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Introduction

BA C K G R O U N D
Sir Isaac Newton brought to the world the idea of modeling the motion of
physical systems with equations. It was necessary to invent calculus along the
way, since fundamental equations of motion involve velocities and accelerations,
which are derivatives of position. His greatest single success was his discovery that
the motion of the planets and moons of the solar system resulted from a single
fundamental source: the gravitational attraction of the bodies. He demonstrated
that the observed motion of the planets could be explained by assuming that there
is a gravitational attraction between any two objects, a force that is proportional
to the product of masses and inversely proportional to the square of the distance
between them. The circular, elliptical, and parabolic orbits of astronomy were

v



I N T RO D U C T I O N

no longer fundamental determinants of motion, but were approximations of laws
specified with differential equations. His methods are now used in modeling
motion and change in all areas of science.

Subsequent generations of scientists extended the method of using differ-
ential equations to describe how physical systems evolve. But the method had
a limitation. While the differential equations were sufficient to determine the
behavior—in the sense that solutions of the equations did exist—it was frequently
difficult to figure out what that behavior would be. It was often impossible to write
down solutions in relatively simple algebraic expressions using a finite number of
terms. Series solutions involving infinite sums often would not converge beyond
some finite time.

When solutions could be found, they described very regular motion. Gen-
erations of young scientists learned the sciences from textbooks filled with exam-
ples of differential equations with regular solutions. If the solutions remained in
a bounded region of space, they settled down to either (A) a steady state, often
due to energy loss by friction, or (B) an oscillation that was either periodic or
quasiperiodic, akin to the clocklike motion of the moon and planets. (In the solar
system, there were obviously many different periods. The moon traveled around
the earth in a month, the earth around the sun in about a year, and Jupiter around
the sun in about 11.867 years. Such systems with multiple incommensurable
periods came to be called quasiperiodic.)

Scientists knew of systems which had more complicated behavior, such as
a pot of boiling water, or the molecules of air colliding in a room. However, since
these systems were composed of an immense number of interacting particles, the
complexity of their motions was not held to be surprising.

Around 1975, after three centuries of study, scientists in large numbers
around the world suddenly became aware that there is a third kind of motion, a
type (C) motion, that we now call “chaos”. The new motion is erratic, but not
simply quasiperiodic with a large number of periods, and not necessarily due to
a large number of interacting particles. It is a type of behavior that is possible in
very simple systems.

A small number of mathematicians and physicists were familiar with the
existence of a third type of motion prior to this time. James Clerk Maxwell, who
studied the motion of gas molecules in about 1860, was probably aware that even
a system composed of two colliding gas particles in a box would have neither
motion type A nor B, and that the long term behavior of the motions would for
all practical purposes be unpredictable. He was aware that very small changes
in the initial motion of the particles would result in immense changes in the
trajectories of the molecules, even if they were thought of as hard spheres.
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I N T RO D U C T I O N

Maxwell began his famous study of gas laws by investigating individual
collisions. Consider two atoms of equal mass, modeled as hard spheres. Give the
atoms equal but opposite velocities, and assume that their positions are selected
at random in a large three-dimensional region of space. Maxwell showed that if
they collide, all directions of travel will be equally likely after the collision. He
recognized that small changes in initial positions can result in large changes in
outcomes. In a discussion of free will, he suggested that it would be impossible
to test whether a leopard has free will, because one could never compute from a
study of its atoms what the leopard would do. But the chaos of its atoms is limited,
for, as he observed, “No leopard can change its spots!”

Henri Poincaré in 1890 studied highly simplified solar systems of three
bodies and concluded that the motions were sometimes incredibly complicated.
(See Chapter 2). His techniques were applicable to a wide variety of physical
systems. Important further contributions were made by Birkhoff, Cartwright and
Littlewood, Levinson, Kolmogorov and his students, among others. By the 1960s,
there were groups of mathematicians, particularly in Berkeley and in Moscow,
striving to understand this third kind of motion that we now call chaos. But
only with the advent of personal computers, with screens capable of displaying
graphics, have scientists and engineers been able to see that important equations
in their own specialties had such solutions, at least for some ranges of parameters
that appear in the equations.

In the present day, scientists realize that chaotic behavior can be observed
in experiments and in computer models of behavior from all fields of science. The
key requirement is that the system involve a nonlinearity. It is now common for
experiments whose previous anomalous behavior was attributed to experiment
error or noise to be reevaluated for an explanation in these new terms. Taken
together, these new terms form a set of unifying principles, often called dynamical
systems theory, that cross many disciplinary boundaries.

The theory of dynamical systems describes phenomena that are common
to physical and biological systems throughout science. It has benefited greatly
from the collision of ideas from mathematics and these sciences. The goal of
scientists and applied mathematicians is to find nature’s unifying ideas or laws
and to fashion a language to describe these ideas. It is critical to the advancement
of science that exacting standards are applied to what is meant by knowledge.
Beautiful theories can be appreciated for their own sake, but science is a severe
taskmaster. Intriguing ideas are often rejected or ignored because they do not
meet the standards of what is knowledge.

The standards of mathematicians and scientists are rather different. Mathe-
maticians prove theorems. Scientists look at realistic models. Their approaches are
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I N T RO D U C T I O N

somewhat incompatible. The first papers showing chaotic behavior in computer
studies of very simple models were distasteful to both groups. The mathematicians
feared that nothing was proved so nothing was learned. Scientists said that models
without physical quantities like charge, mass, energy, or acceleration could not be
relevant to physical studies. But further reflection led to a change in viewpoints.
Mathematicians found that these computer studies could lead to new ideas that
slowly yielded new theorems. Scientists found that computer studies of much more
complicated models yielded behaviors similar to those of the simplistic models,
and that perhaps the simpler models captured the key phenomena.

Finally, laboratory experiments began to be carried out that showed un-
equivocal evidence of unusual nonlinear effects and chaotic behavior in very
familiar settings. The new dynamical systems concepts showed up in macroscopic
systems such as fluids, common electronic circuits and low-energy lasers that were
previously thought to be fairly well understood using the classical paradigms. In
this sense, the chaotic revolution is quite different than that of relativity, which
shows its effects at high energies and velocities, and quantum theory, whose effects
are submicroscopic. Many demonstrations of chaotic behavior in experiments are
not far from the reader’s experience.

In this book we study this field that is the uncomfortable interface between
mathematics and science. We will look at many pictures produced by computers
and we try to make mathematical sense of them. For example, a computer study of
the driven pendulum in Chapter 2 reveals irregular, persistent, complex behavior
for ten million oscillations. Does this behavior persist for one billion oscillations?
The only way we can find out is to continue the computer study longer. However,
even if it continues its complex behavior throughout our computer study, we
cannot guarantee it would persist forever. Perhaps it stops abruptly after one
trillion oscillations; we do not know for certain. We can prove that there exist
initial positions and velocities of the pendulum that yield complex behavior
forever, but these choices are conceivably quite atypical. There are even simpler
models where we know that such chaotic behavior does persist forever. In this
world, pictures with uncertain messages remain the medium of inspiration.

There is a philosophy of modeling in which we study idealized systems
that have properties that can be closely approximated by physical systems. The
experimentalist takes the view that only quantities that can be measured have
meaning. Yet we can prove that there are beautiful structures that are so infinitely
intricate that they can never be seen experimentally. For example, we will see
immediately in Chapters 1 and 2 the way chaos develops as a physical parameter
like friction is varied. We see infinitely many periodic attractors appearing with
infinitely many periods. This topic is revisited in Chapter 12, where we show
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how this rich bifurcation structure, called a cascade, exists with mathematical
certainty in many systems. This is a mathematical reality that underlies what
the experimentalist can see. We know that as the scientist finds ways to make
the study of a physical system increasingly tractable, more of this mathematical
structure will be revealed. It is there, but often hidden from view by the noise of
the universe. All science is of course dependent on simplistic models. If we study
a vibrating beam, we will generally not model the atoms of which it is made.
If we model the atoms, we will probably not reflect in our model the fact that
the universe has a finite age and that the beam did not exist for all time. And
we do not include in our model (usually) the tidal effects of the stars and the
planets on our vibrating beam. We ignore all these effects so that we can isolate
the implications of a very limited list of concepts.

It is our goal to give an introduction to some of the most intriguing ideas in
dynamics, the ideas we love most. Just as chemistry has its elements and physics
has its elementary particles, dynamics has its fundamental elements: with names
like attractors, basins, saddles, homoclinic points, cascades, and horseshoes. The
ideas in this field are not transparent. As a reader, your ability to work with these
ideas will come from your own effort. We will consider our job to be accomplished
if we can help you learn what to look for in your own studies of dynamical systems
of the world and universe.

A BO U T T H E BOO K

As we developed the drafts of this book, we taught six one semester classes at
George Mason University and the University of Maryland. The level is aimed at
undergraduates and beginning graduate students. Typically, we have used parts
of Chapters 1–9 as the core of such a course, spending roughly equal amounts of
time on iterated maps (Chapters 1–6) and differential equations (Chapters 7–9).
Some of the maps we use as examples in the early chapters come from differential
equations, so that their importance in the subject is stressed. The topics of stable
manifolds, bifurcations, and cascades are introduced in the first two chapters and
then developed more fully in the Chapters 10, 11, and 12, respectively. Chapter
13 on time series may be profitably read immediately after Chapter 4 on fractals,
although the concepts of periodic orbit (of a differential equation) and chaotic
attractor will not yet have been formally defined.

The impetus for advances in dynamical systems has come from many
sources: mathematics, theoretical science, computer simulation, and experimen-
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tal science. We have tried to put this book together in a way that would reflect
its wide range of influences.

We present elaborate dissections of the proofs of three deep and important
theorems: The Poincaré-Bendixson Theorem, the Stable Manifold Theorem, and
the Cascade Theorem. Our hope is that including them in this form tempts you
to work through the nitty-gritty details, toward mastery of the building blocks as
well as an appreciation of the completed edifice.

Additionally, each chapter contains a special feature called a Challenge,
in which other famous ideas from dynamics have been divided into a number
of steps with helpful hints. The Challenges tackle subjects from period-three
implies chaos, the cat map, and Sharkovskii’s ordering through synchronization
and renormalization. We apologize in advance for the hints we have given, when
they are of no help or even mislead you; for one person’s hint can be another’s
distraction.

The Computer Experiments are designed to present you with opportunities
to explore dynamics through computer simulation, the venue through which
many of these concepts were first discovered. In each, you are asked to design
and carry out a calculation relevant to an aspect of the dynamics. Virtually all
can be successfully approached with a minimal knowledge of some scientific
programming language. Appendix B provides an introduction to the solution of
differential equations by approximate means, which is necessary for some of the
later Computer Experiments.

If you prefer not to work the Computer Experiments from scratch, your
task can be greatly simplified by using existing software. Several packages
are available. Dynamics: Numerical Explorations by H.E. Nusse and J.A. Yorke
(Springer-Verlag 1994) is the result of programs developed at the University of
Maryland. Dynamics, which includes software for Unix and PC environments,
was used to make many of the pictures in this book. The web site for Dynamics
is www.ipst.umd.edu/dynamics. We can also recommend Differential and
Difference Equations through Computer Experiments by H. Kocak (Springer-Verlag,
1989) for personal computers. A sophisticated package designed for Unix plat-
forms is dstool, developed by J. Guckenheimer and his group at Cornell University.
In the absence of special purpose software, general purpose scientific computing
environments such as Matlab, Maple, and Mathematica will do nicely.

The Lab Visits are short reports on carefully selected laboratory experi-
ments that show how the mathematical concepts of dynamical systems manifest
themselves in real phenomena. We try to impart some flavor of the setting of the
experiment and the considerable expertise and care necessary to tease a new se-
cret from nature. In virtually every case, the experimenters’ findings far surpassed

x



I N T RO D U C T I O N

what we survey in the Lab Visit. We urge you to pursue more accurate and detailed
discussions of these experiments by going straight to the original sources.

A C K N OW L E D G EM E N T S
In the course of writing this book, we received valuable feedback from col-
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C H A P T E R O N E

One-Dimensional Maps

THE FUNCTION f(x) � 2x is a rule that assigns to each number x a number
twice as large. This is a simple mathematical model. We might imagine that x
denotes the population of bacteria in a laboratory culture and that f(x) denotes
the population one hour later. Then the rule expresses the fact that the population
doubles every hour. If the culture has an initial population of 10,000 bacteria,
then after one hour there will be f(10,000) � 20,000 bacteria, after two hours
there will be f(f(10,000)) � 40,000 bacteria, and so on.

A dynamical system consists of a set of possible states, together with a
rule that determines the present state in terms of past states. In the previous
paragraph, we discussed a simple dynamical system whose states are population
levels, that change with time under the rule xn � f(xn�1) � 2xn�1. Here the
variable n stands for time, and xn designates the population at time n. We will
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O N E -D I M E N S I O N A L M A P S

require that the rule be deterministic, which means that we can determine the
present state (population, for example) uniquely from the past states.

No randomness is allowed in our definition of a deterministic dynamical
system. A possible mathematical model for the price of gold as a function of time
would be to predict today’s price to be yesterday’s price plus or minus one dollar,
with the two possibilities equally likely. Instead of a dynamical system, this model
would be called a random, or stochastic, process. A typical realization of such a
model could be achieved by flipping a fair coin each day to determine the new
price. This type of model is not deterministic, and is ruled out by our definition
of dynamical system.

We will emphasize two types of dynamical systems. If the rule is applied
at discrete times, it is called a discrete-time dynamical system. A discrete-time
system takes the current state as input and updates the situation by producing a
new state as output. By the state of the system, we mean whatever information
is needed so that the rule may be applied. In the first example above, the state is
the population size. The rule replaces the current population with the population
one hour later. We will spend most of Chapter 1 examining discrete-time systems,
also called maps.

The other important type of dynamical system is essentially the limit of
discrete systems with smaller and smaller updating times. The governing rule in
that case becomes a set of differential equations, and the term continuous-time
dynamical system is sometimes used. Many of the phenomena we want to explain
are easier to describe and understand in the context of maps; however, since the
time of Newton the scientific view has been that nature has arranged itself to
be most easily modeled by differential equations. After studying discrete systems
thoroughly, we will turn to continuous systems in Chapter 7.

1 .1 ON E -D I M E N S I O N A L M A P S

One of the goals of science is to predict how a system will evolve as time progresses.
In our first example, the population evolves by a single rule. The output of the
rule is used as the input value for the next hour, and the same rule of doubling is
applied again. The evolution of this dynamical process is reflected by composition
of the function f . Define f2(x) � f(f(x)) and in general, define fk(x) to be the
result of applying the function f to the initial state k times. Given an initial
value of x, we want to know about fk(x) for large k. For the above example, it is
clear that if the initial value of x is greater than zero, the population will grow
without bound. This type of expansion, in which the population is multiplied by

2



1 . 1 O N E -D I M E N S I O N A L M A P S

a constant factor per unit of time, is called exponential growth. The factor in this
example is 2.

W H Y STUDY M O DELS?

We study models because they suggest how real-world processes be-
have. In this chapter we study extremely simple models.

Every model of a physical process is at best an idealization. The goal
of a model is to capture some feature of the physical process. The
feature we want to capture now is the patterns of points on an orbit.
In particular, we will find that the patterns are sometimes simple, and
sometimes quite complicated, or “chaotic”, even for simple maps.

The question to ask about a model is whether the behavior it exhibits
is because of its simplifications or if it captures the behavior despite
the simplifications. Modeling reality too closely may result in an
intractable model about which little can be learned. Model building
is an art. Here we try to get a handle on possible behaviors of maps
by considering the simplest ones.

The fact that real habitats have finite resources lies in opposition to the
concept of exponential population increase. From the time of Malthus (Malthus,
1798), the fact that there are limits to growth has been well appreciated. Popula-
tion growth corresponding to multiplication by a constant factor cannot continue
forever. At some point the resources of the environment will become compro-
mised by the increased population, and the growth will slow to something less
than exponential.

In other words, although the rule f(x) � 2x may be correct for a certain range
of populations, it may lose its applicability in other ranges. An improved model,
to be used for a resource-limited population, might be given by g(x) � 2x(1 � x),
where x is measured in millions. In this model, the initial population of 10,000
corresponds to x � .01 million. When the population x is small, the factor (1 � x)
is close to one, and g(x) closely resembles the doubling function f(x). On the other
hand, if the population x is far from zero, then g(x) is no longer proportional to
the population x but to the product of x and the “remaining space” (1 � x). This is

3



O N E -D I M E N S I O N A L M A P S

a nonlinear effect, and the model given by g(x) is an example of a logistic growth
model.

Using a calculator, investigate the difference in outcomes imposed by the
models f(x) and g(x). Start with a small value, say x � 0.01, and compute fk(x)
and gk(x) for successive values of k. The results for the models are shown in
Table 1.1. One can see that for g(x), there is computational evidence that the
population approaches an eventual limiting size, which we would call a steady-
state population for the model g(x). Later in this section, using some elementary
calculus, we’ll see how to verify this conjecture (Theorem 1.5).

There are obvious differences between the behavior of the population size
under the two models, f(x) and g(x). Under the dynamical system f(x), the starting
population size x � 0.01 results in arbitrarily large populations as time progresses.
Under the system g(x), the same starting size x � 0.01 progresses in a strikingly
similar way at first, approximately doubling each hour. Eventually, however, a
limiting size is reached. In this case, the population saturates at x � 0.50 (one-
half million), and then never changes again.

So one great improvement of the logistic model g(x) is that populations
can have a finite limit. But there is a second improvement contained in g(x). If

n f n(x) gn(x)

0 0.0100000000 0.0100000000
1 0.0200000000 0.0198000000
2 0.0400000000 0.0388159200
3 0.0800000000 0.0746184887
4 0.1600000000 0.1381011397
5 0.3200000000 0.2380584298
6 0.6400000000 0.3627732276
7 1.2800000000 0.4623376259
8 2.5600000000 0.4971630912
9 5.1200000000 0.4999839039

10 10.2400000000 0.4999999995
11 20.4800000000 0.5000000000
12 40.9600000000 0.5000000000

Table 1.1 Comparison of exponential growth model f (x) � 2x to logistic
growth model g(x) � 2x(1 � x).
The exponential model explodes, while the logistic model approaches a steady state.
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1 . 2 C O B W E B P L OT: G R A P H I C A L R E P R E S E N TAT I O N O F A N O R B I T

we use starting populations other than x � 0.01, the same limiting population
x � 0.50 will be achieved.

➮ C O M P U T E R E X P E R I M E N T 1 . 1

Confirm the fact that populations evolving under the rule g(x) � 2x(1 � x)
prefer to reach the population 0.5. Use a calculator or computer program, and try
starting populations x0 between 0.0 and 1.0. Calculate x1 � g(x0), x2 � g(x1),
etc. and allow the population to reach a limiting size. You will find that the size
x � 0.50 eventually “attracts” any of these starting populations.

Our numerical experiment suggests that this population model has a natural
built-in carrying capacity. This property corresponds to one of the many ways
that scientists believe populations should behave—that they reach a steady-state
which is somehow compatible with the available environmental resources. The
limiting population x � 0.50 for the logistic model is an example of a fixed point
of a discrete-time dynamical system.

Definition 1.1 A function whose domain (input) space and range (out-
put) space are the same will be called a map. Let x be a point and let f be a map.
The orbit of x under f is the set of points �x, f(x), f2(x), . . .�. The starting point
x for the orbit is called the initial value of the orbit. A point p is a fixed point of
the map f if f(p) � p.

For example, the function g(x) � 2x(1 � x) from the real line to itself is a
map. The orbit of x � 0.01 under g is �0.01, 0.0198, 0.0388, . . .�, and the fixed
points of g are x � 0 and x � 1 � 2.

1 .2 CO BWE B P L OT : G R A P H I C A L
R E P R E S E N TAT I O N O F A N O R B I T

For a map of the real line, a rough plot of an orbit—called a cobweb plot—can be
made using the following graphical technique. Sketch the graph of the function
f together with the diagonal line y � x. In Figure 1.1, the example f(x) � 2x and
the diagonal are sketched. The first thing that is clear from such a picture is the
location of fixed points of f . At any intersection of y � f(x) with the line y � x,

5
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x.04

.04

.02

.02

.06

.08

f(x) = 2x 

y = x 

Figure 1.1 An orbit of f (x) � 2x.
The dotted line is a cobweb plot, a path that illustrates the production of a trajectory.

the input value x and the output f(x) are identical, so such an x is a fixed point.
Figure 1.1 shows that the only fixed point of f(x) � 2x is x � 0.

Sketching the orbit of a given initial condition is done as follows. Starting
with the input value x � .01, the output f(.01) is found by plotting the value
of the function above .01. In Figure 1.1, the output value is .02. Next, to find
f(.02), it is necessary to consider .02 as the new input value. In order to turn an
output value into an input value, draw a horizontal line from the input–output
pair (.01, .02) to the diagonal line y � x. In Figure 1.1, there is a vertical dotted
line segment starting at x � .01, representing the function evaluation, and then
a horizontal dotted segment which effectively turns the output into an input so
that the process can be repeated.

Then start over with the new value x � .02, and draw a new pair of vertical
and horizontal dotted segments. We find f(f(.01)) � f(.02) � .04 on the graph
of f , and move horizontally to move output to the input position. Continuing in
this way, a graphical history of the orbit �.01, .02, .04, . . .� is constructed by the
path of dotted line segments.

EXAM PLE 1 .2

A more interesting example is the map g(x) � 2x(1 � x). First we find fixed
points by solving the equation x � 2x(1 � x). There are two solutions, x � 0

6
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CO BW EB P LOT

A cobweb plot illustrates convergence to an attracting fixed point of
g(x) � 2x(1 � x). Let x0 � 0.1 be the initial condition. Then the
first iterate is x1 � g(x0) � 0.18. Note that the point (x0, x1) lies on
the function graph, and (x1, x1) lies on the diagonal line. Connect
these points with a horizontal dotted line to make a path. Then find
x2 � g(x1) � 0.2952, and continue the path with a vertical dotted
line to (x1, x2) and with a horizontal dotted line to (x2, x2). An entire
orbit can be mapped out this way.

In this case it is clear from the geometry that the orbit we are follow-
ing will converge to the intersection of the curve and the diagonal,
x � 1 � 2. What happens if instead we start with x0 � 0.8? These are
examples of simple cobweb plots. They can be much more compli-
cated, as we shall see later.

0.1 0.5

0.5
g(x) = 2x(1-x) 

x

y

Figure 1.2 A cobweb plot for an orbit of g(x) � 2x(1 � x).
The orbit with initial value .1 converges to the sink at .5.

7
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and x � 1 � 2, which are the two fixed points of g. Contrast this with a linear
map which, except for the case of the identity f(x) � x, has only one fixed point
x � 0. What is the behavior of orbits of g? The graphical representation of the
orbit with initial value x � 0.1 is drawn in Figure 1.2. It is clear from the figure
that the orbit, instead of diverging to infinity as in Figure 1.1, is converging to the
fixed point x � 1 � 2. Thus the orbit with initial condition x � 0.1 gets stuck, and
cannot move beyond the fixed point x � 0.5. A simple rule of thumb for following
the graphical representation of an orbit: If the graph is above the diagonal line
y � x, the orbit will move to the right; if the graph is below the line, the orbit
moves to the left.

EXAM PLE 1 .3

Let f be the map of � given by f(x) � (3x � x3)� 2. Figure 1.3 shows
a graphical representations of two orbits, with initial values x � 1.6 and 1.8,
respectively. The former orbit appears to converge to the fixed point x � 1 as the
map is iterated; the latter converges to the fixed point x � �1.

-1 1

1

-1

1.8
x

y

1.6

f(x) = 3x - x3

2

Figure 1.3 A cobweb plot for two orbits of f (x) � (3x � x3)� 2.
The orbit with initial value 1.6 converges to the sink at 1; the orbit with initial
value 1.8 converges to the sink at �1.
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1 . 3 S TA B I L I T Y O F F I X E D P O I N T S

Fixed points are found by solving the equation f(x) � x. The map has
three fixed points, namely �1, 0, and 1. However, orbits beginning near, but not
precisely on, each of the fixed points act differently. You may be able to convince
yourself, using the graphical representation technique, that initial values near �1
stay near �1 upon iteration by the map, and that initial values near 1 stay near 1.
On the other hand, initial values near 0 depart from the area near 0. For example,
to four significant digits, f(.1) � 0.1495, f2(.1) � 0.2226, f5(.1) � 0.6587, and
so on. The problem with points near 0 is that f magnifies them by a factor
larger than one. For example, the point x � .1 is moved by f to approximately
.1495, a magnification factor of 1.495. This magnification factor turns out to be
approximately the derivative f ′(0) � 1.5.

1 .3 S TA B I L I T Y O F F I X E D PO I N T S
With the geometric intuition gained from Figures 1.1, 1.2, and 1.3, we can describe
the idea of stability of fixed points. Assuming that the discrete-time system exists
to model real phenomena, not all fixed points are alike. A stable fixed point has
the property that points near it are moved even closer to the fixed point under
the dynamical system. For an unstable fixed point, nearby points move away as
time progresses. A good analogy is that a ball at the bottom of a valley is stable,
while a ball balanced at the tip of a mountain is unstable.

The question of stability is significant because a real-world system is con-
stantly subject to small perturbations. Therefore a steady state observed in a
realistic system must correspond to a stable fixed point. If the fixed point is unsta-
ble, small errors or perturbations in the state would cause the orbit to move away
from the fixed point, which would then not be observed.

Example 1.3 gave some insight into the question of stability. The derivative
of the map at a fixed point p is a measure of how the distance between p and a
nearby point is magnified or shrunk by f. That is, the points 0 and .1 begin exactly
.1 units apart. After applying the rule f to both points, the distance separating
the points is changed by a factor of approximately f ′(0). We want to call the fixed
point 0 “unstable” when points very near 0 tend to move away from 0.

The concept of “near” is made precise by referring to all real numbers within
a distance � of p as the epsilon neighborhood N�(p). Denote the real line by �.
Then N�(p) is the interval of numbers �x � � : |x � p| � ��. We usually think
of � as a small, positive number.

Definition 1.4 Let f be a map on � and let p be a real number such that
f(p) � p. If all points sufficiently close to p are attracted to p, then p is called a

9
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sink or an attracting fixed point. More precisely, if there is an � � 0 such that
for all x in the epsilon neighborhood N�(p), limk→� fk(x) � p, then p is a sink. If
all points sufficiently close to p are repelled from p, then p is called a source or a
repelling fixed point. More precisely, if there is an epsilon neighborhood N�(p)
such that each x in N�(p) except for p itself eventually maps outside of N�(p),
then p is a source.

In this text, unless otherwise stated, we will deal with functions for which
derivatives of all orders exist and are continuous functions. We will call this type
of function a smooth function.

Theorem 1.5 Let f be a (smooth) map on �, and assume that p is a fixed
point of f.

1. If |f ′(p)| � 1, then p is a sink.
2. If |f ′(p)| � 1, then p is a source.

Proof: PART 1. Let a be any number between |f ′(p)| and 1; for example, a
could be chosen to be (1 � |f ′(p)|)� 2. Since

lim
x→p

|f(x) � f(p)|
|x � p| � |f ′(p)|,

there is a neighborhood N�(p) for some � � 0 so that

|f(x) � f(p)|
|x � p| � a

for x in N�(p), x � p.
In other words, f(x) is closer to p than x is, by at least a factor of a (which is

less than 1). This implies two things: First, if x � N�(p), then f(x) � N�(p); that
means that if x is within � of p, then so is f(x), and by repeating the argument, so
are f2(x), f3(x), and so forth. Second, it follows that

|fk(x) � p| � ak|x � p| (1.1)

for all k 	 1. Thus p is a sink.

✎ EXERCISE T1 .1
Show that inequality (1.1) holds for k � 2. Then carry out the mathematical
induction argument to show that it holds for all k � 1, 2, 3, . . .

10
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✎ EXERCISE T1 .2
Use the ideas of the proof of Part 1 of Theorem 1.5 to prove Part 2.

Note that the proof of part 1 of Theorem 1.5 says something about the rate
of convergence of fk(x) to p. The fact that |fk(x) � p| � ak|x � p| for a � 1 is
described by saying that fk(x) converges exponentially to p as k → �.

Our definition of a fixed-point sink requires only that the sink attract some
epsilon neighborhood (p � �, p � �) of nearby points. As far as the definition
is concerned, the radius � of the neighborhood, although nonzero, could be
extremely small. On the other hand, sinks often attract orbits from a large set
of nearby initial conditions. We will refer to the set of initial conditions whose
orbits converge to the sink as the basin of the sink.

With Theorem 1.5 and our new terminology, we can return to Example
1.2, an example of a logistic model. Setting x � g(x) � 2x(1 � x) shows that the
fixed points are 0 and 1� 2. Taking derivatives, we get g ′(0) � 2 and g ′(1 � 2) � 0.
Theorem 1.5 shows that x � 1 � 2 is a sink, which confirms our suspicions from
Table 1.1. On the other hand, x � 0 is a source. Points near 0 are repelled from
0 upon application of g. In fact, points near 0 are repelled at an exponential
magnification factor of approximately 2 (check this number with a calculator).
These points are attracted to the sink x � 1 � 2.

What is the basin of the sink x � 1 � 2 in Example 1.2? The point 0 does
not belong, since it is a fixed point. Also, 1 does not belong, since g(1) � 0
and further iterations cannot budge it. However, all initial conditions from the
interval (0, 1) will produce orbits that converge to the sink. You should sketch
a graph of g(x) as in Figure 1.1 and use the idea of the cobweb plot to convince
yourself of this fact.

There is a second way to show that the basin of x � 1 � 2 is (0, 1), which
is quicker and trickier but far less general. That is to use algebra (not geometry)
to compare |g(x) � 1 � 2| to |x � 1 � 2|. If the former is smaller than the latter, it
means the orbit is getting closer to 1 � 2. The algebra says:

|g(x) � 1 � 2| � |2x(1 � x) � 1 � 2|
� 2|x � 1 � 2||x � 1 � 2| (1.2)

Now we can see that if x � (0, 1), the multiplier 2|x � 1 � 2| is smaller than one.
Any point x in (0, 1) will have its distance from x � 1 � 2 decreased on each itera-
tion by g. Notice that the algebra also tells us what happens for initial conditions
outside of (0, 1): they will never converge to the sink x � 1 � 2. Therefore the

11
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basin of the sink is exactly the open interval (0, 1). Informally, we could also
say that the basin of infinity is (��, 0) � (1, �), since the orbit of each initial
condition in this set tends toward ��.

Theorem 1.5 also clarifies Example 1.3, which is the map f(x) � (3x �

x3)� 2. The fixed points are �1, 0, and 1, and the derivatives are f ′(�1) � f ′(1) �

0, and f ′(0) � 1.5. By the theorem, the fixed points �1 and 1 are attracting fixed
points, and 0 is a repelling fixed point.

Let’s try to determine the basins of the two sinks. Example 1.3 is already
significantly more complicated than Example 1.2, and we will have to be satisfied
with an incomplete answer. We will consider the sink x � 1; the other sink has
very similar properties by the symmetry of the situation.

First, cobweb plots (see Figure 1.3) convince us that the interval I1 �

(0,
√

3) of initial conditions belongs to the basin of x � 1. (Note that f(
√

3) �

f(�
√

3) � 0.) So far it is similar to the previous example. Have we found the
entire basin? Not quite. Initial conditions from the interval I2 � [�2, �

√
3)

map to (0, 1], which we already know are basin points. (Note that f(�2) � 1.)
Since points that map to basin points are basin points as well, we know that the
set [�2, �

√
3) � (0,

√
3) is included in the basin of x � 1. Now you may be

willing to admit that the basin can be quite a complicated creature, because the
graph shows that there is a small interval I3 of points to the right of x � 2 that
map into the interval I2 � [�2, �

√
3), and are therefore in the basin, then a

small interval I4 to the left of x � �2 that maps into I3, and so forth ad infinitum.
These intervals are all separate (they don’t overlap), and the gaps between them
consist of similar intervals belonging to the basin of the other sink x � �1. The
intervals In get smaller with increasing n, and all of them lie between �

√
5 and√

5. Since f(
√

5) � �
√

5 and f(�
√

5) �
√

5, neither of these numbers is in
the basin of either sink.

✎ EXERCISE T1 .3

Solve the inequality |f (x) � 0| � |x � 0|, where f (x) � (3x � x3) � 2. This
identifies points whose distance from 0 increases on each iteration. Use
the result to find a large set of initial conditions that do not converge to
any sink of f .

There is one case that is not covered by Theorem 1.5. The stability of a
fixed point p cannot be determined solely by the derivative when |f ′(p)| � 1 (see
Exercise 1.2).
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So far we have seen the important role of fixed points in determining the
behavior of orbits of maps. If the fixed point is a sink, it provides the final state for
the orbits of many nearby initial conditions. For the linear map f(x) � ax with
|a| � 1, the sink x � 0 attracts all initial conditions. In Examples 1.2 and 1.3,
the sinks attract large sets of initial conditions.

✎ EXERCISE T1 .4
Let p be a fixed point of a map f . Given some � � 0, find a geometric
condition under which all points x in N�(p) are in the basin of p. Use
cobweb plot analysis to explain your reasoning.

1 .4 P E R I O D I C P O I N T S
Changing a, the constant of proportionality in the logistic map ga(x) � ax(1 � x),
can result in a picture quite different from Example 1.2. When a � 3.3, the fixed
points are x � 0 and x � 23 � 33 � .69 � .696969 . . . , both of which are repellers.
Now that there are no fixed points around that can attract orbits, where do they
go? Use a calculator to convince yourself that for almost every choice of initial
condition, the orbit settles into a pattern of alternating values p1 � .4794 and
p2 � .8236 (to four decimal place accuracy). Some typical orbits are shown in
Table 1.2. The orbit with initial condition 0.2 is graphed in Figure 1.4. This
figure shows typical behavior of an orbit converging to a period-2 sink �p1, p2�. It
is attracted to p1 every two iterates, and to p2 on alternate iterates.

There are actually two important parts of this fact. First, there is the apparent
coincidence that g(p1) � p2 and g(p2) � p1. Another way to look at this is that
g2(p1) � p1; thus p1 is a fixed point of h � g2. (The same could be said for p2.)
Second, this periodic oscillation between p1 and p2 is stable, and attracts orbits.
This fact means that periodic behavior will show up in a physical system modeled
by g. The pair �p1, p2� is an example of a periodic orbit.

Definition 1.6 Let f be a map on �. We call p a periodic point of period
k if fk(p) � p, and if k is the smallest such positive integer. The orbit with initial
point p (which consists of k points) is called a periodic orbit of period k. We will
often use the abbreviated terms period-k point and period-k orbit.

Notice that we have defined the period of an orbit to be the minimum
number of iterates required for the orbit to repeat a point. If p is a periodic point
of period 2 for the map f , then p is a fixed point of the map h � f2. However, the
converse is not true. A fixed point of h � f2 may also be a fixed point of a lower
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n gn(x) gn(x) gn(x)

0 0.2000 0.5000 0.9500
1 0.5280 0.8250 0.1568
2 0.8224 0.4764 0.4362
3 0.4820 0.8232 0.8116
4 0.8239 0.4804 0.5047
5 0.4787 0.8237 0.8249
6 0.8235 0.4792 0.4766
7 0.4796 0.8236 0.8232
8 0.8236 0.4795 0.4803
9 0.4794 0.8236 0.8237

10 0.8236 0.4794 0.4792
11 0.4794 0.8236 0.8236
12 0.8236 0.4794 0.4795
13 0.4794 0.8236 0.8236
14 0.8236 0.4794 0.4794

Table 1.2 Three different orbits of the logistic model g(x) � 3.3x(1 � x).
Each approaches a period-2 orbit.

iterate of f , specifically f , and so may not be a periodic point of period two. For
example, if p is a fixed point of f , it will be a fixed point of f2 but not, according
to our definition, a period-two point of f .

EXAM PLE 1 .7

Consider the map defined by f(x) � �x on �. This map has one fixed point,
at x � 0. Every other real number is a period-two point, because f2 is the identity
map.

✎ EXERCISE T1 .5

The map f (x) � 2x2 � 5x on � has fixed points at x � 0 and x � 3. Find a
period-two orbit for f by solving f 2(x) � x for x.

What about the stability of periodic orbits? As in the fixed point case, points
near the periodic orbit can be trapped or repelled by the orbit. The key fact is that
a periodic point for f is a fixed point for fk. We can use Theorem 1.5 to investigate
the stability of a periodic orbit. For a period-k orbit, we apply Theorem 1.5 to the
map fk instead of f .

14
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p1 p2

Figure 1.4 Orbit converging to a period-two sink.
The dashed lines form a cobweb plot showing an orbit which moves toward the sink
orbit �p1, p2�.

Definition 1.8 Let f be a map and assume that p is a period-k point. The
period-k orbit of p is a periodic sink if p is a sink for the map fk. The orbit of p is
a periodic source if p is a source for the map fk.

It is helpful to review the chain rule of calculus, which shows how to expand
the derivative of a composition of functions:

(f ◦ g) ′(x) � f ′(g(x))g ′(x) (1.3)

Our current interest in the chain rule is for f � g, in which case we have (f2) ′(x) �

f ′(f(x))f ′(x). If x happens to be a period-two point for f , the chain rule is saying
something quite simple: the derivative of f2 at a point of a period-two orbit
is simply the product of the derivatives of f at the two points in the orbit. In
particular, the derivative of f2 is the same, when evaluated at either point of the
orbit. This agreement means that it makes sense to talk about the stability of a
period-two orbit.

Now the period-two behavior of g(x) � 3.3x(1 � x) we found in Table 1.2
can be completely explained. The periodic orbit �.4794, .8236� will be a sink
as long as the derivative (g2) ′(p1) � g ′(p1)g ′(p2) � (g2) ′(p2) is smaller than 1 in
absolute value. An easy calculation shows this number to be g ′(.4794)g ′(.8236) �

�0.2904.
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If instead we consider yet another version of the logistic map, g(x) �

3.5x(1 � x), the situation is again changed. The fixed points are x � 0 and
x � 5 � 7. Checking derivatives, g ′(0) � 3.5 and g ′(5 � 7) � �1.5, so they are
sources. The orbit �3 � 7, 6 � 7� is a period-two orbit for g. Check that (g2) ′ at each
of the orbit points is �5 � 4, so that this period-two orbit repels nearby points.
Now where do points end up?

➮ C O M P U T E R E X P E R I M E N T 1 . 2

Write a computer program with the goal of redoing Table 1.2 for the logistic
map ga(x) � ax(1 � x), using a � 3.5. What periodic behavior wins out in the
long run? Try several different initial conditions to explore the basin of the
attracting periodic behavior. Then try different values of a � 3.57 and report
your results.

Now that we have some intuition from period-two orbits, we note that
the situation is essentially the same for higher periods. Let �p1, . . . , pk� denote a
period-k orbit of f . The chain rule says that

(fk) ′(p1) � (f(fk�1)) ′(p1)

� f ′(fk�1(p1))(fk�1) ′(p1)

� f ′(fk�1(p1))f ′(fk�2(p1)) 
 
 
 f ′(p1)

� f ′(pk)f
′(pk�1) 
 
 
 f ′(p1). (1.4)

STAB ILITY TEST FO R P ER IO D IC O RB ITS

The periodic orbit �p1, . . . , pk� is a sink if

|f ′(pk) 
 
 
 f ′(p1)| � 1

and a source if

|f ′(pk) 
 
 
 f ′(p1)| � 1.
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This formula tells us that the derivative of the kth iterate fk of f at a point
of a period-k orbit is the product of the derivatives of f at the k points of the
orbit. In particular, stability is a collective property of the periodic orbit, in that
(fk) ′(pi) � (fk) ′(pj) for all i and j.

1 .5 T H E FAM I L Y O F L O G I S T I C M A P S
We are beginning to get an overall view of the family ga(x) � ax(1 � x) associated
with the logistic model. When 0 � a � 1, the map has a sink at x � 0, and we
will see later that every initial condition between 0 and 1 is attracted to this sink.
(In other words, with small reproduction rates, small populations tend to die out.)
The graph of the map is shown in Figure 1.5(a).

If 1 � a � 3, the map, shown in Figure 1.5(b), has a sink at x � (a � 1)� a,
since the magnitude of the derivative is less than 1. (Small populations grow to
a steady state of x � (a � 1)� a.) For a greater than 3, as in Figure 1.5(c), the
fixed point x � (a � 1)� a is unstable since |g ′

a(x)| � 1, and a period-two sink
takes its place, which we saw in Table 1.2 for a � 3.3. When a grows above
1 �

√
6 � 3.45, the period-two sink also becomes unstable.

✎ EXERCISE T1 .6
Verify the statements in the previous paragraph by solving for the fixed
points and period-two points of ga(x) and evaluating their stability.

1 a-1
a

1 a-1
a

(a) (b) (c)

Figure 1.5 The logistic family.
(a) The origin attracts all initial conditions in [0, 1]. (b) The fixed point at (a � 1) � a
attracts all initial conditions in (0, 1). (c) The fixed point at (a � 1) � a is unstable.
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➮ C O M P U T E R E X P E R I M E N T 1 . 3

Use your logistic map program to investigate the long-run behavior of ga

for a near a� � 1 �
√

6. Repeat Table 1.2 for values of a slightly smaller than
a�. What qualitative or quantitative conclusions can be made about the speed
of convergence to the period-two orbit as a gets closer to a�? What happens to
iterations beginning at a period-two point for a slightly larger than a�?

For slightly larger values of a, the story of the periodic points of ga(x)
becomes significantly more complicated. Many new periodic orbits come into
existence as a is increased from 3.45 to 4. Figure 1.6 shows the limiting behavior
of orbits for values of a in the range 1 � a � 4. This computer-generated picture
was made by repeating the following procedure: (1) Choose a value of a, starting
with a � 1, (2) Choose x at random in [0,1], (3) Calculate the orbit of x under
ga(x), (4) Ignore the first 100 iterates and plot the orbit beginning with iterate
101. Then increment a and begin the procedure again. The points that are plotted
will (within the resolution of the picture) approximate either fixed or periodic
sinks or other attracting sets. This figure is called a bifurcation diagram and shows
the birth, evolution, and death of attracting sets. The term “bifurcation” refers to
significant changes in the set of fixed or periodic points or other sets of dynamic
interest. We will study bifurcations in detail in Chapter 11.

We see, for example, that the vertical slice a � 3.4 of Figure 1.6 intersects
the diagram in the two points of a period-two sink. For a slightly larger than
3.45, there appears to be a period-four sink. In fact, there is an entire sequence of
periodic sinks, one for each period 2n, n � 1, 2, 3, . . .. Such a sequence is called a
“period-doubling cascade”. The phenomenon of cascades is the subject of Chapter
12. Figure 1.7 shows portions of the bifurcation diagram in detail. Magnification
near a period-three sink, in Figure 1.7(b) hints at further period-doublings that
are invisible in Figure 1.6.

For other values of the parameter a, the orbit appears to randomly fill out the
entire interval [0, 1], or a subinterval. A typical cobweb plot formed for a � 3.86
is shown in Figure 1.8. These attracting sets, called “chaotic attractors”, are harder
to describe than periodic sinks. We will try to unlock some of their secrets in later
chapters. As we shall see, it is a characteristic of chaotic attractors that they can
abruptly appear or disappear, or change size discontinuously. This phenomenon,
called a “crisis”, is apparent at various a values. In particular, at a � 4, there is a
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1

0
1 4

Figure 1.6 Bifurcation diagram of ga(x) � ax(1 � x).
The fixed point that exists for small values of a gives way to a period-two orbit at the
“bifurcation point” a � 3, which in turn leads to more and more complicated orbits
for larger values of a. Notice that the fixed point is only plotted while it is a sink.
When the period-two orbit appears, the fixed point is no longer plotted because it
does not attract orbits. See Lab Visit 12 for laboratory versions.

crisis at which the chaotic attractor disappears. For a � 4, there is no attracting
set.

The successive blow-ups of the bifurcation diagrams reveal another inter-
esting feature, that of “periodic windows”. The period-three window, for example,
is apparent in Figure 1.7(a) and is shown in magnified form in Figure 1.7(b). This
refers to a set of parameter values for which there is a periodic sink, in this case
a period-three sink. Since a period-three point of ga is a fixed point of the third
iterate g3

a , the creation of the period-three sink can be seen by viewing the de-
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1

0
3.4 4.0

(a)
3.82 3.86

(b)

Figure 1.7 Magnifications of the logistic bifurcation diagram.
(a) Horizontal axis is 3.4 � a � 4.0 (b) Horizontal axis is 3.82 � a � 3.86.

velopment of the graph of g3
a as a moves from 3.82 to 3.86. This development is

shown in Figure 1.9.
In Figure 1.9(a), the period-three orbit does not exist. This parameter value

a � 3.82 corresponds to the left end of Figure 1.7(b). In Figure 1.9(b), the period-
three orbit has been formed. Of course, since each point of a period-three orbit of g

Figure 1.8 Cobweb plot for the logistic map.
A single orbit of the map g(x) � 3.86x(1 � x) shows complicated behavior.
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1

0
0 1

(a)
0 1

(b)
0 1

(c)

Figure 1.9 Graphs of the third iteration g3(x) of the logistic map ga(x) �

ax(1 � x).
Three different parameter values are shown: (a) a � 3.82 (b) a � 3.84 (c) a � 3.86.

is a fixed point of g3, the period-three orbit will appear as three intersections with
the diagonal y � x. As you can see from the figure, the shape of the graph forces
two period-three orbits to be created simultaneously. This is called a saddle-node
bifurcation, or alternatively, a tangency bifurcation. The “node” is the sink, which
is the set of three points at which the graph intersects the diagonal in negative
slope. (Can you explain why the three negative slopes are exactly equal? Use the
chain rule.) The fact that it is a sink corresponds to the fact that the negative
slopes are between �1 and 0. The “saddle” is a period-three source consisting of
the three upward sloping points. A vertical slice through the middle of Figure
1.7(b) shows that all initial conditions are attracted to the period-three sink.
In Figure 1.9(c), the period-three sink has turned into a source. This parameter
value a � 3.86 corresponds to the right side of Figure 1.7(b).

There are many more features of Figure 1.7 that we have to leave unex-
plained for now. The demise of the period-three sink as an attractor coincides with
a so-called period-doubling bifurcation, which creates a period-six sink, which
then meets a similar fate. There are periodic windows of arbitrarily high period.
We will try to unlock some of the deeper mysteries of bifurcations in Chapter 11.

What happens to the bifurcation diagram if different x values are selected?
(Recall that for each a, the orbit of one randomly chosen initial x is computed.)
Surprisingly, nothing changes. The diagram looks the same no matter what initial
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condition is picked at random between 0 and 1, since there is at most one
attracting fixed or periodic orbit at each parameter value. As we shall see, however,
there are many unstable, hence unseen, periodic orbits for larger a.

1 .6 T H E L O G I S T I C M A P G(x) � 4x(1 � x)
In the previous sections we studied maps from the logistic family g(x) � ax(1 � x).
For a � 2.0, 3.3, and 3.5, we found the existence of sinks of period 1, 2, and 4,
respectively. Next, we will focus on one more case, a � 4.0, which is so interesting
that it gets its own section. The reason that it is so interesting is that it has no
sinks, which leads one to ask where orbits end up.

The graph of G(x) � g4(x) � 4x(1 � x) is shown in Figure 1.10(a). Al-
though the graph is a parabola of the type often studied in elementary precalculus
courses, the map defined by G has very rich dynamical behavior. To begin with,
the diagonal line y � x intersects y � G(x) � 4x(1 � x) in the points x � 0 and
x � 3 � 4, so there are two fixed points, both unstable. Does G have any other
periodic orbits?

One way to look for periodic orbits is to sketch the graph of y � Gn(x).
Any period-two point, for example, will be a fixed point of G2(x). Therefore we
can find periodic points graphically.

1

0
0 1

(a)
0 1

(b)
0 1

(c)

Figure 1.10 Graphs of compositions of the logistic map.
(a) the logistic map G(x) � 4x(1 � x). (b) The map G2(x). (c) The map G3(x).
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The graph of y � G2(x) is shown in Figure 1.10(b). It is not hard to verify
by hand the general shape of the graph. First, note that the image of [0,1] under
G is [0,1], so the graph stays entirely within the unit square. Second, note that
G(1 � 2) � 1 and G(1) � 0 implies that G2(1 � 2) � 0. Further, since G(a1) � 1 � 2
for some a1 between 0 and 1 � 2, it follows that G2(a1) � 1. Similarly, there is
another number a2 such that G2(a2) � 1.

It is clear from Figure 1.10(b) that G2 has four fixed points, and therefore G
has four points that have period either one or two. Two of these points are already
known to us—they are fixed points for G. The new pair of points, p1 and p2, make
up a period-two orbit: that is, G(p1) � p2 and G(p2) � p1. This reasoning should
have you convinced that the period-two orbit exists. The next exercise asks you
to explicitly find p1 and p2.

✎ EXERCISE T1 .7
Find the period-two orbit of G(x) � 4x(1 � x).

Does G have any period-three points? There is a point b1 between 0 and a1

for which G(b1) � a1. This implies that G3(b1) � 1. The same holds for three
other points in [0,1], so y � G3(x) has four relative maxima of height 1 in [0,1].
Since G(1) � 0, G3 has roots at x � 0, a1, 1 � 2, a2, and 1, which separate the
maxima. The graph of G3 is shown in Figure 1.10(c).

The map G3 has eight fixed points, two of which were known to be the
fixed points 0 and 3� 4 of G. The period-two points of G are not fixed points of
G3. (Why not?) There remain six more points to account for, which must form
two period-three orbits. You should be able to prove to yourself in a similar way
that G4 has 16 � 24 fixed points, all in [0, 1]. With each successive iteration of
G, the number of fixed points of the iterate is doubled. In general, we see that Gk

has 2k fixed points, all in [0, 1]. Of course, for k � 1, G has fewer than 2k points
of period-k. (Remember that the definition of period-k for the point p is that k is
the smallest positive integer for which fk(p) � p.) For example, x � 0 is a period
one point and therefore not a period-k point for k � 1, although it is one of the
2k fixed points of Gk.

✎ EXERCISE T1 .8
Let G(x) � 4x(1 � x). Prove that for each positive integer k, there is an
orbit of period-k.
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Number of fixed

Number of points of Gk

Period fixed points due to lower Orbits of

k of Gk period orbits period k

1 2 0 2
2 4 2 1
3 8 2 2
4 16 4 3
...

...
...

...

Table 1.3 The periodic table for the logistic map.
The nth iterate of the map G(x) � 4x(1 � x) has 2n fixed points, which are periodic
orbits for G.

The number of orbits of the map for each period can be tabulated in the
map’s periodic table . For the logistic map it begins as shown in Table 1.3. The
first column is the period k, and the second column is the number of fixed points
of fk, which is 2k, as seen in Figure 1.10. The third column keeps track of fixed
points of Gk which correspond to orbits of lower period than k. When these are
subtracted away from the entry in the second column, the result is the number of
period-k points, which is divided by k to get the number of period-k orbits.

✎ EXERCISE T1 .9
Let G(x) � 4x(1 � x).

(a) Decide whether the fixed points and period-two points of G are
sinks.

(b) Continue the periodic table for G begun in Table 1.3. In particular,
how many periodic orbits of (minimum) period k does G have, for each
k � 10?

Is this what we mean by “chaos”? Not exactly. The existence of infinitely
many periodic orbits does not in itself imply the kind of unpredictability usually
associated with chaotic maps, although it does hint at the rich structure present.
Chaos is identified with nonperiodicity and sensitive dependence on initial con-
ditions, which we explore in the next section.
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1 .7 S E N S I T I V E D E P E N D E N C E O N
I N I T I A L C O N D I T I O N S

EXAM PLE 1 .9

Consider the map f(x) � 3x (mod 1) on the unit interval. The notation y
(mod 1) stands for the number y � n, where n is the unique integer that makes
0 � y � n � 1. For example, 14.92 (mod 1) � .92 and �14.92 (mod 1) � .08.
For a positive number y, this is the fractional part of y. See Figure 1.11(a) for
a graph of the map. Because of the breaks at x � 1 � 3, 2 � 3, this function is not
continuous.

This map is not continuous, however the important property that we are
interested in is not caused by the discontinuity . It may be more natural to view
f as a map on the circle of circumference one. Glue together the ends of the unit
interval to form a circle, as in Figure 1.11(b). If we consider f(x) as a map from
this circle to itself, it is a continuous map. In Figure 1.11(b), we show the image
of the subinterval [0, 1 � 2] on the circle. Whether we think of f as a discontinuous
map on the unit interval or as a continuous map on the circle makes no difference
for the questions we will try to answer below.

We call a point x eventually periodic with period p for the map f if for
some positive integer N, fn�p(x) � fn(x) for all n 	 N, and if p is the smallest

0 1

1

0

1/2

(a) (b)

Figure 1.11 The 3x mod 1 map.
(a) The map f(x) � 3x (mod 1) is discontinuous on the unit interval. (b) When
the points 0 and 1 are identified, turning the unit interval into a circle, the map is
continuous. The inner dashed semicircle is the subinterval [0, 1� 2], and the outer
dashed curve is its image under the map. If x and y are two points that are close
together on the circle, then f(x) and f(y) will be 3 times further apart than x and y.
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such positive integer. This says exactly that the orbit of x eventually maps directly
onto a periodic orbit. For example, x � 1 � 3 is an eventually periodic point, since
it maps under f to the period one orbit 0.

✎ EXERCISE T1 .10
Show that a point x is eventually periodic for Example 1.9 if and only if x is
a rational number.

✎ EXERCISE T1 .11
Construct the periodic table for f in Example 1.9 (follow the form given by
Table 1.3).

The 3x mod 1 map demonstrates the main characteristic of chaos: sensitive
dependence on initial conditions. This refers to the property that pairs of points,
which begin as close together as desired, will eventually move apart. Table 1.4
shows the beginning of two separate orbits whose initial conditions differ by .0001.
In fact, no matter how close they begin, the difference between two nearby orbits
is—as measured on the circle—magnified by a factor of 3 on each iteration. This
idea is important enough to be assigned a formal definition.

n f n(x0) f n(y0)

0 0.25 0.2501
1 0.75 0.7503
2 0.25 0.2509
3 0.75 0.7527
4 0.25 0.2581
5 0.75 0.7743
6 0.25 0.3229
7 0.75 0.9687
8 0.25 0.9061
9 0.75 0.7183

10 0.25 0.1549

Table 1.4 Comparison of the orbits of two nearly equal initial conditions
under the 3x mod 1 map.
The orbits become completely uncorrelated in fewer than 10 iterates.
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Definition 1.10 Let f be a map on �. A point x0 has sensitive depen-
dence on initial conditions if there is a nonzero distance d such that some points
arbitrarily near x0 are eventually mapped at least d units from the corresponding
image of x0. More precisely, there exists d � 0 such that any neighborhood N of
x0 contains a point x such that |fk(x) � fk(x0)| 	 d for some nonnegative integer
k. Sometimes we will call such a point x0 a sensitive point.

Ordinarily, the closer x is to x0, the larger k will need to be. The point x will
be sensitive if it has neighbors as close as desired that eventually move away the
prescribed distance d for some sufficiently large k.

✎ EXERCISE T1 .12
Consider the 3x mod 1 map of the unit interval [0, 1]. Define the distance
between a pair of points x, y to be either |x � y| or 1 � |x � y|, whichever is
smaller. (We are measuring with the “circle metric”, in the sense of Figure
1.11, corresponding to the distance between two points on the circle.)

(a) Show that the distance between any pair of points that lie within
1 � 6 of one another is tripled by the map. (b) Find a pair of points whose
distance is not tripled by the map. (c) Show that to prove sensitive depen-
dence for any point, d can be taken to be any positive number less than
1 � 2 in Definition 1.10, and that k can be chosen to be the smallest integer
greater than ln(d� |x � x0|) � ln 3.

✎ EXERCISE T1 .13
Prove that for any map f , a source has sensitive dependence on initial
conditions.

1 .8 I T I N E R A R I E S
The fact that the logistic map G(x) � 4x(1 � x) has periodic orbits of every
period is one indication of its complicated dynamics. An even more important
reflection of this complexity is sensitive dependence on initial conditions, which
is the hallmark of chaos.

In this section we will show for the logistic map G � g4 that for any initial
point in the unit interval and any preset distance � � 0, no matter how small,
there is a second point within � units of the first so that their two orbits will
map at least d � 1 � 4 units apart after a sufficient number of iterations. Since 1� 4
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unit is 25% of the length of the unit interval, it is fair to say that the two initial
conditions which began very close to one another are eventually moved by the
map so they are no longer close, by any reasonable definition of “close”.

In order to investigate sensitive dependence, we introduce the concept of
the itinerary of an orbit. This is a bookkeeping device that allows much of the
information of an orbit to be coded in terms of discrete symbols.

For the logistic map, assign the symbol L to the left subinterval [0, 1 � 2],
and R to the right subinterval [1 � 2, 1]. Given an initial value x0, we construct its
itinerary by listing the subintervals, L or R, that contain x0 and all future iterates.
For example, the initial condition x0 � 1 � 3 begets the orbit � 1

3 , 8
9 , 32

81 , . . .�, whose
itinerary begins LRL . . . . For the initial condition x0 � 1

4 , the orbit is � 1
4 , 3

4 , 3
4 , . . .�,

LL LR RR RL

LLL LLR LRR LRL RRL RRR RLR RLL

RL

Figure 1.12 Schematic itineraries for G(x) � 4x(1 � x).
The rules: (1) an interval ending in L splits into two subintervals ending in LL and
LR if there is an even number of R’s; the order is switched if there are an odd number
of R’s, (2) an interval ending in R splits into two subintervals ending in RL and RR
if there are an even number of R’s; the order is switched if there are an odd number
of R’s
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which terminates in the fixed point x � 3
4 . The itinerary for this orbit is LRR . . .,

which we abbreviate by LR; the overbar indicates that the R repeats indefinitely.
Notice that there is a special orbit, or group of orbits, for which the itinerary

is not uniquely defined. That is because the intervals L and R overlap at x � 1 � 2.
In particular, consider the initial condition x0 � 1 � 2. The corresponding orbit
is �1 � 2, 1, 0, 0, . . .�, which can be assigned itinerary RRL or LRL. This particular
orbit (and some others like it) are assigned two different names under this naming
system. Except for the case of orbits which land precisely on x � 1 � 2 at some
point of the orbit (and therefore end up mapping onto the fixed point 0), the
itinerary is uniquely defined.

Once we are given this way of assigning an itinerary to each orbit, we can
map out, on the unit interval, the locations of points that have certain itineraries.
Of course, an itinerary is in general an infinite sequence, but we could ask: what
is the set of points whose itinerary begins with, say, LR? These points share the
property of beginning in the L subinterval and being mapped to the R subinterval
by one iterate of the map. This set, which we could call the LR set, is shown in
Figure 1.12, along with a few other similar sets.

We would like to identify the sets of all initial points whose itineraries begin
with a specified sequence of symbols. For example, the set of initial conditions
whose itinerary begins with LR forms a subinterval of the unit interval. The
subintervals in Figure 1.12 give information about the future behavior of the
initial conditions lying in them. Another example is the subinterval marked LRL,
which consists of orbits that start out in the interval L � [0, 1 � 2], whose first
iterate lands in R � [1 � 2, 1], and whose second iterate lands in [0, 1 � 2]. For
example, x � 1 � 3 lies in LRL. Likewise, x � 1 � 4 lies in LRR because its first and
second iterate are in R.

✎ EXERCISE T1 .14
(a) Find a point that lies in the subinterval LLR. (You are asked for a specific
number.) (b) For each subinterval corresponding to a sequence of length 3,
find a point in the subinterval.

You may see some patterns in the arrangement of the subintervals of Figure
1.12. It turns out that the rule for dividing an interval, say LR, into its two
subintervals is the following: Count the number of R’s in the sequence (one in
this case). If odd, the interval is divided into LRR, LRL in that order. If even, the
L subinterval precedes the R subinterval. With this information, the reader can
continue Figure 1.12 schematically to finer and finer levels.
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✎ EXERCISE T1 .15
Continue the schematic diagram in Figure 1.12 to subintervals correspond-
ing to length 4 sequences.

✎ EXERCISE T1 .16
Let x0 be a point in the subinterval RLLRRRLRLR. (a) Is x0 less than, equal
to, or greater than 1 � 2? (b) Same question for f 6(x0).

A graphical way of specifying the possible itineraries for the logistic map is
shown in Figure 1.13. We call this the transition graph for the subintervals L and
R. An arrow from L to R, for example, means that the image f(L) contains the
interval R. For every path through this graph with directed edges (arrows), there
exists an orbit with an itinerary satisfying the sequence of symbols determined
by the path. It is clear from Figure 1.12 that the image of each of the intervals L
and R contains both L and R, so the transition graph for the logistic map is fully
connected (every symbol is connected to every other symbol by an arrow). Since
the graph is fully connected, all possible sequences of L and R are possible.

The concept of itineraries makes it easy to explain what we mean by
sensitive dependence on initial conditions. In specifying the first k symbols of the
itinerary, we have 2k choices. If k is large, then most of the 2k subintervals are
forced to be rather small, since the sum of their lengths is 1. It is a fact (that we
will prove in Chapter 3) that each of the 2k subintervals is shorter than �� 2k�1

in length.
Consider any one of these small subintervals for a large value of k, corre-

sponding to some sequence of symbols S1 
 
 
 Sk, where each Si is either R or L.
This subinterval in turn contains subintervals corresponding to the sequences
S1 
 
 
 SkLL, S1 
 
 
 SkLR, S1 
 
 
 SkRR and S1 
 
 
 SkRL. If we choose one point from
each, we have four initial conditions that lie within �� 2k�1 (since they all lie

L R

Figure 1.13 Transition graph for the logistic map G(x) � 4x(1 � x).
The leftmost arrow tells us that f maps the interval L over itself, i.e., that f(L)
contains L. The top arrow says that f(L) contains R, and so forth.

30



1 . 8 I T I N E R A R I E S

in S1 
 
 
 Sk), but which map k iterates later to subintervals LL, LR, RR, and RL,
respectively. (If this step isn’t clear, it may help to recall Exercise T1.16.) In Figure
1.12, the width of the LR and RR subintervals are greater than 1� 4, so that the
LR and RL subintervals, for example, lie over 1 � 4 unit apart.

It is now possible to see why every point in [0, 1] has sensitive dependence
on initial conditions under the logistic map G. To find a neighbor close to x0 that
eventually separates by a distance of at least d � 1 � 4, identify which subinterval
of level k � 2 that x0 belongs to, say S1 
 
 
 SkLR. Then it is always possible to
identify a subinterval within �� 2k�1 which maps 1 � 4 unit away after k iterates,
such as S1 
 
 
 SkRL. Therefore every point exhibits sensitive dependence with
neighbors that are arbitrarily close.

We illustrate for k � 1000: There is a pair of initial conditions within
2�1001 � 10�300 that eventually are mapped at least 1 � 4 unit apart. This is an
expansion of 1000 factors of 2 in 1000 iterates, for an average multiplicative
expansion rate of approximately 2. In Chapter 3 we will introduce the term
“Lyapunov number”, which will quantify the average multiplicative separation
rate of a map, which is in this case 21000 � 1000 � 2 per iterate. The fact that this
number is greater than 1 will mean that repeated expansion is occurring.

The impact of sensitive dependence is that changes in initial measurements
or errors in calculation along the orbit can result in quite different outcomes. The
consequences of this behavior were not fully appreciated until the advent of
computers and the computer simulation of dynamical models.

➮ C O M P U T E R E X P E R I M E N T 1 . 4

Use a computer program to illustrate sensitive dependence for the logistic
map G(x) � 4x(1 � x). Start with two different initial conditions that are very
close together, and iterate G on each. The two orbits should stay near one
another for a while, and then separate for good. By collecting statistics on your
experiments, try to quantify how many iterations are required for the points to
move apart, say 1� 2 unit, when the initial separation is .01, .001, etc. Does the
location of the initial pair matter?
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☞ C H A L L E N G E 1

Period Three Implies Chaos

IN CHAPTER 1 we have studied periodic orbits for continuous maps and the
idea of sensitive dependence on initial conditions. In Challenge 1 you will prove
the fact that the existence of a period-three orbit alone implies the existence of
a large set of sensitive points. The set is infinite (in fact, uncountably infinite, a
concept we will study in more detail later in the book). This surprising fact was
discovered by T.Y. Li and J.A. Yorke (Li and Yorke, 1975).

A chaotic orbit is a bounded, non-periodic orbit that displays sensitive
dependence. When we give a precise definition of chaos, we will find that the
discussion is simplified if we require a stronger definition of sensitivity, namely
that chaotic orbits separate exponentially fast from their neighbors as the map is
iterated.

A much simpler fact about continuous maps is that the existence of a period-
three orbit implies that the map has periodic orbits of all periods (all integers).
See Exercise T3.10 of Chapter 3. This fact doesn’t say anything directly about
sensitive dependence, although it guarantees that the map has rather complicated
dynamical behavior.

We show a particular map f in Figure 1.14 that has a period-three orbit,
denoted �A, B, C�. That is, f(A) � B, f(B) � C, and f(C) � A. We will discover
that there are infinitely many points between A and C that exhibit sensitive
dependence on initial conditions. To simplify the argument, we will use an as-
sumption that is explicitly drawn into Figure 1.14: the map f(x) is unimodal,
which means that it has only one critical point. (A critical point for a function
f(x) is a point for which f ′(x) � 0 or where the derivative does not exist.) This
assumption, that f(x) has a single maximum, is not necessary to prove sensitive
dependence—in fact sensitive dependence holds for any continuous map with a
period-three orbit. The final step of Challenge 1 asks you to extend the reasoning
to this general case.

The existence of the period-three orbit in Figure 1.14 and the continuous
nature of f together guarantee that the image of the interval [A, B] covers [B, C];
that is, that f [A, B] � [B, C]. Furthermore, f [B, C] � [A, C]. We will try to repeat
our analysis of itineraries, which was successful for the logistic map, for this
new map. Let the symbol L represent the interval [A, B], and R represent [B, C].
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A B C

Figure 1.14 A map with a period-three orbit.
The dashed lines follow a cobweb orbit, from A to B to C to A.

Unlike the logistic map example, notice that in the itinerary of an orbit, L must be
followed by R, although R can be followed by either L or R. Some of the itinerary
subintervals are shown schematically in Figure 1.15.

A second difference from the logistic map example is that there may be gaps
in the interval, as shown in Figure 1.15. For example, points just to the left of B
are mapped to the right of C, and therefore out of the interval [A, C]; we do not
include these points in our analysis. (A more sophisticated analysis might include
these points, but we can demonstrate sensitive dependence without considering
these orbits.) To simplify our analysis, we will not assign an itinerary to points
that map outside [A, C].

The corresponding transition graph is shown in Figure 1.16. The transition
graph tells us that every finite sequence of the symbols L and R corresponds to
a subinterval of initial conditions x, as long as there are never two consecutive
L’s in the sequence. (This follows from the fact that the left-hand interval [A, B]
does not map over itself.)

The proof that period three implies chaos is given below in outline form.
In each part, you are expected to fill in a reason or argument.

Step 1 Let d denote the length of the subinterval RR. Denote by J �

S1 
 
 
 SkR any subinterval that ends in R. (Each Si denotes either R or L.) Show
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L R

LR RR RL

LRR LRL RRL RRR RLR 

A B C 

LRRL

LRRR

LRLR

RRLR

RRRR

RRRL

RLRL

RLRR

Figure 1.15 Schematic itineraries for period-three map.
The rules: (1) an interval ending in R splits into two subintervals ending in RR and
RL; the order is switched if there is an even number of R’s, (2) an interval ending
in L contains a shorter subinterval ending in LR, and a gap on the left (for an odd
number of R’s) or the right (for an even number).

that J contains a pair of points, one in each of the subintervals S1 
 
 
 SkRRL and
S1 
 
 
 SkRLR, that eventually map at least d units apart.

Step 2 Show that inside J there are 3 subintervals of type S1 
 
 
 SkRSk�2

Sk�3R. Explain why at least 2 of them must have length that is less than half the
length of J.

L R

Figure 1.16 Transition graph for map with period-three orbit.
The three arrows imply that f(L) � R, f(R) � R, and f(R) � L.
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Step 3 Combine the two previous steps. Show that a subinterval J of form
S1 
 
 
 SkR must contain a subinterval J1 of form S1 
 
 
 SkRSk�2Sk�3RLR with the
following property. Each point x of J1 has a neighbor y within length(J)� 2 whose
pairwise distance upon further iteration eventually exceeds d.

Step 4 Let h � C � A be the length of the original interval. Show that for
each positive integer k there are 2k disjoint subintervals (denoted by sequences of
5k � 1 symbols) of length less than 2�kh, each of which contain a point that has
sensitive dependence on initial conditions. Therefore, there are infinitely many
sensitive points.

Step 5 Quantify the number of sensitive points you have located in the
following way. Show that there is a one-to-one correspondence between the
sensitive points found in Step 4 and binary numbers between 0 and 1 (infinite
sequences of form .a1a2a3 
 
 
, where each ai is a 0 or 1). This means that the set
of sensitive points is uncountable, a concept we will meet in Chapter 4.

Step 6 Our argument is based on Figure 1.14, where f(A) � B, f(B) �

C, f(C) � A, and where A � B � C. How many other distinct “cases” need to
be considered? Does a similar argument work for these cases? What changes are
necessary?

Step 7 Explain how to modify the arguments above to work for the case
where f is any continuous map with a period-three orbit. (Begin by identifying
one-piece subintervals of [A, B] and [B, C] that are mapped onto [A, B] and
[B, C].)

Postscript. The subintervals described in the previous argument, although many in
number, may comprise a small proportion of all points in the interval [A, C]. For example,
the logistic map g(x) � 3.83x(1 � x) has a period-three sink. Since there is a period-three
orbit (its stability does not matter), we now know that there are many points that exhibit
sensitive dependence with respect to their neighbors. On the other hand, the orbits of most
points in the unit interval converge to one or another point in this periodic attractor under
iteration by g3. These points do not exhibit sensitive dependence. For example, points that
lie a small distance from one of the points p of the period-three sink will be attracted
toward p, as we found in Theorem 1.5. The distances between points that start out near
p decrease by a factor of approximately |(g3) ′(p)| with each three iterates. These nearby
points do not separate under iteration. There are, however, infinitely many points whose
orbits do not converge to the period-three sink. It is these points that exhibit sensitive
dependence.
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EXERCISES

1.1. Let l(x) � ax � b, where a and b are constants. For which values of a and b does l
have an attracting fixed point? A repelling fixed point?

1.2. (a) Let f(x) � x � x2. Show that x � 0 is a fixed point of f , and describe the
dynamical behavior of points near 0.

(b) Let g(x) � tan x, ��� 2 � x � �� 2. Show that x � 0 is a fixed point of g,
and describe the dynamical behavior of points near 0.

(c) Give an example of a function h for which h ′(0) � 1 and x � 0 is an
attracting fixed point.

(d) Give an example of a function h for which h ′(0) � 1 and x � 0 is a repelling
fixed point.

1.3. Let f(x) � x3 � x. Find all fixed points of f and decide whether they are sinks or
sources. You will have to work without Theorem 1.5, which does not apply.

1.4. Let x1 � 
 
 
 � x8 be the eight fixed points of G3(x), where G(x) � 4x(1 � x), as
in 1.10(c). Clearly, x1 � 0.

(a) For which i is xi � 3� 4?

(b) Group the remaining six points into two orbits of three points each. It may
help to consult Figure 1.10(c). The most elegant solution (that we know of) uses
the chain rule.

1.5. Is the period-two orbit of the map f(x) � 2x2 � 5x on � a sink, a source, or neither?
See Exercise T1.5.

1.6. Define the map f(x) � 2x (mod 1) on the unit interval [0, 1]. Let L denote the
subinterval [0, 1� 2] and R the subinterval [1 � 2, 1].

(a) Draw a chart of the itineraries of f as in Figure 1.12.

(b) Draw the transition graph for f .

(c) Establish sensitive dependence for orbits under this map. Show that each
point has neighbors arbitrarily near that eventually map at least 1 � 2 unit apart.

1.7. Define the tent map on the unit inverval [0, 1] by

T(x) �

{
2x if 0 � x � 1� 2
2(1 � x) if 1� 2 � x � 1

.

(a) Divide the unit interval into two appropriate subintervals and repeat parts
(a)–(c) of Exercise 1.6 for this map.
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(b) Complete a periodic table for f , similar to the one in Table 1.3, for periods
less than or equal to 10. In what ways, if any, does it differ from the periodic
table for the logistic map G?

1.8. Let f(x) � 4x(1 � x). Prove that there are points in I � [0, 1] that are not fixed
points, periodic points, or eventually periodic points of f .

1.9. Define xn�1 � (xn � 2) � (xn � 1).

(a) Find L � limn→� xn for x0 	 0.

(b) Describe the set of all negative x0 for which the limit limn→� xn either exists
and is not equal to the L in part (a) or does not exist (for example, x0 � �1).

1.10. For the map g(x) � 3.05x(1 � x), find the stability of all fixed points and period-two
points.

1.11. Let f be a one-to-one smooth map of the real line to itself. One-to-one means that
if f(x1) � f(x2), then x1 � x2. A function f is called increasing if x1 � x2 implies
f(x1) � f(x2), and decreasing if x1 � x2 implies f(x1) � f(x2).

(a) Show that f is increasing for all x or f is decreasing for all x.

(b) Show that every orbit �x0, x1, x2, . . .� of f2 satisfies either x0 	 x1 	 x2 	 . . .
or x0 � x1 � x2 � . . . .

(c) Show that every orbit of f2 either diverges to �� or �� or converges to a
fixed point of f2.

(d) What does this imply about convergence of the orbits of f?

1.12. The map g(x) � 2x(1 � x) has negative values for large x. Population biologists
sometimes prefer maps that are positive for positive x.

(a) Find out for what value of a the map h(x) � axe�x has a superstable fixed
point x0, which means that h(x0) � x0 and h ′(x0) � 0.

(b) Investigate the orbit starting at x0 � 0.1 for this value of a using a calculator.
How does the behavior of this orbit differ if a is increased by 50%?

(c) What is the range of a 	 1 for which h(x) has a positive sink?

1.13. Let f : [0, �) → [0, �) be a smooth function, f(0) � 0, and let p � 0 be a fixed
point such that f ′(p) 	 0. Assume further that f ′(x) is decreasing. Show that all
positive x0 converge to p under f .

1.14. Let f(x) � x2 � x. Find all fixed points of f . Where do nonfixed points go under
iteration by f?

1.15. Prove the following explicit formula for any orbit �x0, x1, x2, . . .� of the logistic map
G(x) � 4x(1 � x):

xn �
1
2

�
1
2

cos(2n arccos(1 � 2x0)).

Caution: Not all explicit formulas are useful.
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1.16. Let f be a map defined on the real line, and assume p is a fixed point. Let � � 0 be
a given number. Find a condition that guarantees that every initial point x in the
interval (p � �, p � �) satisfies fn(x) → p as n → �.

1.17. Let f(x) � 4x(1 � x). Prove that LLL . . . L, the interval of initial values x in [0, 1]
such that 0 � f i(x) � 1� 2 for 0 � i � k, has length [1 � cos(�� 2k)] � 2.
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Boom, Bust, and Chaos in the Beetle Census

DAMAGE DUE TO flour beetles is a significant cost to the food processing
industry. One of the major goals of entomologists is to gain insight into the
population dynamics of beetles and other insects, as a way of learning about insect
physiology. A commercial application of population studies is the development
of strategies for population control.

A group of researchers recently designed a study of population fluctuation
in the flour beetle Tribolium. The newly hatched larva spends two weeks feeding
before entering a pupa stage of about the same length. The beetle exits the pupa
stage as an adult. The researchers proposed a discrete map that models the three
separate populations. Let the numbers of larvae, pupae, and adults at any given
time t be denoted Lt, Pt, and At, respectively. The output of the map is three
numbers: the three populations Lt�1, Pt�1, and At�1 one time unit later. It is most
convenient to take the time unit to be two weeks. A typical model for the three
beetle populations is

Lt�1 � bAt

Pt�1 � Lt(1 � �l)

At�1 � Pt(1 � �p) � At(1 � �a), (1.5)

where b is the birth rate of the species (the number of new larvae per adult each
time unit), and where �l, �p, and �a are the death rates of the larva, pupa, and
adult, respectively.

We call a discrete map with three variables a three-dimensional map, since
the state of the population at any given time is specified by three numbers Lt, Pt,
and At. In Chapter 1, we studied one-dimensional maps, and in Chapter 2 we
move on to higher dimensional maps, of which the beetle population model is an
example.

Tribolium adds an interesting twist to the above model: cannibalism caused
by overpopulation stress. Under conditions of overcrowding, adults will eat pupae

Costantino, R.F., Cushing, J.M., Dennis, B., Desharnais, R.A., Experimentally induced
transitions in the dynamic behavior of insect populations. Nature 375, 227–230 (1995).
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and unhatched eggs (future larvae); larvae will also eat eggs. Incorporating these
refinements into the model yields

Lt�1 � bAt exp(�ceaAt � celLt)

Pt�1 � Lt(1 � �l)

At�1 � Pt(1 � �p) exp(�cpaAt) � At(1 � �a). (1.6)

The parameters cel � 0.012, cea � 0.009, cpa � 0.004, �l � 0.267, �p � 0, and
b � 7.48 were determined from population experiments. The mortality rate of
the adult was determined from experiment to be �a � 0.0036.

The effect of calling the exterminator can be modeled by artificially chang-
ing the adult mortality rate. Figure 1.17 shows a bifurcation diagram from Equa-
tions (1.6). The horizontal axis represents the mortality rate �a. The asymptotic
value of Lt—found by running the model for a long time at a fixed �a and recording
the resulting larval population—is graphed vertically.

Figure 1.17 suggests that for relatively low mortality rates, the larval pop-
ulation reaches a steady state (a fixed point). For �a � .1 (representing a death
rate of 10% of the adults over each 2 week period), the model shows oscillation
between two widely-different states. This is a “boom-and-bust” cycle, well-known
to population biologists. A low population (bust) leads to uncrowded living con-

Figure 1.17 Bifurcation diagram for the model equations (1.6).
The bifurcation parameter is �a, the adult mortality rate.
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Figure 1.18 Population as a function of time.
Four replicates of the experiment for each of six different adult mortality rates are
plotted together.
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ditions and runaway growth (boom) at the next generation. At this point the
limits to growth (cannibalism, in this system) take over, leading to a catastrophic
decline and repeat of the cycle.

The period-doubling bifurcation near �a � 0.1 is followed by a period-
halving bifurcation at �a � 0.6. For very high adult mortality rates (near 100%),
we see the complicated, nonperiodic behavior.

The age-stratified population model discussed above is an interesting math-
ematical abstraction. What does it have to do with real beetles? The experimenters
put several hundred beetles and 20 grams of food in each of several half-pint milk
bottles. They recorded the populations for 18 consecutive two-week periods. Five
different adult mortality rates, �a � 0.0036 (the natural rate), 0.04, 0.27, 0.50,
0.73, and 0.96 were enforced in different bottles, by periodically removing the
requisite number of adult beetles to artificially reach that rate. Each of the five
experiments was replicated in four separate bottles.

Figure 1.18 shows the population counts taken from the experiment. Popu-
lations of adults from the four separate bottles are graphed together in the boxes
on the left. The four curves in the box are the adult population counts for the
four bottles as a function of time. The boxes on the right are similar but show
the population counts for the larvae. During the first 12 weeks, the populations
were undisturbed, so that the natural adult mortality rate applied; after that, the
artificial mortality rates were imposed by removing or adding adult beetles as
needed.

The population counts from the experiment agree remarkably well with the
computer simulations from Figure 1.18. The top two sets of boxes represent �a �

0.0036 and 0.04, which appear experimentally to be sinks, or stable equilibria, as
predicted by Figure 1.18. The period-two sink predicted also can be seen in the
populations for �a � 0.27 and 0.50. For �a � 0.96, the populations seem to be
governed by aperiodic oscillations.
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Two-Dimensional Maps

IN CHAPTER 1 we developed the fundamental properties of one-dimensional
dynamics. The concepts of periodic orbits, stability, and sensitive dependence of
orbits are most easily understood in that context.

In this chapter we will begin the transition from one-dimensional to many
dimensional dynamics. The discussion centers around two-dimensional maps,
since much of the new phenomena present in higher dimensions appears there
in its simplest form. For example, we will expand our classification of one-
dimensional fixed points as sinks and sources to include saddles, which are con-
tracting in some directions and expanding in others.
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2 .1 M AT H EM AT I C A L MOD E L S
Maps are important because they encode the behavior of deterministic systems.
We have discussed population models, which have a single input (the present
population) and a single output (next year’s population). The assumption of
determinism is that the output can be uniquely determined from the input.
Scientists use the term “state” for the information being modeled. The state of
the population model is given by a single number—the population—and the state
space is one-dimensional. We found in Chapter 1 that even a model where the
state runs along a one-dimensional axis, as G(x) � 4x(1 � x), can have extremely
complicated dynamics.

The changes in temperature of a warm object in a cool room can be modeled
as a one-dimensional map. If the initial temperature difference between the object
and the room is D(0), the temperature difference D(t) after t minutes is

D(t) � D(0)e�Kt, (2.1)

where K � 0 depends on the specific heat of the object. We can call the model

f(x) � e�Kx (2.2)

the “time-1 map”, because application of this map advances the system one
minute. Since e�K is a constant, f is a linear one-dimensional map, the easiest
type we studied in Chapter 1. It is clear that the fixed point x � 0 is a sink because
|e�K| � 1. More generally, we could consider the map that advances the system
T time units, the time-T map. For any fixed time T, the time-T map for this
example is the linear one-dimensional map f(x) � e�KTx, also written as

x �−→ e�KTx. (2.3)

Formula (2.1) is derived from Newton’s law of cooling, which is the differ-
ential equation

dD
dt

� �kD, (2.4)

with initial value D(0). There is a basic assumption that the body is a good
conductor so that at any instant, the temperature throughout the body is uniform.
Equation (2.3) is an example of the derivation of a map as the time-T map of a
differential equation.

In the examples above, the state space is one-dimensional, meaning that
the information needed to advance the model in time is a single number. This is in
effect the definition of state in mathematical modeling: the amount of information
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needed to advance the model. Nothing else is relevant for the purposes of the
model, so the state is completely sufficient to describe the conditions of the system.
In the case of a one-dimensional map or a single differential equation, the state is
a single number. In the case of a two-dimensional map or a system of two coupled
ordinary differential equations, it is a pair of numbers. The state is essentially
the initial information needed for the dynamical system model to operate and
respond unambiguously with an orbit. In partial differential equations models, the
state space may be infinite-dimensional. In such a case, infinitely many numbers
are needed to specify the current state. For a vibrating string, modeled by a partial
differential equation called the wave equation, the state is the entire real-valued
function describing the shape of the string.

You are already familiar with systems that need more than one number to
specify the current condition of the system. For the system consisting of a projectile
falling under Newton’s laws of motion, the state of the system at a given time
can be specified fully by six numbers. If we know the position �p � (x, y, z) and
velocity �v � (vx, vy, vz) of the projectile at time t � 0, then the state at any future
time t is uniquely determined as

x(t) � x(0) � vx(0)t

y(t) � y(0) � vy(0)t

z(t) � z(0) � vz(0)t � gt2 � 2

vx(t) � vx(0)

vy(t) � vy(0)

vz(t) � vz(0) � gt, (2.5)

where the constant g represents the acceleration toward earth due to gravity. (In
meters-kilograms-seconds units, g � 9.8 m/sec2.) Formula (2.5) is valid as long as
the projectile is aloft. The assumptions built into this model are that gravity alone
is the only force acting on the projectile, and that the force of gravity is constant.
The formula is again derived from a differential equation due to Newton, this
time the law of motion

F � ma. (2.6)

Here the gravitational force is

F �
GMm

r2 , (2.7)

where M is the mass of the earth, m is the mass of the projectile, G is the
gravitational constant, and r is the distance from the center of the earth to the
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projectile. Since r is constant to good approximation as long as the projectile is
near the surface of the earth, g can be calculated as GM� r2.

The position of the falling projectile evolves according to a set of six
equations (2.5). The identification of a projectile’s motion as a system with a
six-dimensional state is one of the great achievements of Newtonian physics.
However, it is rare to find a dynamical system that has an explicit formula like
(2.5) that describes the evolution of the state’s future. More often we know a
formula that describes the new state in terms of the previous and/or current state.

A map is a formula that describes the new state in terms of the previous
state. We studied many such examples in Chapter 1. A differential equation is
a formula for the instantaneous rate of change of the current state, in terms of
the current state. An example of a differential equation model is the motion of
a projectile far from the earth’s surface. For example, a satellite falling to earth
must follow the gravitational equation (2.7) but with a nonconstant distance r.
That makes the acceleration a function of the position of the satellite, rendering
equations (2.5) invalid.

A system consisting of two orbiting masses interacting through gravitational
acceleration can be expressed as a differential equation. Using Newton’s law of
motion (2.6) and the gravitation formula (2.7), the motions of the two masses
can be derived as a function of time as in (2.5). We say that such a system
is “analytically solvable”. The resulting formulas show that the masses follow
elliptical orbits around the combined center of mass of the two bodies.

On the other hand, a system of three or more masses interacting exclu-
sively through gravitational acceleration is not analytically solvable. The so-
called three-body problem, for example, has an 18-dimensional state space. To
solve the equations needed to advance the dynamics, one must know the three
positions and three velocities of the point masses, a total of six three-dimensional
vectors, or 18 numbers. Although there are no exact formulas of type (2.5) in
this case, one can use computational methods to approximate the solution of the
differential equations resulting from Newton’s laws of motion to get an idea of
the complicated behavior that results.

At one time it was not known that there are no such exact formulas. In
1889, to commemorate the 60th birthday of King Oscar II of Sweden and Norway,
a contest was held to produce the best research in celestial mechanics pertaining
to the stability of the solar system, a particularly relevant n-body problem. The
winner was declared to be Henri Poincaré, a professor at the University of Paris.

Poincaré submitted an entry full of seminal ideas. In order to make progress
on the problem, he made two simplifying assumptions. First, he assumed that
there are three bodies all moving in a plane. Second, he assumed that two of
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the bodies were massive and that the third had negligible mass in comparison, so
small that it did not affect the motion of the other two. We can imagine two stars
and a small asteroid. In general, the two large stars would travel in ellipses, but
Poincaré made another assumption, that the initial conditions were chosen such
that the two moved in circles, at constant speed, circling about their combined
center of mass.

It is simplest to observe the trajectory of the asteroid in the rotating co-
ordinate system in which the two stars are stationary. Imagine looking down on
the plane in which they are moving, rotating yourself with them so that the two
appear fixed in position. Figure 2.1 shows a typical path of the asteroid. The hor-
izontal line segment in the center represents the (stationary) distance between
the two larger bodies: The large one is at the left end of the segment and the
medium one is at the right end. The tiny body moves back and forth between
the two larger bodies in a seemingly unpredictable manner for a long time. The
asteroid gains speed as it is ejected toward the right with sufficient momentum so

Figure 2.1 A trajectory of a tiny mass in the three-body problem.
Two larger bodies are in circular motion around one another. This view is of a
rotating coordinate system in which the two larger bodies lie at the left and right
ends of the horizontal line segment. The tiny mass is eventually ejected toward the
right. Other trajectories starting close to one of the bodies can be forever trapped.
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that it never returns. Other pictures, with different initial conditions, could be
shown in which the asteroid remains forever close to one of the stars.

This three-body system is called the “planar restricted three-body problem”,
but we will refer to it as the three-body problem. Poincaré’s method of analysis
was based on the fact that the motion of the small mass could be studied, in a
rather nonobvious manner, by studying the orbit of a plane map (a function from
�2 to �2). He discovered the crucial ideas of “stable and unstable manifolds”,
which are special curves in the plane (see Section 2.6 for definitions).

On the basis of his entry Poincaré was declared the winner. However,
he did not fully understand the nature of the stable and unstable manifolds at
that time. These manifolds can cross each other, in so-called homoclinic points.
Poincaré was confused by these points. Either he thought they didn’t exist or
he didn’t understand what happened when they did cross. This error made his
general conclusions about the nature of the trajectories totally wrong. His error
was detected after he had been declared the winner but before his entry was
published. He eventually realized that the existence of homoclinic points implied
that there was incredibly complicated motion near those points, behavior we now
call “chaotic”.

Poincaré worked feverishly to revise his winning entry. The article “Sur les
équations de la dynamique et le problème des trois corps” (on the equations of
dynamics and the three-body problem) was published in 1890. In this 270-page
work, Poincaré established convincingly that due to the possibility of homoclinic
crossings, no general exact formula exists, beyond Newton’s differential equations
arising from (2.6) and (2.7), for making predictions of the positions of the three
bodies in the future.

Poincaré succeeded by introducing qualitative methods into an area of
study that had long been dominated by highly refined quantitative methods. The
quantitative methods essentially involved developing infinite series expansions
for the positions and velocities of the gravitational bodies. These series expansions
were known to be problematic for representing near-collisions of the bodies.
Poincaré was able to show through his geometric reasoning that these infinite
series expansions could not converge in general.

One of Poincaré’s most important innovations was a simplified way to look
at complicated continuous trajectories, such as those resulting from differential
equations. Instead of studying the entire trajectory, he found that much of the
important information was encoded in the points in which the trajectory passed
through a two-dimensional plane. The order of these intersection points defines
a plane map. Figure 2.2 shows a schematic view of a trajectory C. The plane S
is defined by x3 � constant. Each time the trajectory C pierces S in a downward
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A

B

S

Cx3

x2

x1

Figure 2.2 A Poincaré map derived from a differential equation.
The map G is defined to encode the downward piercings of the plane S by the
solution curve C of the differential equation so that G(A) � B, and so on.

direction, as at points A and B in Figure 2.2, we record the point of piercing
on the plane S. We can label these points by the coordinates (x1, x2). Let A
represent the kth downward piercing of the plane and B the (k � 1)th downward
piercing. The Poincaré map is the two-dimensional map G such that G(A) � B.
The Poincaré map is similar in principle to the time-T map we considered above,
though different in detail. While the time-T map is stroboscopic (it logs the value
of a variable at equal time intervals), the Poincaré map records plane piercings,
which need not be equally spaced in time. Although Figure 2.2 shows a plane,
more general surfaces can be used. The plane or surface is called a surface of
section.

Given A, the differential equations can be solved with A as an initial
value, and the solution followed until the next downward piercing at B. Thus A
uniquely determines B. This ensures that the map G is well-defined. This map
can be iterated to find all subsequent piercings of S. In general, the Poincaré
map technique reduces a k-dimensional, continuous-time dynamical system to a
(k � 1)-dimensional map. Much of the dynamical behavior of the trajectory C is
present in the two-dimensional map G. For example, the trajectory C is periodic
(forms a closed curve, which repeats the same dynamics forever) if and only if the
plane map G has a periodic orbit.

Now we can explain how the differential equations of the three-body prob-
lem shown in Figure 2.1 led Poincaré to a plane map. In our rotating coordinate
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system (where the two stars are fixed at either end of the line segment) the dif-
ferential equations involve the position (x, y) and velocity (ẋ, ẏ) of the asteroid.
These four numbers determine the current state of the asteroid.

There is a constant of the motion, called the Hamiltonian. For this problem
it is a function in the four variables that is constant with respect to time. It is
like total energy of the asteroid, which never changes. The following fact can be
shown regarding this Hamiltonian: for y � 0 and for any particular x and ẋ, the
Hamiltonian reduces to ẏ2 � C, where C 	 0. Thus when the vertical component
of the position of the asteroid satisfies y � 0, the vertical velocity component of
the asteroid is restricted to the two possible values �

√
C.

Because of this fact, it makes sense to consider the Poincaré map, using up-
ward piercings of the surface of section y � 0. The variable y is the vertical com-
ponent of the position, so this corresponds to an upward crossing of the horizontal
line segment in Figure 2.1. There are two “branches” of the two-dimensional sur-
face y � 0, corresponding to the two possible values of ẏ mentioned above. (The
two dimensions correspond to independent choices of the numbers x and ẋ.) We
choose one branch, say the one that corresponds to the positive value of ẏ, for our
surface of section. What we actually do is follow the solution of the differential
equation, computing x, y, ẋ, ẏ as we go, and at the instant when y goes from neg-
ative to positive, we check the current ẏ from the differential equation. If ẏ � 0,
then an upward crossing of the surface has occurred, and x, ẋ are recorded. This
defines a Poincaré map.

Starting the system at a particular value of (x, ẋ), where y is zero and is
moving from negative to positive, signalled by ẏ � 0, we get the image F(x, ẋ)
by recording the new (x, ẋ) the next time this occurs. The Poincaré map F
is a two-dimensional map. What Poincaré realized should now be clear to us.
Even this restricted version of the full three-body problem contains much of
the complicated behavior possible in two-dimensional maps, including chaotic
dynamics caused by homoclinic crossings, shown in Figure 2.24. Understanding
these complications will lead us to the study of stable and unstable manifolds, in
Section 2.6 at first, and then in more detail in Chapter 10.

Work in the twentieth century has continued to reflect the philosophy
that much of the chaotic phenomena present in differential equations can be
approached, through reduction by time-T maps and Poincaré maps, by studying
discrete-time dynamics. As you can gather from the three-body example, Poincaré
maps are seldom simple to evaluate, even by computer. The French astronomer
M. Hénon showed in 1975 that much of the interesting phenomena present in
Poincaré maps of differential equations can be found as well in a two-dimensional
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quadratic map, which is much easier to simulate on a computer. The version of
Hénon’s map that we will study is

f(x, y) � (a � x2 � by, x). (2.8)

Note that the map has two inputs, x, y, and two outputs, the new x, y. The new
y is just the old x, but the new x is a nonlinear function of the old x and y. The
letters a and b represent parameters that are held fixed as the map is iterated.

The nonlinear term x2 in (2.8) is just about as unobtrusive as could be
achieved. Hénon’s remarkable discovery is that this “barely nonlinear” map dis-
plays an impressive breadth of complex phenomena. In its way, the Hénon map is
to two-dimensional dynamics what the logistic map G(x) � 4x(1 � x) is to one-
dimensional dynamics, and it continues to be a catalyst for deeper understanding
of nonlinear systems.

For now, set a � 1.28 and b � �0.3. (Here we diverge from Hénon, whose
most famous example has b � 0.3 instead.) If we start with the initial condition
(x, y) � (0, 0) and iterate this map, we find that the orbit moves toward a period-
two sink. Figure 2.3(a) shows an analysis of the results of iteration with general
initial values. The picture was made by starting with a 700 � 700 grid of points

2.5

�2.5
�2.5 2.5

(a)
�2.5 2.5

(b)

Figure 2.3 A square of initial conditions for the Hénon map with b � �0.3.
Initial values whose trajectories diverge to infinity upon repeated iteration are
colored black. The crosses show the location of a period-two sink, which attracts
the white initial values. (a) For a � 1.28, the boundary of the basin is a smooth
curve. (b) For a � 1.4, the boundary is “fractal” .
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in [�2.5, 2.5] � [�2.5, 2.5] as initial values. The map (2.8) was iterated by
computer for each initial value until the orbit either converges to the period-two
sink, or diverges toward infinity. Points in black represent initial conditions whose
orbits diverge to infinity, and points in white represent initial values whose orbits
converge to the period-two orbit. The black points are said to belong to the basin
of infinity, and the white points to the basin of the period-two sink. The boundary
of the basin consists of a smooth curve, which moves in and out of the rectangle
of initial values shown here.

✎ EXERCISE T2 .1
Check that the period-two orbit of the Hénon map (2.8) with a � 1.28 and
b � �0.3 is approximately �(0.7618, 0.5382), (0.5382, 0.7618)�. We will see
how to find these points in Section 2.5.

➮ C O M P U T E R E X P E R I M E N T 2 . 1

Write a program to iterate the Hénon map (2.8). Set a � 1.28 and b � �0.3
as in Figure 2.3(a). Using the initial condition (x, y) � (0, 0), create the period-
two orbit, and view it either by printing a list of numbers or by plotting (x, y)
points. Change a to 1.2 and repeat. How does the second orbit differ from the
first? Find as accurately as possible the value of a between 1.2 and 1.28 at which
the orbit behavior changes from the first type to the second.

If we instead set a � 1.4, with b � �0.3, and repeat the process, we see
quite a different picture. First, the points of the period-two sink have distanced
themselves a bit from one another. More interesting is that the boundary of the
basin is no longer a smooth curve, but is in a sense infinitely complicated. This is
fractal structure, which we shall discuss in detail in Chapter 4.

Next we want to show how a two-dimensional map can be derived from a
differential equations model of a pendulum. Figure 2.4 shows a pendulum swinging
under the influence of gravity. We will assume that the pendulum is free to swing
through 360 degrees. Denote by � the angle of the pendulum with respect to the
vertical, so that � � 0 corresponds to straight down. Therefore � and � � 2�

should be considered the same position of the pendulum.
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mg

mgsin

0

0

Figure 2.4 The pendulum under gravitational acceleration.
The force of gravity causes the pendulum bob to accelerate in a direction perpen-
dicular to the rod. Here � denotes the angle of displacement from the downward
position.

We will use Newton’s law of motion F � ma to find the pendulum equation.
The motion of the pendulum bob is constrained to be along a circle of radius l,
where l is the length of the pendulum rod. If � is measured in radians, then the
component of acceleration tangent to the circle is l�̈, because the component of
position tangent to the circle is l�. The component of force along the direction
of motion is mg sin �. It is a restoring force, meaning that it is directed in the
opposite direction from the displacement of the variable �. We will denote the
first and second time derivatives of � by �̇ (the angular velocity) and �̈ (the
angular acceleration) in what follows. The differential equation governing the
frictionless pendulum is therefore

ml�̈ � F � �mg sin �, (2.9)

according to Newton’s law of motion.
From this equation we see that the pendulum requires a two-dimensional

state space. Since the differential equation is second order, the two initial values
�(0) and �̇(0) at time t � 0 are needed to specify the solution of the equation
after time t � 0. It is not enough to specify �(0) alone. Knowing �(0) � 0 means
that the pendulum is in the straight down configuration at time t � 0, but we
can’t predict what will happen next without knowing the angular velocity at that
time. For example, if the angle � is 0, so that the pendulum is hanging straight
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down, we need to know whether the angular velocity �̇ is positive or negative to
tell whether the bob is moving right or left. The same can be said for knowing the
angular velocity alone. Specifying � and �̇ together at time t � 0 will uniquely
specify �(t). Thus the state space is two-dimensional, and the state consists of the
two numbers (�, �̇).

To simplify matters we will use a pendulum of length l � g, and to the
resulting equation �̈ � � sin � we add the damping term �c�̇, corresponding
to friction at the pivot, and a periodic term 	 sin t which is an external force
constantly providing energy to the pendulum. The resulting equation, which we

4

�2
�� �

Figure 2.5 Basins of three coexisting attracting fixed points.
Parameters for the forced damped pendulum are c � 0.2, 	 � 1.66. The basins are
shown in black, gray, and white. Each initial value (�, �̇) is plotted according to the
sink to which it is attracted. Since the horizontal axis denotes angle in radians, the
right and left edge of the picture could be glued together, creating a cylinder. The
rectangle shown is magnified in figure 2.6.
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call the forced damped pendulum model, is

�̈ � �c�̇ � sin � � 	 sin t. (2.10)

This differential equation includes friction (the friction constant is c) and the
force of gravity, which pulls the pendulum bob down, as well as the sinusoidal
force 	 sin t, which accelerates the bob first clockwise and then counterclockwise,
continuing in a periodic way. This periodic forcing guarantees that the pendulum
will keep swinging, provided 	 is nonzero. The term 	 sin t has period 2�.

Because of the periodic forcing, if �(t) is a solution of (2.10), then so is
�(t � 2�), and in fact so is �(t � 2�N) for each integer N. Assume that �(t)
is a solution of the differential equation (2.10), and define u(t) � �(t � 2�).
Why is u(t) also a solution of (2.10)? Note first that u̇(t) � �̇(t � 2�) and
ü(t) � �̈(t � 2�). Second, since �(t) is assumed to be a solution for all t, (2.10)
implies

�̈(t � 2�) � �c�̇(t � 2�) � sin �(t � 2�) � 	 sin(t � 2�). (2.11)

Since the nonhomogeneous term of the differential equation is periodic with
period 2�, sin t � sin(t � 2�), it follows that

ü(t) � �cu̇(t) � sin u(t) � 	 sin t. (2.12)

(a) (b)

Figure 2.6 Detail views of the pendulum basin.
(a) Magnification of the rectangle shown in Figure 2.5. (b) Magnification of the
rectangle shown in (a).
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Note that this argument depends on the fact that u(t) is a translation of �(t) by
exactly a multiple of 2�. The argument fails if we choose, for example, u(t) �

�(t � �� 2) (assuming 	 � 0).
We conclude from this fact that the time-2� map of the forced damped

pendulum is well-defined. If (�1, �̇1) is the result of starting with initial conditions
(�0, �̇0) at time t � 0 and following the differential equation for 2� time units,
then (�1, �̇1) will also be the result of starting with initial conditions (�0, �̇0) at
time t � 2� (or 4�, 6�, . . .) and following the differential equation for 2� time
units. This fact allows us to study many of the important features by studying the
time-2� map of the pendulum. Because the forcing is periodic with period 2�,
the action of the differential equation is the same between 2N� and 2(N � 1)�
for each integer N. Although the state equations for this system are differential
equations, we can learn a lot of information about it by viewing snapshots taken
each 2� time units.

When the pendulum is started at time t � 0, its behavior will be determined
by the initial values of � and �̇. The differential equation uniquely determines
the values of � and �̇ at later times, such as t � 2�. If we write (�0, �̇0) for the
initial values and (�1, �̇1) as the values at time 2�, we can define the time-2�

map F by

F(�0, �̇0) � (�1, �̇1). (2.13)

Just because we give the time-2� map a name does not mean that there is
a simple formula for computing it. Analyzing the time-2� map is different from
analyzing the Hénon map, in the sense that there is no simple expression for the
former map. The differential equation must be solved from time 0 to time 2�

in order to iterate the map. For this example, investigation must be carried out
largely by computer.

Figure 2.5 shows the basins of three coexisting attractors for the time-2�

map of the forced damped pendulum. Here we have set the forcing parameter
	 � 1.66 and the damping parameter c � 0.2. The picture was made by solving
the differential equation for an initial condition representing each pixel, and
coloring the pixel white, gray, or black depending on which sink orbit attracts
the orbit.

The three attractors are one fixed point and two period-two orbits. There
are five other fixed points that are not attractors. This system displays both
great simplicity, in that the stable behaviors (sinks) are periodic orbits of low
period, and great complexity, in that the boundaries between the three basins are
infinitely-layered, or fractal.
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Figure 2.6 shows further detail of the pendulum basins. Part (a) zooms in
on the rectangle in Figure 2.5; part (b) is a further magnification. Note that the
level of complication does not decrease upon magnification. The fractal structure
continues on finer and finer scales. Color Plates 3–10 show an alternate setting
of parameters for which four basins exist.

