]

〈u(t, x)〉 = − ν2

√
πb

∞∫
−∞

ds cosh−2(s/2) exp
[−(a− s)2/4b

]
. (2.86)

On the basis of the result (2.85), consider now the dynamic behavior of
the soliton in the presence of the Gaussian “noise.” We obtain [152]:
(a) for b ≡ 48ν2εt3 < 1,

〈u(t, x)〉 = −2ν2
∞∑

n=0

1
n!
bn

∂2n

∂a2n
cosh−2(a/2); (2.87)

(b) for b > 1,

〈u(t, x)〉 = −4ν2

√
π

(
1 +

∞∑
n=1

(22n − 2)Bnπ
2n

(2n)!
∂n

∂bn

)
1√
b
e−a2/4b, (2.88)

where Bn is the Bernulli number. Expressions (2.87) and (2.88) show that
when t = 0, 〈u(t, x)〉 is defined by the right-hand side of (2.81) with t = 0,
and for t→ ∞ we have

〈u(t, x)〉 = − ν√
3πε

t−3/2 exp
[
− (x− x0 − 4ν2t)2

48εt3

]
.

As we see from the last expression, the soliton is deformed in its evolution
as a result of the influence of the external noise, and its characteristic scale
along the direction of propagation as well as its amplitude are asymptotically
changed, respectively, as t3/2 and t−3/2. Note that this is not the consequence
of the diffusion effects because the area occupied by the soliton is invariant,
i.e., the integral

∫∞
−∞〈u(t, x)〉dx is conserved; this is easy to check by the

direct calculation, namely,
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∞∫
−∞

〈u(t, x)〉 dx = −8ν2

∞∫
−∞

dx

∞∫
−∞

dk
2π

πk

sinhπk
e−bk2+iak

= −8ν2

∞∫
−∞

dk
2π

πk

sinhπk
e−bk2

2πδ(2νk) = −4ν.

To conclude, we note that in this section we considered the influence of
stochastic fluctuations of the wave field (the external white “noise”) η(t) on
the structure and evolution of the KdV soliton. In a more general case, the
KdV equation can be written as [152]

∂tu− 6u∂xu+ ∂3
xu+ γu− η(t, x) = 0, (2.89)

but the above analysis remains valid when the soliton’s characteristic time
scale is small, ts � 1/γ, as well as the soliton’s characteristic size, ls � ln (ln
is the coherence length of the noise). In the case when ls ∼ ln, the Galilean
transform (2.71) is no longer valid, and it is necessary to generalize the IST
method as it was done for the KdV equation in Refs. [95,96], for example (see
also Sect. 1.2). Note that it is not possible to obtain the exact (analytical)
solutions of (2.89) in this case, and the only way to investigate the dynamics
of solutions of (2.89) is a numerical integration which can be successfully
done with the use of methods considered in Sect. 1.3. Finally, we note that
for the two-dimensional analog of the KdV equation – the KP equation –
the corresponding results of the study of the soliton dynamics in a medium
with low-frequency stochastic fluctuations of the wave field are significantly
different from those obtained above for the one-dimensional case (see Sect.
4.4.4 and Ref. [83] for details).

2.2.3 Qualitative Analysis and Asymptotics of Solutions of
Generalized KdV-Class Equations

Since a numerical simulation cannot cover the wide range of all possible cases
for the generalized KdV equation and, even more, to classify its solutions,
consider here the classes of possible solutions of the generalized KdV equation,

∂tu+ αu∂xu− µ∂2
xu+ β∂3

xu+ δ∂4
xu+ γ∂5

xu = 0, (2.90)

as well as the asymptotics of the solutions along the direction of the wave
propagation. We employ here the methods of qualitative analysis, usually
used in the theory of dynamic systems, and the asymptotic analysis of the
structure of solutions for |x| → ∞.

Changing u→ (6/α)u, we can rewrite (2.90) as

∂tu+ 6u∂xu− µ∂2
xu+ β∂3

xu+ δ∂4
xu+ γ∂5

xu = 0. (2.91)
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Taking into account the more general case, we extend the class of equations
(2.91) by introducing the arbitrary positive exponent p of the nonlinear term

∂tu+ 6up∂xu− µ∂2
xu+ β∂3

xu+ δ∂4
xu+ γ∂5

xu = 0. (2.92)

Equation (2.92) for µ = δ = γ = 0 is the usual KdV equation when p = 1, and
it is the modified KdV equation when p = 2. The asymptotics of (2.92) with
µ = δ = 0, and p = 1 was first investigated in Refs. [84,113]; it was shown
that depending on the sign of β and γ, solitary solutions with monotonous
or oscillating asymptotics can take place. The full equation (2.92), including,
in addition to the higher order dispersion correction, also terms describing
dissipation, µ �= 0, an instability, δ �= 0, and an arbitrary exponent of the non-
linearity, does not represent an integrable system (i.e., the known analytical
methods such as the IST method, are not applicable to this equation). Thus,
(2.92) was investigated by the asymptotic and qualitative analyses [112], and,
as a result, the sufficiently full classification of its solutions was constructed.
In this section we mainly follow the ideas and technique of Ref. [112].

We note that from the physical point of view, the cases p = 1, 2 in (2.92)
are the most interesting, and applications for p > 2 are presently unknown.
However, since equations of the family (2.92) with an arbitrary integer p > 0
demonstrate, to a considerable extent, similar mathematical properties, we
use here a general approach elucidating, apart from other, the dependence of
the characteristics of the solutions on the nonlinearity’s exponent.

Basic Principles. Transforming to ξ = x− V t and integrating (2.92) in ξ,
we obtain

− V u+
6

p+ 1
up+1 − µ∂ξu+ β∂2

ξu.+ δ∂3
ξu+ γ∂4

ξu = 0. (2.93)

Taking into account that µ > 0, δ > 0 (according to the physical sense of the
terms with the first and third space derivatives describing dissipation and
instability), and assuming without loss of generality that γ > 0 and β = ±1,
after the change u = V w, ξ → |V |−1/4ξ, we convert (2.93) to

sgn(V )γ∂4
ξw + sgn(V )δ |V |−1/4

∂3
ξw + sgn(V )β |V |−1/2

∂2
ξw

−sgn(V )µ |V |−3/4
∂ξw − w +

6s
p+ 1

|V |p−1
wp+1 = 0, (2.94)

where

s =
{

sgn(V ) for even p ,
1 for odd p .

Depending on the signs of V and β in (2.94), the following four cases can be
considered:
(a) V > 0, β = 1:
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γ∂4
ξw + δ |V |−1/4

∂3
ξw + |V |−1/2

∂2
ξw − µ |V |−3/4

∂ξw

−w +
6s
p+ 1

|V |p−1
wp+1 = 0 (2.95)

(b) V > 0, β = −1:

γ∂4
ξw + δ |V |−1/4

∂3
ξw − |V |−1/2

∂2
ξw − µ |V |−3/4

∂ξw

−w +
6s
p+ 1

|V |p−1
wp+1 = 0 (2.96)

(c) V < 0, β = 1:

−γ∂4
ξw − δ |V |−1/4

∂3
ξw − |V |−1/2

∂2
ξw + µ |V |−3/4

∂ξw

−w +
6s
p+ 1

|V |p−1
wp+1 = 0 (2.97)

(d) V < 0, β = −1:

−γ∂4
ξw − δ |V |−1/4

∂3
ξw + |V |−1/2

∂2
ξw + µ |V |−3/4

∂ξw

−w +
6s
p+ 1

|V |p−1
wp+1 = 0 (2.98)

However, as we see from (2.92), the velocity of the wave, V , depends on the
equation’s coefficients and it is restricted by

V

{
< V ph

min = −1/4γ − 2µ (µ/3δ)1/2
/3, β = 1,

> V ph
max = −1/4γ − 2µ (µ/3δ)1/2

/3, β = −1.
(2.99)

The right-hand sides of inequalities (2.99) for µ = δ = 0 correspond to results
obtained in Ref. [113], and comparing these relations with expressions (2.95)
and (2.98) leads to contradictions in the cases (a) and (d) outside the region

[(a− 1)/4µ]2 < 2γ < [(a+ 1)/4µ]2 , where a =
√

1 + 16µδ. (2.100)

Besides, it is necessary to note that condition (2.100) makes sense only for
δ �= 0, i.e., when V ph, in principle, can be non-negative in the second in-
equality (2.99).8 In these cases (2.95) and (2.98) do not have solutions of
the soliton type even if µ = δ = 0. Therefore, we limit ourselves below by
considering the cases (b) and (c), as well as (d) within the region defined
by (2.100). Since it is extremely difficult to study the full equations of type
(2.95)–(2.98), we investigate below the role of different terms and groups of
terms of these equations using methods of the qualitative and asymptotic
analyses separately.

8 From the necessary condition of the existence of the extremum V ph for β = −1
follows that (2/3)µ = µ − δ/2γ.
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Qualitative Analysis and Asymptotics of Solutions. First, we note
that every equation of the set (2.96)–(2.98) is equivalent to the set of the
first order ordinary differential equations⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 = ẇ, x2 = ẋ1, x3 = ẋ2,⎛
⎝ +

−
−

⎞
⎠ γẋ3 =

⎛
⎝ −

+
+

⎞
⎠ δCx3

⎛
⎝ +

+
−

⎞
⎠C2x2

⎛
⎝ +

−
−

⎞
⎠µC3x1

+w − 6sC4(1−p)wp+1/(p+ 1),

(2.101)

where the dots stand for the ξ-derivatives, and the sign in the brackets
corresponds to the above cases (b), (c), and (d), respectively; furthermore,
C = |V |−1/4. Solutions of equations (2.101) are stable if there exist singular
trajectories of the imaging point in the phase space (w, x1, x2, x3) of the set
(2.101). Each trajectory of its kind is related to the state of equilibrium near
the maximum of the soliton-like solution and at the boundaries |ξ| = ∞.
Assuming as the boundary conditions that

w = ∂n
ξ w = 0 and n = 1, 2, 3 for |ξ| → ∞, (2.102)

we can find from (2.101) the number as well as the coordinates of the singular
points

w1 = 0, wj = p

√
p+ 1

6sC4(1−p)
, (2.103)

where the points w1 = 0 and wj correspond, respectively, to |ξ| = ∞ and
the bending points of the function u(ξ); j = 2 for the odd and j = 2, 3 for
the even p, in the last case w2 = −w3. Considering only real roots of (2.103),
we immediately conclude (using the Sturm’s theorem) that for the odd p
there are two singular points, and for any even p there are three singular
points. The distance between the singular points defines the amplitude of
the soliton-like solution of (2.93). The nonlinearity’s exponent p defines the
character of the dependence V = f(u): for p > 1 this dependence becomes
nonlinear (Fig. 2.9) unlike the known linear one for p = 1 (e.g., in the case of
KdV equation). As we see in Fig. 2.9, for the even p the solutions of (2.93)
can have the positive as well as the negative polarity for any sign of V .

To investigate the types of the singular points, it is necessary to linearize
the set (2.101) in the neighborhood of every point. Using the Taylor’s expan-
sion, we obtain from (2.101) [112]:

1. For the singular point w1 = 0 (this corresponds to u1 = 0 in (2.93) taking
into account the boundary conditions (2.102)),⎧⎪⎪⎨

⎪⎪⎩
x1 = ẇ, x2 = ẋ1, x3 = ẋ2,⎛

⎝ +
−
−

⎞
⎠ γẋ3 =

⎛
⎝ −

+
+

⎞
⎠ δCx3

⎛
⎝ +

+
−

⎞
⎠C2x2

⎛
⎝ +

−
−

⎞
⎠µC3x1 + w

(2.104)
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Fig. 2.9. Dependence V = f(u) in Eq. (2.93) for different values of the nonlinearity
exponent. Numbers on the curves correspond to p = 1, 2, . . . , 6

2. For the singular point wj (that corresponds to uj = p
√

(p+ 1)V/6s in
(2.64))⎧⎪⎪⎨
⎪⎪⎩

x1 = ẇ, x2 = ẋ1, x3 = ẋ2,⎛
⎝ +

−
−

⎞
⎠ γẋ3 =

⎛
⎝ −

+
+

⎞
⎠ δCx3

⎛
⎝ +

+
−

⎞
⎠C2x2

⎛
⎝ +

−
−

⎞
⎠µC3x1 − pw

(2.105)

Since the sets (2.104)–(2.105) are essentially four-dimensional, we investi-
gate them by expanding of the corresponding canonical systems into subsys-
tems [153] (see Appendix 1). In this case, it is possible to consider the phase
portraits of the linear sets (2.104)–(2.105) as projections of the singular points
and trajectories onto two planes. For simplicity we consider separately the
cases when µ = δ = 0 (the family of conservative equations) and β = γ = 0
(dissipative equations with instability).

Conservative Equations, µ = δ = 0. For the singular point w1 = 0 we
obtain that the eigenvalues of the matrices of subsets to the set (2.104) (see
Appendix 1) corresponding to the phase planes P1(w, x1) and P2(x2, x3) are
defined by [112]

λ
(P1,P2)
1,2 = ±(2γ)−1/2

[(
+
−
)
C2 ±

√
C4

(
+
−
)

4γ

]1/2

. (2.106)
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In the case (b), the characteristic roots λ1 and λ2 are real on the phase plane
P1 and pure imaginary on the phase plane P2, besides, λ1 = −λ2 on both
planes. In the case (c), taking into account conditions (2.99), the roots λ1

and λ2 are complex, with the positive and negative real parts on the planes
P1 and P2, respectively, and λ1 = λ∗2. In the case (d), taking into account
the second condition of (2.99) for µ = δ = 0, all four roots are real and
λ1 = −λ2 on both planes. Therefore, the singular points w1 = 0 of three
types exist in the phase space, namely: the saddle–center point, the stable
focus–unstable focus point, and the saddle–saddle point in the cases (b), (c),
and (d), respectively.

Considering the matrix of subsets to the analogous set (2.105), we obtain
eigenvalues for the singular points wj defined by (2.103) in the cases (b),
(c), and (d) for the subsets corresponding to the projections onto the phase
spaces P1(w, x1) and P2(x2, x3) [112]:

λ
(P1,P2)
1,2 = ±(2γ)−1/2

[(
+
−
)
C2 ±

√
C4

( −
+

)
4γp

]1/2

. (2.107)

We see from (2.107) that the character of the singular point depends on
the nonlinearity exponent p defining the wave velocity V = 6sup/(p + 1).
Nevertheless, the conditions (2.99) and (2.100) remain valid in these cases
as well. Analysis of (2.107) enables us to conclude the following. In the case
(b), taking into account the second condition of (2.99), the eigenvalues λ1

and λ2 are complex (moreover, λ1 = λ∗2), with the positive real parts on the
plane P1 and the negative real parts on the plane P2. In the case (c), λ1

and λ2 are real on the plane P1 and purely imaginary on the plane P2, and
λ1 = −λ2 in both cases. In the case (d), the situation is analogous to that
of the case (c). Therefore, only the singular points wj of the type “stable
focus–unstable focus” take place in the phase in the case (b), and of the type
“saddle–center” takes place in the cases (c) and (d).

To investigate the global phase portraits including singular trajectories
corresponding to the stable solutions of (2.101), studies included the use
[112] of the Bendixon–Dulac criteria [154,155], as well as calculations of the
first and the second Lyapunov exponents [156]. Omitting here cumbersome
mathematical calculations, we note that in the case (b), as well as in the cases
(c) and (d), the closed trajectories appear in the phase space. Expressions
(2.106) and (2.107) enable us to obtain the parameters of these curves as
well as their directions and, consequently, the angles with respect to the
coordinate axes on both planes P1 and P2, and therefore to construct the
global phase portraits. The examples of such phase portraits for the cases (b)
and (c) for p = 1, 2 are shown in Figs. 2.10a,b and 2.11a,b.

Knowing the characteristic roots λ1 and λ2 (2.106) for the singular points
w1 = 0, accounting for (2.99) and the boundary conditions (2.102), we obtain
the asymptotics of the solutions of (2.92) for the cases (b), (c), and (d) [113],
namely:
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Fig. 2.10. The phase por-
trait of the solutions of Eq.
(2.96) with µ = δ = 0 for
p = 1 (a) and p = 2 (b), and
the numerical solution of Eq.
(2.92) with µ = δ = 0, γ = 1,
β = −1, for p = 1 (c). The
solid and dashed lines corre-
spond to the phase trajecto-
ries in the planes P1 and P2,
respectively
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Fig. 2.11. The phase por-
trait of the solutions of (2.97)
with µ = δ = 0 for p = 1
(a) and p = 2 (b), and the
numerical solution of (2.92)
with µ = δ = 0, γ = 1,
β = 3.16, for p = 1 (c).
Again, the solid and dashed
lines correspond to the phase
trajectories in the planes P1
and P2, respectively
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1. For the cases (b) and (d),

w = A1 exp
{

(2γ)−1/2
[
C2 +

√
C4 ± 4γ

]1/2

ξ

}
(2.108)

(the upper/lower sign corresponds to the case (b)/(d), respectively)
2. For the case (c),

w = A2 exp
[(

2C−1γ1/2
)−1 (

2C−2γ1/2 − 1
)1/2

ξ

]

× cos
[(

2C−1γ1/2
)−1 (

2C−2γ1/2 + 1
)1/2

ξ +Θ

]
, (2.109)

where A1, A2, and Θ are arbitrary constants. As we can see from expres-
sions (2.108)–(2.109), solitons with both monotonic and oscillating asymp-
totics (depending on the sign of V and β) can serve as solutions of (2.92)
with µ = δ = 0. (Note that for β = 0 and any γ > 0, the solution of (2.93)
with µ = δ = 0 has the form w = (A1 + A2ξ) exp(γ−1/4ξ) and it there-
fore also describes a soliton with the monotonous asymptotics [113].) The
phase portraits shown in Fig. 2.10a,b correspond to the solitons with the
monotonic asymptotics, and the phase portraits shown in Fig. 2.11a,b are
for the solitons with the oscillating asymptotics. Figures 2.10c and 2.11c
show the results of numerical integration of (2.92) with µ = δ = 0 for the
initial condition u = u0 exp(−x2/l2) that agrees with the results of the
asymptotic analysis.

In conclusion, we consider a simple and illustrative case of the linearized
KdV equation with the higher order dispersion correction, assuming in (2.92)
that p = 0; this is possible far from the soliton humps. To simplify the
analysis, we apply the scale transform u → u/6 to (2.92) and take into
account µ = δ = 0. Instead of the last equation of the set (2.104), we now
have

γẋ3

⎛
⎝ −

+
−

⎞
⎠C2x2 = 0.

Then, for the singular point w1 = 0, the eigenvalues of the matrices of the
subsets corresponding to the phase planes P1 and P2 are no longer defined
by (2.106), but by the equalities

λ
(P1)
1,2 = 0 and λ

(P2)
1,2 = ±C

⎡
⎣
⎛
⎝ +

−
−

⎞
⎠ γ

⎤
⎦
−1/2

,
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and, therefore, in the cases (b) and (d) the (singular) saddle–center point ap-
pears, and in the case (c) the center–center point appears.9 The asymptotics
of the solutions for |ξ| → ∞ is given by:
1. In the cases (b) and (d),

w = A exp
(
Cγ−1/2ξ

)
+B

2. In the case (c),
w = A cos

(
Cγ−1/2ξ +Θ

)
+B

Here, A, B, and Θ are arbitrary constants. We note that for the linearized
KdV equation with β = 0 or γ = 0, the asymptotics at |ξ| = ∞ is a constant.

Dissipative Equations with Instability, β = γ = 0. Assume now that
β = γ = 0 in the basic equations. Thus, instead of the sets (2.108)–(2.109)
we obtain from (2.101) for the singular points w1 = 0 and wj the following
equations: ⎧⎨

⎩
x1 = ẇ, x2 = ẋ1,

δCẋ2 = µC3x1

(
+
−
)
w,

(2.110)

and ⎧⎨
⎩

x1 = ẇ, x2 = ẋ1,

δCẋ2 = µC3x1

( −
+

)
pw.

(2.111)

The sign in the brackets in these sets corresponds to V > 0 or V < 0, this
is equivalent to the change w1 ↔ wj . Therefore we can investigate the sets
only with one sign, e.g., the upper one corresponding to V > 0.

Since the sets (2.110)–(2.111) are three-dimensional, we can use in our
study the above expansion (decomposition) method of the corresponding
canonical systems. In both cases the expansion leads to a two-dimensional
set and an equation (see Appendix 1). Such factorization enables us to ob-
tain eigenvalues of the respective sets, taking into account correlation of the
coefficients µ and δ and the velocity V [112]. We have:

1. When δ > (4/27)µ3C8,

λ1 = (2δC)−1/3Q+
1 , λ2,3 = − (16δC)−1/3

[
Q+

1 ± i
√

3Q−
1

]
(2.112)

2. When δ = (4/27)µ3C8,

λ1 = (δC/4)−1/3, λ2,3 = −(2δC)−1/3 (2.113)

9 Degeneration of the singular stable focus–unstable focus point corresponding
to the eigenvalues (2.106) into the center–center point is the corollary of the
transform u → u/6 of the initial equation.
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3. When δ < (4/27)µ3C8,

λ1 = (δC/4)−1/3, λ2,3 = − (2δC)−1/3
[
Re(Q±) ∓

√
3
∣∣Im(Q±)

∣∣] ,
(2.114)

where
Q±

1 = Q+ ±Q−,

Q± =
[
1 ±

√
1 − 4µ3C8/27δ

]1/3

, (2.115)

and Q± is real in the cases (1.) and (2.), and complex in the case (3.).

For the singular point wj , these expressions are valid as well, if to change
the sign of the eigenvalues λ1,2,3 by the opposite one, and with the change
δ → δ/p in (2.112)–(2.114) and the change δ → δp2 in (2.115), .

It follows from (2.112)–(2.114) that the sets (2.110)–(2.111) have the
saddle-type singular points with the coordinates w1 and wj for δ ≤ (4/27)µ3C8

and the singular saddle–focus point in the opposite case. Thus the considered
state roughly corresponds to the equilibrium state of the three-dimensional
system. In both cases, there is a two-dimensional separatrix surface with two
isolated separatrices on both sides [112]. The node appears on the saddle-type
separatrix surface, and the saddle appears on the saddle–focus separatrix sur-
face. All other trajectories passing through a sufficiently small neighborhood
of the saddle or the saddle–focus surfaces leave the neighborhood of the lat-
ter. However, this information about the local behavior of the solutions is not
sufficient to construct the global phase portrait. Therefore, the fact should be
invoked that for a nonlinear system, the directions of the separatrices of the
corresponding linearizations give the directions of the nonlinear separatrices
in the singular point. We can obtain these main directions from the linear
transformation relating the linearized system with its canonical system (see
Ref. [112] and Appendix 1).

Figures 2.12a,b and 2.13a,b show the general phase portraits for the cases
δ ≤ (4/27)µ3C8 and δ > (4/27)µ3C8, with β = γ = 0 and p = 1, 2, V > 0.
It is clear that the phase portraits are the same for p > 2 as well, that
follows from (2.112)–(2.115) with the above-mentioned changes. Using the
eigenvalues λi (i = 1, 2, 3) we can obtain the asymptotics of the solutions
of (2.92) with β = γ = 0 [112] from (2.112)–(2.114) for the singular points
w1 = 0 with the boundary conditions (2.102):

1. When δ > (4/27)µ3C8,

w = A1 exp
[
(2δC)−1/3Q+

1 ξ
]

+ exp
[
−(16δC)−1/3Q+

1 ξ
]

×
{
A2 cos

[√
3(16δC)−1/3Q−

1 ξ +Θ1

]
+ A3 sin

[√
3(16δC)−1/3Q−

1 ξ +Θ2

]}
(2.116)
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Fig. 2.12. The phase por-
trait of the solutions of (2.93)
with β = γ = 0 and V > 0
for the case δ ≤ (4/27)µ3C8

for p = 1 (a) and p = 2
(b), and the numerical solu-
tion of Eq. (2.92) for µ = 0.1,
δ = 10−6, at t = 3 (c)
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trait of the solutions of (2.93)
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and the numerical solution of
(2.92) for µ = 0.01, δ = 1, at
t = 3 (c)
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2. When δ = (4/27)µ3C8,

w = A1 exp
[
(δC/4)−1/3ξ

]
+A2(1 +A3ξ) exp

[
−(2δC)−1/3ξ

]
(2.117)

3. When δ < (4/27)µ3C8,

w = A1 exp
[
(δC/4)−1/3Re(Q±)ξ

]
+A2 exp

{
−(2δC)−1/3ξ

[
Re(Q±) −

√
3
∣∣Im(Q±)

∣∣]}
+A3 exp

{
−(2δC)−1/3ξ

[
Re(Q±) +

√
3
∣∣Im(Q±)

∣∣]} (2.118)

Here, A1, A2, A3, Θ1, and Θ2 are arbitrary constants. It can be seen from
these expressions that the solutions of (2.92) have oscillating asymptotics in
case (1.) and the exponential one in cases (2.) and (3.). Numerical solutions
of (2.92) for the initial condition u = u0 exp(−x2/l2) are presented in Figs.
2.12c and 2.13c for cases (3.) and (1.), respectively.

Considering (analogously to the above case µ = δ = 0) the linearized
equation with β = γ = 0, it is easy to obtain that the eigenvalues of the
corresponding sets are given by

λ1 = 0 and λ2,3 = ±C(µ/δ)1/2.

For |ξ| = ∞, they define the exponential asymptotics

w = A exp
[
C(µ/δ)1/2ξ

]
.

In the special cases when µ = 0 and δ = 0, the asymptote is a constant.

Some Comments. To conclude, we note that here we have considered the
special cases when µ = δ = 0 and β = γ = 0 in (2.92). For other values
of the coefficients, one can observe more complicated wave structures being
determined by the presence of all the considered factors in their totality.
Numerical results obtained in Refs. [114,137] (see also the previous section)
show that for β, µ, δ �= 0, stable wave structures of the soliton type can also
be formed with time in the presence of the Gaussian random fluctuations of
the wave field for the harmonic initial conditions and for the initial conditions
in the form of a solitary pulse. Moreover, the stable soliton structure can be
formed also for γ �= 0. An analytical study of such cases is quite complicated
although for these cases one can also use the approach considered in this
section. We note that the above results (see also [112]) can be very useful
for solution studies and interpretation of multidimensional phase portraits of
more complicated multidimensional model equations [83,113]. In particular,
as we demonstrate below in Sect. 4.2, these results are useful for the study
and classification of possible solutions of generalized KP-class equations.
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2.3 Nonlinear Schrödinger and Zakharov Equations

In this section, we consider effects related to modulational processes [36],
i.e., processes during which change of the wave envelope occurs as a result
of the modulational instability, an instability of a wave with respect to its
modulations. The final stage of this instability, in the one-dimensional case,
leads to formation of envelope solitons. The canonic equation describing this
type of processes is the nonlinear Schrödinger (NLS) equation. Its important
generalization, including interactions via propagating lower-frequency pertur-
bations, is called the Zakharov system of equations or Zakharov equations,
with numerous applications in plasma physics and nonlinear optics. Thus we
first, in Sect. 2.3.1, derive NLS equation for the simplest case of slow mod-
ulations of Langmuir wave in a plasma. The inverse scattering problem for
NLS equation is briefly outlined in Sect. 2.3.2. Then in Sect. 2.3.3 we gen-
eralize NLS equation for faster modulations of Langmuir wave in a plasma,
derive the Zakharov system of equations, and, in Sect. 2.3.4, demonstrate its
solution in the form of Langmuir soliton. In the last segment, Sect. 2.3.5, we
consider the interesting cases of near-sonic Langmuir solitons and study the
influence of dissipative processes on their propagation.

2.3.1 Derivation of the NLS equation

To derive equations for the amplitude of the wave envelope, we assume that
the density variations occur at very low frequencies in a medium. As an
example, we consider the propagation of electrostatic Langmuir waves in
a plasma. The characteristic time of the density inhomogeneity variations
δn is supposed to be much larger than the period of the electron plasma
oscillations. Furthermore, we consider only sufficiently small (δn/n0 � 1)
inhomogeneities.

Under these assumptions we introduce the slowly changing (compared to
the wave period and wave length) quantity δn(t, r) and call it as a density
perturbation. Note that under assumption of a weak nonlinearity (when the
ratio of collective wave energy to mean particle energy is significantly less
than unity), this density perturbation is weak,

δn(t, r)
n0

� 1. (2.119)

The starting equation is the dispersion equation for Langmuir waves,

εω,k(n)Eω,k = 0, (2.120)

where ε(n) is given by

εω,k(n) = 1 − 3r2Dek
2 − ω2

pe(n)
ω2

. (2.121)



2.3 Nonlinear Schrödinger and Zakharov Equations 105

Here, the electron plasma frequency ωpe(n) is the function of the slowly-
varying (weak) density inhomogeneity δn � n0 (n = n0 + δn is the electron
density):

ω2
pe(n) =

4πne2

me
=

4π(n0 + δn)e2

me
= ω2

pe +
δn

n0
ω2

pe (2.122)

(we assume ωpe =
√

4πn0e2/me is the electron plasma frequency for the
unperturbed plasma density). In accordance with (2.122), we rewrite (2.120)
as

ε
(0)
ω,kEω,k =

δn

n0

ω2
pe

ω2
Eω,k, (2.123)

where ε(0) is given by (2.121) with the plasma frequency ωpe independent on
δn. The linear part of (2.123) in the limit r2Dek

2 � 1 gives us the dispersion
law for Langmuir waves

ωk = ωpe +
3
2
r2Dek

2. (2.124)

Furthermore, we transform (2.123) to the equation for the envelope amplitude
given by

E = ReE(t, r)e−iωpet. (2.125)

Thus in the one-dimensional case we obtain(
i
ωpe

∂t +
3r2De

2
∂2

x

)
E(t, x) =

1
2
δn(t, x)
n0

E(t, x). (2.126)

The low-frequency motion is assumed to be quasi-neutral,10 i.e.,

δne = δni ≡ δn. (2.127)

The equation for the low-frequency density variations can be obtained from
the hydrodynamic continuity equation,

∂tδn = −n0∇ · vi, (2.128)

and the momentum equation for plasma ions,

mi∂tvi +
Te

n0
∇δn = Fpond ≡ eEpond. (2.129)

In the literature, the force on the right-hand side of equation (2.129) is re-
ferred to as the ponderomotive force or the striction force (see Refs. [36,157],
for example). Its appearance is due to the ponderomotive (striction) field,
10 We emphasize that assumption (2.127) is important since (2.123) contains the

low-frequency variation of the electron density while (2.128) and (2.129) contain
the variations of the ion density. We note also that we assume the density vari-
ations to be small, which allows us to neglect them on the right-hand side of
(2.128).
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Epond, which acts on the plasma electrons. The ponderomotive force produces
charge separation when the electrons are pushed out by the high-frequency
Langmuir field. The field Epond can be determined from the electron momen-
tum equation averaged over the high frequency ωpe:

〈∂tve + (ve · ∇)ve〉 = − e

me
Epond. (2.130)

In the first approximation we can use

ve;ω,k ≈ ie
meωpe

Eω,k, (2.131)

where the high-frequency field E is given by expression (2.27). Substituting
(2.131) into (2.130) and averaging over the high frequency we obtain

Epond = − e

2meω2
pe

∇ |E(t, r)|2 . (2.132)

Taking into account (2.132) we find,

δn

n0
= −|E(t, r)|2

8πn0Te
(2.133)

for the slow (|∂t|2 � c2s|∂x|2) density perturbations.
Thus we obtain the nonlinear Schrödinger equation (NLS equation) which

in the one-dimensional case is given by(
i
ωpe

∂t +
3r2De

2
∂2

x

)
E(t, x) = −|E(t, x)|2

16πn0Te
E(t, x). (2.134)

In the dimensionless units, e.g., t → ωpet, x → (2/3)1/2rDex, and u →
E/(16πn0Te)1/2, the NLS equation can be written as

i∂tu+ ∂2
xu+ |u|2u = 0. (2.135)

Note that the above elementary derivation of the equations for the wave
envelope and the density perturbations has both advantages and shortcom-
ings. The particular advantage is in the clear physical meaning of the quantity
δn. One has to take into account that this simple physical meaning can be
lost in the next approximation (or when taking into account the nonlinear
Landau damping) [36]. This is especially important for numerical simulations
and computer experiments where one usually notes plasma density varia-
tions, and compares them with the solutions of the equations reasoning from
the correspondence between δn and the density inhomogeneity variations. In
fact, such a correspondence takes place only under many assumptions and
simplifications performed in the exact equations (of course, this comment
concerns only the case of weak nonlinearities; the computer simulations can
be, in principle, performed for stronger nonlinearities as well).
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2.3.2 IST for the NLS Equation. NLS Solitons

Taking into account both the modulationally-stable and -unstable cases, when
the signs of the dispersive and nonlinear terms are the opposite and the same,
respectively,11 we perform in (2.135) the change u → s1/2u, and rewrite the
NLS equation as

i∂tu+ ∂2
xu+ s|u|2u = 0. (2.136)

Thus for s < 0 we have the modulationally-stable case and for s > 0 the
modulationally-unstable case. Note that the soliton solutions of (2.136) are
possible only in the case s > 0, when as a result of the effect of the modu-
lational instability [36], the wave packet transforms into a series of nonlinear
solitary waves, each in the form of the NLS soliton. This conclusion was
proved by the analysis of Zakharov and Shabat [158]. Following Lax [159],
they demonstrated the application of the IST method, by analogy with the
KdV equation (see above Sect. 1.2), to the NLS equation (2.136).

Note that this method is applicable for any equation ∂tu = Ŝu which can
be written as the Lax representation

∂tL̂ = i
[
L̂, Â

]
= i(L̂Â − ÂL̂) (2.137)

(see Sect. 1.2), where L̂ and Â are the linear differential (generally speaking,
matrix) operators with the coefficients containing the function u(t, x). Thus
the main problem is to find such a representation.

The generalized Zakharov–Shabat eigenvalue problem is formulated as

∂xψ1 + iλψ1 = uψ2,
∂xψ2 − iλψ2 = vψ1,

(2.138)

where ψ1 and ψ2 are the eigenfunctions of some L̂ operator. In the case of the
NLS equation, (2.136) is the integrability condition of the set (2.138), and
the sign of s determines the character of the relation between the functions
u and v, namely, v = −su∗. We rewrite the eigenvalue problem (2.138) via
the L̂ operator as

L̂ψ = λψ (2.139)

and take the time derivative of (2.139)

iψdtλ+ iλ∂tψ = iL̂∂tψ + i(∂tL̂)ψ
= iL̂∂tψ − (L̂Â − ÂL̂)ψ
= L̂(i∂tψ − Âψ) + λÂψ.

It then follows that
11 For the opposite signs of the dispersion and nonlinear terms, the system is hy-

perbolic and the periodic wave packets are unstable with respect to their mod-
ulations; for the same signs, the system is parabolic and the wave packets are
modulationally stable [2] (see also Sect. 2.4).
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iψdtλ = (L̂ − λ)(i∂tψ − Âψ).

If the function ψ at the initial moment satisfies (2.139) and its time evolution
is described by the equation

i∂tψ = Âψ, (2.140)

then it also satisfies (2.139) for t > 0 with the same value of λ. Equation
(2.139) relates the function u(t, x) to the scattering problem, and (2.140)
gives the dependence of the scattering data on time. Note that (2.137) is the
condition of joint integrability of the equations (2.139) and (2.140).

The main problem now is to construct matrix operators L̂ and Â so that
they satisfy (2.137). Zakharov and Shabat have demonstrated [158] that these
operators can be written as

L̂ = i
[

1 + p 0
0 1 − p

]
∂x +

[
0 u∗

u 0

]
(2.141)

and

Â = −p
[

1 0
0 1

]
∂2

x +
[ |u|2/(1 + p) i∂xu

∗

−i∂xu − |u|2/(1 − p)

]
, (2.142)

in the case
s =

2
1 − p2

> 0

when stable soliton solutions are possible. The solution of the NLS equation
is further constructed the same way as that for the KdV equation (see Sect.
1.2), though there is a difference here related to the necessity to solve the
inverse problem for (2.139) because the operator L̂ is not the self-adjoint
one in the case s > 0.12 Thus the special technique for the singular integral
equations, to some extent distinguished from the standard GLM equation
approach considered above in Sect. 1.2, has been developed [158]. It uses
the evolution of ψ described by (2.140) to obtain the information on the time
evolution of the scattering matrix. Then, taking into account this information,
we can construct the solution u(t, x). Omitting details of the very complicated
procedure of solving the corresponding GLM equation, we just present here
the one-soliton solution for s = 113 in its explicit form as the NLS soliton
[27]

u(t, x) = 2η exp
[−i

(
2ξx+ 4(ξ2 − η2)t+ τ

)]
× cosh−1 [2η(x− x0) + 8ηξt] . (2.143)

12 In the opposite case where s < 0 we have v = |s|u, the eigenvalue problem
(2.139) is the self-adjoint one, and the soliton solutions do not appear.

13 In principle, without loss of generality, we can suppose that s = ±1; this can be
obtained by the simple change of the variables t → |s|−1t and x → |s|−1/2x.



2.3 Nonlinear Schrödinger and Zakharov Equations 109

Here, the envelope’s amplitude is A = 2η exp(−iη), x0 = γ/2η is the coordi-
nate of the envelope’s maximum at t = 0, and the soliton velocity is v = −4ξ.
Furthermore,

γ = ln (|D| /2η) and D = − ib(k, t)
a(k, t)

,

where b(k, t)a−1(k, t) defines the amplitude of the backward scattering r(k, t)
(see Sect. 1.2 for details) and D = −ir(k, t) plays here the role of the nor-
malization factor for the bound states, k = ξ + iη, η > 0.

The solutions describing the interacting solitary waves can be also ob-
tained in the explicit form; they correspond to the case when the total contri-
bution to the solution is defined by the discrete spectrum only. The expression
for |u|2, similar to the KdV equation, is given by

|u|2 ∼ d2
x ln |P | , (2.144)

where |P | is the determinant consisting of the exponential functions and
in the case of the NLS equation related to the operator i∂t + ∂2

x. Taking
into account the theory developed in Chap. 1 for the KdV equation, we can
conclude that the solitary waves conserve their structure as a result of their
interaction (with possible time delays caused by the interaction).

The solution of the initial (Cauchy) problem is obtained using the same
method as that for the KdV equation, and it is clear that for large t the
contribution of the discrete spectrum dominates. This means that initial dis-
turbances tend to evolve in a series of solitary-type waves. Note that the
above analysis is limited by those solutions when |u| → 0 for |x| → ∞, but
the conclusion that the series of the solitary waves are the end result of the
evolution of modulationally-unstable wave packets, remains valid.

To conclude, we note that in the cases when v �= ±u∗, the generalized
Zakharov–Shabat eigenvalue problem enables us to obtain solutions of other
evolution equations. The examples are:

1. If v = +u and u is complex, then the solution becomes singular for a finite
time and cannot form the “secant-type” solitary wave. In this case, for the
special choice of the scattering data (the frequency in the time dependence
of the amplitude of the backward scattering Ω(k) = −8ik, see Sect. 1.2)
we can obtain the integrable equation, which is the complex modified KdV
equation

∂tu± 6u2∂xu− ∂3
xu = 0.

Its “soliton” solution is given by [27]

u(t, x) = eiλ(t,x)f(t, x) + e−iλ(t,x)g(t, x),

where
f = ξ(coshω − sinhω)(cosh2 ω − sin2 λ)−1,

g = ξ(coshω + sinhω)(cosh2 ω − sin2 λ)−1,
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and
ω(t, x) = 2ηx+ 8η

(
3ξ2 − η2

)
t,

λ = 2ξx− 8ξ2 (ξ − 3η) t+ τ,

γ =
ln |D|

4ξ
+ iτ.

We can see that this solution becomes singular within a finite time period.
Usually, models corresponding to such situations are non-physical.

2. If v = αu = αu∗ and α is real, then k = iη = −k, η > 0, and

D̄ ≡ ib̄(k̄, t)
ā(k̄, t)

= −D/α = D∗/α,

so that the amplitude A = ±2ηα−1/2. In this case we have either the
modified KdV equation (Ω = 8ik3, v = ±u),

∂tu± 6u2∂xu+ ∂3
xu = 0,

with the soliton solution

u(t, x) = 2ηα−1/2
± cosh−1

[
2η(x− 4η2t) − γ

]
,

α± = ±1, or the sine–Gordon equation (SG equation),

∂txu = ± sinu,

with the solutions

u(t, x) = 2η cosh−1
[
(2η)−1(4η2 ± t) − γ

]
and

w(t, x) = 4 arctan
{
exp

[
γ − (2η)−1(4η2 ± t)

]}
.

In the last case the solution for w is called the “kink” [27]. The velocity
of the MKdV soliton is 4η2, and the velocity of the kink soliton of SG
equation, corresponding to the negative sign of the argument, is given by
1/4η2.
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2.3.3 Zakharov System of Equations

Zakharov Equations. In the case of faster (low-frequency perturbations),
we obtain from (2.126) and (2.129)–(2.132)(

i∂t +
3v2

Te

2ωpe
∂2

x

)
E(x, t) =

ωpe

2
δn(x, t)
n0

E(x, t), (2.145)

and (
∂2

t − v2
s∂

2
x

) δn(x, t)
n0

= ∂2
x

|E(x, t)|2
8πmin0

. (2.146)

In the literature, (2.145) and (2.146) are usually cited as the one-dimensional
Zakharov equations for the amplitude of the field envelope and the low-
frequency density perturbation [160]. They are the basis of numerous in-
vestigations in plasma physics and nonlinear optics. Their derivation based
on kinetic plasma theory [36] demonstrates that they can serve as an ap-
proximation to more general nonlinear equations. Historically, the Zakharov
equations were first [160] obtained from the simple approach similar to that
presented above and based on the hydrodynamic plasma equations where the
averaging over the high frequency (the electron plasma frequency ωpe) was
used. Note that it is difficult to establish their applicability limits in this case.
Also, the interpretation of the slow variable δn in this approach is evidently
valid only within the approximation for which this approach is correct. In
the generalized equations for the amplitude of the field envelope, δn can be
referred to as the effective density variation which in general is not the actual
low-frequency perturbation of the plasma density [36].

If we introduce the dimensionless variables

x =
2
3
me

mi

ωpe

vs
x, t =

2
3
me

mi
ωpet, E =

E√
32πn0Teme/3mi

,

and δn =
3
4
mi

me

δn

n0
, (2.147)

we can write the Zakharov equations (2.145) and (2.146) in the dimensionless
form as (

i∂t + ∂2
x

)
E = δnE,(

∂2
t − ∂2

x

)
δn = ∂2

x|E|2. (2.148)

Conservation Laws. It is easy to check that the conservation laws for the
energy H and the momentum P follow from the set of equations (2.148).
Here,

H =
∫

dx
[
|∂xE|2 + δn|E|2 +

δn2 + v2

2

]
(2.149)

and
P =

1
2

∫
dx [iE∂xE

∗ − iE∗∂xE + 2vδn] , (2.150)
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where v is a dimensionless (“slow”) hydrodynamic velocity related to δn by
the continuity equation

∂tδn = −∂xv. (2.151)

Restoring for the moment the dimensionality, we can write

v =
4
3
me

mi

v

vs
. (2.152)

The conservation laws of the energy and the momentum are the consequence
of homogeneity of the system in space and time. They play an important role
in the development of modulational interactions. There also exists a third
conservation law following from (2.148). This conservation law is the conse-
quence of the gauge invariance for the transform of the type

E → E exp(iφ), (2.153)

where the phase φ is real. This third conservation law describes conservation
of the number of quanta of waves N (the number of “plasmons” in the case
of Langmuir waves),

N =
∫

dx|E|2. (2.154)

The set of the integrals of motion (conservation laws) is useful, similar to
the case involving KdV and MKdV equations, for investigation of behavior of
particular solutions of equations (2.148) because it is difficult to find general
solutions of these equations. For example, of interest are some types of special
solutions, e.g., solitary-type waves, quasi-stationary solutions where density
perturbations move with a constant velocity, a self-similar solution, etc. We
can find variations of the functional H for these special solutions which allow
us to obtain information about their stability. If the functional H reaches its
minimum on one of these special solutions then this can serve as an evidence
for the stability of such a solution even in the presence of some perturbations.
These problems have been widely studied, see examples in [36,161–165].

Using the conservation law (2.154) we can easily visualize development of
the modulational process which is completed (in the one-dimensional case)
by establishing a balance between the ponderomotive force and the kinetic
pressure of a plasma. Let us assume that a local density depletion, δn, ap-
pears in a plasma as a result of some fluctuation or by any other reason.
This depletion results, according to (2.122), in a local decrease in the plasma
frequency ωpe(n), and some Langmuir waves are trapped in this local density
perturbation. The local growth of the intensity of Langmuir waves leads to
the increase of the ponderomotive force (2.132) which acts on plasma elec-
trons. If this force varies sufficiently slowly as compared to ω−1

pi , then the
ions follow the electrons due to the ambipolar polarization force. This results
in further increase of the plasma depletion which, in turn, leads to further
accumulation of plasma oscillations. The above process explains the physical
mechanism of the modulational instability [36].
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In the one-dimensional case we can trace further development of the mod-
ulational process including its final stage. Let x0 be the characteristic size
of the density perturbation. Then the conservation law (2.154) allows us to
conclude that |E|2x0 = const. This means that in the density depletion the
electric field squared varies inversely proportional to x0 and, in turn, the pon-
deromotive force is F pond ∝ ∂x|E|2 ∝ x−2

0 . The condition for the waves to be
trapped is δn ∝ k2 ∝ x−2

0 , where k2 corresponds to the dispersion correction
to the frequency of Langmuir waves. The force Fkin due to the kinetic plasma
pressure has the dependence on x0, and is given by Fkin ∝ ∂x(Tδn) ∝ x−3

0 .
Thus the size of the density depletion decreases until the moment when the
kinetic pressure force balances the ponderomotive force. This balance is sta-
ble. Indeed, the increase in x0 leads to an associated increase in the pon-
deromotive force, which in turn tends to decrease x0. The decrease in x0 in
comparison with its “balanced value,” in turn, results in an increase in the
pressure force which tends to enhance x0.

2.3.4 Langmuir Solitons

The solution corresponding to the above balance (and minimizing the func-
tional H) is the Langmuir soliton. The distinctive feature of this soliton-type
solution in comparison with other possible equilibrium solutions of Zakharov
equations is that the density perturbation associated with it moves with a
constant velocity and all perturbations vanish for x → ±∞, i.e., the soli-
ton appears as a localized wave packet moving with a constant speed. This,
however, does not necessarily mean that the wave amplitudes has a constant
profile moving with a constant velocity. Moreover, the phase of the waves
inside the soliton can be varied in a rather complicated manner. Only the
envelope field squared, |E|2, has a property of the profile moving without a
change in its shape. This is the direct consequence of the equations for the
amplitude of the field envelope.

We can find the explicit soliton solution under the conditions

vTi � v0 � vTe and v0 �= vs, (2.155)

where v0 is the velocity of the soliton. From the second equation of the set
(2.148), we obtain

δn =
|E|2
v2
0 − 1

. (2.156)

Here, the velocity v0 is given in units of the ion-sound speed vs =
√
Te/mi.

Thus the density variations are negative (that corresponds to the density
depletion) only if the soliton velocity is less than the ion-sound speed.

Substituting relation (2.156) in the first equation of set (2.148), we find(
i∂t + ∂2

x +
|E|2

1 − v2
0

)
E = 0. (2.157)
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This is the NLS equation that can be solved exactly by the IST method [158]
(see Sect. 2.3.2). But this is not the case for the set (2.148) because (2.157)
has been derived from (2.148) for the particular velocity v0 of the soliton.
Moreover, the speed v0 is not contained in (2.157) only for v0 � 1 (in the
first approximation). Thus one can apply the IST method to find general
solutions of (2.157) only in this limit, corresponding to the extreme subsonic
motions. However, a particular solution moving with the constant speed v0
can be easily obtained from (2.157) by separating the real and imaginary
parts of this equation.

We note that the solutions vanishing for x → ±∞ exist only for v0 < 1.
This is the so-called bright soliton. For v0 > 1 there also exists a localized
solution with a local decrease in the field intensity which approaches a con-
stant amplitude for x → ±∞. This solution is usually referred to as a dark
soliton.

For the case v0 < 1, the soliton solution of (2.157) is given by

E = E0
exp [−iΩt+ iv0(x− v0t)/2 + iψ0]
cosh

[
E0(x− v0t)(2(1 − v2

0))−1/2
] , (2.158)

where

Ω = −v
2
0

4
− E2

0

2(1 − v2
0)

(2.159)

and ψ0 is the initial soliton phase. This solution depends on two important
parameters, namely E0 and v0. As we have already noticed, the density de-
pletion corresponding to the soliton does not spread out (due to dispersion
effects) because the linear wave dispersion is balanced by the modulational
self-contraction.

Solution (2.158) can be also written as

E = E0

exp
[
ik0x− iΩN t

]
cosh [kN (x− 2k0t)]

, (2.160)

where
k0 = v0/2, (2.161)

ΩN = k2
0 − k2

N , (2.162)

and
kN =

E0√
2(1 − v2

0)
. (2.163)

The values k0 and ΩN have the meanings of the “central” wave vector and
the nonlinear frequency shift, respectively. We note that for kN > k0, the
nonlinear dispersion dominates the linear one. The condition E0 � 1, which
in the dimensional units can be presented as

1 � |E0|2
16πn0Te

� me

mi
, (2.164)
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corresponds to kN � k0. The left inequality in (2.164) implies that the
expansion parameter used in our consideration is less than unity.

The soliton is a particular solution of (2.157). For given N and P, however,
the soliton solution corresponds to a minimum of the energy H. The general
expressions for the number of waves N , the momentum P, and the energy H
of a single soliton with E0 � 1 are given by

N = 2E0

√
2(1 − v2

0), (2.165)

P =
4
3
v0E

3
0

1
1 − v2

0

√
2

1 − v2
0

, (2.166)

and

H = −1
3
E3

0

1
1 − v2

0

√
2

1 − v2
0

(1 − 5v2
0). (2.167)

For an arbitrary E0 (not for E0 � 1 only as in (2.165)–(2.167)) the energy
of the soliton is

H = −
√

2E3
0(1 − 5v2

0)
3(1 − v2

0)3/2
+
E0√

2
v2
0

√
1 − v2

0 . (2.168)

If the energy is negative then the soliton formation is favorable. One can see
from (2.167) that H < 0 at least for

v0 < 1/
√

5. (2.169)

When the soliton velocity is close to unity, some of the above expressions can
be formally singular. In this case we have to take into account the nonlinear
terms caused by the presence of the low-frequency potential. Consideration
of such terms enables us to obviate the appearance of singularities in the
description of the solitons. We will discuss that below in the section devoted
to near-sonic solitons.

