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Preface

Statistical distributions and models are commonly used in many applied ar-
eas such as economics, engineering, social, health, and biological sciences. In this
era of inexpensive and faster personal computers, practitioners of statistics and
scientists in various disciplines have no difficulty in fitting a probability model
to describe the distribution of a real-life data set. Indeed, statistical distribu-
tions are used to model a wide range of practical problems, from modeling the
size grade distribution of onions to modeling global positioning data. Successful
applications of these probability models require a thorough understanding of the
theory and familiarity with the practical situations where some distributions can
be postulated. Although there are many statistical software packages available
to fit a probability distribution model for a given data set, none of the packages
is comprehensive enough to provide table values and other formulas for numer-
ous probability distributions. The main purpose of this book and the software is
to provide users with quick and easy access to table values, important formulas,
and results of the many commonly used, as well as some specialized, statistical
distributions. The book and the software are intended to serve as reference ma-
terials. With practitioners and researchers in disciplines other than statistics in
mind, I have adopted a format intended to make it simple to use the book for
reference purposes. Examples are provided mainly for this purpose.

I refer to the software that computes the table values, moments, and other
statistics as StatCalc. For rapid access and convenience, many results, formulas
and properties are provided for each distribution. Examples are provided to il-
lustrate the applications of StatCalc. The StatCalc is a dialog-based application,
and it can be executed along with other applications.

The programs of StatCalc are coded in C++ and compiled using Microsoft
Visual C++ 6.0. All intermediate values are computed using double precision
so that the end results will be more accurate. I compared the table values
of StatCalc with the classical hard copy tables such as Biometrika Tables for
Statisticians, Hand-book of Mathematical Functions by Abramowitz and Ste-
gun (1965), Tables of the Bivariate Normal Distribution Function and Related
Functions by National Bureau of Standards 1959, Pocket Book of Statistical
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Tables by Odeh, et. al. (1977), and the tables published in various journals
listed in the references. Table values of the distributions of Wilcoxon Rank-Sum
Statistic and Wilcoxon Signed-Rank Statistic are compared with those given in
Selected Tables in Mathematical Statistics. The results are in agreement wher-
ever I checked. I have also verified many formulas and results given in the book
either numerically or analytically. All algorithms for random number genera-
tion and evaluating cumulative distribution functions are coded in Fortran, and
verified for their accuracy. Typically, I used 1,000,000 iterations to evaluate the
performance of random number generators in terms of the speed and accuracy.
All the algorithms produced satisfactory results. In order to avoid typographical
errors, algorithms are created by copying and editing the Fortran codes used for
verification.

A reference book of this nature cannot be written without help from numer-
ous people. I am indebted to many researchers who have developed the results
and algorithms given in the book. I would like to thank my colleagues for their
valuable help and suggestions. Special thanks are due to Tom Rizzuto for pro-
viding me numerous books, articles, and journals. I am grateful to computer
science graduate student Prasad Braduleker for his technical help at the initial
stage of the StatCalc project. It is a pleasure to thank P. Vellaisamy at IIT –
Bombay who thoroughly read and commented on the first fourteen chapters of
the book. I am thankful to my graduate student Yanping Xia for checking the
formulas and the software StatCalc for accuracies.

K. Krishnamoorthy
University of Louisiana at Lafayette
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Chapter 0

Introduction to StatCalc

0.1 Introduction

The software accompanying this book is referred to as StatCalc, which is a PC
calculator that computes various statistical table values. More specifically, it
computes table values of all the distributions presented in the book, necessary
statistics to carry out some hypothesis tests and to construct confidence inter-
vals, required sample sizes to carry out a test within the specified accuracies,
and much more. Readers who are familiar with some statistical concepts and
terminologies, and PC calculators may find StatCalc as simple and easy to use.
In the following, we explain how to use this program and illustrate some features.

The dialog boxes that compute various table values are grouped into 4 cate-
gories, namely, continuous, discrete, nonparametric and miscellaneous as shown
in the main page of StatCalc in Figure 0.1(a). Let us assume we want to com-
pute binomial probabilities; if so then we should first select “Discrete dialog
box” (by clicking on the radio button [Discrete]) as the binomial distribution is a
discrete distribution (see Figure 0.1(b)). Click on [Binomial], and then click on
[Probabilities, Critical Values and Moments] to get the binomial probability dia-
log box. This sequence of selections is indicated in the book by the trajectory
[StatCalc→Discrete→Binomial→Probabilities, Critical Values and Moments]. Simi-
larly, if we need to compute factors for constructing tolerance intervals for a
normal distribution, we first select [Continuous] (because the normal distribution
is a continuous one), and then select [Normal] and [Tolerance Limits]. This sequence
of selections is indicated by the trajectory [StatCalc→Continuous→Normal→Tolerance
Limits]. After selecting the desired dialog box, input the parameters and other values
to compute the needed table values.
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2 0 Introduction to StatCalc

(a) (b)

(c) (d)

Figure 0.1 Selecting the Dialog Box for Computing Binomial Probabilities
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0.1 Introduction 3

StatCalc is a stand alone application, and many copies (as much as the screen can hold)
of StatCalc can be opened simultaneously. To open two copies, click on StatCalc icon on
your desktop or select from the start menu. Once the main page of StatCalc opens, click
on StatCalc icon again on your desktop. The second copy of StatCalc pops up exactly
over the first copy, and so using the mouse drag the second copy to a different location
on your desktop. Now, we have two copies of StatCalc. Suppose we want to compare
binomial probabilities with those of the hypergeometric with lot size 5000, then select
binomial from one of the copies and hypergeometric from the other. Input the values
as shown in Figure 0.2. We observe from these two dialog boxes that the binomial
probabilities with n = 20 and p = 0.2 are very close to those of the hypergeometric
with lot size (population size) 5000. Furthermore, good agreement of the moments of
these two distributions clearly indicates that, when the lot size is 5000 or more, the
hypergeometric probabilities can be safely approximated by the binomial probabilities.

Figure 0.2 Dialog Boxes for Computing Binomial and Hypergeometric Probabilities

StatCalc can be opened along with other applications, and the values from the edit
boxes (the white boxes) can be copied [Ctrl+c] and pasted [Ctrl+v] in a document.
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0.2 Contents of StatCalc

Continuous
Distributions

1 Beta Tail probabilities, percentiles, moments and other
parameters.

2 Bivariate Normal All tail probabilities;
test and confidence interval for the correlation
coefficient;
test and confidence interval for the difference
between two independent correlation coefficients.

3 Cauchy Tail probabilities, percentiles and other parameters.

4 Chi-square Tail probabilities, percentiles and moments; also computes
degrees of freedom when other values are given.

5 Exponential Tail probabilities, percentiles, moments and other
parameters.

6 Extreme Value Tail probabilities, percentiles, moments and other
parameters.

7 F Distribution Tail probabilities, percentiles, moments; also computes
the degrees of freedoms when other values are given.

8 Gamma Tail probabilities, percentiles, moments and other
parameters;
Test and confidence interval for the scale parameter.

9 Inverse Gaussian Tail probabilities, percentiles, moments and other
parameters;
test and confidence interval for the mean;
test and confidence interval for the difference
between two means;
test and confidence interval for the ratio
of two means.

10 Laplace Tail probabilities, percentiles, moments and other
parameters.

11 Logistic Tail probabilities, percentiles, moments and other
parameters.
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0.2 Contents of StatCalc 5

12 Lognormal Tail probabilities, percentiles, moments and other parameters;
t-test and confidence interval for the mean;
test and confidence interval for the difference between
two means;
test and confidence interval for the ratio of two
means.

13 Noncentral χ2 Tail probabilities, percentiles and moments;
computation of the degrees of freedom and noncentrality
parameter.

14 Noncentral F Tail probabilities, percentiles and moments;
calculation of the degrees of freedom and noncentrality
parameter.

15 Noncentral t Tail probabilities, percentiles and moments;
computation of the degrees of freedom and noncentrality
parameter.

16 Normal Tail probabilities, percentiles, and moments;
test and confidence interval for the mean;
power of the t-test;
test and confidence interval for the variance;
test and confidence interval for the variance ratio;
two-sample t-test and confidence interval;
two-sample test with no assumption about the variances;
power of the two-sample t-test;
tolerance intervals for a normal distribution;
tolerance intervals controlling both tails;
simultaneous tests for quantiles;
tolerance limits for one-way random effects model.

17 Pareto Tail probabilities, percentiles, moments, and other
parameters.

18 Rayleigh Tail probabilities, percentiles, moments, and other
parameters.

19 Student’s t Tail probabilities, percentiles, and moments;
also computes the degrees of freedom when other
values are given;
computes tail probabilities and critical values of the
distribution of the maximum of several |t| variables.

20 Weibull Tail probabilities, percentiles, moments and other
parameters.
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6 0 Introduction to StatCalc

Discrete
Distributions

21 Binomial Tail probabilities, critical values, moments, and other
parameters;
test for the proportion and power calculation;
confidence intervals for the proportion and sample size
for precision;
test for the difference between two proportions and power
calculation;
Fisher’s exact test and power calculation.

22 Discrete Uniform Tail probabilities and moments.

23 Geometric Tail probabilities, critical values, and moments;
confidence interval for success probability;

24 Hypergeometric Tail probabilities, critical values and moments;
test for the proportion and power calculation;
confidence interval and sample size for precision;
test for the difference between proportions and power
calculation.

25 Logarithmic Series Tail probabilities, critical values and moments.

26 Negative Binomial Tail probabilities, critical values, and moments;
test for the proportion and power calculation;
confidence intervals for the proportion.

27 Poisson Tail probabilities, critical values and moments;
test for the mean and power calculation;
confidence interval for mean and sample size for
precision;
test for the ratio of two means, and power calculation;
confidence intervals for the ratio of two means;
test for the difference between two means and power
calculation.

© 2006 by Taylor & Francis Group, LLC



0.2 Contents of StatCalc 7

Nonparametric

28 Distribution of Runs Tail probabilities and critical values.

29 Sign Test and Confidence Nonparametric test for the median; also computes
Interval for the Median confidence intervals for the median.

30 Wilcoxon signed-rank Computes the p-values and critical values for
test testing the median.

31 Wilcoxon rank-sum Computes p-values for testing equality of two
test distributions; Moments and critical values.

32 Nonparametric Computes size of the sample so that the smallest
tolerance limits and the largest order statistics form a tolerance

interval.

Miscellaneous

33 Tolerance factors for a Computes factors for constructing tolerance region for
multivariate normal a multivariate normal population.
population

34 Distribution of the Test and confidence interval for the squared multiple
sample multiple correlation coefficient.
correlation coefficient
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Chapter 1

Preliminaries

This reference book is written for those who have some knowledge of statistical
distributions. In this chapter we will review some basic terms and concepts,
and introduce the notations used in the book. Readers should be familiar with
these concepts in order to understand the results, formulas, and properties of
the distributions presented in the rest of the book. This chapter also covers
two standard methods of fitting a distribution for an observed data set, two
classical methods of estimation, and some aspects of hypothesis testing and
interval estimation. Furthermore, some methods for generating random numbers
from a probability distribution are outlined.

1.1 Random Variables and Expectations

Random Experiment : An experiment whose outcomes are determined only by
chance factors is called a random experiment.

Sample Space: The set of all possible outcomes of a random experiment is called
a sample space.

Event : The collection of none, one, or more than one outcomes from a sample
space is called an event.

Random Variable: A variable whose numerical values are determined by chance
factors is called a random variable. Formally, it is a function from the sample
space to a set of real numbers.

9
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10 1 Preliminaries

Discrete Random Variable: If the set of all possible values of a random variable
X is countable, then X is called a discrete random variable.

Probability of an Event : If all the outcomes of a random experiment are equally
likely, then the probability of an event A is given by

P (A) =
Number of outcomes in the event A

Total number of outcomes in the sample space
.

Probability Mass Function (pmf): Let R be the set of all possible values of a
discrete random variable X, and f(k) = P ( X = k) for each k in R. Then f(k)
is called the probability mass function of X. The expression P (X = k) means
the probability that X assumes the value k.

Example 1.1 A fair coin is to be flipped three times. Let X denote the number
of heads that can be observed out of these three flips. Then X is a discrete
random variable with the set of possible values {0, 1, 2, 3}; this set is also called
the support of X. The sample space for this example consists of all possible
outcomes (23 = 8 outcomes) that could result out of three flips of a coin, and is
given by

{HHH,HHT, HTH, THH, HTT, THT, TTH, TTT}.

Note that all the above outcomes are equally likely to occur with a chance of
1/8. Let A denote the event of observing two heads. The event A occurs if one
of the outcomes HHT, HTH, and THH occurs. Therefore, P (A) = 3/8. The
probability distribution of X can be obtained similarly and is given below:

k: 0 1 2 3
P(X = k): 1/8 3/8 3/8 1/8

This probability distribution can also be obtained using the probability mass
function. For this example, the pmf is given by

P (X = k) =

(
3
k

) (
1
2

)k (
1− 1

2

)3−k

, k = 0, 1, 2, 3,

and is known as the binomial(3, 1/2) mass function (see Chapter 3).

Continuous Random Variable: If the set of all possible values of X is an interval
or union of two or more nonoverlapping intervals, then X is called a continuous
random variable.
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1.1 Random Variables and Expectations 11

Probability Density Function (pdf): Any real valued function f(x) that satisfies
the following requirements is called a probability density function:

f(x) ≥ 0 for allx, and
∫ ∞

−∞
f(x)dx = 1.

Cumulative Distribution Function (cdf): The cdf of a random variable X is
defined by

F (x) = P (X ≤ x)

for all x. For a continuous random variable X with the probability density
function f(x),

P (X ≤ x) =
∫ x

−∞
f(t)dt for all x.

For a discrete random variable X, the cdf is defined by

F (k) = P (X ≤ k) =
k∑

i=−∞
P (X = i).

Many commonly used distributions involve constants known as parameters. If
the distribution of a random variable X depends on a parameter θ (θ could be
a vector), then the pdf or pmf of X is usually expressed as f(x|θ), and the cdf
is written as F (x|θ).

Inverse Distribution Function: Let X be a random variable with the cdf F (x).
For a given 0 < p < 1, the inverse of the distribution function is defined by

F−1(p) = inf{x : P (X ≤ x) = p}.

Expectation: If X is a continuous random variable with the pdf f(x), then the
expectation of g(X), where g is a real valued function, is defined by

E(g(X)) =
∫ ∞

−∞
g(x)f(x)dx.

If X is a discrete random variable, then

E(g(X)) =
∑

k

g(k)P (X = k),

where the sum is over all possible values of X. Thus, E(g(X)) is the weighted
average of the possible values of g(X), each weighted by its probability.

© 2006 by Taylor & Francis Group, LLC



12 1 Preliminaries

1.2 Moments and Other Functions

The moments are a set of constants that represent some important properties
of the distributions. The most commonly used such constants are measures
of central tendency (mean, median, and mode), and measures of dispersion
(variance and mean deviation). Two other important measures are the coefficient
of skewness and the coefficient of kurtosis. The coefficient of skewness measures
the degree of asymmetry of the distribution, whereas the coefficient of kurtosis
measures the degree of flatness of the distribution.

1.2.1 Measures of Central Tendency

Mean: Expectation of a random variable X is called the mean of X or the mean
of the distribution of X. It is a measure of location of all possible values of X.
The mean of a random variable X is usually denoted by µ, and for a discrete
random variable X it is defined by

µ = E(X) =
∑

k

kP (X = k),

where the sum is over all possible values of X. For a continuous random variable
X with probability density function f(x), the mean is defined by

µ = E(X) =
∫ ∞

−∞
xf(x)dx.

Median: The median of a continuous random variable X is the value such that
50% of the possible values of X are less than or equal to that value. For a
discrete distribution, median is not well defined, and it need not be unique (see
Example 1.1).

Mode: The most probable value of the random variable is called the mode.

1.2.2 Moments

Moments about the Origin (Raw Moments): The moments about the origin are
obtained by finding the expected value of the random variable that has been
raised to k, k = 1, 2, . . .. That is,

µ′k = E(Xk) =
∫ ∞

−∞
xkf(x)dx

is called the kth moment about the origin or the kth raw moment of X.
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1.2 Moments and Other Functions 13

Moments about the Mean (Central Moments): When the random variable is
observed in terms of deviations from its mean, its expectation yields moments
about the mean or central moments. The first central moment is zero, and the
second central moment is the variance. The third central moment measures the
degree of skewness of the distribution, and the fourth central moment measures
the degree of flatness. The kth moment about the mean or the kth central
moment of a random variable X is defined by

µk = E(X − µ)k, k = 1, 2, . . . ,

where µ = E(X) is the mean of X. Note that the first central moment µ1 is
always zero.

Sample Moments: The sample central moments and raw moments are defined
analogous to the moments defined above. Let X1, . . . , Xn be a sample from a
population. The sample kth moment about the origin is defined by

m′
k =

1
n

n∑

i=1

Xk
i , k = 1, 2, . . .

and the sample kth moment about the mean is defined by

mk =
1
n

n∑

i=1

(Xi − X̄)k, k = 1, 2, . . . ,

where X̄ = m′
1. In general, for a real valued function g, the sample version of

E(g(X)) is given by
n∑

i=1
g(Xi)/n.

1.2.3 Measures of Variability

Variance: The second moment about the mean (or the second central moment)
of a random variable X is called the variance and is usually denoted by σ2. It
is a measure of the variability of all possible values of X. The positive square
root of the variance is called the standard deviation.

Coefficient of Variation: Coefficient of variation is the ratio of the standard
deviation and the mean, that is, (σ/µ). This is a measure of variability indepen-
dent of the scale. That is, coefficient of variation is not affected by the units of
measurement. Note that the variance is affected by the units of measurement.

Mean Deviation: Mean deviation is a measure of variability of the possible
values of the random variable X. It is defined as the expectation of absolute
difference between X and its mean. That is,

Mean Deviation = E(|X − µ|).
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14 1 Preliminaries

1.2.4 Measures of Relative Standing

Percentile (quantile): For a given 0 < p < 1, the 100pth percentile of a distri-
bution function F (x) is the value of x for which F (x) = p. That is, 100p% of
the population data are less than or equal to x. If a set of values of x satisfy
F (x) = p, then the minimum of the set is the 100pth percentile. The 100pth
percentile is also called the pth quantile.

Quartiles: The 25th and 75th percentiles are, respectively, called the first and
the third quartile. The difference (third quartile – first quartile) is called the
inter quartile range.

1.2.5 Other Measures

Coefficient of Skewness: The coefficient of skewness is a measure of skewness
of the distribution of X. If the coefficient of skewness is positive, then the
distribution is skewed to the right; that is, the distribution has a long right tail.
If it is negative, then the distribution is skewed to the left. The coefficient of
skewness is defined as

Third Moment about the Mean

(Variance)
3
2

=
µ3

µ
3
2
2

Coefficient of Kurtosis:

γ2 =
4thMoment about the Mean

(Variance)2
=

µ4

µ2
2

is called the coefficient of kurtosis or coefficient of excess. This is a scale and
location invariant measure of degree of peakedness of the probability density
curve. If γ2 < 3, then the probability density curve is called platykurtic; if
γ2 > 3, it is called lepto kurtic; if γ2 = 3, it is called mesokurtic.

Coefficient of skewness and coefficient of kurtosis are useful to approximate
the distribution of X. For instance, if the distribution of a random variable Y
is known, and its coefficient of skewness and coefficient of kurtosis are approx-
imately equal to those of X, then the distribution functions of X and Y are
approximately equal. In other words, X is approximately distributed as Y .
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1.3 Some Functions Relevant to Reliability 15

1.2.6 Some Other Functions

Moment Generating Function: The moment generating function of a random
variable X is defined by

MX(t) = E
(
etX

)
,

provided that the expectation exists for t in some neighborhood of zero. If the
expectation does not exist for t in a neighborhood of zero, then the moment
generating function does not exist. The moment generating function is useful in
deriving the moments of X. Specifically,

E(Xk) =
∂kE(etx)

∂ tk

∣∣∣∣∣
t=0

, k = 1, 2, . . .

Characteristic Function: The characteristic function of a random variable X is
defined by

φX(t) = E
(
eitX

)
,

where i is the complex number and t is a real number. Every random variable
has a unique characteristic function. Therefore, the characteristic function of X
uniquely determines its distribution.

Probability Generating Function: The probability generating function of a non-
negative, integer valued random variable X is defined by

P (t) =
∞∑

i=0

tiP (X = i)

so that

P (X = k) =
1
k!

(
dkP (t)

dtk

)∣∣∣∣∣
t=0

, k = 1, 2, . . .

Furthermore, P (0) = P (X = 0) and dP (t)
dt

∣∣∣
t=1

= E(X).

1.3 Some Functions Relevant to Reliability

Survival Function: The survival function of a random variable X with the
distribution function F (x) is defined by

1− F (x) = P (X > x).
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If X represents the life of a component, then the value of the survival function
at x is called the survival probability (or reliability) of the component at x.

Inverse Survival Function: For a given probability p, the inverse survival func-
tion returns the value of x that satisfies P (X > x) = p.

Hazard Rate: The hazard rate of a random variable at time x is defined by

r(x) =
f(x)

1− F (x)
.

Hazard rate is also referred to as failure rate, intensity rate, and force of mor-
tality. The survival probability at x in terms of the hazard rate is given by

P (X > x) = exp
(
−

∫ x

0
r(y)dy

)
.

Hazard Function: The cumulative hazard rate

R(x) =
∫ x

0

f(y)
1− F (y)

dy

is called the hazard function.

Increasing Failure Rate (IFR): A distribution function F (x) is said to have
increasing failure rate if

P (X > x|t) =
P (X > t + x)

P (X > t)
is decreasing in time t for each x > 0.

Decreasing Failure Rate (DFR): A distribution function F (x) is said to have
decreasing failure rate if

P (X > x|t) =
P (X > t + x)

P (X > t)
is increasing in time t for each x > 0.

1.4 Model Fitting

Let X1, . . . , Xn be a sample from a continuous population. To verify whether
the data can be modeled by a continuous distribution function F (x|θ), where θ
is an unknown parameter, the plot called Q–Q plot can be used. If the sample
size is 20 or more, the Q–Q plot can be safely used to check whether the data
fit the distribution.
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1.4 Model Fitting 17

1.4.1 Q–Q Plot

Construction of a Q–Q plot involves the following steps:

1. Order the sample data in ascending order and denote the jth smallest
observation by x(j), j = 1, . . . , n. The x(j)’s are called order statistics or
sample quantiles.

2. The proportion of data less than or equal to x(j) is usually approximated
by (j – 1/2)/n for theoretical convenience.

3. Find an estimator θ̂ of θ (θ could be a vector).

4. Estimate the population quantile q(j) as the solution of the equation

F (q(j)|θ̂) = (j − 1/2)/n, j = 1, . . . , n.

5. Plot the pairs (x(1), q(1)), . . . , (x(n), q(n)).

If the sample is from a population with the distribution function
F (x|θ), then the Q–Q plot forms a line pattern close to the y = x line, because
the sample quantiles and the corresponding population quantiles are expected
to be equal. If this happens, then the distribution model F (x|θ) is appropriate
for the data (for examples, see Sections 10.1 and 16.5).

The following chi-square goodness-of-fit test may be used if the sample is
large or the data are from a discrete population.

1.4.2 The Chi-Square Goodness-of-Fit Test

Let X be a discrete random variable with the support {x1, ..., xm}. Assume that
x1 ≤ ... ≤ xm. Let X1, . . . , Xn be a sample of n observations on X. Suppose we
hypothesize that the sample is from a particular discrete distribution with the
probability mass function f(k|θ), where θ is an unknown parameter (it could be
a vector). The hypothesis can be tested as follows.

1. Find the number Oj of data points that are equal to xj , j = 1, 2, . . . , m.
The Oj ’s are called observed frequencies.

2. Compute an estimator θ̂ of θ based on the sample.

3. Compute the probabilities pj = f(xj |θ̂) for j = 1, 2, . . . , m − 1 and

pm = 1−
m−1∑
j=1

pj .
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4. Compute the expected frequencies Ej = pj × n, j = 1, . . . , m.

5. Evaluate the chi-square statistic

χ2 =
m∑

j=1

(Oj − Ej)2

Ej
.

Let d denote the number of components of θ. If the observed value of the chi-
square statistic in step 5 is larger than the (1 − α)th quantile of a chi-square
distribution with degrees of freedom m − d − 1, then we reject the hypothesis
that the sample is from the discrete distribution with pmf f(k; θ) at the level
of significance α.

If we have a large sample from a continuous distribution, then the chi-square
goodness-of-fit test can be used to test the hypothesis that the sample is from
a particular continuous distribution F (x|θ). The interval (the smallest obser-
vation, the largest observation) is divided into l subintervals, and the number
Oj of data values fall in the jth interval is counted for j = 1, . . . , l. The
theoretical probability pj that the underlying random variable assumes a value
in the jth interval can be estimated using the distribution function F (x|θ̂). The
expected frequency for the jth interval can be computed as Ej = pj × n, for
j = 1, . . . , l. The chi-square statistic can be computed as in Step 5, and
compared with the (1−α)th quantile of the chi-square distribution with degrees
of freedom l − d − 1, where d is the number of components of θ. If the com-
puted value of the chi-square statistic is greater than the percentile, then the
hypothesis will be rejected at the level of significance α.

1.5 Methods of Estimation

We shall describe here two classical methods of estimation, namely, the moment
estimation and the method of maximum likelihood estimation. Let X1, . . . , Xn

be a sample of observations from a population with the distribution function
F (x|θ1, . . . , θk), where θ1, . . . , θk are unknown parameters to be estimated based
on the sample.

1.5.1 Moment Estimation

Let f(x|θ1, . . . , θk) denote the pdf or pmf of a random variable X with cdf
F (x|θ1, . . . , θk). The moments about the origin are usually functions of θ1, . . . , θk.
Notice that E(Xk

i ) = E(Xk
1 ), i = 2, . . . , n, because the Xi’s are identically dis-

tributed. The moment estimators can be obtained by solving the following
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system of equations for θ1, . . . , θk:

1
n

n∑
i=1

Xi = E(X1)

1
n

n∑
i=1

X2
i = E(X2

1 )

...
1
n

n∑
i=1

Xk
i = E(Xk

1 ),

where
E(Xj

1) =
∫ ∞

−∞
xjf(x|θ1, . . . , θk)dx, j = 1, 2, . . . , k.

1.5.2 Maximum Likelihood Estimation

For a given sample x = (x1, . . . , xn), the function defined by

L(θ1, . . . , θk| x1, . . . , xn) =
n∏

i=1

f(xi|θ1, . . . , θk)

is called the likelihood function. The maximum likelihood estimators are the
values of θ1, . . . , θk that maximize the likelihood function.

1.6 Inference

Let X = (X1, . . . , Xn) be a random sample from a population, and let
x = (x1, . . . , xn), where xi is an observed value of Xi, i= 1,. . . ,n. For sim-
plicity, let us assume that the distribution function F (x|θ) of the population
depends only on a single parameter θ. In the sequel, P (X ≤ x|θ) means the
probability that X is less than or equal to x when θ is the parameter of the
distribution of X.

1.6.1 Hypothesis Testing

Some Terminologies

The main purpose of the hypothesis testing is to identify the range of the values
of the population parameter based on a sample data. Let Θ denote the parameter
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20 1 Preliminaries

space. The usual format of the hypotheses is

H0 : θ ∈ Θ0 vs. Ha : θ ∈ Θc
0, (1.6.1)

where H0 is called the null hypothesis, Ha is called the alternative or research
hypothesis, Θc

0 denotes the complement set of Θ0, and Θ0∪Θc
0 = Θ. For example,

we want to test θ – the mean difference between durations of two treatments for
a specific disease. If it is desired to compare these two treatment procedures,
then one can set hypotheses as H0 : θ = 0 vs. Ha : θ 6= 0.

In a hypothesis testing, decision based on a sample of data is made as to “reject
H0 and decide Ha is true” or “do not reject H0.” The subset of the sample
space for which H0 is rejected is called the rejection region or critical region.
The complement of the rejection region is called the acceptance region.

Test Statistic: A statistic that is used to develop a test for the parameter of
interest is called the test statistic. For example, usually the sample mean X̄ is
used to test about the mean of a population, and the sample proportion is used
to test about the proportion in a population.

Errors and Powers

Type I Error: Wrongly rejecting H0 when it is actually true is called the Type
I error. Probability of making a Type I error while testing hypotheses is given
by

P (X ∈ R|θ ∈ Θ0),

where R is the rejection region.

Type II Error: Wrongly accepting H0 when it is false is called the Type II error.
Probability of making a Type II error is given by

P (X ∈ Rc|θ ∈ Θc
0),

where Rc denotes the acceptance region of the test.

Level of Significance: The maximum probability of making Type I error is called
the level or level of significance; this is usually specified (common choices are
0.1, 0.05 or 0.01) before carrying out a test.

Power function: The power function β(θ) is defined as the probability of rejecting
null hypothesis. That is,

β(θ) = P (X ∈ R|θ ∈ Θ)
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Power: Probability of not making Type II error is called the power. That is, the
probability of rejecting false H0, and it can be expressed as
β(θ) = P (X ∈ R|θ ∈ Θc

0).

Size of a Test: The probability of rejecting H0 at a given θ1 ∈ Θ0 is called the
size at θ1. That is, P (X ∈ R|θ1 ∈ Θ0) is called the size.

Level α Test: For a test, if sup
θ∈Θ0

P (X ∈ R|θ) ≤ α, then the test is called a level

α test. That is, if the maximum probability of rejecting a true null hypothesis
is less than or equal to α, then the test is called a level α test.

If the size exceeds α for some θ ∈ Θ0, then the test is referred to as a liberal
or anti-conservative test. If the sizes of the test are smaller than α, then it is
referred to as a conservative test.

Size α Test: For a test, if sup
θ∈Θ0

P (X ∈ R|θ) = α, then the test is called a size α

test.

Unbiased Test: A test is said to be unbiased if β(θ1) ≤ β(θ2) for every θ1 in Θ0

and θ2 in Θc
0.

A popular method of developing a test procedure is described below.

The Likelihood Ratio Test (LRT): Let X = (X1, ..., Xn) be a random sample
from a population with the pdf f(x|θ). Let x = (x1, ..., xn) be an observed
sample. Then the likelihood function is given by

L(θ|x) =
n∏

i=1

f(xi|θ).

The LRT statistic for testing (1.6.1) is given by

λ(x) =
supΘ0

L(θ|x)
supΘ L(θ|x)

.

Notice that 0 < λ(x) < 1, and the LRT rejects H0 in (1.6.1) for smaller values
of λ(x).

Inferential procedures are usually developed based on a statistic T (X) called
pivotal quantity. The distribution of T (X) can be used to make inferences on
θ. The distribution of T (X) when θ ∈ Θ0 is called the null distribution, and
when θ ∈ Θc it is called the non-null distribution. The value T (x) is called the
observed value of T (X). That is, T (x) is the numerical value of T (X) based on
the observed sample x.
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P–Value: The p-value of a test is a measure of sample evidence in support of
Ha. The smaller the p–value, the stronger the evidence for rejecting H0. The
p–value based on a given sample x is a constant in (0,1) whereas the p–value
based on a random sample X is a uniform(0, 1) random variable. A level α test
rejects H0 whenever the p–value is less than or equal to α.

We shall now describe a test about θ based on a pivotal quantity T (X).
Consider testing the hypotheses

H0 : θ ≤ θ0 vs. Ha : θ > θ0, (1.6.2)

where θ0 is a specified value. Suppose the statistic T (X) is a stochastically
increasing function of θ. That is, T (X) is more likely to be large for large values
of θ. The p–value for the hypotheses in (1.6.2) is given by

sup
θ≤θ0

P (T (X) > T (x)|θ) = P (T (X) > T (x)|θ0) .

For two-sided alternative hypothesis, that is,

H0 : θ = θ0 vs. Ha : θ 6= θ0,

the p–value is given by

2 min {P (T (X) > T (x)|θ0) , P (T (X) < T (x)|θ0)} .

For testing (1.6.2), let the critical point c be determined so that

sup
θ∈Θ0

P (T (X) ≥ c|θ) = α.

Notice that H0 will be rejected whenever T (x) > c, and the region {x : T (x) > c}
is the rejection region.

The power function of the test for testing (1.6.2) is given by

β(θ) = P (T (X) > c|θ).

The value β(θ1) is the power at θ1 if θ1 ∈ Θc
0, and the value of β(θ1) when

θ1 ∈ Θ0 is the size at θ1.

For an efficient test, the power function should be an increasing function of
|θ−θ0| and/or the sample size. Between two level α tests, the one that has more
power than the other should be used for practical applications.
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1.6.2 Interval Estimation

Confidence Intervals

Let L(X) and U(X) be functions satisfying L(X) < U(X) for all samples. Con-
sider the interval (L(X), U(X)). The probability

P ((L(X), U(X)) contains θ|θ)
is called the coverage probability of the interval (L(X), U(X)). The minimum
coverage probability, that is,

inf
θ∈Θ

P ((L(X), U(X)) contains θ|θ)

is called the confidence coefficient. If the confidence coefficient is specified as,
say, 1− α, then the interval (L(X), U(X)) is called a 1− α confidence interval.
That is, an interval is said to be a 1 − α confidence interval if its minimum
coverage probability is 1− α.

One-Sided Limits: If the confidence coefficient of the interval (L(X),∞) is 1−α,
then L(X) is called a 1− α lower limit for θ, and if the confidence coefficient of
the interval (−∞, U(X)) is 1−α, then U(X) is called a 1−α upper limit for θ.

Prediction Intervals

Prediction interval, based on a sample from a population with distribution
F (x|θ), is constructed to assess the characteristic of an individual in the pop-
ulation. Let X = (X1, ..., Xn) be a sample from F (x|θ). A 1 − α prediction
interval for X ∼ F (x|θ), where X is independent of X, is a random interval
(L(X), U(X)) that satisfies

inf
θ∈Θ

P ((L(X), U(X)) contains X|θ) = 1− α.

The prediction interval for a random variable X is wider than the confidence
interval for θ because it involves the uncertainty in estimates of θ and the un-
certainty in X.

Tolerance Intervals

A p content – (1 − α) coverage tolerance interval is an interval that would
contain at least proportion p of the population measurements with confidence
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1 − α. Let X = (X1, ..., Xn) be a sample from F (x|θ), and X ∼ F (x|θ) inde-
pendently of X. Then, a p content – (1 − α) coverage tolerance interval is an
interval (L(X), U(X)) that satisfies

PX {PX [L(X) ≤ X ≤ U(X)] ≥ p|X} = 1− α.

One-sided tolerance limits are constructed similarly. For example, a statistic
L(X) is called a p content – (1− α) coverage lower tolerance limit, if it satisfies

PX {PX [X ≥ L(X)] ≥ p|X} = 1− α.

1.7 Random Number Generation

The Inverse Method

The basic method of generating random numbers from a distribution is known
as the inverse method. The inverse method for generating random numbers
from a continuous distribution F (x|θ) is based on the probability integral trans-
formation: If a random variable X follows F (x|θ), then the random variable
U = F (X|θ) follows a uniform(0, 1) distribution. Therefore, if U1, . . . , Un are
random numbers generated from uniform(0, 1) distribution, then

X1 = F−1(U1, θ), . . . ,Xn = F−1(Un, θ)

are random numbers from the distribution F (x|θ). Thus, the inverse method
is quite convenient if the inverse distribution function is easy to compute. For
example, the inverse method is simple to use for generating random numbers
from the Cauchy, Laplace, Logistic, and Weibull distributions.

If X is a discrete random variable with support x1 < x2 < . . . < xn and cdf
F (x), then random variates can be generated as follows:

Generate a U ∼ uniform(0,1)
If F (xi) < U ≤ F (xi+1), set X = xi+1.

X is a random number from the cdf F (x). The above method should be used
with the convention that F (x0) = 0.

The Accept/Reject Method

Suppose that X is a random variable with pdf f(x) and Y is a random variable
with pdf g(y). Assume that X and Y have common support, and random
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numbers from g(y) can be easily generated. Define

M = sup
x

f(x)
g(x)

.

The random numbers from f(x) can be generated as follows.

1 Generate U ∼ uniform(0,1), and Y from g(y)
If U < f(Y )

Mg(Y ) , deliver X = Y
else goto 1.

The expected number of trials required to generate one X is M .

1.8 Some Special Functions

In this section, some special functions which are used in the following chapters
are given.

Gamma Function: The gamma function is defined by

Γ(x) =
∫ ∞

0
e−ttx−1dt for x > 0.

The gamma function satisfies the relation that Γ(x + 1) = xΓ(x).

Digamma Function: The digamma function is defined by

ψ(z) =
d [ln Γ(z)]

dz
=

Γ′(z)
Γ(z)

,

where
Γ(z) =

∫ ∞

0
e−ttz−1dt.

The value of γ = −ψ(1) is called Euler’s constant and is given by

γ = 0.5772 1566 4901 5328 6060 · · ·

For an integer n ≥ 2, ψ(n) = −γ +
n−1∑
k=1

1
k . Furthermore, ψ(0.5) = −γ − 2 ln(2)

and
ψ(n + 1/2) = ψ(0.5) + 2

(
1 +

1
3

+ · · ·+ 1
2n− 1

)
, n ≥ 1.

The digamma function is also called the Psi function.
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Beta Function: For a > 0 and b > 0, the beta function is defined by

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

.

The following logarithmic gamma function can be used to evaluate the beta
function.

Logarithmic Gamma Function: The function lnΓ(x) is called the logarithmic
gamma function, and it has wide applications in statistical computation. In
particular, as shown in the later chapters, lnΓ(x) is needed in computing many
distribution functions and inverse distribution functions. The following contin-
ued fraction for lnΓ(x) is quite accurate for x ≥ 8 (see Hart et. al. 1968).
Let

b0 = 8.33333333333333E − 2, b1 = 3.33333333333333E − 2,
b2 = 2.52380952380952E − 1, b3 = 5.25606469002695E − 1,
b4 = 1.01152306812684, b5 = 1.51747364915329,
b6 = 2.26948897420496 and b7 = 3.00991738325940.

Then, for x ≥ 8,

ln Γ(x) = (x− 0.5) ln(x)− x + 9.1893853320467E − 1
+ b0/(x + b1/(x + b2/(x + b3/(x + b4/(x + b5/(x + b6/(x + b7))))))).

Using the above expression and the relation that Γ(x + 1) = xΓ(x), lnΓ(x) can
be evaluated for x < 8 as

ln Γ(x) = lnΓ(x + 8)− ln
7∏

i=0

(x + i)

= ln Γ(x + 8)−
7∑

i=0

ln(x + i).

The following Fortran function subroutine based on the above method evaluates
ln Γ(x) for a given x > 0.

double precision function alng(x)
implicit double precision (a-h, o-z)
double precision b(8)
logical check
data b/8.33333333333333d-2, 3.33333333333333d-2,

& 2.52380952380952d-1, 5.25606469002695d-1,
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& 1.01152306812684d0, 1.51747364915329d0,
& 2.26948897420496d0, 3.00991738325940d0/

if(x .lt. 8.0d0) then
xx = x + 8.0d0
check = .true.

else
check = .false.
xx = x

end if

fterm = (xx-0.5d0)*dlog(xx) - xx + 9.1893853320467d-1
sum = b(1)/(xx+b(2)/(xx+b(3)/(xx+b(4)/(xx+b(5)/(xx+b(6)

& /(xx+b(7)/(xx+b(8))))))))
alng = sum + fterm
if(check) alng = alng-dlog(x+7.0d0)-dlog(x+6.0d0)-dlog

& (x+5.0d0)-dlog(x+4.0d0)-dlog(x+3.0d0)-dlog(x+2.0d0)
& -dlog(x+1.0d0)-dlog(x)

end
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Chapter 2

Discrete Uniform Distribution

2.1 Description

The probability mass function of a discrete uniform random variable X is given
by

P (X = k) =
1
N

, k = 1, . . . , N.

The cumulative distribution function is given by

P (X ≤ k) =
k

N
, k = 1, . . . , N.

This distribution is used to model experimental outcomes which are “equally
likely.” The mean and variance can be obtained using the formulas that

k∑

i=1

i =
k(k + 1)

2
and

k∑

i=1

i2 =
k(k + 1)(2k + 1)

6
.

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10

Figure 2.1 The Probability Mass Function when N = 10
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30 2 Discrete Uniform Distribution

2.2 Moments

Mean: N+1
2

Variance: (N−1)(N+1)
12

Coefficient of Variation:
(

N−1
3(N+1)

) 1
2

Coefficient of Skewness: 0

Coefficient of Kurtosis: 3− 6(N2+1)
5(N−1)(N+1)

Moment Generating Function: MX(t) = et(1−eNt)
N(1−et)

Mean Deviation:





N2−1
4N if N is odd,

N
4 if N is even.

© 2006 by Taylor & Francis Group, LLC



Chapter 3

Binomial Distribution

3.1 Description

A binomial experiment involves n independent and identical trials such that
each trial can result in to one of the two possible outcomes, namely, success
or failure. If p is the probability of observing a success in each trial, then the
number of successes X that can be observed out of these n trials is referred
to as the binomial random variable with n trials and success probability p.
The probability of observing k successes out of these n trials is given by the
probability mass function

P (X = k|n, p) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, ..., n. (3.1.1)

The cumulative distribution function of X is given by

P (X ≤ k|n, p) =
k∑

i=0

(
n

i

)
pi(1− p)n−i, k = 0, 1, ..., n. (3.1.2)

Binomial distribution is often used to estimate or determine the proportion of
individuals with a particular attribute in a large population. Suppose that a
random sample of n units is drawn by sampling with replacement from a finite
population or by sampling without replacement from a large population. The
number of units that contain the attribute of interest in the sample follows a
binomial distribution. The binomial distribution is not appropriate if the sample
was drawn without replacement from a small finite population; in this situation
the hypergeometric distribution in Chapter 4 should be used. For practical
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32 3 Binomial Distribution

purposes, binomial distribution can be used for a population of size around
5,000 or more.

We denote a binomial distribution with n trials and success probability p by
binomial(n, p). This distribution is right-skewed when p < 0.5, and left-skewed
when p > 0.5 and symmetric when p = 0.5. See the plots of probability mass
functions in Figure 3.1. For large n, binomial distribution is approximately
symmetric about its mean np.

3.2 Moments

Mean: np

Variance: np(1− p)

Mode: The largest integer ≤ (n + 1)p

Mean Deviation: 2n
(n−1

m

)
pm+1(1− p)n−m,

where m denotes the largest
integer ≤ np. [Kamat 1965]

Coefficient of Variation:
√

1−p
np

Coefficient of Skewness: 1−2p√
np(1−p)

Coefficient of Kurtosis: 3− 6
n + 1

np(1−p)

Factorial Moments: E
(∏k

i=1(X − i + 1)
)

= pk ∏k
i=1(n− i + 1)

Moments about the Mean: np(1− p)
k−2∑
i=0

(k−1
i

)
µi − p

k−2∑
i=0

(k−1
i

)
µi+1,

where µ0 = 1 and µ1 = 0. [Kendall and
Stuart 1958, p. 122]

Moments Generating Function: (pet + (1− p))n

Probability Generating Function: (pt + (1− p))n
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Figure 3.1 Binomial Probability Mass Functions
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34 3 Binomial Distribution

3.3 Computing Table Values

The dialog box [StatCalc→Discrete→Binomial] computes the following table val-
ues.

1. Tail Probabilities, Critical Values, and Moments.
2. Test for Proportion and Power Calculation [Section 3.4].
3. Confidence Interval for Proportion and Sample Size for Precision [Section

3.5].
4. Test for the Difference between Two Proportions and Power Calculation

[Section 3.6].
5. P-values for Fisher’s Exact Test and Power Calculation [Section 3.7].

The dialog [StatCalc→Discrete→Binomial→Probabilities, Critical Values and Mo-
ments] can be used to compute the following.

To compute probabilities: Enter the values of the number of trials n, success
probability p, and the observed number of successes k; click [P].

Example 3.3.1 When n = 20, p = 0.2, and k = 4,

P (X ≤ 4) = 0.629648, P (X ≥ 4) = 0.588551 and P (X = 4) = 0.218199.

To compute the value of p: Input values for the number of trials n, the number
of successes k and for the cumulative probability P(X <= k); click [s].

Example 3.3.2 When n = 20, k = 4 and P (X ≤ k) = 0.7, the value of p is
0.183621.

To compute the value of n: Enter the values of p, the number of successes k,
and P(X <= k); click [n].

Example 3.3.3 When p = 0.20, k = 6 and P (X ≤ k) = 0.4, the value of n is 36.

To compute the value of k: Enter the values of n, p, and the cumulative prob-
ability P(X <= k); click [k]. If the cumulative probability c is greater than 0.5,
then StatCalc computes the smallest value of k such that P (X ≥ k) ≤ 1 − c.
That is, the value of k is computed so that the right-tail probability is less than
or equal to 1− c; if c < 0.5, then the largest value of k is computed so that the
P (X ≤ k) ≤ c.

Example 3.3.4 When p = 0.4234, n = 43 and P (X <= k) = 0.90, the value of
k is 23. Notice that P (X ≥ 23) = 0.0931953, which is less than 1− 0.90 = 0.10.
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3.3 Computing Table Values 35

If P (X ≤ k) = 0.10, then k is 13, and P (X ≤ 13) = 0.071458. Note that
P (X ≤ 14) = 0.125668 which is greater than 0.10.

To compute moments: Enter values for n and p; click [M].

Illustrative Examples

Example 3.3.5 Suppose that a balanced coin is to be flipped 20 times. Find the
probability of observing

a. ten heads;

b. at least 10 heads;

c. between 8 and 12 heads.

[StatCalc→Discrete→Binomial→Probabilities, Critical Values and Moments]
Solution: Let X denote the number of heads that can be observed out of these
20 flips. Here, the random variable X is binomial with n = 20, and the success
probability = 0.5, which is the probability of observing a head at each flip.

a. To find the probability, enter 20 for n, 0.5 for success probability, 10 for k,
and click on [P] to get P (X = 10) = 0.176197. That is, the chances of
observing exactly 10 heads are about 18%.

b. To get this probability, enter 20 for n, 0.5 for p, 10 for k, and click [P] to
get P (X ≥ 10) = 0.588099. That is, the chances of observing 10 or more
heads are about 59%.

c. The desired probability is

P (8 ≤ X ≤ 12) = P (X ≤ 12)− P (X ≤ 7)
= 0.868412− 0.131588
= 0.736824.

Example 3.3.6 What are the chances of observing exactly 3 girls in a family of
6 children?

[StatCalc→Discrete→Binomial→Probabilities, Critical Values and Moments]
Solution: Let us assume that the probability of giving birth to a boy = proba-
bility of giving birth to a girl = 0.5. Let X be the number of girls in the family.
Here, X is a binomial random variable with n = 6 and p = 0.5. To find the prob-
ability, enter 6 for n, 0.5 for p, and 3 for k; click [P] to get P (X = 3) = 0.3125.
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36 3 Binomial Distribution

3.4 Test for the Proportion

Suppose that investigation of a sample of n units from a population revealed that
k units have a particular attribute. Let p denote the proportion of individuals
in the population with the attribute. The following inferential procedures for p
are based on n and k.

3.4.1 An Exact Test

For testing
H0 : p ≤ p0 vs. Ha : p > p0, (3.4.1)

the null hypothesis will be rejected if the p-value P (X ≥ k|n, p0) ≤ α, for testing

H0 : p ≥ p0 vs. Ha : p < p0, (3.4.2)

the null hypothesis will be rejected if the p-value P (X ≤ k|n, p0) ≤ α, and for
testing

H0 : p = p0 vs. Ha : p 6= p0, (3.4.3)

the null hypothesis will be rejected if the p-value

2min{P (X ≤ k|n, p0), P (X ≥ k|n, p0)} ≤ α. (3.4.4)

3.4.2 Power of the Exact Test

For a right-tail test (i.e., testing hypotheses in (3.4.1)), the exact power can be
computed using the expression

n∑

k=0

(
n

k

)
pk(1− p)n−kI (P (X ≥ k|n, p0) ≤ α) , (3.4.5)

where I(.) is the indicator function. A power expression for a left-tail test (i.e.,
testing hypotheses in (3.4.2)) can be obtained by replacing P (X ≥ k|n, p0) in
(3.4.5) by P (X ≤ k|n, p0).

For a two-tail test (i.e., testing hypotheses in (3.4.3)), the exact power can
be computed using the expression

n∑

k=0

(
n

k

)
pk(1− p)n−kI (2min{P (X ≤ k|n, p0), P (X ≥ k|n, p0)} ≤ α) . (3.4.6)
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The random variable X in (3.4.5) and (3.4.6) is a binomial(n, p0) random variable
and p 6= p0. Letting p = p0 in the above expressions, we can get the Type I
error rate (size) of the test.

For a given n, k, and p0, the dialog box [StatCalc→Discrete→Binomial→Test
for p and Sample Size for Power] computes the p-values for testing binomial pro-
portion; for a given p, p0, α and power, this dialog box also computes the sample
size required to attain a specified power.

Example 3.4.1 (Calculation of p-values) When n = 20, k = 8, and p0 = 0.2,
it is desired to test (3.4.1) at the level of 0.05. To compute the p-value, select
[StatCalc→Discrete→Binomial→Test for p and Sample Size for Power], and enter the
values of n, k and p0 in the dialog box; click [p-values for] to get 0.0321427. If the
nominal level is 0.05, then the null hypothesis H0 in (3.4.1) will be rejected in
favor of the alternative hypothesis Ha in (3.4.1). However, at the same nominal
level, the H0 in (3.4.3) can not be rejected because the p-value for this two-tail
test is 0.0642853, which is not less than 0.05.

Example 3.4.2 (Calculation of p-values) A pharmaceutical company claims that
75% of doctors prescribe one of its drugs for a particular disease. In a random
sample of 40 doctors, 23 prescribed the drug to their patients. Does this in-
formation provide sufficient evidence to indicate that the actual percentage of
doctors who prescribe the drug is less than 0.75? Test at the level 0.05.

Solution: Let p be the actual proportion of doctors who prescribe the drug to
their patients. We want to test

H0 : p ≥ 0.75 vs. Ha : p < 0.75.

To compute the p-value for testing above hypotheses, select the dialog box
[StatCalc→Discrete→Binomial→Test for p and Sample Size for Power], enter 40 for
n, 23 for observed k, and 0.75 for [Value of p0]. Click on [p-values for]. The
p-value for the above left-tail test is 0.0115614, which is less than 0.05. Thus,
we can conclude, on the contrary to the manufacturer’s claim, that less than
75% of doctors prescribe the drug.

For a given n, population proportion p, and p0, the dialog box [StatCalc→Discrete
→Binomial→Test for p and Sample Size for Power] also computes the power of the
test.

Example 3.4.3 When n = 35, p0 = 0.2, nominal level = 0.05, and p = 0.4,
the power of the test for the hypotheses in (3.4.1) is 0.804825. To compute the
power, enter 1 to indicate right-tail test, 0.05 for the level, 0.2 for [Value of p0],
0.4 for [Guess p], and 35 for [S Size]; click on [Power]. For the hypotheses in
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(3.4.3), the power is 0.69427; to compute this power, enter 3 to indicate two-tail
test, and click [Power].

Example 3.4.4 (Sample Size Calculation) Suppose that a researcher believes that
a new drug is 20% more effective than the existing drug, which has a success
rate of 70%. The required sample size to test his belief (at the level 0.05 and
power 0.90) can be computed as follows. Enter 1 to indicate right-tail test, 0.05
for the level, 0.7 for the value of p0, 0.9 for [Guess p], 0.9 for [Power] and click
on [S Size] to get 37; now click on [Power] to get 0.928915, which is the actual
power when the sample size is 37.

3.5 Confidence Intervals for the Proportion

3.5.1 An Exact Confidence Interval

An exact confidence interval for a binomial proportion p can be obtained using
the Clopper–Pearson (1934) approach. For a given sample size n and an observed
number of successes k, the lower limit pL for p is the solution of the equation

n∑

i=k

(
n

i

)
pi

L(1− pL)n−i =
α

2
,

and the upper limit pU is the solution of the equation

k∑

i=0

(
n

i

)
pi

U (1− pU )n−i =
α

2
.

Using a relation between the binomial and beta distributions (see Section 16.6.2),
it can be shown that

pL = beta−1(α/2; k, n− k + 1) and pU = beta−1(1− α/2; k + 1, n− k),

where beta−1(c; a, b) denotes the cth quantile of a beta distribution with the
shape parameters a and b. The interval (pL, pU ) is an exact 1 − α confidence
interval for p, in the sense that the coverage probability is always greater than
or equal the specified confidence level 1− α.

One-sided 1 − α lower limit for p is beta−1(α; k, n − k + 1) and one-sided
1 − α upper limit for p is beta−1(1 − α; k + 1, n − k). When k = n, the upper
limit is 1 and the lower limit is α

1
n ; when k = 0, the lower limit is 0 and the

upper limit is 1− α
1
n .
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Expected Length

For a given confidence level 1−α and p, the expected length of (pL, pU ) is given
by

n∑

k=0

(
n

k

)
pk(1− p)n−k(pU − pL), (3.5.1)

where pL and pU are as defined above.

The dialog box [StatCalc→Discrete→Binomial→CI for p and Sample Size for Pre-
cision] uses the above formulas to compute confidence intervals for p. This dialog
box also compute the sample size required to estimate the population proportion
within a given precision.

Remark 3.5.1 Suppose that a binomial experiment is repeated m times, and let
kj denote the number of successes, and let nj denote the number of trials at the
jth time, j = 1, 2, ..., m. Then, the above inferential procedures are valid with

(n, k) replaced by

(
m∑

j=1
nj ,

m∑
j=1

kj

)
.

3.5.2 Computing Exact Limits and Sample Size Calculation

For a given n and k, the dialog box [StatCalc→Discrete→Binomial→CI for p and
Sample Size for Precision] computes one-sided confidence limits and confidence
intervals for p. Exact methods described in the preceding section are used for
computation of the confidence intervals. Furthermore, this dialog box computes
the required sample size for a given precision (that is, one half of the expected
length in (3.5.1)).

Example 3.5.1 (Confidence Intervals for p) Suppose that a binomial experiment
of 40 trials resulted in 5 successes. To find a 95% confidence interval, enter 40
for n, 5 for the observed number of successes k, and 0.95 for the confidence level;
click [2-sided] to get (0.0419, 0.2680). For one-sided limits, click [1-sided] to get
0.0506 and 0.2450. That is, 95% one-sided lower limit for p is 0.0506, and 95%
one-sided upper limit for p is 0.2450.