For other sets of parameter values, there are apparently no sinks for the
forced damped pendulum, fixed or periodic. Figure 2.7 shows a long orbit of the
pendulum with parameter settings c � 0.05, 	 � 2.5. One-half million points
are shown. If these points were erased, and the next one-half million points were
plotted, the picture would look the same. There are many fixed points and periodic
orbits that coexist with this orbit. Some of them are shown in Figure 2.23(a).

4.5

�3.5
�� �

Figure 2.7 A single orbit of the forced damped pendulum with c � 0.05, � �

2.5.
Different initial values yield essentially the same pattern, unless the initial value is
an unstable periodic orbit, of which there are several (see Figure 2.23).
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2 .2 S I N K S , S O U R C E S , A N D S A D D L E S

We introduced the term “sink” in our discussion of one-dimensional maps to refer
to a fixed point or periodic orbit that attracts an �-neighborhood of initial values.
A source is a fixed point that repels a neighborhood. These definitions make sense
in higher-dimensional state spaces without alteration. In the plane, for example,
the neighborhoods in question are disks (interiors of circles).

Definition 2.1 The Euclidean length of a vector v � (x1, . . . , xm) in �m

is |v| �
√

x2
1 � 
 
 
 � x2

m. Let p � (p1, p2, . . . , pm) � �m, and let � be a positive
number. The �-neighborhood N�(p) is the set �v � �m : |v � p| � ��, the set
of points within Euclidean distance � of p. We sometimes call N�(p) an �-disk
centered at p.

Definition 2.2 Let f be a map on �m and let p in �m be a fixed point,
that is, f(p) � p. If there is an � � 0 such that for all v in the �-neighborhood
N�(p), limk→� fk(v) � p, then p is a sink or attracting fixed point. If there is an
�-neighborhood N�(p) such that each v in N�(p) except for p itself eventually
maps outside of N�(p), then p is a source or repeller.

Figure 2.8 shows schematic views of a sink and a source for a two-
dimensional map, along with a typical disk neighborhood and its image under
the map. Along with the sink and source, a new type of fixed point is shown in
Figure 2.8(c), which cannot occur in a one-dimensional state space. This type of
fixed point, which we will call a saddle, has at least one attracting direction and
at least one repelling direction. A saddle exhibits sensitive dependence on initial
conditions, because of the neighboring initial conditions that escape along the
repelling direction.

EXAM PLE 2 .3

Consider the two-dimensional map

f(x, y) � (�x2 � 0.4y, x). (2.14)

This is a version of the Hénon map considered earlier in this chapter, with the
parameters set at a � 0 and b � 0.4.
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N

f(N)

N

f(N)

N
f(N)

(a) (b) (c)

Figure 2.8 Local dynamics near a fixed point.
The origin is (a) a sink, (b) a source, and (c) a saddle. Shown is a disk N and its
iterate under the map f.

✎ EXERCISE T2 .2
Show that the map in (2.14) has exactly two fixed points, (0, 0) and
(�0.6, �0.6).

Figure 2.9 shows the two fixed points. Around each is drawn a small disk N
of radius 0.3. Also shown are the images f(N) and f2(N) of each disk. The fixed
point (0, 0) is a sink, and the fixed point (�0.6, �0.6) is a saddle. Each time the
map is iterated, the disks shrink to 40% of their previous size. Therefore f(N) is
40% the size of N, and f2(N) is 16% the size of N. We will explain the origin of
these numbers in Remark 2.15.

Although saddles, as well as sources, are unstable fixed points (they are
sensitive to initial conditions), they play surprising roles in the dynamics. In
Figure 2.10(a), the basin of the sink (0, 0) is shown in white. The entire square
is the box [�2, 2] � [�2, 2], and the sink is the cross at the center. Not all of
the white basin is shown: it has infinite area. The points in black diverge under
iteration by f; they are in the basin of infinity. You may wonder about the final
disposition of the points along the boundary between the two basins. Do they
go in or out? The answer is: neither. In Figure 2.10(b), the set of points that
converge to the saddle (�0.6, �0.6) is plotted, along with the saddle denoted by
the cross. Although not an attractor, the saddle evidently plays a decisive role in
determining which points go to which basin.
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0.5

�1.5
�1.5 0.5

Figure 2.9 Local dynamics near fixed points of the Hénon map.
The crosses mark two fixed points of the Hénon map f with a � 0, b � 0.4, in the
square [�1.5, 0.5] � [�1.5, 0.5]. Around each fixed point a circle is drawn along
with its two forward images under f. On the left is a saddle: the images of the disk
are becoming increasingly long and thin. On the right the images are shrinking,
signifying a sink.

Attractors, as well as basins, can be more complicated than those shown in
Figure 2.10. Consider the Hénon map (2.8) with a � 2 and b � �0.3. In Figure
2.11 the dark area is again the basin of infinity, while the white set is the basin
for the two-piece attractor that looks like two hairpin curves.

Our goal in the next few sections is to find ways of identifying sinks, sources
and saddles from the defining equations of the map. In Chapter 1 we found that
the key to deciding the stability of a fixed point is the derivative at the point.
Since the derivative determines the tangent line, or best linear approximation
near the point, it determines the amount of shrinking/stretching in the vicinity
of the point. The same mechanism is operating in higher dimensions. The action
of the dynamics in the vicinity of a fixed point is governed by the best linear
approximation to the map at the point. This best linear approximation is given
by the Jacobian matrix, a matrix of partial derivatives calculated from the map.
We will define the Jacobian matrix in Section 2.5. To find out what it can tell
us, we need to fully understand linear maps first. For linear maps, the Jacobian
matrix is equal to the map itself.
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2

�2
�2 2

(a)
�2 2

(b)

Figure 2.10 Basins of attraction for the Hénon map with a � 0, b � 0.4.
(a) The cross marks the fixed point (0, 0). The basin of the fixed point (0, 0) is
shown in white; the points in black diverge to infinity. (b) The initial conditions
that are on the boundary between the white and black don’t converge to (0, 0) or
infinity; instead they converge to the saddle (�0.6, �0.6), marked with a cross.
This set of boundary points is the stable manifold of the saddle (to be discussed in
Section 2.6).

2.5

�2.5
�2.5 2.5

Figure 2.11 Attractors for the Hénon map with a � 2, b � �0.3.
Initial values in the white region are attracted to the hairpin attractor inside the
white region. On each iteration, the points on one piece of the attractor map to the
other piece. Orbits from initial values in the black region diverge to infinity.
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2 .3 L I N E A R M A P S

The linear maps on �2 are those of the particularly simple form v �→ Av, where
A is a 2 � 2 matrix:

A

(
x
y

)
�

(
a11 a12

a21 a22

)(
x
y

)
�

(
a11x � a12y
a21x � a22y

)
. (2.15)

Definition 2.4 A map A(v) from �m to �m is linear if for each a, b � �,
and v, w � �m, A(av � bw) � aA(v) � bA(w). Equivalently, a linear map A(v)
can be represented as multiplication by an m � m matrix.

Every linear map has a fixed point at the origin. This is analogous to the
one-dimensional linear map f(x) � ax. The stability of the fixed point will be
investigated the same way as in Chapter 1. If all of the points in a neighborhood
of the fixed point (0, 0) approach the fixed point when iterated by the map, we
consider the fixed point to be an attractor.

In some cases the dynamics for a two-dimensional map resemble one-
dimensional dynamics. Recall that 
 is an eigenvalue of the matrix A if there is
a nonzero vector v such that

Av � 
v.

The vector v is called an eigenvector. Notice that if v0 is an eigenvector with
eigenvalue 
 , we can write down a special trajectory

vn�1 � Avn

that satisfies

v1 � Av0 � 
v0

v2 � A
v0 � 
Av0 � 
2v0,

and in general vn � 
nv0. Hence the map behaves like the one-dimensional map
xn�1 � 
xn.

We will begin by looking at three important examples of linear maps on
�2. In fact, the three different types of 2 � 2 matrices we will encounter will be
more than just good examples, they will be all possible examples, up to change of
coordinates.
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EXAM PLE 2 .5

[Distinct real eigenvalues.] Let v � (x, y) denote a two-dimensional vector,
and let A(v) be the map on �2 defined by

A(x, y) � (ax, by).

Each input is a two-dimensional vector; so is each output. Any linear map can be
represented by multiplication by a matrix, and following tradition we use A also
to represent the matrix. Thus

A(v) � Av �

(
a 0
0 b

)(
x
y

)
. (2.16)

The eigenvalues of the matrix A are a and b, with associated eigenvectors
(1, 0) and (0, 1), respectively. For the purposes of this example, we will assume
that they are not equal, although most of what we say now will not depend on
that fact. Part of the importance of this example comes from the fact that a large
class of linear maps can be expressed in the form (2.16), if the right coordinate
system is used. For example, it is shown in Appendix A that any 2 � 2 matrix
with distinct real eigenvalues takes this form when its eigenvectors are used to
form the basis vectors of the coordinate system.

For the map in Example 2.5, the result of iterating the map n times is
represented by the matrix

An �

(
an 0
0 bn

)
. (2.17)

The unit disk is mapped into an ellipse with semi-major axes of length |a|n along
the x-axis and |b|n along the y-axis. An epsilon disk N�(0, 0) would become an
ellipse with axes of length �|a|n and �|b|n. For example, suppose that a and b are
smaller than 1 in absolute value. Then this ellipse shrinks toward the origin as
n → �, so (0, 0) is a sink for A. If |a|, |b| � 1, then the origin is a source.

On the other hand, if |a| � 1 � |b|, we see dynamical behavior that is
not seen in one-dimensional maps. As n is increased, the ellipse grows in the
x-direction and shrinks in the y-direction, essentially growing to look like the
x-axis as n → �. In Figure 2.12, we plot the unit disk and its two iterates under
A where we set a � 2 and b � 1 � 2. In this case, the origin is neither a sink nor a
source. If the ellipses formed by successive iterates of the map grow without bound
along one direction and shrink to zero along another, we will call the origin a
saddle.
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Figure 2.12 The unit disk and two images of the unit disk under a linear map.
The origin is a saddle fixed point.

Points act as if they were moving along the surface of a saddle under the
influence of gravity. A cowboy who spills coffee on his saddle will see it run toward
the center along the front-to-back axis of the saddle (the y-axis in Figure 2.13)
and run away from the center along the side-to-side axis (the x-axis in Figure
2.13). Presumably, a drop situated at the exact center of the saddle would stay
there (our assumption is that the horse is not moving).

We see the same behavior for the iteration of points in Figure 2.14, which
illustrates the linear map represented by the matrix

A �

(
2 0
0 0.5

)
. (2.18)

x
y

Figure 2.13 Dynamics near a saddle point.
Points in the vicinity of a saddle fixed point (here the origin in the xy-plane) move
as if responding to the influence of gravity on a saddle.
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x

y

Figure 2.14 Saddle dynamics.
Successive images of points near a saddle fixed point are shown.

A typical point (x0, y0) maps to (2x0, 1
2 y0), and then to (4x0, 1

4 y0, ), and so on.
Notice that the product of the x- and y- coordinates is the constant quantity x0y0,
so that orbits shown in Figure 2.14 traverse the hyperbola xy � constant � x0y0.
More generally, for a linear map A on �2, the origin is a saddle if and only if
iteration of the unit disk results in ellipses whose two axis lengths converge to
zero and infinity, respectively.

A simplification can be made when analyzing small neighborhoods under
linear maps. Because linearity implies A(v) � |v|A( v

|v| ), the image of a vector
v can be found by mapping the unit vector in the direction of v, followed by
scalar multiplication by the magnitude |v|. The effect of the map on a small disk
neighborhood of the origin is just a scaled-down version of the effect on the unit
disk N � N1(0, 0) � �v : |v| � 1�. As a result we will often restrict our attention
to the effect of the matrix on the unit disk. For example, the image of the unit
disk centered at the origin under multiplication by any matrix is a filled ellipse
centered at the origin. If the radius of the disk is r instead of 1, the resulting
ellipse will also be changed precisely by a factor of r. (The semi-major axes will
be changed by a factor of r.)

EXAM PLE 2 .6

[Repeated eigenvalue.] For an example where the eigenvalues are not dis-
tinct, let

A �

(
a 1
0 a

)
. (2.19)
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The eigenvalues of an upper triangular matrix are its diagonal entries, so the
matrix has a repeated eigenvalue of a. Check that

An � an�1

(
a n
0 a

)
. (2.20)

Therefore the effect of An on vectors is

An

(
x
y

)
� an�1

(
ax � ny

ay

)
. (2.21)

✎ EXERCISE T2 .3
(a) Verify equation (2.20). (b) Use equation (2.21) to show that the fixed
point (0, 0) is a sink if |a| � 1 and a source if |a| � 1.

EXAM PLE 2 .7

[Complex eigenvalues.] Let

A �

(
a �b
b a

)
. (2.22)

This matrix has no real eigenvalues. The eigenvalues of this matrix are a � bi
and a � bi, where i �

√
�1. The corresponding eigenvectors are (1, �i) and

(1, i), respectively. Fortunately, this information can be interpreted in terms of
real vectors. A more intuitive way to look at this matrix follows from multiplying
and dividing by r �

√
a2 � b2. Then

A � r

(
a� r �b � r
b� r a� r

)
�

√
a2 � b2

(
cos � � sin �

sin � cos �

)
. (2.23)

Here we used the fact that any pair of numbers c, s such that c2 � s2 � 1 can be
written as c � cos � and s � sin � for some angle �. The angle � can be identified
as � � arctan(b� a). It is now clear that multiplication by this matrix rotates
points about the origin by an angle �, and multiplies the distances by

√
a2 � b2.

Therefore it is a combination of a rotation and a dilation.

✎ EXERCISE T2 .4

Verify that multiplication by A rotates a vector by arctan(b� a) and stretches
by a factor of

√
a2 � b2.
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In summary, the effect of multiplication by A on the length of a vector is
contraction/expansion by a factor of

√
a2 � b2. It follows that the stability result

is the same as in the previous two cases: If the magnitude of the eigenvalues is
less than 1, the origin is a sink; if greater than 1, a source.

2 .4 COO R D I N AT E C H A N G E S
Now that we have some experience with iterating linear maps, we return to the
fundamental issue of how a matrix represents a linear map. Changes of coordinates
can simplify stability calculations for higher-dimensional maps.

A vector in �m can be represented in many different ways, depending on the
coordinate system chosen. Choosing a coordinate system is equivalent to choosing
a basis of �m; the coordinates of a vector are simply the coefficients which express
the vector in that basis. Changing the basis of �m requires changing the matrix
representing the linear map A(v). In particular, let S be a square matrix whose
columns are the new basis vectors. Then the matrix S�1AS represents the linear
map in the new basis. A matrix of form S�1AS, where S is a nonsingular matrix,
is similar to A.

Similar matrices have the same set of eigenvalues and the same determinant.
The determinant det(A) � a11a22 � a12a21 is a measure of area transformation
by the matrix A. If R represents a two-dimensional region of area c, then the set
A(R) has area det(A) 
 c. It stands to reason that area transformation should be
independent of the choice of coordinates. See Appendix A for justification of
these statements and for a thorough discussion of changes of coordinates.

Matrices that are similar have the same dynamical properties when viewed
as maps, since they only differ by the coordinate system used to view them. For
example, the property that a small neighborhood of the fixed point origin is
attracted to the origin is independent of the choice of coordinates. If (0, 0) is
a sink under A, it remains so under S�1AS. This puts us in position to analyze
the dynamics of all linear maps on �2, because of the following fact: All 2 � 2
matrices are similar to one of Examples 2.5, 2.6, 2.7. See Appendix A for a proof
of this fact.

Since similar matrices have identical eigenvalues, deciding the stability of
the origin for a linear map A(v) is as simple as computing the eigenvalues of a
matrix representation A. For example, if the eigenvalues a and b of A are real and
distinct, then A is similar to the matrix

A2 �

(
a 0
0 b

)
. (2.24)
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Therefore the map has this matrix representation in some coordinate system.
Referring to Example 2.5, we see that the origin is a sink if |a|, |b| � 1 and a source
if |a|, |b| � 1. The same analysis works for matrices with repeated eigenvalues, or
a pair of complex eigenvalues. Summing up, we have proved the m � 2 version
of the following theorem.

Theorem 2.8 Let A(v) be a linear map on �m, which is represented by the
matrix A (in some coordinate system). Then

1. The origin is a sink if all eigenvalues of A are smaller than one in absolute
value;

2. The origin is a source if all eigenvalues of A are larger than one in absolute
value.

In dimensions two and greater, we must also consider linear maps of mixed
stability, i.e., those for which the origin is a saddle.

Definition 2.9 Let A be a linear map on �m. We say A is hyperbolic if
A has no eigenvalues of absolute value one. If a hyperbolic map A has at least
one eigenvalue of absolute value greater than one and at least one eigenvalue of
absolute value smaller than one, then the origin is called a saddle.

Thus there are three types of hyperbolic maps: ones for which the origin is
a sink, ones for which the origin is a source, and ones for which the origin is a
saddle. Hyperbolic linear maps are important objects of study because they have
well-defined expanding and contracting directions.

2 .5 NON L I N E A R M A P S A N D T H E
J A C O B I A N M AT R I X

So far we have discussed linear maps, which always have a fixed point at the origin.
We now want to discuss nonlinear maps, and in particular how to determine the
stability of fixed points.

Our treatment of stability in Chapter 1 is relevant to this case. Theorem
1.5 showed that whether a fixed point of a one-dimensional nonlinear map is a
sink or source depends on its “linearization”, or linear part, near the fixed point.
In the one-dimensional case the linearization is given by the derivative at the
fixed point. If p is a fixed point and h is a small number, then the change in the
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output of the map at p � h, compared to the output at p, is well approximated by
the linear map L(h) � Kh, where K is the constant number f ′(p). In other words,

f(p � h) � f(p) � hf ′(p). (2.25)

Our proof of Theorem 1.5 was based on the fact that the error in this approx-
imation was of size proportional to h2. This can be made as small as desired by
restricting attention to sufficiently small h. If |f ′(p)| � 1, the fixed point p is a
sink, and if |f ′(p)| � 1, it is a source. The situation is very similar for nonlinear
maps in higher dimensions. The place of the derivative in the above discussion is
taken by a matrix.

Definition 2.10 Let f � (f1, f2, . . . , fm) be a map on �m, and let p � �m.
The Jacobian matrix of f at p, denoted Df(p), is the matrix

Df(p) �




�f1
�x1

(p) 
 
 

�f1
�xm

(p)

...
...

�fm
�x1

(p) 
 
 

�fm
�xm

(p)




of partial derivatives evaluated at p.

Given a vector p and a small vector h, the increment in f due to h is
approximated by the Jacobian matrix times the vector h:

f(p � h) � f(p) � Df(p) 
 h, (2.26)

where again the error in the approximation is proportional to |h|2 for small h.
If we assume that f(p) � p, then for a small change h, the map moves p � h
approximately Df(p) 
 h away from p. That is, f magnifies a small change h in
input to a change Df(p) 
 h in output.

As long as this deviation remains small (so that |h|2 is negligible and our
approximation is valid), the action of the map near p is essentially the same
as the linear map h �→ Ah, where A � Df(p), with fixed point h � 0. Small
disk neighborhoods centered at h � 0 (corresponding to disks around p) map
to regions approximated by ellipses whose axes are determined by A. In that
case, we can appeal to Theorem 2.8 for information about linear stability for
higher-dimensional maps in order to understand the nonlinear case.

The following theorem is an extension of Theorems 1.5 and 2.8 to higher
dimensional nonlinear maps. It determines the stability of a map at a fixed point
based on the Jacobian matrix at that point. The proof is omitted.
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Theorem 2.11 Let f be a map on �m, and assume f(p) � p.

1. If the magnitude of each eigenvalue of Df(p) is less than 1, then p is a sink.
2. If the magnitude of each eigenvalue of Df(p) is greater than 1, then p is a

source.

Just as linear maps of �m for m � 1 can have some directions in which
orbits diverge from 0 and some in which orbits converge to 0, so fixed points of
nonlinear maps can attract points in some directions and repel points in others.

Definition 2.12 Let f be a map on �m, m 	 1. Assume that f(p) � p.
Then the fixed point p is called hyperbolic if none of the eigenvalues of Df(p)
has magnitude 1. If p is hyperbolic and if at least one eigenvalue of Df(p) has
magnitude greater than 1 and at least one eigenvalue has magnitude less than 1,
then p is called a saddle. (For a periodic point of period k, replace f by fk.)

Saddles are unstable. If even one eigenvalue of Df(p) has magnitude greater
than 1, then p is unstable in the sense previously described: Almost any perturba-
tion of the orbit away from the fixed point will be magnified under iteration. In a
small epsilon neighborhood of p, f behaves very much like a linear map with an
eigenvalue that has magnitude greater than 1; that is, the orbits of most points
near p diverge from p.

EXAM PLE 2 .13

The Hénon map

fa,b(x, y) � (a � x2 � by, x), (2.27)

where a and b are constants, has at most two fixed points. Setting a � 0 and
b � 0.4, f has the two fixed points (0, 0) and (�0.6, �0.6). The Jacobian matrix
Df is

Df(x, y) �

(
�2x b

1 0

)
. (2.28)

Evaluated at (0, 0), the Jacobian matrix is

Df(0, 0) �

(
0 0.4
1 0

)
,

with eigenvalues �
√

0.4, approximately equal to 0.632 and �0.632. Evaluated
at (�0.6, �0.6), the Jacobian is

Df(�0.6, �0.6) �

(
1.2 0.4
1 0

)
,
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with eigenvalues approximately equal to 1.472 and �0.272. Thus (0, 0) is a sink
and (�0.6, �0.6) is a saddle.

For the parameter values a � 0.43, b � 0.4, there is a period-two orbit
for the map. Check that �(0.7, �0.1), (�0.1, 0.7)� is such an orbit. In order
to check the stability of this orbit, we need to compute the Jacobian matrix of
f2 evaluated at (0.7, �0.1). Because of the chain rule, we can do this without
explicitly forming f2, since Df2(x) � Df(f(x)) 
 Df(x). We compute

Df2((0.7, �0.1)) � Df((�0.1, 0.7)) 
 Df((0.7, �0.1))

�

(
�2(�0.1) 0.4

1 0

)(
�2(0.7) 0.4

1 0

)

�

(
0.12 0.08

�1.4 0.4

)
.

The eigenvalues of this Jacobian matrix are approximately 0.26 � 0.30i, which
are complex numbers of magnitude � 0.4, so the period-two orbit is a sink.

Note that the same eigenvalues are obtained by evaluating

Df2((�0.1, 0.7)) � Df((0.7, �0.1)) 
 Df((�0.1, 0.7)),

which means that stability is a property of the periodic orbit as a whole, not
of the individual points of the orbit. This is true because the eigenvalues of a
product AB of two matrices are identical to the eigenvalues of BA, as shown in
the Appendix A. This result compares with (1.4) of Chapter 1.

Remark 2.14 For a map on �m, there is a more general statement of this
fact. Assume there is a periodic orbit �p1, . . . , pk� of period k. By Lemma A.2 of
Appendix A, the set of eigenvalues of a product of several matrices is unchanged
under a cyclic permutation of the order of the product. Using the chain rule,

Dfk(p1) � Df(pk) 
 Df(pk�1) 
 
 
 Df(p1). (2.29)

The eigenvalues of the m � m Jacobian matrix evaluated at p1, Dfk(p1), will
determine the stability of the period-k orbit. But one should also be able to
determine the stability by examining the eigenvalues of Dfk(pr), where pr is one
of the other points in the periodic orbit. Applying the chain rule as above, we
find that

Dfk(pr) � Df(pr�1) 
 Df(pr�2) 
 
 
 Df(p1) 
 Df(pk) 
 
 
 Df(pr). (2.30)

According to Lemma A.2, the eigenvalues of (2.29) and (2.30) are identical.
This guarantees that the eigenvalues are shared by the periodic orbit, and can be

71



T WO -D I M E N S I O N A L M A P S

measured by multiplying together the k Jacobian matrices starting at any of the k
points.

A more systematic study can be made of the fixed points and period-two
points of the Hénon map. Let the parameters a and b be arbitrary. Then all fixed
points satisfy

x � a � x2 � by

y � x, (2.31)

which is equivalent to the equation x � a � x2 � bx, or

x2 � (1 � b)x � a � 0. (2.32)

Using the quadratic formula, we see that fixed points exist as long as

4a � �(1 � b)2 (2.33)

If (2.33) is satisfied, there are exactly two fixed points, whose x-coordinates are
found from the quadratic formula and whose y-coordinate is the same as the
x-coordinate.

To look for period-two points, set (x, y) � f2(x, y):

x � a � (a � x2 � by)2 � bx

y � a � x2 � by. (2.34)

Solving the second equation for y and substituting into the first, we get an equation
for the x-coordinate of a period-two point:

0 � (x2 � a)2 � (1 � b)3x � (1 � b)2a

� (x2 � (1 � b)x � a � (1 � b)2)(x2 � (1 � b)x � a). (2.35)

We recognize the factor on the right from Equation (2.32): Zeros of it correspond
to fixed points of f, which are also fixed points of f2. In fact, it was the knowledge
that (2.32) must be a factor which was the trick that allowed us to write (2.35)
in factored form. The period-two orbit is given by the zeros of the left factor, if
they exist.

✎ EXERCISE T2 .5
Prove that the Hénon map has a period-two orbit if and only if 4a �

3(1 � b)2.
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Figure 2.15 Fixed points and period-two points for the Hénon map with b
fixed at 0.4.
The solid line denotes the trails of the two fixed points as a moves from �0.09,
where the two fixed points are created together, to 1.6 where they have moved
quite far apart. The fixed point that moves diagonally upward is attracting for
�0.09 � a � 0.27; the other is a saddle. The dashed line follows the period-two
orbit from its creation when a � 0.27, at the site of the (previously) attracting fixed
point, to a � 1.6.

Figure 2.15 shows the fixed points and period-two points of the Hénon map
for b � .4 and for various values of a. We understand why the fixed points lie
along the diagonal line y � x, but why do the period-two orbits lie along a line,
as shown in Figure 2.15?

✎ EXERCISE T2 .6
(a) If (x1, y1) and (x2, y2) are the two fixed points of the Hénon map

(2.27) with some fixed parameters a and b, show that x1 � y1 � x2 � y2 � 0
and x1 � x2 � y1 � y2 � b � 1.

(b) If �(x1, y1), (x2, y2)� is the period-two orbit, show that x1 � y1 �

x2 � y2 � x1 � x2 � y1 � y2 � 1 � b. In particular the period-two orbit
lies along the line x � y � 1 � b, as seen in Figure 2.15.

Figure 2.16 shows a bifurcation diagram for the Hénon map for the case
b � 0.4. For each fixed value 0 � a � 1.25 along the horizontal axis, the x-
coordinates of the attracting set are plotted vertically. The information in Figure
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2.5

�2.5
0 1.25

Figure 2.16 Bifurcation diagram for the Hénon map, b � 0.4.
Each vertical slice shows the projection onto the x-axis of an attractor for the map
for a fixed value of the parameter a.

2.15 is recapitulated here. At a � 0.27, a period-doubling bifurcation occurs,
when the fixed point loses stability and a period-two orbit is born. The period-
two orbit is a sink until a � 0.85, when it too doubles its period. In the next
exercise, you will be asked to use the equations we developed here to verify some
of these facts.

✎ EXERCISE T2 .7
Set b � 0.4.

(a) Prove that for �0.09 � a � 0.27, the Hénon map f has one sink
fixed point and one saddle fixed point.

(b) Find the largest magnitude eigenvalue of the Jacobian matrix at
the first fixed point when a � 0.27. Explain the loss of stability of the sink.

(c) Prove that for 0.27 � a � 0.85, f has a period-two sink.

(d) Find the largest magnitude eigenvalue of Df2, the Jacobian of f2

at the period-two orbit, when a � 0.85.

For b � 0.4 and a � 0.85, the attractors of the Hénon map become more
complex. When the period-two orbit becomes unstable, it is immediately replaced
with an attracting period-four orbit, then a period-eight orbit, etc. Figure 2.17
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Figure 2.17 Attractors for the Hénon map with b � 0.4.
Each panel displays a single attracting orbit for a particular value of the parameter
a. (a) a � 0.9, period 4 sink. (b) a � 0.988, period 16 sink. (c) a � 1.0, four-piece
attractor. (d) a � 1.0293, period-ten sink. (e) a � 1.045, two-piece attractor. The
points of an orbit alternate between the pieces. (f) a � 1.2, two pieces have merged
to form one-piece attractor.
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shows a number of these attractors. An example is the “period-ten window” at
a � 1.0293, barely detectable as a vertical white gap in Figure 2.16.

➮ C O M P U T E R E X P E R I M E N T 2 . 2

Make a bifurcation diagram like Figure 2.16, but for b � �0.3, and for
0 � a � 2.2. For each a, choose the initial point (0, 0) and calculate its orbit.
Plot the x-coordinates of the orbit, starting with iterate 101 (to allow time for the
orbit to approximately settle down to the attracting orbit). Questions to answer:
Does the resulting bifurcation diagram depend on the choice of initial point? How
is the picture different if the y-coordinates are plotted instead?

Periodic points are the key to many of the properties of a map. For example,
trajectories often converge to a periodic sink. Periodic saddles and sources, on the
other hand, do not attract open neighborhoods of initial values as sinks do, but
are important in their own ways, as will be seen in later chapters.

Remark 2.15 The theme of this section has been the use of the Jacobian
matrix for determining stability of periodic orbits of nonlinear maps, in the way
that the map matrix itself is used for linear maps. There are other important
uses for the Jacobian matrix. The magnitude of its determinant measures the
transformation of areas for nonlinear maps, at least locally.

For example, consider the Hénon map (2.27). The determinant of the
Jacobian matrix (2.28) is fixed at �b for all v. For the case a � 0, b � 0.4, the
map f transforms area near each point v at the rate |det(Df(v))| � | � b| � 0.4.
Each plane region is transformed by f into a region that is 40% of its original size.
The circle around each fixed point in Figure 2.9, for example, has forward images
which are .4 � 40% and (.4)2 � .16 � 16%, respectively.

Most of the plane maps we will deal with are invertible, meaning that their
inverses exist.

Definition 2.16 A map f on �m is one-to-one if f(v1) � f(v2) implies
v1 � v2.

Recall that functions are well-defined by definition, i.e. v1 � v2 implies
f(v1) � f(v2). Two points do not get mapped together under a one-to-one map.
It follows that if f is a one-to-one map, then its inverse map f�1 is a function. The
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IN VERSE M APS

A function is a uniquely-defined assignment of a range point for each
domain point. (If the domain and range are the same set, we call the
function a map.) Several domain points may map to the same range
point. For f1(x, y) � (x2, y2), the points (2, 2), (2, �2), (�2, 2) and
(�2, �2) all map to (4, 4). On the other hand, for f2(x, y) � (x3, y3),
this never happens. A point (a, b) is the image of (a1 � 3, b1 � 3) only.
Thus f2 is a one-to-one map, and f1 is not.

An inverse map f�1 automatically exists for any one-to-one map f.
The domain of f�1 is the image of f. For the example f2(x, y) �

(x3, y3), the inverse is f�1
2 (x, y) � (x1 � 3, y1 � 3).

To compute an inverse map, set v1 � f(v) and solve for v in terms of
v1. We demonstrate using f(x, y) � (x � 2y, x3). Set

x1 � x � 2y

y1 � x3

and solve for x and y. The result is

x � y1 � 3
1

y � (x1 � y1 � 3
1 )� 2,

so that the inverse map is f�1(x, y) � (y1 � 3, (x1 � y1 � 3
1 )� 2).

inverse map is characterized by the fact that f(v) � w if and only if v � f�1(w).
Because one-to-one implies the existence of an inverse, a one-to-one map is also
called an invertible map.

✎ EXERCISE T2 .8
Show that the Hénon map (2.27) with b � 0 is invertible by finding a formula
for the inverse. Is the map one-to-one if b � 0?
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2 .6 S TA B L E A N D UN S TA B L E M A N I F O L D S

A saddle fixed point is unstable, meaning that most initial values near it will
move away under iteration of the map. However, unlike the case of a source, not
all nearby initial values will move away. The set of initial values that converge to
the saddle will be called the stable manifold of the saddle. We start by looking at
a simple linear example.

EXAM PLE 2 .17

For the linear map f(x, y) � (2x, y� 2), the origin is a saddle fixed point.
The dynamics of this map were shown in Figure 2.14. It is clear from that figure
that points along the y-axis converge to the saddle 0; all other points diverge to
infinity. Unless the initial value has x-coordinate 0, the x-coordinate will grow
(by a factor of 2 per iterate) and get arbitrarily large.

A convenient way to view the direction of the stable manifold in this case
is in terms of eigenvectors. The linear map

f(v) � Av �

(
2 0
0 0.5

)(
x
y

)

has eigenvector

(
1
0

)
, corresponding to the (stretching) eigenvalue 2, and

(
0
1

)
,

corresponding to the (shrinking) eigenvalue 1 � 2. The latter direction, the y-axis,
is the “incoming” direction, and is the stable manifold of 0. We will call the x-axis
the “outgoing” direction, the unstable manifold of 0. Another way to describe
the unstable manifold in this example is as the stable manifold under the inverse
of the map f�1(x, y) � ((1 � 2)x, 2y).

Definition 2.18 Let f be a smooth one-to-one map on �2, and let p
be a saddle fixed point or periodic saddle point for f. The stable manifold of p,
denoted S(p), is the set of points v such that |fn(v) � fn(p)| → 0 as n → �.
The unstable manifold of p, denoted U(p), is the set of points v such that
|f�n(v) � f�n(p)| → 0 as n → �.

EXAM PLE 2 .19

The linear map f(x, y) � (�2x � 5
2 y, �5x � 11

2 y) has a saddle fixed point
at 0 with eigenvalues 0.5 and 3. The corresponding eigenvectors are (1, 1) and
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W H AT IS A M AN IFO LD?

An n-dimensional manifold is a set that locally resembles Euclidean
space �n. By “resembles” we could mean a variety of things, and
in fact, various definitions of manifold have been proposed. For our
present purposes, we will mean resemblance in a topological sense. A
small piece of a manifold should look like a small piece of �n.

A 1-dimensional manifold is locally a curve. Every short piece of a
curve can be formed by stretching and bending a piece of a line. The
letters D and O are 1-manifolds. The letters A and X are not, since
each contains a point for which no small neighborhood looks like a
line segment. These bad points occur at the meeting points of separate
segments, like the center of the letter X.

Notable 2-manifolds are the surface of oranges and doughnuts. The
space-time continuum of the universe is often described as a 4-
manifold, whose curvature due to relativity is an active topic among
cosmologists.

In the strict definition of manifold, each point of a manifold must
have a neighborhood around itself that looks like �n. Thus the letters
L and U fail to be 1-manifolds because of their endpoints—small
neighborhoods of them look like a piece of half-line (say the set of
nonnegative real numbers), not a line, since there is nothing on one
side. This type of set is called a manifold with boundary, although
technically it is not a manifold. A Möbius band is a 2-manifold with
boundary because the edge looks locally like a piece of half-plane,
not a plane. Whole oranges and doughnuts are 3-manifolds with
boundary.

One of the goals of Chapter 10 is to explain why a stable or unstable
manifold is a topological manifold. Stable and unstable manifolds
emanate from two opposite sides of a fixed point or periodic orbit. At
a saddle point in the plane, they together make an “X” through the
fixed point, although individually they are manifolds.

79



T WO -D I M E N S I O N A L M A P S

(1, 2), respectively. [According to Appendix A, there is a linear change of coor-
dinates giving the map h(u1, u2) � (0.5u1, 3u2).] Points lying on the line y � x
undergo the dynamics v → 0.5v on each iteration of the map. This line is the
stable manifold of 0 for f. Points lying on the line y � 2x (the line in the direc-
tion of eigenvector (1, 2)) undergo v → 3v under f: this is the unstable manifold.
These sets are illustrated in Figure 2.18.

EXAM PLE 2 .20

Let f(x, y) � (2x � 5y, �0.5y). The eigenvalues of f are 2 and �0.5, with
corresponding eigenvectors (1, 0) and (2, �1). Points on the line in the direction
of the vector (2, �1) undergo v → �0.5v on each iteration of f. As a result,
successive images flip from one side of the origin to the other along the line. This
flipping behavior of orbits about the fixed point is shown in Figure 2.19. It is
characteristic of all fixed points for which the Jacobian has negative eigenvalues,
even when the map is nonlinear. A saddle with at least one negative eigenvalue
is sometimes called a flip saddle. Otherwise it is a regular saddle.

EXAM PLE 2 .21

The invertible nonlinear map f(x, y) � (x� 2, 2y � 7x2) has a fixed point
at 0 � (0, 0). To analyze the stability of this fixed point we evaluate

x

y

Figure 2.18 Stable and unstable manifolds for regular saddle.
The stable manifold is the solid inward-directed line; the unstable manifold is the
solid outward-directed line. Every initial condition leads to an orbit diverging to
infinity except for the stable manifold of the origin.
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x

y

Figure 2.19 Stable and unstable manifolds for flip saddle.
Flipping occurs along the stable manifold (inward-directed line). The unstable
manifold is the x-axis.

Df(0, 0) �

(
0.5 0
0 2

)
.

The origin is a saddle fixed point. The eigenvectors lie on the two coordinate axes.
What is the relation of these eigenvector directions to the stable and unstable
manifolds?

In the case of linear maps, the stable and unstable manifolds coincide with
the eigenvector directions. For a saddle of a general nonlinear map, the stable
manifold is tangent to the shrinking eigenvector direction, and the unstable man-
ifold is tangent to the stretching eigenvector direction. Since f(0, y) � (0, 2y),
the y-axis can be seen to be part of the unstable manifold. For any point not on
the y-axis, the absolute value of the x-coordinate is nonzero and increases under
iteration by f�1; in particular, it doesn’t converge to the origin. Thus the y-axis is
the entire unstable manifold, as shown in Figure 2.20. The stable manifold of 0,
however, is described by the parabola y � 4x2; i.e., S(0) � �(x, 4x2) : x � ��.

✎ EXERCISE T2 .9

Consider the saddle fixed point 0 of the map f(x, y) � (x� 2, 2y � 7x2) from
Example 2.21.

(a) Find the inverse map f�1.
(b) Show that the set S � �(x, 4x2) : x � �� is invariant under f , that

is, if v is in S, then f(v) and f�1(v) are in S .
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x

y

Figure 2.20 Stable and unstable manifolds for the nonlinear map of Example
2.21.
The stable manifold is a parabola tangent to the x-axis at 0; the unstable manifold
is the y-axis.

(c) Show that each point in S converges to 0 under f .
(d) Show that no points outside of S converge to 0 under f .

When a map is linear, the stable and unstable manifolds of a saddle are
always linear subspaces. In the case of linear maps on �2, for example, they are
lines. For nonlinear maps, as we saw in Example 2.21, they can be curves. The
nonlinear examples we have looked at so far are not typical; usually, formulas
for the stable and unstable manifolds cannot be found directly. Then we must
rely on computational techniques to approximate their locations. (We describe
one such technique in Chapter 10.) One thing you may have noticed about the
stable manifolds in these examples is that they are always one-dimensional: lines
or curves. Just as in the linear case, the stable and unstable manifolds of saddles in
the plane are always one-dimensional sets. This fact is not immediately obvious—
it is proved as part of the Stable Manifold Theorem in Chapter 10. We will also
see that stable and unstable manifolds of saddles have a tremendous influence on
the underlying dynamics of a system. In particular, their relative positions can
determine whether or not chaos occurs.

We will leave the investigation of the mysteries of stable and unstable
manifolds to Chapter 10. Here we give a small demonstration of the subtlety
and importance of these manifolds. Drawing stable and unstable manifolds of the
Hénon map can illuminate Figure 2.3, which showed the basin of the period-two
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2.5

�2.5
�2.5 2.5

(a)
�2.5 2.5

(b)

Figure 2.21 Stable and unstable manifolds for a saddle point.
The stable manifolds (mainly vertical) and unstable manifolds (more horizontal)
are shown for the saddle fixed point (marked with a cross in the lower left corner) of
the Hénon map with b � �0.3. Note the similarity of the unstable manifold with
earlier figures showing the Hénon attractor. (a) For a � 1.28, the leftward piece of
the unstable manifold moves off to infinity, and the rightward piece initially curves
toward the sink, but oscillates around it in an erratic way. The rightward piece is
contained in the region bounded by the two components of the stable manifold.
(b) For a � 1.4, the manifolds have crossed one another.

sink under two different parameter settings. In Figure 2.21, portions of the stable
and unstable manifolds of a saddle point near (�2, �2) are drawn. In each case,
the upward and downward piece of the stable manifold, which is predominantly
vertical, forms the boundary of the basin of the period-two sink. (Compare with
Figure 2.3.) For a larger value of the parameter a, as in Figure 2.21(b), the stable
and unstable manifolds intersect, and the basin boundary changes from simple to
complicated.

EXAM PLE 2 .22

Figure 2.22 shows the relation of the stable and unstable manifolds to the
basin of the two-piece attractor for the Hénon map with a � 2, b � �0.3. This
basin was shown earlier in Figure 2.11. The stable manifold of the saddle fixed
point in the lower left corner forms the boundary of the attractor basin; the
attractor lies along the unstable manifold of the saddle.
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2.5

�2.5
�2.5 2.5

Figure 2.22 A two-piece attractor of the Hénon map.
The crosses mark 100 points of a trajectory lying on a two-piece attractor. The
basin of attraction of this attractor is white; the shaded points are initial conditions
whose orbits diverge to �. The saddle fixed point circled at the lower left is closely
related to the dynamics of the attractor. The stable manifold of the saddle, shown
in black, forms the boundary of the basin of the attractor. The attractor lies along
the unstable manifold of the saddle, which is also in black.

EXAM PLE 2 .23

Figure 2.23(a) shows 18 fixed points (large crosses) and 38 period-two orbits
(small crosses) for the time-2� map of the forced damped pendulum (2.10) with
c � 0.05, 	 � 2.5. The orbits were found by computer approximation methods;
there may be more. None of these orbits are sinks; they coexist with a complicated
attracting orbit shown in Figure 2.7. Exactly half of the 56 orbits shown are flip
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4.5

�3.5
�� �

(a)
�� �

(b)

Figure 2.23 The forced damped pendulum.
(a) Periodic orbits for the time-2� map of the pendulum with parameters c �

0.05, 	 � 2.5. The large crosses denote 18 fixed points, and the small crosses, 38
period-two orbits. (b) The stable and unstable manifolds of the largest cross in (a).
The unstable manifold is drawn in black; compare to Figure 2.7. The stable manifold
is drawn in gray dashed curves. The manifolds overlay the periodic orbits from (a)—
note that without exception these orbits lie close to the unstable manifold.

saddles; the rest are regular saddles. The largest cross in Figure 2.23(a) is singled
out, and its stable and unstable manifolds are drawn in Figure 2.23(b).

Exercise 10.6 of Chapter 10 states that a stable manifold cannot cross itself,
nor can it cross the stable manifold of another fixed point. However, there is no
such restriction for a stable manifold crossing an unstable manifold.

The discovery that stable and unstable manifolds of a fixed point can
intersect was made by Poincaré. He made this observation in the process of fixing
his entry to King Oscar’s contest. (In his original entry he made the assumption
that they could not cross.) Realizing this possibility was a watershed in the
knowledge of dynamical systems, whose implications are still being worked out
today.

Poincaré was surprised to see the extreme complexity that such an inter-
section causes in the dynamics of the map. If p is a fixed or periodic point, and if
h0 � p is a point of intersection of the stable and unstable manifold of p, then h0 is
called a homoclinic point. For starters, an intersection of the stable and unstable
manifolds of a single fixed point (called a homoclinic intersection) immediately
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p

h0

h-1
h-2h-3

h1

h2

h3

Figure 2.24 A schematic view of a homoclinic point h0.
The stable manifold (solid curve) and unstable manifold (dashed curve) of the
saddle fixed point p intersect at h0, and therefore also at infinitely many other
points. This figure only hints at the complexity. Poincaré showed that if a circle was
drawn around any homoclinic point, there would be infinitely many homoclinic
points inside the circle, no matter how small its radius.

forces infinitely many such intersections. Poincaré drew diagrams similar to Figure
2.24, which displays the infinitely many intersections that logically follow from
the intersection h0.

To understand the source of this complexity, first notice that a stable man-
ifold, by definition, is an invariant set under the map f. This means that if h0

is a point on the stable manifold of a fixed point p, then so are h1 � f(h0) and
h�1 � f�1(h0). This is easy to understand: if the orbit of h0 eventually converges
to p under f, then so must the orbits of h1 and h�1, being one step ahead and
behind of h0, respectively. In fact, if h0 is a point on a stable manifold of p, then
so is the entire (forward and backward) orbit of h0. By the same reasoning, the
unstable manifold of a fixed point is also invariant.

Once a point like h0 in Figure 2.24 lies on both the stable and unstable
manifolds of a fixed point, then the entire orbit of h0 must lie on both manifolds,
because both manifolds are invariant. Remember that the stable manifold is
directed toward the fixed point, and the unstable manifold leads away from it.
The result is a configuration drawn schematically in Figure 2.24, and generated
by a computer for the Hénon map in Figure 2.21(b).
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The key fact about a homoclinic intersection point is that it essentially
spreads the sensitive dependence on initial conditions—ordinarily situated at a
single saddle fixed point—throughout a widespread portion of state space. Figures
2.21 and 2.24 give some insight into this process. In Chapter 10, we will return
to study this mechanism for manufacturing chaos.

2 .7 M AT R I X T I M E S C I R C L E EQ U A L S E L L I P S E
Near a fixed point v0, we have seen that the dynamics essentially reduce to a
single linear map A � Df(v0). If a map is linear then its action on a small disk
neighborhood of the origin is just a scaled–down version of the effect on the unit
disk. We found that the magnitudes of the eigenvalues of A were decisive for
classifying the fixed point. The same is true for a period-k orbit; in that case the
appropriate matrix A is a product of k matrices.

In case the orbit is not periodic (which is one of our motivating situations),
there is no magic matrix A. The local dynamics in the vicinity of the orbit is ruled,
even in its linear approximation, by an infinite product of usually nonrepeating
Df(v0). The role of the eigenvalues of A is taken over by Lyapunov numbers,
which measure contraction and expansion. When we develop Lyapunov numbers
for many-dimensional maps (Chapter 5), it is this infinite product that we will
have to measure or approximate in some way.

To visualize what is going on in cases like this, it helps to have a way to
calculate the image of a disk from the matrix representing a linear map. For
simplicity, we will choose the disk of radius one centered at the origin, and a
square matrix. The image will be an ellipse, and matrix algebra explains how to
find that ellipse.

The technique (again) involves eigenvalues. The image of the unit disk N
under the linear map A will be determined by the eigenvectors and eigenvalues
of AAT, where AT denotes the transpose matrix of A (formed by exchanging the
rows and columns of A). The eigenvalues of AAT are nonnegative for any A. This
fact can be found in Appendix A, along with the next theorem, which shows
how to find the explicit ellipse AN.

Theorem 2.24 Let N be the unit disk in �m, and let A be an m � m matrix.
Let s2

1, . . . , s2
m and u1, . . . , um be the eigenvalues and unit eigenvectors, respectively,

of the m � m matrix AAT. Then

1. u1, . . . , um are mutually orthogonal unit vectors; and
2. the axes of the ellipse AN are siui for 1 � i � m.

87



T WO -D I M E N S I O N A L M A P S

Check that in Example 2.5, the map A gives s1 � a, s2 � b, while u1 and
u2 are the x and y unit vectors, repectively. Therefore a and b are the lengths of
the axes of the ellipse AN. For the nth iterate of A, represented by the matrix An,
we find ellipse axes of length an and bn for AnN, the nth image of the unit disk.

In Example 2.5, the axes of the ellipse AN are easy to find. Each axis is an
eigenvector not only of AAT but also of A, whose length is the corresponding
eigenvalue of A. In general (for nonsymmetric matrices), the eigenvectors of A
do not give the directions along which the ellipse lies, and it is necessary to use
Theorem 2.24. To see how Theorem 2.24 applies in general, we’ll return for a
look at our three important examples.

EXAM PLE 2 .25

[Distinct real eigenvalues.] Let

A(x) � Ax �

(
.8 .5
0 1.3

)(
x
y

)
. (2.36)

The eigenvalues of the matrix A are 0.8 and 1.3, with corresponding eigenvectors(
1
0

)
and

(
1
1

)
, respectively. From this it is clear that the fixed point at the origin

is a saddle—the two eigenvectors give directions along which the fixed point
attracts and repels, respectively. The attracting direction is illustrated by

An

(
1
0

)
� (0.8)n

(
1
0

)
�

(
(0.8)n

0

)
, (2.37)

and the repelling direction by

An

(
1
1

)
� (1.3)n

(
1
1

)
�

(
(1.3)n

(1.3)n

)
. (2.38)

The stable manifold of the origin saddle point is y � 0, and the unstable manifold
is y � x. Points along the x-axis move directly toward the origin under iteration
by A, and points along the line y � x move toward infinity. Since we know the
nth iterate of the unit circle is an ellipse with one growing direction and one
shrinking direction, we know that in the limit the ellipses become long and thin.
The ellipses AnN representing higher iterates of the unit disk gradually line up

along the dominant eigenvector

(
1
1

)
of A.

The first few images of the unit disk under the map A can be found using
Theorem 2.24, and are graphed in Figure 2.25. For an application of Theorem
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N

A4N

A6N
y = x 

Figure 2.25 Successive images of the unit circle N for a saddle fixed point.
The image of a circle under a linear map is an ellipse. Successive images are therefore
also ellipses, which in this example line up along the expanding eigenspace.

2.24, we calculate the first iterate of the unit disk under A. Since

AAT �

(
.8 .5
0 1.3

)(
.8 0
.5 1.3

)
�

(
.89 .65
.65 1.69

)
, (2.39)

the unit eigenvectors of AAT are (approximately)

(
.873

�.488

)
and

(
.488
.873

)
, with

eigenvalues .527 and 2.053, respectively. Taking square roots, we see that the
ellipse AN has principal axes of lengths �

√
.527 � .726 and �

√
2.053 �

1.433. The ellipse AN, along with A4N and A6N, is illustrated in Figure 2.25.

EXAM PLE 2 .26

[Repeated eigenvalue.] Even in the sink case, the ellipse AnN can grow a
little in some direction before shrinking for large n. Consider the example

A �

(
2
3 1
0 2

3

)
. (2.40)

✎ EXERCISE T2 .10
Use Theorem 2.24 to calculate the axes of the ellipse AN from (2.40). Then
verify that the ellipses AnN shrink to the origin as n → �.
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N

AN

A2N

A4N

A6N

Figure 2.26 Successive images of the unit circle N under a linear map A in
the case of repeated eigenvalues.
The nth iterate AnN of the circle lies wholly inside the circle for n 	 6. In this case,
the origin is a sink.

The first few iterates of the unit circle N are graphed in Figure 2.26. The
ellipse AN sticks out of the unit disk N. Further iteration by A continues to roll
the ellipse to lie parallel to the x-axis and to eventually shrink it to the origin, as
the calculation of Exercise T2.10 requires.

EXAM PLE 2 .27

[Complex eigenvalues.] Let

A �

(
a �b
b a

)
. (2.41)

The eigenvalues of this matrix are a � bi. Calculating AAT yields

AAT �

(
a2 � b2 0

0 a2 � b2

)
, (2.42)

so it follows that the image of the unit disk N by A is again a disk of radius√
a2 � b2. The matrix A rotates the disk by arctan b� a and stretches by a factor

of
√

a2 � b2 on each iteration. The stability result is the same as in the previous
two cases: if the absolute value of the eigenvalues is less than 1, the origin is a
sink; if greater than 1, a source.
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N

AN
A2N

A3N

2-2

-2

2

Figure 2.27 Successive images of the unit circle N.
The origin is a source with complex eigenvalues.

In Figure 2.27, the first few iterates AnN of the unit disk are graphed for
a � 1.2, b � 0.2. Since a2 � b2 � 1, the origin is a source. The radii of the images
of the disk grow at the rate of

√
1.22 � .22 � 1.22 per iteration, and the disks

turn counterclockwise at the rate of arctan(.2 � 1.2) � 9.5 degrees per iteration.
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☞ C H A L L E N G E 2

Counting the Periodic Orbits of Linear Maps
on a Torus

IN CHAPTER 1, we investigated the properties of the linear map f(x) � 3x
(mod 1). This map is discontinuous on the interval [0, 1], but continuous when
viewed as a map on a circle. We found that the map had infinitely many periodic
points, and we discussed ways to count these orbits.

We will study a two-dimensional map with some of the same properties in
Challenge 2. Consider the map S defined by a 2 � 2 matrix

A �

(
a b
c d

)

with integer entries a, b, c, d, where we define S(v) � Av (mod 1). The domain
for the map will be the unit square [0, 1] � [0, 1]. Even if Av lies outside the
unit square, S(v) lies inside if we count modulo one. In general, S will fail to be
continuous, in the same way as the map in Example 1.9 of Chapter 1.

For example, assume

A �

(
2 1
1 1

)
. (2.43)

Consider the image of the point v � (x, 1 � 2) under S. For x slightly less than
1 � 2, the image S(v) lies just below (1 � 2, 1). For x slightly larger than 1 � 2, the
image S(v) lies just above (1 � 2, 0), quite far away. Therefore S is discontinuous
at (1 � 2, 1 � 2).

We solved this problem for the 3x mod 1 map in Chapter 1 by sewing
together the ends of the unit interval to make a circle. Is there a geometric object
for which S can be made continuous? The problem is that when the image value
1 is reached (for either coordinate x or y), the map wants to restart at the image
value 0.

The torus �2 is constructed by identifying the two pairs of opposite sides
of the unit square in �2. This results in a two-dimensional object resembling
a doughnut, shown in Figure 2.28. We have simultaneously glued together the
x-axis at 0 and 1, and the y-axis at 0 and 1. The torus is the natural domain for
maps that are formed by integer matrices modulo one.
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(a) (b) (c)

Figure 2.28 Construction of a torus in two easy steps.
(a) Begin with unit square. (b) Identify (glue together) vertical sides. (c) Identify
horizontal sides.

Given a 2 � 2 matrix A, we can define a map from the torus to itself by
multiplying the matrix A times a vector (x, y), followed by taking the output
vector modulo 1. If the matrix A has integer entries, then the map so defined
is continuous on the torus. In the following steps we derive some fundamental
properties of torus maps, and then specialize to the particular map (2.43), called
the cat map.

Assume in Steps 1–6 that A has integer entries, and that the determinant
of A, det(A) � ad � bc, is nonzero.

Step 1 Show that the fact that A is a 2 � 2 matrix with integer entries
implies that the torus map S(v) � Av (mod 1) is a continuous map on the torus
�2. (You will need to explain why the points (0, y) and (1, y), which are identified
together on the torus, map to the same point on the torus. Similarly for (x, 0) and
(x, 1).)

Step 2 (a) Show that A

(
x � n1

y � n2

)
� A

(
x
y

)
(mod 1) for any integers

n1, n2.
(b) Show that S2(v) � A2v (mod 1).
(c) Show that Sn(v) � Anv (mod 1) for any positive integer n.
Step 2 says that in computing the nth iterate of S, you can wait until the

end to apply the modulo 1 operation.
A real number r is rational if r � p� q, where p and q are integers. A number

that is not rational is called irrational. Note that the sum or product of two
rational numbers is rational, the sum of a rational and an irrational is irrational,
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and the product of a rational and an irrational is irrational unless the rational is
zero.

Step 3 Assume that A has no eigenvalue equal to 1. Show that S(v) � v
implies that both components of v are rational numbers.

Step 4 Assume that A has no eigenvalues of magnitude one. Since the
eigenvalues of An are the nth powers of the eigenvalues of A (see Appendix
A), this assumption guarantees that for all n, the matrix An does not have an
eigenvalue equal to 1. Show that a point v � (x, y) in the unit square is eventually
periodic if and only if its coordinates are rational. (The 3x (mod 1) map of Chapter
1 had a similar property.) [Hint: Use Step 3 to show that if any component is
irrational, then v cannot be eventually periodic. If both components of v are
rational, show that there are only a finite number of possibilities for iterates of v.]

Step 5 Show that the image of the map S covers the square precisely
|det(A)| times. More precisely, if v0 is a point in the square, show that the
number of solutions of S(v) � v0 is |det A|. [Hint: Draw the image under A of the
unit square in the plane. It is a parallelogram with one vertex at the origin and
three other vertices with integer coordinates. The two sides with the origin as
vertex are the vectors (a, c) and (b, d). The area of the parallelogram is therefore
|det(A)|. Show that the number of solutions of Av � v0 (mod 1) is the same for
all v0 in the square. Therefore the parallelogram can be cut up by mod 1 slices
and placed onto the square, covering it |det(A)| times. See Figure 2.29.]

(a) (b)

Figure 2.29 Dynamics of the cat map.
(a) The unit square and its image under the cat map (2.43). (b) Since det(A) � 1,
the image of the unit square, modulo 1, covers the unit square exactly once.
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Step 6 Define the trace of A by tr(A) � a � d, the sum of the diagonal
entries. Prove that the number of fixed points of S on the torus is

|det A � tr A � 1|,

as long as that number is not zero. [Hint: Apply Step 5 to the matrix A � I.]
Now we study a particular choice of A. Define the matrix

A �

(
2 1
1 1

)

as in Equation (2.43). The resulting map S, called the “cat map”, is shown in
Figure 2.30.

Step 7 Let Fn denote the nth Fibonacci number, where F0 � F1 � 1, and
where Fn � Fn�1 � Fn�2 for n 	 2. Prove that

An �

(
F2n F2n�1

F2n�1 F2n�2

)
.

Step 8 Find all fixed points and period-two orbits of the cat map. [Hint:
For the period-2 points, find all solutions of

5
a
b

� 3
c
d

� m �
a
b

3
a
b

� 2
c
d

� n �
c
d

(2.44)

(a) (b)

Figure 2.30 An illustration of multiplication by the matrix A in (2.43).
(a) Cat in unit square. (b) Image of the unit square under the matrix A.
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where a, b, c, d, m, n are integers.] Answers: (0,0) is the only fixed point; the
period-2 orbits are:

{(
.2
.4

)
,

(
.8
.6

)}
and

{(
.4
.8

)
,

(
.6
.2

)}
.

Step 9 Use Step 6 to find a formula for the number of fixed points of Sn.
(Answer: |(F2n � 1)(F2n�2 � 1) � F2

2n�1|.)

The formula in Step 9 can be checked against Figure 2.31 for low values
of n. For example, Figure 2.31(a) shows a plot of the fixed points of S4 in the unit
square. There are 45 points, each with coordinates expressible as (i� 15, j � 15) for
some integers i, j. One of them is a period-one point of S (the origin), and four
of them are the period-two points (two different orbits) of S found in Step 8.
That leaves a total of 10 different period-four orbits. In counting, remember that
the points are defined modulo 1, so that a point on the boundary of the square
will also appear as the same point on the opposite boundary. The period-five
points in Figure 2.31(b) are somewhat easier to count; they are the 120 points of
form (i� 11, j � 11) where 0 � i, j � 10, omitting the origin, which is a period-one
point. There are 24 period-five orbits. The period-three points show up as the
medium-sized crosses in Figure 2.31(c). They are the 15 points of form (i� 4, j � 4)
where 0 � i, j � 3, again omitting the origin. Can you guess the denominators of
the period-six points? See Step 12 for the answer.

(a) (b) (c)

Figure 2.31 Periodic points of the cat map on the torus.
(a) Period-four points (small crosses), period-two points (large crosses). (b) Period-
five points. (c) Period-six points (small crosses), period-three points (medium
crosses), period-two points (large crosses)
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Step 10 Prove the identities FnFn�2 � F2
n�1 � (�1)n and F2n � F2

n �

F2
n�1 for Fibonacci numbers, and use them to simplify the formula for the number

of fixed points of Sn to (Fn � Fn�2)2 � 2 � 2(�1)n.

Step 11 Write out the periodic table for S (list number of periodic points
for each period) for periods up to 10. See Table 1.3 of Chapter 1 for the form of a
periodic table. Compare this with Figure 2.31 where applicable. Show that S has
periodic points of all periods.

Step 12 Here is the formula for the denominator of the period n orbits.
The orbits consist of points a� b where

b �

{
Fn � Fn�2 if n is odd and n � 1
5Fn�1 if n is even

For example, the denominator of the period-two points is 5F1 � 5, and the
denominator of the period-three points is F3 � F1 � 4. Confirm this with the
answers from Step 8 and Figure 2.31(a). Prove this formula for general n. [Thanks
to Joe Miller for simplifying this formula.]

Postscript. How robust are the answers you derived in Challenge 2? If you’re still
reading, you have done an exhaustive accounting of the periodic orbits for the cat map
(2.43). Does this accounting apply only to the cat map, or are the same formulas valid for
cat-like maps?

Using a few advanced ideas, you can show that the results apply as well to maps
in a neighborhood of the cat map in “function space”, including nearby nonlinear maps.
Exactly the same number of orbits of each period exist for these maps. The reasoning is as
follows. As we will see in Chapter 11, as a map is perturbed (say, by moving a parameter
a), a fixed point p of fk

a cannot appear or disappear (as a moves) without an eigenvalue of
the matrix Dfk

a(p) crossing through 1. (At such a crossing, the Jacobian of fk
a � I is singular

and the implicit function theorem is violated, allowing a solution of fk � I � 0 to appear
or disappear as the map is perturbed.)

The eigenvalues of the cat map A are e1 � (3 �
√

5) � 2 � 2.618 and e2 � (3 �√
5) � 2 � 0.382, and the eigenvalues of Ak are ek

1 and ek
2. Since eigenvalues move con-

tinuously as a parameter in the matrix is varied, any map whose Jacobian entries are close
to those of the cat map will have eigenvalues close to |e1| and |e2|, bounded away from
1, and so the eigenvalues of Dfk(p) will not equal 1. This rules out the appearance and
disappearance of periodic points for linear and nonlinear maps sufficiently similar to the
cat map, showing that the same formulas derived in Challenge 2 hold for them as well.
Nonlinear maps of the torus close to the cat map such as

f(x, y) � (2x � y � a cos 2�x, x � y � b sin 2�y) (mod 1)

where |a|, |b| are sufficiently small have this property, and so have the same number of
periodic points of each period as the cat map.
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EXERCISES

2.1. For each of the following linear maps, decide whether the origin is a sink, source,
or saddle.

(a)

(
4 30
1 3

)
(b)

(
1 1� 2

1� 4 3� 4

)
(c)

(
�0.4 2.4
�0.4 1.6

)

2.2. Find lim
n→�

(
4.5 8
�2 �3.5

)n (
6
9

)
.

2.3. Let g(x, y) � (x2 � 5x � y, x2). Find and classify the fixed points of g as sinks,
sources, or saddles.

2.4. Find and classify all fixed points and period-two orbits of the Hénon map (2.27)
with

(a) a � �0.56 and b � �0.5

(b) a � 0.21 and b � 0.6

2.5. Let f(x, y, z) � (x2y, y2, xz � y) be a map on �3. Find and classify the fixed points
of f.

2.6. Let f(x, y) � (sin �
3 x, y

2 ). Find all fixed points and their stability. Where does the
orbit of each initial value go?

2.7. Set b � 0.3 in the Hénon map (2.27). (a) Find the range of parameters a for
which the map has one fixed sink and one saddle fixed point. (b) Find the range of
parameters a for which the map has a period-two sink.

2.8. Calculate the image ellipse of the unit disk under each of the following maps.

(a)

(
2 0.5
2 �0.5

)
(b)

(
2 1

�2 2

)

What are the areas of these ellipses?

2.9. Find the inverse map for the cat map defined in (2.43). Check your answer by
composing with the cat map.

2.10. (a) Find a 2 � 2 matrix A � I with integer entries, a rational number x, and an
irrational number y such that S(x, y) � (x, y). Here S is the mod 1 map associated
to A. (b) Same question but require x and y to be irrational. According to Step 4 of
Challenge 2, each of your answers must have an eigenvalue equal to 1.

2.11. Let a be a vector in Rm and M be an m � m matrix. Define f(x) � Mx � a. Find a
condition on M (specifically, on the eigenvalues of M) that guarantees that f has
exactly one fixed point.
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☞ L A B V I S I T 2

Is the Solar System Stable?

KING OSCAR’S CONTEST in 1889 was designed to answer the question of
whether the solar system is stable, once and for all. The actual result clarified just
how difficult the question is. If the contest were repeated today, there would be no
greater hope of producing a definitive answer, despite (or one might say, because
of) all that has been learned about the problem in the intervening century.

Poincaré’s entry showed that in the presence of homoclinic intersections,
there is sensitive dependence on initial conditions. If this exists in our solar system,
then long-term predictability is severely compromised. The positions, velocities,
and masses of the planets of the solar system are known with considerably more
precision than was known in King Oscar’s time. However, even these current
measurements fall far short of the accuracy needed to make long-term predictions
in the presence of sensitive dependence on initial conditions. Two key questions
are: (1) whether chaos exists in planetary trajectories, and (2) if there are chaotic
trajectories, whether the chaos is sufficiently pronounced to cause ejection of a
planet from the system, or a planetary collision.

The question of whether chaos exists in the solar system has led to inno-
vations in theory, algorithms, computer software, and hardware in an attempt
to perform accurate long-term solar system simulations. In 1988, Sussman and
Wisdom reported on an 845 Myr (Myr denotes one million years) integration of
the gravitational equations for the solar system. This integration was performed
in a special-purpose computer that they designed for this problem, called the
Digital Orrery, which has since been retired to the Smithsonian Institution in

Sussman, G. J., Wisdom, J., “Numerical evidence that the motion of Pluto is chaotic.”
Science 241, 433-7 (1988).
Laskar, J., “A numerical experiment on the chaotic behaviour of the solar system.”
Nature 338, 237-8 (1989).
Sussman, G.J., Wisdom, J., “Chaotic evolution of the solar system.” Science 257, 56-62
(1992).
Laskar, J., Robutel, P., “The chaotic obliquity of the planets.” Nature 361, 608-612
(1993).
Touma, J., Wisdom, J., “The chaotic obliquity of Mars.” Science 259, 1294-1297 (1993).
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Figure 2.32 Comparison of two computer simulations.
The difference in the position of Pluto in two simulations with slightly different
initial conditions is plotted as a function of time. The vertical scale is ln of the
difference, in units of AU (astronomical units).

Washington, D.C. A surprising result of the integration was an indication of
sensitive dependence in the orbit of Pluto.

Figure 2.32 shows exponential divergence of nearby trajectories over a 100
Myr simulation, done by Sussman and Wisdom in 1992 with a successor of the
Digital Orrery, built as a collaboration between MIT and Hewlett-Packard. They
made two separate computer runs of the simulated solar system. The runs were
identical except for a slight difference in the initial condition for Pluto. The
curve shows the distance between the positions of Pluto for the two solar system
simulations.

The plot in Figure 2.32 is semilog, meaning that the vertical axis is loga-
rithmic. Assume that the distance d between the Plutos in the two almost parallel
universes grows exponentially with time, say as d � aekt. Then log d � log a � kt,
which is a linear relation between log d and t. If we plot log d versus t, we will get
a line with slope k. This is what Figure 2.32 shows in rough terms. In Chapter 3
the slope k will be called the Lyapunov exponent. A careful look at the figure
yields the slope to be approximately 1 � 12, meaning that the distance between
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nearby initial conditions is multiplied by a factor of e1 � 12 each million years, or
by a factor of e � 2.718 each 12 million years. We can say that the exponential
separation time for Pluto is about 12 million years on the basis of this simulation.

Laskar, working at the time at the Bureau des Longitudes in Paris, used quite
different techniques to simulate the solar system without Pluto, and concluded
that the exponential separation time for this system is on the order of 5 million
years. He attributed the chaotic behavior to resonances among the inner planets
Mercury, Venus, Earth, and Mars. Recent simulations by Sussman and Wisdom
have also arrived at the approximate value of 5 million years for some of the inner
planets.

To put these times in perspective, note that e19 � 1.5 � 108, which is
the number of kilometers from the sun to the earth, or one astronomical unit.
Therefore a difference or uncertainty of 1 km in a measured position could grow
to an uncertainty of 1 astronomical unit in about 19 time units, or 19 � 5 � 95
Myrs. The solar system has existed for several billions of years, long enough for
this to happen many times over.

The finding of chaos in solar system trajectories does not in itself mean that
the solar system is on the verge of disintegration, or that Earth will soon cross
the path of Venus. It does, however, establish a limit on the ability of celestial
mechanics to predict such an event in the far future.

A more recent conclusion may have an impact on life on Earth within a
scant few millions of years. The two research groups mentioned above published
articles within one week of one another in 1993 regarding the erratic obliquity of
planets in the solar system. The obliquity of a planet is the tilt of the spin axis with
respect to the “plane” of the solar system. The obliquity of Earth is presently about
23.3◦, with estimated variations over time of 1◦ either way. Large variations in
the obliquity, for example those that would turn a polar icecap toward the sun for
extended periods, would have a significant effect on climate.

The existence of a large moon has a complicating and apparently stabilizing
effect on the obliquity of Earth. A more straightforward calculation can be made
for Mars. Laskar and Robutel found that in a 45 Myr simulation, the obliquity of
Mars can oscillate erratically by dozens of degrees, for some initial configurations.
For other initial conditions, the oscillations are regular.

Figure 2.33(a) shows the variation of the obliquity of Mars for 80 Myrs into
the past, from a computer simulation due to Touma and Wisdom. This simulation
takes the present conditions as initial conditions and moves backwards in time.
Figure 2.33(b) is a magnification of part (a) for the last 10 Myrs only. It shows
an abrupt transition about 4 Myrs ago, from oscillations about 35◦ obliquity to
oscillations about 25◦ obliquity.
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Figure 2.33 The obliquity of Mars.
(a) The result of a computer simulation of the solar system shows that the obliquity of
Mars undergoes erratic variation as a function of time. (b) Detail from (a), showing
only the last 10 million years. There is an abrupt transition about 4 million years
ago.
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No one knows whether the graphs shown here are correct over a several-
million-year time range. Perhaps core samples from the poles of Mars (not yet
obtained) could shed light on this question. If the initial position, velocity, mass,
and other physical parameters of Mars used in the simulations were changed
from the values used in the simulations, the results would be different, because
of the sensitive dependence of the problem. Any calculation of the obliquity
or the position of Mars for many millions of years can only be considered as
representative of the wide range of possibilities afforded by chaotic dynamics.

While sensitive dependence on initial conditions causes unpredictability
at large time scales, it can provide opportunity at shorter, predictable time scales.
One of the first widely available English translations of Poincaré’s writings on
celestial mechanics was commissioned by the U.S. National Aeronautics and
Space Administration (NASA). Several years ago, their scientists exploited the
sensitive dependence of the three-body problem to achieve a practical goal.

In 1982, NASA found itself unable to afford to send a satellite to the
Giacobini-Zinner comet, which was scheduled to visit the vicinity of Earth’s
orbit in 1985. It would pass quite far from the current Earth position (50 million
miles), but near Earth’s orbit. This led to the possibility that a satellite already
near Earth’s orbit could be sent to the correct position with a relatively low
expenditure of energy.

A 1000-lb. satellite called ISEE-3 had been launched in 1978 to measure
the solar wind and to count cosmic rays. ISEE-3 was parked in a “halo orbit”,
centered on the Lagrange point L1. The halo orbit is shown in Color Plate 13. A
Lagrange point is a point of balance between the gravitational pull of the Earth
and Sun. In the rotating coordinate system in which the Earth and Sun are fixed,
the L1 point is an unstable equilibrium. Lagrange points are useful because little
energy is required to orbit around them.

The ISEE-3 satellite was nearing the end of its planned mission, and had
a limited amount of maneuvering fuel remaining. NASA scientists renamed
the satellite the International Comet Explorer (ICE) and plotted a three-year
trajectory for the Giacobini-Zinner comet. The new trajectory took advantage of
near collisions with the Moon, or “lunar swingbys”, to make large changes in the
satellite’s trajectory with small fuel expenditures. The first thruster burn, on June
10, 1982, changed the satellite’s velocity by less than 10 miles per hour. In all, 37
burns were needed to make small changes in the trajectory, resulting in 5 lunar
swingbys.

Dynamical motion of gravitational bodies is especially sensitive at a swingby.
Since the distance between the two bodies is small, the forces between them is
relatively large. This is where small changes can have a large effect.
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The first lunar swingby occurred on March 30, 1983. A schematic picture
of the satellite trajectory is shown in Color Plate 14. The 4 other near collisions
with the moon are shown in the following Color Plates 15–16. During the final
swingby on Dec. 22, 1983, denoted by 5 in the figure, the satellite passed within
80 miles of the surface of the moon on its way toward the comet. ICE passed
through the tail of the Giacobini-Zinner comet on Sept. 11, 1985, exactly as
planned.
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Chaos

THE CONCEPT of an unstable steady state is familiar in science. It is not possible
in practice to balance a ball on the peak of a mountain, even though the configu-
ration of the ball perfectly balanced on the peak is a steady state. The problem is
that the trajectory of any initial position of the ball near, but not exactly at, the
steady state, will evolve away from the steady state. We investigated sources and
saddles, which are unstable fixed points of maps, in Chapters 1 and 2.

What eventually happens to the ball placed near the peak? It moves away
from the peak and settles in a valley at a lower altitude. The valley represents a
stable steady state. One type of behavior for an initial condition that begins near
an unstable steady state is to move away and be attracted by a stable steady state,
or perhaps a stable periodic state.

We have seen this behavior in maps of the real line. Consider an initial
condition that is near a source p of a map f . At the beginning of such an orbit,
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unstable behavior is displayed. Exponential separation means that the distance
between the orbit point and the source increases at an exponential rate. Each
iteration multiplies the distance between them by |f ′(p)| � 1. We say that the
exponential rate of separation is |f ′(p)| per iterate. That is, at least at first, small
separations grow. After some wandering, the orbit may be attracted to a sink q.
As it nears the sink, the orbit will display convergent behavior—the distance
between the orbit point and the sink will change by the factor |f ′(q)| � 1. As the
orbit nears the attractor, small distances shrink.

It is common to see behavior like this, in which unstable behavior is tran-
sient and gives way eventually to stable behavior in the long run. But there is no
reason that an initial condition starting near a source is forced to end up attracted
to a sink or periodic sink. Perhaps no stable states exist, as in the example of the
logistic map G(x) � 4x(1 � x) we discussed in Chapter 1.

A chaotic orbit is one that forever continues to experience the unstable
behavior that an orbit exhibits near a source, but that is not itself fixed or
periodic. It never manages to find a sink to be attracted to. At any point of such
an orbit, there are points arbitrarily near that will move away from the point
during further iteration. This sustained irregularity is quantified by Lyapunov
numbers and Lyapunov exponents. We will define the Lyapunov number to be
the average per-step divergence rate of nearby points along the orbit, and the
Lyapunov exponent to be the natural logarithm of the Lyapunov number. Chaos
is defined by a Lyapunov exponent greater than zero.

In this chapter, we will study elementary properties of Lyapunov exponents
and exhibit some maps for which they can be explicitly calculated. For example,
we will see that for the logistic map, the Lyapunov exponent of most orbits (but
not all) is ln 2. We’ll also develop a fixed point theorem for detecting fixed and
periodic points, which will be used in Challenge 3 to establish a remarkable fact
called Sharkovskii’s Theorem.

3 .1 L YA P U N OV E X P O N E N T S

We learned in Chapter 1 that for fixed points of discrete dynamical systems,
stability is heavily influenced by the derivative of the map. For example, if x1 is a
fixed point of a one-dimensional map f and f ′(x1) � a � 1, then the orbit of each
point x near x1 will separate from x1 at a multiplicative rate of approximately a
per iteration, until the orbit of x moves significantly far away from x1. That is, the
distance between fn(x) and fn(x1) � x1 will be magnified by approximately a � 1
for each iteration of f .
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For a periodic point of period k, we have to look at the derivative of the
kth iterate of the map, which, by the chain rule, is the product of the derivatives
at the k points of the orbit. Suppose this product of derivatives is A � 1. Then
the orbit of each neighbor x of the periodic point x1 separates from x1 at a
rate of approximately A after each k iterates. This is a cumulative amount of
separation—it takes k iterations of the map to separate by a distance A. It makes
sense to describe the average multiplicative rate of separation as A1 � k per iterate.

The term Lyapunov number is introduced to quantify this average multi-
plicative rate of separation of points x very close to x1. (The Lyapunov exponent
will be simply the natural logarithm of the Lyapunov number.) A Lyapunov num-
ber of 2 (or equivalently, a Lyapunov exponent of ln 2) for the orbit of x1 will
mean that the distance between the orbit of x1 and the orbit of a nearby point x
doubles each iteration, on the average. For a periodic point x1 of period k, this is
the same as saying that

|(fk) ′(x1)| � |f ′(x1)||f ′(x2)| 
 
 
 |f ′(xk)| � 2k.

But we want to consider this concept even when x1 is not a fixed point or periodic
point. A Lyapunov number of 1

2 would mean this distance would be halved on
each iteration, and the orbits of x and x1 would move rapidly closer.

The significance of the concept of Lyapunov number is that it can be applied
to nonperiodic orbits. A characteristic of chaotic orbits is sensitive dependence
on initial conditions—the eventual separation of the orbits of nearby initial
conditions as the system moves forward in time. In fact, our definition of a
chaotic orbit is one that does not tend toward periodicity and whose Lyapunov
number is greater than 1.

In order to formally define Lyapunov number and Lyapunov exponent for a
general orbit, we follow the analogy of the periodic case, and consider the product
of the derivatives at points along the orbit. We begin by restricting our attention
to one-dimensional maps.

Definition 3.1 Let f be a smooth map of the real line �. The Lyapunov
number L(x1) of the orbit �x1, x2, x3, . . .� is defined as

L(x1) � lim
n→�

(|f ′(x1)| . . . |f ′(xn)|)1 � n,

if this limit exists. The Lyapunov exponent h(x1) is defined as

h(x1) � lim
n→�

(1 � n)[ln |f ′(x1)| � 
 
 
 � ln |f ′(xn)|],

if this limit exists. Notice that h exists if and only if L exists and is nonzero, and
ln L � h.
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Remark 3.2 Lyapunov numbers and exponents are undefined for some
orbits. In particular, an orbit containing a point xi with f ′(xi) � 0 causes the
Lyapunov exponent to be undefined.

✎ EXERCISE T3 .1
Show that if the Lyapunov number of the orbit of x1 under the map f is
L, then the Lyapunov number of the orbit of x1 under the map f k is Lk,
whether or not x1 is periodic.

It follows from the definition that the Lyapunov number of a fixed point x1

for a one-dimensional map f is |f ′(x1)|, or equivalently, the Lyapunov exponent
of the orbit is h � ln |f ′(x1)|. If x1 is a periodic point of period k, then it follows
that the Lyapunov exponent is

h(x1) �
ln |f ′(x1)| � 
 
 
 � ln |f ′(xk)|

k
.

The point is that for a periodic orbit, the Lyapunov number eh(x1) describes the
average local stretching, on a per-iterate basis, near a point on the orbit.

Definition 3.3 Let f be a smooth map. An orbit �x1, x2, . . . xn, . . .� is
called asymptotically periodic if it converges to a periodic orbit as n → �; this
means that there exists a periodic orbit �y1, y2, . . . , yk, y1, y2, . . .� such that

lim
n→�

|xn � yn| � 0.

Any orbit that is attracted to a sink is asymptotically periodic. The orbit
with initial condition x � 1 � 2 of G(x) � 4x(1 � x) is also asymptotically periodic,
since after two iterates it coincides with the fixed point x � 0. The term eventually
periodic is used to describe this extreme case, where the orbit lands precisely on
a periodic orbit.

Theorem 3.4 Let f be a map of the real line �. If the orbit �x1, x2, . . .�
of f satisfies f ′(xi) � 0 for all i and is asymptotically periodic to the periodic orbit
�y1, y2, . . .�, then the two orbits have identical Lyapunov exponents, assuming both
exist.

Proof: We use the fact that a sequence average converges to the sequence
limit; that is, if sn is an infinite sequence of numbers with limn→� sn � s, then

lim
n→�

1
n

n∑
i�1

si � s.

108



3 . 2 C H AOT I C O R B I T S

Assume k � 1 to begin with, so that y1 is a fixed point. Since limn→� xn � y1,
the fact that the derivative f ′ is a continuous function implies that

lim
n→�

f ′(xn) � f ′( lim
n→�

xn) � f ′(y1).

Moreover, since ln |x| is a continuous function for positive x,

lim
n→�

ln |f ′(xn)| � ln | lim
n→�

f ′(xn)| � ln |f ′(y1)|.

This equation gives us the limit of an infinite sequence. Using the fact that the
sequence average converges to the sequence limit, we see that

h(x1) � lim
n→�

1
n

n∑
i�1

ln |f ′(xi)| � ln |f ′(y1)| � h(y1).

Now assume that k � 1, so that y1 is not necessarily a fixed point. Then y1

is a fixed point for fk, and the orbit of x1 is asymptotically periodic under fk to the
orbit of y1. From what we proved above, the Lyapunov exponent of the orbit of
x1 under fk is ln |fk ′

(y1)|. By Exercise T3.1, the Lyapunov exponent of x1 under f

is
1
k

ln |(fk)
′
(y1)| � h(y1). �

✎ EXERCISE T3 .2
Find the Lyapunov exponent shared by most bounded orbits of g(x) �

2.5x(1 � x). Begin by sketching g(x) and considering the graphical represen-
tation of orbits. What are the possible bounded asymptotic behaviors? Do
all bounded orbits have the same Lyapunov exponents?

➮ C O M P U T E R E X P E R I M E N T 3 . 1

Write a program to calculate the Lyapunov exponent of ga(x) � ax(1 � x)
for values of the parameter a between 2 and 4. Graph the results as a function
of a.

3 .2 C H A OT I C O R B I T S
In Section 3.1 we defined the Lyapunov exponent h of an orbit to be the natural
log of the average per-step stretching of the orbit. We were able to calculate h
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in certain special cases: for a fixed point or periodic orbit we could express h in
terms of derivatives, and orbits converging to a periodic orbit share the same
Lyapunov exponent. More interesting cases involve bounded orbits that are not
asymptotically periodic. When such an orbit has a positive Lyapunov exponent,
it is a chaotic orbit.

Definition 3.5 Let f be a map of the real line �, and let �x1, x2, . . .� be
a bounded orbit of f . The orbit is chaotic if

1. �x1, x2, . . .� is not asymptotically periodic.
2. the Lyapunov exponent h(x1) is greater than zero.

EXAM PLE 3 .6

The map f(x) � 2x (mod 1) on the real line � exhibits positive Lyapunov
exponents and chaotic orbits. See Figure 3.1(a). The map is not continuous, and
therefore not differentiable, at x � 1

2 . We restrict our attention to orbits that
never map to the point 1

2 . For these orbits, it is easy to compute the Lyapunov
exponent as

lim
n→�

1
n

n∑
i�1

ln |f ′(xi)| � lim
n→�

1
n

n∑
i�1

ln 2 � ln 2.

Therefore each orbit that forever avoids 1
2 and is not asymptotically periodic is a

chaotic orbit, with Lyapunov exponent ln 2.

1/2 1 x

y

1

1/2 1 x

y

1

(a) (b)

Figure 3.1 Two simple maps with chaotic orbits.
(a) 2x (mod 1) map. (b) The tent map.
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The action of this map on a real number in [0, 1] can be expressed easily if
we consider the binary expansion of the number (see accompanying box). The
map f applied to a number x expressed in a binary expansion chops off the leftmost
bit:

1 � 5 � .00110011

f(1 � 5) � .0110011

f2(1 � 5) � .110011

f3(1 � 5) � .10011

f4(1 � 5) � .0011

Notice that x � 1 � 5 is a period-four orbit of f .
Since the map is so simple in the binary system, we can see immediately

which points in [0, 1] are periodic—they are the points with a repeating binary

B IN ARY N UM BERS

The binary expansion of a real number x has form

x � .b1b2b3 . . . ,

where each bi represents the 2�i-contribution to x. For example,

1
4

� 0 
 2�1 � 1 
 2�2 � 0 
 2�3 � 0 
 2�4 � 
 
 
 � .010

and

1
5

� 0 
 2�1 � 0 
 2�2 � 1 
 2�3 � 1 
 2�4 � 
 
 
 � .0011

where the overbar means infinite repetition.

To compute the binary expansion of a number between 0 and 1,
multiply the number by 2 (using the decimal system if that’s easiest
for you) and take the integer part (if any) as the first binary digit (bit).
Repeat the process, multiply the remainder by 2, and take the integer
part as the second bit, and so on. Actually, we are applying the 2x
(mod 1) map, recording a 1 bit when the mod truncation is necessary,
and a 0 bit if not.
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expansion, like x � 1 � 5. The eventually periodic points are those with an even-
tually repeating binary expansion, like x � 1 � 4 � .010 or x � 1 � 10 � .00011.
The only way to have an asymptotically repeating expansion is for it to be even-
tually repeating. We conclude that any number in [0, 1] whose binary expansion
is not eventually repeating represents a chaotic orbit. These are exactly the initial
points that are not rational.

EXAM PLE 3 .7

Let f(x) � (x � q) (mod 1), where q is an irrational number. Although f is
not continuous as a map of the unit interval, when viewed as a map of the circle
(by gluing together the unit interval at the ends 0 and 1), it rotates each point
through a fixed angle and so is continuous.

There are no periodic orbits, and therefore no asymptotically periodic orbits.
Each orbit wanders densely throughout the circle, and yet no orbit is chaotic. The
Lyapunov exponent of any orbit is 0. A bounded orbit that is not asymptotically
periodic and that does not exhibit sensitive dependence on initial conditions is
called quasiperiodic.

✎ EXERCISE T3 .3
Let f (x) � (x � q) (mod 1), where q is irrational. Verify that f has no
periodic orbits and that the Lyapunov exponent of each orbit is 0.

In the remainder of this section we establish the fact that the tent map has
infinitely many chaotic orbits. Since the Lyapunov exponent of each orbit for
which it is defined is ln 2, proving chaos reduces to checking for the absence of
asymptotic periodicity, which we do through itineraries.

EXAM PLE 3 .8

The tent map

T(x) �

{
2x if x � 1 � 2
2(1 � x) if 1 � 2 � x

on the unit interval [0, 1] also exhibits positive Lyapunov exponents. The tent
map is sketched in Figure 3.1(b). Notice the similarity of its shape to that of the
logistic map. It is the logistic map “with a corner”.

In analogy with the treatment of the logistic map, we set L � [0, 1 � 2]
and R � [1 � 2, 1]. The transition graph of T is shown in Figure 3.2(a), and the
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L R

LL LR RR RL

LLL LLR

LRR LRL 

RRL RRR

RLR RLL 

L R

(a) (b)

Figure 3.2 Tent map symbolic dynamics.
(a) Transition graph and (b) schematic iteneraries for the tent map T.

itineraries of T are shown in Figure 3.2(b). Recall that the subinterval RRL, for
example, denotes the set of points x that satisfy x is in R, T(x) is in R, and T2(x)
is in L.

Because of the uniform shape of T(x), there is a uniformity in the lengths
of subintervals having a given finite itinerary. The set of points with itinerary
S1 . . . Sk has length 2�k, independent of the choice of symbols. Figures 3.2(a) and
(b) are identical to the corresponding figures in Chapter 1 for the logistic map
G(x) � 4x(1 � x), except that for the tent map the level-k itinerary subintervals
are all of equal length.

✎ EXERCISE T3 .4
Explain why each infinite itinerary of the tent map T represents the orbit
of exactly one point in [0, 1].

We conclude that if the orbits that contain x � 1 � 2 are ignored, then
the orbits of T are in one-to-one correspondence with infinite sequences of two
symbols.

✎ EXERCISE T3 .5
Explain why an eventually periodic orbit must have an eventually repeating
itinerary.

Using the correspondence between orbits of T and their itineraries, chaos
can be shown to exist in the tent map.
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Theorem 3.9 The tent map T has infinitely many chaotic orbits.

Proof: Since the absolute value of the slope of T is 2 whenever it exists
(for x � 1 � 2), the Lyapunov exponent of an orbit of T is ln 2 whenever it is
defined. Any orbit that avoids 1 � 2 and is not asymptotically periodic is therefore
a chaotic orbit.

Any asymptotically periodic orbit of the tent map must be eventually peri-
odic. The reason is that the derivative of Tk at a period-k orbit is 2k, so all periodic
orbits are sources and attract no orbits. According to Exercise T3.5, an eventually
periodic orbit must have an eventually repeating itinerary. There are infinitely
many nonrepeating itineraries that correspond to distinct chaotic orbits. �

3 .3 CO N J U G A C Y A N D T H E L O G I S T I C M A P

In the previous section we established the fact that the tent map T has chaotic
orbits. In this section we see that the logistic map G(x) � 4x(1 � x) also has
chaotic orbits, and in particular has a chaotic orbit that fills up (is dense in) the
unit interval.

Calculations for the Lyapunov exponent of the tent map were extremely
easy: since the absolute value of the slope is exactly 2 at every point (except the
point of nondifferentiability), the exponential separation factor is ln 2 at every
iteration. The logistic map is more challenging; clearly the slope varies from
iteration to iteration along typical orbits. The logistic map is a smooth map (no
points of nondifferentiability) with the same general shape as the tent map. Our
strategy will be to show that the similarity extends far enough that the logistic
map, as well as the tent map, has chaotic orbits. The concept of conjugacy is a
way of making the similarity explicit.

Figure 3.3 compares the two maps. They each have a critical point at
x � 1 � 2, which maps to 1 and then 0. Each has a fixed point at zero, and one
other fixed point: the tent map at x � 2 � 3 and the logistic map at x � 3 � 4. Each
has a single period-two orbit; the tent map has �0.4, 0.8�, and the logistic map has
�(5 �

√
5)� 8, (5 �

√
5)� 8�. In each case, the period-two orbit lies in the same

relation to the other points; the left-hand point lies between the origin and the
critical point, and the right-hand point lies between the other fixed point and 1.

More coincidences arise when we examine the stability of these orbits. The
derivative of T at its fixed point x � 2 � 3 and the derivative of G at its fixed
point x � 3 � 4 are both �2, so both points are sources. The derivative of T2 at
its period-two point x � 0.4 is T ′(0.4)T ′(0.8) � (2)(�2) � �4; likewise, the
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1 x

y

1

.4 .82
3

1 x

y

1

.346 3
4

(a) (b)

Figure 3.3 Similarities in tent map and logistic map.
Both (a) the tent map and (b) the logistic map have a fixed point (small circle) to
the right of the critical point x � 0.5. For each, the midpoint maps to 1 and then
to 0. Each has a single period-two orbit (small squares).

derivative of G2 at its period-two point is

G ′
(

5 �
√

5
8

)
G ′

(
5 �

√
5

8

)
�

[
4 � 8

(
5 �

√
5

8

)][
4 � 8

(
5 �

√
5

8

)]

� (�1 �
√

5)(�1 �
√

5)

� 1 � 5 � �4.

Is the same sort of thing true for period-three orbits? (There should be two
such orbits, according to the periodic table, Table 1.3 of Chapter 1.) For period-
100 orbits? How far can we expect to push the similarity? At its extreme, it could
be expressed as follows: For each point x in the tent map domain [0, 1], there is
a specified companion point C(x) in the logistic map domain [0, 1] that imitates
its dynamics exactly. (Think of C as the “companion map”.) By that we mean
that the two image points of x and C(x) by their respective maps, the two points
T(x) and G(C(x)), are also companions. That would mean CT(x) � GC(x). If
there exists such a function C, then dynamical phenomena seen for the tent map
will be mimicked by its companions, or “conjugates”, in the logistic map. If C is
one-to-one, then the reverse is true as well.

Definition 3.10 The maps f and g are conjugate if they are related by
a continuous one-to-one change of coordinates, that is, if C ◦ f � g ◦ C for a
continuous one-to-one map C.
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The conjugacy map C should be viewed as a correspondence between two
systems for assigning coordinates, similar to a translation from one language to
another. For example, we will show that the logistic map G and the tent map T
are conjugate by the one-to-one continuous map C(x) � (1 � cos �x)� 2, which
is shown in Figure 3.4. Notice that C is one-to-one from [0, 1] to [0, 1], which are
the domains of G and T.

To verify that G and T are conjugate by the conjugacy C, we need to check
that C(T(x)) � G(C(x)) for each x in [0, 1]. We will show how to do this for
0 � x � 1 � 2, and leave the other half to an exercise. The right hand side is

G(C(x)) � 4C(x)(1 � C(x))

� 4
(

1 � cos �x
2

)(
1 � cos �x

2

)

� 1 � cos2 �x � sin2 �x. (3.1)

For the left side, we make use of the fact that T(x) � 2x for 0 � x � 1 � 2, so that

C(T(x)) �
1 � cos �T(x)

2

�
1 � cos 2�x

2
� sin2 �x, (3.2)

where the last equality follows from the double angle formula for cos. Hence
G ◦ C(x) � C ◦ T(x) for 0 � x � 1 � 2.

1

1

x

y
y = C(x) 

Figure 3.4 The conjugacy map.
The graph of C(x) � (1 � cos �x) � 2 is continuous and one-to-one. Since CT(x) �

GC(x) for all 0 � x � 1, it is a conjugacy between the tent map and logistic map.
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✎ EXERCISE T3 .6

Check that C(T(x)) � G(C(x)) for all x in [1 � 2, 1], completing the verification
of the conjugacy.

The meaning of the conjugacy between G and T is that there are two ways
to look at the map G—two ways to get from the domain of G to the range of G.
One way is to evaluate G(x); the second way is to find the inverse image of x under
the one-to-one correspondence (which is C�1(x)), apply the map T, and then
return to the original system by applying C. This amounts, of course, to saying
G(x) � CTC�1(x), which you proved in Exercise T3.6. In the second method,
the work of evaluating the map is done by T, and C is used to translate x in and
out of the language used by T.

The purpose of such a roundabout way of evaluating G is that T might be
easier to handle than G. Notice also that we can do multiple iterations of G this
way, with only one translation to and from T-language:

Gn � CTC�1CTC�1 
 
 
 CTC�1 � CTnC�1.

So if we have a lot of information about high iterates of T (which we do), we may
be able to make conclusions about high iterates of G.

Figure 3.5(a) illustrates the directions of the maps. The conjugacy says that
if you begin with a number x in the upper left corner of the diagram, either choice
of direction to the lower right corner arrives at the same result. Either go across
first and then down (which represents C(T(x))), or go down first and then across
(which represents G(C(x))). Ending at the same number either way means that
C(T(x)) � G(C(x)). Figure 3.5(b) shows the correspondence between coordinate
systems in a more concrete way, for a typical x.

The fact that C is one-to-one means that there is a one-to-one correspon-
dence between a point x being mapped by T and the point C(x) being mapped
by G. Moreover, much of the behavior of one map corresponds to similar behavior
in the other. Suppose for instance that x is a fixed point for T, so that T(x) � x.
Then C(x) is a fixed point for G, since GC(x) � CT(x) � C(x).

✎ EXERCISE T3 .7
Show that if x is a period-k point for T, then C(x) is a period-k point for G.
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[0,1] [0,1]

[0,1] [0,1] 

T

CC
G

C

C

xn+1=T(xn)

yn+1=G(yn)

(a) (b)

Figure 3.5 Two illustrations of the fact that the maps T and G are conjugate.
(a) Both ways of composing maps from upper left to lower right are equal. (b) If
yn � C(xn) implies yn�1 � C(xn�1), then C is a conjugacy between the x-map and
the y-map.

The similar behavior of conjugate maps extends to stretching and shrinking
information. The chain rule says that

C ′(T(x))T ′(x) � G ′(C(x))C ′(x). (3.3)

Now suppose that x is a fixed point for T and C ′(x) � 0. Then T(x) � x implies
that T ′(x) � G ′(C(x)), meaning that the corresponding fixed points x for the
map T and C(x) for the map G have the same derivative, and thus the same
stability. To get the same conclusion for period-two orbits, apply the conjugacy
to T2(x) to get CT(T(x)) � GC(T(x)) � GGC(x). Then apply the chain rule
to the result CT2(x) � G2C(x) to get

C ′(T2(x))(T2) ′(x) � (G2) ′(C(x))C ′(x).

If x is a period-two point for T, and assuming C ′(x) � 0, we have

(T2) ′(x) � (G2) ′(C(x)),

meaning that the stability characteristics of the period-two orbit of T and the
corresponding period-two orbit of G are identical. This fact holds in general for
periodic orbits.
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Theorem 3.11 Let f and g be conjugate maps, that is gC(x) � Cf(x) for all
x. If x is a period-k point for f, then C(x) is a period-k point for g. If also C ′ is never
zero on the periodic orbit of f, then

(gk) ′(C(x)) � (fk) ′(x).

✎ EXERCISE T3 .8
Use the chain rule (1.3) of Chapter 1 to provide a proof of Theorem 3.11.

The content of Theorem 3.11 is that the derivative at the fixed point
x � 2 � 3 of T and C(x) � 3 � 4 of G are identical, as we stated above. These
points are both sources, since G ′(3 � 4) � T ′(2 � 3) � �2. Note that Theorem
3.11 requires the assumption that the derivative C ′ is not zero on the orbit in
question. For example, the theorem does not apply to the other fixed point x � 0
of T and its companion C(0) � 0 of G. The reason is that C ′(0) � 0. The
derivatives T ′(0) � 2 and G ′(0) � 4 disagree. A further application of Theorem
3.11 is the following fact:

All periodic points of the logistic map G are sources.

For any period-k point other than zero, the theorem applies and states that the
magnitude of the derivative of Gk is 2k, the same as the corresponding period-k
point of T. Therefore all period-k points are sources with sensitivity to initial
conditions.

Conjugacies contain a great deal of information. If �x1, . . . , xk� is a periodic
orbit of the logistic map G, its stability is determined by the derivative of Gk

evaluated at x1, which is the product G ′(x1) 
 
 
 G ′(xk), according to the chain
rule. The derivatives of G on [0, 1] range between 0 and 4 (in magnitude)—there
is no a priori reason to expect the product of k of these numbers to have a simple
expression, or to have magnitude greater than one. In fact, the product amounts
to precisely 2k for a period-k orbit.

Finding a conjugacy between a map under study and an easier map is a
useful trick. Unfortunately, it is not always possible to find such a conjugacy. For
the family ga(x) � ax(1 � x), no useful conjugacy exists for most values of the
parameter a.

Remark 3.12 There is one more fact (already used in Chapter 1) that is
a consequence of conjugacy. Because of the one-to-one correspondence C from
[0, 1] to itself, there is a direct correspondence between the itinerary subintervals
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of Figure 3.2 (for the tent map) and Figure 1.12 of Chapter 1 (for the logistic map).
The logistic map subintervals are exactly the images of the tent map subintervals
under the transformation C. If the tent map subintervals are placed along the
x-axis of Figure 3.4, vertical lines are drawn to the curve C and then extended
horizontally to the y-axis, the logistic map subintervals will be produced.

The length of each tent map subinterval of level k (represented by a se-
quence S1 . . . Sk of R’s and L’s) is 2�k. If one of these subintervals is denoted by
[x1, x2], then the length of [C(x1), C(x2)] is

C(x2) � C(x1) �

∫ x2

x1

C ′(x) dx �

∫ x2

x1

�

2
sin �x dx

�
�

2

∫ x2

x1

dx �
�

2
(x2 � x1) �

�

2k�1 . (3.4)

This establishes the upper bound �� 2k�1 for the level-k subintervals of the logistic
map G.

To finish this section, we’ll use the tools we developed in this chapter to
compute the Lyapunov exponent of orbits of the logistic map G. In particular,
we’ll further exploit the correspondence between orbits of the logistic map and
the tent map T.

Consider an orbit �xi� of T that does not contain the point 0. The conjugacy
provides a corresponding orbit C(xi) of the logistic map, as pictured in Figure 3.5.
We’ll use the chain rule (3.3) to get information about the derivatives G ′(C(xi)),
and then find the Lyapunov exponent. Equation (3.3) implies that

T ′(xk) 
 
 
 T ′(x2)T ′(x1)

�
G ′(C(xk))C ′(xk)

C ′(xk�1)

 
 


G ′(C(x2))C ′(x2)
C ′(x3)

G ′(C(x1))C ′(x1)
C ′(x2)

� G ′(C(xk)) 
 
 
 G ′(C(x1))
C ′(x1)

C ′(xk�1)
. (3.5)

Then

ln |T ′(xk) 
 
 
 T ′(x1)| �

k∑
i�1

ln |T ′(xi)|

� ln |C ′(x1)| � ln |C ′(xk�1)| �

k∑
i�1

ln |G ′(C(xi))|.

Now we need to divide by k and take the limit. Note that lnC ′(x1)� k → 0 as k → �

since the numerator is constant. Suppose that for the orbit we’re considering, the
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condition

ln |C ′(xk�1)|
k

→ 0 as k → � (3.6)

is satisfied. Under this condition,

lim
k→�

1
k

k∑
i�1

ln |T ′(xi)| � lim
k→�

1
k

k∑
i�1

ln |G ′(C(xi))|,

so that the Lyapunov exponents of the corresponding orbits of T and G are
identical.

Condition (3.6) holds, in particular, if the orbit of x never has the sequence
LL in its symbol sequence. For then the orbit never enters the intervals [0, 1 � 4]
or [7 � 8, 1]. Since C ′(x) � (�� 2) sin �x, we have

�

2
sin

7�

8
� |C ′(x)| �

�

2

for any x in the orbit of x1 under T. The natural log of the left-hand side is
therefore a lower bound (away from ��) for ln |C ′(xk�1)|, and condition (3.6) is
satisfied.

More generally, if the orbit of T never has a sequence of m consecutive
L’s in its symbol sequence, then the orbit never enters the intervals [0, 2�m] or
[1 � 2�m�1, 1], and the Lyapunov exponent of the corresponding orbit of G will
be again ln 2.

In order to prove that many orbits of G are not periodic or eventually
periodic, we use the fact that the set of eventually periodic orbits of G is a
“countable” set, while the set of all orbits of G is an uncountable set. Readers
unfamiliar with these concepts may want to consult the first section of Chapter
4, where the concept of countability is developed.

Theorem 3.13 The logistic map G has chaotic orbits.

Proof: Through the conjugacy with T, we can determine the periodic
points of G; this set is countable. We showed above that all periodic points of
G are sources, and therefore no orbits besides periodic orbits—and eventually
periodic orbits, another countable set—can be asymptotically periodic. Then any
orbit whose corresponding symbol sequence is not eventually periodic, and which
never contains the sequence LL, has Lyapunov exponent ln 2 and is chaotic. �

How does what we have proved correspond with what we observe on a
computer screen? Suppose we begin with a typical number between 0 and 1, and
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Figure 3.6 The logistic map.
One hundred iterates are plotted on the x-axis; their images are plotted on the
vertical axis.

compute the resulting orbit of G. If you try this, you will see the iterates fill up
the unit interval. Figure 3.6 shows the first 100 iterates of a typical orbit.

We have developed enough mathematics by now to actually prove that
there is a chaotic orbit that travels throughout the entire unit interval. The
chaotic orbits of the proof, for example, never enter the intervals [0, 1 � 4] or
[7 � 8, 1]. With just a little extra work we can exhibit an orbit that visits every
neighborhood, no matter how small, of the unit interval [0, 1].

There is a term for a subset A, such as an orbit, that visits every vicinity of
a set B. We make the following definition.