The exact condition when the general set of envelope equations can be
reduced to the NLS equation is given by√

Ti

Te
� |∆ω|

|∆k| � 1, (2.170)

where ∆ω and ∆k are the frequency and the wave vector of low-frequency
density perturbations, respectively.

It is possible to establish some general relations describing the properties
of the solutions. We mention one of them in which an initial distribution of
the field will (asymptotically as t → ∞) disintegrate into a set of solitons.
Using this theorem and the conservation laws it is possible to find, for given
values of the integrals N and H, the number of solitons in which the initial
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disturbance evolves. If the final solitons have v0 � 1/
√

5, the energy of each
of them is

H0 = −
√

2
3
E3

0 . (2.171)

The total energy of them is NH0 where N is the number of the solitons,
while the total number of the waves is given by

N = NN0 = 2
√

2NE0. (2.172)

Thus for the given values of the integrals N and H, the total number of the
solitons created as a result of development of the modulational interaction is

N =

√
− N 3

48H . (2.173)

The absolute minimum of the energy H is reached for a single soliton at rest,
and is given by

H0 = −N 3

48
. (2.174)

2.3.5 Near-Sonic Solitons

When the soliton velocity approaches the speed of ion sound, effects of
nonlinearity and dispersion of the ion-acoustic (low-frequency) field mod-
ify the Langmuir soliton. Indeed, only in this case do the nonlinearity and
the sound dispersion become comparable with the small linear term in the
evolution equations (which determines the linear dispersion of the ion sound
ωk = |k|vs). The corresponding restriction on the deviation of the soliton
velocity from the sound velocity is presented below. The one-dimensional
equations in this case can be written in terms of the dimensionless electric
field E and the potential φ of the low-frequency field. These equations are
[166]

i∂tE + ∂2
xE + E∆ =

1
µ
φE − |E|2E + N̂h(φ,E), (2.175)

and

∂2
xφ− ∂2

t φ+ µ∂2
t |E|2 +

µ

3
∂4

xφ+ ∂2
xφ

2 +
6Ti

Te
∂2

xφ

+µ∂2
x(φ|E|2) + 2µ∂x

(|E|2∂xφ
)

+ ∂xD̂l(φ) + µN̂l∂xE = 0. (2.176)

In (2.176) we have taken into account the actual dispersion of the low-
frequency field, namely the deviation of its linear dispersion from ωk = |k|vs.
This is important for investigation of the solitons or other nonlinear struc-
tures propagating with the velocities close to the sound speed.

The operator N̂h in the equation for the high-frequency field and opera-
tors D̂l, N̂l in the equation for the low-frequency potential are introduced to
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describe the dissipative processes. The explicit expressions for these opera-
tors are given below. Furthermore, µ = mi/me in (2.175) and (2.176) and ∆
for the high-frequency field in (2.175) is given by

∆ = 2
ω0 − ωpe

µωpe
, (2.177)

where ω0 is the frequency of the high-frequency wave or structure. The di-
mensionless field of the low-frequency field, φ, corresponds to −φe/Te.

Solitons Without Dissipation. First, we start with equations (2.175) and
(2.176) where we neglect the dissipative terms. Moreover, we neglect the
third-order nonlinear terms in (2.176). We have in this case

i∂tE + ∂2
xE + E∆ =

1
µ
φE − E|E|2 (2.178)

and
∂2

xφ− ∂2
t φ+ µ∂2

t |E|2 +
µ

3
∂4

xφ+ ∂2
xφ

2 +
6Ti

Te
∂2

xφ = 0. (2.179)

This set of equations was originally derived in [167]. In the near-sonic limit
we can use for the fields propagating in the positive x-direction

(∂x + ∂t) (∂x − ∂t) ≈ 2∂x (∂x + ∂t) . (2.180)

Taking into account (2.180) we obtain the simplified set of equations

i∂tE + ∂2
xE + E∆ =

1
µ
φE − |E|2E (2.181)

and

∂tφ+ ∂xφ+
µ

2
∂x|E|2 +

1
2
∂xφ

2 +
µ

6
∂3

xφ+
3Ti

Te
∂xφ = 0. (2.182)

Equations (2.181) and (2.182) were obtained for the first time by Nishikawa
[168].

If we neglect the sound dispersion terms and the quadratic (in the low-
frequency field) nonlinearities in the above set of equations, then we restore
the Zakharov equations written in terms of E and φ. Indeed, in the dimen-
sionless variables we obtain

δn ≈ φ− µ|E|2. (2.183)

Using this expression in (2.178) and (2.179) we return to the usual Zakharov
equations.

Substituting the soliton solution of the Zakharov equations (2.158) to
(2.178) and (2.179), one can show that it is possible to neglect the low-
frequency nonlinearity and sound dispersion terms for
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1 − v2

0

v2
s

)2

� |E0|2
16πn0Te

. (2.184)

Thus a usual Langmuir soliton discussed in the previous sections can exist
only if its velocity is not very close to the sound speed. As we will see later,
the dissipative terms are small and can be considered as perturbations only
for (

1 − v2
0

v2
s

)2

� me

mi
, (2.185)

and |E0|2
16πn0Te

� me

mi
. (2.186)

Thus the soliton solutions obtained from the Zakharov equations are valid if(
1 − v2

0

v2
s

)2

� |E0|2
16πn0Te

� me

mi
. (2.187)

In the opposite limit where

|E0|2
16πn0Te

≥
(

1 − v2
0

v2
s

)2

� me

mi
, (2.188)

it is impossible to neglect the dispersion and nonlinear terms in the equation
for the low-frequency potential. The soliton can still exist in this limit and
can be called a near-sonic soliton because

|E|2
16πn0Te

� 1.

The set of equations (2.181) and (2.182) has the following soliton solution:

φ = − 6µ|∆|
cosh2

[√|∆|(x− x0 − v0t)
] (2.189)

and
E = |E| exp

(
i
2
v0x− i

4
v2
0t+ iχ0

)
, (2.190)

where
µ|E|2 = 8µ∆φ− 4

3
φ2 (2.191)

and
v0 +

3Ti

Te
= 1 − 10

3
µ|∆|. (2.192)

Here, χ0 is the initial phase and x0 is the initial position of the soliton.
Expression (2.192) gives the relation between the frequency shift ∆ and the
soliton velocity. The solitons can exist for ∆ < 0 which corresponds to the
density depletion. Substituting this solution into (2.182), we can confirm the
validity of the inequality (2.187) and also that all terms of (2.182) are of the
same order of magnitude.
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Dissipative Processes for Near-Sonic Solitons. Here, we take into ac-
count the linear Landau damping for the the low-frequency potential and the
nonlinear damping for both the low-frequency and the high-frequency com-
ponents of the field. The explicit expressions for the dissipative operators in
(2.175) and (2.176) are given by

N̂h(φ,E) = Eδφ/µ, (2.193)

D̂l(φ) =
1
2

∞∫
−∞

dωdk
(2π)2

√
π

2
ω2vs

|k|vTe
φω,ke−iωt+ikx, (2.194)

and

N̂l(E) = −
∞∫

−∞

dωdk
(2π)2

√
π

8
ω2vs

|k|vTe
|E|2ω,ke−iωt+ikx, (2.195)

where

δφ =

∞∫
−∞

dωdk
(2π)2

√
π

2
iωvs

|k|vTe
φω,ke−iωt+ikx. (2.196)

To find how the soliton parameters are changed due to the dissipative effects,
we use the procedure similar to that already used for the usual Langmuir
solitons. Namely we derive the conservation laws in the absence of dissipative
processes. Next, we find the changes in the equations expressing these laws
due to dissipative processes, assume that the dissipative processes are weak
and, finally, substitute the soliton solution in these equations to determine
the changes in the soliton parameters.

Expressions for the number of waves N , the momentum P, and the energy
H for the set of equations (2.178) and (2.179) are given by

N =
∫

|E|2dx, (2.197)

P =
∫

1
2

[
i (E∂xE

∗ − E∗∂xE) +
φ2

µ2

]
dx, (2.198)

and

H =
∫ [

|∂xE|2 − |E|2∆+
1
µ
|E|2φ

]
dx

+
∫ [

φ2

µ2
− 1

6µ
(∂xφ)2 +

1
3µ2

φ2

]
dx. (2.199)

One can check that due to the dissipative processes, the near-sonic soliton
perceptibly decreases in amplitude and increases in velocity [166,169]. In
other words, it is accelerated while destroying. Its velocity becomes closer to
the sound speed so long as the necessary condition for the soliton’s existence
(2.188) is not violated. Such a behavior is the opposite to that of the usual
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solitons which do not change their amplitudes but significantly decrease their
velocities.

All these examples aim to demonstrate the possibility of creation of dif-
ferent coherent structures under the conditions when the modulational inter-
actions dominate. We have discussed mainly the one-dimensional structures
which can be the final result of the development of the modulational inter-
actions. In the three-dimensional situation the quasi-stationary structures
are mainly dissipative, i.e., the modulational interactions develop until the
dissipative effects are comparable to the nonlinear effects, and the modula-
tional development stops when the dissipative effects are of the order of the
nonlinear ones.

2.4 Derivative Nonlinear Schrödinger Equation

In this section, we introduce the derivative nonlinear Schrödinger (DNLS)
equation, demonstrate its origin from the plasma magnetohydrodynamic
(MHD) equations (Sect. 2.4.1), consider DNLS equation as an integrability
condition for two linear differential equations (Sect. 2.4.2), and discuss sta-
bility of DNLS-solutions such as DNLS solitons (Sect. 2.4.3). Furthermore,
we consider some numerical approaches to study the dynamics of Alfvén
solitons (Sect. 2.4.4), and consider results of numerical simulations of the
solitons’ evolution (Sect. 2.4.5).

2.4.1 Origin of the DNLS Equation

For a magnetized plasma, consider the case when the magnetic pressure is
much stronger than the plasma kinetic pressure, i.e., (B2/8πnT ) � 1. We
are interested in the waves with velocities much less than speed of light, c.
Then the basic plasma equations are given by

midtvi = eE +
e

c
vi × B, (2.200)

medtve = −eE − e

c
ve × B, (2.201)

dtni,e + ∇ · (ni,evi,e) = 0, (2.202)

∇ × B =
4πe
c

(nivi − neve) , (2.203)

and
dtB = −c∇ × E. (2.204)

Assume that the plasma is quasi-neutral, i.e.,

ni ≈ ne ≡ n. (2.205)
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This takes place if the characteristic frequencies are small compared to the
ion plasma frequency ωpi. Introducing the “mass velocity”

u =
mivi +meve

m
, (2.206)

where m = me +mi ≈ mi, adding (2.200) and (2.201), and using (2.203) and
(2.205), we obtain

dtu = − 1
4πnm

B × ∇ × B. (2.207)

From (2.200), (2.201), and (2.206) we obtain

E = −1
2
u × B +

mi

c
dtu − me

c
dtve. (2.208)

Substituting (2.208), (2.205), and (2.206) into the Maxwell equations (2.203)
and (2.204), we find

∇ × B =
4πne
c

m

mi
(u − ve) (2.209)

and
dtB = ∇ × u × B − mic

e
∇ × dtu +

mec

e
∇ × dtve. (2.210)

Equations (2.207), (2.209), and (2.210), together with the continuity equation,

∂tn+ ∇ · (nu) = 0, (2.211)

constitute the full set of equations of a cold magnetized plasma for the low-
frequency oscillations when ω � ωpi. Two last terms in (2.210) are negligible
when the frequencies are well below the ion cyclotron frequency,

ω � ωBi ≡ eB/mic. (2.212)

If we omit them, the basic set of equations turns into well-known magnetohy-
drodynamic equations (MHD equations) for a cold plasma where the pressure
term ∇p is ignored.

Assuming that B = B0 + h and n = n0 + n′, and neglecting the second-
order perturbations of h, u, and u′, we obtain the equations that are linear
with regard to these functions, leading to the dispersion law of the linear
oscillations (see (0.19)):

ω1,2 =
vAk/2√

1 + c2k2/ω2
pe

⎡
⎣((1 + cos θ)2 +

c2k2

ω2
pi

cos2 θ
1 + c2k2/ω2

pe

)1/2

±
(

(1 − cos θ)2 +
c2k2

ω2
pi

cos2 θ
1 + c2k2/ω2

pe

)1/2
⎤
⎦ , (2.213)
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where Θ is the angle between the wave vector and the magnetic field, and
vA = B0/

√
4πnm is the Alfvén velocity. As we noted in the Introduction,

the signs in (2.213) correspond to two types of waves. In the long wavelength
limit when c2k2 � ω2

pe and c2k2 cos2Θ � ω2
pi(1 − cosΘ)2, the dispersion

equation with the lower sign is given by ω = vAk cosΘ, i.e., turns into the
dispersion equation for the Alfvén wave. Accordingly, the branch of oscilla-
tions corresponding to the “minus” sign in (2.213) is sometimes called the
Alfvén branch.

Expanding (2.213) in a Taylor series in powers of the wave number k,
applying the inverse Fourier transform to the obtained equation and retaining
the nonlinear terms, we obtain an equation describing (in the one-dimensional
approximation) the propagation of nonlinear Alfvén waves in a plasma – the
derivative nonlinear Schrödinger equation (DNLS equation) –

∂th+ s∂x(|h|2 h) − i∂2
xh = 0, (2.214)

where h = h(t, x) corresponds to the right-circularly polarized wave,

h =
By + iBz

2
√|1 − β|B0

,

and the magnitude of the magnetic field B0 is defined by B0 = B0x̂ (the
magnetic field is in the x-direction). The variables x and t in (2.214) are the
normalized space and time in the reference frame moving with the Alfvén
velocity.

The DNLS equation plays an important role in space plasma physics.
There are many publications devoted to DNLS solitons in, for example, solar
wind as well as in a laboratory plasma. The DNLS equation can also be used
for the study of nonlinear processes in the Earth’s magnetosphere. Indeed,
the first experimental confirmation of the DNLS solitary waves was demon-
strated in the experiment MASSA [49]. The obtained data were interpreted
in terms of the one-dimensional Alfvén solitons excited in the F-region of the
Earth’s ionosphere because of the formation of strong magnetic field-aligned
currents caused by the motion of neutral particles against the charged ones
in the dynamo region. The self-consistent (one-dimensional) model of this
phenomenon was proposed in 1994 [170]. Propagation of nonlinear structures
in the ionospheric plasma in this case is accompanied by plasma turbulence
excited by the strong transverse electric currents at the front of the soli-
tary wave leading to the “turbulent track” of the soliton. That proved to
be correct in further experiments on board the satellite DE2 [171] when the
satellite passed through the magnetic field tube over the Nevada site just
after a strong underground nuclear explosion.14

14 Noting relative simplicity and clarity of such one-dimensional approach, we
nevertheless would like to remark, that this explanation was only qualitative
and a full description of the observed phenomenon requires more complex two-
dimensional and three-dimensional theory to be developed (see Chap. 4).
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Thus, applications of the DNLS model in physics are numerous, but in
this book we mostly consider only those related to the physics of the iono-
spheric plasma and the magnetospheric plasma. In next sections, we study
mathematical properties of the DNLS equation and its possible solutions.

2.4.2 DNLS Equation as an Integrability Condition for Two
Linear Differential Equations

Equation (2.214) is completely integrable. It has infinite sequence of the in-
tegrals of motion and can be solved using the IST method (see Sect. 1.2).
This equation appears also as an integrability condition for a set of two linear
differential equations; for the latter the eigenvalue problem can be formulated
by

∂xυ1 + iξ2υ1 = hξυ2,
∂xυ2 − iξ2υ2 = gξυ1,

(2.215)

where g = −sh∗ is the left-circularly polarized wave satisfying the DNLS
equation with the positive dispersion term

∂tg + s∂x

(|g|2g)+ i∂2
xg = 0. (2.216)

Note that this eigenvalue problem (2.215) differs from the generalized Zakharov–
Shabat eigenvalue problem:

∂xυ̃1 + iλυ̃1 = h̃υ̃2,
∂xυ̃2 − iλυ̃2 = g̃υ̃1,

(2.217)

which is applicable to the KdV equation (Sect. 1.2), the modified KdV equa-
tion (Sect. 2.1), and the NLS and sine-Gordon equations (Sect. 2.3), where
h̃ always corresponds to a function whose evolution is described by (2.217).

Following [33], we can show that the eigenfunctions υ1 and υ1 in (2.215)
can be transformed to the form they acquire in (2.217). Let us introduce [35]

H = he−2iµ and G = − i
2

(
∂xg +

i
2
hg2

)
e2iµ, (2.218)

as well as

µ =
1
2

∞∫
−∞

ghdx and λ = ξ2.

In addition, we also let

w1 = υ1e−iµ,
w2 = ξυ2eiµ − (i/2)υ2geiµ.

(2.219)

Then the set of equations (2.215) transforms into
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∂xw1 + iξ2w1 = Hw2,
∂xw2 − iξ2w2 = Gw1,

(2.220)

which is similar to (2.217). The introduced functions H and G satisfy the
conditions

i∂tH + ∂2
xH − 2H2G = 0,

i∂tG− ∂2
xG+ 2G2H = 0, (2.221)

which are equations of the NLS type, if the relation between G and H is
given by [33]

G = −1
4
|H|2H∗ +

i
2
s∂xH

∗. (2.222)

Equations (2.214)–(2.216) and (2.220)–(2.222) are equivalent. Thus the
considered transformation enables us to use the results obtained above for
the Zakharov–Shabat eigenvalue problem (2.217). This is useful for integration
of the DNLS equation by the IST method.

Here, we would like to note the following. One of the most important
properties of equations that can be solved by the IST method is that any
localized initial condition |h| → 0 for |x| → ∞ results in the N -soliton solu-
tion and the oscillating “tail” (radiation) spreading with time. The number
of arising solitons is determined for every particular case by the initial condi-
tion and is related to the number of the discrete eigenvalues of the associated
scattering problem. Their number is always finite and can be 0, 1, 2, . . .. It is
very difficult to obtain this number analytically, but when there is only one
dispersion relation for the linearized evolution equations with the functions
h̃ and g̃, and the associated scattering problem is of standard form (2.217),
the number of solitons is equal to the number of the corresponding discrete
eigenvalues λi such that Imλi > 0 [24]. Some conditions of the existence of
these eigenvalues can be estimated by the largest value, λ0, determined by
the integral

C1 = 2iλ0 =

∞∫
−∞

g̃h̃dx. (2.223)

It is necessary to note that C1 has the sense of the first integral of motion
for those evolution equations which are the integration conditions of (2.217).
Equality (2.223) suggests that there are no proper discrete eigenvalues if
ReC1 > 0 [172], therefore any initial pulse will merely spread (without form-
ing a soliton). This is in agreement with two facts, namely:

1. The standard NLS equation with the negative nonlinearity,

i∂th̃− 2h̃2h̃∗ + ∂2
xh̃ = 0, (2.224)

has no conventional soliton solutions [3,24]. In this case g̃ = h̃∗ [172] and,
as it is clear from (2.223), C1 > 0.
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2. For the KdV equation,

∂th̃+ 6h̃∂xh̃+ ∂3
xh̃ = 0, (2.225)

where h̃ ∈ R, if the initial pulse h̃(0, x) < 0 for any x then no solitons form.
In this case g̃ = −1 [172], and (2.223) also gives C1 > 0.

The modulational instability [36] of the finite length plane waves was inves-
tigated in detail in Ref. [173]. Four different regimes of the soliton formation
for the initial condition in the form of a solitary pulse were established. The
weakly and strongly stable cases considered in [173] correspond to the case
C1 > 0, and different signs of the first integral of motion correspond to differ-
ent physical situations: C1 > 0 to the modulationally-stable case and C1 < 0
to the modulationally-unstable case.

Numerical simulations [174] demonstrated that an initial pulse corre-
sponding to the modulated circularly polarized Gaussian wave packet,

h(0, x) = A0 exp
(

2πix
λ

)
exp

(−x2/l2
)
, (2.226)

collapses or spreads with time, depending on the relative sign of the nonlinear
and dispersive terms in (2.214). This can be due to the fact that the inverse
scattering problem has no corresponding discrete eigenvalues. In this case,
the collapse-type instability can reflect the fact that the inverse scattering
problem has no solution, and this leads to the infinite (for a finite time)
solutions of (2.214). Here we note that the detailed analysis of such situations
is very complicated.

2.4.3 Stability of DNLS Solitons

The evolution equations (2.214) and (2.216) can be written in the Hamilto-
nian form (

∂th
∂tg

)
=
(

0 1
1 0

)
∂x∇H, (2.227)

where the Hamiltonian is given by

H = 2C1 =

∞∫
−∞

[
1
2
|h|4 + εsgh∂xϕ

]
dx, ϕ = arg h, (2.228)

and the signs of ε = ±1 correspond to the DNLS equation with the negative
(2.214) or the positive (2.216) dispersion term, respectively.

Here we employ the method [50,175] to analyze the stability of the DNLS
solutions and investigate the lower boundedness of the Hamiltonian H under
the deformations conserving the momentum P = (1/2)

∫ |h|2dx when the
variational equation is given by

δ (H + vP) = 0. (2.229)
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Here, v is the Lagrange factor and (2.229) reflects the fact that all finite
solutions of the DNLS equation are the stationary points of the Hamiltonian
for a fixed P. Apply the transform

h(x) → ζ−1/2h(x/ζ), ζ ∈ R, (2.230)

conserving the momentum as follows:

P =
1
2

∫
|h|2 dx→ 1

2

∫
ζ−1 |h|2 ζdx =

1
2

∫
|h|2 dx.

Substituting (2.230) into (2.228), we obtain

H →
∞∫

−∞

[
1
2
ζ−2 |h|4 + εsζ−1 |h|2 ζ−1∂xϕ

]
ζdx = ζ−1(a+ b), (2.231)

where a = (1/2)
∫ |h|4dx and b = εs

∫ |h|2∂xϕdx.
Furthermore, we solve the set{

∂ζH = 0,
∂2

ζH > 0,

where the equality stands for the necessary condition for the existence of an
extremum, and the inequality is the sufficient condition for the existence of
the minimum of H, and obtain

a+ b

ζ2
= 0 and

a+ b

ζ2
· 2
ζ
> 0. (2.232)

Obviously, the necessary condition to satisfy the inequality is

a+ b > 0, ζ > 0, (2.233)

and, in this case, for ζ → +∞ we have ∂ζH → 0 from the right. Therefore,
for ζ → +∞ we obtain ∂2

ζH > 0, i.e., we have the boundary minimum at
ζ = +∞. In the opposite case, when

a+ b < 0, ζ < 0, (2.234)

we have the boundary minimum at ζ = −∞.
Note, that the change ζ → −ζ is equivalent to the change of sign of the

coefficient s in (2.214) and (2.217) determining the wave “polarity.” There-
fore, condition (2.233) is valid for the “positive” wave or soliton, and (2.234)
is valid for the “negative” wave. Thus the necessary conditions (2.233) and
(2.234) are the sufficient conditions for the Hamiltonian to be limited from
below. Therefore, in the cases (2.233) and (2.234), the solitons of the DNLS
equation are stable.
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2.4.4 Numerical Approaches to Study Dynamics of Alfvén
Solitons

First we note that solutions of the DNLS equation cannot always be obtained
analytically in a closed form because the IST method imposes sufficiently
strong limitations on the initial and boundary conditions (first of all, the
locality of the potential |h(x, t)| → 0 for |x| → ∞). Thus development of
numerical methods and numerical codes for integration of the DNLS equation
is a very actual and important problem. In this section, we consider a few
methods used for numerical modeling of the dynamics of one-dimensional
Alfvén solitons described by the DNLS equation (2.214).
Dawson–Fontán Method. Consider now briefly a rather effective method
for the numerical integration of the DNLS equation based on the Ablowitz–
Ladik scheme [176] used for simulation of the evolution of the one-dimensional
Alfvén soliton in Ref. [33]. Assume in (2.215) that

∂tυ1 = Aυ1 +Bυ2 and ∂tυ2 = Cυ1 +Dυ2, (2.235)

where D = −A, and A, B, and C are some functions of h and g. Intro-
ducing the change of the original functions by the standard functions of the
Ablowitz–Ladik method (2.219), we obtain evolution equations for the new
functions H and G (2.221). They represent the integrability conditions of
(2.220) together with the corresponding evolution equations for w1 and w2

of type (2.235) where
A = −iHG− 2iλ2,
B = i∂xH + 2Hλ,
C = −i∂xG+ 2Gλ.

(2.236)

It is clear from (2.221) that the evolution equations for H and G are similar
to the NLS system (2.235) if conditions (2.236) hold. The difference between
(2.221) and the usual NLS equation is in the different relation between H
and G given for the DNLS equation by (2.222), unlike the relation G = ∓H∗

for the NLS equation.
Similarity between equations (2.221) for H and G and the Schrödinger

equation gives a simple way to guess their discrete versions using an extension
of the NLS results to the transformed problem (2.221). Following [176] (and
similar to the case of NLS equation [177]), choose for A, B, C, and D the
expansion in powers of the eigenvalues z and 1/z:

Am
n = A

(−2)
n z−2 +A

(0)
n +A

(2)
n z2,

Bm
n = B

(−1)
n z−1 +B

(1)
n z1,

Cm
n = C

(−1)
n z−1 + C

(1)
n z1,

Dm
n = D

(−2)
n z−2 +D

(0)
n +D

(2)
n z2.

(2.237)

Then we can write the first equation of (2.221) in the implicit discrete form
on the grid (m,n), where m refers to the time grid point and n refers to the
space grid point,



128 2. Generalized KdV Equations. NLS and DNLS Equations

i∆mHm
n = − ∆t

2(∆x)2
(
Hm

n+1 − 2Hm
n + Pn−1H

m
n−1 + PnH

m+1
n+1

−2Hn
m+1 +Hm+1

n−1

)
+
∆t

2

[
PnG

m
n H

m
n H

m+1
n+1 + Pn−1G

m+1
n Hm

n−1H
m+1
n

+
1
2

(
Hm

n H
m
n+1G

m
n +Hm+1

n−1 H
m+1
n Gm+1

n +Hm
n−1H

m+1
n Gm

n

+Hm
n

n∑
k=−N

∆mS̃m
k −Hm+1

n

n−1∑
k=−N

∆mT̃m
k

)]
, (2.238)

where
∆mHm

n = Hm+1
n −Hm

n ,

S̃m
k = Hm

k+1G
m
k +Hm

k G
m
k−1,

T̃m
k = Hm

k−1G
m
k +Hm

k G
m
k+1,

and

Pn =
n∏

k=−∞

[(
1 −Hm+1

k Gm+1
k (∆x)2

)
/
(
1 −Hm

k G
m
k (∆x)2

)]
.

The main problem for the scheme (2.238) is that the relation between G and
H (2.222) is nonlinear, and the method provides no answer to the question
how one can write it in the finite difference form. However, since in the
discrete version of the Ablowitz–Kaup–Newell–Segur eigenvalue problem [172]
the term hξv is converted into Hm

n w
m
n , following [176] we can assume that

Gm
n =

is
2

(
Hm∗

n+1 −Hm∗
n−1

2∆x

)
− 1

4
Hm

n

(
Hm∗

n+1

)2

.

The algorithm [176] realizing the simulation according to the scheme (2.238)
consists of two nested iterations. The outer iteration accounts for the fact
that expression (2.238) is a highly implicit one, and it contains nonlinear
terms with the values Hn at the next time layer (m+1). Therefore, as usual,
it is necessary to assume Hm+1

n = Hm
n in these terms and solve the linear

system at the new time layer, that the internal iteration is intended for. Since
the corresponding matrix of factors at unknown values is not inverted, the
calculations are conducted via the iterative procedure at this iteration. In
both iterations, the well known Crank–Nicholson method [178] is used. The
procedure is finished when the condition∣∣Hm+1,j

n −Hm+1,j+1
n

∣∣ / ∣∣Hm+1,j
n

∣∣ < ε
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is satisfied. Here, ε is the prescribed accuracy and j is the number of the
outer iteration. The value of the obtained Hm+1,j+1

n is considered to be the
approximate solution at the time moment t = (m + 1)∆t at the point x =
n∆x.

The main advantage of the considered algorithm is that, since the limita-
tion of the time step (∆x)2/∆t is quite weak, it allows one (unlike earlier used
methods) to proceed with a sufficiently large step on t in the calculations.
The latter significantly minimizes the time expenditures for the calculations.
Unfortunately, the considered procedure is rather cumbersome overall, and
the advantage noted above does not secure a significant effect for multidi-
mensional problems related to the 3-DNLS-class equations with the integral
diffraction term (see Chap. 4). Nevertheless for problems connected with the
study of evolution of one-dimensional Alfvén waves [33,176] this method in
practice has well proven itself (see Sect. 2.4.5).

Dynamic Spectral Methods. Consider an approach to the integration of
DNLS equation that can be called the dynamic spectral method, first pro-
posed and used for the multidimensional KdV-class equations known as the
Kadomtsev–Petviashvili (KP) class of equations [81,98]15 We assume DNLS
equation in the form (2.214) and execute the Fourier transform on the x-
coordinate:

H(t, ξ) = (2π)−1
∫
h(t, x) exp(−ixξ)dx,

h(t, x) =
∫
H(t, ξ) exp(ixξ)dξ. (2.239)

Thus we obtain
∂tH + fG+ gH = 0, (2.240)

where f = isξ, g = iξ2, G = W ∗ H, and W = F [|h|2]. We therefore have
obtained a simpler equation on the complex functions with the pure imagi-
nary coefficients. The H values at t = 0 are defined by the Fourier transform
of the initial condition, h(0, x) = ψ(x), of the Cauchy problem for the DNLS
equation (2.214), and G|t=0 = W |t=0 ∗ F [ψ], W |t=0 = F [|ψ|2]. The arising
problem of finding the convolution values on the next time layers is solved
by executing the Fourier transform of the squared modulus of the inverse
Fourier transform of H,

W = F
[∣∣F−1[H]

∣∣2] .
Now consider another approach. Assume that the function describing the

magnetic field is represented as h = ph̄, where p = 1+ie, and e is the “eccen-
tricity” of the polarization ellipse of the Alfvén wave. The DNLS equation in
this case is given by

∂th̄+ 3s|p|2h̄2∂xh̄− iε∂2
xh̄ = 0, (2.241)

15 See for details Sect. 4.3.3.
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where the signs of ε = ±1 correspond to (2.214) or (2.216), respectively.
Applying the Fourier transform (2.239), we obtain the equation in the form
(2.240)

∂tH̄ + qḠ+ rH̄ = 0, (2.242)

where q = 3is|p|2ξ, r = isξ2, Ḡ = W̄ ∗ H̄, and W̄ = H̄ ∗ H̄. In this case the
convolutions on the time layers n = t/τ = 1, 2, 3, . . . are calculated using the
convolution theorem [179] according to the scheme

{H} → {F [H]} → {V } = {F [H]F [H]} → {W} =
{F−1[V ]

}
.

Thus in both considered cases we should solve an equation of type (2.240)
on the complex functions with the purely imaginary coefficients. That can
be done by using the Runge–Kutta method [180]. For example, one of the
possible often-used schemes is

Hn+1 = Hn + (k1 + 2k2 + 2k3 + k4)/6, (2.243)

where
k1 = τϕ(Hn), k2 = τϕ(Hn + k1/2),

k3 = τϕ(Hn + k2/2), k4 = τϕ(Hn + k3),

and
ϕ(Hn) = −fGn − gHn.

This scheme approximates (2.240) with the accuracy O(τ4). Here, Hn and
Gn are the Fourier-image and the convolution at the time layer n at the point
ξ of the spectral space, while τ = tn+1 − tn is the time step.

With regard to (2.240) and (2.242), we note that the finiteness of the
real region of the numerical integration leads to percolation of the spectral
components in the spectrum of the function h (Gibbs oscillations). This is
connected with the presence of the ruptures of the periodic extension of h on
the boundaries of the region. Therefore, to suppress the rupture order and
to coordinate a possibly larger number of derivatives at the boundaries in
the numerical realization of the Fourier transform when we approximate an
integral by a finite sum, it is necessary to introduce a multiplicative weight
function into (2.239). For that, the direct transform (2.239) can be presented
as

Hσ(t, ξn) =
1
N

N−1∑
n=0

σ(n∆x)h(t, n∆x) exp (−iξnn∆x) , (2.244)

where σ(n∆x) = σ [(N − n)∆x] and ξn = 2πn/N∆x. If, as a result of the
weight function, it is possible to achieve a smoothly varying tendency of the
function to zero on the boundaries for a minimum distortion of the spectrum
in the center of the integration region, the periodic extension of h becomes
continuous up to the higher order derivatives.
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We can choose various sorts of windows widely used in the spectral anal-
ysis as the weight function σ. For example, we can effectively apply the
Blackman–Harris windows [181],

σ(j) = c0 − c1 cos(2πj/N) + c2 cos(4πj/N) − c3 cos(6πj/N),
j = 0, 1, 2, . . . , N − 1,

which gave a good result in our numerical simulations for the multidimen-
sional equations of the KP- and DNLS-classes (see Chap. 4).

The numerical simulations of the DNLS equation16 enable us to conclude
that in the one-dimensional case, both approaches described by (2.240) and
(2.242) are approximately equivalent regarding their temporal characteristics,
though the second approach has nevertheless some advantages which can
appear to be essential to multidimensional problems.

Families of Explicit and Implicit Difference Schemes. The approach
considered above, when applied to an elliptically polarized wave with the
function h in (2.241) as h = (1 + ie)h̄, easily enables us to construct groups
of rather simple explicit and implicit difference schemes. Consider it on the
example of schemes with O(τ2,∆2) and O(τ2,∆4) approximation.

A simple way to realize the three-layered explicit scheme with O(τ2,∆2)
approximation is given by

h̄n+1
i − h̄n−1

i

2τ
=

α

2∆
(
h̄n

i

)2 (
h̄n

i+1 − h̄n
i−1

)
+
β

∆2

(
h̄n

i+1 − 2h̄n
i + h̄n

i−1

)
. (2.245)

The explicit scheme with O(τ2,∆4) approximation can be written as

h̄n+1
i − h̄n−1

i

2τ
=

α

12∆
(
h̄n

i

)2 (
h̄n

i+2 − 8h̄n
i+1 + 8h̄n

i−1 − h̄n
i−2

)
− β

12∆2

(
h̄n

i+2 − 16h̄n
i+1 + 30h̄n

i − 16h̄n
i−1 + h̄n

i−2

)
. (2.246)

Here, α = −3s|p|2, β = iε, and p = 1 + ie. The conditions of stability
for (2.245) and (2.246) can be easily found using the Fourier method (see,
for example, Sect. 1.3.1) [178], and for sufficiently small steps we obtain,
respectively,

τ ≤ ∆2
∣∣2ε− αv2∆

∣∣−1 ≈ ∆2

2 |ε| (2.247)

and

τ ≤ 3∆2
∣∣7ε− 4αv2∆

∣∣−1 ≈ 3∆2

7 |ε| , (2.248)

where v = max
i,n

∣∣h̄n
i

∣∣.
16 For some results see Sect. 2.4.5.
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Consider now two relatively simple implicit schemes for the DNLS equa-
tion written in the form of (2.241). The implicit scheme with O(τ2,∆2) ap-
proximation can be written as

h̄n+1
i − h̄n

i

τ
=

α

4∆

[(
h̄n+1

i

)2 (
h̄n

i+1 − h̄n
i−1

)
+
(
h̄n

i

)2 (
h̄n+1

i+1 − h̄n+1
i−1

)]
+

β

2∆2

(
h̄n+1

i+1 − 2h̄n+1
i + h̄n+1

i−1 + h̄n
i+1 − 2h̄n

i + h̄n
i−1

)
. (2.249)

This scheme can be solved by use of various versions of the sweep method,
e.g., according to the algorithms of the monotonous or non-monotonous sweep
method [97]. Thus we obtain from (2.249) the set of algebraic equations

− a1
i h̄

n+1
i−1 + a2

i h̄
n+1
i − a3

i h̄
n+1
i+1 = fi, i = 1, 2, . . . , N, (2.250)

where

a1
i =

α

4∆
(
h̄n

i

)2 − β

2∆2
,

a2
i =

1
τ
− α

4∆
[
h̄n

i

(
h̄n

i+1 − h̄n
i−1

)]
+

β

∆2
,

a3
i = − α

4∆
(
h̄n

i

)2 − β

2∆2
,

and
fi =

1
τ

+
β

2∆2

(
h̄n

i+1 − 2h̄n
i + h̄n

i−1

)
.

For i = 1 and i = N we can choose the zeroth boundary conditions (in
the case of sufficiently rapid decrease of the solution |h̄| → 0 for |x| → ∞) or,
taking into account the oscillating character of the function h̄ in the majority
of cases, the periodic boundary conditions. In either case, we have a three-
diagonal matrix, and we can write (2.250) in the matrix form A · h = f ,
where

A =

∥∥∥∥∥∥∥∥∥∥

a1
1 a2

1 0 0 . . . 0 0
a1
2 a2

2 a3
2 0 . . . 0 0

0 a2
3 a3

3 a4
3 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . an−1

n an
n

∥∥∥∥∥∥∥∥∥∥
, (2.251)

h =

∥∥∥∥∥∥∥∥
h1

h2

. . .
hn

∥∥∥∥∥∥∥∥
, and f =

∥∥∥∥∥∥∥∥
f1
f2
. . .
fn

∥∥∥∥∥∥∥∥
.

The values h̄i can be found, for example, with the help of the sweep equations
[97]:
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δ1 = κ1, γ1 = µ1, δi+1 =
a3

i

a2
i − a1

i δi
, γi+1 =

fi + a1
i γi

a2
i − a1

i δi
,

i = 1, 2, . . . , N − 1, (2.252)

h̄N =
µ2 + κ2γn

1 − δnκ2
, h̄i = δi+1h̄i+1 + γi+1, i = N − 1, N − 2, . . . , 1,

where κ1,2 and µ1,2 are determined from equations h̄1 = κ1h̄2 +µ1 and h̄N =
κ2h̄N−1 +µ2, respectively, taking also into account the boundary conditions.
For example, for the zeroth boundary conditions we have κ1 = a3

1/a
2
1, µ1 =

f1/a
2
1, κ2 = a1

N/a
2
N , and µ2 = fN/a

2
N .

Note, that (2.249) is correct when the matrix A is not degenerate, i.e.,
detA �= 0. Note also, that expressions (2.252) can be used only if the condi-
tions ∣∣a2

i

∣∣ ≥ ∣∣a1
i

∣∣+ ∣∣a3
i

∣∣ , i = 1, 2, . . . , N − 1,
|κ1,2| ≤ 1, and |κ1| + |κ2| < 2,

are satisfied. The latter (almost) always takes place for a sufficiently small
step ∆, and gives the condition

τ ≤ 4∆
∣∣∣√3αv2

∣∣∣−1

.

As demonstrated by subsequent numerical experiments, this condition is suf-
ficiently exact.

For a more accurate, implicit scheme with O(τ2, ∆4) approximation, we
can use the difference scheme given by

h̄n+1
i − h̄n

i

τ
=

α

24∆

[(
h̄n+1

i

)2 (
h̄n

i+2 − 8h̄n
i+1 + 8h̄n

i−1 − h̄n
i−2

)
+
(
h̄n

i

)2 (
h̄n+1

i+2 − 8h̄n+1
i+1 + 8h̄n+1

i−1 − h̄n+1
i−2

)]
− β

24∆2

(
h̄n+1

i+2 − 16h̄n+1
i+1 + 30h̄n+1

i − 16h̄n+1
i−1 + h̄n+1

i−2

+h̄n
i+2 − 16h̄n

i+1 + 30h̄n
i − 16h̄n

i−1 + h̄n
i−2

)
. (2.253)

This scheme can also be solved by using various versions of the sweep method,
such as those considered in Sect. 1.3.2.

To conclude this subsection, we note, that numerical simulations using
the explicit and implicit difference schemes with the representation h = ph̄
need considerably fewer computer resources than simulations using directly
the difference schemes approximating the DNLS equation in standard forms
(2.214) and (2.216). This is related, first of all, to the real character of the
function h̄, unlike the function h in these equations. This advantage is espe-
cially important for multidimensional cases considered in Chap. 4.
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2.4.5 Results of Numerical Simulations

To test the accuracy of the above schemes as well as their time expenses, we
used the exact analytical solution of the DNLS equation [37]

h(t, x) = (A/2)1/2
(
e−Ax + ieAx

)
e−iA2t cosh−2(2Ax). (2.254)

as the initial condition. We calculated the relative deviation of the mean of
the numerical solution from the exact one at every time step:

δ =
∣∣∣|hnum

τ |2 − ∣∣hexact
τ

∣∣2∣∣∣/∣∣hexact
τ

∣∣2 .
The test was done for the equation’s coefficients s = −1, ε = 1, and s =
1, ε = −1. Some results of the numerical test are presented in Figs. 2.14,
2.15 and Table 2.2. We can see that in both cases, the relative deviation

|h|

x0 10-10

x5x5

Fig. 2.14. Comparison of
the numerical solution of the
DNLS equation obtained us-
ing scheme (2.249) (black
bold line) with the exact ana-
lytical solution (grey line) for
s = −1 and ε = 1 at t ≈ 54

|h|

x0 10-10

x5
Fig. 2.15. Comparison of
the numerical solution of the
DNLS equation obtained us-
ing scheme (2.249) (black
bold line) with the exact ana-
lytical solution (grey line) for
s = 1 and ε = −1 at t ≈ 54

at quite late time for ∆ = 0.1 does not exceed δ ∼ 0.01 for the schemes
with the approximation O(τ2, ∆2), and δ ∼ 0.0005 for the schemes with
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Fig. 2.16. Evolution of the solitary pulse (2.255) with s = −1 and v = 0.5. a
γ = π/4, χ2 = 0.1768. b γ = π/8, χ2 = 0.1353

the approximation O(τ2,∆4). For schemes (2.240) and (2.242) realizing the
spectral approach, the deviations are approximately equal and consist of δ ∼
0.01. The schemes (2.246) and (2.253) with the approximation O(τ2,∆4)
provide the best accuracy characteristics, while the accuracy of the solution
using the spectral method (2.242) is a little bit lower, this is stipulated by an
error arising because of the Gibbs oscillations due to the limited integration
region in the numerical simulation.

Table 2.2. Some testing results at t ≈ 54 for the schemes with δ = 0.1

Scheme (2.242) (2.245) (2.246) (2.249) (2.253)

τ 0.01 0.005 0.00125 0.01 0.01

δ 9.8 × 10−3 9.7 × 10−3 4.9 × 10−4 9.1 × 10−3 3.8 × 10−4

To study the evolution of the Alfvén soliton, we used the difference
schemes (2.242) and (2.253). As in Ref. [176], we employed the initial condi-
tions of two types:

1. The solitary pulse looking like the one-soliton solution of the DNLS equa-
tion

h(0, x) = u exp(iϕ), (2.255)

u2 =
8χ2 sin2 γ

cosh(4χ2 sin γx) + cos γ
, ϕ = −2sχ2 cos γx− 3s

4

x∫
−∞

u2dx,

where 0 < γ < π, corresponding to the soliton with the velocity v =
−4sχ2 cos γ;
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Fig. 2.17. Evolution of the solitary pulse (2.256) with A0 = 0.6 and l = 14. a
s = 1, λ = 5. b s = −1, λ = −5

2. The modulated plane wave

h(0, x) = A0 exp
(

2πix
λ

)
exp

(
−x

2

l2

)
, (2.256)

where λ is the wavelength, A0 is the amplitude, and l is the modulation
length of the Gaussian wave packet.

In the basic series of numerical simulations, the periodic boundary con-
ditions were chosen, and in a number of cases we used the zeroth boundary
conditions. Figures 2.16 and 2.17 present some examples of the results of
our numerical simulation for various17 signs of the coefficients of the DNLS
equation (2.241) with ε = 1. We can see that in the case of a solitary wave
looking like the one-soliton solution of the DNLS equation, the Alfvén soliton
conserves its shape and momentum for different values of the amplitude. In
the case of the initial plane modulated wave, we observe the broadening of
the wave packet and increasing of the steepness of its profile together with the
decreasing amplitude in the time evolution of the wave. The results obtained
in our numerical experiments are similar to the results obtained in Ref. [176];
they allow us to study the structure and dynamics of the one-dimensional
Alfvén waves with various polarization, and the developed numerical meth-
ods can form the basis for next generations of numerical codes for simulation
of more complex three-dimensional systems taking into account higher order
effects taking place in a magnetized plasma (see Chap. 4).

17 The same as in Ref. [176].



3. Classic Two- and Three-Dimensional KP
Models and Their Applications

3.1 (1+2)- and (1+3)-Dimensional KP Equation

In this section we discuss generalization of the KdV equation on a weakly
non-one-dimensional case when the Kadomtsev–Petviashvili (KP) equation
appears (Sect. 3.1.1). Furthermore, we consider various classes of solutions
of the KP equation and investigate the problem of their stability in more
detail in Sects. 3.1.2 and 3.1.3. Finally, we present some effective methods
of numerical integration of the KP equation (Sect. 3.1.4) used in particular
for study of the wave self-focusing phenomenon and the wave collapse in the
classic KP model.

3.1.1 Generalization of the KdV Equation on Weakly
Non-One-Dimensional Case

As we already know from Chap. 1, a wide class of one-dimensional nonlinear
waves in weakly dispersive media (e.g., surface waves in shallow water, ion-
acoustic waves and magnetosonic waves in a plasma) is described by the KdV
equation

∂tu+ 6u∂xu+ ∂3
xu = 0. (3.1)

This equation can be used with equal success for media with the negative
dispersion (when the phase velocity of linear waves decrease with the increase
of the wave number) as well as for media with the positive dispersion; the
only difference is in the direction of the x-coordinate.

It is known that an important role in the evolution of an arbitrary initial
disturbance is played by special solutions of (3.1) of the soliton type, namely

u(t, x) = af
[√
a (x− x0)

]
, (3.2)

where a is the amplitude of the wave, x0 = at is its phase, and f(ξ) =
3(cosh ξ/2)−2. The soliton solution (3.2) of (3.1) is stable in the one-dimensio-
nal case. However, there is a problem: whether the stability of the soliton is
conserved with respect to a feeble bending, when its amplitude a and phase
x0 become slowly varying functions of the y-coordinate, perpendicular to
the direction of the soliton’s propagation. This problem was first solved by
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Kadomtsev and Petviashvili in 1970 [16], and the obtained equation was
called the Kadomtsev–Petviashvili equation (KP equation).

When the strict one-dimensionality of the problem is broken, the KdV
equation is distorted, and if the dependence of all functions on the y-
coordinate is slow, this can be taken into account in the derivation of the
basic equation from the full set of hydrodynamics equations. Let us demon-
strate how to do that using the approach of Sect. 1.1.1. First, return to the
three-dimensional nonlinear evolution Boussinesq equations (1.7):1

∂tv + (v∇)v +
c2

ρ
∇ρ+

2c0β
ρ0

∇∆ρ = 0,

∂tρ+ ∇ (ρv) = 0. (3.3)

As in Sect. 1.1.1, assume that v/c0, (ρ− ρ0)/ρ0, and δ/λ are small values of
the first order and suppose (as in the standard hydrodynamics) that

c2(ρ) = c20 (ρ/ρ0)
γ−1

, γ = cp/cv

(see Sect. 1.1.1). Now, we look for the solution of (3.3) in the form of [83],

ρ(t, x, ψ′) = ρ(v) + ϕ(t, x) − ψ′(t, y), (3.4)

where
ρ(v) = ±c(v)dvρ,
c(v) = c0 + (γ − 1)v/2, (3.5)

ϕ is a small value of the second order, ψ′(t, y) is a small perturbation on the
transverse coordinate, and the dependence of v on y is slow. Considering a
wave propagating in the positive x-direction and, as in Sect. 1.1.1, ignoring
the terms smaller than the second order, we can see that ϕ(t, x) satisfies the
equation ∂tϕ+c0∂xϕ = 0. In this case, substituting (3.4) into (3.3) and using
(3.5), and excluding the potential ϕ from the obtained expressions, we obtain
instead of (1.10) the equation

∂tv +
(
c0 +

γ + 1
2

v

)
∂xv + β∂3

xv =
c20
ρ0
∂yψ

′. (3.6)

Introducing now the new variables

ξ = x− c0t, u =
γ + 1

2
v, and ψ =

c20
ρ0
ψ′,

we can write (3.6) as

∂tu+ u∂ξu+ β∂3
ξu = ∂yψ, (3.7)

1 Recall that these equations are valid for waves in shallow water as well as for
waves in a plasma and other weakly dispersive nonlinear media.
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where the term ∂yψ describes the small (transverse) perturbation of the KdV
equation. Its form, as was shown in [16], is determined by the equality

∂xψ = ∓ (c0/2) ∂yu,

where the upper sign corresponds to the negative dispersion and the lower
sign corresponds to the positive dispersion. Finally, we obtain that gen-
eralization of the KdV equation on the weakly non-one-dimensional (two-
dimensional) case is given by

∂tu+ u∂ξu+ β∂3
ξu = ∓c0

2

ξ∫
−∞

∂2
yudξ. (3.8)

For further convenience we proceed with the scale transform and rewrite (3.8)
in the standard form as

∂tu+ 6u∂xu+ β∂3
xu = 3σ2

x∫
−∞

∂2
yudx, (3.9)

where σ2 = 1 corresponds to the positive, and σ2 = −1 corresponds to the
negative dispersion (i.e., respectively, to the increase and the decrease of the
phase velocity of the linear waves with the increase of the wave number).
Equation (3.9) can be also written in the differential form as

∂x

(
∂tu+ 6u∂xu+ β∂3

xu
)

= 3σ2∂2
yu, (3.10)

which is sometimes more convenient for a particular consideration.
Equations (3.9) and (3.10) represent the two-dimensional (strictly speak-

ing, as it is often used, (1+2)-dimensional, meaning that there are one time
and two space coordinates) Kadomtsev–Petviashvili equation (KP equation)
in the integro-differential and differential forms, respectively. Note that the
KP equations (3.9), (3.10) are written in the reference frame moving along
the x-axis with the velocity c0. Similar to the one-dimensional case described
by the KdV equation, for the waves in shallow water, in a plasma and in a
neutral gas, the function u stands for the disturbance of the velocity or the
pressure (note that in a simple wave the latter are uniquely related to each
other). The physical sense of the parameters ρ, β, and c0 depends on the
particular class of the studied phenomena (for example, on the type of the
medium), and will be further explained in the corresponding sections.