Example 3.5.2 (Confidence Intervals for p) The manufacturer of a product
reports that only 5 percent or fewer of his products are defective. In a random
sample of 25 such products, 4 of them were found to be defective. Find 95%
confidence limits for the true percentage of defective products.
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Solution: Let X be the number of defective products in the sample. Then,
X is a binomial random variable with n = 25 and p = 0.05, which is the
probability of observing a defective product in the lot. To get a 95% confidence
interval for the actual percentage of defective products, select the dialog box
[StatCalc→Discrete→Binomial→CI for p and Sample Size for Precision] from StatCalc,
enter 25 for n, 4 for k, and 0.95 for the confidence level. Click on [2-sided] to get
0.0454 and 0.3608. This means that the actual percentage of defective items is
somewhere between 4.5 and 36, with 95% confidence. Click [1-sided] to get the
lower limit 0.05656; this means that the actual percentage of defective products
is at least 5.66, with 95% confidence.

The dialog box [StatCalc→Discrete→Binomial→CI for p and Sample Size for Pre-
cision] also computes the sample size required to have an interval estimate for p
within a given precision.

Example 3.5.3 (Sample Size Calculation) A researcher hypothesizes that the
proportion of individuals with the attributes of interest in a population is 0.3,
and he wants to estimate the true proportion within ±5% with 95% confidence.
To compute the required sample size, enter 0.95 for [Conf Level], 0.3 for [Guess
p] and 0.05 for [Half-Width]. Click on [Sam Size] to get 340.

3.6 A Test for the Difference between Two
Proportions

Suppose that inspection of a sample of n1 individuals from a population revealed
k1 units with a particular attribute, and a sample of n2 individuals from another
population revealed k2 units with the same attribute. The problem of interest
is to test the difference p1 − p2, where pi, i = 1, 2, denotes the true proportion
of individuals in the ith population with the attribute of interest.

3.6.1 An Unconditional Test

Let p̂i = ki/ni, i = 1, 2. The p-value for testing hypotheses

H0 : p1 ≤ p2 vs. Ha : p1 > p2

can be computed using the formula

P (k1, k2, n1, n2) =
n1∑

x1=0

n2∑

x2=0

f(x1|n1, p̂1)f(x2|n2, p̂2)
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× I (Z(x1, x2, n1, n2) ≥ Z(k1, k2, n1, n2)) , (3.6.1)

where I(.) is the indicator function,

f(xi|ni, p̂i) =

(
ni

xi

)
p̂xi−1

x (1− p̂x)ni−xi , i = 1, 2,

Z(x1, x2, n1, n2) =
x1 − x2√

p̂x(1− p̂x)/(1/n1 + 1/n2)
, and p̂x =

x1 + x2

n1 + n2
.

The terms Z(k1, k2, n1, n2) and p̂k are respectively equal to Z(x1, x2, n1, n2) and
p̂x with x replaced by k. The null hypothesis will be rejected when the p-value in
(3.6.1) is less than or equal to the nominal level α. This test is due to Storer and
Kim (1990). Even though this test is approximate, its Type I error rates seldom
exceed the nominal level and it is more powerful than Fisher’s conditional test
in Section 3.7.

The p-values for a left-tail test and two-tail test can be computed similarly.

3.6.2 Power of the Unconditional Test

For a given (n1, n2, p1, p2, α), the exact power of the unconditional test given
above can be computed using the expression

n1∑

k1=0

n2∑

k2=0

f(k1|n1, p1)f(k2|n2, p2)I (P (k1, k2, n1, n2) ≤ α) , (3.6.2)

where the p-value P (k1, k2, n1, n2) is given in (3.6.1). The powers of a left-tail
test and a two-tail test can be computed similarly.

The dialog box [StatCalc→Discrete→Binomial→Test for p1 - p2 and Power Calcu-
lation] computes the p-value of the unconditional test described in the preceding
paragraphs, and its exact power using (3.6.2).

Example 3.6.1 (P-values of the Unconditional Test) Suppose a sample of 25 ob-
servations from population 1 yielded 20 successes and a sample of 20 observations
from population 2 yielded 10 successes. Let p1 and p2 denote the proportions of
successes in populations 1 and 2, respectively. We want to test

H0 : p1 ≤ p2 vs. Ha : p1 > p2.

To compute the p-value, enter the numbers of successes and sample sizes, click
on [p-values for] to get the p-value of 0.024635. The p-value for the two-tail test
is 0.0400648.
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The dialog box [StatCalc→Discrete→Binomial→Test for p1 - p2 and Power Cal-
culation] also computes the power of the unconditional test for a given level of
significance, guess values of population proportions p1 and p2, and sample sizes.

Example 3.6.2 (Sample Size Calculation) Suppose the sample size for each group
needs to be determined to carry out a two-tail test at the level of significance
α = 0.05 and power = 0.80. Furthermore, the guess values of the proportions
are given as p1 = 0.45 and p2 = 0.15. To determine the sample size, enter 2 for
two-tail test, 0.05 for [Level], 0.45 for p1, 0.15 for p2, and 28 for each sample
size. Click [Power] to get a power of 0.697916. Note that the sample size gives a
power less than 0.80. This means that the sample size required to have a power
of 0.80 is more than 28. Enter 32 (for example) for both sample sizes and click
on [Power] radio button. Now the power is 0.752689. Again, raise the sample
size to 36, and click the [Power] radio button. We now see that power is 0.81429,
which is slightly higher than the desired power 0.80. Thus, the required sample
size for each population to have a power of at least 0.80 is 36. Also, note that
the power at n1 = n2 = 35 is 0.799666.

Remark 3.6.1 The power can also be computed for unequal sample sizes. For
instance, when n1 = 30, n2 = 42, p1 = 0.45, p2 = 0.15, the power of a two-tail
test at the nominal level 0.05 is 0.804295. For the same configuration, a power
of 0.808549 can be attained if n1 = 41 and n2 = 29.

3.7 Fisher’s Exact Test

Let X be a binomial(n1, p1) random variable, and Y be a binomial(n2, p2) ran-
dom variable. Assume that X and Y are independent. When p1 = p2, the
conditional probability of observing X = k, given that X + Y = m is given by

P (X = k|X + Y = m) =

(n1

k

)( n2

m−k

)
(n1+n2

m

) , max{0,m− n2} ≤ k ≤ min{n1, m}.
(3.7.1)

The pmf in (3.7.1) is known as the hypergeometric(m, n1, n1 + n2) pmf (see
Section 4.1). This conditional distribution can be used to test the hypotheses
regarding p1 − p2. For example, when

H0 : p1 ≤ p2 vs. Ha : p1 > p2,

the null hypothesis will be rejected if the p-value P (X ≥ k|X + Y = m), which
can be computed using (3.7.1), is less than or equal to the nominal level α.
Similarly, the p-value for testing H0 : p1 ≥ p2 vs. Ha : p1 < p2 is given by
P (X ≤ k|X + Y = m).
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In the form of 2× 2 table we have:

Sample Successes Failures Totals
1 k n1 − k n1

2 m− k n2 −m + k n2

Totals m n1 + n2 −m n1 + n2

3.7.1 Calculation of p-Values

For a given 2 × 2 table, the dialog box [StatCalc→Discrete→Binomial→Fisher’s
Exact Test and Power Calculation] computes the probability of observing k or more
successes (as well as the probability of observing k or less number of successes)
in the cell (1,1). If either probability is less than α/2, then the null hypothesis
of equal proportion will be rejected at the level α. Furthermore, for a given level
α, sample sizes, and guess values on p1 and p2, this dialog box also computes the
exact power. To compute the power, enter sample sizes, the level of significance,
guess values on p1 and p2, and then click [Power].

Example 3.7.1 A physician believes that one of the causes of a particular disease
is long-term exposure to a chemical. To test his belief, he examined a sample of
adults and obtained the following 2× 2 table:

Group Symptoms Present Symptoms Absent Totals
Exposed 13 19 32

Unexposed 4 21 25
Totals 17 40 57

The hypotheses of interest are

H0 : pe ≤ pu vs. Ha : pe > pu,

where pe and pu denote, respectively, the actual proportions of exposed people
and unexposed people who have the symptom. To find the p-value, select the di-
alog box [StatCalc→Discrete→Binomial→Fisher’s Exact Test and Power Calculation],
enter the cell frequencies and click [Prob <= (1,1) cell]. The p-value is 0.04056.
Thus, at the 5% level, the data provide sufficient evidence to indicate that there
is a positive association between the prolonged exposure to the chemical and the
disease.
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44 3 Binomial Distribution

3.7.2 Exact Powers

The exact power of Fisher’s test described in the preceding sections can be
computed using the expression

n1∑

k1=0

n2∑

k2=0

f(k1|n1, p1)f(k2|n2, p2)I(p− value ≤ α), (3.7.2)

where f(x|n, p) =
(n
x

)
px(1−p)n−x, I(.) is the indicator function and the p–value

is given in (3.7.1). StatCalc uses the above formula for computing the power of
Fisher’s exact test.

Example 3.7.2 (Sample Size Calculation) Suppose that an experimenter wants
to apply Fisher’s exact test for testing two proportions. He believes that the
proportion p1 is about 0.3 more than the proportion p2 = 0.15, and wants to
compute the required sample sizes to have a power of 0.9 for testing

H0 : p1 ≤ p2 vs. Ha : p1 > p2

at the level 0.05.

To determine the sample size required from each population, enter 28 (this is
our initial guess) for both sample sizes, 0.45 (= .3 + .15) for p1, 0.15 for p2, 0.05
for level, and click power to get 0.724359. This is less than 0.9. After trying a
few values larger than 28 for each sample size, we find the required sample size
is 45 from each population. In this case, the actual power is 0.90682.

Example 3.7.3 (Unconditional Test vs. Conditional Test) To understand the
difference between the sample sizes needed for the unconditional test and Fisher’s
test, let us consider Example 3.6.2. Suppose the sample size for each group needs
to be determined to carry out a two-tail test at the level of significance α = 0.05
and power = 0.80. Furthermore, the guess values of the proportions are given
as p1 = 0.45 and p2 = 0.15. To determine the sample size, enter 2 for two-tail
test, 0.05 for [Level], 0.45 for p1, 0.15 for p2, and 28 for each sample size. Click
[Power] to get a power of 0.612953. By raising the each sample size to 41, we
get the power of 0.806208. Note that the power at n1 = n2 = 40 is 0.7926367.

If we decide to use the unconditional test given in Section 3.6, then the
required sample size for each group is 36. Because the unconditional test is
more powerful than Fisher’s test, it requires smaller samples to attain the same
power.

Remark 3.7.1 Note that the power can also be computed for unequal sample
sizes. For instance, when n1 = 30, n2 = 42, p1 = 0.45, p2 = 0.15, the power

© 2006 by Taylor & Francis Group, LLC



3.8 Properties and Results 45

of the two-tail test at a nominal level of 0.05 is 0.717820. For the same config-
uration, a power of 0.714054 can be attained if n1 = 41 and n2 = 29. For the
same sample sizes, the unconditional test provides larger powers than those of
Fisher’s test (see Remark 3.6.1).

3.8 Properties and Results

3.8.1 Properties

1. Let X1, . . ., Xm be independent random variables with Xi ∼ binomial(ni, p),
i = 1, 2, ..., m. Then

m∑

i=1

Xi ∼ binomial

(
m∑

i=1

ni, p

)
.

2. Let X be a binomial(n, p) random variable. For fixed k,

P (X ≤ k|n, p)

is a nonincreasing function of p.

3. Recurrence Relations:

(i) P (X = k + 1) = (n−k)p
(k+1)(1−p)P (X = k), k = 0, 1, 2, . . . , n− 1.

(ii) P (X = k − 1) = k(1−p)
(n−k+1)pP (X = k), k = 1, 2, . . . , n.

4. (i) P (X ≥ k) = pk
n∑

i=k

( i−1
k−1

)
(1− p)i−k.

(ii)
n∑

i=k
i
(n

i

)
pi(1− p)n−i = npP (X ≥ k) + k(1− p)P (X = k).

[Patel et al. (1976), p. 201]

3.8.2 Relation to Other Distributions

1. Bernoulli: Let X1, . . . , Xn be independent Bernoulli(p) random variables
with success probability p. That is, P (Xi = 1) = p and P (Xi = 0) = 1−p,
i = 1, . . . , n. Then

n∑

i=1

Xi ∼ binomial(n, p).

2. Negative Binomial: See Section 7.7.2.
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3. Hypergeometric: See Section 4.8.2.

4. F Distribution: See Section 12.4.2.

5. Beta: See Section 16.6.2.

3.8.3 Approximations

1. Let n be such that np > 5 and n(1− p) > 5. Then,

P (X ≤ k|n, p) ' P

(
Z ≤ k − np + 0.5√

np(1− p)

)
,

and

P (X ≥ k|n, p) ' P

(
Z ≥ k − np− 0.5√

np(1− p)

)
,

where Z is the standard normal random variable.

2. Let λ = np. Then, for large n and small p,

P (X ≤ k|n, p) ' P (Y ≤ k) =
k∑

i=0

e−λλi

i!
,

where Y is a Poisson random variable with mean λ.

3.9 Random Number Generation

Input:
n = number of trials
p = success probability
ns = desired number of binomial random numbers

Output:
x(1),...,x(ns) are random numbers from the binomial(n, p)
distribution

Algorithm 3.9.1

The following algorithm, which generates the binomial(n, p) random number
as the sum of n Bernoulli(p) random numbers, is satisfactory and efficient for
small n.
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Set k = 0
For j = 1 to ns

For i = 1 to n
Generate u from uniform(0, 1)
If u <= p, k = k + 1

[end i loop]
2 x(j) = k

k = 0
[end j loop]

The following algorithm first computes the probability and the cumulative
probability around the mode of the binomial distribution, and then searching
for k sequentially so that P (X ≤ k − 1) < u ≤ P (X ≤ k), where u is a uniform
random variate. Depending on the value of the uniform variate, forward or
backward search from the mode will be carried out. If n is too large, search for
k may be restricted in the interval np± c

√
np(1− p), where c ≥ 7. Even though

this algorithm requires the computation of the cumulative probability around
the mode, it is accurate and stable.

Algorithm 3.9.2

Set k = int((n + 1)*p)
s = p/(1 - p)
pk = P(X = k)
df = P(X <= k)
rpk = pk; rk = k;

For j = 1 to ns
Generate u from uniform(0, 1)
If u > df, go to 2

1 u = u + pk
If k = 0 or u > df, go to 3
pk = pk*k/(s*(n - k + 1))
k = k - 1
go to 1

2 pk = (n - k)*s*pk/(k + 1)
u = u - pk
k = k + 1
If k = n or u <= df, go to 3
go to 2

3 x(j) = k
k = rk
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pk = rpk
[end j loop]

For other algorithms, see Kachitvichyanukul and Schmeiser (1988).

3.10 Computation of Probabilities

For small n, the probabilities can be computed in a straightforward manner. For
large values of n, logarithmic gamma function lnΓ(x) (see Section 1.8) can be
used to compute the probabilities.

To Compute P(X = k):

Set x = lnΓ(n + 1)− ln Γ(k + 1)− ln Γ(n− k + 1)
y = k ∗ ln(p) + (n− k) ∗ ln(1− p)
P (X = k) = exp(x + y).

To Compute P (X ≤ k):

Compute P (X = k)
Set m = int(np)
If k ≤ m, compute P (X = k − 1) using the backward recursion relation

P (X = k − 1) =
k(1− p)

(n− k + 1)p
P (X = k),

for k − 1, k − 2, . . ., 0 or until convergence. Sum of these probabilities plus
P (X = k) is P (X ≤ k);
else compute P (X = k + 1) using the forward recursion relation

P (X = k + 1) =
(n− k)p

(k + 1)(1− p)
P (X = k),

for k+1, . . ., n, or until convergence; sum these probabilities to get P (X ≥ k+1).
The cumulative probability

P (X ≤ k) = 1.0− P (X ≥ k + 1).

The following algorithm for computing the binomial cdf is based on the above
method.
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Algorithm 3.10.1

Input:
k = nonnegative integer (0 <= k <= n)
p = success probability (0 < p < 1)
n = number of trials, n >= 1

Output: bincdf = P(X <= k)

Set mode = int(n*p)
bincdf = 0.0d0
pk = P(X = k)
if(k .le. mode) then

For i = k to 0
bincdf = bincdf + pk
pk = pk * i*(1.0d0-p)/(en-i+1.0d0)/p
(end i loop)

else
For i = k to n
pk = pk * (en-i)*p/(i+1.0d0)/(1.0d0-p)
bincdf = bincdf + pk
(end i loop)
bincdf = 1.0d0-bincdf+pk

end if

The following Fortran function routine computes the cdf and pmf of a binomial(n, p)
distribution.

Input:
k = the value at which the cdf is to be evaluated,

k = 0, 1, 2, ... , n
n = number of trials
p = success probability

Output:
P(X <= x) = bincdf(k, n, p)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
double precision function bincdf(k, n, p)
implicit doubleprecision (a-h,o-z)
ek = k; en = n
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mode = int(n*p)
bincdf = 0.0d0; pk = binprob(k, n, p)

if(k .le. mode) then
do i = k, 0, -1

bincdf = bincdf + pk;
pk = i*(1.0d0-p)*pk/(en-i+1.0d0)/p

end do
else

do i = k, n
pk = pk * (en-i)*p/(i+1.0d0)/(1.0d0-p)
bincdf = bincdf + pk

end do
bincdf = 1.0d0-bincdf+pk

end if
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
double precision function binprob(k, n, p)
implicit doubleprecision (a-h,o-z)
ek = k; en = n

c
c alng(x) = logarithmic function given in Section 1.8
c

term = alng(en+1.0d0) - alng(ek+1.0d0) - alng(en-ek+1.0d0)
& + ek*dlog(p) + (en-ek)*dlog(1.0d0-p)
&
binprob = dexp(term)
end
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Chapter 4

Hypergeometric Distribution

4.1 Description

Consider a lot consisting of N items of which M of them are defective and the
remaining N −M of them are nondefective. A sample of n items is drawn ran-
domly without replacement. (That is, an item sampled is not replaced before
selecting another item.) Let X denote the number of defective items that is
observed in the sample. The random variable X is referred to as the hypergeo-
metric random variable with parameters N and M . Noting that the number of
ways one can select b different objects from a collection of a different objects is

(
a

b

)
=

a!
b!(a− b)!

,

we find that the number of ways of selecting k defective items from M defective
items is

(M
k

)
; the number of ways of selecting n − k nondefective items from

N−M nondefective items is
(N−M

n−k

)
. Therefore, total number of ways of selecting

n items with k defective and n−k nondefective items is
(M

k

)(N−M
n−k

)
. Finally, the

number of ways one can select n different items from a collection of N different
items is

(N
n

)
. Thus, the probability of observing k defective items in a sample of

n items is given by

f(k|n,M, N) = P (X = k|n,M, N) =

(M
k

)(N−M
n−k

)
(N

n

) , L ≤ k ≤ U,

where L = max{0,M −N + n} and U = min{n,M}.

51
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The cumulative distribution function of X is given by

F (k|n,M, N) =
k∑

i=L

(M
i

)(N−M
n−i

)
(N

n

) , L = max{0, M −N + n}.

We shall denote the distribution by hypergeometric(n,M, N). The plots of prob-
ability mass functions are given in Figure 4.1 for a small lot size of N = 100
(the first set of four plots) and for a large lot size of N = 5, 000 (the second set
of eight plots). The parameter-sample size configurations are chosen so that the
hypergeometric plots can be compared with the corresponding binomial plots
in Figure 3.1. The binomial plots with n = 20 are not in good agreement with
the corresponding hypergeometric plots in Figure 4.1 with (N = 100, n = 20)
whereas all binomial plots are almost identical with the hypergeometric plots
with (N = 5000, n = 20) and with (N = 5000, n = 100). Also, see Burstein
(1975).

4.2 Moments

Mean: n
(

M
N

)

Variance: n
(

M
N

) (
1− M

N

) (
N−n
N−1

)

Mode: The largest integer ≤ (n+1)(M+1)
N+2

Mean Deviation:
2x(N−M−n+x)(M

x )(N−M
n−x )

N(N
n) ,

where x is the smallest integer larger than
the mean. [Kamat (1965)]

Coefficient of Variation:
(

(N−M)(N−n)
nM(N−1)

)1/2

Coefficient of Skewness: (N−2M)(N−2n)
√

(N−1)

(N−2)
√

nM(N−M)(N−n)

Coefficient of Kurtosis:

(
N2(N−1)

nM(N−M)(N−2)(N−3)(N−n)

)

×
(

3nM(N−M)(6−n)
N + N(N + 1− 6n) + 6n2

+ 3M(N −M)(n− 2)− 18n2M(N−M)
N2

)
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Figure 4.1 Hypergeometric Probability Mass Functions
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Figure 4.1 Hypergeometric Probability Mass Functions (continued)

4.3 Computing Table Values

The dialog box [StatCalc→Discrete→Hypergeometric] computes the following val-
ues.

1. Tail Probabilities, Critical Values and Moments.
2. Test for Proportion and Power Calculation [Section 4.5].
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3. Confidence Interval for Proportion and Sample Size for Precision [Section
4.6].

4. Test for the Difference between Two Proportions and Power Calculation
[Section 4.7].

The dialog box [StatCalc→Discrete→Hypergeometric →Probabilities, Critical Values
and Moments] computes the probabilities, moments and other parameters of a
hypergeometric(n,M, N) distribution.

Example 4.3.1 When N = 100, M = 36, n = 20, and k = 3,

P (X ≤ 3) = 0.023231, P (X ≥ 3) = 0.995144 and P (X = 3) = 0.018375.

To Compute other Parameters: For any given four values of
{N,M,n, k, P (X ≤ k)}, StatCalc computes the missing one. For example, to
compute the value of M for a given N , n, k and P (X ≤ k), enter the values of
N , n, k and P (X ≤ k), and then click on [E].

Example 4.3.2 When N = 300, n = 45, k = 12, and P (X ≤ k) = 0.4321, the
value of M is 87. To carry out the computation, enter 300 for N , 45 for n, 12 for k
and 0.4321 for P (X ≤ k), and then click [E]. Note that
P (X ≤ 12|45, 87, 300) = 0.429135, which is close to the specified probability
0.4321.

The values of N , n, and k can also be similarly calculated.

To compute moments: Enter the values of the N , M , and n; click [M].

Illustrative Examples

Example 4.3.3 The following state lottery is well-known in the United States
of America. A player selects 6 different numbers from 1, 2, . . ., 44 by buying a
ticket for $1.00. Later in the week, the winning numbers will be drawn randomly
by a device. If the player matches all six winning numbers, then he or she will
win the jackpot of the week. If the player matches 4 or 5 numbers, he or she
will receive a lesser cash prize. If a player buys one ticket, what are the chances
of matching
a. all six numbers?
b. four numbers?

Solution: Let X denote the number of winning numbers in the ticket. If we re-
gard winning numbers as defective, then X is a hypergeometric random variable
with N = 44, M = 6, and n = 6. The probabilities can be computed using the
dialog box [StatCalc→Discrete→Hypergeometric →Probabilities, Critical Values and
Moments].
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a.

P (X = 6) =
(6
6

)(38
0

)
(44

6

) =
1(44
6

) =
6! 38!
44!

=
1

7059052
.

b.

P (X = 4) =
(6
4

)(38
2

)
(44

6

) = 0.0014938.

To find the probability in part (b) using StatCalc, enter 44 for N , 6 for M , 6 for
sample size n, and 4 for observed k, and click [P] to get P(X = 4) = 0.0014938.

Example 4.3.4 A shipment of 200 items is under inspection. The shipment
will be acceptable if it contains 10 or fewer defective items. The buyer of the
shipment decided to buy the lot if he finds no more than one defective item in
a random sample of n items from the shipment. Determine the sample size n so
that the chances of accepting an unacceptable shipment is less than 10%.

Solution: Since we deal with a finite population, a hypergeometric model with
N = 200 is appropriate for this problem. Let X denote the number of de-
fective items in a sample of n items. The shipment is unacceptable if the
number of defective items M is 11 or more. Furthermore, note that for M
in {11, 12, . . . , 200}, the chances of accepting an unacceptable shipment,
that is, P (X ≤ 1|n,M, N), attains the maximum when M = 11. So we
need to determine the value of n so that P (X ≤ 1|n, 11, 200) ≤ 0.10 and
P (X ≤ 1|(n − 1), 11, 200) > 0.10. To compute the required sample size using
StatCalc, select [StatCalc→Discrete→Hypergeometric→Probabilities, Critical Values
and Moments], enter 200 for N , 11 for M , 1 for k and 0.1 for P (X ≤ k); click [S]
to get 61. Note that P (X ≤ 1|61, 11, 200) = 0.099901.

Thus, the buyer has to inspect a sample of 61 items so that the chances of
accepting an unacceptable shipment is less than 10%. Also, notice that when the
sample size is 60, the probability of accepting an unacceptable lot is 0.106241,
which is greater than 10%.

4.4 Point Estimation

Let k denote the observed number of defective items in a sample of n items,
selected from a lot of N items. Let M denote the number of defective items in
the lot.
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Point Estimation of M

The maximum likelihood estimator of M is given by

M̂ =
[
k(N + 1)

n

]
,

where [x] denotes the largest integer less than or equal to x. If k(N+ 1)/n is an
integer, then both k(N + 1)/n and k(N + 1)/n− 1 are the maximum likelihood
estimators of M .

Estimation of the Lot Size

There are situations in which we want to estimate the lot size based on M , n, and
k. For example, the capture-recapture technique is commonly used to estimate
animal abandons in a given region [Thompson (1992), p.212]: A sample of n1

animals was trapped, marked, and released in the first occurrence. After a while,
another sample of n2 animals was trapped. Let X denote the number of marked
animals in the second trap. Then X follows a hypergeometric distribution with
M = n1 and n = n2. For given X = k, we want to estimate N (lot size = total
number of animals in the region). The maximum likelihood estimator of N is
given by

N̂ =
[
n1n2

k

]
,

where [x] denotes the largest integer less than or equal to x.

4.5 Test for the Proportion

Suppose that we found k defective items in a sample of n items drawn from a lot
of N items. Let M denote the true number of defective items in the population
and p = M/N .

4.5.1 An Exact Test

Let M0 = int(Np0). For testing

H0 : p ≤ p0 vs. Ha : p > p0, (4.5.1)

the null hypothesis will be rejected if the p-value P (X ≥ k|n,M0, N) ≤ α, for
testing

H0 : p ≥ p0 vs. Ha : p < p0, (4.5.2)
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the null hypothesis will be rejected if the p-value P (X ≤ k|n,M0, N) ≤ α, and
for testing

H0 : p = p0 vs. Ha : p 6= p0, (4.5.3)

the null hypothesis will be rejected if the p-value

2min{P (X ≤ k|n,M0, N), P (X ≥ k|n,M0, N)} ≤ α.

4.5.2 Power of the Exact Test

For a given p, let M = int(Np) and M0 = int(Np0), where p0 is the specified
value of p under H0 in (4.5.1). For a right-tail test, the exact power can be
computed using the expression

U∑

k=L

(M
k

)(N−M
n−k

)
(N

n

) I(P (X ≥ k|n,M0, N) ≤ α),

and for a two-tail test the exact power can be expressed as

U∑

k=L

(M
k

)(N−M
n−k

)
(N

n

) I(P (X ≥ k|n,M0, N) ≤ α/2 or P (X ≤ k|n,M0, N) ≤ α/2),

where I(.) is the indicator function.

The dialog box [StatCalc→Discrete→Hypergeometric→Test for p and Power Calcu-
lation] uses the above formulas for computing p-values and powers.

Example 4.5.1 (Calculation of p-values) When N = 500, n = 20, k = 8, and p0

= 0.2, it is desired to test H0 : p ≤ p0 vs. Ha : p > p0 at the level of 0.05. After
entering these values in the dialog box, click [p-values for] to get 0.0293035. If
the nominal level is 0.05, then the null hypothesis H0 will be rejected in favor
of the alternative hypothesis Ha. However, if H0 : p = p0 vs. Ha : p 6= p0 then,
at the same nominal level, the H0 in (4.5.3) can not be rejected because the
p-value for this two-tail test is 0.058607, which is not less than 0.05.

Example 4.5.2 (Power Calculation) When N = 500, Sample Size = 35, p0 = 0.2,
nominal level = 0.05, and p = 0.4, the power of the test for the hypotheses in
(4.5.1) is 0.813779. For hypotheses in (4.5.3), the power is 0.701371. The power
can be computed using StatCalc as follows. Enter 500 for N , 0.2 for [Value of
p0], 3 for [two-tail], .05 for [Level], 0.4 for [Guess p] and 35 for [S Size]; click on
[Power].
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Example 4.5.3 (Sample Size Calculation) Suppose that a researcher believes that
a new drug is 20% more effective than the existing drug which has a success rate
of 70%. Assume that the size of the population of patients is 5000. The required
sample size to test his belief (at the level 0.05 and power 0.90) can be computed
using StatCalc as follows. Enter 5000 for N , 0.70 for p0, 1 for the right-tail test,
0.05 for the level, 0.90 for [Guess p], 0.90 for [Power], and click on [S Size] to
get 37. To get the actual power, click on [Power] to get 0.929651.

Example 4.5.4 A pharmaceutical company claims that 75% of doctors prescribe
one of its drugs for a particular disease. In a random sample of 40 doctors from
a population of 1000 doctors, 23 prescribed the drug to their patients. Does this
information provide sufficient evidence to indicate that the true percentage of
doctors who prescribe the drug is less than 75? Test at the level of significance
α = 0.05.

Solution: Let p denote the actual proportion of doctors who prescribe the drug
to their patients. We want to test

H0 : p ≥ 0.75 vs. Ha : p < 0.75.

In the dialog box [StatCalc→Discrete→Hypergeometric→Test for p and Power Cal-
culation], enter 1000 for N , 40 for n, 23 for observed k and 0.75 for [Value of p0],
and click on [p-values for]. The p-value for the above left-tail test is 0.0101239,
which is less than 0.05. Thus, we conclude, on the contrary to the manufacturer’s
claim, that 75% or less doctors prescribe the drug.

4.6 Confidence Interval and Sample Size Calculation

Suppose that we found k defective items in a sample of n items drawn from a
finite population of N items. Let M denote the true number of defective items
in the population.

4.6.1 Confidence Intervals

A lower confidence limit ML for M is the largest integer such that

P (X ≥ k|n,ML, N) ≤ α/2,

and an upper limit MU for M is the smallest integer such that

P (X ≤ k|n,MU , N) ≤ α/2.

© 2006 by Taylor & Francis Group, LLC



60 4 Hypergeometric Distribution

A 1 − α confidence interval for the proportion of defective items in the lot is
given by

(pL, pU ) =
(

ML

N
,

MU

N

)
. (4.5.4)

The dialog box [StatCalc→Discrete→Hypergeometric→CI for p and Sample size for
Precision] uses the above formulas to compute 1 − α confidence intervals for
p. This dialog box also computes the sample size required to estimate the
proportion of defective items within a given precision.

4.6.2 Sample Size for Precision

For a given N , n, and k, the dialog box [StatCalc→Discrete→Hypergeometric →CI
for p and Sample Size for Precision] computes the one-sided confidence limits and
confidence interval for p.

Expected Length

For a given a lot size N , p and a confidence level 1− α, the expected length of
the confidence interval in (4.5.4) can be computed as follows. For a given p, let
M = int(Np). Then the expected length is given by

U∑

k=L

(M
k

)(N−M
n−k

)
(N

n

) (pU − pL).

StatCalc computes the required sample size to have a confidence interval with
the desired expected length.

Example 4.6.1 (Computing Confidence Interval) Suppose that a sample of 40
units from a population of 500 items showed that 5 items are with an attribute
of interest. To find a 95% confidence interval for the true proportion of the
items with this attribute, enter 500 for N , 40 for n, 5 for the observed number
of successes k, and 0.95 for the confidence level; click [2-sided] to get (0.042,
0.262). For one-sided limits, click [1-sided] to get 0.05 and 0.24. That is, 0.05 is
95% one-sided lower limit for p, and 0.24 is 95% one-sided upper limit for p.

Example 4.6.2 (Sample Size for a Given Precision) A researcher hypothesizes
that the proportion of individuals with the attribute of interest in a population
of size 1000 is 0.3, and he wants to estimate the true proportion within ±5%
with 95% confidence. To compute the required sample size, enter 1000 for [Lot
Size], 0.95 for [Conf Level], 0.3 for [Guess p] and 0.05 for [Half-Width]. Click
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[Sam Size] to get 282. See Example 3.5.3 to find out the required sample size if
the population is infinite or its size is unknown.

Example 4.6.3 (Confidence Interval) A shipment of 320 items is submitted for
inspection. A random sample of 50 items was inspected, and it was found that
5 of them were defective. Find a 95% confidence interval for the number of
defective items in the lot.

Solution: Select the dialog box [StatCalc→Discrete→Hypergeometric →
CI for p and Sample Size for Precision], enter 320 for the lot size N , 50 for the sam-
ple size n, and 5 for the observed k; click [2-sided] to get (0.034375, 0.209375).
That is, the actual percentage of defective items is between 3.4% and 20.9% with
95% confidence. To get the confidence interval for M , multiply both endpoints
by N = 320; this gives (11, 67).

To get 95% one-sided limits, click on [1-sided] to get 0.040625 and 0.19375.
This means that the true proportion of defective items is at least 0.040625. The
95% one-sided upper limit is 0.19375.

Example 4.6.4 (One-Sided Limit) A highway patrol officer stopped a car for a
minor traffic violation. Upon suspicion, the officer checked the trunk of the car,
and found many bags. The officer arbitrarily checked 10 bags and found that
all of them contain marijuana. A later count showed that there were 300 bags.
Before the case went to trial, all the bags were destroyed without examining
the remaining bags. Since the severity of the fine and punishment depends on
the quantity of marijuana, it is desired to estimate the minimum number of
marijuana bags. Based on the information, determine the minimum number
marijuana bags in the trunk at the time of arrest.

Solution: The hypergeometric model, with lot size N = 300, sample size n = 10,
and the observed number of defective items k = 10, is appropriate for this
problem. So, we can use a 95% one-sided lower limit for M (total number of
marijuana bags) as an estimate for the minimum number of marijuana bags. To
get a 95% one-sided lower limit for M using StatCalc, enter 300 for N , 10 for
n, 10 for k, and 0.95 for the confidence level; click [1-sided] to get 0.743. That
is, we estimate with 95% confidence that there were at least 223 (300 × 0.743)
bags of marijuana at the time of arrest.
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4.7 A Test for the Difference between Two
Proportions

Suppose that inspection of a sample of n1 individuals from a population of N1

units revealed k1 units with a particular attribute, and a sample of n2 individuals
from another population of N2 units revealed k2 units with the same attribute.
The problem of interest is to test the difference p1 − p2, where pi denotes the
true proportion of individuals in the ith population with the attribute of interest,
i = 1, 2.

4.7.1 The Test

Consider testing

H0 : p1 ≤ p2 vs. Ha : p1 > p2. (4.7.1)

Define p̂k = k1+k2
n1+n2

and M̂i = int(Nip̂k), i = 1, 2. The p-value for testing the
above hypotheses can be computed using the expression

P (k1, k2, n1, n2) =
U1∑

x1=L1

U2∑

x2=L2

f(x1|n1, M̂1, N1)f(x2|n2, M̂2, N2)

× I(Z(x1, x2) ≥ Z(k1, k2)), (4.7.2)

where I(.) is the indicator function, Li = max{0, M̂i−Ni+ni}, Ui = min{M̂i, ni},
i = 1, 2,

f(xi|ni, M̂i, Ni) =

(M̂i
xi

)(Ni−M̂i
ni−xi

)
(Ni

ni

) , i = 1, 2,

Z(x1, x2) =
x1 − x2√

p̂x(1− p̂x)
(

N1−n1
n1(N1−1) + N2−n2

n2(N2−1)

) , and p̂x =
x1 + x2

n1 + n2
.

The term Z(k1, k2) is equal to Z(x1, x2) with x replaced by k.

The null hypothesis in (4.7.1) will be rejected when the p-value in (4.7.2)
is less than or equal to α. For more details see Krishnamoorthy and Thomson
(2002). The p-value for a left-tail test or for a two-tail test can be computed
similarly.

© 2006 by Taylor & Francis Group, LLC



4.7 A Test for the Difference between Two Proportions 63

4.7.2 Power Calculation

For a given p1 and p2, let Mi = int(Nipi), Li = max{0,Mi − Ni + ni} and
Ui = min{ni,Mi}, i = 1, 2. The exact power of the test described above can be
computed using the expression

n1∑

k1=0

n2∑

k2=0

f(k1|n1,M1, N1)f(k2|n2,M2, N2)I(P (k1, k2, n1, n2) ≤ α), (4.7.3)

where f(k|n,M, N) is the hypergeometric pmf, Mi = int(Nipi), i = 1, 2, and the
p-value P (k1, k2, n1, n2) is given in (4.7.2). The powers of a left-tail test and a
two-tail test can be computed similarly.

The dialog box [StatCalc→Discrete→Hypergeometric→Test for p1-p2 and Power Cal-
culation] uses the above methods for computing the p-values and powers of the
above two-sample test.

Example 4.7.1 (Calculation of p-values) Suppose a sample of 25 observations
from population 1 with size 300 yielded 20 successes, and a sample of 20 observa-
tions from population 2 with size 350 yielded 10 successes. Let p1 and p2 denote
the proportions of successes in populations 1 and 2, respectively. Suppose we
want to test

H0 : p1 ≤ p2 vs. Ha : p1 > p2.

To compute the p-value, enter the numbers of successes and sample sizes, click on
[p-values for] to get the p-value of 0.0165608. The p-value for testing
H0 : p1 = p2 vs. Ha : p1 6= p2 is 0.0298794.

Example 4.7.2 (Sample Size Calculation for Power) Suppose the sample size
for each group needs to be determined to carry out a two-tail test at the level of
significance α = 0.05 and power = 0.80. Assume that the lot sizes are 300 and
350. Furthermore, the guess values of the proportions are given as p1 = 0.45
and p2 = 0.15. To determine the sample size using StatCalc, enter 2 for two-tail
test, 0.05 for [Level], 0.45 for p1, 0.15 for p2, and 28 for each sample size. Click
[Power] to get a power of 0.751881. Note that the sample size gives a power
less than 0.80. This means, the sample size required to have a power of 0.80 is
more than 28. Enter 31 (for example) for both sample sizes and click on [Power]
radio button. Now the power is 0.807982. The power at 30 is 0.78988. Thus,
the required sample size from each population to attain a power of at least 0.80
is 31.

Remark 4.7.1 Note that the power can also be computed for unequal sample
sizes. For instance, when n1 = 30, n2 = 34, p1 = 0.45, p2 = 0.15, the power
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for testing H0 : p1 = p2 vs. Ha : p1 6= p2 at the nominal 0.05 is 0.804974. For
the same configuration, a power of 0.800876 can be attained if n1 = 29 and
n2 = 39.

4.8 Properties and Results

4.8.1 Recurrence Relations

a. P (X = k + 1|n,M, N) = (n−k)(M−k)
(k+1)(N−M−n+k+1)P (X = k|n,M, N).

b. P (X = k − 1|n,M, N) = k(N−M−n+k)
(n−k+1)(M−k+1)P (X = k|n,M, N).

c. P (X = k|n + 1,M, N) = (N−M−n+k)
(M+1−k)(N−M)P (X = k|n, M, N).

4.8.2 Relation to Other Distributions

1. Binomial: Let X and Y be independent binomial random variables with
common success probability p and numbers of trials m and n, respectively.
Then

P (X = k|X + Y = s) =
P (X = k)P (Y = s− k)

P (X + Y = s)
which simplifies to

P (X = k|X + Y = s) =

(m
k

)( n
s−k

)
(m+n

s

) , max{0, s− n} ≤ k ≤ min(m, s).

Thus, the conditional distribution of X given X + Y = s is
hypergeometric(s,m, m + n).

4.8.3 Approximations

1. Let p = M/N . Then, for large N and M ,

P (X = k) '
(

n

k

)
pk(1− p)n−k.

2. Let (M/N) be small and n is large such that n(M/N) = λ.

P (X = k) ' e−λλk

k!

{
1 +

(
1

2M
+

1
2n

) [
k −

(
k − Mn

N

)2
]

+ O

(
1
k2

+
1
n2

)}
.

[Burr (1973)]
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4.9 Random Number Generation

Input:
N = lot size; M = number of defective items in the lot
n = sample size; ns = number of random variates to be

generated

Output:
x(1),..., x(ns) are random number from the
hypergeometric(n, M, N) distribution

The following generating scheme is essentially based on the probability mecha-
nism involved in simple random sampling without replacement, and is similar
to Algorithm 3.9.1 for the binomial case.

Algorithm 4.9.1

Set k = int((n + 1)*(M + 1)/(N + 2))
pk = P(X = k)
df = P(X <= k)
Low = max{0, M - N + n}
High = min{n, M}
rpk = pk; rk = k

For j = 1 to ns
Generate u from uniform(0, 1)
If u > df, go to 2

1 u = u + pk
If k = Low or u > df, go to 3
pk = pk*k*(N - M - n + k)/((M - k + 1)*(n - k + 1))
k = k - 1
go to 1

2 pk = pk*(n - k)*(M -k)/((k + 1)*(N - M + k + 1))
u = u - pk
k = k + 1
If k = High or u <= df, go to 3
go to 2

3 x(j) = k
pk = rpk
k = rk

[end j loop]

© 2006 by Taylor & Francis Group, LLC



66 4 Hypergeometric Distribution

For other lengthy but more efficient algorithms see Kachitvichyanukul and Schmeiser
(1985).

4.10 Computation of Probabilities

To compute P (X = k)

Set U = min{n,M}; L = max{0,M −N + n}
If k > U or k < L then return P (X = k) = 0
Compute S1 = ln Γ(M + 1)− ln Γ(k + 1)− ln Γ(M − k + 1)

S2 = ln Γ(N −M + 1)− ln Γ(n− k + 1)− ln Γ(N −M − n + k + 1)
S3 = ln Γ(N + 1)− ln Γ(n + 1)− ln Γ(N − n + 1)
P (X = k) = exp(S1 + S2 − S3)

To compute lnΓ(x), see Section 1.8.

To compute P (X ≤ k)

Compute P (X = k)
Set mode = int((n+ 1)(M+ 1)/(N+ 2))
If k ≤ mode, compute the probabilities using the backward recursion relation

P (X = k − 1|n,M,N) =
k(N −M − n + k)

(n− k + 1)(M − k + 1)
P (X = k|n,M, N)

for k−1, . . ., L or until a specified accuracy; add these probabilities and P (X = k)
to get P (X ≤ k);
else compute the probabilities using the forward recursion

P (X = k + 1|n,M,N) =
(n− k)(M − k)

(k + 1)(N −M − n + k + 1)
P (X = k|n,M,N)

for k + 1, . . ., U or until a specified accuracy; add these probabilities to get
P (X ≥ k + 1). The cumulative probability is given by

P (X ≤ k) = 1− P (X ≥ k + 1).

The following algorithm for computing a hypergeometric cdf is based on the
above computational method.
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Algorithm 4.10.1

Input:
k = the value at which the cdf is to be evaluated
n = the sample size
m = the number of defective items in the lot
lot = size of the lot

Output:
hypcdf = P(X <= k|n,m,lot)

Set one = 1.0d0
lup = min(n, m)
low = max(0, m-lot+n)

if(k .lt. low) return hypcdf = 0.0d0
if(k .gt. lup) return hypcdf = one

mode = int(n*m/lot)
hypcdf = 0.0d0
pk = hypprob(k, n, m, lot)

if(k .le. mode) then
For i = k to low

hypcdf = hypcdf + pk
pk = pk*i*(lot-m-n+i)/(n-i+one)/(m-i+one)

[end i loop]
else

For i = k to lup
pk = pk * (n-i)*(m-i)/(i+one)/(lot-m-n+i+one)
hypcdf = hypcdf + pk

[end i loop]
hypcdf = 1.0d0-hypcdf

end if

The following Fortran function routines computes the cdf and pmf of a
hypergeometric(n,m, lot) distribution.

Input:
k = the value at which the cdf is to be evaluated
n = sample size
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m = number of defective items in the lot
lot = lot size

Output:
P(X <= x) = hypcdf(k, n, m, lot)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
double precision function hypcdf(k, n, m, lot)
implicit doubleprecision (a-h,o-z)

lup = min(n, m); low = max(0, m-lot+n)

one = 1.0d0
hypcdf = one
if(k .gt. lup) return

hypcdf = 0.0d0
if(k .lt. low) return

mode = int(n*m/lot)

hypcdf = 0.0d0; pk = hypprob(k, n, m, lot)

if(k .le. mode) then
do i = k, low, -1

hypcdf = hypcdf + pk;
pk = pk*i*(lot-m-n+i)/(n-i+one)/(m-i+one)

end do
else

do i = k, lup
pk = pk * (n-i)*(m-i)/(i+one)/(lot-m-n+i+one)
hypcdf = hypcdf + pk

end do
hypcdf = 1.0d0-hypcdf

end if

end
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
double precision function hypprob(k, n, m, lot)
implicit doubleprecision (a-h,o-z)

one = 1.0d0
lup = min(n, m); low = max(0, m-lot+n)

hypprob = 0.0d0
if(k .lt. low .or. k .gt. lup) return

c
c alng(x) = logarithmic function given in Section 1.8
c

term1 = alng(m+one)-alng(k+one)-alng(m-k+one)
term2 = alng(lot-m+one)-alng(n-k+one)-alng(lot-m-n+k+one)
term3 = alng(lot+one)-alng(n+one)-alng(lot-n+one)
hypprob = dexp(term1+term2-term3)

end
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Chapter 5

Poisson Distribution

5.1 Description

Suppose that events that occur over a period of time or space satisfy the follow-
ing:

1. The numbers of events occurring in disjoint intervals of time are indepen-
dent.

2. The probability that exactly one event occurs in a small interval of time
∆ is ∆λ, where λ > 0.

3. It is almost unlikely that two or more events occur in a sufficiently small
interval of time.

4. The probability of observing a certain number of events in a time interval
∆ depends only on the length of ∆ and not on the beginning of the time
interval.

Let X denote the number of events in a unit interval of time or in a unit distance.
Then, X is called the Poisson random variable with mean number of events λ in
a unit interval of time. The probability mass function of a Poisson distribution
with mean λ is given by

f(k|λ) = P (X = k|λ) =
e−λλ k

k!
, k = 0, 1, 2, . . . (5.1.1)

The cumulative distribution function of X is given by

F (k|λ) = P (X ≤ k|λ) =
k∑

i=0

e−λλ i

i!
, k = 0, 1, 2, . . . (5.1.2)

71
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The Poisson distribution can also be developed as a limiting distribution of the
binomial, in which n → ∞ and p → 0 so that np remains a constant. In other
words, for large n and small p, the binomial distribution can be approximated
by the Poisson distribution with mean λ = np. Some examples of the Poisson
random variable are:

1. the number of radioactive decays over a period of time;

2. the number of automobile accidents per day on an interstate road;

3. the number of typographical errors per page in a book;

4. the number of α particles emitted by a radioactive source in a unit of time;

5. the number of still births per week in a large hospital.

Poisson distribution gives probability of observing k events in a given period of
time assuming that events occur independently at a constant rate. The Poisson
distribution is widely used in quality control, reliability, and queuing theory. It
can be used to model the distribution of number of defects in a piece of mate-
rial, customer arrivals at a train station, auto insurance claims, and incoming
telephone calls per period of time.

As shown in the plots of probability mass functions in Figure 5.1, Poisson
distribution is right-skewed, and the degree of skewness decreases as λ increases.

5.2 Moments

Mean: λ

Variance: λ

Mode: The largest integer less than or equal to λ.
If λ is an integer, λ and λ− 1 are modes.

Mean Deviation: 2e−λλ[λ]+1

[λ]!

where [x] denotes the largest integer less than
or equal to x. [Johnson, et al. (1992), p. 157]

Coefficient of Variation: 1√
λ

Coefficient of Skewness: 1√
λ
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Coefficient of Kurtosis: 3 + 1
λ

Factorial Moments: E

(
k∏

i=1
(X − i + 1)

)
= λk

E

(
k∏

i=1
(X + i)

)−1

= 1
λ k

(
1− e−λ

k−1∑
i=0

λi

i!

)

Moments about the Mean: µk = λ
k−2∑
i=0

(k−1
i

)
µi, k = 2, 3, 4, · · ·

where µ0 = 1 and µ1 = 0. [Kendall 1943]

Moment Generating Function: exp[λ (et − 1)]

Probability Generating Function: exp[λ (t− 1)]
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Figure 5.1 Poisson Probability Mass Functions
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5.3 Computing Table Values

The dialog box [StatCalc→Discrete→Poisson] computes the following table values,
p-values and confidence intervals.

1. Tail Probabilities, Critical Values, and Moments.
2. Test for the Mean and Power Calculation [Section 5.5].
3. Confidence Interval for the Mean and Sample Size for Precision [Section

5.6].
4. Test for the Ratio of Two Means and Power Calculation [Section 5.7].
5. Confidence Interval for the Ratio of Two Means [Section 5.8].
6. An Unconditional Test for the Difference between Two Means and Power

Calculation [Section 5.9]

The dialog box [StatCalc→Discrete→Poisson→Probabilities, Critical Values and Mo-
ments] computes the tail probabilities, critical points, parameters and moments.

To compute probabilities: Enter the values of the mean, and k at which the
probability is to be computed; click [P].

Example 5.3.1 When the mean = 6, k = 5, P (X ≤ 5) = 0.44568, P (X ≥ 5) =
0.714944 and P (X = 5) = 0.160623.

To compute other parameters: StatCalc also computes the mean or the value of
k when other values are given.

Example 5.3.2 To find the value of the mean when k = 5 and P (X ≤ k) = 0.25,
enter 5 for k, enter 0.25 for P (X ≤ k), and click [A] to get 7.4227.

Example 5.3.3 To find the value of k, when the mean = 4.5 and P (X ≤ k)
= 0.34, enter these values in StatCalc, and click [k] to get 3. Also, note that
P (X ≤ 3) = 0.342296 when the mean is 4.5.

To compute moments: Enter the value of the mean, and click [M].

Example 5.3.4 On average, four customers enter a fast food restaurant per
every 3-min period during the peak hours 11:00 am - 1:00 pm. Assuming an
approximate Poisson process, what is the probability of 26 or more customers
arriving in a 15-min period?

Solution: Let X denote the number of customers entering in a 15-min period.
Then, X follows a Poisson distribution with mean = (4/3) × 15 = 20. To

© 2006 by Taylor & Francis Group, LLC



5.4 Point Estimation 75

find the probability of observing 26 or more customers, select the dialog box
[StatCalc→Discrete→Poisson→Probabilities, Critical Values and Moments], enter 20
for the mean, 26 for the observed k and click [P] to get P (X ≥ 26) = 0.1122.

5.4 Point Estimation

Let X1, . . ., Xn be independent observations from a Poisson(λ) population. Then,

K =
n∑

i=1

Xi ∼ Poisson(nλ).

The following inferences about λ are based on K.

Maximum Likelihood Estimate of λ

The maximum likelihood estimator of λ is given by

λ̂ =
1
n

n∑

i=1

Xi,

which is also the uniformly minimum variance unbiased estimator.

5.5 Test for the Mean

Let X1, . . . , Xn be a sample from a Poisson(λ) population. Then,

K =
n∑

i=1

Xi ∼ Poisson(nλ).

Because the sample size n is known, testing about λ is equivalent to testing
about nλ.

5.5.1 An Exact Test

Let K0 be an observed value of K. Then, for testing

H0 : λ ≤ λ0 vs. Ha : λ > λ0, (5.5.1)
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the null hypothesis will be rejected if the p-value P (K ≥ K0|nλ0) ≤ α, for
testing

H0 : λ ≥ λ0 vs. Ha : λ < λ0, (5.5.2)

the null hypothesis will be rejected if the p-value P (K ≤ K0|nλ0) ≤ α, and for
testing

H0 : λ = λ0 vs. Ha : λ 6= λ0, (5.5.3)

the null hypothesis will be rejected if the p-value

2min{P (K ≤ K0|nλ0), P (K ≥ K0|nλ0)} ≤ α. (5.5.4)

Example 5.5.1 It is desired to find the average number defective spots per
100-ft of an electric cable. Inspection of a sample of twenty 100-ft cable showed
an average of 2.7 defective spots. Does this information indicate that the true
mean number of defective spots per 100-ft is more than 2? Assuming an ap-
proximate Poisson distribution, test using α = 0.05.

Solution: Let X denote the number defective spots per 100-f cable. Then, X
follows a Poisson(λ) distribution, and we want to test

H0 : λ ≤ 2 vs. Ha : λ > 2.

In the dialog box [StatCalc→Discrete→Poisson→Test for Mean and Power Calcula-
tion], enter 20 for the sample size, 20× 2.7 = 54 for the total count, 2 for [Value
of M0], and click the [p-values for] to get 0.0199946. Since the p-value is smaller
than 0.05, we can conclude that true mean is greater than 2.

5.5.2 Powers of the Exact Test

The exact powers of the tests described in the preceding section can be computed
using Poisson probabilities and an indicator function. For example, for a given
λ and λ0, the power of the test for hypotheses in (5.5.1) can be computed using
the following expression.

∞∑

k=0

e−nλ(nλ)k

k!
I(P (K ≥ k|nλ0) ≤ α), (5.5.5)

where K ∼ Poisson(nλ0). Powers of the right-tail test and two-tail test can be
expressed similarly.

The dialog box [StatCalc→Discrete→Poisson→Test for Mean and Power Calcula-
tion] uses the above exact method to compute the power.
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Example 5.5.2 (Sample Size Calculation) Suppose that a researcher hypothesizes
that the mean of a Poisson process has increased from 3 to 4. He likes to
determine the required sample size to test his claim at the level 0.05 with power
0.80. To find the sample size, select [StatCalc→Discrete→Poisson→Test for Mean
and Power Calculation], enter 3 for [H0: M=M0], 1 for the right-tail test, 0.05 for
the level, 4 for [Guess M] and 0.80 for [Power]; click on [S Size] to get 23. To
find the actual power at this sample size, click on [Power] to get 0.811302.