Definition 3.14 Let A be a subset of B. The set A is dense in B if
arbitrarily close to each point in B there is a point of A. In other words, for each
point x in B and each � � 0, the neighborhood N�(x) contains a point in A.

The set of rational numbers is dense in the set of real numbers. To see this,
let x be any real number. We assume that x is a number between 0 and 1, and leave
the general case to the reader. For a given � � 0, choose n sufficiently large that
10�n � �. Let a1, a2, . . . , an be the first n digits of x. Then |x � .a1a2 . . . an| � �.
The rational number .a1a2 . . . an is in N�(x).

Orbits are countable by their nature, since the points are in one-to-one
correspondence with the natural numbers. Suppose we plot an orbit on a computer
screen, and observe it filling up the interval [0, 1]. Of course, speaking precisely,
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it is impossible for one orbit to be the entire interval—the orbit is countable
and the interval is uncountable. But an orbit that leaves no gap unfilled in the
interval, that eventually comes arbitrarily close to every point of the interval, is
an orbit that comes as close as is possible to filling up the interval. Such an orbit
is dense in the interval. Can we find a dense chaotic orbit for the logistic map G
in [0, 1]?

Consider the candidate orbit whose itinerary begins with R and L, followed
by all possible pairs of R, L, followed by all triples of R, L, and so on:

R L RR RL LR LL RRR RRL . . .

This orbit is not eventually periodic. If it were, its itinerary would be eventually
periodic. Furthermore, given any interval of length 2�n represented by a symbol
sequence of n symbols, the orbit, after a sufficient wait, enters that interval. This
is a dense orbit.

Now check the Lyapunov exponent of this dense orbit. If it is positive,
the orbit is a chaotic orbit that is dense in the unit interval. A little checking
verifies that no sequence of m consecutive L’s occurs before the 2mth symbol of
the sequence. Therefore xk does not visit [0, 2�m] or [1 � 2�m�1, 1] until k � 2m.
If m is a positive integer, then for k � 2m,

�

2
sin

�

2m�1 � |C ′(xk)| �
�

2
.

Taking logs and dividing by k preserves the directions of the inequality. For k � 2m

we have

ln �
2 � ln sin �

2m�1

2m �
ln |C ′(xk)|

k
�

ln �
2

k
.

As k → �, both the far left and far right quantities approach zero (use L’Hospital’s
rule for the left side). Thus condition (3.6) is satisfied, and the Lyapunov exponent
of the orbit is ln 2.

We have shown that this orbit is not eventually periodic. It is not asymp-
totically periodic because G has no periodic sinks. Since the Lyapunov exponent
of the orbit is ln 2 � 0, it is a dense chaotic orbit.

EXAM PLE 3 .15

While on the subject of conjugacy, there is another example that we have
been using implicitly all along. We will demonstrate using the tent map T. If
S0S1S2 
 
 
 is the itinerary of an initial condition x1, then S1S2S3 
 
 
 is the itinerary
of T(x1). Because of this, we can define a map on the set of symbol sequences
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[0,1] [0,1]T

CC
s

S S 

CC

xn+1=T(xn)

LRRRLR... RRRLR...

(a) (b)

Figure 3.7 Tent map conjugacy.
The map T is conjugate to the shift map on the two symbols L and R. (a) The
conjugacy betwen T and the shift s. (b) Schematic view of the action of the
conjugacy map C.

whose dynamical properties mirror those of T. The translation between them can
be thought of as a conjugacy.

Definition 3.16 The set S of all infinite itineraries of a map is called the
symbol space for the map. The shift map s is defined on the symbol space S as
follows:

s(S0S1S2 . . .) � S1S2S3 . . . .

The shift map chops the leftmost symbol, which is the analogue on the itinerary
of iterating the map on the point.

Figure 3.7 is an analogue of Figure 3.5, but for the conjugacy of the tent
map with the shift map. The conjugacy C moves a point in [0, 1] to its itinerary.
An orbit of T in [0, 1] has a corresponding “orbit” in symbol space where the
dynamics consist of chopping off one symbol from the left end of the infinite
sequence each iterate.

3 .4 T R A N S I T I O N G R A P H S A N D F I X E D PO I N T S
Imagine that a 12-inch plastic ruler is melted and stretched lengthwise, beyond
its true length, and then laid down to completely cover a true 12-inch ruler. We’ll
allow the stretched ruler to be laid in the same orientation as the true ruler, or
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in the reversed orientation. In either case there must be a real number between
0 and 12 for which the rulers line up exactly. This fact is expressed in Theorem
3.17.

Theorem 3.17 [Fixed-Point Theorem] Let f be a continuous map of the real
line, and let I � [a, b] be an interval such that f(I) � I. Then f has a fixed point in I.

Proof: Since f(I) contains numbers as large as b and as small as a, there
is a point in I for which the function f(x) � x 	 0, and a point in I for which
f(x) � x � 0. By the Intermediate Value Theorem, there is a point c in I such
that f(c) � c � 0. �

This Fixed-Point Theorem says that if the image of an interval I covers the
interval I itself, then I contains a fixed point. Since periodic points of a map are
fixed points of higher iterates of the map, the same theorem can be exploited
to prove the existence of periodic points. Assume that I1, . . . , In are closed
intervals, and that f(I1) � I2, f(I2) � I3, . . . , f(In�1) � In, and that f(In) � I1.
In that case we can conclude that fn(I1) � I1, and that fn has a fixed point in I1.
It corresponds to a periodic orbit of f (of period n or possibly less), that moves
through the intervals Ii in succession before returning to I1.

Our goal in this section is to use this theorem in conjunction with the
itineraries developed in the previous section to establish the existence of large
quantities of periodic orbits. Recall the definition of transition graphs in Chapter
1. We begin with a partition of the interval I of interest, which is a collection of

x

y

a b

a

b

Figure 3.8 The content of Theorem 3.17:
If a function f maps the interval [a, b] across itself, as in the picture, then f must
have a fixed point in that interval.
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subintervals that are pairwise disjoint except at the endpoints, whose union is I.
The arrows in a transition graph are drawn subject to the following rule.

COVER IN G R ULE FO R TRAN SIT IO N G RAPH S

An arrow is drawn from A to B in a transition graph if and only if the
image f(A) contains the subinterval B.

Figure 3.2(a) shows a transition graph for the tent map. The set �L, R� is an
example of a partition of the unit interval.

The covering rule has a very interesting consequence for paths in the graph
that are allowed by the arrows. First note that set containment is preserved by
a map. That is, if A 	 B, then f(A) 	 f(B). The covering rule means that if
A → B → C is an allowed path in the transition graph, then f(A) 
 B and
f(B) 
 C. Since f2(A) 
 f(B), it follows that f2(A) covers C. More generally, if
the sequence S1 . . . Sk�1 is an allowable path, then fk(S1) 
 Sk�1.

Now we can see how Theorem 3.17, the Fixed-Point Theorem, can be
used to establish the existence of periodic orbits. Assume that �S1, . . . , Sn� is a
partition. If the transition graph of f allows a sequence of symbols that returns to
the same symbol, such as S1 . . . SkS1, then fk(S1) � S1, so that fk has a fixed point
lying in S1. Of course, the periodic orbit we have found may not be a period-k
orbit of f—its period could be an integer that divides evenly into k. We can sum
this up as a consequence of the Fixed-Point Theorem.

Corollary 3.18 Assume that S1 . . . SkS1 is a path in the transition graph
of a map f . Then the subinterval denoted by S1 
 
 
 SkS1 contains a fixed point
of fk.

For the logistic map G(x) � 4x(1 � x), Corollary 3.18 can be used as another
way to prove the existence of periodic orbits of every period. For example, the
transition graph of G in Chapter 1 shows that there is an orbit with sequence
beginning LRLRRLL. We can immediately conclude that there is a fixed point
of G6 belonging to the subinterval L. What can we say about the corresponding
periodic orbit of G? From what we know so far, it could be an orbit of period 1,
2, 3, or 6. But we know a little more from the itinerary. The orbit cannot be a
fixed point of G; according to the itinerary, it moves between L and R, and the
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only point in both L and R is x � 1 � 2, which does not have this itinerary. If
the corresponding orbit of G were a period-two orbit, then the symbols would be
forced to repeat with period two (for example, as LRLRLRL). So the orbit is not a
period-two orbit of G, nor period-3, by similar reasoning. So there is a period-6
orbit for G in L. An argument of this type can be used to prove the existence of a
periodic orbit for any period.

✎ EXERCISE T3 .9
(a) Find a scheme to provide, for any positive integer n, a sequence
S1 . . . Sn�1 of the symbols L and R such that S1 � Sn�1, and such that
the sequence S1 . . . Sn is not the juxtaposition of identical subsequences of
shorter length. (b) Prove that the logistic map G has a periodic orbit for
each integer period.

✎ EXERCISE T3 .10
Period-three implies all periods! Consider the period-three map of

Chapter 1, shown in Figure 1.14. (a) Find itineraries that obey the transition
graph of the period-three map for any period, which are not periodic for
any lower period. (b) Prove that the period-three map has periodic orbits
for each positive integer period.

Exercise T3.10 applies only to the particular map of the type drawn in
Figure 1.14 of Chapter 1. This is because we verified the transition graph only for
this particular case. However, the fact is that the existence of a period-three orbit
for a continuous map implies the existence of points of every period. An even
more general result, called Sharkovskii’s Theorem, is the subject of Challenge 3
at the end of this chapter.

EXAM PLE 3 .19

Consider the map f graphed in Figure 3.9. The three subintervals I, J, and
K form a partition. The transition graph is shown in Figure 3.9(b). From the
transition graph we can write down some valid symbol sequences. For example,
J, meaning an infinite sequence of the symbol J, is valid according to the figure.
The symbol sequences I and K are not valid. In fact, we can conclude from the
figure that J, IK, KI, and each of the latter two preceded by a finite number of J’s,
are the only valid sequences.
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I J K 

J

K

I

I J

K

(a) (b)

Figure 3.9 Example 3.19.
(a) The subintervals I, J, and K form a partition for the map shown. (b) Transition
graph.

So far we are guaranteed a fixed point (because JJ is a path in the transition
graph) and a period-two orbit (because IKI is legal, and because the corresponding
fixed point of f2 clearly cannot be a fixed point of f).

✎ EXERCISE T3 .11
(a) Prove that f in Figure 3.9(a) has a fixed point and no other periodic
points whose period is an odd number. (b) Prove that every periodic orbit
has period 1 or 2. Where are they?

EXAM PLE 3 .20

Consider the map f graphed in Figure 3.10(a). There are four subintervals
I, J, K, and L that form a partition. The transition graph is shown in Figure 3.10(b).
This time, notice that the sequence JKLJ is possible so the map f has a period-three
orbit. Note also that JKL . . . LJ is possible. This implies that f has periodic orbits
of all periods.

✎ EXERCISE T3 .12
List all periodic sequences for periodic orbits of f in Figure 3.10 of period
less than or equal to 5. Note: JKL and KLJ are not distinct since they
represent the same orbit.
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I J K L

I

J

K

L

I J

KL

(a) (b)

Figure 3.10 A map with a four-piece partition.
(a) The subintervals I, J, K, L form a covering partition for the map shown. (b) Tran-
sition graph for I, J, K, L.

3 .5 B A S I N S O F AT T R A C T I O N
The concept of “stable manifold” was introduced in Chapter 2 to refer to the set
of points whose forward orbits converge to a fixed or periodic point. In this section
we investigate more closely the set of points whose orbits converge to an attracting
fixed point or periodic point, called the “basin of attraction” or just “basin” of the
sink, and prove a useful theorem about attractors for one-dimensional maps.

Definition 3.21 Let f be a map on �n and let p be an attracting fixed
point or periodic point for f. The basin of attraction of p, or just basin of p, is
the set of points x such that | fk(x) � fk(p) |→ 0, as k → �.

EXAM PLE 3 .22

For the map f(x) � ax on �1 with |a| � 1, zero is a fixed point sink whose
basin is the entire real line. More generally, if f is a linear map on �n whose matrix
representation has distinct eigenvalues that are less than one in magnitude, then
the origin is a fixed sink whose basin is �n.

Theorem 3.23 is useful for finding basins for sinks of some simple maps
on �1.

Theorem 3.23 Let f be a continuous map on �1.
(1) If f(b) � b and x � f(x) � b for all x in [a, b), then fk(a) → b.
(2) If f(b) � b and b � f(x) � x for all x in (b, c], then fk(c) → b.
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a b c
a

b

c

Figure 3.11 Illustration of Theorem 3.23.
The sink shown at x � b attracts all initial values in the interval [a, c].

The content of this theorem is expressed in Figure 3.11, which shows the
graph of a map f on �1. Part (1) of the theorem says that the basin of b contains
all initial values to the left of b, and part (2) says it contains all initial values to
the right of b.

Proof: We establish (1), and leave (2) to the reader. Let x0 � a, xi�1 �

f(xi) for i 	 0. If x � [a, b), then f(x) � [a, b). In fact, a � x � f(x) � b. Thus all
xi � [a, b). Further, the xi are strictly increasing and bounded above by b. Since
increasing bounded sequences must converge, xi → x� for some x� � [a, b]. Taking
limits, we have

x� � lim
i→�

xi�1 � lim
i→�

f(xi) � f(x�),

by the continuity of f . Since b is the only fixed point in [a, b], x� � b.

EXAM PLE 3 .24

Consider the map f(x) � (4 � �) arctan x on �1. See Figure 3.12. This map
has three fixed points: �1, 0, 1. Using Theorem 1.9 of Chapter 1, it is easy to
check that �1 and 1 are sinks, and that 0 is a source. It follows from Theorem
3.23 that the basin of the fixed point 1 is the set of all positive numbers. The
basin of 1 is colored gray in Figure 3.12. Likewise, the basin of �1 is the set of all
negative numbers, and is shown in black.
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x

y

1

1

-1

-1

Figure 3.12 The map y � f (x) � (4� �) arctan x.
The basin of the sink �1 is shown in black, and the basin of 1 is in gray.

EXAM PLE 3 .25

Consider the logistic map f(x) � ax(1 � x), shown in Figure 1.5 of Chap-
ter 1. If 0 � a � 1, there is a single attracting fixed point x � 0. Theorem 3.23
says that the interval ((a � 1)� a, 1] lies in the basin of x � 0. From graphical
representation of orbits, it is clear that in addition, the interval [1, 1 � a) is con-
tained in the basin of 0. It is also clear that the intervals (��, (a � 1)� a) and
(1 � a, �) consist of initial conditions that diverge to infinity. We could say that
these points belong to the “basin of infinity”.

If 1 � a � 2, the sink has moved to the right from 0 to (a � 1)� a. Theorem
3.23 and some graphical analysis implies that the basin of the sink (a � 1)� a is
(0, 1).

EXAM PLE 3 .26

Consider the map of the plane defined by

f(r, �) � (r2, � � sin �),

where r 	 0 and 0 � � � 2� are polar coordinates. There are three fixed points
(the origin, (r, �) � (1, 0) and (1, �)). The origin and infinity are attractors. Ev-
ery initial condition inside the unit circle tends toward the origin upon iteration,
and every point outside the unit circle tends toward infinity. The basins of these
two attractors are shown in gray and white, respectively, in Figure 3.13.

The dynamics on the dividing circle are also rather tame; there is a fixed
point at (r, �) � (1, 0) to which all points on the circle tend, except for the fixed
point (r, �) � (1, �). The basin boundary itself is unstable, in the sense that
points near it are repelled, except for points precisely on the boundary.
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x

y

Figure 3.13 The map of Example 3.26.
The gray region is the basin of the origin. The white region is the basin of infinity.

One of the most interesting features of nonlinear maps is their ability to
have more than one attractor. The arctan map of Example 3.24 has coexisting
sinks. However, the diagram of attractors of the logistic family of maps in Figure
1.6 of Chapter 1 appears not to have coexisting attractors—for each value of the
parameter a, only one attractor is visible. This section is devoted to proving that
this observation is correct. It is useful to introduce the Schwarzian derivative for
this purpose. Theorem 3.29 states that maps like the logistic map, with negative
Schwarzian and finite basins, can have at most one attracting periodic orbit. The
remainder of this section pertains only to one-dimensional maps.

Definition 3.27 Let f be a smooth map on �1. The Schwarzian deriva-
tive of f is defined by

S(f)(x) �
f ′′′(x)
f ′(x)

�
3
2

(
f ′′(x)
f ′(x)

)2

.

We will say that a map has negative Schwarzian if S(f)(x) is negative whenever
f ′(x) � 0.

EXAM PLE 3 .28

Check that g(x) � ax(1 � x) has Schwarzian derivative

S(g)(x) � �
3
2

(
�2a

a � 2ax

)2

,

and therefore has negative Schwarzian.
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✎ EXERCISE T3 .13
Show that if f and g have negative Schwarzian, then f ◦ g has negative
Schwarzian. Therefore if f has negative Schwarzian, so does each iterate f k

of f .

In the following theorem, we say that a fixed point or periodic point p has
an “infinite basin” if the basin of p contains an interval of infinite length. Recall
that a “critical point” of a map f is a point c such that f ′(c) � 0.

Theorem 3.29 If the map f on �1 has negative Schwarzian, and if p is a fixed
point or a periodic point for f, then either:

1. p has an infinite basin; or
2. there is a critical point of f in the basin of p; or
3. p is a source.

Proof: We will assume that p is not a source nor a sink with an infinite
basin, and prove that there is a critical point c of f in the basin of p.

First consider the simpler case f(p) � p, f ′(p) 	 0. If p is itself a critical
point of f , then we are done. Otherwise, 0 � f ′(p) � 1, since p is not a source.
Note that f ′(x) cannot be constant in a neighborhood of p, since on that interval
f ′′ � f ′′′ � 0 would imply S(f) � 0.

It is clear from Theorem 3.23 that since p does not have an infinite basin, we
can conclude that either f has a critical point in the basin of p, in which case we are
done, or there exists an interval (a,b) in the basin containing p such that f ′(a) 	 1
and f ′(b) 	 1. Since f ′(p) � 1, there is a local minimum m for f ′ in the basin
of p. Note that f ′′(m) � 0 and f ′′′(m) � 0, so that negative Schwarzian implies
f ′(m) � 0. By the Intermediate Value Theorem there is a number c between p
and m such that f ′(c) � 0. Since the interval (a, b) is contained in the basin of p
and a � c � b, we have found a critical point in the basin of p.

We can now describe the general case, in which p is a periodic point of
period k. Since p is not a source orbit nor a sink orbit with infinite basin for the map
f , the same is true for the fixed point p of the map f2k. Since (f2k) ′(p) � (fk) ′(p)2,
we know that 0 � (f2k) ′(p) � 1. If (f2k) ′(p) � 0, then there is a critical point in
the orbit of p (check this), and therefore in the basin, and we are done. We are
left with the case 0 � (f2k) ′(p) � 1, and we can apply the above argument to f2k,
since by Exercise T3.13, it also has negative Schwarzian. We conclude that f2k

has a critical point in the basin of p, and so f has also.
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Corollary 3.30 The logistic map g(x) � ax(1 � x), where 0 � a � 4,
has at most one periodic sink.

Proof: The map g has negative Schwarzian, so Theorem 3.29 applies. All
orbits that begin outside [0, 1] tend toward ��, so no points in [0, 1] have an
infinite basin. Since the only critical point of g is x � 1 � 2, there can be at most
one attracting periodic orbit. �

We found earlier in this chapter that for a � 4, all periodic orbits are sources.
Here is another way to see that fact, since when a � 4, the orbit with initial value
x � 1 � 2 maps in two iterates to the fixed source 0.
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☞ C H A L L E N G E 3

Sharkovskii’s Theorem

A CONTINUOUS MAP of the unit interval [0, 1] may have one fixed point and
no other periodic orbits (for example, f(x) � x� 2). There may be fixed points,
period-two orbits, and no other periodic orbits (for example, f(x) � 1 � x).
(Recall that f has a point of period p if fp(x) � x and fk(x) � x for 1 � k � p.)

As we saw in Exercise T3.10, however, the existence of a periodic orbit of
period three, in addition to implying sensitive dependence on initial conditions
(Challenge 1, Chapter 1), implied the existence of orbits of all periods. We found
that this fact was a consequence of our symbolic description of itineraries using
transition graphs.

If we follow the logic used in the period-three case a little further, we can
prove a more general theorem about the existence of periodic points for a map
on a one-dimensional interval. For example, although the existence of a period-5
orbit may not imply the existence of a period-3 orbit, it does imply orbits of all
other periods.

Sharkovskii’s Theorem gives a scheme for ordering the natural numbers in
an unusual way so that for each natural number n, the existence of a period-n
point implies the existence of periodic orbits of all the periods higher in the
ordering than n. Here is Sharkovskii’s ordering:

3 � 5 � 7 � 9 � . . . � 2 
 3 � 2 
 5 � . . . � 22 
 3 � 22 
 5 � . . .

. . . � 23 
 3 � 23 
 5 � . . . � 24 
 3 � 24 
 5 � . . . � 23 � 22 � 2 � 1.

Theorem 3.31 Assume that f is a continuous map on an interval and has a
period p orbit. If p � q, then f has a period-q orbit.

Thus, the existence of a period-eight orbit implies the existence of at least
one period-four orbit, at least one period-two orbit, and at least one fixed point.
The existence of a periodic orbit whose period is not a power of two implies the
existence of orbits of all periods that are powers of two. Since three is the “smallest”
natural number in the Sharkovskii ordering, the existence of a period-three orbit
implies the existence of all orbits of all other periods.

The simplest fact expressed by this ordering is that if f has a period-two
orbit, then f has a period-one orbit. We will run through the reason for this fact, as
it will be the prototype for the arguments needed to prove Sharkovskii’s Theorem.
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Let x1 and x2 � f(x1) be the two points of the period-two orbit. Since f(x1) � x2

and f(x2) � x1, the continuity of f implies that the set f([x1, x2]) contains [x1, x2].
(Sketch a rough graph of f to confirm this.) By Theorem 3.17, the map f has a
fixed point in [x1, x2].

The proof of Sharkovskii’s theorem follows in outline form. We adopt the
general line of reasoning of (Block et al.; 1979). In each part, you are expected to
fill in an explanation. Your goal is to prove as many of the propositions as possible.

Assume f has a period p orbit for p 	 3. This means that there is an x1

such that fn(x1) � x1 holds for n � p but not for any other n smaller than p.
Let x1 � 
 
 
 � xp be the periodic orbit points. Then f(x1) is one of the xi,
but we do not know which one. We only know that the map f permutes the
xi. In turn, the xi divide the interval [a, b] � [x1, xp] into p � 1 subintervals
[x1, x2], [x2, x3], . . . , [xp�1, xp]. Note that the image of each of these subintervals
contains others of the subintervals. We can form a transition graph with these
p � 1 subintervals, and form itineraries using p � 1 symbols.

Let A1 be the rightmost subinterval whose left endpoint maps to the right
of itself. Then f(A1) contains A1 (see Figure 3.14 for an illustration of the p � 9
case).

Step 1 Recall that the image of an interval under a continuous map is an
interval. Use the fact that A � B ⇒ f(A) � f(B) to show that

A1 � f(A1) � f2(A1) � . . . .

(We will say that the subintervals A1, f(A1), f2(A1), . . . form an increasing
“chain” of subintervals.)

Step 2 Show that the number of orbit points xi lying in f j(A1) is stictly
increasing with j until all p points are contained in fk(A1) for a certain k. Explain
why fk(A1) contains [x1, xp]. Use the important facts that the endpoints of each

x1 x9A1

Figure 3.14 Definition of A1.
A1 is chosen to be the rightmost subinterval whose left-hand endpoint maps to the
right under f .
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subinterval are obliged to map to the subinterval endpoints from the partition,
and that each endpoint must traverse the entire period-p orbit under f .

As a consequence of Step 2, the endpoints of A1 cannot simply map among
themselves under f—there must be a new orbit point included in f(A1), since
p � 2. So at least one endpoint maps away from the boundary of A1, implying
that f(A1) contains not only A1 but another subinterval, which we could call A2.

Step 3 Prove that either (1) there is another subinterval (besides A1)
whose image contains A1, or (2) p is even and f has a period-two orbit. [Hints:
By definition of period, there are no periodic orbits of period less than p among
the xi. Therefore, if p is odd, the xi on the “odd” side of A1 cannot map entirely
amongst themselves, and cannot simply exchange points with the “even” side of
A1 for arithmetic reasons. So for some subinterval other than A1, one endpoint
must be mapped to the odd side of A1 and the other to the even side. If p is even,
the same argument shows that either there is another subinterval whose image
contains A1, or else the xi on the left of A1 map entirely to the xi on the right of
A1, and vice versa. In this case the interval consisting of all points to the left of
A1 maps to itself under f2.]

Step 4 Prove that either (1) f has a periodic orbit of period p � 2 in
[x1, xp], (2) p is even and f has a period-two orbit, or (3) k � p � 2. Alternative
(3) means that f(A1) contains A1 and one other interval from the partition called
A2, f2(A1) contains those two and precisely one more interval called A3, and so
on. [Hint: If k � p � 3, use Step 3 and the Fixed-Point Theorem (Theorem 3.17)
to show that there is a length p � 2 orbit beginning in A1.]

Now assume that p is the smallest odd period greater than one for which f
has a periodic orbit. Steps 5 and 6 treat the concrete example case p � 9.

Step 5 Show that the endpoints of subintervals A1, . . . , A8 map as in
Figure 3.15, or as its mirror image. Conclude that A1 � f(A8), and that the
transition graph is as shown in Figure 3.16 for the itineraries of f . In particular,
A8 maps over Ai for all odd i.

Step 6 Using symbol sequences constructed from Figure 3.16, prove the
existence of periodic points of the following periods:

(a) Even numbers less than 9;
(b) All numbers greater than 9;
(c) Period 1.

This proves Sharkovskii’s Theorem for maps where 9 is the smallest odd period.
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A1 A2 A4 A6 A8A3A5A7

Figure 3.15 A map with a period-nine orbit and no period-three, -five, or
-seven orbits.
It must map subintervals as shown, or as the mirror image of this picture.

Step 7 In Steps 5 and 6, we assumed that the smallest odd period was 9.
Explain how to generalize the proof from 9 to any odd number greater than 1.
Note that Step 4 is not required for the p � 3 case.

Step 8 Prove that if f has a periodic orbit of even period, then f has a
periodic orbit of period-two. [Hint: Let p be the smallest even period of f . Either
Step 3 gives a period-two orbit immediately, or Step 4 applies, in which case Steps
5 and 6 can be redone with p even to get a period-two orbit.]

A1

A2

A3

A4

A5

A6

A7

A8

Figure 3.16 Transition graph for period-nine map.
The existence of orbits of periods 1, 2, 4, 6, 8, and all numbers greater than 9 is
implied by this graph.
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Step 9 Let k be a positive integer and let f be any map such that f2k
has

a period r point x. Prove that x is a period 2jr point of f for some 0 � j � k.
Moreover, prove that if r is an even number, then j � k. (As always, by period we
mean minimum period.)

Step 10 Prove that if f has a periodic orbit of period 2k, then f has periodic
orbits of periods 2k�1, . . . , 4, 2, 1. (Since f2k�2

has a period-four point, it has a
period-two point, by Step 8. Ascertain the period of this orbit as an orbit of f .)

Step 11 Assume p � 2kq is the leftmost number on the list for which f
has a period-p point, where q is an odd number greater than 1. The integers to
the right of p in Sharkovskii’s ordering are either powers of 2 or are of form 2kr,
where r is either an even number or a number greater than q. Since f2k

has a
period-q orbit, Step 7 implies that f2k

has orbits of this form. Use Step 9 to check
that these orbits are orbits of f of period 2kr. Use these periodic orbits and Step
10 to complete the proof of Sharkovskii’s Theorem.
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EXERCISES

3.1. Let fa(x) � a � x2, where a is a constant.

(a) Find a value a1 of the parameter a for which fa has exactly one fixed point.

(b) Describe the limit of all orbits of fa for a � a1.

(c) The map fa has an attracting fixed point for a in the open interval (a1, a2).
Find a2.

(d) The map fa has an attracting period-two point for a in the open interval
(a2, a3). Find a3.

(e) Describe the dynamics of fa for a � 2.

3.2. Decide on a partition for the map f(x) � 2x (mod 1) on [0, 1], and draw its transition
graph and schematic itineraries as in Figure 3.2(a)(b). How do they differ from those
for the tent map?

3.3. (a) Find a conjugacy C between G(x) � 4x(1 � x) and g(x) � 2 � x2.

(b) Show that g(x) has chaotic orbits.

3.4. Show that g(x) � 2.5x(1 � x) has no chaotic orbits.

3.5. (a) Sketch a graph of the map f(x) � �2x2 � 8x � 5.

(b) Find a set of two subintervals that form a partition.

(c) Draw the transition graph for f . What are the possible periods for periodic
orbits?

3.6. Repeat the previous exercise with f(x) � 2x(1 � x).

3.7. Let T be the tent map. Prove that the periodic points of T are dense in I.

3.8. Assume that �x1, x2, . . . , x9� is a periodic orbit for a continuous map f on the real
line, with x1 � 
 
 
 � x9. Assume f(xi) � xi�1 if i � 9 and f(x9) � x1.

(a) What periods does Sharkovskii’s Theorem guarantee on the basis of the
period-nine orbit?

(b) Draw the transition graph for this map. Which periods are certain to exist?

3.9. Assume that x1 � x2 � x3 � x4 are points on the real line, and that f is a continuous
map satisfying f(x1) � x2, f(x2) � x4, f(x3) � x1 and f(x4) � x3. For simplicity,
assume that f is monotonic (increasing or decreasing) except possibly at the four
points mentioned.
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(a) Sketch a graph of f .

(b) Draw the transition graph for f .

(c) What periods must exist?

3.10. Assume that x1 � 
 
 
 � x5 are points on the real line, and that f is a continuous
map satisfying f(x1) � x3, f(x2) � x5, f(x3) � x4, f(x4) � x2 and f(x5) � x1. Assume
that f is monotonic (increasing or decreasing) except possibly at the five points
mentioned.

(a) Sketch a graph of f .

(b) Draw the transition graph for f .

(c) What periods must exist?

3.11. Let f be a continuous map from the unit interval onto itself (that is, such that
f([0, 1]) � [0, 1]).

(a) Prove that f must have at least one fixed point.

(b) Prove that f2 must have at least two fixed points. (Hint: Explain why either
f or f2 must have points 0 � x1 � x2 � 1 such that x1 maps to 0 and x2 maps
to 1.)

(c) If in addition 0 and 1 are not fixed points for f , show that f2 must have at
least 3 fixed points.

3.12. Let f(x) � rx(1 � x), r � 2 �
√

5. Show that the Lyapunov exponent of any orbit
that remains in [0, 1] is greater than zero, if it exists.

3.13. Let n be a positive integer, and f(x) � nx (mod 1) on [0, 1]. Which points are
periodic, eventually periodic, and asymptotically periodic? Which orbits of f are
chaotic orbits?

3.14. (From Seth Patinkin) Let I be an interval in the real line and f a continuous
function on I. The goal of this exercise is to prove the following theorem:

Assume there is an initial value whose orbit is dense in I and assume f
has two distinct fixed points. Then there must be a point of period 3.

The following two facts are to be used as help in proving the theorem.
(i) Suppose there is a point a in I such that a � f(a) and there is a b � a in I

such that f(b) � b and there is a k � 1 such that fk(a) � b. Then there is a point of
period 3. (Of course it is possible to reverse the inequalities, f(a) � a � b � f(b),
and b � fk(a), to again get a true statement.)

(ii) Assume there is no period 3 point and that there is some orbit dense in I.
Then there is a unique fixed point c and x � c and f(x) � x always have opposite
signs for every x � c in I. Let A � �x : f(x) � x� and B � �x : f(x) � x�. Use (i) to
show that A and B must each be an interval.
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Discussion: In Chapters 1 and 3 we discussed that implications of having a
period 3 orbit. It implies the existence of periodic orbits of all other periods and
it implies sensitivity to initial data. This exercise provides a partial converse. The
assumption that some orbit is dense in an interval is quite reasonable. It can be
shown that for any piecewise expanding map F (see Chapter 6), the orbit of almost
every initial point is dense in the union of a finite number of intervals, and for some
k the piecewise expanding map Fk has the property that the orbit of almost every
point in dense in an interval. The proof of these results is beyond the scope of this
book. We could choose such an interval to be I and f � Fk to be our function. It
might or might not have two fixed points.

3.15. (Party trick.) (a) A perfect shuffle is performed by dividing a 52-card deck in half,
and interleaving the halves, so that the cards from the top half alternate with the
cards from the bottom half. The top card stays on top, and so it and the bottom
card are fixed by this operation. Show that 8 perfect shuffles return the deck to its
original order. [Hint: Number the original card order from 0 to 51. Then a perfect
shuffle can be expressed as the map

f(n) �

{
2n if 0 � n � 25
2n � 51 if 26 � n � 51

The goal is to show that all integers are fixed points under f8. First show that
f8(n) � 28n � 51k for some integer k, where k may be different for different n.]
Caution: when demonstrating at actual parties, be sure to remove the jokers first!
If the deck consists of 54 cards, then 52 perfect shuffles are required.

(b) If the bottom card 51 is ignored (it is fixed by the map anyway), the
above map is f(x) � 2x (mod 51), where we now consider x to be a real number.
Nonperiodic orbits have Lyapunov number equal to 2, yet every integer point is
periodic with period a divisor of 8. Sharkovskii’s Theorem shows that it is typical for
chaotic maps to contain many periodic orbits. Find all possible periods for periodic
orbits for this map on the interval [0, 51].

3.16. Define the map

f(x) �

{
1 � 3x if 0 � x � 1� 3
�1� 3 � x if 1� 3 � x � 1

Note that x � 0 is a period 4 point. Let I � [0, 1� 3], J � [1� 3, 2� 3] and K �

[2� 3, 1].

(a) Draw the transition graph.

(b) For each periodic orbit of period p � 6, label the points of the orbit as
a1 � a2 � . . . � ap and list the itinerary of a1 and show where each point of
the orbit maps. For example, there is a period two point IJ which is the itinerary
including a1 � a2, where f(a1) � a2, and f(a2) � a1. (In this case, a1 � 1� 6 and
a2 � 1� 2, but you need not list values for the ai in general.)

(c) Show that there is no period 4 orbit with the itinerary IJIJ.
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☞ L A B V I S I T 3

Periodicity and Chaos in a Chemical Reaction

IN ELEMENTARY chemistry classes, a great deal of emphasis is placed on
finding the equilibrium state of a reaction. It turns out that equilibria present only
one facet of possible behavior in a chemical reaction. Periodic oscillations and
even more erratic behaviors are routinely observed in particular systems.

Studies on oscillating reactions originally focused on the Belousov-
Zhabotinskii reaction, in which bromate ions are reduced by malonic acid
in the presence of a catalyst. The mechanism of the reaction is complicated.
More than 20 species can be identified at various stages of the reaction. Experi-
ments on this reaction by a group of researchers at the University of Texas were
conducted in a continuous-flow stirred tank reactor (CSTR), shown schemati-
cally in Figure 3.17. The solution is stirred at 1800 rpm by the impeller. There is
a constant flow in and out of the tank, perfectly balanced so that the total fluid
volume does not change as the reaction proceeds. The feed chemicals are fixed
concentrations of malonic acid, potassium bromate, cerous sulfate, and sulfuric
acid. The flow rate is maintained as a constant throughout the reaction, and the
bromide concentration is measured with electrodes immersed in the reactor. The
output of the experiment is monitored solely through the bromide measurement.

The constant flow rate can be treated as a system parameter, which can be
changed from time to time to look for qualitative changes in system dynamics,
or bifurcations. Figure 3.18 shows several different periodic behaviors of the
bromide concentration, for different settings of the flow rate. The progression
of flow rate values shown here is decreasing in the direction of the arrows and
results in periodic behavior of periods 6, 5, 3, 5, 4, 6, and 5. Each oscillation (an
up and down movement of the bromide concentration) takes around 2 minutes.
Approximately one hour was allowed to pass between changes of the flow rate to
allow the system to settle into its asymptotic behavior.

Roux, J.-C., Simoyi, R.H., Swinney, H.L., “Observation of a strange attractor”. Physica
D 8, 257-266 (1983).
Coffman, K.G., McCormick, W.D., Noszticzius, Z., Simoyi, R.H., Swinney, H.L., “Uni-
versality, multiplicity, and the effect of iron impurities in the Belousov-Zhabotinskii
reaction.” J. Chemical Physics 86, 119-129 (1987).
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Figure 3.17 A schematic diagram of the chemical reactor used for the BZ
reaction.
The volume of the cylindrically symmetric chamber is 33 cc.

Figure 3.18 Periodic oscillations of the bromide concentration.
The horizontal axis is time, and the concentration is graphed vertically. Dots are
shown to mark the period of the oscillation.
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The time series of concentration in Figure 3.18 are quite compelling; cer-
tainly they reflect a periodic state in the chemistry. Chaotic states present a greater
challenge to data analysis. How can we see deterministic structure, if it exists, in a
single time series recording of bromide concentration? A solution to this problem
is illustrated in Figure 3.19. The bromide concentration B(ti) is plotted against
two delayed versions of itself, B(ti � T) and B(ti � 2T), in a 3-D plot. (The time
unit is seconds; T � 8.8 sec.) This type of plot, called a delay coordinate plot,
reveals the characteristic shape of a chaotic attractor. Delay coordinate plots are
discussed in more detail in Chapter 13.

From the plot, a one-dimensional map can be constructed as a Poincaré
return map. Using the plane fragment shown, the horizontal coordinates of suc-
cessive intersections are recorded. If x denotes the bromide concentration at
one intersection, then f(x) is the concentration at the next intersection. The
resulting pairs of points (x, f(x)) are plotted in Figure 3.20. Using standard ap-
proximation techniques, a function f was drawn through the points that best fit
the experimental data.

Figure 3.19 Reconstruction of dynamics from the bromide time series.
The three coordinates are the concentrations at three equally spaced time intervals.
The Poincaré section, shown as a plane, intersects the data essentially in a curve,
which allows a reduction to the one-dimensional map of Figure 3.20.
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Figure 3.20 One-dimensional map reconstructed from the time series.
A spline fit was made to the data points from Poincaré map of Figure 3.19.

The one-dimensional map derived from this process is quite easy to analyze
using the symbol sequences we have discussed in Chapter 3. The interval can be
divided into three subintervals I, II, and III. The effect of one iteration of the map
is shown in Figure 3.21. The subintervals I and II each stretch across subinterval
III, and III stretches across both I and II. The result is a transition graph as in
Figure 3.21. Using Figure 3.21 and Sharkovskii’s Theorem, one can find the set

Figure 3.21 Symbol analysis of the one-dimensional map.
(a) The one-dimensional map fit from the data in Figure 3.20. (b) Schematic
representation of the stretching and folding of the interval on the three subintervals
I, II, and III. (c) Transition graph of the dynamics.
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of periods possessed by periodic orbits of the system: all periods that are an even
number of returns to the Poincaré surface of section shown in Figure 3.19.

An attempt was made to calculate the Lyapunov exponent from the one-
dimensional map of Figure 3.20. It was found that the calculation of this number
was very difficult, in the sense that small changes in the way the function approx-
imation was made had large effects on the Lyapunov exponent that was derived.
A careful estimate turned up 
1 � 0.3 � 0.1.

Partway through the series of experiments by the Texas group, they had an
opportunity to upgrade the laboratory apparatus, significantly improving the con-
trol of the conditions of the reaction. When they restarted the experiments, they
found that the same experimental conditions gave different results. In particular,
the one-dimensional map of Figure 3.20, although still chaotic, had significantly
changed.

A detailed analysis showed that the difference arose not from changes in
equipment but primarily from differences in the malonic acid reagent, which
now came from a new supplier. The group eventually bought malonic acid of
99.5% purity from seven different vendors, and found that each yielded its own
one-dimensional map. Results within any given sample of malonic acid were re-
producible over long periods of time, even with modified experimental apparatus.
Finally, the research group purified the different lots of malonic acid, and again
found identical dynamics independent of the supplier as well as the particular
purification procedure. As a result, there is great confidence in the reproducibility
of the results. One of the several morals of this story is the extreme sensitivity of
the dynamics with respect to system parameters.
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Fractals

A FRACTAL is a complicated geometric figure that, unlike a conventional com-
plicated figure, does not simplify when it is magnified. In the way that Euclidean
geometry has served as a descriptive language for the classical mechanics of mo-
tion, fractal geometry is being used for the patterns produced by chaos. Trajectories
of the two-body problem, for example, consist of conic sections: ellipses, parabo-
las, and hyperbolas. Chaotic attractors, on the other hand, often have features
repeated on many length or time scales.

Scientists know a fractal when they see one, but there is no universally
accepted definition. The term “fractal” was coined in the 1960’s by B. Mandelbrot,
a mathematician at IBM. It is generally acknowledged that fractals have some or
all of the following properties: complicated structure at a wide range of length
scales, repetition of structures at different length scales (self-similarity), and a
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“fractal dimension” that is not an integer. We will exhibit and analyze these
properties for several examples that are generally agreed to be fractals, and in
so doing define fractal dimension. Perhaps the simplest geometric object that
deserves to be called a fractal is a Cantor set.

4 .1 C A N TO R S E T S

EXAM PLE 4 .1

Begin with the unit interval I � [0, 1] and make a new set according
to the following instructions. (See Figure 4.1.) First remove the open interval
(1 � 3, 2 � 3), the middle third of I. The set of points that remain after this first step
will be called K1. The set K1 is the union [0, 1 � 3] � [2 � 3, 1]. In the second step,
remove the middle thirds of the two segments of K1. That is, remove (1 � 9, 2 � 9) �

(7 � 9, 8 � 9) and set K2 � [0, 1 � 9] � [2 � 9, 3 � 9] � [6 � 9, 7 � 9] � [8 � 9, 1] to be what
remains after the first two steps. Delete the middle thirds of the four remaining
segments of K2 to get K3. Repeating this process, the limiting set K � K� is called
the middle-third Cantor set. The set K is the set of points that belong to all of
the Kn.

0 1

0 1

10

0 1

1/3 2/3

1/9 2/9 1/3 2/3 7/9 8/9

.0 .2 

.00 .02 .20 .22 

.022

Figure 4.1 Construction of the middle-third Cantor set.
In step 1, the middle third of the unit interval is removed. In further steps, the
middle third of every remaining subinterval is removed. Here three steps are shown.
The points that are never removed make up the Cantor middle-third set. The set
marked .02 consists of all numbers in the unit interval whose ternary expansion
begins with .02.
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What is the length of the set K? First of all, the set K is contained in Kn

for each n. Just as K1 consists of 2 intervals of length 1 � 3, and K2 consists of
4 intervals of length 1 � 9, in general Kn consists of 2n intervals, each of length
(1 � 3)n, so its total length is (2 � 3)n. Hence K can be “covered” by a collection
Kn of intervals whose total length can be made as small as you like. For example,
K40 has length less than 10�6. Since K� is a subset of all of these sets, we say that
K� has length zero.

Although we doubt anyone disagrees on determining the length of an
interval [a, b], it can be a perplexing task to assign length to every possible set of
points. There is a field of mathematics called measure theory that tries to solve
this problem. We return to the concept of measure in Chapter 6. For now, it is
sufficient to say that there is a definition of zero length, or measure zero, that is
useful in practice.

A set S is said to have measure zero if it can be covered with intervals
whose total length is arbitrarily small. In other words, for each predetermined
� � 0, one can find a countable collection of intervals containing S whose total
length is at most �. The logic is that if the set in question can be viewed as a
subset of sets with ordinary length as small as you want, then the set should be
assigned a length of zero.

The set �1, 2, 3, . . . , 10� has measure zero, since for any predetermined
� � 0, the set can be covered by 10 intervals of length �� 10 centered at the 10
integers. Therefore it has a covering set of length �, for � as small as you want. To
show that the set �1, 2, 3, . . .� of natural numbers has measure zero takes a little
more work. Given the predetermined �, consider the countable set of intervals
of length 2�n� centered at the natural number n. The sum total of the interval
lengths is �, as required. Finally, since the Cantor set K is covered by the set Kn of
length (2 � 3)n, which is arbitrarily small for large enough n, we can say that the
Cantor set K has measure zero.

Although K has no length, it contains many points of the unit interval.
Obviously, 0 and 1 belong to K. Similarly, both endpoints of any deleted middle
third belong to K. After all, they will never end up in the middle third of a
remaining subinterval at any stage of the construction.

Surprisingly, the endpoints make up only an insignificant portion of the
points of K. For example, the number 1 � 4, although never an endpoint of a
subinterval of the construction, belongs to the middle-third Cantor set K. To see
this, it is useful to express the numbers between 0 and 1 in base-3 representation.
If 0 � r � 1, then r can be written

r � a1 � 3�1 � a2 � 3�2 � 
 
 
 � an � 3�n � 
 
 


for numbers ak � 0, 1, or 2. The ak’s are the ternary digits of r.
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To find the base 3 representation of a number r between 0 and 1, proceed
as follows. Multiply r by 3, and take the integer part of the result (which is 0,
1, or 2) as a1. Then take the fractional part and repeat this step to get a2, etc.
For example, the fraction 1 � 3 has a base-3 representation of .1, and 1 � 2 has
a representation of .1, that is, all digits are 1. This is analogous to the binary
representations introduced in Chapter 3.

This representation for r is unique except for numbers r � .a1a2 . . . an with
a finite base-3 representation. By a finite base-3 representation, we mean that the
ternary digit an is nonzero, and 0 � an�1 � an�2 � . . .. Then r is represented by
exactly two base-3 expansions:

r � .a1a2 . . . an � .a1a2 . . . (an � 1)222 . . . . .

The subinterval [1 � 3, 2 � 3) consists of the points whose base-3 representa-
tions satisfy a1 � 1. The number 1 � 3 can be expressed in two ways, as .1 � .02
in base 3. Therefore, the set K1 � [0, 1 � 3] � [2 � 3, 1] consists of all numbers in
[0, 1] that can be represented in base 3 with a1 � 0 or 2. Similarly the set

K2 � [0, 1 � 9] � [2 � 9, 1 � 3] � [2 � 3, 7 � 9] � [8 � 9, 1]

from the second step of the Cantor set construction is a set that consists of all
numbers having representations with a1 and a2 each being either 0 or 2. We can
ask what the analogous property is for Kn, and then ask what property a number
must have if it is simultaneously in all of the Kn, that is, if it is in K�. From this
reasoning follows a simple theorem.

Theorem 4.2 The middle-third Cantor set K consists of all numbers in the
interval [0, 1] that can be represented in base 3 using only the digits 0 and 2.

For example, the base-3 number r � .02 belongs to K. Note that

r � 0 � 3�1 � 2 � 3�2 � 0 � 3�3 � 2 � 3�4 � . . .

�
2
9

(1 � 3�2 � 3�4 � . . .)

�
2
9

(
1

1 � 1 � 9

)
� 1 � 4.

As mentioned above, some numbers have two base-3 representations: for
example, one-third can expressed as either .02 or .1 in ternary expansion. How-
ever, each number in K has exactly one representation that includes no 1’s.
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We have been viewing the real numbers [0, 1] in terms of their base-3
expansions, but each number also has a binary expansion. That is, the number
can be expressed using base-2 arithmetic as an infinite sequence of two symbols,
0 and 1. Therefore Theorem 4.2 shows that there is a one-to-one correspondence
between the set [0, 1] and part of the Cantor set K, which is somewhat surprising
in view of the fact that K has no length. In particular, K is a typical example of
what is called an uncountable set, which we define next.

The idea of putting two sets in a one-to-one correspondence is the basis
of counting. Saying that a particular deck contains 52 cards means that we
can associate the cards with the set of numbers �1, 2, . . . , 52�. Saying that the
correspondence is “one-to-one” means that for each number there is exactly one
card. No cards are counted twice, but all are counted. Another way of expressing
a one-to-one correspondence with the set �1, . . . , 52� is to say that we can make
a list with 52 entries. If there is no finite list containing all elements of the set,
we call the set infinite.

Cantor took this idea of counting a step further. He called a set countably
infinite if it can be put in a one-to-one correspondence with the natural numbers
(positive integers). We will say that a set is countable if it is a finite set or a
countably infinite set. Another way to say this is that a set is countable if its
elements can be put in a finite or infinite list with each element listed exactly
once. We call a set uncountable if it is not countable.

For example, the set of positive even integers is a countable set, as is the
set of squares �1, 4, 9, . . .�. A little more thought shows that the set of (positive
and negative) integers is countable. Moreover, a subset of any countable set is
countable. Thus the set of prime numbers is countable, even though no one knows
an explicit formula for the nth prime number.

✎ EXERCISE T4 .1
(a) Show that the union of two countable sets is countable. (b) Let
S1, S2, S3, . . . be a countable collection of countable sets. Show that the
union of the Si is countable.

The set of rational numbers (fractions m � n between 0 and 1, where m and
n are nonzero integers) is countable. A scheme for counting the rational numbers
in the interval (0, 1] is illustrated in Figure 4.2. Notice that there are repetitions
in the ordering; for example, 1 � 2, 2 � 4, 3 � 6, etc., are all counted separately, so
the figure shows that the rationals are a subset of a countable set, and therefore
countable. Furthermore, once we know that the rationals in (n, n � 1] form
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1/2

1/3 2/3

1/4 2/4 3/4

1/5 2/5 3/5 4/5

1/6 2/6

Figure 4.2 A scheme for counting the rationals.
The set of rational numbers is called countable because they can be put into a single
(infinite) list.

a countable set for each integer n, then the entire set of rational numbers is a
countable union of countable sets, which according to Exercise T4.1 is again a
countable set.

Another example of a countable set is the set of all numbers in the middle-
third Cantor set K having a finite number of ternary digits. Verify that these
numbers are the right-hand endpoints of the removed open intervals of the
Cantor set construction process. The correspondence could go as follows:

Natural number Number in K

1 .2
2 .02
3 .22
4 .002
5 .022
6 .202
7 .222
...

...
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Note that every point in the Cantor set with a terminating ternary expansion is
identified with one of the natural numbers. By analogy, the subset of the Cantor
set consisting of left-hand endpoints is also a countable set. Next we will show
that the entire Cantor set is not a countable set.

✎ EXERCISE T4 .2
Characterize the set of left-hand endpoints of the removed intervals for
the Cantor set in terms of ternary expansions.

Cantor invented a technique for showing that certain sets are uncountable.
A set is uncountable if every attempt to list all the elements must miss some of
the set. We will demonstrate his technique by using it to show that the set K is
uncountable (even though the subset of elements that have a terminating ternary
expansion is countable).

Any list of numbers in K can be written

Integer Number in K�

1 r1 � .a11a12a13 . . .
2 r2 � .a21a22a23 . . .
3 r3 � .a31a32a33 . . .
...

...
n rn � .an1an2an3 . . .
...

...

where each entry aij is a 0 or 2. Define the number r � .b1b2b3 . . . in the following
way. Choose its first digit b1 to be 0 if a11 is 2 and 2 if a11 is 0. In general, choose its
nth digit bn to be a 0 or 2 but different from ann. Notice that the number r we have
defined cannot be in the list—in particular, it can’t be the seventh number on the
list, for the seventh digit b7 does not agree with a77. Every element in the list has
at least one digit that doesn’t match. We know that each element of the Cantor
set has exactly one representation using 0 and 2. We conclude that no single list
can contain all the elements of K. Therefore the middle-third Cantor set is an
uncountable set. With similar reasoning, using the symbols 0 and 1 instead of 0
and 2, we can show that the unit interval [0, 1] is an uncountable set.
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4 .2 P R O B A B I L I S T I C C O N S T R U C T I O N S
O F F R A C TA L S

In the first section we described a deterministic process which produced the
middle-third Cantor set. Next we devise a probabilistic process which reproduces
this set.

EXAM PLE 4 .3

Play the following game. Start with any point in the unit interval [0, 1]
and flip a coin. If the coin comes up heads, move the point two-thirds of the
way towards 1. If tails, move the point two-thirds of the way to 0. Plot the point
that results. Then repeat the process. Flip the coin again and move two-thirds of
the way from the new point to 1 (if heads) or to 0 (if tails). Plot the result and
continue.

Aside from the first few points plotted, the points that are plotted appear to
fill out a middle-third Cantor set. More precisely, the Cantor set is an attractor for
the probabilistic process described, and the points plotted in the game approach
the attractor at an exponential rate.

The reason for this is clear from the following thought experiment. Start
with a homogeneous distribution, or cloud, of points along the interval [0, 1].
The cloud represents all potential initial points. Now consider the two possible
outcomes of flipping the coin. Since there are two equally likely outcomes, it is
fair to imagine half of the points of the cloud, randomly chosen, moving two
thirds of the way to 0, and the other half moving two-thirds of the way to 1. After
this, half of the cloud lies in the left one-third of the unit interval and the other
half lies in the right one-third. After one hypothetical flip of the coin, there are
two clouds of points covering K1 � [0, 1 � 3] � [2 � 3, 1] with a gap in between.

After the second flip, there are four clouds of points filling up K2. Reasoning
in this way, we see that an orbit that is generated randomly by coin flips will stay
within the clouds we have described, and in the limit, approach the middle-third
Cantor set. In fact, the reader should check that after k flips of the coin, the
randomly-generated orbit must lie within 1 � (3k6) of a point of the Cantor set.
Verify further that the Cantor set is invariant under the game: that is, if a point in
the Cantor set is moved two-thirds of the way either to 0 or 1, then the resulting
point is still in the Cantor set.

The game we have described is an example of a more general concept we
call an iterated function system.
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Definition 4.4 An iterated function system on �m is a collection
�f1, . . . , fr� of maps on �m together with positive numbers p1, . . . , pr (to be
treated as probabilities) which add up to one.

Given an iterated function system, an orbit is generated as follows. Begin
with a point in �m, and choose a map from the system with which to iterate the
point. The map is chosen randomly according to the specified probabilities, thus
map fi is chosen with probability pi. Use the randomly chosen map to iterate the
point, and then repeat the process.

For certain kinds of maps fi, the iterated function system will generate a
fractal. For example, assume that each fi is an affine contraction map on �m,
defined to be the sum of a linear contraction and a constant. This means that
fi(v) � Liv � ci where Li is an m � m matrix with eigenvalues smaller than one
in magnitude. Then for almost every initial condition, the orbit generated will
converge exponentially fast to the same bounded set.

Example 4.3 is an iterated function system on �1. Let f1(x) � x� 3 and
f2(x) � (2 � x)� 3, with associated probabilities p1 � p2 � 1 � 2. Check that both
maps are affine contraction maps and have unique sinks at 0 and 1, respectively.

Recently, iterated function systems have proved to be useful tools in data
and image compression. See (Barnsley, 1988) for an introduction to this subject.

➮ C O M P U T E R E X P E R I M E N T 4 . 1

The experiments in this chapter require the ability to plot graphics on a
computer screen or printer. Define an iterated function system by

f1(x, y) � (x� 2, y� 2), f2(x, y) � ((1 � x)� 2, y� 2), f3(x, y) � (x� 2, (1 � y)� 2)

with probabilities p1 � p2 � p3 � 1 � 3. Begin with any point in the unit square
[0, 1] � [0, 1] and use a random number generator or three-headed coin to gen-
erate an orbit. Plot the attractor of the iterated function system. This fractal is
revisited in Exercise 4.9.

EXAM PLE 4 .5

Consider the skinny baker map on �2 shown in Figure 4.3. This map
exhibits the properties of stretching in one direction and shrinking in the other
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Figure 4.3 Definition of the skinny baker map.
(a) The top half maps to the right strip. The bottom half maps to the left strip.
(b) The second and (c) third iterate of the map. In the limit, the invariant set is a
Cantor middle-third set of vertical lines.

that are typical for chaotic two-dimensional maps. The equations of the map are

B(x, y) �

{
( 1

3 x, 2y) if 0 � y � 1
2

( 1
3 x � 2

3 , 2y � 1) if 1
2 � y � 1.

The map is discontinuous, since points (x, y) where y is less than 1 � 2 are mapped
to the left side of the unit square, while points with y greater than 1 � 2 are mapped
to the right. So there are pairs of points on either side of the line y � 1 � 2 that
are arbitrarily close but are mapped at least 1 � 3 unit apart.

After one application of the map, the image of the unit square lies in the
left one-third and right one-third of the square. After two iterations, the image
of the unit square is the union of four strips, as shown in Figure 4.3(b). The set
to which all points of the unit square are eventually attracted is a Cantor set of
line segments. In fact, there is a close relationship between the skinny baker map
and the probabilistic game of Example 4.3. Sending the bottom half of the square
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two-thirds of the way to the left and the top half two-thirds of the way to the
right in the skinny baker map is analogous to the thought experiment described
there.

EXAM PLE 4 .6

The Cantor set construction of Example 4.1 can be altered to create inter-
esting fractals in the plane. Start with a triangle T0 with vertices A, B, and C, as
in Figure 4.4. Delete the middle triangle from T0, where by middle triangle we
mean the one whose vertices are the midpoints of the sides of T0. The new shape
T1 is the union of 3 subtriangles. Repeat the process indefinitely by deleting the
middle triangles of the remaining 3 subtriangles of T1, and so on. The points that
remain make up the Sierpinski gasket.

EXAM PLE 4 .7

As with the Cantor set, there is a probabilistic game that leads to the Sier-
pinski gasket. This game was introduced in Computer Experiment 4.1, although
the triangle differs from Figure 4.4. Let A, B, and C be the vertices of a triangle.
Start with a random point in the plane, and move the point one-half of the
distance to one of the vertices. Choose to move with equal likelihood toward
each of A, B, and C. From the new point, randomly choose one of the vertices
and repeat.

The attractor for this process is the Sierpinski gasket. Initial points asymp-
totically approach the attractor at an exponential rate. Except for the first few
points, the picture is largely independent of the initial point chosen (as it is for
the Cantor set game). This is another example of an iterated function system.
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Figure 4.4 Construction of the Sierpinski gasket.
Start with a triangle, remove the central triangle, and repeat with each remaining
triangle.
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✎ EXERCISE T4 .3
(a) Find the maps f1, f2, f3 to express Example 4.6 as an iterated function
system. Assume that the triangle is equilateral with side-length one. (b) Find
the exponential convergence rate of an orbit to the attractor. That is, if
x0 is a point inside the triangle with vertices A, B, and C, find an upper
limit for the distance from the point xk of the orbit of the iterated function
system to the Sierpinski gasket.

EXAM PLE 4 .8

A similar construction begins with a unit square. Delete a symmetric cross
from the middle, leaving 4 corner squares with side-length 1 � 3, as in Figure 4.5.
Repeat this step with each remaining square, and iterate. The limiting set of this
process is called the Sierpinski carpet.

✎ EXERCISE T4 .4
Repeat Exercise T4.3 using the Sierpinski carpet instead of the gasket. Find
four maps and the exponential convergence rate.

➮ C O M P U T E R E X P E R I M E N T 4 . 2

Plot the Sierpinski gasket and carpet in the plane using the iterated function
systems developed in Exercises 4.3 and 4.4.
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Figure 4.5 Construction of the Sierpinski carpet.
Remove a central cross from the square, and repeat for each remaining square.
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4 .3 F R A C TA L S F R OM D E T E R M I N I S T I C S Y S T E M S

In this section we see how the complexities of the previous abstract examples
occur in familiar maps. One of the most basic maps on the real line is the tent
map, which we studied in Chapter 3. We define a slightly more general version
here. For a � 0, the tent map with slope a is given by

Ta(x) �

{
ax if x � 1 � 2
a(1 � x) if 1 � 2 � x

.

This map is continuous, but not smooth because of the corner at x � 1 � 2.
In the case of the slope-2 tent map (a � 2), the unit interval I � [0, 1] is

mapped onto itself by T2(x). The itineraries and transition graph were developed
in Chapter 3, and it was noted that T2 exhibits sensitive dependence on initial
conditions.

In the case 0 � a � 1, the tent map has a single fixed point at 0, which is
attracting. All initial conditions are attracted to 0. For a � 1, the complement
of I maps to the complement of I. Therefore if a point x is mapped outside of
I, further iterations will not return it to I. For 1 � a � 2, the points of I stay
within I. For a � 2 most of the points of the unit interval eventually leave the
interval on iteration, never to return.

✎ EXERCISE T4 .5
For the tent map, define the set L of all points x in [0, 1] such that f n(x) � 0
for some n. (a) Prove that if f n(x) � 0, then f k(x) � 0 for all k 	 n. (b) Prove
that for any a � 2, the length of L is 1 (the complement of L has measure
zero). (c) Prove that for 0 � a � 2, L � 
, the empty set.

EXAM PLE 4 .9

Consider the particular tent map T3, which is sketched in Figure 4.6. The
slope-3 tent map has dynamical properties that differ from those of the slope-2
tent map and its conjugate, the logistic map. For the slope-3 tent map, the basin
of infinity is interesting. From the graph of T3 in Figure 4.6, it is clear that initial
conditions in the intervals (��, 0) and (1, �) converge to �� upon iteration by
T3. The same is true for initial conditions in (1 � 3, 2 � 3), since that interval maps
into (1, �).
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Figure 4.6 The tent map with slope 3.
The shaded points map out of the unit interval after two or fewer iterations. There
is another region of points (not shown) that maps out after three iterations, and so
on. All points not lying in the middle-third Cantor set are attracted to ��.

Let B be the basin of infinity, the set of points whose orbits diverge
to ��. So far we have noted that B contains (��, 0) � (1, �) as well as
(1 � 3, 2 � 3), since T3(1 � 3, 2 � 3) 	 (1, �). Further, B contains (1 � 9, 2 � 9), since
T2

3(1 � 9, 2 � 9) 	 (1, �). The same goes for (7 � 9, 8 � 9). The pattern that is emerg-
ing here is summarized in the next exercise.

✎ EXERCISE T4 .6

Show that B, the basin of infinity of T3 is the complement in �1 of the
middle-third Cantor set C.

The long-term behavior of points of �1 under T3 can now be completely
understood. The points of B tend to ��. The points of C, the remainder, bounce
around within C in a way that can be described efficiently using the base-3
representation of C.

Up to this point, the examples of this chapter are almost pathologically
well-organized. They are either the result of highly patterned constructions or, in
the case of iterated function systems, achieved by repeated applications of affine
contraction mappings. Sets such as these that repeat patterns on smaller scales
are called self-similar. For example, if we magnify by a factor of three the portion
of the middle-third Cantor set that is in the subinterval [0, 1 � 3], we recover the
entire Cantor set. Next we will see that this type of regularity can develop in
more general nonlinear systems.
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(a) (b)

(c) (d)

Figure 4.7 Self-similarity of the Hénon attractor.
(a) An attracting orbit of (4.1). Parts (b),(c),(d) are successive magni-
fications, showing the striated structure repeated on smaller and smaller
scales. This sequence is zooming in on a fixed point. (a) [�2.5, 2.5] �

[�2.5, 2.5]. (b) [0.78, 0.94] � [0.78, 0.94]. (c) [0.865, 0.895] � [0.865, 0.895]. (d)
[0.881, 0.886] � [0.881, 0.886].

EXAM PLE 4 .10

Figure 4.7(a) depicts an orbit of the Hénon map of the plane

f(x, y) � (1.4 � x2 � 0.3y, x). (4.1)

After ten million iterations, the orbit remains in the region shown but (appar-
ently) does not converge to a periodic orbit. M. Hénon proposed this map as an
example of a dynamical system with a fractal attractor. The orbit of almost any
initial point in this region will converge to this attractor. In Figure 4.7(b)(c)(d),
the attractor is shown on progressively smaller scales.

163



F R AC TA L S

EXAM PLE 4 .11

Often, fractal structure is revealed indirectly, as in the case of basin bound-
aries. Consider, for example, the plane Hénon map with different parameter
values:

f(x, y) � (1.39 � x2 � 0.3y, x). (4.2)

Figure 4.8(a) shows in black all initial conditions in a rectangular region whose
orbits diverge to infinity, that is, the basin of infinity. The orbits of the initial
conditions colored white stay within a bounded region. In Figure 4.8(b)(c) suc-
cessive blow-ups reveal the fractal nature of the boundary between the black and
white regions.

4 .4 F R A C TA L B A S I N B O U N DA R I E S

Figure 2.3 of Chapter 2 shows basins of a period-two sink of the Hénon map. In
part (a) of the figure, the basin boundary is a smooth curve. Part (b) of the figure
shows a much more complicated basin. In fact, the boundary between two basins
for a map of the plane can be far more complicated than a simple curve. In order
to understand how complicated boundaries can develop, we investigate a simple
model.

Consider a square R whose image is an S-shaped configuration, mapping
across itself in three strips, as in Figure 4.9(a). The map also has two attracting
fixed points outside the square, and we might assume that all points in the square
that are mapped outside the square to the left eventually go to the sink A1 on
the left. Similarly, assume all points in this square that are mapped to the right
of the square will eventually go to the sink A2 on the right. We will see that this
innocuous set of assumptions already implies a fractal basin boundary.

In Figure 4.9(b) the vertical strips shaded light grey represent points that
map out of the square to the left in one iterate, while points in the strips shaded
dark grey map out to the right in one iterate. The points in the three strips that are
not shaded stay in the square for one iterate. Each of these strips maps horizontally
across the square and contains two substrips which, on the next iteration, will map
to the left and two that map to the right. We could therefore think of continuing
the shading in this figure so that each white strip contains two light grey vertical
substrips alternating with two dark grey vertical substrips. The white substrips in
between will be further subdivided and points will be shaded or not, depending
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(a)

(b) (c)

Figure 4.8 Self-similarity of the Hénon basin.
The points in white are attracted to the period-two attractor �(1, 0.3), (0.3, 1)�
of (4.2), marked with crosses. The points in black are attracted to infinity
with iteration. (a) The region [�2.5, 2.5] � [�2.5, 2.5]. (b) The subregion
[�1.88, �1.6] � [�0.52, �0.24], which is the box in part (a). (c) The subregion
[�1.88, �1.86] � [�0.52, �0.5], the box in the lower left corner of part (b).
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A2

A1

R

f (R) 

A2

A1

(a) (b)

Figure 4.9 Construction of a fractal basin boundary.
(a) The image of the rectangle R is an S-shaped strip. Points that map outside and
to the left of R are attracted to the sink A1, and points that map outside and to the
right of R are attracted to the sink A2. (b) The shaded regions are mapped out of
the rectangle in one iteration. Each of the three remaining vertical strips will lose
4 shaded substrips on the next iteration, and so on. The points remaining inside
forever form a Cantor set.

on whether the third iterate goes to the left, goes to the right, or stays in the
square.

This analysis implies that the subset of R that remains inside the square for
n iterates consists of 3n vertical strips. Each of these segments has three substrips
that will remain inside R for a total of n � 1 iterates. If we have set up the map
in a reasonable manner, the width of the vertical strips at the nth stage will
shrink geometrically to zero as n tends to infinity. Thus we have a Cantor set
construction; that is, there is a Cantor set of vertical curves whose images will
remain inside R for all future times. Each of these vertical curves stretches from
the top of the square to the bottom, and each point in the union of the curves
has nearby points which go to A1 and nearby points which go to A2. Therefore,
the Cantor set of vertical curves is the boundary between the basin of A1 and the
basin of A2.

EXAM PLE 4 .12

(Julia sets.) We return to the quadratic map, but with a difference: We now
view it as a function of one complex variable. Let Pc(z) � z2 � c, where z is a
complex variable and c � a � bi is a complex constant. Notice that Pc is a planar
map; one complex variable z � x � yi is composed of two real variables, x and y.

Multiplication of two complex numbers follows the rule

(u � vi)(x � yi) � ux � vy � (uy � vx)i
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where i2 � �1. In terms of real variables,

Pc(x � yi) � (x � yi)2 � a � bi � x2 � y2 � a � (2xy � b)i.

We begin by considering the dynamics of this complex map when the
parameter c � 0. Then the map P0(z) � z2 has an attracting fixed point at z � 0
whose basin of attraction is �z : |z| � 1�, the interior of the unit disk. A point on
the unit circle

S � �z : |z| � 1�

maps to another point on the unit circle (the angle is doubled). The orbit of any
point in �z : |z| � 1�, the exterior of the unit disk, diverges to infinity. The circle
S forms the boundary between the basin of z � 0 and basin of infinity. Notice
that points in the invariant set S are not in either basin.

For different settings of the constant c, z � 0 will no longer be a fixed
point. Since we are considering all complex numbers, the equation z2 � c � z
will have roots. Therefore Pc has fixed points. In fact, there is an easy way of
finding all the attracting fixed and periodic points of Pc, due to a theorem of
Fatou: Every attracting cycle for a polynomial map P attracts at least one critical
point of P. Actually, Fatou proved the result for all rational functions (functions
that are quotients of polynomials). Compare this statement with Theorem 3.29
of Chapter 3. Since our function Pc has only one critical point (z � 0), it can
have at most one attracting periodic orbit.

Sometimes Pc has no attractors. Consider, for example, P�i(z) � z2 � i.
Then P2(0) � �1 � i, which is a repelling period-two point. We need look no
further for an attractor.

Recognizing the important role that the orbit of 0 plays in the dynamics of
Pc, we define the Mandelbrot set as follows:

M � �c : 0 is not in the basin of infinity for the map Pc(z) � z2 � c�.

We have seen that c � 0 and c � �i are in the Mandelbrot set. Check that c � 1
is not. Figure 4.10 shows the set in white, where the number c � a � bi is plotted
in the plane as the point (a, b). See Color Plates 11–12 for color versions of the
Mandelbrot set.

For each c in the Mandelbrot set, there are orbits of Pc that remain bounded
and orbits that do not. Therefore, the boundary of the basin of infinity is non-
empty. This boundary is called the Julia set of Pc, after the French mathematician
G. Julia. Technically, the Julia set is defined as the set of repelling fixed and
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1.0

�1.0
�1.5 0.6

Figure 4.10 The Mandelbrot set.
A constant c is colored white if the orbit of z2 � c with initial value 0 does not
diverge to infinity.

periodic points together with the limit points of this set. In the case of polynomials,
however, the two definitions coincide.

In Figure 4.11 we show Julia sets for values of c inside the Mandelbrot set.
For c � �0.17 � 0.78i, there is a period-three sink, whose basin is shown in
Figure 4.11(a). Each point in white is attracted to the period-three sink. The
points in black diverge to infinity. The boundary between these two basins is the
Julia set. This picture shows many “rabbits” and other interesting shapes. The
rabbit at the top of the picture is magnified in part (b). Part (c) shows a Julia set
which is the boundary of the basin of a period-five sink.

The constants c used to make Figures 4.11(a) and (c) lie in distinctive
places in the Mandelbrot set. Each c chosen from the small lobe at the top of the
Mandelbrot set, such as c � �0.17 � 0.78i, creates a white basin of a period-three
attractor, as in Figure 4.11(a). The period-five lobe lies at about 2 o’clock on the
Mandelbrot set; it contains c � 0.38 � 0.32i, whose period-five sink is shown in
Figure 4.11(c). Part (d) of the figure has a period-11 sink. The value of c used
lies in the period-11 lobe, which is almost invisible in Figure 4.10. For more on
Julia sets and the Mandelbrot set, consult (Devaney, 1986), (Devaney and Keen,
1989), or (Peitgen and Richter, 1986).
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1.5

�1.5
�1.5 1.5

(a)

1.09

0.89
�0.19 0.01

(b)

1.3

�1.3
�1.3 1.3

(c)

1.3

�1.3
�1.3 1.3

(d)

Figure 4.11 Julia sets for the map f (z) � z2 
 c.
(a) The constant is set at c � �0.17 � 0.78i. The white points are the basin of
a period-three sink, marked with crosses, while the black points are the basin of
infinity. The fractal basin boundary between black and white is the Julia set. (b) The
uppermost rabbit of (a) is magnified by a factor of 15. (c) c � 0.38 � 0.32i. The white
points are the basin of a period-five sink, marked with crosses. (d) c � 0.32 � 0.043i.
The white points are the basin of a period-11 sink.
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➮ C O M P U T E R E X P E R I M E N T 4 . 3

Draw the Julia set for f(z) � z2 � c with c � 0.29 � 0.54i. Plot the basin
of infinity in black. Divide the square [�1.3, 1.3] � [�1.3, 1.3] into an N � N
grid for N � 100. For each of the N2 small boxes, iterate f(z) using the center
of the box as initial value. Plot a black point at the box (or better, fill in the
box) if the iteration diverges to infinity; plot a different color if the iteration stays
bounded. Your picture should bear some resemblance to the examples in Figure
4.11. What is the bounded attracting periodic sink for this Julia set? Locate c in
the Mandelbrot set. Increase N for better resolution. Further work: Can you find
a constant c such that f(z) � z2 � c has a period-six sink?

EXAM PLE 4 .13

(Riddled basins.) In the examples we have studied so far, a basin of attraction
is an open set. In particular, it contains entire disk neighborhoods. In this example,
each disk, no matter how small, contains a nonzero area of points whose orbits
move to different attractors. A basin that is shot through with holes in this sense
is called a riddled basin.

Define the map

f(z) � z2 � (1 � ai)z, (4.3)

where z � x � iy is a complex variable, and z � x � iy denotes the complex
conjugate of z. The number a is a parameter that we will specify later. The map
can be rewritten in terms of the real and imaginary parts, as

f(x, y) � (x2 � y2 � x � ay, 2xy � ax � y).

The line N1 � �z � x � iy : y � a� 2� is invariant under f , meaning that
any point on that line maps back on the line:

f(x � ia� 2) � (x � ia� 2)2 � (1 � ai)(x � ia� 2)

� x2 � 3a2 � 4 � x � i(a� 2). (4.4)

If we consider the map restricted to that line, the above formula shows that it is
the one-dimensional quadratic map, g(x) � x2 � x � 3a2 � 4.

170



4 . 4 F R AC TA L B A S I N B O U N DA R I E S

✎ EXERCISE T4 .7

Show that the one-dimensional map g(x) � x2 � x � 3a2 � 4 is conjugate to
the map h(w) � w2 � c, where the constant c � 3(1 � a2) � 4.

Define the lines N2 and N3 to be the result of rotating N1 clockwise through
120◦ and 240◦, respectively. It can be checked that the map on N2 is the same
as the map on N1, except that the images lie on N3, and vice versa for the map
on N3. Thus N2 and N3 map to one another with quadratic one-dimensional
dynamics. The second iterate f2 on N2 is exactly g2, and the same for N3.

In Figure 4.12 the three lines are shown in white along with three basins of
attraction, for a particular parameter value a � 1.0287137 . . ., which is a value of
a such that c satisfies the equality c3 � 2c2 � 2c � 2 � 0. This value is chosen so
that the quadratic map h(w) � w2 � c, to which g is conjugate, has the property
that h3(0) is a fixed point. The reason for requiring this is hard to explain for now,

Figure 4.12 The riddled basin.
There are three attractors in the shaded region. Any disk of nonzero radius in this
region, no matter how small, contains points from all 3 basins. Color Plate 2 is a
color version of this figure.
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but we will see in Chapter 6 that when the critical point maps in three iterates to
a fixed point for a one-dimensional map, a continuous natural measure is created,
which turns out to be desirable for this application.

The three attractors for this system are contained in the union of the three
lines. The first, A1, is the union of two subintervals of the line N1, and the second,
A2, is the union of two slanted intervals that intersect A1. The third, A3, is an
“X” at the intersection of the lines N2 and N3.

Figure 4.12 shows the basin of infinity in white, and the basins of A1, A2,
and A3 in dark gray, light gray, and black. The basins of all three attractors have
nonzero area, and are riddled. This means that any disk of nonzero radius in the
shaded region, no matter how small, has points from all 3 basins. Proving this fact
is beyond the scope of this book. Color Plate 2 is a color version of this figure,
which shows more of the detail.

The message of this example is that prediction can be difficult. If we want
to start with an initial condition and predict the asymptotic behavior of the
orbit, there is no limit to the accuracy with which we need to know the initial
condition. This problem is addressed in Challenge 4 in a simpler context: When
a basin boundary is fractal, the behavior of orbits near the boundary is hard to
predict. A riddled basin is the extreme case when essentially the entire basin is
made up of boundary.

4 .5 F R A C TA L D I M E N S I O N

Our operational definition of fractal was that it has a level of complication that
does not simplify upon magnification. We explore this idea by imagining the
fractal lying on a grid of equal spacing, and checking the number of grid boxes
necessary for covering it. Then we see how this number varies as the grid size is
made smaller.

Consider a grid of step-size 1 � n on the unit interval [0, 1]. That is, there are
grid points at 0, 1 � n, 2 � n, . . . , (n � 1)� n, 1. How does the number of grid boxes
(one-dimensional boxes, or subintervals) depend on the step-size of the grid? The
answer, of course, is that there are n boxes of grid size 1 � n. The situation changes
slightly if we consider the interval [0, 8]. Then we need 8n boxes of size 1 � n. The
common property for one-dimensional intervals is that the number of boxes of
size � required to cover an interval is no more than C(1 � �), where C is a constant
depending on the length of the interval. This proportionality is often expressed by
saying that the number of boxes of size � scales as 1 � �, meaning that the number
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of boxes is between C1 � � and C2 � �, where C1 and C2 are fixed constants not
depending on �.

The square �(x, y) : 0 � x, y � 1� of side-length one in the plane can be
covered by n2 boxes of side-length 1 � n. It is the exponent 2 that differentiates this
two-dimensional example from the previous one. Any two-dimensional rectangle
in �2 can be covered by C(1 � �)2 boxes of size �. Similarly, a d-dimensional region
requires C(1 � �)d boxes of size �.

The constant C depends on the rectangle. If we consider a square of side-
length 2 in the plane, and cover by boxes of side-length � � 1 � n, then 4(1 � �)2

boxes are required, so C � 4. The constant C can be chosen as large as needed,
as long as the scaling C(1 � �)2 holds as � goes to 0.

We are asking the following question. Given an object in m-dimensional
space, how many m-dimensional boxes of side-length � does it take to cover the
object? For example, we cover objects in the plane with � � � squares. For objects
in three-dimensional space, we cover with cubes of side �. The number of boxes,
in cases we have looked at, comes out to C(1 � �)d, where d is the number we
would assign to be the dimension of the object. Our goal is to extend this idea
to more complicated sets, like fractals, and use this “scaling relation” to define
the dimension d of the object in cases where we don’t start out knowing the
answer.

Notice that an interval of length one, when viewed as a subset of the plane,
requires 1 � � two-dimensional boxes of size � to be covered. This is the same
scaling that we found for the unit interval considered as a subset of the line, and
matches what we would find for a unit interval inside �m for any integer m. This
scaling is therefore intrinsic to the unit interval, and independent of the space
in which it lies. We will denote by N(�) the number of boxes of side-length �

needed to cover a given set. In general, if S is a set in �m, we would like to say
that S is a d-dimensional set when it can be covered by

N(�) � C(1 � �)d

boxes of side-length �, for small �. Stated in this way, it is not required that the
exponent d be an integer.

Let S be a bounded set in �m. To measure the dimension of S, we lay a grid
of m-dimensional boxes of side-length � over S. (See Figure 4.13.) Set N(�) equal
to the number of boxes of the grid that intersect S. Solving the scaling law for the
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-2

0

2

-2 0 2

Figure 4.13 Grid of boxes for dimension measurement.
The Hénon attractor of Example 4.10 is shown beneath a grid of boxes with side-
length � � 1� 4. Of the 256 boxes shown, 76 contain a piece of the attractor.

dimension d gives us

d �
ln N(�) � ln C

ln(1 � �)
.

If C is constant for all small �, the contribution of the second term in the
numerator of this formula will be negligible for small �. This justifies the following:

Definition 4.14 A bounded set S in �n has box-counting dimension

boxdim(S) � lim
�→0

ln N(�)
ln(1 � �)

,

when the limit exists.

We can check that this definition of dimension gives the correct answer for
a line segment in the plane. Let S be a line segment of length L. The number of
boxes intersected by S will depend on how it is situated in the plane, but roughly
speaking, will be at least L � � (if it lies along the vertical or the horizontal) and no
more than 2L � � (if it lies diagonally with respect to the grid, and straddles pairs
of neighboring boxes). As we expect, N(�) scales as 1 � � for this one-dimensional
set. In fact, N(�) is between L times 1 � � and 2L times 1 � �. This remains true for
infinitesimally small �. Then Definition 4.14 gives d � 1.
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✎ EXERCISE T4 .8
Show that the box-counting dimension of a disk (a circle together with its
interior) is 2.

Three simplifications will be introduced that make Definition 4.14 easier
to use. First, the limit as � → 0 need only be checked at a discrete sequence of
box sizes, for example � � 2�n or � � n�2, n � 1, 2, 3, . . . . Second, the boxes
need not be cemented into a grid—they can be moved around to more easily fit
the set at hand. This approach may slightly decrease the number of boxes needed,
without changing the dimension. Third, boxes don’t need to be square boxes:
they could be spheres or tetrahedra, for example.

Simplification 1. It is sufficient to check � � bn, where limn→� bn � 0 and
limn→�

ln bn�1
ln bn

� 1.

We begin by describing the first simplification for a set in �2, and then
generalize to �m. For each � smaller than 1, there is some n 	 0 such that �

lies between bn�1 and bn. In �2, any box of side bn�1 is covered by 4 or fewer
boxes of the �-grid, as shown in Figure 4.14. It follows that if N(bn�1) boxes
of side-length bn�1 cover a set S, then the number of �-boxes that will cover S
satisfies N(�) � 4N(bn�1). By the same token, any �-box is covered by 4 or fewer
boxes of the bn–grid, so N(bn) � 4N(�). Therefore we have the inequality

N(bn)
4

� N(�) � 4N(bn�1).

s1

s2

Figure 4.14 A box within a larger grid.
If s1 � s2, then four two-dimensional boxes of side s2 are sufficient to cover a box of
side s1. In �m, 2m boxes are sufficient. This fact is the key to Simplification 1.
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For the case of �m, the 4 is replaced by 2m, so that

2�mN(bn) � N(�) � 2mN(bn�1). (4.5)

It follows from bn�1 � � � bn that

� ln bn�1 	 � ln � � � ln bn. (4.6)

Putting (4.5) and (4.6) together,

ln bn

ln bn�1

�m ln 2 � ln N(bn)
� ln bn

�
ln N(�)
ln(1 � �)

�
m ln 2 � ln N(bn�1)

� ln bn�1

ln bn�1

ln bn
. (4.7)

Thus, if lim
n→�

ln N(bn)
ln(1 � bn)

� d, then the terms on the left and right tend to the limit

d as n → �, and likewise the middle term must approach d as � → 0.

Theorem 4.15 Assume that b1 � b2 � . . . , limn→� bn � 0, and limn→�
ln bn�1

ln bn
� 1. If

lim
n→�

ln N(bn)
ln(1 � bn)

� d,

then lim
�→0

ln N(�)
ln(1 � �)

� d, and therefore the box-counting dimension is d.

Simplification 2. Boxes can be moved to improve efficiency of the cover.

The second simplification refers to the fact that we could have alternatively
defined the box-counting dimension by replacing N(�), the number of grid boxes
hit by the set, with the smallest possible number N0(�) of �-boxes (not necessarily
from any particular grid) that cover the set S. The boxes must be translates of grid
boxes. In this formulation, rotations of the boxes are not allowed. We might be
able to cover S more efficiently this way—by nudging some of the grid boxes to
more convenient locations. Clearly N0(�) is at most N(�), and could be less.

For all the simplicity of this alternate definition, it may be very difficult in
practice to determine N0(�). On the other hand, the calculation of N(�) is always
accessible—one can lay a grid over the set and count boxes (this assumes we have
complete knowledge of the set). As we show next, both definitions result in the
same box-counting dimension.

By definition, N0(�) � N(�). We also know, as above, that any �-box
whatsoever is covered by 2m or fewer �-grid-boxes, so that N(�) � 2mN0(�). The
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string of inequalities

N0(�) � N(�) � 2mN0(�) (4.8)

shows as in (4.7) that the grid definition (using N(�)) and the gridless definition
(using N0(�)) are equivalent.

Simplification 3. Other sets can be used in place of boxes.

We could have defined N0(�) as the smallest number of �-disks (disks of
radius �) that cover the set S. The reasoning above goes through with little change.
Other shapes, such as triangles or tetrahedra, could be used. We use triangles to
determine the dimension of the Sierpinski gasket below.

4 .6 COM P U T I N G T H E BOX -C O U N T I N G
D I M E N S I O N

We are now ready to compute the dimension of the middle-third Cantor set.
Recall that the Cantor set K is contained in Kn, which consists of 2n intervals,
each of length 1� 3n. Further, we know that K contains the endpoints of all 2n

intervals, and that each pair of endpoints lie 3�n apart. Therefore the smallest
number of 3�n-boxes covering K is N0(3�n) � 2n. We compute the box-counting
dimension of K as

boxdim(K) � lim
n→�

ln 2n

ln 3n � lim
n→�

n ln 2
n ln 3

�
ln 2
ln 3

.

We can compute the dimension of the Sierpinski gasket by exploiting the
second and third simplifications above. We will use equilateral triangles of side-
length (1 � 2)n. After step n of the construction of Example 4.6, there remain 3n

equilateral triangles of side 2�n. This is the smallest number of triangles of this size
that contains the completed fractal, since all edges of the removed triangles lie in
the fractal and must be covered. Therefore N0(2�n) � 3n, and the box-counting
dimension works out to ln 3 � ln 2.

✎ EXERCISE T4 .9
Find the box-counting dimension of the invariant set of the skinny baker
map of Example 4.5.
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Figure 4.15 Finding the box-counting dimension of the Hénon attractor.
Two grids are shown, with gridsize � � 1� 8 and 1 � 16 respectively.

For a more complicated example such as the Hénon attractor of Example
4.10, no exact formula can be found for the box-counting dimension. We are
stuck with drawing pictures and counting boxes, and using the results to form an
estimate of the dimension. In Figure 4.15, we extend the grid of Figure 4.13 to
smaller boxes. The side-length � of the boxes is 1 � 8 and 1 � 16, respectively, in
the two plots. A careful count reveals a total of 177 boxes hit by the attractor for
� � 1 � 8, 433 for � � 1 � 16, 1037 for � � 1 � 32, 2467 for � � 1 � 64, and 5763 for
� � 1 � 128.

In Figure 4.16 we graph the results of the box count. We graph the quantity
log2 N(�) versus log2(1 � �) because its ratio is the same as lnN(�)� ln(1 � �), which
defines box-counting dimension in the limit as � → 0. We used box sizes � � 2�2

through 2�7, and take log2 of the box counts given above. The box-counting
dimension corresponds to the slope in the graph. Ideally, Figure 4.16 would be
extended as far as possible to the right, in order to make the best approximation
possible to the limit. The slope in the picture gives a value for the box-counting
dimension approximately equal to 1.27.

➮ C O M P U T E R E X P E R I M E N T 4 . 4

Write a program for calculating box-counting dimension of planar sets. Test
the program by applying it to a long trajectory of the iterated function system
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Figure 4.16 Box-counting dimension of the Hénon attractor.
A graphical report of the results of the box counts in Figures 4.13 and 4.15. The box-
counting dimension is the limit of log2 N(�) � log2(1� �). The dimension corresponds
to the limiting slope of the line shown, as � → 0, which is toward the right in this
graph. The line shown has slope � 1.27.

for the Sierpinski gasket. To how many correct digits can you match the correct
value ln 3 � ln 2?

In the remainder of this section we investigate whether there is a rela-
tionship between box-counting dimension and the property of measure zero. By
constructing a Cantor set with a different ratio of removed intervals—say, 1 � 2
instead of 1 � 3—we can find a measure-zero set that has a different box-counting
dimension. What about Cantor sets in the unit interval for which the lengths
of the removed intervals sum to a number less than one? Such sets, called “fat”
fractals, are not measure-zero sets.

✎ EXERCISE T4 .10
Consider the Cantor set D formed by deleting the middle subinterval of
length 4�k from each remaining interval at step k. (a) Prove that the length
of D is 1 � 2. Thus D is a fat fractal. (b) What is the box–counting dimension
of D? (c) Let f be the function on [0, 1] which is equal to 1 on D and 0
elsewhere. It is the limit of functions that are Riemann integrable. Note
that f is not Riemann integrable. What is the value of any lower Riemann
sum for f ?
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Theorem 4.16 Let A be a bounded subset of �m with boxdim(A) � d � m.
Then A is a measure zero set.

Proof: The set A is contained in the union of N(�) boxes of side �. Then

lim
�→0

ln �mN(�)
ln �

� lim
�→0

m ln � � ln N(�)
ln �

� m � d � 0.

Since ln � → ��, we conclude that ln �mN(�) → ��, so that �mN(�) → 0. We
have found �-boxes covering A whose total volume �mN(�) is as small as desired.
This is the definition of measure zero. �

The converse of Theorem 4.16 does not hold; there are subsets of the
unit interval (in fact, countable subsets) with box-counting dimension one and
measure zero.

✎ EXERCISE T4 .11

(a) Find the box-counting dimension of the set of integers �0, . . . , 100�.
(b) Find the box-counting dimension of the set of rational numbers in
[0, 1].

4 .7 CO R R E L AT I O N D I M E N S I O N
Box-counting dimension is one of several definitions of fractal dimension that
have been proposed. They do not all give the same number. Some are easier to
compute than others. It is not easy to declare a single one to be the obvious choice
to characterize whatever fractal dimension means.

Correlation dimension is an alternate definition that is popular because
of its simplicity and lenient computer storage requirements. It is different from
box-counting dimension because it is defined for an orbit of a dynamical system,
not for a general set. More generally, it can be defined for an invariant measure,
which we describe in Chapter 6.

Let S � �v0, v1, . . .� be an orbit of the map f on �n. For each r � 0, define
the correlation function C(r) to be the proportion of pairs of orbit points within
r units of one another. To be more precise, let SN denote the first N points of the
orbit S. Then

C(r) � lim
N→�

#�pairs �w1, w2� : w1, w2 in SN, |w1 � w2| � r�
#�pairs �w1, w2� : w1, w2 in SN�

(4.9)
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The correlation function C(r) increases from 0 to 1 as r increases from 0 to �. If
C(r) � rd for small r, we say that the correlation dimension of the orbit S is d.
More precisely:

cordim(S) � lim
r→0

log C(r)
log(r)

, (4.10)

if the limit exists.
Figure 4.17 shows an attempt to measure the correlation dimension of the

orbit of the Hénon attractor shown in Figure 4.13. An orbit of length N � 1000
was generated, and of the (1000)(999)� 2 possible pairs, the proportion that lie
within r was counted for r � 2�2, . . . , 2�8. According to the definition (4.10),
we should graph log C(r) versus log r and try to estimate the slope as r → 0. This
estimate gives cordim(S) � 1.23 for the Hénon attractor, slightly less than the
box-counting dimension estimate.

For dimension measurements in high-dimensional spaces, correlation di-
mension can be quite practical when compared with counting boxes. The number
of �-boxes in the unit “cube” of �n is ��n. If � � 0.01 and n � 10, there are poten-
tially 1020 boxes that need to be tracked, leading to a significant data structures
problem. Because no boxes are necessary to compute correlation dimension, this
problem doesn’t arise.

-8

-6

-4

-2

-8 -6 -4 -2

lo
g2

(C
(r

))

log2(r)

Figure 4.17 Correlation dimension of the Hénon attractor.
A graphical report of the results of the correlation dimension estimate for the
Hénon attractor. The correlation dimension is the limit of log2 C(r) � log2(r). The
dimension corresponds to the limiting slope of the line shown, as r → 0, which is
toward the left. The line shown has slope � 1.23.
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The use of correlation dimension as a way to characterize chaotic attractors
was suggested by theoretical physicists (Grassberger and Procaccia, 1983). Since
then it has become a common tool for the analysis of reconstructed attractors
from experimental data, such as the example of Lab Visit 3. Lab Visit 4 shows two
illustrative applications of this method. More of the theory and practical issues
of correlation dimension and other dimensions can be found in (Ott, Sauer, and
Yorke, 1994).

182



C H A L L E N G E 4

☞ C H A L L E N G E 4

Fractal Basin Boundaries and the
Uncertainty Exponent

WHY IS THE fractal dimension of a set important? In a broad sense, of
course, it tells us something about the geometry of the set through its scaling
behavior. But how do we use such information? In this challenge, we explore
how the complexity of a fractal can influence final state determination within
a dynamical system and see what the dimension of the fractal says about the
resulting uncertainty.

Our model will be a one-dimensional, piecewise linear map F, which is
illustrated in Figure 4.18. Under this map, almost all initial conditions will have
orbits that tend to one or the other of two final states. Specifically, F is given by
the following formula:

F(x) �




5x � 4 if x � �0.4
�5x if �0.4 � x � 0.4
5x � 4 if x 	 0.4

1-1

-1

1

Figure 4.18 A piecewise linear map with fractal basin boundaries.
The orbits of almost every initial value tend to either �� or ��; the boundary
between the two basins is fractal.
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Notice that any initial condition x0 � 1 generates an orbit that tends to
��. Similarly, the orbit of any x0 � �1 goes to ��. There are no fixed-point
sinks or periodic sinks. In fact, the orbits of most points, even those in the interval
[�1, 1], become unbounded under iteration by F. Normally, we group together
points whose orbits diverge to infinity (here either plus or minus infinity) and
call the set the “basin of infinity”. For the purposes of this challenge, however, we
distinguish points whose orbits go to �� from those that go to ��. Let B�� be
the basin of ��, let B�� be the basin of ��, and let J be the set of points whose
orbits stay in [�1, 1] for all iterates of F.

Step 1 Describe B��, B��, and J. [Hint: Start by dividing the interval
[�1, 1] into five equal parts and deciding where each part goes under the map.]

Step 2 Show: boxdim(J) �
ln 3
ln 5

.

Step 3 Show that for every x in B�� there exists � � 0 such that the
epsilon neighborhood N�(x) 	 B��. (The analogous statement for B�� also
holds.) In other words, the basin is an open set.

Step 4 Show that the following characterization holds for each y in J: For
every � � 0, N�(y) contains points of both B�� and B��.

By definition, the orbit of an initial point x in B�� or B��, will tend to ��

or ��. If x is near a boundary point (a point in J), however, lack of measurement
accuracy can make final state prediction impossible. For example, if accuracy is
specified to within � � 0.1, then there is no way to decide whether a point in the
intervals (�1, �0.5), (�0.3, 0.3), or (0.5, 1.0) is in B�� or B��. The problem
is that these points are all within 0.1 of a boundary point, and therefore all within
0.1 of points of both basins. Points within distance � � 0 of a basin boundary
point are called �-uncertain points. The complete set of 0.1-uncertain points
between �1 and �1 is the union of the three above open intervals. The total
length of these intervals is 1.6, or 80% of the interval [�1, 1].

More generally, suppose that J is the fractal boundary of two basins in �. In
Steps 5 and 6, show there exists a number p � 0, which depends on boxdim(J),
such that the total length of �-uncertain points (as � → 0) is proportional to �p.
The number p is called the uncertainty exponent.

Step 5 Let L(�) be the total length of �-uncertain points, and N(�) the
number of �-intervals needed to cover them. Show that �N(�) � L(�) � 3�N(�).

Step 6 Let p � 1� boxdim(J). Show: lim�→0(ln L(�))� (ln �) � p, if the
limit exists.
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Step 7 The previous step says that L(�) is roughtly proportional to �p for
small �. This quantifies the fact that the larger the fractal dimension of J, the
greater the uncertainty in prediction. For example, suppose boxdim (J) � 0.9, so
that p � 0.1. How much of a reduction in measurement accuracy � is necessary
to reduce the total length of �-uncertain points by a factor of two?

Step 8 Prove a two-dimensional version. Assume that J is a fractal basin
boundary in �2, and that each point in J is in the boundary of at least two basins.
Show that the total area A(�) of �-uncertain points satisfies the formula

lim
�→0

(ln A(�))� (ln �) � p,

where p � 2� boxdim(J), and C is a constant.

Postscript. The subject of this Challenge is the damaging effect on final state
prediction due to fractal basin boundaries in one-dimensional maps. The characterization
of J in Step 4 means that each point in J is in the boundary of each of the two basins. Basin
boundaries of two-dimensional maps are even more intricate and interesting—they form
the subject of Challenge 10. There we investigate points that are simultaneously in the
boundary of three basins.
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EXERCISES

4.1. (a) Establish a one-to-one correspondence between the portion of the middle-
third Cantor set in [0, 1� 3] and the entire Cantor set.

(b) Repeat part (a), replacing [0, 1� 3] by [19� 27, 20� 27].

4.2. Consider the middle-half Cantor set K(4) formed by deleting the middle half of
each subinterval instead of the middle third.

(a) What is the total length of the subintervals removed from [0,1]?

(b) What numbers in [0, 1] belong to K(4)?

(c) Show that 1 � 5 is in K(4). What about 17� 21?

(d) Find the length and box-counting dimension of the middle-half Cantor set.

(e) Let S be the set of initial conditions that never map outside of the unit
interval for the tent map Ta, as in Exercise T4.6. For what value of the parameter
a is S � K(4)?

4.3. Let T be the tent map with a � 2.

(a) Prove that rational numbers map to rational numbers, and irrational num-
bers map to irrationals.

(b) Prove that all periodic points are rational.

(c) Prove that there are uncountably many nonperiodic points.

4.4. Show that the set of rational numbers has measure zero.

4.5. Let K̂ be the subset of the Cantor set K whose ternary expansion does not end in a
repeating 2. Show that there is a one-to-one correspondence between K̂ and [0, 1].
Thus K is uncountable because it contains the uncountable set K̂.

4.6. Let K be the middle-third Cantor set.

(a) A point x is a limit point of a set S if every neighborhood of x contains a
point of S aside from x. A set is closed if it contains all of its limit points. Show
that K is a closed set.

(b) A set S is perfect if it is closed and if each point of S is a limit point of S.
Show that K is a perfect set. A perfect subset of � that contains no intervals of
positive length is called a Cantor set.

(c) Let S be an arbitrary Cantor set in �. Show that there is a one-to-one
correspondence between S and K(3). In fact a correspondence can be chosen so
that if s, t � S are associated with s ′, t ′ � K(3), respectively, then s � t implies
s ′ � t ′; that is, the correspondence preserves order.

4.7. Find the box-counting dimension of:

(a) The middle 1 � 5 Cantor set.
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(b) The Sierpinski carpet.

4.8. Find the box-counting dimension of the set of endpoints of removed intervals for
the middle-third Cantor set K.

4.9. Another way to find the attracting set of the Sierpinski gasket of Computer Experi-
ment 4.1 is to iterate the following process. Remove the upper right one-quarter of
the unit square. For each of the remaining three quarters, remove the upper right
quarter; for each of the remaining 9 squares, remove the upper right quarter, and
so on. (a) Find the box-counting dimension of the resulting gasket. (b) Show that
the gasket consists of all pairs (x, y) such that for each n, the nth bit of the binary
representations of x and y are not both 1.

4.10. Let A and B be bounded subsets of �. Let A � B be the set of points (x, y) in the
plane such that x is in A and y is in B. Show that boxdim(A � B) � boxdim(A) �

boxdim(B).

4.11. (a) True or false: The box-counting dimension of a finite union of sets is the
maximum of the box-counting dimensions of the sets. Justify your answer.

(b) Same question for countable unions, assuming that it is bounded.

4.12. This problem shows that countably infinite sets S can have either zero or nonzero
box-counting dimension.

(a) Let S � �0� � �1, 1� 2, 1� 3, 1� 4, . . .�. Show that boxdim(S) � 0.5.

(b) Let S � �0� � �1, 1� 2, 1� 4, 1� 8, . . .�. Show that boxdim(S) � 0.

4.13. Generalize the previous problem by finding a formula for boxdim(S):

(a) S � �0� � �n�p : n � 1, 2, . . .�, where 0 � p.

(b) S � �0� � �p�n : n � 0, 1, 2, . . .�, where 1 � p.

4.14. The time-2� map of the forced damped pendulum was introduced in Chapter 2.
The following table was made by counting boxes needed to cover the chaotic orbit
of the pendulum, using various box sizes. Two hundred million iterations of the
time-2� map were made. Find an estimate of the boxdim of this set. If you know
some statistics, say what you can about the accuracy of your estimate.

Box size Boxes hit

2�2 111
2�3 327
2�4 939
2�5 2702
2�6 7839
2�7 22229
2�8 62566
2�9 178040
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☞ L A B V I S I T 4

Fractal Dimension in Experiments

FINDING THE fractal dimension of an attractor measured in the laboratory
requires careful experimental technique. Fractal structure by its nature covers
many length scales, so the construction of a “clean” experiment, where only
the phenomenon under investigation will be gathered as data, is important. This
ideal can never be achieved exactly in a laboratory. For this reason, computational
techniques which “filter” unwanted noise from the measured data can sometimes
help.

A consortium of experts in laboratory physics and data filtering, from Ger-
many and Switzerland, combined forces to produce careful estimates of fractal
dimension for two experimental chaotic attractors. The first experiment is the
hydrodynamic characteristics of a fluid caught between rotating cylinders, called
the Taylor-Couette flow. The second is an NMR laser which is being driven by a
sinusoidal input.

The Taylor-Couette apparatus is shown in Figure 4.19. The outside glass
cylinder, which has a diameter of about 2 inches, is fixed, and the inner steel

h

d

Figure 4.19 Setup of the Taylor-Couette flow experiment.
As the inner steel cylinder rotates, the viscous fluid between the cylinders undergoes
complicated but organized motion.

Kantz, H., Schreiber, T., Hoffman, I., Buzug, T., Pfister, G., Flepp, L. G., Simonet, J.,
Badii, R., Brun, E., 1993. Nonlinear noise reduction: A case study on experimental
data. Physical Review E 48:1529-1538.
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cylinder, which has a diameter of 1 inch, rotates at a constant rate. Silicon oil,
a viscous fluid, fills the region between cylinders. Care was taken to regulate the
temperature of the oil, so that it was constant to within 0.01◦ C. The speed of
the rotating inner cylinder could be controlled to within one part in 10,000. As
shown in the figure, the top of the chamber is not flat, but set at a tiny angle,
to destroy unwanted effects due to symmetries of the boundary conditions. The
top surface is movable so that the “aspect ratio” h� d can be varied between 0 and

Figure 4.20 The Taylor-Couette data and its dimension.
(a) A two-dimensional projection of the reconstructed attractor obtained after
filtering the experimental data. The time delay is T � 5. (b) Slope estimates of the
correlation sum. There are 19 curves, each corresponding to correlation dimension
estimates for an embedding dimension between 2 and 20. The 32,000 points plotted
in Figure 4.20(a) were used in the left half, and only 2000 points in the right half, for
comparison. The conclusion is that the correlation dimension is approximately 3.
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more than 10, although an aspect ratio of 0.374 was used for the plots shown
here.

The measured quantity is the velocity of the fluid at a fixed location in the
chamber. Light-scattering particles were mixed into the silicon oil fluid, and their
velocities could be tracked with high precision using a laser Doppler anemometer.
The velocity was sampled every 0.02 seconds.