The two-dimensional KP equations (3.9) and (3.10) can be easily general-
ized to the three-dimensional case. For this purpose it is necessary to consider
the function ψ′(t, y, z) defining the slow dependence of v on the variables y
and z in (3.4). Thus the KP equation (3.9) in this case is given by

∂tu+ 6u∂xu+ β∂3
xu = 3σ2

x∫
−∞

∆⊥udx, (3.11)
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and (3.10) can be written as

∂x

(
∂tu+ 6u∂xu+ β∂3

xu
)

= 3σ2∆⊥u, (3.12)

where ∆⊥ = ∂2
y + ∂2

z . Below we mostly consider the KP equation in the form
of (3.9) unless another form is specifically stated.

3.1.2 The KP Equation and its Solutions

The KP equation represents a completely integrable Hamiltonian system
[20,24]. The latter is proved, for example, by the possibility to write it in
the Lax representation [29,30] as

∂tL̂ =
[
L̂, Â

]
,

where the differential operators are given by [24]

L̂ = σ∂y − M̂ and Â = 4∂3
x + 6u∂x + 3∂xu− 3σw, (3.13)

where M̂ = ∂2
x + u and ∂xw = ∂yu (note that for σ = 1 the L̂ operator is

the thermal conductivity operator while for σ = i it is the non-stationary
Schrödinger operator).

The universality of the KP equation can be seen from the following deriva-
tion. Consider the dispersion law in a medium with the weak dependence of
its “sound” velocity2 on the wave number

ω2 = k2 + εk4, εk2 � 1. (3.14)

In the two-dimensional case k = (kx, ky); if, furthermore, ky � kx, we can
write [24]

ω2 − k2
x = (ω − kx)(ω + kx) = εk4

x + k2
y.

In the moving reference frame (ω = kx + Ω, where Ω � kx) we obtain
2kxΩ ∼= εk4

x + k2
y, i.e., the relation coinciding (with the accuracy up to a

simple change of variables) with the Fourier transform of the linear part of
(3.9) with ε = −1/(3σ2).

Due to the full integrability of the KP equation (as in the case of the KdV
equation, having similar universality) we can to construct an infinite series
of the conservation laws. The first three integrals obtained with the help of
the Lax representation [24] from the solution of the spectral problem for the
Schrödinger operator associated with KP equation (see Sect. 3.2) are given
by

∂tJ1 = ∂t

∫∫
udxdy = 0,

2 See Sect. 1.1.1.
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∂tJ2 = ∂t

∫∫
u2dxdy = 0,

and

∂tJ3 = ∂t

∫∫ [
1
2
(∂xu)2 − 3

2
σ2

(∫ x

−∞
∂yudx

)2

− u3

]
dxdy = 0.

The last two integrals correspond to the conservation of the momentum and
energy, respectively, in the system described by the KP equation. We can see
that for σ = 0 (i.e., the right hand side of the KP equation is equal to zero)
these integrals (accounting for the proper scale transforms) convert to the
usual integrals of the KdV equation (1.16).

The KP equation has a wide class of exact solutions including the soliton
solutions, as well as solutions in the form of cnoidal waves. An analytical
solution of the Cauchy problem for the KP equation requires the setting and
the subsequent solution of the direct and the inverse scattering problems for
the Schrödinger equation with the potential satisfying the KP equation; this
is quite a difficult and cumbersome procedure. We consider this procedure in
detail below in Sect. 3.2.1 while presenting here only some basic results.

It is known that unlike the KdV equation where the form of the soliton
solution does not depend on the sign of the dispersion term (the change
of the dispersion sign to the opposite is merely equivalent to the change
x→ −x and u→ −u in the original equation, see Sect. 1.1), the form of the
soliton solution of the KP equation is directly determined by the dispersion
sign. It was established in 1970 by Kadomtsev and Petviashvili using the
Krylov–Bogolyubov method [16] that in the case of the negative dispersion
(corresponding to σ2 = −1 in (3.9) with β > 0), the one-dimensional soliton
is stable with respect to the perpendicular infinitesimal perturbations, i.e.,
“bending” of the soliton in the transverse direction results in its “elastic”
decremental oscillation (see Fig. 3.1). This is related to the fact that for
σ2 = −1 the perturbations can be easily transferred from the soliton to the
medium and then spread around in all directions.

In the opposite case, the soliton is unstable with respect to its bending,
i.e., for σ2 = 1 the small perturbations cannot be transferred from the soliton
to the medium and therefore they exponentially grow in time, ∼ exp(γt),
leading to the increase of the soliton’s amplitude. The instability rate is quite
large, γ ∼ √

a. In the region of the localization of the perturbations, the
soliton’s velocity differs from that of an unperturbed soliton, leading to even
further increase of the amplitude of the perturbation. Thus the KP equation
with the positive dispersion does not have stable one-dimensional soliton
solutions.

Analytically, the one-dimensional soliton of the KP equation is described
by expression (3.2), which is valid in the case when the soliton propagates
along the x-axis. A more general expression for the one-dimensional KP soli-
tons propagating obliquely with respect to the x-axis as well as their colli-
sions, can be obtained analytically using the dressing method. Section 3.2.1
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Fig. 3.1. Evolution of the one-dimensional KP soliton in the presence of transverse
perturbation

is specifically devoted to the study of this method and its application to the
integration of KP equation.

In 1976, Petviashvili demonstrated numerically (by using the method of
stabilizing factor, see the next section) [31] that in the case of positive disper-
sion the KP equation has a stable solution in the form of a two-dimensional
soliton with the algebraic asymptotics, i.e.,

u ∼ (
x2 + y2

)−1

when |x, y| → ∞. The soliton in the general form as isolines u(x, y) =const
for t = T is shown in Fig. 3.2. The cross-sections of such a two-dimensional
soliton along the x- and y-axes are presented in Fig. 3.3. The dressing method

x

y

0

0

v

Fig. 3.2. The two-dimensional KP
soliton: isolines u(x, y) =const

for the analytical integration of the (1+2)-dimensional KP equation (3.10)
with σ2 = 1 demonstrates that the two-dimensional KP soliton with the
algebraic asymptotics is described by

u(t, x, y) = 2∂2
x ln detB, (3.15)
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x(y)

u(x,y)

y=0

x=0

Fig. 3.3. Cross-sections of the two-
dimensional KP soliton along the x-
and y-axes

where
detB = 4 (ν + ν∗)−2 +

∣∣x− iνy − ξ − 3ν2t
∣∣2 .

Such a two-dimensional soliton has the following parameters [83]:

– Velocity v = (vx, vy), with vx = 3|ν|2 and vy = −6Imν
– Amplitude umax = (ν + ν∗)2, umin = −umax/8
– Coordinates of its center at the moment t = 0: xc = Reξ − ImξImν,
yc = −ReνImξ

– Orientation (the inclination angle of the big semi-axis to the x-axis) α =
arctan(−Reν/Imν)

– Small and big “axes” of the line u = 0 (for α = π/2): ls = (2|α|/π)1/2,
lb = 2ls

– “Eccentricity” ε = ls/lb = |α|/π
The soliton (3.15) is stable in the case of positive dispersion. The stability
problem for two-dimensional solitons is discussed in detail below (see Sect.
3.1.3) together with the stability problem of three-dimensional solutions of
the (1+3)-dimensional KP equation. When developing an analytical approach
to integration of the KP equation (Sect. 3.2.1), we will see that the “dressing”
method enables us to obtain not only the one-soliton solution but also the N -
soliton solutions; the latter describe collisions of N two-dimensional solitons
of the KP equation.

Besides the considered class of exact solutions (solitons), the KP equation
allows solutions in the form of stationary periodic cnoidal waves [24,182] given
by

u (x− c0t) =
1
6
c0 − 2℘ (x− c0t+ iω′ |ω, ω′) , (3.16)

where ℘ (z|ω, ω′) is the elliptic Weierstrass function with the real (2ω) and
imaginary (2iω) periods (℘(x+ iω′) is real and limited for real x).

The transverse modulational perturbations on the background of the pe-
riodic waves (within the framework of KP equation) were first considered
in [183,184] where the dispersion relation (cubic in the wave frequency) was
obtained; it was shown that in the low-frequency limit the cnoidal waves are
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stable/unstable for the same cases when the solitons are stable/unstable.3

In these papers, the perturbation theory (i.e., direct expansion in a series
of quasi-momenta and transverse wave numbers) was used. However, for the
nonlinear equations admitting the commutative Lax representation (in par-
ticular, for KdV and KP equations), the IST method [24] enables us to ad-
vance significantly in the study of stability of the exact periodic solutions
with respect to arbitrary small perturbations [186]. Reference [182] gives a
detailed analysis of the stability of cnoidal waves in the KP model. Thus for
the case of the negative dispersion, the stability of these (long-wavelength)
waves (as well as oscillations with arbitrary quasi-momenta and wave num-
bers) is strictly proved. For a medium with positive dispersion, when σ2 > 0
in the KP equations (3.9)–(3.12), it was shown that for the transverse wave
numbers k < kcr, an instability of cnoidal waves takes place. The threshold
is given by

|σ|2 (k/q)2cr = ν2
(
s′2/λ

)2
,

such that above the threshold the solutions are unstable for s′2 � 1, when
the real period of the wave (i.e., the distance between two soliton maxima),
2ω, significantly exceeds the imaginary period, 2ω′, corresponding to the
characteristic scale of the solution change near the solitons’ maxima, and
showing that the solitons are not overlapped. Here, q is the (small) quasi-
momentum, ν2 = ℘ (ω) − ℘ (iω′), s′2 = 1 − s2 is the modulus of the elliptic
Jacobi functions, and λ = E(s)/K(s) is the ratio of the full elliptic integrals
of the first and the second kind [187].

Note that the cnoidal wave (3.16) can be represented as a sum of the
one-dimensional soliton solutions [182]:

℘ (x+ iω′) = C −
( π

2ω′
)2∑

n

cosh−2
[ π

2ω′ (x− 2nω)
]
. (3.17)

Generally, if a stationary wave is expressed via the set of elliptic functions
U(x, h), where h is the real period which can take any values, the problem
of wave decomposition into solitons is easily solved with the assumption that
the wave velocity remains finite for h→ ∞ [188].

Reference [188] provides numerous examples demonstrating that one-
dimensional stationary solutions of a number of nonlinear equations can be
expressed as similar-type linear combinations of solitons of equal amplitude.
For the KP equation, this helps us find stationary solutions of a new kind.
Thus a superposition of a sequence of two-dimensional KP solitons of equal
amplitudes shifted from each other can also result in the formation of a sta-
tionary wave but in this case, in contrast to the solutions of (3.16) and (3.17),
the dynamics and the cross-sectional structure of the resultant wave change.
The KP equation given by

∂x

(
∂tu+ 2u∂xu+ ∂3

xu
)

= σ2∂2
yu (3.18)

3 These results were later confirmed in Ref. [185].
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has the rational soliton [188]

u0 (x, y, t) = e
(
x− c0xt, y − c0yt

)
,

e (x, y) = −6
[(
x− x0

0

)−2
+
(
x− x∗00

)−2
]
,

where x0
0 = λy+ir0, r0 = (α2y2/µ2 +3/α2)1/2, c0x = λ2µ2 +α2, cy = 2λµ2, α

and λ are the arbitrary real numbers, and ∗ stands for the complex conjugate.
The stationary periodic (in x) solution can then be constructed from the
rational solitons as

u (t, x, y) = U (x− cxt, y − cyt) , (3.19)

where

U (x, y) = −6
∞∑

n=−∞

[
(x− x0 − nh)−2 + (x− x∗0 − nh)−2

]
,

x0 = λy + ir, r = (h/2) ln(a cosh δy +
√
a2 cosh2 δy − 1), a =

√
1 + 3γ2/α2,

δ = γα/µ, cx = c0x − γ2, and γ = 2π/h. After summation we obtain

U (x, y) = 6γ
∂

∂x

[
sin γ (x− λy)

a cosh δy − cos γ (x− λy)

]
. (3.20)

Equation (3.20) shows that the stationary periodic waves of the KP equa-
tion formed by superposition of the rational solitons exponentially decrease
(i.e. much faster than each of the constituting solitons) in the perpendicu-
lar direction. In Refs. [24,188], more general classes of exact solutions of the
KP equation were studied, but expressions of type (3.20) were not obtained.
Note, that if we assign pure imaginary values to the parameters α and γ
in (3.20), new sets of real stationary solutions of the KP equation can be
obtained. Thus the change x→ x+ π/γ, α→ iα, and γ → iγ gives [188]

U (x, y) = 6γ
∂

∂x

[
sinh γ (x− λy)

a cosh δy + cosh γ (x− λy)

]
. (3.21)

This soliton decreases exponentially in all directions. The analogous soliton
exists for σ2 < 0 (negative dispersion). In the latter case, it is only necessary
to change x and λ, and to keep α real. In addition, to conserve the real
character of the function describing the soliton, it is necessary to satisfy the
condition |γ|√3 < |α|.

If δ is purely imaginary in (3.21) then the real wave, periodic in the y-
direction and exponentially decreasing along the x-axis, can be obtained.
The constructed regular solutions can be transformed into the real singular
ones by shifting the coordinates x and/or y to the corresponding imaginary
values. The above reasons thus enable us to generalize the considered classes
of the exact solutions of the KP equation. Now, we proceed to the problem
of stability of multidimensional soliton solutions of the KP equation.
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3.1.3 Stability of Two- and Three-Dimensional KP Solitons

In the previous section we explained qualitatively the stability of the one-
dimensional soliton solutions of the KP equation and presented some con-
siderations on the stability of two-dimensional KP solitons. Note that while
the stability problem of the one-dimensional soliton can be solved relatively
easy, the problem of stability of the two-dimensional and three-dimensional
solutions of the KP equation is far less trivial.

Consider equation (3.11). Taking into account that the KP equation is a
Hamiltonian one,

∂tu = ∂x (δH/δu) , (3.22)

with the Hamiltonian

H =
∫ [

1
2
β (∂xu)

2 +
3
2
σ2 (∇⊥w)2 − u3

]
dr,

and ∂xw = u, we can rewrite it as

δ (H + υPx) = 0, (3.23)

where
Px =

1
2

∫
u2dr

is the projection of the system’s momentum onto the x-axis. This means that
all finite solutions of (3.11) are the fixed points of the Hamiltonian H at the
fixed Px. In this case υ is the Lagrange factor. For further convenience we
use the notations [60]

I1 =
∫

(∂xu)
2 dr, I2 =

∫
(∇⊥w)2 dr, and I3 =

∫
u3dr.

Then the Hamiltonian of KP equation can be written as

H =
1
2
βI1 +

3
2
σ2I2 − I3. (3.24)

Consider now the stability problem. According to the Lyapunov’s theorem,
the absolutely stable stationary points of a dynamic system correspond to
the maximum or the minimum of H, and if the extremum is local then the
locally stable solutions are possible. The unstable states correspond to the
monotonous dependence of H on its variables, i.e. to the case when the sta-
tionary point is the saddle point. Therefore, it is necessary to prove that the
Hamiltonian H is limited from below for a fixed Px.

Consider the simple scale transforms [59,60] (in the real vector space R)

u (x, r⊥) → ζ−1/2η(1−d)/2u (x/ζ, r⊥/η)

conserving Px (d is the space dimensionality, and ζ, η ∈ R), and write the
Hamiltonian as a function of ζ and η
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H (ζ, η) =
β

2ζ2
I1 +

3ζ2

2η2
σ2I2 − ζ−1/2η(1−d)/2I3.

For d = 2, simple analysis shows, that the Hamiltonian H is limited from
below, and with a simple substitution it follows that the minimum of H is
reached on the soliton solution (3.15). In the three-dimensional case, the fo-
cus point changes to the saddle point and the minimum is absent. It is easy
to see that considering lines ζ2 = cη (c =const), where H varies monotoni-
cally, guarantees the absence of the locally stable solutions. The absence of
additional integrals of motion for d = 3 [60] also confirms that the three-
dimensional soliton is unstable.

Note that in the two-dimensional case the considered scale transforms do
not include all possible deformations of the Hamiltonian and only testify if
H is limited. The exact proof of this fact is given in [60] where the inequality
H ≥ −(1/12)P3

x was obtained. According to the Lyapunov’s theorem this
also proves the stability of the two-dimensional soliton with respect to two-
dimensional perturbations. The analysis of the problem of stability of the two-
dimensional soliton with respect to bending of its front (three-dimensional
perturbations), based on the analysis of the KP equation linearized on the
background of solution (3.15) using the perturbation theory [60], shows that
the two-dimensional soliton is unstable in this case (shifting along the x-
axis). Qualitative reasons for the instability are the same here as for the one-
dimensional soliton (see the previous section and Refs. [30,31]). Consideration
of small three-dimensional perturbations corresponding to the shift along the
y-axis demonstrates that in the long-wavelength limit the two-dimensional
solitons are stable, however.

3.1.4 Numerical Approaches to Integration

Despite the availability of the well developed analytical technique for inte-
gration of nonlinear evolution equations by the inverse scattering transform
(IST) method, in a number of cases it fails to obtain solutions (in the closed
form) of KP equation as well as other equations of this class using analytical
techniques. Thus there is an obvious need for use of computational mathe-
matics. This also applies to solution of many practically important problems
related to various applications of the KP model, when the use of unwieldy and
rather complicated technique of the IST method is inexpedient. We note here
that the two-dimensional soliton solutions of the KP equation were obtained
for the first time in 1976 in the numerical simulation [31]. As we demon-
strate below, the wide spectrum of applications of the KP model related to
nonlinear wave processes in quite different media requires numerical simula-
tions. In this section, on the basis of the “classic” KP equation, we briefly
consider two approaches (based on different ideologies) to integration of the
multidimensional nonlinear equations of the KP class.
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Method of Stabilizing Factor. Historically, perhaps the first numerical
method designed and successfully used for solution of the KP equation was
the method of stabilizing factor [31,189]. Essentially, it consists of the follow-
ing. First, the transform

u = af (ξ, η) ,

with
ξ =

√
a (x− at) , η = ay, and a = const > 0,

is applied to the KP equation (3.18). We obtain

∂4
ξf − ∂2

ξf − ∂2
ηf = −∂2

ξ

(
f2
)

(3.25)

(i.e., the time derivative is excluded and the equation is written in the refer-
ence frame fixed relatively to the soliton). Then, we apply the Fourier trans-
form in ξ and η and reduce (3.25) to

F = GA and G(p, q) =
p2

p4 + p2 + q2
, (3.26)

where

F = (2π)−2

∞∫
−∞

∫
f (ξ, η) cos pξ cos qηdξdη

and

A (p, q) =

∞∫
−∞

∫
F (p′, q′)F (p− p′, q − q′) dp′dq′.

When solving (3.26) using the usual iteration method, the resulting iteration
series diverges because of the strong instability. This instability can be sup-
pressed if we introduce a stabilizing factor [31]. Instead of (3.26) it is thus
necessary to solve the equation

F = (s1/s2)
α
GA, α = const > 0, (3.27)

where
s1 =

∫∫
F 2(p, q)dpdq and s2 =

∫∫
GAFdpdq

(note that if F satisfies (3.26) then s1 = s2). Applying the process of itera-
tions to (3.27) (it has the degree of homogeneity 2 − α, unlike (3.26) where
the degree of homogeneity is 2), we obtain a rapidly converging series, at the
same time we have s1 → s2. This means that reduction of the degree of ho-
mogeneity by introduction of the stabilizing factor eliminates the instability
and the solution of (3.27) converges to the solution of (3.26).

The formulated method proved to be a good one in practice, also when
solving more complicated equations, e.g., the set of equations generalizing
(3.25) in the three-dimensional case with an arbitrary nonlinearity
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∂4
ξf −∆f = −∂2

ξ (fn) . (3.28)

For example, equations for the Langmuir waves and the slow extraordinary
modes in a magnetized plasma under the assumption of a stationary wave
packet result in (3.28) with n = 3 [189,190].

Method of Iterative Splitting. Note that the method of stabilizing fac-
tor considered above also has important deficiency: being “static,” it does
not allow to solve dynamic problems, when the main analyzed objects are
parameters of the solitons’ dynamics, collisions, interactions, etc. In this re-
gard, there is a need to develop “dynamic” methods for integration of the KP
equation. Here, however, we face essential difficulties. The diffraction term in
the KP equations (3.9) and (3.11) is non-local, therefore it is hardly possible
to directly apply the known standard methods of numerical solution of mul-
tidimensional equations based on the ideology of splitting [191,192]. Using
the projection methods involving decomposition of spatial harmonics, is also
difficult in the traditional set up. This is because both the group and phase
velocities of the harmonics increase with the increase of the scale in the lon-
gitudinal coordinate λx reaching very large values for large λx, as a result of
the following [193]. For small perturbations δu ∼ exp(−iωt+ ipx− iq · r) the
dispersion law corresponding to the linear part of (3.11) can be written as
p(ω+p3) = −q2σ2. It then follows that the group velocity of the perturbations
vgr

x = ∂ω/∂p ∼ q2/p2 → ∞ for p→ 0 (λx → ∞).
In Ref. [193], the technique of the iterative splitting was proposed for

numerical integration of the KP equation (3.11) written as a set of equations:

∂tu+ 6u∂xu+ ∂3
xu = v,

∂xv = β∆⊥u.
(3.29)

Here, for the difference approximation of (3.29) in time, the implicit Crank–
Nicholson scheme with O(τ2) approximation was applied. To solve the arising
set of equations connecting variables in the different time layers, the following
iteration process is built:

dvn+1,k

dx
= β∆⊥un+1,k,

un+1,k+1 − un

τ
=

1
2

[
un dun+1,k+1

dx
+ un+1,k+1 dun

dx

]
(3.30)

+
1
2

[
d3un+1,k+1

dx3
+

d3un

dx3

]
= vn+1,k,

where n is the number of the time layer, k is the number of the iteration,
and un+1,0 ≡ un. When approximating the spatial derivatives, the scheme
of the high order of accuracy, O(h4

x, h
2
⊥), is used in order to not distort the

dispersion law. The convergence of the iterative process (3.31) and, therefore,
the stability of the difference scheme for the set (3.29) was proved [193]. This
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method appeared as the most effective in the problem of the wave collapse for
(3.11) when σ2 > 0 (see Sect. 3.2.3). A drawback of the method of iterative
splitting that we can mention here, perhaps, is the relatively large time cost
at its computer realization.

Concluding Remarks. Some methods for solution of the Cauchy problem
for the class of equations such as

∂tu+ αu∂xu+ β∂3
xu = R (3.31)

were proposed in Refs. [83,98] (here, R = R[u] is some linear functional
of u). This class of equations describes the propagation of multidimensional
nonlinear waves in a medium with weak dispersion and nonlinearity. We can
see that for R = σ2∂yw, ∂xw = ∂yu, and R = σ2∆⊥w, ∂xw = u, equation
(3.31) is transformed into KP equations (3.9) and (3.11), respectively. The
corresponding algorithms and numerical (simulation) codes are based on the
explicit and implicit finite-difference schemes with O(τ2, h2

r) and O(τ2, h4
r)

approximations, as well as on the dynamic spectral method. Below, in Chap.
4, we consider them in detail for KP-class equations with arbitrary constants
α, β, and σ at the nonlinear, dispersive, and diffraction terms, respectively,
and also discuss their application conditions and compare their characteristics
with the methods considered above.

3.2 KP Equation: Analytical Integration and Dynamics
of Waves

In this section, we consider the method of analytical integration of the KP
equation by “dressing” of L–A pairs on an example of the two-dimensional
KP equation (Sect. 3.2.1), the method of three-dimensional inverse scatter-
ing problem (Sect. 3.2.2), and problems related to the self-influence phenom-
ena, namely, the wave collapse and self-focusing in the three-dimensional KP
model (Sect. 3.2.3).

3.2.1 Analytical Integration. “Dressing” Method

“Dressing” of L–A Pairs. First, let us recall that the KP equation,

∂x

(
∂tu− 6u∂xu− ∂3

xu
)

= 3σ2∂2
yu, (3.32)

can be written, similar to the KdV equation, in the Lax representation [24]

∂tL̂ =
[
L̂, Â

]
= L̂Â − ÂL̂, (3.33)

where L̂ and Â are the differential operators4

4 The notation L̂, Â is introduced in order to distinguish these operators from the
kernels of operators.
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L̂ = σ∂y − M̂, M̂ = −∂2
x − u(t, x, y),

Â = −4∂3
x − 6u∂x − 3∂xu+ 3σw, ∂xw = ∂yu,

(3.34)

and

w =

x∫
−∞

∂yudx.

As we know from the previous section, properties of the solutions of the KP
equation significantly depend on the sign of σ2. Without loss of generality,
we further assume that σ2 = ±1.

When σ = 1, the L̂-operator is the heat conductivity operator, i.e., L̂ =
∂y + ∂2

x + u. On the other hand, when σ = i the L̂-operator is the non-
stationary Schrödinger operator, i.e., L̂ = i∂y + ∂2

x + u. The solution of the
Cauchy problem for equations of type (3.33) requires setting and solving the
direct and the inverse scattering problems for the operator L̂. However, to
construct wide classes of partial solutions one can use the dressing method
developed by Zakharov and Shabat [30], see also in [24]. This method is based
on the ideas that:

– Linear operators with variable coefficients can be obtained with the help of
the transform operators from operators with the constant coefficients (this
in fact is the standard way of solution of the inverse spectral problems –
see, e.g., Sec. 1.2)

– For simultaneous transformation of two such constant operators with a
common spectrum, the condition of combinedness will take the form of
a nonlinear equation on the coefficients, i.e., the required equation to be
integrated.

The procedure of transformation of an equation with constant coefficients
to an equation with variable coefficients can be called “dressing” by using the
language of theoretical physics, and the whole method is therefore called the
dressing method. It is important to note that actual integration of nonlinear
differential equations by the IST method requires development of the tech-
nique of solution of the corresponding inverse spectral problem; however, this
is often quite difficult for many equations (especially multidimensional ones).
A great advantage of the dressing method is the possibility of its relatively
simple extension to multidimensional problems; and it proved to be (par-
tially) successful in eliminating a very unpleasant question of the setting and
solvability of the corresponding inverse spectral problem (i.e., one of the basic
difficulties of multidimensional variants of the IST method, see Sect. 3.2.2).

Consider the method of “dressing” of the L–A pairs in detail. We intro-
duce (on the line −∞ < x <∞) the integral Fredholm operator F̂ depending
on t and y,

F̂Ψ(x) =
∫

F(t, x, y, z)Ψ(z)dz, (3.35)
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and assume that it allows the triangular factorization, i.e., it can be repre-
sented as

1 + F̂ =
(
1 + K̂+

)−1 (
1 + K̂−

)
, (3.36)

where K̂+ and K̂− are the Volterra operators (or the Volterra factors of the
operator F̂)

±K̂±Ψ =

±∞∫
x

K±(t, x, y, z)Ψ(z)dz.

We are interested, among all the operators F̂, in the operators commutating
with the differential operators. Let us introduce the differential operator

L̂0 = σ∂y − M̂0, (3.37)

where
L̂0 = lim

|x|→∞
L̂, M̂0 = lim

|x|→∞
M̂,

L̂ and M̂ are defined by (3.34), and

M̂0 = m0∂
n
x +m1∂

n−1
x + . . .+mn =

n∑
k=0

mk
∂n−k

∂xn−k
. (3.38)

The coefficients mk of the operator M̂0 are, in general, the functions of t, x,
and y. And let the operator F̂ commute with L̂0, i.e.,

F̂L̂0 − L̂0F̂ = 0. (3.39)

Applying this relation to an arbitrary function Ψ(x) and integrating n times
by parts we see that the kernel of the operator F̂ satisfies the differential
equation

σ∂yF = M̂0F − FM̂+
0 , (3.40)

where F is the kernel of the operator F̂ and M̂+
0 is the operator conjugate to

M̂0:

FM̂+
0 =

n∑
k=0

(−1)k+1∂n−k
z Fmk (3.41)

(note that the matrix components are multiplied by F from the right).
It is generally important to also consider operators commutating with L̂0

since the operator L̂ in (3.34) consists of two parts: the differential operator
with the variable coefficients depending on K̂+, and the integral Volterra
(from the right) operator. It is possible to find such K̂+ that the integral part
of L̂ turns to zero, however.

Consider the transformation of L̂0 into L̂ with the help of the operators
1 + K̂+ and 1 + K̂−, where K̂+ and K̂− are the “triangular factors” of the
operator F̂ given by (3.36). We have
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L̂0 → L̂ =
(
1 + K̂+

)
L̂0

(
1 + K̂+

)−1

=
(
1 + K̂−

)
L̂0

(
1 + K̂−

)−1

. (3.42)

It then follows that since the operators 1 + K̂± transform the operator L̂0

to one and the same operator L̂, the last is a purely differential operator
(because it is of Volterra type simultaneously to both sides, i.e., its integral
Volterra components are equal to 0). It has the form (3.38) where M̂, unlike
M̂0 (3.38), is an operator with the variable coefficients of the form

M̂ = m0∂
n
x + u1∂

n−1
x + . . .+ un,

and M̂ → M̂0 when |x| → ∞. Here, u1, . . . , un are the functions of t, x, and
y, expressed via the kernel of the operator K̂+ (or K̂−). Expressions for these
functions can be obtained from (3.42) modified as

L̂
(
1 + K̂−

)
=
(
1 + K̂−

)
L̂0. (3.43)

If we assume that in (3.38) m0,m1 =const, we obtain for u1 and u2 [24]

u1 = [m0, ξ0] +m1

and

u2 = (n− 1)m0dxξ0 +
1
2

[dxξ0,m0] +
1
2

[m0, ξ1]

+u1ξ0 + [m1, ξ0] ,

where
ξi(x, y, t) = (∂x − ∂z)

i K(x, y, z, t) |x=z . (3.44)

The procedure of obtaining the operator L̂ can be called “dressing” of the
operator L̂0 with the help of the integral Fredholm operator F̂.

Assume now that F̂ commutes, in addition to L̂0, also with the operator
∂t − Â0, where Â0 is a differential (with respect to x) operator. Then the
kernel F of the operator F̂, in addition to (3.40), satisfies also the equation

∂tF − Â0F + FÂ0 = 0, (3.45)

and therefore the operators 1+K̂±, besides the operator L̂0, dress the operator
∂t − Â0, transforming it to ∂t − Â.

Now let the operators L̂0 = σ∂y − M̂0 and ∂t − Â0 be connected by the
Lax relation [

L̂0, ∂t − Â0

]
= 0. (3.46)

Then there exists a class of functions Ψ0 for which the set of equations{
L̂0Ψ0 = 0,(
∂t − Â0

)
Ψ0 = 0,
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is a conjugate one. If we apply now relation (3.43) to Ψ0 and the corresponding
relation for the operator ∂t − Â0 we then obtain [24]⎧⎨

⎩
(
σ∂y − M̂

)
Ψ = 0,

(
∂t − Â

)
Ψ = 0,

Ψ =
(
1 + K̂−

)
Ψ0.

(3.47)

This means that the operators M̂ and Â also satisfy the Lax relation (3.46),
and the coefficients of these operators satisfy the considered nonlinear set of
equations (certainly, the coefficients of the operators M̂0 and Â0 also satisfy
them).

Thus, the dressing method enables us to “multiply” the number of solu-
tions by constructing wide classes of new solutions on the basis of the known
ones. For the particular “dressing,” it is necessary to know the kernel of
the operator K̂+. Multiplying equation (3.36) from the right by 1 + K̂+ and
assuming z < x, we come to the generalization of the GLM equation, namely,

K+ + F +

∞∫
x

K+(x, z′, y, t)F(z′, z, y, t)dz′ = 0. (3.48)

Solving this equation for the kernel K+ (taking into account that the kernel
F is defined by the scattering data, i.e., ultimately, by the initial conditions
of the Cauchy problem) and finding K+, we can proceed with dressing of the
operators M̂0 and Â0. Consider now application of the dressing method to
the integration of the KP equation [24].

Analytical Integration. Following [24], we proceed with the dressing of
the trivial solution

u0 = 0 and w0 = 0,

i.e., we “multiply” the trivial solutions by obtaining another (non-trivial)
one. Write the KP equation as the set{

∂tu− 6u∂xu− ∂3
xu− 3σ2∂yw = 0,

∂xw = ∂yu.
(3.49)

First, consider the case of the negative dispersion when σ = 1. Then the
kernel F satisfies the equations [24]{

∂yF + ∂2
xF − ∂2

zF = 0,
∂tF + 4

(
∂3

xF + ∂3
zF
)

= 0.

Choose a solution of these equations in the form

F =
N∑

n=1

cn(t, y) exp(pnx+ qnz),

where
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cn(t, y) = cn(0) exp
[(
q2n − p2

n

)
y − 4

(
p3

n + q3n
)
t
]
,

and pn, qn, cn(0) > 0. Solving the GLM equation (3.48) for the kernel K−(=
K), we obtain the solution of the KP equation given by

u(t, x, y) = −2∂xK (t, x, y, x) . (3.50)

Since the kernel K of (3.48) is degenerate, the solution of this equation can
be easily obtained and written as

K(t, x, y, z) |z=x = −∂x ln detA,

where A is the quadratic N ×N matrix with the elements given by

Anm = δnm + cn(y, t)
exp [(pn + qm)x]

pn + qm
(3.51)

(the Kroneker delta is, as usual, written as δnm = 1 for n = m and δnm = 0
for n �= m). Thus the solution of the KP equation for σ = 1 is

u(t, x, y) = 2∂2
x ln detA. (3.52)

Expressions (3.51) and (3.52) describe the interaction of N one-dimensional
solitons. In particular, for N = 1 we obtain the one-soliton solution:

u =
(p+ q)2

2
cosh−2

{
1
2
[
(p+ q)x+ (q2 − p2)y

− 4(p3 + q3)t+ ln
c(0)
p+ q

]}
. (3.53)

This formula describes the one-dimensional soliton moving at some angle
with respect to the x-axis (for p �= q). A general view of solution (3.53) is
shown in Fig. 3.4. In particular, for p = q we obtain the well-known soliton

u(x,y)

x

y

Fig. 3.4. General view of the
solution of the KP equation
with σ = 1 and p �= q

of the KdV equation moving along the x-axis.
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Solution (3.52) in general describes intersection of (“oblique”) solitons
traveling at different angles with respect to the x-axis; note that this solution
does not decrease asymptotically in the directions

x/y = pn − qn, n = 1, 2, . . . , N,

when |x, y| → ∞.
Consider now the case of the positive dispersion when σ2 < 0 in the KP

equation (3.49). Note that in the KP equation the change of the sign of σ2

is equivalent to continuation of the solutions from the real y to the purely
imaginary ones, i.e., to the change σ2 → −σ2 and y → iy. Following [24], we
obtain explicit solitons for σ2 < 0 by the procedure of special degeneration
of solution (3.52). When degenerating this solution, we use the notations

pn + qn = κn, pn − qn = νn, and cn(0) = −anκn.

Rewrite the matrix (3.51) as

Anm = exp
(
−κn − κm

2
x+

νn − νm

2
x

)
Bnm, (3.54)

where

Bnm = δnm − 2anκn

νn − νm + κn + κm

× exp
{
κn

[
x− νny −

(
3ν2

n + κ2
nt
)]}

. (3.55)

Since (3.54) transforms A to B, this is the similarity transform, and we have
detA = detB. Thus instead of (3.52) we obtain

u(t, x, y) = 2∂2
x ln detB. (3.56)

Furthermore we proceed to the limit κn → 0 and assume

an = 1 − ξnκn +O(κ2).

As a result, we obtain the determinant of the matrix B given by

detB =
∏
n

(−κn) det B̃ +O
(
κN+1

)
,

where, after the change y → iy, the matrix B̃ is

B̃nm = δnm

(
x− iνny − ξn − 3ν2

nt
)

+ 2 (1 − δnm) / (νn − νm) (3.57)

(it should be taken into account that the last term on the right-hand side is
equal to zero for n = m [24]).

Obviously, u(t, x, y) = 2∂2
x ln det B̃ + O(κ) and, if we assume now that

κ = 0, we have [24]
u(t, x, y) = 2∂2

x ln det B̃. (3.58)
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For a certain choice of the parameters ν and ξ, it is possible to secure in
(3.58) both the reality and regularity of the function u for the real values of
its arguments. Generally, solution (3.58) is real and not singular if

N = 2K, νK+n = −ν∗n, ξK+n = ξ∗n, n = 1, . . . ,K, (3.59)

and there are no coinciding numbers in the set of complex numbers ν1, . . . , νK

(these conditions guarantee that the matrix B̃ is positively determined).
Considering the asymptotics of the solution (3.58) with (3.57) and (3.59)

at t→ ±∞ as a function of x0 and y0, where

x = x0 + v(m)
x t and y = y0 + v(n)

y t,

we can see that the corresponding values ξ±n coincide, i.e., ξ+n = ξ−n = ξn.
Thus we note that for the solution (3.58) with (3.57) and (3.59) describing
the collision of K two-dimensional solitons, the phase shifts of the solitons
after the collision are identically zero, in contrast to the well-known effect in
the one-dimensional problem. Each of the colliding two-dimensional solitons
described by the constructed solution is defined by (3.57)–(3.59) for N = 2,
i.e., when ν2 = −ν∗1 , ξ2 = ξ∗1 , and

det B̃ = 4 (ν1 + ν∗1 )−2 +
∣∣x− iν1y − ξ1 − 3ν2

1 t
∣∣2 . (3.60)

Formulae (3.58) and (3.60) give the one-soliton solution. A general view of
such a rational soliton is shown in Fig. 3.5. Thus, by proceeding from a triv-

u(x,y)

x

y
Fig. 3.5. General view of the
solution of the KP equation
with σ = i (two-dimensional
rational soliton)

ial (zero) solution with the technique developed in Ref. [24], we analytically
obtained the one-dimensional and two-dimensional soliton solutions of the
KP equation using the dressing method (“multiplying” or dressing the cor-
responding operators).
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3.2.2 Three-Dimensional Inverse Scattering Problem

The dressing method considered in the previous subsection is a sort of two-
dimensional generalization of the inverse scattering problem for the KdV
equation considered in Sect. 1.2 in detail. Having in mind the possibility of
extension of the IST method for a wider class of multidimensional nonlinear
evolution systems allowing soliton-type solutions important for a number
applications of the nonlinear wave theory in the physics of particular media,
we consider here how the inverse scattering problem can be formulated in the
general three-dimensional case.

Introductory Notes. The three-dimensional stationary theory of non-re-
lativistic scattering deals with the Schrödinger equation

−∆Ψ + V (r)Ψ = EΨ, (3.61)

where∆ is the three-dimensional Laplace operator and Ψ is the wave function.
The properties of the potential are such that the asymptotics of the wave
function is given by

Ψ(k, r) = eik·r + r−1eikrA(r̂,k) +O(r−1). (3.62)

Furthermore, E is the full energy and V (r) is the potential energy. Here and
further we use the following notations:

– The absolute value of any vector v is written as v ≡ |v|,
– The unit vector of its direction is v̂ ≡ v/v,
– In the scattering amplitude k′ ≡ kr̂,
– In a more general case, k′ is the vector of the length k but not necessarily

coinciding with the direction of the vector k.

We assume that the amplitude A(r̂,k) is calculated on the basis of the mea-
sured values. The inverse problem is to obtain the potential V (r) via the
known A(r̂,k).

Since the amplitude A(r̂,k) depends on the five variables (x, y, z, r, k), and
the potential V (r) depends only on the three variables (x, y, z), the problem
of existence of the solution inevitably arises. In other words, the existence of
a local potential corresponding to the initial data is accompanied by strong
limitations on the scattering amplitude A(r̂,k). However, if we proceed from
the scattering amplitude corresponding to some local potential (for example,
A(r̂,k) is obtained as a result of the direct problem and corresponds to the
initial condition of a three-dimensional evolution equation of a “soliton type”)
and want to restore such a local potential, then the problem of the solution’s
existence does not arise.

The problem of uniqueness of the solution can be solved quite easily be-
cause for any “reasonable” potential the scattering amplitude at high energies
should tend to its limit in the Born approximation:
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A ≈ −(4π)−1

∫
dr′V (r′)eiτ ·r′ ,

where τ = k − k′. Since τmax = 2k (which takes place for the anti-parallel
vectors k and k′), the amplitude A approaches the full Fourier image of the
potential V . However, the high-energy limit of the amplitude is unknown,
and, in addition, the Schrödinger equation (3.61) is useless for the actual
description of the particles’ behavior at high energies. It is therefore necessary
to find such a solution of the IST problem which should not be too dependable
on the high-energy data. In the language of nonlinear evolution equations,
this means that we do not consider solutions of these equations with very
high amplitudes, nor do we consider their singular solutions.

If the scattering amplitude unequivocally determines the potential, then
it has to define bound states, i.e., the discrete spectrum of the Schrödinger
operator,

Ĥ = −∆+ V (r).

If the potential satisfies the condition

|V (r)| ≤ C |1 + r|−3−ε
,

we can obtain the discrete spectrum, e.g., via the amplitude of the forward
scattering A(k) ≡ A(k̂,k). The value A(k) appears on the real axis as the
limit of an analytic function, regular in the whole upper half-plane except
for the poles on the imaginary axis k = iKn where −K2

n are the eigenvalues
of the operator Ĥ (compare with the one-dimensional case, Sect. 1.2), and
A(k) tends to a constant when |k| → ∞ (Imk ≥ 0). These properties enable
us to obtain the positions of the poles by knowing the function A on the
real axis and analytically continuing it on the upper half-plane. Thus we
obtain the discrete spectrum. The full scattering amplitude (similar to the
one-dimensional case, Sect. 1.2) is related to the discrete spectrum, and it is
impossible to present them independently. Having in mind these remarks we
can now proceed directly to study of the three-dimensional inverse problem.

Outline of the Method. Studies of the three-dimensional inverse scatter-
ing problem (3-ISP) were first (independently) done by Faddeev (1971) and
Newton (1974, 1980) for the case of a local potential. The general scheme
of the 3-ISP solution can be represented by the diagram shown in Fig. 3.6.
The kernel of the transformation and the symmetric kernel can be obtained
in two different ways:

1. The kernels are investigated as solutions of some hyperbolic partial differ-
ential equations (not the Schrödinger equation).

2. The kernels are obtained from the relations of completeness for the set of
solutions of the Schrödinger equation.

Both these ways are shown in the diagram Fig. 3.6. The second procedure also
answers the questions on the existence and uniqueness of the solution and
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  analytically
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Fig. 3.6. General scheme of the solution of the three-dimensional inverse scattering
problem

about the algorithm to construct the potential V (r). In this case, a general
way of solution is similar to the GLM method studied in Sect. 1.2 for the
one-dimensional problem on the whole axis −∞ ≤ x ≤ ∞. Consider therefore
the second procedure, namely, obtaining the kernel of the transform and the
symmetric kernel from the completeness relations. The procedure can be
divided into three steps according to the corresponding parts of the diagram
Fig. 3.6. Here, we consider these steps on an example of the Gelfand–Levitan–
Marchenko method (GLM method) for the S-wave.5

The “wave function” step
The “wave function” is the solution of the wave equation, this solution is
central in our investigation (see Fig. 3.7). Generally speaking, it is not nec-

kernel of

transform

potential wave eq wave function

connection of kernel

with potential
analytic

properties

Green's function

Fig. 3.7. Scheme of the solu-
tion on the “wave function”
step

essarily a physical wave function (for example, the Jost solutions in the one-
dimensional ISP on the axis −∞ ≤ x ≤ ∞). However, in the GLM method
5 The S-wave means the partial wave with the zeroth angular momentum l = 0.

The choice of S-wave is motivated by considerable simplification of the relations
and clarity of the results obtained.
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the wave function is indeed the physical wave function, with the accuracy up
to its normalization, i.e., it is a solution of the Schrödinger equation

Ĥϕ(k, r) ≡ ∆ϕ(k, r) − V ϕ(k, r) = −k2ϕ(k, r). (3.63)

It is equal to zero at r = 0, and such a choice is equivalent to the choice of
the Green’s function:

ϕ(k, r) = ϕ0(k, r) +

r∫
0

G0(k; r, ρ)V (ρ)ϕ0(k, ρ)dρ, (3.64)

where

ϕ0(k, r) =
sin kr
k

and G0(k; r, ρ) =
sin k(r − ρ)

k
. (3.65)

We can see from relations (3.64) and (3.65) that ϕ(k, r) is the even integer
function of the variable k and in the complex k-plane:

ϕ(k, r) − sin kr
k

= O(
sin kr
k

), |k| → ∞. (3.66)

It follows straightforwardly from these analytical properties that there ex-
ists the triangular kernel K(r, r′) with the following properties (Peli–Winner
theorem):

Theorem.

(1) K(r, r′) does not depend on k;
(2) K(r, r′) = 0 for r′ ≥ r;
(3)

ϕ(k, r) = ϕ0(k, r) +

r∫
0

K(r, r′)ϕ0(k, r′)dr′. (3.67)

Substituting (3.67) into (3.64) we obtain the relation between the potential
V (r) and the kernel of the transformation K, namely,

K(r, r) =
1
2

r∫
0

V (ρ)dρ. (3.68)

The “asymptotics and completeness” step (Fig. 3.8)
The Jost function F (k) can be obtained in two different ways:

1. On the basis of the asymptotic behavior of the function ϕ(k, r) for r → ∞
2ikϕ(k, r) = eikrF (−k) − e−ikrF (k) +O(1) (3.69)
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Fig. 3.8. Scheme of the solu-
tion on the “asymptotics and
completeness” step

2. On the basis of the regular solution of the integral Lippman–Swinger equa-
tion

ψ(k, r) = ϕ0(k, r) +

∞∫
0

g(k, r, ρ)V (ρ)ψ(k, ρ)dρ, (3.70)

where
g(k, r, ρ) = −k−1 exp(ikr>) sin(kr<)

and {
r> = max(r, r′),
r< = min(r, r′).

This gives the formula

ϕ(k, r) = F (k)ψ(k, r), (3.71)

i.e., the function ϕ(k, r) is directly proportional to the solution of the in-
tegral Fredholm equation (3.70), with the factor being the Jost function
F (k). Moreover, one can prove that F (k) is the Fredholm determinant of
(3.70). It then follows that the zeros of the function F (k) in the upper
half-plane are exactly at the same values k = iKn where the wave −K2

n is
the eigenvalue of the operator Ĥ, and the multiplicity of every zero is the
degeneration degree of the corresponding eigenvalue.

It is possible to prove that the completeness relation of the functions
Ψ(k, r), defined above as solutions of the integral Fredholm equation, together
with the eigenfunctions of the operator Ĥ, is fulfilled, namely,

2
π

∞∫
0

ψ(k, r)ψ∗(k, r′)k2dk +
∑

n

ψ(n)(r)ψ(n)(r′)

= δ (r − r′) , (3.72)

where Ψ (n)(r) is the n-th normalized eigenfunction of the Schrödinger oper-
ator Ĥ ∞∫

0

∣∣∣ψ(n)(r)
∣∣∣2 dr = 1. (3.73)
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We can write on the basis of these relations and equality (3.71) the complete-
ness relation expressed via the wave function (the solution of the Schrödinger
equation) ϕ as the Stieltjes integral:∫

ϕ(k, r)ϕ(k, r′)dρ(E) = δ (r − r′) , (3.74)

where ρ(E) is the spectral function defined by

dρ
dE

=
k

π
|F (k)|−2, E ≥ 0,

and

dρ
dE

=
∑

n

⎡
⎣ ∞∫

0

ϕ2(iKn, r)dr

⎤
⎦
−1

δ(E − En), E < 0.

Certainly, there is similar completeness relation for the function ϕ0 included
in (3.64) and (3.70) together with the spectral function ρ0, where dρ0/dE = 0
for E < 0 and dρ0/dE = kπ for E ≥ 0.

The “integral equation” step (Fig. 3.9)

symmetric kernel

integral equation

kernel of transform

completeness

     relations

Fig. 3.9. Scheme of the so-
lution on the “integral equa-
tion” step

1. First, we note the following. Let C
∗ be the linear space containing all

continuous functions on the set R
+ as well as all δ-functions in all points

of the set R. For the linear operator T̂ transforming C
∗ to C

∗, we define
the conjugated operator T̂∗ by the equality∫

T̂a(ρ)b(ρ)dρ =
∫
a(ρ)T̂∗b(ρ)dρ, (3.75)

where the overline means the value of the corresponding function for ρ′ �= ρ.
Let this be true for every combination of a and b from the space C

∗ × C
∗

for which one of the sides of (3.75) holds true.
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If Û is the operator of the form

Û = δ (r − ρ) + K(r, ρ)Θ (r − ρ)Θ (ρ) ,

then the conjugated operator is given by

Û∗ = δ (r − ρ) + K∗(r, ρ)Θ (ρ− r)Θ (r) .

Here,
K∗(r, ρ) = K(ρ, r) (r < ρ).

Thus the kernel conjugated to the triangular kernel is the triangular kernel.
One can rewrite (3.75) as

T̂a(ρ) = a(ρ)T̂∗.

Obviously, the δ-function δ(r − ρ) is the unit operator, and we use the
notation 1̂ for it.

2. Consider a formal solution of the problem on the “integral equation” step.
Expression (3.67) (the third property of the triangular kernel K(r, r′)) can
now be written in the operator form as

ϕk = Ûϕ0k. (3.76)

Since it is possible to expand any vector from the space L
2 in a series

of functions ϕ0k, (3.76) means that Û is the “interlacing” operator, i.e.,
ĤÛ = ÛĤ0. If we write the completeness relation (3.74) for the functions
ϕk and ϕ0k symbolically as∫

dρϕkϕk = 1̂ and
∫

dρ0ϕ0kϕ0k = 1̂,

and substitute (3.76) in both, we then obtain

ÛgÛ∗ = 1̂ − ÛÛ∗, (3.77)

where
g =

∫
d(ρ− ρ0)ϕ0kϕ0k

is the symmetric kernel.
Note that it is possible to proceed in this way with any operator of the
transformation. Furthermore, since K̂ is the triangular operator, it is pos-
sible to construct the inverse operator

Û−1 = 1̂ + K̂′, (3.78)

and the operator K̂′ is also triangular. Therefore, dividing (3.77) by Û∗

and using (3.78), we obtain

Ûg = K̂′∗ − K̂.
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For r′ < r this gives

K(r, r′) + g(r, r′) +
∫

K(r, ρ)g(ρ, r′)dρ = 0, (3.79)

i.e. the three-dimensional integral GLM equation.