5.6 Confidence Intervals for the Mean

Let X1, . . ., Xn be a sample from a Poisson(λ) population, and let K =
n∑

i=1
Xi.

The following inferences about λ are based on K.

5.6.1 An Exact Confidence Interval

An exact 1− α confidence interval for λ is given by (λL, λU ), where λL satisfies

P (K ≥ k|nλL) = exp(−nλL)
∞∑

i=k

(nλL)i

i!
=

α

2
,

and λU satisfies

P (K ≤ k|nλU ) = exp(−nλU )
k∑

i=0

(nλU )i

i!
=

α

2
,

where k is an observed value of K. Furthermore, using a relation between the
Poisson and chi-square distributions, it can be shown that

λL =
1
2n

χ2
2k,α/2 and λU =

1
2n

χ2
2k+2,1−α/2,

where χ2
m,p denotes the pth quantile of a chi-square distribution with df = m.

These formulas should be used with the convention that χ2
0,p = 0.

The dialog box [StatCalc→Discrete→Poisson→CI for Mean and Sample Size for
Width] computes the confidence interval using the above formulas.

Example 5.6.1 (Confidence Interval for Mean) Let us compute a 95% confidence
interval for the data given in Example 5.5.1. Recall that n = 20, sample mean
= 2.7, and so the total count is 54. To find confidence intervals for the mean
number of defective spots, select [StatCalc→Discrete→Poisson→CI for Mean
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and Sample Size for Width], enter 20 for [Sample Size] 54 for [Total] and 0.95
for [Conf Level]; click [2-sided] to get 2.02832 and 3.52291. That is, (2.03, 3.52)
is a 95% confidence interval for the mean. Click [1-sided] to get 2.12537 and
3.387. That is, 2.13 is a 95% one-sided lower limit and 3.39 is a 95% upper
limit.

5.6.2 Sample Size Calculation for Precision

For a given n and λ, the expected length of the 1−α confidence interval (λL, λU )
in Section 5.6.1 can be expressed as

∞∑

k=0

e−nλ(nλ)k

k!
(λU − λL) =

1
2n

∞∑

k=0

e−nλ(nλ)k

k!
(χ2

2k+2,1−α/2 − χ2
2k,α/2).

The dialog box [StatCalc→Discrete→Poisson→CI for Mean and Sample Size for
Width] also computes the sample size required to estimate the mean within a
given expected length.

Example 5.6.2 (Sample Size Calculation) Suppose that a researcher hypothesizes
that the mean of a Poisson process is 3. He likes to determine the required sample
size to estimate the mean within ±0.3 and with confidence 0.95. To find the
sample size, select [StatCalc→Discrete→Poisson→CI for Mean and Sample Size for
Width], enter 0.95 for [Conf Level], 3 for [Guess Mean], and 0.3 for [Half-Width];
click [Sam Size] to get 131.

5.7 Test for the Ratio of Two Means

Let Xi1, . . . , Xini be a sample from a Poisson(λi) population. Then,

Ki =
ni∑

j=1

Xij ∼ Poisson(niλi), i = 1, 2.

The following tests about (λ1/λ2) are based on the conditional distribution of
K1 given K1 + K2 = m, which is binomial(m, n1λ1/(n1λ1 + n2λ2)).

5.7.1 A Conditional Test

Consider testing

H0 :
λ 1

λ 2
≤ c vs. Ha :

λ 1

λ 2
> c, (5.7.1)
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where c is a given positive number. The p-value based on the conditional distri-
bution of K1 given K1 + K2 = m is given by

P (K1 ≥ k|m, p) =
m∑

x=k

(
m

x

)
px(1− p)m−x, where p =

n1c/n2

1 + n1c/n2
. (5.7.2)

The conditional test rejects the null hypothesis whenever the p-value is less than
or equal to the specified nominal α. [Chapman 1952]

The p-value of a left-tail test or a two-tail test can be expressed similarly.

The dialog box [StatCalc→Discrete→Poisson→Test for Mean1/Mean2 and Power
Calculation] uses the above exact approach to compute the p-values of the con-
ditional test for the ratio of two Poisson means.

Example 5.7.1 (Calculation of p-value) Suppose that a sample of 20 observations
from a Poisson(λ1) distribution yielded a total of 40 counts, and a sample of 30
observations from a Poisson(λ2) distribution yielded a total of 22 counts. We
like to test

H0 :
λ1

λ2
≤ 2 vs. Ha :

λ1

λ2
> 2.

To compute the p-value using StatCalc, enter the sample sizes, total counts,
and 2 for the value of c in [H0:M1/M2 = c], and click on [p-values for] to
get 0.147879. Thus, there is not enough evidence to indicate that λ1 is larger
than 2λ2.

Example 5.7.2 (Calculation of p-values) Suppose that the number of work re-
lated accidents over a period of 12 months in a manufacturing industry (say, A)
is 14. In another manufacturing industry B, which is similar to A, the number of
work related accidents over a period of 9 months is 8. Assuming that the num-
bers of accidents in both industries follow Poisson distributions, it is desired to
test if the mean number of accidents per month in industry A is greater than
that in industry B. That is, we want to test

H0 :
λ1

λ2
≤ 1 vs. Ha :

λ1

λ2
> 1,

where λ1 and λ2, respectively, denote the true mean numbers of accidents per
month in A and B. To find the p-value using StatCalc, select [StatCalc→Discrete→
Poisson→Test for Mean1/Mean2 and Power Calculation], enter 12 for [Sam Size 1],
9 for [Sam Size 2], 14 for [No. Events 1], 8 for [No. Events 2], 1 for c in
[H0:M1/M2 = c], and click [p-values for] to get 0.348343. Thus, we do not have
enough evidence to conclude that λ1 > λ2.
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5.7.2 Powers of the Conditional Test

For given sample sizes, guess values of the means and a level of significance, the
exact power of the conditional test in for (5.7.1) can be calculated using the
following expression:

∞∑

i=0

∞∑

j=0

e−n1λ1(n1λ1)i

i!
e−n2λ2(n2λ2)

j

j!
I(P (X1 ≥ i|i + j, p) ≤ α), (5.7.3)

where P (X1 ≥ k|m, p) and p are as defined in (5.7.2). The powers of a two-tail
test and left-tail test can be expressed similarly.

The dialog box [StatCalc→Discrete→Poisson→Test for Mean1/Mean2 and Power
Calculation] uses (5.7.3) to compute the power of the conditional test for the ratio
of two Poisson means.

Example 5.7.3 (Sample Size Calculation) Suppose that a researcher hypothesizes
that the mean λ1 = 3 of a Poisson population is 1.5 times larger than the mean
λ2 of another population, and he likes to test

H0 :
λ1

λ2
≤ 1.5 vs. Ha :

λ1

λ2
> 1.5.

To find the required sample size to get a power of 0.80 at the level 0.05, enter
30 for both sample sizes, 1 for one-tail test, 0.05 for level, 3 for [Guess M1], 2
for [Guess M2] and click power to get 0.76827. By raising the sample size to 33,
we get a power of 0.804721. Furthermore, when both sample sizes are 32, the
power is 0.793161. Therefore, the required sample size is 33.

We note that StatCalc also computes the power for unequal sample sizes.
For example, when the first sample size is 27 and the second sample size is 41,
the power is 0.803072.

For the above example, if it is desired to find sample sizes for testing the
hypotheses

H0 :
λ1

λ2
= 1.5 vs. Ha :

λ1

λ2
6= 1.5,

then enter 2 for two-tail test (while keep the other values as they are), and click
[Power]. For example, when both sample sizes are 33, the power is 0.705986;
when they are 40, the power is 0.791258, and when they are 41 the power is
0.801372.

© 2006 by Taylor & Francis Group, LLC



5.8 Confidence Intervals for the Ratio of Two Means 81

5.8 Confidence Intervals for the Ratio of Two Means

The following confidence interval for (λ1/λ2) is based on the conditional distri-
bution of K1 given in (5.7.2). Let

p =
n1λ1

n1λ1 + n2λ2
=

(n1λ1/n2λ2)
(n1λ1/n2λ2) + 1

.

For given K1 = k and K1 + K2 = m, a 1− α confidence interval for λ1/λ2 is
(

n2pL

n1(1− pL)
,

n2pU

n1(1− pU )

)
,

where (pL, pU ) is a 1 − α confidence interval for p based on k successes from a
binomial(m, p) distribution (see Section 3.5). The dialog box [StatCalc→Discrete→
Poisson→CI for Mean1/Mean2] uses the above formula to compute the confidence
intervals for the ratio of two Poisson means.

Example 5.8.1 (CI for the Ratio of Means) Suppose that a sample of 20 ob-
servations from a Poisson(λ1) distribution yielded a total of 40 counts, and a
sample of 30 observations from a Poisson(λ2) distribution yielded a total of 22
counts. To compute a 95% confidence interval for the ratio of means, enter the
sample sizes, total counts, and 0.95 for confidence level in the appropriate edit
boxes, and click on [2-sided] to get (1.5824, 4.81807). To get one-sided confi-
dence intervals click on [1-sided] to get 1.71496 and 4.40773. That is, 95% lower
limit for the ratio λ1/λ2 is 1.71496 and 95% upper limit for the ratio λ1/λ2 is
4.40773.

5.9 A Test for the Difference between Two Means

This test is more powerful than the conditional test given in Section 5.7. How-
ever, this test is approximate and in some situations the Type I error rates are
slightly more than the nominal level. For more details, see Krishnamoorthy and
Thomson (2004).

Let Xi1, . . . , Xini be a sample from a Poisson(λi) distribution, i = 1, 2. Then,

Ki =
ni∑

j=1

Xij ∼ Poisson(niλi), i = 1, 2.

The following tests about λ1 − λ2 are based on K1 and K2.
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5.9.1 An Unconditional Test

Consider testing

H0 : λ1 − λ2 ≤ d vs. Ha : λ1 − λ2 > d, (5.9.1)

where d is a specified number. Let (k1, k2) be an observed value of (K1,K2) and
let

λ̂d =
k1 + k2

n1 + n2
− dn1

n1 + n2
.

The p-value for testing (5.9.1) is given by

P (k1, k2) =
∞∑

x1=0

∞∑

x2=0

e−ηηx1

x1!
e−δδx2

x2!
I(Z(x1, x2) ≥ Z(k1, k2)), (5.9.2)

where η = n1(λ̂d + d), δ = n2λ̂d,

Z(x1, x2) =
x1
n1
− x2

n2
− d√

x1

n2
1

+ x2

n2
2

and Z(k1, k2) is Z(x1, x2) with x replaced by k. The null hypothesis will be
rejected whenever the p-value is less than or equal to the nominal level α.

The dialog box [StatCalc→Discrete→Poisson→Test for Mean1 - Mean2 and Power
Calculation] in StatCalc uses the above formula to compute the p-values for test-
ing the difference between two means.

Example 5.9.1 (Unconditional Test) Suppose that a sample of 20 observations
from a Poisson(λ1) distribution yielded a total of 40 counts, and a sample of 30
observations from a Poisson(λ2) distribution yielded a total of 22 counts. We
like to test

H0 : λ1 − λ2 ≤ 0.7 vs. Ha : λ1 − λ2 > 0.7.

To compute the p-value, enter the sample sizes, total counts, and 0.7 for the
value of d in [H0:M1-M2 = d], and click on [p-values for] to get 0.0459181. So,
at the 5% level, we can conclude that there is enough evidence to indicate that
λ1 is 0.7 unit larger than λ2.

Example 5.9.2 (Unconditional Test) Let us consider Example 5.7.2, where we
used the conditional test for testing λ1 > λ2. We shall now apply the uncondi-
tional test for testing

H0 : λ1 − λ2 ≤ 0 vs. Ha : λ1 − λ2 > 0.
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To find the p-value, enter 12 for the sample size 1, 9 for the sample size 2, 14
for [No. Events 1], 8 for [No. Events 2], 0 for d, and click [p-values for] to get
0.279551. Thus, we do not have enough evidence to conclude that λ1 > λ2.
Notice that the p-value of the conditional test in Example 5.7.2 is 0.348343.

5.9.2 Powers of the Unconditional Test

For a given λ1, λ2, and a level of significance α, the power of the unconditional
test is given by

∞∑

k1=0

∞∑

k2=0

e−n1λ1(n1λ1)k1

k1!
e−n2λ2(n2λ2)k2

k2!
I(P (k1, k2) ≤ α), (5.9.3)

where P (k1, k2) is the p-value given in (5.9.2). When λ1 = λ2, the above formula
gives the size (that is, actual Type I error rate) of the test.

The dialog box [StatCalc→Discrete→Poisson→Test for Mean1 - Mean2 and Power
Calculation] uses the above formula to compute the power of the test for the
difference between two means.

Example 5.9.3 (Power Calculation) Suppose a researcher hypothesizes that the
mean λ1 = 3 of a Poisson population is at least one unit larger than the mean
λ2 of another population, and he likes to test

H0 : λ1 − λ2 ≤ 0 vs. Ha : λ1 − λ2 > 0.

To find the required sample size to get a power of 0.80 at level of 0.05, enter
30 for both sample sizes, 0 for d in [H0: M1-M2 = d], 1 for one-tail test, 0.05
for level, 3 for [Guess M1], 2 for [Guess M2] and click [Power] to get 0.791813.
By raising the sample size to 31, we get a power of 0.803148. We also note that
when the first sample size is 27 and the second sample size is 36, the power is
0.803128.

For the above example, if it is desired to find the sample sizes for testing the
hypotheses

H0 : λ1 − λ2 = 0 vs. Ha : λ1 − λ2 6= 0,

then enter 2 for two-tail test (while keep the other values as they are), and click
[Power]. For example, when both sample sizes are 33, the power is 0.730551;
when they are 39, the power is 0.800053. [Note that if one choose to use the
conditional test, then the required sample size from both populations is 41. See
Example 5.7.3].
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5.10 Model Fitting with Examples

Example 5.10.1 Rutherford and Geiger (1910) presented data on α particles
emitted by a radioactive substance in 2608 periods, each of 7.5 sec. The data
are given in Table 5.1.

a. Fit a Poisson model for the data.
b. Estimate the probability of observing 5 or less α particles in a period of 7.5

sec.
c. Find a 95% confidence interval for the mean number of α particles emitted

in a period of 7.5 sec.

Table 5.1 Observed frequency Ox of the number of α particles x in 7.5 second periods
x 0 1 2 3 4 5 6 7 8 9 10

Ox 57 203 383 525 532 408 273 139 45 27 16
Ex 54.6 211 408 526 508 393 253 140 67.7 29.1 17

Solution:

a. To fit a Poisson model, we estimate first the mean number λ of α particles
emitted per 7.5 second period. Note that

λ̂ =
1

2608

10∑

x=0

xOx =
10086
2608

= 3.867.

Using this estimated mean, we can compute the probabilities and the ex-
pected (theoretical) frequencies Ex under the Poisson(λ̂) model. For ex-
ample, E0 is given by

E0 = P (X = 0|λ = 3.867)× 2608 = 0.020921× 2608 = 54.6.

Other expected frequencies can be computed similarly. These expected
frequencies are given in Table 5.1. We note that the observed and the ex-
pected frequencies are in good agreement. Furthermore, for this example,
the chi-square statistic

χ2 =
10∑

x=0

(Ox −Ex)2

Ex
= 13.06,

and the df = 11− 1− 1 = 9 (see Section 1.4.2). The p-value for testing

H0: The data fit Poisson(3.867) model vs. Ha: H0 is not true
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is given by P (χ2
9 > 13.06) = 0.16, which implies that the Poisson(3.867)

model is tenable for the data.

b. Select the dialog box [StatCalc→Discrete→Poisson→Probabilities, Critical Val-
ues and Moments], enter 3.867 for the mean, and 5 for k; click [P(X <= k)]
to get

P (X ≤ 5) =
5∑

k=0

e−3.867(3.867)k

k!
= 0.805557.

c. To compute the 95% confidence interval for the mean, select the dialog box
[StatCalc→Discrete→Poisson→CI for Mean and Sample Size for Width] from
StatCalc, enter 10086 for the observed k, 2608 for the sample size n and
0.95 for the confidence level; click [2-sided] to get (3.79222, 3.94356).

Example 5.10.2 Data on the number of deaths due to kicks from horses, based
on the observation of 10 Prussian cavalry corps for 20 years (equivalently, 200
corps-years), are given in Table 5.2. Prussian officials collected this data during
the latter part of the 19th century in order to study the hazards that horses
posed to soldiers (Bortkiewicz 1898).

Table 5.2 Horse kick data
Number of deaths k: 0 1 2 3 4 5
Number of corps-years in which
k deaths occurred, Ox: 109 65 22 3 1 0
Expected Number of
corps-years, Ex: 108.7 66.3 20.2 4.1 0.6 0

In this situation, the chances of death due to a kick from horse is small while
the number of soldiers exposed to the risk is quite large. Therefore, a Poisson
distribution may well fit the data. As in Example 5.10.1, the mean number of
deaths per period can be estimated as

λ̂ =
0× 109 + 1× 65 + . . . + 5× 0

200
= 0.61.

Using this estimated mean, we can compute the expected frequencies as in Ex-
ample 5.10.1. They are given in the third row of Table 5.2. For example, the
expected frequency in the second column can be obtained as

P (X = 1|λ = 0.61)× 200 = 0.331444× 200 = 66.3.

We note that the observed and the expected frequencies are in good agreement.
Furthermore, for this example, the chi-square statistic

χ2 =
5∑

x=0

(Ox − Ex)2

Ex
= 0.7485,
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and the df = 4. The p-value for testing

H0: The data fit Poisson(0.61) model vs. Ha: H0 is not true

is given by P (χ2
4 > 0.7485) = 0.9452 which is greater than any practical level of

significance. Therefore, the Poisson(0.61) model is tenable. A 95% confidence
interval for the mean number of deaths is (0.51, 0.73). To get the confidence in-
terval, select [StatCalc→Discrete→Poisson→CI for Mean and Sample Size for Width]
from StatCalc, enter 200 for the sample size, 122 for total count, 0.95 for the
confidence level; click [2-sided].

5.11 Properties and Results

5.11.1 Properties

1. For a fixed k, P (X ≤ k|λ) is a nonincreasing function of λ.

2. Let X1, . . . , Xn be independent Poisson random variables with E(Xi) = λi,
i = 1, . . . , n. Then

n∑

i=1

Xi ∼ Poisson

(
n∑

i=1

λi

)
.

3. Recurrence Relations:

P (X = k + 1|λ) = λ
k+1P (X = k|λ), k = 0, 1, 2, . . .

P (X = k − 1|λ) = k
λP (X = k|λ), k = 1, 2, . . .

4. An identity: Let X be a Poisson random variable with mean λ and
|g(−1)| < ∞. Then,

E[Xg(X − 1)] = λE[g(X)]

provided the indicated expectations exist. [Hwang 1982]

5.11.2 Relation to Other Distributions

1. Binomial: Let X1 and X2 be independent Poisson random variables with
means λ1 and λ2 respectively. Then, conditionally

X1|(X1 + X2 = n) ∼ binomial
(

n,
λ1

λ1 + λ2

)
.
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2. Multinomial: If X1, . . . , Xm are independent Poisson(λ) random variables,
then the conditional distribution of X1 given X1 + . . . + Xm = n is multi-
nomial with n trials and cell probabilities p1 = . . . = pm = 1/m.

3. Gamma: Let X be a Poisson(λ) random variable. Then

P (X ≤ k|λ) = P (Y ≥ λ),

where Y is Gamma(k + 1, 1) random variable. Furthermore, if W is a
gamma(a, b) random variable, where a is an integer, then for x > 0,

P (W ≤ x) = P (Q ≥ a) ,

where Q is a Poisson(x/b) random variable.

5.11.3 Approximations

1. Normal:
P (X ≤ k|λ) ' P

(
Z ≤ k−λ+0.5√

λ

)
,

P (X ≥ kλ) ' P
(
Z ≥ k−λ−0.5√

λ

)
,

where X is the Poisson(λ) random variable and Z is the standard normal
random variable.

5.12 Random Number Generation

Input:
L = Poisson mean
ns = desired number of random numbers

Output:
x(1),..., x(ns) are random numbers from the
Poisson(L) distribution

The following algorithm is based on the inverse method, and is similar to Algo-
rithm 3.9.1 for the binomial random numbers generator.
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88 5 Poisson Distribution

Algorithm 5.12.1

Set k = int(L); pk = P(X = k); df = P(X <= k)
rpk = pk; rk = k
max = L + 10*sqrt(L)
If L > 100, max = L + 6*sqrt(L)
If L > 1000, max = L + 5*sqrt(L)

For j = 1 to ns
Generate u from uniform(0, 1)
If u > df, go to 2

1 u = u + pk
If k = 0 or u > df, go to 3
pk = pk*k/L
k = k - 1
go to 1

2 pk = L*pk/(k + 1)
u = u - pk
k = k + 1
If k = max or u < df, go to 3
go to 2

3 x(j) = k
k = rk
pk = rpk

[end j loop]

5.13 Computation of Probabilities

For a given k and small mean λ, P (X = k) can be computed in a straightforward
manner. For large values, the logarithmic gamma function can be used.

To Compute P (X = k):

P (X = k) = exp(−λ + k ∗ ln(λ)− ln(Γ(k + 1))

To compute P (X ≤ k):

Compute P (X = k)
Set m = int(λ)
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If k ≤ m, compute the probabilities using the backward recursion relation

P (X = k − 1|λ) =
k

λ
P (X = k|λ),

for k − 1, k − 2, . . ., 0 or until the desired accuracy; add these probabilities and
P (X = k) to get P (X ≤ k).
else compute the probabilities using the forward recursion relation

P (X = k + 1|λ) =
λ

k + 1
P (X = k|λ),

for k + 1, k + 2, . . . until the desired accuracy; sum these probabilities to get
P (X ≥ k + 1); the cumulative probability P (X ≤ k) = 1− P (X ≥ k + 1).

The following algorithm for computing a Poisson cdf is based on the above
method.

Algorithm 5.13.1

Input:
k = the nonnegative integer at which the cdf is to be evaluated

el = the mean of the Poisson distribution, el > 0
Output:

poicdf = P(X <= k|el)

Set mode = int(el)
one = 1.0d0

if(k .lt. 0) return poicdf = 0.0d0

pk = poiprob(k, el)
poicdf = 0.0d0
i = k
if(k .le. mode) then

1 poicdf = poicdf + pk;
pk = pk*i/el
if(i .eq. 0 .or. pk .lt. 1.0d-14) return
i = i - 1
goto 1

else
2 pk = pk*el/(i+one)

if(pk. lt. 1.0d-14) goto 3
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poicdf = poicdf + pk
i = i + 1
goto 2

3 poicdf = one-poicdf
end if

The following Fortran routines compute the cdf (poicdf) and pmf (poiprob) of
a Poisson distribution with mean λ = el.

Input:
k = the value at which the cdf is to be evaluated
el = mean of the Poisson distribution

Output:
P(X <= x) = poicdf(k, el)

cccccccccccccccccccccccccccccccccccccccccccccccccccc
double precision function poicdf(k, el)
implicit doubleprecision (a-h,o-z)
data zero, one/0.0d0, 1.0d0/

poicdf = zero
if(k .lt. 0) return

mode = int(el)

pk = poiprob(k, el)
i = k
if(k .le. mode) then

1 poicdf = poicdf + pk;
pk = pk*i/el
if(i .eq. 0 .or. pk .lt. 1.0d-14) return
i = i - 1
goto 1

else
2 pk = pk*el/(i+one)

if(pk. lt. 1.0d-14) goto 3
poicdf = poicdf + pk
i = i + 1
goto 2
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3 poicdf = one - poicdf
end if
end

cccccccccccccccccccccccccccccccccccccccccccccccccccc
double precision function poiprob(k, el)
implicit doubleprecision (a-h,o-z)
data zero, one/0.0d0, 1.0d0/

poiprob = zero
if(k .lt. 0) return

c
c alng(x) = logarithmic gamma function given in Section 1.8
c

term1 = -alng(k+one)+k*dlog(el)-el
poiprob = dexp(term1)
end
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Chapter 6

Geometric Distribution

6.1 Description

Consider a sequence of independent Bernoulli trials with success probability p.
Let X denote the number of failures until the first success to occur. Then, the
probability mass function of X is given by

P (X = k|p) = P (Observing k failures)
× P (Observing a success at (k + 1)st trial)
= (1− p)kp, k = 0, 1, 2, . . .

This is the probability of observing exactly k failures until the first success to
occur or the probability that exactly (k + 1) trials are required to get the first
success. The cdf is given by

F (k|p) = p
k∑

i=0

(1− p)i =
p[1− (1− p)k+1]

1− (1− p)
= 1− (1− p)k+1, k = 0, 1, 2, . . .

Since the above cdf is a geometric series with finite terms, the distribution is
called geometric distribution.
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94 6 Geometric Distribution

6.2 Moments

Mean: 1−p
p

Variance: 1−p
p2

Mode: 0

Mean Deviation: 2u(1− p)u,
where u is the smallest integer
greater than the mean.

Coefficient of Variation: 1√
(1−p)

Coefficient of Skewness: 2−p√
(1−p)

Coefficient of Kurtosis: 9 + p2

(1−p)

Moments about the Mean: µk+1 = (1− p)
(

∂µk
∂q + k

p2 µk−1

)
,

where q = 1− p, µ0 = 1 and µ1 = 0.

Moment Generating Function: p(1− qet)−1

Probability Generating Function: p(1− qt)−1

6.3 Computing Table Values

The dialog box [StatCalc→Discrete→Geometric] computes the tail probabilities,
critical points, parameters and confidence intervals for a geometric distribution
with parameter p.

To compute probabilities: Enter the number of failures k until the first success
and the success probability p; click [P].

Example 6.3.1 The probability of observing the first success at the 12th trial,
when the success probability is 0.1, can be computed as follows: Enter 11 for k,
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and 0.1 for p; click on [P] to get

P (X ≤ 11) = 0.71757, P (X ≥ 11) = 0.313811 and P (X = 11) = 0.0313811.

Example 6.3.2 To find the value of the success probability when k = 11 and
P(X <= k) = 0.9, enter these numbers in the appropriate edit boxes, and click
[s] to get 0.174596.

Example 6.3.3 To find the value of k when p = 0.3 and P(X <= k) = 0.8, enter
these numbers in the white boxes, and click [k] to get 4.

To compute confidence intervals: Enter the observed number of failures k until
the first success and the confidence level; click on [1-sided] to get one-sided limits
or click [2-sided] to get two-sided confidence intervals.

Example 6.3.4 Suppose that in an experiment consisting of sequence of Bernoulli
trials, 12 trials were required to get the first success. To find a 95% confidence
interval for the success probability p, enter 11 for k, 0.95 for confidence level;
click [2-sided] to get (0.002, 0.285).

To compute moments: Enter a value for p in (0, 1); click [M].

6.4 Properties and Results

1. P (X ≥ k + 1) = (1− p)k+1, k = 0, 1, . . .

2. For fixed k, P (X ≤ k|p) is an increasing function of p.

3. Memoryless Property: For nonnegative integers k and m,

P (X > m + k|X > m) = P (X > k).

The probability of observing an additional k failures, given the fact that m
failures have already observed, is the same as the probability of observing
k failures at the start of the sequence. That is, geometric distribution
forgets what has occurred earlier.

4. If X1, . . ., Xr are independent geometric random variables with success
probability p, then

r∑

i=1

Xi ∼ negative binomial(r, p).
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96 6 Geometric Distribution

6.5 Random Number Generation

Generate u from uniform(0, 1)
Set k = integer part of ln(u)

ln(1−p)

k is a pseudo random number from the geometric(p) distribution.

© 2006 by Taylor & Francis Group, LLC



Chapter 7

Negative Binomial
Distribution

7.1 Description

Consider a sequence of independent Bernoulli trials with success probability p.
The distribution of the random variable that represents the number of failures
until the first success is called geometric distribution. Now, let X denote the
number of failures until the rth success. The random variable X is called the
negative binomial random variable with parameters p and r, and its pmf is given
by

P (X = k|r, p) = P (observing k failures in the first k + r − 1 trials)
× P (observing a success at the (k + r)th trial)

=

(
r + k − 1

k

)
pr−1(1− p)k × p.

Thus,

f(k|r, p) = P (X = k|r, p) =

(
r + k − 1

k

)
pr(1−p)k, k = 0, 1, 2, . . . ; 0 < p < 1.

This is the probability of observing k failures before the rth success or equiva-
lently, probability that k + r trials are required until the rth success to occur.
In the binomial distribution, the number of successes out of fixed number of
trials is a random variable whereas in the negative binomial the number of trials
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98 7 Negative Binomial Distribution

required to have a given number of successes is a random variable. The follow-
ing relation between the negative binomial and binomial distributions is worth
noting.

P (X ≤ k) = P (observing k or less failures before the rth success)
= P ((k + r) or less trials are required to have exactly r successes)
= P (observing r or more successes in (k + r) trials)

=
k+r∑

i=r

(
k + r

i

)
pi(1− p)k+r−i

= P (Y ≥ r),

where Y is a binomial(k + r, p) random variable.

The plots of the probability mass functions presented in Figure 7.1 show that
the negative binomial distribution is always skewed to the right. The degree of
skewness decreases as r increases. See the formula for coefficient of skewness in
Section 7.2.

7.2 Moments

Mean: r(1−p)
p

Variance: r(1−p)
p2

Mode: The largest integer ≤ (r−1)(1−p)
p .

Mean Deviation: 2u
(r+u−1

u

)
(1− p)upr−1,

where u is the smallest integer
greater than the mean. [Kamat 1965]

Coefficient of Variation: 1√
r(1−p)

Coefficient of Skewness: 2−p√
r(1−p)

Coefficient of Kurtosis: 3 + 6
r + p2

r(1−p)

Central Moments: µk+1 = q
(

∂µk
∂q + kr

p2 µk−1

)
,

where q = 1− p, µ0 = 1 and µ1 = 0.
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Moment Generating Function: pr(1− qet)−r

Probability Generating Function: pr(1− qt)−r
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Figure 7.1 Negative Binomial Probability Mass Functions; k is the Number of Failures
until the rth Success
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7.3 Computing Table Values

The dialog box [StatCalc→Discrete→Negative Binomial] computes the following
table values.

1. Tail Probabilities, Critical Values and Moments.
2. Test for Proportion [Section 7.5].
3. Confidence Interval for Proportion [Section 7.6].

To compute probabilities: Enter the number of successes r, number of failures
until the rth success, and the success probability; click [P].

Example 7.3.1 When r = 20, k = 18, and p = 0.6,

P (X ≤ 18) = 0.862419, P (X ≥ 18) = 0.181983, and P (X = 18) = 0.0444024.

Example 7.3.2 To find the success probability when k = 5, P(X <= k) = 0.56,
and r = 4, enter these values in appropriate edit boxes, and click [s] to get
0.417137.

To compute moments: Enter the values of r and the success probability p;
click [M].

Illustrative Examples

Example 7.3.3 A coin is to be flipped sequentially.
a. What are the chances that the 10th head will occur at the 12th flip?
b. Suppose that the 10th head had indeed occurred at the 12th flip. What

can be said about the coin?

Solution:
a. Let us assume that the coin is balanced. To find the probability, select

the dialog box [StatCalc→Discrete→Negative Binomial→Probabilities, Critical
Values and Moments] from StatCalc, enter 10 for the number of successes,
2 for the number of failures, and 0.5 for the success probability; click
[P (X <= k)] to get 0.01343.

b. If the coin were balanced, then the probability of observing 2 or less tails
before the 10th head is only 0.01929, which is less than 2%. Therefore, if
one observes 10th head at the 12th flip, then it indicates that the coin is
not balanced. To find this probability using StatCalc, just follow the steps
of part (a).
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Example 7.3.4 A shipment of items is submitted for inspection. In order to save
the cost of inspection and time, the buyer of the shipment decided to adopt the
following acceptance sampling plan: He decided to inspect a sample of not more
than thirty items. Once the third defective observed, he will stop the inspection
and reject the lot; otherwise he will continue the inspection up to the 30th item.
What are the chances of rejecting the lot if it indeed contains 15% defective
items?

Solution: Let X denote the number of nondefective items that must be examined
in order to get 3 or more defective items. If we refer defective as success and
nondefective as failure, then X follows a negative binomial with p = 0.15 and
r = 3. We need to find the probability of observing 27 or less nondefective items
to get the third defective item. Thus, the required probability is

P (X ≤ 27|3, 0.15) = 0.8486,

which can be computed using StatCalc as follows: Select the dialog box
[StatCalc→Discrete→Negative Binomial→Probabilities, Critical Values and Moments]
from StatCalc, enter 3 for the number of successes, 27 for the number of failures,
and 0.15 for the success probability; click [P(X <= k)] to get 0.848599. Thus,
for this acceptance sampling plan, the chances of rejecting the lot is about 85%
if the lot actually contains 15% defective items.

7.4 Point Estimation

Suppose that a binomial experiment required k + r trials to get the rth suc-
cess. Then the uniformly minimum variance unbiased estimator of the success
probability is given by

p̂ =
r − 1

r + k − 1
,

and its approximate variance is given by

Var(p̂) ' p2(1− p)
2

(
2k + 2− p

k(k − p + 2)

)
.

7.5 A Test for the Proportion

Suppose that in a sequence of independent Bernoulli trials, each with success
probability p, rth success was observed at the (k + r)th trial. Based on this
information, we like to test about the true success probability p.
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For testing
H0 : p ≤ p0 vs. Ha : p > p0, (7.5.1)

the null hypothesis will be rejected if the p-value P (X ≤ k|r, p0) ≤ α, for testing

H0 : p ≥ p0 vs. Ha : p < p0, (7.5.2)

the null hypothesis will be rejected if the p-value P (X ≥ k|r, p0) ≤ α and for
testing

H0 : p = p0 vs. Ha : p 6= p0, (7.5.3)

the null hypothesis will be rejected if the p-value

2min{P (X ≤ k|r, p0), P (X ≥ k|r, p0)} ≤ α.

The dialog box [StatCalc→Discrete→Negative Binomial→Test for p] computes the
above p-values for testing the success probability.

Example 7.5.1 A shipment of items is submitted for inspection. The buyer of the
shipment inspected the items one-by-one randomly, and found the 5th defective
item at the 30th inspection. Based on this information, can we conclude that
the proportion of defective items p in the shipment is less than 30%? Find a
point estimate of p.

Solution: Let p denote the true proportion of defective items in the shipment.
Then, we want to test

H0 : p ≥ 0.3 vs. Ha : p < 0.3.

To compute the p-value, select the dialog box [StatCalc→Discrete→
Negative Binomial→Test for p], enter 5 for r, 25 for k, 0.3 for [Value of p0] and
click [p-values for] to get 0.0378949. This is the p-value for the left-tail test, and
is less than 0.05. Therefore, we conclude that the true proportion of defective
items in the shipment is less than 30%. A point estimate of the actual proportion
of defective items is

p̂ =
r − 1

r + k − 1
=

5− 1
5 + 25− 1

= 0.1379.

Suppose one inadvertently applies the binomial testing method described in Sec-
tion 3.4 instead of negative binomial, then n = 30, and the number of successes
is 5. Using [StatCalc→Discrete→Binomial→Test for p and Power Calculation], we get
the p-value for testing above hypotheses as 0.0765948. Thus, on contrary to the
result based on the negative binomial, the result based on the binomial is not
significant at 0.05 level.
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7.6 Confidence Intervals for the Proportion

For a given r and k, an exact 1 − α confidence interval for p can be computed
using Clopper–Pearson approach. The lower limit pL satisfies

P (X ≤ k|r, pL) = α/2,

and the upper limit pU satisfies

P (X ≥ k|r, pU ) = α/2.

Using the relation between negative binomial and beta random variables (see
Section 16.6.2), it can be shown that

PL = beta−1(α/2; r, k + 1)

and
pU = beta−1(1− α/2; r, k),

where beta−1(c; a, b) denotes the cth quantile of the beta distribution with shape
parameters a and b.

The dialog box [StatCalc→Discrete→Negative Binomial→CI for p and Sample
Size for Precision] uses the above methods to compute confidence intervals for p.

Example 7.6.1 A shipment of items is submitted for inspection. The buyer
of the shipment inspected the items one-by-one randomly, and found the 6th
defective item at the 30th inspection. Based on this information, find a 95%
confidence interval for the true proportion of defective items in the shipment.

Solution: To find the 95% exact confidence interval for the true proportion
of defective items, enter 6 for r, 24 for k, 0.95 for confidence level, and click
[2-sided] to get (0.0771, 0.3577). That is, the true percentage of defective items
in the shipment is between 7.7 and 36 with confidence 95%.

7.7 Properties and Results

In the following X denotes the negative binomial(r, p) random variable.

7.7.1 Properties

1. For a given k and r, P (X ≤ k) is a nondecreasing function of p.

© 2006 by Taylor & Francis Group, LLC



104 7 Negative Binomial Distribution

2. Let X1, . . ., Xm be independent negative binomial random variables with

Xi ∼ negative binomial(ri, p), i = 1, 2, ..., m.

Then,
m∑

i=1

Xi ∼ negative binomial

(
m∑

i=1

ri, p

)
.

3. Recurrence Relations:

P (X = k + 1) = (r+k)(1−p)
(k+1) P (X = k)

P (X = k − 1) = k
(r+k−1)(1−p)P (X = k)

7.7.2 Relation to Other Distributions

1. Binomial: Let X be a negative binomial(r, p) random variable. Then

P (X ≤ k|r, p) = P (Y ≥ r), k = 1, 2, ...

where Y is a binomial random variable with k + r trials and success prob-
ability p.

2. Beta: See Section 16.6.2.

3. Geometric Distribution: Negative binomial distribution with r = 1 spe-
cializes to the geometric distribution described in Chapter 6.

7.8 Random Number Generation

Input:
r = number of successes; p = success probability
ns = desired number of random numbers

Output:
k = random number from the negative binomial(r, p)
distribution; the number of failures until the rth
success
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Algorithm 7.8.1

Set i = 1; k = 0

For j = 1 to ns
1 Generate u from uniform(0, 1)

If u <= p, k = k + 1
If k = r goto 2
i = i + 1
go to 1

2 x(j) = i - r
k = 0
i = 1

[end j loop]

The following algorithm is based on the inverse method, and is similar to Algo-
rithm 3.9.1 for binomial variates generator.

Algorithm 7.8.2

Set k = int((r - 1.0)*(1 - p)/p)
pk = P(X = k|r, p)
df = P(X <= k|r, p)
rpk = pk
ik = k
xb = r*(1 - p)/p
s = sqrt(xb/p)
mu = xb + 10.0*s
if(xb > 30.0) mu = xb + 6.0*s
if(xb > 100.0) mu = xb + 5.0*s
ml = max(0.0, mu - 10.0*s)
if(xb > 30.0) ml = max(0.0, xb - 6.0*s)
if(xb > 100.0) ml = max(0.0, xb - 5.0*s)

For j = 1 to ns
Generate u from uniform(0, 1)
if(u > df) goto 2

1 u = u + pk
if(k = ml or u > df) goto 3
pk = pk*k/((r + k - 1.0)*(1.0 - p))
k = k - 1
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goto 1
2 pk = (r + k)*(1 - p)*pk/(k + 1)

u = u - pk
k = k + 1
If k = mu or u <= df, go to 3
go to 2

3 x(j) = k
k = rk
pk = rpk

[end j loop]

7.9 A Computational Method for Probabilities

For small values of k and r, P(X = k) can be computed in a straightforward
manner. For other values, logarithmic gamma function lnΓ(x) given in Section
1.8 can be used.

To compute P (X = k):

Set q = 1− p
c = ln Γ(r + k)− ln Γ(k + 1)− ln Γ(r)
b = k ln(q) + r ln(p)
P (X = k) = exp(c + b)

To compute P (X ≤ k):

If an efficient algorithm for evaluating the cdf of beta distribution is available,
then the following relation between the beta and negative binomial distributions,

P (X ≤ k) = P (Y ≤ p),

where Y is a beta variable with shape parameters r and k + 1, can be used to
compute the cumulative probabilities.

The relation between the binomial and negative binomial distributions,

P (X ≤ k) = 1.0− P (W ≤ r − 1),

where W is a binomial random variable with k + r trials and success probability
p, can also be used to compute the cumulative probabilities.
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Chapter 8

Logarithmic Series Distribution

8.1 Description

The probability mass function of a logarithmic series distribution with parameter
θ is given by

P (X = k) =
aθk

k
, 0 < θ < 1, k = 1, 2, . . . ,

where a = −1/[ln(1− θ)]; the cdf is given by

F (k|θ) = P (X ≤ k|θ) = a
k∑

i=1

θk

k
, 0 < θ < 1, k = 1, 2, . . .

The logarithmic series distribution is useful to describe a variety of biological and
ecological data. Specifically, the number of individuals per species can be mod-
eled using a logarithmic series distribution. This distribution can also be used
to fit the number of products requested per order from a retailer. Williamson
and Bretherton (1964) used a logarithmic series distribution to fit the data that
represent quantities of steel per order from a steel merchant; they also tabulated
the cumulative probabilities for various values of the mean of the distribution.
Furthermore, Chatfield et al. (1966) fitted the logarithmic series distribution to
the distribution of purchases from a random sample of consumers.

The logarithmic series distribution is always right-skewed (see Figure 8.1).

107
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Figure 8.1 Probability Mass Functions of Logarithmic Series
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8.2 Moments

Let a = −1/[ln(1− θ)].

Mean: aθ
1−θ

Variance: aθ(1−aθ)
(1−θ)2

Coefficient of Variation:
√

(1−aθ)
aθ

Coefficient of Skewness: aθ(1+θ−3aθ+2a2θ2)

[aθ(1−aθ)]3/2

Coefficient of Kurtosis: 1+4θ+θ2−4aθ(1+θ)+6a2θ2−3a3θ 3

aθ(1−aθ)2

Mean Deviation: 2aθ(θm−P (X>m))
1−θ ,

where m denotes the largest integer
≤ the mean. [Kamat 1965]

Factorial Moments: E

(
k∏

i=1
(X − i + 1)

)
= aθk(k−1)!

(1−θ)k

Moment Generating Function: ln(1−θ exp(t))
ln(1−θ)

Probability Generating Function: ln(1−θt)
ln(1−θ)

8.3 Computing Table Values

The dialog box [StatCalc→Discrete→Logarithmic Series] in StatCalc computes the
probabilities, moments, and the maximum likelihood estimator of θ based on a
given sample mean.

To compute probabilities: Enter the values of the parameter θ and the observed
value k; click [P(X <= k)].

Example 8.3.1 When θ = 0.3 and k = 3,

P (X ≤ 3) = 0.9925, P (X ≥ 3) = 0.032733 and P (X = 3) = 0.025233.
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110 8 Logarithmic Series Distribution

StatCalc also computes the value of θ or the value of k. For example, when
k = 3, P (X ≤ 3) = 0.6, the value of θ is 0.935704. To get this value, enter 3 for
k, 0.6 for [P(X <= k)] and click [T].

To compute the MLE of θ: Enter the sample mean, and click on [MLE].

Example 8.3.2 When the sample mean = 2, the MLE of θ is 0.715332.

To compute moments: Enter a value for θ in (0,1); click [M].

Example 8.3.3 A mail-order company recorded the number of items purchased
per phone call or mail in form. The data are given in Table 8.1. We will fit
a logarithmic series distribution for the number of item per order. To fit the
model, we first need to estimate the parameter θ based on the sample mean
which is

x̄ =
∑

xifi∑
fi

=
2000
824

= 2.4272.

To find the MLE of θ using StatCalc, enter 2.4272 for the sample mean, and click
[MLE] to get 0.7923. Using this number for the value of θ, we can compute the
probabilities P (X = 1), P (X = 2), etc. These probabilities are given in column
3 of Table 8.1. To find the expected frequencies, multiply the probability by the
total frequency, which is 824 for this example.

Comparison of the observed and expected frequencies indicates that the loga-
rithmic series distribution is very well fitted for the data. The fitted distribution
can be used to check whether the distribution of number of items demanded per
order changes after a period of time.

Example 8.3.4 Suppose that the mail-order company in the previous example
collected new data after a few months after the previous study, and recorded
them as shown Table 8.2.

First we need to check whether a logarithmic series distribution still fits the
data. The sample mean is

x̄ =
∑

xifi∑
fi

=
1596
930

= 1.7161,

and using StatCalc, we find that the MLE of θ is 0.631316. As in Example 8.3.3,
we can compute the probabilities and the corresponding expected frequencies
using 0.631316 as the value of θ. Comparison of the observed frequencies with
the expected frequencies indicate that a logarithmic series distribution still fits
the data well; however, the smaller MLE indicates that the demand for fewer
units per order has increased since the last study.
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Table 8.1 Number of items ordered per call or mail-in form
No. of Observed Expected

items xi frequency Probability frequency
1 417 0.504116 415.4
2 161 0.199706 164.6
3 84 0.105485 86.9
4 50 0.062682 51.6
5 39 0.039730 32.7
6 22 0.026232 21.6
7 12 0.017814 14.7
8 8 0.012350 10.2
9 7 0.008698 7.2

10 6 0.006202 5.1
11 5 0.004467 3.7

12 and over 13 0.012518 10.3
Total 824 1.0 824

Table 8.2 Number of items ordered per call or mail-in form after a few
months

No. of Observed Expected
items xi frequency Probability frequency

1 599 0.632698 588.4
2 180 0.199716 185.7
3 75 0.084056 78.2
4 30 0.039799 37
5 20 0.020101 18.7
6 11 0.010575 9.9
7 5 0.005722 5.3
8 4 0.003161 2.9
9 3 0.001774 1.6

10 2 0.001010 0.9
11 0 0.000578 0
12 1 0.000811 0.8

Total 930 1.0 929.4
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112 8 Logarithmic Series Distribution

8.4 Inferences

8.4.1 Point Estimation

Let x̄ denote the mean of a random sample of n observations from a logarithmic
series distribution with parameter θ. The maximum likelihood estimate θ̂ of θ
is the solution of the equation

θ̂ =
x̄ ln(1− θ̂)

x̄ ln(1− θ̂)− 1
,

which can be solved numerically for a given sample mean. Williamson and
Bretherton (1964) tabulated the values of θ̂ for x̄ ranging from 1 to 50.

Patil (1962) derived an asymptotic expression for the variance of the MLE,
and it is given by

Var(θ̂) =
θ 2

nµ2
,

where µ2 denotes the variance of the logarithmic series distribution with param-
eter θ (see Section 8.2).

Patil and Bildikar (1966) considered the problem of minimum variance un-
biased estimation. Wani (1975) compared the MLE and the minimum variance
unbiased estimator (MVUE) numerically and concluded that there is no clear-
cut criterion to choose between these estimators. It should be noted that the
MVUE also can not be expressed in a closed form.

8.4.2 Interval Estimation

Let X1, . . . , Xn be a random sample from a logarithmic series distribution with
parameter θ. Let Z denote the sum of the Xi’s, and let f(z| n, θ) denote the
probability mass function of Z (see Section 8.5). For an observed value z0 of Z,
a (1− α) confidence interval is (θL, θU ), where θL and θU satisfy

∞∑

k=z0

f(k|n, θL) =
α

2
,

and
z0∑

k=1

f(k|n, θU ) =
α

2
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respectively. Wani (1975) tabulated the values of (θL, θU ) for n = 10, 15, and
20, and the confidence level 0.95.

8.5 Properties and Results

1. Recurrence Relations:

P (X = k + 1) = kθ
k+1P (X = k), k = 1, 2, . . .

P (X = k − 1) = k
(k−1)θP (X = k), k = 2, 3, . . .

2. Let X1, . . ., Xn be independent random variables, each having a logarith-
mic series distribution with parameter θ. The probability mass function
of the Z =

∑n
i=1 Xi is given by

P (Z = k) =
n!|S(n)

k |θk

k![− ln(1− θ)]n
, k = n, n + 1, . . .

where S
(n)
k denotes the Stirling number of the first kind (Abramowitz and

Stegun 1965, p. 824).

8.6 Random Number Generation

The following algorithm is based on the inverse method. That is, for a random
uniform(0, 1) number u, the algorithm searches for k such that
P (X ≤ k − 1) < u ≤ P (X ≤ k).

Input:
θ = parameter
ns = desired number of random numbers

Output:
x(1), . . ., x(ns) are random numbers from the
Logarithmic Series(θ) distribution

Algorithm 8.6.1

Set pk = −θ/ ln(1− θ)
rpk = pk

For j = 1 to ns
Generate u from uniform(0, 1)
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k = 1
1 If u ≤ pk, go to 2

u = u – pk
pk = pk *θ*k/(k + 1)
k = k + 1
goto 1

2 x(j) = k
pk = rpk

[end j loop]

8.7 A Computational Algorithm for Probabilities

For a given θ and k, P (X = k) can be computed in a straightforward manner.
To compute P (X ≤ k), compute first P (X = 1), compute other probabilities
recursively using the recurrence relation

P (X = i + 1) =
iθ

i + 1
P (X = i), i = 1, 2, ..., k − 1 . . .

and then compute P (X ≤ k) = P (X = 1) +
∑k

i=2 P (X = i).

The above method is used to obtain the following algorithm.

Algorithm 8.7.1

Input:
k = the positive integer at which the cdf is to be evaluated
t = the value of the parameter ‘theta’
a = -1/ln(1-t)

Output:
cdf = P(X <= k| t)

Set p1 = t
cdf = p1

For i = 1 to k
p1 = p1*i*t/(i+1)
cdf = cdf + p1

(end i loop)
cdf = cdf*a
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Chapter 9

Continuous Uniform Distribution

9.1 Description

The probability density function of a continuous uniform random variable over
an interval [a, b] is given by

f(x; a, b) =
1

b− a
, a ≤ x ≤ b.

The cumulative distribution function is given by

F (x|a, b) =
x− a

b− a
, a ≤ x ≤ b.

The uniform distribution with support [a, b] is denoted by uniform(a, b). This
distribution is also called the rectangular distribution because of the shape of its
pdf. (see Figure 9.1).

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 1 2 3 4 5 6 7

Figure 9.1 The pdf of Uniform(2,5)
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116 9 Continuous Uniform Distribution

9.2 Moments

Mean: b+a
2

Variance: (b−a)2

12

Median: b+a
2

Coefficient of Variation: (b−a)√
3(b+a)

Mean Deviation: b−a
4

Coefficient of Skewness: 0

Central Moments:

{
0, k = 1, 3, 5, . . . ,

(b−a)k

2k(k+1)
, k = 2, 4, 6, . . .

Moments about the Origin: E(Xk) = bk+1−ak+1

(b−a)(k+1) , k = 1, 2, · · ·

Moment Generating Function: etb−eta

(b−a)t

9.3 Inferences

Let X1, . . ., Xn be a random sample from a uniform(a, b) distribution. Let X(1)

denote the smallest order statistic and X(n) denote the largest order statistic.

1. When b is known,

âu =
(n + 1)X(1) − b

n

is the uniformly minimum variance unbiased estimator (UMVUE) of a; if
a is known, then

b̂u =
(n + 1)X(n) − a

n

is the UMVUE of b.

2. When both a and b are unknown,

â =
nX(1) −X(n)

n− 1
and b̂ =

nX(n) −X(1)

n− 1

are the UMVUEs of a and b, respectively.
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9.4 Properties and Results

1. Probability Integral Transformation: Let X be a continuous random vari-
able with cumulative distribution function F (x). Then,

U = F (X) ∼ uniform(0, 1).

2. Let X be a uniform(0, 1) random variable. Then,

−2 ln(X) ∼ χ2
2.

3. Let X1, . . . ,Xn be independent uniform(0,1) random variables, and let
X(k) denote the kth order statistic. Then X(k) follows a
beta(k, n− k + 1) distribution.

4. Relation to Normal: See Section 10.11.

9.5 Random Number Generation

Uniform(0, 1) random variates generator is usually available as a built-in intrin-
sic function in many commonly used programming languages such as Fortran
and C. To generate random numbers from uniform(a, b), use the result that if
U ∼ uniform(0,1), then X = a + U ∗ (b− a) ∼ uniform(a, b).
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Chapter 10

Normal Distribution

10.1 Description

The probability density function of a normal random variable X with mean µ
and standard deviation σ is given by

f(x|µ, σ) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
,−∞ < x < ∞, −∞ < µ < ∞, σ > 0.

This distribution is commonly denoted by N(µ, σ2). The cumulative distribution
function is given by

F (x|µ, σ) =
∫ x

−∞
f(t|µ, σ)dt.

The normal random variable with mean µ = 0 and standard deviation σ = 1 is
called the standard normal random variable, and its cdf is denoted by Φ(z).

If X is a normal random variable with mean µ and standard deviation σ,
then

P (X ≤ x) = P

(
Z ≤ x− µ

σ

)
=

∫ (x−µ)/σ

−∞
exp(−t2/2)dt = Φ

(
x− µ

σ

)
.

The mean µ is the location parameter, and the standard deviation σ is the scale
parameter. See Figures 10.2 and 10.3.

The normal distribution is the most commonly used distribution to model
univariate data from a population or from an experiment. In the following
example, we illustrate a method of checking whether a sample is from a normal
population.
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120 10 Normal Distribution

An Example for Model Checking

Example 10.1.1 (Assessing Normality) Industrial hygiene is an important prob-
lem in situations where the employees are constantly exposed to workplace con-
taminants. In order to assess the exposure levels, hygienists monitor employees
periodically. The following data represent the exposure measurements from a
sample of 15 employees who were exposed to a chemical over a period of three
months.

x : 69 75 82 93 98 102 54 59 104 63 67 66 89 79 77

We want to test whether the exposure data are from a normal distribution.
Following the steps of Section 1.4.1, we first order the data. The ordered data
x(j)’s are given in the second column of Table 10.1. The cumulative probability
level of x(j) is approximately equal to (j − 0.5)/n, where n is the number of
data points. For these cumulative probabilities, standard normal quantiles are
computed, and they are given in the fourth column of Table 10.1. For example,
when j = 4, the observed 0.233333th quantile is 66 and the corresponding stan-
dard normal quantile z(j) is −0.7279. To compute the standard normal quan-
tile for the 4th observation, select [StatCalc→Continuous→Normal→Probabilities,
Percentiles and Moments], enter 0 for [Mean], 1 for [Std Dev], and 0.233333 for
P(X<=x); click on [x] to get −0.7279. If the data are from a normal popula-
tion, then the pairs (x(j), z(j)) will be approximately linearly related. The plot
of the pairs (Q–Q plot) is given in Figure 10.1. The Q–Q plot is nearly a line
suggesting that the data are from a normal population.