Figure 4.21 The NMR laser data and its estimated dimension.
(a) Time-delay plot of a Poincaré section of the NMR laser data. About 39,000
returns to the Poincaré surface were counted and plotted. (b) Estimated slopes
from the correlation sum from the data in (a). The researchers report a correlation
dimension estimate of 1.5.
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Figure 4.20(a) shows a time-delay plot of the velocity of the Taylor-Couette
flow experiment. We saw a first example of a time-delay plot in Figure 3.19; we
will give a more comprehensive treatment in Chapter 13. For now, we recall that
a time-delay reconstruction of a data series (Yt), which in this case consists of
the Taylor-Couette velocity readings, is constructed by plotting vectors of form
(yt, yt�T, . . . , yt�(m�1)T) in �m. The delay used in Figure 4.20(a) is T � 0.1
seconds, or 5 sampling units. The dimensionality of the time-delay plot, m, is
called the embedding dimension. In Figure 4.20(a), m � 2.

Once the set of vectors is plotted in �m, its properties can be analyzed as
if it were an orbit of a dynamical system. In fact, it turns out that many of the
dynamical properties of the orbit of the Taylor-Couette system that is producing
the measurements are passed along to the set of time-delay vectors, as explained in
Chapter 13. In particular, as first suggested in (Grassberger and Procaccia, 1983),
the correlation dimension can be found by computing the correlation function
of (4.9) using the time-delay vectors, and approximating the slope of a line as in
Figure 4.17.

The resulting slope approximations for the line log C(�)� log �, which are
the correlation dimension estimates as � → 0, are graphed in Figure 4.20(b)
as a function of log �. The several curves correspond to computations of the
correlation functions in embedding dimensions 2, 3, . . . , 20. Here it is evident
how evaluation of a limit as � → 0 can be a challenge when experimental data
is involved. We want to see the trend toward smaller �, the left end of Figure
4.20(b). However, the effects of experimental uncertainties such as measurement
noise are most strongly felt at very small scales. The range 2�5 � � � 2�2 shows
agreement on a dimension of about 3.

The ingredients of a laser are the radiating particles (atoms, electrons,
nuclei, etc.) and the electromagnetic field which they create. An external energy
source causes a “population inversion” of the particles, meaning that the higher-
energy states of the particles are more heavily populated than the lower ones.
The laser cavity acts as a resonant chamber, which provides feedback for the laser
field, causing coherence in the excitation of the particles. For the ruby NMR laser
used in this experiment, the signal is a essentially a voltage measurement across
a capacitor in the laser cavity.

The laser output was sampled at a rate of 1365 Hz (1365 times per second).
A Poincaré section was taken from this data, reducing the effective sampling
rate to 91 Hz. The time-delay plot of the resulting 39,000 intersections with
the Poincaré surface is shown in Figure 4.21(a). The researchers estimate the
noise level to be about 1.1%. After filtering, the best estimate for the correlation
dimension is about 1.5, as shown in Figure 4.21(b).
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Chaos in
Two-Dimensional Maps

THE CONCEPTS of Lyapunov numbers and Lyapunov exponents can be extended
to maps on �m for m 	 1. In the one-dimensional case, the idea is to measure
separation rates of nearby points along the real line. In higher dimensions, the
local behavior of the dynamics may vary with the direction. Nearby points may
be moving apart along one direction, and moving together along another.

In this chapter we will explain the definition of Lyapunov numbers and
Lyapunov exponents in higher dimensions, in order to develop a definition of
chaos in terms of them. Following that, we will extend the Fixed-Point Theorems
of the one-dimensional case to higher dimensions, and investigate prototypical
examples of chaotic systems such as the baker map and the Smale horseshoe.
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5 .1 L YA P U N OV E X P O N E N T S

For a map on �m, each orbit has m Lyapunov numbers, which measure the
rates of separation from the current orbit point along m orthogonal directions.
These directions are determined by the dynamics of the map. The first will be
the direction along which the separation between nearby points is the greatest
(or which is least contracting, if the map is contracting in all directions). The
second will be the direction of greatest separation, chosen from all directions
perpendicular to the first. The third will have the most stretching of all directions
perpendicular to the first two directions, and so on. The stretching factors in each
of these chosen directions are the Lyapunov numbers of the orbit.

Figures 5.1 and 5.2 illustrate this concept pictorially. Consider a sphere of
small radius centered on the first point v0 of the orbit. If we examine the image
f(S) of the small sphere under one iteration of the map, we see an approximately
ellipsoidal shape, with long axes along expanding directions for f and short axes
along contracting directions.

After n iterates of the map f, the small sphere will have evolved into a
longer and thinner ellipsoid-like object. The per-iterate changes of the axes of
this image “ellipsoid” are the Lyapunov numbers. They quantify the amount of
stretching and shrinking due to the dynamics near the orbit beginning at v0. The
natural logarithm of each Lyapunov number is a Lyapunov exponent.

For the formal definition, replace the small sphere about v0 and the map f
by the unit sphere N and the first derivative matrix Df(v0), since we are interested
in the infinitesimal behavior near v0. Let Jn � Dfn(v0) denote the first derivative

1

f n(v0)

f n 

v0

r1
n

r2
n

Figure 5.1 Evolution of an initial infinitesimal disk.
After n iterates of a two-dimensional map, the disk is mapped into an ellipse.
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r2

r1

r3

n

n

n

1v0

f n 

Figure 5.2 A three-dimensional version of Figure 5.1.
A small ball and its image after n iterates, for a three-dimensional map.

matrix of the nth iterate of f. Then JnN will be an ellipsoid with m orthogonal
axes. This is because for every matrix A, the image AN is necessarily an ellipsoid,
as we saw in Chapter 2. The axes will be longer than 1 in expanding directions
of fn(v0), and shorter than 1 in contracting directions, as shown in Figure 5.1.
The m average multiplicative expansion rates of the m orthogonal axes are the
Lyapunov numbers.

Definition 5.1 Let f be a smooth map on �m, let Jn � Dfn(v0), and
for k � 1, . . . , m, let rn

k be the length of the kth longest orthogonal axis of the
ellipsoid JnN for an orbit with initial point v0. Then rn

k measures the contraction
or expansion near the orbit of v0 during the first n iterations. The kth Lyapunov
number of v0 is defined by

Lk � lim
n→�

(rn
k)1 � n,

if this limit exists. The kth Lyapunov exponent of v0 is hk � ln Lk. Notice that
we have built into the definition the property that L1 	 L2 	 
 
 
 	 Lm and
h1 	 h2 	 
 
 
 	 hm.

If N is the unit sphere in �m and A is an m � m matrix, then the orthogonal
axes of the ellipsoid AN can be computed in a straightforward way, as we showed
in Theorem 2.24 of Chapter 2. The lengths of the axes are the square roots of
the m eigenvalues of the matrix AAT, and the axis directions are given by the m
corresponding orthonormal eigenvectors.

Using the concept of Lyapunov exponent, we can extend the definition of
chaotic orbit to orbits of higher dimensional maps. For technical reasons which
we describe later (Example 5.5), we will require that no Lyapunov exponent is
exactly zero for a chaotic orbit.
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Definition 5.2 Let f be a map of �m, m 	 1, and let �v0, v1, v2, . . .� be
a bounded orbit of f. The orbit is chaotic if

1. it is not asymptotically periodic,
2. no Lyapunov number is exactly one, and
3. L1(v0) � 1.

In terms of Lyapunov exponents, part 3 of Definition 5.2 is equivalent to
h1(v0) � 0.

EXAM PLE 5 .3

The skinny baker map was defined in Chapter 4. It is a map of the unit
square S in the plane which exhibits many typical properties of chaotic maps.
See Figure 4.3 of Chapter 4 to recall the geometric behavior. The equations are
written there, but we write them again in a slightly different form:

B(x1, x2) �




(
1
3 0
0 2

)(
x1

x2

)
if 0 � x2 � 1

2

(
1
3 0
0 2

)(
x1

x2

)
�

(
2
3

�1

)
if 1

2 � x2 � 1.

(5.1)

The middle third of the rectangles that remain are mapped out on each
iteration. Define the invariant set A of B to be the points that lie in Bn(S) for
every positive and negative integer n. The invariant set is a middle-third Cantor
set of vertical lines. We call the set A invariant because it has the property that
B�1(A) � A.

✎ EXERCISE T5 .1
Find the area of Bn(S). Note that B is an area-contracting map, hence its
name.

We are interested in the following questions about the skinny baker map.
First, what are the Lyapunov exponents for orbits? Second, are there periodic
orbits, and what do they look like? Finally, are there chaotic orbits? We begin
with the first question, which is relatively easy to answer. We will defer the
discussion of the periodic orbits until later in the chapter, where it will motivate
the development of a fixed-point theorem and covering partitions in a direct
analogy with those concepts in Chapter 3.
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The Jacobian matrix is constant for each point in the unit square for which
it is defined:

DB(v) �

(
1
3 0
0 2

)

for all v except along the discontinuity line x2 � 1 � 2. Consider a small circle of
radius r centered at a point in the unit square. After one iteration of the skinny
baker map, it is transformed into an ellipse with axes of length 1

3 r in the horizontal
direction and 2r in the vertical. After n iterates, the ellipse is ( 1

3 )nr by 2nr. (All of
this is true provided that the ellipses never map across the line x2 � 1

2 , in which
case they get chopped in two on the next iterate. To avoid this, consider an even
smaller initial circle.) We conclude that the Lyapunov numbers of B are 1

3 and
2, or equivalently, that the Lyapunov exponents are � ln 3 and ln 2 for every
orbit. Since ln 2 � 0, every orbit that is not asymptotically periodic is chaotic.
Determining orbits that are not asymptotically periodic will be left for later in
the chapter.

✎ EXERCISE T5 .2
Find a general formula for (area-contracting) skinny baker maps, where the
strips have width w instead of 1 � 3. Find the area contraction factor (per
iteration) and the Lyapunov exponents.

EXAM PLE 5 .4

The cat map, introduced in Challenge 2 (Chapter 2), is also fairly simple
to analyze for Lyapunov exponents. The map on the unit square in �2 is defined
by

f

(
x1

x2

)
�

(
2 1
1 1

)(
x1

x2

)
(mod 1) � Av (mod 1).

The Jacobian matrix Df(v) is the constant matrix A for any point v. Unlike the
skinny baker map case, it is not diagonal, so we turn to Theorem 2.24 of Chapter
2 in order to calculate the ellipses formed by applying f to an infinitesimal disk.

The theorem says that the axes of the ellipse formed by applying fn will be
the square roots of the eigenvalues of An(An)T. Since A is a symmetric matrix
(A � AT), these are the same as the eigenvalues of An, which can be found as en

i ,
where ei are the eigenvalues of A. We calculate e1 � (3 �

√
5)� 2 � 2.618 and

e2 � (3 �
√

5)� 2 � 0.382. The product of the two eigenvalues is 1 � det(A).
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This tells us that a disk of radius r is transformed into an ellipse with axes re1

and re2 by the cat map, and into an ellipse with axes ren
1 and ren

2 by n applications
of the cat map. Since e1 � 1 and e2 � 1, the fixed point 0 � (0, 0) is a saddle.
The Lyapunov numbers L1 and L2 for the fixed point 0 and for any other orbit of
the cat map are e1 and e2, and the Lyapunov exponents are h1 � ln e1 � 0.962
and h2 � ln e2 � �0.962.

The cat map is unusual in that the Jacobian matrix Df is independent of
v. Ordinarily, unless the orbit is periodic, computing eigenvalues of individual
Jacobians tells nothing about Lyapunov numbers.

Since every orbit of the cat map has a positive Lyapunov exponent (and
no Lyapunov exponent equal to 0), any orbit that is not asymptotically periodic
will be chaotic. In the remainder of this example, we argue that a large number
of orbits are not asymptotically periodic.

By Step 4 of Challenge 2, the periodic points of the cat map are those points
in the unit square with both coordinates rational. This set is countable. Since all
periodic orbits are saddles, the only asymptotically periodic orbits are these saddles
and the orbits of points on their stable manifolds. As described in Chapter 2, the
stable manifold of a saddle in the plane is a one-dimensional curve containing
the saddle point. In the case of the cat map, a stable manifold emanates from a
saddle at an irrational angle (from the horizontal). In order to understand the
behavior of a stable manifold globally, we need to think of the cat map as defined
on the torus (as described in Challenge 2), where it is continuous. Any one stable
manifold will then wind around the torus without end. Viewing the torus as the
unit square with left and right sides glued and top and bottom glued, we can see
how this curve repeatedly crosses the line segment I � �(x, 0) : 0 � x � 1�, a
cross-sectional circle on the torus.

Following one branch of the stable manifold as it emanates from a saddle p,
we count successive crossings of the manifold with I. Since the slope is irrational,
there will be infinitely many of these crossings; however, the set of all crossings
will be countable. (This can be seen by the fact that there is a definite ordering
of the crossings as we follow the stable manifold from p.) Taking the union of all
crossings for all stable manifolds, we have a countable union of countable sets,
which is again countable. Since I contains an uncountable number of points,
there must be points in I that are not on any stable manifold. Therefore, the cat
map has chaotic orbits.

In Definition 5.2 the condition that 0 not be a Lyapunov exponent (of a
chaotic orbit) is included to rule out cases of “quasiperiodicity”, as illustrated by
the next example.
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EXAM PLE 5 .5

Let

f(r, �) � (r2, � � q),

where r and � are polar coordinates, and q is an angle irrationally related to 2�.
The orbits of all points inside the unit circle converge to the origin, which is a
fixed point. The unit circle is invariant under f, as points on it rotate through the
angle q. Outside the unit circle, orbits are unbounded. The quasiperiodic orbits at
r � 1 have Lyapunov exponents ln 2 and 0. Although they are not asymptotically
periodic and they do exhibit sensitive dependence (due to a positive Lyapunov
exponent in the r direction), we do not want the definition of “chaotic orbit” to
apply to these orbits since their motion is quite predictable.

➮ C O M P U T E R E X P E R I M E N T 5 . 1

Plot the orbit of the two-dimensional Tinkerbell map

f(x, y) � (x2 � y2 � c1x � c2y, 2xy � c3x � c4y)

where c1 � �0.3, c2 � �0.6, c3 � 2, c4 � 0.5, with initial value (x, y) �

(0.1, 0.1). The orbit tends toward an oval-shaped quasiperiodic attractor. Find
out what replaces the quasiperiodic attractor when the parameter c4 is decreased
or increased.

5 .2 NUM E R I C A L C A L C U L AT I O N O F
L YA P U N OV E X P O N E N T S

For most interesting maps, there is no direct way to determine Lyapunov expo-
nents from knowledge of the map and its Jacobian matrices. The skinny baker
map and the cat map of the previous section are exceptions to this rule. Nor-
mally, the matrix Jn � Dfn(v0) is difficult to determine exactly for large n, and
we must resort to the approximation of the image ellipsoid JnN of the unit sphere
by computational algorithms.
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The ellipsoid JnN has semi-major axes of length si in the directions ui. The
direct approach to calculating the Lyapunov exponents would be to explicitly form
JnJT

n and find its eigenvalues s2
i . In the case that the ellipsoid has stretching and

shrinking directions, it will be very long and very thin for large n. The eigenvalues
of JnJT

n will include both very large and very small numbers. Because of the
limited number of digits allowed for each stored number, computer calculations
become difficult when numbers of vastly different sizes are involved in the same
calculation. The problem of computing the si gets worse as n increases. For this
reason, the direct calculation of the ellipsoid JnN is usually avoided.

The indirect approach that works better in numerical calculations involves
following the ellipsoid as it grows. Since

JnU � Df(vn�1) 
 
 
 Df(v0)N, (5.2)

we can compute one iterate at a time. Start with an orthonormal basis
�w0

1, . . . , w0
m� for �m, and compute the vectors z1, . . . , zm:

z1 � Df(v0)w
0
1, . . . , zm � Df(v0)w

0
m. (5.3)

These vectors lie on the new ellipse Df(v0)N, but they are not necessarily orthog-
onal. We will remedy this situation by creating a new set of orthogonal vectors
�w1

1, . . . , w1
m� which generate an ellipsoid with the same volume as Df(v0)N.

Use the Gram-Schmidt orthogonalization procedure, which defines

y1 � z1

y2 � z2 �
z2 
 y1

||y1||2 y1

y3 � z3 �
z3 
 y1

||y1||2 y1 �
z3 
 y2

||y2||2 y2

...

ym � zm �
zm 
 y1

||y1||2 y1 � 
 
 
 �
zm 
 ym�1

||ym�1||2 ym�1, (5.4)

where 
 denotes the dot or scalar product and || 
 || denotes Euclidean length.
Notice what the equations do: First z1 is declared to be kept as is in the new

set. The part of z2 which is perpendicular to z1 is retained as y2; the term being
subtracted away is just the projection of z2 to the z1 direction. The vector y3 is
defined to be the part of z3 perpendicular to the plane spanned by z1 and z2, and
so on.
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✎ EXERCISE T5 .3
Write the result of the Gram-Schmidt orthogonalization procedure as an
m � m matrix equation Z � YR, where the columns of Y are y1, . . . , ym,
the columns of Z are z1, . . . , zm, and R is an upper triangular matrix. Show
that det(R) � 1, so that det(Y) � det(Z). Explain why this implies that the
ellipsoids YN and ZN have equal m-dimensional volume. Depending on your
matrix algebra skills, you may want to start with the case m � 2.

According to Exercise T5.3, if we set w1
1 � y1, . . . , w1

m � ym for the new
orthogonal basis, they will span an ellipsoid of the same volume as Df(v0)N.

Next apply the Jacobian Df(v1) at the next orbit point, and reorthogonalize
the set

Df(v1)w
1
1, . . . , Df(v1)w1

m (5.5)

to produce a new orthogonal set �w2
1, . . . , w2

m�. Repeating this step n times gives
a final set �wn

1, . . . , wn
m� of vectors which approximate the semi-major axes of the

ellipsoid JnN.
The total expansion rn

i in the ith direction after n iterations, referred to in
Definition 5.1, is approximated by the length of the vector wn

i . Thus ||wn
i ||1 � n is

the approximation to the ith largest Lyapunov number after n steps.
To eliminate the problem of extremely large and small numbers, this algo-

rithm should be amended to normalize the orthogonal basis at each step. Denote
the y vectors recovered from the application of Gram-Schmidt orthogonalization
to

Df(vj)w
j
1, . . . , Df(vj)wj

m

by yj�1
1 , . . . , yj�1

m . Set wj�1
i � yj�1

i � ||yj�1
i ||, making the wj�1

i unit vectors. Then
||yj�1

i || measures the one-step growth in direction i, and since rn
i � ||yn

i || 
 
 
 ||y1
i ||,

the expression

ln ||yn
i || � 
 
 
 � ln ||y1

i ||
n

is a convenient estimate for the ith largest Lyapunov exponent after n steps.

EXAM PLE 5 .6

Consider the Hénon map introduced in Chapter 2 with parameters a � 1.4
and b � 0.3. Typical initial conditions have Lyapunov exponents which can be
approximated by the method described above. Reasonably accurate approxima-
tions are h1 � 0.42 and h2 � �1.62.
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Figure 5.3 The Ikeda attractor of Example 5.7.
The attractor has fractal structure and a largest Lyapunov exponent of approximately
0.51.

EXAM PLE 5 .7

The Ikeda map is given by

F(x, y) � (R � C2(x cos 
 � y sin 
), C2(x sin 
 � y cos 
)), (5.6)

where 
 � C1 � C3 � (1 � x2 � y2), and R, C1, C2, and C3 are real parameters.
This map was proposed as a model, under some simplifying assumptions, of the
type of cell that might be used in an optical computer. The map is invertible with
Jacobian determinant C2

2 for each (x, y), therefore L1L2 � C2
2. In certain ranges

of the parameters, there are two fixed point sinks, corresponding to two stable
light frequencies in the cell. Setting R � 1, C1 � 0.4, C2 � 0.9, and C3 � 6,
one of these sinks has developed into what is numerically observed to be a
chaotic attractor, with Lyapunov numbers L1 � 1.66 and L2 � 0.487 (Lyapunov
exponents 0.51 and �0.72). The orbit of one initial condition is shown in Figure
5.3. The orbits of most initial points chosen in a neighborhood of the attractor
appear to converge to the same limit set.

➮ C O M P U T E R E X P E R I M E N T 5 . 2

Write a program to measure Lyapunov exponents. Check the program by
comparing your approximation for the Hénon or Ikeda map with what is given in
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the text. Calculate the Lyapunov exponents of the Tinkerbell map quasiperiodic
orbit from Computer Exercise 5.1 (one should be zero). Finally, change the first
parameter of Tinkerbell to c1 � 0.9 and repeat. Plot the orbit to see the graceful-
looking chaotic attractor which gives the map its name.

5 .3 L YA P U N OV D I M E N S I O N
There is a relationship between the Lyapunov exponents and the fractal dimen-
sion of a typical chaotic attractor. A definition of dimension that acknowledges
this relationship has been proposed, called the Lyapunov dimension. In general,
this dimension gives a different number than the box-counting dimension, al-
though they are usually not far apart. The appealing feature of this dimension is
that it is easy to calculate, if the Lyapunov exponents are known. No boxes need
to be counted. We will begin with the definition, which is fairly simple to state,
and then explain where it comes from.

Definition 5.8 Let f be a map on �m. Consider an orbit with Lyapunov
exponents h1 	 
 
 
 	 hm, and let p denote the largest integer such that

p∑
i�1

hi 	 0. (5.7)

Define the Lyapunov dimension DL of the orbit by

DL �




0 if no such p exists

p �
1

|hp�1|
p∑

i�1

hi if p � m

m if p � m

(5.8)

In the case of a two-dimensional map with h1 � 0 � h2 and h1 � h2 � 0
(for example, the Hénon map and the skinny baker map), (5.8) yields

DL � 1 �
h1

|h2| . (5.9)

Inserting the Lyapunov exponents for the skinny baker map into the Lyapunov
dimension formula yields

DL � 1 �
ln 2
ln 3

. (5.10)
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This number exactly agrees with the box-counting dimension of the skinny baker
invariant set (see Exercise T4.9). To be precise, the definition of Lyapunov di-
mension applies to an orbit. In dealing with an arbitrary invariant set, such as a
chaotic attractor, we are making the assumption that the orbit whose dimension
we have calculated is in some way representative of the invariant set. For exam-
ple, we have seen that the invariant set of the logistic map (the unit interval)
contains a dense orbit. (Recall that a “dense” orbit is one that comes arbitrarily
close to each point in the invariant set.) The idea of chaotic attractors contain-
ing representative orbits (and, in particular, dense orbits) is developed further in
Chapter 6.

All that remains is to explain the reasoning behind the definition. We start
with an invariant set of a map on �2, such as that of the skinny baker map. We
assume that the Lyapunov exponents satisfy h1 	 0 	 h2 and h1 � h2 � 0. There
is one direction with a stretching factor of eh1 � 1 per iterate (on average), and a
perpendicular direction with shrinking factor 0 � eh2 � 1. In the vicinity of the
orbit, areas change at a rate proportional to eh1eh2 � eh1�h2 � 1 per iterate, which
means that they decrease toward zero.

Figure 5.4 illustrates the situation. A small square of side d becomes (approx-
imately) a rectangle with sides dekh1 and dekh2 after k iterates of the map f. The area
is d2(eh1�h2 )k, which tends to zero, but the dimension of the resulting invariant set
is at least 1, due to the expansion in one direction. Assuming that the invariant
set of the map is bounded, the box shrinks down into a long one-dimensional
curve that eventually doubles back on itself; this is repeated indefinitely. We
expect the dimension of the invariant set to be one plus a fractional amount due
to fractal structure perpendicular to the expanding direction.

With this picture in mind, we can count boxes as we did in Chapter 4, the
difference being that instead of having an actual set to cover, all we have is Figure
5.4. We can cover the image of the initial box under fk by dekh1 � dekh2 boxes of

d

d

Fk

dekh1

dekh2

Figure 5.4 Image of a square under a plane map.
A square of side d is mapped approximately into a rectangle by fk.
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side � � dekh2 . Proceeding as in the case of box dimension, we find that for an
invariant set which can be covered by N(�) boxes of side length �

ln N(�)
� ln �

� �
ln N(d)ek(h1�h2)

ln dekh2
� �

k(h1 � h2) � ln N(d)
kh2 � ln d

(5.11)

�
h2 � h1 � [ln N(d)] � k

h2 � (ln d)� k
.

If we let the box size � go to zero by letting k approach infinity, we find the value
1 � h1 � h2 for the dimension. We call the result of this heuristic argument the
Lyapunov dimension DL � 1 � h1 � |h2|, which agrees with our general definition
above.

EXAM PLE 5 .9

The Lyapunov dimension of the invariant set of the Hénon map discussed
above is 1 � 0.39 � 1.59 � 1.25.

✎ EXERCISE T5 .4
Find the Lyapunov dimensions of the invariant sets of the cat and Ikeda
maps described above.

For completeness, note that the case 0 � h1 	 h2 is trivial, since it corre-
sponds to an invariant set that is discrete (such as a periodic sink). The formula
(5.8) gives 0 in this case. If 0 � h2 � h1, area is expanding on the bounded
invariant set, and the formula gives a dimension of 2.

To complete this section we will extend our heuristic argument to higher
dimensions, in order to understand the definition of Lyapunov dimension for maps
on �m. To decide on the size of boxes that are relevant, we need to find the largest
integer p for which p-dimensional volume is not shrinking under the application
of the map f. For example, for the area-contracting Hénon map of Example 5.6,
p � 1, since area is contracting by a factor of 0.3 per iteration, while the map
is typically expanding in one direction. Then we visualize the invariant set as
p-dimensional tubes winding around one another, giving a dimension somewhat
larger than p. It is clear that p is the largest integer such that eh1�...�hp 	 1, or
equivalently, such that h1 � 
 
 
 � hp 	 0.

We will illustrate a couple of interesting cases in �3, assuming that there
is a single positive Lyapunov exponent. With the assumption h1 � 0 � h2 	 h3,
(5.8) distinguishes two cases, depending on the sign of h1 � h2. Thus arises the
spaghetti-lasagna dichotomy.
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d

Fk
dekh1

dekh2

dekh3

Figure 5.5 Three-dimensional version of Figure 5.4.
A small cube of side d maps into box.

Case 1. h1 � h2 � 0.

In this case p � 1, meaning that the box in Figure 5.5 shrinks toward a
one-dimensional curve which winds around itself as in Figure 5.6(a). The curves
have lengths and widths regulated by h1 and h2, while the perpendicular direction
associated to h3 is irrelevant, since the invariant set contracts to a plane (locally) in
this direction. Ignoring this direction, we cover the invariant set by 2-dimensional
boxes of side dekh2 as in Figure 5.4, and get DL � 1 � h1 � |h2|.

Case 2. h1 � h2 	 0.

Now p � 2, so that the invariant set is the limiting case of two-dimensional
“ribbons” winding throughout a bounded region of �3, as in Figure 5.6(b). The
fractal width of this limit will be decided by the h3 direction. Imagine cutting up
the rectangles with thickness in this figure into three-dimensional cubes of side
dekh3 . The number we need is the product of ekh1 � ekh3 along one direction and
ekh2 � ekh3 along the other. In total, it takes ek(h1�h3) � ek(h2�h3) of these boxes to
cover, resulting in

ln N(�)
� ln �

� �
ln N(d)ek(h1�h3)�k(h2�h3)

ln dekh3

� �
k(h1 � h2 � 2h3) � ln N(d)

kh3 � ln d

�
2h3 � h1 � h2 � [ln N(d)] � k

h3 � (ln d)� k
, (5.12)

which approaches DL � 2 � (h1 � h2)� |h3| in the limit as k → �, since h3 � 0.
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(a) (b)

Figure 5.6 The spaghetti-lasagna dichotomy.
(a) Illustration of Case 1. Since h1 � h2 � 0, a cube eventually shrinks into strands
of spaghetti. (b) In Case 2, where h1 � h2 	 0, you get lasagna.

The general case is an extension of this reasoning. Assuming that h1 � 
 
 
 �

hp 	 0 and h1 � 
 
 
 � hp � hp�1 � 0, we can use (p � 1)-dimensional boxes of side
dekhp�1 . The number of boxes needed is ek(h1�hp�1) � ek(h2�hp�1) � 
 
 
 � ek(hp�hp�1),
resulting in a Lyapunov dimension of

ln N(�)
� ln �

� �
k(h1 � . . . � hp � php�1)

khp�1 � ln d
→ p �

h1 � . . . � hp

|hp�1| . (5.13)

5 .4 A TWO -D I M E N S I O N A L
F I X E D -P O I N T T H E O R E M

In Section 3.4 of Chapter 3, we developed a fixed-point theorem in conjunc-
tion with itineraries for the purpose of determining the periodic points of one-
dimensional maps. A two-dimensional analogue is shown in Figure 5.7. Start with
a geographical map of a rectangular area, say the state of Colorado. Take a second
identical map, shrink it in one direction, stretch it in the other, and lay it across
the first. Then there must be a point in Colorado that lies exactly over itself in
the two maps. The exact orientation of the maps is not important; if the top map
is moved a little from the position shown in Figure 5.7, the fixed point may be
moved slightly, but there will still be one. The principal hypothesis is that the
horizontal sides of the top map are both outside the horizontal sides of the lower
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COLORADO

Denver 

x

78901234567
678901234567
567890123456
456789012345
345678901234
234567890123
123456789012
12345678901

Denver 

Denver 

x

COLORADO

Figure 5.7 The Colorado Corollary.
If a map of Colorado is overlaid with a stretched version of the same map, then
there must be a place in the state lying over itself on the two maps.

map, and the vertical sides of the top one are both inside the vertical sides of the
lower one.

We want to extract the fundamental elements of this interesting fact and
explain why it works. Let f be a continuous map on the plane and S be a rectangular
region. Imagine the image f(S) as some deformed version of a rectangle (as in
Figure 5.8). Now consider restricting your view of the map to the boundary of S
only. In the figure, vectors are drawn connecting each point v on the boundary
to its image point f(v). If you begin at one point on the rectangle boundary and
make one trip around, returning to where you started, the (directions of the)
vectors V(x) � f(x) � x will make an integer number of turns. The vectors will
travel through a cumulative n 
 360◦ for some integer n. Here we are considering
the net effect of going around the entire boundary; the vectors could go several
turns in one direction, and then unwind to end up with zero net turns by the time
you return to the starting point. The net rotations must be an integer, since you
return to the vector V(x) where you started. In Figure 5.8, part (a) shows a net
rotation of 1 turn on the boundary, while part (c) shows a net rotation of 0 turns.
The next theorem guarantees that (a) implies the existence of a fixed point; (c)
does not.

Theorem 5.10 Let f be a continuous map on �2, and S a rectangular region
such that as the boundary of S is traversed, the net rotation of the vectors f(x) � x is
nonzero. Then f has a fixed point in S.

Proof: There is nothing to do if the center c of the rectangle is already a
fixed point. If it isn’t, we slowly shrink the rectangle down from its original size
to the point c, and find a fixed point along the way. As the rectangle shrinks,
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Figure 5.8 Illustration of Fixed-Point Theorem.
A direction V(x) � f(x) � x is defined for each x on the rectangle’s boundary,
assuming that f(x) � x is never zero on the boundary. (a) As x is followed counter-
clockwise around the rectangle, the directions V(x) make one complete clockwise
turn when f(S) lies across S. (b) The direction vectors from (a) are normalized to
unit length and moved to a unit circle. A net rotation of one can be seen. (c) A
rectangle on which the map does not have a fixed point. (d) The vector directions
have a net rotation of zero turns.

the image shrinks, and the vectors V(x) defined along the boundary of S change
continuously, but they must continue to make at least one full turn, unless there
is some point x where the direction V(x) fails to make sense because V(x) � �0.
(The net rotation is an integer and cannot jump from one integer to another while
the vector directions are changing continuously.) Of course, V(x) � �0 implies a
fixed point x � f(x).
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But this failure must occur, because when the shrinking rectangle gets small
enough, its image must move completely away from it, as in Figure 5.8(c), since
f(c) is a nonzero distance from c, and f is continuous. At this point the net rotation
of V(x) is zero, so that such a failure must have occurred sometime during the
shrinking process. �

What is really happening here is that as we shrink the rectangle, we will in
fact develop a fixed point on the boundary of the rectangle, so the net rotation
is not defined. At this point the net rotation can jump discontinuously. As the
rectangle gets very small, all the vectors on its boundary nearly point in the same
direction and the net rotation must be zero.

In fact, this technique could be used to locate a fixed point. Consider a
computer program that computes the net rotation for a rectangle; then when
the rectangle has a nonzero rotation number, the program shrinks the rectangle
slightly. The rotation number will be unchanged. The program keeps shrinking
it until the rotation number suddenly jumps. This locates a rectangle with a fixed
point on it. The program could then search the rectangle’s boundary to locate the
fixed point with high accuracy.

More about fixed point theorems and the use of net rotation, or winding
number, to prove them can be found in texts on elementary topology (Chinn and
Steenrod, 1966).

Remark 5.11 The Fixed-Point Theorem is a property of the topology of
the map alone, and doesn’t depend on starting with a perfect rectangle, as long
as the region has no holes.

Figure 5.9(a) shows a general rectangular set S, and part (b) shows an image
f(S) lying across S, similar to the situation with the map of Colorado. Note that
f(SL) lies entirely to the right of SL, f(SR) lies entirely to the left of SR, f(ST) lies
entirely above ST, and f(SB) lies entirely below SB. These facts imply that the
net rotation is one counterclockwise turn. The theorem says that there must be a
fixed point lying in S.

✎ EXERCISE T5 .5
Prove the Brouwer Fixed-Point Theorem in two dimensions: If f is a one-
to-one map, S is a square and f(S) is contained in S, then there is a fixed
point in S.
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Figure 5.9 The setting for Corollary 5.12.
(a) The domain rectangle S. (b) The image f(S) lies across S consistent with the
hypotheses of Corollary 5.12. There must be a fixed point of f inside S. (c) Another
way the hypotheses can be satisfied.

We summarize these ideas in the next corollary. Check that the nonzero
rotation hypothesis of Theorem 5.10 is satisfied by the hypothesis of Corollary
5.12.

Corollary 5.12 (The Colorado Corollary.) Let f be a continuous map
on �2, and let S be a rectangle in �2 with vertical sides sL and sR, and horizontal
sides sT and sB. Assume that f(sL) and f(sR) are surrounded by sL and sR (in
terms of x-coordinates) and that f(sT) and f(sB) surround sT and sB (in terms of
y-coordinates). Then f has a fixed point in S.

Referring to Figure 5.10, we will say that “f(A) lies across B vertically” if
the images of the right and left sides of A lie inside the right and left sides of B (in
terms of x-coordinates), and the images of the top and bottom sides lie outside
B, one on or above the top of B and one on or below the bottom of B. There is
a similar definition where f(A) lies across B horizontally. In fact, if f is invertible
and f(A) lies across B, then f�1(B) lies across A.

Note that this “lying across” property is transitive. That is, if f(A) lies
across B and if f(B) lies across C with the same orientation, then some curvilinear
subrectangle of f2(A) lies across C with this orientation. (See Figure 5.10.) If
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Figure 5.10 Transitivity of “lying across”.
If f(A) lies across B, and f(B) lies across C, then f2(A) lies across C.

there is a sequence S1 . . . SkS1 such that f(S1) lies across S2, f(S2) lies across S3,
etc., and f(Sk) lies across S1, then we conclude that fk(S1) lies across S1, and by
Theorem 5.10, there is a fixed point of fk in S1. The orbit of this point travels
through all of the Si, so there is a fixed point of fk in each of the Si.

Corollary 5.13 Let f be a map and �S1, . . . , Sk� be rectangular sets in
�2 such that f(Si) lies across Si�1 for 1 � i � k � 1 and f(Sk) lies across S1, all
with the same orientation. Then fk has a fixed point in S1.

5 .5 M A R K OV PA R T I T I O N S
We are now ready to update our definition of covering partition from Chapter 3
to two-dimensional maps. Let f be a one-to-one map of �2.

Definition 5.14 Assume that S1, . . . , Sr are rectangular subsets of a rect-
angle S whose interiors do not overlap. For simplicity we will assume that the
rectangles are formed from segments parallel to the coordinate axes and that the
map f stretches the rectangles in the direction of one axis and contracts in the
direction of the other. Assume that whenever f(Si) intersects Sj in a set of nonzero
area, f(Si) “lies across Sj” so that stretching directions are mapped to stretching
directions, and shrinking directions to shrinking directions. Then we say that
�S1, . . . , Sr� is a Markov partition of S for f.
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Corollary 5.13 gives a way of constructing fixed points from symbol se-
quences of Markov partitions. We can define itineraries of an orbit by assigning a
symbol to each subset in the Markov partition and tracing the appearances of the
orbit in these subsets. To illustrate this idea, we return to the skinny baker map.

EXAM PLE 5 .15

The skinny baker map B in (5.1) has a Markov partition of the unit square
consisting of two rectangles L and R. It is clear from Figure 5.11 that L maps across
L and R vertically under the map B, and similarly for R.

We will construct itineraries for the points in the unit square that belong
to the invariant set of B; that is, those points whose forward iterates and inverse
images all lie in the unit square. In Example 5.3 we denoted the invariant set
by A.

In contrast to one-dimensional Markov partitions, the itineraries for the
skinny baker map B are “bi-infinite”; that is, they are defined for �� � i � �. The
itinerary of a point v � (x1, x2) is a string of subsets from the Markov partition


 
 
 S�2S�1S0•S1S2S3 
 
 
 ,

where the symbol Si is defined by Bi(v) � Si. Note that B is one-to-one, so that
B�1 is defined on the image of B, and in particular for the invariant set A of the
square S. We will form itineraries only for points that lie in the invariant set A
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Figure 5.11 A Markov partition of the skinny baker map.
The partition consists of the left and right halves of the unit square. The center
third of the square has no pre-images.
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of the map B; these points have inverse images B�i(v) for all i. Note also that
B�i(v) is in Sj if and only if v is in Bi(Sj).

To see what itineraries look like, we first investigate the right-hand side
of the decimal point. Figure 5.12(a) shows the subsets of the unit square that
begin with •L and •R, respectively. The lower half is denoted •L because after one
iteration of B, those points all land in the left half of the square. The •L rectangle
is divided into •LL and •LR in Figure 5.12(b), separating the points in the lower
half of •L, which map to the left side after two iterations from the points of the
upper half of •L, which map to the right after two iterations. Further subdivisions,
which track the third iterate of B, are displayed in Figure 5.12(c).

We can already see the use of Markov partitions for locating periodic points
of B. For example, the strip marked •LL in Figure 5.12 must contain a fixed point,
as does •RR, because of the repeated symbol. (The fixed points are (0, 0) and
(1, 1), respectively.)

✎ EXERCISE T5 .6
Find the (x1, x2)-coordinates of the period-two orbits in the strips •LRL
and •RLR of Figure 5.12. Are there any other period-two orbits?

Figure 5.13 shows the forward images of the unit square under the map B.
Figures 5.13(a)-(c) show the images of B, B2, and B3, respectively. The part of the

0 1

1

1/2

.R

.L

0 1

1

1/2

.RR

.RL

.LR

.LL

0 1

1

1/2

.RRR

.RRL

.RLR

.RLL

.LRR
.LRL
.LLR
.LLL

(a) (b) (c)

Figure 5.12 Forward itineraries of points of the unit square under the skinny
baker map.
The unit squares in (a), (b), and (c) show successive refinements of regions defined
by itineraries. The points in •RLR, for example, map to the right half under B, the
left half under B2, and the right half under B3.
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0 1
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0 1

1

1/3 2/3 

LL. RL. LR. RR. 
1

0 11/3 2/3 

RRL.LRL.

(a) (b) (c)

Figure 5.13 Backward itineraries of points of the unit square under the skinny
baker map.
Each point p in RRL•, for example, satisfies p is in L, p is in B(R), and p is in B2(R).

itinerary to the left of the decimal point shows the inverse image history of that
point. For example, consider a point lying in the vertical strip denoted by RRL.
Reading symbols from right to left, the point lies in L, it is the iterate of a point
p1 in R, and it is the second iterate of a point p2 in R. (The reader is encouraged
to choose a point in RRL• and determine p1 and p2 visually.)

It is clear from Figure 5.12 that the horizontal strip represented by •S1 
 
 
 Sk

has width 2�k. An infinite sequence •S1S2 
 
 
 corresponds to a single hori-
zontal line. Similarly, Figure 5.13 shows that the points with symbol sequence
S�k 
 
 
 S�1S0• form a vertical strip of width 3�(k�1), and any particular infinite
sequence extending to the left corresponds to a single vertical line of points.

✎ EXERCISE T5 .7
Construct the periodic table for the skinny baker map, for periods up to 6.

Putting these facts together, we see that each bi-infinite sequence of symbols
is owned by a single point in the unit square. So the itinerary of a point in the
invariant set A gives us a good address to identify that point. The correspondence
between bi-infinite sequences and points in A is not quite one-to-one, since some
sequences identify the same point. For example, L•RL and L•LR both identify the
point (0, 1 � 2).
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Consider a point with itinerary 
 
 
 S�k 
 
 
 S�1S0•S1S2 
 
 
 Sk 
 
 
. The
image of this point under the map B has the itinerary 
 
 
 S�k 
 
 
 S�1S0S1•S2 
 
 


Sk 
 
 
. That is, the effect of the map B on itineraries is to shift the symbols one
to the left, with respect to the decimal point.

Definition 5.16 The shift map s is defined on the space of two-sided
itineraries by:

s(. . . S�2S�1S0•S1S2S3 . . .) � . . . S�2S�1S0S1•S2S3 . . . .

Secondly, as we mentioned above, if the itinerary consists of a repeated
sequence of k symbols, the point is contained in a periodic orbit of period k
(or smaller). The orbit is asymptotically periodic if and only if the itinerary is
eventually periodic toward the right.

This gives us a good way to identify chaotic orbits. Any itinerary that is not
periodic toward the right is not asymptotically periodic. Recall that the Lyapunov
exponents of every orbit of the baker map are � ln 3 and ln 2, the latter being
positive. So any itinerary that does not eventually repeat a single finite symbol
sequence toward the right is a chaotic orbit.

Theorem 5.17 The skinny baker map has chaotic orbits.

5 .6 T H E HO R S E S H O E M A P
The skinny baker map has a regular construction that makes the itineraries fairly
easy to organize. Its discontinuity at the line y � 1 � 2 makes it less than ideal as a
model for continuous natural processes. The horseshoe map, on the other hand,
is a model that can easily be identified in continuous nonlinear maps like the
Hénon map.

For example, Figure 5.14 shows a quadrilateral, which we shall refer to
loosely as a rectangle, and its image under the Hénon map (2.8) of Chapter 2.
Notice that the image of the rectangle takes a shape vaguely reminiscent of a
horseshoe, and lies across the original rectangle. The dynamics that result in the
invariant set are in many ways similar to those of the baker map.

The horseshoe map is a creation of S. Smale. Define a continuous one-
to-one map h on �2 as follows: Map the square W � ABCD to the overlapping
horseshoe image, as shown in Figure 5.15, with h(A) � A�, h(B) � B�, h(C) �

C�, and h(D) � D�. We assume that in W the map uniformly contracts distances
horizontally and expands distances vertically. To be definite, we could assume
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Figure 5.14 A horseshoe in the Hénon map.
A quadrilateral and its horseshoe-shaped image are shown. Parameter values are
a � 4.0 and b � �0.3.

A B

CD

A* B* C* D* 

Figure 5.15 The horseshoe map.
The map sends the square W � ABCD to its image A�B�C�D�, which is shaped
like a horseshoe.
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points are stretched vertically by a factor of 4, and squeezed horizontally by a
factor of 4. Outside W, the only restriction we make on h is that it be continuous
and one-to-one.

In our analysis of the horseshoe map, we focus on the points in the plane
that remain in the rectangle W for all forward and backward iterates. These points
form the invariant set H of h.

Notice that any point in H must be in either the left leg VL or the right
leg VR of W � h(W). We can assign itineraries to these points that depend on
the location, VL or VR, of each iterate. As with the baker map, the itinerary that
gives the forward iterates does not uniquely define a point, and both the past and
future of a point are needed in order to identify it. For a point v in H, we define
the itinerary v of v to be . . . S�3S�2S�1S0•S1S2 . . . , as follows:

1. If hi(v) lies in VL, set Si � L.
2. If hi(v) lies in VR, set Si � R.

Which points in W map into VL and which map into VR? Imagine unfolding
the horseshoe image, stretching it in one direction and shrinking it in another,
so that square A�B�C�D� can be placed exactly on square ABCD. Then the
points corresponding to VL and VR form two horizontal strips, labeled •L and •R
in Figure 5.16. The points in •L (respectively, •R) are those that map into VL

(respectively, VR) and for which S1 is L (respectively, R).
In order to assign coordinate S2, “unfold” h2(W), as shown in Figure 5.17.

The four sets of points whose itineraries begin S1S2 form four horizontal strips,
nested in pairs inside the strips •L and •R. Again, each time we specify an

A B

CD

A* B* C* D* 

VL VR

A* B*

C*D*

.R

.L

(a) (b)

Figure 5.16 Unfolding of the horseshoe map.
The grey (resp., black) region in (b) maps to the grey (resp., black) region in (a).
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(a) (b)

Figure 5.17 Unfolding h2(W), the second iterate of the horseshoe map.
Forward itineraries of points in the unit square are shown.

additional coordinate, we double the number of horizontal strips. When the entire
sequence •S1S2S3 . . . is specified, the set of points represented is a horizontal line
segment. The collection of these segments, for all possible such sequences, forms
a Cantor set of horizontal line segments.

Now we turn to the inverse iterates. Which points have h�1 in VL and which
in VR? To begin with, if the inverse iterate of a point v in W is to remain in W,
v must be in VL or VR. If we do the inverse procedure of h, i.e., unfolding h(W),
then, as we saw previously, the inverse images of VL and VR are the horizontal
strips •L and •R. The set of points within •L that are in VL are labeled L•L in
Figure 5.18(a); those in VR are labeled R•L. Figure 5.18(b) shows the points v in
W for which v has S�1S0• equal to each of the four partial sequences: LL•, RL•,
RR•, and LR•.

By specifying the entire one-sided sequence . . . S�2S�1S0•, we represent
a vertical line segment of points. The collection of all such sequences is a
Cantor set of vertical line segments. To specify exactly one point in H, we
intersect the vertical line segment represented by . . . S�2S�1S0• and the hori-
zontal line segment represented by •S1S2S3 . . .. Thus each two-sided itinerary
. . . S�2S�1S0•S1S2S3 . . . corresponds to exactly one point in H. Notice that an
assumption of uniform stretching in one direction and contraction in the other
is necessary for the width of the vertical strips and height of the horizontal strips
to go to zero, ensuring the one-to-one correspondence.
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.R

.L

L. R.

L.L R.L 

L.R R.R 

LL. LR. RR.RL.

(a) (b)

Figure 5.18 Itineraries of the horseshoe map.
(a) Two-sided itineraries are intersections of vertical and horizontal strips. (b) Back-
ward itineraries correspond to vertical strips.

Figure 5.19 Horseshoe in the forced damped pendulum.
The rectangular-shaped region is shown along with its first image under the time-2�
map. The image is stretched across the original shape, and is so thin that it looks
like a curve, but it does have width. The crosses show the image of the corner points
of the domain rectangle.
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✎ EXERCISE T5 .8
Construct the periodic table for the horseshoe map, for periods up to 6.

We can also define a shift map, identical to Definition 5.16 for the baker
map. Notice that in the case of two-sided itineraries the shift map is invertible.
As with the baker map, the one-to one correspondence says in the context of
this definition that h(v) � w if and only if s(v) � w. In particular, there are
exactly two fixed points in W, whose symbol sequences are . . . RR•RR . . . and
. . . LL•LL . . . .

If we assume that the horseshoe map stretches and contracts uniformly
at points in the invariant set and that stretching directions map to stretching
directions and contracting directions map to contracting directions, then each
orbit in the invariant set has a positive Lyapunov exponent. For example, assume
that the horseshoe in Figure 5.15 has width 1 � 4 of the width of the original square
ABCD, and length three times the original. Then the Lyapunov exponents are
ln 3 and � ln 4. With this assumption, we can say the following.

Theorem 5.18 The horseshoe map has chaotic orbits.

The forced damped pendulum (2.10) of Chapter 2 also has a horseshoe.
Figure 5.19 shows a “rectangle” of initial conditions (�, �̇). The long thin image
set represents the images of those states 2� time units later. The corners of the
image rectangle are marked with crosses. Recall that �, the horizontal variable, is
periodic with period 2�, so that the image set is a connected set.

The horseshoe map of Theorem 5.18 is a prototype. To the extent that a
system such as the forced damped pendulum maps a rectangle across itself in the
shape of a horseshoe, and satisfies appropriate stretching and shrinking conditions,
the rich itinerary structure of the prototype horseshoe of this section will exist.
One of the most profound facts of chaotic dynamics is Theorem 10.7, due to
S. Smale, that shows that horseshoes must exist in the vicinity of any transversal
homoclinic intersection of stable and unstable manifolds.

We have seen that the existence of a horseshoe in a map forces a great
deal of complexity (a two-sided shift map) in the system dynamics. Theoretical
discovery of the horseshoe was followed by the identification of its presence in
real systems. Color Plates 21–22 show a horseshoe in the dynamics of a laboratory
mixing apparatus along with the intricate patterns that follow.
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☞ C H A L L E N G E 5

Computer Calculations and Shadowing

ARE COMPUTER calculations reliable? We have shown the results of com-
puter calculations in this book to demonstrate mathematical concepts. Some
of these calculations involve many thousands of iterations of a map. Because
floating-point computers have a finite degree of precision, there will be small
errors made on essentially every operation the computer carries out. Should the
pictures we make, and conclusions we reach on the basis of computer calculation,
be trusted?

This is a deep question with no definitive answer, but we will begin with
some simple examples, and in Challenge 5 work our way to a surprisingly strong
positive conclusion to the question. We start by considering fixed points, and
establish that it is certainly possible for a computer to produce a misleading
result. Let

f(x, y) � (x � d, y � d), (5.14)

where d � .000001. Consider the initial condition x0 � (0, 0), and suppose the
computer makes an error of exactly �d in each coordinate when f is computed.
Then the computer will calculate the incorrect f̂(0, 0) � (0, 0), instead of the
correct f(0, 0) � (d, d). The computer says there is a fixed point but it is wrong.
The true map has no fixed points or periodic points of any period.

It seems extremely easy to make such a mistake with this map—to find a
fixed point when there isn’t one. From this example one might infer that using
a computer to make mathematical conclusions about interesting maps means
trading the world of mathematical truth for “close enough”.

The problem is compounded for longer-term simulations. If k � 106, the
correct fk(0, 0) � (1, 1) has been turned into f̂ k(0, 0) � (0, 0) by the computer.
Many small errors have added up to a significant error.

Add to this the consideration that the above map is not chaotic. Suppose we
are using a computer to simulate the iteration of a map with sensitive dependence
on initial conditions. A digital computer makes small errors in floating-point
calculations because its memory represents each number by a finite number of
binary digits (bits). What happens when a small rounding error is made by the
computer? Essentially, the computer has moved from the true orbit it was supposed
to follow to another nearby orbit. As we know, under a chaotic map, the nearby
orbit will diverge exponentially fast from the true orbit. To make matters worse,
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these small rounding errors are being made each iteration! From this point of
view, it sounds as if the computer-generated orbit is garbage, and that simulating
a chaotic system is hopeless.

The goal of Challenge 5 is to have you take a closer look, before you melt
your chips down for scrap. It is true that the orbit the computer generates will
not be the actual orbit starting at the initial value the computer was given.
As discussed above, sensitive dependence makes it impossible to do otherwise.
However, it is possible that the computer-generated orbit closely approximates a
true orbit starting from another initial condition, very close to the given initial
condition. Often it is close enough so that the computed orbit found is acceptable
for the intended purpose.

You will start with the skinny baker map B. The first goal is to prove the
fact that if the image B(x0) lies within a small distance of x0, then there must be
a fixed point near that pair of points. In other words, the baker map is immune to
the problem we saw above for map (5.14).

Step 1 Assume that B(x0) differs from x0 by less than d in each coordinate.
In Figure 5.20 we draw a rectangle centered at x0 with dimensions 3d in the
horizontal direction and 2d in the vertical direction. Assume that the rectangle
lies on one side or the other of the line y � 1 � 2, so that it is not chopped in two

2d

B(S0)

S0

B(x0)
x0

3d

Figure 5.20 Image of a small square under the baker map.
The wide rectangle S0 maps across itself, implying that a fixed point exists in the
overlap.
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by the map. Then its image is the rectangle shown; the center of the rectangle is
of course B(x0). Show that the image of the rectangle is guaranteed to “lie across”
the original rectangle. Explain why there is a fixed point of B in the rectangle,
within 2d of x0.

Step 2 Now suppose our computer makes mistakes in evaluating B of size
at most 10�6, and it tells us that B(x0) and x0 are equal within 10�6. Prove that
B has a fixed point within 10�5 of x0.

So far these results are less than astonishing. In order for B(x0) to map
near x0 under the baker map, x0 must be either near the lower left or upper right
corners of the square. Since the two fixed points are (0, 0) and (1, 1), it’s no
surprise that x0 is near a fixed point. The next fact, however, we find amazing.

Step 3 Prove Theorem 5.19.

Theorem 5.19 Let B denote the skinny baker map, and let d � 0. Assume
that there is a set of points �x0, x1, . . . , xk�1, xk � x0� such that each coordinate of
B(xi) and xi�1 differ by less than d for i � 0, 1, . . . , k � 1. Then there is a periodic
orbit �z0, z1, . . . , zk�1� such that |xi � zi| � 2d for i � 0, . . . , k � 1.

[Hint: Draw a 3d � 2d rectangle Si centered at each xi as in Figure 5.21. Show
that B(Si) lies across Si�1 by drawing a variant of Figure 5.20, and use Corollary
5.13.]

Therefore, if you are computing with the skinny baker map on a computer
with rounding errors of d � .000001 and find an orbit that matches up within
the first seven digits, then you know there is a true periodic orbit within at

x0 x1 x2 x3 x0

f f f f

Figure 5.21 Transitivity of lying across.
For the rectangle S0 on the left and repeated on the right, f4(S0) lies across S0 (by
the transitivity of ‘lying across’, Figure 5.10). This implies that f4 has a fixed point.
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most 2d � .000002. (The 2 can be replaced by the slightly smaller
√

13 � 2.)
The striking fact about the theorem is that the length of the orbit is nowhere
relevant. The theorem can be used to verify the existence of a period-one-million
orbit as well as a fixed point. The true orbit that slinks along very close to a
computer-generated “approximate orbit” is called a shadowing orbit. Moreover,
the phenomenon holds even more generally than for periodic orbits.

Step 4 Let f be any continuous map, and assume that there is a set of
rectangles S0, . . . , Sk such that f(Si) lies across Si�1 for i � 0, . . . , k � 1, each
with the same orientation. Prove that there is a point x0 in S0 such that fi(x0)
lies in the rectangle Si for all 0 � i � k. By the way, does k have to be finite?

Step 5 Let B denote the baker map and let d � 0. Prove the following:
If �x0, x1, . . . , xk� is a set of points such that each coordinate of B(xi) and xi�1

differ by less than d for i � 0, 1, . . . , k � 1, then there is a true orbit within 2d of
the xi, that is, there exists an orbit �z0, z1, . . . , zk� of B such that |xi � zi| � 2d
for i � 0, . . . , k.

Step 6 To what extent can the results for the baker map be reproduced
in other maps? What properties are important? Show that the same steps can
be carried out for the cat map, for example, by replacing the 3d � 2d rectangle
appropriately.

Step 7 Assume that a plot of a length one million orbit of the cat map
is made on a computer screen, and that the computer is capable of calculating
an iteration of the cat map accurately within 10�6. Do you believe that the dots
plotted represent a true orbit of the map (to within the pixels of the screen)?

Step 8 Decide what property is lacking in map (5.14) that allows incorrect
conclusions to be made from the computation.

Postscript. Computer-aided techniques based on Challenge 5 have been used to
verify the existence of true orbits near computer-simulation orbits for many different
systems, including the logistic map, the Hénon map, the Ikeda map, and the forced
damped pendulum (Grebogi, Hammel, Yorke, Sauer, 1990). For these systems, double-
precision computations of orbits of several million iterates in length have been shown to
be within 10�6 of a true orbit, point by point. Therefore, the computer pictures shown in
this book represent real orbits, at least within the resolution available to the printer which
produced your copy. Astronomers have begun to apply shadowing ideas to simulations
of celestial mechanics in order to investigate the accuracy of very long orbits of n-body
problems (Quinn and Tremaine, 1992).
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EXERCISES

5.1. Assume that the map f on �m has constant Jacobian determinant, say det Df(x) � D
for each x. Explain why the product of all m Lyapunov numbers is D (equivalently,
the sum of the Lyapunov exponents is ln D).

5.2. Let

f

(
x1

x2

)
�

(
1 1
1 0

)(
x1

x2

)
(mod 1).

Then f is defined on the unit square in �2 (or on the torus). Find the Lyapunov
exponents of any orbit of the map. Notice that these numbers are exactly half those
of the cat map of Example 5.4. Why?

5.3. Show that the cat map of Example 5.4 is one-to-one.

5.4. Draw the transition graphs for the Markov partitions of the skinny baker map and
the horseshoe map.

5.5. Show that the set of chaotic orbits of the horseshoe map is uncountable.

5.6. Show that the invariant set of the horseshoe map contains a dense chaotic orbit.

5.7. Consider the map f(z) � z2, where z represents complex numbers.

(a) Use Euler’s formula from complex arithmetic to show that f corresponds to
the map p(r, �) � (r2, 2�) in polar coordinates.

(b) Find all initial points whose trajectories are bounded and do not converge
to the origin.

(a) (b)

Figure 5.22 Images of the unit square.
The maps used in Exercise 5.8. (a) The image of the unit square intersects itself in
two pieces, and (b) in three pieces.
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(c) Find the Lyapunov exponents of all bounded orbits.

(d) Show that f has chaotic orbits.

5.8. Explore itineraries and periodic points for the two maps defined on the unit square
shown in Figure 5.22. For each map, decide in what ways it is similar to, and different
from, the horseshoe map. Draw and label with symbols the strips of points which
stay in the square for two forward iterates. Repeat for backward iterates. Find the
transition graph for each map, and show examples of periodic orbits.

5.9. Let f be a continuous map on �2, and S a rectangle in �2 with vertical sides sL and
sR, and horizontal sides sT and sB. Assume that f(sL) and f(sR) surround sL and sR

(in terms of x-coordinates) and that f(sT) and f(sB) surround sT and sB (in terms of
y-coordinates). Show that f has a fixed point in S.

5.10. (from Clark Robinson) Let f(x, y) � (5 � x2 � 0.3y, x), a version of the Hénon map.
Define the rectangles VL � [�3, �1] � [�3, 3] and VR � [1, 3] � [�3, 3]. (a) Show
that the net rotation of f on the boundary of the rectangle is nonzero, for both VL

and VR. (b) Show that �VL, VR� is a Markov partition for f . (c) What periods are
present in the periodic orbits of f?
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☞ L A B V I S I T 5

Chaos in Simple Mechanical Devices

ONE OF THE most appealing properties of chaos is the fact that it is exhibited
by systems on a wide variety of size scales, including scales within the first-
hand experience of human beings. One of the most familiar physical systems,
to anyone who has used a swing as a child or watched a grandfather clock, is
the pendulum. We have already used a mathematical model of the pendulum to
illustrate concepts. The equation for the forced, damped pendulum apparently
has chaotic trajectories, as shown by a plot of its time-2� map in Figure 2.7 of
Chapter 2.

Here we present two experiments which were carried out jointly by the
Daimler-Benz Corporation, which has a long-term interest in mechanical sys-
tems, and a nearby university in Frankfurt, Germany. Both start with a simple
mechanical system, and apply periodic forcing. These nonchaotic elements com-
bine to produce chaos. The researchers built a mechanical pendulum that could
be forced externally by torque at its pivot, and a metal ribbon whose oscillations
can be forced by placing it in an alternating magnetic field. Both exhibit chaotic
orbits in a two-dimensional Poincaré map.

Figure 5.23(a) shows a schematic picture of the pendulum constucted by
the group. The damping is due to mechanical friction, and the forcing is applied
through an electric motor at the pivot point of the pendulum. The motor applies
force sinusoidally, so that the torque alternates in the clockwise/counterclockwise
direction, exactly as in Equation (2.10) of Chapter 2.

An experimental time-T map of the pendulum is shown in Figure 5.23(b).
The time T is taken to be the forcing period, which is 1.2 seconds. The plot of an
orbit of the map bears a strong resemblance to the theoretical pendulum attractor
of Figure 2.7 of Chapter 2. There are differences due to discrepancies in param-
eter settings of the computer-generated system as compared to the experimental

Hübinger, B., Doerner, R., Martienssen, W., Herdering, M., Pitka, R., Dressler, U.
1994. Controlling chaos experimentally in systems exhibiting large effective Lyapunov
exponents. Physical Review E 50:932–948.
Dressler, U., Ritz, T., Schenck zu Schweinsberg, A., Doerner, R., Hübinger, B., Mar-
tienssen, W. 1995. Tracking unstable periodic orbits in a bronze ribbon experiment.
Physical Review E 51:1845–8.
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Figure 5.23 The experimental forced damped pendulum.
(a) The experimental setup shows an electric motor at the pivot, controlled by the
computer via the digital-analog converter, provides the periodic forcing. (b) A plot
of (�, �̇) done in time increments of length 1.2 seconds, the period of the forcing
torque at the pivot.

system. The fractal dimension of the time-T map in Figure 5.23(b) was estimated
to be 1.8. Since each point represents an entire loop of the trajectory, the entire
attractor should have dimension 2.8.

The second experimental setup is an elastic bronze ribbon, shown in Figure
5.24(a). Two small permanent magnets have been attached to the free end of the

Figure 5.24 The bronze ribbon experiment.
(a) Two small magnets are attached to the free end of the ribbon. Two large per-
manenet magnets provide an inhomogeneous magnetic field, and an alternating
current through the two coils provide a periodic forcing to the ribbon. (b) An orbit
of the time-2� map. One hundred thousand (x, ẋ) pairs are plotted.
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ribbon. Define the variable x to be the distance of the tip from its equilibrium
position with no bend. Two larger magnets set up a magnetic field such that
the original equilibrium x � 0 is no longer stable. Instead, there are two stable
equilibrium positions symmetrically situated about x � 0. When the oscillating
magnetic field set up by the coils is added, there are no stable equilibria, and the
ribbon wobbles chaotically.

The period of the oscillatory voltage in the coil is 1 second in the experiment
reported here. Figure 5.24(b) shows a plot of the time-1 map for the bronze ribbon.
The fractal structure of the chaotic attractor is clearly visible.
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Chaotic Attractors

A N IMPORTANT aspect of explaining dynamical phenomena is the description
of attractors. Newton knew of two types of attracting motion that systems settle
into: the apple sitting on the ground is in equilibrium, and the planets in the solar
system are undergoing periodic, or more properly quasiperiodic motion, at least to
good approximation. For the next 300 years, these were the only kinds of motion
known for simple dynamical systems. Maxwell and Poincaré were among a small
number of scientists who were not content with this view. The small number
grew, but it was not until the widespread availability of desktop computers in the
last quarter of the 20th century that the third type of motion, chaos, became
generally recognized.

In previous chapters, we have developed the concept of a chaotic orbit.
We have seen they occur in certain one-dimensional quadratic maps and in
two-dimensional maps with horseshoes. But can chaotic motion be attracting?
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If chaotic motion is to be observed in the motion of a physical system, it must
be because the set on which the chaotic motion is occurring attracts a significant
portion of initial conditions. If an experimentalist observes a chaotic motion,
he or she has chosen (often randomly) an initial condition whose trajectory
has converged to a chaotic attractor. This motion could perhaps be described as
“stable in the large” (it attracts a large set of initial conditions) while “locally
unstable” (it is a chaotic orbit).

Figure 6.1 shows two numerically observed chaotic attractors. The black
set in each picture was obtained by plotting a finite trajectory that appears to
be chaotic. Throughout the calculation, the orbit appears to have a positive
Lyapunov exponent and it fails to approach periodic behavior. Figure 6.1(a)
shows a chaotic orbit (in black) of the Hénon map:

f(x, y) � (a � x2 � by, x), (6.1)

where a � 1.4 and b � 0.3. The gray set in Figure 6.1(a) is the basin of the chaotic
orbit, the set of initial values whose orbits converge to the black set. The iteration
of any point chosen randomly in the gray region would produce essentially the
same black set—that is, after throwing out the initial segment of the trajectory

5

�11
�8 8

(a)

6

�3
�3 6

(b)

�

Figure 6.1 Chaotic attractors of plane maps.
Each part shows a chaotic attractor in black inside a gray basin. (a) The chaotic
attractor of the Hénon map. White points are attracted to infinity. (b) The chaotic
attractor of the Ikeda map. Gray points approach the chaotic attractor; white points
approach the sink in the upper right corner at (3.00, 3.89).
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during the approach to the attractor. The white set consists of initial values whose
orbits diverge to infinity.

Figure 6.1(b) shows a chaotic orbit of the Ikeda map, whose governing
equation is:

f(x, y) � (R � C2(x cos 
 � y sin 
), C2(x sin 
 � y cos 
)), (6.2)

where 
 � C1 � C3 � (1 � x2 � y2), and R, C1, C2, and C3 are fixed parameters.
For this picture, the settings R � 0.9, C1 � 0.4, C2 � 0.9, and C3 � 6 were
used. This map was proposed as a model of the type of cell that might be used
in an optical computer. The chaotic orbit is shown in black; the gray set consists
of initial values whose orbits are attracted to the chaotic orbit. The white set
consists of initial values whose orbits converge to the sink located approximately
at (3.0026, 3.8945).

The two most important properties of a chaotic attractor are demonstrated
in Figure 6.1. A chaotic attractor: (1) contains a chaotic orbit, and (2) attracts a
set of initial values that has nonzero area in the plane. Both of these properties
are fairly intuitive, but both need further elaboration to make them more precise.

6 .1 F O RWA R D L I M I T S E T S
The idea of a chaotic orbit is familiar by now. By definition, it is not periodic or
asymptotically periodic, and it has at least one positive Lyapunov exponent. Now
we introduce the idea of “chaotic attractor”, keeping in mind as our model the
black limit sets in the previous figures. First of all, a chaotic attractor is a “forward
limit set”, which we define formally below. It is in some sense what remains after
throwing away the first one thousand, or one million, or any large initial number
of points of a chaotic orbit. That means that the orbit continually returns to the
vicinity of these points far into the future.

Figure 6.2(a) shows the first 1000 points of two different orbits of the Ikeda
map. The two initial conditions are marked by crosses. The two initial values lie
in separate basins (see Figure 6.1(b)), so their orbits have different asymptotic
behavior. Figure 6.2(b) shows iterates 1,000,001 to 2,000,000 of the same two
orbits.

For one orbit, the 106 plotted points lie on the chaotic Ikeda attractor
shown in Figure 6.1(b). We predict you will see a similar picture no matter
how many iterates are thrown away (and no matter which initial condition is
chosen within the basin). This set of points that won’t go away is the forward
limit set of the orbit. In the other case, the 106 points lie on top of the sink at
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6

�3
�3 6

(a)
�3 6

(b)

Figure 6.2 Two orbits of the Ikeda map.
(a) Two initial values are denoted by crosses. The next 1000 iterates of each initial
value are plotted. One orbit approaches the chaotic attractor, the other approaches
a sink. (b) Points 1,000,001–2,000,000 of each orbit are plotted. Part (b) shows
some points of the forward limit set of the chaotic orbit of part (a).

� (3.0026, 3.8945). Higher iterates of the orbit do not return to the initial point
since the orbit becomes trapped by the sink. The forward limit set in this case is
the set consisting of the sink alone. It is an attractor but it is not chaotic.

The forward limit set of an orbit � fn(x0)� is the set of points x to which
the orbit forever makes occasional neighborhood visits. No matter how small
� � 0 is chosen, and no matter how long N we wait, there is an n � N with
|fn(x0) � x| � �. For example, if fn(x0) tends toward a period-two orbit, then the
forward limit set is comprised of the two points of the periodic orbit. If x is one of
these two points, then |fn(x0) � x| would be small only for large odd values of n
or large even values.

Definition 6.1 Let f be a map and let x0 be an initial condition. The
forward limit set of the orbit � fn(x0)� is the set

�(x0) � �x : for all N and � there exists n � N such that |fn(x0) � x| � ��.

This set is sometimes called the �-limit set of the orbit; � is the Greek letter
omega, the last letter of the Greek alphabet. If �(x0) is a forward limit set of some
orbit and x1 is another initial condition, then we will say that the orbit � fn(x1)�
(or the point x1) is attracted to �(x0) if �(x1) is contained in �(x0).
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The definition of forward limit set of an orbit is the set of points to which
the orbit returns arbitrarily close, infinitely often. Points in an orbit may or may
not be contained in its forward limit set. The forward limit set may have no points
in common with the orbit, as is the case with the forward limit set of an orbit
converging to a sink. In this case the forward limit set is one point, the sink,
which is approached by the orbit as closely as you specify and as far forward in
time as you want to require. The orbit is attracted to the sink.

Fixed-points are forward limit sets because x0 � �(x0). So are periodic
orbits, for the same reason: The forward limit set of the orbit is the orbit itself.
These are examples of finite sets, but larger sets can also be forward limit sets. In
Chapter 3, we found a chaotic orbit for the logistic map G � g4 that is dense in
the unit interval [0, 1]. This orbit returns arbitrarily close infinitely often to every
number between 0 and 1. Therefore the forward limit set of this orbit is [0, 1].
The fact that the chaotic orbit is dense in [0, 1] is an important one. It means
that no smaller set could be its forward limit set.

✎ EXERCISE T6 .1
Show that if x0 is in a forward limit set, say �(y), then the entire orbit
� f n(x0) : n 	 0� is in �(y).

✎ EXERCISE T6 .2
Show that a forward limit set cannot contain a fixed point sink unless it is
itself a fixed point sink. Can a forward limit set contain any fixed points and
be more than a single point?

Definition 6.2 Let � fn(x0)� be a chaotic orbit. If x0 is in �(x0), then
�(x0) is called a chaotic set. In other words, a chaotic set is the forward limit set
of a chaotic orbit which itself is contained in its forward limit set. An attractor is
a forward limit set which attracts a set of initial values that has nonzero measure
(nonzero length, area, or volume, depending on whether the dimension of the
map’s domain is one, two, or higher). This set of initial conditions is called the
basin of attraction (or just basin), of the attractor. A chaotic attractor is a chaotic
set that is also an attractor.

The requirement that the defining chaotic orbit be in its own forward limit
set ensures that a chaotic set has a dense orbit (why?), and thus provides that
the set be irreducible. We stress that not all chaotic sets are chaotic attractors, as
Exercise T6.3 shows.
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✎ EXERCISE T6 .3
(a) Show that the logistic map ga(x) � ax(1 � x), for a � 4, has a

chaotic set, which is not a chaotic attractor.
(b) Show that the horseshoe (described in Chapter 5) contains a

chaotic set.

Figure 6.3 shows the observable attractors for the one-parameter family of
one-dimensional maps ga(x) � ax(1 � x) over a values in the range 2 to 4. Each
vertical slice of the figure is the attractor for a fixed value of a. The figure was
made as follows: for each value of a, a random initial value in [0, 1] is chosen;
the orbit of this point is calculated and the first 100 iterates are discarded. During
this time, the initial condition converges toward the attractor. The next 10,000
iterates are plotted and should reflect an orbit on (more precisely, infinitesimally
close to) the attractor.

The attractors vary widely for different values of the parameter a. When
for a given a value the chosen initial point is in the basin of a fixed point
attractor, only one point will appear in the vertical slice at that a value. This
behavior characterizes a values below 3. When the initial value is in the basin
of a periodic attractor, isolated points in the attracting orbit will appear in the
vertical slices. This behavior occurs for subintervals of a values throughout the
diagram. Beginning at a � 3, for example, there is a period-two attracting orbit,
which becomes a period-four attractor, then a period-eight attractor, etc., as the
parameter is changed. An interval of parameter values for which the only attractor
is a periodic orbit is called a periodic window in the bifurcation diagram.

For certain a values (larger than a � 3.57), one observes an entire interval
or intervals of plotted points. (Recall this is one orbit plotted.) Calculation of
Lyapunov exponents at these parameter values indicates that the orbits are indeed
chaotic. In addition, virtually every choice of initial value in (0, 1) yields the same
diagram, indicating a large basin of attraction for these sets. The last a value with
a visible limit set is a � 4. For a values larger than 4, the orbits of almost all points
in [0, 1] leave the interval and become unbounded. Although there appear to be
entire intervals of a values with chaotic attractors, looks can be deceiving, as the
Computer Experiment 6.1 shows.

➮ C O M P U T E R E X P E R I M E N T 6 . 1

Let ga(x) � ax(1 � x). Choose a subinterval of length 0.01 in the parameter
a which appears to contain only chaotic attractors (for example, a set within
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Figure 6.3 Attractors and Lyapunov exponents for the logistic family of maps.
(a) Attractors of ga are plotted on the vertical scale. The horizontal axis is the
parameter a. (b) Lyapunov exponents of the attracting orbit of ga versus parameter
a. The exponent rises and hits zero at period doublings and becomes positive in the
chaotic region. It drops below 0 when there is a periodic attractor.
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[3.9, 4.0], according to Figure 6.3(a)). Magnify the region until a periodic window
is located.

Disclaimer 6.3 This is a good place to remark on the difficulty of proving
rigorously that orbits are chaotic, even for simple systems. For a particular vertical
slice in Figure 6.3, even if the best computer approximation can indicate a positive
Lyapunov exponent and a nonperiodic orbit, this is not a mathematical proof. If
the orbit is periodic with period longer than the number of atoms in the universe,
no simple computer iteration scheme will tell us. The same caution is due for
the two attractors in Figure 6.1. Although they appear to be chaotic orbits from
computer experiments, there is at the time of this writing no rigorous proof of
that fact.

➮ C O M P U T E R E X P E R I M E N T 6 . 2

Choose a point p on the attractor of ga for a � 3.9. (Find this point by
taking the 1000th point of a trajectory in the basin.) Choose another point x in
the basin, and let mn be the minimum distance between p and the first n iterates
of x. Print out values of n and mn each time mn changes. Does mn → 0 as n → �?
Can you quantify the rate at which it goes to zero? (In other words, what is the
functional relation of mn and n?)

Figure 6.4 shows two other examples of probable chaotic attractors of plane
maps. In each case, the chaotic attractor was plotted by choosing an initial point
in the gray region and plotting trajectory points 1001, 1002, . . . , 1,000,000.
Experience has shown that almost any other point chosen from the gray would
have yielded the same picture. Of course, we can subvert the process by choosing
a nonattracting fixed point for the initial point, on or off the attractor. Then the
plot would only show a single point, assuming that small computer roundoff errors
did not push us away.

6 .2 C H A OT I C AT T R A C TO R S
A fixed-point sink is easily seen to satisfy the definition of attractor, since it
attracts an entire �-neighborhood. (The forward limit set of each point in the
neighborhood is the sink.) Periodic sinks are also attractors.

238



6 . 2 C H AOT I C AT T R AC TO R S

14

�2
�8 8

(a)

4

�2
�� �

(b)

Figure 6.4 More chaotic attractors of plane maps.
The attractors are shown in black inside their basins, which are shown in gray.
(a) A chaotic attractor of the Hénon map (6.1) with a � 2.1, b � �0.3. The basin
boundary, as well as the attractor, is fractal. White points are attracted to infinity.
(b) The chaotic attractor of the time–2� map of the forced damped pendulum. The
basin of this attractor, shown in gray, consists of virtually all initial conditions.

The unit interval is the forward limit set of a chaotic orbit of the logistic
map G � g4 and it attracts an interval of initial conditions (itself), so it is a
chaotic attractor. Similarly, the unit interval is a chaotic attractor for the tent
map T2(x).

EXAM PLE 6 .4

Let f(x) � 2x (mod 1). As in Exercise 3 of Chapter 4, we can associate
with each point in [0, 1] an itinerary (an infinite sequence of 0’s and 1’s) on
which the shift map represents the action of f. All points in the subinterval
[(k � 1)2�n, k2�n], 1 � k � 2n, are represented by a finite sequence of n symbols.
By constructing a symbol sequence that contains every possible finite sequence,
a point with an orbit that is dense in [0, 1] can be shown to exist.

✎ EXERCISE T6 .4
Show that [0, 1] is a chaotic attractor for the 2x (mod 1) map of Example
6.4.
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W H AT IS AN ATTRACTO R?

The term attractor is used for the forward-time limit of an orbit
that attracts a significant portion of initial conditions. A sink is an
example, since it attracts at least a small neighborhood of initial
values.

An attractor should be irreducible in the sense that it includes only
what is necessary. The set consisting of the sink together with one
of the orbits approaching the sink is also a set that attracts initial
conditions, but for the reason that it contains the sink. Only the sink
is actually needed. Irreducibility is guaranteed by requiring that the
attractor contain a dense orbit, an orbit that comes arbitrarily close
to each point in the attractor.

Besides irreducibility, the attractor must have the property that a
point chosen at random should have a greater-than-zero probability
of converging to the set. A saddle fixed point is irreducible in the
above sense and does attract orbits: for example, the one whose initial
condition is the fixed point itself. However, this initial condition is
very special; the definition requires that an attractor must attract a
set of initial values of nonzero state space volume.

Chaos introduces a new twist. Chaotic orbits can be attracting, as
shown in this chapter. If the forward limit set of such a chaotic orbit
contains the orbit itself (and therefore contains a dense orbit), then
the attractor is a chaotic attractor.

EXAM PLE 6 .5

The map of Example 6.4, although not continuous as a map of the interval,
is continuous when viewed as the map f(�) � 2� of the circle. Using polar
coordinates, we can embed f into a map of the plane

f(r, �) � (r1 � 2, 2�).

See Figure 6.5. There is a repelling fixed point at the origin, which is the forward
limit set �(0). The circle r � 1 is also the forward limit set of an orbit with
Lyapunov exponent ln 2, which we can conclude from Example 6.4. This means
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x

y

Figure 6.5 Map for which the unit circle is a chaotic attractor.
Two orbits are shown for the map f(r, �) � (r1 � 2, 2�) given in polar coordinates.
All orbits except the origin converge to the unit circle r � 1, which has a dense
chaotic orbit.

the circle is a chaotic set. All points other than the origin are attracted to this
circle, making the circle a chaotic attractor.

EXAM PLE 6 .6

The piecewise linear map on the unit interval illustrated in Figure 6.6 is
called the W-map. If we restrict our attention to the subinterval S � [1 � 4, 3 � 4],

0 1/2 1

1/2

1

A1 A2 A3 A4

Figure 6.6 The W-map of the unit interval.
The set [1 � 4, 3� 4] is a chaotic attractor.
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the map operates like the tent map. Points from the remainder of the unit interval
are immediately mapped into S. Because of the analogy with the tent map, we
know that S contains a dense orbit with Lyapunov exponent ln 2. That makes S a
chaotic set. Further, the entire unit interval is attracted to S, making S a chaotic
attractor.

EXAM PLE 6 .7

Hénon observed the attractor shown in Figure 6.7 for the map (6.1) with
a � 1.4 and b � 0.3. In addition, he found a quadrilateral in the plane, shown
in Figure 6.7(b), which maps into itself when the function is applied to it once.

A bounded neighborhood that the map sends into itself, such as the quadri-
lateral, is called a trapping region. A quadrilateral trapping region, together with
its forward image, is shown in Figure 6.7(c). The Jacobian determinant of H is
J � �0.3 (minus the coefficient of y) at all points in the plane. Thus the image
under H of a region of the plane is decreased by the factor |J| � 0.3. Because H

Figure 6.7 The Hénon attractor and a trapping region.
The attractor of the map f(x, y) � (1.4 � x2 � 0.3y, x) shown in (a) is contained
in a quadrilateral trapping region shown in (b). The trapping region maps into itself
and contracts in area by the factor 0.3. The quadrilateral and its image under f are
shown in (c). Since f is area-contracting, forward iterates of the trapping region
shrink down to a limit set (the attractor) that has zero area. The figures in (a) and
(c) are superimposed in (d).
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is area-contracting, forward iterates of the quadrilateral shrink to zero area in the
limit.

What are the implications of a trapping region for an area-contracting map
such as the Hénon map? One iterate maps the region inside itself to the shape in
Figure 6.7(c), which is 30% of the original size. Two iterates map the quadrilateral
to 9% of its original size, to a shape folded further within itself. The limit of this
process is the chaotic attractor shown in Figure 6.7(d). Numerical approximation
of the Lyapunov exponents on the attractor yield .39 and �1.59, so that this is
a chaotic attractor—assuming that it is not just a long periodic orbit. That fact
is surprisingly hard to prove and as of this writing, it has not been established for
these parameter values of the map. It is likely that there is a chaotic attractor
here but it may never be proved. One difficulty is that arbitrarily small changes
in the parameters (0.3 and 1.4) can be made so that the system has an attracting
periodic orbit.

EXAM PLE 6 .8

The circle r � 1 in Example 6.5 is a good prototype of a chaotic attractor.
It is properly contained in a basin of attraction (unlike the logistic map g4), and
the map is smooth, at least around the attractor (unlike the W-map). It is not,
however, an invertible map. By increasing the dimension of the underlying space,
we can define a similar example, called the solenoid, in which the map is one-to-
one. The underlying set of this chaotic attractor was described first by topologists
(see, for example, (Hocking and Young, 1961)) and then as a dynamical system
by (Smale, 1967).

We define the map f on the solid torus (a subset of �3), which we think of
as a circle of two-dimensional disks. The disk D in �2 can be defined with one
complex coordinate z, as D � �z : |z| � 1�. Then points in the solid torus T can
be described by two coordinates:

T � �(t, z) : t � [0, 1) and |z| � 1, z � ��.

The map f : T → T is defined as follows:

f(t, z) �

(
2t (mod 1),

1
4

z �
1
2

e2�it
)

,

where eix � cos x � i sin x.
In order to understand this map geometrically, we refer to the picture of T

and f(T) in Figure 6.8(a). Think of the solid torus T as being stretched to a longer,
thinner loop. Then it is twisted, doubled over, and placed back into T. The image
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(a) (b)

Figure 6.8 Schematic picture of the solenoid map.
(a) The solid torus T together with the image f(T) is shown. (b) A cross-sectional
disk Dt in the solid torus T is shown together with the intersection of f(T), f2(T),
and f3(T) with Dt.

of T now intersects each cross-sectional disk Dt in two smaller disks, D0 and D1,
each 1

4 the diameter of the original. The second iterate f2(T) intersects each Dt in
four smaller disks, etc. Figure 6.8(b) shows a cross-sectional disk Dt of T together
with intersections of f(T), f2(T), and f3(T) with Dt. Any two points in T whose
t-coordinates differ by 1

2 map to the same cross-sectional disk.

✎ EXERCISE T6 .5
(a) Identify the pre-images of D0 and D1, the intersection of f(T) with the
cross-sectional disk Dt. (b) Show that D0 and D1 are symmetric with respect
to the origin in Dt.

The map f is uniformly stretching in the t direction: Each orbit has a positive
Lyapunov exponent of ln 2. The attractor A �

⋂
n	0 fn(T) intersects each Dt in a

Cantor set, and A has zero volume inside T, the basin of attraction. The solenoid
has many interesting topological and dynamical properties that we do not pursue
here. For a detailed discussion, see (Robinson, 1995).

We leave the task of identifying a dense orbit for A to the following exercise.

✎ EXERCISE T6 .6
Find a way to assign bi-infinite symbol sequences to points in A, as done
earlier for the horseshoe map. Determine an orbit that is dense in A.
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6 .3 C H A OT I C AT T R A C TO R S O F E X PA N D I N G
I N T E R V A L M A P S

In this section, we take a closer look at a class of maps of the unit interval that
have chaotic attractors. Let p0 � p1 � 
 
 
 � pk be points on the real line and let
I be the interval [p0, pk]. Define the closed intervals Ai � [pi�1, pi]. Let f : I → I be
a map whose derivative satisfies |f ′(x)| 	 � � 1 except possibly at the pi (where
f may have a corner, or in some other way not be differentiable). We will call
such a map a piecewise expanding map with stretching factor � . We say that
�p0, p1, . . . , pk� is a stretching partition for the piecewise expanding map f if, for
each i, f(Ai) is exactly the union of some of the intervals A1, . . . , Ak. A stretching
partition satisfies the covering rule of Chapter 3, which allows the construction
of transition graphs for the partition intervals Ai. (It is also the one-dimensional
analogue of the concept of “Markov partition,” defined in Chapter 5.) An example
of a piecewise expanding map is the W-map of Figure 6.6.

We found in Chapter 3 that when there is a partition that satifies the
covering rule, symbol sequences can be used to keep track of the itinerary of an
orbit of f . For example, if the orbit begins in interval A1, then maps into A2, and
then to A3, its itinerary would begin: .A1A2A3 . . .. Of course, there is a countable
set of orbits that eventually land precisely on one of the points pi. We ignore these
special orbits in this discussion and concentrate on the remaining uncountably
many orbits.

Not all sequences of the symbols A1, . . . , Ak may be achievable by orbits of f .
For example, let f be the W-map as shown in Figure 6.6. Any orbit that begins
in subinterval A1 � [0, 1 � 4] maps to the subinterval [1 � 4, 3 � 4] � A2 � A3; but
f(A2) � f(A3) � A2 � A3, meaning that the orbit will never return to A1. That
is, .A1A2 . . . is an allowable symbol sequence for f , but .A2A1 . . . is not. In general,
if B and C are two subintervals for a stretching partition, C is allowed to follow B
in the symbol sequence of a point of the interval I if and only if f(B) � C � (other
subintervals).

The fact that a continuous map f is stretching by at least the factor � � 1
causes the dynamics of f to be well organized. Let L be the length of the entire
interval I. For an allowable sequence .B1 . . . Bn of n symbols (repetitions allowed),
there is a subinterval of length at most L

�n�1 , which we call an order n subinterval,
whose points follow that itinerary. For each n, the order n subintervals virtually fill
up I: every point of I either lies in some order n subinterval or is on the boundary
of an order n subinterval. An infinite allowable sequence represents one point in
I, since L � �n�1 → 0 as n → �.
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The derivative (fn) ′(x0) � f ′(xn�1) 
 
 
 f ′(x0) is greater than �n for each x0,
so

|(fn) ′(x0)|1 � n 	 �. (6.3)

The Lyapunov number for the orbit starting at x0 is therefore at least � , if the
limit exists. Although our formal definition of chaotic orbit in Chapter 3 requires
the Lyapunov number to be greater than 1, we will relax the requirement that
the limit of (6.3) exists for the statement of Theorem 6.11. For readers with an
advanced calculus background, we point out that whether the limit exists or not,

lim inf |(fn) ′(x0)|1 � n 	 � � 1, (6.4)

which is a more inclusive definition of chaos.

EXAM PLE 6 .9

Let f be the tent map on the unit interval [0, 1]. We studied the itineraries
of this map in Chapter 3 as an example of chaotic orbits. It is clear that �0, 1

2 , 1�
is a stretching partition for the tent map, with � � 2.

EXAM PLE 6 .10

Let f be the W-map of Figure 6.6. The stretching partition is 0 � 1
4 �

1
2 � 3

4 � 1, and � � 2. Allowable symbol sequences are arbitrary sequences of
A1, A2, A3, A4 with the restriction that every symbol must be followed by either A2

or A3. Thus A1 and A4 can appear only as the leftmost symbol. This corresponds
to the fact that the intervals [0, 1 � 4] and [3 � 4, 1] map into the interval [1 � 4, 3 � 4]
and the points never return. The transition graph for this partition is shown in
Figure 6.9.

The facts we have developed in this section are summarized in the following
theorem. The proof of the last property is left to the reader.

Theorem 6.11 Let f be a continuous piecewise expanding map on an interval
I of length L with stretching factor �, and let p0 � 
 
 
 � pk be a stretching partition
for f.

1. Each allowable finite symbol sequence .A1 
 
 
 An corresponds to a subinterval
of length at most L

�n�1 .
2. Each allowable infinite symbol sequence .A1A2A3 
 
 
 corresponds to a single

point x of I such that f i(x) � Ai�1 for i 	 0, and if the symbol sequence is
not periodic or eventually periodic, then x generates a chaotic orbit.
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A1

A2

A3

A4

Figure 6.9 Transition graph for the W-map.
The unit interval is partitioned into four subsets, A1, A2, A3, and A4, on each of
which the map is stretching. The �-limit set of any orbit is A2 � A3.

3. If, in addition, each pair of symbols B and C (possibly B � C) can be
connected by allowable finite symbol sequences B 
 
 
 C and C 
 
 
 B, then f
has a dense chaotic orbit on I, and I is a chaotic attractor.

✎ EXERCISE T6 .7
Assuming the hypothesis of Theorem 6.11 and, in addition, that each pair
of symbols can be connected by an allowable symbol sequence, show that
f has a chaotic orbit that is dense in I.

Theorem 6.11 is extremely useful for proving the existence of chaotic
attractors on the real line. Consider the tent map, with stretching partition
0 � 1

2 � 1 and symbols A1 and A2 corresponding to the two subintervals. Since
f(A1) � A1 � A2 and f(A2) � A1 � A2, the pair of symbols A1 and A2 can occur
in either order, and part 3 of Theorem 6.11 applies. The unit interval is a chaotic
attractor for the tent map.

The W-map of Example 6.10 has a stretching partition 0 � 1
4 � 1

2 � 3
4 � 1.

Because A2A1 cannot occur, part 3 of Theorem 6.11 does not apply. However, if
we restrict the map to [ 1

4 , 3
4 ], part 3 again applies to show that [ 1

4 , 3
4 ] is a chaotic

attractor. In fact this attractor is essentially the tent map attractor.
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EXAM PLE 6 .12

(Critical point is period three.) Define

f(x) �

{
1

a�1 � ax if 0 � x � 1
a�1

a � ax if 1
a�1 � x � 1

,

where a �
√

5�1
2 is the golden mean. The map is sketched in Figure 6.10. Note

that a is a root of the equation a2 � a � 1. Because of the careful choice of a,
we have f( 1

a�1 ) � 1, and since also f(1) � 0 and f(0) � 1
a�1 , the peak of the

function f occurs at c � 1
a�1 � 0.382, which is a period-three point for f .

The partition 0 � c � 1 is a stretching partition for f . Define the subinter-
vals A � [0, c] and B � [c, 1]. Notice that f(A) � B and f(B) � A � B. Allowable
symbol sequences for orbits of f consist of strings of A and B such that A cannot
be followed by A. The stretching factor under f is the golden mean, which is
approximately 1.618.

Can part 3 of Theorem 6.11 be applied? Symbol sequences AB, BA, and BB
can obviously occur, and since ABA is also permitted, all possible pairs can be
connected. Therefore [0, 1] is a chaotic attractor for the map f .

0 1c

c

A B

A B

1

2

0 1c

(a) (b) (c)

Figure 6.10 Map for which the critical point is period three.
(a) Sketch of map. (b) Transition graph. (c) Invariant measure for (a); see Section
6.4.
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6 .4 ME A S U R E

In our quest to identify and describe fixed-point, periodic, and chaotic attractors,
we have considered them as sets of points. Although this does a good job of
characterizing the attractor when the point set is finite, the case of chaotic
attractors presents an extra challenge, since they must contain infinitely many
points.

When studying chaotic attractors we must give up on the idea of keeping
track of individual points, and instead do our bookkeeping over regions. The
term “measure”, to which this section is devoted, refers to a way of specifying how
much of the attractor is in each conceivable region.

For example, imagine a box drawn in the plane that contains part of the
Ikeda attractor, such as box 1 in Figure 6.11. How could we measure the proportion
of points on the attractor that are contained in the box? We will use the “rain

1

�2
�1 2

1 2

3 4

Figure 6.11 100,000 points on the Ikeda attractor.
The proportion landing in each of the 4 boxes is an approximation to the natural
measure of the Ikeda attractor for that box. Boxes 1, 2, 3, and 4 contain about 30%,
36%, 17%, and 17%, respectively.
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gauge” technique and measure the proportion of points that fall into box 1 from
a typical orbit.

Choose an initial point at random to start an orbit. At each iteration, we
record whether the new orbit point fell into the box or not. We keep this up for a
long time, and when we stop we divide the number that landed in the box by the
total number of iterates. The result would be a number between 0 and 1 that we
could call the “Ikeda measure” of the box. In Figure 6.11, 29,798 of the 100,000
points shown lie in box 1, so that approximately 30% of the points fall into the
box.

This number could be regarded as the probability that a point of the Ikeda
attractor lies in the box. A box located away from the attractor would have Ikeda
measure zero. In fact, on the basis of the 100,000 points shown, the Ikeda measure
of box 1 is 0.29798. The measures of boxes 2, 3, and 4 are 0.35857, 0.17342,
and 0.17003, respectively. These four numbers add up to 1 because each of the
100,000 points landed in one of the four boxes.

Now we will make our ideas on measure a little more precise. The two most
important properties of the rain-gauge method are nonnegativity and additivity,
namely:

(a) The measure of any set is a nonnegative number, and
(b) The measure of a disjoint union of a finite or countably infinite number

of sets is equal to the sum of the measures of the individual sets.

If A is a subset of B, we will denote by B � A the complement of A in B, the set of
points in B that do not belong to A. It follows from (b) that if A is a subset of B,
then the measure of the complement B � A is the difference of the measures of B
and A.

A method of assigning a number to each closed set so that (a) and (b) are
satisfied is called a measure. (See Section 8.2 for an introduction to closed sets.)
The ordinary measures we are used to, such as length on �1, area on �2, and
volume on �3 are called Lebesgue measures when extended to apply to all closed
sets. Although fact (b) is true when the union is a countably infinite union, we
can’t expect (b) to hold for uncountable disjoint unions. The length of a single
point is zero, and an uncountable union of them makes a unit interval with length
one.

Once a measure is defined for all closed sets, we can extend the definition
to many other sets with the help of properties (a) and (b). For example, using
Lebesgue measure (length) m on the real line gives the length of the unit interval
to be one, m([0, 1]) � 1. Since we know that the length of the single point set
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�0� is zero, we can find the measure of the half-open interval (0, 1]. Rule (b) gives
m(�0�) � m((0, 1]) � m([0, 1]), so that we find m((0, 1]) � 1. In this way we can
define the measure of many nonclosed sets. A Borel set is a set whose measure
can be determined by the knowledge of the measure of closed sets and a chain
of applications of rules (a) and (b). The set (0, 1) is a Borel set because rule (b)
allows definition of its measure from other sets: m((0, 1)) � m(�1�) � m((0, 1]),
from which we conclude that m((0, 1)) � 1 � 0 � 1. To summarize, the Borel
sets are those that have a well-defined number assigned to them by the measure.

It is hard to conceive of a set of real numbers that is not a Borel set, but
they do exist. See any book on measure theory for examples. Strictly speaking,
our definition of measure, with its scope limited to closed sets and those that can
be formed from them using (b), is often called a Borel measure. Less restrictive
definitions of measure exist but will not be considered in this book.

✎ EXERCISE T6 .8
Show that if � is a measure, A and B are Borel sets, �(B) � 0, and A 	 B,
then �(A) � 0.

The rain-gauge method of generating a measure has two further properties
that are important. First, since it measures the proportion of points falling into a
set, it satisfies the following property:

(c) The measure of the entire space equals 1.

A measure that satisfies rule (c) is called a probability measure.
Finally, notice that the amount of rain-gauge measure in a box using points

generated by the map f is the same as the measure of the pre-image of the box
under the map f . The reason is that all of the pre-iterates of B will end up in B on
their next iteration. A measure � that satisfies the property

(d) �(f�1(S)) � �(S) for each closed set S

is called an f-invariant measure. Ikeda measure satisfies both (c) and (d), so it is
an f-invariant probability measure.

Lebesgue measure is generated by the rain-gauge technique by replacing
the Ikeda attractor with a random number generator. Assume that we have a
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method for producing pairs (x, y) of real numbers that randomly fill the square
[0, 1] � [0, 1] in a uniform way. In theory, if the random number generator is truly
random and uniform, we could use this device to find area: We could call it “area
measure”, by analogy with Ikeda measure. A box with dimensions a � b lying in
the square [0, 1] � [0, 1] will get a proportion of randomly generated points that
converges to ab with time.

A random number generator on a computer is pseudo-random, meaning
that it is a deterministic algorithm designed to imitate a random process as closely
as possible. If the random number program is run twice with the same starting
conditions, it will of course yield the same sequence of random numbers, barring
machine failure. That is the meaning of “deterministic”. This is sometimes useful,
as when a simulation needs to be repeated a second time with the same random
inputs. However, it is important to be able to produce a completely different
random sequence. For this reason most random number generators allow the user
to set the seed, or initial condition, of the program. If the algorithm is well-
designed, it will measure the area of an a � b rectangle to be ab, no matter which
seed is used to start the program.

The relationship of an invariant measure to a chaotic attractor is the same
as the relationship of standard area to a uniform random number generator. The
important concept is that the percentages of points in a given rectangle in Ikeda
measure are independent of the initial value of the orbit used in the rain-gauge
technique. If this is true, then Ikeda measure of a rectangle has a well-defined
meaning. In the same way, we know that an a � b rectangle in the plane has area
ab, even though there may be no uniform random number generator nearby to
check with.

Both chaotic attractors and random number generators could fail to give the
correct measure. For all we know, our random number generator might produce
the infinite sequence of points (1� 2, 1 � 2), (1 � 2, 1 � 2), . . . . In fact, this sequence
of numbers is as likely to occur as any other sequence. Obviously this output
of random numbers will not correctly measure sets. It would imply that the set
[0, 1 � 4] � [0, 1 � 4] has measure zero. The corresponding problem with an attractor
occurs, for example, if the initial value used to generate the points happens to be a
fixed point. The orbit generated will not generate Ikeda measure; it will generate
a measure that is 1 if the box contains the fixed point, and 0 if not.

To have a good measure, we need to require that almost every initial value
produces an orbit that in the limit measures every set identically. That is, if we
ignore a set of initial values that is a measure zero set, then the limit of the
proportion of points that fall into each set is independent of initial value. A
measure with this property will be called a natural measure.
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6 .5 N AT U R A L M E A S U R E

Now we are ready to make the rain-gauge measure into a formal definition. We
need to introduce some fine print to the definition of rain-gauge measure that is
important for borderline cases. First, define the fraction of iterates of the orbit
� f i(x0)� lying in a set S by

F(x0, S) � lim
n→�

#� f i(x0) in S : 1 � i � n�
n

. (6.5)

EXAM PLE 6 .13

Let f(x) � x� 2. All orbits are attracted to the sink x � 0. First define
S1 � [�1, 1]. For any initial point x0, the fraction F(x0, S1) � 1. Even if the orbit
doesn’t start out inside S1, it eventually moves inside S1 and never leaves. The
ratio in the definition (6.5) tends to one in the limit as n → �. If we define S2

to be a closed interval that does not contain 0, then the orbit would eventally
leave the interval and never return, so that F(x0, S2) � 0 for any x0. For these sets
S1 and S2, the rain-gauge technique gives the correct answer, since the measure
should be concentrated at x � 0.

Now let S3 � [0, �) and compute the fraction F(x0, S3) for various x0. If
x0 � 0, no iterates of the orbit lie in S3, and F(x0, S3) � 0. If x0 	 0, then all
iterates of the orbit lie in S3, and F(x0, S3) � 1.

Because one of the boundaries of S3 lies at the sink, this is a borderline
case. The rain-gauge technique is too unrefined to work here. When we ask what
proportion of a typical orbit lies in S3, we get conflicting answers, depending on
x0. A similar problem occurs for an orbit starting in the basin of, say, a chaotic
Hénon attractor S. If v0 is attracted to S but not in S, then fn(v0) gets very close
to S, but is never in S. Hence the fraction F(v0, S) � 0. On the other hand, if
we fatten the attractor by a tiny amount, the problem is fixed. In other words, if
r � 0, then F(v0, N(r, S)) � 1, where we have used the notation

N(r, S) � �x : dist(x, S) � r�, (6.6)

to denote the set of points within r of the set S.
The difficulty in assigning the correct value to the fraction of the orbit that

lands inside a given set is solved by the following definition of natural measure.
Assume that f is a map and that S is a closed set.
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Definition 6.14 The natural measure generated by the map f , also
called f-measure, is defined by

�f(S) � lim
r→0

F(x0, N(r, S)) (6.7)

for a given closed set S, as long as all x0 except for a measure zero set give the
same answer.

Quite often we will want to apply this definition to f limited to a subset of its
domain. It is common for this subset to be a basin of attraction. For example, the
logistic map G(x) � 4x(1 � x) on the unit interval [0, 1] has a natural measure
which is investigated in detail in Challenge 6. Notice that even in this case, we
must allow for a measure zero set of x0 which do not go along with the crowd. Not
every orbit � fn(x0)� can be used to evaluate �f(S). For example, we know that G
has two fixed-point sources in [0, 1]. Neither of these orbits can be used; nor can
any of the periodic orbits of G. Together they make up a countable set, which has
measure zero. On the other hand, the map G on the entire real line does not have
a natural measure, since initial values outside of [0, 1] are attracted to �, and so
the condition that the exceptions be a measure zero set is not satisfied.

✎ EXERCISE T6 .9
Show that properties (a), (b), (c), and (d) in the definition of invariant
measure hold for a natural measure.

With this more sophisticated version of natural measure, the difficulty of
determining the fraction of an orbit lying within a set disappears. For f(x) � x� 2
and S � [0, �), the set N(r, S) � [�r, �), and F(x0, N(r, S)) � 1 for any x0, as
long as r � 0. Therefore �f(S) is the limit as r → 0, which is 1. (The fact that
F(x0, N(0, S)) � 0 if x0 � 0 is now irrelevant.)

Any interval [a, b] with a � 0 � b will have f-measure equal to 1. Even if
some of the original iterates miss the interval, eventually they will stay within a
neighborhood of 0 so small that it is contained entirely within [a, b]. The limiting
ratio of orbit points in the interval to the total approaches 1 in the limit.

Now consider an interval with one endpoint equal to 0. This is another
borderline case. An orbit converging to 0 eventually moves into the set N(r, S)
for any r � 0. Therefore �f([a, 0]) � �f([0, b]) � 1.

A singleton set �x� has f-measure zero if x � 0 because it is contained in an
interval with f-measure zero, by Exercise T6.8. On the other hand, �(�0�) � 1.
The measure of other sets can be found using the above facts in conjunction with
Property (b). For example, �((0, 1]) � �([0, 1]) � �(�0�) � 1 � 1 � 0.
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W H Y M EASURE?

Why do we study measure in connection with chaotic attractors? At
the very least, we must know that the natural measure of a map is not
atomic if there is a chaotic attractor. More importantly, the existence
of a natural measure allows us to calculate quantities that are sampled
and averaged over the basin of attraction and have these quantities
be well-defined. Perhaps the most important such quantity for the
purposes of this book is the Lyapunov exponent. For an orbit of a
one-dimensional map f , the Lyapunov exponent is ln |f ′| averaged
over the entire orbit. In order to know that the average really tells us
something about the attractor (in this case, that orbits on the attractor
separate exponentially), we must know that we will obtain the same
average no matter which orbit we choose. We must be guaranteed
that an orbit chosen at random spends the same portion of its iterates
in a given region as any other such orbit would. That is precisely what
a natural measure guarantees.