Thus, we have considered here the example of the S-wave (i.e., the par-
tial wave with the angular momentum l = 0) the scheme of solution of the
three-dimensional inverse scattering problem. Every step of the investigation
is divided into a number of very complicated “substeps.” For example, on
the first (the “wave function”) step, it is necessary to choose a solution of
the Schrödinger equation such that the whole method is applicable. This
means that it is necessary to choose the proper Green’s function.6 Generally
speaking, this itself is a complicated problem, and its detailed consideration
is beyond the scope of this book.

To conclude, we note that we considered the three-dimensional inverse
scattering problem in a general form, quite schematically, abstaining from the
question about the appropriate nonlinear evolution equation, whose solution
is the potential V (r) in the Schrödinger equation. The theory of 3-ISP proves
that if a solution of the inverse problem exists then it is unique, but at present
there is no success yet in proving that the solution exists in a general case.
However, if we have a three-dimensional equation with the solution in the
form of a local potential, then the problem of the existence of the solution no
longer arises. As an example of the model for which the 3-ISP method can
be applied, we can refer to the mathematical model for the elastic scattering
of two particles in the non-relativistic limit

d2
rϕl +

[
k2 − V (r) − l(l + 1)r−2

]
ϕl = 0

(this equation is written for the partial waves with the angular momentum
l). Finally, we note that the problem of integration using the IST method
of the three-dimensional “soliton” equations yielding stable solutions in the
form of three-dimensional solitons, in particular, represented by the three-
dimensional generalized KP equation (GKP equation, see Sect. 4.1) is not yet
solved.

3.2.3 Dynamics of Three-Dimensional Nonlinear Waves in the KP
Model. Wave Collapse and Self-Focusing

In Sect. 3.1, on the basis of analysis of deformations of the KP Hamiltonian
H we demonstrated that the KP equation has in the (1+2)-case the following
features: stable one-dimensional soliton solutions for negative dispersion, and
two-dimensional solitons solutions with the algebraic asymptotics for positive
dispersion. The particular form of these solutions was obtained in Sect. 3.2.1
6 This problem was first solved by Faddeev in 1966 (see, e.g., Ref. [21]).
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using the dressing method. In the (1+3)-dimensional case we found that the
KP equation with any sign of the dispersion does not have three-dimensional
stable solutions because H turns out to be unlimited from below at its de-
formations. In this regard it is interesting to study the dynamics of three-
dimensional nonlinear waves of the soliton type, i.e., to investigate nonlinear
effects associated with the instability.

At present, no analytical three-dimensional solutions of the KP equa-
tion have been obtained, therefore, almost all investigations connected with
this problem (with the exception of, perhaps, the stability and asymptotics
analyses [83,112,194]) are based on numerical experiments (computer simula-
tions). Such investigations were conducted in the 1980s and 1990s in Russia
by Kuznetsov and Musher [59,63,64], Petviashvili et al [86,189], and Belashov
and Karpman [81,83,148,196]. Since the (1+3)-dimensional KP equation has
direct applications in plasma physics (including space plasma, and plasma
of the Earth’s ionosphere and magnetosphere), all these investigations, apart
from studies of the fundamental problem of dynamics of three-dimensional
wave structures per se, were related to studies of the nonlinear self-influence
of waves in a plasma, namely, the wave collapse of sonic waves and the self-
focusing of the beams of the fast magnetosonic waves (FMS waves) propa-
gating in a magnetized plasma.

Wave Collapse. Consider first the main results on the wave collapse ob-
tained by numerical integration of the KP equation written (in its standard
form) as

∂x

(
∂tu+ 6u∂xu+ ∂3

xu
)

= κ∆⊥u. (3.80)

The numerical simulations for (3.80) was done in Refs. [59,63,64] and, in-
dependently, in Refs. [81,83,148,196] in the axially symmetric geometry,
i.e., when the operator on the right-hand side of KP equation is given by
∆⊥ = ∂2

ρ + (1/ρ)∂ρ, ρ2 = y2 + z2.
The diffraction term in (3.80) is nonlocal, that means, as we already

mentioned in Sect. 3.1.4, that the standard methods based on the ideology of
splitting of the problem into a number of one-dimensional problems, appear
inapplicable. The method of stabilizing factor [31], being “static,” is suitable
only for the search of stationary solutions. Therefore, the Cauchy problem
for (3.80) requires use of special “dynamic” methods, some of which, devel-
oped by Belashov, are specially considered in detail in Sect. 4.3. Musher has
also developed [193] a special difference technique using the iterative splitting
considered above in Sect. 3.1.4, and constructed the difference scheme with a
high order of accuracy, O(τ2, h4

x, h
2
⊥). Below, we present the results of numer-

ical simulations using our “dynamic” methods and test them by comparing
the results with the results obtained in [59,63].

In all the above studies, the conditions of a total absorption on the bound-
aries were used as the boundary conditions. They do not conserve the inte-
grals of motion of KP equation Px and H (i.e., the projection of the system’s



3.2 KP Equation: Analytical Integration 167

momentum on the x-axis and the energy, respectively7). To control the cal-
culations in our simulations, we calculated the flows of Px and H onto the
boundaries of the simulation region and thus checked these invariants. As the
initial conditions, the solitary soliton-like three-dimensional axially symmet-
ric pulses given by

u(0, x, ρ) = 2∂2
x ln det B,

det B = 4 (ν + ν∗)−2 + |x − iνρ|2 .
(3.81)

were chosen in our numerical simulations.
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Fig. 3.10. Evolution of
the three-dimensional axially
symmetric wave pulse in a
medium with positive disper-
sion

First, consider evolution of the three-dimensional nonlinear axially-symmetric
pulse (3.81) in a medium with positive dispersion (κ = 1 in KP equation)
for the initial Hamiltonian H less than its critical value, which on the soliton
solution is

H = υPx > 0,

where υ is the Lagrange factor in the variational equation (3.23) considered
in Sect. 3.1.3. Our simulation results show that for κ = 1, the wave collapse
7 Note that if the KP equation is considered in an open domain D of the real space
R 3 then we have ∂tPx = ∂tH = 0
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is observed as a result of the time evolution of a three-dimensional initial
wave pulse (see Fig. 3.10). Since the regions with larger k have larger phase
velocity in the case of positive dispersion, the “wings” of the pulse lag behind
its center during the evolution, and the distinctive U-type profile is formed,
i.e., the self-focusing instability is developed. The amplitude of the wave field
in the forming cavity (u ≥ 0) within the time period ∼ 0.3 is increased by
an order of magnitude. The radiation of the waves from the whole system as
well as from the cavity is observed. These results fully correspond to those
obtained in Refs. [59,63].
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Fig. 3.11. Change of the
wave amplitude umax, mo-
mentum Px, and energy H in
the process of time evolution
of an axially symmetric wave
pulse in a medium with pos-
itive dispersion

On the next stage of the evolution, after t ∼ 0.3, the tendency to the
self-similar time behavior of umax, Px, and H takes place as shown in Fig.
3.11. We can see that the strongest changes of the wave amplitude, as well
as those of the energy and x-projection of the system’s momentum are in
the cavity. The simulation data show that, for example, the dependence of
the amplitude of the wave field on the axis of the cavity is proportional to
(t− t0)−2/3; this means, according to the results of Ref. [64], that the regime
of the wave collapse with the maximum radiation is realized in this case. The
wave collapse is finished by the depletion of the cavern, with transition of the
energy into the radiation propagating out of the cavern.

It follows from the results obtained in Sect. 3.1.3 by the analysis of de-
formations of the Hamiltonian H, that for κ < 0 in (3.80), i.e., in the case
of the negative dispersion in the medium, the KP equation has also no sta-
ble three-dimensional soliton solutions. In this regard, there is a problem of
the asymptotic behavior of such solutions for t → ∞. Different signs of the
quadratic terms of the Hamiltonian

H =
∫ [

1
2

(∂xu)
2 +

κ

2
(∇⊥w)2 − u3

]
dr

for κ < 0 and c =
∫
u3dr > 0 correspond to attraction in the longitudinal

coordinate direction and repulsion the transverse one (for c < 0 there is the
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interchange of the directions). In principle, in this situation with a sufficiently
large wave amplitude, the time evolution can result in the formation of singu-
larities such as caustics [59]. Numerical simulations [63] as well as the results
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t=0.1

t=0.78

40 8
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-4-8

Fig. 3.12. Evolution of
the three-dimensional axially
symmetric wave pulse in a
medium with negative dis-
persion

of our simulations demonstrate, however, that for negative dispersion of the
medium, the wave collapse does not develop. At the initial stage of the time
evolution the sub-focusing of the wave field is observed and the wave pulse
amplitude grows (see Fig. 3.12). The peripherals (“wings”) of the wave pulse
lag behind its central part and the pattern of the evolution is qualitatively
similar to the case κ > 0. At the later stage, the compression of the wave
packet stops and, for all cases, converts into the regime of the wave defocus-
ing, leading in the end to the spreading of the wave packet. It is interesting
that such a pattern of the evolution of sonic waves in a plasma with negative
dispersion is similar to the self-influence of electromagnetic waves in those
media where the derivatives ∂2ω/∂k2

x and ∂2ω/∂k2
y have different signs (e.g.,

ion-cyclotron waves and whistlers observed in the Earth’s magnetosphere and
ionosphere) [197].

Self-Focusing of a Three-Dimensional Wave Beam. Consider now an-
other nonlinear effect, typical for waves in a plasma: the self-focusing of a
beam of FMS waves. It is well known that in a magnetized plasma with the
small ratio of the kinetic pressure to the magnetic pressure (β = 4πnT/B2 �
1), the FMS waves can easily be excited in the frequency range ω � ωBi,
where ωBi = eB/mic is the ion-cyclotron frequency. Their dispersion law is
given by

ω = vAk
[
1 + χ(θ)k2D2

]
. (3.82)

Here, vA = B2/4πnimi is the Alfvén velocity, D2 = c2/2ω2
pi is the (squared)

wave dispersion length, χ(θ) = cot2 θ−me/mi, and θ is the angle between k
and B. When kD � 1, k2

x � k2
⊥, and vx � vA, the dispersion law (3.82) is

reduced to [196]
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ω = vAkx

[
1 +

k2
⊥
k2

x

+ χ(θ)D2k2
x

]
. (3.83)

This (weak) dispersion implies that the principal nonlinear process for small-
amplitude waves is the three-wave interaction [59,196]. The (weak) nonlinear-
ity determines the small angle between the interacting waves. The character
of FMS waves depends on the dispersion sign: for almost transverse propa-
gation, when ∣∣∣π

2
− θ

∣∣∣ ≤ (
me

mi

)1/2

,

the dispersion of such FMS waves is negative (the phase velocity decreases
with the increase of the wave number k); outside this cone the wave dispersion
is positive.

Consider only the range of the propagation angles, where the inequality
χ(θ) > 0 holds. In this case, the small amplitude FMS waves are described
by the KP equation [81,83]:

∂th+ αh∂xh− vAχ(θ)D2∂3
xh = −vA

2

x∫
−∞

∆⊥hdx. (3.84)

The nonlinear term (with α = (3/2)vA sin θ) is a consequence of renormal-
ization of the sound velocity and reflects a small probability of other nonlin-
ear processes that can be caused by the vector nonlinearity. Furthermore in
(3.84), h = B∼/B0 is the dimensionless amplitude of the FMS wave. Accord-
ing to the results known from Sect. 3.1, equation (3.84) can have:

– One-dimensional soliton solutions for angles |(π/2) − θ| ≤ (me/mi)1/2

– Two-dimensional soliton solutions with the algebraic asymptotics in the
range, where the wave dispersion is positive (for FMS waves this takes
place for sufficiently high ion temperature Ti, i.e. when β > me/mi)

The three-dimensional wave packet of FMS waves with β > me/mi is
not stable and collapses or spreads (for the positive and negative dispersion,
respectively, see above). Thus in the case of a sufficiently intensive beam of
FMS waves limited in the k⊥ direction, we can expect that the self-focusing
occurs. Such idea was proposed for the first time by Manin and Petviashvili,
and the problem of self-focusing of the FMS wave beam for the KP equation
model was solved [86] by averaging initial equations and solving numerically
the obtained expressions.8 Similar studies were done in 1986-87 by Belashov
(together with tests of numerical schemes for the generalized KP equation)
as a particular case of nonlinear dynamics of FMS wave beam in the GKP
equation model (see Sect. 4.6.2).

8 The angle θ = π/2, i.e. B ‖ k⊥ was wrongly indicated in Ref. [86]. Since the wave
dispersion is negative in this case, the self-focusing effect cannot be observed as
shown by our results and [81].
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Thus consider a stationary three-dimensional beam of FMS waves prop-
agating in a plasma at the angle θ with respect to the magnetic field B,∣∣∣π

2
− θ

∣∣∣ ≤ (
me

mi

)
.

For such a wave beam, taking into account the above conditions on the fre-
quency range ω < ωBi and on the projection of the wave vector, we convert
(3.84) using the new variables

x→ x/rB , y → y/rB , z → z/rB , and t = x/rB − ωBit,

where r2B = 2D2, and obtain

∂xh+ 2h∂th+ ∂3
t h =

t∫
−∞

∆⊥hdt. (3.85)

This KP equation describes the propagation of an FMS wave beam along
the x-axis from the boundary x = 0. Thus we in fact converted the Cauchy
problem for the KP equation (3.84) to the boundary problem for (3.85).

5

10

-10

5ρ

t

x=0

Fig. 3.13. The boundary
condition at x = 0 for KP
equation (3.85)

We solved equation (3.85) in the axially symmetric geometry

∆⊥ = ∂2
ρ + (1/ρ)∂ρ, where ρ2 = y2 + z2

by using the implicit scheme (1.84) with approximation of the integral on
the right-hand side by the Newton–Cotes formula9, i.e., with the O(τ2, h4

x,ρ)
accuracy. At the boundaries of the integration region, t = ±T , ρ = ±P , the

9 See Sect. 4.3 for details of the numerical integration method.
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condition of the total absorption was applied. At the boundary x = 0, the
function

h0 = h(t, 0, ρ) = a cos(mt) exp
(−ρ2

)
, (3.86)

i.e., the wave beam localized in the (y, z)-plane and periodic in time, was
assumed (see Fig. 3.13).

We now move on to discuss results of numerical simulations of the FMS
wave beam self-focusing for various beam intensities (amplitude a in (3.86))
at the boundary x = 0. A series of numerical experiments allows us to state:

1. For a small beam intensity h0, the self-focusing phenomenon is not observed
and beam scattering, i.e., decrease of intensity along the direction of its
propagation takes place.

2. Above some threshold h0,cr, the self-focusing of the wave beam into a point
is observed, i.e., the wave beam compression in the ρ-direction with propa-
gation along the x-axis together with the fast increase of the beam intensity
at the axis (see Fig. 3.14). The results of numerical simulations demonstrate

0 1 2

1

2

3

x=1

x=2

x=3

x=4

h

ρ

Fig. 3.14. Self-focusing of the
three-dimensional axially symmet-
ric FMS wave beam in a medium
with the positive dispersion for h0 >
h0,cr

that for the central part of the wave beam the function h(0, x, 0) can be
well approximated by

h(0, x, 0) ∼ h0

[
1 + (3.59x)2.3

]
. (3.87)

It is possible to estimate the compression of the wave beam on the ρ-axis.
We have lρ(x) ∼ lρ(0)h0/h(x), where lρ(0) is the characteristic transverse
size of the wave beam at the boundary x = 0.

3. For the angles where the wave dispersion is negative, i.e., when |(π/2)−θ| ≤
(me/mi)1/2, the beam self-focusing does not occur; a subfocusing of the
beam observed in the beginning of its evolution then transforms (with
increasing x) into the defocusing regime.
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Note that similar self-focusing phenomena were obtained in the stud-
ies of acoustic waves in antiferromagnetics, taking into account the crystal
anisotropy [87]. This indicates the wide area of applications of the KP equa-
tion model in physics. Note also, that with accounting of finer dispersion
effects appearing near the cone of the angles

θ = arctan (mi/me)
1/2 (3.88)

in the KP equation (3.85), higher order dispersion corrections (of the fifth
order of the x-derivative) appear and the range of possible wave beam evo-
lutions can be significantly extended. Thus, for the beam propagation at the
angles close to (3.88), for example, formation of a stationary wave beam af-
ter the stages of sub-focusing and defocusing is possible. This problem was
investigated by Belashov [81,83,148,196] and is considered in detail in Sect.
4.6.2.



4. Generalized Two- and Three-Dimensional
Models and Their Applications

4.1 Basic Dynamic Equations in the Long-Wavelength
Approximation, Their Generalizations, and Solutions

In this section, we generalize the classic KP equation by introducing the
higher order dispersion correction, the terms describing dissipation of the
viscous type, as well as an instability and stochastic fluctuations of the wave
field. Thus we derive the generalized KP (GKP) equation. We then reduce
this equation to a simplified form, allowing its subsequent analysis (Sect.
4.1.1). Furthermore, in Sect. 4.1.2, we derive the three-dimensional derivative
nonlinear Schrödinger (3-DNLS) equation from the full set of the plasma
one-fluid magnetohydrodynamic (MHD) equations, and then, using the scale
transforms, reduce it to a dimensionless form convenient for further analysis.
Also, a generalization of 3-DNLS equation in the presence of dissipation in a
medium is considered. Finally, in Sect. 4.1.3, we study in detail the stability
of two- and three-dimensional solutions of the GKP and 3-DNLS equations.

4.1.1 Generalized KP Equation

In Sect. 1.1 we derived the KdV equation from the full set of the hydrody-
namic equations, and in Sect. 3.1 we generalized this type of derivation for the
systems described by the classic two-dimensional and three-dimensional KP
equations. However, as we already noted in the Introduction, for some cases
the coefficient at the third-order derivative in the KP-class equations (0.3)
can be negligible or even exactly equal to zero (this takes place, for example,
for the gravity-capillary waves in shallow water when H → (3σ/ρg)1/2, and
for the FMS waves propagating at the angles close to Θ = arctan(mi/me)1/2

with respect to an external magnetic field B, see (0.8) and (0.9)). Neverthe-
less, this does not mean total disappearance of the effects of the medium’s
dispersion: the equilibrium between the nonlinear and dispersive processes
in this case can still be recovered by invoking higher order terms in the ex-
pansion of the full dispersion equation in the powers of the wavenumber k.
As a result, for equations of class (0.3) in the expression for R[u], dispersive
correction terms proportional to the fifth derivative, −γ∂5u, appear where
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γ > 01, often playing the decisive role in the dynamics of multidimensional
solitons (see Refs. [83,113,114,148,196]).

When dissipation cannot be neglected, equations of the class (0.3) should
be supplemented by the corresponding terms. Since (as, e.g., in the case of
nonlinear plasma waves) we consider here the hydrodynamic approximation
for ω � ωpe = (4πnee

2/me)1/2, we are limited in our study with the effects of
dissipative processes of the so-called viscous type (assuming that the Landau
damping can be neglected) on the structure and evolution of nonlinear waves
and solitons. In this case, for the ion plasma oscillations when the wave fre-
quency (and the characteristic times of the processes) is significantly less than
the electron plasma frequency, ω ∼ τ−1 � ωpe, the dissipative effects asso-
ciated with the processes of relaxation in the medium lead to the imaginary
term of the type −iνk2

x in the dispersion equation (0.5), and, accordingly, to
the Burgers term [15] on the right-hand side of equation (0.3). Thus the KP
equation takes the form

∂x

(
∂tu+ αu∂xu− ν∂2

xu+ β∂3
xu+ γ∂5

xu
)

= κ∆⊥u, (4.1)

where κ = −c0/2 and it has the same degree of universality, as the standard
KdV and KP equations in the sense that it is valid always when the dispersion
law is given by

ω ≈ c0kx

(
1 +

k2
⊥

2k2
x

− iνkx

c0
+

−βk2
x + γk4

x

c0

)
. (4.2)

To account for various instabilities (determined by the medium and the
character of the wave propagation), leading to rapid increase of wave per-
turbations with the formation of the chaotic turbulent state and transfer of
the energy stored in the oscillations to other degrees of freedom, we can in-
troduce into the left-hand side of (0.22) the term proportional to the fourth
space derivative, δ∂4

xu, corresponding to the term −iδk4
x/c0 which appears

in this case in the dispersion relation (0.23). With this, the generalization of
the KP equation is given by

∂x

(
∂tu+ αu∂xu− ν∂2

xu+ β∂3
xu+ δ∂4

xu+ γ∂5
xu
)

= κ∆⊥u, (4.3)

and we call it, as well as equation (0.22), the generalized KP equation or the
GKP equation.

The three-dimensional equation (4.3) has wide applications in the physics
of nonlinear dispersive waves. However, it was investigated in detail only re-
cently in Refs. [81,83,113,148,198] where the two-dimensional problems men-
tioned above in the Introduction were effectively solved, and the specific
processes of self-influence of the waves, described earlier by the standard
three-dimensional KP equation (0.10) [18,59,86,87], were studied within the

1 Explicit expressions for the coefficient γ in the cases of the gravity-capillary and
the fast magnetosonic waves are given in the Introduction (see (0.18) and (0.21)).
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framework of generalization (0.18) representing the approach which is more
adequate for real physical systems.

For problems where the question might appear on the appropriate model
assumed for the GKP equation, we present here the results obtained for the
KP-class equations in the form (4.3). For convenience of further analysis
when δ = 0, we transform equation (4.1) using x → −sx, y → −sκ1/2y,
z → −sκ1/2z, t → st, and u → −(6/α)u, where s = |γ|1/4. Thus the basic
equation in this case can be written as

∂x

(
∂tu+ 6u∂xu− µ∂2

xu− ε∂3
xu− λ∂5

xu
)

= ∆⊥u, (4.4)

where µ = νs−1, ε = βs−2, and λ = sgn(γ). In Sect. 4.1.3, we study analyt-
ical approaches to the problem of stability of multidimensional solitons and
nonlinear wave packets described by equations of the KP class in the form
(4.4). In Sect. 4.2 we investigate the classes of possible solutions and their
asymptotics employing the methods of qualitative analysis (usually used in
the theory of dynamic systems) as well as the asymptotic analysis (when
|x| → ∞) of the structure of the solutions.

4.1.2 3-DNLS Equation

We introduced in Sect. 2.4 the derivative nonlinear Schrödinger (DNLS) equa-
tion, omitting its detailed derivation, and considered it as an integrability
condition for two linear differential equations. Since we investigate multidi-
mensional systems (and would like to emphasize the physics of phenomena
described by this equation more clearly) here, we present a brief derivation of
the three-dimensional DNLS (3-DNLS) equation. Thus using the ideas and
technique detailed also in Refs. [7,37,38], we obtain the 3-DNLS equation in
the form given by (0.24).

Here, we write the full set of the one-fluid MHD equations assuming that
k2
⊥ � k2

x (in this case we can change ∇ → x̂∂x) [7]:

(∂t + vx∂x)v⊥ = v2
A∂xh, (4.5)

(∂t + vx∂x) vx = −v
2
A

2
∂xh2, (4.6)

∂th = ∂x (v⊥ − vxh) , (4.7)
∂tρ+ ∂x (vxρ) = 0, (4.8)

where h = B⊥/B0 is the dimensionless perturbation of the perpendicular
magnetic field. Following Ref. [7], consider dependence of all functions in
these equations on t and x in the form f = f(t, x − vAt), where the first
argument is due to nonlinear effects. Since perturbations of the density ρ and
the x-component of the velocity vx are also stipulated by the presence of the
nonlinearity of the medium, it is possible to approximate ∂t

∼= −vA∂x [37].
Thus integrating (4.8) and taking into account that lim

|x|→∞
ρ = ρ0, we find
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ρ = ρ0

(
1 +

vx

vA

)
. (4.9)

Furthermore, by neglecting the small term on the order of v2
x/v

2
A on the left-

hand side of (4.6), and applying the same assumptions as above, we obtain
from (4.6)

vx =
vA

2
h2. (4.10)

According to the relation (4.10), the plasma is pushed away by the wave field
in the direction of the wave propagation thus forming the “Alfvén wind” [37]
with the effect of the ponderomotive force [157].

Substituting relations (4.9) and (4.10) into (4.5) and (4.7), taking into ac-
count the parabolic equation for the magnetic field B (see, e.g., Refs. [7,37]),
and retaining the dispersion effects, we find that the equation for the dimen-
sionless perpendicular magnetic field h = hx + ihy is given by

∂x

[
(2/ωpi) ∂th+ rA∂x

(
|h|2 h

)
+ ir2A∂

2
xh
]

= −rA

2
∇2

⊥h, (4.11)

where rA = vA/ωBi. Equation (4.11) describes the left-circularly polarized
wave mode; for the right-circularly polarized mode we have the “minus” sign
in front of the dispersion term. It is possible to incorporate the sign of the
nonlinearity by the factor s = ±1 in front of the nonlinear term. Thus after in-
troducing κ = −rA/2, converting to the dimensionless variables t→ ωBit/2,
x → x/rA, r⊥ → r⊥

√
2/rA, and integrating in x, we find that the 3-DNLS

equation in the reference frame moving in the positive direction of the x-axis
with the Alfvén velocity (0.16) can be written as

∂th+ s∂x

(
|h|2 h

)
− iλ∂2

xh = κ

x∫
−∞

∆⊥hdx, (4.12)

where the upper(lower) sign of the factor λ = ±1 corresponds to the
right(left)-circularly polarized wave mode, respectively.

When the dissipation effects cannot be neglected, (4.12) should be sup-
plemented by the proper term. Taking into account the hydrodynamic ap-
proximation considered in this section (when ω � ωpe) it is thus sufficient to
limit the study (of the influence of dissipation on the structure and evolution
of nonlinear waves) to only processes of the “viscous” type (e.g., taking place
in a plasma for the ion oscillations), with the inverse times being much less
than the electron plasma frequency, i.e., τ−1 � (4πnee

2/me)1/2 (in this case,
for Te � Ti, the Landau damping is small). Thus, dissipative effects associ-
ated with such type of relaxation process lead to appearance of the imaginary
term −iνk2

x in the dispersion equation. Accordingly, the Burgers-type term
ν∂2

xu [15] has to be included into the left-hand side of (4.12). In this case,
the coefficient
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ν =
ρ0

2ρ
(
c2∞ − c20

)
τ

∞∫
0

ξϕ(ξ)dξ (4.13)

defines the logarithmic damping rate and, as it is shown in Ref. [3], is the
characteristic rate of the relaxation damping of the “sound” wave. Here, c∞
and c0 are the velocities of the high- and low-frequency “sound” mode (the
last one coincides with cs = (Te/mi)1/2) and ϕ(t, τ) is the function defining
the relaxation process. Thus the 3-DNLS equation generalized by the viscous-
type dissipative term can be written as

∂th+ s∂x

(
|h|2 h

)
− iλ∂2

xh− ν∂2
xh = κ

x∫
−∞

∆⊥hdx. (4.14)

For this equation, taking into account κ = −c0/2, c0 = vA, and (formally)
βkx = λ, γ = 0, s = c0, the dispersion relation of the type (0.23) is also valid,
namely

ω ≈ vAkx

(
1 +

k2
⊥

2k2
x

− iνkx

vA
− λkx

vA

)
. (4.15)

We note here that the three-dimensional equation (4.14) (as well as equation
(4.12)) is not completely integrable and for its solution it is necessary to
use numerical methods [50,65–70]. It is also necessary to take into account,
that even for the one-dimensional equation (1-DNLS equation), the solutions
can not always be obtained analytically in the closed form, since the use of
the IST procedure requires rather strong limits on the initial and boundary
conditions (first of all, on the localization of the potential h(x, t) at any time
moment and |h(x, 0)| → 0 when |x| → ∞). Thus development of numerical
codes for the integration of the DNLS-type equations is an important and
actual issue.

4.1.3 Stability of Two-Dimensional and Three-Dimensional
Solutions of GKP and 3-DNLS Equations

We here investigate analytical approaches to the problem of stability of mul-
tidimensional solitons and nonlinear wave packets. Under the assumption of
negligible dissipative effects, these solutions coincide with those of the GKP-
class equations in the form (4.4) with µ = 0 and the 3-DNLS equation (4.12).
New results on the problem of the soliton stability are obtained. In particular,
in the first part of this section we present analytical estimates and formulate
the sufficient conditions for the stability of solutions of GKP equation in the
two-dimensional and three-dimensional cases, based on the transformational
properties of the system’s Hamiltonian for the whole range of the disper-
sion coefficients. Then an analogous problem for the 3-DNLS equation in the
three-dimensional geometry is studied. Despite the fact that the considered
classes of the Hamiltonian’s deformations for both equations do not include
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all possible deformations of H, the obtained results clearly demonstrate the
stability of the solutions if some (found and formulated) conditions are satis-
fied and can at least be considered as the necessary conditions of the stability
of the multi-dimesnional solutions.

Stability of Two-Dimensional and Three-Dimensional Solutions of
the GKP Equation. Here we suppose that the dissipation is absent in the
medium, i.e., µ = 0 and the GKP equation (4.4) is written as

∂x

(
∂tu+ 6u∂xu− ε∂3

xu− λ∂5
xu
)

= ∆⊥u. (4.16)

Note that (4.16) is now the Hamiltonian equation. Rewriting it into the form

∂tu = ∂x (δH/δu) = −
∞∫

−∞
δ′(x− x′) (δH/δu) dx′, (4.17)

where

H =
∫ [

−ε
2

(∂xu)
2 +

λ

2
(
∂2

xu
)2

+
1
2

(∇⊥∂xv)
2 − u3

]
dr (4.18)

and ∂2
xv = u, we obtain the Hamiltonian equation where the continuum of

values, u ∈ M, plays the role of the point coordinates in the phase space
M, the matrix ω(x, x′) = δ′(x − x′) is skew-symmetric and, because of the
inversibility of the operator ∂x on the decreasing functions for |x| → ∞, is a
non-degenerate one on u. Thus the Hamiltonian structure can be represented
by the Poisson bracket [24],

{S,R} =

∞∫
−∞

(δS/δu)∂x(δR/δu)dx, (4.19)

with S,R ∈ M, which satisfies the Jacobi’s identity since ω does not depend
on the point u in the space M.

The problem of the stability of the soliton-like solutions of (4.17) was
studied before [195] on the basis of an analysis of transformational properties
of the Hamiltonian (4.18) in the two- and three-dimensional geometry (∂z = 0
and ∂yz �= 0, respectively) for λ = ±1 and ε > 0 and ε < 0 (corresponding to
different types of the medium). The stationary solutions of (4.17) are then
defined from the variational equation,

δ (H + vPx) = 0, (4.20)

where Px = (1/2)
∫
u2dr is the momentum projection onto the x-axis and

v is the Lagrange factor. Equation (4.20) illustrates the fact that all finite
solutions of (4.17) are the stationary points of the Hamiltonian H for the
fixed momentum Px.
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Consider now the problem of stability. In a dynamic system, according to
the Lyapunov’s theorem, the stationary points corresponding to the maximum
or minimum of the Hamiltonian H are absolutely stable. If an extremum
is local then the locally stable solutions are possible. The unstable states
correspond to the monotonous dependence of H on its variables, i.e., those
cases when the stationary point is the saddle point. According to that, all we
need is to prove that the Hamiltonian H is limited from below for the fixed
Px.

Similar to what was done for the classic KP equation in Chap. 3 [60], we
consider the scale transformations in the real vector space R,

u(x, r⊥) → ζ−1/2η(1−d)/2u(x/ζ, r⊥/η), (4.21)

(where d is the dimension of the problem, and ζ, η ∈ R) which conserves the
momentum Px. The Hamiltonian as a function of the parameters ζ and η
now takes the form

H(ζ, η) = aζ2 + bζ2η−2 − cζ−1/2η(1−d)/2 + eζ−4, (4.22)

where

a = −ε
2

∫
(∂xu)

2 dr,

b =
1
2

∫
(∇⊥∂xv)

2 dr,

c =
∫
u3dr,

e =
λ

2

∫ (
∂2

xu
)2

dr.

The necessary conditions for the existence of the Hamiltonian’s extremum
are given by

∂ζH = 0 and ∂ηH = 0. (4.23)

The latter enables us to obtain the extremum’s coordinates, (ζi, ηi), if it
exists. Holding the inequalities∣∣∣∣ ∂2

ζH(ζi, ηj) ∂2
ζηH(ζi, ηj)

∂2
ηζH(ζi, ηj) ∂2

ηH(ζi, ηj)

∣∣∣∣ > 0 and ∂2
ζH(ζi, ηj) > 0 (4.24)

guarantees that the corresponding quadratic form is the positively definite
one and therefore these inequalities give the sufficient condition of the exis-
tence of the (local) minimum at the point (ζi, ηj).

Consider equation (4.17) for d = 2, i.e., with ∂z = 0. In this case equations
(4.23) form the following set:
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G ≡ (
c4/32b

)
t4 − (at+ 2e)3 = 0,

t = ζ2,

η =
[
(4b/c)2 ζ5

]1/3

. (4.25)

Analysis of (4.25) shows (see Appendix 2) that it has one positive root, t ∈ R,
for every quadruple of the functions a, b, c, e ∈ R in the case e > 0 and any
a; two positive roots, t1,2 ∈ R, for e < 0 and a > 0; and in the case e < 0
and a ≤ 0 we have t /∈ R.

Inequalities (4.24) for d = 2, taking into account expressions (4.25), lead
to

G− (C11a
3t3 + C12a

2et2 + C13ae
2t+ C14e

3) < 0, (4.26)

and
G− (C21a

3t3 + C22a
2et2 + C23ae

2t+ C24e
3) < 0, (4.27)

where Cnm > 0 are constants. It follows that conditions (4.24) are ful-
filled on the set St ⊂ R of solutions of the set (4.25) for e > 0 and
a ≥ 0, and, consequently, the Hamiltonian H(ζ, η) is bounded from be-
low. Solving (4.26) and (4.27) in the R-space for e > 0 and a < 0,
we obtain for S

(4.26)
t ∩ S

(4.27)
t = At ⊂ R that supAt = (3C11)

−1 ×
[2C1 cos(ϕ1/3) − C12] e/a and inf At = 0 (t = 0 is not the root of the set
(4.25) and we therefore discard it). Here, C1 = (C2

12 − 3C11C13)1/2 and
ϕ1 = Arccos

{[
C12

(
C2

12 − 3C2
1

)− 27C2
11C14

]
/
(
2C3

1

)}
. Taking into account

(5.8) (see Appendix 2; note that St ∩ At �= �), we conclude that for e > 0
and a < 0, the sufficient condition of the existence of the local minimum of
H(ζ, η) is the relation St ⊆ At, i.e.,(

a4b

c4e

)1/4

≥ 1
6C11

[
C1 cos

(ϕ1

3

)
− C12

2

]
. (4.28)

Analogously, considering inequalities (4.26) and (4.27) for the case e < 0 and
a > 0, we obtain that

inf B(1)
t =

1
3C21

[
2C2 cosh

(ϕ2

3

)
− C22

] ( e
a

)
,

supB(1)
t =

1
3C11

[
2C1 cos

(
ϕ1

3
+

4π
3

)
− C12

]( e
a

)
,

inf B(2)
t =

1
3C11

[
2C1 cos

(
ϕ1

3
+

2π
3

)
− C12

]( e
a

)
,

where

B
(1)
t ∪ B

(2)
t = S

(4.26)
t ∩ S(4.27)

t = At ⊂ R,

C2 =
(
C2

22 − 3C21C23

)1/2
,

ϕ2 = Arccosh
{[
C22

(
C2

22 − 3C2
2

)− 27C2
21C24

]
/2C3

2

}
.
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Taking into account equalities (5.12) we obtain that B(1)
t ⊂ St =⇒ B

(1)
t ∩St =

B
(1)
t and B(2)

t ∩St = �. Then in (5.9), by changing (a4b/c4e) ≤ −24 ·3−3 ·Q−1

with Q > 1 and using inequalities (5.11), we obtain Q = −28 · 3−3(T +2)/T 2

with T = inf B(1)
t a/e. This corresponds to the sufficient condition of the

existence of the local minimum of the Hamiltonian H(ζ, η), namely inf St =
inf B(1)

t , which can now be rewritten as

a4b

c4e
≤ T 2

24(T + 2)
. (4.29)

Fig. 4.1 shows the change of the Hamiltonian H(ζ, η) for the test values of

1
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ζ0.0 1.0 2.0 3.0
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0.0

0.2

0.4

Fig. 4.1. Change of the
Hamiltonian H(ζ, η) in the
two-dimensional case (d = 2)

along lines η = [(4b/c)2ζ5]1/3

for the test values: (1) a =
0.5, b = 0.5, c = 1.0, e =
0.02; (2) a = −0.5, b =
0.5, c = 0.5, e = 0.5; (3)
a = −0.5, b = 0.5, c = 1.0,
e = −0.02; (4) a = 1.0, b =
1.0, c = 0.5, e = −1.0; (5)
a = 0.5, b = 0.5, c = 1.0,
e = −0.02

the integrals a, b, c, and e for d = 2, λ = ±1, and |ε| > 0.
Consider now equation (4.17) for d = 3 (∂yz �= 0). In this case, for every

quadruple a, b, c, e ∈ R, with a �= 0, we immediately obtain from (4.23)

ζi =
1

16ab

(
3c2 ±

√
9c4 − 512ab2e

)
,

ηj =
2b
c
ζ
5/2
i , (4.30)

where i = 1, 2 and j = 1, 2, 3, 4. We note here that (ζi, ηj) /∈ R for ζi < 0, and
therefore we consider below only the roots ζi > 0 (we map out equality ζi = 0,
taking into account e �= 0, otherwise (4.17) degenerates into the standard KP
equation). Inequalities (4.24) taking into account (4.30) are now given by

aζ2 − (c2/2b)ζ + 10e/3 > 0, (4.31)

and
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aζ2 + (c2/48b)ζ + 10e/3 > 0. (4.32)

In the case e > 0 and a > 0, the condition ζi ∈ R, i.e.,

c4 ≥ (512/9)ab2e, (4.33)

gives ζ1,2 > 0. Elementary analysis then shows that S(4.30)
ζ1

∩S(4.31)
ζ1

= � and,

if strict inequality (4.33) holds, S(4.30)
ζ2

⊂ S
(4.31),(4.32)
ζ2

. Thus, for the existence
of the local minimum of the Hamiltonian H(ζ, η) for e > 0 and a > 0, it is
sufficient to have

ab2e

c4
<

9
512

. (4.34)

When e > 0 and a < 0, for each quadruple of a, b, c, e ∈ R we have
from the first equality of (4.30) ζ1 < 0 and, therefore, S(4.30)

η1,2 ∩ R = �.
For S

(4.30)
ζ2

, elementary analysis of inequalities (4.31) and (4.32) gives us

S
(4.30)
ζ2

⊂ S
(4.31),(4.32)
ζ2

. Thus for any e > 0 and a < 0 the function H(ζ, η) is
limited from below.

Analogous consideration in the case e < 0 shows that for a < 0, when
condition (4.33) is satisfied for every quadruple a, b, c, e ∈ R, we have ζ1,2 < 0
and, therefore, S(4.30)

η1,2,3,4 ∩R = �; for a > 0 we have ζ2 < 0 =⇒ S
(4.30)
η3,4 ∩R = �,

ζ1 > 0 but S(4.30)
ζ1

∩ S(4.31)
ζ1

= �. For a = 0 and |e| > 0 (i.e., e �= 0), instead
of (4.30) we have

ζi =
16be
3c2

, and ηj =
2b
c
ζ
5/2
i , (4.35)

where i = 1 and j = 1, 2, for every triplet of functions b, c, e ∈ R. For e < 0
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Fig. 4.2. Change of the
Hamiltonian H(ζ, η) for d =
3 along the lines η =
(2b/c)ζ5/2 for the test values:
(1) a = 1.0, b = 1.0, c = 1.0,
e = 0.025; (2) a = 1.0, b =
1.0, c = 1.0, e = 0.017; (3)
a = −0.5, b = 1.0, c = 0.5,
e = 0.02; (4) a = −0.5, b =
1.0, c = 0.5, e = −0.02; (5)
a = 1.0, b = 1.0, c = 0.5,
e = −0.02

it immediately follows that Sηj ∩R = �. For e > 0, it is not difficult to show



4.1 Generalized KP and DNLS Equations 185

that Sζ ⊂ S
(4.31),(4.32)
ζ . Fig. 4.2 shows the change of the Hamiltonian H(ζ, η)

for the test values of the integrals a, b, c, e for d = 3, λ = ±1, and |ε| > 0.
To sum up the above results, we conclude the following. In the two-

dimensional case the Hamiltonian (4.18) of the equation (4.17) is limited
from below at the fixed projection of the momentum Px for the integral val-
ues e > 0 and a ≥ 0 (i.e. when λ = 1, ε ≤ 0 in expression (4.18)) and has
the local minima for e > 0 and a < 0 (λ = 1, ε > 0) and e < 0 and a > 0
(λ = −1, ε < 0) when the conditions (4.28) and (4.29), respectively, are sat-
isfied. In the three-dimensional case H has a local minimum for e > 0 and
a ≥ 0 (i.e. when λ = 1, ε ≤ 0 in (4.18)) if the condition (4.34) is satisfied,
and it is limited from below for e > 0 and a < 0 (λ = 1, ε > 0). Note that the
class of scale transformations (4.21) of course does not include all possible de-
formations of the Hamiltonian H but the estimations obtained above justify
that it is limited for the cases considered when, according to the Lyapunov’s
theorem, absolutely and locally stable soliton solutions should exist. Analysis
of the boundedness of H on the numerical solutions of (4.16) for d = 2 and
d = 3 is presented below in Sect. 4.4 and Sect. 4.5, respectively (see also
[195], [148]).

Stability of Three-Dimensional Solutions of the 3-DNLS Equation.
We use the same approach as above to investigate the stability of three-
dimensional solutions of the 3-DNLS equation (4.12) (in the non-dissipative
case) . First, we rewrite the equation in the Hamiltonian form

∂th = ∂x (δH/δh) , (4.36)

with the Hamiltonian given by [70]

H =

∞∫
−∞

[
1
2
|h|4 + λshh∗∂xϕ+

1
2
κ (∇⊥∂xw)2

]
dr, (4.37)

where ∂2
xw = h and ϕ = arg(h). Then we investigate whether H is limited

from below under its deformations conserving the projection of the system’s
momentum Px = (1/2)

∫ |h|2dr, when the variational equation in the form
(4.20) takes place

δ (H + vPx) = 0 (4.38)

(here, v, as well as in (4.20), is the Lagrange factor). Analogous to the above
investigation of the properties of the GKP equation, we consider the following
scale transformations in the complex vector space C:

h(x, r⊥) → ζ−1/2η−1h(x/ζ, r⊥/η) (4.39)

(ζ, η ∈ C), conserving the projection of the momentum Px. The Hamiltonian
H as a function of the parameters (ζ, η) is now given by

H(ζ, η) = aζ−1η−2 + bζ−1 + cζ2η−2, (4.40)
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where

a =
1
2

∫
|h|4 dr,

b = λs

∫
hh∗∂xϕdr,

c =
κ

2

∫
(∇⊥∂xw)2 dr.

The necessary conditions for the existence of the extremum, namely,

∂ζH = 0 and ∂ηH = 0,

immediately allow us to obtain the extremum’s coordinates

ζ = −a
c

and η =
[
−a
b

(
1 +

a2

c2

)]1/2

, (4.41)

where b < 0 if η ∈ R ⊂ C because a > 0 and c > 0 by definition, and b > 0 if
η ∈ C.

The sufficient conditions for the existence of the local minimum of H at
the point (ζi, ηi) are given by (4.24), and we therefore obtain for b < 0

a

c
< d =

1
2
√

2

√
13 +

√
185. (4.42)

Thus it follows from (4.40)–(4.42) that the Hamiltonian H of (4.36) is limited
from below:

H > − 3bd
1 + 2d2

, (4.43)

where b < 0, if condition (4.42) holds. In this case, three-dimensional solutions
of the 3-DNLS equation are stable; they are unstable in the opposite case,
when ac−1 ≥ d and b < 0. The condition b < 0 corresponds to the right-
circularly polarized wave propagating in a plasma with p = (4πnT/B2) > 1,
i.e., when λ = 1 and s = −1 in (4.12) and (4.36), and to the left-circularly
polarized wave when λ = −1 and s = 1. It is necessary to note, however,
that the change of the signs of λ = 1 → −1 and s = −1 → 1 is equivalent
to the change t → −t and κ → −κ; and for the negative κ the Hamiltonian
H becomes negative in the region “occupied” by the three-dimensional wave
weakly limited in the k⊥-direction, and in this case the condition (4.43) is
not fulfilled.

The change of the sign of the integral coefficient b to positive, when λ = 1
and s = 1 or λ = −1 and s = −1 in (4.12) and (4.36), is equivalent to the
analytical extension of the solutions from the real (y, z)-plane to the purely
imaginary one (y → −iy, z → −iz) and, therefore, is equivalent to the change
of the sign of the diffraction coefficient κ in the basic equations. In this case,
instead of (4.43), the opposite inequality, namely
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H < − 3bd
1 + 2d2

, (4.44)

where b > 0, takes place. From the physical point of view this means that
if inequality (4.44) is satisfied, the right-polarized wave with the positive
nonlinearity and/or the left-polarized wave with the negative nonlinearity are
stable. Note that in the particular case when κ = 0 in (4.12) and (4.36) (i.e.,
in the one-dimensional approximation), it is easy to obtain, using the above
approach, that instead of inequalities (4.43) and (4.44) the conditions H > 0
and H < 0, respectively, take place. The latter is in complete agreement with
the results obtained in Sect. 2.4.3 for the 1-DNLS equation (see also Ref.
[33]).

Thus the analysis of the transformation properties of the Hamiltonian
of the 3-DNLS equation allows us to determine the ranges of the respective
coefficients as well as H which has the sense of the energy of the system,
corresponding to the stable and unstable three-dimensional solutions. The
study of the structure and dynamics of three-dimensional Alfvén waves is
related to the fact that the 3-DNLS equation (4.12) (and moreover (4.16))
is not a completely integrable system (and therefore this equation cannot
be integrated by the IST method). Thus the corresponding problem can be
solved only by numerical simulation methods (see Sect. 4.5).

4.2 Asymptotic and Qualitative Analysis of Solutions of
GKP Equation and 3-DNLS Equation

In this section, on the basis of the results of Sect. 2.2, we study the struc-
ture of (possible) multidimensional solutions of the GKP equation (4.3) with
an arbitrary nonlinearity exponent. We employ an approach that takes into
account the asymptotics of the solutions along the direction of the wave prop-
agation. The study of the asymptotic behavior of solutions of the 3-DNLS
equation along the direction of the wave propagation is a simpler problem
because we can explicitly obtain exact solutions in the one-dimensional ap-
proximation [32,33]. We also present some considerations on the construction
of the eight-dimensional phase space portraits for systems described by the
GKP equation based on the results of qualitative analysis of the generalized
KdV-class equations.

4.2.1 Basic Equations

Here we first consider the GKP equation and then discuss the 3-DNLS equa-
tion. Let us first write the GKP equation (4.3) in the following form:

∂η

(
∂tu+ αu∂ηu− µ∂2

ηu+ β∂3
ηu+ δ∂4

ηu+ γ∂5
ηu
)

= κ∆⊥u, (4.45)
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where ∆⊥ = ∂2
ζ1

+ ∂2
ζ2

and ζ1 and ζ2 are the transverse coordinates. When
µ = δ = γ = 0, (4.45) is the classic KP equation which represents the
completely integrable Hamiltonian system and has in the case ∆⊥ = ∂2

ζ1
so-

lutions in the form of a one-dimensional (for βκ < 0) or two-dimensional (for
βκ > 0) soliton (see Sect. 3.1)2. In Sect. 2.2, using methods of the asymp-
totic and qualitative analysis, we already studied in detail the asymptotics
of the one-dimensional analogue of (4.45), and constructed the sufficiently
complete classification of its solutions, including the solutions of soliton and
non-soliton types. Now, our purpose is generalization of those results, taking
also into account the results of Ref. [83], to the multidimensional cases. To
avoid unnecessary cumbersome expressions, we focus on (4.45) in the two-
dimensional form assuming that ∆⊥ = ∂2

ζ1
. Further generalization of the

technique used (as well as the results obtained) to the full three-dimensional
case ∆⊥ = ∂2

ζ1
+∂2

ζ2
is rather trivial, as we demonstrate below. Thus here we

assume that ζ1 = ζ and, for clarity, α = 6; the latter can be easily obtained
by the scale transform u→ (6/α)u of (4.45).

Now, let us introduce the new variables, η̄ = η+ζ and ζ̄ = η−ζ. Applying
first η̄ and then ζ̄ to (4.45), we obtain two one-dimensional equations,

∂η̄

(
∂tu+ 6u∂η̄u− µ∂2

η̄u+ β∂3
η̄u+ δ∂4

η̄u+ γ∂5
η̄u
)

= κ∂2
η̄u,

∂ζ̄

(
∂tu+ 6u∂ζ̄u− µ∂2

ζ̄u+ β∂3
ζ̄u+ δ∂4

ζ̄u+ γ∂5
ζ̄u
)

= κ∂2
ζ̄u (4.46)

written in the reference frame with the axes η̄ and −ζ̄ rotated through an
angle π/4 relative to the axes η and ζ. The possibility of representation (4.46)
means that the starting equation (4.45) admits two types of one-dimensional
solutions, u(η̄, t) and u(ζ̄, t), satisfying the first and the second equations of
the set (4.46), respectively. It is necessary, however, to bear in mind that the
“one-dimensionality” of these solutions nevertheless implicitly assumes the
linear dependence of each of the new variables η̄ and ζ̄ on both coordinates
η and ζ.