If a graphical technique does not give a clear-cut result, a rigorous test, such
as Shapiro–Wilk test and the correlation test, can be used. We shall use the
test based on the correlation coefficient to test the normality of the exposure
data. The correlation coefficient between the x(j)’s and the z(j)’s is 0.984. At
the level 0.05, the critical value for n = 15 is 0.937 (see Looney and Gulledge
1985). Since the observed correlation coefficient is larger than the critical value,
we have further evidence for our earlier conclusion that the data are from a
normal population.
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Figure 10.1 Q–Q plot of the Exposure Data

Table 10.1 Observed and normal quantiles for exposure data
j Observed Cumulative Standard Normal

Quantiles Probability Levels Quantile
x(j) (j − 0.5)/15 z(j)

1 54 0.0333 -1.8339
2 59 0.1000 -1.2816
3 63 0.1667 -0.9674
4 66 0.2333 -0.7279
5 67 0.3000 -0.5244
6 69 0.3667 -0.3407
7 75 0.4333 -0.1679
8 77 0.5000 0.0000
9 79 0.5667 0.1679
10 82 0.6333 0.3407
11 89 0.7000 0.5244
12 93 0.7667 0.7279
13 98 0.8333 0.9674
14 102 0.9000 1.2816
15 104 0.9667 1.8339
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Figure 10.2 Normal pdfs with µ = 0
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Figure 10.3 Normal pdfs with σ = 1
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10.2 Moments

Mean: µ

Variance: σ2

Coefficient of Variation: σ/µ

Median: µ

Mean Deviation:
√

2σ2

π

Coefficient Skewness: 0

Coefficient of Kurtosis: 3

Moments about the Origin:





σk
(k+1)/2∑

i=1

k!µ2i−1

(2i−1)![(k+1)/2−i]!2(k+1)/2−iσ2i−1 ,

k = 1, 3, 5, . . .

σk
k/2∑
i=0

k!µ2i

(2i)!(k/2−i)!2k/2−iσ2i ,

k = 2, 4, 6, . . .

Moments about the Mean:

{
0, k = 1, 3, 5, . . . ,

k!
2k/2(k/2)!

σk, k = 2, 4, 6, . . .

Moment Generating Function: E(etx) = exp
(
tµ + t2σ2/2

)

A Recurrence Relation: E(Xk) = (k − 1)σ2E(Xk−2) + µE(Xk−1),
k = 3, 4, · · ·

10.3 Computing Table Values

The dialog box [StatCalc→Continuous→Normal] computes the following table val-
ues and other statistics.

1. Tail Probabilities, Percentiles, and Moments.
2. Test and Confidence Interval for the Mean [Section 10.4].
3. Power of the t-test [Section 10.4].
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4. Test and Confidence Interval for the Variance [Section 10.4].

5. Test and Confidence Interval for the Variance Ratio [Section 10.5].

6. Two-Sample t-test and Confidence Interval [Section 10.5].

7. Two-Sample Test with No Assumption about the Variances [Section 10.5].

8. Power of the Two-Sample t-test [Section 10.5].

9. Tolerance Intervals for Normal Distribution [Section 10.6].

10. Tolerance Intervals Controlling both Tails [Section 10.6].

11. Simultaneous Tests for Quantiles [Section 10.6].

The dialog box [StatCalc→Continuous→Normal→Probabilities, Percentiles and Mo-
ments] computes the tail probabilities, critical points, parameters, and moments.

To compute probabilities: Enter the values of the mean, standard deviation,
and the value of x at which the cdf is to be computed; click [P(X <= x)] radio
button.

Example 10.3.1 When mean = 1.0, standard deviation = 2.0, and the value
x = 3.5, P (X ≤ 3.5) = 0.89435 and P (X > 3.5) = 0.10565.

To compute percentiles: Enter the values of the mean, standard deviation, and
the cumulative probability P(X <= x); click on [x] radio button.

Example 10.3.2 When mean = 1.0, standard deviation = 2.0, and the cumulative
probability P(X <= x) = 0.95, the 95th percentile is 4.28971. That is,

P (X ≤ 4.28971) = 0.95.

To compute the mean: Enter the values of the standard deviation, x, and P(X
<= x). Click [Mean].

Example 10.3.3 When standard deviation = 3, x = 3.5, and P(X <= x) = 0.97,
the value of the mean is −2.14238.

To compute the standard deviation: Enter the values of the mean, x, and P(X
<= x). Click [Std Dev].

Example 10.3.4 When mean = 3, x = 3.5, and P(X <= x) = 0.97, the standard
deviation is 0.265845.

To compute moments: Enter the values of the mean and standard deviation;
click [M] button.
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Some Illustrative Examples

Example 10.3.5 An electric bulb manufacturer reports that the average life-span
of 100W bulbs is 1100 h with a standard deviation of 100 h. Assume that the
life hours distribution is normal.
a. Find the percentage of bulbs that will last at least 1000 h.
b. Find the percentage of bulbs with lifetime between 900 and 1200 h.
c. Find the 90th percentile of the life hours.

Solution: Select the dialog box [StatCalc→Continuous→Normal→Probabilities, Per-
centiles and Moments].
a. To find the percentage, enter 1100 for the mean, 100 for the standard

deviation, and 1000 for the observed x; click [P(X <= x)] radio button to
get P(X ≤ 1000) = 0.1587 and P(X > 1000) = 0.8413. That is, about 84%
of the bulbs will last more than 1000 h.

b.
P (900 ≤ X ≤ 1200) = P (X ≤ 1200)− P (X ≤ 900)

= 0.841345− 0.022750
= 0.818595.

That is, about 82% of the bulbs will last between 900 and 1200 h.

c. To find the 90th percentile, enter 1100 for the mean, 100 for the stan-
dard deviation, and 0.90 for the cumulative probability; click on [x] to get
1228.16. That is, 90% of the bulbs will last less than 1228 h; and 10% of
the bulbs will last more than 1228 h.

Example 10.3.6 Suppose that the weekly demand for 5-lb sacks of onions at a
grocery store is normally distributed with mean 140 sacks and standard deviation
10.
a. If the store stocks 160 sacks every week, find the percentage of weeks that

the store has overstocked onions.
b. How many sacks should the store keep in stock each week in order to meet

the demand for 95% of the weeks?

Solution:

a. Let X denote the weekly demand. We need to find percentage of the
weeks the demand is less than the stock. Enter 140 for the mean, 10
for the standard deviation, and click [P(X <= x)] radio button to get
P (X ≤ 160) = 0.97725. This probability means that about 98% of the
weeks the demand will be less than the supply.
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b. Here, we need to find the 95th percentile of the normal distribution; that
is, the value of x such that P (X ≤ x) = 0.95. Using StatCalc, we get the
value of x = 156.449. This means that the store has to stock 157 sacks
each week in order to meet the demand for 95% of the weeks.

Example 10.3.7 A machine is set to pack 3-lb of ground beef per package. Over
a long period of time, it was found that the average amount packed was 3 lb
with a standard deviation of 0.1 lb. Assume that the weights of the packages
are normally distributed.

a. Find the percentage of packages weighing more than 3.1 lb.
b. At what level, should the machine be set, so that no more than 5% of the

packages weigh less than 2.9 lb?

Solution: Let X be the actual weight of a randomly selected package. Then, X
is normally distributed with mean 3 lb and standard deviation 0.1 lb.

a. To find the percentage, enter 3 for the mean, 0.1 for the standard deviation,
and 3.1 for the x; click [P(X <= x)] radio button to get P(X > 3.1)
= 0.158655. That is, about 16% of the packages will weigh more than
3.1 lb.

b. We are looking for the value of the mean µ such that P (X < 2.9) = 0.05.
To get the value of the mean, enter 0.1 for the standard deviation, 2.9 for
x, 0.05 for P (X ≤ x), and then click on [Mean] to get 3.06449. That is,
the machine needs to be set at about 3.07 pounds so that fewer than 5%
of the packages weigh less than 2.9 lb.

Example 10.3.8 A manufacturing company received a large quantity of bolts
from one of its suppliers. A bolt is useable if it is 3.9 to 4.1 in. long. Inspection
of a sample of 50 bolts revealed that the average length is 3.95 in. with standard
deviation 0.1 in. Assume that the distribution of lengths is normal.

a. Find an approximate proportion of bolts is useable.
b. Find an approximate proportion of bolts that are longer than 4.1 in.
c. Find an approximate 95th percentile of the lengths of all bolts.

Solution: Assume that the lengths of bolts form a normal population with the
mean µ and standard deviation σ. If µ and σ are known, then exact proportions
and percentile can be computed using StatCalc. Since they are unknown, we
can use the sample mean and standard deviation to find approximate solutions
to the problem.
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a. The proportion of bolts useable is given by P (3.9 ≤ X ≤ 4.1) = P (X ≤
4.1)− P (X ≤ 3.9), where X is a normal random variable with mean 3.95
and standard deviation 0.1. Using StatCalc, we get P (X ≤ 4.1)− P (X ≤
3.9) = 0.933193 − 0.308538 = 0.624655. Thus, about 62% of bolts are
useable.

b. This proportion is given by P (X ≥ 4.1) = 1−P (X ≤ 4.1) = 1−0.933193 =
0.0668074. Thus, about 7% of bolts are longer than 4.1 inch.

c. To find an approximate 95th percentile, enter 3.95 for the mean, 0.1 for the
standard deviation, 0.95 for the probability [P(X <= x)], and click [x] to
get 4.11449. This means that approximately 95% of the bolts are shorter
than 4.11449 inch.

10.4 One-Sample Inference

10.4.1 Point Estimation

Let X1, . . ., Xn be a random sample from a normal population with mean µ and
standard deviation σ. The sample mean

X̄ =
1
n

n∑

i=1

Xi,

and the sample variance

S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2

are the uniformly minimum variance unbiased estimators of µ and σ2, respec-
tively. The sample mean is the maximum likelihood estimator of µ; however,
the maximum likelihood estimator of σ2 is (n− 1)S2/n.
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10.4.2 Test for the Mean and Power Computation

Hypothesis Test about the Mean (t-test)

The test statistic for testing null hypothesis H0 : µ = µ0 is given by

t =
X̄ − µ0

S/
√

n
, (10.4.1)

where t follows a t distribution with df = n− 1.

Let (x̄, s2) be an observed value of (X̄, S2). Then t0 = x̄−µ0

s/
√

n
is the observed

value of t in (10.4.1). For a given level α, the null hypothesis H0 : µ = µ0 will
be rejected in favor of

Ha : µ 6= µ0 if the p-value P (|t| > |t0|) < α,

for testing H0 : µ ≥ µ0 vs. Ha : µ < µ0, the H0 will be rejected if the

p-value = P (t ≤ t0) < α,

and for testing H0 : µ ≤ µ0 vs. Ha : µ > µ0, the H0 will be rejected if the

p-value = P (t ≥ t0) < α.

Power Computation

Consider the hypotheses

H0 : µ ≤ µ0 vs. Ha : µ > µ0.

For a given nominal level α, the power of the t-test is the probability of rejecting
the null hypothesis when the true mean µ is indeed greater than µ0, and is given
by

P (t > tn−1,1−α|Ha) = P (tn−1(δ) > tn−1,1−α), (10.4.2)

where t is given in (10.4.1), tn−1,1−α denotes the (1 − α)th quantile of the
t-distribution with degrees of freedom n−1, and tn−1(δ) denotes the noncentral
t random variable with degrees of freedom n−1 and the noncentrality parameter

δ =
√

n(µ− µ0)
σ

.
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The power of a two-tail test is similarly calculated. For a given µ, µ0, σ and
level α, StatCalc computes the power using (10.4.2).

To compute p-values for hypothesis testing about µ: Select [StatCalc→Continuous
→Normal→t-test and CI for Mean] from StatCalc, enter the values of the sample
mean, sample standard deviation, sample size [S Size n], and the value of the
mean under the null hypothesis. Click [p-values for] to get the p-values for
various alternative hypotheses.

Example 10.4.1 (Hypothesis Testing) Suppose that a sample of 20 observations
from a normal population produced a mean of 3.4 and a standard deviation of
2.1. Consider testing

H0 : µ ≤ 2.5 vs. Ha : µ > 2.5.

To compute the p-value for testing above hypotheses, select [StatCalc→Continuous
→Normal→t-test and CI for Mean] from StatCalc, enter 3.4 for the sample mean,
2.1 for the sample standard deviation, 20 for the sample size, and 2.5 for [H0:M
= M0] and click [p-values for] to get 0.0352254. That is, the p-value for testing
above hypotheses is 0.0352254. Thus, at 5% level, we have enough evidence to
conclude that the true population mean is greater than 2.5.

Furthermore, note that for the two-sided hypothesis, that is, when

H0 : µ = 2.5 vs. Ha : µ 6= 2.5,

the p-value is 0.0704508. Now, the null hypothesis cannot be rejected at the
level of significance 0.05. The value of the t-test statistic for this problem is
1.91663.

Sample Size for One-Sample t-test: For a given level of significance, the true
mean and hypothesized mean of a normal population, and the standard de-
viation, the dialog box [StatCalc→Continuous → Normal → Sample Size for t-test]
computes the sample size that is required to have a specified power. To compute
the sample size, enter the hypothesized value of the population mean in [H0: M
= M0], the population mean in [Population M], population standard deviation,
level of the test and power. Click [Sample Size for].

Example 10.4.2 (Sample Size Calculation) An experimenter believes that the
actual mean of the population under study is 1 unit more than the hypothesized
value µ0 = 3. From the past study, he learned that the population standard
deviation is 1.3. He decides to use one-sample t-test, and wants to determine
the sample size to attain a power of 0.90 at the level 0.05. The hypotheses for
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his study will be
H0 : µ ≤ 3 vs. Ha: µ > 3.

To compute the required sample size using StatCalc, enter 3 for [H0: M = M0], 4
for the population mean, 1.3 for the population standard deviation, 0.05 for the
level, and 0.9 for the power; click [Sample Size for] to get 16. Thus, a sample of
16 observations will be sufficient to detect the difference between the true mean
and hypothesized mean with a power of 90%.

10.4.3 Interval Estimation for the Mean

Confidence Interval for µ (t-interval): A 1−α confidence interval for the mean
µ is given by

X̄ ± tn−1, 1−α/2
S√
n

,

where tn−1,1−α/2 is the (1− α/2)th quantile of a t distribution with df = n− 1.

Prediction Interval for an Individual: A 1 − α prediction interval for an indi-
vidual (from the normal population from which the sample was drawn) is given
by

X̄ ± tn−1, 1−α/2S
√

1 + 1/n.

For a given sample mean, sample standard deviation, and sample size, the
dialog box [StatCalc→Continuous→Normal→t-test and CI for Mean] computes the
p-values of the t-test and confidence intervals for the mean.

To compute a confidence interval for µ: Select the dialog box [StatCalc→
Continuous→Normal→t-test and CI for Mean], enter the values of the sample mean,
sample standard deviation, sample size, and the confidence level.
Click [1-sided] to get one-sided lower and upper limits for µ. Click [2-sided]
to get confidence interval for µ.

Example 10.4.3 Let us compute a 95% confidence interval for the true population
mean based on summary statistics given in Example 10.4.1. In the dialog box
[StatCalc→ Continuous→Normal→t-test and CI for Mean], enter 3.4 for the sample
mean, 2.1 for the sample standard deviation, 20 for the sample size, and 0.95
for the confidence level. Click [1-sided] to get 2.58804 and 4.21196. These are
the one-sided limits for µ. That is, the interval (2.58804, ∞) would contain the
population mean µ with 95% confidence. The interval (-∞, 4.21196) would con-
tain the population mean µ with 95% confidence. To get a two-sided confidence
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interval for µ, click on [2-sided] to get 2.41717 and 4.38283. This means that the
interval (2.41717, 4.38283) would contain the true mean with 95% confidence.

Some Illustrative Examples

The following examples illustrate the one-sample inferential procedures for a
normal mean.

Example 10.4.4 A marketing agency wants to estimate the average annual in-
come of all households in a suburban area of a large city. A random sample of
40 households from the area yielded a sample mean of $65,000 with standard
deviation $4,500. Assume that the incomes follow a normal distribution.

a. Construct a 95% confidence interval for the true mean income of all the
households in the suburb community.

b. Do these summary statistics indicate that the true mean income is greater
than $63,000?

Solution:

a. To construct a 95% confidence interval for the true mean income, enter
65000 for the sample mean, 4500 for the sample standard deviation, and
40 for the sample size, and 0.95 for the confidence level. Click [2-sided] to
get 63560.8 and 66439.2. That is, the actual mean income is somewhere
between $63,560.80 and $66439.2 with 95% confidence.

b. It is clear from part a that the mean income is greater than $63,000.
However, to understand the significance of the result, we formulate the
following hypothesis testing problem. Let µ denote the true mean income.
We want to test

H0 : µ ≤ 63000 vs. Ha : µ > 63000.

To compute the p-value for the above test, enter the sample mean, stan-
dard deviation and the sample size as in part a, and 63000 for [Ha: M =
M0]. Click [p-values for] to get 0.00384435. Since this p-value is less than
any practical level of significance, the summary statistics provide strong
evidence to indicate that the mean income is greater than $63,000.

Example 10.4.5 A light bulb manufacturer considering a new method that is
supposed to increase the average lifetime of bulbs by at least 100 h. The mean
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and standard deviation of the life hours of bulbs produced by the existing method
are 1200 and 140 h respectively. The manufacturer decides to test if the new
method really increases the mean life hour of the bulbs. How many new bulbs
should he test so that the test will have a power of 0.90 at the level of significance
0.05?

Solution: Let µ denote the actual mean life hours of the bulbs manufactured
using the new method. The hypotheses of interest here are

H0 : µ ≤ 1200 vs. Ha : µ > 1200.

Enter 1200 for [H0: M = M0], 1300 for the population mean, 140 for the pop-
ulation standard deviation (it is assumed that the standard deviations of the
existing method and old method are the same), 0.05 for the level and 0.9 for
the power. Click [Sample Sizes for] to get 19. Thus, nineteen bulbs should be
manufactured and tested to check if the new method would increase the average
life hours of the bulbs.

10.4.4 Test and Interval Estimation for the Variance

Let S2 denote the variance of a sample of n observations from a normal popula-
tion with mean µ and variance σ2. The pivotal quantity for testing and interval
estimation of a normal variance is given by

Q =
(n− 1)S2

σ2
,

which follows a chi-square distribution with df = n− 1.

Test about a Normal Variance

Let Q0 be an observed value of Q. For testing

H0 : σ2 = σ2
0 vs. Ha : σ2 6= σ2

0,

a size α test rejects H0 if 2 min{P (χ2
n−1 > Q0), P (χ2

n−1 < Q0)} < α. For testing

H0 : σ2 ≤ σ2
0 vs. Ha : σ2 > σ2

0,

the null hypothesis H0 will be rejected if P (χ2
n−1 > Q0) < α, and for testing

H0 : σ2 ≥ σ2
0 vs. Ha : σ2 < σ2

0,

the null hypothesis H0 will be rejected if P (χ2
n−1 < Q0) < α.
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Confidence Interval for a Normal Variance

A 1− α confidence interval for the variance σ2 is given by

(
(n− 1)S2

χ2
n−1,1−α/2

,
(n− 1)S2

χ2
n−1,α/2

)
,

where χ2
m,p denotes the pth quantile of a chi-square distribution with df = m.

For a given sample variance and sample size, the dialog box [StatCalc →
Continuous → Normal → t-Test and CI for the Variance] computes the confidence
interval for the population variance σ2, and p-values for hypothesis testing
about σ2.

To compute a confidence interval for σ2: Enter the value of the sample size,
sample variance, and the confidence level. Click [1-sided] to get one-sided lower
and upper limits for σ2. Click [2-sided] to get confidence interval for σ2.

Example 10.4.6 Suppose that a sample of 20 observations from a normal popu-
lation produced a variance of 12. To compute a 90% confidence interval for σ2,
enter 20 for [Sample Size], 12 for [Sample Variance], and 0.90 for [Confidence
Level]. Click [1-sided] to get 8.38125 and 19.5693. These are the one-sided limits
for σ2. That is, the interval (8.38125, ∞) would contain the population variance
σ2 with 90% confidence. The interval (0, 19.5693) would contain the population
variance σ2 with 90% confidence. To get a two-sided confidence interval for
σ2, click on [2-sided] to get 7.56381 and 22.5363. This means that the interval
(7.56381, 22.5363) would contain σ2 with 90% confidence.

To compute p-values for hypothesis testing about σ2: Enter the summary statis-
tics as in the above example, and the specified value of σ2 under the null hypoth-
esis. Click [p-values for] to get the p-values for various alternative hypotheses.

Example 10.4.7 Suppose we want to test

H0 : σ2 ≤ 9 vs. Ha : σ2 > 9 (10.4.3)

at the level of 0.05 using the summary statistics given in Example 10.4.6. After
entering the summary statistics, enter 9 for [H0: V = V0]. Click [p-values for]
to get 0.14986. Since this p-value is not less than 0.05, the null hypothesis in
(10.4.3) can not be rejected at the level of significance 0.05. We conclude that
the summary statistics do not provide sufficient evidence to indicate that the
true population variance is greater than 9.
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The examples given below illustrate the inferential procedures about a nor-
mal variance.

Example 10.4.8 (Test about σ2) A hardware manufacturer was asked to produce
a batch of 3-in. screws with a specification that the standard deviation of the
lengths of all the screws should not exceed 0.1 in. At the end of a day’s produc-
tion, a sample of 27 screws was measured, and the sample standard deviation
was calculated as 0.09. Does this sample standard deviation indicate that the
actual standard deviation of all the screws produced during that day is less than
0.1 in.?

Solution: Let σ denote the standard deviation of all the screws produced during
that day. The appropriate hypotheses for the problem are

H0 : σ ≥ 0.1 vs. Ha : σ < 0.1 ⇐⇒ H0 : σ2 ≥ 0.01 vs. Ha : σ2 < 0.01.

Note that the sample variance is (0.09)2 = 0.0081. To compute the p-value for
the above test, enter 27 for the sample size, 0.0081 for the sample variance, 0.01
for [H0: V = V0], and click on [p-values for]. The computed p-value is 0.26114.
Since this p-value is not smaller than any practical level of significance, we can
not conclude that the standard deviation of all the screws made during that day
is less than 0.1 in.

Example 10.4.9 (Confidence Interval for σ2) An agricultural student wants to
estimate the variance of the yields of tomato plants. He selected a sample of 18
plants for the study. After the harvest, he found that the mean yield was 38.5
tomatoes with standard deviation 3.4. Assuming a normal model for the yields
of tomato, construct a 90% confidence interval for the variance of the yields of
all tomato plants.

Solution: To construct a 90% confidence interval for the variance, enter 18 for
the sample size, (3.4)2 = 11.56 for the sample variance, and 0.90 for the confi-
dence level. Click [2-sided] to get 7.12362 and 22.6621. Thus, the true variance
of tomato yields is somewhere between 7.12 and 22.66 with 90% confidence.

10.5 Two-Sample Inference

Let S2
i denote the variance of a random sample of ni observations from N(µi, σ

2
i ),

i = 1, 2. The following inferential procedures for the ratio σ2
1/σ2

2 are based on
the F statistic given by

F =
S2

1

S2
2

. (10.5.1)
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10.5.1 Inference for the Ratio of Variances

Hypothesis Test for the Ratio of Variances

Consider testing H0 : σ2
1/σ2

2 = 1. When H0 is true, then the F statistic in
(10.5.1) follows an Fn1−1,n2−1 distribution. Let F0 be an observed value of the
F in (10.5.1). A size α test rejects the null hypothesis in favor of

Ha : σ2
1 > σ2

2 if the p-value P (Fn1−1,n2−1 > F0) < α.

For testing H0 : σ2
1 ≥ σ2

2 vs. Ha : σ2
1 < σ2

2, the null hypothesis will be rejected
if the p-value P (Fn1−1,n2−1 < F0) < α. For a two-tail test, the null hypothesis
H0 : σ2

1 = σ2
2 will be rejected if either tail p-value is less than α/2.

Interval Estimation for the Ratio of Variances

A 1− α confidence interval is given by
(

S2
1

S2
2

Fn2−1,n1−1,α/2,
S2

1

S2
2

Fn2−1,n1−1,1−α/2

)
,

where Fm,n,p denotes the pth quantile of an F distribution with the numerator
df = m and the denominator df = n. The above confidence interval can be
obtained from the distributional result that

(
S2

2σ2
1

S2
1σ2

2

)
∼ Fn2−1,n1−1.

The dialog box [StatCalc→Continuous → Normal → Test and CI for the Variance
Ratio] computes confidence intervals as well as the p-values for testing the ratio
of two variances.

To compute a confidence interval for σ2
1/σ2

2: Enter the values of the sample sizes
and sample variances, and the confidence level. Click [1-sided] to get one-sided
lower and upper limits for σ2

1/σ2
2. Click [2-sided] to get confidence interval for

σ2
1/σ2

2.

Example 10.5.1 (CI for σ2
1/σ2

2) A sample of 8 observations from a normal pop-
ulation produced a variance of 4.41. A sample of 11 observations from another
normal population yielded a variance of 2.89. To compute a 95% confidence in-
terval for σ2

1/σ2
2, select the dialog box [StatCalc→Continuous → Normal → Test and

CI for the Variance Ratio], enter the sample sizes, sample variances, and 0.95 for
the confidence level. Click [1-sided] to get 0.4196 and 4.7846. This means that
the interval (0.4196, ∞) would contain the ratio σ2

1/σ2
2 with 95% confidence.

© 2006 by Taylor & Francis Group, LLC



136 10 Normal Distribution

Furthermore, we can conclude that the interval (0, 4.7846) would contain the
variance ratio with 95% confidence. Click [2-sided] to get 0.3863 and 7.2652.
This means that the interval (0.3863, 7.2652) would contain the variance ratio
with 95% confidence.

Example 10.5.2 (Hypothesis Tests for σ2
1/σ2

2) Suppose we want to test

H0 : σ2
1 = σ2

2 vs. Ha : σ2
1 6= σ2

2,

at the level of 0.05 using the summary statistics given in Example 10.5.1. To
compute the p-value, enter the summary statistics in the dialog box, and click
on [p-values for] to get 0.5251. Since the p-value is greater than 0.05, we can
not conclude that the population variances are significantly different.

There are two procedures available to make inference about the mean dif-
ference µ1 − µ2; one is based on the assumption that σ2

1 = σ2
2 and another is

based on no assumption about the variances. In practice, the equality of the
variances is tested first using the F test given above. If the assumption of equal-
ity of variances is tenable, then we use the two-sample t procedures (see Section
10.5.2) for making inference about µ1 − µ2; otherwise, we use the approximate
procedure (see Section 10.5.3) known as Welch’s approximate degrees of freedom
method.

Remark 10.5.1 The above approach of selecting a two-sample test is criticized by
many authors (see Moser and Stevens 1992 and Zimmerman 2004). In general,
many authors suggested using the Welch test when the variances are unknown.
Nevertheless, for the sake of completeness and illustrative purpose, we consider
both approaches in the sequel.

10.5.2 Inference for the Difference between Two Means when
the Variances are Equal

Let X̄i and S2
i denote, respectively, the mean and variance of a random sample

of ni observations from N(µi, σ
2
i ), i = 1, 2. Let

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
. (10.5.2)

The following inferential procedures for µ1 − µ2 are based on the sample
means and the pooled variance S2

p , and are valid only when σ2
1 = σ2

2.
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Two-Sample t Test

The test statistic for testing H0 : µ1 = µ2 is given by

t2 =
(X̄1 − X̄2)√

S2
p(1/n1 + 1/n2)

(10.5.3)

which follows a t-distribution with degrees of freedom n1 + n2 − 2 provided
σ2

1 = σ2
2. Let t20 be an observed value of t2. For a given level α, the null

hypothesis will be rejected in favor of

Ha : µ1 6= µ2 if the p-value P (|t2| > |t20|) < α,

in favor of
Ha : µ1 < µ2 if the p-value P (t2 < t20) < α,

and in favor of

Ha : µ1 > µ2 if the p-value P (t2 > t20) < α.

Power of the Two-Sample t-test

Consider the hypotheses

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2.

For a given level α, the power of the two-sample t-test is the probability of
rejecting the null hypothesis when µ1 is indeed greater than µ2, and is given by

P (t2 > tn1+n2−2,1−α) = P (tn1+n2−2(δ) > tn1+n2−2,1−α), (10.5.4)

where t2 is given in (10.5.3), tn1+n2−2,1−α denotes the (1 − α)th quantile of
a t-distribution with degrees of freedom n1 + n2 − 2, tn1+n2−2(δ) denotes the
noncentral t random variable with the degrees of freedom n1 + n2 − 2 and non-
centrality parameter

δ =
(µ1 − µ2)

σ
√

1/n1 + 1/n2
.

The power of a two-tail test is similarly calculated. For given sample sizes,
µ1 − µ2, common σ and the level of significance, StatCalc computes the power
using (10.5.4).
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Interval Estimation of µ1 − µ2

A 1− α confidence interval based on the test-statistic in (10.5.3) is given by

X̄1 − X̄2 ± tn1+n2−2,1−α/2

√
S2

p(1/n1 + 1/n2),

where tn1+n2−2,1−α/2 denotes the (1 − α/2)th quantile of a t-distribution with
n1 + n2 − 2 degrees of freedom. This confidence interval is valid only when
σ2

1 = σ2
2.

The dialog box [StatCalc→Continuous → Normal → Two-Sample t-test and CI]
computes the p-values for testing the difference between two normal means and
confidence intervals for the difference between the means. The results are valid
only when σ2

1 = σ2
2.

To compute a confidence interval for µ1 − µ2: Enter the values of the sample
means, sample standard deviations, sample sizes, and the confidence level. Click
[1-sided] to get one-sided lower and upper limits for µ1 − µ2. Click [2-sided] to
get confidence interval for µ1 − µ2.

Example 10.5.3 (Test about σ2
1/σ2

2) A sample of 8 observations from a normal
population with mean µ1, and variance σ2

1 produced a mean of 4 and standard
deviation of 2.1. A sample of 11 observations from another normal population
with mean µ2, and variance σ2

2 yielded a mean of 2 with standard deviation
of 1.7. Since the inferential procedures given in this section are appropriate
only when the population variances are equal, we first want to test that if the
variances are indeed equal (see Section 10.5.1). The test for equality of variances
yielded a p-value of 0.525154, and hence the assumption of equality of population
variances seems to be tenable.

To compute a 95% confidence interval for µ1 − µ2 using StatCalc, enter the
sample means, standard deviations, and the sample sizes, and 0.95 for the con-
fidence level. Click [1-sided] to get 0.484333 and 3.51567. This means that the
interval (0.48433, ∞) would contain the difference µ1−µ2 with 95% confidence.
Furthermore, we can conclude that the interval (−∞, 3.51567) would contain
the difference µ1 − µ2 with 95% confidence. Click [2-sided] to get 0.161782 and
3.83822. This means that the interval (0.161782, 3.83822) would contain the
difference µ1 − µ2 with 95% confidence.

To compute p-values for testing µ1 − µ2: Select the dialog box [StatCalc→
Continuous → Normal → Two-Sample t-test and CI], enter the values of the sample
sizes, sample means and sample standard deviations, and click [p-values for] to
get the p-values for a right-tail test, left-tail test and two-tail test.
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Example 10.5.4 Suppose we want to test

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2

at the level of 0.05 using the summary statistics given in Example 10.5.3. To
compute the p-value, enter the summary statistics in the dialog box, and click on
[p-values for] to get 0.0173486. Since the p-value is less than 0.05, we conclude
that µ1 > µ2.

Power Calculation of Two-Sample t-test: The dialog box [StatCalc→Continuous
→ Normal → Two-Sample Case → Power Computation] computes the power of the
two-sample t-test for

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2

when it is assumed that σ2
1 = σ2

2. To compute the power, enter the values of
the level α of the test, the difference between the population means, the value
of the common standard deviation σ and sample sizes n1 and n2. Click [Power].
Power of a two-tail test can be computed by entering α/2 for the level.

Example 10.5.5 Suppose that the difference between two normal means is 1.5
and the common standard deviation is 2. It is desired to test

H0 : µ1 ≤ µ2 vs. H0 : µ1 > µ2

at the level of significance 0.05. To compute the power when each sample size is
27, enter 0.05 for level, 1.5 for the mean difference, 2 for the common σ, 27 for
n1 and n2; click [Power] to get 0.858742.

Sample Size Calculation: In practical applications, it is usually desired to com-
pute the sample sizes required to attain a given power. This can be done by
a trial-error method. Suppose in the above example we need to determine the
sample sizes required to have a power of 0.90. By trying a few sample sizes more
than 27, we can find the required sample size as 32 from each population. In
this case, the power is 0.906942. Also, note that when n1 = 27 and n2 = 37, the
power is 0.900729.

The following examples illustrate the inferential procedures for the difference
between two normal means.

Example 10.5.6 A company, which employs thousands of computer program-
mers, wants to compare the mean difference between the salaries of the male
and female programmers. A sample of 23 male programmers, and a sample of
19 female programmers were selected, and programmers’ salaries were recorded.
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Normal probability plots indicated that both sample salaries are from normal
populations. The summary statistics are given in the following table.

Male Female
sample size 23 19

mean 52.56 48.34 (in $1000)
variance 10.21 7.56 (in $1000)

a. Do these summary statistics indicate that the average salaries of the male
programmers higher than that of female programmers?

b. Construct a 95% confidence interval for the mean difference between the
salaries of male and female programmers.

Solution: Since the salaries are from normal populations, a two-sample proce-
dure for comparing normal means is appropriate for this problem. Furthermore,
to choose between the two comparison methods (one assumes that the popula-
tion variances are equal and the other is not), we need to test the equality of
the population variances. Using the dialog box [StatCalc→Continuous → Normal
→ Two-Sample Case → Test and CI for the Variance Ratio], we get the p-value for
testing the equality of variances is 0.521731, which is greater than any practical
level of significance. Therefore, the assumption that the variances are equal is
tenable, and we can use the two-sample t procedures for the present problem.
a. Let µ1 denote the mean salaries of all male programmers, and µ2 denote

the mean salaries of all female programmers in the company. We want to
test

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2.

To compute the p-value for the above test, enter the sample sizes, means
and standard deviations, click [p-values for] to get 2.58639e-005. Since this
p-value is much less than any practical levels, we reject the null hypothesis,
and conclude that the mean salaries of male programmers is higher than
that of female programmers.

b. To compute a 95% confidence interval for µ1 − µ2, enter 0.95 for the con-
fidence level, and click [2-sided] to get 2.33849 and 6.10151. That is, the
mean difference is somewhere between $2338 and $6101.

10.5.3 Inference for the Difference between Two Means

Suppose that the test for equality of variances (Section 10.5.1) shows that the
variances are significantly different, then the following Welch’s approximate de-
grees of freedom method should be used to make inferences about µ1−µ2. This
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approximate method is based on the result that

X̄1 − X̄2√
S2

1
n1

+ S2
2

n2

∼ tf approximately, with f =

(
S2

1
n1

+ S2
2

n2

)2

(
S4

1

n2
1(n1−1)

+ S4
2

n2
2(n2−1)

) .

The hypothesis testing and interval estimation of µ1 − µ2 can be carried out as
in Section 10.5.1 with the degrees of freedom f given above. For example, a
1− α confidence interval for µ1 − µ2 is given by

X̄1 − X̄2 ± tf,1−α/2

√
S2

1

n1
+

S2
2

n2
,

where tm,p denotes the pth quantile of a t distribution with degrees of freedom
f . This approximate method is commonly used, and the results based on this
method are very accurate even for small samples.

The dialog box [StatCalc→Continuous → Normal → 2-sample → Test and CI for
u1-u2] uses the above approximate method for hypothesis testing and interval
estimation of µ1 − µ2 when the variances are not equal. Specifically, this dialog
box computes confidence intervals and p-values for hypothesis testing about
the difference between two normal means when the population variances are
unknown and arbitrary.

Example 10.5.7 A sample of 8 observations from a normal population with
mean µ1, and variance σ2

2 produced X̄1 = 4 and standard deviation S1 = 2.1.
A sample of 11 observations from another normal population with mean µ2

and variance σ2
2 yielded X̄2 = 2 with standard deviation S2 = 5. The test

for equality of variances [StatCalc→Continuous → Normal → Test and CI for the
Variance Ratio] yielded a p-value of 0.0310413, and, hence, the assumption of
equality of population variances seems to be invalid. Therefore, we should use
the approximate degrees of freedom method described above.

To find a 95% confidence interval for µ1−µ2, select [StatCalc→Continuous →
Normal → 2-sample → Test and CI for u1-u2], enter the sample statistics and click
[2-sided] to get (−1.5985, 5.5985). To get one-sided limits, click [1-sided]. For
this example, 95% one-sided lower limit is −0.956273, and 95% one-sided upper
limit is 4.95627.

Suppose we want to test H0 : µ1−µ2 = 0 vs. H0 : µ1−µ2 6= 0. To compute
the p-values using StatCalc, click [p-values for] to get 0.253451. Thus, we can
not conclude that the means are significantly different.

© 2006 by Taylor & Francis Group, LLC



142 10 Normal Distribution

10.6 Tolerance Intervals

Let X1, . . . , Xn be a sample from a normal population with mean µ and variance
σ2. Let X̄ denote the sample mean and S denote the sample standard deviation.

10.6.1 Two-Sided Tolerance Intervals

For a given 0 < β < 1, 0 < γ < 1 and n, the tolerance factor k is to be
determined so that the interval

X̄ ± kS

would contain at least proportion β of the normal population with confidence
γ. Mathematically, k should be determined so that

PX̄,S

{
PX

[
X ∈ (X̄ − kS, X̄ + kS )|X̄, S

] ≥ β
}

= γ, (10.6.1)

where X also follows the N(µ, σ2) distribution independently of the sample. An
explicit expression for k is not available and has to be computed numerically.

An approximate expression for k is given by

k '
(

mχ2
1,β(1/n)

χ2
m,1−γ

)1/2

, (10.6.2)

where χ2
1,p(1/n) denotes the pth quantile of a noncentral chi-square distribution

with df = 1 and noncentrality parameter 1/n, χ2
m,1−γ denotes the (1 − γ)th

quantile of a central chi-square distribution with df = m = n − 1, the df asso-
ciated with the sample variance. This approximation is extremely satisfactory
even for small samples (as small as 3) if β and γ are greater than or equal to
0.95. [Wald and Wolfowitz 1946].

The dialog box [StatCalc→Continuous → Normal→ Tolerance Limits] uses an
exact method [see Kendall and Stuart 1973, p. 134] of computing the tolerance
factor k.

Remark 10.6.1 The k satisfies (10.6.1) is called the tolerance factor, and X̄±kS
is called a (β, γ) tolerance interval or a β content – γ coverage tolerance interval.
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10.6.2 One-Sided Tolerance Limits

The one-sided upper tolerance limit is given by X̄ + cS, where the tolerance
factor c is to be determined so that

PX̄,S{PX [X ≤ X̄ + cS|X̄, S] ≥ β} = γ.

In this case, c is given by

c =
1√
n

tn−1,γ(zβ

√
n),

where tm,p(δ) denotes the 100pth percentile of a noncentral t distribution with
df = m and noncentrality parameter δ, and zp denotes the 100pth percentile
of the standard normal distribution. The same c can be used to find the lower
tolerance limits; that is, if X̄ + cS is the one-sided upper tolerance limits, then
X̄ − cS is the one-sided lower tolerance limit. The one-sided tolerance limits
have interpretation similar to that of the two-sided tolerance limits. That is, at
least 100β% of the data from the normal population are less than or equal to
X̄ + cS with confidence γ. Also, at least 100β% of the data are greater than or
equal to X̄ − cS with confidence γ.

Remark 10.6.2 The degrees of freedom associated with S2 is n − 1. In some
situations, the df associated with the S could be different from n − 1. For
example, in one-way ANOVA, the df associated with the pooled sample variance
S2

p is (total sample size − g), where g denotes the number of groups. If one is
interested in computing (β, γ) tolerance interval

X̄1 ± k1Sp

for the first population, then for this case, the sample size is n1 and the degrees
of freedom associated with the pooled variance is

g∑

i=1

ni − g ,

where ni denotes the size of the sample from the ith group, i = 1, . . ., g.

For a given n, df, 0 < β < 1 and 0 < γ < 1, the dialog box [StatCalc→
Continuous → Normal → Tolerance Limits] computes the one-sided as well as
two-sided tolerance factors.

Example 10.6.1 When n = 23, df = 22, β = 0.90, and γ = 0.95, the one-sided
tolerance factor is 1.86902, and the two-sided tolerance factor is 2.25125. To
compute the factors, enter 23 for [Sample Size n], 22 for [DF], 0.90 for [Proportion
p] and 0.95 for [Coverage Prob g]; click [1-sided] to get 1.86902, and click [2-sided]
to get 2.25125.
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Applications

The normal-based tolerance factors are applicable to a non-normal distribution
if it has a one−one relation with a normal distribution. For example, if X follows
a lognormal distribution, then ln(X) follows a normal distribution. Therefore,
the factors given in the preceding sections can be used to construct tolerance in-
tervals for a lognormal distribution. Specifically, if the sample Y1, . . . , Yn is from
a lognormal distribution, then normal based methods for constructing tolerance
intervals can be used after taking logarithmic transformation of the sample. If
U is a (β, γ) upper tolerance limit based on the logged data, then exp(U) is the
(β, γ) upper tolerance limit for the lognormal distribution.

In many practical situations one wants to assess the proportion of the data
fall in an interval or a region. For example, engineering products are usually
required to satisfy certain tolerance specifications. The proportion of the prod-
ucts that are within the specifications can be assessed by constructing a suitable
tolerance region based on a sample of products.

Example 10.6.2 Suppose that a lot of items submitted for inspection will be
accepted if at least 95% of the items are within the specification (L, U), where
L is the lower specification limit and U is the upper specification limit. In
order to save time and cost, typically a sample of items is inspected and a
(.95, .95) tolerance interval is constructed. If this tolerance interval falls in (L,
U), then it can be concluded that at least 95% of the items in the lot are within
the specification limits with 95% confidence, and, hence, the lot will be accepted.

In some situations, each item in the lot is required to satisfy only the lower
specification. In this case, a (.95, .95) lower tolerance limit is constructed and
compared with the lower specification L. If the lower tolerance limit is greater
than or equal to L, then the lot will be accepted.

Example 10.6.3 Tolerance limits can be used to monitor exposure levels of em-
ployees to workplace contaminants. Specifically, if the upper tolerance limit
based on exposure measurements from a sample of employees is less than a per-
missible exposure limit (PEL), then it indicates that a majority of the exposure
measurements are within the PEL, and hence exposure monitoring might be
reduced or terminated until a process change occurs. Such studies are feasible
because the National Institute for Occupational Safety and Health provides PEL
for many workplace chemicals. [Tuggle 1982].

Example 10.6.4 Let us construct tolerance limits for the exposure data given
in Example 10.1.1. We already showed that the data satisfy the normality
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assumption. Note that the sample size is 15 (df = 15 − 1 = 14), the sample
mean is 78.5 and the standard deviation is 15.9. The tolerance factor for a
(.95, .95) tolerance interval is 2.96494. Using these numbers, we compute the
tolerance interval as

78.5± 2.96494× 15.9 = (31.4, 125.6).

That is, at least 95% of the exposure measurements fall between 31.4 and 125.6
with 95% confidence. The tolerance factor for a (.95, .95) one-sided limit is
2.566. The one-sided upper limit is 78.5+2.566× 15.9 = 119.3. That is, at least
95% of the exposure measurements are below 119.3 with 95% confidence. The
one-sided lower tolerance limit is 78.5 − 2.566 × 15.9 = 37.7. That is, at least
95% of the exposure measurements are above 37.7.

10.6.3 Equal-Tail Tolerance Intervals

Let X1, . . . , Xn be a sample from a normal population with mean µ and variance
σ2. Let X̄ denote the sample mean and S denote the sample standard deviation.
The β content – γ coverage equal-tail tolerance interval (L,U) is constructed
so that it would contain at least 100β% of the “center data” of the normal
population. That is, (L,U) is constructed such that not more than 100(1−β)/2%
of the data are less than L, and not more that 100(1 − β)/2% of the data are
greater than U with confidence γ. This amounts to constructing (L,U) so that

it would contain
(

µ− z 1+β
2

σ, µ + z 1+β
2

σ

)
with confidence γ. Toward this, we

consider the intervals of the form (X̄−kS, X̄ +kS), where k is to be determined
so that

P

(
X̄ − kS < µ− z 1+β

2
σ and µ + z 1+β

2
σ < X̄ + kS

)
= γ.

The dialog box [StatCalc→Continuous→Normal→Tol. Eq. Tails] uses an exact
method due to Owen (1964) for computing the tolerance factor k satisfying the
above probability requirement.

Example 10.6.5 In order to understand the difference between the tolerance
interval and the equal-tail tolerance interval, let us consider Example 10.6.4
where we constructed (.95, .95) tolerance interval as (31.4, 125.6). Note that
this interval would contain at least 95% of the data (not necessarily center data)
with 95% confidence. Also, for this example, the sample size is 15, the sample
mean is 78.5 and the standard deviation is 15.9. To compute the (.95, .95)
equal-tail tolerance factor, enter 15 for [Sample Size n], 0.95 for [Proportion
p] and 0.95 for [Coverage Prob g]; click [Tol Factor] to get 3.216. To find the
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tolerance interval, enter 78.5 for [x-bar], 15.9 for [s] and click [2-sided] to get
(27.37, 129.6), which is (X̄ − kS, X̄ + kS). We also observe that this equal-tail
tolerance interval is wider than the tolerance interval (31.4, 125.6).

10.6.4 Simultaneous Hypothesis Testing for Quantiles

Let X1, . . . , Xn be a sample from a normal population with mean µ and variance
σ2. Let X̄ denote the sample mean and S denote the sample standard deviation.
Owen (1964) pointed out an acceptance sampling plan where a lot of items will
be accepted if the sample provides evidence in favor of the alternative hypothesis
given below:

H0 : Hc
a vs. Ha : L < µ− z 1+β

2
σ and µ + z 1+β

2
σ < U,

where L and U are specified numbers, and β is a number in (0, 1), usually close
to 1. Note that the lot is not acceptable if either

µ− z 1+β
2

σ ≤ L, U ≤ µ− z 1+β
2

σ or µ− z 1+β
2

σ ≤ L and U ≤ µ− z 1+β
2

σ.

The null hypothesis will be rejected at level α, if

L < X̄ − kS and X̄ + kS < U,

where k is to be determined such that

P (L < X̄ − kS and X̄ + kS < U |H0) = α.

Notice that the factor k is determined in such a way that the probability
of accepting an unacceptable lot (rejecting H0 when it is true) is not more
than α.

The dialog box [StatCalc→Continuous → Normal → Siml. Test for Quantiles]
uses an exact method due to Owen (1964) for computing the factor k satisfying
the above probability requirement.

Example 10.6.6 Let us use the summary statistics in Example 10.6.4 for illus-
trating above quantile test. Note that n = 15, X̄ = 78.5 and S = 15.9. We
would like to test if the lower 2.5th percentile is greater than 30 and the upper
2.5th percentile is less than 128 at the level of 0.05. That is, our

H0 : Hc
a vs. Ha : 30 < µ− z.975σ and µ + z.975σ < 128.

Note that (1 + β)/2 = 0.025 implies β = 0.95. To find the factor k, enter 15
for the sample size, 0.95 for the proportion p, 0.05 for the level, and click [Tol

© 2006 by Taylor & Francis Group, LLC



10.6 Tolerance Intervals 147

Factor] to get 2.61584. To get the limits, click on [2-sided] to get 36.9082. That
is, X̄ − kS = 36.9082 and X̄ + kS = 120.092. Thus, we have enough evidence
to conclude that the lower 2.5th percentile of the normal distribution is greater
than 30 and the upper 2.5th percentile of the normal distribution is less than
128.

10.6.5 Tolerance Limits for One-Way Random Effects Model

The one-way random effects model is given by

Xij = µ + τi + εij , j = 1,2,. . . ,ni, i = 1, 2, . . . , k,

where Xij is the jth measurement on the ith individual, µ is the overall fixed
mean effect, the random effect τi ∼ N(0, σ2

τ ) independently of the error εij ∼
N(0, σ2

e). Notice that Xij ∼ N(µ, σ2
e + σ2

τ ).

A (β, γ) one-sided upper tolerance limit for the distribution of Xij is the
100γ% upper confidence limit for

µ + zβ

√
σ2

e + σ2
τ ,

where zβ is the βth quantile of the standard normal distribution. Similarly, a
(β, γ) one-sided lower tolerance limit for the distribution of Xij is the 100γ%
lower confidence limit for

µ− zβ

√
σ2

e + σ2
τ .

Define

N =
k∑

i=1

ni, X̄i =
1
ni

ni∑

j=1

Xij ,
¯̄X =

1
k

k∑

i=1

X̄i and ñ =
1
k

k∑

i=1

1
ni

.

Furthermore, let

SSe =
k∑

i=1

ni∑

j=1

(
Xij − X̄i

)2 and SSx̄ =
k∑

i=1

(
X̄i − ¯̄X

)2

.

Let tm,p(c) denote the pth quantile of a noncentral t distribution with noncen-
trality parameter c and df = m. A (β, γ) upper tolerance limit is given by

¯̄X + tk−1,γ(δ)

√
SSx̄

k(k − 1)
, (10.6.3)

© 2006 by Taylor & Francis Group, LLC



148 10 Normal Distribution

where

δ = zβ

(
k +

k(k − 1)(1− ñ)
N − k

SSe

SSx̄
Fk−1,N−k,1−γ

) 1
2

,

and Fa,b,c denotes the 100cth percentile of an F distribution with dfs a and
b. The approximate tolerance limit in (10.6.3) is due to Krishnamoorthy and
Mathew (2004), and is very accurate provided the F -statistic for the model is
significant.

A (β, γ) lower tolerance limit is given by

¯̄X − tk−1,γ(δ)

√
SSx̄

k(k − 1)
.

For given summary statistics ¯̄X, SSe, SSx̄, ñ, N , k, and the values of the
proportion β and coverage probability γ, the dialog box [StatCalc→Continuous
→Normal→Tol Fac Rand Effects] computes the tolerance factors and one-sided
tolerance limits.

Example 10.6.7 In this example, we consider k = 5 treatments. The data are
given in the following table.

X1j X2j X3j X4j X5j

2.977 3.525 4.191 5.834 0.73
0.914 4.094 0.398 5.370 4.011
2.666 3.797 3.206 2.596 2.033
-0.072 2.031 2.670 7.727 0.189
4.784 5.068 0.068 5.692 0.262
2.605 2.326 1.213 4.534 -3.700

1.78 -0.385 0.685
2.339 1.300
4.306 -1.113

2.734

The summary statistics are given in the following table.
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ni X̄i (ni − 1)S2
i

8 2.178 14.84
11 3.351 11.47
9 2.225 33.817
8 4.913 17.674
12 1.075 54.359
48 13.742 132.16

Other statistics are ¯̄X = 2.748, SSe = 132.16, ñ =
(

1
8 + 1

11 + 1
9 + 1

8 + 1
12

)
/5 =

0.1071 and SSx̄ = 8.449. Also, note that SSe =
∑k

i=1 (ni − 1)S2
i and N = 48.

To compute (0.90, 0.95) one-sided tolerance limits using StatCalc, enter 48 for
N, 5 for k, 0.90 for proportion, 0.95 for coverage probability, 2.748 for [x-bar-
bar], 132.16 for [SS e], 8.449 for [SS x], 0.1071 for [n∼], and click on [1-sided]
to get −2.64 and 8.14. This means that 90% of the data on Xij exceed −2.64
with confidence 0.95; similarly, we can conclude that 90% of the data on Xij are
below 8.14 with confidence 0.95.

The above formulas and the method of constructing one-sided tolerance lim-
its are also applicable for the balanced case (i.e., n1 = n2 = . . . = nk).

10.7 Properties and Results

1. Let X1, . . . , Xn be independent normal random variables with
Xi ∼ N(µi, σ

2
i ), i = 1, 2, 3, . . . , n. Then

n∑

i=1

aiXi ∼ N

(
n∑

i=1

aiµi,
n∑

i=1

a2
i σ

2
i

)
,

where a1, . . ., an are constants.

2. Let U1 and U2 be independent uniform(0,1) random variables. Then

X1 = cos(2πU1)
√−2 ln(U2),

X2 = sin(2πU1)
√−2 ln(U2)

are independent standard normal random variables [Box–Muller transfor-
mation].

3. Let Z be a standard normal random variable. Then, Z2 is distributed as
a chi-square random variable with df = 1.
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4. Let X and Y be independent normal random variables with common vari-
ance but possibly different means. Define U = X + Y and V = X − Y .
Then, U and V are independent normal random variables.

5. The sample mean

X̄ and {(X1 − X̄), . . . , (Xn − X̄)}

are statistically independent.

6. Let X1, . . . , Xn be independent N(µ, σ2) random variables. Then,

V 2 =
n∑

i=1

(Xi − X̄)2 and

{
(X1 − X̄)

V
, . . . ,

(Xn − X̄)
V

}

are statistically independent.

7. Stein’s (1981) Lemma: If X follows a normal distribution with mean µ
and standard deviation σ, then

E(X − µ)h(X) = σE

[
∂h(X)

∂X

]

provided the indicated expectations exist.

8. Let X1, . . . , Xn be iid normal random variables. Then

n∑
i=1

(Xi − X̄)2

σ2
∼ χ2

n−1 and

n∑
i=1

(Xi − µ)2

σ2
∼ χ2

n.

10.8 Relation to Other Distributions

1. Cauchy: If X and Y are independent standard normal random variables,
then U = X/Y follows the Cauchy distribution (Chapter 26) with proba-
bility density function

f(u) =
1

π(1 + u2)
, −∞ < u < ∞.