Recent progress has been made in the mathematical verification of the
existence of chaotic attractors for the Hénon family fa,b. (Benedicks
and Carleson, 1991) have shown that for small negative Jacobian
(small fixed b), there is a set of parameter a values with positive
Lebesgue measure such that the attracting set for fa,b is a chaotic
attractor. Interestingly, the particular a values with chaotic attractors
cannot be specified. Also, (Benedicks and Young, 1996) have shown
that there is a natural measure associated with these attractors. See
(Palis and Takens, 1993) for more details.

A measure is atomic if all of the measure is contained in a finite or countably
infinite set of points. To summarize our conclusions for Example 6.13, the natural
measure for f is the atomic measure located at the sink x � 0. In general, a map
for which almost every orbit is attracted to a fixed-point sink will, by the same
reasoning, have an atomic natural measure located at the sink.

Ikeda measure is an example of a measure generated by a map. A different
measure would be generated by a chaotic Hénon attractor as in Figure 6.1(a) or
6.4(a). Other map-generated measures are extremely simple and look nothing
like a random number generator.
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✎ EXERCISE T6 .10
Let f be a map of the interval I for which almost every orbit is attracted by
a period-k sink. Find the natural measure of f and justify your answer.

6 .6 I N V A R I A N T M E A S U R E F O R
ON E -D I M E N S I O N A L M A P S

In this section we show how to find invariant measures, and in some cases natural
measures, for a class of one-dimensional maps. We will call a map f on [0, 1]
piecewise smooth if f(x), f ′(x), and f ′′(x) are continuous and bounded except
possibly at a finite number of points. Recall that a map is piecewise expanding if
furthermore there is some constant � � 1 such that |f ′(x)| 	 � except at a finite
number of points in [0, 1]. Example 6.12 and the W-map of Example 6.10 satisfy
these conditions.

✎ EXERCISE T6 .11
Verify that the following maps on [0, 1] are piecewise expanding. (a)The
piecewise linear map f (x) � a � bx mod 1, where a 	 0 and b � 1. (b) The
tent map Tb(x) with slopes �b, where 1 � b � 2.

Theorem 6.15 Assume that the map f on [0, 1] is piecewise smooth and
piecewise expanding. Then f has an invariant measure �. Furthermore the density is
bounded, meaning that there is a constant c such that �([a, b]) � c|b � a| for every
0 � a � b � 1.

The proof of this theorem is beyond the scope of this book (see (Lasota
and Yorke, 1973) and (Li and Yorke, 1978)). Next we give some particularly
nice examples for which � can be exactly determined. It is possible for piecewise
expanding maps to have more than one attractor, in which case each attractor will
have a natural measure. We will see that for some choices of [a, b], it is possible
that �([a, b]) � 0.

In the examples we discuss, invariant measures have a simple description as
the integral of a piecewise constant nonnegative function. That means that the
measure of a subset S of I will be given by

�(S) �

∫
S

p(x) dx
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for some

p(x) �




p1 if x � A1
...
pn if x � An

,

where the pi 	 0 and
∑n

i�1 pilength(Ai) � 1. When the measure of a set is given
by the integral of a function over the set, such as the relationship between the
measure � and the function p in this case, then the function p is called the density
of the measure.

For example, consider the W-map, shown in Figure 6.12 along with the
density that defines its invariant measure:

p(x) �




p1 � 0 if 0 � x � 1 � 4
p2 � 2 if 1 � 4 � x � 1 � 2
p3 � 2 if 1 � 2 � x � 3 � 4
p4 � 0 if 3 � 4 � x � 1

. (6.8)

Notice that the function p(x) is the density of a probability measure, since∫ 1
0 p(x) dx � 1. This measure is invariant under the W-map f because

�(S) �

∫
S

p(x) dx �

∫
f�1(S)

p(x) dx � �(f�1(S))

0 1/2 1

1/2

1

A1 A2 A3 A4

1

2

0 1/2 1

(a) (b)

Figure 6.12 The W-map.
(a) The map is linear on each of four subintervals. (b) The density p(x) that defines
the invariant measure of (a). According to this graph, the measure of an interval
inside [1 � 4, 3� 4] is twice its length.
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for each set S. Let S � [1 � 4, 3 � 8] for purposes of illustration. Then f�1(S) �

[3 � 16, 5 � 16] � [11 � 16, 13 � 16], as can be checked using Figure 6.12. The �-
measure of S is

�(S) �

∫
S

p(x) dx �

∫ 3 � 8

1 � 4
2 dx � 2(3 � 8 � 1 � 4) � 1 � 4,

which is the same as

�(f�1(S)) �

∫
f�1(S)

p(x) dx

�

∫ 4 � 16

3 � 16
0 dx �

∫ 5 � 16

4 � 16
2 dx �

∫ 12 � 16

11 � 16
2 dx �

∫ 13 � 16

12 � 16
0 dx

� 0 � 1 � 8 � 1 � 8 � 0. (6.9)

As another example, assume instead that S is completely contained in [0, 1 � 4].
No points map to it, so f�1(S) is the empty set, which must have measure zero as
required by the definition of measure. We can state this as a general fact.

✎ EXERCISE T6 .12
Let f be a map on the interval I and let � be an invariant measure for f .
Show that if S is a subset of I that is outside the range of f , then �(S) � 0.

✎ EXERCISE T6 .13

Prove that �(S) � �(f �1(S)) for the invariant measure � of the W-map,
for any subset S of the unit interval.

Next we show how to calculate the invariant measures for expanding
piecewise-linear maps of the interval. In general we assume that the interval
is the union of subintervals A1, . . . , Ak, and that the map f has constant slope si

on subinterval Ai. We also assume that the image of each Ai under f is exactly a
union of some of the subintervals. Define the Z-matrix of f to be a k � k matrix
whose (i, j) entry is the reciprocal of the absolute value of the slope of the map
from Aj to Ai, or zero if Aj does not map across Ai. For the W-map, defined in four
subintervals A1, A2, A3, A4, the Z-matrix is

Z �




0 0 0 0
1 � 2 1 � 2 1 � 2 1 � 2
1 � 2 1 � 2 1 � 2 1 � 2
0 0 0 0


 . (6.10)
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As we explain below, a Z-matrix has no eigenvalues greater than 1 in
magnitude, and 1 is always an eigenvalue. Any eigenvector x � (x1, . . . , xk)
associated to the eigenvalue 1 corresponds to an invariant measure of f , when
properly normalized so that the total measure is 1. The normalization is done by
dividing x by x1L1 � 
 
 
 � xkLk, where Li is the length of Ai. The ith component
of the resulting eigenvector gives the height of the density pi on Ai.

For example, the Z-matrix (6.10) for the W-map has characteristic polyno-
mial P(
) � 
3(
 � 1) and eigenvalues 1,0,0,0. All eigenvectors associated with
the eigenvalue 1 are scalar multiples of x � (0, 1, 1, 0). Normalization entails
dividing x by 0 
 1 � 4 � 1 
 1 � 4 � 1 
 1 � 4 � 0 
 1 � 4 � 1 � 2, yielding the den-
sity p � (0, 2, 2, 0) of Equation (6.8). Because the other eigenvalues are 0, the
measure defined by this density is a natural measure for the W-map.

There may be several different invariant measures for f if the space of
eigenvectors associated to the eigenvalue 1 has dimension greater than one. An
eigenvalue is called simple if this is not the case, if there is only a one-dimensional
space of eigenvectors. If 1 is a simple eigenvalue and if all other eigenvalues of
the Z-matrix are strictly smaller than 1 in magnitude, then the resulting measure
is a natural measure for f , meaning that almost every point in the interval will
generate this measure.

Next we explain why the Z-matrix procedure works. Let pi be the total den-
sity of the invariant measure on Ai, assumed to be constant on the subinterval.
The amount of measure contained in Ai is Lipi. Since the slope of f is constant
on Ai, one iteration of the map distributes this measure evenly over other subin-
tervals. The image of Ai has length siLi, where si is the absolute value of the slope
of the map on Ai. Therefore the proportion of Ai’s measure deposited into Aj is
Lj � (Lisi). (For the W-map, the si are all 2.) Since the pi represent the density of
an invariant measure by assumption, the total measure mapped into Aj from all
Ai’s must total up to Ljpj. For the W-map this can be summarized in the matrix
equation 



0 0 0 0
L2

L1s1

L2
L2s2

L2
L3s3

L2
L4s4

L3
L1s1

L3
L2s2

L3
L3s3

L3
L4s4

0 0 0 0







L1p1

L2p2

L3p3

L4p4


 �




L1p1

L2p2

L3p3

L4p4


 . (6.11)

Since the Li are known, finding the invariant measure �pi� is equivalent to finding
an eigenvector of the matrix in (6.11) with eigenvalue 1. This matrix turns out
to have some interesting properties. For example, notice that each column adds
up to exactly 1. That is because the length of the image f(Ai) is siLi, so the
numerators in each column must add up to siLi.
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Definition 6.16 A square matrix with nonnegative entries, whose
columns each add up to 1, is called a Markov matrix.

A Markov matrix always has the eigenvalue 
 � 1, and its corresponding
eigenvector has nonnegative entries. If the remaining eigenvalues are smaller than
1 in magnitude, then all vectors except linear combinations of eigenvectors of the
other eigenvalues tend to the dominant eigenvector upon repeated multiplication
by the matrix. See, for example, (Strang, 1988). In our application, when this
eigenvector is normalized so that the sum of its entries is 1, its ith entry is the
amount of measure Lipi in Ai.

We can simplify (6.11) quite a bit by defining

D �




L1

. . .

Lk


 , p �




p1
...
pk


 .

It is a fact that multiplying a matrix by a diagonal matrix diag(L1, . . . , Lk) on
the left results in multiplying the ith row by Li, while multiplying by a diagonal
matrix on the right multiplies the ith column by Li. Then (6.11) can be written
DZD�1Dp � Dp, which simplifies to Zp � p by multiplying both sides by D�1

on the left. This concludes our explanation since it shows that solving for an
eigenvector of Z with eigenvalue 1 will give an invariant measure.

✎ EXERCISE T6 .14

Show that the Z-matrix for the tent map is

(
1
2

1
2

1
2

1
2

)
, and that the density

which defines the natural measure is the constant p(x) � 1 on [0, 1]. Thus
the natural measure for this map is ordinary Lebesgue (length) measure.

EXAM PLE 6 .17

(Critical point is period-three.) Recall the map from Example 6.12, shown
in Figure 6.10(a). The Z-matrix is (

0 1
a

1
a

1
a

)
, (6.12)

where a � (
√

5 � 1)� 2 satisfies a2 � a � 1. The characteristic equation is

2 � (1 � a)
 � 1 � a2 � 0. We know (
 � 1) is a factor, and so the factoriza-
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tion (
 � 1)(
 � c) � 0 follows, where c � 1 � a2 � 0.382. The eigenvalues are
1 and �c. Since the latter is smaller than 1 in absolute value, there is a natural
measure. An eigenvector associated to 1 is (x1, x2) � (1, a). The normalization
involves dividing this eigenvector by x1L1 � x2L2 � 1 
 c � a 
 (1 � c). The result
is that the natural measure for f is �(S) �

∫
S p(x) dx, where

p(x) �

{
1 � 1 � (1 � a2) if 0 � x � c
a � a� (1 � a2) if c � x � 1

.

The measure is illustrated in Figure 6.10(c).

EXAM PLE 6 .18

Let

f(x) �




1
2 � 2x if 0 � x � 1

4

� 1
2 � 2x if 1

4 � x � 3
4

5
2 � 2x if 3

4 � x � 1
,

as shown in Figure 6.13. The transition graph is shown in Figure 6.13(b).
There is a stretching partition 0 � 1 � 4 � 1 � 2 � 3 � 4 � 1, but no dense

orbit, because A1 and A4 cannot be connected by an itinerary. There are, however,

0 1/2 1

1/2

1

A1 A2 A3 A4

A1

A2

A3

A4

0 1

1

2

1/2

q

2-q

(a) (b) (c)

Figure 6.13 A piecewise linear map with no dense orbit.
(a) Sketch of map. (b) Transition graph. (c) One invariant measure for (a). In this
case, there is no unique invariant measure—there are infinitely many.
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dense orbits for the map restricted to [0, 1 � 2] and to [1 � 2, 1]. The Z-matrix is

Z �




1 � 2 1 � 2 0 0
1 � 2 1 � 2 0 0
0 0 1 � 2 1 � 2
0 0 1 � 2 1 � 2


 .

The eigenvalues of Z are 1, 1, 0, 0. Both (2, 2, 0, 0) and (0, 0, 2, 2), as well as
linear combinations of them, are eigenvectors associated to 1. As a result, there
are many invariant measures for f : for any 0 � q � 1, the measure defined by

p(x) �

{
q if 0 � x � 1 � 2
2 � q if 1 � 2 � x � 1

.

is invariant. The map has no natural measure.

EXAM PLE 6 .19

(Critical point eventually maps onto fixed point.) Let

f(x) �

{
2 �

√
2(x � 1) if 0 � x � c√

2(1 � x) if c � x � 1
,

where c � 2�
√

2
2 and d � 2 �

√
2 is a fixed point of f . See Figure 6.14. Check that

the slopes of the map are
√

2 and �
√

2. The stretching factor for f is � �
√

2,

0 1

1

c

c

A B
d

d

C

A B

C
0 1

1

2

d

(a) (b) (c)

Figure 6.14 Map in which the critical point is eventually periodic.
(a) Sketch of map. (b) Transition graph. (c) Invariant measure for (a).
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and the Lyapunov exponent is ln
√

2 for each orbit for which it is defined. The
transition graph is shown in Figure 6.14(b).

Notice that f3(c) � d, so that the critical point is an eventually fixed
point. The partition 0 � c � d � 1 is a stretching partition for f . Define the
subintervals A � (0, c), B � (c, d), and C � (d, 1). Then f(A) � C, f(B) � C,
and f(C) � A � B. Check that all pairs of symbols can be connected. According
to Theorem 6.11, f has a dense chaotic orbit on I, and I is a chaotic attractor for f .

The Z-matrix is

Z �


 0 0 1 � �

0 0 1 � �

1 � � 1 � � 0


 ,

where the stretching factor for f is � �
√

2. The eigenvectors of this matrix are
1, �1, and 0. The invariant measure associated to the eigenvalue 1 turns out to
be a natural measure. Check that the measure is defined by

p(x) �

{
1 � (2d) if 0 � x � d

1 � (
√

2d) if d � x � 1
. (6.13)

➮ C O M P U T E R E X P E R I M E N T 6 . 3

Write a computer program to approximate the natural measure of an interval
map. Divide the interval into equally-spaced bins, and count the number of points
that fall into each bin from a given orbit. Calculate the natural measure for
Example 6.19 and compare with (6.13). Then calculate the natural measure for
the logistic map and compare to the answer in Challenge 6.
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☞ C H A L L E N G E 6

Invariant Measure for the Logistic Map

WE HAVE SEEN how to construct invariant measures for simple piecewise
linear maps of the interval. More complicated maps can be significantly more
difficult. In Challenge 6 you will work out the invariant measure of the logistic
map G(x) � 4x(1 � x).

In Chapter 3 we found a conjugacy C(x) � (1 � cos �x)� 2 between the
tent map T � T2 and the logistic map, satisfying CT � GC. Exercise T6.14 shows
the invariant measure of the tent map to be m1, ordinary length measure on the
unit interval. Some elementary calculus will allow the transfer of the invariant
measure of the tent map to one for the logistic map.

Step 1 If S is a subset of the unit interval, prove that the sets T�1(S)
and C�1G�1C(S) are identical. (Remember that T and G are not invertible; by
T�1(S) we mean the points x such that T(x) lies in S.)

Step 2 Use the fact that m1 is invariant for the tent map to prove that
m1(S) � m1(C�1G�1C(S)) for any subset S.

0 1/2 1

1

1

2

0 1/2 1

(a) (b)

Figure 6.15 The logistic map G.
(a) Sketch of map. (b) The invariant measure for G.
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Step 3 Prove that the the definition �(S) � m1(C�1(S)) results in a
probability measure � on the unit interval.

Step 4 Use Step 2 to show that � is an invariant measure for G.

Step 5 It remains to compute the density p(x). So far we know

�(S) �

∫
C�1(S)

1 dx.

Using the change of variable y � (1 � cos �x)� 2, rewrite �(S) as an integral∫
S

p(y) dy

in y over the set S, and find the density p(y). See Figure 6.15(b) for a graph of
p(x). (Answer: p(x) � 1 � �

√
x � x2)
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EXERCISES

6.1. Show that a chaotic attractor cannot contain a sink.

6.2. For each of the piecewise linear maps shown in Figures 6.10(a), 6.13(a), and 6.14(a),
find all periods for which there are periodic points.

6.3. Let f(x, y) � ( 4
� arctan x, y� 2). Find all forward limit sets, attractors, and basins for

each attractor. What is the basin boundary, and where do these points go under
iteration?

6.4. Let f(x) � �x� 2. The attractor is the set �0�. Find the fractions F(x0, �0�) and
F(x0, N(r, �0�)) for all x0 and r � 0. Compute the fraction F(x0, [0, �)) for all x0.
Find the natural measure �f .

6.5. Let g(x) � 2x(1 � x), which as a map of the interval [0, 1] has a source at x � 0 and
a sink at x � 1� 2. What natural measure does g generate?

6.6. Let f be the map of Example 6.19, shown in Figure 6.14(a). Let g � f2 be the second
iterate of f . Sketch g, and explain why it doesn’t have a natural measure. What are
the invariant measures of g?

6.7. Find an invariant measure for the map f(x) � 2 � x2 on the interval [�2, 2].

6.8. Define the interval map

f(x) �




3� 4 � 2x if 0 � x � 1� 4
3x� 2 � 1� 8 if 1 � 4 � x � 3� 4
4 � 4x if 3� 4 � x � 1

(a) Sketch the graph of f .

(b) Find a partition and transition graph for f .

(c) For what periods does f have a periodic orbit?

(d) Find the minimum stretching factor � . Is the interval I � [0, 1] a chaotic
attractor for f?

(e) Find the natural measure of f .

6.9. Let p be a point in �n. Prove that the assignment of 0 to each set not containing
p and 1 to each set containing p is a probability measure on �n. This is the atomic
measure located at p.
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☞ L A B V I S I T 6

Fractal Scum

A PLANE MAP was studied in an innovative experiment involving the hy-
drodynamics of a viscous fluid. A tank was filled with a sucrose solution, 20%
denser than water, at a temperature of 32◦C (think corn syrup). The plane on
which the dynamics was observed was the surface of the syrupy fluid at the top of
the tank.

The two-dimensional map on the fluid surface was defined as follows. Start-
ing with the fluid at rest, a pump located below the surface was turned on for a
fixed time period, and then turned off. The experimental configuration is shown
in Figure 6.16. The pump draws off some of the solution from the middle of the

Figure 6.16 Schematic view of the tank.
Sucrose solution is intermittently pumped out of the tank from the bottom and
returns through outlets in the bottom. Floating flourescent tracer particles (scum)
on the surface of the fluid are excited by ultraviolet lamps and photographed by a
digital camera.

Sommerer, J. 1994. Fractal tracer distributions in complicated surface flows: an application
of random maps to fluid dynamics. Physica D 76:85-98.

267



C H AOT I C AT T R AC TO R S

tank, and reinjects it at the bottom of the tank. There is a resulting mixing effect
on the fluid surface. After the pump is turned off, the fluid is allowed to come to
rest. The rest state of the fluid surface is by definition the result of one iteration
of the plane map.

In order to follow an individual trajectory, tiny tracer particles were dis-
tributed on the fluid surface. The particles were fluorescent plastic spheres, each

Figure 6.17 A 6-inch � 6-inch snapshot of the tracer distribution for the
pulsed flow.
Bright areas are due to a dense collection of the tracer material, which correspond
to a buildup of invariant measure. The distribution has a fractal appearance. This
exposure took several seconds.
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one being four one-thousandths of a millimeter in diameter. When ultraviolet
lamps were turned on, the tracer particles floating on the surface were illumi-
nated and photographed by the camera looking down on the surface. A typical
photograph is shown in Figure 6.17. The variations in the relative illumination
are caused by variations in the density of the tracer particles, which in turn ap-
proximate the natural measure of the attractor. Notice the pronounced fractal
structure caused by the mixing effects of the map.

This experiment should be modeled, strictly speaking, as a map with some
randomness. Due to the difficulty with exact control of the experimental condi-
tions, each time the pump is run, slightly different effects occur; the map applied
is not exactly the same each iteration, but an essentially random choice from a
family of quite similar maps. For such maps it is important to focus not so much
on individual trajectories but on collective, average behavior.

In order to estimate the Lyapunov exponents of this two-dimensional map,
a different arrangement of tracer particles was used. A droplet of tracer was applied
to the surface with a pipette, forming a small disk as shown in Figure 6.18(a).
After the map is iterated once by running the pump as described, the disk becomes
an approximate ellipse as shown in Figure 6.18(b).

Determining the Lyapunov exponent from the definition would mean start-
ing with a tiny disk and observing the evolution of the ellipse for many iterations.
The stretching factor along the longest ellipse axis, when expressed on a per-step
basis, would give the Lyapunov number. However, this approach is impractical

Figure 6.18 Evolution of a disk under the map.
On the left is a circular tracer particle patch on the surface of the fluid. After a few
iterations of the map (pumping oscillations), the disk is transformed into an ellipse.
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in this experiment. The ellipse cannot have an infinitesimal size, so it becomes
folded and distorted after just a few iterates.

This problem was solved by starting a new disk after each iteration. After
the first iteration, the ellipse of tracer particles is carefully removed by suction.
A new circular patch was placed at the point of removal, and a new iteration
commenced. Several dozen iterations were done in this way, and the ellipses
recorded. For each ellipse, the (geometric) average radius among all directions
of the ellipse was calculated. Then the geometric average of these radii over
all iterations was declared the dominant Lyapunov number. This is a reasonable
approximation for the Lyapunov number as long as the stretching directions of
the various ellipses are evenly distributed in two dimensions.

For each ellipse, the ratio of the ellipse area to the original disk area gives
an estimate for the Jacobian determinant of the map. Therefore the smaller of the
two Lyapunov numbers can also be found. The estimates for the larger Lyapunov
number 1.68 and the Jacobian determinant J � 0.83 are shown in Figure 6.19,
converging to their apparent limiting values after 100 iterations. Since we know
that the Lyapunov exponents satisfy 
1 � 
2 � ln J, the Lyapunov exponents are

Figure 6.19 Convergence of the Lyapunov number estimate.
Experimental estimates of the largest Lyapunov number L1 and area-contraction J.
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ln 1.68 � 0.52 and �0.71. The Lyapunov dimension of the syrup attractor shown
in Figure 6.16 is therefore 1 � 0.52 � 0.71 � 1.73.

This experiment was carried out and the results interpreted with consider-
ably more care than our description shows. In particular, great pains were taken to
correctly interpret the results in light of the random influences on the dynamics.
In addition, the experiment was repeated several times at different temperatures,
where the viscosity of the solution is different. At 38◦C, the syrup is runnier,
and the Lyapunov dimension is about 1.6. At 27◦C, the Lyapunov dimension is
estimated to be 1.9. Consult the original source for more details.
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Differential Equations

IN THE FIRST six chapters, we modeled physical processes with maps. One of the
most important uses of maps in scientific applications is to assist in the study of
a differential equation model. We found in Chapter 2 that the time-T map of a
differential equation may capture the interesting dynamics of the process while
affording substantial simplification from the original differential equation.

A map describes the time evolution of a system by expressing its state as a
function of its previous state. Iterating the map corresponds to the system moving
through time in discrete updates. Instead of expressing the current state as a
function of the previous state, a differential equation expresses the rate of change
of the current state as a function of the current state.
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A simple illustration of this type of dependence is Newton’s law of cooling,
which we discussed in Chapter 2. Consider the state x consisting of the difference
between the temperature of a warm object and the temperature of its surroundings.
The rate of change of this temperature difference is negatively proportional to
the temperature difference itself:

ẋ � ax, (7.1)

where a � 0. Here we have used the notation ẋ to represent the derivative of
the function x. The solution of this equation is x(t) � x(0)eat, meaning that the
temperature difference x decays exponentially in time. This is a linear differential
equation, since the terms involving the state x and its derivatives are linear terms.

Another familiar example from Chapter 2, which yields a nonlinear differ-
ential equation, is that of the pendulum. The pendulum bob hangs from a pivot,
which constrains it to move along a circle, as shown in Figure 2.4 of Chapter 2.
The acceleration of the pendulum bob in the tangential direction is proportional
to the component of the gravitational downward force in the tangential direction,
which in turn depends on the current position of the pendulum. This relation of
the second derivative of the angular position with the angular position itself is
one of the most fundamental equations in science:

ẍ � � sin x. (7.2)

The pendulum is an example of a nonlinear oscillator. Other nonlinear oscillators
that satisfy the same general type of differential equation include electric circuits,
feedback systems, and many models of biological activity.

Most physical laws that have been successful in the study of dynamically
changing quantities are expressed in the form of differential equations. The prime
example is Newton’s law of motion F � ma. The acceleration a is the second
derivative of the position of the object being acted upon by the force F. Newton
and Leibniz developed the calculus in the seventeenth century to express the fact
that a relationship between x and its derivatives ẋ, ẍ and so on, can determine
the motion in the past and future, given a specified present (initial condition).
Since then, calculus and differential equations have become essential tools in the
sciences and engineering.

Ordinary differential equations are differential equations whose solutions
are functions of one independent variable, which we usually denote by t. The
variable t often stands for time, and the solution we are looking for, x(t), usually
stands for some physical quantity that changes with time. Therefore we consider
x as a dependent variable. Ordinary differential equations come in two types:
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• Autonomous, for example

ẋ � ax, (7.3)

in which the time variable t does not explicitly appear, and

• Nonautonomous, as in the forced damped pendulum equation

ẍ � �cẋ � sin x � 	 sin t, (7.4)

for which t appears explicitly in the differential equation.

Autonomous differential equations are the ones that directly capture the spirit of
a deterministic dynamical system, in which the law for future states is written only
in terms of the present state x. However, the distinction is somewhat artificial: Any
nonautonomous equation can be written as an autonomous system by defining a
new dependent variable y equal to t; then for example we could write (7.4) as

ẍ � �cẋ � sin x � 	 sin y

ẏ � 1. (7.5)

The system of equations (7.5) is autonomous because t does not appear on the
right-hand side. In effect, t has been turned into one of the dependent variables
by renaming it y. Because autonomous equations are the more general form, we
will restrict our attention to them in this chapter.

The order of an equation is the highest derivative that occurs in the equa-
tion. We will begin by discussing first-order equations, in which only first deriva-
tives of the dependent variable occur. The equations may be linear or nonlinear,
and there may be one or more dependent variables. We will discuss several cases,
in order of increasing complexity.

7 .1 ON E -D I M E N S I O N A L L I N E A R
D I F F E R E N T I A L E Q U AT I O N S

First, let us explain the title of this section. The dimension refers to the number
of dependent variables in the equation. In this section, there is one (the variable
x), which is a function of the independent variable t. The differential equation
will express ẋ, the instantaneous rate of change of x with respect to t, in terms of
the current state x of the system. If the expression for ẋ is linear in x, we say that
it is a linear differential equation.
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Let

ẋ �
dx
dt

� ax, (7.6)

where x is a scalar function of t, a is a real constant, and ẋdenotes the instantaneous
rate of change with respect to time. For a � 0, (7.6) is a simple model of population
growth when the population is small. The rate dx� dt at which the population grows
is proportional to the size x of the population. Solutions of (7.6) with a � 0 are
shown in Figure 7.1(a). (Compare these with the population model xn�1 � axn

in Chapter 1. In that case, the size of the new population is proportional to the
previous population. These are different models.)

The differential equation (7.6) has infinitely many solutions, each of form
x(t) � ceat, for a constant real number c. By substituting t � 0, it follows that
x(0) � c. The number x0 � x(0) is called the initial value of the function x. A
problem is usually stated in the form of an initial value problem, which consists
of a differential equation together with enough initial values (one, in this case)
to specify a single solution. Using this terminology, we say that the solution of
the initial value problem

ẋ � ax

x(0) � x0 (7.7)

is

x(t) � x0e
at. (7.8)

x

t

x

t

x

t

x

t

x

t

(a) (b)

Figure 7.1 The family of solutions of ẋ � ax.
(a) a � 0: exponential growth (b) a � 0: exponential decay.
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Figure 7.1(a) shows the family of all solutions of a differential equation, for various
initial conditions x0. Each choice of initial value x0 puts us on one of the solution
curves. This is a picture of the so-called flow of the differential equation.

Definition 7.1 The flow F of an autonomous differential equation is the
function of time t and initial value x0 which represents the set of solutions. Thus
F(t, x0) is the value at time t of the solution with initial value x0. We will often
use the slightly different notation Ft(x0) to mean the same thing.

The reason for two different notations is that the latter will be used when
we want to think of the flow as the time-t map of the differential equation. If we
imagine a fixed t � T, then FT(x) is the map which for each initial value produces
the solution value T time units later. For Newton’s law of cooling, the time-10
map has the current temperature as input and the temperature 10 time units later
as the output. The definition of a time-T map allows us to instantly apply all that
we have learned about maps in the previous six chapters to differential equations.

Figures 7.1 (a) and (b) show the family of solutions (depending on x0)
for a � 0 and for a � 0, respectively. For (7.6), the flow is the function of two
variables F(t, x) � xeat. Certain solutions of (7.6) stand out from the others. For
example, if x0 � 0, then the solution is the constant function x(t) � 0, denoted
x � 0.

Definition 7.2 A constant solution of the autonomous differential equa-
tion ẋ � f(x) is called an equilibrium of the equation.

An equilibrium solution x necessarily satisfies f(x) � 0. For example, x � 0
is an equilibrium solution of (7.6). For all other solutions of (7.6) with a � 0,
limt→� |x(t)| � �, as shown in Figure 7.1(a). An equilbrium like x0 � 0 is a fixed
point of the time-T map for each T.

For some purposes, too much information is shown in Figure 7.1. If we were
solely interested in where solutions curves end up in the limit as t → �, we might
eliminate the t-axis, and simply show on the x-axis where solution trajectories
are headed. For example, Figure 7.2 (a) shows that the x-values diverge from 0
as t increases. This figure, which suppresses the t-axis, is a simple version of a
phase portrait, which we describe at length later. The idea of the phase portrait is
to compress information. The arrows indicate the direction of solutions (toward
or away from equilibria) without graphing specific values of t. As with maps, we
are often primarily interested in understanding qualitative aspects of final state
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0

x

0

x

(a) (b)

Figure 7.2 Phase portraits of ẋ � ax.
Since x is a scalar function, the phase space is the real line �. (a) The direction of
solutions is away from the equilibrium for a � 0. (b) The direction of solutions is
toward the equilibrium for a � 0.

behavior. Other details, such as the rate at which orbits approach equilibria, are
lost in a phase portrait.

For a � 0, (7.6) models exponential decay, as shown in Figure 7.2(b),
and x � 0 is still an equilibrium solution. Examples include Newton’s law of
cooling, which was described above, and radioactive decay, where the mass of a
radioactive isotope decreases according to the exponential decay law. No matter
how we choose the initial condition x0, we see that x(t) tends toward 0 as time
progresses; that is, limt→� x(t) � limt→� x0eat � 0. The flow F(t, x0) of solutions
is shown in Figure 7.1 (b). In the phase portrait of Figure 7.2(b) we suppress t and
depict the motion of the solutions toward 0.

7 .2 ON E -D I M E N S I O N A L NON L I N E A R
D I F F E R E N T I A L E Q U AT I O N S

EXAM PLE 7 .3

Equation (7.6) ceases to be an appropriate model for large populations x
because it ignores the effects of overcrowding, which are modeled by non-linear
terms. It is perhaps more accurate for the rate of change of population to be a
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logistic function of the population. The differential equation

ẋ � ax(1 � x), (7.9)

where a is a positive constant, is called the logistic differential equation. As x gets
close to 1, the limiting population, the rate of increase of population decreases to
zero.

This equation is nonlinear because of the term �ax2 on the right side. Although
the equation can be solved analytically by separating variables (see Exercise 7.4),
in this section we will describe alternative methods that are geometric in nature
and that can quickly reveal some important qualitative properties of solutions.
We might ask, for example, which initial conditions yield increasing solutions?
Which yield decreasing solutions? Given an initial population, to what final state
will the population evolve? The qualitative methods developed here are of critical
importance because most nonlinear equations are impossible to solve analytically
in closed form.

We begin by finding constant solutions of (7.9). Setting ẋ equal to 0 and
solving for x yields two equilibrium solutions: namely x � 0 and x � 1. Figure
7.3 shows the family of solutions, or flow, of (7.9). For each initial condition x0

there is a single solution curve that we denote by F(t, x0) which satisfies (1) the

x

t x = 0 

x = 1 

(a) (b)

Figure 7.3 Solutions of the logistic differential equation.
(a) Solutions of the equation ẋ � x(1 � x). Solution curves with positive initial
conditions tend toward x � 1 as t increases. Curves with negative initial condi-
tions diverge to ��. (b) The phase portrait provides a qualitative summary of the
information contained in (a).
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differential equation, and (2) the initial condition x0. The solution curve F(t, x0)
may or may not be defined for all future t. The curve F(t, 1 � 2), shown in Figure
7.3, is asymptotic to the equilibrium solution x � 1, and is defined for all t. On
the other hand, the curves F(t, x0) shown in the figure with x0 � 0 “blow up
in finite time”; that is, they have a vertical asymptote for some finite t. (Since
negative populations have no meaning, this is no great worry for the use of the
logistic equation as a population model.) See Exercise 7.4 to work out the details.
Another example of this blow-up phenomenon is given in Example 7.4.

Since we have not explicitly solved (7.9), how were we able to graph its
solutions? We rely on three concepts:

1. Existence: Each point in the (t, x)-plane has a solution passing through
it. The solution has slope given by the differential equation at that point.

2. Uniqueness: Only one solution passes through any particular (t, x).
3. Continuous dependence: Solutions through nearby initial conditions

remain close over short time intervals. In other words, the flow F(t, x0)
is a continuous function of x0 as well as t.

Using the first concept, we can draw a slope field in the (t, x)-plane by
evaluating ẋ � ax(1 � x) at several points and putting a short line segment with
the evaluated slope at each point, as in Figure 7.4. Recall that for an autonomous

x = 1 

x = 0 

x

t

Figure 7.4 Slope field of the logistic differential equation.
At each point (t, x), a small arrow with slope ax(1 � x) is plotted. Any solution
must follow the arrows at all times. Compare the solutions in Figure 7.3.
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equation such as this, the slope for a given x-value is independent of the t-value,
since t does not appear in the right-hand side of (7.9).

Curves can now be constructed that follow the slope field and which, by
the second concept, do not cross. The third concept is referred to as “continuous
dependence of solutions on initial conditions”. All solutions of sufficiently smooth
differential equations exhibit the property of continuous dependence, which is a
consequence of continuity of the slope field. Theorems pertaining to existence,
uniqueness, and continuous dependence are discussed in Section 7.4.

The concept of continuous dependence should not be confused with “sensi-
tive dependence” on initial conditions. This latter property describes the behavior
of unstable orbits over longer time intervals. Solutions may obey continuous de-
pendence on short time intervals and also exhibit sensitive dependence, and
diverge from one another on longer time intervals. This is the characteristic of a
chaotic differential equation.

The phase portrait of the logistic differential equation (7.9) is shown in
Figure 7.3(b). Note how the phase portrait summarizes the information about the
asymptotic behavior of all solutions. It does this by suppressing the t-coordinate.
The arrows on the phase portrait show the sign of the derivative (positive or
negative) for points between, greater than, or less than the equilibrium values.
For one-dimensional autonomous differential equations, the phase portrait gives
almost all the important information about solutions.

When an interval of nonequilibrium points in the phase portrait is bounded
by (finite) equilibria, then solutions for initial conditions in the interval converge
to one equilibrium for positive time (as t → �) and to the other for negative time
(as t → ��). The latter corresponds to following all arrows in the slope field
backwards. This fact is illustrated in Figure 7.3, and is the subject of Theorem 8.3
of Chapter 8.

As in the case of iterated maps, an equilibrium solution is called attracting
or a sink if the trajectories of nearby initial conditions converge to it. It is called
repelling or a source if the solutions through nearby initial conditions diverge
from it. Thus in (7.6), x � 0 is attracting in the case a � 0 and repelling in the
case a � 0. In (7.9), x � 0 is repelling and x � 1 is attracting.

✎ EXERCISE T7 .1

Draw the slope field and phase portrait for ẋ � x3 � x. Sketch the resulting
family of solutions. Which initial conditions lead to bounded solutions?
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Next we explore the phenomenon of “blow up in finite time”. As men-
tioned above, all initial conditions that lie between two equilibria on the one-
dimensional phase portrait will move toward one of the equilibria, unless it is an
equilibrium itself. In particular, the trajectory of the initial condition will exist
for all time. The following example shows that for initial conditions that are not
bounded by equilibria, solutions do not necessarily exist for all time.

EXAM PLE 7 .4

Consider the initial value problem

ẋ � x2

x(t0) � x0. (7.10)

We solve this problem by a method called separation of variables. First, divide
by x2, then integrate both sides of the equation

1
x2

dx
dt

� 1

with respect to time from t0 to t:∫ t

t0

1
x2

dx
dt

dt �

∫ t

t0

dt � t � t0. (7.11)

Making the change of variables x � x(t) means that dx replaces
dx
dt

dt, yielding

t � t0 �

∫ x(t)

x(t0)

dx
x2 � �

1
x

∣∣∣∣
x(t)

x(t0)
� �

1
x(t)

�
1

x(t0)
. (7.12)

Solving for x(t), we obtain

x(t) �
1

1
x0

� t0 � t
�

x0

1 � x0(t0 � t)
. (7.13)

The result is valid if x is nonzero between time t0 and t. Thus x(t) must have the
same sign (positive or negative) as x(t0).

When x0 � 0 (or when x � 0 at any time), the unique solution is the
equilibrium x � 0, which is defined for all t. When x0 � 0, the solution is not
defined if the denominator 1 � x0(t0 � t) is 0. In this case, let t� � t0 � 1 � x0; t� is
the solution of 1 � x0(t0 � t) � 0. Then limt→t� x(t) � �. For x0 � 0, therefore,
the solution x(t) exists only for t in the interval (��, t�) or (t�, �), whichever
contains t0.
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x

t

Figure 7.5 Solutions that blow up in finite time.
Curves shown are solutions of the equation ẋ � x2. The dashed curve in the upper
left is the solution with initial value x(0) � 1. This solution is x(t) � 1� (1 � t),
which has a vertical asymptote at x � 1, shown as a dashed vertical line on the
right. The dashed curve at lower right is also a branch of x(t) � 1� (1 � t), one that
cannot be reached from initial condition x(0) � 1.

The solution curves of (7.10) are shown in Figure 7.5. The constant x � 0 is
an equilibrium. All curves above the horizontal t-axis blow up at a finite value of
t; all curves below the axis approach the equilibrium solution x � 0. For example,
if t0 � 0 and x0 � 1, then t� � 1, and the solution x(t) � 1 � (1 � t) exists on
(��, 1). This solution is the dashed curve in the upper left of Figure 7.5. Equation
(7.13) seems to suggest that the solution continues to be defined on (1, �), but
as a practical matter, the solution of the initial value problem with x(0) � x0 no
longer exists for t beyond the point where x(t) goes to �.

In general, notice that the solution (7.13) has 2 branches. In Figure 7.5,
arrows point to the 2 dashed branches of x(t) � 1 � (1 � t). Only the branch with
x(t) and x0 having the same sign is valid for the initial value problem with x0 � 1.
The other branch is spurious as far as the initial value problem is concerned, since
(7.12) fails to make sense when x(t0) and x(t) have opposite signs.

Solutions that blow up in finite time are of considerable interest in mathe-
matical modeling. When a solution reaches a vertical asymptote, the time interval
over which the differential equation is valid has reached an end. Either the model
needs to be refined to better reflect the properties of the system being modeled,
or the system itself has a serious problem!
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➮ C O M P U T E R E X P E R I M E N T 7 . 1

To do the Computer Experiments in the next few chapters, you may need to
read Appendix B, an introduction to numerical solution methods for differential
equations. A good practice problem is to choose some version of the Runge-
Kutta algorithm described there and plot solutions of the differential equations
of Figures 7.1, 7.3 and 7.5.

7 .3 L I N E A R D I F F E R E N T I A L E Q U AT I O N S I N
MO R E T H A N ON E D I M E N S I O N

So far we have discussed first-order equations with one dependent variable. Now
we move on to more dependent variables, beginning with a system of two linear
equations. The solution of the system

ẋ � 2x

ẏ � �3y (7.14)

can be determined by solving each equation separately. For an initial point (x0, y0)
at time t � 0, the solution at time t is the vector (x0e2t, y0e�3t).

Figure 7.6 shows a graphical representation of the vector field of (7.14). A
vector field on �n is a function that assigns to each point in �n an n-dimensional
vector. In the case of a differential equation, the coordinates of the vector assigned
to point (x, y) are determined by evaluating the right side of the equation at (x, y).
For (7.14), the vector (2x, �3y) is placed at the point (x, y), as seen in Figure
7.6(a). As in the case of slope fields, these vectors are tangent to the solutions.
Thus the vector (2x, �3y) gives the direction the solution moves when it is at
the point (x, y). The length |(2x, �3y)| of the vector is the speed of the solution
as it moves through the point.

Since (7.14) is autonomous, (the variable t does not appear explicitly on
the right side of (7.14)), the vector assigned to (x, y) is independent of time.
A solution passing through (x, y) at one time t will not go a different direction
or speed when passing through (x, y) at a different time. Autonomous equations
have a particularly useful property that enables us to draw phase portraits for these
systems: graphs of solutions (x(t), y(t)) drawn in the xy-plane, ignoring the t-axis,
do not cross. (This property holds in addition to the fact that they do not cross in
(x, y, t)–space, which is a consequence of uniqueness of solutions.) Figure 7.6(b)
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y

x

y

x

(a) (b)

Figure 7.6 Vector field and phase plane for a saddle equilibrium.
(a) The vector field shows the vector (ẋ, ẏ) at each point (x, y) for (7.14). (b) The
phase portrait, or phase plane, shows the behavior of solutions. The equilibrium
(x, y) � (0, 0) is a saddle. The time coordinate is suppressed in a phase portrait.

shows the phase portrait of solutions of (7.14). A phase portrait in two dimensions
is often called a phase plane, and in higher dimensions it is called phase space.
The dimension of the phase space is the number of dependent variables. Arrows
on the solution curves in phase space indicate the direction of increasing time.

The system (7.14) is uncoupled, meaning that neither of the dependent
variables appear in the other’s equation. More generally, the equation has the
form

v̇ � Av, (7.15)

where v is a vector of variables, and A is a square matrix. Since the right-hand
side of (7.15) is the zero vector when v � 0, the origin is an equilibrium for
(7.15). The stability of the equilibrium can be determined by the eigenvalues of
the matrix of coefficients.

EXAM PLE 7 .5

We show how eigenvalues are used to find the solution v � (x, y) of

ẋ � �4x � 3y

ẏ � 2x � 3y (7.16)
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with initial value v(0) � (1, 1). In vector form, (7.16) is given by (7.15) where

v �

(
x
y

)
and A �

(
�4 �3

2 3

)
.

The eigenvalues of the matrix A are 2 and �3. Corresponding eigenvectors
of A are (1, �2) and (3, �1), respectively. We refer the reader to Appendix A
for fundamentals of eigenvalues and eigenvectors.

For a real eigenvalue 
 of A, an associated eigenvector u has the prop-
erty that Au � 
u. Set v(t) � e
tu. By definition of eigenvector, Av(t) �

e
tAu � e
t(
u). Since u is a fixed vector, v̇(t) � 
e
tu as well. Each eigenvalue-
eigenvector pair of A leads to a solution of v̇ � Av. As the phase plane in
Figure 7.7 shows, any vector along the line determined by an eigenvector u is
stretched or contracted as t increases, depending on whether the corresponding
eigenvalue 
 is positive or negative. The phase plane of (7.16) is similar to that
of (7.14) except that lines in the direction of the eigenvectors u1 � (1, �2) and
u2 � (3, �1) take the place of the x and y axes, respectively. Both v(t) � e
1tu1

and v(t) � e
2tu2 are solutions.
If this vector argument is not clear, write the vectors in coordinates. Since

u1 � (1, �2), the corresponding solution v(t) � (x(t), y(t)) is (1e
1t, �2e
1t).
Differentiating each coordinate separately gives (1
1e
1t, �2
1e
1t), which is

1v(t), as needed. The same argument works for u2. When 
1 � 
2, then u1

and u2 are linearly independent, and the general solution of v̇ � Av is given by

y

x

Figure 7.7 Phase plane for a saddle equilibrium.
For (7.16), the origin is an equilibrium. Except for two solutions that approach the
origin along the direction of the vector (3, �1), solutions diverge toward infinity,
although not in finite time.
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v(t) � c1e
1tu1 � c2e
2tu2, for real constants c1 and c2. The constants need to be
chosen to fit the initial values.

For example, suppose we want the solution with initial condition v(0) �

(1, 1) at t � 0. Setting t equal to 0 in the general solution gives v(0) � c1u1 �

c2u2. Written in coordinates, we have c1(1, �2) � c2(3, �1) � (1, 1). Solving
gives c1 � �4 � 5 and c2 � 3 � 5. Thus the specific solution to this initial value
problem is v(t) � �4 � 5e2tu1 � 3 � 5e�3tu2. This solution corresponds to the up-
permost curve in Figure 7.7. As t becomes large, the u2 term becomes negligible, so
that this curve asymptotically approaches the line L1 defined by the direction u1.

The eigenvectors corresponding to a particular eigenvalue 
 together with
the origin form a linear subspace, called the eigenspace corresponding to 
. In
Figure 7.7 the straight lines are the eigenspaces; the steeper line L1 is all multiples
of (1, �2), and the other line L2 consists of all multiples of (3, �1). The two
eigenspaces play important roles in the long-time dynamics of (7.16). All initial
values v(0) lying on L2 approach the origin as t increases. All initial values except
those on L2 approach L1 in the limit as t → �.

In this example, the eigenvectors together span the entire phase space �2.
In other cases, it is possible that the sum of the dimensions of all the eigenspaces
does not equal the dimension of the phase space. In the following example, there
is a single eigenvalue and a single linearly independent eigenvector, even though
the phase space is two dimensional.

EXAM PLE 7 .6

Let

ẋ � 3x � y

ẏ � 3y (7.17)

The coefficient matrix

A �

(
3 1
0 3

)

has only one eigenvalue 
 � 3, and (1, 0) is the only eigenvector up to scalar
multiple. The phase plane for this system is shown in Figure 7.8. The x-axis is the
eigenspace; it contains all positive and negative scalar multiples of (1, 0).

For simplicity we sometimes refer to the eigenvectors and eigenvalues of a
linear differential equation like (7.17) when we actually mean the corresponding
matrix A. We would say for example that 
 � 3 is an eigenvalue of (7.17).
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y

x

Figure 7.8 Phase plane for Equation (7.17).
The coefficient matrix A for this system has only one eigenvector, which lies along
the x-axis. All solutions except for the equilibrium diverge to infinity.

✎ EXERCISE T7 .2
(a) Verify the statements made in Example 7.6. (b) Find all solution curves
of (7.17). Solve for y(t) first, then try to guess the form of a solution for
x(t).

When the eigenvalues are complex, there are no corresponding real eigen-
vectors. We give two examples:

EXAM PLE 7 .7

Let

ẋ � y

ẏ � �x. (7.18)

Verify that the eigenvalues are �i. Solutions of this system are x(t) � c1 cos t �

c2 sin t and y(t) � c2 cos t � c1 sin t, where c1 and c2 are any real constants. The
phase plane is shown in Figure 7.9. We will show that each solution remains
a constant distance from the origin. If v(t) � (x(t), y(t)) is a solution, then
the distance squared is |v(t)|2 � x2 � y2. Differentiating this expression gives
2xẋ � 2yẏ, which, from (7.18) is 2xy � 2yx � 0. Thus the rate of change of the
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y

x

y

x

(a) (b)

Figure 7.9 Phase planes for pure imaginary eigenvalues.
(a) In (7.18), the eigenvalues are �i. All solutions are circles around the origin,
which is an equilibrium. (b) In (7.23), the eigenvalues are again pure imaginary.
Solutions are elliptical. Note that for this equilibrium, some points initially move
farther away, but not too far away. The origin is (Lyapunov) stable but not attracting.

distance from the origin is 0, meaning that |v(t)|2 and |v(t)| are constant. For
those familiar with inner products, another way to see that solutions lie on circles
about the origin is to note that at any point (x, y), the velocity vector (y, �x) is
perpendicular to the position vector (x, y). Hence the instantaneous motion is
neither toward nor away from (0, 0). Since this property holds at all points, |v(t)|
never changes.

✎ EXERCISE T7 .3
Explain why the trajectories in the phase planes of Figure 7.9(a) circle the
origin clockwise.

EXAM PLE 7 .8

A more general version of the above example is

ẋ � ax � by

ẏ � bx � ay. (7.19)
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Verify that the eigenvalues are a � bi. Solutions of this system are

x(t) � eat(c1 cos bt � c2 sin bt)

y(t) � eat(�c2 cos bt � c1 sin bt), (7.20)

where c1 and c2 are any real constants. Check this solution by differentiating.

EXAM PLE 7 .9

Here are two particular cases of Example 7.8. Let

ẋ � �x � 10y

ẏ � 10x � y. (7.21)

Verify that the eigenvalues are �1 � 10i. Solutions of this system are x(t) �

e�t(c1 cos 10t � c2 sin 10t) and y(t) � e�t(�c2 cos 10t � c1 sin 10t), where c1 and
c2 are any real constants. The constants c1 and c2 are determined by matching
initial conditions. All solutions spiral in toward the origin.

The slightly different system

ẋ � x � 10y

ẏ � 10x � y (7.22)

has eigenvalues 1 � 10i, and the solutions have form x(t) � et(c1 cos 10t �

c2 sin 10t) and y(t) � et(�c2 cos 10t � c1 sin 10t). Solutions of this system spi-
ral out from the origin.

See Figure 7.10 for a sketch of the phase planes of these two systems. The
difference between them is that the origin is attracting when the eigenvalues of
the right-hand side matrix have negative real part, and repelling when they have
positive real part.

Definition 7.10 An equilibrium point v is called stable or Lyapunov
stable if every initial point v0 that is chosen very close to v has the property that
the solution F(t, v0) stays close to v for t 	 0. More formally, for any neighborhood
N of v there exists a neighborhood N1 of v, contained in N, such that for
each initial point v0 in N1, the solution F(t, v0) is in N for all t 	 0. An
equilibrium is called asymptotically stable if it is both stable and attracting. An
equilibrium is called unstable if it is not stable. Finally, an equilibrium is globally
asymptotically stable if it is asymptotically stable and all initial values converge
to the equilibrium.
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y

x

y

x

(a) (b)

Figure 7.10 Phase planes for complex eigenvalues with nonzero real part.
(a) Under (7.21), trajectories spiral in to a sink at the origin. The eigenvalues of the
coefficient matrix A have negative real part. (b) For (7.22), the trajectories spiral
out from a source at the origin.

The two concepts of stability are independent; that is, there are examples
of equilibria that are attracting but not stable and equilibria that are stable but
not attracting. The equilibrium v � 0 in (7.21) is asymptotically stable, therefore
stable in both senses. In (7.17) and (7.22), the origin is unstable and not attracting.
In Example 7.7, the origin is stable (take N1 � N) but not attracting. For a
linear system, the stability of the equilibrium at the origin is determined by the
eigenvalues of the matrix A. If A has at least one eigenvalue with positive real
part, at least one with negative real part, and no eigenvalues with real part zero,
then 0 is called a saddle. In (7.14) and (7.16), the origin is a saddle. Note that
saddles are unstable.

EXAM PLE 7 .11

The origin of the system

ẋ � x � 2y

ẏ � 5x � y (7.23)

is a stable equilibrium with eigenvalues �3i. The solutions are ellipses centered
at the origin, as shown in Figure 7.9(b). This example shows why the definition
of Lyapunov stability needs two neighborhoods: In order to have solutions stay
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within a neighborhood whose radius is the larger axis of an ellipse, initial con-
ditions must be restricted to a neighborhood whose radius is no larger than the
smaller axis of the solution.

✎ EXERCISE T7 .4
Find the equations of the ellipses in Figure 7.9(b). They are given in para-
metric form by the solutions x(t) and y(t) of (7.23), which are linear com-
binations of cos 3t and sin 3t.

Criteria for stability of a linear system are given by Theorem 7.12.

Theorem 7.12 Let A be an n � n matrix, and consider the equation v̇ � Av.
If the real parts of all eigenvalues of A are negative, then the equilibrium v � 0 is
globally asymptotically stable. If A has n distinct eigenvalues and if the real parts of all
eigenvalues of A are nonpositive, then v � 0 is stable.

✎ EXERCISE T7 .5
Let

ẋ � y

ẏ � 0. (7.24)

Show that (x(t), y(t)) � (at, a), a � 0, is an unbounded solution of (7.24).
Therefore v � 0 is an unstable equilibrium. Explain why this example does
not contradict Theorem 7.12.

✎ EXERCISE T7 .6
Determine the possible phase plane diagrams for two-dimensional linear
systems with at least one eigenvalue equal to 0.

Thus far, we have only shown figures of one- and two-dimensional phase
planes. The phase portraits of higher dimensional linear systems can be obtained
by determining on which subspaces the equilibrium 0 is stable, asymptotically
stable, or unstable.
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EXAM PLE 7 .13

Let

ẋ � 5x � y � z

ẏ � �2y � 3z

ż � 3y � 2z. (7.25)

Verify that the eigenvalues are 5 and �2 � 3i. The eigenspace for the eigenvalue
5 is the x-axis. The phase space for this system is shown in Figure 7.11. The (y, z)
coordinates of trajectories move toward (y, z) � (0, 0). All trajectories except for
those in the plane shown move away from origin 0 � (0, 0, 0) along the x-axis,
and satisfy |x(t)| → � while y(t), z(t) → 0. Trajectories in the plane with normal
vector (1, 5 � 29, 2 � 29) spiral in to the origin. This “eigenplane” is the stable
manifold of the saddle; the x-axis is the unstable manifold. On the other hand, if
the 5 is replaced by a negative number in (7.25), the origin 0 would be globally
asymptotically stable.

If the number of linearly independent eigenvectors associated with a given
eigenvalue 
 is fewer than the multiplicity of 
 as a root of the characteristic
equation, then determination of the “generalized eigenspace” associated with 


is somewhat more complicated. We refer the reader to (Hirsch and Smale, 1974)
for a complete treatment of this subject.

x

y

z

Figure 7.11 A three-dimensional phase portrait.
In Example 7.13, the origin (0, 0, 0) is a saddle equilibrium. Trajectories whose
initial values lie in the plane move toward the origin, and all others spiral away
along the x-axis.
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➮ C O M P U T E R E X P E R I M E N T 7 . 2

Although linear systems can be solved with linear algebra, most nonlinear
systems do not yield to analytic methods. For example, for the equation

ẋ � y � x2

ẏ � �x, (7.26)

obtained by adding a single nonlinear term to (7.18), we are reduced to numerical
approximation methods, summarized in Appendix B. Plot solution curves of
(7.26) near the origin. According to this evidence, do you expect that the origin
is asymptotically stable? Lyapunov stable?

7 .4 NON L I N E A R S Y S T E M S
In the first portion of this book, we used maps to model deterministic physical
processes. We specified a map and the present state, and then as long as the map
was well-defined, it told us unequivocally what happens for all future time. Now
we want to use differential equations for the same purpose.

With differential equations, there are a few technicalities we need to con-
sider. First, we have seen already that solutions to an initial value problem may
blow up in finite time, and therefore not exist for all time. This happens for (7.10),
for example. It is possible, both for differential equations and maps, for solutions
to tend to infinity, but exist for all time in the process. But blow-up in finite time
is different, and there is no analogue of this behavior for continuous maps.

Second, without any restrictions on the equations, an initial value problem
may have more than one solution. This goes against the spirit of determinism.
A good model should specify the future unambiguously, given the rule and the
present state. But the initial value problem

ẋ �
√

x

x(0) � 0 (7.27)

has two solutions, x(t) � 0 and x(t) � t2 � 4. This does not make for a good model
of a dynamical process.

Third, the utility of a model to give information about the dynamical process
depends on the fact that the solution of the initial value problem does not depend
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too sensitively on the initial condition, at least at short time scales. In particular,
for a fixed differential equation and two different initial values, we would like to
know that the closer the two initial values are, the closer the solutions are for
small t. This is called continuous dependence on initial conditions. For large t,
we can’t expect them to stay close—they may diverge toward opposite corners
of phase space. Sensitivity at large t is called sensitive dependence on initial
conditions.

Except for blow-up in finite time, these problems disappear under mild
restrictions on the differential equation. We now present theorems on existence
and uniqueness (Theorem 7.14) and continuous dependence on initial conditions
(Theorem 7.16). Proofs of these theorems can be found in standard differential
equations texts. Figure 7.12 shows two types of solution behavior which are ruled
out.

Consider the first-order system

ẋ1 � f1(x1, . . . , xn)

...

ẋn � fn(x1, . . . , xn). (7.28)

We denote this n-dimensional system of first-order ordinary differential equations
by

v̇ � f(v), (7.29)

where v � (x1, . . . , xn) is a vector.

tt0

Rn

Figure 7.12 Solutions that are outlawed by the existence and uniqueness
theorem.
Solutions cannot suddenly stop at t0, and there cannot be two solutions through a
single initial condition.
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Theorem 7.14 Existence and Uniqueness. Consider the first-order differen-
tial equation (7.29) where both f and its first partial derivatives with respect to v are
continuous on an open set U. Then for any real number t0 and real vector v0, there
is an open interval containing t0, on which there exists a solution satisfying the initial
condition v(t0) � v0, and this solution is unique.

Definition 7.15 Let U be an open set in �n. A function f on �n is said
to be Lipschitz on U if there exists a constant L such that

|f(v) � f(w)| � L|v � w|,

for all v, w in U. The constant L is called a Lipschitz constant for f.

If f has bounded first partial derivatives in U, then f is Lipschitz. For
example, for the one-dimensional case, f(x) � sin x has Lipschitz constant L � 1.
This follows from the Mean Value Theorem and the fact that f ′(x) � cos x.

✎ EXERCISE T7 .7
The general two-dimensional linear equation is v̇ � Av where

A �

(
a b
c d

)
.

Find a Lipschitz constant for the function Av on �2 in terms of a, b, c,
and d.

Two neighboring solutions to the same differential equation can separate
from each other at a rate no greater than eLt, where L is the Lipschitz constant of
the differential equation. The Gronwall inequality, illustrated in Figure 7.13, is
the basis of continuity of the flow as a function of the initial condition.

Theorem 7.16 Continuous dependence on initial conditions. Let f be de-
fined on the open set U in �n, and assume that f has Lipschitz constant L in the variables
v on U. Let v(t) and w(t) be solutions of (7.29), and let [t0, t1] be a subset of the
domains of both solutions. Then

|v(t) � w(t)| � |v(t0) � w(t0)|eL(t�t0),

for all t in [t0, t1].
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d
deL(t1-t0)

Rn

t0 t1

Figure 7.13 The Gronwall inequality.
Nearby solutions can diverge no faster than an exponential rate determined by the
Lipschitz constant of the differential equation.

Higher-order equations often can be transformed into a first-order system
of form (7.28). We illustrate the process with the nth-order differential equation

x(n) � f(x, ẋ, ẍ, . . . , x(n�1)),

where x(n) denotes the nth derivative of the function x(t) with respect to t. Define
a new set of variables by

x1 � x

x2 � ẋ

x3 � ẍ

...

xn � x(n�1)

These new variables satisfy the first-order autonomous system

ẋ1 � x2

ẋ2 � x3

...

ẋn�1 � xn

ẋn � f(x1, x2, . . . , xn)

which is of form (7.28).
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Unlike linear systems, most nonlinear systems of ordinary differential equa-
tions cannot be solved explicitly, meaning that the solutions cannot be found
through an analytic calculation. Fortunately, much of the stability analysis for
linear systems carries over to the study of equilibria of nonlinear systems.

Recall that an equilibrium of (7.29) is a vector v in �n such that fi(v) � 0
for i � 1, . . . , n. Again, for a given initial value v0, we denote by F(t, v0) the
solution of (7.29) at time t. While a linear system either has only one equilibrium
(v � 0) or has an entire line (or higher-dimensional subspace) of equilibria (see
Exercise T7.6), a nonlinear system can have many isolated equilibria, as the
following exercise illustrates.

✎ EXERCISE T7 .8
Verify that the equilibria of the system

ẋ � y

ẏ � sin x � y (7.30)

are (n�, 0) for all integers n.

In order to determine the stability of an equilibrium v of (7.29), we use the
linear map that best approximates f at v—namely, the Jacobian matrix Df(v) of
partial derivatives evaluated at v. The Jacobian matrix Df(v) can be expected to
approximate f only in a small neighborhood of v. Since f(v) � 0, the approxima-
tion f(v � �) � Df(v)� holds for small �. Start a solution w(t) � F(t, v � �) from
an initial value v � � close to the equilibrium. Then u(t) � w(t) � v satisfies

u̇ � ẇ � f(w(t)) � f(u(t) � v) � Df(v)u(t),

at least for short times. The solutions of (7.29) near v move toward or away
from the equilibrium like the solutions of u̇ � Df(v)u. The behavior of the latter
equation, which is linear, depends on the eigenvalues of Df(v).

Definition 7.17 An equilibrium v of v̇ � f(v) is called hyperbolic if
none of the eigenvalues of Df(v) has real part 0.

When v is hyperbolic, the linear part Df(v) completely determines the
stability of v. When all eigenvalues of Df(v) have nonpositive real parts and
there is at least one eigenvalue with zero real part, then higher-order terms must
be taken into account to determine the stability; that is, it is not sufficient to know
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Df(v). Hyperbolic or not, v is unstable if the real part of at least one eigenvalue
of Df(v) is strictly positive.

Theorem 7.18 Let v be an equilibrium of v̇ � f(v). If the real part of each
eigenvalue of Df(v) is strictly negative, then v is asymptotically stable. If the real part
of at least one eigenvalue is strictly positive, then v is unstable.

EXAM PLE 7 .19

We apply Theorem 7.18 to the following system:

ẋ � x2 � y2

ẏ � xy � 4. (7.31)

There are two equilibria, (2, 2) and (�2, �2). The Jacobian matrix is

Df �

(
2x �2y
y x

)
.

Evaluated at (2, 2), Df has eigenvalues 3 �
√

7i. Since the real part of the
eigenvalues is �3, (2, 2) is unstable. Evaluated at (�2, �2), Df has eigenvalues
�3 �

√
7i. Therefore, (�2, �2) is asymptotically stable. A solution with initial

condition (x0, y0) sufficiently close to the equilibrium (�2, �2) will tend to
(�2, �2) as t → �. Note that Theorem 7.18 does not tell us how close (x0, y0)
must be to (�2, �2) for the solution to converge to this equilibrium.

EXAM PLE 7 .20

The one-dimensional equation

ẋ � �x3 (7.32)

has an equilibrium at x � 0. Since f(x) � �x3 is a function of one variable, Df is
the derivative f ′(x). Since f ′(0) � 0, we cannot use Theorem 7.18 to determine
the stability of x � 0.

✎ EXERCISE T7 .9
Decide whether x � 0 is an asymptotically stable equilibrium of (7.32).
Solve by separating variables, as in Example 7.4. Does this equation have
unique solutions? Find all solutions that satisfy x(0) � 1.
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7 .5 MOT I O N I N A P OT E N T I A L F I E L D

Perhaps the most familiar system that illustrates the concepts of kinetic and
potential energy is the pendulum equation

ẍ � k sin x � 0, (7.33)

where x is the angle of the pendulum rod from the vertical and k is the posi-
tive constant k � g� l, where l is the length of the pendulum rod and g is the
acceleration of gravity. We will set k � 1 to simplify our analysis.

We are assuming no damping and no external forces aside from gravity. This
equation can be rewritten as a first-order system with dependent variables x and
y by setting y � ẋ. Then ẏ � ẍ � � sin x, and (7.33) becomes

ẋ � y

ẏ � � sin x. (7.34)

✎ EXERCISE T7 .10

(a) Show that the equilibria of (7.34) are �(n�, 0) : n � 0, �1, �2, . . .�.
(b) Show that Theorem 7.18 identifies (n�, 0) as an unstable (saddle) equi-
librium if n is odd, but tells us nothing if n is even.

Taking a cue from mechanics, we use the principle of Conservation of
Energy: In the absence of damping or any external forces, the system neither
gains nor loses energy. Given an initial condition (x0, y0), the energy function E
remains constant on the orbit F(t, (x0, y0)) for all time t:

dE
dt

(F(t, (x0, y0))) � 0. (7.35)

Total energy is the sum of kinetic plus potential energies, which for the pendulum
is given by

E(x, y) � (1 � 2)y2 � 1 � cos x. (7.36)

The potential energy is minus the integral of the force,
∫ x

0 sin u du (the work
required to raise the pendulum from angle 0 to angle x; we have set the mass
of the pendulum bob to 1). To verify (7.35), write (x(t), y(t)) for a solution and
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compute d
dtE(x(t), y(t)) as

dE
dt

�
�E
�x

dx
dt

�
�E
�y

dy
dt

� (sin x)ẋ � yẏ

� (sin x)y � y(� sin x)

� 0. (7.37)

Notice an interesting aspect of this analysis: We have completed this cal-
culation without knowing the solutions (x(t), y(t)). Equation (7.37) says that
d
dtE(x(t), y(t)) � 0. We conclude in this case that for each solution E(x(t), y(t))
remains constant as t varies. The function E provides a useful partition of the
points (x, y) in the phase plane into individual solution trajectories.

Definition 7.21 Given a real number c and a function E : �2 −→ �, the
set Ec � �(x, y) : E(x, y) � c� is called a level curve of the function E.

Notice that the minimum value of the energy function E is 0; hence, Ec is
empty for c � 0. Some of the level curves of E are sketched in Figure 7.14(a).

x(a)

(b)

x

x

x

Figure 7.14 Solution curves of the undamped pendulum.
(a) Level curves of the energy function. (b) The phase plane of the pendulum. The
solutions move along level curves; equilibria are denoted by dots. The variable x is
an angle, so what happens at x also happens at x � 2�. As a results, (a) and (b) are
periodic in x with period 2�.
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Keeping in mind that a solution of (7.34) is constrained to one energy level,
we can turn the sketch of level curves into a phase plane of (7.34) merely by
putting arrows on the level curves to indicate the direction of motion, as in
Figure 7.14(b). Notice that solutions above the x-axis move from left to right,
and solutions below the x-axis move from right to left. Of particular interest are
the points in E0. These are precisely the equilibria whose stability could not be
determined by Theorem 7.18: (n�, 0), where n is even. In this case, the phase
plane shows us that these are stable equilibria, since the trajectories of nearby
points lie on closed level curves around the equilibria.

The pendulum equation (7.33) is a special case of the more general equation

ẍ �
�P
�x

� 0 (7.38)

governing motion in a potential field. This is another way of viewing Newton’s
second law of motion—acceleration is proportional to the force, which is the
negative of the gradient of the potential field. The potential energy field of the
pendulum equation with k � 1 is a series of potential wells whose minima are
spaced at 2n� for all integers n, shown in Figure 7.15(a).

In the general case we multiply (7.38) by ẋ and integrate both sides:

ẍẋ �
�P
�x

dx
dt

� 0

1
2

ẋ2 � P(x) � E1 (7.39)

2-2 x

P(x)

-1 1 x

P(x)

(a) (b)

Figure 7.15 Potential energy functions.
(a) The potential function for the pendulum is P(x) � 1 � cos x. There are infinitely
many wells. (b) The double-well potential P(x) � x4 � 4 � x2 � 2.
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where E1 is a constant of integration. This leads to a simple technique for drawing
phase plane solutions of motion in a potential field (7.38). The key is to follow
the difference between total and potential energy as x varies; this difference is the
kinetic energy ẋ2 � 2. In Figure 7.16(a) we illustrate a typical single-well potential
energy function. According to (7.39), for a fixed energy level E1, the difference
E1 � P(x) is proportional to the square of the velocity ẋ. As x increases from x1

(where P � E1) to x2, the derivative ẋ increases from 0 to some maximum value
(at the minimum of P) and then decreases to 0 at x2. The phase plane solution
at energy level E1 is depicted in Figure 7.16(b). Solutions to single-well potential
problems in the absence of damping are periodic orbits.

Figure 7.15(b) shows the double-well potential P(x) � x4 � 4 � x2 � 2, which
by substitution in (7.38) leads to the double-well Duffing equation

ẍ � x � x3 � 0. (7.40)

Most of the solutions are periodic orbits. If the initial conditions (x, ẋ) are set so
that the total energy E1 � P(x) � ẋ2 � 2 is less than zero, then the orbit is trapped
in one of the two potential wells. If E1 � 0, orbits will move periodically through
both wells, reaching a maximum of P(x) � E1 on the far sides of the wells.

As might be expected from our experiences with the pendulum equation
throughout this book, the Duffing equation becomes even more interesting if

P(x)

xx1 x2

E1

x
x2x1

x.

(a) (b)

Figure 7.16 Drawing phase plane curves from the potential.
(a) Graph of the potential energy function P(x). Each trajectory of the system is
trapped in a potential energy well. The total energy ẋ2 � 2 � P(x) is constant for
trajectories. As a trajectory with fixed total energy E1 tries to climb out near x1

or x2, the kinetic energy ẋ2 � 2 � E1 � P(x) goes to zero, as the energy E converts
completely into potential energy. (b) A periodic orbit results: The system oscillates
between positions x1 and x2.
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damping and periodic forcing are added. With damping, (7.38) becomes

ẍ � cẋ �
�P
�x

� 0. (7.41)

Energy is no longer conserved, for the time derivative of total energy E � ẋ2 � 2 �

P(x) is

Ė � ẋẍ �
�P
�x

ẋ

� ẋ
(

�cẋ �
�P
�x

)
�

�P
�x

ẋ

� �cẋ2. (7.42)

Total energy decreases along orbits. Typical orbits will move progressively slower
and stop at the bottom of one of the two energy wells. See the Computer Experi-
ment 7.3 and Section 9.5 for the results of periodically forcing the Duffing double
well oscillator.

✎ EXERCISE T7 .11
Not all orbits of (7.41) are attracted to the bottom of one of the wells.
Describe as many as you can that end up elsewhere.

➮ C O M P U T E R E X P E R I M E N T 7 . 3

Write a computer program to plot numerical solutions of the forced damped
double-well Duffing oscillator ẍ � 0.1ẋ � x � x3 � 2 sin t in the (x, ẋ)-plane. In
particular, locate and plot the attracting periodic orbit of period 2� and the two
attracting periodic orbits of period 6� that lie in the region �5 � x, ẋ � 5.

7 .6 L YA P U N OV F U N C T I O N S
The basic idea of using energy-like functions to investigate the dynamics of
solutions can be applied to equations more general than (7.38). The theory
of Lyapunov functions, a generalization of potential energy functions, gives us
a global approach toward determining asymptotic behavior of solutions. The
main stability result of this chapter, Theorem 7.18, tells about local stability. In
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the neighborhood of an equilibrium, solution trajectories are attracted to the
equilbrium if the eigenvalues of the linear part of the equation have negative
real part. Lyapunov functions can tell us that initial values from a large region
converge to an equilibrium. In addition, they can sometimes be used to determine
stability of equilibria where the eigenvalues of Df have real part 0, as in Example
7.20.

Let v(t) � (x1(t), . . . , xn(t)) be a solution of the n-dimensional system
(7.29) of differential equations. Suppose we pick a real-valued function of the
state, E(v), which we would like to consider to be the energy of the system when
it is in the state v. To measure the time rate of change of E along a solution
trajectory, we need to take the derivative of E with respect to t. Using the chain
rule and the differential equation, we find:

Ė(x1, . . . , xn) �
�E
�x1

dx1

dt
� 
 
 
 �

�E
�xn

dxn

dt

�
�E
�x1

f1(x1, . . . , xn) � 
 
 
 �
�E
�xn

fn(x1, . . . , xn). (7.43)

That is, the derivative of E with respect to time can be expressed in terms of the
differential equation itself—the solutions do not explicitly appear in this formula.

The derivative Ė(v) measures the rate of change of E along a solution
trajectory of (7.29) as it passes through the point v. In the example of the
pendulum, we found Ė � 0 along trajectories. Using the total energy function
to determine the stability of equilibria for a conservative system (one in which
energy is conserved) is an example of the technique of Lyapunov functions.

Definition 7.22 Let v be an equilibrium of (7.29). A function E : �n →
� is called a Lyapunov function for v if for some neighborhood W of v, the
following conditions are satisfied:

1. E(v) � 0, and E(v) � 0 for all v � v in W, and
2. Ė(v) � 0 for all v in W.

If the stronger inequality

2 ′. Ė(v) � 0 for all v � v in W

holds, then E is called a strict Lyapunov function.
Condition (1) says that v is at the bottom of the well formed by the graph

of the Lyapunov function E, as shown in Figures 7.17(a) and (b). Condition (2)
says that solutions can’t move up, but can only move down the side of the well
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(a) (b)

Figure 7.17 Behavior of solution trajectories with a Lyapunov function.
The bowl in the figure is the graph of E. In both parts, we plot E(v(t)) versus the
solution trajectory v(t), which lies in the horizontal plane. (a) An equilibrium is
at the critical point of the graph of the Lyapunov function E. The equilibrium is
(Lyapunov) stable, since any nearby solution cannot go uphill, and can move away
only a bounded distance dictated by its original energy level. (b) For a strict Lya-
punov function, energy of solutions must continually decrease toward zero, cutting
through energy level sets. The equilibrium is asymptotically stable.

or stay level. Figure 7.17(b) shows a strict Lyapunov function, where energy must
keep decreasing toward the equilibrium.

In order to verify the conditions for a Lyapunov function, it is helpful to
use (7.43). For example, the one-dimensional equation ẋ � ax, where a � 0, has
the Lyapunov function E(x) � x2. It is clear that condition (1) is satisfied for the
equilibrium x � 0. Moreover, (7.43) shows

Ė(x) �
�E
�x

f(x) � (2x)(ax) � 2ax2 � 0,

which verifies (2’). Therefore E(x) � x2 is a strict Lyapunov function.

✎ EXERCISE T7 .12

Show that for each even integer n, total energy E(x, y) � (1 � 2)y2 � 1 � cos x
is a Lyapunov function for the equilibria (n�, 0) of (7.34).
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The stability analysis illustrated above for the pendulum relies on Theorem
7.23, due to the Russian mathematician Alexander Mikhailovich Lyapunov.

Theorem 7.23 Let v be an equilibrium of v̇ � f(v). If there exists a Lyapunov
function for v, then v is stable. If there exists a strict Lyapunov function for v, then v
is asymptotically stable.

We refer the reader to (Hirsch and Smale, 1974) for a proof of the theorem.
Note that the energy function of Exercise T7.12 is not a strict Lyapunov function.
It cannot be, since the equilibria are not attracting.

We can now return to the one-dimensional Example 7.20: ẋ � �x3. Linear
analysis is inconclusive in determining the stability of the equilibrium x � 0. The
next exercise implies that x � 0 is asymptotically stable.

✎ EXERCISE T7 .13

Show that E(x) � x2 is a strict Lyapunov function for the equilibrium x � 0
in ẋ � �x3.

✎ EXERCISE T7 .14
Let

ẋ � �x3 � xy

ẏ � �y3 � x2. (7.44)

Prove that (0,0) is an asymptotically stable equilibium of (7.44).

Figure 7.17(b) depicts bounded level curves of a strict Lyapunov function for
an equilibrium v. Since E is strictly decreasing (as a function of t) along solutions,
the solutions (shown with arrows) cut through the level curves of E and converge
to v. The sets Wc � �v � W : E(v) � c� can help us understand the extent of the
set of initial conditions whose trajectories converge to an asymptotically stable
equilibrium.

Definition 7.24 Let v be an asymptotically stable equilibrium of v̇ �

f(v). Then the basin of attraction of v, denoted B(v), is the set of initial condi-
tions v0 such that limt→� F(t, v0) � v.
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Note that any set W on which V is a strict Lyapunov function for v (as in
Definition 7.22) will be a subset of the basin B(v).

✎ EXERCISE T7 .15
Show that the basin of attraction of the equilibrium (0, 0) for the system
(7.44) is �2.

A somewhat weaker notion of containment than a basin is that of a “trap-
ping region”—a set in �n where solutions, once they enter, cannot leave as time
increases.

Definition 7.25 A set U 	 �n is called a forward invariant set for (7.29)
if for each v0 � U, the forward orbit �F(t, v0) : t 	 0� is contained in U. A forward
invariant set that is bounded is called a trapping region. We also require that a
trapping region be an n-dimensional set.

✎ EXERCISE T7 .16
Let E be a Lyapunov function on W, let c be a positive real number, and let

Wc � �v � W : E(v) � c�.

(a) Show that, for each c, Wc is a forward invariant set. (b) Show that if in
addition E(v) → � as |v| → �, then Wc is a trapping region.

Returning to the pendulum example, we reconsider the system under the
effects of a damping force, such as air resistance. Once the pendulum is set into
motion, it will lose energy and eventually come to rest. We assume that the
damping force is proportional to, but opposite in direction from, the velocity of
the pendulum, so that the motion of the pendulum is governed by the equation

ẍ � bẋ � sin x � 0, (7.45)

for a constant b � 0.
From our observations, we would like to be able to conclude that what

were stable equilibria for the undamped pendulum are now asymptotically stable
and attract nearby initial conditions. The fact these equilibria are asymptotically
stable follows from evaluating the Jacobian (check this); however, we are not
able to conclude from the local analysis that all trajectories converge to an
equilibrium. Understanding the technique of Lyapunov functions for conservative
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systems, such as the undamped pendulum, enabled us to draw the phase plane
for this system and view it globally. In that case we were able to understand
the motions for all initial conditions. Unfortunately, total energy is not a strict
Lyapunov function for any equilibria of the damped system. Instead, we compute
Ė(v) � �by2, so that the inequality Ė(v) � 0 fails to be strict for points arbitrarily
near the equilibrium.

Notice that trajectories (other than equilibrium points) do not stay on
the x-axis, the set on which Ė � 0. Therefore we might expect trajectories to
behave as if E were a strict Lyapunov function. The following corollary, often
called “LaSalle’s Corollary” to the Lyapunov Theorem 7.23, not only provides
another means of deducing asymptotic stability for equilibria of the damped
system, but also gives information as to the extent of the basin of attraction for
each asymptotically stable equilibrium. We postpone the proof of the theorem
until Chapter 8 when we study limit sets of trajectories.

Corollary 7.26 (Barbashin-LaSalle) Let E be a Lyapunov function for v
on the neighborhood W, as in Definition 7.22. Let Q � �v � W : Ė(v) � 0�.
Assume that W is forward invariant. If the only forward-invariant set contained
completely in Q is v, then v is asymptotically stable. Furthermore, W is contained
in the basin of v; that is, for each v0 � W, limt→�(F(t, v0)) � v.

✎ EXERCISE T7 .17
Let ẍ � bẋ � sin x � 0, for a constant b � 0. (a) Convert the differential
equation to a first-order system. (b) Use Corollary 7.26 to show that the
equilibria (n�, 0), for even integers n are asymptotically stable. (c) Sketch
the phase plane for the associated first-order system.

7 .7 L OT K A -VO L T E R R A MOD E L S

A family of models called the Lotka-Volterra equations are often used to simulate
interactions between two or more populations. Interactions are of two types.
Competition refers to the possibility that an increase in one population is bad for
the other populations: an example would be competition for food or habitat. On
the other hand, sometimes an increase in one population is good for the other.
Owls are happy when the mouse population increases. We will consider two cases
of Lotka-Volterra equations, called competing species models and predator-prey
models.
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We begin with two competing species. Because of the finiteness of resources,
the reproduction rate per individual is adversely affected by high levels of its own
species and the other species with which it is in competition. Denoting the two
populations by x and y, the reproduction rate per individual is

ẋ
x

� a(1 � x) � by, (7.46)

where the carrying capacity of population x is chosen to be 1 (say, by adjusting
our units). A similar equation holds for the second population y, so that we have
the competing species system of ordinary differential equations

ẋ � ax(1 � x) � bxy

ẏ � cy(1 � y) � dxy (7.47)

where a, b, c, and d are positive constants. The first equation says the population
of species x grows according to a logistic law in the absence of species y (i.e.,
when y � 0). In addition, the rate of growth of x is negatively proportional to xy,
representing competition between members of x and members of y. The larger
the population y, the smaller the growth rate of x. The second equation similarly
describes the rate of growth for population y.

The method of nullclines is a technique for determining the global behavior
of solutions of competing species models. This method provides an effective means
of finding trapping regions for some differential equations. In a competition model,
if a species population x is above a certain level, the fact of limited resources will
cause x to decrease. The nullcline, a line or curve where ẋ � 0, marks the boundary
between increase and decrease in x. The same characteristic is true of the second
species y, and it has its own curve where ẏ � 0. The next two examples show that
the relative orientation of the x and y nullclines determines which of the species
survives.

EXAM PLE 7 .27

(Species extinction) Set the parameters of (7.47) to be a � 1, b � 2, c � 1,
and d � 3. To construct a phase plane for (7.47), we will determine four regions
in the first quadrant: sets for which (I) ẋ � 0 and ẏ � 0; (II) ẋ � 0 and ẏ � 0;
(III) ẋ � 0 and ẏ � 0; and (IV) ẋ � 0 and ẏ � 0. Other assumptions on a, b, c,
and d lead to different outcomes, but can be analyzed similarly.

In Figure 7.18(a) we show the line along which ẋ � 0, dividing the plane
into two regions: points where ẋ � 0 and points where ẋ � 0. Analogously,
Figure 7.18(b) shows regions where ẏ � 0 and ẏ � 0, respectively. Combining
the information from these two figures, we indicate regions (I)–(IV) (as described
above) in Figure 7.19(a). Along the nullclines (lines on which either ẋ � 0 or
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.
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(a) (b)

Figure 7.18 Method of nullclines for competing species.
The straight line in (a) shows where ẋ � 0, and in (b) it shows where ẏ � 0 for
a � 1, b � 2, c � 1, and d � 3 in (7.47). The y-axis in (a) is also an x-nullcline,
and the x-axis in (b) is a y-nullcline.

x

1

1

y

I
II

III

IV

Figure 7.19 Competing species: Nullclines.
The vectors show the direction that trajectories move. The nullclines are the lines
along which either ẋ � 0 or ẏ � 0. In this figure, the x-axis, the y-axis, and the two
crossed lines are nullclines. Triangular regions II and III are trapping regions.
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x

1

1

y

x

1

1

y

(a) (b)

Figure 7.20 Competing species, extinction.
(a) The phase plane shows attracting equilibria at (1, 0) and (0, 1), and a third,
unstable equilibrium at which the species coexist. (b) The basin of (0, 1) is shaded,
while the basin of (1, 0) is the unshaded region. One or the other species will die
out.

ẏ � 0), arrows indicate the direction of the flow: left/right where ẏ � 0 or up/down
where ẋ � 0. Notice that points where the two different types of nullclines cross
are equilibria. There are four of these points. The equilibrium (0, 0) is a repellor;
(1 � 5, 2 � 5) is a saddle; and (1, 0) and (0, 1) are attractors.

The entire phase plane is sketched in Figure 7.20(a). Almost all orbits
starting in regions (I) and (IV) move into regions (II) and (III). (The only
exceptions are the orbits that come in tangent to the stable eigenspace of the
saddle (1 � 5, 2 � 5). These one-dimensional curves form the “stable manifold” of
the saddle and are discussed more fully in Chapter 10.) Once orbits enter regions
(II) and (III), they never leave. Within these trapping regions, orbits follow the
direction indicated by the derivative toward one or the other asymptotically stable
equilibrium. The basins of attraction of the two possibilities are shown in Figure
7.20(b). The stable manifold of the saddle forms the boundary between the basin
shaded gray and the unshaded basin. We conclude that for almost every choice
of initial populations, one or the other species eventually dies out.

EXAM PLE 7 .28

(Coexistence) Set the parameters to be a � 3, b � 2, c � 4, and d � 3.
The nullclines are shown in Figure 7.21(a). In this case there is a steady state at
(x, y) � (2 � 3, 1 � 2) which is attracting. The basin of this steady state includes
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1
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x

1

1

y

(a) (b)

Figure 7.21 Competing species, coexistence.
(a) The phase plane shows an attracting equilibrium in which both species survive.
The x-nullcline y � 3

2 � 3
2 x has smaller x-intercept than the y-nullcline y � 1 � 3

4 x.
According to Exercise T7.18, the equilibrium ( 2

3 , 1
2 ) is asymptotically stable. (b) All

initial conditions with x � 0 and y � 0 are in the basin of this equilibrium.

the entire first quadrant, as shown in Figure 7.21(b). Every set of nonzero starting
populations moves toward this equilibrium of coexisting populations.

✎ EXERCISE T7 .18
Consider the general competing species equation (7.47) with positive pa-
rameters a, b, c, d. (a) Show that there is an equilibrium with both popu-
lations positive if and only if either (i) both a� b and c � d are greater than
one, or (ii) both a� b and c � d are less than one. (b) Show that a positive
equilibrium in (a) is asymptotically stable if and only if the x-intercept of the
x-nullcline is less than the x-intercept of the y-nullcline.

EXAM PLE 7 .29

(Predator-Prey) We examine a different interaction between species in this
example in which one population is prey to the other. A simple model of this
interaction is given by the following equations:

ẋ � ax � bxy

ẏ � �cy � dxy (7.48)

where a, b, c, and d are positive constants.
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✎ EXERCISE T7 .19
Explain the contribution of each term, positive or negative, to the predator-
prey model (7.48).

System (7.48) has two equilibria, (0, 0) and ( c
d , a

b). There are also nullclines;
namely, ẋ � 0 when x � 0 or when y � a

b , and ẏ � 0 when y � 0 or when x � c
d .

Figure 7.22(a) shows these nullclines together with an indication of the flow
directions in the phase plane.

Unlike previous examples, there are no trapping regions. Solutions appear
to cycle about the nontrivial equilibrium ( c

d , a
b ). Do they spiral in, spiral out, or

are they periodic? First, check the eigenvalues of the Jacobian at ( c
d , a

b ).

✎ EXERCISE T7 .20
Find the Jacobian Df for (7.48). Verify that the eigenvalues of Df( c

d , a
b ) are

pure imaginary.

a/b

c/d

y

x

a/b

c/d

y

x
(a) (b)

Figure 7.22 Predator-prey vector field and phase plane.
(a) The vector field shows equilibria at (0, 0) and ( c

d , a
b ). Nullclines are the x-axis,

the y-axis, and the lines x � c
d and y � a

b . There are no trapping regions. (b) The
curves shown are level sets of the Lyapunov function E. Since Ė � 0, solutions
starting on a level set must stay on that set. The solutions travel periodically around
the level sets in the counterclockwise direction.
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Since the system is nonlinear and the eigenvalues are pure imaginary, we can
conclude nothing about the stability of ( c

d , a
b). Fortunately, we have a Lyapunov

function.

✎ EXERCISE T7 .21
Let

E(x, y) � dx � c ln x � by � a ln y � K,

where a, b, c, and d are the parameters in (7.48) and K is a constant. Ver-
ify that Ė � 0 along solutions and that E is a Lyapunov function for the
equilibrium ( c

d , a
b ).

We can conclude that ( c
d , a

b ) is stable. Solutions of (7.48) lie on level
curves of E. Since ( c

d , a
b) is a relative minimum, these level curves are closed

curves encircling the equilibrium. See Figure 7.22(b). Therefore, solutions of this
predator-prey system are periodic for initial conditions near ( c

d , a
b ). In fact, every

initial condition with x and y both positive lies on a periodic orbit.
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☞ C H A L L E N G E 7

A Limit Cycle in the Van der Pol System

THE LIMITING BEHAVIOR we have seen in this chapter has consisted largely
of equilibrium states. However, it is common for solutions of nonlinear equations
to approach periodic behavior, converging to attracting periodic orbits, or limit
cycles. The Van der Pol equation

ẍ � (x2 � 1)ẋ � x � 0 (7.49)

is a model of a nonlinear electrical circuit that has a limit cycle.
Defining y � ẋ, the second-order equation is transformed to

ẋ � y

ẏ � �x � (1 � x2)y. (7.50)

The origin (0, 0) is the only equilibrium of (7.50), and it is unstable. In this
Challenge, you will show that all other trajectories of the system approach a
single attracting periodic orbit that encircles the origin. This type of limiting
behavior for orbits is a phenomenon of nonlinear equations. Although linear
systems may have periodic orbits, they do not attract initial values from outside
the periodic orbit.

We begin by introducing a change of coordinates. Let z � y � F(x), where

F(x) �
x3

3
� x.

Step 1 Show that the correspondence (x, y) → (x, z) is one-to-one (and
therefore a change of coordinates), and that the system (7.50) is transformed to
the following system:

ẋ � z �

(
x3

3
� x

)

ż � �x. (7.51)

Step 2 Draw a phase plane for the system (7.51), indicating the approx-
imate direction of the flow. (Hint: Begin with Figure 7.23.) Argue that starting
from a point on the positive z-axis, denoted z�, a solution v(t) � (x(t), z(t)) will
go into region I until it intersects the branch F� (the graph of F(x) for positive x),
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x

z+

z-

F+

F-

I

IIIII

IV

Figure 7.23 Phase plane structure for the Van der Pol system.
The plane separates into four regions according to the sign of ẋ and ż. The direction of
the flow (which you provide, see Step 2) implies a circulation of solution trajectories
around the origin.

crosses F�, moves into region II, and then intersects the negative z-axis, denoted
z�. Then the solution moves through region III, through region IV, and back to
the half-line z�. Conclude that the solution repeatedly cycles through regions I,
II, III, and IV, in that order.

Define the map T on z�, as follows: For a point (0, a�) on z�, draw the
trajectory X through (0, a�), and let T(a�) be the first intersection (after a�) of
X with z�; that is, the intersection that occurs after X has cycled once through
regions I–IV. The definition of T is illustrated in Figure 7.24.

Step 3 Show that the map T is one-to-one, and that a number a� is
fixed under T if and only if the solution trajectory through (0, a�) is a periodic
solution of (7.51). Explain why an orbit of (7.51) is periodic if and only if the
corresponding orbit of (7.50) is periodic.

The map T is another example of the Poincaré map, first introduced in
Chapter 2. In Steps 4–10 we show that T has an attracting fixed point.

Step 4 Let a� � 0. Show that because of symmetry, if the solution through
(0, a�) intersects z� at (0, �a�), then T(a�) � a�.

Notice that (7.49) bears some resemblance to the linear oscillator ẍ� x � 0.
The coefficient of the middle term ẋ goes from negative to positive with increasing
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a+

T(a+)

x

z+

Figure 7.24 The first-return map T.
The point T(a�) is defined to be the intersection of the solution through a� with
the positive z-axis.

x, resulting in a variable “damping” effect. We define an energy function, as
follows:

E(x, z) � (1 � 2)(x2 � z2).

Starting with the point (0, a�), we want to measure the change in energy
over a segment X0 of X from (0, a�) to the first crossing of X with z�, denoted
by a�. We define this change as follows: Let

h(a�) � E(0, a�) � E(0, a�) � (1 � 2)[(a�)2 � (a�)2].

According to Step 4, the problem reduces to showing that there exists a real
number c such that h(c) � 0.

Step 5 Show that

Ė �

(
x3

3
� x

)
ż,

and so

h(a�) �

∫
X0

(
x3

3
� x

)
ż dt.

Let r be the x-coordinate of the point where the solution X intersects F�,
and let (q, 0) be the point on the positive x-axis where F� intersects the axis. For
this example, q �

√
3. (See Figure 7.25.)
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q
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Figure 7.25 A schematic view of a Van der Pol trajectory.
The initial value is (0, a�); the intersection with the negative z-axis is a�. The
trajectory between is the union X0 of three pieces denoted X1, X2, and X3.

Step 6 Show that if r � q, then

∫
X0

(
x3

3
� x

)
ż dt � 0.

Refer to Figure 7.25. Let q� (respectively, q�) be the first point (respectively,
second point) where X intersects the line x � q. For r � q, we write the path X0

as X1 � X2 � X3, where X1 goes from (0, a�) to q�, X2 goes from q� to q�, and
X3 goes from q� to (0, a�).

Step 7 Show:∫
X1

dE � 0,
∫

X2

dE � 0, and
∫

X3

dE � 0.

Step 8 Show that
∫

X1
Ė dt and

∫
X3

Ė dt are decreasing functions of a�.
[Hint: For example,

∫
X1

Ė dt �

∫ √
3

0

(
x3

3
� x

)
dz
dx

dx �

∫ √
3

0

(
x3

3
� x

)
�x

z � ( x3

3 � x)
dx.]
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Step 9 Show that
∫

X2
Ė dt monotonically decreases to �� as a� → �.

[Hint: The integral ∫
X2

Ė dt � �

∫
X2

(
x3

3
� x

)
x dt.

By uniqueness, the solutions must move farther to the right, and the terms ( x3

3 � x)
and x in the integral must increase, as a� is increased.]

Step 10 Conclude that there exists a unique positive number c such that
h(c) � 0, and that c is a fixed point of T.

Step 11 Show that c is an attracting fixed point of T. [Hint: Show that
uniqueness of solutions implies that if a� � c, then �a� � c. Show that the
change in E from a� to T(a�) is greater than 0 for a� � c, and less than 0 for
a� � c.]

Postscript. An attracting periodic orbit, or limit cycle, is the first distinctly non-
linear phenomenon we have seen for differential equations. Although Figure 7.9 shows
periodic orbits circling a Lyapunov stable equilibrium, the cycles are “neutrally stable”:
They do not attract nearby initial conditions. The periodic orbits of the undamped pen-
dulum in Figure 7.14 and the predator-prey system in Figure 7.22 are also not attracting.
In Challenge 7 we have explored the Van der Pol equation in detail because it has a
rigorously-provable attracting periodic orbit.

Attracting periodic orbits are interesting subjects of study because they exemplify
the notion that certain periodic oscillations in nature can be “locked in”, so as to be fairly
impervious to drift. If a small amount of noise were to push the current state away from a
particular periodic orbit in the neutrally stable examples of the previous paragraph, there is
no mechanism to return it to the original cycle. An attracting cycle, on the other hand, has
such a mechanism built in. This is consistent with overwhelming evidence that periodic
cycles, like your heartbeat, can oscillate more or less unperturbed, even in systems exposed
to external disturbances. Chapter 8 is dedicated to the study of periodic cycles. Lab Visit
8 examines experimental evidence for the usefulness of the limit cycle paradigm in the
context of neurons.
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EXERCISES

7.1. The differential equation governing a linear oscillator, such as a spring moving
according to Hooke’s law, is ẍ � kx � 0.

(a) Convert to a system of first-order equations.

(b) Sketch the phase plane.

7.2. Consider the second-order equation ẍ � 3ẋ � 4x � 0.

(a) Convert to a system of first-order equations.

(b) Sketch the phase plane.

7.3. Consider the system

ẋ � 2x � y

ẏ � x2 � 4y.

Find equilibria and classify them as asymptotically stable, stable, or unstable.

7.4. Consider the equation ẋ � a(x � b)(x � c), where b � c, with initial condition
x(0) � x0.

(a) Sketch the slope field and phase portrait. For each initial condition x0,
use this qualitative information to determine the long-term behavior of the
solutions. Treat the cases a � 0, a � 0, and a � 0 separately.

(b) Solve the equation and initial value problem by separation of variables and
partial fractions. Verify that the behavior of this solution is consistent with the
qualitative information in (a).

(c) Show that if a � 0 and x0 � c, or if a � 0 and x0 � b, the solutions blow
up in finite time. Find the largest interval [0, T) on which the solution exists.
Does this example contradict the existence theorem?

(d) What happens if b � c?

(e) A chemical reaction Y+Z→X proceeds at a rate proportional to the product
of the concentration of the reactants Y and Z. Each time the reaction occurs, one
molecule of species X appears and one each of Y and Z disappears. Therefore the
reaction is modeled by the differential equation ẋ � a(b � x)(c � x), x(0) � 0,
where x(t) is the relative molar concentration of species X at time t, and b and
c are the relative molar concentrations of Y and Z, respectively, at time t � 0.
The constant a is called the rate constant of the reaction. Which parts of the
above analysis (which combinations of a and x0) correspond to this physical
problem, and which do not? Describe the eventual outcome of the reaction in
these cases.
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7.5. Sketch phase portraits for the following linear systems.

(a)

ẋ � 3x � y

ẏ � 2x � 4y

(b)

ẋ � �2x � 3y

ẏ � 7x � 6y

(c)

ẋ � 3x � y

ẏ � x � 3y

ż � �2z

7.6. Show by examples that there are equilibria that are attracting but not stable, and
equilibria that are stable but not attracting.

7.7. Verify that if the independent variable t does not appear in the right side of (7.29),
then solutions do not cross in the phase portrait.

7.8. Consider the second-order equation ẍ � x � x3 � 0.

(a) Find a Lyapunov function for the equilibrium x � ẋ � 0. Verify your answer.

(b) Convert the equation to a first-order system and sketch the phase plane.

7.9. Let ẍ � ẋ � x � x3 � 0. Show that the equilibrium (0, 0) is globally asymptotically
stable.

7.10. Each graph in Figure 7.26 represents the graph of a potential function P(x). In
each case, sketch the phase plane for the system ẍ � f(x) � 0, where f(x) � P ′(x).
Identify the equilibria and discuss their stability.

7.11. Let ẍ � bẋ � f(x) � 0, where b is a positive constant and f(x) � P ′(x) where P(x)
is shown in Figure 7.26. Write the equation as a first-order system and sketch the
phase plane.

7.12. Figure 7.14(b) shows the phase portrait of the undamped pendulum. Graph the six
qualitatively different solutions x(t) as functions of t.
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P(x)

xx1 x2
x

P(x)

x1 x2

(a) (b)

Figure 7.26 Potential functions for Exercise 7.10.
In part (b), P ′(x2) � 0.

7.13. Use the method of nullclines to determine the global behavior of solutions of the
following competing species models. Describe sets of initial conditions that evolve
to distinct final states.

(a)

ẋ � 3x(1 � x) � xy

ẏ � 5y(1 � y) � 2xy

(b)

ẋ � 2x(1 � x) � xy

ẏ � y(1 � y) � 3xy

7.14. Consider the system

ẋ � �z �

(
x3

3
� x

)

ż � x.

(a) By comparing with (7.51), explain why this system can be called the
backwards-time Van der Pol system.

(b) Show that V(x, z) � x2 � z2 is a Lyapunov function.

(c) Find the largest possible open disk contained in the basin of attraction of
the origin.

(d) What can you conclude from this about the solutions of (7.51)?
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7.15. Find two different solutions of the differential equation

ẋ �

{
0 if x � 0
3
√

x if x 	 0

with initial condition x(0) � 0. Explain why this does not contradict Theorem
7.14.

7.16. Sketch the phase plane in (x, ẋ) for the system ẍ � x � ax3 for various values of a.
Find all stable and unstable equilibrium points.

7.17. The system

ẋ1 � �3x1

ẋ2 � �8x2
1 � 2x2

has its only equilibrium point at the origin.

(a) Find the solution for initial condition (x0, y0).

(b) Find the set of all initial conditions whose solutions approach the origin as
t → �. (This is the stable manifold of (0, 0)).

(c) Find the set of all initial conditions whose solutions approach the origin as
t → ��. (This is the unstable manifold of (0, 0)).

(d) Describe the asymptotic behavior of solutions starting at an arbitrary initial
condition as t → �. Do the same for t → ��.

7.18. Consider the system

ẋ � �x3 � x2y

ẏ � �y3 � x3

Describe the asymptotic behavior of the solution with initial condition (x0, y0) �

(1, 2).
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☞ L A B V I S I T 7

Fly vs. Fly

DURING THE PAST ten years a competition has developed between two
mosquito species in North America. The tiger mosquito Aedes albopictus, which
occupies much of Asia, was unknown in the United States before being observed
in Houston, Texas in 1985, apparently as the result of imports of used automobile
tires.

The invasion of the tiger mosquito has caused alarm in the United States
public health community because it is a vector for dengue fever. Dengue is a viral
disease known as “breakbone fever” in Africa, a reflection of the level of pain
that accompanies it. Even in its mildest form it causes intense headaches and
extreme muscle spasms. The severe form, known as dengue hemorrhagic fever,
causes internal bleeding, coma and shock, killing over 10% of those afflicted. Due
in part to reduced mosquito eradication programs, Latin America experienced a
sixty-fold increase in cases of dengue hemorrhagic fever in 1989–1994, compared
with the previous five-year period.

A key scientific question is to address the potential success of the new
mosquito’s invasion into North American mosquito habitats. Here we describe
an experiment, which was designed to gauge the possibility that the new mosquito
species will be able to coexist with or displace currently-existing mosquito species
that are less susceptible to carrying viruses, and less aggressive biters. An example
of a native species, Aedes triseriatus, was used in the study.

Two common mosquito habitats were simulated, treeholes and automobile
tires. The critical time for development is the larval stage; the species that can
compete best for resources at this stage will have a competitive survival advantage.
In Experiment A, one-day-old larvae of both species were put in plastic cups
containing leaf litter and 100 ml of stagnant water taken from holes in maple
trees, which represents a typical habitat for mosquito larvae. Experiment B was the
same except that “treehole fluid” was replaced with stagnant water from discarded
tires.

The parameters in the competing species model (7.47) were estimated as the
result of these experiments. The nullclines derived from the estimated parameters

Livdahl, T. P., Willey, M. S. 1991. Propects for an invasion: Competition between Aedes
albopictus and native Aedes triseriatus. Science 253:189–91.
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Figure 7.27 Nullclines of two mosquito species A. triseriatus and A. albo-
pictus.
Hatched regions depict 95% confidence levels for the nullclines for Experiment A
(treehole habitat) and Experiment B (tire habitat). Circles denote the equilibria of
the competing species equations. The relative slopes of the nullclines for Experiment
A indicate that the equilibrium is stable. Experiment B points toward extinction of
A. triseriatus.

are graphed in Figure 7.27, along with confidence limits based on the estimates.
The true nullclines lie within the shaded regions with 95% certainty. The units in
the axes of the figure differ from our assumptions for (7.47). If we rescale units so
that the x-nullcline has an x-intercept of 1 and the y-nullcline has an y-intercept
of 1, then we can interpret the nullclines exactly as in (7.47).

In any case, Exercise T7.18 shows how to interpret the experimentally-
measured nullclines shown in the Figure. In Experiment A (treehole habitat),
there is an asymptotically stable state of coexisting nonzero populations. In Ex-
periment B (tire habitat), there is no equilibrium of coexisting populations, and
all initial populations are attracted to the horizontal axis, which represents ex-
tinction of A. triseriatus.

The significance of the predictions that follow from the experiment has
increased since 1991. Now ten years since it appeared in Houston, the tiger
mosquito has been identified in half of the United States, and as far north as
Chicago. It is now the dominant mosquito in many urban areas, including New
Orleans and several Florida cities.