Integrating equations (4.46) over η̄ and −ζ̄, respectively, we obtain two
equations of the generalized KdV equation type,

∂tu+ (−κ+ 6u) ∂η̄u− µ∂2
η̄u+ β∂3

η̄u+ δ∂4
η̄u+ γ∂5

η̄u = 0,

∂tu+ (−κ+ 6u) ∂ζ̄u− µ∂2
ζ̄u+ β∂3

ζ̄u+ δ∂4
ζ̄u+ γ∂5

ζ̄u = 0, (4.47)

coupled with each other by the way of the change of the coordinates made
above. Now, transferring to the coordinates moving along the corresponding
2 The structure and dynamics of solutions of the model (4.45), which is generally

not integrable analytically in the case δ = 0, will be investigated in detail in
Sects. 4.4 and 4.5 (see also Refs. [113,148]). In particular, it is demonstrated
that when µ = 0, two-dimensional and three-dimensional soliton-type solutions
with the monotonous or oscillatory asymptotics can take place, depending on
the signs of β, γ, and κ. These solutions in the presence of the viscous-type
dissipation in the medium (µ > 0) lose their symmetry and damp with time.
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axis with the velocity −κ, i.e., applying the change η′ = η̄+κt and ζ ′ = ζ̄+κt
in (4.47) and omitting “primes” for simplicity, we arrive at

∂tu+ 6u∂ηu− µ∂2
ηu+ β∂3

ηu+ δ∂4
ηu+ γ∂5

ηu = 0,

∂tu+ 6u∂ζu− µ∂2
ζu+ β∂3

ζu+ δ∂4
ζu+ γ∂5

ζu = 0. (4.48)

Thus we can now perform the analysis of only one (generalized) equation
of the set (4.48), and then, by inverting the change of variables, extend the
obtained results to two-dimensional solutions u(η, ζ, t) of (4.45) with ∆⊥ =
∂2

ζ .
To consider the 3-DNLS equation, we first rewrite it in the differential

form
∂η

[
∂th+ s∂η

(
|h|2 h

)
− iλ∂2

ηh− ν∂2
ηh
]

= κ∆⊥h, (4.49)

where ∆⊥ = ∂2
ζ1

+∂2
ζ2

. Then assuming for simplicity that ∆⊥ = ∂2
ζ (similarly

to the above, generalization to the three-dimensional case is trivial) and in-
troducing, by analogy with the GKP equation, the new variables η̄ = η + ζ
and ζ̄ = η − ζ, we again obtain two one-dimensional equations,

∂η̄

[
∂th+ s∂η̄

(
|h|2 h

)
− iλ∂2

η̄h− ν∂2
η̄h
]

= κ∂2
η̄h,

∂ζ̄

[
∂th+ s∂ζ̄

(
|h|2 h

)
− iλ∂2

ζ̄h− ν∂2
ζ̄h
]

= κ∂2
ζ̄h,

written in the reference frame with the axes η̄ and −ζ̄ rotated through an
angle π/4 relative to the axes η and ζ. Further obvious transformations give
us the set

∂th+ s∂η′
(
|h|2 h

)
− iλ∂2

η′h− ν∂2
η′h = 0,

∂th+ s∂ζ′
(
|h|2 h

)
− iλ∂2

ζ′h− ν∂2
ζ′h = 0, (4.50)

written in the coordinates η′ = η̄+κt and ζ ′ = ζ̄+κt, i.e., in the frame moving
along the corresponding axis with the velocity −κ. Thus, as in the case of
the GKP equation, we can perform the analysis for only one equation of the
set (4.50) and then, with the inverse change of the system’s variables, extend
the results to two-dimensional solutions h(η, ζ, t) of (4.49) with ∆⊥ = ∂2

ζ .

4.2.2 Generalization to Multidimensional Cases

First, consider generalization of the results obtained in Sect. 2.2 to equations
of the GKP class (4.45). Here, we investigate a more general case when equa-
tions (4.48) contain the nonlinear term with an arbitrary positive exponent p
[112]. Thus, for example, the first equation of the system (4.48) is now given
by

∂tu+ 6up∂ηu− µ∂2
ηu+ β∂3

ηu+ δ∂4
ηu+ γ∂5

ηu = 0. (4.51)
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Recall that in the case µ = δ = γ = 0 equation (4.51) converts to KdV equa-
tion if p = 1, and MKdV equation if p = 2. Note also that, analogous to the
one-dimensional problem, the cases when in (4.51) the nonlinearity exponent
is p = 1, 2 are interesting from the physical point of view, whereas applica-
tions with p > 2 are currently unknown. However, we study here the general
case p > 0 to elucidate the dependence of the solutions on the nonlinearity
exponent; we have in mind that equations with arbitrary integer p > 0 of-
ten reveal similar mathematical characteristics just like the generalized KdV
equation considered in Sect. 2.2,.

Taking into account the signs of µ > 0 and δ > 0 (with respect to the
physical sense of the corresponding terms, see Sect. 2.2 for details), assuming
without loss of generality that γ > 0 and β = ±1 [112], and substituting
u = V w, where V is the velocity of the wave propagating along the axis η
and ζ for the first and the second equation of the set (4.48), respectively, we
can generalize the results obtained in Ref. [112] for different signs of V and
β to (4.46) and, accordingly, to (4.45) with p ≥ 1 and obtain the following:

1. The exponent p defines the character of the functional dependence V =
f(u). For p > 1, such a dependence for (4.45), as in the one-dimensional
case [112], becomes nonlinear unlike the known linear one for p = 1 (for
example, in the case of the KP equation). Moreover, solutions of (4.45) can
have both positive and negative polarity (u > 0 or u < 0 for either sign of
V ) for even p.

2. In the case of the conservative equations of class (4.45) (the cases when
µ = δ = 0) asymptotics of the solutions is defined by:
(a) When V > 0, β = −1 and V < 0, β = −1 (the upper and lower signs,
respectively):

w = A1 exp
[
(2γ)−1/2

(
C2 +

√
C4 ± 4γ

)1/2

χ

]
. (4.52)

(b) When V < 0, β = 1:

w = A2 exp
[(

2C−1γ1/2
)−1 (

2C−2γ1/2 − 1
)1/2

χ

]

× cos
[(

2C−1γ1/2
)−1 (

2C−2γ1/2 + 1
)1/2

χ+Θ

]
, (4.53)

where A1, A2 and Θ are the arbitrary constants, C = |V |−1/4, and χ =
η ± ζ + (κ − V )t (the upper(lower) sign here relates to the first(second)
equation of the set (4.46), respectively).
As we can see from expressions (4.52) and (4.53)3, solitons with monoton-
ous as well as oscillating asymptotics (depending on the signs of V and β)
can take place as the solutions u(η, ζ, t) of (4.45) when µ = δ = 0. Note

3 Other correlations of the signs of V and β are not realized [112].
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that for β = 0 and any γ > 0 solutions of (4.46) with µ = δ = 0 are given
by w = (A1 + A2χ/C) exp(χ/γ1/4C) and, consequently, also describe a
soliton with the monotonous asymptotics [148]. Fig. 4.3 shows the result

Fig. 4.3. Two-dimensional
soliton solution of (4.45)
with ∆⊥ = ∂2

ζ for µ = δ = 0,
p = 1, γ = 1, and β = −0.8
at the time moment t = 0.2

of numerical integration of (4.45) for µ = δ = 0 with the initial condition
u = u0 exp(−η2/l21 − ζ2/l22), that confirms our asymptotic analysis.

3. In the case of the dissipative equations of class (4.45) with an instability
(when β = γ = 0) the asymptotics of the solutions is defined by
(a) For δ > (4/27)µ3C8,

w = A1 exp
[
(2δC)−1/3

Q+
1 χ
]

+ exp
[
− (16δC)−1/3

Q+
1 χ
]

×
{
A2 cos

[√
3 (16δC)−1/3

Q−
1 χ+Θ1

]
+ A3 sin

[√
3 (16δC)−1/3

Q−
1 χ+Θ2

]}
. (4.54)

(b) For δ = (4/27)µ3C8,

w = A1 exp
[
(δC/4)−1/3

χ
]

+A2 (1 +A3χ) exp
[
− (2δC)−1/3

χ
]
. (4.55)

(c) For δ < (4/27)µ3C8,

w = A1 exp
[
(δC/4)−1/3 Re

(
Q±)χ]

+A2 exp
[
− (2δC)−1/3

χ
(
Re

(
Q±)−√

3
∣∣Im (

Q±)∣∣)]
+A3 exp

[
− (2δC)−1/3

χ
(
Re

(
Q±)+

√
3
∣∣Im (

Q±)∣∣)] , (4.56)

where A1, A2, A3, Θ1, and Θ2 are arbitrary constants, Q±
1 = Q+ ±Q−,

Q± =
[
1 ±

√
1 − 4µ3C8/27δ

]1/3

,

and Q± is real in the cases (a) and (b) and complex in the case (c).
It is easy to see from (4.54)–(4.56) that the solutions u(η, ζ, t) of (4.45) have
the oscillating asymptotics in the case (a) and the exponentially decreasing
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Fig. 4.4. Two–dimensional
soliton solution of (4.45)
with ∆⊥ = ∂2

ζ for β = γ = 0,
V > 0, at the time moment
t = 0.3. Top µ = 1, δ = 10−6

(corresponds to the case (c)
where δ < (4/27)µ3C8). Bot-
tom µ = 1, δ = 1 (corre-
sponds to the case (a) where
δ > (4/27)µ3C8)

asymptotics in the cases (b) and (c). Fig. 4.4 shows numerical solutions
of (4.45) in the cases (c) and (a), respectively, obtained for the initial
condition u = u0 exp(−η2/l21 − ζ2/l22).

4. To properly transform the phase portraits of the system and “bind” them
(for the two-dimensional equation), we note that in the case µ = δ = 0 the
phase space is eight-dimensional, and in the case β = γ = 0 the phase space
is six-dimensional. Here we can employ the results of Ref. [112] coupling the
characteristics of every singular point of each equation of the set (4.46) in
the eight-dimensional and six-dimensional phase spaces, respectively. Thus
the corresponding type of the singularity in either of the four-dimensional
or three-dimensional subspaces [112] under the inverse transform of the
coordinates, η = (η̄ + ζ̄)/2 and ζ = (η̄ − ζ̄)/2, is not changed, and only
parameters of the phase portraits that correspond to solutions of the same
class change (leading to the respective changes such parameters as the
amplitude, the front steepness, frequency of the oscillations, etc.).

Consider now the 3-DNLS equation (4.49) with ∆⊥ = ∂2
ζ . First we note

that (as was already shown in Sect. 4.2.1) (4.49) can be written in the form
of the set (4.50), and, as it is known from Refs. [32,33], an exact solution of
the one-dimensional DNLS equation is given by

h(η, t) = (A/2)1/2
(
e−Aη + ieAη

)
e−iA2t/ cosh2(2Aη), (4.57)

where A is the amplitude of the wave (see Sect. 2.4 for more details). Now
we can apply the inverse change of the variables, η = (η̄ + ζ̄)/2 and ζ =
(η̄ − ζ̄)/2, and, extending solution (4.57) to the two-dimensional case, (4.49)
with ∆⊥ = ∂2

ζ , write

h(η, ζ, t) = (A/2)1/2
(
e−Aχ + ieAχ

)
e−iA2t/ cosh2(2Aχ), (4.58)

where, as for the GKP equation, χ = (η±ζ+(κ−V )t), and V is the velocity of
the wave propagation relative to the coordinate axis η or ζ for the first or the
second equation of the set (4.50), respectively. Fig. 4.5 shows the character of
the solution of the first equation of the set (4.50) with ν = 0. The dependence
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Fig. 4.5. Solution |h|2 of the first equa-
tion of the set (4.50) for A = 1 and t = 0

of the form of the solution on dissipation in the system as well as the dynamic
characteristics of the solution for ν > 0 is considered in Sect. 4.5 in detail.

Finally, we do not analyze solutions of the 3-DNLS equation here because,
unlike the GKP equation (4.45) and the related set (4.48), the exact solution
of each equation of the set (4.50) is well known, and there is no need to
construct any special classification of its solutions in the phase space.

4.2.3 Concluding Remarks

To conclude this section, we note that for the GKP equation we considered
only the particular cases when µ = δ = 0 and β = γ = 0 in (4.45) here. For
other values of the corresponding coefficients, more complex wave structures
resulting from the simultaneous presence of all the effects discussed separately
above can be observed. Indeed, results obtained numerically in Sect. 4.4.4
(see also Refs. [114,137]), demonstrate that when β, µ, δ �= 0 in the presence
of the Gaussian random fluctuations of the wave field (for harmonic initial
conditions and initial conditions in the form of a solitary pulse) stable wave
structures of the soliton-like type can be formed too, with the time evolution.
Furthermore, stable soliton structures can be formed also for γ �= 0. An
analytical study of such cases is highly complicated, however, although the
approach considered above can be used for them as well. Note also that the
results presented in this section for the GKP equation can be very useful when
studying solutions and interpreting the multidimensional phase portraits of
more complicated multidimensional model equations (see, for example, Ref.
[83]).
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4.3 Approaches to Numerical Integration of Equations
of GKP-Class and 3-DNLS-Class

Methods of numerical integration of the KP equation and the 1-DNLS equa-
tion, considered in Sect. 2.4 and Sect. 3.1, although employed with reasonable
success to solve a number of problems, still have some shortcomings. Indeed,
the method of stabilizing factor [31], being “static,” does not allow us to solve
dynamic problems where the principal objects for analysis are the parameters
of solitons in motion, including solitons’ interactions and collisions, etc. Be-
sides, it was obtained [80] that generalization of this method to investigate
the structure of stationary solutions of (4.3) with ν = δ = 0 [80] leads to
divergences when γ < 0. The “dynamic” method of iterative splitting [64],
although having good accuracy characteristics, is cumbersome and therefore
highly time-consuming (computation-wise). The hop-scotch method, used in
Ref. [58] for investigation of one-dimensional solitons in the KP model when
(β/κ) < 0 (see (4.3) with ν = δ = 0), for example, has a similar problem com-
bined with low accuracy at the boundaries of the integration region (that es-
pecially adversely affects the investigation of two-dimensional solutions of the
KP equation when (β/κ) > 0). One of the highly effective methods of numer-
ical integration of the DNLS equation based on the Ablowitz–Ladik scheme
and considered in Sect. 2.4, was developed only for the one-dimensional ap-
proximation, i.e., it does not take into account the integral diffraction term
in the right-hand side of the 3-DNLS equation in the form (4.22).

In this section, we consider a few rather simple methods of numerical
integration of the GKP- and 3-DNLS-class equations developed in Refs.
[77,81,83,98,113,148,195,198]. These methods will be used to study the dy-
namics of solitons and non-stationary wave packets described by (4.3) and
(4.14). The methods are based on the explicit and implicit finite-difference
schemes, Sect. 4.3.1 and Sect. 4.3.2, with the O(τ2, h2

x,y) and O(τ2, h4
x,y) ap-

proximations. We consider also the dynamic spectral method, Sect. 4.3.3,
including first the Fourier transform of the basic equations in the space vari-
ables and then the subsequent solution of the resulting first-order differential
equations by the Runge–Kutta method. For every algorithm, we formulate
the stability conditions. Unlike the schemes considered in Sect. 3.1, the meth-
ods presented here not only enable us to control the evolution of the solutions
as well as the dynamics of the solitons and their interactions, they, exhibiting
high accuracy characteristics, are less cumbersome than the iterative splitting
and the hop-scotch methods used in Refs. [64] and [58] for the KP equation.
We consider all the methods on an example of the standard KP equation aim-
ing, first of all, to avoid the inconveniences of those considered earlier as well
as to compare all of them. When applied to the 3-DNLS equation, the new
methods, unlike the method based on the Ablowitz–Ladik scheme developed
in Ref. [33], take into account the multidimensionality of the problem. In con-
clusion, we discuss the comparative characteristics of the schemes of different
types obtained when testing the basic equations on the exact solutions.
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4.3.1 Groups of Explicit and Implicit Difference Schemes

Here, we consider the finite-difference methods for the GKP-class equations
(on the example of the usual KP equation for simplicity) and the 3-DNLS
equation with arbitrary coefficients in the two-dimensional geometry on the
basis of the standard models (4.3), with ν = δ = γ = 0, and (4.12), respec-
tively. Generalization of these methods to the three-dimensional equations
with addition of the terms accounting for the higher order dispersion cor-
rection and the instability (for the KP equation), as well as the effects of
the dissipation (for both KP and 3-DNLS equations) is straightforward and
generally does not require special explanations (see remarks on this in the
end of Sect. 4.3.4). We first consider the problem for the two-dimensional KP
equation, and then extend the obtained results to the 3-DNLS equation with
∆⊥ = ∂2

y .
We write the basic equations in the integral-differential form,

∂tu+ Â(t, y)u = f, (4.59)

where

f = κ

x∫
−∞

∂2
yudx,

and in the case of the KP equation,

Â(t, y) = αu∂x + β∂3
x.

To integrate (4.59) numerically, both the explicit and implicit methods can
be used, with their accuracy depending on the approximation order of the
corresponding derivatives and the diffraction term f . Below, we consider the
explicit and implicit numerical schemes with different approximation orders
separately.

Explicit Schemes. Here, we use for the integration the following explicit
scheme with O(τ2, h2

x,y) approximation:

un+1
ij − un−1

ij

2τ
= − α

2hx
un

ij

(
un

i+1,j − un
i−1,j

)
− β

2h3
x

(
un

i+2,j − 2un
i+1,j + 2un

i−1,j − un
i−2,j

)
+fn

ij , (4.60)

(compare with the scheme (1.80) in Sect. 1.3). Here, fij is the approxima-
tion of the integral f by one of the suitable quadratures. In particular, the
quadrature prismoidal formula (the Simpson formula) gives

fij = κ
hx

3

m∑
i=1

(
f ′
2i−1,j + 4f ′

2i,j + f ′
2i+1,j

)
, (4.61)
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where
f ′

ij =
1
h2

y

(ui,j+1 − 2uij + ui,j−1) ,

andm = (N−1)/2 (i.e.,N is odd). According to the estimates of Refs. [83,98],
the Simpson formula (4.61) approximates integral f on the solutions of (4.59)
with the O(h2

x,y) accuracy for the grid steps hx ≤ 0.05 ÷ 0.075 ≤ hy (that
depends on the particular values of the coefficients α, β, and κ in (4.60) and
(4.61). The approximation of the integral by the quadrature Newton–Cotes
formula with the number of nodes m > 3, gives us

fij = κ

n∑
k=1

m∑
i=1

A
(m)
i f ′

l,j , (4.62)

where l = i+ (m− 1)(k − 1), A(m)
i = (m − 1)hxC

(m)
i , and C

(m)
i are the co-

efficients of the quadrature formula; this approach requires fewer restrictions
on the step of the spatial grid. Approximation (4.62) enables us to compute
the integral f with the O(h4

x,y) accuracy for hx ≤ 0.1 ≤ hy [77,83,98].
To estimate the stability of scheme (4.60) we use the Fourier method.

Thus we rewrite the difference equation in the form

up+1
mn − up−1

mn

2τ
= − α

2hx
up

mnΛxu
p
mn − β

2h3
x

Λxxxu
p
mn

+
κ

h2
y

x∫
−a

Λyyu
p
mndx,

where Λkq is the difference approximation of a differential operator of the qth

order in k; the lower limit of the integration, a, is defined by the size of the
region of numerical integration. Solutions to the equation are in the form

up
mn = λp

klψ
(k,l)
mn ,

m, n = 1, 2, . . . ,Mm,n − 1,

ψ(k,l)
mn = 2 sin (kπm/Mm) sin (lπn/Mn) .

Note that

Λα...αψ
(k,l) = Λα...α

(
ψ(k)

m ψ(l)
n

)
=
{
ψ(l)Λα...αψ

(k), α = x,
ψ(k)Λα...αψ

(l), α = y.
(4.63)

For λkl we then obtain

λkl = 1 +
τ

hx

[
sin khx

(
4β
h2

x

sin2 khx

2
− αu

)

−8κhx

h2
y

sin2 lhy

2
u−1

x∫
−a

udx

]
,
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where u is the local value of u(t, x, y). The stability takes place when the
following inequality is satisfied:

max
k,l

∣∣∣∣λkl

∣∣∣∣ ≤ 1. (4.64)

Taking into account that the eigenvalues reach minimum at k = l = Mm,n−1,
we find

λMm−1,Mn−1 = 1 +
τ

hx

∣∣∣∣∣∣
2β
h2

x

− αu− 4κhx

h2
y

u−1

x∫
−a

udx

∣∣∣∣∣∣ .
Thus inequality (4.64) is satisfied when

τ

hx

∣∣∣∣∣∣αv −
2β
h2

x

+
4κhx

h2
y

v−1

x∫
−a

udx

∣∣∣∣∣∣ ≤ 1, (4.65)

where
v = max

k,l
|u| .

For a finite a (which is related with the finite product Mmhx), we are able
to estimate the integral in the left-hand side of (4.65) on the exact solution
(see Sect. 3.1.2) for n,m = 1, 2 and l = 0:

max
x,y

∣∣∣∣∣∣
x∫

−a

udx

∣∣∣∣∣∣ <
(1/ν)+3ν2t∫

3ν2t

udx = 2ν ∼ v1/2.

Then, for sufficiently small step, h = min(hx, hy), we find from inequality
(4.65) that

τ ≤ h3
∣∣∣αvh2 − 2β + 4κv−1/2h

∣∣∣−1

. (4.66)

Thus we obtain that the scheme (4.60) is stable under the condition (4.66).
This conforms with the corresponding stability condition for the scheme for
the KdV equation if we assume here κ = 0 (see Sect. 1.3).

For better accuracy of numerical integration, (4.59) can be approached
by employing the three-layer explicit scheme with O(τ2, h4

x,y) approximation:

un+1
ij − un−1

ij

2τ
=

α

12hx
un

ij

(
un

i+2,j − 8un
i+1,j + 8un

i−1,j − un
i−2,j

)
+

β

8h3
x

(
un

i+3,j − 8un
i+2,j + 13un

i+1,j − 13un
i−1,j

+8un
i−2,j − un

i−3,j

)
+ fn

ij (4.67)



198 4. Generalized Two- and Three-Dimensional Models

(compare with (1.81) in Sect. 1.3). Furthermore we have to use expression
(4.62) to calculate fn

ij . In this case, to ensure the required accuracy, we choose
(unlike (4.61)) another approximation for the second y-derivative given by

f ′
lj = − 1

12h2
y

(ul,j+2 − 16ul,j+1 + 30ulj − 16ul,j−1 + ul,j−2) . (4.68)

Using the above method, it is possible to demonstrate that for the scheme
(4.67) the requirement of stability for sufficiently small h is given by the
inequality

τ ≤ 9h3
∣∣∣12αvh2 − 27β + 14κv−1/2h

∣∣∣−1

(4.69)

(compare with the corresponding condition for the KdV equation, Sect. 1.3).
The limits on the time step set by the inequalities (4.66) and (4.69), tak-
ing into account the two-dimensional character of the problem, are indeed
important. Besides, it is necessary to store the function values of the two
previous layers for every time step. Therefore it is hardly reasonable to use
such simple schemes as (4.60) and (4.67) to obtain the asymptotic solutions
for t→ ∞. These schemes, however, can be useful for simulation of formation
and dynamics of solutions at the initial stages of their evolution.

Consider now the possibility to employ the explicit difference schemes
for the 3-DNLS equation in the form (4.12). When integrating this equation
numerically we use the approach detailed in Refs. [65–67]. We first perform
the change h = ph̄ in (4.12) where p = 1+ie, h̄ = Reh, and e is the eccentricity
of the polarization ellipse of the Alfvén wave. Thus we obtain

∂th̄+ 3s |p|2 h̄2∂xh̄− iε∂2
xh̄ = κ

∫ x

−∞
∆⊥h̄dx (4.70)

which consequently, taking into account the change h̄ = u, can be represented
in the form (4.59) with the operator

Â(t, u) = 3s |p|2 h̄2∂x − iε∂2
x. (4.71)

For integration in this case, it is reasonable to choose the group of the three-
layer explicit schemes given by

h̄n+1
ij − h̄n−1

ij

2τ
= α

(
h̄n

ij

)2 dx

(
h̄n

ij

)
+ βd2

x

(
h̄n

ij

)
+ fn

ij , (4.72)

where α = −3s|p|2, β = iε, and the integral fn
ij is defined by expressions

analogous to (4.61) and (4.62). Depending on the approximation order of
the differential operators in the right-hand side of (4.72) by the difference
operators, we can obtain the three-layer explicit schemes with different ac-
curacies. For the schemes with the O(τ2,∆2) and O(τ2, ∆4) approxiamtion
(here, ∆ = max[∆x,∆y] is the largest step on the spatial grid), using the
Fourier method for the difference approximations of the corresponding order
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in the KP equation, we obtain for the 3-DNLS equation the restrictions on
the time step

τ ≤ ∆2
∣∣∣8κ2v−1 +

(
2ε− αv2∆

)2∣∣∣−1/2

(4.73)

and
τ ≤ 3∆2

∣∣∣49κ2v−1 +
(
7ε− 4αv2∆

)2∣∣∣−1/2

, (4.74)

where
v = max

i,j,n

∣∣h̄n
ij

∣∣ .
Thus the three-layer explicit schemes for the 3-DNLS equation (4.70) with the
O(τ2, ∆2) and O(τ2, ∆4) approximation are stable under conditions (4.73)
and (4.74), respectively.

Implicit Schemes. For the KP equation (4.59), consider the following im-
plicit scheme with O(τ2, h4

x,y) approximation:

un+1
ij − un

ij

τ
=

α

24hx

[
un

ij

(
un+1

i+2,j − 8un+1
i+1,j + 8un+1

i−1,j − un+1
i−2,j

)
+ un+1

ij

(
un

i+2,j − 8un
i+1,j + 8un

i−1,j − un
i−2,j

)]
+

β

16h3
x

(
un+1

i+3,j − 8un+1
i+2,j + 13un+1

i+1,j − 13un+1
i−1,j

+8un+1
i−2,j − un+1

i−3,j + un
i+3,j − 8un

i+2,j

+13un
i+1,j − 13un

i−1,j + 8un
i−2,j − un

i−3,j

)
+fn

ij , (4.75)

where fn
ij is defined by (4.62) and (4.68) and the difference operator in x

coincides with the corresponding operators in the scheme (1.84) (see Sect.
1.3). Following the technique used in Sect. 1.3, we represent (4.75) for every
fixed j as

−a1
0ju

n
3j + a2

0ju
n
2j − a3

0ju
n
1j + a4

0ju
n
0j = gn

0j , i = 0;

−a1
1ju

n
4j + a2

1ju
n
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1ju
n
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1ju
n
1j

−a5
1ju

n
0j = gn
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−a1
2ju

n
4j + a2

2ju
n
4j − a3

2ju
n
3j + a4

2ju
n
2j

−a5
2ju

n
1j + a6

2ju
n
0j = gn

2j , i = 2;

−a1
iju

n
i+3,j + a2

iju
n
i+2,j − a3

iju
n
i+1,j + a4

iju
n
ij

−a5
iju

n
i−1,j + a6

iju
n
i−2,j − a7

iju
n
i−3,j = gn

ij , 3 ≤ i ≤ N − 3; (4.76)

a2
N−2,ju

n
Nj − a3

N−2,ju
n
N−1,j

+a4
N−2,ju

n
N−2,j − a5

N−2,ju
n
N−3,j

+a6
N−2,ju

n
N−4,j − a7

N−2,ju
n
N−5,j = gn

N−2,j , i = N − 2;
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−a3
N−1,ju

n
Nj + a4

N−1,ju
n
N−1,j − a5

N−1,ju
n
N−2,j

+a6
N−1,ju

n
N−3,j − a7

N−1,ju
n
N−4,j = gn

N−1,j , i = N − 1;

a4
Nju

n
Nj − a5

Nju
n
N−1,j + a6

Nju
n
N−2,j

−a7
Nju

n
N−3,j = gn
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Here for 3 ≤ i ≤ N − 3,

gn
ij = −bij

(
un−1

i+3,j− 8un−1
i+2,j + 13un−1

i+1,j− 13un−1
i−1,j + 8un−1

i−2,j− un−1
i−3,j

)
+un−1

ij + τfn−1
ij , j = 1, 2, . . . ,M, n = 1, 2, . . . , N1, (4.77)

and

a1
ij = −τβ/16h3

x, a7
ij = −a1

ij ;

a2
ij = τ

[
(β/h2

x) − (αun−1
ij /12)

]
/2hx, a6

ij = −a2
ij ;

a3
ij = τ

[
(αun−1

ij /3) − (13β/16h2
x)
]
/hx, a5

ij = −a3
ij ; (4.78)

a4
ij = 1+ατ

(
un−1

i+2,j−8un−1
i+1,j+8un−1

i−1,j−un−1
i−2,j

)
/24hx, bij = a7

ij .

The computations in y are performed for 2 ≤ j ≤ M − 2. The values of gn
ij

for i = 0, 1, 2 and j = N − 2, N − 1, N are defined by the same formulas as
(1.88) in Sect. 1.3 (here we omit index j for further convenience):

gn
0 = −a1

0u
n−1
3 + a2

0u
n−1
2 − a3

0u
n−1
1 + a4

0u
n−1
0 ,

gn
1 = −a1

1u
n−1
4 + a2

1u
n−1
3 − a3

1u
n−1
2 + a4

1u
n−1
1 − a5

1u
n−1
0 ,

gn
2 = −a1

2u
n−1
5 + a2

2u
n−1
4 − a3

2u
n−1
3 + a4

2u
n−1
2 − a5

2u
n−1
1 + a6

2u
n−1
0 ,

gn
N−2 = a2

N−2u
n−1
N − a3

N−2u
n−1
N−1 + a4

N−2u
n−1
N−2 − a5

N−2u
n−1
N−3

+a6
N−2u

n−1
N−4 − a7

N−2u
n−1
N−5, (4.79)

gn
N−1 = −a3

N−1u
n−1
N + a4

N−1u
n−1
N−1 − a5

N−1u
n−1
N−2 + a6

N−1u
n−1
N−3

−a7
N−1u

n−1
N−4,

gn
N = a4

Nu
n−1
N − a5

Nu
n−1
N−1 + a6

Nu
n−1
N−2 − a7

Nu
n−1
N−3.

The coefficients a1
i , . . . , a

7
i for i = 0, 1, 2 and i = N −2, N −1, N are obtained

from the boundary conditions of the problem (see Sect. 4.3.2).
The set of equations (4.77) can be solved by employing the monotonous

7-point sweep method. The corresponding expressions are given in Sect. 1.3
(see (1.89)–(1.92)) where for the present case it is necessary to change h
to g and to take into account that expressions for hn

i (1.87) and gn
ij (4.77)

differ significantly. Thus, as we easily see from (4.79), the algorithm of the
monotone sweep is correct if the following conditions for (4.59) and (4.75)
are satisfied for 3 ≤ i ≤ N − 3:

un−1
i �= 12β/αh2

x and un−1
i �= 39/16αh2

x.
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Obviously, these inequalities are satisfied for sufficiently small step hx. Then,
following the technique used in Sect. 1.3 we can obtain the conditions similar
to (1.93)–(1.95).4 Testing of the scheme (4.75) demonstrated that the ade-
quate accuracy of the solution is achieved for h = 0.1 and τ = 0.0025 (see
Sect. 4.3.4). We also note that for i = 0, 1, 2 and i = N−2, N−1, N , in order
to satisfy the conditions (1.91) for the set (4.77) it is sufficient to choose the
proper boundary conditions (cf. the next section).

For equation (4.59), consider now another implicit scheme with O(τ2, h2
x,y)

approximation,

un+1
ij − un

ij

τ
+

α

4hx

[
un

ij

(
un+1

i+1,j − un+1
i−1,j

)
+ un+1

ij

(
un

i+1,j − un
i−1,j

)]
+

β

4h3
x

(
un+1

i+2,j − 2un+1
i+1,j + 2un+1

i−1,j − un+1
i−2,j + un

i+2,j

−2un
i+1,j + 2un

i−1,j − un
i−2,j

)
= fn

ij , (4.80)

where fn
ij is defined by (4.61) or (4.62), and (4.68). Analogous to equation

(1.96) in Sect. 1.3, we represent (4.80) for each fixed j in the form

a1
0ju

n
2j − a2

0ju
n
1j + a3

0ju
n
0j = gn

0j , i = 0;

a1
1ju

n
3j − a2

1ju
n
2j + a3

1ju
n
1j − a4

1ju
n
0j = gn

1j , i = 1;

a1
iju

n
i+2,j − a2

iju
n
i+1,j + a3

iju
n
ij − a4

iju
n
i−1,j

+a5
iju

n
i−2,j = gn

ij , 2 ≤ i ≤ N − 2; (4.81)

−a2
N−1,ju

n
Nj + a3

N−1,ju
n
N−1,j − a4

N−1,ju
n
N−2,j

+a5
N−1,ju

n
N−3,ju

n
N−4,j = gn

N−1,j , i = N − 1;

a3
Nju

n
Nj − a4

Nju
n
N−1,j + a5

Nju
n
N−2,j = gn

Nj , i = N.

Here for 2 ≤ i ≤ N − 2,

gn
ij =

τ

4h3
x

(
un−1

i+2,j − 2un−1
i+1,j + 2un−1

i−1,j − un−1
i−2,j

)
+ un−1

ij + τfn−1
ij ,

a1
ij = −τβ/4h3

x = −a5
ij

a2
ij = τ

[
αun−1

ij − (2β/h2
x)
]
/4hx = −a4

ij

and
a3

ij = 1 + ατ
(
un−1

i+1,j − un−1
i−1,j

)
/4hx

(compare the first equation of this set with (1.99)). The computations in y
are performed for 2 ≤ j ≤ M − 2. For i = 0, 1 and i = N − 1, N , omitting
index j, we have from (4.82)

4 Note that the existence of these conditions on the correctness of the used al-
gorithm is only related to the nonlinearity of the initial equation. The implicit
difference schemes are absolutely stable in the linear case.
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gn
0 = a1

0u
n−1
2 − a2

0u
n−1
1 + a3

0u
n−1
0 ,

gn
1 = a1

1u
n−1
3 − a2

1u
n−1
2 + a3

1u
n−1
1 − a4

1u
n−1
0 ,

gn
N−1 = −a2

N−1u
n−1
N + a3

N−1u
n−1
N−1 − a4

N−1u
n−1
N−2 + a5

N−1u
n−1
N−3, (4.82)

gn
N = a3

Nu
n−1
N − a4

Nu
n−1
N−1 + a5

Nu
n−1
N−2.

The coefficients a1
i , . . . , a

5
i are defined from the boundary conditions of the

initial value problem. The set (4.82) can be solved using the non-monotonous
sweep method according to the algorithm proposed in Ref. [97]. The scheme
(4.82) is correct when the matrix A is not degenerated for all j, i.e., detA �= 0.

Consider now the family of the implicit schemes for the 3-DNLS equation
(4.70),

h̄n+1
ij − h̄n

ij

τ
=
α

2

[(
h̄n

ij

)2 dx

(
h̄n+1

ij

)
+
(
h̄n+1

ij

)2
dx

(
h̄n

ij

)]
+
β

2
d2

x

(
h̄n+1

ij + h̄n
ij

)
+ fn

ij , (4.83)

where, depending on the order of the space derivatives on the right-hand
side of the equation, the integral term fn

ij is defined by (4.61) or (4.62), and
(4.68). It is possible to solve the scheme (4.83), as well as the schemes (4.75)
and (4.80) using various versions of the sweep method [97]. As shown in
Refs. [83,98], the use of the 7-point sweep method for the scheme with the
O(∆4

x,∆
2
y) approximation of the space derivatives for a rather small step,∆ =

∆x ≤ ∆y, gives the time step restriction (connected with the nonlinearity of
the problem) with the value very close to that obtained for 1-DNLS equation
(see Sect. 2.4.4).

The analysis of stability of the schemes (4.60), (4.67), and (4.75) approx-
imating the KP equation demonstrates that restrictions on the step τ for
the two latter methods are approximately equal and they are less than those
for the scheme (4.60). Wider opportunities to choose the time step in (4.80)
(the KP equation) save the solution time to a great extent when compared
to the other schemes. It is also evident that the implicit schemes (4.75) and
(4.80) have one more advantage as compared with the explicit ones (4.60)
and (4.67), namely, their two-layer structure ensures lesser requirements to
the computer memory resources. Similar reasons can be stated for explicit
and implicit schemes for the 3-DNLS equation considered above – the im-
plicit schemes are generally more economical with regard to the computer
time and memory requirements compared to the explicit ones with the same
order of approximation. It should be noted, however, that for the same steps
hx,y (∆x,y) and τ , it is still more advantageous to use the schemes (4.60),
(4.67), and (4.72).

4.3.2 Boundary Conditions and Diffraction Terms

It is well known [24] that the asymptote of the two-dimensional soliton of the
KP equation is u ∼ (x2+y2)−1 for |x, y| → ∞ (see Sect. 3.1.2). This relatively



4.3 Approaches to Numerical Integration 203

slow “algebraic” decrease to zero causes difficulties when approximating the
boundary conditions for problem (4.59) and defines the nonlocality of the
diffraction term on the right-hand side of the KP equation. The function
|h|2 = (1 + e2)h̄2 (i.e., the envelope of the Alfvén wave packet) in the DNLS
equation in general approaches zero exponentially [7,33,37,38], but the func-
tion h̄ in the model equations (4.70) reveals an oscillating character, which
also complicates the problem of the adequate approximation of the boundary
conditions and the integral term in (4.59) and (4.70).

For many studies on the dynamics of multidimensional nonlinear waves,
important for applications, it is convenient to use the dissipative boundary
conditions (for example, to take into account possible effects of radiation
from the system [59,63,64]) or to introduce an effective damping near the
boundary of the integration region. The latter can be done by using the
Leontovich boundary conditions of the impedance type or, much easier, by
introducing an additional iteration at every time layer [81], or using the
expressions [83,98]

ũn
ij = (1 − γ̃i)u

n(num)
ij ,

ũN+1 = ũN+2 = ũN+3 = ũN ,

γ̃i = δ̃ exp [ε̃ (i− 1 −N/2)] .
(4.84)

Here, values of the parameters δ̃ and ε̃ in simulations have to be chosen from
the condition of the absence of waves reflected from the boundary (i.e., total
absorption on the boundaries).

For the KP equation in a number of cases we can choose the “natural”
boundary conditions

∂3
xu

∣∣∣∣
Gx,y

= ε∂3
x

[(
x2 + y2

)−1
]

= 24ε
x
(
y2 − x2

)
(x2 + y2)4

, (4.85)

where ε = ε(ν, ξ) is chosen in the simulation and ν and ξ are the parameters
of the solution (see also Sect. 3.1.2). The simulations show that the bound-
ary conditions (4.85) with the proper choice of the parameter ε have the
O(h5

x,y) approximation to the exact solution. Taking into account the con-
ditions (4.84) or (4.85), we can obtain the coefficients a1

i , a
2
i , . . . , a

l
i (where

l is the number of a point in the template of the difference scheme) and gi

on the boundaries of the simulation region from (4.80) and (4.83) or similar
expressions for the schemes modeling the 3-DNLS equation.

When numerically integrating the diffraction term the integral with the
infinite limit

∫ x

−∞ ∂2
yudx is approximated by the integral

∫ x

−a
∂2

yudx with the
finite lower limit. In this case when choosing the boundary conditions (4.85)
in the KP model, it is necessary to introduce a “component” approximating
I =

∫ −a

−∞ ∂2
yudx into the right-hand side to ensure stability of the numerical

calculation. Thus, if u is a solution of (4.59), the expression for I can be
obtained analytically. For example, for ν = Reν and ξ = 0 we have [83,98]
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I =
8ν6ã

(1 + ν4y2 + ν2ã2)2

[
4ν4y2

1 + ν4y2 + ν2ã2
− 1

]
, (4.86)

where ã = a−3ν2t. If we substitute the integral
∫ x

−∞ ∂2
yudx by its equivalence,

1
2

⎡
⎣ x∫
−∞

∂2
yudx−

∞∫
x

∂2
yudx

⎤
⎦ ,

then the relation
x∫

−∞
∂2

yudx−
∞∫

x

∂2
yudx =

x∫
−a

∂2
yudx−

a∫
x

∂2
yudx

for t = 0 is exact. But for t �= 0 it is again necessary to introduce a “compo-
nent” approximating I ′ =

∫ −a

−∞ ∂2
yudx−

∫∞
a
∂2

yudx, and the expression for I ′

can appear to be more complex than that for I.
For the dissipative boundary conditions [64] and conditions (4.84), tak-

ing into account the effective damping near the boundary of the integration
region, the problem of introduction the “component” approximating the in-
tegral I does not arise. The stability is ensured by the selection of parameters
defining the damping in the absence of waves reflected from the boundary. If
we consider the oscillating character of the function h̄ in the model equations
(4.70) as the most preferable when solving the problem of the Alfvén wave
dynamics, it is necessary to consider the boundary conditions of the type
(4.84). Finally, the standard periodic boundary conditions can also be used
for all the above cases.

4.3.3 Dynamic Spectral Method

First we consider the KP equation by rewriting it in the differential form

∂2
txu+

α

2
∂2

x(u2) + β∂4
xu− κ∆⊥u = 0. (4.87)

Now, we execute the space Fourier transform F on the coordinates x, y, and
z:

U(t, ξ, ζ, η) =
1

(2π)3

∫∫∫
u(t, x, y, z) exp [−i(xξ + yζ + zη)] dxdydz,

u(t, x, y, z) =
∫∫∫

U(t, ξ, ζ, η) exp [i(xξ + yζ + zη)] dξdζdη. (4.88)

Then equation (4.87) is given by

∂tU + fW + gU = 0, (4.89)

where
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f = iαξ/2,

g = −iξ
[
ξ2β + κξ−2

(
ζ2 + η2

)]
,

and
W = U ∗ U.

Furthermore we assume [98,195] that U = X + iY , W = Z1 + iZ2, f ′ = −if ,
g′ = −ig, and rewrite (4.89) as the set

∂tX − f ′Z2 − g′Y = 0,
∂tY + f ′Z1 + g′X = 0. (4.90)

The functions X and Y at t = 0 are defined by the Fourier transform of
the initial condition u(0, x, y, z) = ψ(x, y, z) of the initial value (Cauchy)
problem for (4.87), and by W |t=0 = F [ψ2]. The convolution W on the next
time layers can be obtained by using the convolution theorem [179] according
to the scheme

{U} → {F [U ]} → {V } = {F [U ]F [U ]} → {W} = {F−1[V ]}.
Note that the coefficient g′ has a singularity on the plane ξ = 0 that must be
taken into account in calculations. Here we shall limit ourselves only to the
following remark. For ξ = 0 and ζ, η �= 0 we have U = 0 which can be obtained
easily from (4.89). As to the point (0, 0, 0), it is not difficult to demonstrate
that for the function u satisfying the KP equation, its Fourier-image is given
by U(t, 0, 0, 0) = F [u(t, x, y, z)] = 0 [83,98].

A similar approach is applicable for simulation of the 3-DNLS equation
(4.70). Indeed, writing it in the differential form

∂2
txh̄+ s|p|2∂2

x

(
h̄3
)− iλ∂3

xh̄− κ∆⊥h̄ = 0 (4.91)

and Fourier transforming it in the space coordinates, see (4.88), we obtain
an equation similar to (4.89),

∂tH + fG+ gH = 0, (4.92)

where
f = is|p|2ξ,

g = −iξ
[−iλξ2 + κξ−2

(
ζ2 + η2

)]
,

G = W ∗H,
and

W = H ∗H.
Thus, as in the case of the KP equation represented by (4.89), we obtained
the equation on the complex functions but with a complex (with the non-
zero real part), instead of purely imaginary, factor g. Now it is necessary
to solve the complex equation (4.92), instead of the previous real set. The
values of H at t = 0 are obtained by the Fourier transform of the initial
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condition h̄(0, x, y, z) = ψ(x, y, z) of the Cauchy problem for (4.91), with
G|t=0 = W |t=0∗F [ψ] and W |t=0 = F [ψ2]. The convolution values on the next
time layers can be obtained by employing the convolution theorem similar to
the above procedure for the KP equation.

Regarding equations (4.89), (4.90) and (4.93), we should make the follow-
ing important remark. The finite numerical integration region causes perco-
lation of the spectral components of the function u (the Gibbs oscillations)
that is connected with the presence of ruptures of the periodic extrapolation
of u on the boundaries of the region. Therefore, in numerical realizations of
the Fourier transform, it is necessary to introduce into (4.88) multiplicative
weight functions to suppress the rupture order and satisfy the possibly larger
number of the derivatives of the weighted function u on the boundaries. Thus
approximating an integral by finite sums, it is possible to present the direct
Fourier transform (4.88) in the form

Uσ1σ2σ3(t, ξp, ζq, ηr) =
1

MNK

M−1∑
m=0

N−1∑
n=0

K−1∑
k=0

σ1(m∆x)σ2(n∆y)σ3(k∆z)

×u(t,m∆x, n∆y, k∆z) exp [−i (ξpm∆x+ ζqn∆y + ηrk∆z)] ,

where

σ1(m∆x) = σ1 [(M −m)∆x] ,
σ2(n∆y) = σ2 [(N − n)∆y] ,
σ3(k∆z) = σ3 [(K − k)∆z] ,

ξp = 2πp/M∆x, ζq = 2πq/N∆y, ηr = 2πr/K∆z, p = 0, 1, 2, . . . ,M − 1,
q = 0, 1, 2, . . . , N − 1, and r = 0, 1, 2, . . . ,K − 1. If as a result of the effect
of the weight functions to obtain the minimum distortion of the spectrum in
the center of the integration region we are successful in getting the smooth
limit of u to zero at the boundaries, the periodic extrapolation of u is infinite
(with the accuracy up to the higher order derivatives).

As the weight functions σ1,2,3, various windows that are widely applied
in the spectral analysis can be used. Numerical simulations show that the
weight functions in the form of the Blackman–Harris windows are the most
acceptable for the usual KP equation as well as for equations of the type
(4.3) [181]:

σ(j) = c0 − c1 cos(2πj/N) + c2 cos(4πj/N) − c3 cos(6πj/N),

where j = 0, 1, 2, . . . , N − 1. Equations (4.90) can be easily solved by the
Runge–Kutta method [180]. Let us consider the scheme approximating the
set (4.90),

Xn+1 −Xn = ∆t

[
k11 − 1

2γ
(k11 − k12)

]
,

Y n+1 − Y n = −∆t
[
k21 − 1

2γ
(k21 − k22)

]
, (4.93)
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where
k11 = f ′Zn

2 + g′Y n,

k12 = k11(1 + γξ),

k21 = f ′Zn
1 + g′Xn,

and
k22 = k21(1 + γξ).

The scheme (4.93) has the O(τ2) approximation independently on the value
of γ. Equations of the set (4.93) are solved independently on every time layer.

To elucidate the stability problem of the scheme, let us consider the first
equation in the set and rewrite it as [83,98]

Xn+1 − τ [c(τ)Xn + d(τ)Zn
2 + b(τ)Y n] = 0, (4.94)

where b(τ) = g′(1 + τ/2), c(τ) = 1/τ , and d(τ) = f ′(1 + τ/2). Thus the
equation is given by

Xn+1 − â(τ)Xn = 0, (4.95)

whereas the initial equation (4.90) is

∂tX − Â(t)X = 0, (4.96)

where â(τ) and Â(τ) are some operators. The root of the characteristic equa-
tion for the difference equation (4.94), λ − â(τ) = 0, is λ = â(τ). Since
Xn = X(tn), the coincidence of Xn+1 with the exact solution, X(tn + τ),
has an accuracy of τm+1 (m = 2 is the approximation order), i.e., an O(τ3)
accuracy. We obtain from equation (4.96) that

X(tn + τ) = X (tn) exp
[
−Â(τ)τn

]
,

and it follows from (4.95) that Xn+1 = â(τ)Xn and

λ = â(τ) = exp
[
−Â(τ)τ

]
+O(τ3). (4.97)

Thus |λ(τ)| < 1 + Cτ , where C is a constant. It follows from (4.97) that the
power of λn(τ) increases if the solution X of (4.96) increases and Â(τ) < 0,
and vice versa. The analysis for the second equation (4.93) is similar – the
convergence of the solution of the difference problem (4.93) to the solution
of the problem (4.90) follows from the approximation and its stability.

A similar approach can be elaborated for (4.92) (when it is necessary to
solve a difference equation similar to (4.93)). The stability analysis of the
scheme, conducted above for the set of equations (4.93), is also completely
correct for the difference equation approximating (4.92).
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4.3.4 Comparative Characteristics of Different Schemes and Their
Use in Numerical Simulation

Testing of the difference schemes (4.60), (4.67), (4.72), (4.75), (4.80), (4.83),
and (4.93) presented above was performed in two stages [83,98]. We first
investigated the schemes’ characteristics related to the integration in x when
the coefficient κ in the right-hand side of (4.59) was supposed to be equal to
zero. In this case the KP equation transforms into the KdV equation, and the
3-DNLS equation into the 1-DNLS equation. For the KP equation the initial
condition was taken in the form of the exact solution of the KdV equation
[3]:

u(0, x) = (3v/α) cosh−2
[(
v1/2/2β

)
(x− x0)

]
(4.98)

with v = α = 6 and β = 1, as well as that of the DNLS equation

h(t, x) = (A/2)1/2 [exp(−Ax) + i exp(Ax)] exp(−iA2t) cosh−2(2Ax), (4.99)

with t = 0 (see (4.57)) for all values of the variables y and z. The control of
the accuracy on all time layers was fulfilled by comparison of the numerical
solutions with the exact (analytical) ones. We calculated the relative mean
deviation on each time step τ and the mean-square-root deviation of the
numerical solutions from the exact ones to yield

ε =
∣∣unum

τ − uexact
τ

∣∣ /uexact
τ ,

and

s =

[
1

MNK

M∑
m=1

N∑
n=1

K∑
k=1

∣∣(unum
mnk)2 − (uexact

mnk )2
∣∣]1/2

.

For example, at the time moment t = 0.4 (soliton is near the boundary of
the integration region) for the scheme (4.75) we obtained the same results as
for the scheme (1.84)5, namely, ε = 6.38775 × 10−3 and s = 1.74663 × 10−4,
that is quite acceptable and approximately on the order of magnitude better
than the corresponding results for the schemes proposed in Refs. [79,93] for
solution of the KdV equation. When testing, for example, the scheme (4.83)
for the DNLS equation, the results ε = 2.64536×10−3 and s = 2.32451×10−3

at the time t = 20 are also quite satisfactory; unfortunately, there was no
chance to compare them with the results obtained by Dawson and Fontán
for the modernized Ablowitz–Ladik method (see Sect. 2.4.4) since similar
investigations of the scheme were not performed in Ref. [176].