2. F Distribution: If X and Y are independent standard normal random
variables, then X2 and Y 2 are independent and distributed as a χ2 random
variable with df = 1. Also F = (X/Y )2 follows an F1,1 distribution.
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3. Gamma: Let Z be a standard normal random variable. Then

P (0 < Z ≤ z) = P (Y < z2)/2,

and
P (Y ≤ y) = 2P (Z ≤ √

y)− 1, y > 0,

where Y is a gamma random variable with shape parameter 0.5 and scale
parameter 2.

4. Lognormal: A random variable Y is said to have a lognormal distribution
with parameters µ and σ if ln(Y ) follows a normal distribution. Therefore,

P (Y ≤ x) = P (ln(Y ) ≤ ln(x)) = P (X ≤ ln(x)),

where X is the normal random variable with mean µ and standard devia-
tion σ.

For more results and properties, see Patel and Read (1981).

10.9 Random Number Generation

Algorithm 10.9.1

Generate U1 and U2 from uniform(0,1) distribution. Set

X1 = cos(2πU1)
√−2 ln(U2)

X2 = sin(2πU1)
√−2 ln(U2).

Then X1 and X2 are independent N(0, 1) random variables. There are several
other methods available for generating normal random numbers (see Kennedy
and Gentle 1980, Section 6.5). The above Box–Muller transformation is simple
to implement and is satisfactory if it is used with a good uniform random number
generator.

The following algorithm due to Kinderman and Ramage (1976; correction
Vol. 85, p. 272) is faster than the Box–Muller transformations. For better
accuracy, double precision may be required.

1Algorithm 10.9.2

1Reproduced with permission from the American Statistical Association.
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In the following, u, v, and w are independent uniform(0, 1) random
numbers.

The output x is a N(0, 1) random number.

Set g = 2.21603 58671 66471

f(t) =
1√
2π

exp(−t2/2)− 0.180025191068563(g − |t|), |t| < g

Generate u
If u < 0.88407 04022 98758, generate v
return x = g*(1.3113 16354 44180*u + v + 1)

If u < 0.97331 09541 73898 go to 4

3 Generate v and w
Set t = g**2/2 - ln(w)
If v**2*t > g**2/2, go to 3

If u < 0.98665 54770 86949, return x = sqrt(2*t)
else return x = - sqrt(2*t)

4 If u < 0.95872 08247 90463 goto 6

5 Generate v and w
Set z = v - w

t = g - 0.63083 48019 21960*min(v, w)
If max(v, w) <= 0.75559 15316 67601 goto 9
If 0.03424 05037 50111*abs(z) <= f(t), goto 9
goto 5

6 If u < 0.91131 27802 88703 goto 8

7 Generate v and w
Set z = v - w

t = 0.47972 74042 22441 + 1.10547 36610 22070*min(v, w)
If max(v, w) <= 0.87283 49766 71790, goto 9
If 0.04926 44963 73128*abs(z) <= f(t), goto 9
goto 7

8 Generate v and w
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Set z = v - w
t = 0.47972 74042 22441 - 0.59950 71380 15940*min(v, w)

If max(v, w) <= 0.80557 79244 23817 goto 9
If t >= 0 and 0.05337 75495 06886*abs(z) <= f(t), goto 9
goto 8

9 If z < 0, return x = t
else return x = -t

10.10 Computing the Distribution Function

For 0 < z < 7, the following polynomial approximation can be used to compute
the probability Φ(z) = P (Z ≤ z).

Φ(z) = e
−z2

2
P7z

7 + P6z
6 + P5z

5 + P4z
4 + P3z

3 + P2z
2 + P1z + P0

Q8z8 + Q7z7 + Q6z6 + Q5z5 + Q4z4 + Q3z3 + Q2z2 + Q1z + Q0
,

where

P0 = 913.167442114755700, P1 = 1024.60809538333800,
P2 = 580.109897562908800, P3 = 202.102090717023000,
P4 = 46.0649519338751400, P5 = 6.81311678753268400,
P6 = 6.047379926867041E − 1, P7 = 2.493381293151434E − 2,
and
Q0 = 1826.33488422951125, Q1 = 3506.420597749092,
Q2 = 3044.77121163622200, Q3 = 1566.104625828454,
Q4 = 523.596091947383490, Q5 = 116.9795245776655,
Q6 = 17.1406995062577800, Q7 = 1.515843318555982,
Q8 = 6.25E − 2.

For z ≥ 7, the following continued fraction can be used to compute the
probabilities.

Φ(z) = 1− ϕ(z)
[

1
z+

1
z+

2
z+

3
z+

4
z+

5
z+

· · ·
]

,

where ϕ(z) denotes the standard normal density function. The above method is
supposed to give 14 decimal accurate probabilities. [Hart et al. 1968, p. 137].

The following Fortran function subroutine for evaluating the standard normal
cdf is based on the above computational method.
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double precision function gaudf(x)
implicit doubleprecision (a-h,o-z)
dimension p(8), q(9)
logical check
data p /913.167442114755700d0, 1024.60809538333800d0,
+ 580.109897562908800d0, 202.102090717023000d0,
+ 46.0649519338751400d0, 6.81311678753268400d0,
+ 6.047379926867041d-1,2.493381293151434d-2/

data q /1826.33488422951125d0, 3506.420597749092d0,
+ 3044.77121163622200d0, 1566.104625828454d0,
+ 523.596091947383490d0, 116.9795245776655d0,
+ 17.1406995062577800d0, 1.515843318555982d0,
+ 6.25d-2/

sqr2pi = 2.506628274631001d0;

z = max(x,-x)
check = .false.
if(x > 0.0d0) check = .true.

prob = 0.0d0
if (z > 32.0d0) goto 1

first = dexp(-0.5d0*z*z)
phi = first/sqr2pi

if (z < 7.0d0) then
prob = first*(((((((p(8)*z + p(7))*z + p(6))*z

+ + p(5))*z + p(4))*z+ p(3))*z + p(2))*z + p(1))/
+ ((((((((q(9)*z + q(8))*z + q(7))*z + q(6))*z
+ + q(5))*z + q(4))*z + q(3))*z + q(2))*z + q(1))
else

prob = phi/(z + 1.0/(z + 2.0/(z + 3.0/(z + 4.0/
+ (z + 5.0/(z + 6.0/(z + 7.0)))))))
end if

1 if (check) prob = 1.0 - prob
gaudf = prob

end
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Chapter 11

Chi-Square Distribution

11.1 Description

Let X1, . . . , Xn be independent standard normal random variables. The distri-
bution of

X =
n∑

i=1

X2
i

is called the chi-square distribution with degrees of freedom (df) n, and its
probability density function is given by

f(x|n) =
1

2n/2Γ(n/2)
e−x/2xn/2−1, x > 0, n > 0. (11.1.1)

The chi-square random variable with df = n is denoted by χ2
n. Since the prob-

ability density function is valid for any n > 0, alternatively, we can define the
chi-square distribution as the one with the probability density function (11.1.1).
This latter definition holds for any n > 0. An infinite series expression for the
cdf is given in Section 11.5.1.

Plots in Figure 11.1 indicate that, for large degrees of freedom m, the chi-
square distribution is symmetric about its mean. Furthermore, χ2

a is stochasti-
cally larger than χ2

b for a > b.
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Figure 11.1 Chi-Square pdfs

11.2 Moments

Mean: n
Variance: 2n

Mode: n− 2, n > 2.

Coefficient of Variation:
√

2
n

Coefficient of Skewness: 2
√

2
n

Coefficient of Kurtosis: 3 + 12
n

Mean Deviation: nn/2e−n/2

2n/2−1Γ(n/2)

Moment Generating Function: (1− 2t)−n/2

Moments about the Origin: E[(χ2
n)k] = 2k

k−1∏
i=0

(n/2 + i),

k = 1, 2, · · ·
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11.3 Computing Table Values 157

11.3 Computing Table Values

The dialog box [StatCalc→Continuous → Chi-sqr] computes the probabilities and
percentiles of a chi-square distribution. For the degrees of freedom greater than
100,000, a normal approximation to the chi-square distribution is used to com-
pute the cdf as well as the percentiles.

To compute probabilities: Enter the value of the degrees of freedom (df), and
the value of x at which the cdf is to be computed; click P(X <= x).

Example 11.3.1 When df = 13.0 and x = 12.3,

P (X ≤ 12.3) = 0.496789 and P (X > 12.3) = 0.503211.

To compute percentiles: Enter the values of the degrees of freedom and the
cumulative probability, and click [x].

Example 11.3.2 When df = 13.0 and the cumulative probability = 0.95, the
95th percentile is 22.362. That is, P (X ≤ 22.362) = 0.95.

To compute the df: Enter the values of the cumulative probability and x, and
click [DF].

Example 11.3.3 When x = 6.0 and the cumulative probability = 0.8, the value
of DF is 4.00862.

To compute moments: Enter the value of the df and click [M].

11.4 Applications

The chi-square distribution is also called the variance distribution by some au-
thors, because the variance of a random sample from a normal distribution
follows a chi-square distribution. Specifically, if X1, . . . , Xn is a random sample
from a normal distribution with mean µ and variance σ2, then

n∑
i=1

(Xi − X̄)2

σ2
=

(n− 1)S2

σ2
∼ χ2

n−1.

This distributional result is useful to make inferences about σ2. (see Section
10.4).
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158 11 Chi-Square Distribution

In categorical data analysis consists of an r× c table, the usual test statistic,

T =
r∑

i=1

c∑

j=1

(Oij −Eij)
2

Eij
∼ χ2

(r−1)×(c−1),

where Oij and Eij denote, respectively, the observed and expected cell frequen-
cies. The null hypothesis of independent attributes will be rejected at a level of
significance α, if an observed value of T is greater than (1 – α)th quantile of a
chi-square distribution with df = (r − 1)× (c− 1).

The chi-square statistic
k∑

i=1

(Oi −Ei)2

Ei

can be used to test whether a frequency distribution fits a specific model. See
Section 1.4.2 for more details.

11.5 Properties and Results

11.5.1 Properties

1. If X1, . . . , Xk are independent chi-square random variables with degrees of
freedom n1, . . . , nk, respectively, then

k∑

i=1

Xi ∼ χ2
m with m =

k∑

i=1

ni.

2. Let Z be a standard normal random variable. Then Z2 ∼ χ2
1.

3. Let F (x|n) denote the cdf of χ2
n. Then

a. F (x|n) = 1
Γ(n/2)

∞∑
i=0

(−1)i(x/2)n/2+i

i!Γ(n/2+i) ,

b. F (x|n + 2) = F (x|n)− (x/2)n/2e−x/2

Γ(n/2+1) ,

c. F (x|2n) = 1− 2
n∑

k=1
f(x|2k),

d. F (x|2n + 1) = 2Φ(
√

x)− 1− 2
n∑

k=1
f(x|2k + 1),

where f(x|n) is the probability density function of χ2
n, and Φ denotes the

cdf of the standard normal random variable. [(a) Abramowitz and Stegun
1965, p. 941; (b) and (c) Peizer and Pratt 1968; (d) Puri 1973]
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4. Let Z′ = (Z1, . . . , Zm)′ be a random vector whose elements are independent
standard normal random variables, and A be an m×m symmetric matrix
with rank = k. Then

Q = Z ′AZ =
m∑

i=1

m∑

j=1

aijZiZj ∼ χ2
k

if and only if A is an idempotent matrix, that is, A2 = A.

5. Cochran’s Theorem: Let Z be as defined in (4) and Ai be an m × m
symmetric matrix with rank(Ai) = ki, i = 1, 2, . . . , r. Let

Qi = Z′AiZ, i = 1, 2, . . . , r

and
m∑

i=1

Z2
i =

r∑

i=1

Qi.

Then Q1, . . ., Qr are independent with Qi ∼ χ2
ki

, i = 1, 2, . . . , r, if and
only if

r∑

i=1

ki = m.

6. For any real valued function f ,

E[(χ2
n)kf(χ2

n)] =
2kΓ(n/2 + k)

Γ(n/2)
E[f(χ2

n+2k)],

provided the indicated expectations exist.

7. Haff’s (1979) Identity: Let f and h be real valued functions, and X be a
chi-square random variable with df = n. Then

E[f(X)h(X)] = 2E

[
f(X)

∂h(X)
∂X

]
+2E

[
∂f(X)

∂X
h(X)

]
+(n−2)E

[
f(X)h(X)

X

]
,

provided the indicated expectations exist.

11.5.2 Relation to Other Distributions

1. F and Beta: Let X and Y be independent chi-square random variables
with degrees of freedoms m and n, respectively. Then

(X/m)
(Y/n)

∼ Fm,n.

Furthermore, X
X+Y ∼ beta(m/2, n/2) distribution.
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160 11 Chi-Square Distribution

2. Beta: If X1, . . . , Xk are independent chi-square random variables with
degrees of freedoms n1, . . . , nk, respectively. Define

Wi =
X1 + . . . + Xi

X1 + . . . + Xi+1
, i = 1, 2, . . . , k − 1.

The random variables W1, . . . , Wk−1 are independent with

Wi ∼ beta
(

m1 + . . . + mi

2
,
mi+1

2

)
, i = 1, 2, . . . , k − 1.

3. Gamma: The gamma distribution with shape parameter a and scale pa-
rameter b specializes to the chi-square distribution with df = n when
a = n/2 and b = 2. That is, gamma(n/2, 2) ∼ χ2

n.

4. Poisson: Let χ2
n be a chi-square random variable with even degrees of

freedom n. Then

P (χ2
n > x) =

n/2−1∑

k=0

e−x/2(x/2)k

k!
.

[see Section 15.1]

5. t distribution: See Section 13.4.1.

6. Laplace: See Section 20.6.

7. Uniform: See Section 9.4.

11.5.3 Approximations

1. Let Z denote the standard normal random variable.

a. P (χ2
n ≤ x) ' P (Z ≤ √

2x−√2n− 1), n > 30.

b. P (χ2
n ≤ x) ' P

(
Z ≤

√
9n
2

[(
x
n

)1/3 − 1 + 2
9n

])
.

c. Let X denote the chi-square random variable with df = n. Then

X − n + 2/3− 0.08/n

|X − n + 1|
(

(n− 1) ln
(

n− 1
X

)
+ X − n + 1

)1/2

is approximately distributed as a standard normal random variable.

[Peizer and Pratt 1968]
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2. Let χ2
n,p denote the pth percentile of a χ2

n distribution, and zp denote the
pth percentile of the standard normal distribution. Then

a. χ2
n,p ' 1

2

(
zp +

√
2n− 1

)2
, n > 30.

b. χ2
n,p ' n

(
1− 2

9n + zp

√
2
9n

)3
.

The approximation (b) is satisfactory even for small n. [Wilson and Hil-
ferty 1931]

11.6 Random Number Generation

For smaller degrees of freedom, the following algorithm is reasonably efficient.

Algorithm 11.6.1

Generate U1, . . ., Un from uniform(0, 1) distribution.
Set X = −2(lnU1 + . . . + ln Un).

Then, X is a chi-square random number with df = 2n. To generate chi-square
random numbers with odd df, add one Z2 to X, where Z ∼ N(0, 1). (see Section
11.5.1)

Since the chi-square distribution is a special case of the gamma distribution
with the shape parameter a = n/2, and the scale parameter b = 2, the algorithms
for generating gamma variates can be used to generate the chi-square variates
(see Section 15.7).

11.7 Computing the Distribution Function

The distribution function and the percentiles of the chi-square random variable
can be evaluated as a special case of the gamma(n/2, 2) distribution (see Section
15.8). Specifically,

P (χ2
n ≤ x|n) = P (Y ≤ x|n/2, 2),

where Y is a gamma(n/2, 2) random variable.
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Chapter 12

F Distribution

12.1 Description

Let X and Y be independent chi-square random variables with degrees of free-
doms m and n, respectively. The distribution of the ratio

Fm,n =
(X

m)
(Y

n )

is called the F distribution with the numerator df = m and the denominator
df = n. The probability density function of an Fm,n distribution is given by

f(x|m,n) =
Γ

(
m+n

2

)

Γ
(

m
2

)
Γ

(
n
2

)
(

m
2

)m/2
xm/2−1

(
n
2

)m/2 [
1 + mx

n

]m/2+n/2
, m > 0, n > 0, x > 0.

Let S2
i denote the variance of a random sample of size ni from a N(µi, σ

2)
distribution, i = 1, 2. Then the variance ratio S2

1/S2
2 follows an Fn1−1,n2−1

distribution. For this reason, the F distribution is also known as the variance
ratio distribution.

We observe from the plots of pdfs in Figure 12.1 that the F distribution
is always skewed to right; also, for equally large values of m and n, the F
distribution is approximately symmetric about unity.
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Figure 12.1 The F pdfs
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12.2 Moments

Mean: n
n−2

Variance: 2n2(m+n−2)
m(n−2)2(n−4)

, n > 4.

Mode: n(m−2)
m(n+2) , m > 2.

Moment Generating Function: does not exist.

Coefficient of Variation:
√

2(m+n−2)√
m(n−4)

, n > 4.

Coefficient of Skewness: (2m+n−2)
√

8(n−4)

(n−6)
√

m(m+n−2)
, n > 6.

Coefficient of Kurtosis: 3 + 12[(n−2)2(n−4)+m(m+n−2)(5n−22)]
m(n−6)(n−8)(m+n−2) , n > 8.

Moments about the Origin: Γ(m/2+k)Γ(n/2−k)
Γ(m/2)Γ(n/2) (n/m)k,

n > 2k, k = 1, 2, ...

12.3 Computing Table Values

The dialog box [StatCalc→Continuous→F] computes probabilities, percentiles,
moments and also the degrees of freedoms when other parameters are given.

To compute probabilities: Enter the numerator df, denominator df, and the
value x at which the cdf is to be evaluated; click [P(X <= x)].

Example 12.3.1 When the numerator df = 3.3, denominator df = 44.5 and the
observed value x = 2.3, P (X ≤ 2.3) = 0.915262 and P (X > 2.3) = 0.084738.

To compute percentiles: Enter the values of the degrees of freedoms and the
cumulative probability; click [x].

Example 12.3.2 When the numerator df = 3.3, denominator df = 44.5 and the
cumulative probability = 0.95, the 95th percentile is 2.73281.
That is, P (X ≤ 2.73281) = 0.95.
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166 12 F Distribution

To compute other parameters: StatCalc also computes the df when other values
are given.

Example 12.3.3 When the numerator df = 3.3, cumulative probability = 0.90,
x = 2.3 and the value of the denominator df = 22.4465. To find this value, enter
other known values in appropriate edit boxes, and click on [Den DF].

To compute moments: Enter the values of the numerator df, denominator df,
and click [M].

12.4 Properties and Results

12.4.1 Identities

1. For x > 0, P (Fm,n ≤ x) = P (Fn,m ≥ 1/x).

2. If Fm,n,p is the pth quantile of an Fm,n distribution, then

Fn,m,1−p =
1

Fm,n,p
.

12.4.2 Relation to Other Distributions

1. Binomial: Let X be a binomial(n, p) random variable. For a given k

P (X ≥ k|n, p) = P

(
F2k,2(n−k+1) ≤

(n− k + 1)p
k(1− p)

)
.

2. Beta: Let X = Fm,n. Then

mX

n + mX

follows a beta(m/2, n/2) distribution.

3. Student’s t : F1,n is distributed as t2n, where tn denotes Student’s t variable
with df = n.

4. Laplace: See Section 20.6.
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12.4.3 Series Expansions

For y > 0, let x = n
n+my .

1. For even m and any positive integer n,

P (Fm,n ≤ y) = 1− x(m+n−2)/2
{

1 +
m + n− 2

2

(
1− x

x

)

+
(m + n− 2)(m + n− 4)

2 · 4
(

1− x

x

)2

+
(m + n− 2) · · · (n + 2)

2 · 4 · · · ·(m− 2)

(
1− x

x

)(m−2)/2
}

.

2. For even n and any positive integer m,

P (Fm,n ≤ y) = (1− x)(m+n−2)/2
{

1 +
m + n− 2

2

(
x

1− x

)

+
(m + n− 2)(m + n− 4)

2 · 4
(

x

1− x

)2

+ . . .

+
(m + n− 2) · · · (m + 2)

2 · 4 · · · ·(n− 2)

(
x

1− x

)(n−2)/2
}

.

3. Let θ = arctan
(√

my
n

)
. For odd n,

(a) P (F1,1 ≤ y) = 2θ
π .

(b) P (F1,n ≤ y) = 2
π

{
θ + sin(θ)

[
cos(θ) + 2

3 cos3(θ) +. . .+ 2·4···(n−3)
3·5···(n−2) cosn−2(θ)

]}
.

(c) For odd m and any positive integer n,

P (Fm,n ≤ y) =
2
π

{
θ + sin(θ)

[
cos(θ) +

2 cos3(θ)
3

+ . . .

+
2 · 4 · · · (n− 3)
3 · 5 · · · (n− 2)

cosn−2(θ)
]}

− 2[(n− 1)/2]!√
πΓ(n/2)

sin(θ) cosn(θ)×
{

1 +
n + 1

3
sin2(θ) + · · ·

+
(n + 1)(n + 3) · · · (m + n− 4)

3 · 5 · · · (m− 2)
sinm−3(θ)

}
.

[Abramowitz and Stegun 1965, p. 946]
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12.4.4 Approximations

1. For large m, n
Fm,n

is distributed as χ2
n.

2. For large n, mFm,n is distributed as χ2
m.

3. Let M = n/(n− 2). For large m and n,

Fn,m −M

M

√
2(m+n−2)

m(n−4)

is distributed as the standard normal random variable. This approximation
is satisfactory only when both degrees of freedoms are greater than or equal
to 100.

4. The distribution of

Z =

√
(2n− 1)mFm,n/n−√2m− 1

√
1 + mFm,n/n

is approximately standard normal. This approximation is satisfactory even
for small degrees of freedoms.

5.
F 1/3(1− 2

9n)−(1− 2
9m)√

2
9m

+F 2/3 2
9n

∼ N(0, 1) approximately.

[Abramowitz and Stegun 1965, p. 947]

12.5 Random Number Generation

Algorithm 12.5.1

For a given m and n:
Generate X from gamma(m/2, 2) (see Section 15.7)
Generate Y from gamma(n/2, 2)
Set F = nX/(mY ).

F is the desired random number from the F distribution with numerator
df = m, and the denominator df = n.
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Algorithm 12.5.2

Generate Y from a beta(m/2, n/2) distribution (see Section 16.7), and set

F =
nY

m(1− Y )
.

F is the desired random number from the F distribution with numerator
df = m, and the denominator df = n.

12.6 A Computational Method for Probabilities

For smaller degrees of freedoms, the distribution function of Fm,n random vari-
able can be evaluated using the series expansions given in Section 12.4. For
other degrees of freedoms, algorithm for evaluating the beta distribution can be
used. Probabilities can be computed using the relation that

P (Fm,n ≤ x) = P

(
Y ≤ mx

n + mx

)
,

where Y is the beta(m/2, n/2) random variable. The pth quantile of an Fm,n

distribution can be computed using the relation that

Fm,n,p =
nbeta−1 (p;m/2, n/2)

m(1− beta−1(p;m/2, n/2))
,

where beta−1(p; a, b) denotes the pth quantile of a beta(a, b) distribution.
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Student’s t Distribution

13.1 Description

Let Z and S be independent random variables such that

Z ∼ N(0, 1) and nS2 ∼ χ2
n.

The distribution of t = Z/S is called Student’s t distribution with df = n. The
Student’s t random variable with df = n is commonly denoted by tn, and its
probability density function is

f(x|n) =
Γ[(n + 1)/2]
Γ(n/2)

√
nπ

1
(1 + x2/n)(n+1)/2

, −∞ < x < ∞, n ≥ 1.

Probability density plots of tn are given in Figure 13.1 for various degrees of
freedoms. We observe from the plots that for large n, tn is distributed as the
standard normal random variable.

Series expansions for computing the cdf of tn are given in Section 13.5.3.
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Figure 13.1 The pdfs of tn

13.2 Moments

Mean: 0 for n > 1; undefined for n = 1.

Variance: n/(n− 2), n > 2.

Median: 0

Mode: 0

Mean Deviation:
√

n Γ((n−1)/2)√
π Γ(n/2)

Coefficient of Skewness: 0

Coefficient of Kurtosis: 3(n−2)
(n−4) , n > 4.

Moment Generating Function: does not exist

Moments about the Origin: E(tkn) =





0 for odd k < n,
1·3·5···(k−1)

(n−2)(n−4)...(n−k)n
k/2

for even k < n.
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13.3 Computing Table Values

The dialog box [StatCalc→Continuous→ Student t] computes probabilities, per-
centiles, moments and also the degrees of freedom for given other values.

To compute probabilities: Enter the value of the degrees of freedom (df), and
the observed value x; click [x].

Example 13.3.1 When df = 12.0 and the observed value x = 1.3,

P (X ≤ 1.3) = 0.890991 and P (X > 1.3) = 0.109009.

To compute percentiles: Enter the value of the degrees of freedom, and the
cumulative probability; click [x].

Example 13.3.2 When df = 12.0, and the cumulative probability = 0.95, the
95th percentile is 1.78229. That is, P (X ≤ 1.78229) = 0.95.

To compute the DF: Enter the value of x, and the cumulative probability; click
[DF].

Example 13.3.3 When x = 1.3, and the cumulative probability = 0.9, the value
of DF = 46.5601.

To compute moments: Enter the value of the df and click [M].

13.4 Distribution of the Maximum of Several |t|
Variables

Let X1, . . . , Xk be independent normal random variables with mean µ and com-
mon standard deviation σ. Let mS2/σ2 follow a chi-square distribution with
df = m. The dialog box [StatCalc→Continuous→Student’s t→ Max |t|] computes
the distribution function of

X = max
1≤i≤k

{ |Xi|
S

}
= max

1≤i≤k
{|ti|}, (13.4.1)

where t1, ..., tk are Student’s t variables with df = m. The percentiles of X
are useful for constructing simultaneous confidence intervals for the treatment
effects and orthogonal estimates in the analysis of variance, and to test extreme
values.
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13.4.1 An Application

One-Way Analysis of Variance

Suppose we want to compare the effects of k treatments in a one-way analysis
of variance setup based on the following summary statistics:

treatments 1 . . . k
sample sizes n1 . . . nk

sample means X̄1 . . . X̄k

sample variances S2
1 . . . S2

k

Let n =
k∑

i=1
ni, and S2

p =
k∑

i=1

(ni−1)S2
i

n−k be the pooled sample variance, and

¯̄X =

k∑
i=1

niX̄i

n

be the pooled sample mean.

For testing H0 : µ1 = ... = µk vs. Ha : µi 6= µj for some i 6= j, the F
statistic is given by

k∑
i=1

ni(X̄i − ¯̄X)2/(k − 1)

S2
p

,

which follows an F distribution with numerator df = k−1 and the denominator
df = n − k. For an observed value F0 of the F statistic, the null hypothesis
will be rejected if F0 > Fk−1,n−k,1−α, where Fk−1,n−k,1−α denotes the (1− α)th
quantile of an F distribution with the numerator df = k−1, and the denominator
df = n− k. Once the null hypothesis is rejected, it may be desired to estimate
all the treatment effects simultaneously.

Simultaneous Confidence Intervals for the Treatment Means

It can be shown that

√
n1(X̄1 − µ1)/σ, . . . ,

√
nk(X̄k − µk)/σ
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are independent standard normal random variables, and they are independent
of

(n− k)S2
p

σ2
∼ χ2

n−k.

Define

Y = max
1≤i≤k

{√
ni|(X̄i − µi)|

Sp

}
.

Then, Y is distributed as X in (13.4.1). Thus, if c denotes the (1−α)th quantile
of Y , then

X̄1 ± c
Sp√
n1

, . . . , X̄k ± c
Sp√
nk

(13.4.2)

are exact simultaneous confidence intervals for µ1, . . ., µk.

13.4.2 Computing Table Values

The dialog box [StatCalc→Continuous→Student’s t→Distribution of max{|t1|, ..., |tk|}]
computes the cumulative probabilities and the percentiles of X defined in (13.4.1).

To compute probabilities: Enter the values of the number of groups k, df, and
the observed value x of X defined in (13.4.1); click [P(X <= x)].

Example 13.4.1 When k = 4, df = 45 and x = 2.3, P (X ≤ 2.3) = 0.900976 and
P (X > 2.3) = 0.099024.

To compute percentiles: Enter the values of k, df, and the cumulative probabil-
ity; click [x].

Example 13.4.2 When k = 4, df = 45, and the cumulative probability is 0.95,
the 95th percentile is 2.5897. That is, P (X ≤ 2.5897) = 0.95.

13.4.3 An Example

Example 13.4.3 Consider the one-way ANOVA model with the following sum-
mary statistics:

treatments 1 2 3
sample sizes 11 9 14
sample means 5 3 7
sample variances 4 3 6
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The pooled variance S2
p is computed as 4.58. Let us compute 95% simulta-

neous confidence intervals for the mean treatment effects. To get the criti-
cal point using StatCalc, select the dialog box [StatCalc→Continuous→Student’s
t→Distribution of max{|t1|, ..., |tk|}], enter 3 for k, 11 + 9 + 14 - 3 = 31 for df,
0.95 for [P(X <= x)], and click [x]. The required critical point is 2.5178, and
the 95% simultaneous confidence intervals for the mean treatment effects based
on (13.4.2) are

5± 2.5178
√

4.58
11

, 3± 2.5178
√

4.58
9

, 7± 2.5178
√

4.58
14

.

13.5 Properties and Results

13.5.1 Properties

1. The t distribution is symmetric about 0. That is,

P (−x ≤ t < 0) = P (0 < t ≤ x).

2. Let X and Y be independent chi-square random variables with degrees of
freedoms 1 and n, respectively. Let I be a random variable independent
of X and Y such that P (I = 1) = P (I = −1) = 1/2. Then

I

√
X

Y/n
∼ tn.

3. If X and Y are independent chi-square random variables with df = n, then

0.5
√

n(X − Y )√
XY

∼ tn.

13.5.2 Relation to Other Distributions

1. Let F1,n denote the F random variable with the numerator df = 1, and
the denominator df = n. Then, for any x > 0,

a. P (t2n ≤ x) = P (F1,n ≤ x)

b. P (F1,n ≤ x) = 2P (tn ≤
√

x)− 1

c. P (tn ≤ x) = 1
2

[
P (F1,n ≤ x2) + 1

]
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2. Let tn,α denote the αth quantile of Student’s t distribution with df = n.
Then

a. Fn,n,α = 1 + 2(tn,α)2

n + 2tn,α√
n

√
1 + (tn,α)2

n

b. tn,α =
√

n
2

(
Fn,n,α−1√

Fn,n,α

)
.

[Cacoullos 1965]

3. Relation to beta distribution: (see Section 16.6.2)

13.5.3 Series Expansions for Cumulative Probability

1. For odd n,

P (tn ≤ x) = 0.5 +
arctan(c)

π
+

cd

π

(n−3)/2∑

k=0

akd
k,

and for even n,

P (tn ≤ x) = 0.5 +
0.5c

√
d

π

(n−2)/2∑

k=0

bkd
k,

where
a0 = 1, b0 = 1,

ak = 2kak−1

2k+1 , bk = (2k−1)bk−1

2k ,

c = x/
√

n, and d = n
n+x2 .

[Owen 1968]

2. Let x = arctan(t/
√

n). Then, for n > 1 and odd,

P (|tn| ≤ t) =
2
π

[
x + sin(x)

(
cos(x) +

2
3

cos3(x) + ...

+
2 · 4 · ... · (n− 3)
1 · 3 · ... · (n− 2)

cosn−2(x)
)]

for even n,

P (|tn| ≤ t) = sin(x)
[
1 +

1
2

cos2(x) +
1 · 3
2 · 4 cos4(x) + ...

+
1 · 3 · 5...(n− 3)
2 · 4 · 6...(n− 2)

cosn−2(x)
]
,

and P (|t1| ≤ t) = 2x
π . [Abramowitz and Stegun 1965, p. 948]
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13.5.4 An Approximation

P (tn ≤ t) ' P


Z ≤

t
(
1− 1

4n

)
√

1 + t2

2n


 ,

where Z is the standard normal random variable.

13.6 Random Number Generation

Algorithm 13.5.1

Generate Z from N(0, 1)
Generate S from gamma(n/2, 2)
Set x = Z√

S/n
.

Then, x is a Student’s t random variate with df = n.

13.7 A Computational Method for Probabilities

For small integer degrees of freedoms, the series expansions in Section 13.4 can
be used to compute the cumulative probabilities. For other degrees of freedoms,
use the relation that, for x > 0,

P (tn ≤ x) =
1
2

[
P

(
Y ≤ x2

n + x2

)
+ 1

]
,

where Y is a beta(1/2, n/2) random variable. If x is negative, then P (tn ≤ x) =
1− P (tn ≤ y), where y = −x.
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Chapter 14

Exponential Distribution

14.1 Description

A classical situation in which an exponential distribution arises is as follows:
Consider a Poisson process with mean λ where we count the events occurring in
a given interval of time or space. Let X denote the waiting time until the first
event to occur. Then, for a given x > 0,

P (X > x) = P (no event in (0, x))
= exp(−xλ),

and hence
P (X ≤ x) = 1− exp(−xλ). (14.1.1)

The distribution in (14.1.1) is called the exponential distribution with mean
waiting time b = 1/λ. The probability density function is given by

f(x|b) =
1
b

exp(−x/b), x > 0, b > 0. (14.1.2)

Suppose that the waiting time is known to exceed a threshold value a, then the
pdf is given by

f(x|a, b) =
1
b

exp(−(x− a)/b), x > a, b > 0. (14.1.3)

The distribution with the above pdf is called the two-parameter exponential
distribution, and we referred to it as exponential(a, b). The cdf is given by

F (x|a, b) = 1− exp(−(x− a)/b), x > a, b > 0. (14.1.4)
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14.2 Moments

The following formulas are valid when a = 0.

Mean: b

Variance: b2

Mode: 0

Coefficient of Variation: 1

Coefficient of Skewness: 2

Coefficient of Kurtosis: 9

Moment Generating Function: (1− bt)−1, t < 1
b .

Moments about the Origin: E(Xk) = Γ(k + 1)bk = k! bk, k = 1, 2, . . .

14.3 Computing Table Values

The dialog box [StatCalc→Continuous→Exponential] computes the probabilities,
percentiles, moments and other parameters of an exponential distribution.

To compute probabilities: Enter the values of the shape parameter a, scale
parameter b and the observed value x; click on [P(X <= x)].

Example 14.3.1 When a = 1.1, b = 1.6 and x = 2, P (X ≤ 2) = 0.430217 and
P (X > 2) = 0.569783.

To compute percentiles: Enter the values of a, b, and the cumulative probability;
click [x].

Example 14.3.2 When a = 2, b = 3 and the cumulative probability = 0.05, the
5th percentile is 2.15388. That is, P (X ≤ 2.15388) = 0.05.

To compute other parameters: Enter the values of the cumulative probability,
one of the parameters, and a positive value for x; click on the parameter that is
missing.
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Example 14.3.3 When b = 3, x = 7 and P (X ≤ x) = 0.9, the value of the
location parameter a = 0.0922454.

To compute moments: Enter the values of a and b; click [M].

14.4 Inferences

Let X1, . . . , Xn be a sample of observations from an exponential distribution
with pdf in (14.1.3).

Maximum Likelihood Estimators

The maximum likelihood estimators of a and b are given by

â = X(1) and b̂ =
1
n

n∑

i=1

(Xi −X(1)) = X̄ −X(1), (14.1.5)

where X(1) is the smallest of the Xi’s. The MLEs â and b̂ are independent with

2n(â− a)
b

∼ χ2
2 and

2nb̂

b
∼ χ2

2n−2. (14.1.6)

[see Lawless (1982), Section 3.5]

Confidence Intervals

The pivotal quantity 2nb̂/b in (14.1.6) can be used to make inference on b. In
particular, a 1− α confidence interval for b is given by

(
2nb̂

χ2
2n−2,1−α/2

,
2nb̂

χ2
2n−2,α/2

)
.

It follows from (14.1.6) that

â− a

b̂
∼ 1

n− 1
F2,2n−2.

A 1 − α confidence interval for a (based on the above distributional result) is
given by (

â− b̂

n− 1
F2,2n−2,1−α/2, â− b̂

n− 1
F2,2n−2,α/2

)
.
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14.5 Properties and Results

14.5.1 Properties

1. Memoryless Property: For a given t > 0 and s > 0,

P (X > t + s|X > s) = P (X > t),

where X is the exponential random variable with pdf (14.1.3).

2. Let X1, . . . , Xn be independent exponential(0, b) random variables. Then

n∑

i=1

Xi ∼ gamma (n, b) .

3. Let X1, . . . , Xn be a sample from an exponential(0, b) distribution.
Then, the smallest order statistic X(1) = min{X1, ..., Xn} has the
exponential(0, b/n) distribution.

14.5.2 Relation to Other Distributions

1. Pareto: If X follows a Pareto distribution with pdf λσλ/xλ+1, x > σ,
σ > 0, λ > 0, then Y = ln(X) has the exponential(a, b) distribution with
a = ln(σ) and b = 1/λ.

2. Power Distribution: If X follows a power distribution with pdf λxλ−1/σλ,
0 < x < λ, σ > 0, then Y = ln(1/X) has the exponential(a, b) distribution
with a = ln(1/σ) and b = 1/λ.

3. Weibull: See Section 24.6.

4. Extreme Value Distribution: See Section 25.6.

5. Geometric: Let X be a geometric random variable with success probability
p. Then

P (X ≤ k|p) = P (Y ≤ k + 1),

where Y is an exponential random variable with mean b∗ = (− ln(1−p))−1.
[Prochaska 1973]
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14.6 Random Number Generation

Input: a = location parameter
b = scale parameter

Output: x is a random number from the exponential(a, b) distribution

Generate u from uniform(0, 1)
Set x = a - b*ln(u)

© 2006 by Taylor & Francis Group, LLC



Chapter 15

Gamma Distribution

15.1 Description

The gamma distribution can be viewed as a generalization of the exponential
distribution with mean 1/λ, λ > 0. An exponential random variable with mean
1/λ represents the waiting time until the first event to occur, where events are
generated by a Poisson process with mean λ, while the gamma random variable
X represents the waiting time until the ath event to occur. Therefore,

X =
a∑

i

Yi,

where Y1, . . . , Yn are independent exponential random variables with mean 1/λ.
The probability density function of X is given by

f(x|a, b) =
1

Γ(a)ba
e−x/bxa−1, x > 0, a > 0, b > 0, (15.1.1)

where b = 1/λ. The distribution defined by (15.1.1) is called the gamma distri-
bution with shape parameter a and the scale parameter b. It should be noted
that (15.1.1) is a valid probability density function for any a > 0 and b > 0.
The gamma distribution with a positive integer shape parameter a is called the
Erlang Distribution. If a is a positive integer, then

F (x|a, b) = P (waiting time until the ath event is at most x units of time)
= P (observing at least a events in x units of time when the

mean waiting time per event is b)
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186 15 Gamma Distribution

= P (observing at least a events in a Poisson process when
the mean number of events is x/b)

=
∞∑

k=a

e−x/b(x/b)k

k!

= P (Y ≥ a),

where Y ∼ Poisson(x/b).

The three-parameter gamma distribution has the pdf

f(x|a, b, c) =
1

Γ(a)ba
e−(x−c)/b(x− c)a−1, a > 0, b > 0, x > c,

where c is the location parameter. The standard form of gamma distribution
(when b = 1 and c = 0) has the pdf

f(x|a, b) =
1

Γ(a)
e−xxa−1, x > 0, a > 0, (15.1.2)

and cumulative distribution function

F (x|a) =
1

Γ(a)

∫ x

0
e−tta−1dt. (15.1.3)

The cdf in (15.1.3) is often referred to as the incomplete gamma function.

The gamma probability density plots in Figure 15.1 indicate that the degree
of asymmetry of the gamma distribution diminishes as a increases. For large
a, (X − a)/

√
a is approximately distributed as the standard normal random

variable.

15.2 Moments

Mean: ab

Variance: ab2

Mode: b(a− 1), a > 1.

Coefficient of Variation: 1/
√

a

Coefficient of Skewness: 2/
√

a
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Coefficient of Kurtosis: 3 + 6/a

Moment Generating Function: (1− bt)−a, t < 1
b .

Moments about the Origin: Γ(a+k)bk

Γ(a) = bk
k∏

i=1
(a + i− 1), k = 1, 2, . . .

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

a = 1
a = 5

a = 10
a = 30

Figure 15.1 Gamma pdfs

15.3 Computing Table Values

The dialog box [StatCalc→Continuous→ Gamma] computes probabilities, per-
centiles, moments and also the parameters when other values are given.

To compute probabilities: Enter the values of the shape parameter a, scale
parameter b and the observed value x; click on [P(X <= x)].

Example 15.3.1 When a = 2, b = 3 and x = 5.3, P (X ≤ 5.3) = 0.527172 and
P (X > 5.3) = 0.472828.

To compute percentiles: Enter the values of a, b, and the cumulative probability;
click [x].

Example 15.3.2 When a = 2, b = 3 and the cumulative probability = 0.05, the
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5th percentile is 1.06608. That is, P (X ≤ 1.06608) = 0.05.

To compute other Parameters: Enter the values of the probability, one of the
parameters, and a positive value for x; click on the parameter that is missing.

Example 15.3.3 When b = 3, x = 5.3 and P (X ≤ x) = 0.9, the value of the
shape parameter a = 0.704973.

To compute moments: Enter the values of a and b; click [M].

15.4 Applications with Some Examples

The gamma distribution arises in situations where one is concerned about the
waiting time for a finite number of independent events to occur, assuming that
events occur at a constant rate and chances that more than one event occurs
in a small interval of time are negligible. This distribution has applications
in reliability and queuing theory. Examples include the distribution of failure
times of components, the distribution of times between calibration of instruments
which need re-calibration after a certain number of uses and the distribution of
waiting times of k customers who will arrive at a store. The gamma distribution
can also be used to model the amounts of daily rainfall in a region. For example
the data on daily rainfall in Sydney, Australia, (October 17 – November 7; years
1859 – 1952) were modeled by a gamma distribution. A gamma distribution
was postulated because precipitation occurs only when water particles can form
around dust of sufficient mass, and the waiting time for such accumulation of
dust is similar to the waiting time aspect implicit in the gamma distribution
(Das 1955). Stephenson et al. (1999) showed that the gamma and Weibull
distributions provide good fits to the wet-day rainfall distribution in India.

Example 15.4.1 The distribution of fifty-year summer rainfall (in inches) in a
certain part of India is approximately gamma with a = 3.0 and b = 2.0.

a. Find the percentage of summer rainfalls exceed six inches.

b. Find an interval that will contain 95% of the summer rainfall totals.

Solution: Let X denote the total summer rainfall in a year.

a. Select the dialog box [StatCalc→Continuous→ Gamma] from StatCalc, enter
3 for a, 2 for b, and 6 for observed x; click [P(X <= x)] to get P (X > 6) =
0.42319. That is, about 42% of the summer rainfall totals exceed 6 inches.
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b. To find a right endpoint, enter 3 for a, 2 for b, and 0.975 for cumulative
probability; click [x] to get 16.71. To find a lower endpoint, enter 0.025
for the cumulative probability and click [x] to get 0.73. Thus, 95% of the
summer rainfall totals are between 0.73 and 16.71 inches.

Example 15.4.2 Customers enter a fast food restaurant, according to a Poisson
process, on average 4 for every 3-minute period during the peak hours 11:00 am
– 1:00 pm Let X denote the waiting time in minutes until arrival of the 60th
customer.

a. Find E(X).
b. Find P (X > 50).

Solution: The mean number of customers per minute is 4/3. Therefore, mean
waiting time in minutes is b = 3/4.

a. E(X) = ab = 60 x 3/4 = 45 min.

b. To find the probability using [StatCalc→Continuous→ Gamma], enter 60 for
a, 3/4 = 0.75 for b, and 50 for x; click [P(X <= x)] to get P (X > 50) =
0.19123.

15.5 Inferences

Let X1, . . . , Xn be a sample from a gamma distribution with the shape parameter
a, scale parameter b, and the location parameter c. Let X̄ denote the sample
mean.

15.5.1 Maximum Likelihood Estimators

The MLEs of a, b and c are the solutions of the equations

n∑

i=1

ln(Xi − c)− n ln b− nψ(a) = 0

n∑

i=1

(Xi − c)− nab = 0

n∑

i=1

(Xi − c)−1 + n[b(a− 1)]−1 = 0 (15.5.1)
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where ψ is the digamma function (see Section 1.8). These equations may yield
reliable solutions if a is expected to be at least 2.5.

If the location parameter c is known, the MLEs of a and b are the solutions
of the equations

1
n

n∑

i=1

ln(Xj − c)− ln(X̄ − c)− ψ(a) + ln a = 0 and ab = X̄.

If a is also known, then X̄/a is the UMVUE of b.

15.5.2 Moment Estimators

Moment estimators are given by

â =
4m3

2

m2
3

, b̂ =
m3

2m2
and ĉ = X̄ − 2

m2
2

m3
,

where

mk =
1
n

n∑

i=1

(Xi − X̄)k, k = 1, 2, . . .

is the kth sample central moment.

15.5.3 Interval Estimation

Let a be known and S = nX̄. Let S0 be an observed value of S. The endpoints
of a 1− α confidence interval (bL, bU ) satisfy

P (S ≤ S0|bU ) = α/2, (15.5.2)

and
P (S ≥ S0|bL) = α/2. (15.5.3)

Since S ∼ gamma(na, b), it follows from (15.5.2) and (15.5.3) that

(bL, bU ) =
(

S0

gamma−1(1− α/2;na, 1)
,

S0

gamma−1(α/2;na, 1)

)
,

where gamma−1(p; d, 1) denotes the pth quantile of a gamma distribution with
the shape parameter d and scale parameter 1, is a 1− α confidence interval for
b [Guenther 1969 and 1971].
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The dialog box [StatCalc→Continuous→Gamma→CI for b] uses the above for-
mula to compute confidence intervals for b.

Example 15.5.1 Suppose that a sample of 10 observations from a gamma popu-
lation with shape parameter a = 1.5 and unknown scale parameter b produced
a mean value of 2. To find a 95% confidence interval for b, enter these values
in appropriate edit boxes, and click [2-sided] to get (0.85144, 2.38226). To get
one-sided limits, click [1-sided] to get 0.913806 and 2.16302. This means that
the true value of b is at least 0.913806 with confidence 0.95; the true value of b
is at most 2.16302 with confidence 0.95.

Suppose we want to test

H0 : b ≤ 0.7 vs. Ha : b > 0.7.

To get the p-value, enter 0.7 for [H0: b = b0] and click [p-values for] to get
0.00201325. Thus, we conclude that b is significantly greater than 0.7.

15.6 Properties and Results

1. An Identity: Let F (x|a, b) and f(x|a, b) denote, respectively, the cdf and
pdf of a gamma random variable X with parameters a and b. Then,

F (x|a, 1) = F (x|a + 1, 1) + f(x|a + 1, 1).

2. Additive Property: Let X1, . . . , Xk be independent gamma random vari-
ables with the same scale parameter but possibly different shape parame-
ters a1, . . . , ak, respectively. Then

k∑

i=1

Xi ∼ gamma

(
k∑

i=1

ai, b

)
.

3. Exponential: Let X1, . . . , Xn be independent exponential random vari-
ables with mean b. Then

n∑

i=1

Xi ∼ gamma(n, b).

4. Chi-square: When a = n/2 and b = 2, the gamma distribution specializes
to the chi-square distribution with df = n.

5. Beta: See Section 16.6.
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6. Student’s t : If X and Y are independent gamma(n, 1) random variables,
then √

n/2
(

X − Y√
XY

)
∼ t2n.

15.7 Random Number Generation

Input: a = shape parameter gamma(a) distribution
Output: x = gamma(a) random variate

y = b*x is a random number from gamma(a, b).

Algorithm 15.7.1

For a = 1:

Generate u from uniform(0, 1) return x = -ln(u)

The following algorithm for a > 1 is due to Schmeiser and Lal (1980).
When 0 < a < 1, X = gamma(a) variate can be generated using relation that
X = U

1
a Z, where Z is a gamma(a + 1) random variate.

1Algorithm 15.7.2

Set f(x) = exp(x3*ln(x/x3) + x3 - x)
x3 = a-1
d = sqrt(x3)
k =1
x1 = x2 = f2 = 0
If d >= x3, go to 2
x2 = x3 - d
k = 1- x3/x2
x1 = x2 + 1/k
f2 = f(x2)

2 Set x4 = x3 + d
r = 1 - x3/x4
x5 = x4 + 1/r
f4 = f(x4)

1Reproduced with permission from the American Statistical Association.
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p1 = x4 - x2
p2 = p1 - f2/k
p3 = p2 + f4/r

3 Generate u, v from uniform(0, 1)
Set u = u*p3
If u > p1 go to 4
Set x = x2 + u
If x > x3 and v <= f4 + (x4 - x)*(1 - f4)/(x4 - x3), return x
If x < x3 and v <= f2 + (x - x2)*(1 - f2)/(x3 - x2), return x
go to 6

4 If u > p2, go to 5
Set u = (u - p1)/(p2 - p1)
x = x2 - ln(u)/k
If x < 0, go to 3
Set v = v*f2*u
If v <= f2*(x - x1)/(x2 - x1) return x
go to 6

5 Set u = (u - p2)/(p3 - p2)
x = x4 - ln(u)/r
v = v*f4*u
If v <= f4*(x5 - x)/(x5 - x4) return x

6 If ln(v) <= x3*ln(x/x3) + x3 - x, return x
else go to 3

x is a random number from the gamma(a, 1) distribution.

15.8 A Computational Method for Probabilities

To compute P (X ≤ x) when a > 0 and b = 1:

The Pearson’s series for the cdf is given by

P (X ≤ x) = exp(−x)xa
∞∑

i=0

1
Γ(a + 1 + i)

xi. (15.8.1)
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The cdf can also be computed using the continued fraction:

P (X > x) =
exp(−x)xa

Γ(a)

(
1

x + 1− a−
1 · (1− a)
x + 3− a−

2 · (2− a)
x + 5− a− · · ·

)
(15.8.2)

To compute Γ(a + 1) use the relation Γ(a + 1) = aΓ(a) [Press et al. 1992].

The series (15.8.1) converges faster for x < a+1 while the continued fraction
(15.8.2) converges faster for x ≥ a+1. A method of evaluating continued fraction
is given in Kennedy and Gentle (1980, p. 76).

The following Fortran function routine is based on the series expansion of
the cdf in (15.8.1).

Input:
x = the value at which the cdf is to be evaluated, x > 0
a = shape parameter > 0

Output:
P(X <= x) = gamcdf(x, a)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
doubleprecision function gamcdf(x, a)
implicit doubleprecision(a-h, o-z)
data one, maxitr, error/1.0d0, 1000, 1.0d-12/

c Logarithmic gamma function alng(x) in Section 1.8.1 is required

com = dexp(a*dlog(x)-alng(a)-x);
a0 = a;
term = one/a; sum = one/a;

do i = 1, maxitr
a0 = a0 + one
term = term*x/a0;
sum = sum + term;
if (dabs(term) < sum*error) goto 1

end do

1 gamcdf = sum*com
end
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Chapter 16

Beta Distribution

16.1 Description

The probability density function of a beta random variable with shape parame-
ters a and b is given by

f(x|a, b) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1, a > 0, b > 0,

where the beta function B(a, b) = Γ(a)Γ(b)/Γ(a+ b). We denote the above beta
distribution by beta(a, b). A situation where the beta distribution arises is given
below.

Consider a Poisson process with arrival rate of λ events per unit time. Let
Wk denote the waiting time until the kth arrival of an event and Ws denote the
waiting time until the sth arrival, s > k. Then, Wk and Ws−Wk are independent
gamma random variables with

Wk ∼ gamma(k, 1/λ) and Ws −Wk ∼ gamma(s− k, 1/λ).

The proportion of the time taken by the first k arrivals in the time needed for
the first s arrivals is

Wk

Ws
=

Wk

Wk + (Ws −Wk)
∼ beta(k, s− k).

The beta density plots are given for various values of a and b in Figure 16.1.
We observe from the plots that the beta density is U shaped when a < 1 and

195
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196 16 Beta Distribution

b < 1, symmetric about 0.5 when a = b > 1, J shaped when (a− 1)(b− 1) < 0,
and unimodal for other values of a and b. For equally large values of a and b,
the cumulative probabilities of a beta distributions can be approximated by a
normal distribution.
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Figure 16.1 Beta pdfs

16.2 Moments

Mean: a
a+b

Variance: ab
(a+b)2(a+b+1)

Mode: a−1
a+b−2 , a > 1, b > 1.

Mean Deviation: Γ(a+b)
Γ(a)Γ(b)

2aabb

(a+b)(a+b+1)
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Coefficient of Skewness: 2(b−a)(a+b+1)1/2

(a+b+2)(ab)1/2

Coefficient of Variation:
√

b√
a(a+b+1)

Coefficient of Kurtosis: 3(a+b+1)[2(a+b)2+ab(a+b−6)]
ab(a+b+2)(a+b+3)

Characteristic Function: Γ(a+b)
Γ(a)

∞∑
k=0

Γ(a+k)(it)2

Γ(a+b+k)Γ(k+1)

Moments about the Origin: E(Xk) =
k−1∏
i=0

a+i
a+b+i , k = 1, 2, ...

16.3 Computing Table Values

The dialog box [StatCalc→Continuous→Beta] computes the cdf, percentiles and
moments of a beta distribution.

To compute probabilities: Enter the values of the parameters a and b, and the
value of x; click [P(X <= x)].

Example 16.3.1 When a = 2, b = 3, and x = 0.4, P (X ≤ 0.4) = 0.5248 and P (X >
0.4) = 0.4752.

To compute percentiles: Enter the values of a, b and the cumulative probability;
click [x].

Example 16.3.2 When a = 2, b = 3, and the cumulative probability = 0.40, the
40th percentile is 0.329167. That is, P (X ≤ 0.329167) = 0.40.

To compute other parameters: Enter the values of one of the parameters, cu-
mulative probability, and the value of x; click on the missing parameter.

Example 16.3.3 When b = 3, x = 0.8, and the cumulative probability = 0.40,
the value of a is 12.959.

To compute moments: Enter the values of a and b and click [M].
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16.4 Inferences

Let X1, . . . , Xn be a sample from a beta distribution with shape parameters a
and b. Let

X̄ =
1
n

n∑

i=1

Xi and S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2.