Corroboration of the laboratory result has come from ecological studies.
Coexistence of the two species within treehole communities is suggested by a
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1988 study done in a Louisiana forest, finding A. triseriatus and A. albopictus as
the two dominant species, at 81% and 17% of larvae collected, respectively.

Since the completion of this project, the authors of the study have begun to
search for the mechanism behind this pronounced difference in the habitats. For
example, it is not yet known whether there is a biochemical difference between
treehole water and tire water that can account for the differing results. In any
case, the experiment suggests that the tiger mosquito has a distinct competitive
advantage in the man-made environment of automobile tires.
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Periodic Orbits and
Limit Sets
THE BEGINNING of this book was devoted to an understanding of the asymptotic
behavior of orbits of maps. Here we begin a similar study for solution orbits of
differential equations. Chapter 7 contains examples of solutions that converge to
equilibria and solutions that converge to periodic orbits called limit cycles. We
will find that the dimension and shape of the phase space put serious constraints
on the possible forms that asymptotic behavior can take.

For autonomous differential equations on the real line, we will see that
solutions that are bounded must converge to an equilibrium. For autonomous
differential equations in the plane, a new limiting behavior is possible—solutions
that are bounded may instead converge to closed curves, called periodic orbits or
cycles. However, nothing more radical can happen for solutions of autonomous
differential equations in the plane. Solutions cannot be chaotic. The topological
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rule about plane geometry that enforces this fact is the Jordan Curve Theorem.
Winding solutions can wind only in a single direction, as shown in Figure 8.7.
This is the subject of the Poincaré-Bendixson Theorem, which is one of the
main topics of this chapter. In three-dimensional space, there is no such rule.
The one extra dimension makes a difference. We will investigate several chaotic
three-dimensional equations in Chapter 9.

Typical limiting behavior for planar systems can be seen in the equation

ṙ � r(1 � r)

�̇ � 8, (8.1)

where r and � are polar coordinates. There is an equilibrium at the origin r � 0
and a periodic orbit circling at r � 1.

✎ EXERCISE T8 .1
Show that all nonequilibrium solutions of (8.1) have form (r, �) �

(cet � (cet � 1), 8t � d) for some constants c, d.

The solution of (8.1) with initial condition (r, �) � (2, 0) is shown in
Figure 8.1. It spirals in forever toward the periodic solution r � 1, also shown.

p

Figure 8.1 The definition of an �-limit set.
The point p is in the �-limit set of the spiraling trajectory because there are points
F(t1, v0), F(t2, v0), F(t3, v0) . . . of the trajectory, indicated by dots, that converge
to p. The same argument can be made for any point in the entire limiting circle of
the spiral solution, so the circle is the �-limit set.
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For this reason, we will say that the periodic solution r � 1 is the limit set of the
spiraling solution. We will usually use the terminology �-limit set, to emphasize
that we are interested in final, or asymptotic, behavior. In Section 8.1 we define
limit set and give examples in one and two dimensions.

8 .1 L I M I T S E T S F O R P L A N A R
D I F F E R E N T I A L E Q U AT I O N S

We begin with an autonomous differential equation

v̇ � f(v), (8.2)

where f is a map of �n, which is differentiable or at least Lipschitz, to guaran-
tee uniqueness. Throughout this chapter all differential equations will be au-
tonomous; the function f of (8.2) does not depend explicitly on t. For v � �

that means f is a scalar (one-dimensional) map. When v is a vector in �2, f is a
vector-valued function of two scalar variables, and the phase portrait of (8.2) is a
phase plane.

Recall the definition of flow in Chapter 7. For a point v0 in �n, we write
F(t, v0) for the unique solution of (8.2) satisfying F(0, v0) � v0.

Definition 8.1 A point z in �n is in the �-limit set �(v0) of the solution
curve F(t, v0) if there is a sequence of points increasingly far out along the orbit
(that is, t → ��) which converges to z. Specifically, z is in �(v0) if there exists an
unbounded increasing sequence �tn� of real numbers with limn→� F(tn, v0) � z.
A point z is in the �-limit set �(v0) if there exists an unbounded decreasing
sequence �tn� of real numbers (tn → ��) with limn→� F(tn, v0) � z.

The concept of �-limit set (or forward limit set) first appeared for maps in
Chapter 6. For maps, the unbounded, increasing sequence �tn� of real numbers in
Definition 8.1 is replaced by an (unbounded) increasing sequence �mn� of positive
integers (iterates of the map).

If v0 is an equilibrium, then �(v0) � �(v0) � �v0�. Furthermore, for any
v0 the �-limit set of the equation v̇ � f(v) is the �-limit set of v̇ � �f(v). See
Exercise 8.13.

EXAM PLE 8 .2

Recall the one-dimensional example

ẋ � x(a � x)
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from Chapter 7. Assume that a � 0. There are two equilibria in �, x � 0 and x � a.
All trajectories with x0 � 0 converge to the stable equilibrium x � a. According to
the above definition, �(x0) � �a� for x0 � 0. Since 0 is an equilibrium, �(0) � �0�.
If x0 � 0, the trajectory diverges to ��, and therefore �(x0) is the empty set.

With this example in mind, it is easy to describe the asymptotic behavior
(the �-limit set) for any bounded orbit of an autonomous differential equation
on the real line.

Theorem 8.3 All solutions of the scalar differential equation ẋ � f(x) are
either monotonic increasing or monotonic decreasing as a function of t. For x0 � �, if
the orbit F(t, x0), t 	 0, is bounded, then �(x0) consists solely of an equilibrium.

Figure 8.2 shows a nonmonotonic scalar function x(t), together with an
explanation (in the caption) as to why it cannot be the solution to a scalar
equation ẋ � f(x).

Proof of Theorem 8.3: Assume that for a fixed initial condition x0, there
is some t� at which the solution F(t, x0) has a local maximum or local minimum
x�, as a function of t. Then ẋ(t�) � f(x�) � 0. Hence x� is an equilibrium, and
there is a solution identically equal to x�. By uniqueness of solutions, F(t, x0) must
be the equilibrium solution; F(t, x0) � x�, for all t. This means that no solution
can “turn around”. All solutions are monotonic.

x1

t

x

Figure 8.2 Why nonmonotonic functions cannot be solutions of a scalar au-
tonomous equation.
The function x(t) depicted here cannot be the solution of a scalar equation ẋ � f(x).
Notice that the solution passes through the value x1 twice, once with positive slope
and once with negative slope. The value of f(x1) is either positive or negative (or
zero), however, and it must equal the slope at both points. The point x1 can be
chosen so that f(x1) is not 0.
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On an interval [x0, x1] not containing an equilibrium (so that f is not zero),
we can rewrite the equation as

dt
dx

�
1

f(x)
.

Integrating both sides from x0 to x1 yields

t(x1) � t(x0) �

∫ x1

x0

dx
f(x)

� �.

We conclude that a trajectory traverses any closed, bounded interval without
equilibria in finite time.

If f(x0) is greater than 0, the orbit F(t, x0) must increase as t increases,
as long as it is below the first equilibrium. It cannot stop at any point below
the equilibrium, because it traverses an interval centered at such a point. It
cannot reach the equilibrium, by uniqueness of solutions. Therefore it converges
monotonically to the equilibrium as t → �. The same argument can be turned
around to handle the case of f(x0) � 0. �

Theorem 8.3 describes the �-limit sets for scalar autonomous differential
equations and shows they are rather simple. Either the orbit diverges to infinity,
or if bounded, converges to a single equilibrium. For differential equations of
dimension two and higher, there is another asymptotic behavior, called a periodic
orbit. Like equilibria, periodic orbits can attract solutions, and therefore be �-limit
sets.

Definition 8.4 If there exists a T � 0 such that F(t � T, v0) � F(t, v0)
for all t, and if v0 is not an equilibrium, then the solution F(t, v0) is called a
periodic orbit, or cycle. The smallest such number T is called the period of the
orbit.

A periodic orbit traces out a simple closed curve in �n. The term closed
curve refers to a path that begins and ends at the same point. Examples include
circles, triangles, and figure-eights. A simple closed curve is one that does not
cross itself. Hence, a figure-eight is not a simple closed curve. By uniqueness of
solutions, the closed curve of a periodic orbit must be simple. We have already
seen examples of cycles. In Example 7.8, the solution F(t, v0) is a circle whose
radius is |v0|. Every initial condition lies on a circular periodic orbit of period 2�,
except for the origin, which is an equilibrium.

The pendulum equation of Section 7.5 also has cycles when there is no
friction. These solutions correspond physically to full back-and-forth periodic
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swings of the pendulum. Figure 7.14 shows orbits encircling equilibria that are
simple closed curves traversed by the system.

EXAM PLE 8 .5

Here is a general version of (8.1). Let r and � be polar coordinates in the
plane. For a, b � 0, consider

ṙ � r(a � r)

�̇ � b. (8.3)

There is an equilibrium at the origin. Therefore �(0) � �0�. See Figure 8.3. For
every other initial condition (r0, �0) � 0, the trajectory moves counterclockwise
around the origin and the �-limit set is the circle r � a. Figure 8.3(a) shows the
phase plane for this system.

y

x

y

x

(a) (b)

Figure 8.3 Examples of �-limit sets for planar flows.
(a) The phase plane for Example 8.5 shows the circle r � a as an attracting periodic
orbit of system (8.3). The origin is an unstable equilibrium. The �-limit set of
every trajectory except the equilibrium is the periodic orbit. (b) The phase plane
for Example 8.6 looks very similar to the phase plane in (a), except that in this
example there are no periodic orbits. There are three equilibria: the origin and the
points (a, 0) and (a, �). Every other point on the circle r � a is on a solution called
a connecting arc, whose �- and �-limit sets are the equilibria. The �-limit set of
each nonequilibrium solution not on the circle is the circle r � a.
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✎ EXERCISE T8 .2
Solve the differential equation (8.3), and verify the statements made about
�-limit sets in Example 8.5.

➮ C O M P U T E R E X P E R I M E N T 8 . 1

Write a computer program to plot numerical solutions of the Van der Pol
equation ẍ � (x2 � 1)ẋ � x � 0. Plot the attracting periodic orbit that was proved
to exist in Challenge 7. Find the �-limit sets for all planar orbits.

EXAM PLE 8 .6

Example 8.5 can be modified so that it does not have any periodic orbits. We
can destroy the circular orbit at r � a by making an adjustment in the equation
for �̇. For example, replace b in the equation by a function g(r, �) that is always
positive except for the two points (r, �) � (a, 0) and (a, �), where it is zero. If
we use g(r, �) � sin2 � � (r � a)2, the equation is

ṙ � r(a � r)

�̇ � sin2 � � (r � a)2.

This equation is much harder to solve explicitly than (8.3), but we can derive
lots of qualitative information without an explicit formula for the solution. For
any initial condition not on the circle r � a, the limit set has not changed from
the previous example. Except for the equilibrium trajectory at the origin, these
trajectories limit on the entire circle. The novel aspect of this example is that
trajectories on the circle itself do not have the entire circle as the limit set. Figure
8.3(b) shows the phase plane for this system. On the circle r � a there are two
equilibria, (a, 0) and (a, �). The trajectory through any other point on the circle
has as its �- and �-limit sets these equilibria. Nonequilibrium solutions such as
these, whose limit sets contain only equilibria, are called connecting arcs.

EXAM PLE 8 .7

The pendulum solutions in Figure 7.14 show two types of �-limit sets.
One type is an equilibrium, which is its own �-limit set and which is also the
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limit set of the connecting arcs. The connecting arcs are solutions that approach
the equilibria ((2k � 1)�, 0), (k � �1, �2, . . .), as t → ��. The other type of
�-limit set is a cycle, which is again its own limit set. The pendulum also has
unbounded orbits (which have no limit sets).

We again raise the question: What types of sets in �2 can be �-limit
sets of a bounded solution of an autonomous differential equation? We have
seen examples of points (equilibria) and closed curves (periodic orbits), and sets
containing equilibria and connecting arcs, as in Example 8.6. Can flows on �2

have chaotic limit sets? The answer to this question is “no”. We shall see in the
remainder of this chapter that the types of �-limit sets are severely restricted by
intrinsic topological properties of the plane.

➮ C O M P U T E R E X P E R I M E N T 8 . 2

Write a computer program to compute numerical solutions of the double-
well Duffing oscillator ẍ � 0.1ẋ � x � x3 � 0. There are two stable equilibria
corresponding to the bottoms of the wells. Plot the set of initial values in the
(x, ẋ)-plane whose �-limit set is the equilibrium point (1, 0). How would you
describe the set of points whose �-limit set is the point (0, 0)?

The celebrated Poincaré-Bendixson Theorem, which we state in this sec-
tion and prove in Section 8.3, gives a classification of planar �-limit sets. An
�-limit set of a two-dimensional autonomous equation must be one of the fol-
lowing: (1) a set of equilibria; (2) a periodic orbit; or (3) a set containing only
equilibria and connecting arcs. Figure 8.3(b) shows a circle with two connecting
arcs on it. The entire circle is a limit set of the trajectory spiraling in towards it.
This example has �-limit sets of types (1) and (3).

We usually deal with equations whose equilibria are isolated, meaning that
there are only finitely many in any bounded set. In particular, this implies that
each equilibrium has a surrounding neighborhood with no other equilibria. For
such equations, a type (1) limit set contains only one equilibrium point. None
of these three types of �-limit sets can be a chaotic set. In each case, as an orbit
converges to one of these sets, its behavior is completely predictable. In particular,
such a set may contain a dense orbit only if the limit set is either a periodic orbit
or an equilibrium point. Thus we can conclude from the following theorem that
for autonomous differential equations, chaos can occur only in dimension three
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and higher. As we have seen, there can be chaos in one-dimensional maps, and
for invertible maps it can occur in dimensions two and higher.

Theorem 8.8 (Poincaré-Bendixson Theorem.) Let f be a smooth vector
field of the plane, for which the equilibria of v̇ � f(v) are isolated. If the forward orbit
F(t, v0), t 	 0, is bounded, then either

1. �(v0) is an equilibrium, or
2. �(v0) is a periodic orbit, or
3. For each u in �(v0), the limit sets �(u) and �(u) are equilibria.

The hypothesis that the equilibria are isolated is included to simplify the
statement of the theorem. If this assumption is omitted, then we have to include
the possibility that either �(v0) or �(u) is a connected set of equilibria.

The three possibilities allowed by Theorem 8.8 are illustrated in Figure 8.4.
In (a), the �-limit set of the solution shown is an equilbrium; in (b) both solutions
have the circular periodic solution as �-limit set. In (c), the �-limit set of the
outermost orbit is the equilibrium P together with the two connecting arcs that
begin and end at P. As required by Theorem 8.8, any point u in �(v0) has the
property that �(u) � P.

In the next section we discuss properties of limit sets, not just for planar
flows, but for autonomous equations in any dimension. These properties are
then used in the proof of the Poincaré-Bendixson Theorem, which is given in
Section 8.3.

8 .2 P R O P E R T I E S O F �-L I M I T S E T S
Now that we have seen some common examples of �-limit sets, we turn to a
more theoretical investigation and establish five important properties of all �-
limit sets. The statements and proofs of these properties involve the concept of
“limit point”, a concept we have previously seen, although not explicitly, in all
our discussions of limit sets. Specifically, a point v in �n is called a limit point of
a set A if every neighborhood N�(v) contains points of A distinct from v. This
means that there is a sequence of points in A that converge to v. A limit point
v of A may be in A or it may not be. A set A that contains all its limit points
is called a closed set. Thus, for example, if a and b are real numbers, then the
intervals [a, b], [0, �), and (��, �) are closed, while the intervals [a, b), (a, b),
and (0, �) are not. In the plane, the unit disk (with its boundary circle) is a closed
set, while the interior of the disk, all points (x, y) such that x2 � y2 � 1, is not
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y

x

y

x

(a) (b)

P

(c)

Figure 8.4 Planar limit sets.
The three pictures illustrate the three cases of the Poincaré-Bendixson Theorem.
(a) The limit set is one point, the origin. (b) The limit set of each spiraling trajectory
is a circle, which is a periodic orbit. (c) The limit set of the outermost trajectory is
a figure eight. This limit set must have an equilibrium point P at the vertex of the
“eight”. It consists of two connecting arcs plus the equilibrium. Trajectories on the
connecting arcs tend to P as t → � and as t → ��.

closed. (Take away any point on the boundary circle x2 � y2 � 1 and the set will
not be closed.)

An important fact about limit points is that any set that is both infinite and
bounded will have limit points. This fact is called the Bolzano-Weierstrass The-
orem, and it can be found in any standard advanced calculus text—for example,
(Fitzpatrick, 1996).

Now we can proceed with the properties of �-limit sets. Let v̇ � f(v), v �

�n, be an autonomous differential equation, and let �(v0) be the �-limit set of
an orbit F(t, v0).

• Existence Property. If the orbit F(t, v0) is bounded for all t 	 0, then �(v0)
is non-empty.
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Proof: The sequence �F(n, v0) : n � 1, 2, 3, . . .� either is a bounded infi-
nite set (which must have a limit point) or repeats the same point infinitely many
times. In either case, a point is in �(v0). �

• Property of Closure. �(v0) is closed; that is, �(v0) contains all of its limit
points.

✎ EXERCISE T8 .3
Prove the Property of Closure.

In order to prove the next property, we will have to reparametrize orbits.
Since the solution of an autonomous equation goes through a point independent
of the time that it reaches the point, we could solve an equation up to time t
in different ways: either directly find F(t, v0), or write t as t1 � t2 and solve by
first finding F(t1, v0), then using v1 � F(t1, v0) as our new initial point, find
F(t2, v1). In other words, we can stop and start the process, reparametrizing
along the way, and still end up with the same solution. In mathematical terms,
F(t1 � t2, v0) � F(t2, F(t1, v0)). We refer to this equivalence as the composition
property (also called the semi-group property) of autonomous equations.

• Property of Invariance. �(v0) is invariant under the flow; that is, if u is in
�(v0), then the entire orbit F(t, u) is in �(v0).

✎ EXERCISE T8 .4
Prove the Property of Invariance.

The next property involves the topological concept called connectedness.
Loosely speaking, a set is “connected” if it is geometrically of one piece. For a
closed set (one that contains all its limit points) that is also bounded, we have the
following characterization: a closed, bounded set S is called connected if it is not
possible to write S � A � B, where the sets A and B are a positive distance apart.
More precisely, there are no sets A and B such that S � A � B and there is a
distance d � 0 with each point of A separated from each point of B by a distance
of at least d.

• Property of Connectedness. If �F(t, v0)� is a bounded set, then �(v0) is
connected.
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Proof: Suppose �(v0) � A � B, where sets A and B are d apart. There
are infinitely many disjoint segments of solution curves moving from within d� 4
of A to within d� 4 of B. Since A and B are separated by d, there must be a point
on each such segment that is d� 2 from A. Such points are at least d� 2 from B.
These points form a bounded infinite set that has a limit point lying at least d� 2
from �(v0). Therefore, d must be 0. �

• Property of Transitivity. If z � �(u) and u � �(v0), then z � �(v0).

✎ EXERCISE T8 .5
Prove the Property of Transitivity.

The same five properties hold for �-limit sets since, as mentioned previously,
every �-limit set of the equation v̇ � f(v) is an �-limit set of v̇ � �f(v). (Exercise
8.13.) We summarize the properties of �-limit sets in a table for easy reference.

Properties of �-limit sets

1. Existence: The �-limit set of a bounded orbit is non-empty.
2. Closure: An �-limit set is closed.
3. Invariance: If y is in �(v0), then the entire orbit F(t, y) is in �(v0).
4. Connectedness: The �-limit set of a bounded orbit is connected.
5. Transitivity: If z is in �(y) and y is in �(v0), then z is in �(v0).

We return now to the subject of Lyapunov functions (introduced in Chapter
7) to determine the behavior of these functions on limit sets. Recall that for a
Lyapunov function E : �n → �, the value of E along an orbit decreases with
time: dE

dt (F(t, v)) � 0. The following lemma says that the value of E is constant
on limit sets. For any positive real number c, we let

Wc � �v � �n : E(v) � c�.

In Exercise T7.16 it was shown that, for each c, Wc is a forward invariant set.

Lemma 8.9 Let v0 � Wc, for some c � 0. Then there is a number
d, 0 � d � c, such that E(v) � d, for every v � �(v0).
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Since E is constant on �(v0) and �(v0) is an invariant set, we have the
following corollary.

Corollary 8.10 Ė(v) � 0 for each v in �(v0).

✎ EXERCISE T8 .6
Prove Lemma 8.9.

Lyapunov functions provide a method of showing that an equilibrium is
asymptotically stable and measuring the extent of the basin of attraction for such
an equilibrium. We use Lemma 8.9 to prove LaSalle’s Corollary (Corollary 7.26).

Let E be a Lyapunov function for v, let W be a neighborhood of v as in
the hypothesis of Corollary 7.26. Let Q � �v � W : Ė(v) � 0�. Assume that
v is an isolated equilibrium and that W is forward invariant. We prove that
if the only forward invariant set contained completely in Q is v, then v is
asymptotically stable. Furthermore, W is contained in the basin of v; for each
v0 � W, limt→� F(t, v0) � v.

Proof of Corollary 7.26 (LaSalle’s Corollary): Since E is constant on
�(v0), the limit set �(v0) is contained in Q. Also, �(v0) is forward invariant.
Therefore, �(v0) � v. �

8 .3 P R OO F O F T H E PO I N C A R É -B E N D I X S O N
T H E O R E M

The proof of the Poincaré-Bendixson Theorem is illuminating. We will break
down the ideas into a series of lemmas. In the first lemma below, we develop a
picture of the flow in a small neighborhood of a nonequilibrium point u. In such
a neighborhood, solution curves run roughly parallel to the orbit through u.

For a nonequilibrium point u, let L be a short line segment containing u
but no equilibrium points, which is both perpendicular to the vector f(u) and
short enough so that for each v in L, the vector f(v) is not tangent to L. We call
such a segment a transversal at u.

In Figure 8.5, L is a transversal at u, but L� is not a transversal at u. Notice,
in particular, that all solution curves that intersect the transversal cross from the
same side as the orbit through u. If instead some solutions crossed from left to
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u

L

L*

u

(a) (b)

Figure 8.5 Illustration of a transversal line segment at a non-equilibrium
point.
(a) A transversal line segment L through a non-equilibrium point u is shown.
(b) The segment L� is not a transversal because it is tangent to the vector field at a
point on the top solution curve shown.

right and others from right to left, then dx
dt � 0 at some points on L, and dx

dt � 0
at other points on L. Then there must be at least one point on L where dx

dt � 0,
implying the existence of a tangency or equilibrium.

It is convenient to look now at neighborhoods around u that are diamond-
shaped, rather than round. We define a �-diamond about u, denoted D�(u), to
be the set of points in a square centered at u whose diagonals are of length 2� and
lie, respectively, on the transversal L and on a line segment perpendicular to L
(that is, it is parallel to the vector f(u)). A �-diamond is illustrated in Figure 8.6.

The following lemma states that the solution through each initial point
in a sufficiently small �-diamond about u must cross a transversal at u in either
forward or backward time before leaving the diamond. To simplify notation, let
v(t) denote the orbit F(t, v0). In the proof of the following lemma, we let f1 and f2
be the coordinate functions of the vector function f of (8.2); f(v) � (f1(v), f2(v)).
Sets of the form S � �F(t, v0) : t1 � t � t2� (for some v0 � �2 and real numbers
t1 and t2) are called trajectory segments (or orbit segments).

Lemma 8.11 (The Diamond Construction.) Let L be a transversal at u.
For � � 0 sufficiently small there exists a �-diamond D�(u) about u such that if
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L

v0

u

Figure 8.6 Illustration of a �-diamond.
A �-diamond is a square neighborhood of a nonequilibrium point u. Its diagonals
are of length 2� , and which lie on the transversal L and on the line segment in
the direction of f(u). The Diamond Construction guarantees that there is a �-
diamond such that for each v0 in the interior of the diamond there is an orbit
segment completely contained in the diamond that passes through v0 with positive
horizontal speed and intersects L.

v0 is in the interior of D�(u), then there is a trajectory segment that contains v0,
is completely contained in D�(u), and intersects L.

Proof: We choose coordinates (x, y) so that u � (0, 0) and f(u) � (a, 0),
for some a � 0. Then L is on the y-axis. Choose � � 0 sufficiently small so that
for z in D�(u) the following conditions hold:

1. The slope of f(z) (that is, f2(z)� f1(z)) is strictly between �1 and 1. This
restriction is possible since the slope is 0 at u.

2. f1(z) � a� 2.

Notice, in particular, that the slope is between �1 and 1 on the edges of the
D�(u). A solution can only exit the diamond in forward time through the right-
hand side of the diamond. Similarly, it can only exit the diamond in backward
time through the left-hand side. Now

x(t) � x(0) �

∫ t

0
f1(x(s)) ds �

a
2

t.

Since the maximum value of x(t) � x(0) is 2�, the solution through an initial
condition v0 in the diamond must exit the right side of the diamond within time
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t � 2 2�
a . Let t2 be the smallest t value with t � 0 for which the orbit through

v0 intersects the right side of D�(u). Similarly, the backward solution (for t
decreasing from 0) must exit the left side within time t, �2 2�

a � t � 0. Let t1 be
the largest value of t with t � 0 for which v(t) intersects the left side of D�(u).
Then the trajectory segment S � �v(t) : t1 � t � t2� is contained in D�(u) and
intersects L. �

The proof of the Poincaré-Bendixson Theorem depends on the next four
lemmas. These results are strictly for planar flows and, unlike the previous lemma,
have no natural analogue in higher dimensions. First we show that if one trajectory
repeatedly crosses a transversal L, then the crossings must occur in order along
L for increasing t. We will make use of the Jordan Curve Theorem from plane
topology (see, e.g., (Guillemin and Pollack, 1974)). Recall that a simple closed
curve is a path which begins and ends at the same point and does not cross itself.
This theorem says that a simple closed curve divides the plane into two parts: a
bounded region (the “inside”) and an unbounded region (the “outside”). In order
for a path to get from a point inside the curve to a point outside the curve, it must
cross the curve.

Lemma 8.12 (The “In the Bag” or Monotonicity Lemma.) Given t1 �

t2 � t3 for which v(t1), v(t2), and v(t3) are three distinct points on L. Then v(t2)
is between v(t1) and v(t3).

Proof: Let L be a transversal at u. Since the orbit v(t) crosses L only
finitely many times between t1 and t3 (see Exercise 8.18), it suffices to prove
the conclusion in the case that t1 � t2 � t3 are consecutive times for which
v(t) crosses L. Let C ′ be the orbit segment of v(t) between v(t1) and v(t2),
C ′ � �v(t), t1 � t � t2�, and let L ′ be the segment of L connecting these points.
See Figure 8.7. Let C be the closed curve C ′ � L ′. Note that C is simple by the
uniqueness of solutions.

From the Jordan Curve Theorem, there are two cases. In case 1, the vector
field on L ′ points into the bounded region, and in case 2, it points into the
unbounded region. Figure 8.7 shows case 1. We will assume case 1 holds and leave
to the reader any adjustments that are needed for case 2. Now, the orbit v(t) is
trapped inside C for t � t2, (beyond v(t2)). It cannot cross C ′ by uniqueness of
solutions. Also, any solution moving from inside C to outside C at a point on
L ′ would have to be going in an opposite direction to the flow arrows, which is
impossible. Therefore, the next and all subsequent crossings of L by v(t) occur
inside C. This fact implies that the crossings v(t1), v(t2), v(t3), etc., occur in
order on L. �
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C

L
v(t2)

v(t1)

u

Figure 8.7 The “In the Bag” Lemma.
A solution is trapped inside the Jordan curve and cannot get out. A simple closed
curve is made up of an orbit segment between successive crossings v(t1) and v(t2)
of a transversal L, together with the piece L ′ of L between these points. Once the
orbit enters this “bag” (at v(t2)), it cannot leave. Therefore, any later crossings of L
by the orbit must occur below v(t2).

Now let u be a nonequilibrium point in �(v0), and let D�(u) be a sufficiently
small �-diamond about u. We will show that �(v0) intersects D�(u) in a trajectory
segment Su through u. The Invariance Property of �-limit sets provides part of this
picture—namely, that each point of u(t) is in �(v0). The Diamond Construction
Lemma tells us that the solution through u must extend across the diamond.
In the following lemma, we prove that the only points of �(v0) in D�(u) are
in Su.

Lemma 8.13 (The “Locally a Curve” Lemma.) Assume there is a
nonequilibrium point u in �(v0). Then there is a �-diamond D�(u) such that
�(v0) � D�(u) is a trajectory segment.

Proof: Let L be a transversal at u, let � be as in the proof of the Diamond
Construction Lemma, and let Su be the trajectory segment containing u which
extends across D�(u), as guaranteed by the Diamond Construction. Now for an
arbitrary point z in �(v0) � D�(u), there exists a trajectory segment Sz such that
Sz contains z, is contained in D�(u), and intersects L at a point zL. Let t1, t2, . . .
be the times (t1 � t2 � 
 
 
) for which v(t) � L � D�(u). Then zL and u are both
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limit points of the set �v(ti)�, i � 1, 2, . . . . Since the points v(ti) are monotonic
on L and have both zL and u as limit points, it must be that zL � u. By uniqueness
of solutions (see Theorem 7.14 of Chapter 7), z is in Su. �

✎ EXERCISE T8 .7
Show that if v0 � �(v0), then �(v0) is either an equilibrium or a periodic
orbit. Specifically, let v � v(0) be a nonequilibrium point, let L be a transver-
sal at v, and let �tn� be an increasing, unbounded sequence of real numbers.
Suppose that v(tn) is in L, for each n, and v(tn) → v. Then v(tn) � v, for
each n, and v(t) is a periodic orbit.

Corollary 8.14 If u � �(v0), z � �(u), and z is not an equilibrium,
then u is on a periodic orbit.

Proof: In this case, z � �(v0) by the Transitivity Property. Also, the entire
orbit through u is in �(v0) by the Invariance Property. By Lemma 8.13 (“Locally
a curve”), there is a � � 0 such that the only points of �(v0) in D�(z) are on
a trajectory segment Sz through z. But since z is in �(u), there are points on
the orbit of u that are arbitrarily close to z. In particular, there are points of u(t)
within D�(z). Since �(v0) intersects D�(z) only in Sz, the orbit through u and
the orbit through z must be the same orbit. Thus u is in �(u), and, by Exercise
T8.7, u is a periodic orbit. �

Lemma 8.15 (The “Has One, Is One” Lemma.) If �(v0) contains a
periodic orbit, then �(v0) is a periodic orbit.

Proof: Assume there is a periodic orbit G in �(v0). Let z be a point in
�(v0). Assume further that z is not on G. Let d 	 0 be the (minimum) distance
from z to G. Since �(v0) is connected, there must be another point z1 of �(v0)
which is not on G, but which is within distance d� 2 of G. Analogously, for
each n � 1, let zn be a point of �(v0) which is not on G, but which is within
d� 2n of G. The sequence �zn� necessarily contains infinitely many distinct points,
which must have an accumulation point, since the sequence is bounded. Call
this point u. Then u is on G, but �(v0) is not locally a curve in any diamond
neighborhood of u, contradicting Lemma 8.13. Therefore, z is on G. �

Now we have all the pieces in place to prove the Poincaré-Bendixson
Theorem.
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Proof of Theorem 8.8 (Poincaré-Bendixson Theorem): The �-limit set
�(v0) is not empty by the Existence Property. We begin by assuming that �(v0)
consists entirely of equilibria. Since �(v0) is connected (the Connectedness
Property) and since one of our hypotheses is that equilibria are isolated, �(v0)
consists of exactly one equilibrium, and case 1 of Theorem 8.8 holds. If case 1
does not hold, there exists a non-equilibrium point u in �(v0). Case 3 holds if
�(u) is an equilibrium.

The basic idea of the proof is to show that if neither cases 1 nor 3 holds,
then case 2 must hold, and the proof is complete. Suppose, therefore, that cases
1 and 3 do not hold. Then there is a nonequilibrium point u in �(v0) for which
there is a nonequilibrium point z in �(u). By Corollary 8.14, the orbit of u is a
periodic orbit. By Lemma 8.15 (“Has one, is one”), �(v0) is a periodic orbit. �

The Poincaré-Bendixson Theorem does not give a complete characteriza-
tion of limit sets. In particular, some sets that are not ruled out by the theorem
still cannot be limit sets of planar flows. We illustrate this fact in the following
example.

EXAM PLE 8 .16

Each of the following figures shows a set consisting of equilibria and con-
necting arcs. Figure 8.8 (a) has one equilibrium and three connecting arcs. The
�-limit set of any point in the set shown is the equilibrium. An orbit not shown
must be contained either completely inside one of the loops formed by the con-
necting arcs or completely outside the set of loops. In any case, the entire figure
cannot be an �-limit set. Figure 8.8 (b) has two equilibria and one connecting
arc. The �-limit set of any point in the set shown is one of the two equilibria.

(a) (b)

Figure 8.8 Sets that cannot be limit sets of planar flows.
(a) No single orbit can limit on the set of connecting arcs and equilibrium shown.
(b) This set consists of two equilibria and a connecting arc. If a trajectory has this
figure as its limit set, then the flow must be going in opposite directions on either
side of the connecting arc, an impossibility unless all points on the arc are equilibria.
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If an orbit not shown limits on this set, it must wind around and around the
connecting arc, with arrows indicating the direction of the flow going in opposite
directions on either side of the arc. This type of trajectory is only possible if every
point on the arc is an equilibrium, a situation ruled out by the hypothesis that
equilibria are isolated.

The structure and dynamics of �-limit sets in higher dimensions include
many more possibilities than in �2. What are the simplest examples of bounded �-
limit sets that do not contain equilibria and are not periodic orbits? We describe a
differential equation defined on a bounded subset of �3, none of whose trajectories
limit on a periodic orbit or an equilibrium.

EXAM PLE 8 .17

Begin with the unit square in the plane. Identify the left and right edges by
gluing them together, and likewise identify the top and bottom edges, as shown
in Figure 8.9(a). The result is a torus, a two-dimensional surface shaped like the
surface of a doughnut, as shown in Figure 8.9 (b).

Also shown in the figure is a picture of a vector field on the square. Each
vector has slope q, where q is an irrational number. When the corresponding edges

A

A

B B 

(a) (b) (c)

Figure 8.9 A dense orbit on the torus.
(a) The vector field has the same irrational slope at each point in the unit square.
(b) The square is made into a torus by gluing together the top and bottom (marked
A) to form a cylinder and then gluing together the ends (marked B). Each orbit
winds densely around the torus. For each point u of the torus, u belongs to �(u) and
�(u). (c) There is no analogue of the Poincaré-Bendixson Theorem on the torus
because there is no Jordan Curve Theorem on the torus. A simple closed curve that
does not divide the torus into two parts is shown.
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of the square are matched to form the torus, the vectors on either side of the glued
edges match up, so that the vector field still is continuous, considered as a vector
field on the torus. A solution of the differential equation described by this vector
field wraps around the torus and cannot intersect itself. Such a solution is drawn
in Figure 8.9(b).

Given an initial location (x0, y0) on the torus, we describe intersections of
the orbit F(t, (x0, y0)) with the vertical line segment I � �(x0, y) : 0 � y � 1�.
First notice that successive intersections are given by (x0, (y0 � nq) mod 1), n �

1, 2, 3, . . . . This set of points is dense in the interval I. Hence each point in I
is in the �-limit set �(x0, y0)). Since x0 and y0 are arbitrary numbers, the entire
torus is in the �-limit set.

The torus is a type of �-limit set that can occur in �n when n 	 3. We
see that the conclusions of the Poincaré-Bendixson Theorem do not hold on the
torus, even though it is a two-dimensional manifold. Since there is no analogue
of the Jordan Curve Theorem on the torus (see Figure 8.9(c)), we can’t expect
the arguments we made in the planar case to apply here.
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☞ C H A L L E N G E 8

Two Incommensurate Frequencies
Form a Torus

THE POINCARÉ-BENDIXSON THEOREM says that possible limit sets for tra-
jectories of an autonomous system in the plane are limited. They can be equilibria,
connecting arcs asymptotic to equilibria, or periodic orbits, which are topological
circles. Once we move out of the plane, however, new phenomena emerge. For
example, for autonomous equations in three dimensions, it is possible for a single
trajectory to wind indefinitely around a two-dimensional torus, filling up the torus
while never returning to itself. Although this type of complicated behavior is pos-
sible on a two-dimensional torus, it is strictly prohibited in a two-dimensional
plane.

Step 1 Begin with the equation

ẍ � 4x � 0 (8.4)

for scalar x. Show that all solutions can be written in the form x(t) � a sin(2t � b),
where a and b can be computed from initial conditions.

Step 2 Write (8.4) as a first order autonomous system in �2. In this con-
text, the Poincaré-Bendixson Theorem applies. Show that the geometric form
of the solution curve (x(t), ẋ(t)) in �2 is an ellipse, a periodic orbit. The ellipse
is traversed every � radians, therefore the angular frequency of the solution is
2�� period � 2 radians per unit time.

Step 3 Now introduce a second frequency by forcing the system with
natural frequency 2 at a frequency of 1. For example, consider the equation

ẍ � 4x � 3 sin t (8.5)

x(0) � 0

ẋ(0) � 3.

Find the solution of this initial value problem.

Step 4 Consider the equation as a first-order system in �2. It is nonau-
tonomous, since the vector field depends on t, so Poincaré-Bendixson does not ap-
ply. Sketch the solution trajectory (x(t), ẋ(t)) in �2. Is the fact that the trajectory
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crosses itself consistent with what we have learned? Prove that x(t) � sin t � sin 2t
cannot be the solution of any equation of type

ẍ � aẋ � bx � f(x) (8.6)

x(0) � x0

ẋ(0) � x1.

Step 5 More generally, for any real c, show that x(t) � sin t � sin ct is the
solution of

ẍ � c2x � (c2 � 1) sin t (8.7)

x(0) � 0

ẋ(0) � c � 1.

Step 6 In order to construct a phase space for this process, we need to
move to �3, where the system of equations can be made autonomous. Consider
the following autonomous system in �3:

ẋ � y (8.8)

ẏ � �c2x � (c2 � 1) sin �

�̇ � 1

with initial conditions x(0) � 0, y(0) � c � 1, �(0) � 0. Check that the solution
of system (8.8) is

x(t) � sin t � sin ct (8.9)

y(t) � cos t � c cos ct

�(t) � t.

Step 7 In moving to �3, we have fictionalized the original problem in one
way. The angle � should only have meaning modulo 2�. In other words, the true
phase space for our original system is the infinite slab �2 � [0, 2�], with � � 0
and � � 2� identified together. We want to examine the shape of the solution
trajectory

x(t) � sin t � sin ct (8.10)

y(t) � cos t � c cos ct

�(t) � t modulo 2�
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of equation (8.7), which we have reconceived as equation (8.8). There are two
cases. The first case is when 1 and c are commensurate, meaning that their ratio
is a rational number. Show that in this case, the trajectory is a periodic orbit. If c
is a ratio of the two integers p� q in reduced terms, what is the period?

Step 8 To see the torus, suppose that c is an irrational number. Fix an
angle � � �0. Show that the trajectory at times t � �0 � 2�k, for each integer k,
lies on an ellipse in the � � �0 plane centered at (sin �0, cos �0). The ellipses fit
together for 0 � � � 2� into a two-dimensional torus.

Postscript. A trajectory is dense in the torus in the irrational case. A trajectory with
two or more incommensurate natural frequencies is called quasiperiodic. The Poincaré map
defined on a cross-sectional circle is given by rotation through an angle incommensurate
with its circumference. This map was introduced in Chapter 3 as a quasiperiodic circle
map.
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EXERCISES

8.1. Explain why x(t) � sin t cannot be the solution of a one-dimensional equation
ẋ � f(x).

8.2. Find the �-limit sets of the orbits of

ṙ � r(r � 1)(3 � r)

�̇ � 1

with initial conditions (r, �) � (0, 0), (1� 2, 0), (1, 0), (2, 0).

8.3. Let A be a 2 � 2 (real) matrix.

(a) Describe the �-limit sets for orbits of v̇ � Av.

(b) What condition(s) on a matrix A guarantee(s) that the equilibria of v̇ � Av
are isolated?

(c) Repeat parts (a) and (b) for a 3 � 3 matrix A.

8.4. Assume a differential equation in the plane has a single equilibrium v0, which is
attracting. Describe the possible limit sets of a trajectory v(t) that is bounded for
t 	 0, but does not converge to the single point v0 as t → �.

8.5. Find the �-limit sets and �-limit sets for the flows depicted in Figure 8.4.

8.6. Assuming equilibria are isolated, which of the following letters can be �-limit sets
of planar flows? Explain. (Compare with Example 8.16.)

A B C D P Q Y

8.7. Repeat Exercise 8.6, without the assumption that equilibria are isolated.

8.8. Find the �-limit sets for the phase planes of x ′′ � P ′(x) � 0 where the potentials
P(x) are as given in Figure 7.26.

8.9. Let x ′′ � bx ′ � g(x) � 0, where b is a positive constant.

(a) Show that this system has no non-equilibrium periodic solutions.

(b) Find the �-limit sets for x ′′ � bx ′ � P ′(x) � 0, where the potentials P(x)
are as given in Figure 7.26.

8.10. The version of the Poincaré-Bendixson Theorem stated here assumes that equilibria
are isolated. State a more general theorem in which this hypothesis is omitted.
Describe how the proof must be adapted for this more general case. In particular, if
a limit set of a point contains a periodic orbit, must the periodic orbit be the entire
limit set?

8.11. Use Continuous Dependence on Initial Conditions (Theorem 7.16) to give an
alternate proof of Lemma 8.15.
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8.12. Consider a vector field in the plane.

(a) Assume that p is a point in the plane, and that �(p) and �(p) are the same
periodic orbit. Prove that p lies on this periodic orbit.

(b) For an initial condition p, define the width of the forward (respectively,
backward) orbit of p to be the maximum distance between two points on the
forward (respectively, backward) orbit (this could be infinite). For example, a
point is an equilibrium if and only if its forward orbit has zero width. Prove that
the existence of a periodic orbit of width w implies the existence of another
(forward or backward) orbit of width less than w.

(c) Show that any vector field in the plane that has a periodic orbit must also
have an equilibrium.

8.13. (a) Show that the �-limit set of the equation v ′ � f(v) is the �-limit set of
v ′ � �f(v).

(b) State and prove a theorem analogous to the Poincaré-Bendixson Theorem
for ��limit sets.

8.14. Let v(t) be a trajectory for which |v(t)| → � as t → �. Show that �(v0) is the
empty set.

8.15. Sketch a vector field in the plane for which the �-limit set of a single trajectory is
two (unbounded) parallel lines.

8.16. Consider the two-dimensional equation v̇ � f(v), and let L be a Lipschitz constant
for f; that is, |f(v) � f(y)| � L|x � y|. Let x(t) be a periodic orbit with period T.
Show that T 	 2�

L . This theorem is also true in higher dimensions, but the proof is
considerably more difficult. See (Busenberg, Fisher and Martelli, 1989).

8.17. State an analogue of the Diamond Construction Lemma for flows in �n with n 	 3.

8.18. Let L be a transversal to a nonequilibrium point of a planar vector field. Show that
if an orbit crosses L at times t1 and t2, then it crosses L at most a finite number of
times between t1 and t2.
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☞ L A B V I S I T 8

Steady States and Periodicity
in a Squid Neuron

STEADY STATES and periodic orbits are the two simplest forms of behavior
for discrete and continuous dynamical systems. For two-dimensional systems of
differential equations, all bounded solutions must converge either to periodic
orbits or to sets containing equilibrium points and perhaps connecting arcs,
according to the Poincaré-Bendixson Theorem. In this Lab Visit, we will see
evidence of coexisting attractors in a biological system, one a steady state and the
other a periodic orbit.

Periodic orbits are ubiquitous in biological systems, and interruption of pe-
riodicity is often a symptom of malfunction or disease. In physiology alone, a
significant proportion of medical problems exhibit abnormal dynamical behav-
ior, including tremor and Parkinsonism, respiratory and cardiac disorders, sleep
apnea, epileptic seizures, migraine, manic-depressive illness, endocrinological ir-
regularities, and hiccups. (For the last, see (Whitelaw et al., 1995).)

In particular, the nervous systems of animals thread together a vast hierarchy
of oscillatory processes. Cyclic behavior goes on at many scales, and neurophysi-
ologists search for mechanisms that form the control point of these processes. The
eventual goal is to find the critical parameters that affect the temporal pattern of
a given process, and to determine how to recover from an abnormal setting.

The experiment reported here demonstrated the possibility of intervening
in a biological system to move a trajectory from one of the coexisting attractors
to the other. The system is a neuronal circuit that is well-studied in the scientific
literature, the giant axon from a squid. The axon is the part of the neuron that is
responsible for transmitting information in the form of pulses to other neurons.
The squid giant axon is often chosen because of its size, and the fact that it can
be made to continue firing in a fairly natural manner after it is dissected from the
squid.

The axon was bathed in an artificial seawater solution with abnormally
low calcium concentration, held at approximately 22◦ C. Periodic firing was

Guttman, R., Lewis, S., Rinzel, J., 1980. Control of repetitive firing in squid axon
membrane as a model for a neuroneoscillator. J. Physiology 305:377–395.
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initiated in the axon by applying a fixed current over a 30 msec interval (1 msec,
or millisecond, is 0.001 seconds). Within this interval, a very brief (0.15 msec)
pulse of current was added on top of the fixed bias current. This small shock was
often able to move the system from periodic to steady behavior.

Figure 8.10 shows four different experimental runs. In the upper half of part
(a), the upper trace shows the step of applied bias current of 30 msec duration.
The lower trace shows the electrical output of the axon, which has a repetitive
spiking behavior. This periodic motion is assumed to be the result of the states of
the axon moving along a periodic trajectory in its phase space.

The lower half of Figure 8.10(a) shows the 30 msec step current with a
dot above it, representing the 0.15 msec added pulse. The pulse, applied after
two oscillations of the system, annihilates the repetitive spiking. The experimen-
tal interpretation is that the perturbation provided by the pulse is sufficient to
move the system trajectory from a periodic orbit to the basin of a nearby stable
equilibrium, where it subsequently stays.

Figure 8.10(b) shows two more experimental runs, and the effect of the
pulse strength on the spike annihilation. The upper pair of traces shows the step
current with added pulse, which stops the periodic spiking, but leaves behind a
low-amplitude transient that eventually damps out completely. The interpretation
here is that the perturbation moved the trajectory less directly to the equilibrium

Figure 8.10 Oscilloscope traces of the firing of a squid axon.
Four experimental runs are shown, each represented by a pair of curves. (a) The upper
pair of traces represents the fixed applied current and the spiking axon output. In
the lower half, the repetitive spiking is interrupted by a large applied pulse (shown
as a single dot) on top of the fixed current. (b) Annihilation of spiking for two
different pulse magnitudes. The degree of damping of the oscillations depends on
the size of the pulse.
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in this case, and that we are seeing the spiraling in to the stable equilibrium. The
lower pair of traces represents the effect of a low pulse strength, which moves the
trajectory into the steady state basin but even farther from the steady state, so
that more time is needed to spiral in to fixed behavior.

The authors of this study compared their results with a computer simu-
lation of the Hodgkin-Huxley equations, which are widely considered to be a
reasonably accurate model of neuronal circuit dynamics. Although they did not
attempt to directly match the experimental conditions of the squid axon to the
parameters of the computer simulation, they exhibit computer trajectories in or-
der to schematically represent possible interpretations using ideas from nonlinear
dynamics.

Figure 8.11 is an illustration of a computer simulation that may explain
the experimental results, at least in a qualitative sense. The curves shown are
trajectories of the voltage level in the simulated neuron plotted against the time
derivative of the voltage on the vertical axis. Part (a) shows two periodic orbits to-
gether with an equilibrium denoted with a plus sign. (None of the three intersect
but they are very close in the picture.) The outside orbit is a stable, attracting pe-
riodic orbit, and the inner orbit repels nearby trajectories. The � equilibrium lies

Figure 8.11 Diagram of solutions of the Hodgkin-Huxley nerve conduction
equations.
This diagram serves as a suggested qualitative explanation of the experimental
results of Figure 8.10. (a) Two periodic orbits and an equilibrium denoted by a plus
sign. The numbers 1-4 along the outside orbit correspond to parts of the axon spike
as shown in the schematic inset in the upper left corner. (b) Magnification of part
(a), showing the vicinity of the equilibrium. The brief pulse moves the trajectory
from A to B, which lies in the basin of the stable equilibrium.
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inside the inner orbit. This is the picture we might expect following a subcritical
Hopf bifurcation, discussed in Chapter 11.

A magnification of this picture is shown in Figure 8.11(b). The pulse moves
the trajectory from point A on the stable periodic orbit to point B, after which
the system dynamics causes the trajectory to spiral in to the equilbrium.

Almost two decades after this set of experiments, it is widely suspected that
coexisting attractors are one of nature’s principal means of efficient regulation and
communication. Once the periodic (spiking) behavior of such a cell is established,
it is stable against small noise perturbations. The cell can be used as a timekeeper or
pacemaker for a finite duration, while prepared to turn off instantly when signalled
to stop. Although this research involved neuronal cells, the basic principle is
probably more widespread. (Jalife and Antzelevitch, 1979) is a contemporaneous
article on coexisting periodic and equilibrium attractors in cardiac tissue.
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Chaos in Differential
Equations
9 .1 T H E L O R E N Z AT T R A C TO R

In the late 1950s, a meteorologist at MIT named Edward Lorenz acquired a Royal-
McBee LGP-30 computer. It was the size of a refrigerator carton and contained
16KB of internal memory in a thicket of vacuum tubes. It could calculate at the
rate of 60 multiplications per second. For the time, it was a staggering cache of
computational power to be assigned to a single scientist.

Lorenz set the new computer to work calculating approximate solutions of
a system of 12 differential equations that model a miniature atmosphere. The sta-
tistical weather forecasting community at the time was developing sophisticated
linear methods for prediction. Lorenz had come to the conclusion that there had
to be a fundamental factor, as yet unacknowledged, limiting the success of linear
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models in weather prediction. He was trying to demonstrate this point by finding
solutions to his miniature atmosphere that were not periodic nor asymptotically
periodic; in short, trajectories that would confound linear prediction techniques.

The atmosphere model included many parameters that he did not know
how to set. The use of a computer allowed him to explore parameter space in a
way that would have been impossible otherwise. He tinkered, for example, with
parameters that affected the way the atmosphere was heated from below by the
(sun-warmed) oceans and continents. The LGP-30 was soon producing longer
and longer trajectories that seemed to be aperiodic. Moreover, they shared many
qualitative features with real weather, such as long persistent trends interrupted
by rapid changes. The computer printed out the trajectories on rolls of paper at
its top printing speed of 6 lines of numbers per minute.

The flash of insight came from an unexpected direction. To speed up the
output, Lorenz altered the program to print only three significant digits of the
approximate solution trajectories, although the calculation was being done inter-
nally using several more digits of accuracy. After seeing a particularly interesting
computer run, he decided to repeat the calculation to view it in more detail. He
typed in the starting values from the printed output, restarted the calculation,
and went down the hall for a cup of coffee. When he returned, he found that the
restarted trajectory had gone somewhere else entirely—from initial conditions
that were unchanged in the first three significant digits. Originally suspecting a
vacuum tube failure, he was surprised to find that the discrepancy occurred grad-
ually: First in the least significant decimal place, and then eventually in the next,
and so on. Moreover, there was order in the discrepancy: The difference between
the original and restarted trajectories approximately doubled in size every four
simulated days. Lorenz concluded that he was seeing sensitive dependence on
initial conditions. His search for aperiodicity had led to sensitive dependence.

Realizing the wide scope of the discovery, Lorenz tried to reduce the com-
plexity of the 12-equation model, to verify that the effect was not simply an
idiosyncracy of one particular model. Due to the Poincaré-Bendixson Theorem,
a chaotic solution could not be found in a model with fewer than 3 differential
equations, but if the effect were general, it should be present in smaller, simpler
systems than the 12-equation model. He would not succeed in the reduction of
this particular miniature atmosphere model until 20 years later.

In the meantime, on a 1961 visit to Barry Saltzman of the Travelers Insur-
ance Company Weather Center in Hartford, Connecticut, Lorenz was shown a
7-equation model of convective motion in a fluid heated from below and cooled
from above. Saltzman’s seven equations were themselves the reduction from a set
of partial differential equations describing Rayleigh-Bénard convection, which
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TH E CO M PUTER AGE

Lorenz used his computer to explore parameter space. Eventually,
he was able to find the settings in the meteorological model that
corresponded to a chaotic attractor. This was one of the early successes
of computer simulation.

In fact, the motivating interest of John Mauchly, a physics profes-
sor in Pennsylvania who together with John Eckert built the first
general-purpose electronic digital computer in 1946, was the solution
of complex meteorological equations. The Electronic Numerical In-
tegrator and Computer (ENIAC), weighing 30 tons and containing
18,000 vacuum tubes, first operated on St. Valentine’s Day, 1946. It is
said that ENIAC, in its 10 years of operation, did more floating-point
calculations than had been done by the entire human race before
1946.

A stunning public demonstration of the use of computers occurred
in 1969, when three astronauts traveled to the moon and back. Ad-
vances in computer hardware and software provided the telemetry
and communications necessary for the flight. Progress in miniaturiza-
tion allowed computers to be aboard the lunar lander to assist in the
descent to the moon.

Miniaturization problems were solved by the invention of the inte-
grated circuit, and by the 1980s cheap computation was generally
available in the form of personal computers. In the 1990s, the embed-
ding of computing chips in automobiles, toasters, and credit cards is
routine. The modern car has more on-board computing power than
the lunar lander of 1969.

study how heat rises through a fluid like air or water. Assume that there are two
parallel horizontal plates with a fluid between them. Gravity is in the downward
direction, and the temperature of the lower plate, Tl, is maintained at a higher
value than temperature of the upper plate Tu, as shown in Figure 9.1.

A possible equilibrium of this system is one in which the fluid is at rest
and heat is transported upward via thermal conduction. Lord Rayleigh studied
the linear stability of this equilibrium and found that if the difference in temper-
ature Tl � Tu exceeds a critical value, then the equilibrium becomes unstable,
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Tu

Tl

cooling

heating

Figure 9.1 Rayleigh-Bénard convection.
The way in which heat rises in a fluid from the lower warm plate to the higher cool
plate depends on the temperature difference Tu � Tl of the plates. If the difference
is small, heat is transferred by conduction. For a larger difference, the fluid itself
moves, in convection rolls.

and convection rolls appear. Further instability occurs as Tl � Tu is increased.
Considering variations in only two dimensions, (Saltzman, 1962) derived a set of
nonlinear ordinary differential equations by expanding the solution functions in
a Fourier series, substituting the series into the original governing set of partial
differential equations, and truncating the infinite sum to a finite number of terms.
Lorenz then set all but three Fourier coefficients equal to zero, and obtained a
system of three ordinary differential equations:

ẋ � ��x � �y

ẏ � �xz � rx � y (9.1)

ż � xy � bz.

In this highly idealized model of a fluid, the warm fluid below rises and the cool
fluid above sinks, setting up a clockwise or counterclockwise current. The Prandtl
number � , the Rayleigh (or Reynolds) number r, and b are parameters of the
system. The variable x is proportional to the circulatory fluid flow velocity. If
x � 0, the fluid circulates clockwise while x � 0 means counterclockwise flow.
The width of the flow rolls in Figure 9.1 is proportional to the parameter b. The
variable y is proportional to the temperature difference between ascending and
descending fluid elements, and z is proportional to the distortion of the vertical
temperature profile from its equilibrium (which is linear with height).

For � � 10, b � 8 � 3, Lorenz found numerically that the system behaves
“chaotically” whenever the Rayleigh number r exceeds a critical value r � 24.74;
that is, all solutions appear to be sensitive to initial conditions, and almost all
of them are apparently neither periodic solutions nor convergent to periodic
solutions or equilibria.
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✎ EXERCISE T9 .1
Show that equations (9.1) exhibit the following symmetry: The equa-
tions are unchanged when (x, y, z) is replaced by (�x, �y, z). As a result,
if (x(t), y(t), z(t)) is a solution, then so is (�x(t), �y(t), z(t)).

✎ EXERCISE T9 .2
Find all equilibrium points of the Lorenz equations (9.1).

For the rest of the discussion, we will assume that � � 10, b � 8 � 3, and r is
greater than 0. The equilibrium (0, 0, 0) exists for all r, and for r � 1, it is a stable
attractor. The origin corresponds to the fluid at rest with a linear temperature
profile, hot at the bottom and cool on top. Two new equilibria exist for r 	 1, C� �

(
√

b(r � 1),
√

b(r � 1), r � 1) and C� � (�
√

b(r � 1), �
√

b(r � 1), r � 1),
representing steady convective circulation (clockwise or counterclockwise flow).
This pair of equilibria branch off from the origin at r � 1 and move away as r
is increased. For r 	 1, the origin is unstable. The two equilibria representing
convective rolls, C� and C�, are stable at their birth at r � 1 and remain stable
for r � ru � 24 14

19 � 24.74. For r � ru, all three equilibria are unstable.
For r in a range of values greater than r� � 24.06, the chaotic attractor

shown in Figure 9.2 is observed numerically. This figure depicts the orbit of a
single initial condition, with several different rotated views. We say that there is
a numerically observed attractor since the choice of almost any initial condition
in a neighborhood of the depicted set results in a similar figure (after disregarding
an initial segment of the orbit). This observation also indicates that a generating
orbit is dense.

Lyapunov numbers and exponents can be assigned to orbits of autonomous
differential equations in a straightforward way: They are the Lyapunov numbers
and exponents of the time-1 map of the flow. See Section 9.6 for a discussion.
Calculations indicate that a typical orbit of the Lorenz attractor has one positive
Lyapunov exponent, calculated to be approximately 0.905 � 0.01.

➮ C O M P U T E R E X P E R I M E N T 9 . 1

An important feature of the Lorenz attractor is its robustness—it persists in
the basic form of Figure 9.2 over a significant range of parameters. Fix r � 28 and
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plot the set of (�, b) in the plane for which there exists an apparently chaotic
attractor.

As Figure 9.2 illustrates, the attractor occupies a very thin subset of �3. We
know, of course, that it cannot be constrained to a two-dimensional subset due to

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9.2 Several rotated views of the Lorenz attractor with r � 28.
In frames (a)–(c), the attractor is tipped up (rotated about the horizontal x-axis)
until the left lobe is edge-on. In frames (d)–(f), the attractor is rotated to the left,
around a vertical line. In frames (g)–(i), more rotation about a horizontal line.
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r Attractor

[��, 1.00] (0, 0, 0) is an attracting equilibrium
[1.00, 13.93] C� and C� are attracting equilibria; the origin is unstable
[13.93, 24.06] Transient chaos: There are chaotic orbits

but no chaotic attractors
[24.06, 24.74] A chaotic attractor coexists

with attracting equilibria C� and C�

[24.74, ?] Chaos: Chaotic attractor exists but C� and C�

are no longer attracting

Table 9.1 Attractors for the Lorenz system (9.1).
For � � 10, b � 8� 3, a wide range of phenomena occur as r is varied.

the Poincaré-Bendixson Theorem. A trajectory will appear to spiral out around
one equilibrium, C� or C�, until its distance from that equilibrium exceeds some
critical distance. Thereafter, it spirals about the other equilibrium with increasing
amplitude oscillations until the critical distance is again exceeded.

Other phenomena are observed in different parameter ranges. For r values
between approximately 24.06 and 24.74, a stable chaotic attractor and stable
attracting equilibria coexist. The fate of the system depends upon whether initial
conditions lie in the basin of attraction of the chaotic attractor or one of the
equilibria. For some much larger values of r, (r � 50), Lorenz has found stable
periodic orbits, and for such values no chaotic attractor is observed.

The observations of the phenomena of the Lorenz attractor were first de-
scribed in detail in the original article by (Lorenz, 1963) and later expanded
by (Kaplan and Yorke, 1979). C. Sparrow wrote an entire book about these
observations and theoretical aspects of the Lorenz system (Sparrow, 1982). The
Rayleigh–Bénard convection geometry that originally motivated the Lorenz equa-
tions does not follow the route to chaos just described because of the three-
dimensional nature of that geometry. The fluid moves in more complicated pat-
terns involving swirling behavior on many length scales. This is ignored in the
simplification of the convection to two spatial dimensions, but plays a crucial
role in the transition to time-dependent motion. In the meantime it has been
suggested that the Lorenz equations might better describe convective flow in
a closed circular tube. The tube forces the fluid to be constrained to move in
large circular patterns, so the Lorenz equations are more appropriate. Derivation
of the equations from this model is given in (Yorke, Yorke, and Mallet-Paret,
1979).
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9 .2 S TA B I L I T Y I N T H E L A R G E , I N S TA B I L I T Y
I N T H E S M A L L

In this section we discuss three typical properties of chaotic attractors and show
how they are illustrated by the Lorenz attractor. More precisely, we will discuss
attractors that are dissipative (volume-decreasing), locally unstable (orbits do not
settle down to stationary, periodic, or quasiperiodic motion) and stable at large
scale (in the sense that they have a trapping region).

First is the property of volume contraction, or dissipation. We have seen
this basic principle before: With area-contracting maps of the plane, it is common
to have an expanding local direction as well as a perpendicular, contracting local
direction so that area ends up being decreased by the map. If the product of the
contraction rate and expansion rate is less than one, then the attractor will have
zero area.

The attractors we study in this chapter have the same property, although
in each case the phase space is three-dimensional, so we talk about volume
decreasing. The Lorenz equations decrease volume with a factor of e���1�b �
0.00000116 each time unit. We will show where this expression comes from in
Section 9.6.

The second important property is local instability. The typical trajectory
of the Lorenz attractor shown in Figure 9.2 is evidently a chaotic trajectory,
meaning that it has a positive Lyapunov exponent and is not asymptotically
periodic. Neither of these statements can be rigorously proved at the present
time. In place of a rigorous proof we will show evidence that we hope will be
persuasive if not convincing.

Best estimates for the Lyapunov exponents of the Lorenz trajectory shown in
Figure 9.2 are 
1 � 0.905 � 0.005, 
2 � 0.0, and 
3 � �14.57 � 0.01. We will
discuss how these numbers were computed in Section 9.6. The sum of the three
Lyapunov exponents must be �(� � 1 � b) � �13 2

3 . The Lyapunov numbers are
found by exponentiating the Lyapunov exponents, and are L1 � 2.47, L2 � 1, and
L3 � 0.00000047. Therefore the distance between a pair of points that start out
close together on the Lorenz attractor increases by the factor of � 2.47 per time
unit (often called a “second”). One time unit is roughly the time required for a
typical loop of a Lorenz trajectory. Volume decreases by a factor of 0.00000116 per
time unit. This explains the extreme flatness of the Lorenz attractor. It is almost a
two-dimensional surface. The Lyapunov dimension is 2 � 0.905 � 14.57 � 2.062.

To argue that the attractor is not periodic, Lorenz decided to examine the
behavior of successive maxima of the z-coordinate of the trajectory. This is the
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vertical direction in Figure 9.2(a). He made an interesting discovery: If one plots
the next vertical maximum zn�1 as a function f of the current zn, a very simple
diagram emerges. It is shown in Figure 9.3. The result is almost a curve; there is
a tiny thickness to the graph. For practical purposes, we can view Figure 9.3 as a
one-dimensional map.

Lorenz’s idea was to reduce the question of whether the Lorenz attractor is
periodic to the same question about the one-dimensional map. The map f has
similarities to a tent map; the absolute value of the slope is greater than one at
all points. Any periodic orbit must be unstable, since the derivative of fk at any
point of the periodic orbit must be a product of numbers whose magnitudes are
greater than one. The shape of the z-maximum return map makes it impossible
for an attracting periodic orbit to exist.

Viewing the attractor by its z-maxima gives us a way to draw a bifurcation
diagram of the Lorenz system as we change a parameter. Fixing � � 10 and
b � 8 � 3, we look at the attractors of the Lorenz system for a range of r values
by plotting the attractors of the z-maxima return map. As r varies, the shape of
the map in Figure 9.3 changes. For some r there are periodic attractors. Figure
9.4 shows the results for 25 � r � 325. The left side of the graph corresponds
to the traditional Lorenz attractor at r � 28. Windows corresponding to periodic
attractors are clearly visible. At r � 400 there is a single loop periodic orbit

50

zn�1

28
28 zn 50

Figure 9.3 Successive maxima of z-coordinate of Lorenz attractor.
Each plotted dot on the tent-like map is a pair (zn, zn�1) of maximum z-coordinates
of loops of the trajectory, one following the other. The nearly one-dimensional
nature of the map arises from the very strong volume contraction.
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400

z

0
25 r 325

Figure 9.4 Bifurcation diagram of the Lorenz tent map.
The asymptotic behavior of the tent map of Figure 9.3 is plotted as a function of
the bifurcation parameter r. The points plotted above each r correspond to the
z-maxima of the orbit, so that 1 point means a period-T orbit, 2 points correspond
to a period-2T orbit, and so on.

that attracts all initial conditions. As r is decreased from 400, there is a period-
doubling bifurcation that results in a double-loop attractor, one with two different
z-maxima before returning to repeat the orbit. As r is decreased further, the double
loop again period-doubles to a loop with four different z-maxima, and so on. This
is a period-doubling cascade, which we will discuss in detail in Chapter 12.

Finally, we discuss global stability, which means simply that orbits do not
diverge to infinity, but stay trapped in some finite ball around the origin. Lorenz
showed that all solutions to the equations (9.1) were attracted into a ball. He did
this by finding a function E(x, y, z) that is decreasing along any trajectory that
meets the boundary of the bounded region defined by E � C, for some constant C.
This means it can never leave the region, since E must increase to get out.

Lemma 9.1 (Existence of a trapping region.) Let u(t) � (x(t), y(t), z(t)),
and let E(u) be a smooth real-valued function with the property that E(u) → �
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40

z

0
�18 x 18

Figure 9.5 Transient chaos in the Lorenz equations.
A trajectory of the Lorenz system has been plotted using b � 8� 3 and � � 10,
the same values Lorenz used, but here r � 23. When r � r1 � 24.06 there is
no longer a chaotic attractor, but if r � 13.926 . . . there are chaotic trajectories,
producing “transient chaos”, where the trajectory behaves like a chaotic trajectory
and then suddenly leaves the chaotic region. In this case, after a long transient time
it finally approaches one of the asymptotically stable equilibrium points. The part
of this picture that looks like the Lorenz attractor is actually the early part of the
trajectory; the black spot shows the trajectory spiraling down to the equilibrium
point. For r � 23, the mean lifetime is about 300 (which means that the variable
z(t) oscillates slightly over 300 times on the average before the decay sets in. For
r � 23.5, the mean number of oscillations is over 2400. As r is chosen closer to the
critical value r1, the number of oscillations increases so that it becomes increasingly
difficult to distinguish between a chaotic attractor and transient chaos. Even at
r � 23.0, there are chaotic trajectories that oscillate chaotically forever, never
spiraling in to the equilibrium.
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as ||u|| → �. Assume that there are constants ai, bi, c, for i � 1, 2, 3, where
a1, a2, a3 � 0 such that for all x, y, z,

Ė(x, y, z) � �a1x
2 � a2y2 � a3z2 � b1x � b2y � b3z � c. (9.2)

Then there is a B � 0 such that every trajectory u(t) satisfies |u(t)| � B for all
sufficiently large time t.

✎ EXERCISE T9 .3
Provide a proof of the Trapping Region Lemma 9.1.

We will try to apply the Lemma to the Lorenz equations. A typical first
guess for a function E that will satisfy (9.2) is E(x, y, z) � 1

2 (x2 � y2 � z2). Then
Ė � xẋ � yẏ � zż. Using the Lorenz system to provide ẋ, ẏ, ż yields

xẋ � �xy � �x2

yẏ � rxy � y2 � xyz

zż � �bz2 � xyz. (9.3)

The sum of these terms includes (� � r)xy, which is not allowed in (9.2). How-
ever, ż does have such a term. If we change to E(x, y, z) � 1

2 (x2 � y2 � (z � � �

r)2), we can replace the bottom line above by

(z � � � r)ż � �(� � r)xy � bz2 � xyz � b(� � r)z.

Then Ė � ��x2 � y2 � bz2 � b(� � r)z, which has the form required by Lemma
9.1. We conclude that all trajectories of the Lorenz system enter and stay in some
bounded ball in three-dimensional space.

9 .3 T H E R Ö S S L E R AT T R A C TO R
The Lorenz attractor has been studied in detail because it is a treasure trove of
interesting phenomena. It was the first widely known chaotic attractor from a
set of differential equations. The equations are simple, yet many different types
of dynamical behavior can be seen for different parameter ranges. Subsequently,
many other chaotic systems of differential equations have been identified. In this
section and the next, we discuss two other systems that produce chaotic attractors.

There is a symmetry in the Lorenz attractor about the z-axis, as seen in
Figure 9.2, and as explained by Exercise T9.1. While this symmetry undoubtedly
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contributes to the beauty of the Lorenz attractor, it should be noted that symmetry
is not a necessity. The German scientist O. Rössler found a way to create a chaotic
attractor with an even simpler set of nonlinear differential equations.

The Rössler equations (Rössler, 1976) are

ẋ � �y � z

ẏ � x � ay

ż � b � (x � c)z. (9.4)

For the choice of parameters a � 0.1, b � 0.1, and c � 14, there is an apparent
chaotic attractor, shown in Figure 9.6. The Lyapunov exponents for this attractor
have been measured by computational simulation to be approximately 0.072, 0
and �13.79. The corresponding Lyapunov dimension is 2.005. Rössler primarily
considered a slightly different set of parameters, a � 0.2, b � 0.2, and c � 5.7,
but the properties are not much different for these values.

We can understand much of the behavior of the Rössler equations since
all but one of the terms are linear. We begin by looking at the dynamics in the
xy-plane only. Setting z � 0 yields

ẋ � �y

ẏ � x � ay. (9.5)

The origin is an equilibrium. To find its stability, we calculate the eigenvalues of
the Jacobian matrix at v � (0, 0)

Df(0, 0) �

(
0 �1
1 a

)

to be (a �
√

a2 � 4)� 2. For a � 0, there is at least one eigenvalue with positive
real part, so the origin is unstable, for the dynamics in the xy-plane. For 0 � a � 2,
the eigenvalues are complex, implying a spiraling out from the origin along the
xy-plane.

Now let’s make the assumption that 0 � a � 2 and b, c � 0, and turn the
z-direction back on. Assume for the moment that z � 0, so that we are near the
xy-plane. The orbit will spiral out from the origin and stay near the xy-plane
as long as x is smaller than c, since the third equation in (9.4) has a negative
coefficient for z. When x tries to pass c, the z-variable is suddenly driven to
large positive values. This has the effect of stopping the increase of x because of
the negative z-term in the first equation of (9.4). The back and forth damping
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(a) (b)

(c) (d)

Figure 9.6 The Rössler attractor.
Parameters are set at a � 0.1, b � 0.1, and c � 14. Four different views are shown.
The dynamics consists of a spiraling out from the inside along the xy-plane followed
by a large excursion in the z-direction, followed by re-insertion to the vicinity of
the xy-plane. Part (d) shows a side view. The Lyapunov dimension is 2.005—indeed
it looks like a surface.

influences between the x- and z-variable keep the orbit bounded. This motion is
shown in the four rotated views of the Rössler attractor in Figure 9.6.

In Figure 9.7, we fix a � b � 0.1, and vary the parameter c. For each c we
plot the attractor. A variety of different types of attractors can be seen, beginning
with a single loop periodic orbit, abruptly doubling its period when it turns into
a double loop at a bifurcation value of c, and then period-doubling twice more.
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(a) c � 4, period 1 (b) c � 6, period 2 (c) c � 8.5, period 4

(d) c � 8.7, period 8 (e) c � 9, chaos (f) c � 12, period 3

(g) c � 12.8, period 6 (h) c � 13, chaos (i) c � 18, chaos

Figure 9.7 Attractors of the Rössler system as c is varied.
Fixed parameters are a � b � 0.1. (a) c � 4, periodic orbit. (b) c � 6, period-
doubled orbit. (c) c � 8.5, period four. (d) c � 8.7, period 8. (e) c � 9, thin chaotic
attractor. (f) c � 12, period three. (g) c � 12.8, period six. (h) c � 13, chaotic
attractor. (i) c � 18, filled-out chaotic attractor

The period-doublings continue infinitely. This is another example of the period-
doubling route to chaos, which we have encountered previously in Figures 1.6 and
1.8 of Chapter 1 and Figure 2.16 of Chapter 2. We will study the period-doubling
bifurcation along with others in Chapter 11, and study period-doubling cascades
(infinite sequences of doublings, of which this is an example) in Chapter 12.
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Figure 9.8 shows a bifurcation diagram for the Rössler system. Again a
and b are fixed at 0.1. For each c-value on the horizontal axis, we have plotted
the local maxima of the x-variable of the attracting solution. A single loop
(period one) orbit will have a single local maximum, and double loop (period
two) will typically have two separate local maxima, etc. We use period one
and period two in a schematic sense; the period-one orbit will have some fixed
period T (not necessarily T � 1), and the so-called period-two orbit will have
period approximately double that of the period-one orbit. A chaotic attractor will
ordinarily have infinitely many local maxima due to its fractal structure.

Starting at the left edge of Figure 9.8, we can see the existence of an
attracting period-one orbit which for larger c period-doubles into a period-two
orbit, which eventually period-doubles as well as part of a period-doubling cas-
cade. The result is a chaotic attractor, shown in Figure 9.7(e), followed by a

70

x

0
1 c 46

Figure 9.8 Bifurcation diagram for the Rössler equations.
The parameters a � b � 0.1 are fixed. The horizontal axis is the bifurcation pa-
rameter c. Each vertical slice shows a plot of the local maxima of the x-variable of
an attractor for a fixed value of the parameter c. A single point implies there is a
periodic orbit; two points mean a periodic orbit with “two loops”, the result of a
period doubling, and so on. Near c � 46 the attractor disappears abruptly.
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period-three window, corresponding to Figure 9.7(f). The period-three orbit then
period-doubles as part of another period-doubling cascade. In the center of the
figure a period doubling of a period-four attractor is followed by a period-halving
bifurcation.

9 .4 C H U A ’S C I R C U I T
A rather simple electronic circuit became popular for the study of chaos dur-
ing the 1980’s (Matsumoto et al., 1985). It allows almost all of the dynamical
behavior seen in computer simulations to be implemented in an electronics lab
and viewed on an oscilloscope. As designed and popularized by L. Chua, an elec-
tronic engineering professor at the University of California at Berkeley, and the
Japanese scientist T. Matsumoto, it is an RLC circuit with four linear elements
(two capacitors, one resistor, and one inductor) and a nonlinear diode, which can
be modeled by a system of three differential equations. The equations for Chua’s
circuit are

ẋ � c1(y � x � g(x))

ẏ � c2(x � y � z)

ż � �c3y, (9.6)

where g(x) � m1x � m0�m1
2 (|x � 1| � |x � 1|).

Another way to write g(x), which is perhaps more informative, is

g(x) �




m1x � m1 � m0 if x � �1
m0x if �1 � x � 1
m1x � m0 � m1 if 1 � x

(9.7)

The function g(x), whose three linear sections represent the three different
voltage-current regimes of the diode, is sketched in Figure 9.9. This piecewise
linear function is the only nonlinearity in the circuit and in the simulation equa-
tions. We will always use slope parameters satisfying m0 � �1 � m1, as drawn in
the figure.

Typical orbits for the Chua circuit equations are plotted in Figure 9.10. All
parameters except one are fixed and c3 is varied. Two periodic orbits are created
simultaneously in a Hopf bifurcation, which we will study in Chapter 11. They
begin a period-doubling cascade, as shown in Figure 9.10(b)-(c) and reach chaos
in Figure 9.10(d). The chaotic attractors fill out and approach one another as c3

is varied, eventually merging in a crisis, one of the topics of Chapter 10.
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1-1

y=g(x)

y=-x

Figure 9.9 The piecewise linear g(x) for the Chua circuit.
Equilibria correspond to intersections of the graph with the dotted line y � �x.

Color Plate 17 shows a circuit diagram of Chua’s circuit. Color Plate 18
shows the computer-generated attractor for parameter settings c1 � 15.6, c2 � 1,
c3 � 25.58, m0 � �8 � 7, m1 � �5 � 7. Color Plate 19 shows a projection of the
experimental circuit attractor in the voltage-current plane, and Color Plate 20
shows an oscilloscope trace of the voltage time series.

9 .5 F O R C E D O S C I L L A TO R S

One way to produce chaos in a system of differential equations is to apply periodic
forcing to a nonlinear oscillator. We saw this first for the pendulum equation in
Chapter 2. Adding damping and periodic forcing to the pendulum equation

�̈ � sin � � 0

produces

ẍ � c�̇ � sin � � 	 cos t,

which has apparently chaotic behavior for many parameter settings.
A second interesting example is the double-well Duffing equation from

Chapter 7:

ẍ � x � x3 � 0. (9.8)
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Figure 9.10 Chua circuit attracting sets.
Fixed parameters are c1 � 15.6, c2 � 1, m0 � �8� 7, m1 � �5� 7. The attracting
set changes as parameter c3 changes. (a) c3 � 50, two periodic orbits. (b) c3 � 35,
the orbits have “period-doubled”. (c) c3 � 33.8, another doubling of the period.
(d) c3 � 33.6, a pair of chaotic attracting orbits. (e) c3 � 33, the chaotic attractors
fatten and move toward one another. (f) c3 � 25.58, a “double scroll” chaotic
attractor. This attractor is shown in color in Color Plate 18.
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Equation (9.8) describes motion under a potential energy field which has minima
at x � �1 and x � 1. We can think of a ball rolling up and down the potential
wells of Figure 7.15(b). To model a ball that slowly loses energy because of friction,
we add a damping term:

ẍ � cẋ � x � x3 � 0. (9.9)

Most orbits of (9.9) end up in one or the other of the wells, no matter how much
energy the system begins with.

Both (9.8) and (9.9) are autonomous two-dimensional first-order systems
in the variables x and ẋ, and as such their solution behavior falls under the
enforcement of the Poincaré-Bendixson Theorem. For (9.8), most solutions are
periodic, either confined to one well or rolling through both, depending on the
(constant) energy of the system. They are periodic orbits, which falls under case 2
of Theorem 8.8. If the system has total energy equal to 0, the peak between the two
wells in Figure 7.15(b), solutions will end up approaching the peak infinitesimally
slowly (reaching the peak in “infinite time”). The �-limit set of these orbits is the
unstable equilibrium at the peak; this falls under case 1 of Theorem 8.8. For (9.9), a
solution can never reach a previous (x, ẋ) position because it would have the same
energy; but the energy is decreasing, as shown in Chapter 7. Therefore periodic
orbits are impossible, and each orbit converges to one of the three equilibrium
points, either the peak or one of the two well bottoms.

The forced damped double-well Duffing equation

ẍ � cẋ � x � x3 � 	 sin t (9.10)

is capable of sustained chaotic motion. As a system in the two variables x and
ẋ, it is nonautonomous; the derivative of y � ẋ involves time. The usual trick is
to declare time as a third variable, yielding the autonomous three-dimensional
system

ẋ � y

ẏ � �cy � x � x3 � 	 sin t

ṫ � 1 (9.11)

Solutions of (9.10) are not bound by the Poincaré-Bendixson Theorem.
The physical interpretation of the forced damped double-well Duffing equa-

tion is fairly clear. The system, because of damping, is trying to settle in one of the
energy minima at the the bottom of the wells; due to the sinusoidal buffetting by
the forcing function, it cannot settle down. The bronze ribbon of Lab Visit 5 is a
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mechanical device that follows this behavior in a qualitative way. In the absence
of forcing, the magnet on the end of the ribbon will be trapped by one or the other
of the permanent magnets as it loses energy due to friction. When an alternating
magnetic field is set up by turning on the coil, the ribbon oscillates aperiodically
for the duration of the experiment. The plot of (x, ẋ) in Lab Visit 5 is the time-2�

map of the experiment. It looks qualitatively similar to the time-2� map of (9.10),
which is shown in Figure 9.11. Here we have set the forcing amplitude 	 � 3 and
investigated two different settings for the damping parameter.

➮ C O M P U T E R E X P E R I M E N T 9 . 2

The attractors plotted in Figure 9.11 are sensitive to moderate-sized changes
in the parameters. Change the damping parameter c to 0.01 or 0.05 and explore
the attracting periodic behavior that results. Show parametric plots of the periodic
orbits in (x, ẋ) space as well as plots of the attractor of the time-2� maps.

➮ C O M P U T E R E X P E R I M E N T 9 . 3

Plot orbits of the forced Van der Pol equation ẍ � c(x2 � 1)ẋ � x3 � 	 sin t.
Set parameters c � 0.1, 	 � 5 and use initial value (x, ẋ) � (0, 0) to plot an
attracting periodic orbit. What is its period? Repeat for 	 � 7; what is the new
period? Next find out what lies in between at 	 � 6. Plot the time-2� map.

9 .6 L YA P U N OV E X P O N E N T S I N F L OW S
In this section, we extend the definition of Lyapunov exponents for maps, intro-
duced in Chapter 3, to the case of flows. A chaotic orbit can then be defined to
be a bounded aperiodic orbit that has at least one positive Lyapunov exponent.

First recall the concept of Lyapunov exponents for maps. The local behavior
of the dynamics varies among the many directions in state space. Nearby initial
conditions may be moving apart along one axis, and moving together along an-
other. For a given point, we imagined a sphere of initial conditions of infinitesimal
radius evolving into an ellipse as the map is iterated. The average growth rate (per
iteration) of the longest orthogonal axis of the ellipse was defined to be the first
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(b)

Figure 9.11 Time-2� map of the forced damped double-well Duffing equation.
(a) The variables (x, ẋ) of (9.10) with c � 0.02, 	 � 3 are plotted each 2� time units.
One million points are shown. (b) Same as (a), but c � 0.1. Compare with Figure
5.24, which was measured from experiment with a qualitatively similar system.

380



9 . 6 LYA P U N OV E X P O N E N T S I N F L OW S

Lyapunov number of the orbit, and its natural logarithm was called the Lyapunov
exponent. A positive Lyapunov exponent signifies growth along that direction,
and therefore exponential divergence of nearby trajectories. The existence of a
local expanding direction along an orbit is the hallmark of a chaotic orbit.

For flows, the concept is the same, once we replace the discrete iterations of
the map with the continuous flow of a differential equation. Recall the definition
of the time-T map of a flow FT(v). The flow FT(v) is defined to be the point at
which the orbit with initial condition v arrives after T time units.

Let

v̇ � f(v) (9.12)

be a system of n autonomous differential equations in v � (v1, . . . , vn). We define
the Lyapunov exponent of a flow as the Lyapunov exponent of its time-T map for
T � 1.

Definition 9.2 The Lyapunov numbers (respectively, exponents) of the
flow FT(v) are defined to be the Lyapunov numbers (respectively, exponents) of
the associated time-1 map.

It is straightforward to define the time-T map FT, and to define the Lyapunov
numbers and exponents of a flow, by simply falling back on our previous definitions
in the map case. We begin with a tiny sphere of initial conditions around some
v0, and imagine the evolution of the sphere as the initial conditions follow the
flow of the differential equation. The only problem arises if you want to actually
determine the Lyapunov numbers and exponents. To do so, you will need to know

FT(v)

v

Figure 9.12 The time-T map FT of a flow.
A ball of initial conditions are followed from time t � 0 to time t � T. The image
of the point v under FT is the position of the solution at time T of the initial value
problem with v0 � v.
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DF1(v), the derivative of the the time-1 map F1(v) with respect to the initial
value v.

If we fix T for the moment, DFT(v) is a linear map on �n, represented by
an n � n matrix. Intuitively, the vector DFT(v)(w) is the small variation in the
solution of (9.12) at time T caused by a small change in the initial value at t � 0
from v to v � w.

Although there is no explicit formula for the matrix DFT(v), we can find a
differential equation involving it that can be solved in parallel with (9.12). Since
�Ft(v) : t in �� is the solution of (9.12) with initial value v, we have by definition

d
dt

Ft(v) � f(Ft(v)). (9.13)

This equation has two variables, time t and the initial value v in �n. Differentiating
with respect to v, the chain rule yields

d
dt

DFt(v) � Df(Ft(v)) 
 DFt(v), (9.14)

which is known as the variational equation of the differential equation. The
name comes from the fact that if we could solve the equation for DFt(v), we
would know the derivative matrix of Ft, and therefore know how Ft acts under
small variations in the initial value v.

To simplify the looks of the variational equation, define

Jt � DFt(v)

to be the Jacobian of the time-t map evaluated at initial value v, and

A(t) � Df(Ft(v))

to be the matrix of partial derivatives of the right-hand side f of the differential
equation (9.12) evaluated along the solution. Note that A(t) can be computed
explicitly from knowledge of the original differential equation. Then we can
rewrite the variational equation (9.14) as

J̇t � A(t)Jt. (9.15)

In writing (9.14) this way, we have fixed v, the initial value of the orbit under
consideration, and so have not explicitly written it into (9.15). In order to
uniquely define Jt from (9.15), we need to add an initial condition, which is J0 � I,
the identity matrix. This follows from the fact that the flow satisfies F0(v) � v by
definition. The variational equation (9.15) is a linear differential equation, even
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when the original differential equation has nonlinear terms. Unlike the original
equation (9.12), it is not autonomous, since A(t) is time-dependent in general.

EXAM PLE 9 .3

In order to calculate the output of the time-T map FT(v) for the Lorenz
equations, it suffices to solve the equations with initial condition v0 � (x0, y0, z0)
and to follow the trajectory to time T; then

FT(x0, y0, z0) � (x(T), y(T), z(T)).

Next we show how to calculate the 3 � 3 Jacobian matrix JT of the three-
dimensional map FT. Differentiating the right-hand-side of the Lorenz equations
(9.1) yields

A(t) �


 �� � 0

r � z(t) �1 �x(t)
y(t) x(t) �b


 . (9.16)

Each column of JT can be calculated individually from the variational equation
(9.15). For example, the first column of JT is the solution of the differential
equation


J̇11(t)

J̇21(t)
J̇31(t)


 � A(t)


J11(t)

J21(t)
J31(t)


 (9.17)

at time T, and the other two columns satisfy a similar equation. Notice that the
current A(t) needs to be available, which involves the current (x(t), y(t), z(t)).
So the variational equation must be solved simultaneously with a solution of the
original differential equation (9.12).

An important fact about the Jacobian matrix JT � DFT(v) of the time-T
map evaluated at v is that it maps small variations tangent to the orbit at time 0
to small variations tangent to the orbit at time T. More precisely,

DFT(v) 
 f(v) � f(FT(v)). (9.18)

As usual, v denotes the initial value of the flow at time 0, and FT(v) the value at
time T. Since f is the right-hand-side of the differential equation, it defines the
direction of the orbit at each time.
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The derivation of this fact follows from applying the variational equation
(9.14) to the vector f(v):

d
dt

DFt(v)f(v) � Df(Ft(v)) 
 DFt(v)f(v). (9.19)

Setting w � DFt(v)f(v), we see that w(t) satisfies the initial value problem

ẇ � Df(Ft(v))w

w(0) � f(v). (9.20)

On the other hand, differentiating the original equation (9.13) with respect to t
yields

d2

dt2
Ft(v) � Df(Ft(v))

d
dt

Ft(v)

d
dt

f(Ft(v)) � Df(Ft(v))f(Ft(v)), (9.21)

and f(Ft(v)) equals f(v) at time 0. Since w and f(Ft(v)) satisfy the same initial
value problem, they are equal.

The important consequence of (9.18) is that a bounded orbit of an au-
tonomous flow (9.12) either has one Lyapunov exponent equal to zero, or
else it has an equilibrium in its �-limit set. If the latter does not occur, then
0 � b � |f(Ft(v))| � B for all t, for some positive bounds b and B. If r(n) is the
expansion in the direction of f(v) after n time units (n steps of the time-1 map),
then

0 � lim
n→�

1
n

ln b � lim
n→�

1
n

ln r(n) � lim
n→�

1
n

ln(B) � 0.

Therefore the Lyapunov exponent in the direction tangent to the orbit is zero.
The change in volume due to the flow can be found with the help of

a famous formula due to Liouville. Define �(t) � det Jt where J̇t � A(t)Jt as in
(9.15). Liouville’s Formula (Hartman, 1964) says that �(t) satisfies the differential
equation and initial condition

� ′
t � Tr(A(t))�t

�0 � det J0 � 1, (9.22)

where Tr denotes the trace of the matrix A(t). It follows directly from (9.22) that

det Jt � exp
(∫ t

0
Tr A(t) dt

)
. (9.23)
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Definition 9.4 A system of differential equations is dissipative if its time-
T map decreases volume for all T � 0.

Note that Tr(A(t)) � 0 for all t implies that the system is dissipative. For
the Lorenz equations, Tr A(t) � �(� � 1 � b), so that

det Jt � e�(��1�b)t.

The volume decrease is constant for all v. In one time unit, a ball of initial
conditions decreases in volume by a factor of e�(��1�b). For the standard Lorenz
parameters � � 10 and b � 8 � 3, this factor is 0.00000116 per second, so it is a
dissipative system.

EXAM PLE 9 .5

(Forced damped pendulum.) Liouville’s formula can also be used to find
the area contraction rate for the time-2� map of the forced damped pendulum,
a dissipative system introduced in Chapter 2. First, write the equation ẍ � cẋ �

sin x � b cos t in the form of a first-order system:

ẋ � y

ẏ � �cy � sin x � b cos t

ṫ � 1. (9.24)

Then

A(t) �


 0 1 0

� cos x �c �b sin t
0 0 0


 . (9.25)

Equation (9.23) shows us that the area contraction rate per iteration of the
time-2� map is

exp

(∫ 2�

0
Tr A(t) dt

)
� exp

(∫ 2�

0
�c dt

)
� e�2�c. (9.26)

With the definition of Lyapunov exponent in hand, we can go on and define
chaotic orbit in a straightforward way.

Definition 9.6 Let Ft(v0) be a solution of v̇ � f(v), where v0 � �n. We
say the orbit Ft(v0) is chaotic if the following conditions hold:
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1. Ft(v0), t 	 0, is bounded;
2. Ft(v0) has at least one positive Lyapunov exponent; and
3. �(v0) is not periodic and does not consist solely of equilibrium points,

or solely of equilibrium points and connecting arcs (as in the conclusion
of the Poincaré–Bendixson Theorem).

In order to be precise, one might also rule out higher-dimensional �-limit
sets on which the map exhibits some sort of patterned behavior, such as the
example of the irrational flow on the torus in Chapter 8. If the torus itself is
repelling in �3, then a well-behaved dense orbit on the torus can have a positive
Lyapunov exponent, but we would not want to consider it a chaotic orbit.
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☞ C H A L L E N G E 9

Synchronization of Chaotic Orbits

A SURPRISING FACT about chaotic attractors is their susceptibility to syn-
chronization. This refers to the tendency of two or more systems which are coupled
together to undergo closely related motions, even when the motions are chaotic.

There are many types of synchronization, depending on whether the mo-
tions are identical or just related in some patterned way. Synchronization can be
local, meaning that the synchronized state is stable, and that once synchronized,
small perturbations will not desynchronize the systems; or global, meaning that
no matter where the systems are started in relation to one another, they will
synchronize. There are also different ways to couple the systems. Coupling can be
one-way, in which outputs from one system affect the second system but not vice
versa, or two-way, in which each affects the other.

In Challenge 9, you will first establish a theorem that explains local syn-
chronization for two-way coupled identical nonlinear systems. It states that if
the coupling is strong enough, then identical systems which are started close
enough together will stay close forever. Secondly, there is an example of global
synchronization for one-way coupling, in which two identical Lorenz systems,
started with arbitrary different initial conditions, will synchronize exactly: their
(x, y, z) states are eventually (asymptotically) equal as a function of time. Both
of these behaviors are different from the behavior of identical uncoupled (that is,
independent) chaotic systems. If the latter are started with approximately equal
but nonidentical initial conditions, we know that sensitive dependence will cause
the two systems to eventually move far apart.

Here is synchronization in its simplest form. Consider the two-way coupled
system of autonomous differential equations

ẋ � ax � c(y � x)

ẏ � ay � c(x � y). (9.27)

Assume that a � 0. We consider the original identical systems to be ẋ � ax and
ẏ � ay. The coupling coefficient c measures how much of x to replace with y in
the x-equation, and the reverse in the y-equation. First notice that if the coupling
is turned off, there is no synchronization. The solutions for c � 0 are x(t) � x0eat

and y(t) � y0eat, and the difference between them is |x(t) � y(t)| � |x0 � y0|eat,
which increases as a function of time because of our assumption a � 0. In this
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case the synchronized state x(t) � y(t) is unstable: if x0 � y0, any small difference
caused by perturbing the systems will grow exponentially.

As we turn on the coupling, at first we see little difference from the uncou-
pled case. Figure 9.13(a) shows plots of x(t) and y(t) for a � 0.1 and coupling
parameter c � 0.03. The difference between the two trajectories, started from
two different initial values, again grows exponentially. Figure 9.13(b) is the result
of stronger coupling c � 0.07. The trajectories move towards one another and
stay together as t increases. This is an example of global synchronization. Your
first assignment is to find the mechanism that explains the difference between
the two cases.

Step 1 Write (9.27) as the linear system(
ẋ
ẏ

)
� A

(
x
y

)
where A �

(
a � c c

c a � c

)
. (9.28)

Find the eigenvalues and eigenvectors of A. Define u � S�1

(
x
y

)
, where S is

the matrix whose columns are the eigenvectors of A. Write down and solve the
corresponding differential equation for u.

Step 2 Using Step 1, find the solution of system (9.27). Show that |x(t) �

y(t)| � |x0 � y0|e(a�2c)t.

t t

(a) (b)

Figure 9.13 Synchronization of scalar trajectories.
(a) Two solutions of the coupled system (9.27) with a � 0.1 and weak coupling
c � 0.03. Initial values are 5 and �4.5. The distance between solutions increases
with time. (b) Same as (a), but with stronger coupling c � 0.07. The solutions
approach synchronization.
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Step 2 explains the difference between the weak coupling in Figure 9.13(a)
and stronger coupling in Figure 9.13(b). The coupling parameter must be greater
than a� 2 to cause the two solutions to synchronize.

Now that we see how to synchronize coupled scalar equations, let’s consider
coupled linear systems. Let A be an n � n matrix. Define the linear system

v̇ � Av (9.29)

and the coupled pair of linear systems

v̇1 � Av1 � c(v2 � v1)

v̇2 � Av2 � c(v1 � v2)

which can be rewritten as(
v̇1

v̇2

)
�

(
A � cI cI

cI A � cI

)(
v1

v2

)
. (9.30)

Step 3 Show that if v is an eigenvector of A, then both (v1, v2)T � (v, v)T

and (v, �v)T are eigenvectors of the matrix in (9.30). Denote the eigenval-
ues of A by 
1, . . . , 
n. Show that the eigenvalues of the matrix in (9.30) are

1, . . . , 
n, 
1 � 2c, . . . , 
n � 2c.

Step 4 Define the difference vector u � v1 � v2. Show that u satisfies the
differential equation

u̇ � (A � 2cI)u. (9.31)

Step 5 Show that if all eigenvalues of A have real part less than 2c, then
the origin of (9.31) is globally asymptotically stable (see Chapter 7). Conclude
that for sufficiently large coupling, the solutions v1(t) and v2(t) of (9.29) undergo
global synchronization, or in other words, that for any initial values v1(0) and
v2(0),

lim
t→�

|v1(t) � v2(t)| � 0.

When the equilibrium u � v1 � v2 � 0 is globally asymptotically stable,
we say that the system undergoes global synchronization. If instead u � 0 is only
stable, we use the term local synchronization.

Now we move on to nonlinear differential equations. Consider a general
autonomous system

v̇ � f(v) (9.32)
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and the coupled pair of systems

v̇1 � f(v1) � c(v2 � v1)

v̇2 � f(v2) � c(v1 � v2) (9.33)

The variational equations for a synchronized trajectory of (9.33) are(
v̇1

v̇2

)
�

(
A(t) � cI cI

cI A(t) � cI

)(
v1

v2

)
, (9.34)

where A(t) � Dvf(v1(t)) is the matrix of partial derivatives of f evaluated along
the synchronized trajectory v1(t) � v2(t). To determine whether this trajectory
is stable, we will investigate u � v1 � v2. Let J(t) denote the Jacobian matrix of
the time-t map of the flow of v of (9.32), and K(t) denote the Jacobian matrix of
the time-t map of the flow of u.

Step 6 Show that J ′(t) � A(t)J(t) and K ′(t) � (A(t) � 2cI)K(t). Using
initial conditions J(0) � K(0) � I, show that K(t) � J(t)e�2ct.

Step 6 shows the relationship between the matrix J(1), the Jacobian deriva-
tive of the time-1 map for the original system, and the matrix K(1), the derivative
of the time-1 map of the difference vector u.

Step 7 Prove:

Theorem 9.7 (Synchronization Theorem.) Let 
1 be the largest Lyapunov
exponent of the system (9.32). Assume two-way coupling as in (9.33). If c � 
1 � 2,
then the coupled system satisfies local synchronization. That is, the synchronized state
u(t) � v1(t) � v2(t) � 0 is a stable equilibrium.

Figure 9.14 shows an application of the Synchronization Theorem. For the
Chua circuit which generates the double scroll attractor of Figure 9.10(f), the x-
coordinate oscillates between negative and positive values. The largest Lyapunov
exponent of the chaotic orbit is approximately 
1 � 0.48.

Figure 9.14(a) shows the x-coordinates plotted from a coupled pair of Chua
circuit systems as in (9.32) with c � 0.15. The initial values used were (0, 0.3, 0)
for v1 and (�0.1, 0.3, 0) for v2. Although the trajectories begin very close to-
gether, they soon diverge and stay apart. Part (c) of the Figure shows a scatter
plot of the simultaneous x-coordinates of v1 and v2. It starts out by lying along
the identity diagonal, but eventually roams around the square. The lack of syn-
chronization is expected because of the weak coupling strength. In part (b) of
the Figure, the coupling parameter is c � 0.3 � 
1 � 2, and synchronization is
observed.
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Figure 9.14 Synchronization of the Chua attractor.
(a) Time traces of the x-coordinates of v1 (solid) and v2 (dashed) for coupling
strength c � 0.15. (b) Same as (a), but for c � 0.30. (c) A simultaneous plot of one
curve from (a) versus the other shows a lack of synchronization. (d) Same as (c),
but using the two curves from (b). The plot lines up along the diagonal since the
trajectories are synchronized.

One-way coupling can also lead to synchronization. Next we write a pair of
Lorenz systems. The first is to be considered the sender:

ẋ1 � ��x1 � �y1

ẏ1 � �x1z1 � rx1 � y1 (9.35)

ż1 � x1y1 � bz1,

and the second the receiver:

ẋ2 � ��x1 � �y2

ẏ2 � �x1z2 � rx1 � y2 (9.36)

ż2 � x1y2 � bz2,
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Notice that the receiver contains a signal x1 from the sender, but that the sender
is autonomous. Using the Lyapunov function ideas from Chapter 7, you will show
how to guarantee that the difference vector u � (uy, uz) � (y1 � y2, z1 � z2)
tends to 0 for any set of initial conditions.

Step 8 Assume that b � 0. Show that the function E(uy, uz) � u2
y � u2

z

is a strict Lyapunov function for the synchronized state u � 0. Conclude that
the receiver trajectory (x2, y2, z2) globally synchronizes to the sender trajectory
(x1, y1, z1).

Postscript. Since the discovery of one-way coupling results like Step 8 by (Pecora
and Carroll, 1990), there has been engineering interest in the use of the synchronization
of chaos for the purpose of communications. The Rössler and Chua attractors have also
been shown to admit global synchronization by one-way coupling.

Various schemes have been suggested in which the signal transmitted by the sender
can be used as a message carrier. For example, very small intermittent perturbations
(perhaps a secret message m coded in binary numbers) could be added to the signal x1

and sent to the receiver. Since the signal plus message is mostly chaos, reading the message
would presumably be difficult. However, if the receiver could synchronize with the sender,
its x2 would be equal to x1 with the perturbations m greatly reduced (since they are small
compared to x1, the receiver acts as a type of filtering process). Then the receiver could
simply subtract its reconstructed x2 from the received x1 � m to recover m, the coded
message. For more details on this and similar approaches, see the series of articles in
Chapter 15, Synchronism and Communication, of (Ott, Sauer, and Yorke, 1994).
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EXERCISES

9.1. Find out what happens to trajectories of the Lorenz equations (9.1) whose initial
conditions lie on the z-axis.

9.2. Find all equilibrium points of the Chua circuit system (9.6). Show that there are
three if m0 � �1 � m1, and infinitely many if m0 � �1.

9.3. Find the area-contraction rate per iteration of the time-2� map of the forced damped
double-well Duffing equation (9.10). For what values of damping parameter c is it
dissipative?

9.4. Find a formula for the area-contraction rate per iteration of the time-1 map of the
linear system v̇ � Av, where A is an n � n matrix.

9.5. Damped motion in a potential field is modeled by ẍ � cẋ � �P
�x � 0, as in (7.41).

Use (9.23) to prove that the sum of the two Lyapunov exponents of any orbit in the
(x, ẋ)-plane is �c.

9.6. Find the Lyapunov exponents of any periodic orbit of undamped motion in a potential
field, modeled by ẍ � �p

�x � 0.

9.7. How are the Lyapunov exponents of an orbit of the differential equation v̇ � f(v)
related to the Lyapunov exponents of the corresponding orbit of v̇ � cf(v), for a
constant c?

9.8. Show that if an orbit of (9.12) converges to a periodic orbit, then they share the
same Lyapunov exponents, if they both exist.

9.9. Consider the unforced, undamped pendulum equation ẍ � sin x � 0.
(a) Write as a first-order system in x and y � ẋ, and find the variational

equation along the equilibrium solution (x, y) � (0, 0).
(b) Find the Jacobian J1 of the time-1 map at (0,0), and find the Lyapunov

exponents of the equilibrium solution (0,0).
(c) Repeat (a) for the equilibrium solution (x, y) � (�, 0).
(d) Repeat (b) for the equilibrium solution (x, y) � (�, 0).
(e) Find the Lyapunov exponents of each bounded orbit of the pendulum.
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☞ L A B V I S I T 9

Lasers in Synchronization

THE EQUATIONS governing the output of a laser are nonlinear. There is a
large amount of interest in the field of nonlinear optics, in which researchers
study laser dynamics and related problems. The natural operating state of a laser
consists of very fast periodic oscillations. During the last 20 years, it has become
relatively straightforward to design a laser that operates in a chaotic state.

In his lab at the Georgia Institute of Technology, R. Roy and coworkers
have studied many aspects of the nonlinear dynamics of Nd:YAG lasers. (The
acronym stands for neodymium-doped yttrium aluminum garnet.) The intensity
of the laser fluctuates, making a complete oscillation in several microseconds (1
microsecond � 10�6 seconds). Depending on parameter settings, the pattern of
oscillations can be either periodic or chaotic. Systems of nonlinear differential
equations exist that do a very precise job of modeling the instantaneous electric
and magnetic field and population inversion of the laser. (See (Haken, 1983) for
example.)