On the second stage, for the KP equation (4.59) with α = 6, β = 1,
and κ = 3, we “switched on” the y-derivative in the right-hand side of the
equation and the testing was performed on the exact solution describing the
two-dimensional soliton with n = 1, 2, m = 1, 2, and l = 1 (see Sect. 3.1.2)
5 It is natural because on this stage of testing the scheme (4.75) coincides exactly

with the scheme (1.84).
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Table 4.1. Results of simulation tests for schemes (4.60), (4.67), and (4.75) (hx =
0.1, hy = 0.3, τ = 0.0025 and t = 0.4)

Parameter Scheme (4.60) Scheme (4.67) Scheme (4.75)

ε 9.1 × 10−2 8.1 × 10−2 7.9 × 10−2

s 1.5 × 10−1 6.0 × 10−2 5.7 × 10−2

∆	1 8.6% 6.5% 6.2%

∆P 7.4% 3.6% 3.7%

∆H 16.2% 12.9% 12.3%

which has been set as the initial condition at t = 0. The test of the three-
dimensional DNLS (3-DNLS) equation was not performed because its exact
solutions are not known.

Conditions on the boundary of the integration region for the schemes
(4.60), (4.67), (4.75), and (4.80) were calculated using the expressions (4.84)
and (4.85). In the last case we introduced an additional component into
the diffraction term according to (4.86). For the schemes (4.72) and (4.83)
used for simulation of the 1-DNLS equation, the boundary conditions like
(4.84) as well as the periodic boundary conditions were used. The conser-
vation of the invariants of the corresponding equations for all schemes was
controlled on a level with calculation of the parameters ε and s, t (for the
KP equation, see the corresponding expressions in Sect. 3.1.2; for the 1-
DNLS equation the invariants are C0 =

∫ |h|2dx and C1 = H/2 where
H =

∫ [
(1/2)|h|4 − h∗h∂xϕ

]
dx and ϕ = arg(h)). The integrals were calcu-

lated on every time layer using the Newton–Cotes formulas with an accuracy
of at least O(h4). We note that the order of the control parameters in the
one-dimensional test of the schemes for the KP and 1-DNLS equations is
approximately the same. The results of the tests on the exact solution de-
scribing the two-dimensional soliton are summarized in Tables 4.1 and 4.2.
Figure 4.6 shows general evolution of such a soliton found by integrating the
KP equation by the spectral method.

Resuming the results of investigation of the characteristics of the differ-
ence schemes (4.60), (4.67), (4.72), (4.75), (4.80), (4.83), and (4.93) we can
make the following conclusions. The schemes (4.67), (4.75), and (4.83) with
the approximation of the space derivatives have the best accuracy character-
istics; the accuracy of the solution with the use of the spectral method is a
little bit lower. This is mostly stipulated by the complexity of excluding the
Gibbs oscillations which appear owing to the finite the integration interval in
the numerical solution of the problem. The schemes (4.60), (4.67), and (4.72),
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Table 4.2. Results of simulation tests for schemes (4.80) and (4.92) (hx = 0.1,
hy = 0.3, τ = 0.0025, and t = 0.4)

Parameter Scheme (4.80) Scheme (4.92)

ε 9.2 × 10−2 8.2 × 10−2

s 1.0 × 10−1 6.2 × 10−2

∆	1 8.2% 6.6%

∆P 7.0% 3.9%

∆H 16.0% 13.1%

in their turn, are more time efficient although their three-layer character re-
quires more computer memory resources. The scheme (4.93), despite the use
of the Fourier transform on every time layer, computes sufficiently faster be-
cause of the weak dependence of the accuracy of solutions on the choice of
the step h in x−y− z-space as well as the time step τ . We also note that the
use of the spectral method in fact implies the periodic boundary conditions
in the KP and 3-DNLS problems. Moreover, when the localization of the
perturbation approaches (as a result of the evolution) the boundary of the
integration region, the weight functions introduce an effective damping near
the external boundaries. For the schemes (4.60), (4.67), (4.72), (4.75), (4.80),
and (4.83), the problem of the boundary conditions for an arbitrary initial
perturbation is non-trivial and depends on the considered physical problem.

The schemes considered above can be easily generalized for equations of
the class (4.3) and (4.22). Three-dimensionality of the problem in the finite-
difference approach is provided by introduction of the second order derivative
on the third space coordinate in the integral f of the difference approxima-
tion, analogous to the expressions (4.61) and/or (4.68) for f ′. The difference
approximation of the derivatives of the fourth and fifth order requires ei-
ther increasing the number of the grid points of the template of the differ-
ence scheme in the x-direction, or increasing the approximation order of the
scheme by introducing differential corollaries of the initial equation (see, for
example, Ref. [200]). When choosing the spectral method for integration of
equations (4.3) and (4.22), the changes are limited by introducing additional
terms into expressions (4.89) and (4.92) for g to account for the dissipation
and dispersion correction proportional to the fifth derivative in x. We also
note that the proposed integral-differential approach for simulations of the
multidimensional equations can be extended to the modernized Ablowitz–
Ladik method [176] used for numerical integration of the 1-DNLS equation.
In this case the integral in the right-hand side of the 3-DNLS equation should
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(a)

(b)

(c) Fig. 4.6. Evolution of an ex-
act soliton solution of (4.1)
with ν = δ = γ = 0 obtained
by the spectral method. a
t = 0. b t = 0.3. c t = 0.7

be approximated by the Newton–Cotes formulas (4.62) and (4.68) with the
automatic choice of the number of nodes in the quadrature formula [77].

To conclude this section, we note that the novelty of the schemes (4.60),
(4.67), (4.72), (4.75), (4.80), and (4.83) is in the use of the integral-differential
representation in their applications to equations of the classes considered
above. The finite-difference approximation of the left-hand side and the inte-
gral right-hand side are considered together; moreover, such an approach is
technically easier to realize than the commonly used differential representa-
tions with the mixed derivative ∂2

txu. Also, calculation of an integral in the
form

∫ x

−∞ ∂2
yudx in the right-hand side (with remarks of Sect. 4.3.2) enables

us to effectively suppress the computation errors connected with the non-
locality of the right-hand side of the initial equation. The dynamic spectral
method formulated in subsection 4.3.3, unlike the “static” approach used
earlier in Refs. [31,80], allows us to consider the dynamics of the soliton–
soliton interactions for the models of the KP class as well as the evolution of
non-stationary solutions of the equations of the KP and DNLS classes.
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4.4 Dynamics of Two-Dimensional Solitons in
Dispersive Media

Here, we consider numerical solutions of the two-dimensional GKP equation
written in the differential form

∂x

(
∂tu+ 6u∂xu− µ∂2

xu− ε∂3
xu− λ∂5

xu
)

= ∂2
yu, (4.100)

describing formation and interaction of solitons, and present the evolution
of nonstationary wave packets when λ = ±1, ε takes any value, and µ ≥ 0
in (4.100). Numerical integration of (4.100) is performed by using both the
dynamic spectral method (128×128 grid, τ = 0.005, hx,y = 0.15) and the im-
plicit scheme with O(τ2, h4

x,y) approximation and 301 × 51 grid, τ = 0.0025,
hx = 0.1, and hy = 0.3. The total absorption on the boundaries of the com-
putation region (4.84) is imposed. Initial conditions were assumed in the form
of the soliton solutions of the KP equation (see Sect. 3.1.2) with β/κ > 0 and
various values of νn and ζn defining the amplitudes, phases, velocities and
other soliton parameters. The numerical integration is controlled by conser-
vation of the momentum P and Hamiltonian H,

P =
1
2

∫∫
u2dxdy,

H =
∫∫ [

−ε
2

(∂xu)
2 +

λ

2
(
∂2

xu
)2

+
1
2

(∫ x

−∞
∂yudx

)2

− u3

]
dxdy,(4.101)

of the soliton solutions of (4.100) with µ = 0.
For the two-dimensional equation (4.100) below, we consider the struc-

ture of two-dimensional numerical solutions estimating their stability when
µ = 0 (Sect. 4.4.1), the interaction of two-dimensional solitons (Sect. 4.4.2),
the influence of the viscous-type dissipation (µ > 0) on their evolution (Sect.
4.4.3), as well as the evolution of two-dimensional solitons in a dispersive
medium with stochastic fluctuation of the wave field (Sect. 4.4.4), and the
dynamics of solitons in a medium with variable dispersion (Sect. 4.4.5). Ev-
erywhere in this section, when referring to the GKP equation, we always
mean an equation in the form (4.100), i.e., assume ∆⊥ = ∂2

y in the standard
three-dimensional GKP equation (4.3) and equation (4.4).

4.4.1 Structure of Two-Dimensional Solutions of GKP-Class
Equations

Consider, first, the numerical solutions of (4.100) with µ = 0 for the ini-
tial conditions corresponding to the one-soliton solution of the “classic” KP
equation, that is, with n = 1, 2; m = 1, 2; and l = 1 in the corresponding
expressions (see Sect. 3.1). In this case for λ = 1 and ε ≤ 0, we observe
formation of lump solitons with the asymptotics very close to that of the KP
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Fig. 4.7. Two-dimensional
soliton solution of (4.100)
corresponding to λ = 1, ε =
−0.6, and µ = 0 (t = 0.2)

rational soliton in the case β/κ > 0. This is shown in Figs. 4.7–4.9. For λ = 1
and ε > 0, the structure of the soliton solutions changes qualitatively. We can
indeed see from a simple analysis of the dispersion relation for the linearized
equation (4.100) with µ = 0 and ∂y = 0,

ω ≈ c0kx

(
1 +

εk2
x − k4

x

c0

)
, (4.102)

that the inflection point appears on the dispersion curve, and we have the
opposite signs of dispersion for the short-wavelength and long-wavelength
waves. In this case we observe the formation of solitons of (4.100) from the
one-soliton initial condition, oscillating in the x-direction and monotonic in
the y-direction (see Figs. 4.10 and 4.11). Velocity V of these solitons satisfies

0 3 6-3
0

1

2

3

-1

u

x

1

2

3

Fig. 4.8. Cross sections of
two-dimensional solitons at
y = 0 for µ = 0 and λ = 1
(t = 0.2): (1) for ε = 0, (2)
for ε = −0.3, (3) for ε =
−0.6

the conditions Vx > 0 and V > V ph
max, where V ph is the phase velocity of the

small-amplitude wave with ky = 0. From the dispersion relation (4.102) we
have V ph = εk2

x − k4
x. This gives the lower limit for the soliton velocity,

namely, V ph
max = ε2/4.

Numerical simulations and analysis of the solutions’ asymptotics demon-
strate [112,113] that the amplitudes and wavelengths of the oscillations de-
pend on ε (see Figs. 4.10 and 4.11). The amplitudes of the oscillations decrease
and their wavelengths increase with decreasing ε. When ε → 0, the soliton
asymptotics tends to the algebraic ones described above. On the other hand,
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x'=x-Vt

ln(-u)

0

-1

-2

-3

2.1 3.3 4.5 5.7 6.9 8.1

Fig. 4.9. Asymptotics of nu-
merical solutions of (4.100)
for λ = 1, ε < 0: diamonds
stand for ε = −0.6 and µ =
0, filled diamonds stand for
ε = −0.3 and µ = 1, and
solid line represents the soli-
ton of “classic” KP equation

recall that the case ε → −∞ corresponds to γ → 0 for β =const< 0 and
κ = −c0/2 < 0 in the standard form of the two-dimensional GKP equation,

∂x

(
∂tu+ αu∂xu− ν∂2

xu+ β∂3
xu+ γ∂5

xu
)

= κ∂2
yu, (4.103)

with ν = 0, and in this limit the soliton solution of (4.100) with the algebraic
asymptotics transforms into the two-dimensional soliton of the KP equation.

In the case ε� 1 corresponding to γ � 1 with β =const> 0 and κ < 0 in
the equation (4.103), the oscillations have very short wavelengths and their
average according to the procedure [81,83]

ū
(
xi+1/2

)
=

1
xi+1 − xi

xi+1∫
xi

udx, (4.104)

xi+1/2 =
1
2

(xi+1 + xi) ,

i =
{
m = 1, 2, ...,M − 1
n = 1, 2, ..., N − 1 ,

where xm and xn are the coordinates of the mth maximum and nth minimum
of the tail oscillations, respectively, gives us again the algebraic asymptotics
similar to that of the KP lump soliton. The asymptotic behavior can be
approximated with a good accuracy by the power-law dependence

ū(x) = −ax−(2+b) (4.105)

(the coefficients a and b for some particular cases are presented in Table 4.3).

We should stress, however, that the KP equation with β/κ < 0 (this
corresponds to µ = λ = 0 and ε > 0 in (4.100)) has no two-dimensional
lump solutions [16,24], and the soliton solutions of (4.100), decaying in all
directions as |x, y| → ∞ in the case ε � 1, appear because of λ = 1, i.e.,
γ �= 0 in (4.103). The described structure of the solitons, appearing for µ = 0
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Table 4.3. Coefficients a and b for various λ and ε in (4.105) for the averaged
asymptotics

Parameters Values

λ 0 1 1 −1 −1

ε −1 3.16 10 −10 10

a 13.70 54.60 6.05 929.00 2.46

b 0 0.30 −0.60 0.91 −0.97

and ε ≥ 0, agrees well with that of the stationary solutions found numerically
[80]. For λ = −1 and either ε > 0 or ε ≤ 0, the one-soliton initial condition

Fig. 4.10. Two-dimensional
soliton for λ = 1 and ε =
3.16 (t = 0.5)

leads to the formation (within a wide range of ε values) of a non-stationary
spreading wave packet, oscillating in the x-direction and monotonic in the
y-direction (see Fig. 4.11, curve 5, and Fig. 4.12). Such “spreading” behavior
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u(x,0)
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Fig. 4.11. Cross sections of
a two-dimensional solution of
(4.100) at y = 0 for µ = 0
and λ = 1: (1) ε = 2.53, t =
0.51; (2) ε = 3.16, t = 0.53;
(3) ε = 7, t = 0.51, and for
λ = −1: (4) ε = −10, t =
0.63; (5) ε = 10, t = 0.95
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for the examples presented in the above figures has been observed up to t = 1.
We note that for any ε, the change of the oscillations wavelengths with the
increasing |ε| is qualitatively similar to that in the case λ = 1, ε→ ∞ (ε > 0),
namely: for fast oscillations, when ε→ ∞, the averaging procedure according
to (4.104) again gives the algebraic asymptotics (4.105) (see also Table 4.3).
For large negative ε in the case λ = −1 and µ = 0, in agreement with the

(a)

(b)

Fig. 4.12. Solutions of (4.100)
for µ = 0 and λ = −1 (t = 0.2).
a ε = −0.6. b ε = 0.6

results obtained in Sect. 4.1.3, stable (within the accuracy of the numerical
integration) two-dimensional solutions with oscillating in the x-direction tails
(Fig. 4.11, curve 4) appear, with averaged algebraic asymptotics of the type
(4.105). Approaching such a stationary regime with decreasing ε corresponds
to the conservation of the two-dimensional KP-soliton stability, when small
(close to zero) higher order dispersion correction with γ ≤ 0 are introduced
into the classic KP equation.

Figure 4.13 shows the change of the amplitude of the solution’s main max-
imum and the integrals P and H. It illustrates the dynamics of the formation
of two-dimensional solitons of (4.100) for λ = 1 and |ε| > 0. The analysis
of the Hamiltonian boundedness on the numerical solutions of (4.100) under
the H deformations on the spatial variables within the class of scale transfor-
mations (4.7) (see Sect. 4.1.3) proves the stability of the soliton solutions for
λ = 0 and any ε (within the range of the values of ε investigated numerically)
and the instability of the wave packets for λ = −1 (Fig. 4.14). Note that for
λ = 1, the Hamiltonian H evolves to Hmin. This agrees with the results of
Sect. 4.1 on the stationary soliton solutions (compare Figs. 4.13 and 4.14).
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Fig. 4.13. Change of the ampli-
tude of the main maximum umax

(solid lines) of the soliton solu-
tion of (4.100), its Hamiltonian
H (dashed lines) and momentum
P (dash-dotted lines) for µ = 0
and λ = 1: (1) ε = −0.6, (2)
ε = −0.3, and (3) ε = 0.3
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Fig. 4.14. Change of the Hamil-
tonian H(ζ, η) in the direction

η = [(4b/c)2ζ5]1/3 under defor-
mations on numerical solutions
of (4.100) for µ = 0 and λ = 1:
(1) ε = −0.6, (2) ε = −0.3,
and (3) ε = 0.3. (dashed lines)
and momentum P (dash-dotted
lines) for µ = 0 and λ = 1: (1)
ε = −1.79, (2) ε = −0.3, (3)
ε = 0.3, (4) ε = 1.34, and for
µ = 0 and λ = −1: (5) ε = 1.34,
and (6) ε = −1.34
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4.4.2 Interactions of Two-Dimensional Solitons

To study interactions of the two-dimensional solitons of the GKP equation
(4.100) we use, as before, the initial conditions in the form of the exact solu-
tions (see Sect. 3.1.2) of the KP equation (4.103) with ν = γ = 0 for β/κ > 0,
but also with n = 1, 2, 3, 4; m = 1, 2, 3, 4; and l = 1, 2. They correspond to the
two-soliton solutions of the KP equation with positive dispersion and without
dissipation (µ = 0). For λ = 0 and ε ≤ 0 for all cases considered, the solitons
(formed from the initial pulses) of (4.100) with the algebraic asymptotics in-
teract nonlinearly and exchange their amplitudes and momenta P (see Figs.
4.15 and 4.16). We see that for ε ≤ 0, the form of the solitons and the elastic

(a)

(b)

(c)

(d)

Fig. 4.15. Collision of two two-
dimensional solitons propagat-
ing along the x-axis with ampli-
tudes u1(0) = 16, u2(0) = 4, and
∆x(0) = 4. Here, we have λ = 1,
µ = 0, and ε = −2. a t = 0. b
t = 0.2. c t = 0.4. d t = 1

(within the accuracy of the numerical integration) character of their collision
are qualitatively similar to those of the two-dimensional KP solitons [61,62].

The dynamics of the soliton interactions for λ = 1 and ε > 0, when
the soliton tails are oscillating in the x-direction, is nontrivial and differs
significantly from that of the solitons of the two-dimensional KP model with
β/κ > 0 and the model described by (4.100) for λ = 1 and ε ≤ 0. The problem
was studied in a series of numerical simulations of (4.100) for ε = 0.1 − 2.2
and the two-soliton initial conditions (see Sect. 3.1.2) for various values of the
parameters νn and ξn [81,195]. Figure 4.17 shows the interaction between two
pulses having the significantly different amplitudes u1(0) = 8 and u2(0) = 1
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(a)

(b)

(c)

(d)

Fig. 4.16. “Oblique” collision
of two-dimensional solitons with
u1(0) = 12, u2(0) = 4, ∆r(0) =
3.3, ∆rmin(0.3) = 0.3. Here, λ =
1, µ = 0, and ε = 0. a t = 0. b
t = 0.2. c t = 0.4. d t = 0.7



220 4. Generalized Two- and Three-Dimensional Models

at t = 0 with the initial distance between them being ∆x(0) = 4. We see that

(a)

(b)

(c)

Fig. 4.17. Formation of the
two-dimensional soliton with the
oscillatory structure from the
initial pulses with u1(0) = 8,
u2(0) = 1, and ∆x(0) = 4. a
t = 0. b t = 0.3. c t = 0.8. The
parameters of the GKP equation
are λ = 1, µ = 0, and ε = 1.4

unlike the corresponding solutions of (4.100) with ε ≤ 0 and those of the
two-dimensional KP equation, the final result of this evolution pattern is the
formation of a single pulse with the amplitude u(t) ≈ 3.5 (t = 0.8) and the
oscillatory structure corresponding to a two-dimensional soliton of equation
(4.100). Note that qualitatively similar results were obtained for interactions
of solitons with initially close amplitudes and ∆x(0) ≤ u1,2(0): in the process
of the soliton’s evolution, the oscillatory structure is also formed and the pulse
with the smaller amplitude is “absorbed” by the tail of the bigger one. As a
result, a single soliton with u2(0) < u < u1(0) with the structure described
above is formed (see Fig. 4.18).

For sufficiently large distances ∆x(0) between the initial pulses (larger
than the characteristic sizes of solitons) and similar amplitudes, the final
result of the evolution is the formation of two solitons with the oscillatory
structure, unlike the cases shown in Figs. 4.17 and 4.18. The result is shown
in Fig. 4.19 where we present the evolution of two two-dimensional solitons
with the large enough initial distance ∆x(0) = 6 > u1,2(0) and almost equal
initial amplitudes. We see that as soon as the pulses approach each other
(up to the distance ∆xcr = f [u1(0), u2(0)]), development of the oscillatory
structure starts. The characteristic scale of this structure becomes smaller
and smaller with increasing time (the wavelengths of the oscillations in the
tails and between main maxima decrease and their amplitudes increase up to
some limiting values depending on ε). At t ∼ 0.6, the system can be described
as having two bound oscillatory solitons with the constant amplitudes and
distances between the pulses, i.e., a two-soliton bound state is formed acquir-
ing (locally) the stationary character and moving as a whole with the time



4.4 Dynamics of Two-Dimensional Solitons 221

(a)

(b)

(c)

Fig. 4.18. Formation of the
two-dimensional soliton with the
oscillatory structure from the
initial pulses with u1(0) = 2,
u2(0) = 1.3, and ∆x(0) = 1.4. a
t = 0. b t = 0.3. c t = 0.6. The
parameters of the GKP equation
are: λ = 1, µ = 0, and ε = 1.9.

(a)

(b)

(c)

(d)

(e)

Fig. 4.19. Formation of the two-
dimensional bisoliton from the ini-
tial pulses with u1(0) = 1.35,
u2(0) = 1.3, ∆x(0) = 6. The param-
eters of GKP equation are the same
as in Fig. 4.18. a t = 0. b t = 0.3. c
t = 0.6. d t = 0.9. e t = 1.3
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t increasing further. Thus we observe the formation of a stationary bisoliton
having two main maxima of equal amplitudes.6 The bisoliton is symmet-
ric with respect to its center and the distance between the main maxima is
∆x(t) =const. The structure of the bisoliton is similar to the bound oscil-
latory solutions found numerically in Ref. [80], and Fig. 4.19 illustrates the
dynamics of formation of such a structure.

For all the cases considered (taking into account proper the compensa-
tion of “computational radiation” on the system’s boundaries), we obtained
conservation of the integrals P and H with sufficient accuracy (∼ 5 − 7% at
t ∼ 1.0). The one- and two-soliton structures are formed as a result of the
soliton interaction, and the analysis of the Hamiltonian boundedness on the
numerical solutions under the scale transformations (4.7) (see Sect. 4.1) shows
that the structures are stable for the investigated range of values |ε| ≥ 0 for
λ = 1 (change of H under these deformations has the form similar to that
presented by the curves 1–4 in Fig. 4.14), and the minima of the Hamilto-
nian, in agreement with the results obtained in Sect. 4.1, are realized on these
stationary solutions.

4.4.3 Influence of Dissipation on Evolution of Two-Dimensional
Solitons

Now consider the influence of dissipation on the evolution of two-dimensional
solitons of (4.100). According to the accepted long-wavelength approach (see
Introduction) for the KP-class equations, we restrict ourselves to the study of
the role of dissipation of the “viscous” type (µ > 0 in (4.100)) caused by the
relaxation processes in a medium. In our numerical simulations we employ, as
above, the initial conditions corresponding to the two-dimensional one-soliton
solution of the KP equation (see Sect. 3.1), but with n = 1, 2; m = 1, 2;
l = 1, and investigate the behavior of solutions of (4.100) with λ = 0,±1
for various values of the coefficients ε and µ. Figure 4.20 shows the evolution
of the initial two-dimensional KP soliton (λ = 0) in a medium with the
viscous dissipation. We can see that even at quite early time moments t, the
presence of the dissipation leads to a significant amplitude decrease so that
u(0.1) ∼= 0.5u(0). The damping rate of the solitons for λ = 1 are of the same
order as for λ = 0, and the soliton asymptotics for ε ≤ 0 and µ > 0 is close
to the algebraic one (see Fig. 4.9)); generally, the soliton shape in this case
practically does not differ from that shown in Fig. 4.20. Figure 4.21 shows an
example of the numerical simulation for ε > 0 and the same initial conditions
as in Fig. 4.20. Here we see that the proper account for the fifth derivative
leads to the formation of the characteristic oscillatory structure in front of
and behind the soliton’s maximum in the process of the soliton’s evolution.
Moreover, for all the cases considered (including λ = 0) we observe the effect

6 For the first time the bisoliton formation was observed by Belashov and Karpman
in 1990 [62].
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(a)

(b)

Fig. 4.20. Evolution of the
two-dimensional soliton solu-
tion of (4.100) with λ = 0,
ε = −1, and µ = 1. a t = 0.
b t = 0.1

Fig. 4.21. Two–dimensional
soliton solution of (4.100)
with λ = 1, ε = 0.8, and
µ = 1 at t = 0.2

of “stretching” of the oscillatory soliton tail for λ = 1 and ε > 0 as well
as for λ = −1 and |ε| ≥ 0 accompanied by the decrease of the oscillations’
frequency and damping of the oscillations behind the main maximum. We
also note the associated asymmetrical change of integrals P and H in both
the front and back “cavities” (where u < 0). Indeed, the slope of the “back
part” of the soliton becomes less steep than that of the “front part,” and
the wave field symmetry is broken (this effect is qualitatively similar to that
observed in the solutions of the Korteweg–de Vries–Burgers equation [3]).
Thus the presence of the viscous-type dissipation in the system leads to (in
addition to the trivial general damping of the wave field) the direct influence
on the two-dimensional soliton’s structure.

4.4.4 Evolution of Two-Dimensional Solitons in Media with
Stochastic Fluctuations of the Wave Field

Introductory remarks. In Sect. 2.2.2 we studied evolution of the KdV
soliton in media with stochastic fluctuations of the wave field. This problem
is highly important since such fluctuations occurred at various scales and
caused by numerous reasons,7 regular as well as stochastic, are practically
always present in reality, and their overall influence can be considered with a
good approximation as that of stochastic fluctuations of the wave field. Here,
we consider the results of the theoretical study of influence of these stochastic
fluctuations of the wave field on the dynamics of the two-dimensional solitons.
7 For example, in a plasma of the Earth’s ionosphere, by the solar terminator, solar

eclipses, man-made explosions, magnetic substorms, and volcano eruptions, etc.
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To exclude from our investigation the influence of factors such as dissi-
pation and various instabilities (their type is defined by the particular type
of the medium considered), which can obscure the effects caused by the in-
fluence of the stochastic field fluctuations on the propagation of nonlinear
waves, we consider the classic two-dimensional KP equation, accounting only
for the term associated with the stochastic fluctuations [151]:

∂tu− 6u∂xu+ ∂3
xu− η(t) = κ

x∫
−∞

∂2
yudx, κ = ±1 . (4.106)

As it is already known from Chap. 3, equation (4.106) with η(t) = 0 describes
evolution of nonlinear waves and solitons in various dispersive media. As
in Sect. 2.2, we investigate here the influence of the stochastic fluctuations
(described by the external random noise η(t)) on the two-dimensional KP
soliton since for η(t) = 0 it is a stable structure propagating in the medium
without changing its shape. The approach we develop here is sufficiently
general, similar to the one-dimensional case.

The inhomogeneous term η(t) in (4.106) (similar to (2.93)) describes the
external noise when the characteristic width of the soliton, ls, is much smaller
than the coherence length of the noise, ln. This corresponds to a particular
situation of a more general case when the external noise is described by
the term η(x, y, t). The assumed approximation, being simpler for analytical
investigation, allows us to obtain an exact result and provides us useful in-
formation for the more general study when other relations between ls and ln
hold.

In Sect. 2.2 we demonstrated that the stochastic KdV equation (see (4.106)
with κ = 0) has a solution in the form of the KdV soliton which, due to
the effect of the external noise, is deformed during the propagation. The
width and the amplitude of the soliton are proportional to t3/2 and t−3/2,
respectively, when t→ ∞. The structure and the dynamics of the KP solitons
are still different from those of the KdV solitons, however. Therefore, the
study of model (4.106) is of interest not only from the point of view of its
applications to processes in particular physical media, but also because of the
general theoretical aspect, in the sense of comparing the dynamic behavior of
the KP solitons in media with the low-frequency stochastic fluctuations with
that of the KdV solitons. This problem was first set up and solved analytically
and numerically in Refs. [151,201].

General Approach. Here, we follow the approach used in the one-dimensional
case (see Sect. 2.2). First, we note that (4.106) is related to the KP equation,

∂tU − 6U∂ξU + ∂3
ξU = κ

ξ∫
−∞

∂2
yUdξ, (4.107)

via the Galilean transform



4.4 Dynamics of Two-Dimensional Solitons 225

u(t, x, y) = U(t, ξ, y) +W (t), (4.108)

where

W (t) =

t∫
0

η(t)dt,

ξ = x+m(t),

and

m(t) = 6

t∫
0

W (t)dt.

Thus, equation (4.106) is integrable and can therefore be integrated using
the IST method (see Sect. 3.2). Following the consideration of Sect. 2.2 we
also assume that the external noise η(t) is Gaussian,

〈η(t1)η(t2) . . . η(tn)〉 = 0 n is odd,∑
Π 〈η(ti)η(tj)〉 n is even, (4.109)

and white, 〈η(t)η(t′)〉 = 2εδ(t− t′). In this case formulas (2.73) are also valid
[151]. To account for the possibility of both (positive and negative) signs of
κ, we consider the problem in the most general way. Let the functional of
U(t, ξ, y) be

F [U(t, ξ, y)] = F [U(t, ξ, y), ∂ξU(t, ξ, y), . . .] = F (t, ξ, y). (4.110)

We consider the Fourier transform,

F (t, ξ, y) =
1
2π

∞∫
−∞

dkF̃ (t, k, y) eikx,

F̃ (t, k, y) =

∞∫
−∞

dxF (t, ξ, y) e−ikx, (4.111)

and obtain [151]
F̃ (t, k, y) = F̃0 (t, k, y) eikm(t), (4.112)

where

F̃0 (t, k, y) = F̃ (t, k, y)
∣∣∣
m=0

=

∞∫
−∞

dxF (t, x, y) e−ikx. (4.113)

The expression for the statistical average is similar to (2.104)–(2.105):〈
F̃ (t, k, y)

〉
= F̃0 (t, k, y) G̃(k), (4.114)
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where for G̃(k) = 〈exp [ikm(t)]〉, and using (4.109) we find

G̃(k) = e−k2〈m2(t)〉/2 and
〈
m2(t)

〉
= 24εt3 for t > 0. (4.115)

Equation (4.114) shows us that the averaged spectrum (4.112) of the func-
tional F [U(t, ξ, y)] is the product of F̃ (t, k, y), without noise (4.113), and the
Gaussian distribution (4.115). Thus, similar to the one-dimensional case, we
have

〈F [U(t, ξ, y)]〉 = 〈F (t, ξ, y)〉 =
1
2π

∞∫
−∞

dkF̃0 (t, k, y) G̃(k)eikx. (4.116)

In analogy to the result of the one-dimensional consideration of Sect. 2.2, the
convolution theorem allows us to write (4.116) as

〈F [U(t, ξ, y)]〉 =

∞∫
−∞

dsF [U (t, s, y)]G(x− s), (4.117)

where G(x− s) is defined by the corresponding expression in Sect. 2.2.2, i.e.,

G(s) =
1
2π

∞∫
−∞

dkG̃(k)eiks =
exp

[−s2/2 〈m2(t)
〉]

[2π 〈m2(t)〉]1/2
.

Expressions (4.116) and (4.117) are now suitable for further investigation
of the dynamic behavior of the solitons of (4.106) for different signs of the
coefficient κ.

Dynamics of KP Solitons. As an example, we consider here the case when
F [U(t, ξ, y)] (4.110) is the functional of the one-soliton solution of (4.102)
with κ = 1. Then, for the one-soliton solution of (4.107) with κ = 1 (see also
Sect. 3.1), we have

U(t, ξ, y) = −2∂2
ξ ln

[
4 (ν + ν∗)−2 +

∣∣ξ + ϕ+ iνy + 3ν2t
∣∣2] . (4.118)

For simplicity of the analysis, let us assume that ν = Re(ν) and ϕ = 0 in
(4.118). We then obtain from (4.113) that

F̃0 (t, k, y) = 4πk exp
(
3ikν2t

)
sinh (kz) , (4.119)

where z = ν−1
(
1 + ν4y2

)1/2. Integrating the right-hand side of (4.116) and
taking into account (4.119), we obtain

〈u(0, x, y)〉 = −4ν2
(
1 + ν4y2 − ν2x2

) (
1 + ν4y2 + ν2x2

)−2
(4.120)

for t = 0. This expression is exactly equal to the solution (4.118) with ν =
Re(ν) and ϕ = 0 at t = 0. For large t > 0 we obtain the following solution
[151]:



4.4 Dynamics of Two-Dimensional Solitons 227

〈u(t, x, y)〉 =
√
πg−1

[
A exp(A2) +A∗ exp((A∗)2)

]
= 2

√
πg−1er2−s2

[r cos (2rs) − s sin (2rs)] , (4.121)

where A = (z + ia)/2
√
g, g = 12εt3, a = x+ 3ν2t, r =Re(A), and s =Im(A).

We can see from expression (4.121) that due to the effect of the stochastic
fluctuations of the wave field, the two-dimensional soliton is deformed in the
process of its propagation; moreover, the amplitude of its maximum changes
asymptotically as u ∼ t−9/2, and the soliton acquires the wave-like oscillating
structure along the x- and y-directions (see also numerical results and Figs.
4.22 and 4.23 below).8 Thus, the dynamic behavior of a two-dimensional soli-
ton as well as its structure differ essentially from those of the one-dimensional
KdV soliton. However, while the KP soliton is deformed, just like the KdV
soliton, the area occupied by the soliton is invariant. In fact, we have from
equation (4.121) ∫∫

〈u(t, x, y)〉dxdy = 0. (4.122)

To conclude, we note that (4.116) and (4.117) can also be used for investi-
gation of the dynamic behavior of the one-dimensional KP solitons in media
with the low frequency stochastic fluctuations, i.e., when κ = −1 in (4.106).
For the one-dimensional KP soliton we have [24]

u(t, x, y) = −1
2
p2 cosh−2 [p(c− x)/2] , (4.123)

where c = νy − 4ν2t+ ln(q) + (p+ ν)(p− ν)t; p, q, and ν are constants; and
instead of equation (4.119) we have

F̃0(t, k, y) = 2πkeick/ sinh (kπ/p) . (4.124)

Using (4.116) we can further investigate the dynamics of such a soliton in
media with external noise, in analogy to the two-dimensional soliton (4.118).

Numerical results. Here, we complete the above analytical study of the dy-
namics of the KP solitons in media with low-frequency stochastic fluctuations
using numerical investigation of the soliton solutions of (4.106) for different
levels of the noise intensity [151]. For the numerical integration we employ
the already used implicit difference scheme with the O(τ2, h4

x,y) approxima-
tion (see Sect. 4.3 as well as Refs. [83,98]) and the grid 301× 51, τ = 0.0025,
hx = 0.1, and hy = 0.3. The complete absorption on the boundaries of the
computation region is imposed. Initial conditions are taken in the form of
the exact soliton solution of KP equation (4.118) for t = 0. To control the
dynamic characteristics of the soliton-noise system, we compute the integral

8 Note that in Ref. [202], where exactly our setting of the problem and our ap-
proach to its solution was used, incorrect results (because of erratic analysis)
were obtained regarding the asymptotic behavior of the KP solitons (in particu-
lar, u ∼ t−3). The results of numerical modeling fully agree with our estimations.
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(4.122) as well as the integrals which are the dynamic invariants of equation
(4.107) with the function U(t, ξ, y) at each time step [24]:

Px =
1
2

∫∫
u2dxdy,

H =
∫∫ [

1
2

(∂xu)
2 +

1
2
κ (∂yw)2 − u3

]
dxdy, (4.125)

where ∂xw = u. The numerical results are presented in Figs. 4.22 and 4.23.
Note that these results correspond well to the analytical properties of the
soliton solutions obtained above. Indeed, we see that the soliton structure
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Fig. 4.22. Evolution of a
two-dimensional soliton of
(4.106) with κ = 1 at t = 0.4,
t = 1.2, and t = 2.0, with the
Gaussian noise for the stan-
dard deviation σ = 0.01

along the x- and y-axes acquires the wave-like oscillating character with time.
Moreover, the soliton amplitude and the oscillation frequency first increase
with the simultaneous (oscillating) decrease of the characteristic lengths of
the soliton up to t ∼ 1, and then the amplitude and frequency start to
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decrease according to our analytical prediction (4.120). The variations of
Px and H characterize the variations of the momentum and energy of the
soliton–noise system comparable with those of the “pure” KP equation when
Px and H are constant. These variations are of a quasi-periodic character,
i.e., they are related to the the quasi-periodic dependence of ls on time.

Thus, the numerical results confirm that the structure and the dynamic
behavior of the two-dimensional solitons in media with the low-frequency
stochastic fluctuations significantly differ from those in the one-dimensional
case (i.e., for the KdV solitons). Similar differences are observed for the KP
soliton with κ = −1. In this case, the solitons also acquire the wave-like os-
cillating structure in the y-direction for large t. To conclude, we note that for
a non-white noise, the form of the solutions can in principle also be obtained
by the use of the above presented method but it is more complicated in this
case. In particular, if the characteristic soliton lengths are comparable to the
coherent length of the noise (ls ∼ ln), the Galilean transform (4.108) is not
correct, and it is necessary to generalize the IST method for this case accord-
ingly, for example, as was the case for the KdV equation in Refs. [95,96].
Finally, we note that the results presented above were first reported at the
International Conference on Nonlinear Evolution Equation and Dynamical
Systems in 1992 (NEEDS’92).

4.4.5 Structure and Evolution of Two-Dimensional Solitons in
Media with Variable Dispersion

Here, we consider the dynamics of two-dimensional solitons described by the
KP equation written in the form

∂tu+ αu∂xu+ β∂3
xu = κ

x∫
−∞

∂2
yudx, (4.126)
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in a medium with the changing in time and/or space dispersion characteris-
tics, namely β = β(t, x, y). This problem is interesting in view of its obvious
applications in the physics of some particular media with dispersion. For ex-
ample, this situation can be observed in the propagation of gravity waves and
gravity-capillary waves on the surface of shallow water [203] when the factor
β is given by the expressions β = c0H

2/6 and β = (c0/6)
[
H2 − 3σ/ρg

]
,

respectively, where H is the depth, ρ is the density, and σ is the surface
tension of the fluid. In these cases, if H = H(t, x, y) (i.e., if there is the
change of the bottom depth in space and/or temporal depth “shifts” on the
bottom regions), the dispersion parameter β is also a function of the space
coordinates and time (note that Sect. 4.6.4 below is specially devoted to this
particular application). A similar situation can also take place when study-
ing the evolution of the FMS waves in a magnetized plasma [203,204] when
the factor β in the three-dimensional case is the function of both the Alfvén
velocity vA = f [B(t, r), n(t, r)] (where n is the plasma density) and the angle
θ = (k ∧ B) between the wave vector and the magnetic field:

β = vA
c2

2ω2
pi

(
cot2 θ − me

mi

)
, (4.127)

where ωpi is the ion plasma frequency (see also Sect. 4.6). Obviously,
β = β(t, r) corresponds to the cases of a non-uniform and/or non-stationary
plasma and/or magnetic field.

The soliton dynamics in a medium with the variable dispersion of the
type β = β(t, x) was studied in Refs. [203,204] for the one-dimensional model
of the KdV solitons. It is well known that solutions of the KdV equation
with β =const are divided into two classes depending on the value of the dis-
persion term: for |β| < u(0, x)l/12 (where l is the characteristic wavelength
of the initial disturbance) they reveal the soliton character, and in the op-
posite case they are wave packets with the asymptotics proportional to the
x-derivative of the Airy function [3]. In both cases, the KdV equation can
be integrated analytically by the inverse scattering transform. This approach
cannot be used in principle for an arbitrary dependence β = β(t, x), however,
and solving such a problem requires numerical integration. An analogous sit-
uation takes place for the non-one-dimensional model described by the KP
equation. While the analytical solutions of the KP equation for β =const in
the two-dimensional case are well known (see the corresponding expressions
in Sect. 3.1), the dispersion term of this equation becomes quasi-linear in the
case β = β(t, x, y) and the model is not exactly integrable (i.e., the inverse
scattering transform is not applicable). Below we formulate the problem of
numerical integration of the KP equation with β = β(t, x, y) and consider the
main results of the numerical experiments in the investigation of the struc-
ture and evolution of two-dimensional solitary waves in a medium with the
variable dispersion (the only assumption used is that the medium is described
by the dispersion law of the type ω ≈ c0kx

(
1 + k2

⊥/2k
2
x +D2k2

x

)
, where D is

the dispersion “length”).
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To solve the initial problem for the KP equation (4.126) with the variable
dispersion, we use the implicit difference scheme (4.75) with the O(τ2, h4

x,y)
approximation. As usual, the initial conditions are chosen in the form of the
exact two-dimensional one-soliton solution of the KP equation (see (3.15) in
Sect. 3.1) with various values of the parameters ν and ξ, mostly ν �=Reν and
ξ �= 0 at t = 0), the total absorption on the boundaries of the computation
region (4.84) is imposed, and the numerical simulations are done for a few
types of the model function β. For t < tcr we assume β = β0 =const, and for
t > tcr we either have

(1) β(x) =
{
β0, x ≤ a,
β0 + c, x > a; (4.128)

(2) β(x, t) =
{
β0, x ≤ a,
β0 + nc, n = (t− tcr)/τ = 1, 2, ..., x > a; (4.129)

or

(3) β(t) = β0

(
1 + k0β̄ sinωt

)
, β̄ = (βmax − βmin) /2,

0 < k0 < 1, π/2τ < ω < 2π/τ. (4.130)

The terms a and c in the above equations are constants. Note that in terms
of the problem of the wave propagation on the surface of shallow water this
means that when reaching tcr we either have: (1) the sudden “breaking up” of
the bottom, (2) the gradual “change of the depth” of the bottom, or (3) the
“oscillation” of the bottom’s depth with time. More detailed consideration of
this application can be found in Sect. 4.6.4.

The first series of numerical experiments is aimed at studying the soliton
dynamics with the spasmodic character of the wave dispersion (i.e., β(t, x, y)
has the form of the step). First, we investigate evolution of the initial pulse
for the case when at tcr the step-like change of β is behind the soliton (the
“negative” step when c < 0 in (4.128) and (4.129)). In this case, the de-
pendence of the spatial structure of the solution on the parameter a in the
models (4.128) and (4.129) is studied. The obtained results (see an example
in Fig. 4.24) demonstrate that for all cases the evolution of the initial soliton
leads to the formation of the wave-like oscillating tail which is not related to
the soliton moving away ahead, and is caused only by the local influence of
the sudden change of the relief β(t, x). Consequently, formation of the oscil-
latory structure is related mostly to the step-like change of β in space, not
the (decreased) role of the dispersion effects behind the soliton.

In the next series of our numerical experiments we consider evolution
of the two-dimensional soliton in the case when the sudden change of the
dispersion factor takes place directly under the front or in front of the initial
pulse (the “negative” step). An example of the results of those simulations is
shown in Fig. 4.25. Analysis of the results of the whole series demonstrates
that for a character with the relief of the function β, the perturbation caused
by the sudden change of the dispersion factor also reveals the local character,
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Fig. 4.24. Evolution of a two-
dimensional soliton of (4.126) for
the dispersion law (4.128) for
a = 5.0, c = −0.0038, and t =
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Fig. 4.25. Evolution of a two-
dimensional soliton of (4.126) for
the dispersion character (4.129)
for a = 4.0, c = −0.0038, and
t = 0.6

i.e., it does not propagate together with the (moving away) soliton. But,
unlike the cases considered in the first series of experiments, the asymptotics
of the soliton moving away becomes oscillating (within the time limits of
the numerical experiment); besides, on the background of the long-wave tail
oscillations we can also note the appearance of the wave fluctuations. These
effects can be attributed to the fact that in the regions on the wave surface
with the different (local) wave numbers kx, the factors describing dispersion
effects are also different. As a result, the intensity of the phase mixing of the
Fourier-harmonics within the x − y-region varies with the coordinates and,
therefore, it reacts differently to the nonlinear generation of the harmonics
with various (in particular, large) wavenumbers kx.

In the third series of the numerical experiments the dispersion parameter
was also changed according to (4.128) and (4.129), but we consider here the
cases when the “positive” step (c > 0 in (4.128) and (4.129)) is both in front
of and behind the initial pulse for a wide range of values of the parameter
a. The most interesting example of the results is shown in Fig. 4.26. We
can see that when the “positive” step is far in front of the maximum of the
function u(0, x, y), the soliton evolution on the initial time steps does not
differ qualitatively from that for β =const (see Fig. 4.26a), but for larger
time scales, the evolution character becomes defined by the presence of the
step. Processes caused by the same effects as noted above for the results of the
second series of the simulations, start to develop. As we can see in Fig. 4.26b,
a significant change of the soliton structure which can in principle lead to the
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Fig. 4.26. Evolution of a two-
dimensional soliton of (4.126) for
the dispersion character (4.129)
for a = 5.0, c = 0.0038. a t =
0.6. b t = 0.8

wave breaking is observed because of intensive generation of the harmonics
with high kx in the soliton front region. The process takes place even for
relatively small steps (i.e. when the parameter c in (4.128) and (4.129) is
small). Thus, as it follows from the results of the series, the perturbation
of the propagating two-dimensional soliton caused by the sudden change in
time and space of the dispersion factor β with c > 0 also reveals the local
character.

As for the last case of the change of the factor β (the harmonic oscillations
of the parameter with time on the whole x− y-plane, see (4.130)), a series of
numerical experiments for various fixed k0 =const and the variable frequency
ω has demonstrated that for some ω the (locally) stationary standing waves
can be formed. For other cases formation of the stationary periodical wave
structures is possible, and in the intermediate case, the chaotic regime is
usually realized. In the numerical simulations done for various k0 and fixed
ω =const, we found that the stable (within the computation time) solutions
can be formed only for k0 ≤ β0 in (4.130), and the solutions are unstable
for all other cases. Summarizing the above results, we note that numerical
simulations of the evolution of the two-dimensional solitons described by the
model KP equation with β = β(t, x, y) allowed us to find various types of
stable and unstable solutions, including the solution of the mixed “soliton–
non-soliton” type for various dependencies of the change of the dispersion in
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time and space. The results obtained open new perspectives for investigation
of a number of applied problems in the dynamics of the non-one-dimensional
nonlinear waves in particular physical media.

4.5 Evolution of Three-Dimensional Nonlinear Waves in
Dispersive Media

Here, we numerically investigate the structure and evolution of the three-
dimensional solutions of the GKP equation written in the form

∂x

(
∂tu+ 6u∂xu− µ∂2

xu− ε∂3
xu− λ∂5

xu
)

= ∆⊥u, (4.131)

with the corresponding factors λ = ±1, |ε| ≥ 0, and µ ≥ 0 (Sect. 4.5.1 and
Sect. 4.5.3). We also study the 3-DNLS equation

∂th+ s∂x

(|h|2h)− iλ∂2
xh− ν∂2

xh = κ

x∫
−∞

∆⊥hdx, (4.132)

with λ = ±1, s = ±1, and |κ| > 0 (Sects. 4.5.2 and 4.5.3) in the axially sym-
metric geometry, i.e., when ∆⊥ = ∂2

ρ + ∂ρ/ρ, ρ2 = y2 + z2. For the numerical
integration we use the methods presented above in Sect. 4.3 (they are de-
veloped in Refs. [81,83,98,148,195,198]). In Sects. 4.5.1 and 4.5.2 we present
results of the numerical study of the structure of the solutions, estimate their
stability, and consider the dynamics of the evolution of the three-dimensional
axially symmetric pulses in the respective GKP and 3-DNLS models for µ = 0
and ν = 0 (see also Refs. [65-70,148,198]). Finally, in Sect. 4.5.3 we present
numerical results of the investigation of the influence of a viscous-type dissi-
pation (the GKP and 3-DNLS models with µ > 0 and ν > 0, respectively)
on the evolution of the obtained three-dimensional solutions [195,198].

4.5.1 Structure and Evolution of Three-Dimensional Solutions of
GKP-Class Equations

For the numerical investigation of (4.131), we can write it in the mixed
integral-differential form (see (4.59) of Sect. 4.3) and integrate using the im-
plicit difference schemes (4.75) and (4.83) on the grid 301 × 51, τ = 0.0025,
hx = 0.1, hρ = 0.3 with the total absorption on the boundaries of the com-
putation region, taking into account the condition ∂ρu|ρ=0 = 0. We impose
the initial condition in the form of the axially symmetric solitary pulse,

u(0, x, ρ) = 2∂2
x ln

[
4 (ν + ν∗)−2 + |x− iνρ− ξ|2

]
, (4.133)

for various values of the parameters ν and ξ defining amplitudes, phases, ve-
locities, and other characteristics of the initial pulses. To control the changes
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of the momentum and energy of the solutions of (4.131), we use the expres-
sions

P =
1
2

∫
u2dr,

H =
∫ [

−ε
2

(∂xu)
2 +

λ

2
(
∂2

xu
)2

+
1
2

(∇⊥∂xu)
2 − u3

]
dr, (4.134)

where r2 = x2 + ρ2.
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Fig. 4.27. Solutions of
(4.131) at ρ = 0 for λ =
1: (1) initial pulse at t =
0; (2) ε = −1.6, µ = 0
(t = 0.25); (3) ε = −1.6,
µ = 0 (t = 0.5); (4) ε =
0, µ = 0 (t = 0.6); (5) ε =
−1.6, µ = 1 (t = 0.25)

First, consider numerical solutions for Cauchy problem of (4.131) with
λ = 1. In the case µ = 0 for ε ≤ 0 and ε > 0, the axially symmetric soliton-like
pulses with algebraic (Fig. 4.27, curves 1-4 and Fig. 4.28) and oscillating in
the x-direction asymptotics (Fig. 4.29, curves 1 and 2) are formed on the first
stage of the nonlinear evolution. We note that the pulse amplitude decreases
slightly and small-scale perturbations, arising in the process of formation from
the initial pulse (4.133) of a three-dimensional solution satisfying (4.131), are
moving out from the integration region in the direction of negative x.