Moment Estimators

â = X̄

[
X̄(1− X̄)

S2
− 1

]

and

b̂ =
(1− X̄)â

X̄
.

Maximum Likelihood Estimators

MLEs are the solution of the equations

ψ(â)− ψ(â + b̂) =
1
n

n∑

i=1

ln(Xi)

ψ(b̂)− ψ(â + b̂) =
1
n

n∑

i=1

ln(1−Xi),

where ψ(x) is the digamma function given in Section 1.8. Moment estimators
can be used as initial values to solve the above equations numerically.

16.5 Applications with an Example

As mentioned in earlier chapters, the beta distribution is related to many other
distributions such as Student’s t, F , noncentral F , binomial and negative bino-
mial distributions. Therefore, cumulative probabilities and percentiles of these
distributions can be obtained from those of beta distributions. For example,
as mentioned in Sections 3.5 and 7.6, percentiles of beta distributions can be
used to construct exact confidence limits for binomial and negative binomial
success probabilities. In Bayesian analysis, the beta distribution is considered
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as a conjugate prior distribution for the binomial success probability p. Beta dis-
tributions are often used to model data consisting of proportions. Applications
of beta distributions in risk analysis are mentioned in Johnson (1997).

Chia and Hutchinson (1991) used a beta distribution to fit the frequency dis-
tribution of daily cloud durations, where cloud duration is defined as the fraction
of daylight hours not receiving bright sunshine. They used data collected from
11 Australian locations to construct 132 (11 stations by 12 months) empirical
frequency distributions of daily cloud duration. Sulaiman et al. (1999) fitted
Malaysian sunshine data covering a 10-year period to a beta distribution. Nicas
(1994) pointed out that beta distributions offer greater flexibility than lognor-
mal distributions in modeling respirator penetration values over the physically
plausible interval [0,1]. An approach for dynamically computing the retirement
probability and the retirement rate when the age manpower follows a beta dis-
tribution is given in Shivanagaraju et al. (1998). The coefficient of kurtosis
of the beta distribution has been used as a good indicator of the condition of
a gear (Oguamanam et al. 1995). SchwarzenbergCzerny (1997) showed that
the phase dispersion minimization statistic (a popular method for searching for
nonsinusoidal pulsations) follows a beta distribution. In the following we give
an illustrative example.

Example 16.5.1 National Climatic Center (North Carolina, USA) reported the
following data in Table 16.1 on percentage of day during which sunshine occurred
in Atlanta, Georgia, November 1–30, 1974. Daniel (1990) considered these data
to demonstrate the application of a run test for testing randomness. We will fit
a beta distribution for the data.

Table 16.1 Percentage of sunshine period in a day in November 1974
85 85 99 70 17 74 100 28 100 100 31 86 100 0 100
100 45 7 12 54 87 100 100 88 50 100 100 100 48 0

To fit a beta distribution, we first compute the mean and variance of the data:

x̄ = 0.6887 and s2 = 0.1276.

Using the computed mean and variance, we compute the moment estimators
(see Section 16.4) as

â = 0.4687 and b̂ = 0.2116.

The observed quantiles qj (that is, the ordered proportions) for the data are
given in the second column of Table 16.2. The estimated shape parameters can
be used to compute the beta quantiles so that they can be compared with the
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corresponding observed quantiles. For example, when the observed quantile is
0.31 (at j = 7), the corresponding beta quantile Qj can be computed as

Qj = beta−1(0.21667; â, b̂) = 0.30308,

where beta−1(p; â, b̂) denotes the 100pth percentile of the beta distribution with
shape parameters â and b̂. Comparison between the sample quantiles and the
corresponding beta quantiles (see the Q–Q plot in Figure 16.1) indicates that
the data set is well fitted by the beta(â, b̂)distribution. Using this fitted beta
distribution, we can estimate the probability that the sunshine period exceeds
a given proportion in a November day in Atlanta. For example, the estimated
probability that at least 70% of a November day will have sunshine is given by
P (X ≥ 0.7) = 0.61546, where X is the beta(0.4687, 0.2116) random variable.
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Figure 16.1 Q-Q Plots of the Sunshine Data
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Table 16.2 Observed and beta quantiles for sunshine data
j Observed Cumulative Beta

Quantiles qj Probability Quantiles Qj

Levels (j − 0.5)/30
1 0
2 0 0.05 0.01586
3 0.7 0.083333 0.04639
4 0.12 0.116667 0.09263
5 0.17 0.15 0.15278
6 0.28 0.183333 0.22404
7 0.31 0.216667 0.30308
8 0.45 0.25 0.38625
9 0.48 0.283333 0.47009
10 0.5 0.316667 0.55153
11 0.54 0.35 0.62802
12 0.7 0.383333 0.69772
13 0.74 0.416667 0.75946
14 0.85
15 0.85 0.483333 0.85746
16 0.86 0.516667 0.89415
17 0.87 0.55 0.92344
18 0.88 0.583333 0.94623
19 0.99 0.616667 0.96346
20 1 ... ...
... ... ... ...
30 1 0.983333 1

16.6 Properties and Results

16.6.1 An Identity and Recurrence Relations

1. Let F (x|a, b) denote the cumulative distribution of a beta(a, b) random
variable; that is F (x|a, b) = P (X ≤ x|a, b).

a. F (x|a, b) = 1− F (1− x|b, a).

b. F (x|a, b) = xF (x|a− 1, b) + (1− x)F (x|a, b− 1), a > 1, b > 1.

c. F (x|a, b) = [F (x|a + 1, b)− (1− x)F (x|a + 1, b− 1)]/x, b > 1.

d. F (x|a, b) = [aF (x|a + 1, b) + bF (x|a, b + 1)]/(a + b).

e. F (x|a, b) = Γ(a+b)
Γ(a+1)Γ(b)x

a(1− x)b−1 + F (x|a + 1, b− 1), b > 1.
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f. F (x|a, b) = Γ(a+b)
Γ(a+1)Γ(b)x

a(1− x)b + F (x|a + 1, b).

g. F (x|a, a) = 1
2F (1− 4(x− 0.5)2|a, 0.5), x ≤ 0.5.

[Abramowitz and Stegun 1965, p. 944]

16.6.2 Relation to Other Distributions

1. Chi-square Distribution: Let X and Y be independent chi-square random
variables with degrees of freedom m and n, respectively. Then

X

X + Y
∼ beta(m/2, n/2) distribution.

2. Student’s t Distribution: Let t be a Student’s t random variable with df
= n. Then

P (|t| ≤ x) = P (Y ≤ x2/(n + x2)) for x > 0,

where Y is a beta(1/2, n/2) random variable.

3. Uniform Distribution: The beta(a, b) distribution specializes to the uni-
form(0,1) distribution when a = 1 and b = 1.

4. Let X1, . . . , Xn be independent uniform(0,1) random variables, and let
X(k) denote the kth order statistic. Then, X(k) follows a beta(k, n−k +1)
distribution.

5. F Distribution: Let X be a beta(m/2, n/2) random variable . Then

nX

m(1−X)
∼ Fm,n distribution.

6. Binomial: Let X be a binomial(n, p) random variable. Then, for a
given k,

P (X ≥ k|n, p) = P (Y ≤ p),

where Y is a beta(k, n− k + 1) random variable. Furthermore,

P (X ≤ k|n, p) = P (W ≥ p),

where W is a beta(k+ 1, n− k) random variable.
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7. Negative Binomial: Let X be a negative binomial(r, p) random variable.

P (X ≤ k|r, p) = P (W ≤ p),

where W is a beta random variable with parameters r and k + 1.

8. Gamma: Let X and Y be independent gamma random variables with the
same scale parameter b, but possibly different shape parameters a1 and
a2. Then

X

X + Y
∼ beta(a1, a2).

16.7 Random Number Generation

The following algorithm generates beta(a, b) variates. It uses the approach by
Jöhnk (1964) when min{a, b} < 1 and Algorithm 2P of Schmeiser and Shalaby
(1980) otherwise.

1Algorithm 16.7.1

Input:
a, b = the shape parameters

Output:
x is a random variate from beta(a, b) distribution

if a > 1 and b > 1, goto 1
2 Generate u1 and u2 from uniform(0, 1)

Set s1 = u1**(1./a)
s2 = u2**(1./b)
s = s1 + s2
x = s1/s

if(s <= 1.0) return x
goto 2

1 Set aa = a - 1.0
bb = b - 1.0
r = aa + bb
s = r*ln(r)

1Reproduced with permission from the American Statistical Association.
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x1 = 0.0; x2 = 0.0
x3 = aa/r
x4 = 1.0; x5 = 1.0
f2 = 0.0; f4 = 0.0

if(r <= 1.0) goto 4
d = sqrt(aa*bb/(r-1.0))/r
if(d >= x3) goto 3
x2 = x3 - d
x1 = x2 - (x2*(1.0-x2))/(aa-r*x2)
f2 = exp(aa*ln(x2/aa)+bb*ln((1.0-x2)/bb)+s)

3 if(x3+d >= 1.0) goto 4
x4 = x3 + d
x5 = x4 - (x4*(1.0-x4)/(aa-r*x4))
f4 = exp(aa*ln(x4/aa) + bb*ln((1.0-x4)/bb)+s)

4 p1 = x3 - x2
p2 = (x4 - x3) + p1
p3 = f2*x2/2.0 + p2
p4 = f4*(1.0-x4)/2.0+ p3

5 Generate u from uniform(0,1)
Set u = u*p4
Generate w from uniform(0,1)
if(u > p1) goto 7
x = x2 + w*(x3-x2)
v = u/p1
if(v <= f2 + w*(1.0-f2)) return x
goto 10

7 if(u > p2) goto 8
x = x3 + w*(x4 - x3)
v = (u - p1)/(p2 - p1)
if(v <= 1.0 - (1.0-f4)/w) return x
goto 10

8 Generate w2 from uniform(0,1)
if(w2 > w) w = w2
if(u > p3) goto 9
x = w*x2
v = (u-p2)/(p3-p2)*w*f2
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if(x <= x1) goto 10
if(v <= f2*(x-x1)/(x2-x1)) return x
goto 10

9 x = 1.0 - w*(1.0-x4)
v = ((u-p3)/(p4-p3))*(1.0-x)*f4/(1.0-x4)
if(x >= x5) goto 10
if(v <= f4*(x5-x)/(x5-x4)) return x

10 ca = ln(v)
if(ca >= -2.0*r*(x-x3)**2) goto 5
if(ca <= aa*ln(x/aa)+bb*ln((1.0-x)/bb) + s) return x
goto 5

For other equally efficient algorithms, see Cheng (1978).

16.8 Evaluating the Distribution Function

The recurrence relation

F (x|a, b) =
Γ(a + b)

Γ(a + 1)Γ(b)
xa(1− x)b + F (x|a + 1, b)

can be used to evaluate the cdf at a given x, a and b. The above relation
produces the series

F (x|a, b) =
xa(1− x)b

Beta(a + 1, b)

(
1

a + b
+

x

a + 1
+

(a + b + 1)x2

(a + 1)(a + 2)

+
(a + b + 1)(a + b + 2)
(a + 1)(a + 2)(a + 3)

x3 + . . .

)
. (16.1.1)

If x > 0.5, then, to speed up the convergence, compute first F (1 − x|b, a), and
then use the relation that F (x|a, b) = 1− F (1− x|b, a) to evaluate F (x|a, b).

The following Fortran subroutine evaluates the cdf of a beta(a, b) distribu-
tion, and is based on the above method.

Input:
x = the value at which the cdf is to be evaluated, x > 0
a = shape parameter > 0
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b = shape parameter > 0
Output:

P(X <= x) = betadf(x, a, b)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
doubleprecision function betadf(x, a, b)
implicit double precision (a-h,o-z)
logical check
data one, error, zero, maxitr/1.0d0, 1.0d-13, 0.0d0, 1000/

if(x .gt. 0.5d0) then
xx = one-x; aa = b; bb = a
check = .true.
else
xx = x; aa = a; bb = b
check = .false.
end if

bet = alng(aa+bb+one)-alng(aa+one)-alng(bb)
sum = zero
term = xx/(aa+one)
i = 1

1 sum = sum + term
if(term .le. error .or. i .ge. maxitr) goto 2
term = term*(aa+bb+i)*xx/(aa+i+1.0d0)
i = i + 1
goto 1

2 betadf = (sum + one/(aa+bb))*dexp(bet+aa*dlog(xx)+bb*dlog(one-xx))
if(check) betadf = one-betadf
end

Majumder and Bhattacharjee (1973a, Algorithm AS 63) proposed a slightly
faster approach than the above method. Their algorithm uses a combination
of the recurrence relations 1(e) and 1(f) in Section 16.6.1, depending on the
parameter configurations and the value of x at which the cdf is evaluated. For
computing percentiles of a beta distribution, see Majumder and Bhattacharjee
(1973b, Algorithm AS 64).

© 2006 by Taylor & Francis Group, LLC



Chapter 17

Noncentral Chi-square Distribution

17.1 Description

The probability density function of a noncentral chi-square random variable with
the degrees of freedom n and the noncentrality parameter δ is given by

f(x|n, δ) =
∞∑

k=0

exp
(
− δ

2

) (
δ
2

)k

k!
exp

(−x
2

)
x

n+2k
2

−1

2
n+2k

2 Γ(n+2k
2 )

, (17.1.1)

where x > 0, n > 0, and δ > 0. This random variable is usually denoted by
χ2

n(δ). It is clear from the density function (17.1.1) that conditionally given K,
χ2

n(δ) is distributed as χ2
n+2K , where K is a Poisson random variable with mean

δ/2. Thus, the cumulative distribution of χ2
n(δ) can be written as

P (χ2
n(δ) ≤ x|n, δ) =

∞∑

k=0

exp
(
− δ

2

) (
δ
2

)k

k!
P (χ2

n+2k ≤ x). (17.1.2)

The plots of the noncentral chi-square pdfs in Figure 17.1 show that, for fixed
n, χ2

n(δ) is stochastically increasing with respect to δ, and for large values of n,
the pdf is approximately symmetric about its mean n + δ.
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© 2006 by Taylor & Francis Group, LLC



208 17 Noncentral Chi-square Distribution

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25 30 35 40 45 50

n = 10, δ = 1
n = 10, δ = 5

n = 10, δ = 10

0

0.005

0.01

0.015

0.02

0.025

0.03

40 60 80 100 120 140 160 180

n = 100, δ = 1
n = 100, δ = 5

n = 100, δ = 10

Figure 17.1 Noncentral Chi-square pdfs
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17.2 Moments

Mean: n + δ

Variance: 2n + 4δ

Coefficient of Variation:
√

(2n+4δ)

(n+δ)

Coefficient of Skewness: (n+3δ)
√

8

(n+2δ)3/2

Coefficient of Kurtosis: 3 + 12(n+4δ)
(n+2δ)2

Moment Generating Function: (1− 2t)−n/2 exp[tδ/(1− 2t)]

Moments about the Origin: E(Xk) = 2kΓ(n/2 + k)
∞∑

j=0

(k
j

) (δ/2)j

Γ(n/2+j) ,

k = 1, 2, . . .
[Johnson and Kotz 1970, p. 135]

17.3 Computing Table Values

The dialog box [StatCalc→Continuous→NC Chi-sqr] computes the cdf, percentiles,
moments and other parameters of a noncentral chi-square distribution.

To compute probabilities: Enter the values of the df, noncentrality parameter,
and the value of x; click [P(X <= x)].

Example 17.3.1 When df = 13.0, noncentrality parameter = 2.2 and the observed
value x = 12.3,

P (X ≤ 12.3) = 0.346216 and P (X > 12.3) = 0.653784.

To compute percentiles: Enter the values of the df, noncentrality parameter,
and the cumulative probability; click [x].

Example 17.3.2 When df = 13.0, noncentrality parameter = 2.2, and the cumula-
tive probability = 0.95, the 95th percentile is 26.0113. That is,
P (X ≤ 26.0113) = 0.95.

To compute other parameters: Enter the values of one of the parameters, the
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cumulative probability, and click on the missing parameter.

Example 17.3.3 When df = 13.0, the cumulative probability = 0.95, and
x = 25.0, the value o the noncentrality parameter is 1.57552.

To compute moments: Enter the values of the df and the noncentrality param-
eter; click [M].

17.4 Applications

The noncentral chi-square distribution is useful in computing the power of the
goodness-of-fit test based on the usual chi-square statistic (see Section 1.4.2)

Q =
k∑

i=1

(Oi − Ei)2

Ei
,

where Oi is the observed frequency in the ith cell, Ei = Npi0 is the expected fre-
quency in the ith cell, pi0 is the specified (under the null hypothesis) probability
that an observation falls in the ith cell, i = 1, · · · , k, and N = total number of
observations. The null hypothesis will be rejected if

Q =
k∑

i=1

(Oi − Ei)2

Ei
> χ2

k−1, 1−α,

where χ2
k−1,1−α denotes the 100(1 - α)th percentile of a chi-square distribution

with df = k−1. If the true probability that an observation falls in the ith cell is
pi, i = 1, · · · , k, then Q is approximately distributed as a noncentral chi-square
random variable with the noncentrality parameter

δ = N
k∑

i=1

(pi − pi0)2

pi0
,

and df = k − 1. Thus, an approximate power function is given by

P
(
χ2

k−1(δ) > χ2
k−1,1−α

)
.

The noncentral chi-square distribution is also useful in computing approximate
tolerance factors for univariate (see Section 10.6.1) and multivariate (see Section
35.1) normal populations.
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17.5 Properties and Results

17.5.1 Properties

1. Let X1, . . . , Xn be independent normal random variables with

Xi ∼ N(µi, 1), i = 1, 2, ..., n, and let δ =
n∑
i

µ2
i . Then

n∑

i=1

X2
i ∼ χ2

n(δ).

2. For any real valued function h,

E[h(χ2
n(δ))] = E[E(h(χ2

n+2K)|K)],

where K is a Poisson random variable with mean δ/2.

17.5.2 Approximations to Probabilities

Let a = n + δ and b = δ/(n + δ).

1. Let Y be a chi-square random variable with df = a/(1+b). Then

P (χ2
n(δ) ≤ x) ' P

(
Y ≤ x

1 + b

)
.

2. Let Z denote the standard normal random variable. Then

a. P (χ2
n(δ) ≤ x) ' P

(
Z ≤ (x

a)1/3−[1− 2
9( 1+b

a )]√
2
9( 1+b

a )

)
.

b. P (χ2
n(δ) ≤ x) ' P

(
Z ≤

√
2x
1+b −

√
2a

1+b − 1
)

.

17.5.3 Approximations to Percentiles

Let χ2
n,p(δ) denote the 100pth percentile of the noncentral chi-square distribution

with df = n, and noncentrality parameter δ. Define a = n+ δ and b = δ/(n+ δ)
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1. Patnaik’s (1949) Approximation:

χ2
n,p(δ) ' cχ2

f,p,

where c = 1 + b, and χ2
f,p denotes the 100pth percentile of the central

chi-square distribution with df f = a/(1 + b).

2. Normal Approximations: Let zp denote the 100pth percentile of the stan-
dard normal distribution.

a. χ2
n,p(δ) ' 1+b

2

(
zp +

√
2a

1+b − 1
)2

.

b. χ2
n,p(δ) ' a

[
zp

√
2
9

(
1+b
a

)
− 2

9

(
1+b
a

)
+ 1

]3

.

17.6 Random Number Generation

The following exact method can be used to generate random numbers when the
degrees of freedom n ≥ 1. The following algorithm is based on the additive
property of the noncentral chi-square distribution given in Section 17.5.1.

Algorithm 17.6.1

For a given n and δ:
Set u = sqrt(δ)
Generate z1 from N(u, 1)
Generate y from gamma((n− 1)/2, 2)
return x = z2

1 + y

x is a random variate from χ2
n(δ) distribution.

17.7 Evaluating the Distribution Function

The following computational method is due to Benton and Krishnamoorthy
(2003), and is based on the following infinite series expression for the cdf.

P (χ2
n(δ) ≤ x) =

∞∑

i=0

P (X = i)Ix/2(n/2 + i), (17.7.1)

where X is a Poisson random variable with mean δ/2, and

Iy(a) =
1

Γ(a)

∫ y

0
e−tta−1dt, a > 0, y > 0, (17.7.2)
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is the incomplete gamma function. To compute (17.7.1), evaluate first the kth
term, where k is the integer part of δ/2, and then compute the other Poisson
probabilities and incomplete gamma functions recursively using forward and
backward recursions. To compute Poisson probabilities, use the relations

P (X = k + 1) =
δ/2

k + 1
P (X = k), k = 0, 1, . . . ,

and
P (X = k − 1) =

k

δ/2
P (x = k), k = 1, 2, . . .

To compute the incomplete gamma function, use the relations

Ix(a + 1) = Ix(a)− xa exp(−x)
Γ(a + 1)

, (17.7.3)

and

Ix(a− 1) = Ix(a) +
xa−1 exp(−x)

Γ(a)
. (17.7.4)

Furthermore, the series expansion

Ix(a) =
xa exp(−x)
Γ(a + 1)

(
1 +

x

(a + 1)
+

x2

(a + 1)(a + 2)
+ · · ·

)

can be used to evaluate Ix(a).

When computing the terms using both forward and backward recurrence rela-
tions, stop if

1−
k+i∑

j=k−i

P (X = j)

is less than the error tolerance or the number of iterations is greater than a
specified integer. While computing using only forward recurrence relation, stop
if 

1−
2k+i∑

j=0

P (X = j)


 Ix(2k + i + 1)

is less than the error tolerance or the number of iterations is greater than a
specified integer.

The following Fortran function subroutine computes the noncentral chi-
square cdf, and is based on the algorithm given in Benton and Krishnamoorthy
(2003).
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Input:
xx = the value at which the cdf is evaluated, xx > 0
df = degrees of freedom > 0
elambda = noncentrality parameter, elambda > 0

Output:
P(X <= x) = chncdf(x, df, elambda)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
double precision function chncdf(xx, df, elambda)
implicit double precision (a-h,o-z)
data one, half, zero/1.0d0, 0.5d0, 0.0d0/
data maxitr, eps/1000, 1.0d-12/

chncdf = zero
if(xx .le. zero) return

x = half*xx
del = half*elambda
k = int(del)
a = half*df + k

c gamcdf = gamcdf in Section 15.8

gamkf = gamcdf(x, a)
gamkb = gamkf

chncdf = gamkf
if(del .eq. zero) return

c poipro = Poisson probability

poikf = poipro(k, del)
poikb = poikf

c alng(x) = logarithmic gamma function in Section 1.8

xtermf = dexp((a-one)*dlog(x)-x-alng(a))
xtermb = xtermf*x/a
sum = poikf * gamkf
remain = one - poikf
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1 i = i + 1
xtermf = xtermf*x/(a+i-one)
gamkf = gamkf - xtermf
poikf = poikf * del/(k+i)
termf = poikf * gamkf
sum = sum + termf
error = remain * gamkf
remain = remain - poikf

c Do forward and backward computations "maxitr" times or until
c convergence

if (i .gt. k) then
if(error .le. eps .or. i .gt. maxitr) goto 2
goto 1

else
xtermb = xtermb * (a-i+one)/x
gamkb = gamkb + xtermb
poikb = poikb * (k-i+one)/del
termb = gamkb * poikb
sum = sum + termb
remain = remain - poikb
if(remain .le. eps .or. i .gt. maxitr) goto 2
goto 1

end if
2 chncdf = sum

end
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Chapter 18

Noncentral F Distribution

18.1 Description

Let χ2
m(δ) be a noncentral chi-square random variable with degrees of freedom

(df) = m, and noncentrality parameter δ, and χ2
n be a chi-square random variable

with df = n. If χ2
m(δ) and χ2

n are independent, then the distribution of the ratio

Fm,n(δ) =
χ2

m(δ)/m

χ2
n/n

is called the noncentral F distribution with the numerator df = m, the denom-
inator df = n, and the noncentrality parameter δ.

The cumulative distribution function is given by

F (x|m,n, δ) =
∞∑

k=0

exp(− δ
2)( δ

2)k

k!
P

(
Fm+2k,n ≤ mx

m + 2k

)
,

m > 0, n > 0, δ > 0,

where Fa,b denotes the central F random variable with the numerator df = a,
and the denominator df = b.

The plots of pdfs of Fm,n(δ) are presented in Figure 18.1 for various values
of m, n and δ. It is clear from the plots that the noncentral F distribution is
always right skewed.
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Figure 18.1 Noncentral F pdfs
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18.2 Moments

Mean: n(m+δ)
m(n−2) , n > 2.

Variance: 2n2[(m+δ)2+(m+2δ)(n−2)]
m2(n−2)2(n−4)

, n > 4.

E(F k
m,n) : Γ[(n−2k)/2] Γ[(m+2k)/2] nk

Γ(n/2)mk

k∑
j=0

(k
j

) (δ/2)j

Γ[(m+2j)/2] , n > 2k.

18.3 Computing Table Values

The dialog box [StatCalc→Continuous→NC F] computes cumulative probabilities,
percentiles, moments and other parameters of an Fm,n(δ) distribution.

To compute probabilities: Enter the values of the numerator df, denominator
df, noncentrality parameter, and x; click [P(X <= x)].

Example 18.3.1 When numerator df = 4.0, denominator df = 32.0, noncentrality
parameter = 2.2, and x = 2, P (X ≤ 2) = 0.702751 and P (X > 2) = 0.297249.

To compute percentiles: Enter the values of the df, noncentrality parameter,
and the cumulative probability; click [x].

Example 18.3.2 When numerator df = 4.0, denominator df = 32.0, noncentrality
parameter = 2.2, and the cumulative probability = 0.90, the 90th percentile is
3.22243. That is, P (X ≤ 3.22243) = 0.90.

To compute moments: Enter the values of the numerator df, denominator df
and the noncentrality parameter; click [M].

StatCalc also computes one of the degrees of freedoms or the noncentrality
parameter for given other values. For example, when numerator df = 5, de-
nominator df = 12, x = 2 and P (X ≤ x) = 0.7, the value of the noncentrality
parameter is 2.24162.

18.4 Applications

The noncentral F distribution is useful to compute the powers of a test based on
the central F statistic. Examples include analysis of variance and tests based on
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the Hotelling T 2 statistics. Let us consider the power function of the Hotelling
T 2 test for testing about a multivariate normal mean vector.

Let X1, . . . ,Xn be sample from an m-variate normal population with mean
vector µ and covariance matrix Σ. Define

X̄ =
1
n

n∑

i=1

Xi and S =
1

n− 1

n∑

i=1

(Xi − X̄)(Xi − X̄)′.

The Hotelling T 2 statistic for testing H0 : µ = µ0 vs. Ha : µ 6= µ0 is given by

T 2 = n
(
X̄ − µ0

)′
S−1 (

X̄ − µ0

)
.

Under H0, T 2 ∼ (n−1)m
n−m Fm,n−m. Under Ha,

T 2 ∼ (n− 1)m
n−m

Fm,n−m(δ),

where Fm,n−m(δ) denotes the noncentral F random variable with the numerator
df = m, denominator df = n – m, and the noncentrality parameter
δ = n(µ − µ0)′Σ

−1(µ − µ0) and µ is true mean vector. The power of the
T 2 test is given by

P (Fm,n−m(δ) > Fm,n−m,1−α) ,

where Fm,n−m,1−α denotes the 100(1 - α)th percentile of the F distribution with
the numerator df = m and denominator df = n – m.

The noncentral F distribution also arises in multiple use confidence estima-
tion in a multivariate calibration problem. [Mathew and Zha (1996)]

18.5 Properties and Results

18.5.1 Properties

1.

mFm,n(δ)
n + mFm,n(δ)

∼ noncentral beta
(

m

2
,
n

2
, δ

)
.

2. Let F (x; m, n, δ) denote the cdf of Fm,n(δ). Then

a. for a fixed m, n, x, F (x; m, n, δ) is a nonincreasing function of δ;

b. for a fixed δ, n, x, F (x; m, n, δ) is a nondecreasing function of m.
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18.5.2 Approximations

1. For a large n, Fm,n(δ) is distributed as χ2
m(δ)/m.

2. For a large m, Fm,n(δ) is distributed as (1 + δ/m)χ2
n(δ).

3. For large values of m and n,

Fm,n(δ)− n(m+δ)
m(n−2)

n
m

[
2

(n−2)(n−4)

(
(m+δ)2

n−2 + m + 2δ
)]1/2

∼ N(0, 1) approximately.

4. Let m∗ = (m+δ)2

m+2δ . Then

m

m + δ
Fm,n(δ) ∼ Fm∗,n approximately.

5.
(

mFm,n(δ)
m+δ

)1/3 (
1− 2

9n

)
−

(
1− 2(m+2δ)

9(m+δ)2

)

[
2(m+2δ)
9(m+δ)2

+ 2
9n

(
mFm,n(δ)

m+δ

)2/3
]1/2

∼ N(0, 1) approximately.

[Abramowitz and Stegun 1965]

18.6 Random Number Generation

The following algorithm is based on the definition of the noncentral F distribu-
tion given in Section 18.1.

Algorithm 18.6.1

1. Generate x from the noncentral chi-square distribution with df = m and
noncentrality parameter δ (See Section 17.6).

2. Generate y from the central chi-square distribution with df = n.

3. return F = nx/(my).

F is a noncentral Fm,n(δ) random number.
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18.7 Evaluating the Distribution Function

The following approach is similar to the one for computing the noncentral χ2 in
Section 17.7, and is based on the method for computing the tail probabilities of
a noncentral beta distribution given in Chattamvelli and Shanmugham (1997).
The distribution function of Fm,n(δ) can be expressed as

P (X ≤ x|m,n, δ) =
∞∑

i=0

exp(−δ/2)(δ/2)i

i!
Iy(m/2 + i, n/2), (18.7.1)

where y = mx/(mx + n), and

Iy(a, b) =
Γ(a + b)
Γ(a)Γ(b)

∫ y

0
ta−1(1− t)b−1dt

is the incomplete beta function. Let Z denote the Poisson random variable with
mean δ/2. To compute the cdf, compute first the kth term in the series (18.7.1),
where k is the integral part of δ/2, and then compute other terms recursively.
For Poisson probabilities one can use the forward recurrence relation

P (X = k + 1|λ ) =
λ

k + 1
p(X = k|λ ), k = 0, 1, 2, . . . ,

and backward recurrence relation

P (X = k − 1|λ ) =
k

λ
P (X = k|λ ), k = 1, 2, . . . , (18.7.2)

To compute incomplete beta function, use forward recurrence relation

Ix(a + 1, b) = Ix(a, b)− Γ(a + b)
Γ(a)Γ(b)

xa(1− x)b,

and backward recurrence relation

Ix(a− 1, b) = Ix(a, b) +
Γ(a + b− 1)

Γ(a)Γ(b)
xa−1(1− x)b. (18.7.3)

While computing the terms using both forward and backward recursions, stop
if

1−
k+i∑

j=k−i

P (X = j)

is less than the error tolerance or the number of iterations is greater than a
specified integer; otherwise stop if


1−

2k+i∑

j=0

P (X = j)


 Ix(m/2 + 2k + i, n/2)
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is less than the error tolerance or the number of iterations is greater than a
specified integer.

The following Fortran function subroutine evaluates the cdf of the noncentral
F distribution function with numerator df = dfn, denominator df = dfd and the
noncentrality parameter “del”.

Input:
x = the value at which the cdf is evaluated, x > 0
dfn = numerator df, dfn > 0
dfd = denominator df, dfd > 0
del = noncentrality parameter, del > 0

Output:
P(X <= x) = cdfncf(x, dfn, dfd, del)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
double precision function cdfncf(x, dfn, dfd, del)
implicit doubleprecision (a-h,o-z)

data one, half, zero, eps/1.0d0, 0.5d0, 0.0d0, 1.0d-12/

cdf = zero
if(x .le. zero) goto 1

d = half*del
y = dfn*x/(dfn*x+dfd)
b = half*dfd
k = int(d)
a = half*dfn+k

c betadf(x, a, b) = beta distribution function in Section 16.8

fkf = betadf(y,a,b)
cdf = fkf
if(d .eq. zero) goto 1

c poiprob(k,d) = Poisson pmf given in Section 5.13

pkf = poiprob(k,d)
fkb = fkf
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pkb = pkf

c Logarithmic gamma function alng(x) in Section 1.8 is required

xtermf = dexp(alng(a+b-one)-alng(a)-alng(b)
& +(a-one)*dlog(y)+ b*dlog(one-y))
xtermb = xtermf*y*(a+b-one)/a

cdf = fkf*pkf
sumpois = one - pkf

if(k .eq. 0) goto 2

do i = 1, k
xtermf = xtermf*y*(a+b+(i-one)-one)/(a+i-one)
fkf = fkf - xtermf
pkf = pkf * d/(k+i)
termf = fkf*pkf
xtermb = xtermb *(a-i+one)/(y*(a+b-i))
fkb = fkb + xtermb
pkb = (k-i+one)*pkb/d
termb = fkb*pkb
term = termf + termb
cdf = cdf + term
sumpois = sumpois-pkf-pkb
if (sumpois .le. eps) goto 1

end do

2 xtermf = xtermf*y*(a+b+(i-one)-one)/(a+i-one)
fkf = fkf - xtermf
pkf = pkf*d/(k+i)
termf = fkf*pkf
cdf = cdf + termf
sumpois = sumpois-pkf
if(sumpois <= eps) goto 1
i = i + 1
goto 2

1 cdfncf = cdf
end
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Noncentral t Distribution

19.1 Description

Let X be a normal random variable with mean δ and variance 1 and S2 be a
chi-square random variable with degrees of freedom (df) n. If X and S2 are
independent, then the distribution of the ratio

√
nX/S is called the noncentral

t distribution with the degrees of freedom n and the noncentrality parameter δ.
The probability density function is given by

f(x|n, δ) =
nn/2 exp(−δ2/2)√

π Γ(n/2)(n + x2)(n+1)/2

∞∑

i=0

Γ[(n + i + 1)/2]
i!

(
xδ
√

2√
n + x2

)i

,

−∞ < x < ∞, −∞ < δ < ∞,

where
(

xδ
√

2√
n+x2

)0
should be interpreted as 1 for all values of x and δ, including 0.

The above noncentral t random variable is denoted by tn(δ).

The noncentral t distribution specializes to Student’s t distribution when
δ = 0. We also observe from the plots of pdfs in Figure 19.1 that the noncentral
t random variable is stochastically increasing with respect to δ. That is, for
δ2 > δ1,

P (tn(δ2) > x) > P (tn(δ1) > x) for every x.
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Figure 19.1 Noncentral t pdfs

19.2 Moments

Mean: µ1 = Γ[(n−1)/2]
√

n/2

Γ(n/2) δ

Variance: µ2 = n
n−2(1 + δ 2)−

(
Γ[(n−1)/2]

Γ(n/2)

)2
(n/2)δ 2

Moments about the Origin: E(Xk) = Γ[(n−k)/2]nk/2

2k/2Γ(n/2)
uk,

where u2k−1 =
k∑

i=1

(2k−1)!δ2i−1

(2i−1)!(k−i)!2k−i , k = 1, 2, . . .

and u2k =
k∑

i=0

(2k)!δ 2i

(2i)!(k−i)!2k−i , k = 1, 2, . . .

[Bain 1969]

Coefficient of Skewness:
µ1

n(2n−3+δ2)
(n−2)(n−3)

−2µ2

µ
3/2
2

Coefficient of Kurtosis:
n2

(n−2)(n−4)
(3+6δ2+δ4)−(µ1)2

[
n[(n+1)δ2+3(3n−5)]

(n−2)(n−3)
−3µ2

]

µ2
2

.

[Johnson and Kotz 1970, p. 204]
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19.3 Computing Table Values

The dialog box [StatCalc→Continuous→NC t] computes the cdf, percentiles, mo-
ments, and noncentrality parameter.

To compute probabilities: Enter the values of the degrees of freedom (df), non-
centrality parameter and x; click [P(X <= x)].

Example 19.3.1 When df = 13.0, noncentrality parameter = 2.2 and x = 2.2,
P (X ≤ 2.2) = 0.483817 and P (X > 2.2) = 0.516183.

To compute percentiles: Enter the values of the df, noncentrality parameter,
and the cumulative probability; click [x].

Example 19.3.2 When df = 13.0, noncentrality parameter = 2.2, and the cumula-
tive probability = 0.90, the 90th percentile is 3.87082. That is,
P (X ≤ 3.87082) = 0.90.

To compute other parameters: Enter the values of one of the parameters, the
cumulative probability and x. Click on the missing parameter.

Example 19.3.3 When df = 13.0, the cumulative probability = 0.40, and x = 2,
the value of noncentrality parameter is 2.23209.

To compute moments: Enter the values of the df, and the noncentrality param-
eter; click [M].

19.4 Applications

The noncentral t distribution arises as a power function of a test if the test
procedure is based on a central t distribution. More specifically, powers of the
t-test for a normal mean and of the two-sample t-test (Sections 10.4 and 10.5)
can be computed using noncentral t distributions. The percentiles of noncentral
t distributions are used to compute the one-sided tolerance factors for a normal
population (Section 10.6) and tolerance limits for the one-way random effects
model (Section 10.6.5). This distribution also arises in multiple-use hypothesis
testing about the explanatory variable in calibration problems [Krishnamoor-
thy, Kulkarni and Mathew (2001), and Benton, Krishnamoorthy and Mathew
(2003)].
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19.5 Properties and Results

19.5.1 Properties

1. The noncentral distribution tn(δ) specializes to the t distribution with
df = n when δ = 0.

2. P (tn(δ) ≤ 0) = P (Z ≤ −δ), where Z is the standard normal random
variable.

3. P (tn(δ) ≤ t) = P (tn(−δ) ≥ −t).

4. a. P (0 < tn(δ) < t) =
∞∑

j=0

exp(−δ2/2)(δ2/2)j/2

Γ(j/2+1) P
(
Yj ≤ t2

n+t2

)
,

b. P (|tn(δ)| < t) =
∞∑

j=0

exp(−δ2/2)(δ2/2)j

j! P
(
Yj ≤ t2

n+t2

)
,

where Yj denotes the beta((j + 1)/2, n/2) random variable,
j = 1, 2, . . . [Craig 1941 and Guenther 1978].

5.

P (0 < tn(δ) < t) =
∞∑

j=0

exp(−δ2/2)(δ2/2)j

j!
P

(
Y1j ≤ t2

n + t2

)

+
δ

2
√

2

∞∑

j=0

exp(−δ2/2)(δ2/2)j

Γ(j + 3/2)
P

(
Y2j ≤ t2

n + t2

)
,

where Y1j denotes the beta((j+1)/2, n/2) random variable and Y2j denotes
the beta(j + 1, n/2) random variable, j = 1, 2, . . . [Guenther 1978].

6. Relation to the Sample Correlation Coefficient: Let R denote the correla-
tion coefficient of a random sample of n + 2 observations from a bivariate
normal population. Then, letting

ρ = δ
√

2/(2n + 1 + δ2),

the following function of R,

R√
1−R2

√
n(2n + 1)

2n + 1 + δ2
∼ tn(δ) approximately. [Harley 1957]
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19.5.2 An Approximation

Let X = tn(δ). Then

Z =
X

(
1− 1

4n

)
− δ

(
1 + X2

2n

)1/2
∼ N(0, 1) approximately.

[Abramowitz and Stegun 1965, p 949.]

19.6 Random Number Generation

The following algorithm for generating tn(δ) variates is based on the definition
given in Section 19.1.

Algorithm 19.6.1

Generate z from N(0, 1)
Set w = z + δ
Generate y from gamma(n/2, 2)
return x = w*sqrt(n)/sqrt(y)

19.7 Evaluating the Distribution Function

The following method is due to Benton and Krishnamoorthy (2003). Letting
x = t2

n+t2
, the distribution function can be expressed as

P (tn(δ) ≤ t) = Φ(−δ) + P (0 < tn(δ) ≤ t)

= Φ(−δ) +
1
2

∞∑

i=0

[
PiIx(i + 1/2, n/2) +

δ√
2
QiIx(i + 1, n/2)

]
,

(19.7.1)

where Φ is the standard normal distribution, Ix(a, b) is the incomplete beta
function given by

Ix(a, b) =
Γ(a + b)
Γ(a)Γ(b)

∫ x

0
ya−1(1− y)b−1dy,

Pi = exp(−δ 2/2)(δ 2/2)i/i! and Qi = exp(−δ 2/2)(δ 2/2)i/Γ(i + 3/2),
i = 0, 1, 2, ...
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To compute the cdf, first compute the kth term in the series expansion
(19.7.1), where k is the integer part of δ2/2, and then compute the other terms
using forward and backward recursions:

Pi+1 =
δ 2

2(i + 1)
Pi, Pi−1 =

2i

δ 2
Pi, Qi+1 =

δ 2

2i + 3
Qi, Qi−1 =

2i + 1
δ 2

Qi

Ix(a + 1, b) = Ix(a, b)− Γ(a + b)
Γ(a + 1)Γ(b)

xa(1− x)b,

and
Ix(a− 1, b) = Ix(a, b) +

Γ(a + b− 1)
Γ(a)Γ(b)

xa−1(1− x)b.

Let Em denote the remainder of the infinite series in (17.7.1) after the mth term.
It can be shown that

|Em| ≤ 1
2
(1 + |δ|/2)Ix(m + 3/2, n/2)

(
1−

m∑

i=0

Pi

)
. (19.7.2)

[See Lenth 1989 and Benton and Krishnamoorthy 2003]

Forward and backward iterations can be stopped when 1−∑k+i
j=k−i Pj is less

than the error tolerance or when the number of iterations exceeds a specified
integer. Otherwise, forward computation of (19.7.1) can be stopped once the
error bound (19.7.2) is less than a specified error tolerance or the number of
iterations exceeds a specified integer.

The following Fortran function routine tnd(t, df, delta) computes the cdf of
a noncentral t distribution. This program is based on the algorithm given in
Benton and Krishnamoorthy (2003).

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
double precision function tnd(t, df, delta)
implicit double precision (a-h, o-z)
logical indx
data zero, half, one /0.0d0, 0.5d0, 1.0d0/
data error, maxitr/1.0d-12, 1000/

c
if (t .lt. zero) then
x = -t
del = -delta
indx = .true.
else
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x = t
del = delta
indx = .false.
end if

c gaudf(x) is the normal cdf in Section 10.10

ans = gaudf(-del)
if( x .eq. zero) then
tnd = ans
return
end if

c
y = x*x/(df+x*x)
dels = half*del*del
k = int(dels)
a = k+half
c = k+one
b = half*df

c alng(x) is the logarithmic gamma function in Section 1.8

pkf = dexp(-dels+k*dlog(dels)-alng(k+one))
pkb = pkf
qkf = dexp(-dels+k*dlog(dels)-alng(k+one+half))
qkb = qkf

c betadf(y, a, b) is the beta cdf in Section 16.6

pbetaf = betadf(y, a, b)
pbetab = pbetaf
qbetaf = betadf(y, c, b)
qbetab = qbetaf
pgamf = dexp(alng(a+b-one)-alng(a)-alng(b)+(a-one)*dlog(y)

+ + b*dlog(one-y))
pgamb = pgamf*y*(a+b-one)/a
qgamf = dexp(alng(c+b-one)-alng(c)-alng(b)+(c-one)*dlog(y)

+ + b*dlog(one-y))
qgamb = qgamf*y*(c+b-one)/c

c
rempois = one - pkf
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232 19 Noncentral t Distribution

delosq2 = del/1.4142135623731d0
sum = pkf*pbetaf+delosq2*qkf*qbetaf
cons = half*(one + half*abs(delta))
i = 0

1 i = i + 1
pgamf = pgamf*y*(a+b+i-2.0)/(a+i-one)
pbetaf = pbetaf - pgamf
pkf = pkf*dels/(k+i)
ptermf = pkf*pbetaf
qgamf = qgamf*y*(c+b+i-2.0)/(c+i-one)
qbetaf = qbetaf - qgamf
qkf = qkf*dels/(k+i-one+1.5d0)
qtermf = qkf*qbetaf
term = ptermf + delosq2*qtermf
sum = sum + term
error = rempois*cons*pbetaf
rempois = rempois - pkf

c Do forward and backward computations k times or until convergence

if (i. gt. k) then
if(error .le. error .or. i .gt. maxitr) goto 2
goto 1

else
pgamb = pgamb*(a-i+one)/(y*(a+b-i))
pbetab = pbetab + pgamb
pkb = (k-i+one)*pkb/dels
ptermb = pkb*pbetab
qgamb = qgamb*(c-i+one)/(y*(c+b-i))
qbetab = qbetab + qgamb
qkb = (k-i+one+half)*qkb/dels
qtermb = qkb*qbetab
term = ptermb + delosq2*qtermb
sum = sum + term
rempois = rempois - pkb
if (rempois .le. error .or. i .ge. maxitr) goto 2
goto 1

end if
2 tnd = half*sum + ans

if(indx) tnd = one - tnd
end

© 2006 by Taylor & Francis Group, LLC



Chapter 20

Laplace Distribution

20.1 Description

The distribution with the probability density function

f(x|a, b) =
1
2b

exp
[
−|x− a|

b

]
, (20.1.1)

−∞ < x < ∞, −∞ < a < ∞, b > 0,

where a is the location parameter and b is the scale parameter, is called the
Laplace(a, b) distribution.

The cumulative distribution function is given by

F (x|a, b) =

{
1− 1

2 exp
[

a−x
b

]
for x ≥ a,

1
2 exp

[
x−a

b

]
for x < a.

(20.1.2)

The Laplace distribution is also referred to as the double exponential distribu-
tion. For any given probability p, the inverse distribution is given by

F−1(p|a, b) =

{
a + b ln(2p) for 0 < p ≤ 0.5,
a− b ln(2(1− p)) for 0.5 < p < 1.

(20.1.3)
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Figure 20.1 Laplace pdfs

20.2 Moments

Mean: a

Median: a

Mode: a

Variance: 2b2

Mean Deviation: b

Coefficient of Variation: b
√

2
a

Coefficient of Skewness: 0

Coefficient of Kurtosis: 6

Moments about the Mean: E(X − a)k =

{
0 for k = 1, 3, 5, . . .

k!bk for k = 2, 4, 6, . . .
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20.3 Computing Table Values

For given values of a and b, the dialog box [StatCalc→Continuous→Laplace] com-
putes the cdf, percentiles, moments, and other parameters of the Laplace(a, b)
distribution.

To compute probabilities: Enter the values of the parameters a, b, and the value
of x; click [P(X <= x)].

Example 20.3.1 When a = 3, b = 4, and x = 4.5,

P (X ≤ 4.5) = 0.656355 and P (X > 4.5) = 0.343645.

To compute percentiles: Enter the values of a, b, and the cumulative probability;
click [x].

Example 20.3.2 When a = 3, b = 4, and the cumulative probability = 0.95, the
95th percentile is 12.2103. That is, P (X ≤ 12.2103) = 0.95.

To compute parameters: Enter value of one of the parameters, cumulative
probability, and x; click on the missing parameter.

Example 20.3.3 When a = 3, cumulative probability = 0.7, and x = 3.2, the
value of b is 0.391523.

To compute moments: Enter the values of a and b and click [M].

20.4 Inferences

Let X1, . . . , Xn be a sample of independent observations from a Laplace dis-
tribution with the pdf (20.1.1). Let X(1) < X(2) < . . . < X(n) be the order
statistics based on the sample.

20.4.1 Maximum Likelihood Estimators

If the sample size n is odd, then the sample median â = X((n+1)/2) is the MLE of
a. If n is even, then the MLE of a is any number between X(n/2) and X(n/2+1).
The MLE of b is given by

b̂ =
1
n

n∑

i=1

|Xi − â| (if a is unknown) and b̂ =
1
n

n∑

i=1

|Xi − a| (if a is known).
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20.4.2 Interval Estimation

If a is known, then a 1− α confidence interval for b is given by




2
n∑

i=1
|Xi − a|

χ2
2n,1−α/2

,

2
n∑

i=1
|Xi − a|

χ2
2n,α/2


 .

20.5 Applications

Because the distribution of differences between two independent exponential
variates with mean b is Laplace (0, b), a Laplace distribution can be used to
model the difference between the waiting times of two events generated by inde-
pendent random processes. The Laplace distribution can also be used to describe
breaking strength data. Korteoja et al. (1998) studied tensile strength distribu-
tions of four paper samples and concluded that among extreme value, Weibull
and Laplace distributions, a Laplace distribution fits the data best. Sahli et
al. (1997) proposed a one-sided acceptance sampling by variables when the un-
derlying distribution is Laplace. In the following we see an example where the
differences in flood stages are modeled by a Laplace distribution.

Example 20.5.1 The data in Table 20.1 represent the differences in flood stages
for two stations on the Fox River in Wisconsin for 33 different years. The
data were first considered by Gumbel and Mustafi (1967), and later Bain and
Engelhardt (1973) justified the Laplace distribution for modeling the data. Kap-
penman (1977) used the data for constructing one-sided tolerance limits.

To fit a Laplace distribution for the observed differences of flood stages, we
estimate

â = 10.13 and b̂ = 3.36

by the maximum likelihood estimates (see Section 20.4.1). Using these esti-
mates, the population quantiles are estimated as described in Section 1.4.1. For
example, to find the population quantile corresponding to the sample quantile
1.96, select [Continuous→Laplace] from StatCalc, enter 10.13 for a, 3.36 for b and
0.045 for [P(X <= x)]; click on [x] to get 2.04.

The Q-Q plot of the observed differences and the Laplace(10.13, 3.36) quan-
tiles is given in Figure 20.2. The Q-Q plot shows that the sample quantiles (the
observed differences) and the population quantiles are in good agreement. Thus,
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we conclude that the Laplace(10.13, 3.36) distribution adequately fits the data
on flood stage differences.

Table 20.1 Differences in Flood Stages
j Observed j−0.5

33 Population j Observed j−0.5
33 Population

Differences Quantiles Differences Quantiles
1 1.96 – – 18 10.24 0.530 10.34
2 1.96 0.045 2.04 19 10.25 0.561 10.56
3 3.60 0.076 3.80 20 10.43 0.591 10.80
4 3.80 0.106 4.92 21 11.45 0.621 11.06
5 4.79 0.136 5.76 22 11.48 0.652 11.34
6 5.66 0.167 6.44 23 11.75 0.682 11.65
7 5.76 0.197 7.00 24 11.81 0.712 11.99
8 5.78 0.227 7.48 25 12.34 0.742 12.36
9 6.27 0.258 7.90 26 12.78 0.773 12.78
10 6.30 0.288 8.27 27 13.06 0.803 13.26
11 6.76 0.318 8.61 28 13.29 0.833 13.82
12 7.65 0.348 8.92 29 13.98 0.864 14.50
13 7.84 0.379 9.20 30 14.18 0.894 15.34
14 7.99 0.409 9.46 31 14.40 0.924 16.47
15 8.51 0.439 9.70 32 16.22 0.955 18.19
16 9.18 0.470 9.92 33 17.06 0.985 21.88
17 10.13 0.500 10.13

0
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Figure 20.2 Q-Q Plot of Differences in Flood Stages Data
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The fitted distribution can be used to estimate the probabilities. For ex-
ample, the percentage of differences in flood stages exceed 12.4 is estimated
by

P (X > 12.4|a = 10.13, b = 3.36) = 0.267631.

That is, about 27% of differences in flood stages exceed 12.4.

20.6 Relation to Other Distributions

1. Exponential: If X follows a Laplace(a, b) distribution, then |X − a|/b
follows an exponential distribution with mean 1. That is, if Y = |X−a|/b,
then the pdf of Y is exp(−y), y > 0.

2. Chi-square: |X − a| is distributed as (b/2)χ2
2.

3. Chi-square: If X1, . . ., Xn are independent Laplace(a, b) random variables,
then

2
b

n∑

i=1

|Xi − a| ∼ χ2
2n.

4. F Distribution: If X1 and X2 are independent Laplace(a, b) random
variables, then

|X1 − a|
|X2 − a| ∼ F2,2.

5. Normal: If Z1, Z2, Z3 and Z4 are independent standard normal random
variables, then

Z1Z2 − Z3Z4 ∼ Laplace(0, 2).

6. Exponential: If Y1 and Y2 are independent exponential random variables
with mean b, then

Y1 − Y2 ∼ Laplace(0, b).

7. Uniform: If U1 and U2 are uniform(0,1) random variables, then

ln (U1/U2) ∼ Laplace(0, 1).
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20.7 Random Number Generation

Algorithm 20.7.1

For a given a and b:
Generate u from uniform(0, 1)
If u ≥ 0.5, return x = a− b ∗ ln(2 ∗ (1− u))
else return x = a + b ∗ ln(2 ∗ u)

x is a pseudo random number from the Laplace(a, b) distribution.
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Chapter 21

Logistic Distribution

21.1 Description

The probability density function of a logistic distribution with the location pa-
rameter a and scale parameter b is given by

f(x|a, b) =
1
b

exp
{− (

x−a
b

)}
[
1 + exp

{− (
x−a

b

)}]2 , −∞ < x < ∞, −∞ < a < ∞, b > 0.

(21.1.1)
The cumulative distribution function is given by

F (x|a, b) =
[
1 + exp

{
−

(
x− a

b

)}]−1

. (21.1.2)

For 0 < p < 1, the inverse distribution function is given by

F−1(p|a, b) = a + b ln[p/(1− p)]. (21.1.3)

The logistic distribution is symmetric about the location parameter a (see Figure
21.1), and it can be used as a substitute for a normal distribution.
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21.2 Moments

Mean: a

Variance: b2π2

3

Mode: a

Median: a

Mean Deviation: 2bln(2)

Coefficient of Variation: bπ
a
√

3

Coefficient of Skewness: 0

Coefficient of Kurtosis: 4.2

Moment Generating Function: E(etY ) = πcosec(tπ),
where Y = (X − a)/b.

Inverse Distribution Function: a + b ln[p/(1− p)]

Survival Function: 1
1+exp[(x−a)/b]

Inverse Survival Function: a + b ln{(1 – p)/p}

Hazard Rate: 1
b[1+exp[−(x−a)/b]]

Hazard Function: ln{1 + exp[(x− a)/b]}
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Figure 21.1 Logistic pdfs; a = 0

21.3 Computing Table Values

For given values of a and b, the dialog box [StatCalc→Continuous→Logistic] com-
putes the cdf, percentiles and moments of a Logistic(a, b) distribution.

To compute probabilities: Enter the values of the parameters a, b, and the value
of x; click [P(X <= x)].