In this synchronization experiment, two Nd:YAG lasers exhibiting chaotic
intensity fluctuations are placed side by side on a lab table. The two laser beams
are coupled through overlap of their electromagnetic fields, which fluctuate with
time. The width of each beam is much less than a millimeter. The closer the two
beams, the stronger the mutual couplings of their respective differential equations.
In units relevant to the experiment, the mutual coupling strength is � 10�2 when
the beam separation is 0.6 mm and � 10�12 when the separation is 1.5 mm.

Figure 9.15 shows a diagram of the pair of pumped lasers. The two beams are
driven by a single argon laser, shown at left. Beam-splitters and mirrors divide the
argon laser beam into two beams, each of which lases in the Nd:YAG crystal. The
two beams lase far enough apart that the population inversions of the two lasers do
not overlap—the coupling occurs only through the overlap of the electromagnetic
fields of the beams.

The beam separation can be changed using the beam combiner, marked BC
in Figure 9.15. The two separate laser beams are marked with a single arrow and

Roy, R., and Thornburg, K.S. 1994. Experimental synchronization of chaotic lasers.
Physical Review Letters 72:2009–2012.

394



L A B V I S I T 9

Figure 9.15 Diagram of two spatially-coupled lasers.
The two beams, denoted by a single arrow and double arrows, are driven periodically
by the same argon laser at left. The separation distance is controlled by BC, the
beam combiner. Lasing of the two beams takes place in the crystal, and output
intensity is measured at the photodiodes PD1 and PD2.

double arrows, respectively. The laser output intensity is measured by the video
camera and the photodiodes PD1 and PD2, which feed an oscilloscope for data
recording.

The chaos in the laser beam is caused by making the argon laser output
oscillate periodically. This is achieved by putting the argon laser beam through the
acousto-optic modulator, denoted AOM. When the AOM is placed in position
(a), only one beam is chaotic; in position (b), both beams are chaotic. For large
separations of the beams within the crystal, say d � 1.5 mm, the two lasers operate
independently and are unsynchronized.

For smaller separations (d � 1 mm), the effects of synchronization begin
to appear. Figure 9.16(a) shows the intensity as a function of time for the two
beams, for d � 1 mm. Although the two beams are not synchronized, the weak
coupling with laser 1 causes the previously quiet laser 2 to fluctuate in an erratic
fashion. Figure 9.16(c) plots simultaneous intensities versus one another. The
wide scattering of this plot shows that no synchronization is occurring. This
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Figure 9.16 Synchronization of intensities for two coupled lasers.
(a) The beams are separated by d � 1 mm. Laser 1 is chaotic, as shown by the
time trace of its intensity. The coupling has caused Laser 2, which is nominally
at equilibrium, to oscillate erratically. The coupling is not strong enough to cause
synchronization. (b) The beam separation is reduced to d � 0.75 mm, causing
significant interaction of the two electromagnetic fields. Laser 1 is chaotic as before,
but now the mutual coupling has caused Laser 2 to oscillate in synchronization with
Laser 1. (c) At each time, the intensities of lasers 1 and 2 in (a) are plotted as an
xy-point. The lack of pattern shows that there is no synchronization between the
two beams at the weak coupling strength. (d) The xy-plot from (b) lies along the
line y � x, verifying synchronicity.
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figure can be compared with the similar Figure 9.14, which shows analogous
behavior with the Chua circuit.

In Figure 9.16(b), the beam separation has been decreased to d � 0.75 mm.
The intensities are now in synchronization, as shown by the match of the time
traces as well as the fact that the scatter plot is restricted to the diagonal. In both
the weak and strong coupling cases in Figure 9.16, the AOM was in position (a),
although similar behavior is found for position (b).

Besides possible uses of synchronization in communication applications, as
suggested in Challenge 9, there are many other engineering possibilities. For ad-
vances in electronics that rely on the design of devices that harness large numbers
of extremely small oscillators, split-second timing is critical. Synchronization of
chaos may lead to simple ways to make subunits operate in lockstep.
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Stable Manifolds
and Crises
WE INTRODUCED the subject of stable and unstable manifolds for saddles of
planar maps in Chapter 2. There we emphasized that Poincaré used properties
of these sets to predict when systems would contain complicated dynamics. He
showed that if the stable and unstable manifolds crossed, there was behavior that
we now call chaos. For a saddle fixed point in the plane, these “manifolds” are
curves that can be highly convoluted. In general, we cannot hope to describe the
manifolds with simple formulas, and we need to investigate properties that do
not depend on this knowledge. Recall that for an invertible map of the plane and
a fixed point saddle p, the stable manifold of p is the set of initial points whose
forward orbits (under iteration by the map) converge to p, and the unstable
manifold of p is the set whose backward orbits (under iteration by the inverse of
the map) converge to p.
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4

−π π
−2

Figure 10.1 Stable and unstable manifolds for a fixed point saddle the forced,
damped pendulum.
A cross marks a saddle fixed point of the time-2� map of the forced, damped
pendulum with equation of motion ẍ � .2ẋ � sin x � 2.5 cos t. The stable manifold
emanates from the saddle in the direction of an eigenvector Vs � (1, 0.88), and
the unstable manifold emanates from the saddle in the direction of an eigenvector
Vu � (1, �0.59). A finite segment of each of these manifolds was computed. Larger
segments would show more complex patterns.

Figure 10.1 shows numerically calculated stable and unstable manifolds of
a saddle fixed point of the time-2� map of a forced damped pendulum, whose
motion satisfies the differential equation ẍ � .2ẋ � sin x � 2.5 cos t. The saddle
fixed point p � (�.99, �.33) is marked with a cross. The eigenvalues of the
Jacobian evaluated at p are s � �0.13 and u � �2.26. The stable manifold S(p)
emanates from p in the direction of an eigenvector Vs � (1, 0.88) associated
with s, and the unstable manifold U(p) emanates from p in the direction of an
eigenvector Vu � (1, �0.59) associated with u. Although these manifolds are
far too complicated to be described by a simple formula, they still retain the form
of a one-dimensional curve we observed of all the examples in Chapter 2. Don’t
forget that points on the left side of the figure (at x � ��) match up with points
on the right side (at x � �), so that the curves, as far as they are calculated, have
no endpoints. It has been conjectured that the stable manifold comes arbitrarily
close to every point in the cylinder [��, �] � �. Of course, here we have plotted
only a finite segment of that manifold.
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The stable and unstable manifolds shown here look deceptively like tra-
jectories of a differential equation, except for the striking difference that these
curves cross each other. (The stable manifold does not cross itself, and the unsta-
ble manifold does not cross itself.) We stress that there is no contradiction here:
although distinct solutions of an autonomous differential equation in the plane
cannot cross, the stable and unstable manifolds of a saddle fixed point of a plane
map are made up of infinitely many distinct, discrete orbits. Points in the inter-
section of stable and unstable manifolds are points whose forward orbits converge
to the saddle (since they are in the stable manifold) and whose backward orbits
converge to the saddle (since they are in the unstable manifold). As we shall see
in Section 10.2, when stable and unstable manifolds cross, chaos follows.

We begin this chapter with an important theorem which guarantees that
the stable and unstable manifolds of a planar saddle are one-dimensional curves.

10 .1 T H E S TA B L E M A N I F O L D T H E O R E M
For a linear map of the plane, the stable and unstable manifolds of a saddle are
lines in the direction of the eigenvectors. For nonlinear maps, as we have seen,
the manifolds can be curved and highly tangled. Just as with nonlinear sinks and
sources, however, more can be said about the structure of stable and unstable
manifolds for a nonlinear saddle by looking at the derivative, the Jacobian matrix
evaluated at the fixed point. If, for example, 0 is a fixed-point saddle of a map
f, then the stable and unstable manifolds of 0 under f are approximated in a
neighborhood of 0 by the stable and unstable manifolds of 0 under L(x) � Ax,
where A � Df(0). The relationship between the stable manifold of 0 under f
and of the stable manifold under Df(0) is given by the Stable Manifold Theorem,
the main result of this chapter.

Suppose, for example, we look at the map

f(x, y) � (.5x � g(x, y), 3y � h(x, y)),

where all terms of the functions g and h are of order two or greater in x and y;
functions like x2 � y2 or xy � y3. Then the eigenvalues of Df(0) are .5 and 3, and
0 is a fixed point saddle. We will see that the initial piece of the stable manifold
of 0, called the local stable manifold, emanates from 0 as the graph of a function
y � �(x). In addition, the x-axis is tangent to S at 0, that is � ′(0) � 0. See
Figure 10.2(a), which shows local stable and unstable manifolds. Globally, (that
is, beyond this initial piece), the stable manifold S may wind around and not
be expressible as a function of x. It will, however, retain its one-dimensionality:
S is a smooth curve with no endpoints, corners, or crossing points. See Figure
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y

U
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y = h(x) 

x

y

S
U

(a) (b)

Figure 10.2 Stable and unstable manifolds for a saddle in the plane.
(a) The local stable and unstable manifolds emanate from 0. (b) Globally, the stable
and unstable manifolds are one-dimensional manifolds.

10.2(b). We saw in Chapter 2 that such set is called a one-manifold. In the
case of a saddle in the plane, the stable manifold is the image of a one-to-one
differentiable function r, where r : � → �2. The unstable manifold U(0) is also a
one-manifold that emanates from the origin in the direction of the y-axis. Figure
10.3 illustrates one-dimensional stable and unstable manifolds emanating from
the origin as described.

SU

VsVu

p

Figure 10.3 Illustration of the Stable Manifold Theorem.
The eigenvector Vs is tangent to the stable manifold S at p, and the eigenvector
Vu is tangent to the unstable manifold U. The manifolds are curves that can wind
through a region infinitely many times. Here we show a finite segment of these
manifolds.
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We state the theorem for a fixed-point saddle in the plane and discuss
the higher-dimensional version in Sec. 10.5. The theorem says that the stable
and unstable manifolds are one-manifolds, in the topological sense, and that
they emanate from the fixed point in the same direction as the corresponding
eigenvectors of the Jacobian. Figure 10.3 illustrates the theorem: The stable
manifold S emanates from the saddle p in the direction of an eigenvector Vs,
while the unstable manifold U emanates in the direction of an eigenvector Vu.
A corresponding version of the theorem holds for periodic points, in which
case each point in the periodic orbit has a stable and an unstable manifold. We
assume that maps are one-to-one with continuous inverses. Such maps are called
homeomorphisms. Smooth homeomorphisms (in which both the map and its
inverse are smooth) are called diffeomorphisms.

Theorem 10.1 (Stable Manifold Theorem.) Let f be a diffeomorphism of
�2. Assume that f has a fixed-point saddle p such that Df(p) has one eigenvalue s with
|s| � 1 and one eigenvalue u with |u| � 1. Let Vs be an eigenvector corresponding to
s, and let Vu be an eigenvector corresponding to u.

Then both the stable manifold S of p and the unstable manifold U of p are one-
dimensional manifolds (curves) that contain p. Furthermore, the vector Vs is tangent to
S at p, and Vu is tangent to U at p.

Section 10.4 is devoted to a proof of the Stable Manifold Theorem. We end
this section with examples illustrating the theorem.

EXAM PLE 10 .2

Let f(x, y) � ((4 � �) arctan x, y� 2). This map has two fixed-point attrac-
tors, (�1, 0) and (1, 0), and a fixed-point saddle (0, 0). The stable manifold of
(0, 0) is the y-axis. See Figure 10.4. The unstable manifold of (0, 0) is the set
�(x, y) : �1 � x � 1 and y � 0�. The orbits of all points in the left half-plane
are attracted to (�1, 0), and those of points in the right half-plane are attracted
to (1, 0); i.e., these sets form the basins of attraction of the two attractors. (See
Chapter 3 for a more complete treatment of basins of attraction.) The stable
manifold of the saddle forms the boundary between the two basins. Focusing
here on the local behavior around the saddle fixed-point (0, 0), we calculate the
eigenvalues of Df(0, 0) as s � 1 � 2 and u � 4 � �, with corresponding eigenvectors
Vs � (0, 1) and Vu � (1, 0), respectively. Thus the unstable and stable manifolds
emanate from (0, 0) in the directions of these vectors.
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x

y

(1,0)(-1,0)

Figure 10.4 Action of the orbits for the map f(x, y) � ((4� �) arctan x, y � 2).
The points (�1, 0) and (1, 0) are fixed-point sinks, while the origin is a saddle.
The stable manifold of (0, 0) is the y-axis. The unstable manifold is the set �(x, 0) :
�1 � x � 1�.

EXAM PLE 10 .3

Let f(r, �) � (r2, � � sin �), where (r, �) are polar coordinates in the plane.
There are three fixed points: the origin and (r, �) � (1, 0) and (1, �). See Figure
10.5. The origin is a sink, attracting all points in the interior of the unit disk since
r → r2. There are two ways to compute the eigenvalues away from the origin.
One is to work in polar coordinates. Then

Df(r, �) �

(
2r 0
0 1 � cos �

)
,

for r � 0. The eigenvalues of each of the two fixed points with r � 0 are easily
read from this diagonal matrix. The other way is to compute the eigenvalues in
rectangular coordinates. Since eigenvalues are independent of coordinates, the
results are the same. Checking the stability of the other two points in rectangular
coordinates allows us to review the chain rule for two variables.

The conversion between xy-coordinates and polar coordinates is x �

r cos �, y � r sin �. The map f in terms of xy-coordinates is given by

F(x, y) �

(
F1

F2

)
�

(
f1 cos f2
f1 sin f2

)
,

404



10 . 1 T H E S TA B L E M A N I F O L D T H E O R E M

x

y

(-1,0) (1,0)

Figure 10.5 Action of orbits for the map f(r, �) � (r2, � � sin �).
Here (r, �) are polar coordinates in the plane. In rectangular (x, y) coordinates, the
fixed point (0, 0) is a sink; (�1, 0) is a source; and (1, 0) is a saddle. The stable
manifold of (1, 0) is the unit circle minus the fixed point (�1, 0). The unstable
manifold of (1, 0) is the positive x-axis.

where f1(r, �) � r2, f2(r, �) � � � sin �. The Jacobian of F with respect to rect-
angular coordinates is given by the chain rule:

�(F1, F2)
�(x, y)

�
�(F1, F2)
�(f1, f2)

�(f1, f2)
�(r, �)

�(r, �)
�(x, y)

�

(
cos f2 �f1 sin f2
sin f2 f1 cos f2

)(
2r 0
0 1 � cos �

)(
cos � �r sin �

sin � r cos �

)�1

where we use the fact that the matrices of partial derivatives satisfy

�(r, �)
�(x, y)

�

(
�(x, y)
�(r, �)

)�1

.

Now we can evaluate the rectangular coordinate Jacobian at the fixed points
without actually converting the map to rectangular coordinates, which would be
quite a bit more complicated. At (r, �) � (1, 0), or equivalently (x, y) � (1, 0),
we have

�(F1, F2)
�(x, y)

(1, 0) �

(
1 0
0 1

)(
2 0
0 0

)(
1 0
0 1

)�1

�

(
2 0
0 0

)
.
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Thus Dxf(1, 0) has eigenvalues s � 0 and u � 2, with corresponding eigenvectors
Vs � (0, 1) and Vu � (1, 0). The stable manifold of this fixed-point saddle is
given by the formula r � 1, �� � � � �. The unstable manifold is given by
r � 0, � � 0.

✎ EXERCISE T10 .1
Repeat the computations of Example 10.3 for the other fixed point (r, �) �

(1, �), or (x, y) � (�1, 0).

EXAM PLE 10 .4

The phase plane of the double-well Duffing equation

ẍ � x � x3 � 0 (10.1)

is shown in Figure 10.6. This equation was introduced in Chapter 7. Here we in-
vestigate the stable and unstable manifolds under a time-T map. The equilibrium
(0, 0) of (10.1) is a saddle with eigenvectors Vu � (1, 1) and Vs � (1, �1). These
vectors are tangent to a connecting arc as it emanates from the equilibrium and
then returns to it. Under the time-T map FT, all forward and backward iterates

Figure 10.6 Phase plane of the undamped Duffing equation.
The phase plane of the two-well Duffing equation ẍ � x � x3 � 0 is shown. The
equilibrium 0 (marked with a cross) is a fixed point saddle of the time-T map. The
origin, together with the connecting arcs, form both the stable and the unstable
manifolds of 0 under the time-T map.
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of initial conditions on a connecting arc remain on the arc. The origin is a fixed
point saddle of FT, and the origin, together with the two connecting arcs, are
both the stable manifold and the unstable manifold of 0 under FT.

Although the previous examples illustrated the Stable Manifold Theorem,
we didn’t really use the theorem, since the stable and unstable manifolds could
be explicitly determined. (Recall that solution curves of the Duffing phase plane
are level curves of the potential P(x) � x4 � 4 � x2 � 2.) We end this section with
a Hénon map, an example in which the stable and unstable manifolds must be
approximated numerically. We outline the method used in all the numerically
calculated manifolds pictured in this book. The approximation begins by moving
in the direction of an eigenvector, as the theorem indicates.

EXAM PLE 10 .5

Let f(x, y) � (2.12 � x2 � .3y, x), one of the Hénon family of maps. Figure
10.7 shows stable and unstable manifolds of a fixed-point saddle p � (.94, .94).
The eigenvalues of Df(p) are s � �0.18 and u � �1.71. The corresponding
eigenvectors are Vs � (1, �5.71) and Vu � (1, �.58). We describe a practical
method for approximating U(p); S(p) can be approximated using the same algo-
rithm and f�1. First, find (as we have done) an eigenvector Vu associated with the
eigenvalue u. Choose a point a on the line through Vu so that a and b � f(a) are
within 10�6 of p. (If u happens to be negative, which is the case above, replace f
with f2 here and throughout this discussion.)

If we assume that the unstable manifold is given locally as a quadratic
function of points on Vu, then since |a � p| � 10�6, the distance of b � f(a)
from U(p) is on the order of 10�12. See Figure 10.8. There might be extreme cases
where the distances 10�6 and 10�12 are too large, but such cases are very rare in
practice. Then apply f to the line segment ab � J. This involves choosing a grid
of points a � a0, a1, . . . , an � b along the segment J. Let b1 � f(a1). The rule
used here is that the distance |b1 � b| should be less than 10�3. Otherwise, move
a1 closer to a. Repeat this procedure when choosing each grid point. (Continue
with b2 so that |b1 � b2| � 10�3, and so on.)

Using this method, calculate f, f2, . . . , fn of segment J. (Plot f(J) after it is
computed, then ignore the computation of f(J) when computing f2(J), etc.) At
some points, the computed value of fn(q) may be far from the actual value, due
to sensitive dependence. To avoid this problem, make sure that Dfn(q) is not too
large. Plot only points q where each of the four entries in Dfn(q) is less than 108.
This will ensure that the error in fn(q), the distance to U(p), is on the order
of at most 10�4, assuming that f can be computed with an error of much less
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2.5

−2.5

−2.5 2.5

Figure 10.7 Stable and unstable manifolds for a fixed point saddle of the
Hénon map f(x, y) � (2.12 � x2 � .3y, x).
The fixed point is marked with a cross. The unstable manifold is S-shaped; the stable
manifold is primarily vertical.

a

f(a)

p
10-6

10-12

U(p)

V u 

Figure 10.8 Calculating an unstable manifold.
Select a point a along an eigenvector Vu so that a and f(a) are within 10�6 of
the saddle p. Assuming that the unstable manifold is given locally as a quadratic
function of points on Vu, then the distance of f(a) from U(p) is on the order of
at most 10�12. Figure 10.7 and Color Plates 24–25 were created using the method
described in this section.
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than 10�12. Usually 10�4 is smaller than the diameter of a dot. Ignoring the “108

rule”, however, will probably give excellent longer plots. Also, the use of 10�6 and
10�12 are very conservative; in practice, one can usually use |a � b| � 0.1. This
method is most successful when the unstable manifold is bounded; refinements
are necessary otherwise. See (You, Kostelich, and Yorke, 1991).

10 .2 HOMO C L I N I C A N D H E T E R O C L I N I C
P O I N T S

At first glance, the picture of crossing stable and unstable manifolds shown in
Figure 10.9 looks bizarre, if not impossible. Perhaps drawing the manifolds as
curves makes us incorrectly think of them as solutions of differential equations
which, by uniqueness of solutions through a given point (Theorem 7.14 of Chapter
7), can never cross. For diffeomorphisms, however, stable and unstable manifolds
are each composed of infinitely many orbits, some of which can belong to both
invariant manifolds. Suppose, for example, that x is a point belonging to both
the stable and unstable manifolds of a fixed point p. According to the definitions,
both forward and backward iterates of x converge to p.

Definition 10.6 Let f be an invertible map of �n, and let p be a fixed
point saddle. A point that is in both the stable and the unstable manifold of p
and that is distinct from p is called a homoclinic point. If x is a homoclinic point,

xp

S
U

r
f(r)

q
f(q)

Figure 10.9 Crossing stable and unstable manifolds.
The stable manifold S and unstable manifold U of a saddle fixed point or periodic
point p cross at a homoclinic point x. If q is a point on S, then f(q) is also on S ; if
r is a point on U, then f(r) is also on U. The “homoclinic” point x is on both S
and U.
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then fn(x) → p and f�n(x) → p, as n → �. The orbit of a homoclinic point is
called a homoclinic orbit. A point in the stable manifold of a fixed point p and
in the unstable manifold of a different fixed point q is called a heteroclinic point.
The orbit of a heteroclinic point is called a heteroclinic orbit.

✎ EXERCISE T10 .2

Show that homoclinic points map to homoclinic points under f and f�1.

The existence of homoclinic orbits has complex and profound conse-
quences. We explore a few of these consequences in the remainder of this section.
A point where stable and unstable manifolds cross maps to another such point;
its pre-image is also a crossing point. We can only begin to indicate the intricate
web of these crossings, as in Figure 10.10. Certainly Poincaré appreciated the
complicated dynamics implied here. S. Smale’s celebrated work on the horseshoe
map in the 1960s (Smale, 1967) greatly simplified the understanding of these
dynamics.

In Chapter 5 we described the prototype or ideal horseshoe map. In that
discussion we alluded to the fact that in order for a map of the plane, such as the
Hénon map, to have exactly the dynamics of the ideal horseshoe, there must be
uniform stretching and contraction at points in the invariant set. Smale showed
that the presence of homoclinic points implies the existence of a hyperbolic

p

Figure 10.10 Tangle of stable and unstable manifolds implied by homoclinic
points.
If the stable and unstable manifolds of a fixed-point saddle or periodic point p cross
in one homoclinic point, then they cross infinitely many times: each forward and
backward iterate of a homoclinic point is a homoclinic point.
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horseshoe, a horseshoe that is identical (after a change in coordinates) to the
one in Chapter 5. In particular, the set of points that remain in the horseshoe
under both forward and backward iteration of the appropriate map is a Cantor
set, an uncountable set with no connected subsets (except individual points).
This invariant Cantor set will be in one-to-one correspondence with the set of
bi-infinite binary sequences, as in Chapter 5.

The construction of a horseshoe near a homoclinic orbit is indicated in
Figure 10.11. Start with a box R containing a fixed point p of an invertible
map f. Under iterates of f, R stretches out along the unstable manifold of p; under
iterates of f�1, it stretches out along the stable manifold. In particular, there are
numbers l and k such that f�l(R) extends along the stable manifold to include a
homoclinic point x, and fk(R) extends along the unstable manifold to include x,
as shown in Figure 10.11. Thus fk�l is a horseshoe map with domain f�l(R) and
its image fk(R). Geometrically, this construction is clear. What is not so easy to
see is just how small R and how large k and l must be in order to have the uniform
contraction and expansion necessary for a hyperbolic horseshoe.

We summarize Smale’s result in Theorem 10.7. A stable manifold and an
unstable manifold are said to cross transversally if the two manifolds intersect
with a positive angle between them; if the angle between lines tangent to the
two manifolds at the point of crossing is nonzero. If the curves are tangent at
their crossing, then the angle between them is zero and the curves do not cross
transversally. Figure 10.12 illustrates transversal and nontransversal intersections.

f-l(R)

R

fk(R)

p

Figure 10.11 Construction of a horseshoe near a homoclinic point.
The stable and unstable manifolds of a saddle p intersect in a homoclinic point x.
A rectangle R is centered at p. Then for some positive integers k and l, k forward
iterates of R and l backward iterates of R intersect at x, so that fk�l forms a horseshoe.
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p x1 x2

Figure 10.12 Transversal and nontransversal crossings of stable and unstable
manifolds.
The crossing at x1 is a transversal crossing, while the crossing at x2 is not, since the
stable and unstable manifolds have the same tangent line at x2.

Theorem 10.7 Let f be a diffeomorphism of the plane, and let p be a fixed
point saddle. If the stable and unstable manifolds of p cross transversally, then there is
a hyperbolic horseshoe for some iterate of f.

Many of the computer representations of stable and unstable manifolds
in this book indicate homoclinic points. Figure 10.1 shows apparent transversal
crossings of the manifolds in the time-2� map of the forced, damped pendulum.
They are also apparent in the time-2� map of the forced, damped Duffing system,
as described in the following example.

EXAM PLE 10 .8

We return to the Duffing equation of Example 10.4—this time adding
damping, and then external forcing, to the system. Figure 10.13 shows the stable
and unstable manifolds of a saddle fixed point under the time-2� map of the
damped Duffing equation

ẍ � 0.1ẋ � x � x3 � g(t), (10.2)

first with no external forcing (g(t) set equal to 0) in (a), and then with g(t) �

0.3 sin t in (b). In the presence of damping (represented by the nonzero ẋ term),
the connecting arcs of the undamped system (Figure 10.6) have split into dis-
tinct stable and unstable manifolds. With g(t) � 0, each branch of the unstable
manifold of 0 spirals into one of two fixed point sinks.
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(a) (b)

Figure 10.13 Stable and unstable manifolds for the time-2� map of the
damped and periodically forced Duffing equation.
(a) Motion is governed by the autonomous equation ẍ � 0.1ẋ � x � x3 � 0. Stable
and unstable manifolds of the fixed point 0 (marked with a cross) under the time-2�
map are shown. Each branch of the unstable manifold converges to one of two fixed
point sinks. The stable manifold of 0 forms the boundary between the basins of
attraction of these sinks. In (b) stable and unstable manifolds cross, as an external
force is added to the system, now governed by the equation ẍ � 0.1ẋ � x � x3 �

0.3 sin t. The fixed point saddle (marked with a cross) has moved from the origin.

When a periodic force g(t) � 0.3 sin t is applied to the system, orbits that
previously converged to the sinks may no longer converge. Figure 10.13(b) shows
the stable and unstable manifolds of a saddle fixed point (moved slightly from the
origin shown in (a)), which appear to cross transversally at transverse homoclinic
points. By Theorem 10.7, these points imply the system has chaotic orbits. A
numerically observed chaotic attractor for this system is shown in Chapter 9.

10 .3 C R I S E S
Much of the theory of dynamical systems describes changes that can occur in
the dynamics as a parameter is varied past critical values. How are the signifi-
cant features of a dynamical system affected when the system undergoes a slight
perturbation—as, for example, when the parameters in a map are varied? A hy-
perbolic fixed point may move slightly, but it will persist as long as it remains
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hyperbolic. In this section, we turn our attention to chaotic attractors and show
how small variations in a map can result in sudden drastic changes in an attrac-
tor. These changes are called crises and can include the sudden appearance or
disappearance of the attractor or a discontinuous change in its size or shape.

Figure 10.14 shows numerically observed chaotic attractors for the one-
parameter Ikeda family

fa(z) � 0.84 � 0.9z exp
[
i
(

0.4 �
a

1 � |z|2
)]

, z � C,

at a � 7.1 in (a) and a � 7.3 in (b). The key to writing this map in (x, y)-
coordinates (where z � x � iy) is to use the fact that eir � cos r � i sin r, for any
real number r.

✎ EXERCISE T10 .3
Find the inverse of fa(z).

The shape of the attractor varies only slightly from that shown in (a) for
a in the range 7.1 � a � ac � 7.24. For a � ac, however, the attractor in this

(a) (b)

Figure 10.14 Chaotic attractor of the Ikeda map.
The shape of the attractor observed for a range of parameters up to and including
the crisis value a � ac is shown in (a). For all a strictly greater than and near ac, the
attractor is significantly larger, as shown in (b). Notice that the attractor in (b) has
a dark central part that is similar to the attractor in (a).
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region of the plane is suddenly much larger. Figure 10.14(b) shows the extent of
the larger attractor for a � 7.3.

➮ C O M P U T E R E X P E R I M E N T 10 . 1

Create at least six additional plots of the chaotic attractor of the Ikeda map
for six values of a near ac. Plot 105 points of a trajectory on the attractor for each.
Then describe what you can see concerning how the smaller attractor in Figure
10.14(a) changes discontinuously into the larger one in (b). Warning: there is
another attractor—a fixed point.

The structure of the smaller attractor is still apparent in Figure 10.14(b).
It appears darker, since orbits spend a larger percentage of iterates in this region.
Surprisingly, the attractor does not continuously increase in size as a passes ac.
The closer a � ac is to the crisis parameter value ac, however, the longer orbits
typically stay on the smaller structure before bursting free. The time the trajectory
stays in the new region is largely independent of a for a � ac small.

What happens at a crisis value, such as ac in this example? We observe
a saddle periodic orbit p that exists for all a near ac: for a � ac, this periodic
orbit is not in the attractor �a, but as a approaches ac (from below), the distance
between them goes to 0, and at a � ac, the attractor and the periodic orbit collide.
The periodic orbit is in no way affected by this collision. To understand why the
attractor in our example suddenly increases in size for a � ac, we want to examine
carefully what happens when the attractor crosses a stable manifold—in this case,
the stable manifold of the orbit p. This step is provided by Theorem 10.9. Recall
that one curve crosses another transversally if the angle between them at the
point of intersection is nonzero.

Theorem 10.9 (The Lambda or Inclination Lemma.) Let f be a diffeomor-
phism of the plane, and let p be a hyperbolic fixed-point saddle of f. Suppose that a
curve L crosses the stable manifold of p transversally. Then each point in the unstable
manifold of p is a limit point of

⋃
n�0 fn(L).

The proof of Theorem 10.9 can be found, for example, in (Palis and de
Melo, 1982). When L is a segment of the unstable manifold itself, for example
when there is a transverse crossing of the stable and unstable manifolds of p,
then Theorem 10.9 says that each segment of U(p) has other segments of U(p)
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p L

f2(L)
f(L)

f3(L)

q

Figure 10.15 Illustration of the Lambda Lemma.
A curve L crosses the stable manifold of p transversally. Forward iterates of L limit
on the entire unstable manifold of p. Specifically, the Lambda Lemma says that for
each point q on the unstable manifold of p and for each �-neighborhood N�(q),
there are points of fn(L) in N�(q), if n is sufficiently large.

limiting on it (see Figure 10.15). Specifically, the Lambda Lemma says that for
each point q on the unstable manifold of p and for each �-neighborhood N�(q),
there are points of fn(L) in N�(q), if n is sufficiently large. Of course, in this case,
each fn(L) is a different segment of U(p). Recall that each point in a Cantor set
is a limit point of (other points in) the set. Hence, typical cross sections of the
unstable manifold will have a Cantor set structure. An analogous result holds for
curves that cross the unstable manifold.

Using Theorem 10.9, we can interpret the crisis in the Ikeda example above.
Figure 10.16 shows that as a parameter a nears a crisis value ac, the attractor �a

approaches the stable manifold of a period-five point p5. At ac, the outer edge of
�ac is tangent to this stable manifold; for every a � ac, �a has crossed the stable
manifold. See Figure 10.16. Once there is a crossing, the 
-Lemma tells us that
forward iterates of portions of �a limit on the entire unstable manifold of the
periodic point p5. Thus for each a � ac, �a contains both branches of U(p5). We
see a jump in the size of the attractor as �a fills out to U(p5). It is important that
U(p5) is contained in the basin of attraction of �a for a near ac. In this case we
say that there is an interior crisis at a � ac. Specifically, at an interior crisis, the
attractor jumps discontinuously in size. As a passes ac, the attractor collides with
a saddle fixed point or periodic point p and suddenly incorporates the outward
branch of the unstable manifold of p.
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(a) (b)

(c) (d)

Figure 10.16 Crisis of the Ikeda attractor.
The numerically observed chaotic attractor of the Ikeda map is plotted for parameter
values (a) a � 7.1 (b) a � 7.2 (c) a � 7.25 (d) a � 7.3. One million points are
plotted in each part. The crisis parameter value occurs between (b) and (c). The
five crosses in each picture show the location of a period-five saddle with which the
attractor collides at the crisis. Another version of (c) appears in Color Plate 1.

✎ EXERCISE T10 .4
Let p be a fixed point or periodic point. Show that if a point v � S(p) is a
limit point of an attractor �, then p is also a limit point of �.

Sometimes one branch of an unstable manifold is not in the basin of the
attractor �a for a � ac, but then crosses the basin boundary for a � ac and is drawn
into �a. Such is the case in the crises shown in Figure 10.17, in which the pieces
of a two-piece chaotic attractor are observed to merge. The result is an interior
crisis in which each piece (under the second iterate of the map) suddenly jumps
in size. Prior to the crisis, each branch of the unstable manifold of the boundary
saddle goes to a distinct piece of the attractor. After the crisis, both branches of
the unstable manifold are contained in the resulting one-piece attractor. Exercise
T10.5 refers to Figures 10.17 and 10.18.
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Figure 10.17 Crisis of a two-piece Hénon attractor.
Numerically observed chaotic attractors of the Hénon map are shown for parameter
values a � 2.00, 2.01, 2.02, 2.03. Each figure is created by plotting a single trajectory.
A fixed point saddle is also plotted. The two pieces of the attractor join when the
pieces simultaneously collide with the saddle.

✎ EXERCISE T10 .5
Figure 10.17 shows what is numerically observed to be a chaotic attractor
for the Hénon map fa(x, y) � (a � x2 � 0.3y, x), at parameter values a �

2.00, 2.01, 2.02, and 2.03. The attractor has two pieces for a � ac � 2.018.
Then the two pieces merge into one at a � ac. Although the attractor
appears to change continuously, there is a crisis at ac at which point the
two pieces of the attractor collide with a fixed point p � (.91, .91). Figure
10.18 shows the attractor together with p and S(p). Describe the evolution
of the attractor as it passes through the crisis.
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Figure 10.18 A crisis in which a two-piece Hénon attractor hits the stable
manifold of a saddle.
The stable manifold of a saddle is shown together with the chaotic attractor for the
same parameters as in Figure 10.17.

➮ C O M P U T E R E X P E R I M E N T 10 . 2

Recreate Figure 10.17 so that each picture includes the plot of only the
even-numbered iterates of some initial point, p, f2(p), f4(p), . . . .

➮ C O M P U T E R E X P E R I M E N T 10 . 3

Create additional pictures of the two-piece Hénon attractor in Figure 10.17.
Then make a graph of the distance between the two pieces as a function of a near
the crisis value. Use this graph to give an estimate of the crisis value.
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Other outcomes are possible. If, in particular, p is on the boundary of the
basin of �a for a � ac (in this case one branch of U(p) is not in the basin of �a),
we say there is a boundary crisis at a � ac. In this case there are points on U(p)
that go to another attractor (perhaps infinity). Then for a slightly greater than ac,
the attractor (and its basin) no longer exist. However, for a only slightly larger
than ac, typical orbits spend many iterates on the “ghost” of �a before escaping to
the other attractor. Figure 10.19 illustrates this phenomenon in the orbit of one
map fr for r � 1.01, in the Ikeda family

fr(z) � r � 0.9z exp
[
i
(

0.4 �
6.0

1 � |z|2
)]

, z � C,

right after a boundary crisis at r � rc � 1.00. For r � rc, the stable manifold of a
fixed point p (not shown) forms the boundary between the basins of a fixed-point
sink (shown in the upper center of the figure) and another attractor (which is
observed to be chaotic for many r values less than rc). In this parameter range,
one branch of U(p) goes to the chaotic attractor, and the other branch goes to
the fixed-point attractor. For r � rc, the chaotic attractor no longer exists. The
orbit shown in Figure 10.19 spends many iterates on what was the structure of
the chaotic attractor. Then it crosses the stable manifold S(p) and converges to

7.5

y

�4
�1.5 x 8

Figure 10.19 Transient chaos.

One orbit of the Ikeda map fr(z) � r � 0.9z e
i(0.4� 6.0

1�|z|2 )
is plotted. The parameter

value is r � 1.003, immediately following a crisis at which the chaotic attractor
disappears. The orbit spends many iterates on the “ghost” of what was the chaotic
attractor before escaping and converging to a fixed-point attractor. The closer the
parameter to the crisis value, the longer the orbit appears to be chaotic.
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the fixed-point attractor. This behavior is called transient chaos. The closer the
parameter to the crisis value, the longer the orbit appears to be chaotic. See Figure
9.5 for an example of transient chaos in the Lorenz attractor.

As a final example, Figure 10.20 illustrates crises in the Chua circuit system
(9.6). The crises are described as a parameter a is decreased. In (a) there are two

(a) (b)

(c) (d)

Figure 10.20 Interior crisis and boundary crisis in the Chua circuit.
Fixed parameters are c1 � 15.6, c2 � 1, m0 � �8� 7, m1 � �5� 7. The attracting
set changes as parameter c3 changes. (a) c3 � 32, two coexisting chaotic attractors
with separate basins. (b) c3 � 31.5, the attractors move toward one another, but
do not yet touch (although their projections to the plane overlap). (c) c3 � 31,
the attractors have merged into a single attractor. (d) c3 � 30, a boundary crisis
has caused a periodic orbit to attract the basin of the previous chaotic double-scroll
attractor. As c3 is decreased further, the double-scroll attractor reappears.
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distinct chaotic attractors, which approach each other in (b) (overlapping only
in the two-dimensional projection), and then merge in (c). Due to symmetries in
the system, this crisis is similar to the interior crisis of the Hénon family shown
in Figure 10.17. A boundary crisis follows, where the chaotic (double scroll)
attractor moves into the basin of a periodic attractor, as shown in (d).

One-dimensional families can also undergo crises as a parameter is varied.
See, for example, Figure 6.3(a), the bifurcation diagram of the logistic family.
(Several other bifurcation diagrams appear in Chapters 11 and 12.) Chaotic
attractors are observed to jump in size or suddenly appear or disappear. For one-
dimensional maps, basin boundary points are repelling fixed points or periodic
points or pre-images of these points. Interior and boundary crises occur as an
attractor collides with a repelling fixed point or periodic orbit. For example, in
the logistic family ga(x) � ax(1 � x), 1 � a � 4, the points x � 0 and x � 1
form the boundary between points with bounded orbits and those in the basin
of infinity. At a � 4 the chaotic attractor has grown to fill the unit interval and
contains these boundary points. For a � 4, there are no (finite) attractors. Thus
there is a boundary crisis at a � 4.

10 .4 P R OO F O F T H E S TA B L E
M A N I F O L D T H E O R E M

A fixed-point saddle of a planar diffeomorphism has a stable manifold and an
unstable manifold, which are smooth one-dimensional curves (that is, one-
manifolds). In this section we prove that the stable manifold is a one-dimensional
curve, although we do not discuss its smoothness. The proof of smoothness is rather
technical and is not within the scope of this book. We direct the interested reader
to (Devaney, 1986). The existence of the unstable manifold as a one-dimensional
curve follows by applying the result to the inverse of the map.

Recall that a point v � (x1, x2) is in the stable manifold of a fixed point p �

(p1, p2) if fn(v) → p as n → �. As Figure 10.21 illustrates, given a neighborhood
B of p, the stable manifold may enter and leave B many times. In fact, when there
is a homoclinic point, the stable manifold S(p) intersects B in infinitely many
pieces. We focus on the one piece of the intersection which contains p, and call
this (connected) piece the local stable manifold of p in B. We will show in the
proof of the Stable Manifold Theorem that there exists a neighborhood B such
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SB
B

Figure 10.21 The local stable manifold.
For a sufficiently small neighborhood B of p, the local stable manifold SB is the set
of points v in the stable manifold of p such that fn(v) is in B, for all n � 0, 1, 2, . . . .

that the local stable manifold of p in B can be characterized as the set

SB � �v : fn(v) � B, for all n � 0, 1, 2, . . . , and fn(v) → p�,

that is, the set of points whose entire forward orbits remain in B and tend to P.
For the purposes of this proof, we call the set SB the local stable set of p in B, and
show that it has the properties desired of the local stable manifold.

To analyze the behavior near a saddle, we choose coordinates so that (0, 0)
is the fixed point, and (1, 0) and (0, 1) are eigenvectors of Df(0). The eigenvector
(1, 0) has eigenvalue s, with |s| � 1, and (0, 1) has eigenvalue u, with |u| � 1.
We prove the following restatement of Theorem 10.1. Recall that a map f is called
“twice differentiable” if all the first- and second-order partial derivatives of f exist
and are continuous.

Theorem 10.10 Let f be a diffeomorphism of the plane that is twice differen-
tiable. In the coordinate system given above, there exists a number � � 0 and a square
neighborhood B � [��, �] � [��, �] of (0, 0) in which the local stable set SB of (0, 0)
is given by the graph of a continuous function; that is, there is a continuous function �

on [��, �] such that

SB � �(x, �(x)) : x � [��, �]�.

Furthermore, � ′(0) � 0.

Theorem 10.10 says that the curve SB extends through a neighborhood
of (0, 0). In order to show that the entire stable manifold is a curve (with no
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self-intersections and no endpoints), see Exercise 10.6. The proof of Theorem
10.10 is given in seven lemmas. In the first, we choose a square neighborhood
of the origin on which we can estimate how much the function differs from its
derivative.

From our hypothesis, Df(0) �

(
s 0
0 u

)
. Call this matrix A. Since

f(p) � f(0) � Df(0)(p) and f(0) � 0,

we can say that f(p) is approximated by Ap. We now choose a square centered
at the origin to be small enough that Ap is a good approximation to f(p) and
A(q � p) is a good approximation to f(q) � f(p).

Lemma 10.11 For any � � 0, there is a � � 0 such that

|f(q) � f(p) � A(q � p)| � �|q � p|,

for all p, q in the box B � [��, �] � [��, �].

This result should seem quite reasonable to the reader. The proof, however,
is quite technical. We recommend postponing a careful reading of the proof until
the structure of the proof is clear. (In fact, we recommend skipping all proofs on
first reading of this chapter.)

Proof: We can estimate how f(q) � f(p) compares with q � p, provided
p and q are close to the origin. From the two-dimensional Taylor’s Theorem, we
have

|f(q) � f(p) � Df(p)(q � p)| � C1|q � p|2,

for some positive constant C1. Since f is twice differentiable, the matrix Df(p),
which is the derivative of f at p, and the derivative Df(0) differ by a matrix whose
norm (and the entries in the matrix) differ by a quantity at most proportional to
|p � 0| � |�|. That is,

|Df(p)(q � p) �

(
s 0
0 u

)
(q � p)|

�

∣∣∣∣∣Df(p) �

(
s 0
0 u

)∣∣∣∣∣ |q � p|

� C2|p| |p � q|,
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for some positive constant C2. Hence∣∣∣∣∣f(q) � f(p) �

(
s 0
0 u

)
(q � p)

∣∣∣∣∣
� C2|p| |p � q| � C1|p � q|2

� |p � q|(C2|p| � C1|p � q|). (10.3)

Let B be the square [��, �] � [��, �]. Then for p and q in the square B,
the right-hand side multiplier of |p � q| in Equation (10.3) is no bigger than
2
√

2C1� �
√

2C2�. We choose � small enough that this quantity is less than �.
�

We now have a bound on how much f(p) � f(q) can differ from the linear
approximation A(p � q), for p and q in B. For the remainder of the proof assume
that p and q are points in B. We use subscripts to denote the x- and y- coordinates
of vectors; (q � p)x and (q � p)y mean, respectively, the x- and y- coordinates of
q � p.

We say p and q are horizontally aligned if

|(q � p)x| 	
∣∣(q � p)y

∣∣
and vertically aligned if

|(q � p)x| �
∣∣(q � p)y

∣∣ .

In Figure 10.22 the points p and q are horizontally aligned and points r and s are
vertically aligned. We will assume throughout the remainder of this section that

x

y

r

s

q
p

|(q - p) y |

|(q - p) x||(r - s) x|

|(r - s) y|

Figure 10.22 Horizontal and vertical alignment.
The points s and r are vertically aligned since the x-component of r � s is smaller
than the y-component; the points p and q are horizontally aligned since the y-
component of p � q is smaller than the x-component.
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the eigenvalues u and s are positive. The proofs of the remaining lemmas can be
adapted easily for the general case.

In Lemma 10.12, we show that there is a neighborhood B of the origin
such that if two points are vertically aligned and in B, then their images are also
vertically aligned.

Lemma 10.12 Let û � u�1
2 � 1 and ŝ � s�1

2 � 1. There exists a square
neighborhood B of (0, 0), B � [��, �] � [��, �], such that the following prop-
erties hold for all p, q � B:

1. If p and q are vertically aligned, then
∣∣(f(q) � f(p))y

∣∣ 	 û
∣∣(q � p)y

∣∣.
2. If p and q are horizontally aligned, then |(f(q) � f(p))x| � ŝ|(q � p)x|.
3. If p and q are vertically aligned, then so are f(p) and f(q).

Before studying the proof, the reader should first check that (1), (2), and
(3) hold in the special case f(p) � Ap, and that they also hold if f(p) � A1p, for
a matrix A1 sufficiently close to A.

Proof: Let � � min� u�1
2 , 1�s

2 �, and let � and B be given (for this �, as
in Lemma 10.11). Notice with this choice of � � 0 that u � �

√
2 � û and

s � �
√

2 � 1.
We begin with the proof of (1). Lemma 10.11 implies that each coordinate

of f(q) � f(p) differs from (s(q � p)x, u(q � p)y) by at most �‖q � p‖. We assume
p � q. Since p and q are vertically aligned, it differs by at most �

√
2 |(q � p)y|.

Therefore,

|u(q � p)y| � |(f(q) � f(p))y| � |u(q � p)y � (f(q) � f(p))y|
� �

√
2 |(q � p)y|,

which implies

|(f(q) � f(p))y| 	 u|(q � p)y| � �
√

2 |(q � p)y|
� (u � �

√
2)|(q � p)y|

� û|(q � p)y|.

The second inequality follows from the choice of �. The proof of (2) is similar.
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To prove (3), we continue to assume that p and q are vertically aligned and
refer to (1). Then

|(f(q) � f(p))x| � s|(q � p)x| � |(f(q) � f(p))x � s(q � p)x|
� �

√
2 |(q � p)y|,

which implies

|(f(q) � f(p))x| � s|(q � p)x| � �
√

2|(q � p)y|
� s|(q � p)y| � �

√
2|(q � p)y|

� (s � �
√

2)|(q � p)y|
� |(q � p)y|
� û|(q � p)y|
� |(f(q) � f(p))y|.

Therefore, f(q) and f(p) are vertically aligned. �

In Lemmas 10.13–10.16, let B be defined as in Lemma 10.12.

Lemma 10.13 If fn(p) is in B for all n � 0, 1, 2, . . . , then p is in the
local stable set SB.

Proof: We need to show that fn(p) → 0, as n → �. If p � 0, we are
done. Thus assume p � 0. First, we argue that fn(p) and 0 are horizontally
aligned for all n � 0. Suppose otherwise: Assume there exists a k such that fk(p)
and 0 are vertically aligned. Since p � 0, fk(p)y � 0, and by Lemma 10.12 (1),
|fm(p)y| � ûm�k|fk(p)y|, for all m � k. Hence |fm(p)y| → � as m → �. But fn(p)
is in B, for all n, a contradiction. Thus fn(p) and 0 are horizontally aligned, for
all n.

Now, by Lemma 10.12(2), |fn(p)x| → 0. Since fn(p) and 0 are horizontally
aligned, |fn(p)x| 	 |fn(p)y| 	 0, for each n. Therefore, fn(p) → 0. �.

Lemma 10.14 Every pair of points in SB is horizontally aligned.

Proof: Let p and q be in SB. Suppose instead that p and q are vertically
aligned. Then, by Lemma 10.12 (1) and (3), the y-coordinates of forward iterates
of p and q separate until at least one orbit leaves B, contradicting the definition
of SB. �
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Lemma 10.15 For each x in [��, �], there is exactly one value y � �(x)
such that (x, �(x)) is in SB.

Proof: Let Lx � �(x, y) : �� � y � �� 	 B be the vertical line segment
through x, as shown in Figure 10.23. Let Tx be the set of points in Lx whose
orbits eventually leave B through the top of B, (whose y-coordinates become
greater than �), and let Bx be the set of points in Lx whose orbits eventually leave
B through the bottom of B, (whose y-coordinates become smaller than ��).
Notice that Tx and Bx are both nonempty. Then if p is in Tx, there is an � � 0
such that points in N�(p) � Lx are also in Tx. Therefore, Tx is the union of a
finite number of open intervals. So is Bx. Since Tx and Bx are disjoint, there must
be a point q in Lx such that q is neither in Tx nor in Bx. (For example, we could
take q � inf Tx.)

Now all points whose orbits leave B must leave through the top or bottom.
Therefore, fn(q) � B, for all n � 0. By Lemma 10.13, q is in SB. From Lemma
10.14, there is only one point on Lx whose orbit stays in B. Let �(x) � qy. �

Lemma 10.16 The function � is continuous.

Proof: Let a be a number in [��, �]. Suppose limx→a �(x) � �(a). Then
there exists � � 0 and a sequence xn → a such that |�(xn) � �(a)| � �, for each
n. Let xk be an element of the sequence such that |xk � a| � �. Then (xk, �(xk))
and (a, �(a)) are not horizontally aligned, contradicting Lemma 10.14. �

Tx

Bx

x

q

Lx

B

Figure 10.23 Illustration for the Proof of Lemma 10.15.
Points on the vertical line segment Lx through x are either in Tx, if the orbit of the
point leaves the box B through the top, or in Bx, if it leaves through the bottom.
The point q stays in B for all forward iterates.
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y = x 

y = kx 

y = -kx 

y = -x 

B

Bk

Figure 10.24 Cones containing the stable manifold.
The proof of Lemma 10.17 shows that for any k � 0 the local stable set enters the
cone determined by the lines y � �kx.

Lemmas 10.13–10.16 show (among other properties) that SB is contained
within the cone determined by the lines y � �x. See Figure 10.24. If we decrease
the magnitude of the slope of these lines, we can similarly show that there is a
(perhaps smaller) square Bk such that SBk

lies in the cone determined by y � �kx,
0 � k � 1. Thus �(x)

x → 0, as x → 0. This is the idea behind the proof of Lemma
10.17.

Lemma 10.17 � ′(0) � 0.

Proof: Given k � 0, choose � � 0 (the width of the square Bk) small

enough so that � � (u � 1)� 2
√

1 � 1
k2 . (Recall that � and � are related as in

Lemma 10.11.) Let p � (x, y) be a point in Bk but outside the y � �kx cone. The
vertical position of f(p) can be approximated by Lemma 10.11, as follows:

|f(p)y| 	 u|y| � �
√

x2 � y2

	 u|y| � �

√
y2

k2 � y2

� |y|
(

u � �

√
1
k2 � 1

)

� |y|
(

u �
(u � 1)

2

)

� |y|
(

u � 1
2

)
� |py|

(
u � 1

2

)
.
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Therefore, points outside the y � �kx cone have y-coordinates that in-
crease by a factor of u�1

2 � 1 per iteration, and so eventually move out of the
�-box Bk. By the definition of local stable set, SBk

is in the y � �kx cone.
The definition of derivative of �(x) at 0 is limx→0

�(x)
x . Since this ratio is

bounded between �k and k for x near 0, for arbitrarily small k � 0, the limit exists
and equals 0. �

10 .5 S TA B L E A N D UN S TA B L E M A N I F O L D S
F O R H I G H E R D I M E N S I O N A L M A P S

The Stable Manifold Theorem which is proved in Section 10.4 is for saddles in
the plane. Actually, any hyperbolic periodic point has a stable and an unstable
manifold. Recall that a periodic point of period k is called hyperbolic if Dfk at
the point has no eigenvalues with absolute value 1. The definitions of stable and
unstable manifolds for these points are identical to Definition 2.18 for saddles in
the plane.

Definition 10.18 Let f be a smooth one-to-one map on �n, and let p be
a hyperbolic fixed point or hyperbolic periodic point for f. The stable manifold
of p, denoted S(p), is the set of points x � �n such that |fn(x) � fn(p)| → 0 as
n → �. The unstable manifold of p, denoted U(p), is the set of points x such
that |f�n(x) � f�n(p)| → 0 as n → �.

The other two types of hyperbolic fixed points for maps of the plane are
sinks and sources. For a fixed point p in the plane, if both eigenvalues of Df(p) are
of absolute value less than one, then p is a sink, and the stable manifold contains
a two-dimensional �-neighborhood of p. In this case, the entire stable manifold
is a “two-dimensional manifold”. In general, a k-dimensional manifold in �n (or
a k-manifold) is the image of a smooth, one-to-one function of �k into �n. Thus
a two-manifold is a smooth surface.

The unstable manifold of a sink p in �2 is only the point p itself (a 0-
dimensional manifold). In the case of a repeller in �2, in which Df(p) has two
eigenvalues outside the unit circle, the stable manifold is only p itself, while the
unstable manifold is a two-manifold (which in this case is a two-dimensional
subset of the plane).
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EXAM PLE 10 .19

Let f(x, y, z) � (�3x, .5y, �.2z). Notice that fk(0, y, z) � (0, (.5)ky,
(�.2)kz). Therefore, limk→� |fk(0, y, z)| � 0, and the stable manifold of the
fixed point (0, 0, 0) is seen to be the (y, z)-plane. The unstable manifold is the
x-axis, since f�k(x, 0, 0) � ((�3)�k(x), 0, 0).

There is a higher-dimensional version of Theorem 10.1. For a hyperbolic
fixed point p of a higher-dimensional map, the stable manifold will have the same
dimension as the subspace of �n on which the derivative contracts; that is, the
dimension is equal to the number of eigenvalues of Df(p) that have absolute value
strictly smaller than 1, counted with multiplicities. This subspace, the eigenspace
corresponding to these eigenvalues, will be tangent to the stable manifold at p.
Similarly, the unstable manifold has dimension equal to the number of eigenvalues
of Df(p) with absolute value strictly larger than 1, counted with multiplicities;
the linear subspace on which Df(p) expands is tangent to the unstable manifold
at p.

EXAM PLE 10 .20

Let f(x, y, z) � (.5x, .5y, 2z � x2 � y2). The origin is the only fixed point
of f, and its eigenvalues are 0.5, 0.5, and 2. The linear map Df(0) is contracting
on the (x, y)-plane and expanding on the z-axis. The (x, y)-plane, however, is
not the stable manifold for 0 under the nonlinear map f, as Exercise 10.6 shows.

✎ EXERCISE T10 .6

Let f(x, y, z) � (.5x, .5y, 2z � x2 � y2).

(a) Show that U(0) is the z-axis.

(b) Show that S(0) is the paraboloid �(x, y, z) : z � 4
7 (x2 � y2)�.
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☞ C H A L L E N G E 10

The Lakes of Wada

CONSIDER THE TWO open half-planes L � �(x, y) : x � 0� and R � �(x, y) :
x � 0�. Each of the two regions has a set of boundary points consisting of the
y-axis. Therefore, any boundary point of either of the two regions is a boundary
point of both regions. Can the same thing be done with three regions? It means
getting each boundary point of any one of the three regions to be a boundary
point of both of the others as well. A little thought should persuade you that such
sets will be a little out of the ordinary.

In 1910 the Dutch mathematician L.E.J. Brouwer gave a geometric con-
struction of three regions such that every boundary point is a boundary point of
all three regions. Independently, the Japanese mathematician Yoneyama (1917)
gave a similar example. Yoneyama attributed the example to “Mr. Wada”. This
example is described in (Hocking and Young, 1961); they called the example the
“Lakes of Wada”.

The first three steps in the construction of this fractal are shown in Figure
10.25. Start with an island of diameter 1 mile. The first lake is the exterior, white
region, and the other two are shaded gray and black. Now the excavation begins.
From the exterior region, dig a canal so that every point of land (the island) lies

Figure 10.25 Lakes of Wada.
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no more than 1 � 2 mile from the white canal. Second, dig a gray canal so that no
land lies more than 1 � 3 mile from it. Third, dig a black canal so that no land lies
more than 1 � 4 mile from black water. Next, go back and extend the first (white)
canal so that no land lies more than 1 � 5 mile from it (we have not shown this
step). Continue in this way. Of course, the three lakes must never intersect. Be
sure to pay the bulldozer operator by the amount of dirt moved and not by the
mileage traveled by the bulldozer. In the limit of this process, the area of the
remaining land is 0. Each shore point of any of the lakes is also a shore point for
both of the other lakes.

As originally presented, the Lakes of Wada have nothing to do with dy-
namical systems. Although we have seen basins of attraction with extremely
complicated, even fractal, boundaries, it is hard to imagine that such a configura-
tion of three basins could exist for any but the most contrived dynamical systems.
In this challenge, we present special trapping regions, called basin cells, whose
boundaries are formed by pieces of stable and unstable manifolds, to show that
“Wada basins” appear to exist in simple dynamical processes. We begin with a
few definitions of topological terms.

Let A be a subset of �n. (Later concepts will pertain only to subsets of the
plane.) The boundary of A, denoted bd(A), is the set of points that have both
points in A and points not in A arbitrarily close to them. Specifically, x is in
bd(A) if and only if for every � � 0, the neighborhood N�(x) contains points in
A and points not in A. Boundary points may be in A or not. For example, the
sets Dc � �x : |x|2 � 1� (the closed unit disk) and Do � �x : |x|2 � 1� (the open
unit disk) both have the same boundary; the unit circle C � �x : |x|2 � 1�. The
interior of A, denoted int(A), is the set of points in A that have neighborhoods
completely contained in A. Specifically, x is in int(A) if and only if there is an
� � 0 such that N� is a subset of A. Notice that int(A) and bd(A) are disjoint
sets.

✎ EXERCISE T10 .7
Show: int(Dc) � Do.

A set A is called open if it is equal to its interior. An open set does not
contain any boundary points. Assuming that A is an open set, we say a point y
in bd(A) is accessible from A if there is a curve J such that y is an endpoint of
J, and all of J except y is in A. For our example of the disk, all points in bd(Do)
are accessible from Do. A somewhat more interesting example is shown in Figure
10.26. There the boundary of the open set U is shown to wind around two limit
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U

J
y

Figure 10.26 The open set U winds around the circles infinitely many times.
The point shown is accessible from U since it is the end of a curve contained in U.
Every point on the boundary of U is accessible except for those points on the limit
circles (the dashed circles).

circles. (The figure is intended to represent an infinite number of windings of the
boundary around these limit circles.) All points on the boundary, except the limit
circles, are accessible from U. The circles, while in bd(U), contain no points
accessible from U.

Now we introduce dynamics to the situation. Let F be a one-to-one smooth
map of the plane. Recall that a trapping region is a bounded set Q, with int(Q)
not the empty set, with the property that F(Q) is a subset of Q and F(Q) is not
equal to Q. The basin of a trapping region Q, denoted bas(Q), is the set of all
points whose trajectories enter int(Q). Those trajectories then remain in int(Q).

Step 1 Show that if Q is a trapping region, a trajectory that enters Q must
stay in Q for all future iterates. [Hint: If a set A is a subset of B, the F(A) is a
subset of F(B).]

Step 2 Prove two topological properties of basins:
(1) Show that bas(Q) is an open set. [Hint: Given x in bas(Q), let j be a

positive integer such that Fj(x) is in int(Q). Use the continuity of Fj to obtain
the result.]

(2) A set A is called path connected if, given any two points x and y in A,
there is a path contained in A with endpoints x and y. (Recall that a path is
a continuous function s : [0, 1] → �2.) Show that if Q is path connected, then
bas(Q) is path connected.
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Q

p1

p2 Q

q2
q1

q3

(a) (b)

Figure 10.27 Basin cells.
In (a) a period-two orbit �p1, p2� “generates” the cell, while in (b) a period-three
orbit �q1, q2, q3� generates the cell. Notice that basin cells cannot exist if there are
no homoclinic points.

The definition of basin cell is illustrated in Figure 10.27, where we see a
four-sided cell with a period-two point on the boundary and a six-sided cell with
a period-three point on its boundary. A cell is a region Q (homeomorphic to a
disk) whose boundary is piecewise smooth and consists of a finite number of pieces
of stable and unstable manifold of some orbit. Specifically, for a periodic orbit p
of period k, a cell is a planar region bounded by 2k sides: included among these
sides are pieces of both branches of the k stable manifolds as they emanate from
the k points in the orbit together with k pieces of unstable manifolds, one from
each of the k points in p. We denote by Qs the union of the points in p together
with points on the pieces of stable manifolds in the boundary of Q, and by Qu,
the union of points in pieces of unstable manifolds in the boundary that are not
already points of Qs. Then Qs and Qu are disjoint sets whose union is bd(Q).

In order to be able to verify whether a cell is a trapping region, the following
is useful and almost obvious, but is not easy to show:

If F(bd(Q)) is in Q, then F(Q) is in Q.

Step 3 Show that a cell Q is a trapping region if and only if F(Qu) is a
subset of Q. Sketch an example of a cell that is not a trapping region.

A cell that is a trapping region is called a basin cell. From now on, we assume
that Q is a basin cell and investigate bas(Q) and its boundary. The concept of
basin cell was introduced and developed in (Nusse and Yorke, 1996).
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Proposition 1 describes the fundamental structure of basin boundaries.
When there are accessible periodic orbits, then all the accessible boundary points
are on stable manifolds. Although we prove the theorem only for basins with
basin cells, the result holds for a large class of planar diffeomorphisms. See, for
example, (Alligood and Yorke, 1992).

Proposition 1. Let Q be a basin cell and let x be in bd(bas(Q)). If x is accessible
from bas(Q), then x is on the stable manifold of p.

The proof of Proposition 1 is given in Steps 4, 5, and 6.

Step 4 Let x be in bd(bas(Q)) and denote Fn(x) by xn. Show that x is
accessible from bas(Q) if and only if each xn, n � 1, 2, 3, . . . , is accessible from
bas(Q). (The fact that bd(bas(Q)) is invariant under F should be included in the
proof.)

We can assume x is not a point of the orbit p, since such points are trivially
in the stable manifold of p. Let U be the union of the segments of unstable
manifold that are on bd(Q) (the set Qu) together with the pieces of unstable
manifold that connect these segments to the orbit p. (See Figure 10.28.) We
assume further that x is not in U. (If it is, then for some positive integer n, the
point xn is not in U, and we can prove the result for xn.)

p1

p2

U

q2
q1

q3

U

(a) (b)

Figure 10.28 The sets U formed by pieces of unstable manifolds.
Segments of the unstable manifolds in the boundary of a cell, together with the
pieces of the manifolds needed to connect them to the periodic points make up the
set U.
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Step 5 Since x is accessible from bas(Q), there is a curve J that is con-
tained in bas(Q) except for its endpoint which is x. Show that J can be chosen
so that it does not intersect U. Then prove that Fn(J) does not intersect U, for
n � 0, 1, 2, . . . .

Step 6 Let y denote a point in bas(Q) and in J. We can choose n so that
Fn(y) is in the interior of Q. (Why can we do this?) Show then that the entire
curve Fn(J) is in Q for this n. Conclude that Fn(x) is on the stable manifold of p.

Proposition 2. The accessible points are dense in the boundary of bas(Q).

Step 7 Prove Proposition 2. [Hint: On the straight line between a basin
point and a boundary point, there is an accessible (boundary) point.]

Proposition 3. If the unstable manifold of the orbit p that generates the cell Q
enters another basin B2, then every point in the boundary of bas(Q) is also in the
boundary of B2.

�0.4

�0.7
0.65 0.95

(a)

0

�1.5
0 1.5

(b)

Figure 10.29 Basin cells for Hénon maps.
Parameters are set at a � 0.71 and b � 0.9. In (a) initial segments of unstable
manifolds emanating from a period-three accessible orbit are shown. The orbit is
accessible from the dark gray basin. The unstable manifolds intersect each of two
other basins, shown in light gray and white. Therefore, the gray basin is a Wada
basin. In (b) a similar configuration is shown for the basin indicated in white. The
boundary of the white basin is also the boundary of the dark gray and the light gray
basins.

437



S TA B L E M A N I F O L D S A N D C R I S E S

Figure 10.30 Three basin cells for the time-2� map of the forced, damped
pendulum.
The white basin has one accessible periodic orbit of period two; the basin cell shown
has four sides. Similarly, the light gray basin has a four-sided basin cell. The dark
gray basin has one accessible periodic orbit of period three, producing a six-sided
cell.

Step 8 Prove Proposition 3. [Hint: First show, by the Lambda Lemma,
that the stable manifold of p is in the boundary of B2; then use Proposition 2 to
show that all of the boundary of bas(Q) is in the boundary of B2.]

Finally, we say that a basin B is a Wada basin if there are two other basins
B2 and B3 such that every point in the boundary of B is also in the boundary of
B2 and B3. We assume here that B, B2, and B3 are pairwise disjoint. Wada basins
for Hénon maps are shown in Figure 10.29. The natural occurrence of the Lakes
of Wada phenomena in dynamical systems is described in (Kennedy and Yorke,
1991).
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Corollary 4. If the unstable manifold of p in Proposition 3 enters two other
basins B2 and B3 (where bas(Q), B2, and B3 are pairwise disjoint), then every
boundary point of bas(Q) is also in the boundary of B2 and B3, and thus bas(Q)
is a Wada basin.

Remark. In the basin picture for the pendulum in Chapter 2, the three
basins shown are disjoint and each has a basin cell. Figure 10.30 depicts basin
cells for each of the three basins. The orbits that generate each of these cells have
unstable manifolds that enter all three basins. Hence, the boundary of each basin
equals the boundary of all three basins.
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EXERCISES

10.1. Prove that the stable manifold and unstable manifold is invariant under a diffeo-
morphism f.

10.2. Let f be a one-to-one linear map of �2. Describe the possible stable and unstable
manifolds of 0.

10.3. Figure 10.12 shows part of the stable and unstable manifolds of a saddle p of a planar
diffeomorphism.

(a) Show that if x is a transverse homoclinic point, then f(x) and f�1(x) are
transverse homoclinic points.

(b) Extend the stable and unstable manifolds shown in the figure to include
three forward and three backward iterates of each homoclinic point shown.

10.4. Let f(x, y) � (x� 2, 2y � 7x2). Verify that �(x, 4x2) : x � �� is on the stable manifold
of the fixed point (0, 0). Why can you then conclude that �(x, 4x2) : x � �� is the
stable manifold?

10.5. Let f(x, y) � (x2 � 5x � y, x2). What information does the Stable Manifold Theo-
rem give about the fixed points of f? In particular, plot the fixed points and indicate
in the sketch the action of the map in a neighborhood of each fixed point.

10.6. Assume that f is an invertible map of the plane. Use the Stable Manifold Theorem
to show that a stable manifold of a saddle has no endpoints and that it does not
cross itself. (Of course, the same properties hold for an unstable manifold, as well.)

10.7. For the map f(x, y) � (x � y(mod1), x � 2y(mod1)), describe the unstable manifold
of (0, 0). Show that the stable and unstable manifolds meet at right angles.

10.8. State a Stable Manifold Theorem in the case that f is a diffeomorphism of �n.

10.9. Let f be a horseshoe map defined on the unit square which is linear for (x, y) in
[0, 1] � ([0, 1� 3] � [2� 3, 1]). To be specific, define

f(x, y) �

{
(x� 3, 3y) if 0 � y � 1� 3
(1 � x� 3, 3 � 3y) if 2 � 3 � x � 1.

For (x, y) in [0, 1] � (1� 3, 2� 3), define f in such a way that f is one-to-one and
smooth. (The picture to keep in mind is the standard horseshoe image.) Notice
that (0, 0) is a fixed-point saddle of f. Calculate explicitly the stable manifold and
unstable manifold of (0, 0) (at least the parts that lie within the unit square—there
will be many parts).
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☞ L A B V I S I T 10

The Leaky Faucet: Minor Irritation or Crisis?

ONE OF THE EARLIEST physical experiments to exhibit interesting dynam-
ical behavior was the leaky faucet. Here is an experiment you can try at home.
Some faucets work better than others; it helps to use a metal sink or in some other
way exaggerate the noise of the falling drip. You should be able to just barely open
the faucet and establish a pattern of drops evenly spaced in time. Now increase
the flow rate slightly. The drops will speed up but remain evenly-spaced in time. If
you can increase the flow rate finely enough, you should eventually reach a stage
where the pattern changes qualitatively: the drops come in pairs, a short followed

Figure 10.31 Diagram of the leaky faucet apparatus.
A carburetor valve is used to keep the main reservoir filled to a constant level,
which holds the pressure at the needle valve constant. Drops are recorded when
they break the laser beam which falls on the photodiode.

Martien, P., Pope, S. C., Scott, P. L., Shaw, R. S. 1985. The chaotic behavior of the
leaky faucet. Physics Letters A 110: 399–404.
Sartorelli, J. C., Goncalves, W. M., Pinto, R. D. 1994. Crisis and intermittence in a
leaky-faucet experiment. Physical Review E 49: 3963–3975.
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by a long. Each short-long pair will take about as much time as two evenly-spaced
drips before the transition. The change you have witnessed is a period-doubling
bifurcation.

With laboratory equipment, a more quantitative study can be made, which
uncovers a great variety of dynamical phenomena. Two groups, one from Santa
Cruz, California, and one from Sao Paulo, Brazil, have done controlled experi-
ments of the leaky faucet. The setups are similar. A reservoir of distilled water is
kept at constant pressure at a needle valve, which can be controlled with great
precision. Drips from the valve are detected by a laser beam trained on the drip
stream and recorded by computer. Figure 10.31 shows the Sao Paulo apparatus;
the Santa Cruz version is similar, although they used a carburetor valve from a
Model A Ford automobile.

The period-doubling bifurcation we described above can be seen graphically
in Figure 10.32, taken from the Santa Cruz experiment. The measured quantity
in the experiments is the time interval Tn between drips. Each part of the figure

Figure 10.32 Scatter plots of successive interdrip intervals.
Pairs of form (Tn, Tn�1) are plotted. (a) Period-one. (b) Period-two. (c) Period-four.
(d) Chaos.
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Figure 10.33 A bifurcation diagram for the leaky faucet.
Each vertical slice is 1024 dots corresponding to interdrip intervals. A period-three
window (I3), an interior crisis (I), and a boundary crisis (B) are identified.

shows a scatter plot of ordered pairs (Tn, Tn�1). A simple rhythmic drip pattern
corresponds to equal interdrip intervals Tn � Tn�1 � Tn�2 � . . ., so that the
scatter plot of (Tn, Tn�1) is reduced to a single point. Figure 10.32(a) shows this
simple dynamics. Each interdrip interval is approximately .094 seconds.

The result of gradually increasing flow rate from the needle valve is the be-
ginning of a period-doubling cascade of bifurcations. Figure 10.32(b) and (c) show
period two and four behavior, respectively. Figure 10.32(d) exhibits a more com-
plicated relationship between successive intervals which presumably corresponds
to chaotic dynamics. This plot cannot exactly be compared to a one-dimensional
map Tn → Tn�1, since there appear to be two distinct bands of points (Tn, Tn�1)
over a range of Tn values.

Figure 10.33 shows a bifurcation diagram made by the Sao Paulo group. The
bifurcation parameter, the flow rate at the needle valve, was set at 208 different
values to make this plot. At each parameter value, a total of 1024 drips were
recorded, and the interdrip time intervals plotted. The resulting diagram shows a
period-three window, denoted I3, and two other interesting bifurcations denoted
by I and B in the figure.

Event I identifies an interior crisis. As this parameter value is passed, the
dynamical behavior changes from erratic to a period-one rhythm. The average
interdrip time interval does not change appreciably with event I, but is more or
less constant across the break. A scatter plot of (Tn, Tn�1) changes significantly
as the transition is crossed, as shown in Figure 10.34.
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Figure 10.34 Scatter plots of successive time-interval pairs near the interior
crisis.
(a) Complicated dynamics before the crisis parameter value I is followed by simpler
dynamics in (b) and (c) as the flow rate is slowly increased.

Event B identifies a boundary crisis. Now the interdrip time interval changes
abruptly, as a chaotic regime shifts into a periodic cycle of period five. The five
states are close together; the points on the bifurcation diagram to the right of
value B lack sufficient clarity to show the five separate states. Figure 10.35 shows
the transition to a periodic orbit more clearly. Note the abrupt change of average
interdrip time interval from 38.6 msec to 26.0 msec. This destruction of a basin
of one attractor, resulting in movement to an alternative attractor perhaps far
away in state space, is characteristic of a boundary crisis.

Figure 10.35 Scatter plots near a boundary crisis.
(a) Complicated dynamics before the transition yields to periodic behavior as the
basin boundary of the original attractor is destroyed in (b) and a periodic attractor
results in (c).
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Figure 10.36 Transition from chaotic to periodic pattern.
A motion picture recorded at 30 frames per second shows the change from chaotic
(first five frames) to period-five (last five frames) behavior.
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Bifurcations

OF ALL POSSIBLE motions in dynamical systems, a fixed point or equilibrium is
the simplest. If the fixed point is stable, the system is likely to persist in that state,
even in the face of minor disturbances.

But systems change. Figure 1.6 of Chapter 1 shows that varying the param-
eter in the logistic family from a � 2.9 to a � 3.1 results in the preferred system
behavior changing from a fixed population to an oscillation between high and
low populations. This change is called a bifurcation. We saw this type of bifur-
cation again in the experiment of Lab Visit 1. Further system parameter changes
are shown to result in even more extreme changes in behavior, including higher
periodicities, quasiperiodicity and chaos. The forced, damped pendulum settles
into periodic motions when the amplitude of the forcing function is small. When
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the amplitude is increased to moderate levels, chaotic motions develop. At still
higher amplitudes, periodicity returns.

Just as it is helpful to classify the different types of motion in a system,
it is helpful to categorize the ways that the motion can change as the system
is modified. In fact, as a system parameter varies, these changes cannot occur
capriciously, but only in a limited number of prescribed ways. This limited set
of bifurcations is universal in the sense that it is the same for a large variety of
systems. For this reason, bifurcation theory is a useful and widely studied subfield
of dynamical systems. With the discovery of chaotic dynamics, the theory has
become even more important, as researchers try to find mechanisms by which
systems change from simple to highly complicated behavior. In Chapter 11 we
will describe the most common bifurcations.

11 .1 S A D D L E -NOD E A N D P E R I O D -DOU B L I N G
B I F U R C AT I O N S

In Chapter 1 we introduced the one-parameter family of logistic maps ga(x) �

ax(1 � x) and investigated its dynamical properties at various fixed values of the
parameter a. We found that at certain parameter values, including 0 � a � 2,
ga has a fixed-point attractor; for larger a values, ga can have periodic or chaotic
attractors; finally, for a � 4, the logistic map ga has infinitely many periodic
points, but no attracting sets, and almost all orbits diverge to ��. If fixed points
or periodic points exist at a certain parameter value and not at another, what
has happened to the system at parameter values in between to cause the birth or
death of these orbits? We call a parameter value at which the number or stability
of fixed points or periodic points changes a bifurcation value of the parameter,
and the orbit itself a bifurcation orbit.

Definition 11.1 A one-parameter family of maps on �n is a set of maps
fa(v), one for each value of a parameter a belonging to an interval I of real
numbers. We refer to �n as the state space and to I as the parameter space, and
say f depends on a scalar parameter a � I.

An alternate notation for fa(v) is f(a, v), which we use when we want to
emphasize the dependence of the family on the parameter. However, there is a
difference between the parameter a and the state variable v. In order to calculate
an orbit of a map fa in such a family, the parameter a is fixed and successive iterates
are calculated in state space for that fixed value of a. We concentrate in particular
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on maps with state space �1 and �2. For families of one-dimensional maps, we
write fa

′ for the derivative of fa with respect to x. For families of two-dimensional
maps, we write Dfa for the Jacobian matrix of partial derivatives of fa taken with
respect to the state space variables (usually x and y).

Two types of bifurcations are most basic. In the first, called a saddle-node
bifurcation, fixed points are born. The second is called a period-doubling bifur-
cation, where a fixed point loses its stability and simultaneously, a new orbit
of doubled period is created. Both of these basic bifurcations occur in the one-
dimensional quadratic family.

EXAM PLE 11 .2

Let fa(x) � f(a, x) � a � x2, where a is a scalar (one-dimensional) param-
eter. When a � �1 � 4, there are no fixed points. At a � �1 � 4, the graph of fa is
tangent to the line y � x. There is exactly one fixed point at x � �1 � 2. For each
a strictly larger than �1 � 4, the graph of fa crosses the line y � x in two points,
giving rise to two fixed points of fa. Figure 11.1 illustrates the three possibilities.
The point (a, x) � (�1 � 4, �1 � 2) is a bifurcation point for the map f since the
number of fixed points, as a function of a, changes at a � �1 � 4. When a � 1 � 2,
the map f has a repelling fixed point at x � (�1 �

√
3)� 2 and an attracting fixed
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(a) (b) (c)

Figure 11.1 A saddle-node bifurcation.
The graph of the quadratic family f(a, x) � a � x2 before, at, and following a saddle-
node bifurcation is shown. (a) At a � �1, the graph does not intersect the dotted
line y � x. (b) At a � �0.25, the graph and the line y � x intersect in one point,
the point of tangency; for a � �0.25, they intersect in two points. (c) At a � 1� 2,
f has a repelling fixed point and an attracting fixed point.
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point at x � (�1 �
√

3)� 2. The case in which a pair of fixed points appear in
a region where there were none, as a parameter is varied, is called a saddle-node
bifurcation.

At a saddle-node bifurcation, two fixed points of fa, one stable and one
unstable, are born as the parameter a is increased. Of course, this is a matter of
perspective. Alternatively, we could say that the two fixed points disappear as a is
decreased. The term “saddle-node” derives from this type of bifurcation in a two-
dimensional state space, where the unstable orbit is a saddle and the stable orbit
is an attractor or “node”. For maps in which the state space is one-dimensional,
this bifurcation is also sometimes called a tangent bifurcation. This name comes
from the fact that the derivative fa

′ at a fixed point saddle-node bifurcation orbit
must be �1, and thus the graph must be tangent to the line y � x, as we discuss
later.

Figure 11.1 shows plots of the state space graphed against itself before,
during, and after the bifurcation value. A different type of plot compresses the
state space information so that variation as a function of the parameter a can
be viewed. This type of graph, exemplified by Figure 11.2, is called a bifurcation
diagram. The vertical axis corresponds to the state space. Only significant points
in the state space are plotted.
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Figure 11.2 Bifurcation diagram of a saddle-node bifurcation.
Fixed points of the quadratic family f(a, x) � a � x2 are shown. Attracting fixed
points (sinks) are denoted by the solid curve, and repelling fixed points (sources) are
on the dashed curves. The circle at a � �1� 4 denotes the location of a saddle-node
bifurcation. The other circle denotes where a period-doubling bifurcation occurs.
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Figure 11.2 depicts the fixed points of fa as a function of a near the saddle
node. Attracting fixed points are shown on the solid curve and repelling fixed
points are on the dashed curves. For example, when a � 0, the function f has two
fixed points, one an attractor and one a repeller.

There are more bifurcations hiding in Figure 11.2. Notice that the point
( 3

4 , 1
2 ) represents a passage of the curve of fixed points from solid to dashed

indicating a change in stability. How do the fixed points lose their stability?
Recall that if the derivative fa

′ evaluated at a fixed point satisfies |fa ′| � 1, then
the fixed point is an attractor, and if |fa ′| � 1, then it is a repeller. Clearly, the
way fixed points change stability is to have fa

′(x) move across the border �1 as
the parameter a varies. As a increases from �1 � 4 to 3 � 4, the derivative of fa at
the attracting fixed point decreases from �1 to �1. For a � 3 � 4, the derivative
of fa at this fixed point has crossed the �1 border, and the fixed point becomes a
repeller. In the parameter range ( 3

4 , �), the map fa has no fixed-point attractors.
However, fa does have a period-two attractor for a in ( 3

4 , 5
4 ). At a � 3 � 4,

the two points in this orbit split off from the fixed point x � 1
2 . For a slightly

larger than 1
2 , one point in the orbit is greater than 1

2 and one is less than 1
2 .

This bifurcation is called a period-doubling bifurcation (or, sometimes, a flip
bifurcation). In Figure 11.3 the graph of fa is shown for a values before, at, and
following the period-doubling bifurcation.
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Figure 11.3 The quadratic map at a period-doubling bifurcation.
Graphs of the quadratic family fa(x) � a � x2 before, during and after a period-
doubling bifurcation. (a) a � 0.5. Orbits flip back and forth around the sink as
they approach. (b) a � 0.75. At the bifurcation point, x � 1� 2 still attracts orbits,
although the derivative of fa is �1. (c) a � 1. Beyond the bifurcation, orbits are
attracted by the period-two sink.
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Since the derivative at the (positive) fixed point is negative for parameter
values near 3

4 , iterates of points near the fixed point flip back and forth around
the fixed point. We can observe this flipping in the cobweb plot (Figures 11.3(a)
and (c)). The fixed point, which is unstable after the bifurcation, is called a flip
repeller since its derivative is smaller than �1. A fixed point with derivative
greater than �1 is called a regular repeller. (Compare these definitions with
those of “flip saddle” and “regular saddle” in Chapter 2.) It is difficult to see
precisely where the period-two points are located after the bifurcation without a
careful cobweb plot. However, if we graph the second iterate f2

a , as in Figure 11.4,
the period-two orbit of fa appears as two fixed points. We can also see from slopes
on the graph of f2

a that the bifurcating fixed points are attractors.

✎ EXERCISE T11 .1
Notice in Figure 11.4(b) that the period-doubling bifurcation point is an
inflection point for f 2

a . Does (f 2
a )′′ have to equal 0 at a period-doubling

bifurcation point?
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Figure 11.4 The second iterate of the quadratic map at a period-doubling
bifurcation.
(a) The second iterate f2

a of the quadratic map fa(x) � a � x2 is graphed at a � 0.5,
before the bifurcation. The fixed point above zero is an attractor. (b) The function
f2
a is graphed at a � .75, the bifurcation parameter. The line y � x is tangent to the
graph at the positive fixed point, which is an attractor (although not a hyperbolic
one). (c) At a � 1, following the bifurcation, there are three nonnegative fixed
points of f2

a : a flip repeller fixed point of fa surrounded by a period-two attractor of fa.
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Figure 11.5 Diagram of a period-doubling bifurcation.
Fixed points and period-two orbits of the quadratic family f(a, x) � a � x2 are
shown. Attractors are on solid curves, while repellers are on dashed curves. The
circles denote the location of the bifurcation orbits.

Figure 11.5 is a bifurcation diagram showing the fixed points and period-two
points of f as a function of a and x near the period-doubling bifurcation point.
Again, attracting orbits are shown with solid curves and repellers are indicated
with dashed curves. At a � 5 � 4, the derivative of f2

a moves past the border at �1,
causing another period-doubling bifurcation. For values of a greater than 5 � 4 and
less than the next period-doubling value, orbits are attracted to a period 4 sink.

11 .2 B I F U R C AT I O N D I A G R A M S
Periodic orbits of periods greater than one can come into (or go out of) existence
through saddle-node bifurcations, and they can undergo period-doubling bifur-
cations. Nothing new is involved—it is only a matter of applying the ideas we
have already seen to a higher iterate fk

a . For example, Figure 11.6 shows the graph
of f3

a for three values of a before, at, and following a saddle-node bifurcation at
a � 1.75. Note the simultaneous development of three new fixed points of f3

a at
the bifurcation value. The map fa is a degree-two polynomial and so can have at
most 2 fixed points; they are already shown in Figure 11.6(a). Since the three new
points are not fixed points, they must represent a new period-three orbit of fa.

Figure 11.7 shows the bifurcation diagram of period-three points of f near
a � 1.75. In the bifurcation diagram, two branches of fixed points of f3

a are shown
to emanate from each of the three points in the bifurcation orbit. On one branch,
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Figure 11.6 A period-three saddle-node bifurcation.
Graphs of the third iterate of the quadratic map fa(x) � a � x2 before, at, and
following a period-three saddle-node bifurcation. (a) At a � 1.7, there are two
solutions of f3

a (x) � x. (b) The bifurcation point a � 1.75. (c) At a � 1.8, there
are eight solutions of f3

a (x) � x.
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Figure 11.7 The bifurcation diagram of a period-three saddle-node bifurca-
tion.
(a) Fixed points of f3 are shown for the quadratic family f(a, x) � a � x2; (b) a
magnification of (a) near the saddle node shows only the period-three orbits.
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the branch of stable periodic orbits, the derivative of f3
a decreases from �1 as

a increases; on the other, the branch of unstable periodic orbits, the derivative
increases from �1. In Figure 11.7(a), all fixed points of f3

a are shown for a in
[�1, 2] (including fixed points of fa). Figure 11.7(b) shows only period-three
points in a smaller parameter range containing the saddle-node bifurcation.

In Chapter 12 we investigate the phenomena of repeated period-doublings,
called cascades, and explain why they are so prevalent. At a period-doubling
bifurcation from a period-k orbit, two branches of period-2k points emanate from
a path of period-k points. When the branches split off, the period-k points change
stability (going from attractor to repeller, or vice versa). This change is detected
in the derivative of fk which, when calculated along the path of fixed points,
crosses �1.

For maps of dimension greater than 1 (maps whose state space is at least
two-dimensional), a bifurcation that creates period-k points can only occur when
an eigenvalue of the Jacobian Dfk passes through �1. Again, the letter D here
means we are taking partial derivatives with respect to the coordinates x and y,
not a. Figure 11.8(a) depicts a saddle-node bifurcation in a parametrized map of
the plane. A period-doubling bifurcation is illustrated in Figure 11.8(b). As in the
one-dimensional case, these two bifurcations are the ones most typically seen. The
following example illustrates the saddle-node and period-doubling bifurcations
for a Hénon family of two-dimensional maps.

a0 a a0 a

(a) (b)

Figure 11.8 Bifurcations in a parametrized map of the plane.
(a) A fixed point appears at parameter a � a0 in a saddle-node bifurcation. For a � a0

there is an attracting fixed point and a saddle fixed point. The cross-sectional figures
depict the action of the planar map at that parameter value. (b) An attracting fixed
point loses stability at a � a0 in a period-doubling bifurcation. For a � a0 there is a
saddle fixed point and a period-two attractor.
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EXAM PLE 11 .3

(Hénon map.) Let ha(x, y) � (a � x2 � by, x), for fixed b, with |b| � 1.
In principle, we might also consider b as a parameter, but our purpose here
is to describe bifurcations of one-parameter families. See Example 11.14 for a
discussion of the phenomena that can occur for fixed a and varying b. The map
h has fixed points when the equations a � x2 � by � x and y � x are satisfied;
when a � x2 � bx � x. Fixed points occur at

pa �

(
�(1 � b) �

√
(1 � b)2 � 4a

2
,

�(1 � b) �
√

(1 � b)2 � 4a
2

)

and

qa �

(
�(1 � b) �

√
(1 � b)2 � 4a

2
,

�(1 � b) �
√

(1 � b)2 � 4a
2

)
,

when these expressions are defined. In particular, for a � � 1
4 (1 � b)2, there

are no fixed points; for a � � 1
4 (1 � b)2, there are two fixed points; and at

a� � � 1
4 (1 � b)2 there is a saddle-node bifurcation. At a�, the fixed point is

pa� � qa� � (�(1 � b)� 2, �(1 � b)� 2). Verify that the Jacobian Dh(pa�) has
an eigenvalue of �1.

For a greater than (but near) a�, the fixed point pa is an attractor, and
the fixed point qa is a saddle. Then at a� � 3

4 (1 � b)2 there is a period-doubling
bifurcation from the branch pa of attractors. At a�, the fixed point from which
the bifurcation occurs is pa� � ((1 � b)� 2, (1 � b)� 2). Verify that the Jacobian
Dh(pa�) has an eigenvalue of �1.

Figure 11.9(a) shows the bifurcation diagram (projected onto the x-axis) for
b � �0.3 and a in the range [1.9, 2]. A magnified version of the range [1.96, 1.97]
is shown in Figure 11.9(b). Notice that the same type of cascade behavior observed
in the one-dimensional quadratic map is hinted at in these figures.

EXAM PLE 11 .4

(Logistic map.) Define ga(x) � ax(1 � x). As a increases from 0 to 4, the
maximum of g (occuring at x � 1 � 2) increases from 0 to 1. As it does, the parabola
stretches but still has a fixed point at x � 0. Since the equation

ax(1 � x) � x (11.1)

has real root(s) for all a (one of them is x � 0), ga has fixed points for all a.
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1.9 2.0

(a)

1.7

�0.7
1.96 1.97

(b)

Figure 11.9 Bifurcation diagrams for the Hénon map.
The x-coordinate is plotted vertically, and the horizontal axis is the bifurcation
parameter a for the family ha(x, y) � (a � x2 � 0.3y, x). (a) A period-four orbit
at a � 1.9 period-doubles to chaos. At a � 2 the attractor is a two-piece chaotic
attractor. (b) A magnification of the period-twelve window in (a).
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Figure 11.10 Transcritical bifurcation of fixed points in the logistic family.
The bifurcation shown here is atypical in that it is neither a saddle-node nor a period-
doubling bifurcation. This type of bifurcation occurs since the graph is constrained
to pivot about the fixed point (0, 0) as the parameter changes.

Equation (11.1) has exactly two roots, except at a � 1, when x � 0 is a
double root. The two paths of fixed points for a � 1 move toward one another
and cross at a � 1. At this point, the fixed point 0 loses stability and the other
fixed point becomes an attractor. Figure 11.10 shows the bifurcation diagram for
fixed points of this map. The term transcritical is sometimes used for this type
of bifurcation, when two paths meet and exchange stability. Elsewhere in the
bifurcation diagram for this family there are saddle-node bifurcations for periodic
orbits of periods greater than one, as well as period-doubling bifurcations. Both
can be seen in Figure 1.6 of Chapter 1.

✎ EXERCISE T11 .2
Find a period-doubling bifurcation for the map ga(x) � ax(1 � x) of Example
11.4.

EXAM PLE 11 .5

Let fa(x) � x3 � ax. Figure 11.11 shows the graph of f for values of a before,
at, and following a bifurcation of fixed points at a � �1. The bifurcation diagram
of fixed points is shown in Figure 11.12. Notice that all maps in the family have at
least one fixed point. For each a � �1, there is one fixed point. For each a � �1,
there are three fixed points.
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Figure 11.11 A pitchfork bifurcation.
The graphs of the cubic maps fa(x) � x3 � ax before, during and after a pitchfork
bifurcation. (a) a � �2 (b) a � �1 (c) a � 0.

We will see in Section 11.4 that this bifurcation, called a pitchfork bi-
furcation, is atypical, or “nongeneric”, in the sense that it depends on special
circumstances. In this case, the special circumstance is the symmetry the map has
across the origin, since fa is an odd function: fa(�x) � �fa(x). This symmetry
implies (1) that x � 0 is a fixed point (since fa(0) � �fa(0)) and (2) that if x is
a fixed point, then so is �x.
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Figure 11.12 The bifurcation diagram for a pitchfork bifurcation.
Fixed points of the family of cubic maps fa(x) � x3 � ax are shown. This type of
bifurcation is not unusual for the special class of maps which are odd functions, for
which fa(x) � �fa(�x).
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We investigate the subject of generic bifurcations at greater length in Sec-
tion 11.4 and in Chapter 12. There we will see that the only “generic” bifurcations
are saddle-nodes and period-doubling bifurcations. Both Examples 11.4 and 11.5
contain nongeneric bifurcations. We can verify that they are atypical by showing
that the effect of adding a nonzero constant is to cause the map to revert to
a generic bifurcation. For example, add a constant b to the function ga to get
ga(x) � ax(1 � x) � b. It can be shown that for all b values but b � 0, the only
bifurcations of fixed points are saddle-node and period-doubling bifurcations.
Similarly, by adding a constant to the function fa in Example 11.5, obtaining
fa(x) � x3 � ax � b, we can say that fixed points come in through saddle nodes
for all b except 0. These facts are summarized in Exercise T11.3.

✎ EXERCISE T11 .3
(a) Let ga(x) � ax(1 � x) � b. Show that when b � 0 is fixed and a is

varied, the fixed points of g are born in saddle-node bifurcations.
(b) Let fa(x) � x3 � ax � b. Show that when b � 0, the fixed points

of f are born in saddle-node bifurcations.

11 .3 CON T I N U A B I L I T Y
In the bifurcation diagrams shown in Section 11.2, there are many intervals of
parameter values where the fixed or periodic points lie on a one-dimensional path
above the parameter axis. By a “path”, we mean a single-valued function of a. In
this case, there is one fixed point (or periodic point) for each value of a in an
interval. The paths are occasionally interrupted by bifurcation points.

For example, assume that fa is a family of one-dimensional maps, and assume
that xa is a fixed point of fa. In this section we will see that a path of fixed points
xa must continue as a is varied, without stopping or branching into two or more
paths, as long as fa

′(xa) does not equal 1. In the next section, we will see the
converse: that if fa

′(xa) crosses 1, then there must be extra fixed points in the
vicinity.

Definition 11.6 Let fa be a one-parameter family of maps on �n. We
say a fixed point v of fa is locally continuable, or simply continuable, if the fixed
points of fa for a near a lie on a continuous path (the graph of a continuous
function). More precisely, the set of fixed points of f in some neighborhood

460



11 . 3 C O N T I N UA B I L I T Y

(a � d, a � d) � N�(v) is the graph of a continuous function g from (a � d, a � d)
to N�(v):

�(a, g(a)) : a � (a � d, a � d)�.

This definition is illustrated in Figure 11.13(b). A fixed point (ac, vc) on the path
containing (a, v) is called the continuation of (a, v) at a � ac.

We encountered examples of fixed points that are not locally continuable
in Section 11.1. The saddle-node bifurcation point (a, x) � (�1 � 4, �1 � 2) of the
quadratic map f(a, x) � fa(x) � a � x2, shown in Figure 11.2, does not lie on a
path of fixed points which extends to values of a smaller than �1 � 4, and thus does
not satisfy Definition 11.6. The map f has a period-doubling bifurcation at (a, x) �

(3 � 4, 1 � 2). As we shall see from Theorem 11.7, this point is locally continuable as
a fixed point of f because f ′

3 � 4(
1
2 ) � �1. But it is not locally continuable as a fixed

point of f2, since the set of fixed points of f2 in any neighborhood of (a, x) does
not form a one-dimensional path. Notice that the derivative of fa at the saddle
node x � �1 � 2 is f ′

�1 � 4(�1 � 2) � �2(�1 � 2) � �1. The derivative of f2 at the
period-doubling bifurcation is (f2

3 � 4)
′(1 � 2) � f ′

3 � 4(1 � 2)f ′
3 � 4(1 � 2) � (�1)2 � 1.

x xx + h - h 

x - h 

x + h 

z1 z2 aa

( a, x ) 

a1 a2

( a1, z1)

( a2, z2)

(a) (b)

Figure 11.13 Graph of a scalar map f with a hyperbolic fixed point.
(a) An interval on which fa

′ � 1 is shown. For small perturbations of fa (small
changes in a) the graph and derivatives of points near the fixed point remain close
to those of the original map. The graph of fa is indicated with a solid curve. The
dashed curves are the graphs of maps fa1

and fa2
, where a1 and a2 are near a, and

a1 � a � a2. The map fa1
has one fixed point at z1, and the map fa2

has one fixed
point at z2. (b) The bifurcation diagram shows a continuous path of fixed points
through (a, x).
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When the derivative at a fixed point is not �1, the fixed point is con-
tinuable. This is the content of Theorem 11.7. Assume for example that fa

′ � 1.
Then fa is below the diagonal to the left of x, above the diagonal to the right of
x, and the slope is strictly greater than one. If these three key facts are true for fa,
and if fa is continuous in the parameter a, then these three facts will also hold for
all fa where a � d � a � a � d, for some d � 0. The conclusion is that there is a
single fixed point for fa whenever a is near a; these fixed points together form a
continuous path in the parameter a.

We prove only part (a), the one-dimensional case, and illustrate part (b)
in Example 11.8 following the proof. Theorem 11.7 is really a special case of the
implicit function theorem. See, for example, (Fitzpatrick, 1996).

Theorem 11.7 (a) Let f be a smooth one-parameter family of maps defined
on a subset of �. If x is a fixed point of fa and if the derivative fa

′(x) is not �1, then
(a, x) is continuable.

(b) Let f be a smooth one-parameter family of maps defined on a subset of
�n, n � 1. If v is a fixed point of fa and if �1 is not an eigenvalue of Dfa(v), then
(a, v) is continuable.

Proof of (a): Assume that fa
′(x) � 1. The case fa

′(x) � 1 is analogous.
The fixed point satisfies fa(x) � x. Because f is continuously differentiable in the
two variables a and x, the fact that fa

′(x) � 1 implies that fa
′(x) � 1 for a and x in

some square [a � h, a � h] � [x � h, x � h], where h � 0. Furthermore, because f
is continuous in a and both

fa(x � h) � (x � h) � 0 and fa(x � h) � (x � h) � 0,

we know that

fa(x � h) � (x � h) � 0 and fa(x � h) � (x � h) � 0

for all a in a perhaps smaller interval of parameters [a � d, a � d], where d � 0.
Now we are in the situation of Figure 11.13(a). For all a in a small interval,

the function fa has slope greater than one over a small interval of x, and straddles
the diagonal. Thus for each a in the interval [a � d, a � d] there is a unique fixed
point pa of fa in the interval [x � h, x � h].

Since the function fa changes continuously with the parameter a, the fixed
points pa form a continuous path in a. To see this, let a be any point in the interval
and let ai → a be a sequence such that limi→� pai � p�. Then the continuity of fa
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implies that

fa(p�) � lim
i→�

fai(pai) � lim
i→�

pai � p�.

Therefore p� is the unique fixed point pa, and the path is continuous. �

In the following example we investigate the set of fixed points of the
Hénon family of Example 11.3 via the Implicit Function Theorem. Not only is
this theorem the mathematical basis of Theorem 11.7(b), but it also shows us
that finding out whether an orbit has an eigenvalue of �1 reduces to checking
the singularity of a 2 � 2 matrix.

EXAM PLE 11 .8

Fix the parameter b and let h : �3 → �2 be given by

h(a, x, y) � (a � x2 � by, x). (11.2)

Recall that the set of fixed points of h is the same as the set Z of zeroes of
the related function k(a, x, y) � (x, y) � h(a, x, y). As in the proof of Theorem
11.7, it turns out to be easier to deal with zeroes than with fixed points. Let
(a, v) � (a, x, y) be a zero of k (fixed point of h). Now �1 is not an eigenvalue of
Dh(a, v) if and only if 0 is not an eigenvalue of Dk(a, v), if and only if Dk(a, v)
is nonsingular. Then the Implicit Function Theorem says that there is a three-
dimensional neighborhood V of (a, v) such that Z � V is a (one-dimensional)
path in a. In other words, (a, v) is a continuable fixed point of k. This is just a
restatement of Theorem 11.7(b).

In order to investigate Jacobian matrices containing various combinations
of partial derivatives in this example, we write D(a,x,y) for the 2 � 3 matrix of
partial derivatives with respect to a, x, and y. The notations D(x,y), D(a,x), and
D(a,y) represent the Jacobian matrices of partial derivatives with respect to the
two variables indicated. For (a, x, y) in Z,

D(a,x,y)k(a, x, y) �

(
1 �1 � 2x b
0 1 �1

)
.

Since D(x,y)k(a, x, y) is singular for 1 � 2x � b, there is a path that can be
parametrized by a through each point in Z except (a, x, y) � (� 1

4 (1 � b)2, �(1 �

b)� 2, �(1 � b)� 2), at which point there is a saddle node bifurcation. We can
solve for the solution (x, y) for a greater than � 1

4 (1 � b)2; namely,
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(x, y) �

(
�(1 � b) �

√
(1 � b)2 � 4a

2
,

�(1 � b) �
√

(1 � b)2 � 4a
2

)

(11.3)

Sometimes you may want to consider a coordinate other than a as the
parameter. Since the 2 � 2 matrix D(a,x) is nonsingular for all values of (a, x, y),
the entire set of zeroes can be parametrized by y; namely,

(a, x) � (y2 � (1 � b)y, y) (11.4)

Also since D(a,y) is nonsingular everywhere, the entire set Z can be written as a
function of x.

11 .4 B I F U R C AT I O N S O F ON E -D I M E N S I O N A L
M A P S

We continue to investigate what can happen in a bifurcation diagram. We
have just seen that paths of fixed points must continue unless the derivative
passes through �1. In this section, we investigate the converse question for one-
dimensional maps. If the derivative does pass through �1 along a path of fixed
points, must there be a bifurcation? The answer is yes. Moreover, if the deriva-
tive passes through �1, there must be a period-doubling bifurcation, since the
derivative of fa

2 passes through �1.
To begin, we describe conditions on specific partial derivatives which imply

the existence of a saddle-node bifurcation.

Theorem 11.9 (Saddle-node bifurcation.) Let fa be a smooth one-parameter
family of one-dimensional maps. Assume that x is a fixed point of fa such that fa

′(x) � 1.
Assume further that

A �
�f
�a

(a, x) � 0 and D �
� 2f
�x2 (a, x) � 0.

Then two curves of fixed points emanate from (a, x). The fixed points exist for a � a
if DA � 0 and for a � a if DA � 0.

Proof: We will use Theorem 11.7, but with the roles of x and a reversed.
Consider the map g(a, x) � f(a, x) � a � x. Note that (1) g(a, x) � a if and only
if f(a, x) � x, (2) g(a, x) � a and (3) �g� �a(a, x) � A � 1 � 1 by hypothesis.
Theorem 11.7 implies that fixed points of a → g(a, x), and therefore the fixed
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x xx + h - h 

x - h 

x + h 

z1 z2 a

( a, x ) 

a1 a2

( a2, z2)

( a2, z1)

(a) (b)

Figure 11.14 Graphs of a family of maps near a saddle-node bifurcation.
(a) The solid curve is the graph of fa, and the dashed curves show the graphs of
maps fa1

and fa2
for a1 and a2 near a, and a1 � a � a2. The map fa1

has no fixed
points, the map fa has one fixed point (the bifurcation point), and the map fa2

has
two fixed points, z1 and z2. (b) In the bifurcation diagram, two paths of fixed points
are created at a � a.

points of x → f(a, x), can be continued in a path parametrized by x through the
point (a, x). Such a path is shown in Figure 11.14(b).

We will call the path (p(x), x) in (a, x)-space. The fact that they are fixed
points of fa is written as f(p(x), x) � x. By the chain rule, we calculate

�f
�a

(a, x)p ′(x) �
�f
�x

(a, x) � 1, (11.5)

which implies that p ′(x) � 0. Therefore the curve a � p(x) has a critical point at
x � x, also shown in Figure 11.14(b).

Taking one more derivative of (11.5) with respect to x yields

�f
�a

(a, x)p ′′(x) � f ′′
a (x) � 0. (11.6)

Therefore DA � 0 means that p ′′(x) � 0, so that p(x) is concave up at x � x. The
path opens up to the right, as in Figure 11.14(b). If DA � 0, the path is reversed.