Unlike the two-dimensional solitons considered above in Sect. 4.4, the
structures forming in this case are asymmetric along the x-axis: the slope of
the tail becomes smaller and for ε > 0 the tail oscillations have the large
amplitudes as well as show the more regular character. The dependence on
ε of the structure of solutions on the initial stage with λ = 1 and µ =
0 corresponds to that of the two-dimensional version of (4.131) which we
considered above.

Furthermore, the amplitude of pulse increases with time t (see Fig. 4.30,
curves 1–3, 6, 7), with the rate Γ = (1/2W )dW/dt ∼ 2 (here, W = ū2/4π
is the wave energy density) which is weakly dependent on ε. In this case,
for both ε ≤ 0 and ε > 0, the characteristic size of the pulse, defined by
expressions

lx = x (umin 2)|ρ=0 − x (umin 1)|ρ=0 ,

umin 1 = umin|x>x(umax) ,
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Fig. 4.28. Asymptotics of numer-
ical solutions of (4.131) with λ =
1, ε = −1.58: the diamonds corre-
spond to µ = 0; the filled diamonds
correspond to µ = 1.26; the solid
line presents asymptotics of the al-
gebraic KP soliton; x′ = x − V t
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Fig. 4.29. Solutions of
(4.131) at ρ = 0: (1) λ =
1, ε = 1.6, and µ = 0 (t =
0.25); (2) λ = 1, ε = 1.6,
and µ = 0 (t = 0.5); (3)
λ = 1, ε = 1, and µ = 1
(t = 0.2); (4) λ = 1,
ε = 1.6, and µ = 1.26
(t = 0.25); (5) λ = −1,
ε = 1, µ = 1 (t = 0.2)

u
max

t

4

6

8

10

12

14

0.0 0.3 0.6 0.9 1.2

4 3 25

6

7

1

Fig. 4.30. Pulse’s maxima ver-
sus time for λ = 0 and λ = 1 (the
solid lines correspond to ε < 0,
the dashed lines - to ε ≥ 0): (1)
λ = 1, ε = −1.34; (2) λ = 1,
ε = −0.89; (3) λ = 0, ε = −1.34;
(4) λ = 0, ε = −1; (5) λ = 1,
ε = 0; (6) λ = 1, ε = 1.34; (7)
λ = 1, ε = 2.24
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(a)

(b)

Fig. 4.31. Evolution
of the three-dimensional axially-
symmetric pulse in the x − ρ-
plane on the self-focusing stage
for λ = 1 and ε = −0.89. a t = 0.
b t = 1.4. Here, we have −13.5 ≤
x ≤ 13.5, −11.25 ≤ ρ ≤ 11.25
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Fig. 4.32. Change with time of the characteristic sizes of the axially symmetric
pulses. a lx. b lρ. The solid and dashed curves correspond to the same cases as in
Fig. 4.30

umin 2 = umin|x<x(umax) ,

and
lρ = 2ρ|u=0.025umax,x=x(umax) ,

decreases, the pulse “wings” fall behind its central part, and an instability of
the self-focusing type is developed (see Figs. 4.31 and 4.32, curves 1–3, 6, 7
and Fig. 4.34a). This type of evolution is also characterized by the increase of
the momentum P as well as the decrease (for ε ≤ 0 as well as for not very large
values ε > 0) of the Hamiltonian H of the system (Fig. 4.33, curves 1–3, 6, 7)
at the expense of the nonlinear term which increases (for this particular time
interval of the pulse evolution) faster than the dispersive terms. The difference
of the pulse evolution for ε > 0 from its evolution for ε ≤ 0 (λ = 1, µ = 0) on
the stage of the wave field focusing in fact only lies in the different character
of the pulse asymptotics (for ε > 0 the pulse has an oscillating structure along
the x-axis) as well as in the inequality |∂H/∂t|ε<0 > |∂H/∂t|ε>0, owing to
change in sign of the integral (ε/2)

∫
(∂xu)

2 dxdρ in the Hamiltonian H with
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Fig. 4.33. Change with time
of the integrals P and H of
the axially symmetric solu-
tion for λ = 0, 1. Solid lines
correspond to H and dashed
lines correspond to P. The
curve numbers are the same
as in Fig. 4.30

the change ε → −ε. With further growth of time t, due to the decreasing
characteristic sizes lx and lρ of the pulse (see Fig. 4.32), the term proportional
to the fifth derivative in (4.131) begins to play the dominant role (that proves
to be correct by an analysis of the corresponding change of the integrals in
the Hamiltonian H).

As a result, for ε ≤ 0 the “flapping” of the pulse “wings” behind the
main part of the pulse does not lead to the fast increase of the field density
followed usually by formation of the singularity in the region of the main
maximum as it takes place for the standard KP equation (see Sect. 3.1) with
(β/κ) > 0 [59,63], and forms the circular region of the increased concentra-
tion (Fig. 4.34). Further evolution of this structure leads to formation of an
additional maximum on the x-axis behind the pulse (see Fig. 4.35a). At this
time moment, the compression of the pulse is stopped and the collapse does
not take place, as shown in Fig. 4.36.

For ε > 0, an analogous mechanism also plays a certain role but, be-
cause of the change of the dispersion’s character in the region of small k, the
compression and the increase of the amplitude of the pulse are stopped at
the earlier stage (see Figs. 4.30 and 4.32, curves 6 and 7), and the evolution
proceeds to the defocusing stage. This is analogous to the situation taking
place for the usual KP equation with the negative dispersion (β/κ < 0 in the
standard form of the KP equation, see Sect. 3.1) [59]. The role of the term
proportional to the fifth derivative in (4.131) reveals also the formation of
the small-scale oscillations constituing the regular oscillatory structure of the
tail (compare Fig. 4.35a and 4.35b).

The final stage of the evolution of the pulse for λ = 1 and µ = 0 is
characterized by the slow decrease of the amplitude of the main maximum
(see Figs. 4.30 and 4.36) accompanied by some increase of the amplitude of
the second maximum (ε ≤ 0) or the amplitudes of the tail oscillations (ε >
0), with the general structure of the solutions being qualitatively conserved.
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Fig. 4.34. Solution in the
x−ρ-plane for λ = 1 and ε =
−0.89 corresponding to the
stage of the evolution when
the pulse amplitude is the
largest. a t = 1.65. b t = 1.8

The character of the change of the amplitudes, the parameters lx, lρ, as
well as the integrals P and H allows us to assume the possibility of the
solutions approaching a stationary state for λ = 1 and |ε| ≥ 0. However, the
computational analysis of further stages of the soliton’s evolution is difficult
because of the need for the considerable increase of the sizes of the integration
region. Therefore, to estimate the stability of the solutions for λ = 1 and
µ = 0, as in the two-dimensional case (Sect. 4.4), an analysis can be done of
the boundedness of the Hamiltonian of the equation (4.131) with µ = 0 on
the solutions obtained numerically. The result of the analysis (as an example,
see Fig. 4.37, curves 1 and 2) confirms that the solutions for large t and
ε > 0 approach the stationary ones (corresponding to the minimum of the
Hamiltonian H in Fig. 4.37) and are unstable for ε ≤ 0 (for the considered
values of ε). Moreover, unlike the standard KP equation with (β/κ) > 0,
(4.131) for any ε ≤ 0 has no collapsing solutions: the decrease of ε leads to
the increase of the “critical” value of the amplitude (see Fig. 4.30), but the
time evolution is always finished with defocusing of the wave field. However,
for ε→ −∞ there is the limit transition,

lim
ε→−∞,γ→0

[
−ε|γ|1/2

]
= const > 0, γ = λ|γ|, (4.135)
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Fig. 4.35. Solutions in the
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responding to the defocusing
stage of the evolution. a ε =
−0.89, t = 2.1. b ε = 0.89,
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Fig. 4.37. Change of the Hamil-
tonian H along the directions η =
(2b/c)ζ5/2 under deformations on
the numerical solutions of (4.131)
with µ = 0 and λ = 1: (1) ε =
−1.34; (2) ε = 2.24, and λ = −1:
(3) ε = 1.34; (4) ε = −1.34

leading to the disappearance of the term proportional to the fifth derivative
and the transform of (4.131) with µ = 0 into the standard KP equation with
the positive dispersion term. The results of the computational analysis for
this case (µ = λ = 0, ε < 0) leading to the collapse of the solution, are shown
in Figs. 4.30, 4.32, and 4.33 (curves 4 and 5).
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Fig. 4.38. Solutions of
(4.131) at ρ = 0 and t = 0.3
for λ = −1 and µ = 0: (1)
ε = −1.34; (2) ε = 1.34; (3)
the initial pulse

Consider now solutions for λ = −1. Change of the sign of the system’s
dispersion (i.e., simultaneous change of the signs of ε and λ) relative to the
cases considered above leads, as in the two-dimensional version of (4.131), to
qualitatively new results. For ε < 0, we observe formation of the spreading
with time wave packet with regular oscillations in the x-direction in front of
the main maximum, and smaller scale oscillations behind it. The structure
of the solutions for ε → −∞ changes in a manner similar to the case λ = 1,
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ε→ ∞. With ε→ 0 and its further increase to the positive values, the oscil-
lation frequency decreases and the amplitude of the tail oscillations increases
(Fig. 4.38). Thus for significantly large ε > 0, it becomes comparable to the
amplitude of the main maximum and to the amplitudes of the oscillations in
front of the pulse. An instability of the wave packets for µ = 0 in the case
λ = −1 is confirmed by the analysis of the boundedness of the Hamiltonian
H on the numerical solutions (see Fig. 4.37, curves 3 and 4).

4.5.2 Structure and Evolution of Three-Dimensional Solutions of
3-DNLS-Class Equations

For the numerical investigation, we consider the 3-DNLS equation in the
integral-differential form (4.132) and integrate it in the axially-symmetric
geometry ∆⊥ = ∂2

ρ + (1/ρ)∂ρ, with ρ2 = y2 + z2. Here, we use the implicit
scheme with O(τ2,∆4

x,ρ) approximation (4.83) on the grid 301 × 51, with
τ = 0.0025, ∆x = 0.1, ∆ρ = 0.3, and the periodic boundary conditions. We
compute the integral on the right-hand side of (4.132) using the Newton–
Cotes formula (see Sect. 4.3) with an accuracy of at least O(∆4

x) (with the
automatic choice of the number of knots in the quadrature expression [77]).
The initial conditions are taken in the form of the axially-symmetric solitary
pulses of two types:

a. Soliton-like axially symmetric pulse:

h(x, ρ, 0) = h0(x) exp
[
iϕ(x) − ρ2/l2ρ

]
, (4.136)

with
h0(x) = 2

√
2δ sin ν

[
cosh

(
4δ2 sin νx

)
+ cos ν

]−1/2

and

ϕ(x) = −2sδ2 cos νx− 3
4
s

x∫
−∞

h2
0(x)dx,

where 0 < ν < π.
b Modulated “plane” wave:

h(x, ρ, 0) = H0 exp
(

2πix
λ

− x2

l2x
− ρ2

l2ρ

)
, (4.137)

where λ is the wavelength, H0 is the amplitude, and lx and lρ are the
characteristic scales of the Gaussian envelop modulation in the x- and ρ-
directions. Note that for ρ = 0, the initial conditions (4.136) and (4.137) are
equivalent to those (for DNLS equation) used for the numerical simulation
of the evolution of the one-dimensional Alfvén wave in Refs. [33,176].
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To control the numerical computation, we calculate on every time layer
the integrals (see Sect. 4.1)

C1 = Px =
1
2

∞∫
−∞

|h|2dr,

C2 =
H
2

=
1
2

∞∫
−∞

[
1
2
|h|4 + λshh∗∂xϕ+

κ

2
(∇⊥∂xw)2

]
dr, (4.138)

with ∂2
xw = h and ϕ = arg(h). To investigate the structure and evolution of

the three-dimensional pulses, we have done a number of simulation runs for
both signs of the integral parameter b = λs

∫
hh∗∂xϕdr and various initial

values of the Hamiltonian H by defining various initial values for the pulse
amplitude and the widths lx and lρ. Thus, we have obtained the following
results:

1. For λ = 1, s = −1, large κ > 0, and the initial pulse weakly limited in
the transverse ρ-direction when the stability condition (see Sect. 4.1.3) is
satisfied, the evolution for large t results in formation of the stable three-
dimensional (axially-symmetric) solution (Fig. 4.39).
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Fig. 4.39. Evolution of the three-
dimensional right-circularly po-
larized nonlinear pulse (4.136) for
λ = 1, s = −1, κ = 1; H >
−3bd/(1 + 2d2) > 0 (see Sect.
4.1.3)

2. For the opposite signs of λ and s (this is equivalent to the change t →
−t and κ → −κ in (4.132)), the Hamiltonian H (4.138) of the 3-DNLS
equation becomes negative, and, as it follows from the simulations, the
three-dimensional Alfvén waves spread with the time evolution (Fig. 4.40).

3. For λ = 1, s = −1, small κ > 0, and the initial pulse rather strongly
limited in the transverse ρ-direction, the condition of the existence of the
local minimum of the Hamiltonian H (see Sect. 4.1.3) is not satisfied, and
in the simulations we can observe development of the three-dimensional
collapsing solutions of the 3-DNLS equation (Figs. 4.41 and 4.42). Note
that this effect is typical for all nonlinear systems where the Hamiltonian
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Fig. 4.40. Evolution of the three-
dimensional right-circularly po-
larized nonlinear pulse (4.137) for
λ = −1, s = 1, κ = 1; H > 0 (see
Sect. 4.1.3)
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Fig. 4.41. Dynamics of the three-
dimensional right-circularly po-
larized nonlinear pulse (4.137)
(the cross-section by the ρ-plane
at hmax) for λ = 1, s = −1,
κ = 0.2; 0 < H < −3bd/(1 + 2d2)
(see Sect. 4.1.3)

is unlimited for the fixed first integrals (in this case, for the momentum
P), and the quadratic terms in the expression for the Hamiltonian H (the
first and third terms in (4.138)) are positively defined. For example, the
same effects have been observed in systems describing the evolution of FMS
waves [59] and Langmuir waves [56] in a plasma. A series of simulation runs
done for b > 0 when λ = 1, s = 1 and λ = −1, s = −1 in (4.132) with
ν = 0 demonstrated that for these conditions in all the cases considered
(various initial values of the Hamiltonian H and the parameters lx and
lρ), the initial three-dimensional axially-symmetric pulse is spreading with
time. This is quite obvious so far as that such type of conditions for the
system’s parameters the inequality H < −3bd/(1 + 2d2) (see Sect. 4.1.3)
is not satisfied and, therefore, the three-dimensional solutions of 3-DNLS
equation are unstable.

If we, however, perform the transform h→ −sh∗ in the 3-DNLS equation,
i.e., consider the left-circularly polarized waves, the corresponding signs in
the expression for the system’s Hamiltonian H (4.138) change to the opposite
ones and we observe the mirror-opposite picture for all the cases considered
above. Thus the case λ = −1, s = −1, and large κ > 0, as well as the
cases λ = 1, s = 1 and λ = −1, s = −1 for small κ > 0 correspond to
the above cases (1), (2), and (3), respectively, with the opposite signs of
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Fig. 4.42. Evolution of the three-
dimensional right-circularly po-
larized nonlinear pulse (4.136) for
λ = 1, s = −1, κ = 0.2; 0 < H <
−3bd/(1 + 2d2)

the Hamiltonian H. An example of the dynamics of the three-dimensional
left-circularly polarized pulse is shown in Fig. 4.43.
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Fig. 4.43. Evolution of the three-
dimensional left-circularly polar-
ized nonlinear pulse (4.137) for
λ = s = κ = 1; H > 0

To sum up the above, we conclude that the 3-DNLS equation (4.132) with
ν = 0 can have the stable three-dimensional solutions in the form of a three-
dimensional Alfvén soliton, alongside with the three-dimensional collapsing
or dispersing with time solutions. The particular form of the solution is de-
fined by the signs of the coefficients λ and s as well as by the chosen initial
condition. The results obtained above can be also interpreted in terms of the
self-focusing phenomenon. Indeed, the (formal) interchange x↔ t enables us
to convert the Cauchy initial value problem (4.132) and (4.136) or (4.132)
and (4.137) to the boundary value problem describing propagation along the
x-axis (from the boundary x = 0) of a three-dimensional Alfvén wave beam
localized in the ρ-plane. In this case the above results can be interpreted as
follows: (1) the formation of the stationary Alfvén wave beam propagating
along the x-axis, (2) the spreading of the Alfvén wave beam, and (3) the
self-focusing of the Alfvén wave beam. It is interesting to note that we in fact
observe here the dynamics of the Alfvén wave beam propagating in a plasma
with β > 0 at near-to-zero angles with respect to the external magnetic field
B, which is qualitatively similar to the dynamics of the FMS wave beam
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propagating in a plasma with β � 0 at an angle close to π/2 with respect to
the external magnetic field [86,196].

4.5.3 Influence of Dissipation on Evolution of Three-Dimensional
Nonlinear Waves

The presence of dissipation caused by the relaxation processes of the viscous
type in a medium (the particular physical reason of the energy dissipation
depends on the type of the medium) changes the character of the evolution
of the three-dimensional nonlinear pulse. For the GKP equation for the cases
considered above, the role of dissipation (µ > 0) in the formation and evolu-
tion of the three-dimensional soliton-like structures and the nonlinear wave
packets results in the decrease of the main amplitude maximum according to
the exponential law u(t) = u(0) exp(Γt), where Γ ∼ −2.6. It also leads to
the steepening of the wave packet profile in the direction of the wave propa-
gation [148]. In this case, for ε > 0, a stronger suppression of the oscillations
in front of the pulse can be observed; the suppression increases with the in-
crease of ε (see Fig. 4.29, curves 3 and 4, Fig. 4.44 and Fig. 4.45). This is also

(a)

(b)

(c) Fig. 4.44. Evolution of the
axially symmetric pulse for
λ = 1, ε = 3.16, and µ =
1.78. a t = 0.36. b t = 0.53.
c t = 0.9

confirmed by the asymmetric change of the integrals P and H in the front
and back “caverns” (u < 0). As a result of the dissipation, similar to the
two-dimensional case considered above (see Sect. 4.4), the oscillating soliton
tail stretches out and its overall slope decreases compared to that of the front
part of the pulse.
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Fig. 4.45. The same results
as in Fig. 4.44 but for ρ = 0

The results presented in Sect. 4.5.1 for µ = 0 demonstrate that for λ =
1, the dissipation in the medium is not crucially decisive for the stopping
the wave collapse. The term −µ∂2

xu, defining the dissipation, plays the role
of a competing factor with respect to the nonlinear term in the instability
development and, depending on the value µ > 0, in either extent suppresses
the instability. Thus for ε ≤ 0 and µ ∼ 1, as long as the characteristic
parameters lx and lρ do not reach the minimum critical values when the term
proportional to the fifth derivative begins to play the dominant role, the phase
of “flapping” of the soliton wings behind the main maximum is completely
absent in the evolution of the pulse. As a result, the second maximum of the
solution is absent in this case and the algebraic asymptotics, taking place in
the initial stage, is preserved (see Fig. 4.27, curve 5). However, in the case
ε > 0 and µ > 0 the structure of the solutions for large time t (excluding the
exponential decrease of the amplitude and the steepening of the wave profile)
does not qualitatively changes, as shown by a comparison of Fig. 4.35b with
Fig. 4.44 and Fig. 4.45.

In the case λ = −1, the following results are obtained: for ε < 0 and
µ > 0, similar to the case ε < 0 and µ = 0 considered in Sect. 4.5.1, the
result of the wave evolution is the formation of the spreading with the time
wave packet, with the regular oscillations in the direction of its propagation
and small-scale oscillations behind its main maximum (see Fig. 4.29, curve
5, and Fig. 4.46). The asymptotic behavior of the solutions for ε → ∞ and

Fig. 4.46. Three-dimensional
axially symmetric pulse de-
scribed by (4.131) with λ =
−1, ε = −1.58, and µ = 1.26
at t = 0.25
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ε → 0 is qualitatively analogous to the case µ = 0, shown by a comparison
of the curve 5 in Fig. 4.29 and Fig. 4.46. The effect of the dissipation on the
structure and evolution of the solutions for λ = −1 looks similar to that for
λ = 1: first of all, in the steepening of the fronts of the waves in the packet,
but unlike the case λ = 1 for both ε < 0 and ε ≥ 0 the tail oscillations are
more suppressed. The order of magnitude of the suppression rate for this case
is the same as for λ = 1.

The role played by the dissipation in the 3-DNLS model (ν > 0 in (4.132))
is in many respects analogous to that in the case of the three-dimensional
GKP equation. Just as for the GKP model, in the evolution of the Alfvén
wave the exponential decrease of its amplitude with time is observed:

|h|2 = (1 + e2)h̄2(t) = (1 + e2)h̄2(0) exp(Γt). (4.139)

In this case, the damping rate is of the same order of magnitude as in the
GKP model (we have obtained in our numerical simulations the averaged
value Γ ≈ −3.1). Moreover, similar to the GKP model, some steepening of
the pulse’s front takes place, and the back slope of the pulse decreases [68].
The proof of that behavior is, in particular, in the different character of the
change of the integrals of motion,

P = (1 + e2)

∞∫
−∞

h̄2dr (4.140)

and

H =

∞∫
−∞

[
1
2
(
1 + e2

)2
h̄2 + λs

(
1 − e2

)
h̄2∂xϕ+

κ

2
(∇⊥∂xw)2

]
dr, (4.141)

where ∂2
xw = (1 + ie)h̄ and ϕ = arg[(1 + ie)h̄] (see Sect. 4.3), in the regions

behind and in front of the main maximum. Indeed, in all cases P and |H|
decrease faster in front of the pulse.

For various values of the coefficients in the 3-DNLS equation, the character
of the evolution is the following:

1. For λ = 1, s = −1, and relatively large κ > 0, the initial pulse is weakly
limited in the direction perpendicular to its propagation, and loses its en-
ergy gradually with time (H → 0 with t→ ∞). In this case, the amplitude
of the pulse decreases with time (as we noted above, exponentially, with the
rate proportional to ν) and, as a result, the solitary wave disperses. Recall
here, that in the case of ν = 0, the evolution after initial “sub–focusing”
of the pulse leads to the formation of the stable three-dimensional Alfvén
soliton (see above).



4.6 Applications 249

h
max

0 5 10 15 20

0.5

0.6

25

50

t

0

-50

�

�

3

3

1

1

3

1

2

2

2

Fig. 4.47. Change of the
amplitude of the three-
dimensional
axially-symmetric
Alfvén wave pulse (the solid
lines), as well as the momen-
tum (the dash-dotted lines)
and the Hamiltonian (the
dashed lines) of the 3-DNLS
equation with ν = 1: (1)
λ = 1, s = −1, and κ = 1.5;
(2) λ = −1, s = 1, and
κ = 1.5; (3) λ = 1, s = −1,
and κ = 0.1

2. For λ = −1 and s = 1, when the Hamiltonian H becomes negative and the
Alfvén wave pulse for ν = 0 spreads with its evolution, the presence of the
dissipation accelerates this process significantly (for ν ∼ 1 we have obtained
in the simulations averaged Γ ≈ −3.4). The effect of the steepening of the
front of the pulse takes place as well in this case.

3. For λ = 1, s = −1, relatively small κ > 0, and the initial pulse strongly lim-
ited in the transverse ρ-direction, when development of the wave collapse
is observed in the simulations for ν = 0, the presence of the dissipation
can rapidly delay or (for large ν > 0) even stop this process. In this case,
the role of the dissipation in the 3-DNLS model is different from that in
the model of the three-dimensional GKP equation: it is now the decisive
factor in the stopping of the wave collapse.

Figure 4.47 shows the change with time of the amplitude and the integrals
P and H (averaged throughout the region of numerical integration) for the
three cases described above and ν = 1.

4.6 Applications

We already mentioned in the Introduction that equations (0.10) and (0.22)
are universal in the sense that they describe the wide class of nonlinear waves
in dispersive media in the absence and in the presence of dissipation, respec-
tively, when the dispersion law in the linear approximation is given by

ω ≈ c0kx

(
1 +

k2
⊥

2k2
x

−D2k2
x

)
(4.142)

(see the KP equation in its standard form for the waves with k⊥ ≡ ky in
Sect. 3.1) and

ω ≈ c0kx

[
1 +

k2
⊥

2k2
x

− iνkx

c0
+

1
c0

(−γ1k
2
x + γ2k

4
x

)]
(4.143)
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(see (0.22) and (4.4)) where c0 is the phase velocity of the oscillations for
|k| → 0 and D is the dispersion “length.” Such situations arise, for example,
for the wave perturbations of the acoustic type such as the ion-acoustic waves
and magnetosonic waves in a plasma, surface waves in shallow water, and
internal gravity waves in the upper atmosphere and ionosphere (applications
in the one-dimensional case when k⊥ = 0 in the dispersion relations (4.142)
and (4.143) are given in Sect. 1.4).

There is a number of works dedicated to applications of these models to
nonlinear wave processes in particular physical media, we note here Refs.
[3,7,59,80,81,85,138–141,189,196]. In the Introduction and Sects. 2.4 and 4.1
we demonstrated that equations of the DNLS class (0.13), (0.16) and (0.24),
(4.14) directly describe the nonlinear evolution of Alfvén waves in a mag-
netized plasma without and with dissipation in the medium, respectively.
Studies of these models were done in Refs. [7,33,37,38,50,65–70].

Here, we consider applications of the results obtained above for multi-
dimensional cases to the investigation of: (a) the propagation of nonlinear
ion-acoustic waves in an unmagnetized plasma, including the relativistic ef-
fects (Sect. 4.6.1); (b) the dynamics of three-dimensional fast magnetosonic
(FMS) waves propagating in a magnetized plasma (Sect. 4.6.2); (c) the dy-
namics of two-dimensional solitary nonlinear internal gravity waves (IGW),
generated in the F-layer of the Earth’s ionosphere by fronts of the solar
terminator and the solar eclipse as well as by seismic sources, and excita-
tion by them of the traveling perturbations of the plasma electron density
(so-called traveling ionospheric disturbances, TID) (Sect. 4.6.3); (d) the evo-
lution of two-dimensional solitons of gravity and gravity-capillary waves on
the surface of a shallow water with the bottom relief varying in time and
space (Sect. 4.6.4). The main results here are obtained by the analytical and
numerical methods detailed above in the previous sections, see also Refs.
[50,65–70,81,83,138–141,144,195,196,201,203–206].

4.6.1 Nonlinear Ion-Acoustic Waves in a Plasma

Here we consider applications of the results obtained in the previous sec-
tions to description of the structure and dynamics of the multidimensional
ion-acoustic waves in an unmagnetized plasma, including the case of a weakly
relativistic plasma. Similar applications in the one-dimensional case were con-
sidered above in Sect. 1.4.

Nonrelativistic Approximation. In the absence of the magnetic field and
for the negligible ion temperature (see assumptions of Sect. 1.4), the equations
of motion and continuity for plasma ions are given by [83]

∂tv + (v · ∇)v = − e

mi
∇ϕ,

∂tni + ∇ · (niv) = 0. (4.144)
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Recall that a comparison with (1.1) shows that in this case the role of the
generalized “density” and “sound” plays the ion density ni and the ion-
acoustic velocity cs = (Te/mi)1/2; the dispersion “length” is defined by
D2 = r2D/2 = Te/8πn0e

2 where n0 is the unnperturbed electron density
and rD is the electron Debye length. The electrons in the ion-acoustic wave
are Boltzmann distributed,

ne = n0 exp
(
eϕ

Te

)
, (4.145)

and the densities of the electrons and ions are related to the electric potential
ϕ via Poisson’s equation

∆ϕ = 4πe (ne − ni) . (4.146)

The dispersion equation for the set (4.144)–(4.146) is written as [189]

ω2 =
c2sk

2

1 + r2Dk2 . (4.147)

Consider the wave packet propagating in the direction close to the x-axis.
We assume that the wave numbers of its harmonics are small satisfying the
inequalities,

|k|rD � 1, k2
x � k2

⊥, and v′ � cs, (4.148)

where v′ is the x-component of the ion velocity. It is well known that the
weakly dispersive (see the first inequality of (4.148)) ion-acoustic wave steep-
ens in the direction of its propagation, therefore, at some time moment the
second inequality of (4.148) “switches on.” Conditions (4.148) enable us to
reduce the dispersion relation (4.147) to the form (4.142). Thus considering
the solution in the form of a propagating wave u = u(t, x− cst, r⊥), limiting
ourselves in the nonlinear expansion by the terms quadratic in the wave am-
plitude, and applying the procedure described above in Sect. 1.1.1 and Sect.
3.1.1), we obtain the nonlinear equation

∂x

(
∂tv + cs∂xv − csD

2∂3
xv + v∂xv

)
= ±cs

2
∆⊥v (4.149)

(where ∆⊥ = ∂2
y + ∂2

z ) that is formally similar to the dimensionless equation
(3.3) (compare also with (1.110) of Sect. 1.4). After the homothetic transfor-
mation and in the reference frame moving along the x-axis with the velocity
cs, equation (4.149) can be reduced to the standard form of the KP equation,

∂tu+ αu∂xu+ β∂3
xu = κ

x∫
−∞

∆⊥udx, (4.150)

where κ > 0 is related to the positive dispersion (κ < 0 corresponds to
the negative dispersion, respectively), and the factors at the nonlinear and
dispersion terms are (see also Sect. 1.4)
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α =
3
2
cs
ni

and β =
1
2
csr

2
D.

Generally speaking, for the ion-acoustic wave the sign on the right-hand side
of (4.149) is positive so that the dispersion is negative, κ < 0 in (4.150).
However, for other modes there are cases when the dispersion is positive,
i.e. there is the ‘minus’ sign on the right-hand side of (4.149). The term
cs∂xv, just as in the one-dimensional case (Sect. 1.4), describes the wave
propagation along the x-axis with the “sound” velocity, and other terms re-
sponsible for dispersion, nonlinearity, and diffraction describe slow changes
of the acoustic field on the background of the wave motion with the velocity
cs. Such acoustic waves is mainly characteristic for isotropic media (e.g., an
unmagnetized plasma), but sometimes it can be observed in anisotropic me-
dia as well. For example, if the characteristic frequency of the ion-acoustic
wave packet significantly exceeds the ion-cyclotron frequency in a magnetized
plasma, viz. ω � ωBi, the plasma anisotropy introduced by the magnetic field
can be neglected and therefore (4.149) can be reduced to the standard KP
equation (4.150) [189]. In the opposite case, when ω � ωBi, the anisotropy
cannot be neglected.9 In Refs. [83,195], the isotropic case of (4.150) for the
ion-acoustic waves in an unmagnetized plasma was considered, the numeri-
cal simulation based on the implicit scheme (4.75) was performed [195], and
the spectral method (4.93) and (4.96) was applied for the initial condition
u(0, x, y) = u0 exp[−((x/lx)+(y/ly))2/L2] with the periodic boundary condi-
tions [98,195]. Figure 4.48 shows an example of the numerical results obtained
for the two-dimensional (∆⊥ = ∂2

y) equation (4.150) [195].

0 2 4 6 8-2-4-6-8

0

2

y

-2

-4

x

Fig. 4.48. Two-dimensional
solution of (4.150) with α =
6 and β = 1

We can see that as a result of the evolution of the two-dimensional acoustic
perturbation u(0, x, y) in an isotropic plasma, the one-dimensional soliton of
9 On the right-hand side of the equation of motion (4.144) appears the additional

term ωBii × v (i is the dimensionless unit vector in the x-direction), and the
second term in the dispersion equation changes its sign. In this case, we also
obtain an equation of the class (0.3) but with R[u] = ∓∆⊥∂xu [17]. The upper
sign in the resulting equation corresponds to the negative dispersion and the
lower sign – to the positive dispersion, as in (4.149).
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KP equation is formed. The form of the soliton corresponds to that obtained
analytically for the negative dispersion in Ref. [16] by employing the Krylov–
Bogolyubov method and in Ref. [24] by using the IST method. It is shown in
Refs. [81,83,195] that for sufficiently large t, the soliton velocity and the first
three integrals of KP equation J1, J2, and J3 (see Sect. 3.1) are conserved
within the limits of the accuracy of the numerical simulation.

Weakly Relativistic Effects. In Sect. 1.4 we have considered the weakly
relativistic case for the one-dimensional nonlinear ion-acoustic waves de-
scribed by KdV equation. Here we use the same approach to study similar
waves in the two-dimensional case. As we already demonstrated, the ion-
acoustic waves in a plasma can be described by the KP equation (4.150).10

However, if the velocity of plasma particles approaches the speed of light, the
relativistic effects start to strongly influence the wave characteristics (such
as its phase velocity, amplitude and the characteristic wavelength) in the
propagation of the two-dimensional solitary ion-acoustic wave.

For the two-dimensional ion-acoustic solitary waves in a weakly relativistic
collisional plasma, the KP equation (4.150) taking into account the relativistic
factor u/c can be obtained [207] using the reduced perturbation method [104].
We have

∂τΦ1 + α (ϑ1)Φ1∂ξΦ1 +
1
2
β (ϑ1) ∂3

ξΦ1 = −1
2

ξ∫
−∞

∂2
ηΦ1dξ (4.151)

(compare with (1.112)). Here, just as in Sect. 1.4.3, Φ1 = ϑ
1/2
1 u1 is a small

perturbation of the electrostatic potential Φ = εΦ1 + ε2Φ2 + . . ., ε is the
small expansion parameter and u1 is the perturbation of the plasma particle
velocity (u = u0 + εu1 + ε2u2 + . . .), where

α (ϑ1) = β (ϑ1)

(
1 − ϑ2

ϑ
3/2
1

)
, β (ϑ1) = ϑ

−1/2
1 , (4.152)

and
ϑ1 = 1 +

3
2

(u0

c

)2

, ϑ2 =
3
2
u0

c2
.

Equation (4.151) is written in the reference frame moving along the x–axis:
ξ = ε1/2(x− λt), η = εy, τ = ε3/2t, and λ is the phase velocity. Since α > 0
(see Sect. 1.4.3), we can obtain the stationary solution as the propagating
solitary wave. Following the method of Sect. 1.4 we introduce the new variable
ς = kxξ+ kyη−ωτ and substitute it into (4.151). Thus we write the solution
in the form of a two-dimensional wave

Φ1 = Φ0sech2

[
1
W

(
ξ +

ky

kx
η − ω

kx
τ

)]
, (4.153)

10 Below, we limit the consideration by the two-dimensional case with ∆⊥ ≡ ∂2
y in

(4.150).
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Table 4.4. Comparison of results [81,83] with the extreme cases (three last
columns) investigated in Refs. [16,105,106,207]

Parameters Results [81,83] u0 = 0, η �= 0 u0 = 0, η = 0 u0 �= 0, η = 0

λ u0 + ϑ
−1/2
1 1 1 u0 + ϑ

−1/2
1

α
1−ϑ2/ϑ

3/2
1

ϑ
1/2
1

1 1
1−ϑ2/ϑ

3/2
1

ϑ
1/2
1

β ϑ
−1/2
1 1 1 ϑ

−1/2
1

Φ0
3δϑ

1/2
1

1−ϑ2/ϑ
3/2
1

3δ 3s
3sϑ

1/2
1

1−ϑ2/ϑ
3/2
1

W ϑ
−1/4
1

(
2
δ

)1/2 (
2
δ

)1/2 (
2
s

)1/2
ϑ
−1/4
1

(
2
s

)1/2

where the amplitude Φ0 and the characteristic size W are defined by the same
expressions as in the one-dimensional case,

Φ0 =
3δ

α (ϑ1)
, W =

[
2β (ϑ1)

δ

]1/2

, (4.154)

but here δ = (ω/kx) − (ky/kx)2/2, and the boundary conditions are Φ1 → 0
and ∂n

ξ Φ1 → 0 for n = 1, 2 and |ξ| → ∞. The dispersion law for these waves
is given by [207]

ω = kx

[
2β (ϑ1) k2

x +
k2

y

2k2
x

]

(compare with the corresponding expression in Sect. 1.4.3).
We see from (4.152) that the factors at the nonlinear term as well at the

dispersion term are defined by the relativistic factor ϑ1. Equation (4.154)
shows the dependence of the amplitude and the characteristic length of the
two-dimensional ion-acoustic soliton of the KP equation on the weakly rel-
ativistic effects. Comparison of the results following from (4.152)–(4.154)
and obtained in Refs. [81,83] with those for the three extreme cases con-
sidered in Refs. [16,105,106,207] is given in Table 4.4. Here, just as in the
one-dimensional case,

s =
(ω
k

) ∼= v0 +
1

ϑ
1/2
1

(
1 − 1

2
k2

)
,

v0 is the velocity of the ion flow (if v0 ∼ 0 and the relativistic effects are
ignored, we have s ∼= 1 − k2/2), but δ is defined by another expression (see
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above). Table 4.4 demonstrates that the obtained results include all three
extreme cases too.

To conclude we note that importance of the problem of the wave propa-
gation in a collisional weakly relativistic plasma was discussed in Sect. 1.4.3;
this type of problem appears, for example, in applications to magnetospheric
plasma [107], laser plasma [108] as well as in astrophysics [109].

4.6.2 Nonlinear Effects in Propagation of FMS Waves in a
Magnetized Plasma

Recall that in a magnetized plasma with β ≡ 4πnT/B2 � 1 for the frequen-
cies ω < ωBi (where ωBi = eB/mic is the ion-cyclotron frequency), the FMS
waves can propagate. Their dispersion law for |k|rD � 1, k2

x � k2
⊥, and

vx � vA is given by (see Sect. 3.2.3 as well as Ref. [196])

ω ≈ vAkx

(
1 +

k2
⊥
k2

x

+ χ (θ)D2k2
x

)
, (4.155)

where vA = B2/4πnimi is the Alfvén velocity, k⊥ is the transverse (with
respect to the wave propagation) wavenumber, vx is the x-component of the
ion velocity, D is the dispersion length (see below (4.156), and θ is the angle
between the wave vector component kx and the external magnetic field B.
Remember also (see Sect. 3.2.3) that the (relatively) weak dispersion means
that the principal nonlinear process is the three-wave interaction for small-
amplitude waves; the condition of the weak nonlinearity determines a small
angle between the interacting waves. For sufficiently high ion temperature
(β > me/mi), the dispersion length is defined by [59]

χ (θ)D2 =
c2

2ω2
pi

cot2 θ − ρ2
i

2

(
3 − 11

4
sin2 θ

)
, (4.156)

where ρi = vTi/ωBi is the ion Larmor radius. For such type of motions
the plasma is quasi-neutral since ω � ωpi where ωpi = (4πnie

2/mi)1/2 is
the ion plasma frequency. From (4.156) we can see that the wave dispersion
is positive (the phase velocity increases with |k|) except the narrow angle
ranges near θ = 0 and θ = π/2. For the near-to-transverse propagation with
respect to the external magnetic field B when |θ−π/2| < (β/4)1/2, the wave
dispersion is negative and is defined by the effects associated with the finite
ion Larmor radius ρi. It is well known that in order to describe the small-
amplitude FMS wave propagation within the narrow angular distribution,
the KP equation (4.150) can be used [86]. For those angles where the wave
dispersion for small |k| is positive (this also requires a sufficiently high ion
temperature), the three-dimensional wave packet of FMS waves in a plasma
with β > me/mi does not form stable stationary solutions and disperses
for angles |θ − π/2| < (me/mi)1/2 or collapses outside this cone [59]. In the
latter case when a sufficiently intensive FMS wave beam is limited in the
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k⊥-direction, the wave self-focusing phenomenon can be observed (see Sect.
3.2.3). This problem was solved for the first time in Ref. [86] by averaging the
initial equations and their subsequent numerical solution. However, (4.156)
is invalid for the angles θ < (kc/ωpi)1/2 where intensive rebuilding of the
mechanism of the oscillations’ dispersion takes place. For β < me/mi the
wave dispersion can be determined for any angle θ from the hydrodynamic
equations; the FMS wave structure in this case depends on the sign of the
dispersion factor

γ1 = −vAχ(θ)D2 = vA
c2

2ω2
pi

(
me

mi
− cot2 θ

)
,

which is defined by the angle θ, namely: for the near-to-transverse propaga-
tion the wave dispersion is negative when |θ − π/2| ≤ (me/mi)1/2, and it is
positive for other angles. Thus the KP equation can also be used [59], and
for the sufficiently intensive FMS wave beam limited in the k⊥-direction, we
can expect the self-focusing of the wave beam propagating at those angles θ
where the wave dispersion is positive.

As an example, consider a plasma with β < me/mi when the KP equation
(4.149) with cs = vA is used [59] for description of the small-amplitude FMS
wave propagating within the narrow cone:

∂th+
3
2
vA sin θh∂xh+ γ1∂

3
xh+ ν̂h = −1

2
vA

x∫
−∞

∆⊥hdx, (4.157)

where h = B∼/|B| is the dimensionless FMS wave amplitude, B∼ is the
magnetic field of the wave, and the factor at the nonlinear term can be
determined on the basis of the results of Ref. [3]. In contrast to (4.149),
the damping is included into (4.157), and the operator ν̂ determined by the
damping rate ν(k) of the monochromatic wave includes both the collisional
and collisionless (Landau) contributions, ν = νcol + νL (see Introduction),
where νL stands for the collisionless Landau damping associated mostly with
the plasma electrons. According to the results of Sect. 3.1, equation (4.157)
can have, within the range of the angles |θ − π/2| ≤ (me/mi)1/2, the one-
dimensional soliton solutions as well as solutions in the general form of the
cnoidal waves. Outside this cone this equation can have solutions in the form
of the two-dimensional stationary structures such as a rational soliton. The
three-dimensional solitons of the KP equation, as we already noted in Sect.
3.1, are unstable in both these cases.

Consider now the one-dimensional shock-like solution of (4.157) with the
asymptotics

h→
{
h0, x→ −∞,
0, x→ ∞.

The condition h = h0 behind the front of the shock corresponds to the
density discontinuity δρ/ρ0 = h0 sin θ and the plasma velocity given by
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v0 = (4πρ0)−1/2Bh0 sin θ [59,81,83]. As a result, the change of the Alfvén
velocity is given by ∆vA = 1/2(4πρ0)−1/2Bh0 sin θ that, together with the
velocity v0 (in full agreement with (4.157)), gives us 3/4(4πρ0)−1/2Bh0 sin θ.
Since equation (4.157) describes small-amplitude waves, this solution is the
weak shock wave. If we assume that the wave damping is also weak (less than
the wave dispersion), then, according to Ref. [103], we obtain collisionless
shock waves with an oscillatory structure behind the front, where the ampli-
tude of oscillations decreases with the distance from the discontinuity. Such
an oscillatory structure can be represented as a set of the one-dimensional
solitons. In this case, the first one has the linear size ls ∼ D/(M2 − 1)−1/2

where M is the Mach number, and the amplitude is of order h0; the ampli-
tudes of the subsequent solitons decrease. Provided that the main mechanism
of the wave dissipation is due to the electron-ion collisions, the size of the
oscillatory tail structure can be estimated as [103]

ld ∼ vAD
2 ωpe

c2νei
.

It is well known that the laminar oscillatory structure of a shock wave is
unstable with respect to decays of the FMS waves involving the Alfvén and
the slow magnetosonic waves (SMS waves), as well as decays inside the FMS
branch of oscillations [59,103]. In a collisionless plasma with β � 1 and β �= 0
the main nonlinear process for Te � Ti is the decay involving SMS waves.
For these processes the excited oscillations propagate at large angles to the
original wavefront, and because of the finite width of the front the instabil-
ity can be suppressed. There are no analogous reasons for the instability’s
stabilization in the nonlinear interaction of FMS waves between themselves,
because of their small angles with respect to the front and, therefore, small
dispersion of the group velocities. This nonlinear interaction has absolute
character, while all other processes are convective. Thus, in the considered
case of the weak oblique shock waves, the main mechanism determining the
structure of the front is the nonlinear interaction of the waves within the
FMS branch.

It was shown in Ref. [59] by numerically integrating the KP equation
(using the scheme of the iterative splitting) that the growth of the instability
of the interacting FMS waves leads to the nonlinear deformation of the front
structure when the field is pushed out from center of the soliton accompanied
by the growth of the magnetic field on the soliton “wings,” thus forming one
or two collapsing “cavitons”.11 In the process of the growth of the magnetic
field in the collapsing cavity there is a moment when the ions start to be
reflected from the front (this occurs at the Mach numbers M = 1.5 − 2.5).
The numerical estimates [59] allow us to conclude that the collapse of the
sound oscillations for the collisionless shock waves is the mechanism with

11 The collapse of sound waves in a dispersive medium is considered in detail in
Refs. [59,63,64,103].
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which the energy of directional motion converts to other degrees of freedom,
such as the low-hybrid noise, fast ions, transverse modulations of the front,
etc. The rate of the energy conversion is determined by the parameter ν.

Recent experimental data [208] on the shock waves in the auroral zones of
the Earth’s ionosphere with β < 1 and M ∼ 1 agree well with the presented
results. Indeed, the data clearly show the presence of the developed magne-
tohydrodynamic (MHD) turbulence at the front of the shock wave, as well
as the energetic ions beams, the ion-cyclotron and low-hybrid oscillations.
Thus, for many practically important cases the KP equation model with the
dissipative term (4.149) provides adequate description of the dynamics of the
nonlinear FMS waves in a magnetized plasma.

For both cases, β > me/mi and β < me/mi, it is necessary to take into
account that γ1 → 0 near the cone where the wave dispersion changes its
sign. This does not necessarily mean that the wave dispersion disappears
and, consequently, that the description based on KP equation in its standard
form becomes invalid. Near the cone of |θ−π/2| ≤ (β/4)1/2, where γ1 → 0 for
β > me/mi, the results of Ref. [86] need to be more elaborated. For example,
the relation (4.155) must be supplemented by the next-order dispersion term
which then can play the major role [83,148,196]. A similar situation occurs
for β < me/mi near the cone of θ = arctan(mi/me)1/2. Thus, in both cases
the dispersion relation takes the form of (4.143). The next order dispersion
correction can be obtained from the Taylor’s expansion in k of the full disper-
sion relation and it can be generally written as γ2k

5
x. In the case β < me/mi,

considered below in details, we have [81,196]

γ2 = vA
c4

8ω4
pi

[
3
(
me

mi
− cot2 θ

)2

− 4 cot4 θ
(
1 + cot2 θ

)]
.

Thus the character of the wave dispersion becomes more complicated, and it
is defined by the correlation of the signs of γ1 and γ2 (see Fig. 4.49). For γ1 > 0
and γ2 < 0 the negative wave dispersion takes place in the region B in Fig.
4.49, whereas for γ1,2 > 0 (the region A) and γ1,2 < 0 (the region C) there is
the “mixed” dispersion (when the dispersion sign is different for the small and
the large k). Then the propagation of small-amplitude FMS waves within the
narrow angle distribution is described by the equation obtained by Belashov
and Karpman [113] (see also Refs. [148,196]) which is the generalization of
KP equation; for the non-dissipative case the equation is given by

∂x

(
∂th+ αh∂xh+ γ1∂

3
xh+ γ2∂

5
xh
)

= − (vA/2)∆⊥h, (4.158)

where ∆⊥ = ∂2
y + ∂2

z and α = (3/2)vA sin θ. As we noted in Sect. 3.2.3,
the nonlinear term, αh∂xh, is the consequence of the renormalization of the
sound velocity and reflects the small probability of other nonlinear processes
which can be caused by the vector nonlinearity.

Unlike those for the KP equation, the three-dimensional solutions of
(4.158) reveal more complicated structure and dynamics. They depend on
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the correlations of the values and signs of γ1 and γ2 [113,148,196,198]. Based
on the basis of Sect. 4.1.3 (see also [195]) we obtain the following. In the
case β < me/mi (in contrast to the the case β > me/mi considered in Ref.
[86]) the three-dimensional FMS wave beam propagating at an angle θ to the
external magnetic field does not self-focus and becomes stationary and stable
within the cone θ < arctan(mi/me)1/2 when the inequality [196](

me/mi − cot2 θ
)2 [

cot4 θ
(
1 + cot2 θ

)]−1
> 4/3

is satisfied, i.e., when γ1,2 > 0 in (4.158). This conclusion is confirmed by
numerical results [148] for the three-dimensional wave pulses propagating in
weakly dispersive media where the presence of the higher order dispersion
correction in the KP equation stops the wave collapse at the initial stage of
development of the self-focusing instability. This result is important, since
before the studies [148,194] no three-dimensional stable wave structure such
as soliton was found either analytically or numerically. In order to study the
dynamics of the FMS wave beam here we solve, in contrast to [148] where
the initial value (Cauchy) problem for the FMS wave was considered, the
boundary value problem for such a wave beam having the narrow angular
distribution. For that we numerically integrate the corresponding equation
since the exact analytical solutions of the generalized KP equation (4.4) in
the absence of dissipation are not known.

Thus consider simulation of the dynamics of an FMS wave beam in a
magnetized plasma [81,196]. Let there be a three-dimensional FMS wave beam
propagating in the plasma at an angle θ with respect to the external magnetic
field near the cone θ = arctan(mi/me)1/2. For such a beam, we introduce the
new variables, x → −st, y → −sκ1/2y, z → −sκ1/2z, t → sx, h → −(6/α)h,
s = |γ2|1/4, and κ = vA/2, and obtain from (4.158) [81]
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∂t

(
∂xh+ 6h∂th− ε∂3

t h− λ∂5
t h
)

= ∆⊥h, (4.159)

which is analogous (with the formal change t ↔ x) to (4.4), with µ = 0 de-
scribing the FMS wave beam propagating along the x-axis from the boundary
x = 0. We assume that ∆⊥ = ∂2

ρ + (1/ρ)∂ρ in (4.159) as well as

h0 = h (t, 0, ρ) = cos(mt) exp(−ρ2), (4.160)

thus selecting the boundary condition to specify a plane localized in (y, z)
and to set the time-periodic axially-symmetric FMS wave beam, see Fig. 3.13
in Sect. 3.2.3.