Example 21.3.1 When a = 2, b = 3, and the observed value x = 1.3,
P (X ≤ 1.3) = 0.44193 and P (X > 1.3) = 0.55807.

To compute percentiles: Enter the values a, b, and the cumulative probability;
click [x].

Example 21.3.2 When a = 2, b = 3, and the cumulative probability = 0.25, the
25th percentile is -1.29584. That is, P (X ≤ −1.29584) = 0.25.

To compute other parameters: Enter the values of one of the parameters, cu-
mulative probability and x; click on the missing parameter.

Example 21.3.3 When b = 3, cumulative probability = 0.25 and x = 2, the
value of a is 5.29584.
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To compute moments: Enter the values of a and b and click [M].

21.4 Maximum Likelihood Estimators

Let X1, . . ., Xn be a sample of independent observations from a logistic distribu-
tion with parameters a and b. Explicit expressions for the MLEs of a and b are
not available. Likelihood equations can be solved only numerically, and they are

n∑

i=1

[
1 + exp

(
Xi − a

b

)]−1

=
n

2
n∑

i=1

(
Xi − a

b

)
1− exp[(Xi − a)/b]
1 + exp[(Xi − a)/b]

= n. (21.4.1)

The sample mean and standard deviation can be used to estimate a and b.
Specifically,

â =
1
n

n∑

i=1

Xi and b̂ =
√

3
π

√√√√ 1
n− 1

n∑

i=1

(Xi − X̄)2.

(See the formula for variance.) These estimators may be used as initial values
to solve the equations in (21.4.1) numerically for a and b.

21.5 Applications

The logistic distribution can be used as a substitute for a normal distribution.
It is also used to analyze data related to stocks. Braselton et. al. (1999) con-
sidered the day-to-day percent changes of the daily closing values of the S&P
500 index from January 1, 1926 through June 11, 1993. These authors found
that a logistic distribution provided the best fit for the data even though the
lognormal distribution has been used traditionally to model these daily changes.
An application of the logistic distribution in nuclear-medicine is given in Prince
et. al. (1988). de Visser and van den Berg (1998) studied the size grade dis-
tribution of onions using a logistic distribution. The logistic distribution is also
used to predict the soil-water retention based on the particle-size distribution
of Swedish soil (Rajkai et. al. 1996). Scerri and Farrugia (1996) compared the
logistic and Weibull distributions for modeling wind speed data. Applicability
of a logistic distribution to study citrus rust mite damage on oranges is given in
Yang et. al. (1995).
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21.6 Properties and Results

1. If X is a Logistic(a, b) random variable, then (X − a)/b ∼ Logistic(0, 1).

2. If u follows a uniform(0, 1) distribution, then a + b[ln(u) - ln(1 − u)] ∼
Logistic(a, b).

3. If Y is a standard exponential random variable, then

− ln

[
e−y

1− e−y

]
∼ Logistic(0, 1).

4. If Y1 and Y2 are independent standard exponential random variables, then

− ln
(

Y1

Y2

)
∼ Logistic(0, 1).

For more results and properties, see Balakrishnan (1991).

21.7 Random Number Generation

Algorithm 21.7.1

For a given a and b:
Generate u from uniform(0, 1)
return x = a + b ∗ (ln(u)− ln(1− u))

x is a pseudo random number from the Logistic(a, b) distribution.
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Chapter 22

Lognormal Distribution

22.1 Description

A positive random variable X is lognormally distributed if ln(X) is normally
distributed. The pdf of X is given by

f(x|µ, σ) =
1√

2πxσ
exp

[
−(lnx− µ)2

2σ2

]
, x > 0, σ > 0, −∞ < µ < ∞.

(22.1.1)
Note that if Y = ln(X), and Y follows a normal distribution with mean µ and
standard deviation σ, then the distribution of X is called lognormal. Since
X is actually an antilogarithmic function of a normal random variable, some
authors refer to this distribution as antilognormal. We denote this distribution
by lognormal(µ, σ2).

The cdf of a lognormal(µ, σ2) distribution is given by

F (x|µ, σ) = P (X ≤ x|µ, σ)
= P (lnX ≤ ln x|µ, σ)

= P

(
Z ≤ ln x− µ

σ

)

= Φ
(

lnx− µ

σ

)
, (22.1.2)

where Φ is the standard normal distribution function.
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Figure 22.1 Lognormal pdfs; µ = 0

22.2 Moments

Mean: exp[µ + σ2/2]

Variance: exp(σ2)[exp(σ2)− 1] exp(2µ)

Mode: exp[µ− σ2]

Median: exp(µ)

Coefficient of Variation:
√

[exp(σ2)− 1]

Coefficient of Skewness: [exp(σ2) + 2]
√

[exp(σ2)− 1]

Coefficient of Kurtosis: exp(4σ2) + 2 exp(3σ2) + 3 exp(2σ2)− 3

Moments about the Origin: exp [kµ + k2σ2/2]

Moments about the Mean: exp [k(µ + σ2/2)]
k∑

i=0
(−1)i

(k
i

)
exp

[
σ2(k−i)(k−i−1)

2

]
.

[Johnson et. al. (1994, p. 212)]
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22.3 Computing Table Values

The dialog box [StatCalc→Continuous →Lognormal] computes the cdf, percentiles
and moments of a lognormal(µ, σ2) distribution. This dialog box also computes
the following.

1. Confidence Interval and the p-value of a Test about a Lognormal Mean
[Section 22.5].

2. Confidence Interval and the p-value of a Test for the Difference Between
Two Lognormal Means [Section 22.6].

3. Confidence Interval for the Ratio of Two Lognormal Means [Section 22.7].

To compute probabilities: Enter the values of the parameters µ, σ, and the
observed value x; click [P(X <= x)].

Example 22.3.1 When µ = 1, σ = 2, and x = 2.3, P (X ≤ 2.3) = 0.466709 and
P (X > 2.3) = 0.533291.

To compute percentiles: Enter the values of µ, σ, and the cumulative probability
P(X <= x); click on [x].

Example 22.3.2 When µ = 1, σ = 2, and the cumulative probability
P(X <= x) = 0.95, the 95th percentile is 72.9451. That is, P (X ≤ 72.9451) =
0.95.

To compute µ: Enter the values of σ, x, and the cumulative probability
P(X <= x); click on [U].

Example 22.3.3 When x = 2.3, σ = 2, and the cumulative probability
P(X <= x) = 0.9, the value of µ is −1.73019.

To compute σ: Enter the values of x, µ and the cumulative probability
P(X <= x); click on [S].

Example 22.3.4 When x = 3, µ = 2, and the cumulative probability
P(X <= x) = 0.1, the value of σ is 0.703357.

To compute moments: Enter the values of µ and σ and click [M].
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22.4 Maximum Likelihood Estimators

Let X1, . . ., Xn be a sample of independent observations from a lognormal(µ, σ)
distribution. Let Yi = ln(Xi), i = 1, . . ., n. Then

µ̂ = Ȳ =
1
n

n∑

i=1

Yi and σ̂ =

√√√√ 1
n

n∑

i=1

(Yi − Ȳ )2

are the MLEs of µ and σ, respectively.

22.5 Confidence Interval and Test for the Mean

Let X1, ..., Xn be a sample from a lognormal(µ, σ). Let Yi = ln(Xi), i = 1, . . ., n.
Let

Ȳ =
1
n

n∑

i=1

Yi and S2 =
1

n− 1

n∑

i=1

(
Yi − Ȳ

)2
.

Recall that the mean of a lognormal(µ, σ) distribution is given by exp(η), where
η = µ + σ2/2. Since the lognormal mean is a one-one function of η, it is enough
to estimate or test about η. For example, if L is a 95% lower limit for η, then
exp(L) is a 95% lower limit for exp(η). The inferential procedures are based on
the generalized variable approach given in Krishnamoorthy and Mathew (2003).
For given observed values ȳ of Ȳ and s of S, the following algorithm can be
used to compute interval estimates and p-values for hypothesis testing about
the mean.

Algorithm 22.5.1

For j = 1, m
Generate Z ∼ N(0, 1) and U2 ∼ χ2

n−1

Set Tj = ȳ −
√

n−1
n

Zs
U + 1

2
(n−1)s2

U2

(end loop)

The percentiles of the Tj ’s generated above can be used to find confidence inter-
vals for η. Let Tp denote the 100pth percentile of the Tj ’s. Then, (T.025, T.975) is
a 95% confidence interval for η. Furthermore, (exp(T.025), exp(T.975)) is a 95%
confidence interval for the lognormal mean exp(η). A 95% lower limit for exp(η)
is given by exp(T0.05).
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Suppose we are interested in testing

H0 : exp(η) ≤ c vs Ha : exp(η) > c,

where c is a specified number. Then the p-value based on the generalized variable
approach is given by P (exp(T ) < c) = P (T < ln(c)), and it can be estimated
by the proportion of the Ti’s less than ln(c). Note that the p-value is given by
P (T < ln(c)), because, for fixed (ȳ, s), the generalized variable is stochastically
decreasing with respect to η.

For a given sample size, mean, and standard deviation of the logged data,
StatCalc computes confidence intervals and the p-values for testing about a
lognormal mean using Algorithm 22.5.1 with m = 1,000,000.

Illustrative Examples

Example 22.5.1 Suppose that a sample of 15 observations from a lognormal(µ, σ)
distribution produced the mean of logged observations ȳ = 1.2 and the standard
deviation of logged observations s = 1.5. It is desired to find a 95% confidence
interval for the lognormal mean exp(µ + σ2/2). To compute a 95% confidence
interval using StatCalc, select [StatCalc→Continuous→Lognormal→CI and Test for
Mean], enter 15 for the sample size, 1.2 for [Mean of ln(x)], 1.5 for [Std Dev of
ln(x)], 0.95 for the confidence level, and click [2] to get (4.37, 70.34).

To find one-sided confidence limits, click [1] to get 5.38 and 52.62. This means
that the true mean is greater than 5.38 with 95% confidence. Furthermore, the
true mean is less than 52.62 with 95% confidence.

Suppose we want to test

H0 : exp(η) ≤ 4.85 vs Ha : exp(η) > 4.85.

To find the p-value, enter 4.85 for [H0: M = M0] and click [p-values for] to get
0.045. Thus, at 5% level, we can reject the null hypothesis and conclude that
the true mean is greater than 4.85.

22.6 Inferences for the Difference between Two Means

Suppose that we have a sample of ni observations from a lognormal(µ, σ2)
population, i = 1, 2. Let ȳi and si denote, respectively, the mean and stan-
dard deviation of the logged measurements in the ith sample, i = 1, 2. For a
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given (n1, ȳ1, s1, n2, ȳ2, s2), StatCalc computes confidence intervals and p-values
for hypothesis testing about the difference between two lognormal means exp(η1)−
exp(η2), where ηi = µi +σ2

i /2, i = 1, 2. StatCalc uses the following Monte Carlo
method:

Algorithm 22.6.1

For j = 1,m
Generate independent random numbers Z1, Z2, U

2
1 and U2

2

such that Zi ∼ N(0, 1) and U2
i ∼ χ2

ni−1, i = 1, 2.
Set
Gi = ȳi −

√
ni−1

ni

Zisi
Ui

+ 1
2

(ni−1)s2
i

U2
i

, i = 1, 2.

Tj = exp(G1)− exp(G2)
(end loop)

The percentiles of the Tj ’s generated above can be used to construct confidence
intervals for exp(η1)−exp(η2). Let Tp denote the 100pth percentile of the Tj ’s.
Then, (T.025, T.975) is a 95% confidence interval for exp(η1) − exp(η2); T.05 is a
95% lower limit for exp(η1)−exp(η2).

Suppose we are interested in testing

H0 : exp(η1)− exp(η2) ≤ 0 vs. Ha : exp(η1)− exp(η2) > 0.

Then, an estimate of the p-value based on the generalized variable approach is
the proportion of the Tj ’s that are less than 0.

For given sample sizes, sample means, and standard deviations of the logged
data, StatCalc computes the confidence intervals and the p-values for testing
about the difference between two lognormal means using Algorithm 22.6.1 with
m = 100,000.

Illustrative Examples

Example 22.6.1 The data for this example are taken from the web site
http://lib.stat.cmu.edu/DASL/. An oil refinery conducted a series of 31 daily
measurements of the carbon monoxide levels arising from one of their stacks.
The measurements were submitted as evidence for establishing a baseline to the
Bay Area Air Quality Management District (BAAQMD). BAAQMD personnel
also made nine independent measurements of the carbon monoxide concentra-
tion from the same stack. The data are given below:
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Carbon Monoxide Measurements by the Refinery (in ppm):
45, 30, 38, 42, 63, 43, 102, 86, 99, 63, 58, 34, 37, 55, 58, 153, 75 58, 36, 59, 43,
102, 52, 30, 21, 40, 141, 85, 161, 86, 161, 86, 71
Carbon Monoxide Measurements by the BAAQMD (in ppm):
12.5, 20, 4, 20, 25, 170, 15, 20, 15

The assumption of lognormality is tenable. The hypotheses to be tested are

H0 : exp(η1) ≤ exp(η2) vs. Ha : exp(η1) > exp(η2),

where exp(η1) = exp(µ1 + σ2
1/2) and exp(η2) = exp(µ2 + σ2

2/2) denote, respec-
tively, the population mean of the refinery measurements and the mean of the
BAAQMD measurements. For logged measurements taken by the refinery, we
have: n1 = 31, sample mean ȳ1 = 4.0743 and s1 = 0.5021; for logged measure-
ments collected by the BAAQMD, n2 = 9, ȳ2 = 2.963 and s2 = 0.974. To find
the p-value for testing the above hypotheses using StatCalc, enter the sample
sizes and the summary statistics, and click [p-values for] to get 0.112. Thus, we
can not conclude that the true mean of the oil refinery measurements is greater
than that of BAAQMD measurements. To get a 95% confidence intervals for
the difference between two means using StatCalc, enter the sample sizes, the
summary statistics and 0.95 for confidence level; click [2] to get (−79.6, 57.3).
To get one-sided limits, click [1]. The one-sided lower limit is −31.9 and the
one-sided upper limit is 53.7.

22.7 Inferences for the Ratio of Two Means

Suppose that we have a sample of ni observations from a lognormal population
with parameters µi and σi, i = 1, 2. Let ȳi and si denote, respectively, the
mean and standard deviation of the logged measurements from the ith sample,
i = 1, 2. For given (n1, ȳ1, s1, n2, ȳ2, s2), StatCalc computes confidence intervals
for the ratio exp(η1)/ exp(η2), where ηi = µi + σ2

i /2, i = 1, 2. StatCalc uses
Algorithm 22.6.1 with Tj = exp(G1)/ exp(G2) = exp(G1 −G2).

Example 22.7.1 Let us construct a 95% confidence interval for the ratio of
the population means in Example 22.6.1. We have n1 = 31 and n2 = 9. For
logged measurements, ȳ1 = 4.0743, s1 = 0.5021, ȳ2 = 2.963 and s2 = 0.974.
To get a 95% confidence interval for the ratio of two means using StatCalc,
select [StatCalc→ Continuous→Lognormal→CI for Mean1/Mean2], enter the sample
sizes, the summary statistics and 0.95 for confidence level; click [2] to get (0.46,
4.16). Because this interval contains 1, we cannot conclude that the means are
significantly different.
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To get one-sided limits, click [1]. The one-sided lower limit is 0.67 and the
one-sided upper limit is 3.75.

22.8 Applications

The lognormal distribution can be postulated in physical problems when the
random variable X assumes only positive values and its histogram is remarkably
skewed to the right. In particular, lognormal model is appropriate for a physical
problem if the natural logarithmic transformation of the data satisfy normality
assumption. Although lognormal and gamma distributions are interchangeable
in many practical situations, a situation where they could produce different
results is studied by Wiens (1999).

Practical examples where lognormal model is applicable vary from modeling
raindrop sizes (Mantra and Gibbins 1999) to modeling the global position data
(Kobayashi 1999). The latter article shows that the position data of selected
vehicles measured by Global Positioning System (GPS) follow a lognormal dis-
tribution. Application of lognormal distribution in wind speed study is given in
Garcia et. al. (1998) and Burlaga and Lazarus (2000). In exposure data analy-
sis (data collected from employees who are exposed to workplace contaminants
or chemicals) the applications of lognormal distributions are shown in Schulz
and Griffin (1999), Borjanovic, et. al. (1999), Saltzman (1997), Nieuwenhuijsen
(1997) and RoigNavarro, et. al. (1997). In particular, the one-sided tolerance
limits of a lognormal distribution is useful in assessing the workplace exposure to
toxic chemicals (Tuggle 1982). Wang and Wang (1998) showed that lognormal
distributions fit very well to the fiber diameter data as well as the fiber strength
data of merino wool. Lognormal distribution is also useful to describe the dis-
tribution of grain sizes (Jones et. al. 1999). Nabe et. al. (1998) analyzed data
on inter-arrival time and the access frequency of world wide web traffic. They
found that the document size and the request inter-arrival time follow lognormal
distributions, and the access frequencies follow a Pareto distribution.

22.9 Properties and Results

The following results can be proved using the relation between the lognormal
and normal distributions.
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1. Let X1 and X2 be independent random variables with Xi ∼ lognormal(µi, σ
2
i ),

i = 1, 2. Then

X1X2 ∼ lognormal(µ1 + µ2, σ2
1 + σ2

2)

and
X1/X2 ∼ lognormal(µ1 − µ2, σ2

1 + σ2
2).

2. Let X1, . . ., Xn be independent lognormal random variables with parame-
ters (µ, σ). Then

Geometric Mean =

(
n∏

i=1

Xi

)1/n

∼ lognormal

(
µ,

σ2

n

)
.

3. Let X1, . . ., Xn be independent lognormal random variables with
Xi ∼ lognormal(µi, σ2

i ), i = 1, . . . , n. For any positive numbers c1, . . ., cn,

n∏

i=1

ciXi ∼ lognormal

(
n∑

i=1

(ln ci + µi),
n∑

i=1

σ2
i

)
.

For more results and properties, see Crow and Shimizu (1988).

22.10 Random Number Generation

Algorithm 22.10.1

For given µ and σ:
Generate z from N(0, 1)
Set y = z ∗ σ + µ
return x = exp(y)

x is a pseudo random number from the lognormal(µ, σ2) distribution.

22.11 Computation of Probabilities and Percentiles

Using the relation that

P (X ≤ x) = P (ln(X) ≤ ln(x)) = P

(
Z ≤ ln(x)− µ

σ

)
,
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where Z is the standard normal random variable, the cumulative probabilities
and the percentiles of a lognormal distribution can be easily computed. Specif-
ically, if zp denotes the pth quantile of the standard normal distribution, then
exp(µ + zpσ) is the pth quantile of the lognormal(µ, σ2) distribution.
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Chapter 23

Pareto Distribution

23.1 Description

The probability density function of a Pareto distribution with parameters a and
b is given by

f(x|a, b) =
bab

xb+1
, x ≥ a > 0, b > 0. (23.1.1)

The cumulative distribution function is given by

F (x|a, b) = P (X ≤ x|a, b) = 1−
(

a

x

)b

, x ≥ a. (23.1.2)

For any given 0 < p < 1, the inverse distribution function is

F−1(p|a, b) =
a

(1− p)1/b
. (23.1.3)

Plots of the pdfs are given in Figure 23.1 for b = 1, 2, 3 and a = 1. All the plots
show long right tail; this distribution may be postulated if the data exhibit a
long right tail.
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Figure 23.1 Pareto pdfs; a = 1

23.2 Moments

Mean: ab
b−1 , b > 1.

Variance: ba2

(b−1)2(b−2)
, b > 2.

Mode: a

Median: a21/b

Mean Deviation: 2abb−1

(b−1)b , b > 1.

Coefficient of Variation:
√

1
b(b−2) , b > 2.

Coefficient of Skewness: 2(b+1)
(b−3)

√
b−2

b , b > 3.

Coefficient of Kurtosis: 3(b−2)(3b2+b+2)
b(b−3)(b−4) , b > 4.

Moments about the Origin: E(Xk) = bak

(b−k) , b > k.

Moment Generating Function: does not exist.

Survival Function: (a/x)b

Hazard Function: b ln(x/a)
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23.3 Computing Table Values

The dialog box [StatCalc→Continuous→Pareto] computes the cdf, percentiles, and
moments of a Pareto(a, b) distribution.

To compute probabilities: Enter the values of the parameters a, b, and x; click
[P(X <= x)].

Example 23.3.1 When a = 2, b = 3, and the value of x = 3.4, P (X ≤ 3.4) =
0.796458 and P (X > 3.4) = 0.203542.

To compute percentiles: Enter the values of a, b, and the cumulative probability;
click [x].

Example 23.3.2 When a = 2, b = 3, and the cumulative probability = 0.15, the
15th percentile is 2.11133. That is, P (X ≤ 2.11133) = 0.15.

To compute other parameters: Enter the values of one of the parameters,
cumulative probability and x. Click on the missing parameter.

Example 23.3.3 When b = 4, cumulative probability = 0.15, and x = 2.4, the
value of a is 2.30444.

To compute moments: Enter the values a and b and click [M].

23.4 Inferences

Let X1, . . . , Xn be a sample of independent observations from a Pareto(a, b)
distribution with pdf in (23.1.1). The following inferences are based on the
smallest order statistic X(1) and the geometric mean (GM). That is,

X(1) = min{X1, . . . , Xn} and GM =

(
n∏

i=1

Xi

)1/n

.
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23.4.1 Point Estimation

Maximum Likelihood Estimators

â = X(1)

and
b̂ =

1
ln(GM/â)

.

Unbiased Estimators

b̂u =
(

1− 1
2n

)
b̂ and âu =

(
1− 1

(n− 1)b̂

)
â,

where â and b̂ are the MLEs given above.

23.4.2 Interval Estimation

A 1− α confidence interval based on the fact that 2nb/b̂ ∼ χ2
2(n−1) is given by

(
b̂

2n
χ2

2(n−1),α/2,
b̂

2n
χ2

2(n−1),1−α/2

)
.

If a is known, then a 1− α confidence interval for b is given by
(

χ2
2n,α/2

2n ln(GM/a)
,

χ2
2n,1−α/2

2n ln(GM/a)

)
.

23.5 Applications

The Pareto distribution is often used to model the data on personal incomes and
city population sizes. This distribution may be postulated if the histogram of
the data from a physical problem has a long tail. Nabe et. al. (1998) studied the
traffic data of world wide web (www). They found that the access frequencies
of www follow a Pareto distribution. Atteia and Kozel (1997) showed that
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water particle sizes fit a Pareto distribution. The Pareto distribution is also
used to describe the lifetimes of components. Aki and Hirano (1996) mentioned
a situation where the lifetimes of components in a conservative-k-out-of-n-F
system follow a Pareto distribution.

23.6 Properties and Results

1. Let X1, . . ., Xn be independent Pareto(a, b) random variables. Then

a.

2b ln




n∏
i=1

Xi

an


 ∼ χ2

2n.

b.

2b ln




n∏
i=1

Xi

(X(1))n


 ∼ χ2

2(n−1),

where X(1) = min{X1, . . . , Xn}.

23.7 Random Number Generation

For a given a and b:
Generate u from uniform(0, 1)
Set x = a/(1− u) ∗ ∗(1/b)

x is a pseudo random number from the Pareto(a, b) distribution.

23.8 Computation of Probabilities and Percentiles

Using the expressions for the cdf in (23.1.2) and inverse cdf in (23.1.3), the
cumulative probabilities and the percentiles can be easily computed.
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Weibull Distribution

24.1 Description

Let Y be a standard exponential random variable with probability density func-
tion

f(y) = e−y, y > 0.

Define
X = bY 1/c + m, b > 0, c > 0.

The distribution of X is known as the Weibull distribution with shape parameter
c, scale parameter b, and the location parameter m. Its probability density is
given by

f(x|b, c, m) =
c

b

(
x−m

b

)c−1

exp
{
−

[
x−m

b

]c}
, x > m, b > 0, c > 0.

(24.1.1)
The cumulative distribution function is given by

F (x|b, c, m) = 1− exp
{
−

[
x−m

b

]c}
, x > m, b > 0, c > 0. (24.1.2)

For 0 < p < 1, the inverse distribution function is

F−1(p|b, c,m) = m + b(− ln(1− p))
1
c . (24.1.3)

Let us denote the three-parameter distribution by Weibull(b, c,m).
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Figure 24.1 Weibull pdfs; m = 0 and b = 1

24.2 Moments

The following formulas are valid when m = 0.

Mean: bΓ(1 + 1/c)

Variance: b2Γ(1 + 2/c)− [Γ(1 + 1/c)]2

Mode: b
(
1− 1

c

)1/c
, c ≥ 1.

Median: b[ln(2)]1/c

Coefficient of Variation:
√

Γ(1+2/c)−[Γ(1+1/c)]2

Γ(1+1/c)

Coefficient of Skewness: Γ(1+3/c)−3Γ(1+1/c)Γ(1+2/c)+2[Γ(1+1/c)]3

[Γ(1+2/c)−{Γ(1+1/c)}2]3/2

Moments about the Origin: E(Xk) = bkΓ(1 + k/c)

Inverse Distribution Function ( p ): b{− ln(1− p)}1/c

Survival Function: P (X > x) = exp{−(x/b)c}
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Inverse Survival Function ( p ): b{(1/c) ln(−p)}

Hazard Rate: cxc−1/bc

Hazard Function: (x/b)c

24.3 Computing Table Values

The dialog box [StatCalc→Continuous→Weibull] computes the cdf, percentiles,
and moments of a Weibull(b, c,m) distribution.

To compute probabilities: Enter the values of m, c, b, and the cumulative
probability; click [P(X <= x)].

Example 24.3.1 When m = 0, c = 2.3, b = 2, and x = 3.4, P (X ≤ 3.4) =
0.966247 and P (X > 3.4) = 0.033753.

To compute percentiles: Enter the values of m, c, b, and the cumulative proba-
bility; click [x].

Example 24.3.2 When m = 0, c = 2.3, b = 2, and the cumulative probability
= 0.95, the 95th percentile is 3.22259. That is, P (X ≤ 3.22259) = 0.95.

To compute other parameters: Enter the values of any two of m, c, b, cumulative
probability, and x. Click on the missing parameter.

Example 24.3.3 When m = 1, c = 2.3, x = 3.4, and the cumulative probability
= 0.9, the value of b is 1.67004.

To compute moments: Enter the values of c and b and click [M]. The moments
are computed assuming that m = 0.

24.4 Applications

The Weibull distribution is one of the important distributions in reliability the-
ory. It is the distribution that received maximum attention in the past few
decades. Numerous articles have been written demonstrating applications of
the Weibull distributions in various sciences. It is widely used to analyze the
cumulative loss of performance of a complex system in systems engineering. In
general, it can be used to describe the data on waiting time until an event occurs.
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In this manner, it is applied in risk analysis, actuarial science and engineering.
Furthermore, the Weibull distribution has applications in medical, biological,
and earth sciences. Arkai et. al. (1999) showed that the difference curve of two
Weibull distribution functions almost identically fitted the isovolumically con-
tracting left ventricular pressure-time curve. Fernandez et. al. (1999) modeled
experimental data on toxin-producing Bacillus cereus strain isolated from foods
by a Weibull distribution. The paper by Zobeck et. al. (1999) demonstrates
that the Weibull distribution is an excellent choice to describe the particle size
distribution of dust suspended from mineral sediment.

Although a Weibull distribution may be a good choice to describe the data
on lifetimes or strength data, in some practical situations it fits worse than its
competitors. For example, Korteoja et. al. (1998) reported that the Laplace
distribution fits the strength data on paper samples better than the Weibull and
extreme value distributions. Parsons and Lal (1991) showed that the extreme
value distribution fits flexural strength data better than the Weibull distribution.

24.5 Point Estimation

Let X1, . . ., Xn be a sample of observations from a Weibull distribution with
known m. Let Zi = Xi−m, where m is a known location parameter, and let Yi

= ln(Zi ). An asymptotically unbiased estimator of θ= (1/c) is given by

θ̂ =
√

6
π

√√√√√
n∑

i=1
(Yi − Ȳ )2

n− 1
.

Further, the estimator is asymptotically distributed as normal with variance =
1.1/(c2n) [Menon 1963]. When m is known, the MLE of c is the solution to the
equation

ĉ =

[
n∑

i=1

Z ĉ
i Yi/

n∑

i=1

Z ĉ
i − Ȳ

]−1

,

and the MLE of b is given by

b̂ =

(
1
n

n∑

i=1

Z ĉ
i

)1/ĉ

.
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24.6 Properties and Results

1. Let X be a Weibull(b, c, m) random variable. Then,
(

X −m

b

)c

∼ exp(1),

that is, the exponential distribution with mean 1.

2. It follows from (1) and the probability integral transform that

1− exp
[
−

(
X −m

b

)c]
∼ uniform(0, 1),

and hence

X = m + b[− ln(1− U)]1/c ∼ Weibull(b, c, m),

where U denotes the uniform(0, 1) random variable.

24.7 Random Number Generation

For a given m, b, and c:
Generate u from uniform(0, 1)
return x = m + b ∗ (− ln(1− u)) ∗ ∗(1/c)

x is a pseudo random number from the Weibull(b, c,m) distribution.

24.8 Computation of Probabilities and Percentiles

The tail probabilities and percentiles can be easily computed because the analyt-
ical expressions for the cdf (24.1.2) and the inverse cdf (24.1.3) are very simple
to use.
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Chapter 25

Extreme Value Distribution

25.1 Description

The probability density function of the extreme value distribution with the lo-
cation parameter a and the scale parameter b is given by

f(x|a, b) =
1
b

exp[−(x− a)/b] exp{− exp[−(x− a)/b]}, b > 0. (25.1.1)

The cumulative distribution function is given by

F (x|a, b) = exp{− exp[−(x− a)/b]}, −∞ < x < ∞, b > 0. (25.1.2)

The inverse distribution function is given by

F−1(p|a, b) = a− b ln(− ln(p)), 0 < p < 1. (25.1.3)

We refer to this distribution as extreme(a, b). The family of distributions of the
form (25.1.2) is referred to as Type I family. Other families of extreme value
distributions are:

Type II:

F (x|a, b) =

{
0 for x < a,

exp{− (
x−a

b

)−k} for x ≥ a, k > 0.

Type III:

F (x|a, b) =

{
exp{− (

a−x
b

)k} for x ≤ a, k > 0,
1 for x > a.
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Figure 25.1 Extreme value pdfs

25.2 Moments

Mean: a + γb,
where γ = 0.5772 15664 9. . . .

Mode: a

Median: a− b ln(ln 2)

Variance: b2π2/6

Coefficient of Skewness: 1.139547

Coefficient of Kurtosis: 5.4

Moment Generating Function: exp(at) Γ(1− bt), t < 1/b.

Characteristic Function: exp(iat) Γ(1− ibt)

Inverse Distribution Function: a− b ln(− ln p)

Inverse Survival Function: a – b ln(-ln (1 – p))

Hazard Function: exp[−(x−a)/b]
b{exp[exp(−(x−a)/b)]−1}
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25.3 Computing Table Values

The dialog box [StatCalc→Continuous→Extreme] computes probabilities, percentiles,
and moments of an extreme value distribution.

To compute probabilities: Enter the values of the parameters a and b, and of x;
click [P(X <= x)].

Example 25.3.1 When a = 2, b = 3 and x = 2.3, P (X ≤ 2.3) = 0.404608 and
P (X > 2.3) = 0.595392.

To compute percentiles: Enter the values of a, b and the cumulative probability;
click [x].

Example 25.3.2 When a = 1, b = 2, and the cumulative probability = 0.15, the
15th percentile is −0.280674. That is, P (X ≤ −0.280674) = 0.15.

Example 25.3.3 For any given three of the four values a, b, cumulative probabil-
ity and x, StatCalc computes the missing one. For example, when b = 2, x = 1,
and P(X <=x) = 0.15, the value of a is 2.28067.

To compute moments: Enter the values of a and b and click [M].

25.4 Maximum Likelihood Estimators

Let X1, ..., Xn be a sample from an extreme(a, b) distribution. Let X̄ denote the
sample mean, and X(j) denote the jth order statistic. The maximum likelihood
estimators of b and a are given by

b̂ = X̄ +
1
n

n∑

j=1

X(j)




n∑

i=j

1
i




and

â = −b̂ ln

[
1
n

n∑

i=1

exp(−Xi/b̂)

]
.
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25.5 Applications

Extreme value distributions are often used to describe the limiting distribution of
the maximum or minimum of n observations selected from an exponential family
of distributions such as normal, gamma, and exponential. They are also used
to model the distributions of breaking strength of metals, capacitor breakdown
voltage and gust velocities encountered by airplanes. Parsons and Lal (1991)
studied thirteen sets of flexural strength data on different kinds of ice and found
that between the three-parameter Weibull and the extreme value distributions,
the latter fits the data better. Belzer and Kellog (1993) used the extreme value
distribution to analyze the sources of uncertainty in forecasting peak power
loads. Onoz and Bayazit (1995) showed that the extreme value distribution
fits the flood flow data (collected from 1819 site-years from all over the world)
best among seven distributions considered. Cannarozzo et al. (1995), Karim
and Chowdhury (1995) and Sivapalan and Bloschl (1998) also used extreme
value distributions to model the rainfall and flood flow data. Xu (1995) used
the extreme value distribution to study the stochastic characteristics of wind
pressures on the Texas Tech University Experimental Building.

Extreme value distributions are also used in stress-strength model. Harring-
ton (1995) pointed out that if failure of a structural component is caused by the
maximum of a sequence of applied loads, then the applied load distribution is an
extreme value distribution. When strength of individual fibers is determined by
the largest defect, an extreme value distribution describes the distribution of the
size of the maximum defect of fibers. Lawson and Chen (1999) used an extreme
value distribution to model the distribution of the longest possible microcracks
in specimens of a fatigues aluminum-matrix silicon carbide whisker composite.

Kuchenhoff and Thamerus (1996) modeled extreme values of daily air pol-
lution data by an extreme value distribution. Sharma et al. (1999) used an
extreme value distribution for making predictions of the expected number of
violations of the National Ambient Air Quality Standards as prescribed by the
Central Pollution Control Board of India for hourly and eight-hourly average
carbon monoxide concentration in urban road intersection region. Application
of an extreme value distribution for setting the margin level in future markets
is given in Longin (1999).
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25.6 Properties and Results

1. If X is an exponential(0, b), then a− b ln(X) ∼ extreme(a, b).

2. If X and Y are independently distributed as extreme(a, b) random variable,
then

X − Y ∼ logistic(0, b).

3. If X is an extreme(0, 1) variable, then b exp(−X/c) ∼ Weibull(b, c, 0) and

exp[− exp(−X/b)] ∼ Pareto(a, b).

25.7 Random Number Generation

For a given a and b:
Generate u from uniform(0, 1)
Set x = a− b ∗ ln(− ln(u))

x is a pseudo random number from the extreme(a, b) distribution.

25.8 Computation of Probabilities and Percentiles

The cumulative probabilities and percentiles of an extreme values distribution
can be easily computed using (25.1.2) and (25.1.3).

© 2006 by Taylor & Francis Group, LLC



Chapter 26

Cauchy Distribution

26.1 Description

The probability density function of a Cauchy distribution with the location
parameter a and the scale parameter b is given by

f(x|a, b) =
1

π b[1 + ((x− a)/b)2]
, −∞ < a < ∞, b > 0.

The cumulative distribution function can be expressed as

F (x|a, b) =
1
2

+
1
π

tan−1
(

x− a

b

)
, b > 0. (26.1.1)

We refer to this distribution as Cauchy(a, b). The standard forms of the proba-
bility density function and the cumulative distribution function can be obtained
by replacing a with 0 and b with 1.

The inverse distribution function can be expressed as

F−1(p|a, b) = a + b tan(π(p− 0.5)), 0 < p < 1. (26.1.2)
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Figure 26.1 Cauchy pdfs; a = 0

26.2 Moments

Mean: does not exist

Median: a

Mode: a

First Quartile: a – b

Third Quartile: a + b

Moments: do not exist

Characteristic Function: exp(ita - |t|b)

26.3 Computing Table Values

The dialog box [StatCalc→Continuous→Cauchy] computes the cumulative proba-
bilities and percentiles of a Cauchy distribution.

To compute probabilities: Enter the values of the parameters a and b, and of x;
click [P(X <= x)].
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Example 26.3.1 When a = 1, b = 2, and x = 1.2, P (X ≤ 1.2) = 0.531726 and
P (X > 1.2) = 0.468274.

To compute percentiles: Enter the values of a, b, and cumulative probability;
click [x].

Example 26.3.2 When a = 1, b = 2 and the cumulative probability = 0.95, the
95th percentile is 13.6275. That is, P (X ≤ 13.6275) = 0.95.

To compute parameters: Enter the value of one of the parameters, cumulative
probability and x; click on the missing parameter.

Example 26.3.3 When b = 3, cumulative probability = 0.5, and x = 1.25, the
value of a is 1.25.

26.4 Inference

Let X1, ..., Xn be a sample from a Cauchy(a, b) distribution. For 0.5 < p < 1,
let Xp and X1−p denote the sample quantiles.

26.4.1 Estimation Based on Sample Quantiles

The point estimators of a and b based on the sample quantiles Xp and X1−p and
their variances are as follows.

â =
Xp + X1−p

2

with

Var(â) ' b̂2

n

[
π2

2
(1− p)

]
cosec4(πp), (26.4.1)

and

b̂ = 0.5(xp − x1−p) tan[π(1− p)]

with

Var(b̂) ' b̂2

n

[
2π2(1− p)(2p− 1)

]
cosec2(2πp).
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26.4.2 Maximum Likelihood Estimators

Maximum likelihood estimators of a and b are the solutions of the equations

1
n

n∑

i=1

2
1 + [(xi − a)/b]2

= 1

and
1
n

n∑

i=1

2xi

1 + [(xi − a)/b]2
= a.

26.5 Applications

The Cauchy distribution represents an extreme case and serves as counter ex-
amples for some well accepted results and concepts in statistics. For example,
the central limit theorem does not hold for the limiting distribution of the mean
of a random sample from a Cauchy distribution (see Section 26.6, Property 4).
Because of this special nature, some authors consider the Cauchy distribution
as a pathological case. However, it can be postulated as a model for describing
data that arise as n realizations of the ratio of two normal random variables.
Other applications given in the recent literature: Min et al. (1996) found that
Cauchy distribution describes the distribution of velocity differences induced by
different vortex elements. An application of the Cauchy distribution to study
the polar and non-polar liquids in porous glasses is given in Stapf et al. (1996).
Kagan (1992) pointed out that the Cauchy distribution describes the distribu-
tion of hypocenters on focal spheres of earthquakes. It is shown in the paper by
Winterton et al. (1992) that the source of fluctuations in contact window dimen-
sions is variation in contact resistivity, and the contact resistivity is distributed
as a Cauchy random variable.

26.6 Properties and Results

1. If X and Y are independent standard normal random variables, then
X/Y ∼ Cauchy(0, 1).

2. If X ∼ Cauchy(0, 1), then 2X/(1−X2) also ∼ Cauchy(0, 1).

3. Student’s t distribution specializes to the Cauchy(0, 1) distribution when
df = 1.
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4. If X1, . . ., Xk are independent random variables with Xj ∼ Cauchy(aj , bj),
j = 1, . . . , k. Then

k∑

j=1

cjXj ∼ Cauchy




k∑

j=1

cjaj ,
k∑

j=1

|cj | bj


 .

5. It follows from (4) that the mean of a random sample of n independent
observations from a Cauchy distribution follows the same distribution.

26.7 Random Number Generation

Generate u from uniform(0, 1)
Set x = tan[π ∗ (u− 0.5)]

x is a pseudo random number from the Cauchy(0, 1) distribution.

26.8 Computation of Probabilities and Percentiles

The cumulative probabilities and percentiles of a Cauchy distribution can be
easily computed using (26.1.1) and (26.1.2), respectively.
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Chapter 27

Inverse Gaussian Distribution

27.1 Description

The probability density function of X is given by

f(x|µ, σ) =
(

λ

2πx3

) 1
2

exp

(
−λ(x− µ)2

2µ2x

)
, x > 0, λ > 0, µ > 0. (27.1.1)

This distribution is usually denoted by IG(µ, λ). Using the standard normal cdf
Φ, the cdf of an IG(µ, λ) can be expressed as

F (x|µ, λ) = Φ




√
λ

x

(
x

µ
− 1

)
 + e2λ/µΦ


−

√
λ

x

(
x

µ
+ 1

)
 , x > 0, (27.1.2)

where Φ(x) is the standard normal distribution function.

Inverse Gaussian distributions offer a convenient modeling for positive right
skewed data. The IG family is often used as alternative to the normal family
because of the similarities between the inference methods for these two families.

281
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Figure 27.1 Inverse Gaussian pdfs; µ = 1

27.2 Moments

Mean: µ

Variance: µ3

λ

Mode: µ

[(
1 + 9µ2

4λ2

)1/2 − 3µ
2λ

]

Coefficient of Variation:
√

µ
λ

Coefficient of Skewness: 3
√

µ
λ

Coefficient of Kurtosis: 3 + 15µ/λ

Moments about the Origin: µk
k−1∑
i=0

(k−1+i)!
(k−1−i)!

( µ
2λ

)i
, k ≥ 2.

Moment Generating Function exp
[

λ
µ

(
1−

(
1− 2µ2t

λ

)1/2
)]

Mean Deviation: 4
√

λ
µ exp

(
2
√

λ
µ

)
Φ

(
−2

√
λ
µ

) √
µ3

λ ,

where Φ is the standard normal cdf.
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27.3 Computing Table Values

The dialog box [StatCalc→Continuous→Inv Gau→Probabilities, Percentiles and Mo-
ments] computes the cumulative probabilities, percentiles, and moments of an
IG(µ, λ) distribution. This dialog box also computes the necessary statistics for
the following inferential methods.

1. Test and Confidence Interval for the Mean [Section 27.4].

2. Test and Confidence Interval for the Difference Between Two Means [Sec-
tion 27.5.1].

3. Test and Confidence Interval for the Ratio of Two Means [Section 27.5.2].

To compute probabilities: Enter the values of the parameters µ and λ and the
observed value x; click [P].

Example 27.3.1 When µ = 2, λ = 1 and x = 3,

P (X ≤ 3) = 0.815981 and P (X > 3) = 0.184019.

To compute percentiles: Enter the values of µ and λ, and the cumulative prob-
ability P(X <= x); click on [x].

Example 27.3.2 When µ = 1, λ = 2, and the cumulative probability
P(X <= x) = 0.95, the 95th percentile is 2.37739. That is, P (X ≤ 2.37739) =
0.95.

To compute moments: Enter the values of µ and λ; click [M].

27.4 One-Sample Inference

Let X1, . . ., Xn be a sample from a IG(µ, λ) distribution. Define

X̄ =
1
n

n∑

i=1

Xi and V =
1
n

n∑

i=1

(1/Xi − 1/X̄). (27.4.1)

The sample mean X̄ is the MLE as well as unbiased estimate of µ and V −1 is
the MLE of λ. nV/(n− 1) is the minimum variance unbiased estimator of 1/λ.
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The mean X̄ and V are independent with X̄ ∼ IG(µ, nλ), and λnV ∼ χ2
n−1.

Furthermore, ∣∣∣∣∣

√
(n− 1)(X̄ − µ)

µ
√

X̄V

∣∣∣∣∣∼ |tn−1|,

where tm is a Student’s t variable with df = m.

27.4.1 A Test for the Mean

Let X̄ and V be as defined in (27.4.1). Define

S1 =
n∑

i=1

(Xi + µ0)2/Xi and S2 =
n∑

i=1

(Xi − µ0)2/Xi.

The p-value for testing

H0 : µ ≤ µ0 vs. Ha : µ > µ0

is given by

Fn−1 (−w0) +
(

S1

S2

)(n−2)/2

Fn−1

(
−

√
4n + w2

0µ0S1

)
, (27.4.2)

where Fm denotes the cdf of Student’s t variable with df = m, and w0 is an
observed value of

W =
√

(n− 1)(X̄ − µ0)

µ0

√
X̄V

.

The p-value for testing

H0 : µ = µ0 vs. Ha : µ 6= µ0,

is given by
P (|tn−1| > |w0|),

where tm denotes the t variable with df = m.

27.4.2 Confidence Interval for the Mean

A 1− α confidence interval for µ is given by



X̄

1 + tn−1,1−α/2

√
V X̄
n−1

,
X̄

max
{

0, 1 + tn−1,α/2

√
V X̄
n−1

}


 .
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Example 27.4.1 Suppose that a sample of 18 observations from an IG(µ, λ)
distribution yielded X̄ = 2.5 and V = 0.65. To find a 95% confidence interval
for the mean µ, select [StatCalc→Continuous→Inv Gau→CI and Test for Mean],
enter 0.95 for the confidence level, 18 for the sample size, 2.5 for the mean, and
0.65 for V, click [2-sided] to get (1.51304, 7.19009).

Suppose we want to test H0 : µ = 1.4 vs. Ha : µ 6= 1.4. Enter 1.4 for [H0:
M=M0], click [p-values for] to get 0.0210821.

27.5 Two-Sample Inference

The following two-sample inferential procedures are based on the generalized
variable approach given in Krishnamoorthy and Tian (2005). This approach
is valid only for two-sided hypothesis testing about µ1 − µ2, and constructing
confidence intervals for µ1−µ2 (not one-sided limits). More details can be found
in the above mentioned paper.

Let Xi1, ..., Xini be a sample from an IG(µi, λi) distribution, i = 1, 2. Let

X̄i =
1
ni

ni∑

j=1

Xij and Vi =
1
ni

ni∑

j=1

(1/Xij − 1/X̄i), i = 1, 2. (27.5.1)

The generalized variable of µi is given by

Gi =
x̄i

max
{
0, 1 + tni−1

√
x̄ivi
ni−1

} , i = 1, 2, (27.5.2)

where (x̄i, vi) is an observed value of (X̄i, Vi), i = 1, 2, and tn1−1 and tn2−1 are
independent Student’s t variables.

27.5.1 Inferences for the Difference between Two Means

Notice that for a given (ni, x̄i, vi), the distribution of the generalized variable
Gi in (27.5.2) does not depend on any unknown parameters. Therefore, Monte
Carlo method can be used to estimate the p-value for testing about µ1 − µ2 or
to find confidence intervals for µ1 − µ2. The procedure is given in the following
algorithm.
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Algorithm 27.5.1

For a given (n1, x̄1, v1, n2, x̄2, v2):
For j = 1,m
Generate tn1−1 and tn2−1

Compute G1 and G2 using (27.5.2)
Set Tj = G1 −G2

(end loop)

Suppose we are interested in testing

H0 : µ1 = µ2 vs. Ha : µ1 6= µ2.

Then, the generalized p-value for the above hypotheses is given by

2min {P (G1 −G2 < 0), P (G1 −G2 > 0)} .

The null hypothesis will be rejected when the above p-value is less than a spec-
ified nominal level α. Notice that P (G1 − G2 < 0) can be estimated by the
proportion of the Tj ’s in Algorithm 27.5.1 that are less than zero; similarly,
P (G1−G2 > 0) can be estimated by the proportion of the Tj ’s that are greater
than zero.

For a given 0 < α < 1, let Tα denotes the αth quantile of the Tj ’s in
Algorithm 27.5.1. Then, (Tα/2, T1−α/2) is a 1 − α confidence interval for the
mean difference.

StatCalc uses Algorithm 27.5.1 with m = 1, 000, 000 to compute the gener-
alized p-value and generalized confidence interval. The results are almost exact.
(see Krishnamoorthy and Tian 2005).

Example 27.5.1 Suppose that a sample of 18 observations from an IG(µ1, λ1)
distribution yielded x̄1 = 2.5 and v1 = 0.65. Another sample of 11 observations
from an IG(µ2, λ2) distribution yielded x̄2 = 0.5 and v2 = 1.15. To find a 95%
confidence interval for the mean difference µ1 − µ2, enter these statistics in the
dialog box [StatCalc→Continuous→Inv Gau→CI and Test for Mean1-Mean2], 0.95
for the confidence level and click [2-sided] to get (0.85, 6.65).

The p-value for testing H0 : µ1 = µ2 vs. Ha : µ1 6= µ2 is given by 0.008.
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27.5.2 Inferences for the Ratio of Two Means

Let G1 and G2 be as defined in (27.5.2), and let R = G1/G2. The generalized
p-value for testing

H0 :
µ1

µ2
= 1 vs. Ha :

µ1

µ2
6= 1

is given by
2min {P (R < 1), P (R > 1)} .

Let Rp denote the 100pth percentile of R. Then, (Rα/2, R1−α/2) is a 1 − α
confidence interval for the ratio of the IG means.

The generalized p-value and confidence limits for µ1/µ2 can be estimated
using Monte Carlo method similar to the one given in Algorithm 27.5.1. The
results are very accurate for practical purposes (see Krishnamoorthy and Tian
2005).

Example 27.5.2 Suppose that a sample of 18 observations from an IG(µ1, λ1)
distribution yielded x̄1 = 2.5 and v1 = 0.65. Another sample of 11 observations
from an IG(µ2, λ2) distribution yielded x̄2 = 0.5 and v2 = 1.15. To find a 95%
confidence interval for the ratio µ1/µ2, enter these statistics and 0.95 for the con-
fidence level in [StatCalc→ Continuous→Inv Gau→CI and Test for Mean1/Mean2],
and click [2-sided] to get (2.05, 15.35).

The p-value for testing H0 : µ1 = µ2 vs. Ha : µ1 6= µ2 is given by 0.008.

27.6 Random Number Generation

The following algorithm is due to Taraldsen and Lindqvist (2005).

Algorithm 27.6.1

For a given µ and λ:
Generate w ∼ uniform(0, 1) and z ∼ N(0, 1)

set v = z2

d = λ/µ
y = 1− 0.5(

√
v2 + 4dv − v)/d

x = yµ
if (1 + y)w > 1, set x = 1/(yµ)

x is a random number from the IG(µ, λ) distribution.
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27.7 Computational Methods for Probabilities and
Percentiles

Since

P (X ≤ x|µ, λ) = Φ




√
λ

x

(
x

µ
− 1

)
 + e2λ/µΦ


−

√
λ

x

(
x

µ
+ 1

)
 , for x > 0,

the cumulative probabilities can be computed using the standard normal distri-
bution function. StatCalc uses the above method for computing the cdf, and a
root finding method to compute the percentiles.
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Chapter 28

Rayleigh Distribution

28.1 Description

The Rayleigh distribution with the scale parameter b has the pdf

f(x|b) =
x

b2
exp

(
−1

2
x2

b2

)
, x > 0, b > 0.

The cumulative distribution function is given by

F (x|b) = 1− exp

(
−1

2
x2

b2

)
, x > 0, b > 0. (28.1.1)

Letting F (x|b) = p, and solving (28.1.1) for x, we get the inverse distribution
function as

F−1(p|b) = b
√
−2 ln(1− p), 0 < p < 1, b > 0. (28.1.2)

We observe from the plots of pdfs in Figure 28.1 that the Rayleigh distribution
is always right skewed.
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Figure 28.1 Rayleigh pdfs

28.2 Moments

Mean: b
√

π
2

Variance:
(
2− π

2

)
b2

Mode: b

Median: b
√

ln(4)

Coefficient of Variation:
√

(4/π−1)

Coefficient of Skewness: 2(π−3)
√

π

(4−π)3/2

Coefficient of Kurtosis: (32−3π2)

(4−π)2

Moments about the Origin: 2k/2bkΓ(k/2 + 1)

28.3 Computing Table Values

The dialog box [StatCalc→Continuous→Rayleigh] computes the tail probabilities,
percentiles and moments of a Rayleigh distribution.
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To compute probabilities: Enter the values of the parameter b and x; click
[P(X <= x)].

Example 28.3.1 When b = 2 and x = 2.3, P (X ≤ 2.3) = 0.733532 and
P (X > 2.3) = 0.266468.

To compute percentiles: Enter the values of b and the cumulative probability
P (X <= x); click on [x].

Example 28.3.2 When b = 1.2, and the cumulative probability P (X <= x) =
0.95, the 95th percentile is 2.07698. That is, P (X ≤ 2.07698) = 0.95.

To compute the Value of b: Enter the values of x and the cumulative probability
P(X <= x); click on [b].

Example 28.3.3 When x = 3, and the cumulative probability P(X <= x) = 0.9,
the value of b is 1.97703. That is, P (X ≤ 3|b = 1.97703) = 0.9.

To compute moments: Enter the value of b and click [M].

28.4 Maximum Likelihood Estimator

The MLE of b, based on a sample X1, ..., Xn, is given by

b̂ =

√√√√ 1
2n

n∑

i=1

X2
i .

28.5 Relation to Other Distributions

1. Let X1 and X2 be independent N(0, b2) random variables. Then,
Y =

√
X2

1 + X2
2 follows a Rayleigh(b) distribution.

2. The Rayleigh(b) distribution is a special case of the Weibull distribution
(see Chapter 24) with b =

√
2b, c = 2 and m = 0.

3. Let X be a Rayleigh(b) random variable. Then, Y = X2 follows an expo-
nential distribution with mean 2b2. That is, Y has the pdf

1
2b2

exp
(
− y

2b2

)
, y > 0.
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292 28 Rayleigh Distribution

28.6 Random Number Generation

Since the cdf has explicit from (see Section 28.1), random numbers can be gen-
erated using inverse transformation:

For a given b :
Generate u ∼ uniform(0,1)
Set x = b ∗√−2 ln(u)

x is a random number from the Rayleigh(b)
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Chapter 29

Bivariate Normal Distribution

29.1 Description

Let (Z1, Z2) be a bivariate normal random vector with

E(Z1) = 0, Var(Z1) = 1.0, E(Z2) = 0, Var(Z2) = 1.0

and
Correlation(Z1, Z2) = ρ.

The probability density function of (Z1, Z2) is given by

f(z1, z2|ρ) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)

(
z2
1 − 2ρ z1z2 + z2

2

)}
, (29.1.1)

−∞ < z1 < ∞, −∞ < z2 < ∞, −1 < ρ < 1.

Suppose that (X1, X2) is a bivariate normal random vector with

E(X1) = µ1, Var(X1) = σ11, E(X2) = µ2, Var(X2) = σ22

and the covariance, Cov(X1, X2) = σ12. Then
(

X1 − µ1√
σ11

,
X2 − µ2√

σ22

)

is distributed as (Z1, Z2) with correlation coefficient ρ = σ12√
σ11σ22

. That is,

P (X1 ≤ a,X2 ≤ b) = P

(
Z1 ≤ a− µ1√

σ11
, Z2 ≤ b− µ2√

σ22

)
.

293
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294 29 Bivariate Normal Distribution

The following relations are useful for computing probabilities over different
regions.

a. P (Z1 ≤ a, Z2 > b) = Φ(a)− P (Z1 ≤ a, Z2 ≤ b),

b. P (Z1 > a, Z2 ≤ b) = Φ(b)− P (Z1 ≤ a, Z2 ≤ b),

c. P (Z1 > a, Z2 > b) = 1− Φ(a)− Φ(b) + P (Z1 ≤ a, Z2 ≤ b),

where Φ is the standard normal distribution function.

29.2 Computing Table Values

Let (X, Y ) be a bivariate normal random vector with mean = (0, 0), and the cor-
relation coefficient ρ. For given x, y, and ρ, the dialog box [StatCalc→Continuous→
Biv Normal→All Tail Probabilities] computes the following probabilities:

a. P (X ≤ x, Y > y)

b. P (X > x, Y > y)

c. P (X > x, Y ≤ y)

d. P (X ≤ x, Y ≤ y), and

e. P (|X| < x, |Y | < y).

Example 29.2.1 When x = 1.1, y = 0.8, and ρ = 0.6,

a. P (X ≤ 1.1, Y > 0.8) = 0.133878

b. P (X > 1.1, Y > 0.8) = 0.077977

c. P (X > 1.1, Y ≤ 0.8) = 0.057689

d. P (X ≤ 1.1, Y ≤ 0.8) = 0.730456, and

e. P (|X| < 1.1, |Y | < 0.8) = 0.465559.
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If (X, Y ) is a normal random vector with mean = (µ1, µ2) and covariance matrix

Σ =

(
σ11 σ12

σ21 σ22

)
,

then to compute the probabilities at (x, y), enter the standardized values x−µ1√
σ11

for the x value, y−µ2√
σ22

for the y value and σ12√
σ11σ22

for the correlation coefficient,
and click on [P].

29.3 An Example

Example 29.3.1 The Fuel Economy Guide published by the Department of
Energy reports that for the 1998 compact cars the average city mileage is 22.8
with standard deviation 4.5, the average highway mileage is 31.1 with standard
deviation is 5.5. In addition, the correlation coefficient between the city and
highway mileage is 0.95.

a. Find the percentage of 1998 compact cars that give city mileage greater
than 20 and highway mileage greater than 28.

b. What is the average city mileage of a car that gives highway mileage of 25?

Solution: Let (X1, X2) denote the (city, highway) mileage of a randomly selected
compact car. Assume that (X1, X2) follows a bivariate normal distribution with
the means, standard deviation and correlation coefficient given in the problem.

a.

P (X1 > 20, X2 > 28) = P

(
Z1 >

20− 22.8
4.5

, Z2 >
28− 31.1

5.5

)

= P (Z1 > −0.62, Z2 > −0.56)
= 0.679158.

That is, about 68% of the 1998 compact cars give at least 20 city mileage
and at least 28 highway mileage. To find the above probability, select the
dialog box [StatCalc→Continuous→Biv Normal→All Tail Probabilities] from
StatCalc, enter −0.62 for the [x value], −0.56 for the [y value], and 0.95
for the correlation coefficient; click [P].
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296 29 Bivariate Normal Distribution

b. From Section 29.5, Property 4, we have

µ 1 +
√

σ11

σ22
ρ(x2 − µ2) = 22.8 +

4.5
5.5

× 0.95× (25− 31.1)

= 18.06 miles.

For other applications and more examples, see “Tables of the Bivariate
Normal Distribution Function and Related Functions,” National Bureau
of Standards, Applied Mathematics Series 50, 1959.

29.4 Inferences on Correlation Coefficients

Let (X11, X21), . . . , (X1n, X2n) be a sample of independent observations from a
bivariate normal population with

covariance matrix Σ =

(
σ11 σ12

σ21 σ22

)
.

The population correlation coefficient is defined by

ρ =
σ12√
σ11σ22

, −1 ≤ ρ ≤ 1. (29.4.1)

Define

(
X̄1

X̄2

)
=




1
n

n∑
i=1

X1i

1
n

n∑
i=1

X2i


 and S =

(
s11 s12

s21 s22

)
, (29.4.2)

where sii denotes the sample variance of Xi, i = 1, 2, and s12 denotes the sample
covariance between X1 and X2 and is computed as

s12 =
1

n− 1

n∑

i=1

(X1i − X̄1)(X2i − X̄2).

The sample correlation coefficient is defined by

r =
s12√
s11s22

, −1 ≤ r ≤ 1.

The probability density function of r is given by

f(r|ρ) =
2n−3(1− ρ2)(n−1)/2(1− r2)n/2−2

(n− 3)!π

∞∑

i=0

(2rρ)i

i!
{Γ[(n + i− 1)/2]}2 .

(29.4.3)
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Another form of the density function is given by Hotelling (1953):

(n− 2)√
2π

Γ(n− 1)
Γ(n− 1/2)

(1− ρ2)(n−1)/2(1− r2)n/2−2(1− rρ)−n+3/2

× F

(
1
2
;

1
2
; n− 1

2
;

1 + rρ

2

)
, (29.4.4)

where

F (a; b; c; x) =
∞∑

j=0

Γ(a + j)
Γ(a)

Γ(b + j)
Γ(b)

Γ(c)
Γ(c + j)

xj

j!
.

This series converges faster than the series in (29.4.3).

29.4.1 Point Estimation

The sample correlation coefficient r is a biased estimate of the population cor-
relation coefficient ρ. Specifically,

E(r) = ρ− ρ(1− ρ2)
2(n− 1)

+ O
(
1/n2

)
.

The estimator

U(r) = r +
r(1− r2)
(n− 2)

, (29.4.5)

is an asymptotically unbiased estimator of ρ; the bias is of O(1/n2). [Olkin and
Pratt 1958]

29.4.2 Hypothesis Testing

An Exact Test

Consider the hypotheses

H0 : ρ ≤ ρ0 vs. Ha : ρ > ρ0. (29.4.6)

For a given n and an observed value r0 of r, the test that rejects the null
hypothesis whenever P (r > r0|n, ρ0) < α has exact size α. Furthermore, when

H0 : ρ ≥ ρ0 vs. Ha : ρ < ρ0, (29.4.7)
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298 29 Bivariate Normal Distribution

the null hypothesis will be rejected if P (r < r0|n, ρ0) < α. The null hypothesis
of

H0 : ρ = ρ0 vs. Ha : ρ 6= ρ0, (29.4.8)

will be rejected whenever

P (r < r0|n, ρ0) < α/2 or P (r > r0|n, ρ0) < α/2.

The above tests are uniformly most powerful (UMP) among the scale and lo-
cation invariant tests. (see Anderson 1984, p 114.) The above p-values can be
computed by numerically integrating the pdf in (29.4.4).

A Generalized Variable Test

The generalized test given in Krishnamoorthy and Xia (2005) involves Monte
Carlo simulation, and is equivalent to the exact test described above. The
following algorithm can be used to compute the p-value and confidence interval
for ρ.

Algorithm 29.4.1

For a given n and r:
Set r∗ = r/

√
1− r2

For i = 1 to m
Generate Z ∼ N(0, 1), U1 ∼ χ2

n−1 and U2 ∼ χ2
n−2

Set Gi = r∗
√

U2−Z√
(r∗

√
U2−Z)2

+U1

[end loop]

The generalized p-value for (29.4.6) is estimated by the proportion of Gi’s that
are less than ρ0. The H0 in (29.4.6) will be rejected if this generalized p-value
is less than α. Similarly, the generalized p-value for (29.4.7) is estimated by
the proportion of Gi’s that are greater than ρ0, and the generalized p-value for
(29.4.8) is given by two times the minimum of one-sided p-values.

The dialog box [StatCalc→Continuous→Biv Normal→Test and CI for Correlation
Coefficient] uses Algorithm 29.4.1 with m = 500, 000 for computing the gener-
alized p-values for hypothesis test about ρ. Krishnamoorthy and Xia (2005)
showed that these generalized p-values are practically equivalent to the exact
p-values described in the preceding subsection.

Example 29.4.1 Suppose that a sample of 20 observations from a bivariate
normal population produced the correlation coefficient r = 0.75, and we like to
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test, H0 : ρ ≤ 0.5 vs. Ha : ρ > 0.5. To compute the p-value using StatCalc,
enter 20 for n, 0.75 for [Sam Corrl r] and 0.5 for [rho 0]. Click [p-values for] to get
0.045. Since the p-value is less than 0.05, we can conclude that the population
correlation coefficient is larger than 0.5 at the 5% level.

29.4.3 Interval Estimation

An Approximate Confidence Interval

An approximate confidence interval for ρ is based on the well-known Fisher’s Z
transformation of r. Let

Z =
1
2

ln
(

1 + r

1− r

)
and µρ =

1
2

ln
(

1 + ρ

1− ρ

)
. (29.4.9)

Then
Z ∼ N(µρ, (n− 3)−1) asymptotically. (29.4.10)

The confidence interval for ρ is given by
(
tanh[Z − zα/2/

√
n− 3], tanh[Z + zα/2/

√
n− 3]

)
, (29.4.11)

where tanh(x) = ex−e−x

ex+e−x , and zp is the upper pth quantile of the standard normal
distribution.

An Exact Confidence Interval

Let r0 be an observed value of r based on a sample of n bivariate normal ob-
servations. For a given confidence level 1 − α, the upper limit ρU for ρ is the
solution of the equation

P (r ≤ r0|n, ρU ) = α/2, (29.4.12)

and the lower limit ρLis the solution of the equation

P (r ≥ r0|n, ρL) = α/2. (29.4.13)

See Anderson (1984, Section 4.2.2 ). One-sided limits can be obtained by re-
placing α/2 by α in the above equations. Although (29.4.12) and (29.4.13) are
difficult to solve for ρU and ρL, they can be used to assess the accuracy of the
approximate confidence intervals (see Krishnamoorthy and Xia 2005).
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The Generalized Confidence Interval for ρ

The generalized confidence interval due to Krishnamoorthy and Xia (2005) can
be constructed using the percentiles of the Gi’s given in Algorithm 29.4.1. Specif-
ically, (Gα/2, G1−α/2), where Gp, 0 < p < 1, denotes the pth quantile of Gi’s, is
a 1 − α confidence interval. Furthermore, these confidence intervals are exact
because the endpoints satisfy the equations (29.4.13) and (29.4.12). For exam-
ple, when n = 20, r = 0.7, the 95% generalized confidence interval for ρ (using
StatCalc) is given by (0.365, 0.865). The probabilities in (29.4.13) and (29.4.12)
are

P (r ≥ 0.7|20, 0.365) = 0.025 and P (r ≤ 0.7|20, 0.865) = 0.025.

In this sense, the generalized confidence limits are exact for samples as small as
three (see Krishnamoorthy and Xia 2005).

The dialog box [StatCalc→Continuous→Biv Normal→Test and CI for Correlation
Coefficient] uses Algorithm 29.4.1 with m = 500, 000 for computing the general-
ized confidence intervals for ρ.

Example 29.4.2 Suppose that a sample of 20 observations from a bivariate
normal population produced the correlation coefficient r = 0.75. To compute a
95% confidence interval for ρ using StatCalc, enter 20 for n, 0.75 for [Sam Corrl r]
and 0.95 for [Conf Lev]. Click [1] to get one-sided confidence limits 0.509 and
0.872; click [2] to get confidence interval as (0.450, 0.889).

Example 29.4.3 The marketing manager of a company wants to determine
whether there is a positive association between the number of TV ads per week
and the amount of sales (in $1,000). He collected a sample of data from the
records as shown in the following table.

Table 29.1 TV Sales Data
No. of ads, x1 5 7 4 4 6 7 9 6 6

Sales, x2 24 30 18 20 21 29 31 22 25

The sample correlation coefficient is given by

r =

n∑
i=1

(x1i − x̄1)(x2i − x̄2)
√

n∑
i=1

(x1i − x̄1)2
n∑

i=1
(x2i − x̄2)2

= 0.88.

An unbiased estimator using (29.4.5) is 0.88 + 0.88(1− 0.882)/7 = 0.91.
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To compute a 95% confidence interval for the population correlation coef-
ficient ρ, select [Continuous→Biv Normal→Test and CI for Correlation Coefficient]
from StatCalc, enter 9 for n, 0.88 for sample correlation coefficient, 0.95 for the
confidence level, click [2] to get (0.491, 0.969).

Suppose we want to test

H0 : ρ ≤ 0.70 vs. Ha : ρ > 0.70.

To compute the p-value, enter 9 for n, 0.88 for the sample correlation and 0.70
for [rho 0]; click [p-values for] to get 0.122. Since this is not less than 0.05,
at the 5% level, there is not sufficient evidence to indicate that the population
correlation coefficient is greater than 0.70.

29.4.4 Inferences on the Difference between Two Correlation
Coefficients

Let ri denote the correlation coefficient based on a sample of ni observations
from a bivariate normal population with covariance matrix Σi, i = 1, 2. Let ρi

denote the population correlation coefficient based on Σi, i = 1, 2.

An Asymptotic Approach

The asymptotic approach is based on Fisher’s Z transformation given for the
one-sample case, and is mentioned in Anderson (1984, p. 114). Let

Zk =
1
2

ln
(

1 + rk

1− rk

)
and µρk

=
1
2

ln
(

1 + ρk

1− ρk

)
, k = 1, 2. (29.4.14)

Then, it follows from the asymptotic result in (29.4.10) that,

(Z1 − Z2)− (µρ1 − µρ2)√
1

n1−3 + 1
n2−3

∼ N(0, 1) asymptotically. (29.4.15)

Using the above asymptotic result one can easily develop test procedures for
ρ1 − ρ2. Specifically, for an observed value (z1, z2) of (Z1, Z2), the p-value for
testing

H0 : ρ1 ≤ ρ2 vs. Ha : ρ1 > ρ2 (29.4.16)

is given by 1.0− Φ
(
(z1 − z2)/

√
1/(n1 − 3) + 1/(n2 − 3)

)
, where Φ is the stan-

dard normal distribution function. Notice that, using the distributional result
in (29.4.15), one can easily obtain confidence interval for µρ1 − µρ2 but not for
ρ1 − ρ2.
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Generalized Test and Confidence Limits for ρ1 − ρ2

The generalized p-values and confidence intervals can be obtained using the
following algorithm.

Algorithm 29.4.2

For a given (r1, n1) and (r2, n2):
Set r∗1 = r1/

√
1− r2

1 and r∗2 = r2/
√

1− r2
2

For i = 1 to m
Generate Z10 ∼ N(0, 1), U11 ∼ χ2

n1−1 and U12 ∼ χ2
n1−2

Z20 ∼ N(0, 1), U21 ∼ χ2
n2−1 and U22 ∼ χ2

n2−2

Set Ti = r∗1
√

U12−Z01√
(r∗1

√
U12−Z01)2

+U11

− r∗2
√

U22−Z02√
(r∗2

√
U22−Z02)2

+U21

(end loop)

Suppose we want to test

H0 : ρ1 − ρ2 ≤ c vs. Ha : ρ1 − ρ2 > c, (29.4.17)

where c is a specified number. The generalized p-value for (29.4.17) is estimated
by the proportion of the Ti’s that are less than c. The H0 in (29.4.17) will
be rejected if this generalized p-value is less than α. Similarly, the generalized
p-value for a left-tail test is estimated by the proportion of Ti’s that are greater
than c, and the generalized p-value for a two-tail test is given by two times the
minimum of the one-sided p-values.

Generalized confidence limits for ρ1 − ρ2 can be constructed using the per-
centiles of the Ti’s in Algorithm 29.4.2. In particular, (Tα/2, T1−α/2), where Tp,
0 < p < 1, is a 1− α confidence interval for ρ1 − ρ2.

The dialog box [StatCalc→Continuous→Biv Normal→Test and CI for rho1 - rho2]
uses Algorithm 29.4.2 with m = 500, 000 for computing the generalized p-values
and generalized confidence intervals for ρ1 − ρ2.

Example 29.4.4 Suppose that a sample of 15 observations from a bivariate
normal population produced the correlation coefficient r1 = 0.8, and a sample
from another bivariate normal population yielded r2 = 0.4. It is desired to test

H0 : ρ1 − ρ2 ≤ 0.1 vs. Ha : ρ1 − ρ2 > 0.1.

To compute the p-value using StatCalc, enter the sample sizes and correlation
coefficients in the appropriate edit boxes, and 0.1 for [H0: rho1 - rho2]; click on
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[p-values for] to get 0.091. Because this p-value is not less than 0.05, the H0 can
not be rejected at the level of significance 0.05.

To get confidence intervals for ρ1−ρ2, click on [1] to get one-sided limits, and
click on [2] to get confidence interval. For this example, 95% one-sided limits
for ρ1 − ρ2 are 0.031 and 0.778, and 95% confidence interval is (−0.037, 0.858).

29.5 Some Properties

Suppose that (X1, X2) is a bivariate normal random vector with

E(X1) = µ1, Var(X1) = σ11, E(X2) = µ2, Var(X2) = σ22

and the covariance, Cov(X1, X2) = σ12.

1. The marginal distribution of X1 is normal with mean µ1 and variance σ11.

2. The marginal distribution of X2 is normal with mean µ2 and variance σ22.

3. The distribution of aX1 + bX2 is normal with

mean = aµ1 + bµ2 and variance = a2σ11 + b2σ22 + 2abσ12.

4. The conditional distribution of X1 given X2 is normal with

mean = µ1 +
σ12

σ22
(x2 − µ2)

= µ 1 + ρ

√
σ11

σ22
(x2 − µ2)

and
variance = σ11 − σ2

12/σ22.

29.6 Random Number Generation

The following algorithm generates bivariate normal random vectors with mean
(µ1, µ2) and variances σ11 and σ22, and the correlation coefficient ρ.
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Algorithm 29.5.1

Generate independent N(0, 1) variates u and v
Set
x1 = µ1 +

√
σ11 ∗ u

x2 =
√

σ22 ∗ (ρ ∗ u + v ∗ √1− ρ ∗ ∗2) + µ2

For a given n and ρ, correlation coefficients r can be generated using the
following results. Let A = (n − 1)S, where S is the sample covariance matrix
defined in (29.4.2). Write

A = V V ′, where V =

(
v11 0
v21 v22

)
, vii > 0, i = 1, 2.

Similarly, let us write

Σ =

(
σ11 σ12

σ21 σ22

)
= θθ′, where θ =

(
θ11 0
θ21 θ22

)
, θii > 0, i = 1, 2.

Then, V is distributed as θT , where T is a lower triangular matrix whose el-
ements tij are independent with t211 ∼ χ2

n−1, t222 ∼ χ2
n−2 and t21 ∼ N(0, 1).

Furthermore, note that the population correlation coefficient can be expressed
as

ρ =
θ21√

θ2
21 + θ2

22

=
θ21/θ22√

θ2
21/θ2

22 + 1
.

The above equation implies that
θ21

θ22
= ρ

/√
1− ρ2 = ρ∗, say.

Similarly, the sample correlation coefficient can be expressed in terms of the
elements vij of V as

r =
v21√

v2
21 + v2

22

∼ θ21t11 + θ22t21√
(θ21t11 + θ22t21)2 + θ2

22t
2
22

=
ρ∗t11 + t21√

(ρ∗t11 + t21)2 + t222

.

Using these results, we get the following algorithm for generating r.

Algorithm 29.5.2

For a given sample size n and ρ:

Set ρ∗ = ρ

/√
1− ρ2

Generate t211 ∼ χ2
n−1, t222 ∼ χ2

n−2, and t21 ∼ N(0, 1)
Set r = ρ∗t11+t21√

(ρ∗t11+t21)2+t222
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29.7 A Computational Algorithm for Probabilities

In the following Φ(x) denotes the standard normal distribution function and
Prob = P (Z1 > x, Z2 > y). Define

f(x, y) =
1√
2π

∫ x

0
Φ

(
ty

x

)
exp(−t2/2)dt.

If ρ = 0, return Prob = (1− Φ(x)) ∗ (1− Φ(y))

If x = 0 and y = 0, return Prob = 0.25 + arc sin(ρ)/(2π)

If ρ = 1 and y ≤ x, return Prob = 1− Φ(x)

If ρ = 1 and y > x, return Prob = 1− Φ(y)

If ρ = −1 and x + y ≥ 0, return Prob = 0

If ρ = −1 and x + y ≤ 0, return Prob = 1− Φ(x)− Φ(y)

F = 0.25− 0.5 ∗ (Φ(x) + Φ(y)− 1) + arcsin(ρ)/(2 ∗ π)

Prob = f

(
x, y−ρx√

1−ρ2

)
+ f

(
y, x−ρy√

1−ρ2

)
+ F

[Tables of the Bivariate Normal Distribution Function and Related Functions;
National Bureau of Standards, Applied Mathematics Series 50, 1959]
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Chapter 30

Distribution of Runs

30.1 Description

Consider a random arrangement of m + n elements, m of them are one type,
and n of them are of another type. A run is a sequence of symbols of the same
type bounded by symbols of another type except for the first and last position.
Let R denote the total number of runs in the sequence. The probability mass
function of R is given by

P (R = r|m,n) =
2
( m−1
r/2−1

)( n−1
r/2−1

)
(m+n

n

) for even r,

and

P (R = r|m,n) =

( m−1
(r−1)/2

)( n−1
(r−3)/2

)
+

( m−1
(r−3)/2

)( n−1
(r−1)/2

)
(m+n

n

) for odd r.

The distribution of runs is useful to test the hypothesis of randomness of an
arrangement of elements. The hypotheses of interest are

H0: arrangement is random vs. Ha: arrangement is non random.

Too many runs or too few runs provide evidence against the null hypothesis.
Specifically, for a given m, n, the observed number of runs r of R, and the level
of significance α, the H0 will be rejected if the p-value

2min{P (R ≤ r), P (R ≥ r)} ≤ α.
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The plots of probability mass functions of runs in Figure 30.1 show that the
run distribution is asymmetric when m 6= n and symmetric when m = n.
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Figure 30.1 Probability Mass Functions of Runs

Moments

Mean: 1 + 2mn
m+n

Variance: 2mn(2mn−m−n)
(m+n)2(m+n−1)
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30.2 Computing Table Values

For given m and n, the dialog box [StatCalc→Nonparametric→Distribution of Runs]
evaluates the distribution function of R and critical points.

Example 30.2.1 Consider the following sequence:

a a a b b a b b b a a a a b b a a a a b

Here m = 12, n = 8, and the observed number of runs r = 8. To compute
the probabilities using StatCalc, enter 12 for the number of [1st type symbols],
8 for the number of [2nd type symbols], and 8 for the [Observed runs r]; click
on [P(R <= r)] to get

P (R ≤ 8) = 0.159085 and P (R ≥ 8) = 0.932603.

Since the probability of observing 8 or fewer runs is not less than 0.025, the null
hypothesis that the arrangement is random will be retained at the level 0.05.
To find the critical value, enter 0.025 for the tail probability, and click on [Left
Crt] to get

P (R ≤ 6) = 0.024609 and P (R ≥ 16) = 0.00655.

This means that the null hypothesis of randomness will be rejected (at the 5%
level) if the observed number of runs is 6 or less, or, 16 or more.

30.3 Examples

Example 30.3.1 Consider the simple linear regression model

Yi = α + βXi + εi, i = 1, ..., N.

It is usually assumed that the error terms εi’s are random. This assumption can
be tested using the estimated errors

ei = Yi − Ŷi, i = 1, ..., N,

where Yi and Ŷi denote, respectively, the observed value and the predicted value
of the ith individual. Suppose that the estimated errors when N = 18 are:
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-3.85 -0.11 6.63 -2.42 3.63 5.37 0.15 -2.76 -3.54
5.85 2.42 -6.37 -2.15 -0.37 3.24 3.48 -7.63 3.37

The arrangement of the signs of the errors is given by

−−+−+ + +−−+ +−−−+ +−+

In this example, m = 9, n = 9, and the observed number of runs r = 10. We
want to test the null hypothesis that the errors are randomly distributed at
the level of significance 0.05. To compute the p-value, select the dialog box
[StatCalc→Nonparametric→Distribution of Runs], enter 9 for the number of first
type of symbols, 9 for the number of second type symbols, and 10 for the observed
number of runs; click [P(R <= r)] to get

P (R ≤ 10) = 0.600782 and P (R ≥ 10) = 0.600782.

Since these probabilities are greater than 0.05/2 = 0.025, the null hypothesis of
randomness will be retained at the 5% level.

To get the critical values, enter 0.025 for the tail probability, and click [Left
Crt] to get 5 and 15. That is, the left-tail critical value is 5 and the right-tail
critical value is 15. Thus, the null hypothesis will be rejected at 0.05 level, if
the total number of runs is 5 or less or 15 or more.

Example 30.3.2 Suppose that a sample of 20 students from a school is selected
for some purpose. The genders of the students are recorded as they were selected:

M F M F F M F F M F M F F M F F M M F

We like to test if this really is a random sample. In this example, m = 8 (number
of male students), n = 12 (number of female students), and the total number of
runs = 14. Since the mean number of runs is given by

1 +
2mn

m + n
= 10.6,

it appears that there are too many runs, and so we want to compute the proba-
bility of observing 14 or more runs under the hypothesis of randomness. To com-
pute the p-value using StatCalc, select the dialog box
[StatCalc→Nonparametric→Distribution of Runs], enter 8 for the number of first
type of symbols, 12 for the number of second type symbols, and 14 for the ob-
served number of runs; click [P(R <= r)] to get P (R ≥ 14) = 0.0799. Since the
probability of observing 14 or more runs is not less than 0.025, we can accept
the sample as a random sample at the 5% level.
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Chapter 31

Sign Test and Confidence Interval for
the Median

31.1 Hypothesis Test for the Median

Let X1, . . . , Xn be a sample of independent observations from a continuous pop-
ulation. Let M denote the median of the population. We want to test

H0 : M = M0 vs. Ha : M 6= M0.

Let K denote the number of plus signs of the differences X1−M0, . . . , Xn−M0.
That is, K is the number of observations greater than M0. Then, under the
null hypothesis, K follows a binomial distribution with number of trials n and
success probability

P (Xi > M0) = 0.5.

If K is too large, then we conclude that the true median M > M0; if K is too
small, then we conclude that M < M0. Let k be an observed value of K. For
a given level of significance α, the null hypothesis will be rejected in favor of
the alternative hypothesis M > M0 if P (K ≥ k|n, 0.5) ≤ α, and in favor of
the alternative hypothesis M < M0 if P (K ≤ k|n, 0.5) ≤ α. If the alternative
hypothesis is M 6= M0, then the null hypothesis will be rejected if

2 min{P (K ≥ k|n, 0.5), P (K ≤ k|n, 0.5)} ≤ α.
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31.2 Confidence Interval for the Median

Let X(1), . . . , X(n) be the ordered statistics based on a sample X1, . . . , Xn. Let
r be the largest integer such that

P (K ≤ r) =
r∑

i=0

(
n

i

)
(0.5)n ≤ α/2 (31.2.1)

and s is the smallest integer such that

P (K ≥ s) =
n∑

i=s

(
n

i

)
(0.5)n ≤ α/2. (31.2.2)

Then, the interval (X(r+1), X(s)) is a 1−α confidence interval for the median M
with coverage probability at least 1− α.

For a given sample size n and confidence level 1 − α, the dialog box
[StatCalc→Nonparametric→Sign Test and Confidence Interval for the Median] com-
putes the integers r and s that satisfy (31.2.1) and (31.2.2) respectively.

Remark 31.2.1 If Xi−M0 = 0 for some i, then simply discard those observations
and reduce the sample size n accordingly. Zero differences can also be handled
by assigning signs randomly (e.g. flip a coin; if the outcome is head, assign +,
otherwise assign −).

31.3 Computing Table Values

The dialog box [StatCalc→Nonparametric→Signa Test and Confidence Interval for
the Median] computes confidence intervals and p-values for testing the median.

Example 31.3.1 (Confidence Interval) To compute a 95% confidence interval
for the median of a continuous population based on a sample of 40 observations,
enter 40 for n, 0.95 for confidence level, click [CI] to get 14 and 27. That is, the
required confidence interval is formed by the 14th and 27th order statistics from
the sample.

Example 31.3.2 (p-value) Suppose that a sample of 40 observations yielded
k = 13, the number of observations greater than the specified median. To
obtain the p-value of the test when Ha : M < M0, enter 40 for n, 13 for k and
click [P(X <= k)] to get P (K ≤ 13) = 0.0192387. Since this p-value is less than
0.05, the null hypothesis that H0 : M = M0 will be rejected at the 5% level.
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31.4 An Example

The nonparametric inferential procedures are applicable for any continuous dis-
tribution. However, in order to understand the efficiency of the procedures, we
apply them to a normal distribution.

Example 31.4.1 A sample of 15 observations is generated from a normal popu-
lation with mean 2 and standard deviation 1, and is given below.

1.01 3.00 1.12 1.68 0.82 4.01 2.85 2.49
1.58 2.30 2.84 2.32 3.01 1.77 2.10

Recall that for a normal population, mean and median are the same. Let us test
the hypotheses that

H0 : M ≤ 1.5 vs. Ha : M > 1.5.

Note that there are 12 data points are greater than 1.5. So, the p-value,
P (K ≥ 12) = 0.01758, which is less than 0.05. Therefore, the null hypothe-
sis is rejected at the 5% level.

To find a 95% confidence interval for the median, enter 15 for the sample size
n, and 0.95 for the confidence level. Click [CI] to get (X(4), X(12)). That is, the
4th smallest observation and the 12th smallest (or the 4th largest) observation
form the required confidence interval; for this example, the 95% confidence in-
terval is (1.58, 2.84). Note that this interval indeed contains the actual median
2. Furthermore, if the hypotheses are

H0 : M = 1.5 vs. Ha : M 6= 1.5,

then the null hypothesis will be rejected, because the 95% confidence interval
does not contain 1.5.
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Wilcoxon Signed-Rank Test

32.1 Description

Wilcoxon signed-rank statistic is useful to test the median of a continuous sym-
metric distribution. Let M denote the median of the population. Consider the
null hypothesis H0 : M = M0, where M0 is a specified value of the median. Let
X1, . . ., Xn be a sample from the population and let

Di = Xi −M0, i = 1, 2, . . ., n.

Rank the absolute values |D1|, |D2|, . . ., |Dn|. Let T+ be the sum of the ranks of
the positive D′

is. The distribution function of T+ under H0 is symmetric about
its mean n(n + 1)/4 (see Figure 32.1). The null hypothesis will be rejected if
T+ is too large or too small.

Let t be an observed value of T+. For a given level α, the null hypothesis
will be rejected in favor of the alternative

Ha : M > M0 if P (T+ ≥ t) ≤ α,

and in favor of the alternative

Ha : M < M0 if P (T+ ≤ t) ≤ α.

Furthermore, for a two-sided test, the null hypothesis will be rejected in favor
of the alternative

Ha : M 6= M0 if 2 min{P (T+ ≤ t), P (T+ ≥ t)} ≤ α.
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Figure 32.1 Probability Mass Function of WSR statistic

For a given n and an observed value t of T+, the dialog box [StatCalc→
Nonparametric→Wilcoxon Signed-Rank Test] computes the above tail probabilities.
StatCalc also computes the critical point for a given n and nominal level α.

For α < 0.5, the left tail critical point k is the largest number such that

P (T+ ≤ k) ≤ α.

and the right tail critical point k is the smallest integer such that

P (T+ ≥ k) ≤ α.

32.2 Moments and an Approximation

Mean: n(n+1)
4

Variance: n(n+1)(2n+1)
24

[Gibbons and Chakraborti 1992, p. 156]

An Approximation

The variable

Z =
(T+) −mean√

var
is approximately distributed as the standard normal random variable. This
approximation is satisfactory for n greater than or equal to 15.

© 2006 by Taylor & Francis Group, LLC



32.3 Computing Table Values 317

32.3 Computing Table Values

The dialog box [StatCalc→ Nonparametric→Wilcoxon Signed-Rank Test] computes
the tail probabilities and critical points of the distribution of the signed-rank
statistic T+.

Example 32.3.1 Suppose that a sample of 20 observations yielded T+ = 130. To
compute tail probabilities using StatCalc, enter 20 for n, 130 for T+, and click
on [P(X <= k)] to get P (T+ ≤ 130) = 0.825595 and P (T+ ≥ 130) = 0.184138.

Example 32.3.2 Let n = 20. To get the upper 5% critical point, enter 20 for
n, 0.95 for cumulative probability and click [Critical Pt] to get 150. That is,
P (T+ ≥ 150) = 0.048654. To get the lower 5% critical point, enter 0.05 for
cumulative probability and click [Critical Pt] to get 60. Notice that, because of
the discreteness of the distribution, we get P (T+ ≤ 60) = 0.048654, not exactly
0.05.

32.4 An Example

Example 32.4.1 We will illustrate the Wilcoxon Signed-Rank test for the data
given in Example 31.4.1. The data set consists of 15 observations generated
from a normal population with mean 2 and standard deviation 1, and they are

1.01 3.00 1.12 1.68 0.82 4.01 2.85 2.49
1.58 2.30 2.84 2.32 3.01 1.77 2.10

Note that for a normal population mean and median are the same. For illustra-
tion purpose, let us test the hypotheses that

H0 : M ≤ 1.5 vs. Ha : M > 1.5,

The differences Di = Xi − 1.5 are

−0.49 1.5 −0.38 0.18 −0.68 2.51 1.30
0.99 0.08 0.80 1.34 0.82 1.51 0.27 0.60

The ordered absolute values of Di’s with ranks are given below.
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Rank 1 2 3 4 5 6 7 8
Ordered |Di| 0.08 0.18 0.27 0.38* 0.49* 0.60 0.68* 0.80

Rank 9 10 11 12 13 14 15
Ordered |Di| 0.82 0.99 1.30 1.34 1.50 1.51 2.51

The Di’s with negative sign are identified with *. Sum of the ranks of the
positive differences can be computed as

T+ = Total rank – Sum of the ranks of the negative Di
′s

= 15(15 + 1)/2− 4− 5− 7 = 104.

Using StatCalc, we can compute the p-value as

P (T+ ≥ 104) = 0.0051.

Since the p-value is less than any practical levels, we reject the null hypothesis;
there is sufficient evidence to indicate that the median is greater than 1.5. Note
that the Wilcoxon Signed-Rank test provides stronger evidence against the null
hypothesis than the sign test (see Example 31.4.1).

To get the right-tail critical point using StatCalc, enter 15 for n, 0.95 for
cumulative probability, and click [Critical Pt] to get

P (T+ ≥ 90) = 0.0473022.

Thus, any observed value of T+ greater than or equal to 90 would lead to the
rejection of H0 at the 5% level of significance.
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Wilcoxon Rank-Sum Test

33.1 Description

The Wilcoxon rank-sum test is useful for comparing two continuous distribu-
tions. Let X1, . . . , Xm be independent observations from a continuous distribu-
tion FX and Y1, . . . , Yn be independent observations from a continuous distri-
bution FY . Let W denote the sum of the ranks of the X observations in the
combined ordered arrangement of the two samples. The range of W is given by

m(m + 1)
2

≤ W ≤ m(2(m + n)−m + 1)
2

.

The W can be used as a test statistic for testing

H0 : FX(x) = FY (x) for all x vs. Ha : FX(x) = FY (x− c) for some c 6= 0,

The alternative hypothesis means that the distributions of X and Y are the
same except for location. If W is too large or too small, then the null hypothesis
will be rejected in favor of the alternative. If the hypotheses are

H0 : FX(x) = FY (x) for all x vs. Ha : FX(x) = FY (x− c) for some c > 0,

then the alternative hypothesis implies that the distribution of Y is shifted to
the left from the distribution of X by c. That is, X values are more likely to be
larger than Y values. In this case, the null hypothesis will be rejected for larger
values of W . If the hypotheses are

H0 : FX(x) = FY (x) for all x vs. Ha : FX(x) = FY (x + c) for some c > 0,
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then the alternative hypothesis implies that the distribution of Y is shifted to
the right from the distribution of X by c. That is, X values are more likely to
be smaller than Y values. In this case, the null hypothesis will be rejected for
smaller values of W .

Let W0 be an observed value of W and α be a specified level of significance.
If P (W ≥ W0) ≤ α, then we conclude that FX(x) = FY (x − c), c > 0; if
P (W ≤ W0) ≤ α, then we conclude that Ha : FX(x) = FY (x + c), c > 0. If
P (W ≤ W0) ≤ α/2 or P (W ≥ W0) ≤ α/2, then we have evidence to conclude
that FX(x) = FY (x− c), c 6= 0.

33.2 Moments and an Approximation

Mean: m(m+n+1)
2

Variance: mn(m+n+1)
12

[Gibbons and Chakraborti 1992, p. 241]

The variable

Z =
W −mean√

var
∼ N(0, 1) approximately.

33.3 Mann-Whitney U Statistic

Wilcoxon rank-sum statistic and Mann-Whitney U statistic differ only by a
constant, and, therefore, the test results based on these two statistics are the
same. The Mann-Whitney U statistic is defined as follows: Let

Dij =

{
1 if Yj < Xi,
0 otherwise,

for i = 1, . . . , m and j = 1, . . . , n. The statistic U is defined as

U =
m∑

i=1

n∑

j=1

Dij,

or equivalently,

U =
n∑

i=1

(number of X ′s greater than the Yi).
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It can be shown that

U = W − m(m + 1)
2

,

and hence

P (U ≤ u) = P

(
W ≤ u +

m(m + 1)
2

)
.

33.4 Computing Table Values

The dialog box [StatCalc→Nonparametric →Wilcoxon Rank-Sum Test] computes
probabilities and percentiles of the rank-sum statistic W .

To compute probabilities: Enter the values of m, n, and the observed value w;
click on [P(W <= w)].

Example 33.4.1 When m = 13, n = 12 and the observed value w is 180,
P (W ≤ 180) = 0.730877 and P (W ≥ 180) = 0.287146.

To compute the critical values: Enter the values of m, n, and the cumulative
probability; click on [Critical Pt].

Example 33.4.2 When m = 13, n = 12, and the cumulative probability is 0.05,
the left tail critical value is 138. Because of the discreteness of the distribution,
the actual probability is 0.048821; that is P (W ≤ 138) = 0.048821.

33.5 An Example

Example 33.5.1 It is desired to compare two types of treatments, A and B,
based on recovery times of patients. Given below are recovery times of a sample
of 9 patients who received treatment A, and recovery times of a sample of 9
patients who received treatment B.

Recovery times (in days)
A: 17 19 20 24 13 18 21 22 25
B: 14 18 19 23 16 15 13 22 16

We want to see whether the data provide sufficient evidence to indicate that
the recovery times of A are more likely longer than the recovery times of B. In
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notation,

H0 : FA(x) = FB(x) for all x, vs. Ha : FA(x) = FB(x− c), for some c > 0.

Note that the alternative hypothesis implies that the values of the random
variable associated with A are more likely to be larger than those associated
with B. The pooled sample data and their ranks (the average of the ranks is
assigned to tied observations) are as follow.

Pooled sample and ranks
Treatment B A B B B B A A B

data 13 13 14 15 16 16 17 18 18
ranks 1.5 1.5 3 4 5.5 5.5 7 8.5 8.5

Treatment A B A A B A B A A
data 19 19 20 21 22 22 23 24 25
ranks 10.5 10.5 12 13 14.5 14.5 16 17 18

The sum of the ranks of A in the pooled sample is 102. The null hypothesis will
be rejected if this sum is too large. Using [StatCalc→Nonparametric →Wilcoxon
Rank-Sum Test], we get

P (W ≥ 102) = 0.0807,

which is less than 0.1. Hence, the null hypothesis will be rejected at the 10%
level.

Remark 33.5.1 StatCalc also computes critical values; for the above example,
to compute right-tail 5% critical point, enter 9 for m, 9 for n and 0.95 for the
cumulative probability; click [Critical Pt] to get 105. That is,

P (W ≥ 105) = 0.04696.

Thus, for the above example, had the observed value of W been 105 or more,
then we would have rejected the null hypothesis at the 5% level of significance.
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Nonparametric Tolerance Interval

34.1 Description

Let X1, . . . , Xn be a sample from a continuous population. Let X(k) denote the
kth order statistic; that is, the kth smallest of the Xi’s. For a given p such that
0 < p < 1, and g such that 0 < g < 1, the dialog box [StatCalc→Nonparametric→
Sample Size for NP Tolerance Interval] computes the value of n so that the interval

(X(1), X(n))

would contain at least p proportion of the population with confidence level g.
The interval (X(1), X(n)) is called p content - g coverage tolerance interval or
(p, g)–tolerance interval.

The required sample size n is the smallest integer such that

(n− 1)pn − npn−1 + 1 ≥ g. (34.1.1)

For a one-sided limit, the value of the n is the smallest integer such that

1− pn ≥ g. (34.1.2)

For a one-sided limit, the sample size is determined so that at least proportion
p of the population data are greater than or equal to X(1); furthermore, at least
proportion p of the population data are less than or equal to X(n).

Because of the discreteness of the sample size, the true coverage probabil-
ity will be slightly more than the specified probability g. For example, when
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p = 0.90 and g = 0.90, the required sample size for the two-sided tolerance limits
is 38. Substituting 38 for n, 0.90 for p in (34.1.1) we get 0.9047, which is the
actual coverage probability.

34.2 Computing Table Values

Select the dialog box [StatCalc→Nonparametric→Sample Size for NP Tolerance In-
terval] from StatCalc, enter the values of p and g; click on [Required Sample Size
n for].

Example 34.2.1 When p = 0.90 and g = 0.95, the value of n is 46; that is
the interval (X(1), X(46)) would contain at least 90% of the population with
confidence 95%. Furthermore, the sample size required for a one-sided tolerance
limit is 29; that is 90% of the population data are less than or equal to X(29)

– the largest observation in a sample of 29 observations, with confidence 95%.
Similarly, 90% of the population data are greater than or equal to X(1) – the
smallest observation in a sample of 29 observations, with confidence 95%.

34.3 An Example

Example 34.3.1 Suppose that one desires to find a tolerance interval so that it
would contain 99% of household incomes in a large city with coverage probabil-
ity 0.95. How large should the sample be so that the interval (smallest order
statistic, largest order statistic) would contain at least 99% of the household
incomes with confidence 95%?

Solution: To compute the required sample size, enter 0.99 for p, 0.95 for g, and
click [Required Sample Size] to get 473. That is, if we take a random sample of
473 households from the city and record their incomes, then at least 99% of the
household incomes in the city fall between the lowest and the highest household
incomes in the sample with 95% confidence.

For one-sided limits, the required sample size is 299. That is, if we take a
sample of 299 households from the city and record the incomes, then at least 99%
of the household incomes are greater than the smallest income in the sample;
further, at least 99% of the household incomes are less than the highest income
in the sample.
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Tolerance Factors for a Multivariate
Normal Population

35.1 Description

Let X1, · · · , Xn be a sample of independent observations from an m-variate nor-
mal population with mean vector µ and variance-covariance matrix Σ. The
sample mean vector and covariance matrix are computed as

X̄ =
1
n

n∑

i=1

Xi and S =
1

n− 1

n∑

i=1

(Xi − X̄)(Xi − X̄)′.

For a given n, m, 0 < p < 1, and 0 < g < 1, the tolerance factor k is to be
determined so that the region

{
X : (X − X̄)′S−1(X − X̄) ≤ k

}

would contain at least proportion p of the population with confidence g. Math-
ematically, k should be determined so that

PX̄,S

{
PX [(X − X̄)′S−1(X − X̄) ≤ k|X̄, S] ≥ p

}
= g,

where X follows the same m-variate normal distribution independently of the
sample. We refer to this tolerance region as a (p, g) tolerance region. At
present no exact method of computing k is available. Krishnamoorthy and
Mathew (1999) considered several approximation methods of computing k, and
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recommended the following one for practical use:

k ' d(n− 1)χ2
m,p( m/n)

χ2
e, 1−g

,

where χ2
m,p(δ) denotes the pth quantile of a noncentral chi-square distribution

with df = m, and noncentrality parameter δ, χ2
e, 1−g denotes the (1−g)th quantile

of a central chi-square distribution with df

e =
4m(n−m− 1)(n−m)− 12(m− 1)(n−m− 2)

3(n− 2) + m(n−m− 1)
,

and

d =
e− 2

n−m− 2
.

StatCalc computes this approximate tolerance factor k for a given n, m, p
and g.

35.2 Computing Tolerance Factors

The dialog box [StatCalc→Miscellaneous→Tolerance Factors for a Mult.Variate Nor-
mal] computes tolerance factors for a multivariate normal distribution. To com-
pute the tolerance factor, enter the sample size n, number of variables m, pro-
portion p, and the coverage probability g; click on [Tol Factor].

Example 35.2.1 When n = 35, m = 3, p = 0.90 and g = 0.95, the 90% content
– 95% coverage tolerance factor k is 9.83.

35.3 Examples

Example 35.3.1 A manufacturing company wants to setup a tolerance region
for identifying skilled workers. A sample of workers is selected from a group
of known skilled workers and the characteristics that are relevant to a skilled
category are measured. These measurements can be used to construct, say, a
(95%, 95%) tolerance region. This tolerance region may be used to classify
a worker as skilled or non-skilled. For example, if the measurements on the
characteristics of a new worker fall within the tolerance region, he or she may
be classified as a skilled worker.
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Example 35.3.2 Suppose that a lot of product is submitted for inspection. The
buyer of the lot is interested in three characteristics (x1, x2, x3) of the product
(such as length, width, depth). A product is acceptable for the buyer’s purpose
if the measurements on (x1, x2, x3) of the product fall in a predetermined
acceptable region. In order to save time and cost, the buyer may inspect a
sample of product and construct a (95%, 95%), say, tolerance region for the lot.
If the tolerance region falls within the acceptable region then the lot will be
accepted.
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Chapter 36

Distribution of the Sample Multiple
Correlation Coefficient

36.1 Description

Let X be a m-variate normal random vector with unknown mean vector µ and
unknown covariance matrix Σ. Partition X and Σ as

X =

(
x1

X2

)
and Σ =

(
σ11 Σ12

Σ21 Σ22

)
,

where x1 is the first component of X, and σ11 is the variance of x1. The multiple
correlation coefficient between the first component x1 and the remaining m− 1
components of X2 is the maximum correlation between the first component and
any linear combination of the other m− 1 components, and is given by

ρ =

(
Σ12Σ−1

22 Σ21

σ11

)1/2

, 0 ≤ ρ ≤ 1.

Let X1, . . . , Xn be a sample of observations from an m-variate normal popula-
tion. Define

X̄ =
1
n

n∑

i=1

Xi, and S =
1

n− 1

n∑

i=1

(Xi − X̄)(Xi − X̄)′.

Partition S as

S =

(
s11 S12

S21 S22

)
,
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so that s11 denotes the variance of the first component. The sample multiple
correlation coefficient is defined by

R =

(
S12S

−1
22 S21

s11

)1/2

, 0 ≤ r ≤ 1.

The cumulative distribution function of R2 is given by

P (R2 ≤ x|ρ) =
∞∑

k=0

bkP

(
Fm−1+2k,n−m ≤ n−m

m− 1 + 2k

(
x

1− x

))
, (36.1.1)

where Fm−1+2k,n−m denotes the F random variable, bk is the negative binomial
probability

bk =
((n− 1)/2)k

k!

(
ρ2

)k
(1− ρ2)(n−1)/2, (36.1.2)

and (a)k = a(a− 1) · · · (a− k + 1). The cumulative distribution is useful to test
the hypotheses about ρ2 or ρ and to find confidence intervals for ρ2. [see Section
36.3]

36.2 Moments

Mean:

E(R2) = ρ2 +
m− 1
n− 1

(1− ρ2) +
2

n + 1
ρ2(1− ρ2) + O(1/n2).

Variance:

Var(R2) =
4ρ2(1− ρ2)2

n
+ O(1/n2) when ρ > 0,

=
2(n−m)(m− 1)
(n− 1)2(n + 1)

when ρ = 0.

36.3 Inferences

36.3.1 Point Estimation

The square of the sample multiple correlation coefficient R2 is a biased estimator
of ρ2. An asymptotically unbiased estimate of ρ2 is given by

U(R2) = R2 − n− 3
n−m

(1−R2)− 2(n− 3)
(n−m)(n−m + 2)

(1−R2)2.

The bias is of O(1/n2). [Olkin and Pratt 1958]
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36.3.2 Interval Estimation

Let r2 be an observed value of R2 based on a sample of n observations. For a
given confidence level 1− α, the upper limit U is the value of ρ2 for which

P (R2 ≤ r2|n,U) = α/2,

and the lower limit L is the value of ρ2 for which

P (R2 ≥ r2|n,L) = α/2.

The interval (L, U) is an exact 1− α confidence interval for ρ2, and (
√

L,
√

U)
is an exact confidence interval for ρ. Kramer (1963) used this approach to
construct table values for the confidence limits.

36.3.3 Hypothesis Testing

Consider the hypotheses

H0 : ρ ≤ ρ0 vs. Ha : ρ > ρ0.

For a given n and an observed value r2 of R2, the test that rejects the null
hypothesis whenever

P (R2 ≥ r2|n, ρ2
0) ≤ α

is a size α test. Furthermore, when

H0 : ρ ≥ ρ0 vs. Ha : ρ < ρ0,

the null hypothesis will be rejected if

P (R2 ≤ r2|n, ρ2
0) ≤ α.

For testing
H0 : ρ = ρ0 vs. Ha : ρ 6= ρ0,

will be rejected whenever

P (R2 ≤ r2|n, ρ2
0) ≤ α/2 or P (R2 ≥ r2|n, ρ2

0) ≤ α/2.

The above tests are uniformly most powerful among the invariant tests.
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36.4 Some Results

1. Let W = R2/(1−R2). Then,

P (W ≤ x|ρ) =
∞∑

k=0

bkP

(
Fm−1+2k,n−m ≤ n−m

m− 1 + 2k
x

)
,

where bk is the negative binomial probability

bk =
((n− 1)/2)k

k!

(
ρ2

)k
(1− ρ2)(n−1)/2,

and (a)k = a(a− 1)· · ·(a− k + 1).

2. Let τ = ρ2/(1− ρ2), a = (n−1)τ(τ+2)+m−1
(n−1)τ+m−1 and b = ((n−1)τ+m−1)2

(n−1)τ(τ+2)+m−1 .

Then,

P (R2 ≤ x) ' P

(
Y ≤ x

a(1− x) + x

)
,

where Y is a beta(b/2, (n − m)/2) random variable. [Muirhead 1982,
p. 176]

36.5 Random Number Generation

For a given sample size n, generate a Wishart random matrix A of order m×m
with parameter matrix Σ, and set

R2 =
A12A

−1
22 A21

a11
.

The algorithm of Smith and Hocking (1972) can be used to generate Wishart
matrices.

36.6 A Computational Method for Probabilities

The following computational method is due to Benton and Krishnamoorthy
(2003). The distribution function of R2 can be written as

P (R2 ≤ x) =
∞∑

i=0

P (Y = i)Ix

(
m− 1

2
+ i,

v −m + 1
2

)
, (36.6.1)
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where v = n− 1,

Ix(a, b) =
Γ(a + b)
Γ(a)Γ(b)

x∫

0

ta−1(1− t)b−1dt

is the incomplete beta function and

P (Y = i) =
Γ(v/2 + i)

Γ(i + 1)Γ(v/2)
ρ 2i(1− ρ 2)v/2

is the negative binomial probability. Furthermore, P(Y = i) attains its maxi-
mum around the integer part of

k =
vρ 2

2(1− ρ2)
.

To compute the cdf of R2, first compute the kth term in (36.6.1) and then
evaluate other terms using the following forward and backward recursions:

P (Y = i + 1) =
v/2 + i

i + 1
ρ2P (Y = i), i = 0, 1, 2 . . . ,

P (Y = i− 1) =
i

v/2 + i− 1
ρ−2P (Y = i), i = 1, 2, . . . ,

Ix(a + 1, b) = Ix(a, b)− Γ(a + b)
Γ(a + 1)Γ(b)

xa(1− x)b,

and
Ix(a− 1, b) = Ix(a, b) +

Γ(a + b− 1)
Γ(a + 1)Γ(b)

xa−1(1− x)b.

The relation Γ(a +1) = aΓ(a) can be used to evaluate the incomplete gamma
function recursively. Forward and backward computations can be terminated if

1−
k+i∑

j=k−i

P (Y = j)

is smaller than error tolerance or the number of iterations is greater than a
specified number. Forward computations can be stopped if


1−

k+i∑

j=k−i

P (Y = j)


 Ix

(
m− 1

2
+ 2k + i + 1,

v −m− 1
2

)

is less than or equal to error tolerance or the number of iterations is greater than
a specified number.
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36.7 Computing Table Values

To compute probabilities: Enter the values of the sample size n, number of vari-
ates m, squared population multiple correlation coefficient ρ2, and the value of
the squared sample multiple correlation coefficient r2; click on
[P (X <= r2)].

Example 36.7.1 When n = 40, m = 4, ρ2 = 0.8 and r2 = 0.75,

P (X ≤ 0.75) = 0.151447 and P (X > 0.75) = 0.84855.

To compute percentiles: Enter the values of the sample size n, number of variates
m, squared population multiple correlation coefficient ρ2, and the cumulative
probability; click [Observed rˆ2].

Example 36.7.2 When n = 40, m = 4 and ρ2 = 0.8, the 90th percentile is
0.874521.

To compute confidence intervals and p-values: Enter the values of n, m, r2, and
the confidence level; click [1-sided] to get one-sided limits; click [2-sided] to get
confidence interval.

Example 36.7.3 Suppose that a sample of 40 observations from a four-variate
normal population produced r2 = 0.91. To find a 95% CI for the population
squared multiple correlation coefficient, enter 40 for n, 4 for m, 0.91 for r2, 0.95
for confidence level, and click [2-sided] to get (0.82102, 0.947821).

Suppose we want to test H0 : ρ2 ≤ 0.8 vs. Ha : ρ2 > 0.8. To find the
p-value, enter 40 for n, 4 for m, 0.91 for r2 and 0.8 for ρ2; click [P(X <= rˆ2)]
to get P (X > 0.91) = 0.0101848.
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