Equation (4.159) with the boundary condition (4.160) was integrated [81]
using the implicit scheme (4.75) with the grid 301× 51 and the total absorp-
tion on the boundary (taking into account ∂ρh|ρ=0 = 0), as well as using the
dynamic spectral method (see Sect. 4.3) [81,196]. A series of numerical simu-
lations of the propagation of the FMS wave beam for various beam intensities
at x = 0, h0 and various angles θ (the cases A, B, and C – see above) gives
us the following results. In the region A (corresponding to λ = 1 and ε > 0),
similar to the results obtained above in Sect. 4.5, for any h(0) the spatial
evolution of the FMS wave beam leads first to the beam focusing determined
initially by the dominant role of the nonlinear processes. On this stage, as
for the usual KP equation (Sect. 3.2.3), we observe (see Figs. 4.50 and 4.51,
curves 1 and 2) the beam compression in the ρ-direction with its propagation
along the x-axis such as lρ(x) ∼ lρ(0)h0/h(x), where lρ is the characteris-
tic size of the wave in the ρ-direction, with the simultaneous fast increase
of the wave beam intensity on its axis (cf. expression (3.87) of Sect. 3.2.3).
Furthermore, for x ∼ 1 (depending on ε in (4.159)), the nonlinear saturation

ρ
ρ

0 1 212
0.4

1.6

x

Fig. 4.50. The central part
of the wave beam h(x, ρ)
with the intensity on the
boundary h0 = 4 at the stage
of the FMS focusing: λ = 1,
ε = 1.34

mode is realized because of the decreasing lρ when the term proportional to
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the fifth derivative, ∂5
t h, in (4.159) becomes dominant, thus stopping the self-

focusing. With further propagation, the defocusing stage starts (see Fig. 4.51,
curves 1 and 2). This stage finishes with the formation of a stationary wave
beam (i.e. hmax(x) =const and lρ(x) =const), corresponding to the analytical
results obtained of Sect. 4.1.

In regions B and C (see Fig. 4.49) corresponding to λ = −1 and |ε| ≥ 0,
the sound wave scatters with its propagation along the x-axis for any beam
intensity h(0) on the boundary (see curves 3,4 in Fig. 4.51) similar to the
process of the self-influence of the electromagnetic wave in media where the
derivatives ∂2ω/∂k2

x and ∂2ω/∂k2
⊥ have different signs (for example, this

takes place for the ion-cyclotron waves, whistlers, etc.) [197]. We can see in
Fig. 4.49 that for λ = 0 when (4.159) transforms into the KP equation with
the negative wave dispersion, there are no solutions in the form of the self-
focusing FMS wave beam (see Sect. 3.2.3 and Refs. [81,148,194]). Therefore,
the effect of self-focusing cannot be observed in the considered model with
λ = 0. The test calculations for (4.159) with λ = 0 demonstrate that the
self-focusing is possible only for ε < 0 (see Fig. 4.51, curve 5), i.e., the FMS
wave beam described by this model does not correspond to any real situation,
Fig. 4.48.12
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Fig. 4.51. Change of the cross sec-
tion of a wave beam with its propa-
gation in the x-direction: (1) λ = 1,
ε = 1.34; (2) λ = 1, ε = 2.24; (3)
λ = −1, ε = 1.34; (4) λ = −1,
ε = −1.34; (5) λ = 0, ε = −1.34

12 Thus the self-focusing effect is possible only for the positive wave dispersion
sufficiently away from the cone θ = arctan(mi/me)

1/2 where the influence of
the higher dispersion corrections is small. We note that the similar self-focusing
phenomenon was found for the magneto-elastic solitons in antiferromagnetics
[87], thus proving that the area of applications of the KP equation models in
physics is sufficiently wide.
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Thus results of the study of the GKP equation (4.158) demonstrate that
the self-focusing phenomena are not observed for the FMS wave beam prop-
agating in a plasma at the angles θ to the external magnetic field B near the
cone θ = arctan(mi/me)1/2, unlike the standard KP equation model, (4.157)
with ν̂ = 0, even if the wave dispersion for small k is positive. Note that the
nonlinear stationary propagation, on a level with the beam scattering, can be
observed in this case. We also note that for |θ−π/2| � (me/mi)1/2 equations
(4.155), (4.158), and (4.159) should be supplemented by the terms propor-
tional to the mixed derivatives since we have here |k⊥| ≥ kx and the terms
proportional to ki

x|kj
⊥|, where i, j = 1, 2, . . . appear in the wave dispersion

equation in this case.
If there are stochastic fluctuations of the magnetic field in plasma (which

is practically always observed in reality), the corresponding terms should be
added into the model. As we demonstrated above in Sect. 4.4 on an example
of the two-dimensional KP equation, this can be made by introducing the
external noise (which in the most trivial case is the white Gaussian noise)
into the left-hand side of the equation. In the present case, the difficulty
is that for adequate description of the dynamics of FMS waves in such a
fluctuating medium, the three-dimensional GKP equation can not be reduced
by any transform to an exact integrable model13 and therefore can only be
integrated numerically.
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Fig. 4.52. Evolution of the three-dimentional FMS wave in a plasma with the
Gaussian noise η = η(t) with the standard deviation σ = 0.02; we have λ = 1 and
ε = 2.24

To investigate the influence of stochastic fluctuations of the magnetic field
on the dynamics of an FMS wave beam we introduce the term η = η(t, x, ρ)
into (4.159). Equation (4.159) with the boundary condition (4.160) is then
integrated using the implicit scheme (4.75) with the grid 301 × 51 with
13 For the two-dimensional stochastic KP equation this was done with the help of

the Galilean transform, thus enabling us to reduce to the classic KP equation
model (see Sect. 4.4) which is exactly integrable by the IST method.
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the condition of the total absorption on the boundary (taking into account
∂ρh|ρ=0 = 0) [205,206]. A series of numerical simulations in the low-frequency
limit when it is possible to assume η = η(t) as well as in the more general
case η = η(t, x, ρ) allows us to establish that, regardless of the coherence
length of the external noise, the initial FMS wave beam is spreading (ac-
quiring the wave structure) with its propagation even in the case when (in
the absence of the fluctuations) it should be stabilized, i.e., near the cone
|θ− π/2| ≤ (β/4)1/2. Moreover, if the dispersion correction γ2 �= 0 in (4.158)
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Fig. 4.53. Change of the
cross section of the wave
beam with its propagation
along the x-axis in a plasma
with the noise η = η(t, x, ρ)
with σ = 0.04: (1) λ = 0,
ε = −1.34; (2) λ = 1, ε =
2.24; (3) λ = −1, ε = 1.34;
(4) λ = −1, ε = −1.34

(this causes formation of the three-dimensional soliton-like waves with the os-
cillating asymptotics [114,148,196]), the spatial evolution of the wave beam
leads to formation of the turbulent field structure faster since the destruction
of the FMS waves by the external noise is intensified with the formation of
the tail oscillations arising due to the fine dispersion effects described by the
higher order dispersion term. Thus, in all cases, the wave evolution is ended
by turbulization of the wave field independent of the values of the disper-
sion parameters and the initial intensities of both the beam and the noise,
as well as any correlation lengths of the noise and the characteristic sizes of
the beam. We can see from Figs. 4.52 and 4.53 that evolution of the FMS
wave beams leads to their destruction accompanied by the formation of the
chaotic turbulent structures which are especially strong in the regions of the
wave’s maxima.

4.6.3 Solitary Internal Gravity Waves in the F-layer of Earth’s
Ionosphere

To solve the wide range of problems associated with wave perturbations at
the ionospheric heights (in the F-layer), it is necessary to take into account
essential factors such as the middle- and large-scale traveling ionospheric dis-
turbances (TID). TID directly affect variability of the ionospheric parameters
as well as those of the Earth’s ionosphere waveguide. One of the most con-
venient approaches to these problems is to study TID dynamics in terms
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of the internal gravity waves (IGW) [138–141]. Of special interest are the
IGW solitons as traveling in the F-layer stable large-scale wave formations
[138], caused by various reasons such as the isolated magnetic substorms, so-
lar terminator [81] and solar eclipse [140,144], seismo-volcanic processes, and
high-power artificial explosions [142].

Here we first investigate the dynamics of the solitary nonlinear IGW (as
well as TID excited by them at the heights of the ionosphere’s F-region) for
conditions close to those of the F-layer, by omitting the physical nature of
the sources, but assuming that it has the pulse character (more details about
excitation of the pulse disturbances by various physical sources are given
below as well as in the references listed above). Then we consider applications
of the obtained results to the problems of the generation of IGW by the fronts
of the solar terminator and the solar eclipse and by the Rayleigh waves excited
by the seismic sources.

Two-Dimensional IGW Solitons and Traveling Ionospheric Distur-
bances of the Electron Density. For the isothermal model of Earth’s
atmosphere, we take into account |k⊥|2 � k2

y and |Hkx| � 1 in the linear
approximation, and expanding in k up to the fifth order, write the dispersion
law as [138]

ω = V kx

[
1 +

k2
y

2k2
x

± (γ − 2)2

γ2
H2k2

x

(
2 +

(γ − 2)2

γ2
εH2k2

x

)
±H2k2

z

]
, (4.161)

where V = 2ωgH, ωg = [(γ − 1)g/γH]1/2 is the Brunt–Väisälä frequency, H
is the scale height of the neutral atmosphere, and ε = −V/V ph

min, where V ph
min

is the minimum phase velocity of the linear oscillations. It is easy to see that
the dispersion law (4.161) for kz = 0 is related to the type of (4.143). In this
case, taking into account the weak nonlinearity of the function u = uz/ac,
a = exp(z/2H), c =

√
gH, from the hydrodynamic equations for the neutral

gas with ∂z = 0 we obtain [138]

∂tu+ ac
2γ − 1
γ2

u∂ξu± (γ − 2)2

γ2
V H2

×∂3
ξ

[
2u+

(γ − 2)2

γ2
εH2∂2

ξu

]
=
V

2

ξ∫
−∞

∂2
yudξ, (4.162)

which is written in the reference frame moving along the x-axis with the ve-
locity V (ξ = x− V t). The upper signs in (4.161) and (4.162) correspond to
the positive wave dispersion, and the lower signs correspond to the negative
one (without loss of generality we further assume that V < 0 and, as can be
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easily seen from (4.161), ε < −1). The obtained equation is the generalization
of the KP equation for the velocity of the neutral component at the heights of
the F-region, similar to (4.4) with µ = 0 and ∂z = 0. This equation describes
the nonlinear IGW solitons and nonlinear wave packets, with the structure
determined by both the coefficients and the function u(0, ξ, y) correspond-
ing to the initial condition, i.e., it depends on the sort of perturbation and
accordingly the type of the source as well.

The structure of the solutions for the initial disturbance of the wave pulse
type corresponding to various physical sources as, for example, the terrestrial
and anthropogenic factors (as well as the “quasi-one-dimensional” sources
of the global character, such as the solar terminator and solar eclipse), is
described in detail in Sect. 4.4 and depends, as for (4.4) with µ = 0 and
∆⊥ = ∂2

y , on ε (note that in (4.162), unlike (4.4), ε is the factor at the
fifth derivative). Indeed, the two-dimensional solitons with the algebraic (for
ε � −1) or the oscillating (in the direction of propagation, for ε ≤ −1)
asymptotics correspond to the upper sign in (4.162), whereas the dispersing
wave packets and/or the one-dimensional solitons which are stable in the case
of the negative dispersion [16] correspond to the lower sign.

Let us consider the case of the upper sign in (4.161) and (4.162) and
study the excitation by the IGW solitons of the middle- and large-scale TID
for the conditions close to those in the F-layer. Considering the solitary IGW
traveling at the near-to-horizontal angles, the continuity equation for the
electron density in the F-layer is given by [138,139]

∂tN = ∂z

[(
∂zN +

N

2Hi

)
D0 exp

(
z

Hi

)

−uz

(
1 − e−νt′

)
N sin I cos I

]
− βN +Q, (4.163)

where D0 exp(z/Hi) = Dα sin2 I, Dα is the ambipolar diffusion coefficient,Hi

is the scale height for ions, I is the magnetic inclination, β = β0 exp(−Pz/Hi)
and Q are, respectively, the recombination rate and the ion production rate,
the exponent 0 ≤ P ≤ 2 characterizes the gas intermixing, uz = acu is
the vertical component of the neutral particles’ velocity, and t′ = t − t0, t0
is the moment of the start of the neutral component’s perturbation. Now
we approximate the profile of the electron density at the height z by N =
N1 exp(z/Hi), N1 = N |z=0, and obtain that solution of (4.163) is given by
[139]

N(u, t) = N(u, t0) exp [G(u, t)] , (4.164)

where

G(u, t) =

t∫
t0

g(u, t)dt,
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g(u, t) = C −
(

1
Hi

+
1

2H

)
f(u, t),

f(u, t) = acu [1 − exp (−νt′)] sin I cos I,

C = 3a1/H
2
i − β(1 − q), a1 = Dα sin2 I, and q = Q/βN . Here, the func-

u(ζ,y)

N'(ζ,y)

v

v

Fig. 4.54. IGW soliton for
ε = −12 and associated pertur-
bation of the normalized elec-
tron density N ′ = [(N(u, t) −
N(0, t))/N(0, t)] × 100%

tion u satisfies (4.162). When ε � −1 and the solution of (4.162) is the
two-dimensional soliton with the algebraic asymptotics, the solution (4.164)
for the quasi-pulse source of IGW is shown in Fig. 4.54. If ε ≤ 1 then the
perturbation of the electron density N as well as the IGW soliton has the
oscillating asymptotics shown in Fig. 4.55a.

The solution of (4.162) and (4.164) for the conditions typical for the F-
layer gives us the following results. The solitary IGW excite in the F-region
the solitary TID of the electron density, their structure depends on the form
of IGW and the ionospheric parameters determined by the photo-chemical
and dynamic processes at the height considered. The amplitude of TID in-
creases in the direction of the geomagnetic latitude ϕm = 45◦, the wave front
steepens, and at the latitude ϕm = 45◦ the wave becomes similar to the shock
wave.

The two-fold increase of the IGW amplitude results in the increase of the
TID amplitude: 35% for ε � −1; close to 100-105% for ε ≤ −1. For all the
studied cases we note the phase shift of TID relative to the phase of IGW
(∆t ∼ 0.5 − 5min) and the effect of the relaxation of the electron density
perturbations which increase with the decreasing ε characterizing essentially
the medium’s dispersion. Figure 4.55 shows the simulation results for IGW-
solitons with a velocity on the order of 200m/s at z = 0 and I = 63.4◦.
Thus such ionospheric characteristics as the height of the maximum and the
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critical frequency of the F-layer increase proportionally to the TID amplitude
when the two-dimensional nonlinear IGW propagates, as well as experience
relaxation similar to the relaxation of the electron density N ′ [138].

Generation of IGW Solitons by Fronts of Solar Terminator and
Solar Eclipse. In addition to the general study of the dynamics of solitary
waves in the F-region of the Earth’s ionosphere [81,140], the middle-scale
and large-scale wave effects associated with motions of the fronts of the so-
lar terminator (ST) [81] and the solar eclipse (SE) [140] were investigated
numerically within the framework of the above developed weakly nonlinear
approximation neglecting the dissipation effects. In the reference frame re-
lated to the source, the initial condition is given by

u0 =
[
ac
(
1 − e−νt′

)
sin I cos I

]−1
{
V
Hi

N0
∂ξN0

(
1 − e−z/Hi

)

+
[
β

Hi

1 − P

(
1 − e(1−P )z/Hi

)
+
Qz

N0

]
e−z/Hi +

3
2
D0

Hi
ez/Hi

}
,

where t′ = ξ/V and the parameters are defined by the adopted dynamic
model of the F-layer [81], taking into account the characteristic scales of the
particular phenomenon studied – the ST or the SE. Then we solve the initial
value Cauchy problem for z = 0,H, 2H. The solutions obtained are tested by
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considering generation of the wave precursors by the ST and SE fronts with
the periods of order 40−60min (ST) and 3−10min (SE) (their scales depend
on the parameters of the F-layer and the character of the phenomenon).

Generally, the effect for z = 0 is the train of the two-dimensional soliton-
like waves (with kx � ky) similar to the multisoliton solutions of the KdV
equation (the case y = 0). For z = H, 2H the qualitative form of the solution
is maintained, although they are less regular and (on the average) the larger-
amplitude waves. The characteristics of such soliton-like formations strongly
depend on the season and the ionospheric parameters. Simulations for the
conditions corresponding to the partial solar eclipse observed on March 18,
1988, and the sunrise and sunset periods on March 1–10, 1990, (an interval
of the International Geophysical Calendar) agree well with the results of spe-
cial targeted experiments on the passive slanted sounding of the ionosphere
done in these periods in the Far-Eastern region of Russia [144,209]. Thus we
conclude that despite some idealization of the problem, the approach based
on the generalized KP equation allows us to predict the effects of the TID
dynamics in the F-region of the Earth’s ionosphere reasonably well.
Generation of IGW Solitons by Seismic Sources. Effects in the iono-
spheric plasma stipulated by the seismic activity now attracts serious at-
tention of researchers not only by virtue of their pure scientific interest but
also because of the urgency in investigation of the capabilities to prevent
and reduce consequences of natural catastrophes associated with the seismic
hazards. In addition to studying the seismic-ionospheric phenomena related
to the possibility of prediction the seismic activity, the problem of investi-
gation of the seismic-ionospheric post-effects is important because of many
reasons, e.g., for better understanding of the physics of the terro-atmosphere-
ionosphere relations, for location of the earthquakes’ epicenters, and for selec-
tion of oscillations in the spectra of the registered ionospheric data caused by
the seismic activity. Despite many works on the seismic-ionospheric effects in
the nearest zone of the epicenter (see, e.g., Ref. [142] and numerous references
therein), less attention was paid to study effects of the seismic source on the
Earth’s ionosphere in the farthest zone. This problem was considered for the
surface Rayleigh waves generated by an earthquake in the three-dimensional
model taking into account the weak nonlinearity and dispersion in the iono-
sphere at the heights of the F-layer [81–83,141,143], as well as the dissipation
effects and stochastic fluctuations of the electron density in the F-layer [142]
for the ionospheric parameters close to their real values. On the basis of the
GKP equation model developed above, we present here the main results.

We start with the set of the gas dynamics equations:

∂tρ
′ + ∇ · (ρ0(z)V) = 0,

ρ0(z) [∂tV + (V · ∇)V] = −∇p′ − ρ′gez

+η(z)
[
1
3
∇∇ · V + ∇2V

]
+ ζ(z)∇ (∇ · V) ,
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and
∂tp

′ + (V · ∇p0(z)) = −c2ρ0(z)∇ · V,
where the unperturbed functions are marked by the subscript ‘0’, and the
prime denotes perturbations of the corresponding functions if their unper-
turbed values do not equal zero, and the functions without sub/superscripts
correspond to those with the zero unperturbed values. In these equations, ρ
is the gas density, p is the gas pressure, and p0(z) = ρ0(z)c2/γ = gHρ0(z),
where γ = Cp/Cv is the adiabatic exponent, H is the scale height of the
neutral atmosphere, η(z) ≈ 3c2sρ0(z)/2γνnn(z) and ζ(z) are the dynamic and
kinematic viscosities, respectively, and νnn(z) is the collision frequency of
the neutral particles. We employ the standard assumption of the exponential
dependence of the unperturbed density of the atmosphere and ionosphere on
the height z, viz., ρ0(z) = ρ0(0) exp(−z/H), and take into account that when
the wave propagates on the large distances, the spatial dispersion (the case of
the farthest zone) results in the acoustic wave damping accompanied by the
shift of the maximum of the spectrum to the lower frequency region [143]. In
this case, with the decreasing role of such a source as the acoustic wave pulse
caused by the Earth’s surface oscillations in the earthquake’s epicenter, the
role of the surface Rayleigh waves increases relatively to the distance [141].

We choose the first boundary condition as that approximating the surface
Rayleigh wave at the distance far away from the epicenter [143]:

Vz

∣∣∣∣∣
z=0

= dtZ(r′, t), (4.165)

where
Z(r′, t) = h(t) exp

[−(r′)2/L2
]
,

(r′)2 = ξ2+y2, ξ = x−vRt, and vR is the velocity of the Rayleigh wave. Thus
we consider the problem in the reference frame associated with the Rayleigh
wave. The second boundary condition corresponding to z → +∞ is given by

Vz(t, z, ξ, y)

∣∣∣∣∣
z→+∞

−→ 0 (4.166)

when η �= 0. This formulation provides conservation of the energy flow for
z → +∞.

The Rayleigh wave (4.165) leads to the excitation of IGW propagating
upwards with the amplitude increasing exponentially with the height. At the
heights of the F-region with the formation of the solitary IGW excited by the
Rayleigh wave, the nonlinear effects begin to develop [141]. Taking into ac-
count the geometry of the problem we assume that k2

x � k2
⊥ and |Hkx| � 1,

i.e., the Boussinesq approximation is valid for the IGW propagating in the
F-layer at the small angle to the horizon. Taking into account the dissipation
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of the viscous type and the weak nonlinearity for the neutral particle veloc-
ity u(t, r′, z) = V (t, r′, z)|x=ξ+vt for ∂z = 0, we thus obtain from the basic
equations the GKP equation similar to (4.162) [141]:

∂tu+
2γ − 1
γ2

uz∂ξu− ν∂2
ξu+ 2

(γ − 2)2

γ2
vH

×∂3
ξ

[
u+

(γ − 2)2

2γ2
εH2∂2

ξu

]
=
v

2

ξ∫
−∞

∂2
yudξ. (4.167)

Note that unlike (4.162), equation (4.167) includes the dissipative term given
by

ν =
ρ0

2ρ
(
c2∞ − c20

)
τ

∞∫
0

µφ(µ)dµ = (2ρ0)−1

[
4
3
η + ζ + γ

(
1
Cv

− 1
Cp

)]
,

where c∞ and c0 are the velocities of the high-frequency and the low-
frequency sound, respectively, see Introduction.

For the solitary IGW propagating in the F-layer at a small angle to the
horizon, the continuity equation for the electron densityNe is given by (4.163)
and in the Boltzmann approximation Ne = Ne0 exp(z/Hi), where Ne0 =
Ne|z=0, its solution can be written as (4.164) with the function u satisfying
the GKP equation (4.167). Accordingly, the solution for the pulse source
(i.e., the Rayleigh wave) for ν = 0 and ε � −1 is the classic algebraic KP
soliton (see Fig. 4.54) and can therefore be obtained analytically by the IST
method. For ε → −1 or ε � −1 in the case ν �= 0, the IST method cannot
be applied and the problem should be solved numerically. The results of
numerical integration of (4.167) and (4.164) with ν = 0 for the ionospheric
parameters close to those in the F-layer are shown in Fig. 4.55. The case ν �= 0
was investigated in detail in Refs. [113,195]. It was shown that the presence of
dissipation leads to the exponential decrease of the amplitude with the rate
Γ (t) ∼ ν. Dissipation also leads to the perturbation of the structure and the
symmetry of the IGW soliton accompanied by the relaxation in the recovery
of the electron density after the wave passes by (see above and also Ref. [83]).

The effects of stochastic fluctuations of the wave field u(t, x, y) on the evo-
lution of the ionospheric perturbation excited by the Rayleigh wave can also
be accounted for in the basic equations. Thus, accordingly, (4.167) should
be complemented by the term like χ(t, r′, z) [142]. In the case of the low-
frequency fluctuations when χ = χ(t), equation (4.167) for ε = 0 was inves-
tigated analytically [151,201] and considered in detail in Sect. 4.4 (where we
used the notation η for the function χ). The obtained results can be easily ap-
plied to (4.167) with χ = χ(t) on the left-hand side. Thus the interpretation
of the results [151,201] in terms of the problem (4.164) and (4.167) enables
us to conclude that even small stochastic fluctuations of the wave field lead
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to the damping of the solitary IGW (with its propagation) accompanied by
the transform of the wave to an oscillatory structure.

In the case χ = χ(t, r′, z), however, the analytical study of the process
becomes too complicated, and in Ref. [142] numerical integration of (4.164)
and (4.167) with the stochastic term was done. The obtained results appear
to be qualitatively similar to the case χ = χ(t), namely, the decrease of the
amplitude of the solitary oscillating IGW is observed, with the subsequent
destruction of the wave. The estimates obtained [142] demonstrate that it
is practically impossible to pick up the response of the electron density in
the F-layer to the earthquake-generated Rayleigh wave already at distances
r ∼ 12−13L (where L is the linear size of the epicenter) from the earthquake’s
epicenter. To conclude, we note that the analytical and the numerical results
obtained above are in good agreement with the results of the radiophysical
experiments done in the periods of the seismic activity in the network of
stations in the Far-Eastern region of Russia [210].

4.6.4 Two-Dimensional Solitons in Shallow Water

Consider application of the KP equation model to the hydrodynamics, namely
to the description of surface waves in ideal incompressible shallow (compar-
atively with the wave length) fluid. In this case, the generalized density and
velocity of sound in (1.1)–(1.12) acquire the sense of the fluid depth, H,
and velocity, c =

√
gH. The term gH2/2 plays the role of the pressure, this

corresponds to the effective adiabatic index γ = 2 [3]. Then the Boussinesq
equations (1.7) can be written as

∂v
∂t

+ (v · ∇)v + ∇gH +
gh2

3
∇∆H = 0 (4.168)

and
∂H

∂t
+ ∇ (Hv) = 0, (4.169)

where h =const is the depth of the fluid; it is easy to add into these equations
the terms associated with the capillary effects. Assuming that the curvature
of the surface is not too large and the additional pressure to the fluid caused
by the surface tension is defined by the Laplace formula δp = σ(R−1

1 +R−1
2 ),

where σ is the surface tension coefficient, R1 and R2 are the main curvature
radii, we can write δp = −σ∆η where η(x, y, t) is the surface function (the
value of η is sufficiently small). Thus we change ρgh in (4.168) to ρgH + δρ
(ρ is the density of the fluid) to obtain

∂v
∂t

+ (v∇)v + g∇H +
(
gh2

3
− σ

ρ

)
∆∇H = 0. (4.170)

Equations (4.169) and (4.170) are the Boussinesq equations taking into ac-
counting the capillary effects [3]. Change of the factor at the dispersion term
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in (4.170) leads to the change of the dispersion equation, viz., instead of
ω = c0k(1 −H2k2/6 + . . .) we have

ω = c0k

[
1 −

(
H2 − 3σ

ρg

)
k2

6
+ . . .

]
, (4.171)

where c0 =
√
gH. In this case the dispersion parameter β is defined by

β =
c0
6

(
H2 − 3σ

ρg

)
. (4.172)

Furthermore we use the results of Sect. 3.1 and transform (4.168) and (4.169)
to the form (3.8), i.e., obtain the KP equation for the gravity-capillary waves
in shallow water. Here we note that for sufficiently large σ > ρgH2/3 the
dispersion parameter changes its sign that involves the qualitative change of
the character of the evolution and the form of the solutions, see Sect. 3.1.

Consider now in more detail the following interesting case. Often there is
a case when the factor β is unusually small. Thus, according to (4.172) β = 0
for H = (3σ/ρg)1/2 ≈ 0.48cm (for pure water). A similar situation occurs
for FMS waves in a magnetized plasma for cot2 θ = me/mi (see Sect. 1.1 and
Sect. 4.1). However β = 0 does not mean that there is no dispersion in such
a medium. It simply means that in this case the next terms in the Taylor
expansion in k of the full dispersion equation must be taken into account (the
corresponding additional terms also appear in (4.6) and so on). Then, it is
generalized so that the KP equation (3.8) can be written as

∂tu+ αu∂xu− β∂3
xu+ γ∂5

xu = −c0
2

x∫
−∞

∂2
yudx, (4.173)

where the coefficients are
α =

3
2
c0
H

and

γ =
c0
6

[
H2

(
2
5
H2 − σ

ρg

)
− 1

12

(
3σ
ρg

−H2

)2
]
.

Numerical integration of (4.173) using the method of stabilizing factor [31]
(see Sect. 3.1.4) enables us to investigate the structure of the two-dimensional
solitons in shallow water in the case of the anomalously weak dispersion [80].
It was found that the qualitative form of the solutions depends significantly
on the value of ε = (β/V )(−V/γ)1/2 � 2, where V is the soliton’s velocity
in the reference frame moving along the x-axis with the phase velocity c0.

When ε = 0 the structure of the two-dimensional solitons found numer-
ically does not differ qualitatively from the structure of the algebraic KP-
solitons (see Sect. 3.1.2). Such solitons on the surface of the fluid are negative
(i.e. appear as the hollow solitons). When ε > 0, for example, in the case of the
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increasing fluid depth starting from the depth H = (3σ/ρg)1/2, the structure
of the solitons radically changes: by remaining to decay from their maximum
to zero in the transverse direction as before, now their sign varies along the
direction of their propagation. For ε→ 2 the number of the oscillations of the
tails increases and the solitons the resemble two-dimensional high-frequency
trains, i.e., envelope solitons. We note that the one-dimensional solitons of
the generalized KdV equation ((4.173) with the right-hand side equal to zero)
[84] and IGW solitons considered above have the similar structure.

Numerical simulation [80] of (4.173) demonstrated that the complex
bisoliton structures forming the stationary bound states are also found. The
structure of the field of such bisolitons far from their maxima is qualitatively
similar to the structure of the field of a single soliton described above. There-
fore, Ref. [80] suggested that more complicated two-dimensional multi-soliton
stationary structures can possibly exist. However, their numerical study re-
quires quite high computational power and is therefore very difficult.

Structure and Evolution of Two-Dimensional Solitons of Gravity
and Gravity-Capillary Waves with Varying Water Depth. In Sect.
4.4.5, the problem of the evolution of the two-dimensional solitons in media
with the dispersion parameter as a function of the coordinates and time, β =
β(t, x, y), was considered in detail. Here, we interpret those results in terms
of the propagation of the small-amplitude surface waves on a shallow water.
We consider here the shallow water as some “reservoire,” where the relation
between its depth and the length of the wave propagating on the water surface
is λ� H. The wave amplitude remains small due to the condition u� H. As
we noted in the Introduction and Sect. 4.4, for the gravity waves and gravity-
capillary waves the dispersion parameter β is a function of the water depth
H. For these two cases β = c0H

2/6 and β = (c0/6)(H2−3σ/ρg), respectively,
where ρ is the density and σ is the coefficient of the surface tension of the fluid.
If, in addition, the depth of the reservoire is H = H(t, x, y), i.e., it describes
the change in space character of the bottom relief and/or motions in time
of the parts of the bottom, then the dispersion parameter also becomes the
function of the coordinates and time. Therefore, we can consider the problem
for the dispersion parameter defined by these dependencies and interpret
the results obtained for the three model cases of Sect. 4.4.5 in terms of the
variable in time and/or in space relief of the bottom. Thus the model (4.128),

β(x) =
{

β0, x ≤ a,
β0 + c, x > a,

describes the sudden break of the bottom at the critical time moment of tcr,
where the parameters a and c have the sense of the coordinate x and the
height of the break, respectively (note that c may be negative – the so-called
negative step). In the numerical simulation of the problem we varied, first,
the height of the break at a =const and tcr =const and, then, the critical time
tcr (at the constant a and c). Finally, we studied the case of the dependence
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of the structure and the evolution of the surface wave on the localization of
the break at the constant c and tcr.

The second model (4.129) is given by

β(x, t) =
{

β0, x ≤ a,
β0 + nc, x > a,

where n = (t − tcr)/τ = 1, 2, . . ., and is interpreted as the gradual in-
crease/decrease of the depth of the bottom area. In this case, the critical
time tcr is chosen at the moment when the depth of the bottom starts to
change, the rate of its lifting up (or falling down) is nc/τ (where τ is the
time step of the numerical simulation), and the coordinate of the break is a
[203]. Variations of a, c, and tcr are analogous to the previous case.

Finally, the last model (4.130),

β(t) = β0

(
1 + k0β̄ sinωt

)
,

where β̄ = (βmax − βmin)/2, 0 < k0 < 1, and π/2τ < ω < 2π/τ , can be
conveniently interpreted in terms of the harmonic oscillations of the bottom
starting at the critical time moment tcr. In this case, in the numerical sim-
ulations [203] the parameter k0 was first varied (at the constant oscillation
frequency ω), and then, on the contrary, it was assumed that k0 =const with
the varying frequency ω. As a result, there were more than a thousand nu-
merical runs combined in three series, according to the adopted models of
the function β = β(t, x, y). The general character of the results obtained in
these numerical simulations of the evolution of the two-dimensional solitons
in media with β = β(t, x, y) [203,204] was described in Sect. 4.4, and it is
clear from the written above that they can be easily interpreted in terms of
the hydrodynamics.



5. Appendices

Here, we elaborate and present two technical problems. In the first one, we
investigate expansion of a four-dimensional dynamic system linearized in the
vicinity of singular points (and the corresponding canonical systems) into two
sub-systems. Similarly, we consider expansion of three-dimensional dynamic
systems into a two-dimensional system and one equation that used in Sect.
2.2.3 when constructing the phase portraits of solutions in four-dimensional
and three-dimensional phase spaces, respectively. In the second part, we in-
vestigate an algebraic equation of the fourth order appearing when analyzing
possible extrema of the Hamiltonian of the GKP equation in Sect. 4.1.

Appendix 1

Each of the sets (2.104) and (2.105) can be represented in the matrix form

ẋ = Ax, (5.1)

where x = (w, x1, x2, x3),

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
α1 α2 α3 α4

⎤
⎥⎥⎦ , (5.2)

and α1, α2, α3, α4 are the factors, respectively, at w, x1, x2, x3 in the last
equations of the sets (2.104) and (2.105). The matrix A has its Jordan form
J , and the eigenvalues λ of the matrix A define the type of the matrix J . For
example, in the neighborhood of the singular point w1 = 0 for µ = δ = 0 in
(2.96) the eigenvalues λ1 and λ2 of the matrix (5.2) are real (λ1 = λ2), the
eigenvalues λ3 and λ4 are imaginary (λ3 = λ4), and the singular point can be
defined as the stable knot–centre point in the four-dimensional phase space,
by analogy with the classification of the two- and three-dimensional dynamic
systems.

Since detA �= 0 and λi �= 0 (i = 1, 2, 3, 4), the linear set (5.1) and the
corresponding canonical set (which can be obtained from (5.1) by transform
x = My where M is the transformation matrix)
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ẏ = Jy, and J =
[
B 0
0 C

]
(5.3)

are simple. The matrix J consists of two second order Jordan boxes B and
C having in a general case the form[

aj −bj
bj aj

]
,

where aj , bj ∈ R (j = 1, 2) are defined from expressions for the solutions of
the secular equations corresponding to the last equation of the sets (2.104)
and (2.105) with the coefficients α1, α2, α3, α4, namely, λ1 = −λ∗2 = a1 − ib1
and λ3 = λ∗4 = a2 − ib2. Therefore, the set (5.3) can be represented as two
two-dimensional sets:[

ẏ1
ẏ2

]
= B

[
y1
y2

]
, and

[
ẏ3
ẏ4

]
= C

[
y3
y4

]
.

Therefore, the phase portrait of the linear set (5.1) can be considered in pro-
jections of the singular point and spatial phase trajectories onto two planes.
The factorization of any set of the type (2.101) linearized in the neigh-
borhood of the corresponding singular points with the coordinates (2.103)
into two subsets can be done similarly. It is necessary to take into account
that for the special values of the coefficients αi of the matrix (5.2), when
λ1 = −λ2 = −λ3 = λ4 or λ1 = λ2 = λ3 �= λ4, the Jordan boxes B and
C have another form and, therefore, the factorization considered above is
impossible. In our case, however, such a situation does not take place for
equations of the type (2.92).

Each of the sets (2.110) and (2.111) can be represented in the matrix form
(5.1), where x = (w, x1, x2),

A =

⎡
⎣ 0 1 0

0 0 1
α1 α2 α3

⎤
⎦ (5.4)

and α1, α2, α3 are the factors, respectively, at w, x1, x2 in the last equations
of the sets (2.110) and (2.111). Transform the set (5.1) into the canonical
form (5.3) with

J =

⎡
⎣ a −b 0
b a 0
0 0 λ3

⎤
⎦ ,

where a, b, λ3 ∈ R and λ1 = λ∗2 = a − ib. Then we can obtain the phase
portrait of the set (5.1) from the phase portrait of the canonical set using
the transform x = My where M is the transformation matrix. Directions of
the trajectories and their angles with respect to the axes in the poles and
saddles for the canonical system are known. In the reference frame x1, x2, x3,
the axes y1, y2, y3 are straight lines passing through the point (0, 0, 0), their
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vectors have directions m1,m2,m3 and form the matrix M . The eigenvalues
λ1, λ2, λ3 of the matrix A can be obtained from the equation

Ami = λimi, i = 1, 2, 3,

after calculation of the vectors m1,m2,m3, that allows us to obtain the
directions of the separatrices for the linearized set (5.1).

Appendix 2

Performing the transform t → t′ + 8a3b/c4 in (4.25), we obtain the reduced
equation

t′4 + pt′2 + qt′ + r = 0. (5.5)

The cubic resolvent kernel z3 + 2pz2 + (p2 − 4r)z − q2 = 0, using the change
z → x− 2p/3, can be reduced to the equation

x3 + p′x+ q′ = 0, (5.6)

where p′ = 210be3/c4 and q′ = −214a2b2e4/c8, with the discriminant

D = 226b3c−12e8
(
243−3e+ a4bc−4

)
. (5.7)

In the case e > 0 and |a| ≥ 0 we have D > 0, therefore (5.6) as well as the
resolvent kernel in the real vector space R for each quadruple of the values of
functions a, b, c, e ∈ R have one root. Thus, using the Descartes’ rule of signs,
we can conclude, that (4.25) for e > 0 and |a| ≥ 0 has one positive root t ∈ R

(note that t ≤ 0 does not satisfy (4.25), in this case ζ /∈ R). It follows from
the analysis of (4.25) that in the space R for St ⊂ R the equalities

inf
a>0

St = sup
a<0

St = 4
(
be3

)1/4
/c, and inf

a<0
St = 0, (5.8)

take place.
Consider now the case e < 0 and |a| ≥ 0. It follows from (4.25) that for

a ≤ 0 this equation foes not have roots t > 0 in the space R, therefore, we
limit ourselves by an analysis of (4.25) for a > 0. When

F = a4b/c4e < −243−3, (5.9)

we have D > 0 from (5.7). It then follows that (5.6) and the resolvent kernel
in the space R for each quadruple of the functions a, b, c, e ∈ R have one
root, and (4.25), taking into account the rule of signs, has two positive roots
t1,2 ∈ R.

Let us estimate boundaries of the set St ⊂ R. With the two changes
t→ t+ h and t→ −t+ h in (4.25), we obtain, respectively, the sets

c4 > 8ia4−ibh−i (ah+ 2e)i−1
, (5.10)
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and
(−1)ic4 > (−1)i8ia4−ibh−i (ah+ 2e)i−1

, (5.11)

where i = 1, 2, 3, 4. Solving inequalities (5.10) and (5.11) with the condition
(5.9), we obtain

supSt = 253−3[
√

10 cos(ψ1/3 + 2π/3) − 4]a−1e,

ψ1 = Arccos[−11/(255
√

10)],
inf St = min{max(h′1, h

′
2), 2

43−3(
√

10 − 8)a−1e},
h′1 = 8[

√−2FF ′ cos(ψ2/3) + F ]a−1e,
h′2 = 8[

√−2FF ′ cos(ψ2/3 + 4π/3) + F ]a−1e,
ψ2 = Arccos[(27F 2 + 323F + 3)/(23F ′√−2FF ′)],
FF ′ = 1 − 2F.

(5.12)

If condition (5.9) is not satisfied, we have D ≤ 0. In this case, a simple
analysis shows that (5.6) and the resolvent kernel for each quadruple of the
functions a, b, c, e ∈ R have one positive and two negative roots. Therefore,
equations (5.5) and (4.25) in the real vector space R have no roots.
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from the Bäcklund transformation for the Toda lattice, Progr. Theor. Phys.
Suppl. 59, 64 (1976)

118. P. Rosenau and J.M. Hyman: Compactons: solitons with finite wavelength,
Phys. Rev. Lett. 70, 564 (1993)

119. C.N. Kumar and P.K. Panigrahi: Compacton-like solutions for modified KdV
and other nonlinear equations, arXiv: solv-int/9904020, v1, 23 Apr 1999

120. B. Dey and A. Khare: Stability of compacton solutions, Phys. Rev. E 58,
R2741 (1998)

121. S.V. Vladimirov, M.Y. Yu, and L. Stenflo: Surface wave solitons in an elec-
tronic medium, Phys. Lett. A 174, 313 (1993)

122. S.V. Vladimirov, M.Y. Yu, and L. Stenflo: On solitary surface waves in cold
plasmas, Comm. Plasma Phys. Contr. Fusion 15, 299 (1993)

123. S.V. Vladimirov and M.Y. Yu: Solitary ionizing surface waves on low-
temperature plasmas, IEEE Trans. Plasma Sci. 21, 250 (1993)

124. S.V. Vladimirov, M.Y. Yu, and V.N. Tsytovich: Recent advances in the theory
of nonlinear surface waves: Phys. Rep. 241, 1 (1994)

125. S.V. Vladimirov and M.Y. Yu: Boundary effects on the nonlinear interactions
of surface waves, Phys. Fluids B 5, 2887 (1993)

126. M.Y. Yu: Solitary electron plasma waves, Phys. Lett. A 59, 361 (1976)
127. M. Chaker, M. Moisan, and Z. Zakrzewski: Microwave and RF surface wave

sustained discharges as plasma sources for plasma chemistry and plasma pro-
cessing, Plasma Chem. Plasma Process. 6, 79 (1986)

128. M. Moisan and Z. Zakrzevski: Plasmas sustained by surface waves at mi-
crowave and RF frequencies: experimental investigation and applications, In:
Radiative Processes in Discharge Plasma, Eds. J. M. Prouf and L. H. Luessen
(Plenum, New York 1986) p. 381



References 285

129. R. Claude, M. Moisan, M. R. Wertheimer, and Z. Zakrzewski: Comparison
of microwave and lower frequency discharges for plasma polymerization, Appl.
Phys. Lett. 50, 1797 (1987)

130. G.S. Selwyn, J.E. Heidenreich, and K.L. Haller: Particle trapping phenomena
in radio frequency plasmas, Appl. Phys. Lett. 57, 1876 (1990)

131. M. Moisan, A. Shivarova, and A. W. Trivelpiece: Experimental investigations
of the propagation of surface waves along a plasma column, Plasma Phys. 24,
1331 (1982)

132. O.M. Gradov and L. Stenflo: Linear theory of a cold bounded plasma, Phys.
Rep. 94, 111 (1983)

133. S.V. Vladimirov: Solitary surface waves in plasma slabs, Sov. J. Plasma Phys.
12 (1986) 552 [Fiz. Plazmy 12, 961 (1986)]

134. D. Henderson: In: Trends in Interfacial Electrochemistry, Ed. A.F. Silva (Rei-
del, Dordrecht 1986) p. 473

135. J. Topper and T. Kawahara: Approximate equations for long nonlinear waves
on a viscous fluid, J. Phys. Soc. Japan 44, 663 (1978)

136. B.I. Cohen, J.A. Krommes, W.M. Tang, and M.N. Rosenbluth: Non-linear
saturation of the dissipative trapped-ion mode by mode coupling, Nucl. Fusion
16, 971 (1976)

137. T. Kawahara: Formation of saturated solitons in a nonlinear dispersive system
with instability and dissipation, Phys. Rev. Lett. 51, 381 (1983)

138. V.Yu. Belashov: Travelling ionospheric disturbances in the F region of the
ionosphere and their influence on the fluctuations of the VLF radiosignals,
Proc. 1988 Int. Symp. on EMC. Vol. 1 (Wroclaw 1988) p. 181

139. V.Yu. Belashov: Solitary electron density waves induced by the IGW’s solitons
in the ionosphere, Proc. 1989 Int. Symp. on EMC. Vol. 1 (Nagoya 1989) p. 228

140. V.Yu. Belashov: Dynamics of nonlinear internal gravity waves at ionosphere
F-region heights, Geomagn. and Aeron. 30, 536 (1990) [Geomagn. i Aeronom.
30, 637 (1990)]

141. V.Yu. Belashov: On the earthquake-induced IGW in the ionosphere F layer,
Proc. 1988 Int. Symp. on EMC. Vol. 1 (Wroclaw 1988) p. 227

142. V.Yu. Belashov: Seismogenic perturbations at heights of ionosphere F layer,
Intern. Workshop on Seismo Electromagnetics (IWSE-97, Tokyo, NASDA
1997) p. 225

143. V.Yu. Belashov: Theoretical and numerical study of effects in ionospheric
plasma associated with earthquakes and volcano eruptions, Intern. Workshop
Electromagn. Phenomena Related to Earthquake Prediction (Tokyo, Univ. of
Electro-Communication 1993) p. 90

144. A.A. Belashova and V.Yu. Belashov: Large-scale wave disturbances generated
by the eclipse in the ionosphere and EMC problems, Proc. 1989 Int. Symp. on
EMC. Vol. 1 (Nagoya 1989) p. 226

145. Y. Kuramoto and T. Tsuzuki: Persistent propagation of concentration waves
in dissipative media far from thermal equilibrium, Prog. Theor. Phys. 55, 356
(1976)

146. T. Yamada and Y. Kuramoto: A reduced model showing chemical turbulence,
Prog. Theor. Phys. 56, 681 (1976)

147. G.I. Sivashinsky: Instabilities, pattern formation, and turbulence in flames,
Annu. Rev. Fluid Mech. 15, 179 (1983)

148. V.I. Karpman and V.Yu. Belashov: Evolution of three-dimensional nonlinear
pulses in weakly dispersive media, Phys. Lett. A 154, 140 (1991)

149. E. Ott and R.N. Sudan: Damping of solitary waves, Phys. Fluids 13, 1432
(1970)

150. J.P. Boris: Phys. Fluids 16, 855 (1973)



286 References

151. V.Yu Belashov: Dynamics of KP equation solitons in media with low-frequency
wave field stochastic fluctuations, Phys. Lett. A 197, 282 (1995)

152. M. Wadati: Stochastic Korteweg–de Vries equation, J. Phys. Soc. Jap. 52,
2642 (1983)

153. D.K. Arrowsmith and C.M. Place: Dynamical systems : differential equations,
maps, and chaotic behaviour, (Chapman and Hall, London 1992)

154. N.N. Bautin and E.A. Leontovich: Metody i priemy kachestvennogo issle-
dovaniya dinamicheskikh sistem na ploskosti (Methods and rules for the qual-
itative study of dynamical systems on the plane) (Moscow, Nauka 1990) [in
Russian]

155. A.A. Andronov, A.A. Vitt, and S.E. Khaikin: Theory of oscillators (Dover,
New York 1987)

156. N.N. Bautin: Povedenie dinamicheskikh sistem vblizi granits oblasti usto-
jchivosti (The behavior of dynamical systems near the boundaries of the do-
main of stability) (Moscow, Nauka 1984) [in Russian]

157. S.V. Vladimirov: On electric forces in a time-dependent medium, Phys. Lett.
A 219, 233 (1996)

158. V.E. Zakharov and A.B. Shabat: Exact theory of two-dimensional self-focusing
and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys.
JETP 34, 62 (1972) [ZhETF 61, 118 (1971)]

159. P.D. Lax: Integrals of nonlinear equations of evolution and solitary waves,
Comm. Pure Appl. Math. 21, 467 (1968)

160. V.E. Zakharov: Collapse of Langmuir waves, Sov. Phys. JETP 35, 908 (1972)
[ZhETF 62, 1745 (1972)]

161. L.I. Rudakov and V.N. Tsytovich: Strong Langmuir turbulence, Phys. Rep.
40C, 1, (1978)

162. S.G. Thornhill and D. ter Haar: Langmuir turbulence and modulational in-
stability, Phys. Rep. 43C, 43 (1978)

163. D. ter Haar and V.N. Tsytovich: Modulation instabilities in astrophysics,
Phys. Rep. 73, 175 (1981)

164. M.V. Goldman: Strong turbulence of plasma waves, Rev. Mod. Phys. 56, 709
(1984)

165. P.A. Robinson: Nonlinear wave collapse and strong turbulence, Rev. Mod.
Phys. 69, 507 (1997)

166. S.A. Boldyrev, S.V. Vladimirov, and V.N. Tsytovich: Coupled Langmuir and
ion-acoustic solitons, Sov. J. Plasma Phys. 18, 727 (1992) [Fiz. Plazmy 18,
1409 (1992)]

167. V.G. Makhankov: On stationary solutions of the Schrödinger equation with a
self-consistent potential satisfying Boussinesq’s equation (Langmuir solitons),
Phys. Lett. A, 50, 42 (1974)

168. K. Nishikawa, H. Hojo, K. Mima, and H. Ikezi: Coupled nonlinear electron-
plasma and ion-acoustic waves, Phys. Rev. Lett. 33, 148 (1974)

169. S.A. Boldyrev, V.N. Tsytovich, and S.V. Vladimirov: On dissipative acceler-
ation of near-sonic solitons, Comm. Plasma Phys. Contr. Fusion 15, 1 (1992)

170. O.A. Pokhotelov, V.A. Pilipenko, E.N. Fedorov E.N., L. Stenflo, and P.K.
Shukla: Induced electromagnetic turbulence in the ionosphere and the magne-
tosphere, Phys. Scr. 50, 600 (1994)

171. M.B. Gokhberg, V.A. Pilipenko, O.A. Pokhotelov, and S. Parthasarati: Acous-
tic disturbance from an underground nuclear explosion as a source of electro-
static turbulence in the magnetosphere, Sov. Phys. Doklady 313, 31 (1992)
[DAN SSSR 313, 568 (1992)]



References 287

172. M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur: The inverse scattering
transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53, 249
(1974)

173. E. Mjølhus: A note on the modulational instability of long Alfvén waves par-
allel to the magnetic field, J. Plasma Phys. 19, 437 (1978)

174. S.R. Spangler, J.P. Sheerin, and Q.L. Payne: A numerical study of nonlinear
Alfvén waves and solitons, Phys. Fluids 28, 104 (1985)

175. V.Yu. Belashov: The problem of stability for three-dimensional Alfvén waves
propagating in magnetized plasma, Doklady Phys. 44, 327 (1999) [DAN Russ.
366, 465 (1999)]

176. S.P. Dawson and C.F. Fontán: Extension of the Ablowitz–Ladik method to the
derivative nonlinear Schrödinger equation, J. Comput. Phys. 76, 192 (1988)

177. T.R. Taha and M.J. Ablowitz: Analytical and numerical aspects of certain
nonlinear evolution equation, J. Comput. Phys. 55, 192 (1984)

178. D. Potter: Computational Physics (Wiley, London 1973).
179. G.A. Korn and T.M. Korn: Mathematical handbook for scientists and engi-

neers (McGraw-Hill, New York 1968)
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