�

✎ EXERCISE T11 .4

Show that the saddle-node bifurcation of fixed points for f (a, x) � a � x2

at (a, x) � (�1 � 4, �1 � 2) opens to the right as in Figure 11.14(b).

465



B I F U R C AT I O N S

Theorem 11.10 Let fa be a smooth one-parameter family of one-dimensional
maps, and assume that there is a path of fixed points parametrized by a through (a, x). If
fa

′(x) evaluated along the path crosses �1 at (a, x), then every neighborhood of (a, x)
in � � � contains a fixed point not on the path.

Proof: For ease of exposition, we assume that the fixed points on the path
have x-coordinate 0. Otherwise, replace (a, x) by (a, u), where u � x � x(a).
Notice then that df

du (a, 0) � df
dx(a, x(a)).

We argue the case in which fa
′(0) � 1 for a � a, and fa

′(0) � 1 for a � a.
(The proof in the other case is analogous.) Then, as shown in Figure 11.15, there
is an h � 0 such that

fa�h(h) � h � 0 and fa�h(h) � h � 0,

and also

fa�h(�h) � (�h) � 0 and fa�h(�h) � (�h) � 0.

Since fa(x) is continuous in a, there exist a1 and a2 in the interval [a � h, a � h]
satisfying fa1 (h) � h and fa2 (�h) � �h. Since h can be chosen as small as desired

0 h - h 

- h 

0

h

a

( a, x ) 

a1 a2

(a1, h) 

(a2, - h) 

(a) (b)

Figure 11.15 A family of maps where the derivative crosses 1.
(a) The dashed curves denote fa�h and fa�h in Theorem 11.10. The open circles
straddle the diagonal, implying that fa has fixed points other than 0 for parameter a
between a � h and a � h. (b) In the bifurcation diagram, a continuous path of fixed
points bifurcates into paths of new fixed points. This is one of several possibilities
when the derivative along a path of fixed points crosses 1.
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but is nonzero, there are fixed points of fa as near to (a, x) as needed. In fact, our
argument shows that there are fixed points above and below the path. �

A word of caution: It is possible that the new fixed points in the conclusion
of Theorem 11.10 exist for the single parameter value a � a. For example, the
family fa(x) � ax satisfies the hypotheses for the bifurcation value a � 1. It is true
that every neighborhood of (a, x) � (1, 0) has fixed points other than 0, all of
them occurring at a � 1 because every point is a fixed point for f1(x).

The transcritical bifurcation diagram of Figure 11.10 is an illustration of
Theorem 11.10. For example, pick either of the paths in Figure 11.10 and follow
it toward the bifurcation point. The map is fa(x) � ax(1 � x) and so f ′

a(x) �

a(1 � 2x). On the path of fixed points x � 0, the derivative f ′
a(0) � 1 is reached

at parameter value a � 1. In every neighborhood of this point there are points
from the other path of fixed points. The pitchfork bifurcation of Figure 11.12 is
another illustration of Theorem 11.10.

Theorem 11.11 Let f be a smooth one-parameter family of maps. Assume
that x is a fixed point of fa such that f ′

a(x) � �1. If f ′
a(x) evaluated along the path of

fixed points through (a, x) crosses �1 at (a, x), then every neighborhood of (a, x) (in
� � �) contains a period-two orbit.

Proof: Define ga � f2
a and apply Theorem 11.10. The chain rule shows

that the derivative of ga passes through 1 at a � a. Therefore ga has fixed points
other than the fixed point of fa in any neighborhood of (a, x). Since fa(x) � �1,
the fixed point x is continuable, so the others must be period-two points of fa. �

Table 11.1 summarizes information about the bifurcations we have de-
scribed. If we follow a path of fixed points of a one-dimensional map, bifurcations
can occur when the derivative becomes 1 or �1. Saddle-node and period-doubling

Bifurcation
�f
�x

(a, x)
�f
�a

(a, x)

saddle node 1 � 0
pitchfork, transcritical 1 0
period-doubling �1 � 0

Table 11.1 Identification of common bifurcations in one-dimensional maps.
When the derivative at the fixed point is 1 or �1, the type of bifurcation depends
on other partial derivatives.
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bifurcations are the “generic”, or commonly expected bifurcations, according
to the table, because they don’t depend on anything special happening at the
bifurcation point. A pitchfork bifurcation can only happen if the bifurcation
point (a, x) coincides with a point where �f � �a(a, x) � 0, a low probability event.
However, certain special conditions that are forced on the family by symmetry
and other reasons, can cause pitchfork bifurcations to occur, as in Example 11.5.

✎ EXERCISE T11 .5
Let fa be a family of one-dimensional maps, and assume that (a, x) is a fixed
point that is either a pitchfork bifurcation point or a transcritical bifurcation
point. Then the set Z of fixed points of fa cannot be expressed as a (single-
valued) function either of a or of x in any neighborhood of (a, x). We have
seen that since Z is not locally continuable as a path in a, the derivative
fa ′ (a, x) � �f � �x(a, x) must be �1. Show that, in addition, since Z is not
locally continuable as a path in x, the derivative �f � �a(a, x) is 0.

There is no end to the variety of behavior that can be seen in nongeneric
bifurcations. As a mild indication, in Exercise T11.6, four fixed points are created
at the bifurcation point.

✎ EXERCISE T11 .6

Let fa(x) � x4 � 3ax2 � x � 2a2. Sketch the graph of fa for a � 0 and a � 0
and conclude that (a, x) � (0, 0) is a bifurcation point. Find the four fixed
points of fa for a � 0. Calculate the partial derivatives of Table 11.1 to
determine in which ways this bifurcation fails to be generic.

11 .5 B I F U R C AT I O N S I N P L A N E M A P S :
A R E A -C O N T R A C T I N G C A S E

Many of the ideas we presented in Section 11.4 of this chapter carry over to
the study of bifurcations in one-parameter families of two-dimensional maps.
To illustrate this idea, we look at a simple extension of the logistic family to
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two-dimensions:

fa(x, y) � (ga(x), 0.2y),

where ga(x) � ax(1 � x). The Jacobian Dvfa(x, y) has eigenvalues e1 � g ′
a(x) and

e2 � 0.2. Again, the notation Dvfa, which we will sometimes simplify to Dfa,
denotes the matrix of partial derivatives with respect to the coordinates x and y
(the coordinates of the v vector), not a.

The version of Theorem 11.7 for one-parameter families of two-dimensional
maps says that a bifurcation of fixed points can only occur when �1 is an eigen-
value of Dfa. For fa this means that such bifurcations can only occur when g ′

a is
�1. Of course, because of the special form of the map, bifurcations of fa occur
at precisely those parameter values at which ga has bifurcations. The hyperbolic
fixed points of fa are different than in the one-dimensional case: fa has only at-
tractors and saddles, whereas ga has only attractors and sources. At a saddle-node
bifurcation of fa one branch of attractors and one branch of saddles emanate from
the bifurcation orbit. At a period-doubling bifurcation, the eigenvalue e1 goes
through �1. A branch of fixed-point attractors changes to a branch of saddles as
two branches of period-two attractors (one branch for each point of the orbit)
bifurcate. These are the bifurcations pictured in Figure 11.8.

✎ EXERCISE T11 .7
Let ha(x, y) � (ga(x), 3y). Classify the types of hyperbolic fixed points and
periodic orbits of ha. Which hyperbolic orbits make up the branches ema-
nating from saddle-node and period-doubling bifurcations?

Again, as in the one-dimensional case, we think of a periodic orbit as
one entity. Recall (from Chapter 2) that for a period-k orbit the eigenvalues of
Dfk � D(fk) are the same when the Jacobian is evaluated at any of the k points
in the orbit.

✎ EXERCISE T11 .8

(a) Let A �

(
m11 m12

m21 m22

)
. Show that the eigenvalues e1 and e2 are

continuous functions of the variables m11, m12, m21, m22. (b) Let f be a
smooth map of �2. Show that the eigenvalues of Dfk

a(v) depend continu-
ously on (a, v).
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Describing saddle-node and period-doubling bifurcations for arbitrary fam-
ilies of two-dimensional maps is complicated by the fact that fixed and periodic
points can have both contracting and expanding directions. Although the pre-
vious example is clearly a special case, the property of having one eigenvalue
with absolute value smaller than 1 at all points (or, analogously, one eigenvalue
with absolute value greater than 1 at all points) is one that holds for a large and
important class of maps. For such maps, the types of bifurcations that can occur
are limited to those seen in one-dimensional maps.

Definition 11.12 Let f be a smooth map of �2, and let Df(v) be the
Jacobian matrix of partial derivatives of f with respect to the v coordinates
evaluated at a point v � �2. We say f is area-contracting if | det Df(v)| � 1 for
all v � �2. The map f is area-preserving if | det Df(v)| � 1 for all v � �2.

It is a fact from advanced calculus that the number | det Df(v)| determines
the change in area effected by the map f near the point v. In fact, if S is a region
in �2, then

Area(f(S)) �

∫ ∫
S
| det Df(v)|dv.

See (Fitzpatrick, 1995).
Area-contracting maps represent an important class of dynamical systems.

Included in this class are time-T maps of dissipative systems of differential equa-
tions. An example is the time-2� map of the forced, damped pendulum with
equation of motion ẍ � cẋ � sin x � b cos t. We saw in Example 9.5 that with
damping c � 0, the Jacobian determinant is e�2�c � 1 for each x and ẋ.

✎ EXERCISE T11 .9

For which values of a and b is the Hénon map f(x, y) � (a � x2 � by, x)
area-contracting?

Let p be a periodic orbit of period k. We use the phrase “eigenvalues of p” to
refer to the eigenvalues of Dvfk(p). For maps of the plane, Dvfk(p) has eigenvalues
e1 and e2. The area-contracting hypothesis implies |e1e2| � 1. In particular, at
least one of �e1, e2� must be inside the unit circle in the complex plane. The
unit circle is the set of complex numbers u � iv with modulus u2 � v2 � 1.
Thus the area-contracting hypothesis restricts the types of periodic orbits that
can occur. There are only two types of hyperbolic orbits: attractors or sinks (both
eigenvalues inside the unit circle) and saddles (one eigenvalue greater than �1 or
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smaller than �1). In Chapter 12, we need to distinguish between regular saddles
(one eigenvalue greater than �1) and flip saddles (one eigenvalue less than �1).
Notice that the unstable orbits are all saddles, regular or flip. There are no repellers
for area-contracting maps.

Similarly, the types of nonhyperbolic orbits are restricted by the area-
contracting hypothesis. There are only two types: orbits with one eigenvalue equal
to �1, and orbits with one eigenvalue equal to �1. As in the one-dimensional
case, the most frequently seen bifurcations are saddle-nodes and period-doublings.
The difference in the two-dimensional area-contracting case is that what were
paths of repellers in the one-dimensional case are replaced by paths of saddles,
flip or regular, here. We discuss why the saddle-node and period-doubling bifur-
cations are those typically seen for families of one-dimensional maps and families
of area-contracting maps of the plane in Chapter 12.

➮ C O M P U T E R E X P E R I M E N T 11 . 1

Plot the period-6� attracting orbit of the driven double-well Duffing oscil-
lator ẍ � 0.1ẋ � x � x3 � 	 sin t for 	 � 5.9. Next, increase 	 and locate the two
period-doubling bifurcations that occur for 5.9 � 	 � 6.

11 .6 B I F U R C AT I O N S I N P L A N E M A P S :
A R E A -P R E S E R V I N G C A S E

In previous sections we saw that bifurcations of fixed points or periodic points can
occur only at parameter values for which the derivative or an eigenvalue of the
orbit has absolute value one. For one-dimensional families, saddle nodes or period-
doubling bifurcations can occur when the derivative is 1 or �1, respectively. For
families of maps of two or more (real) variables, there can be eigenvalues of
absolute value (magnitude) 1 which are not real numbers.

✎ EXERCISE T11 .10

Let f be a map of �n, and let p be a fixed point of f .
(a) Show that if a � bi is an eigenvalue of Df(p), then the complex

conjugate a � bi is also an eigenvalue.

471



B I F U R C AT I O N S

(b) Show that a bifurcation of a period-k orbit from a fixed point can
only occur at a bifurcation orbit that has an eigenvalue that is a kth root of
unity.

In fact, a bifurcation of period-k orbits from a fixed point can only occur
when a primitive kth root of unity is an eigenvalue. In families of one-dimensional
maps this means k � 1 or k � 2. Bifurcations of higher-period orbits are similarly
ruled out for families of area-contracting maps of the plane. If, however, we
drop the area-contracting hypothesis, then bifurcations of higher-period orbits
(k � 2) can occur for families of two-dimensional maps. Unless there are special
symmetries or restrictions on the Jacobian (as in the case of area-preserving maps),
such bifurcations are rare compared to saddle nodes or period doublings. As we
discuss in Chapter 12, the latter two bifurcations are “generic”, in the sense that
most one-parameter families possess only these bifurcations.

To investigate how and when bifurcations of higher periods occur, we begin
with a family of two-dimensional linear maps.

EXAM PLE 11 .13

Let fa(x, y) � ( a
2 x � a

√
3

2 y, a
√

3
2 x � a

2y), for a � 0, and x, y in �. When
a � 1, the map rotates all nonzero vectors through an angle of �� 3. The origin is
fixed. When the eigenvalues of a fixed point all lie on the unit circle, it is called an
elliptic fixed point. The origin is elliptic for a � 1. Although an elliptic fixed point
of a linear map is not attracting, it is stable, meaning that for each neighborhood
N� , there is a (perhaps smaller) neighborhood N� such that all orbits beginning
in N� remain in N� . Orbits that start close stay close. For nonlinear maps, elliptic
fixed points may or may not be stable.

It is worthwhile here to think of a “path” e(a) of eigenvalues (parametrized
by a); specifically, e(a) � a( 1

2 � i
√

3
2 ), which for 0 � a � 1 begins inside the unit

circle and crosses the unit circle when a � 1 at a sixth root of unity. Another
path of eigenvalues consists of the complex conjugate of e(a), for each a � 0. For
0 � a � 1, the origin is a sink; for a � 1, the origin is a source; and at a � 1,
the origin is an elliptic point around which all other points rotate on invariant
circles through an angle of �� 3. In the last case, all other points are period-six
points.

For a one-parameter family fa of nonlinear planar maps, we know that the
eigenvalues of Dfa are the key to detecting changes of stability that might result
in bifurcations. To locate bifurcations of period-k orbits along a path of fixed
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points, we look for points at which a path e(a) of eigenvalues crosses the unit
circle at a kth root of unity. If the path crosses the unit circle with nonzero speed
(if the derivative de� da is nonzero), then a family of invariant closed curves will
bifurcate from the path of fixed points. The family of closed curves may all occur
at one parameter value, such as the invariant circles in the previous linear case, or
they may occur in a path that emanates from the bifurcation parameter through
either smaller or larger parameter values. We do not discuss the dynamics that
occur on the invariant closed curves except to say that near the bifurcation point,
on each closed curve, points rotate near the rate given by the Jacobian at the
bifurcation orbit.

In Example 11.14, we investigate a bifurcation in the Hénon family which
produces a family of invariant closed curves as we pass from area-contracting to
area-expanding maps.

EXAM PLE 11 .14

Let hb(x, y) � (�.75 � x2 � by, x). Recall that �b is the Jacobian deter-
minant: h is area-contracting or area-expanding according to whether |b| is less
than or greater than 1. For b � �1, there is a fixed point at (�1 � 2, �1 � 2) with
eigenvalues e � 1

2 �
√

3
2 i, (two sixth-roots of unity). Figure 11.16 shows a neigh-

borhood of this fixed point (or its continuation) as b varies from �.9 to �1.1.
The fixed point goes from sink (Figure 11.16(a)) to source (Figure 11.16(b)). In
particular, Figure 11.16(c) shows invariant curves encircling the fixed point at
b � �1. Notice that the crossing stable and unstable manifolds of a nearby fixed
point saddle form the boundary of the “elliptic” behavior at the original fixed
point. There are no invariant closed curves for |b| � 1. (See Exercise T11.11
below.)

✎ EXERCISE T11 .11

Show that an invertible map of �2 which is either area-contracting or
area-expanding can have no invariant closed curves (except points).

Families of area-preserving planar maps (see Defn. 11.12) can possess an
extremely rich bifurcation structure. We still see periodic saddle orbits in these
maps, but no sinks or sources. The stable orbits must be elliptic: Both eigenvalues
are on the unit circle.

473



B I F U R C AT I O N S

(a) (b)

(c)

Figure 11.16 The continuation of two fixed points in the Hénon family.
Various orbits of the map hb(x, y) � (�.75 � x2 � by, x) are shown for (x, y) in
[�2.5, 5.0] � [�2.5, 5.0]. (a) At b � �0.9, the map is area-contracting and there
is an attracting fixed point. The stable and unstable manifolds of a nearby saddle
fixed point are depicted. One branch of the unstable manifold spirals into the
attractor. (b) At b � �1.1, the map is area-expanding and there is a repelling fixed
point (the continuation of the elliptic point at this parameter). Now the stable
manifold of the saddle is shown to spiral out of the repeller. (c) At the in-between
value b � �1.0, the map is area-preserving and there is an elliptic fixed point (the
continuation of the attractor at this parameter). The stable and unstable manifolds
of the saddle now cross in infinitely many homoclinic points.
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✎ EXERCISE T11 .12
Show that there are no hyperbolic periodic or fixed sinks or sources for
area-preserving maps of the plane.

We investigate the Hénon family again—this time fixing b at �1 and
varying a. Each map in the resulting family is an area-preserving map.

EXAM PLE 11 .15

Let ha(x, y) � (a � x2 � y, x). Verify that for each a, the plane map ha is
area-preserving. For a � �1 there are no fixed points. When a � �1, a fixed point
appears at (�1, �1). This orbit has a double eigenvalue of �1. For a � �1, there
are two fixed points: one that is unstable (a saddle) and one that begins as a stable
elliptic orbit for a near �1. We follow the orbits along the second, stable path.
As a increases slightly beyond �1, eigenvalues of these orbits are constrained
to the unit circle in the complex plane. Since for any fixed parameter the two
eigenvalues must be complex conjugates, the two paths of eigenvalues move (with
increasing a) around the unit circle. One moves along the top (imaginary part
positive), and the other moves along the bottom (imaginary part negative) as
shown in Figure 11.17. When a � 3, the two paths of eigenvalues join at �1,
where there is a period-doubling bifurcation. What type of behavior do you expect
near the elliptic fixed point as a increases from �1 to 3?

Our final example of this section is called the standard map. Like the
Hénon family, it has been studied extensively as a prototype—in this case,
as a model for understanding nonlinear phenomena in area-preserving maps.
While Poincaré maps for dissipative systems of differential equations are area-
contracting, Poincaré maps for conservative systems are area-preserving.

EXAM PLE 11 .16

(Standard map.) Let

Sa(x, y) � (x � y(mod2�), y � a sin(x � y)(mod2�)), (11.7)

for x � [��, �], y � [��, �]. Notice that the standard map Sa is periodic with
period 2� in both variables. That is, Sa(x � 2�, y) � Sa(x, y) and Sa(x, y � 2�) �

Sa(x, y). Therefore, like the cat map of Challenge 2, only the values of x and y
modulo 2� are important, and we can consider the phase space to be a torus.
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e1

e2

a = 3 

a = -1 

Figure 11.17 Complex eigenvalues for a family of elliptic fixed points.
Paths of eigenvalues in the complex plane for the continuation of an elliptic fixed
point of the area-preserving Hénon family h(a, x, y) � (a � x2 � y, x) are depicted
schematically. The elliptic point is born at a � �1, at which point both eigenvalues
are �1. Then the paths split and move around the unit circle as complex conjugates.
The paths join at a period-doubling bifurcation when a � 3. There the fixed point
loses stability, becoming a saddle, as one path of eigenvalues moves outside the unit
circle.

✎ EXERCISE T11 .13
Let Sa denote the standard map. Show that det(DSa(x, y)) � 1. Therefore,
Sa is a one-parameter family of area-preserving maps.

When the parameter a is zero, the torus is filled with invariant closed curves
(one for each y value). In Figure 11.18, both axes are [��, �], so that one can
imagine the right and left boundaries to be glued together, and the same for the
top and bottom boundaries, to form the torus. The center of the square is the
origin, which is a fixed point for the standard map.

The closed curves in Figure 11.18(a) are called KAM curves. KAM curves
figure importantly in understanding stability within area-preserving maps. This
stability analysis is the subject of KAM theory, a field whose major advances are
due to the three mathematicians A. Kolmogorov, V. Arnold, and J. Moser. On
each of these curves, all points move with the same rate of rotation, called the
rotation number. The rotation number of a circle increases with y.

As the parameter a is increased from 0, other closed curves form that do
not wrap all the way around the torus. These KAM curves appear as oval-shaped
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(a) (b)

(c) (d)

(e) (f)

Figure 11.18 Standard maps at selected parameters.
Typical orbits of the standard family of maps Sa(x, y) � (x � y mod 2�, y � a sin(x �

y) mod 2�) are shown for (x, y) in [��, �] � [��, �] and parameter values (a) a �

0 (b) a � 0.3 (c) a � 0.6 (d) a � 0.9 (e) a � 1.2 and (f) a � 7.0. In all but (f),
several orbits are plotted. In (f), one orbit is shown.
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islands in Figure 11.18(b)–(e). Points on the closed curves are constrained to
map to the same closed curve. Each island in Figure 11.18(b)–(e) was made by
plotting a single orbit, which fills the curve densely. The KAM curves eventually
give way to irregular orbits. The last KAM curve that wraps around the torus can
be seen in the lower half of Figure 11.18(d). It disappears at a � 0.97.

✎ EXERCISE T11 .14
Let Sa denote the standard map.

(a) Show that for a � 0, the origin (0, 0) is a saddle fixed point.

(b) For what values of a is (�, 0) an elliptic fixed point?

As a increases from zero, the invariant circles near y � 0 break up. We
see the stable and unstable manifolds of the saddle (0, 0) forming the boundary
between the closed curves surrounding the elliptic point and the closed curves
encircling the cylinder. A further increase in a shows regions of chaotic behavior
developing around these stable and unstable manifolds. New elliptic orbits come
into existence and disappear as chaotic regions expand to fill an increasingly
larger space. Figure 11.18(f), at a � 7.0, shows no regions of stability. Only one
orbit is plotted.

➮ C O M P U T E R E X P E R I M E N T 11 . 2

The standard map can be made area-contracting by altering one term.
Define

Sa,b(x, y) � (x � y(mod2�), by � a sin(x � y)(mod2�)). (11.8)

Investigate Sa,b for a � 4.0 and b � 0.98. How many attracting periodic orbits
can you find? (More than 100 exist for periods � 5.)

11 .7 B I F U R C AT I O N S I N D I F F E R E N T I A L
E Q U AT I O N S

The main tool for analyzing the stability of periodic solutions of differential
equations is the Poincaré map, which we first defined in Chapter 2. Let v be a
point in �n, let f be a map defined on �n, and let � be a periodic orbit of the
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autonomous differential equation

v̇ � f(v). (11.9)

For a point v0 on �, the Poincaré map T is defined on an n � 1 dimensional
disk D transverse to � at v0. Figure 11.19 shows a periodic orbit for a flow of
�3 with a two-dimensional disk D. If v1 is a point sufficiently close to v0 on D,
then the solution through v1 will follow close to � until it intersects D again (the
first return to D) at a point v2. This fact follows from continuous dependence
on initial conditions, Theorem 7.16. Let T(v1) � v2. (We may have to restrict
the domain of T to a smaller disk centered at v0 in order to have the solution
hit D upon first return.) For a periodic orbit of a planar differential equation, the
cross-sectional disk is a line segment transverse to the periodic orbit.

Notice that v0 is a fixed point or periodic point of T if and only if v0 is on
a periodic orbit of (11.9). Thus we can investigate the stability of periodic orbits
through a linear analysis of T, by looking at the eigenvalues of DvT(v0).

Definition 11.17 The eigenvalues of the (n � 1) � (n � 1) Jacobian
matrix DvT(v0) are called the (Floquet) multipliers of the periodic orbit �.

D

v2 = T(v1)
v0

v1

Figure 11.19 A Poincaré map.
The Poincaré map, called T here, is defined on a surface D which is transverse to
the flow direction on a periodic orbit. The point v0 on the periodic orbit maps to
itself under the Poincaré map, while v1 maps to v2.
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If all the multipliers of � are inside (respectively, outside) the unit circle in
the complex plane, then � is called an attracting (respectively, repelling) periodic
orbit. If � has some multipliers inside and some multipliers outside the unit circle,
then � is called a saddle periodic orbit.

Finding multipliers of a periodic orbit is largely accomplished through com-
putational methods, since cases in which a Poincaré map can be explicitly deter-
mined are rare. One such case follows.

EXAM PLE 11 .18

Let

ṙ � br(1 � r) (11.10)

�̇ � 1

where b is a positive constant, and (r, �) are polar coordinates. Since ṙ � 0 when
r � 1, the unit circle r � 1 is a periodic orbit. A segment L of the ray � � �,
(any fixed angle � will suffice), serves as the domain of a Poincaré map. Figure
11.20 illustrates one orbit �r0, r1, r2, . . .� of the Poincaré map for the limit cycle

1

1

L

r0

r1

r2

Figure 11.20 Poincaré map for a limit cycle of a planar system.
The system dr

dt � 0.2r(1 � r), d�
dt � 1, has a limit cycle r � 1. The line segment L

is approximately perpendicular to this orbit. Successive images r1, r2, . . . , of initial
point r0 under the Poincaré map converge to r � 1.
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r � 1 of (11.10) with b � 0.2. Using the fact that a trajectory returns to the
same angle after 2� time units, we separate variables in (11.10), and integrate a
solution from one crossing, rn, to the next, rn�1 of L:

∫ rn�1

rn

dr
r(1 � r)

�

∫ 2�

0
b dt � 2�b.

Evaluating the integral on the left (by partial fractions), we obtain

rn�1(1 � rn)
rn(1 � rn�1)

� e2�b.

x

y

z

x

y

z
C

(a) (b)

x

y

z

C1

C2

x

y

z

C2

C1

(c) (d)

Figure 11.21 A saddle-node bifurcation for a three-dimensional flow.
(a) The system begins with no periodic orbits. (b) The parameter is increased, and
a saddle-node periodic orbit C appears. (c) The saddle-node orbit splits into two
periodic orbits C1 and C2, which then move apart, as shown in (d).
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Then, solving for rn�1,

rn�1 �
rne2�b

1 � rn � rne2�b
. (11.11)

✎ EXERCISE T11 .15

(a) Show that for b � 0, the sequence �rn�, as defined by (11.11),
converges to 1 as n → �.

(b) Find the Floquet multiplier of the orbit r � l.
(c) For which values of b is this orbit stable?

Through the Poincaré map and time-T map, we can exploit the bifurca-
tion theory developed for maps to study the bifurcations of periodic orbits of
parametrized differential equations. For v � �n and a scalar parameter a, let

v̇ � fa(v) (11.12)

denote a one-parameter family of differential equations. As before, a periodic orbit
� of (11.12) is classified as “continuable” or a “bifurcation” orbit, depending on
whether v0 on � is a locally continuable or bifurcation orbit for the one-parameter
continuation of the Poincaré map T or time-T map FT.

x

y

z
C1

x

y

z
C1C2

(a) (b)

Figure 11.22 A period-doubling bifurcation for a three-dimensional flow.
The system begins with a periodic orbit C1, which has one multiplier between 0
and �1, as shown in (a). As the parameter is increased, this multiplier crosses �1,
and a second orbit C2 of roughly twice the period of C1 bifurcates. This orbit wraps
twice around the Möbius strip shown in (b).
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Figure 11.21 shows a saddle-node bifurcation of periodic orbits, and Figure
11.22 shows a period-doubling bifurcation. Recall that at a saddle-node bifurca-
tion orbit, the linearized map has an eigenvalue of �1. In the case of a flow, a
multiplier of the periodic orbit must be �1. For a period-doubling bifurcation,
the orbit must have a multiplier of �1.

✎ EXERCISE T11 .16
After a period-doubling bifurcation, are the periodic orbits linked or un-
linked? (See, for example, the orbits C1 and C2, as shown in Figure 11.22(b).)

✎ EXERCISE T11 .17
Show that a one-parameter family of autonomous plane differential equa-
tions cannot contain any period-doubling bifurcation orbits.

11 .8 HO P F B I F U R C AT I O N S
Saddle-node and period-doubling bifurcations are not the only ways in which
periodic orbits are born in one-parameter families. There is one more “generic”
bifurcation. In an Andronov-Hopf bifurcation (often shortened to Hopf bifurca-
tion), a family of periodic orbits bifurcates from a path of equilibria.

EXAM PLE 11 .19

(Hopf bifurcation.) Let

ẋ � �y � x(a � x2 � y2)

ẏ � x � y(a � x2 � y2) (11.13)

for x, y, and a in �. The bifurcation diagram for this system is illustrated in Figure
11.23. Verify that for a � 0, there are periodic solutions of the form

(x(t), y(t)) � (
√

a cos t,
√

a sin t).

In polar coordinates, equations (11.13) have the simple form

ṙ � r(a � r2)

�̇ � 1. (11.14)
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y

x

a

v

a

(a) (b)

Figure 11.23 Supercritical Hopf bifurcation.
(a) The path �(a, 0, 0)� of equilibria changes stability at a � 0. A stable equilibrium
for a � 0 is replaced by a stable periodic orbit for a � 0. (b) Schematic path diagram
of the bifurcation. Solid curves are stable orbits, dashed curves are unstable.

For each a, the origin r � 0 is an equilibrium of (11.14). When a is negative,
ṙ is negative, and all solutions decay to 0. For each a � 0, there is a nontrivial
periodic solution r �

√
a. A path of periodic orbits bifurcates from v at a � 0. In

this example, notice that there is exactly one periodic orbit for each planar flow
when a � 0.

Common to bifurcations we have discussed, the family of periodic orbits
bifurcates from a path of equilibria that changes stability at the bifurcation point.
In this case, the equilibria go from attractors to repellers. We picture this planar
nonlinear case in Figure 11.24. The variation in parameter brings about a small
change in the vector field near the equilibrium, causing a change in its stability.
Meanwhile, the vector field outside a small neighborhood N of the equilibrium
remains virtually unchanged, with the vector field still pointing in towards the
equilibrium. Orbits within N are trapped and, in the absence of any other equi-
libria, must converge to a periodic orbit.

Definition 11.20 Assume that v is an equilibrium at a � a for the one-
parameter family (11.12). We say that a path of periodic orbits bifurcates from
(a, v) if there is a continuous path of periodic orbits that converge to the equilib-
rium at a � a.

In order to simplify the discussion here, we assume as in the previous
example that v � 0 is an equilibrium for all a (that is, fa(0) � 0 in (11.12)).
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(a) (b)

Figure 11.24 A periodic orbit bifurcates from an equilibrium in the plane.
As the equilibrium goes from attracting (a) to repelling (b), a periodic orbit appears.

Also, we assume that the bifurcation occurs at a � 0. The eigenvalues of the
matrix Dvfa(0) vary continuously with a. We can refer to a path c(a) � ib(a) of
eigenvalues of the matrix. (In Example 11.19, one checks that c(a) � ib(a) �

a � i.) A version of the following theorem was first proved by E. Hopf in 1942.
For more details, see (Kocak and Hale, 1991).

Theorem 11.21 (Andronov-Hopf Bifurcation Theorem.) Let v̇ � fa(v)
be a family of systems of differential equations in �n with equilibrium v � 0 for all a. Let
c(a) � ib(a) denote a complex conjugate pair of eigenvalues of the matrix Dfa(0) that
crosses the imaginary axis at a nonzero rate at a � 0; that is, c(0) � 0, b � b(0) � 0,
and c ′(0) � 0. Further assume that no other eigenvalue of Dfa(0) is an integer multiple
of bi. Then a path of periodic orbits of (11.12) bifurcates from (a, v) � (0, 0). The
periods of these orbits approach 2�� b as orbits approach (0, 0).

✎ EXERCISE T11 .18
Show that the system (11.13) satisfies the hypotheses of the Hopf Bifurca-
tion Theorem, and describe the conclusion of the theorem for this system.

Remark 11.22 There is a weaker form of the Hopf Bifurcation Theorem
that is useful for some purposes. The weaker version has a less stringent hypothesis,
and delivers a weaker conclusion. Instead of assuming that the pair of eigenvalues
crosses the imaginary axis with nonzero speed at a � 0, assume simply that it
crosses the imaginary axis at a � 0. All other hypotheses remain unchanged.
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(For example, the eigenvalues might move as c(a) � ib(a) � a3 � i.) Then the
conclusion is that every neighborhood of (a, v) � (0, 0), no matter how small,
contains a periodic orbit. They may not be parametrized by a continuous path in
the parameter a. See (Alexander and Yorke, 1978).

Hopf bifurcations come in several types, depending on what happens to
orbits near the equilibrium at the bifurcation point. Two types are important
in experimental work, because they explain the important phenomenon of the
creation of periodic behavior. At a supercritical bifurcation, the equilibrium at
the bifurcation value of the parameter, which we might call the bifurcation orbit,
is stable. A supercritical Hopf bifurcation is illustrated in Figure 11.23. When seen
in experiment, a supercritical Hopf bifurcation is seen as a smooth transition. The
formerly stable equilibrium starts to wobble in extremely small oscillations that
grow into a family of stable periodic orbits as the parameter changes.

When the bifurcation orbit is unstable, the bifurcation is called subcritical.
A subcritical Hopf bifurcation, illustrated in Figure 11.25, is seen experimentally
as a sudden jump in behavior. As the parameter a is increased in the figure,
the system follows the equilibrium v � 0 until reaching the bifurcation point
a � 0. When this point is passed, no stable equilibrium exists, and the orbit is
immediately attracted to the only remaining stable orbit, an oscillation of large
amplitude. In this case, the bifurcating path of periodic orbits of the Hopf bifurca-
tion exists for a � 0. The periodic orbits thrown off from the origin for negative
a are unstable orbits. For a � 0, they provide a basin boundary between the at-
tracting equilibrium and the attracting periodic orbit on the outside. When this
boundary disappears at a � 0, immediate changes occur. Lab Visit 11 involves the
interpretation of sudden changes in current oscillations from an electrochemistry
experiment. In this case, the scientists conducting the experiment find that a
subcritical Hopf bifurcation is the likely explanation.

An important nonlinear effect often seen in the presence of a subcritical
Hopf bifurcation is hysteresis, which refers to the following somewhat paradoxical
phenomenon. Assume a system is being observed, and shows a particular behavior
at a given parameter setting. Next, the parameter is changed, and then returned
to the original setting, whereupon the system displays a behavior completely
different from the original behavior. This change in system behavior, which
depends on the coexistence of two attractors at the same parameter value, is
called hysteresis.

We have all seen this effect before. If you start with an egg at room tem-
perature, raise its temperature to 100◦C. for three minutes, and then return the
egg to room temperature, the state of the egg will have changed. However, you
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a

v

a

(a) (b)

Figure 11.25 A subcritical Hopf bifurcation with hysteresis.
(a) There is a bifurcation at a � 0 from the path r � 0 of equilibria. At this
point the equilibria go from stable to unstable, and a path of unstable periodic
orbits bifurcates. The periodic orbits are unstable and extend back through negative
parameter values, ending in saddle node at a � �1. An additional path of attracting
periodic orbits emanates from the saddle node. (b) Schematic diagram of bifurcation
paths. The rectangle shows a hysteretic path. The vertical segments correspond to
sudden jumps.

may not be used to seeing this behavior in a reversible dynamical system such as
a differential equation.

Figure 11.25 shows one way in which a system can undergo hysteresis. If
the system is started at the (attracting) equilibrium at 0 for parameter a � 0, it
will stay there. When the parameter is increased to a � 0, the equilibrium at 0
becomes unstable, and any small perturbation will cause the orbit to be attracted
to the outside stable periodic orbit. When the parameter is decreased back to the
starting value a � 0, the orbit stays on the periodic orbit, unless a large external
perturbation moves it back inside the basin of the equilibrium. Hysteretic effects
can be seen in the data collected in Lab Visit 11.

Figure 11.25 shows the stable and unstable periodic orbits being created
together in a saddle-node bifurcation. If the parameter is decreased to extreme
negative values, beyond the saddle-node point, then the system will of course
return to equilibrium behavior.
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EXAM PLE 11 .23

A subcritical Hopf bifurcation is seen in the system

ṙ � ar � 2r3 � r5

�̇ � 1. (11.15)

The bifurcation diagram of equilibria and periodic orbits of equations (11.15)
is shown in Figure 11.25. There is a subcritical Hopf bifurcation at a � 0 from
the path r � 0, at which point a path of unstable orbits bifurcates. This path
contains unstable periodic orbits and extends through negative a values, ending
in a saddle node bifurcation at a � �1. A path of stable orbits emanates from the
saddle node. Thus for the interval �1 � a � 0 of parameter values there are two
attractors: an attracting equilibrium and an attracting periodic orbit.

✎ EXERCISE T11 .19
Find all periodic orbits in the system of equations (11.15), and check their
stability. Verify that Figure 11.25 is the bifurcation diagram.

Example 11.19 was our first example of a one-parameter family of differential
equations that satisfied the hypotheses of the Hopf Bifurcation Theorem. In the
path of periodic orbits that bifurcates from the origin, there is exactly one periodic
orbit for each parameter value when a � 0. However, the path of bifurcating orbits
need not follow this pattern. In the following example, the entire path of orbits in
(a, v) space exists at only one parameter value, a � 0. The path must, however,
emanate from v � 0.

EXAM PLE 11 .24

Let

ẋ � ax � y

ẏ � ay � x (11.16)

for x, y, and a in �. This one-parameter family of linear differential equations has
a Hopf bifurcation from the path v � 0 of equilibria at a � 0. (Check the path
of eigenvalues to show that they satisfy the hypotheses of Theorem 11.21.) In
this case, however, instead of having one periodic orbit of the bifurcating family
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at each a � 0 (or, analogously, a � 0), the entire family of periodic orbits exists
only at a � 0.

✎ EXERCISE T11 .20
Find all periodic orbits of the one-parameter family (11.16).

EXAM PLE 11 .25

(Lorenz Equations) As we discussed in Chapter 9, the system of equations
below was first studied by Lorenz and observed to have chaotic attractors. For
(x, y, z) in �3, let

dx
dt

� � (y � x) (11.17)

dy
dt

� rx � y � xz (11.18)

dz
dt

� �bz � xy,

for constant � � 0, r � 0, and b � 0.
The origin is an equilibrium for all values of the parameters. For r � 1, the

points c� � (�
√

b(r � 1), �
√

b(r � 1), r � 1) are also equilibria. For r � 1,
the origin is an attractor. For r � 1, the origin is unstable, while the points c� are
attracting. The bifurcation at r � 1 is shown in Figure 11.26 for specific values of
b and �. There is also a subcritical Hopf bifurcation at r � rh � � (��b�3)

��b�1 . This
value is derived in Exercise 11.21.

✎ EXERCISE T11 .21

(a) Show that the degree-three monic polynomial 
3 � a2
2 �

a1
 � a0 has pure imaginary roots if and only if a1a2 � a0 and a1 � 0. Show
that the roots are 
 � �a2 and 
 � �i

√
a1. (b) Evaluate the Jacobian of

the Lorenz vector field at the equilibria c� and show that these equilibria

have pure imaginary eigenvalues 
 � �i
√

2�(��1)
��b�1 at r � �(��b�3)

��b�1 .

Using the standard settings � � 10, b � 8 � 3, the Hopf bifurcation point is
rh � 24.74. As the periodic orbits created at this subcritical Hopf bifurcation are
followed to the left toward r � 13.926 in Figure 11.26, their periods continuously
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0 10 20 30

Figure 11.26 A Hopf bifurcation in the Lorenz equations.
A bifurcation diagram of the Lorenz equations for � � 10, b � 8� 3, and 0 � r � 30,
is shown. At r � 1, the origin goes from stable to unstable, as two attracting
equilibria bifurcate. Paths of stable orbits are indicated by solid curves, while paths
of unstable orbits are represented by dashed curves and circles. A subcritical Hopf
bifurcation occurs at r � 24.74, at which point two families of unstable orbits
bifurcate simultaneously as the two attracting equilibria lose their stability. Typical
trajectories in computer simulations then move toward the chaotic attractor, first
observed to occur at the crisis value r � 24.06.

increase and diverge to �. The behavior at r � 13.926 is quite complicated—this
is the value for the onset of chaos in the Lorenz equations.

There are chaotic trajectories but no chaotic attractor for 13.926 � r �

24.06. A chaotic attractor is observed to first occur near r � 24.06. See (Kaplan
and Yorke, 1979) for specifics of this estimation. At exactly r � 24.06, a typical
trajectory undergoes a long transient before being attracted by one of the sinks,
as shown in Figure 9.5. Therefore, throughout the parameter range 24.06 � r �

24.74, the Lorenz system possesses three attractors: one apparently chaotic and
two which are not, the attracting equilibria.
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☞ C H A L L E N G E 11

Hamiltonian Systems and the Lyapunov
Center Theorem

WE HAVE SEEN that the stability of an equilibrium is often determined by
the Jacobian of the vector field. Theorem 7.18 states that when the eigenvalues of
the Jacobian all have negative real part, the equilibrium is asymptotically stable.
When a single eigenvalue has positive real part, the equilibrium is unstable. What
happens when the eigenvalues are pure imaginary (have real part equal to zero)?
In general, an equilibrium is called a center if the Jacobian of the vector field has
only pure imaginary eigenvalues.

We want to investigate the behavior of a system near a center. We can start
to answer the question by looking at the linear case. For a two-dimensional linear
system with eigenvalues �bi, the origin is an equilibrium, and all other solutions
are periodic orbits of period 2�� b. For a nonlinear system, it turns out that a
center can be attracting, repelling, or neither. However, there is an important
type of nonlinear system for which we can say that the behavior is stable near a
center.

In Chapter 7, we saw examples of conservative systems such as the un-
damped pendulum. Trajectories of conservative systems are constrained to one
energy level. In other words, energy remains constant along a solution. The
set of equations that govern the motion of the pendulum is one example of a
general class of differential equations called Hamiltonian systems. Specifically,
for a smooth function H : �2 → �, called the Hamiltonian function or energy
function, Hamilton’s equations are:

ẋ �
�H
�y

ẏ � �
�H
�x

. (11.19)

Theorem 11.26 guarantees that in a Hamiltonian system, an equilibrium
with pure imaginary eigenvalues will have a neighborhood containing periodic
orbits. Your job in Challenge 11 is to construct a proof of this theorem in the
two-dimensional case.

Theorem 11.26 (Lyapunov Center Theorem.) Assume that 0 is a center
equilibrium of the Hamiltonian system (11.19) and that �bi are simple eigenvalues of
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the Jacobian A of the vector field at 0. Assume further that no other eigenvalue of A is
an integer multiple of bi. Then each neighborhood of the center contains periodic orbits,
whose periods approaches 2�� b as they approach the center.

The strategy is to show that the theorem is a consequence of the Hopf Bifur-
cation Theorem. To do this, you will build a one-parameter family of differential
equations for which (11.19) is the member at a � 0. Then show that a Hopf bi-
furcation occurs at a � 0, but that no member of the family for a � 0 has periodic
orbits. The only remaining possibility is that the periodic orbits emanating from
the Hopf bifurcation point must all occur for a � 0, that is, they are periodic
orbits surrounding the center.

Step 1 To warm up, verify that (11.19) implies that Ḣ(v) � 0, where
v � (x, y) and

Ḣ(v) �
�H
�x

dx
dt

�
�H
�y

dy
dt

.

Therefore the Hamiltonian H is a constant of the motion.

These equations can be generalized to higher even dimensions in which case
H is defined on �2n. Then for (x1, . . . , xn, y1, . . . , yn) � �2n, the two equations
of system 11.19 become the 2n equations dxi � dt � �H� �yi, i � 1, . . . , n, and
dyi � dt � ��H� �xi, i � 1, . . . , n.

Now we assume the Hamiltonian satisfies the hypotheses of the two-
dimensional Lyapunov Center Theorem; that the origin 0 is an equilibrium,
and that �bi are eigenvalues of the Jacobian at 0. Embed the Hamiltonian system
in a one-parameter family of differential equations:

ẋ � a
�H
�x

�
�H
�y

ẏ � a
�H
�y

�
�H
�x

, (11.20)

where a is a scalar parameter. Notice that the original Hamiltonian system occurs
at a � 0.

Step 2 Show that �(a, 0) : a � �� is a path of equilibria.

Using the notation gradH for the gradient of H, and letting J �(
0 1

�1 0

)
, we can rewrite the system (11.20) in the following matrix form:

v̇ � (aI � J)gradH(v).
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Step 3 Show there are no periodic (nonequilibrium) orbits of (11.20) for
a � 0. [Hint: Let (xa(t), ya(t)) be a solution of (11.20). Verify that (dH� dt)(xa(t),
ya(t)) � a|gradH|2.]

The goal now is to prove that (11.20) has a Hopf bifurcation at a � 0,
in which case all bifurcating periodic orbits must occur at a � 0 (the original
Hamiltonian). To that end, we need to show that a path of eigenvalues of the
linearized system crosses the imaginary axis at ib when a � 0.

Let fa(v) � (a � J)gradH(v). Then Dvfa(0) � (aI � J)M, where M is
the 2 � 2 matrix of second partial derivatives of H (with respect to the phase
variables) evaluated at v � 0.

Step 4 Show that M is a nonsingular symmetric matrix, and that its in-
verse M�1 is also.

Step 5 Show that

v̇ � JMv (11.21)

is a Hamiltonian system with Hamiltonian function E(v) � 1
2 vTMv.

Step 6 Let c(a) � d(a)i be a path of eigenvalues of Dvfa(0) � (aI � J)M.
Conclude from Steps 3 and 4 that if a � 0 then c(a) � 0.

Step 7 Show that if 
 is an eigenvalue of (aI � J)M, then �
 is an
eigenvalue of (�aI � J)M. [Hint: If (aI � J)M � 
I is singular, so is M�1[(aI �

J)M � 
I]TM.]

Step 8 Use Steps 6 and 7 to conclude that the eigenvalues of Dvfa(0)
cross the imaginary axis at �bi when a � 0.

Step 9 Use the weak version of the Hopf Bifurcation Theorem in Remark
11.22 to show that there are periodic orbits of period approaching 2�� b in every
neighborhood of the origin.
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EXERCISES

11.1. Find a saddle-node bifurcation and a period-doubling bifurcation for fa(x) �

a sin x.

11.2. Find a period-doubling bifurcation for ga(x) � �x(a � x). For what parameter
value a does the period-two orbit itself go through a period-doubling?

11.3. Find a period-doubling bifurcation for fa(x) � x3 � ax.

11.4. Let

T(a, x) �

{
ax if x � 1

2

a(1 � x) if x � 1
2

Draw the tent map bifurcation diagram for (a, x) in [0, 2] � [0, 1].

11.5. Find all saddle-node and period-doubling bifurcations of fixed points for the fol-
lowing maps.

(a) fa(x) � a � ln x, for x � 0.

(b) fa(x) � a � ln x, for x � 0.

(c) fa(x) � a ln x, for x � 0.

(d) fa(x) � a � x � ex

11.6. Let fa(x1, x2) � (ax1 � x2
2, x1 � ax2). Show that the family fa has two paths of

fixed points (paths in a). Find parameter values at which �1 is an eigenvalue of
Dv(f) evaluated along these paths. Explain what happens to the stability of the
fixed points at these parameter values.

11.7. Find the saddle-node and period-doubling bifurcations of fixed points for the
Hénon map fa(x, y) � (a � x2 � 0.3y, x).

11.8. Give an example of a one-parameter family of scalar maps f and a fixed point x of
fa such that f ′

a(x) � �1 and there is not a period-doubling bifurcation at (a, x).

11.9. (Period-doubling bifurcation.) In this exercise, a specific condition on derivatives
is shown to guarantee that period-doubling bifurcations are isolated. Assume that
fa(x) � f(a, x) is smooth (partial derivatives of order at least 2 exist and are
continuous). Let (a, x) be a fixed point of f with df

dx (a, x) � �1. Since this value
is not �1, there is a path of fixed points (a, x(a)) for a near a with x(a) � x.

(a) Show that if

d2f
dadx

(a, x) �
1
2

d2f
dx2

(a, x)
df
da

(a, x) � 0, (11.22)

then
d2f

dadx
(a, x(a)) � 0.
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(b) Show that (11.22) implies there is a neighborhood of (a, x) in which there
are no other fixed points (a�, x�) satisfying the period-doubling condition
df
dx

(a�, x�) � �1.

11.10. Unlike a saddle node orbit, a period-doubling bifurcation can be either supercrit-
ical or subcritical. In other words, the bifurcation orbit for a family of scalar maps
can be either attracting or repelling. In this problem, two coefficients in the Taylor
series expansion for the map at the bifurcation value are shown to determine the
stability of the bifurcation orbit.

(a) Let f(x) � x � cx3. Show that the fixed point x � 0 is attracting if c � 0
and repelling if c � 0.

(b) Assume that x � 0 is a fixed point of a scalar map g and that g ′(0) � �1.
(In this exercise there is no parameter: g is the map at the bifurcation parameter
value.) Let

g(x) � �x � bx2 � dx3 � higher order terms.

Show that 0 is attracting if b2 � d � 0 and repelling if b2 � d � 0.

11.11. For a real number c, define the one-parameter family fa(x) � (x � a)(2x � 3a) �

x � c. For what values of c is there a bifurcation in this family? Describe the
bifurcations and list the bifurcation points (a, x). Note that c � 0 corresponds to
generic bifurcations while c � 0 corresponds to a special one.

11.12. Denote by v̇ � f(v) the system which gives the supercritical Hopf bifurcation
shown in Figure 11.23. Now draw the corresponding two diagrams for v̇ � �f(v).
Which type of Hopf bifurcation is this?

11.13. Consider the Chua circuit equations as defined in (9.6), with parameters set as in
Figure 9.10. Use Exercise T11.21 to find the parameter c3 for which the system
undergoes a Hopf bifurcation.

11.14. Let

ẋ � r
( c

x
� d

)
� ax � bxy

ẏ � r
(

b �
a
y

)
� cy � dxy (11.23)

where a, b, c, and d are positive constants, and r is a fixed parameter and x and y
are scalar variables, x � 0, y � 0. Notice that when r � 0, the system models a
simple predator-prey interaction, as we described in Chapter 7.

(a) Show that (x, y) � ( c
d , a

b ) is an equilibrium for all r.

(b) Show there is a Hopf bifurcation at ( c
d , a

b ) when r � 0.

(c) Show that all bifurcating periodic orbits occur at r � 0.
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☞ L A B V I S I T 11

Iron + Sulfuric Acid −→ Hopf Bifurcation

THIS EXAMPLE of electric current oscillations in an electrochemical reac-
tion exhibits a subcritical Hopf bifurcation and hysteresis. These dynamical ideas
are fairly new compared to the long history of electrochemistry. The first elec-
trochemical system showing periodic orbits dates from G. Fechner in 1828, who
found an oscillating current caused by the competing forces of depositing and
dissolving of silver on an iron electrode placed in a silver nitrate solution.

The experiment shown here was designed to explore oscillatory phenomena
in the dissolving of iron in a sulfuric acid solution. A 99.99% iron rod with a
diameter of 3 mm is lowered into 200 ml of the acid. When a potential difference
is applied, the current of the electrochemical system is a measure of the overall
reaction rate between the electrode surface and the electrolytic solution. The
behavior of the current as a function of time shows considerable complication at
certain parameter settings. The so-called electrodissolution problem is far from
completely understood, due to the large number of coupled chemical reactions
involved.

The electrical potential applied to the electrode is used as a bifurcation
parameter in this experiment. Figure 11.27 shows a small sample of the interest-
ing dynamical phenomena in this reaction. Parts (a)–(d) of the figure show the
measured current (in milliamperes) as a function of time (in seconds), for four
different settings of the potential. The potential increases from (a) to (d). Figure
11.27(a) shows a short transient followed by a constant current, which continues
for the slightly higher potential in (b). In Figure 11.27(c), small irregular oscilla-
tions have developed, which seem aperiodic. Another small change in potential
leads to clear periodic oscillations of larger amplitude in (d). Apparently, a Hopf
bifurcation has occurred.

The time series in Figure 11.28 are from the same electrochemical experi-
ment, except that in this case, the voltage parameter is decreased from part (a)
to (d). Viewed together, the behaviors shown in Figures 11.27 and 11.28 can be

Sazou, D., Karantonis, A., and Pagitsas, M. 1993. Generalized Hopf, saddle-node infinite
period bifurcations and excitability during the electrodissolution and passivation of iron
in a sulfuric acid solution. Int. J. Bifurcations and Chaos 3: 981–997.
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Figure 11.27 Current time series for increasing parameter.
Moving to the right along the solid a-axis in the subcritical Hopf bifurcation of
Figure 11.25. (a) Potential is 245 mV. Transient yields to steady state. (b) 246–260
mV show steady state. (c) 261.6 mV, oscillations of small amplitude and period.
(d) 262.6 mV, nine-second oscillations.

interpreted as being the result of a subcritical Hopf bifurcation, as seen earlier in
this chapter.

Referring to Figure 11.25, for large values of the parameter, the periodic
orbit is the only attractor, and so it is globally attracting. As the parameter
moves to the left, the trajectory continues its periodic behavior even as the Hopf
bifurcation point is passed. Only after the saddle-node bifurcation point is passed,
on the far left of Figure 11.25, does the system relax to the steady state. Thus
hysteresis is seen. As the parameter increases along the negative x-axis, we see
one system behavior, while when the parameter is decreased through the same
parameter range, we see a different behavior.

Figure 11.28 demonstrates this type of hysteresis in the electrochemical
experiment. The voltage parameter is decreased from part (a) to part (d), crossing
the same parameter range that was crossed in an increasing manner in Figure
11.27. This time, as expected for a subcritical Hopf bifurcation with hysteresis,
periodic behavior is recorded until the voltage is decreased sufficiently, to pass the
saddle-node bifurcation point. After this value, orbits are attracted to the steady
state as shown in Figure 11.28(d).
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Figure 11.28 Current time series for decreasing parameter.
Moving to the left along the upper (periodic) branch of Figure 11.25. (a) Potential
difference is 260 mV, periodic orbit. (b) 253 mV, periodic. (c) 248 mV, periodic.
(d) 245 mV, periodic orbit disappears, convergence to steady state after transient.

The small aperiodic oscillations that are apparent in Figure 11.27(c) are
unexplained by this theory and may be due to the presence of “noise” near the
Hopf bifurcation point. The theory of the Hopf bifurcation is developed for finite-
dimensional differential equations, and applies to the extent that this experiment
is well-modeled by them. Model inaccuracies may matter at some times more than
others. In particular, they may be magnified at parameter values where stability is
in flux, such as in Figure 11.27(c), thereby limiting the explanatory power of the
model.
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Cascades

CASCADES OF period-doubling bifurcations have been seen in the great majority
of low-dimensional systems that exhibit chaotic behavior. A “cascade” appears
as an infinite sequence of period-doubling bifurcations. A stable periodic orbit is
seen to become unstable as a parameter is increased or decreased and is replaced
by a stable periodic orbit of twice its period. This orbit in turn becomes unstable
and is replaced by a new stable orbit with its period again doubled, and the process
continues through an infinity of such period-doubling bifurcations.

The goal of this chapter is to study properties of cascades, and to understand
what general conditions imply their existence. We continue the study of bifur-
cations from Chapter 11 and develop a picture of families of orbits as connected
sets, where the primary bifurcations are period doublings and saddle nodes. Our
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main focus will be families of one-dimensional maps, such as the quadratic family,
and families of area-contracting planar maps, such as the Hénon family.

Cascades consist of stable periodic orbits and so are experimentally ob-
servable. An experimenter will only be able to see a few of these stages. Some
state-of-the-art examples of cascades in experiments are shown in Lab Visit 12.

Renormalization theory has been extremely successful in showing that it is
possible for the full infinite sequence to exist. There are a number of regularities of
cascades, yielding universal numbers that are frequently observed in both physical
and numerical experiments. The chapter begins with the Feigenbaum constant,
one of these universal numbers. Challenge 12 is a more in-depth exploration of
this remarkable universal behavior.

12 .1 C A S C A D E S A N D 4 .669201609 . . .
Figure 12.1 hints at the complexity present within a single bifurcation diagram.
The one-dimensional map used to generate the diagram is fa(x) � a � x2. Stable
periodic orbits of periods one, two, four, and eight are clearly visible in the
computer simulation. Factors of 2 beyond 8 are visible when the diagram is
magnified.

In addition to the period-doublings that we can see in Figure 12.1, there are
infinitely many that are not visible. Evidence of some of them can be seen in the
magnifications of Figure 12.2. At a period-doubling bifurcation from a period-k
orbit, two branches of period-2k points emanate from a path of period-k points.
When the branches split off, the period-k points change stability (going from
attractor to repeller, or vice versa). This change is detected in the derivative of
fk which, when calculated along the path of fixed points, crosses �1.

Figure 12.2(a) shows a magnified view of the box drawn in Figure 12.1, and
together with the further magnification in Figure 12.2(b), shows period-doubling
bifurcations up to period 64. A period-doubling cascade can also occur from a
periodic orbit of higher period. Magnifications of the period three window of
Figure 12.1 are shown in Figure 12.2(c) A cascade beginning with sinks of periods
3, 6, 12, . . . can be seen. In Figure 12.2, the period five cascade exhibits sinks of
periods 5, 10, 20, . . . .

The series of bifurcation diagrams shown in Figure 12.1, 12.2(a) and (b)
suggests a scaling behavior in the cascade of the quadratic map. In 1978, M. Feigen-
baum noted that the ratios of parameter distance between two successive period-
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2

x

�2
�1 a 2

Figure 12.1 Bifurcation diagram for the one-dimensional quadratic family
fa (x) � a � x2.
The variable x is on the vertical axis, and the bifurcation parameter a is on the
horizontal axis. When a is fixed at a value less than �1� 4, the orbits of all initial
conditions diverge to ��. There is a saddle-node bifurcation at a � �1� 4, at which
a period-one sink is created. It persists for �1� 4 � a � 3� 4. At a � 3� 4, the period-
one sink loses stability and is replaced with a period-two sink in a period-doubling
bifurcation. Higher values of a show further bifurcations that create more complex
attractors. For a � 2 there are no attractors.

doublings approach a constant as the periods increase to infinity. Moreover, this
constant is universal in the sense that it applies to a variety of dynamical systems.
Specifically, if the nth period-doubling occurs at a � an, then

lim
n→�

an�1 � an�2

an � an�1
� 4.669201609 . . . , (12.1)
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0.25

x

�0.636
1.1 a 1.45

(a)

0.037

�0.121
1.383 a 1.406

(b)

2

x

�2
1.74 a 1.8

(c)
1.62 a 1.64

(d)

Figure 12.2 Universal behavior in the quadratic family.
(a) The box drawn in Figure 12.1 is enlarged to show many similarities to the full-
size diagram. Cascades occur on increasingly fine scales. (b) Enlargement of the box
in (a). (c) The period-three window in the quadratic family shows period-doubling
cascades. (d) The period-five window.

a number now known as Feigenbaum’s constant. Surprisingly, the limit is the
same for any one-parameter family of unimodal maps with negative Schwarzian
derivative. The first proof that this limit exists was given in (O. Lanford, 1982).

Table 12.1 shows a list of the parameters at which period-doublings occur
in the quadratic map f(x) � a � x2. The fixed point bifurcates into a fixed saddle
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Period Parameter a Ratio

2 0.75
4 1.25
8 1.3680989 4.2337

16 1.3940462 4.5515
32 1.3996312 4.6458
64 1.4008287 4.6639

128 1.4010853 4.6682
256 1.4011402 4.6689

Period Parameter a Ratio

3 1.75
6 1.7685292

12 1.7772216
24 1.7792521 4.2810
48 1.7796964 4.5698
96 1.7797923 4.6363

192 1.7798129 4.6524

Table 12.1 Feigenbaum’s constant in the quadratic map.
(a) A list of parameters an at which the nth period-doubling bifurcation occurs in
the period-one cascade, along with the ratio (an�1 � an�2) � (an � an�1). (b) Same
for a period-three cascade of the quadratic map.

and a period-two attractor at a � 0.75, followed by a cascade of period-doublings.
Also shown are the bifurcation values for the period-three cascade of the quadratic
map.

A computer program to find the bifurcation parameter values uses a binary
search method. To begin the determination of a period-doubling bifurcation value,
say from period four to period eight, two values of the parameter a are chosen
that bracket the bifurcation point. The period of the orbit at the midpoint of
the bracketing interval is determined using the following simple method. First,
a long trajectory is created, in order to approach the current attracting orbit as
closely as possible. The period of the orbit is tested by comparing the current
point to later iterates of the point, within a small tolerance. When the period is
determined, either four or eight, the midpoint becomes a new endpoint of the
bracketing interval, replacing the endpoint that has the same period. The length
of the bracketing interval has been cut in two. By repeating this process, accurate
estimates of the bifurcation values of a cascade can be determined.

Table 12.2 contains a list of bifurcation values for two other cascades. Note
that the ratio (12.1) is repeated for the one-dimensional logistic family as well
as for the two-dimensional Hénon family. This version of the Hénon map, given
by f(x, y) � (a � x2 � 0.3y, x), is orientation-preserving (has positive Jacobian
determinant).

503



C A S C A D E S

Period Parameter a Ratio

2 3.0000000
4 3.4494896
8 3.5440903 4.7514

16 3.5644073 4.6562
32 3.5687594 4.6683
64 3.5696916 4.6686

128 3.5698913 4.6692
256 3.5699340 4.6694

Period Parameter a Ratio

2 1.2675000
4 1.8125000
8 1.9216456 4.9933

16 1.9452006 4.6337
32 1.9502644 4.6516
64 1.9513504 4.6630

128 1.9515830 4.6678
256 1.9516329 4.6688

Table 12.2 Feigenbaum’s constant in the logistic map and Hénon map.
(a) Parameter values of period-doubling bifurcations for f(x) � ax(1 � x). (b) The
ratio also approaches Feigenbaum’s constant for the Hénon map.

➮ C O M P U T E R E X P E R I M E N T 12 . 1

Locate the period-doubling cascade for the orientation-reversing Hénon
map f(x, y) � (a � x2 � 0.3y, x). Start with a � 0 and the fixed point (x, y) �

(0, 0). Calculate the ratio of successive period-doubling intervals as in Table 12.2.

12 .2 S C H E M AT I C B I F U R C AT I O N D I A G R A M S
Figure 12.3 shows cascades in the development of four distinct chaotic attractors
occurring in the Poincaré map of the forced, damped pendulum. Notice that
the attractors are simultaneously present for a certain range of the parameter.
Studying the dynamics here is complicated by the fact that we have no explicit
formula for the underlying Poincaré map. Our aim in this section is to develop a
methodology for efficient analysis of bifurcation diagrams—to give a road map of
essential features, even when the underlying equations are unknown.

It is convenient to think of a schematic “tinker toy” model, consisting
of “sticks” and “sockets”, for the periodic orbits in our bifurcation diagrams.
The “sticks” are paths of hyperbolic orbits, all of one type—stable or unstable,
while the “sockets” are bifurcation orbits. For the remainder of this chapter, we
characterize hyperbolic orbits as stable or unstable, allowing the reader to translate
these words within the particular system of interest. For one-parameter families
of one-dimensional maps, the stable hyperbolic orbits are periodic sinks, while
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�

��
2.60 2.78

(a)

�0.211

�2.040
2.653 2.693

(b)

Figure 12.3 Period-doubling cascades in the forced, damped pendulum.
(a) The development of four chaotic attractors is shown, in four varying shades
of gray/black. Each of two period-two sinks at the bottom of the diagram evolve
through period-doublings to a two-piece chaotic attractor. Two fixed-point sinks at
the top evolve to one-piece chaotic attractors. Several crises can be observed. (b) A
magnification of the one of the cascades beginning from a period-two sink is shown.
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the unstable hyperbolic orbits are periodic repellers. For one-parameter families
of area-contracting planar maps, stable orbits are periodic sinks, while unstable
orbits are saddles. These two examples are the primary settings in which we
observe cascades in this chapter.

We will find our bookkeeping simplified by considering the several points
of a periodic orbit as a single entity. This point of view sacrifices little, since our
primary focus is on the stability of the orbit, which is a collective property. Recall
that in order to determine the stability of a periodic orbit, all points in the orbit—
together with their derivatives (or Jacobian matrices)—must be calculated. For
example, assume that x1 is a period-two point of f: f(x1) � x2 and f(x2) � x1.
In order to find out the stability of the orbit, we must compute the eigenvalues of
Df2(x1) � Df(x2)Df(x1). Lemma 2 in Appendix A implies that the eigenvalues
of Df(x2)Df(x1) are identical to the eigenvalues of Df(x1)Df(x2) � Df2(x2). In
the one-dimensional case (see, for example, the Stability Test for periodic orbits
in Section 1.4), the derivative (fk) ′ is the same when evaluated at any of the k
points in a period-k orbit.

Therefore, we will think of a periodic orbit as a single object, with all points
in the orbit being represented by one point in our schematic model. The phrase
“derivative of a periodic orbit” will refer to the derivative of fk with respect to x
evaluated at any point in the orbit. (For phase space dimensions greater than one,
this phrase will have to be interpreted appropriately as an eigenvalue of Dxf

k.)
We always take k to be the minimum period of the orbit.

Figure 12.4 is a guide to the various types of periodic orbits we will encounter
in cascades. An unstable periodic point p of period k is called a regular repeller
if (fk) ′(p) � 1; it is called a flip repeller if (fk) ′(p) � �1. In other words, we
have partitioned the set of hyperbolic periodic orbits into three subsets: stable,
regular unstable, and flip unstable. We call these sets S (for stable), U� (for
regular unstable), and U� (for flip unstable). Definition 12.1 makes precise what
the “sticks” are in our tinker-toy model.

Definition 12.1 A maximal path of hyperbolic fixed points or periodic
orbits is called a schematic branch (or just branch). In the case of a schematic
branch of periodic orbits, one point on the branch represents all points in one
orbit.

Figure 12.4(b) shows the bifurcation diagram of a family of maps with
a period-three saddle node and a period-doubling bifurcation from the path of
stable period-three orbits. A schematic bifurcation diagram representing the same
family appears in (c), with the bifurcation orbits drawn as circles. The saddle node
bifurcation is indicated schematically by a circle with a plus sign (�) inside it,
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Figure 12.4 Elements of schematic diagrams.
(a) A saddle-node bifurcation is indicated schematically by a circle with a plus sign
(�) inside it. The saddle node orbit has derivative �1 (or one eigenvalue equal
to �1, in two or more dimensions). A period-doubling bifurcation is drawn with
a minus sign (�). The map has derivative �1 (or one eigenvalue equal to �1) at
this orbit. Solid segments represent branches of stable orbits or branches of regular
unstable orbits, with the branches of stable orbits directed with an arrow pointed to
the right and the branches of regular unstable orbits directed to the left. All points
in an orbit are represented by one point in the schematic diagram. The dashed
schematic branch represents the three paths of flip unstable orbits. Regular unstable
orbits have exactly one eigenvalue larger than �1, while flip unstable orbits have
exactly one eigenvalue smaller than �1. The absolute values of all eigenvalues of
a stable orbit are smaller than 1. (b) The bifurcation diagram of a family of one-
dimensional maps with a period-three saddle node at a � a0 and a period-doubling
bifurcation at a � a1 from the stable period-three orbit is shown. A stable period-six
orbit appears at a1. (c) A schematic bifurcation diagram representing the family in
(b). The number next to a schematic branch represents the period of orbits on the
branch.
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representing the �1 derivative of that orbit, while the period-doubling bifurcation
is drawn with a minus sign (�). A saddle node of period three occurs in the logistic
family for a slightly less than 3.83. The bifurcation diagram for this family is given
in Figure 1.7(b).

Notice that emanating from the saddle node in Figure 12.4(c) there are
two solid schematic branches: one branch, with an arrow directing it to the right,
represents all three paths of stable period-three orbits in (b); the other branch,
directed to the left represents the three paths of unstable U� orbits in (b).
Emanating from the period-doubling bifurcation orbit in (c) is a solid schematic
branch directed to the right, representing the six paths of stable period-six orbits
in (b). (The rationale for putting arrows on the branches is not apparent now,
but will become clear in Section 12.3.) The dashed schematic branch represents
the three paths of U� orbits in (b).

✎ EXERCISE T12 .1
Why do the three period-doubling bifurcation points in Figure 12.4(b) occur
at the same parameter value?

In schematic diagrams, such as Figure 12.4, points on the branches represent
fixed points or periodic orbits that are isolated. As we saw in Chapter 11, if p is a
hyperbolic fixed point of f, then there is a neighborhood N in phase space that
excludes other fixed points. What about higher-period orbits? Since p is also a
fixed point of fk, and (fk) ′(p) � �1, there is a neighborhood Nk in phase space
(perhaps smaller than N) such that p is the only fixed point of fk in Nk; that is,
there are no period-k points in Nk.

✎ EXERCISE T12 .2

Assume that p is a hyperbolic fixed point. Let �pn� be a sequence of periodic
points such that pn → p, and, for each n, let tn be the (minimum) period of
pn. Explain why limn→� tn � �.

How do schematic branches end? Suppose we try to follow the branch
containing a particular hyperbolic fixed point at a � a0. Let G be the portion
of this branch in [a0, �) � �. Figure 12.5 shows portions of four such schematic
branches. Now assume that there exists a parameter value a1, with a1 � a0, such
that G does not extend to a1. What can happen to G between a0 and a1? One
possibility is that G may become unbounded in x-space. In other words, the
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G1

G2

G3

G4

V

a0 a1

-

Figure 12.5 How schematic branches can end.
Schematic branch G1 leaves the compact region V � [a0, a1] through the boundary
of V; branch G2 ends in a period-doubling bifurcation; branch G3 ends in a line
segment of fixed points; and G4 extends through the parameter interval [a0, a1].

absolute values of points on G go to infinity as or before G reaches a1. Otherwise,
there exists a bounded set V in x-space such that G remains in V; G 	 [a0, a1] � V.

Since G is a path, it is defined as the graph of a function � : J → V, where
J is an interval of real numbers. That is, G � �(a, �(a)) : a � J�. It follows that
there exists a parameter value ae such that [a0, ae) 	 J 	 [a0, ae]. We argue that
J is open-ended on the right side. Suppose, on the contrary, that J contains the
endpoint ae. Then G has at least one fixed point p at a � ae, according to Exercise
T12.3. Since p is hyperbolic, G must extend beyond ae (by Definition 11.6 and
Theorem 11.7, Chapter 11), a contradiction.

The “half-branch” G must have at least one limit point at ae. By continuity
of the map, this point (or points) is fixed. By the above argument, any limit
points of G that are not in G must be nonhyperbolic. Depending on the map,
these nonhyperbolic fixed points may or may not be bifurcation orbits.

✎ EXERCISE T12 .3
(a) Show that if G is a path of fixed points defined on [a0, ae), and if

G is bounded, then G has at least one limit point at a � ae. (b) Show that
any limit points of G are fixed points.
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Figure 12.5 shows the fate of several schematic branches in a closed,
bounded region [a0, a1] � V: (1) G1 leaves [a0, a1] � V through the boundary
of V; (2) G2 ends in a bifurcation orbit from which other branches emanate;
(3) G3 ends in an interval of fixed points; and (4) G4 extends through the pa-
rameter interval [a0, a1]. We will concentrate below on families of maps where
the nonhyperbolic fixed points and periodic orbits are all saddle-node or period-
doubling bifurcations, thereby ruling out the fate of branch G3.

12 .3 G E N E R I C B I F U R C AT I O N S
The word “generic” refers to behavior that is typical—behavior that we normally
expect to see. In this section we explain the fact that for families of smooth maps
on the real line, it is a generic property that the map has only saddle-node and
period-doubling bifurcations. The point is that these two are the most commonly-
seen bifurcations, and that other “nongeneric” bifurcations such as the pitchfork
bifurcation occur rarely.

We will say that a property of smooth functions is generic if the set of
functions that have the property is dense. This means that for each smooth f ,
whether it has the property or not, arbitrarily small perturbations of f have the
property. We caution the reader that the term “generic” is often used in a more
specialized form in the mathematical literature; consult a topology book for more
details. In any case, the specialized usage implies the usage in this book.

An example of a generic property of smooth functions f : [0, 1] → � is that
the function has at most a finite number of zeros. (A zero of f is a number x for
which f(x) � 0.) Not every smooth function has this property: The identically zero
function has uncountably many. But functions arbitrarily close to the identically
zero function, namely the constant functions f(x) � � for small �, have no zeros.
To show that this property is generic we need to find that these neighbors exist
for any smooth function.

Before we check this fact, we mention another generic property. Let x0 be
a number in [0, 1], and consider functions f with the following property:

(G0) f : [0, 1] → � and f ′(x0) � 0 whenever f(x0) � 0.

Note that if f(x0) � 0 and f ′(x0) � 0, then there is some neighborhood of x0 in
which it is the only zero. In fact, the Mean Value Theorem implies that

f(x) � f(x) � f(x0) � f ′(c)(x � x0) � 0

for x close to but not equal to x0, since c is trapped between x and x0, and
f ′(x0) � 0.
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Notice that (G0) implies that f has at most a finite number of zeros in a
bounded set. If there were infinitely many zeros, we could choose a sequence xi of
zeros that converges to some point x in [0, 1], which would also have to be a zero
by the continuity of f . Because f satisfies (G0), f(x) � 0 and f ′(x) � 0, so that
there must be some neighborhood of x in which it is the only zero, a contradiction.

It remains to explain why (G0) is a generic property. This follows from
Theorem 12.2, which can be found in (Hirsch, 1976). For a smooth function f , a
critical point c satisfies f ′(c) � 0.

Theorem 12.2 (Sard’s Theorem) Let f : [0, 1] → � be a smooth function,
and let C denote the set of critical points of f. Then f(C) has measure zero.

In this terminology, a function has the property (G0) if and only if 0 does not
belong to f(C). The function g�(x) � f(x) � � has the same critical points as f(x).
Since f(C) has measure zero, g� has property (G0) for almost every real number
�, including values of � arbitrarily near 0. Therefore functions g� arbitrarily near
f are in (G0), even if f isn’t. This proves that property (G0) is a generic property
of smooth functions.

✎ EXERCISE T12 .4

Let g : � → � be a smooth map, and assume that for each x, g(x) � 0
implies g′′ (x) � 0. Show that there are at most finitely many zeroes (points
x for which g(x) � 0) in any bounded interval.

Another generic property for smooth functions h is

(G1) h : [0, 1] → � and h ′′(x0) � 0 whenever h ′(x0) � 0.

Such a function h always has the property that there are only a finite number of
x0 for which h ′(x0) is 0.

Next we look at a slightly different class:

(G2) k : [0, 1] → � and k ′′(x0) � 0 whenever k ′(x0) � 1.

We can use this property to study certain bifurcation diagrams. Notice that if
k(x) satisfies (G2), then h(x) � x � k(x) satisfies (G1). Also (G2) guarantees that
there are at most finitely many points x0 at which k ′(x0) � 1.

We can also talk about generic properties of functions ka(x) that depend on
a parameter. Define

ka(x) � x � a � h(x),
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where h satisfies (G1). This is a rather special map depending on a parameter
because a enters in a very simple way. Nonetheless, it is instructive because we
can determine what the bifurcation diagram for fixed points of k must look like.
In the bifurcation diagram, we plot the set �(a, x)� of points at which ka(x) � x.

This set is just �(h(x), x)�, the graph of h(x) reflected about the 45◦ line:
If we set a � h(x) for a particular x, then (a, x) is on the graph of h and also
ka(x) � x. (Here we are ignoring all periodic orbits of period greater than 1.)
At the saddle-node bifurcation points (a, x), ka(x) � x and the partial derivative
�ka � �x(x) � 1. Figure 12.6 shows the bifurcation diagram of fixed points for the
function k, when h(x) � x3 � 9x2 � 24x � 12. Notice that the saddle nodes of k
are the relative maximum and/or minimum points of h on the graph of a � h(x).
Since h satisfies (G1), there are only a finite number of these points in a bounded
region of (a, x)-space.

We have described one generic property of bifurcation orbits—namely,
that there cannot be infinitely many (fixed-point) saddle nodes in a bounded
region—and that argument is given for only a special set of maps. More generally,
let f : � � � → � be a smooth family of scalar maps, and let (a, x) be a point
for which f(a, x) � x and �f

�x(a, x) � 1; that is, (a, x) satisfies the conditions on

f and �f
�x necessary for a saddle node. If we specify further that both �2f

�x2 (a, x)
and �f

�a (a, x) are nonzero, then there is a neighborhood of (a, x) in which it is
the only (fixed-point) saddle node. (This property is verified in Theorem 11.9.)
There are also conditions on the partial derivatives of f that guarantee that a
given period-doubling bifurcation point will be similarly isolated from other such
bifurcations of the same or lower period. (See Exercise 11.9 for these conditions.)

a

x

Figure 12.6 The bifurcation diagram of fixed points of ka(x) � x 
 a � h(x),
where h(x) � x3 � 9x2 
 24x � 12.
The saddle node fixed points of k are the local maximum and minimum points of
a � h(x).
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Thus we can conclude that having only a finite number of fixed point saddle-node
and period-doubling bifurcations in a bounded region of (a, x)-space is a generic
property. In particular, any smooth one-parameter family either has this property
or can be closely approximated by a family that has it. By “closely approximated”,
we mean that a family g can be chosen so that sup(a,x)���� | f(a, x) � g(a, x) |
is as small as we like. The proof that the set of one-parameter families described
below is generic (within the class of maps whose orbits have at most one unstable
direction) is due to (Brunovsky, 1969).

Recall that a branch of orbits is a maximal path (in a) of hyperbolic fixed
points or periodic orbits and that branches end only in nonhyperbolic orbits. For
one-dimensional maps, nonhyperbolic fixed points have derivatives equal to �1
or �1. We denote these sets of orbits by B� and B�, respectively. For higher-
dimensional maps, the set B� contains fixed points with exactly one eigenvalue
equal to �1 and no other eigenvalues on or outside the unit circle, whereas the set
B� contains fixed points with exactly one eigenvalue equal to �1 and no other
eigenvalues on or outside the unit circle. (By restricting B� and B� in maps of
dimensions greater than one in this way, we are saying that nonhyperbolic fixed
points can have at most one eigenvalue of absolute value greater than or equal
to one.) So far we have ignored the cases in which an orbit is in B� or B� and a
bifurcation does not occur, or the cases where nonhyperbolic fixed points are not
isolated.

By assuming the following hypotheses, we require that all nonhyperbolic
fixed points be either saddle-node or period-doubling bifurcations.

Definition 12.3 (Generic Bifurcation Hypotheses.)
(1) When p is in B�, then p is a saddle-node bifurcation orbit. Specifically,

at an orbit in B� two branches of orbits emanate: one branch of orbits in S
(stable orbits) and one branch of orbits in U� (regular unstable orbits). Orbits
on both branches have the same period as the bifurcation orbit. In a bifurcation
diagram (representing a compact subset of the domain), for each k, there are only
finitely many orbits in B�. Schematic diagrams of all the generic saddle-node
bifurcations are shown in Figure 12.7.

(2) When p is in B�, then p is a period-doubling bifurcation orbit. At an
orbit in B�, three branches of orbits emanate. See Figure 12.4. Orbits on one of
the branches have twice the period of the bifurcation orbit. Orbits on the other
two branches have the same period: One of these two branches has orbits in S
(stable orbits) and the other has orbits in U� (flip unstable orbits). Again, in
the bifurcation diagram, for each k, there are only finitely many orbits in B�.
Schematic diagrams of all the generic period-doubling bifurcations are shown in
Figure 12.10.
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Figure 12.7 The generic saddle-node bifurcations.
At a period-k saddle node, two branches of orbits emanate: one branch contains
stable (S) orbits and the other contains regular unstable (U�) orbits. All orbits on
both branches are period-k orbits. (a) The two branches appear to the right of the
bifurcation parameter a � a�; orbits on the branches exist for a greater than (and
near) a�. (b) The two branches appear to the left of a�.

We will call a one-parameter family of maps generic if it satisfies these
restrictions on orbits in B� and B�. The saddle-node and period-doubling bifur-
cations are called generic bifurcations.

Generic maps form a large set in that they are dense in the set of one-
parameter families of maps. Although other situations are possible (such as pitch-
fork bifurcations or orbits in B� or B� not being bifurcation orbits), they are not
likely to occur. And if they do, there will be closely approximated by a family
whose only bifurcations are saddle-node and period-doubling bifurcations.

For one-dimensional families, saddle-node bifurcation orbits connect
schematic branches of stable orbits and regular unstable orbits. What types of
schematic branches emanate from period-doubling bifurcation orbits? Following
a path of fixed points through a period-doubling bifurcation, the derivative (or
an eigenvalue) goes through �1 (either smaller to larger or vice versa) at the
bifurcation orbit. Therefore, one branch of fixed points is stable (derivative has
absolute value smaller than one) and the other is flip (derivative smaller than
�1). To determine the third branch, the doubled-period branch, we appeal to a
description of the graph of the function f2

a near the bifurcation point, as shown
in Figure 12.8. As a branch of stable fixed points nears a period-doubling bifur-
cation (Figure 12.8(a)), the derivative of f2

a evaluated at orbits along the branch
approaches �1. After the derivative has crossed �1 (Figure 12.8(b)), there are
three fixed points. From the direction that the graph crosses the line y � x, we see
that there are two new paths of stable fixed points. Suppose, on the other hand,
that a single branch of flip fixed points approaches a period-doubling bifurcation
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Figure 12.8 Graphs of f 2
a as the function undergoes period-doubling bifurca-

tions.
Since the map fa has slope �1 at a period-doubling bifurcation, the slope of the
second iterate f2 is �1. If the parameter value a is chosen on one side of the
bifurcation, as shown in (a), then the graph of f2 looks like (b) for parameter values
on the other side of the bifurcation. Similarly, the graph of f2 may change from (c)
to (d) at the bifurcation point.

(Figure 12.8(c)). Looking again at the graph of f2
a and at its direction of crossing

at each intersection with the line y � x, we conclude that the continuation of
the branch of flip fixed points after the bifurcation (Figure 12.8(d)) is a stable
branch, while the two new paths of fixed points are regular unstable orbits.

We summarize these facts in Lemma 12.4.

Lemma 12.4 (Exchange of Stability Principle.) At a period-doubling
bifurcation orbit of period k occurring at a � ab, one period-k branch emanating
from the bifurcation orbit contains flip unstable orbits and the other period-k
branch consists of stable orbits; for one branch, a � ab, and for the other, a � ab.
If the period-2k branch lies on the same side as the period-k stable branch, then it
has regular unstable orbits, while if it lies on the opposite side, it has stable orbits.

Although we do not prove this lemma, justification for one-dimensional
families follows from diagrams of the possible generic period-doublings shown in
Figure 12.9. For two-dimensional families, index theory is needed.
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Figure 12.9 The generic period-doubling bifurcations for families of one-
dimensional maps.
Bifurcation diagrams of all possible generic period doublings from period-k to period-
2k are shown. A single point of each period-k orbit appears, together with two points
for each period-2k orbit. The arrows indicate whether nearby points move toward
or away from the periodic points.

Figure 12.10 shows the possible period-doubling bifurcations under the
Generic Bifurcation Hypotheses of Definition 12.3. Again, branches of orbits
in S are represented by solid line segments with arrows directed to the right,
while branches of orbits in U� are represented by solid line segments with arrows
directed to the left. Branches of orbits in U� are represented by dashed line
segments. In Figure 12.10(a), for example, one branch (a period-k branch) is
directed toward the bifurcation orbit, one branch (a period-2k branch) is directed
away, and one branch is not directed.

Corollary 12.5 At each generic bifurcation orbit there is one branch
that is directed toward the bifurcation orbit and one branch that is directed away.
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Figure 12.10 Schematic diagrams of the four generic period-doubling bifurca-
tions.
Schematic diagrams of the bifurcations in Figure 12.9 are shown. These bifurcations
are the only generic period-doubling bifurcations for families of one-dimensional
maps or for families of two-dimensional area-contracting maps.

Proof: Lemma 12.4 admits only four possibilities of generic period-
doubling bifurcations, and these are shown in Figure 12.10. Examining these
cases gives the result for period-doubling bifurcations. For saddle-node bifurca-
tions, Exercise 11.8 of Chapter 11 gives generic conditions under which there are
two branches, both on the same side, with oppositely directed arrows, as shown
in Figure 12.7.

✎ EXERCISE T12 .5
Use the exchange of stability principle to verify that all the (generic) period-
doubling bifurcations for a family of one-dimensional maps are shown in
Figure 12.10.

In summary, our tinker-toy model for generic one-parameter maps contains
“sockets”, which are saddle-node and period-doubling bifurcations and “sticks”,
which are S branches, U� branches, or U� branches. Each schematic branch that
begins or ends within the given parameter range does so at a generic bifurcation
orbit. Figure 12.11 shows a schematic bifurcation diagram illustrating these ideas.

In the next section, we use the theory of schematic diagrams to explain
how chaos develops in one-parameter families of maps.
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Figure 12.11 Schematic model of a bifurcation diagram.
The interconnections of branches of orbits are potentially quite complicated, even
in generic cases. Here we show one such diagram, using only saddle-nodes and
period-doubling bifurcations. Although we have included only a finite number of
bifurcation points, in principle, we could have had period doublings (and even
saddle nodes) of all the periods k, 2k, 4k, 8k, . . . .

12 .4 T H E C A S C A D E T H E O R E M

Poincaré was the first to give a complete mathematical description of a period-
doubling bifurcation, and (Myrberg, 1962) first described a cascade. Cascades
became well known with the applications of (May, 1976). Figures 12.1 and 12.2
show cascades for the one-dimensional quadratic map, and Figure 12.3 shows
cascades for the two-dimensional Poincaré map of the forced damped pendulum.
Many distinct cascades are seen or are hinted at in this picture. Numerical stud-
ies reveal that cascades occur not in isolation but in great profusion, sprinkled
throughout chaotic regimes.
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The purpose of this section is to give an explanation of why cascades occur,
and why they must occur in great profusion. The explanation is adequate only
for chaotic systems that have at most one unstable direction at each point (at
most one positive Lyapunov exponent). Indeed there seems to be no reason
to expect to find many cascades in highly chaotic systems that are unstable in
more than one direction. As an example of a class of systems with at most one
positive Lyapunov exponent, we described two-dimensional dissipative systems
in Chapter 11. A dissipative map satisfies | det Df| � b � 1, so that the two
Lyapunov numbers of each trajectory satisfy L1L2 � b. The Hénon map (for
fixed |b| � 1) and the Poincaré map of the forced, damped pendulum are two
examples of dissipative systems with constant Jacobian determinants. In these
cases, L1(x)L2(x) � |det Df|, for each initial point x. Although other settings
may satisfy the restriction that there be at most one unstable direction at each
point, the primary applications of the Cascade Theorem will be to families of
one-dimensional maps and families of two-dimensional dissipative systems.

The description is given in terms of a process of orbit creation followed by
stability shedding and builds on two well-known phenomena: the coexistence of
huge numbers of unstable periodic orbits in a chaotic attractor (for a fixed param-
eter value), and the general bifurcation phenomenon known as “the exchange
of stabilities” (Lemma 12.4). As the parameter is increased, the collection of
periodic orbits changes. For example, it might change from a single stable orbit
at parameter value a0 to the infinite hoard of unstable orbits one expects in a
chaotic attractor at ac. We will argue here that the only way in which these
unstable orbits can arise (given the absence of stable orbits at ac) is through the
process of cascade formation. Close to half the orbits in a typical chaotic attractor
are regular unstable (U�) orbits. (See Exercise 12.4.) We will show that for each
of these U� orbits there must be a distinct cascade occuring in some parameter
range. Therefore, in changing from a single stable periodic orbit to a chaotic
attractor, the system must have had not just one cascade but, in fact, infinitely
many cascades.

We will assume throughout the remainder of this section that f is generic.
While genericity is not a necessary assumption for the result we prove, it does
significantly simplify the arguments. Any map that is not generic can be approx-
imated by a generic map f. The approximation techniques needed to extend our
arguments to the case without genericity assumptions can be found in (Yorke and
Alligood, 1985).

Recall that all orbits on a branch (as shown in Figure 12.4) are the same
type: either all stable S, all regular unstable U�, or all flip unstable U�. These
branches end at bifurcation orbits, and the bifurcation orbits serve to connect the
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different types of branches. We may therefore refer to branches as stable (or S)
branches, regular unstable (or U�) branches, etc.

Definition 12.6 A cascade from period k is a connected set of branches
and bifurcation orbits containing stable branches of period k, 2k, 4k, . . . , all lying
in a bounded region of parameter and phase space. The connected set will also
contain unstable orbits.

Since we are interested in how chaotic sets develop, we assume Hypotheses
12.7 hold for some closed, bounded region V of phase space. For one-dimensional
maps, V is an interval [x0, x1], while for two-dimensional maps, V could be chosen
to be a disk. We discuss only orbits all of whose points lie in V.

Hypotheses 12.7 Hypotheses for the Cascade Theorem.

1. There is a parameter value a � a0 for which f has only stable fixed points
or stable periodic points. In particular, it may have no periodic points.

2. There is a parameter value a � ac � a0 (c for “chaotic”) for which f
has unstable periodic points and for which the only periodic orbits are
in U� or U�. (Of course, in some cases the order of a0 and ac will be
reversed, but we choose one case to make the discussion simpler.)

3. For a between a0 and ac, the periodic orbits of f all lie in a bounded
region V of phase space. A weaker statement may also be used: there are
no periodic orbits of f on the boundary of the set V.

4. The map f satisfies the Generic Bifurcation Hypotheses of Definition
12.3. In particular, all bifurcations look like those shown in Figures 12.7
and 12.10, and, for each k, there are only finitely many bifurcation orbits
in [a0, ac] � V.

In Theorem 12.8, we refer to a connected set of orbits. Thinking of a
period-k orbit as a collection of k periodic points, we mean the connected set of
branches together with endpoints (bifurcation orbits) to which a particular orbit
belongs. For a period-k orbit, there will be k distinct connected sets of periodic
points underlying this one connected set of orbits.

Theorem 12.8 (The Cascade Theorem.) Assume Hypotheses 12.7. Let p
be a regular unstable periodic orbit of f of period k at a � ac. Then p is contained in a
connected set of orbits that contains a cascade from period k. Distinct regular unstable
orbits at a � ac yield distinct cascades: If p1 and p2 are two regular unstable orbits at
a � ac, then the two cascades associated with p1 and p2 have no branches of stable orbits
in common.
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Before going into the proof of Theorem 12.8, we focus again on the type
of situation to which the theorem applies: namely, a one-parameter family of
maps for which at an initial value of the parameter there are no fixed points or
periodic points or only sinks, and at a later parameter value there are only unstable
fixed points or periodic points, such as in a chaotic set. We were introduced to
cascades in the bifurcation diagram of the logistic map (see, for example, Figure
6.3 of Chapter 6). The one-dimensional quadratic family fa(x) � a � x2 satisfies
Hypotheses 12.7 for (a, x) in [�2, 2] � [�2, 2]. (See Exercise 12.1.) Our primary
two-dimensional example is the formation of a horseshoe in a family of area-
contracting maps. For example, (Devaney and Nitecki,1979) proved that for
fixed b, �1 � b � 0, the Hénon family H(x, y) � (a � x2 � by, x) develops a
horseshoe as the parameter a is varied. In particular, for a � �(1�b)

4 , H has no

fixed or periodic points, and for a � 1
4 (5 � 2

√
5)(1 � b)2, a hyperbolic horseshoe

exists. All periodic points and fixed points in this family are contained within a
bounded region of the plane.

The proof of Theorem 12.8 follows from a few key ideas that we split off
as lemmas for you to verify. First we isolate a path of orbits in (a, x)-space within
the possibly vast and interconnected network of orbits that can occur even in
the generic case. The path will enable us to follow cascades even when there are
numerous saddle nodes, period doublings, and period halvings along the path.

Definition 12.9 For any point (a, x) on a periodic orbit that is not a flip
unstable orbit, define the snake through (a, x) to be the collection of S branches
and U� branches and their endpoints (bifurcation orbits) that can be reached by
a connected path of these branches and their endpoints from (a, x). See Figure
12.12.

✎ EXERCISE T12 .6
Verify that a snake passes through an orbit in S, U�, or a bifurcation orbit
as a one-dimensional path of orbits.

Notice that a snake can be a closed loop of orbits. If it is not, however, then
the snake will never go through any orbit twice. The following lemma says that
under Hypotheses 12.7 regular unstable orbits cannot period double.

Lemma 12.10 When a period-k branch in a snake ends in a period-
doubling bifurcation orbit of period k, then it is an S branch.
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Figure 12.12 Snakes in a generic bifurcation diagram.
A snake is a connected path of orbits, none of which are flip unstable orbits. Three
snakes are shown in this schematic diagram, which is constructed by eliminating
the flip unstable branches in Figure 12.11.

Lemma 12.10 is proved by observing that it holds for the four cases in
Figure 12.10. Specifically, since the only branches on a snake are S branches and
U� branches, the period-k branch must be a stable branch. (The fact that there
are no generic period-doublings with U� branches of period-k follows originally
from the assumption of area-contraction: If one eigenvalue crosses �1 at the
bifurcation point, the other cannot be greater than �1. For one-dimensional
maps, the derivative must move through �1.)

Since snakes are composed only of S and U� branches, the direction of
travel along a snake (whether a is increasing or decreasing) will change precisely
at a bifurcation orbit, when moving from an S branch to a U� branch or vice
versa. See Figure 12.12, where S branches are indicated with arrows pointed to
the right, and U� branches, with arrows pointed to the left. We may say that
a snake enters (or leaves) a region if it has one orbit on the boundary and the
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directed path enters (or leaves, according to the direction of arrows) the region
at that orbit.

Lemma 12.11 implies that once a snake enters [a0, ac] � V, entering either
from the right at a � ac as a U� branch, or from the left at a � a0 as an S branch,
the snake is trapped inside [a0, ac] � V.

Lemma 12.11 No snakes leave [a0, ac] � V.

✎ EXERCISE T12 .7
Prove Lemma 12.11.

Lemmas 12.12, 12.13, and 12.14 together establish that a snake must con-
tain infinitely many bifurcation orbits, only finitely many of which can be of a
given period N or less. Therefore, the snake must contain bifurcation orbits of
arbitrarily large periods. Since, for a generic family, the only way periods can
increase along a snake is for it to contain period doublings, we obtain the desired
cascade.

Lemma 12.12 Any snake that is not a closed loop of orbits must contain
infinitely many branches and infinitely many bifurcation orbits.

✎ EXERCISE T12 .8
Prove Lemma 12.12.

Lemma 12.13 follows from the generic bifurcation hypotheses.

Lemma 12.13 Let N � 0 be given. A snake contains only finitely many
bifurcation orbits of period N or less for parameter values between a0 and ac.

✎ EXERCISE T12 .9
Prove Lemma 12.13.

Lemma 12.14 The snake must pass through bifurcation orbits of periods
k, 2k, 4k, 8k, . . . , and stable branches of periods k, 2k, 4k, 8k, . . . .
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✎ EXERCISE T12 .10
Prove Lemma 12.14.

To summarize: Assuming that there are only stable orbits at a0 and no stable
orbits at ac, we have shown that each regular unstable orbit at ac must lie on a
connected set of orbits containing a cascade. Generically, an orbit in U� is born
in a saddle-node bifurcation, paired with an orbit in S of the same period. The
stable orbit then sheds its stability through a period-doubling cascade.

Now we can translate the theorem within an appropriate system. For one-
dimensional families, the stable orbits are attractors, and the unstable orbits are
repellers, either regular or flip. Higher-dimensional systems where orbits have at
most one unstable direction are also appropriate. For families of area-contracting
maps of the plane, the stable orbits are attractors, while the unstable orbits are
saddles, regular or flip.

As a final result, we restate the Theorem 12.8 within this setting.

Theorem 12.15 Let f be a family of area-contracting maps of the plane that
satisfy Hypotheses 12.7, and let p be a regular saddle of f of period k at a � ac. Then p
is contained in a connected set of orbits that contains a cascade from period k. Distinct
saddles at a � ac yield distinct cascades: If p1 and p2 are two saddles at a � ac, then the
two cascades associated with these saddles have no branches of attractors in common.

✎ EXERCISE T12 .11
Explain which of the arguments in the proof of the Cascade Theorem
depend on the assumption that orbits have at most one unstable direction.
(This assumption underlies the structure of the generic bifurcations.)

We conclude with a brief discussion of moving from the generic to the
general case. In particular, Theorem 12.8 holds for any smooth one-parameter
family f of area-contracting maps of �2 for which hypotheses (1)–(3) of (12.7)
hold (see (Yorke and Alligood, 1985) for the limit arguments). Families of area-
preserving maps of the plane can also be approximated by maps in our generic
set, although in the area-preserving case, the stable orbits are not attractors but
elliptic orbits. Thus, for families of area-preserving maps of the plane that satisfy
hypotheses (1)–(3) of (12.7), period-doubling cascades of elliptic orbits will occur.
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☞ C H A L L E N G E 12

Universality in Bifurcation Diagrams

THE STABILITY ARGUMENTS of this chapter have shown us why period-
doubling cascades must occur in certain systems that develop chaos. Not only
are distinct cascades qualitatively similar, as seen in Figure 12.2, but they also
have metric properties in common, as we saw with Feigenbaum’s discovery for
one-parameter families of one-dimensional maps.

Self-similarity within a cascade follows from the basic idea that higher
iterates of the map can be rescaled in a neighborhood of the critical point to
resemble the original map. For example, Figure 12.13 shows the graphs of iterates
of two maps in the quadratic family ga(x) � x2 � a. In Figure 12.13(a), g2 is
graphed for g(x) � x2 � 1. At this parameter (a � 1), the origin is a period-two
point of g, (a fixed point of g2). In Figure 12.13(b), g4 is graphed for g(x) �

x2 � 1.3107. The origin is a period-four point of g. In each case, the graph in a

-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2

(a) (b)

Figure 12.13 Iterates of maps within the quadratic family ga(x) � x2 � a.
(a) The origin is a period-two point of g(x) � x2 � 1. The second iterate g2 is
graphed. (b) The origin is a period-four point of g(x) � x2 � 1.3107. The fourth
iterate g4 is graphed. In each case, a neighborhood of the origin in phase space and
of the appropriate a-value in parameter space can be rescaled so that the dynamic
behavior of the iterate in the small scale mimics that of the whole quadratic family
in the large.
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neighborhood of the critical point can be rescaled to look like the graph of x2 � a
at a � 0. For example, the map g2 in Figure 12.13(a) would be flipped about the
horizontal axis and rescaled. As a is increased, each parabolic region mimics the
behavior of x2 � a. Thus sequences of bifurcations, such as cascades, could be
expected to be the same for g2

a in a neighborhood of x � 0 and a � 1 and for g4
a

in a (still smaller) neighborhood of x � 0 and a � 1.3107 as for ga(x) � x2 � a.
In Challenge 12 we examine universal metric properties among different

windows of periodic behavior within chaotic regions of parameter space. The
arguments are given for one-parameter families of scalar unimodal maps, although
the phenomena seems to occur within families of area-contracting planar maps as
well. We show that, typically, the distances between bifurcations (both local and
global) within a periodic window are well-approximated by the corresponding
distances for the canonical map ga(x) � x2 � a under a suitable linear change of
coordinates. The procedure of rescaling to obtain universal properties is known
as renormalization. Figure 12.14 shows first the complete bifurcation diagram for
the map ga(x) followed by a period-nine window for g9. The relative distances
between corresponding bifurcations are strikingly similar.

A period-n window begins with a period-n saddle node at a � as. The stable
period-n orbit then loses stability through a period-doubling cascade, eventually
forming an n-piece chaotic attractor. The window ends at the crisis parameter

Figure 12.14 Universality in periodic windows.
The complete bifurcation diagram for the map ga(x) � x2 � a is shown above,
while the bifurcations for g9

a within a period-nine window are shown below. In the
top diagram, x goes from �2.0 to 2.0 and a is between �0.25 and 2.0, while in
the bottom diagram x goes from �0.02 to 0.02 and a is between 1.5552567 and
1.5554906.
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value a � ac at which the n-piece attractor disappears. As with a planar map,
this crisis occurs when the attractor collides with a basin boundary orbit—in this
case, with a period-n source. (See Chapter 10 for a discussion of the planar case.)
The basin of the chaotic attractor includes the union of n disjoint open intervals,
each of which contains a piece of the attractor and one of which contains the
critical point of the map. Since the critical point must map to an endpoint of one
of these intervals, the crisis occurs precisely when the critical point maps onto
one of the period-n boundary sources.

Within a window, we denote the first period-doubling bifurcation parameter
by a � ad. Between the saddle-node at as and the period-doubling at ad, the path
of stable period-n orbits must pass through a parameter where the orbit has
derivative 0. At this parameter, denoted a � a0, the orbit is called superstable
and contains a critical point x0 of the map.

Step 1 Show that the ratio Rg � (ac � as)� (ad � as) is 9
4 for the period-

one window of the canonical family ga(x) � x2 � a. [Hint: Find an interval that
maps onto itself to determine ac.]

Let ka be a family of scalar maps that is linearly conjugate to the canonical
family of maps ga. Specifically, define G : �2 → �2 to be (a, x) �→ (a, ga(x)) and
K : �2 → �2 to be (a, x) �→ (a, ka(x)). Then G and K are said to be linearly
conjugate if there is a linear map H : �2 → �2 such that H ◦ K � G ◦ H. The
form of the linear map we use here is H(a, x) � (C1(a � a0), C2(x � x0)), for
nonzero constants C1, C2.

Step 2 Show that k has a period-n saddle node or period-doubling bi-
furcation at (a, x) or a crisis at ac if and only if g has a period-n saddle node or
period-doubling bifurcation at (C1(a � a0), C2(x � x0)) or a crisis at C1(ac � a0),
respectively.

Conclude for the map k that Rk � (ac � as)� (ad � as) is 9
4 . Furthermore, any

ratio of distances defined by conditions on periodic points and their derivatives
is preserved under a linear conjugacy.

Now we focus on an arbitrary family f of unimodal maps that has a super-
stable period-n orbit, �x0, . . . , xn�1�, at a � a0. Again, let F(a, x) � (a, f(a, x)).
We assume that x0 is the critical point and show that, under certain assumptions,
there is a neighborhood of (a0, x0) and a linear change of coordinates H for which
HFnH�1 is approximated by the canonical family G. The larger n, the period of
the orbit, the closer the approximation, with the distance between them (and
their partial derivatives up to a given order) going to 0 as n goes to infinity. The
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ratio Rfn in periodic windows for which the hypotheses are well-satisfied is re-
markably close to Rg � 9 � 4. We illustrate this correspondence at the end of this
challenge with one of several published numerical studies of the phenomenon.

We say a function k(n) is of order g, denoted O(g), if limn→�
k(n)
g(n) is bounded.

For example, n3 is O(2n), but 2n is not O(n3).
When the orbit of x0 is superstable, the map f will typically be quadratic near

x0, the critical point, and a neighborhood of x0 will be folded over by f and then
stretched by the next n � 1 iterates of f before returning close to x0. See Figure
12.15. In order to get an intuitive idea of what is happening here, we describe an
idealized fn : there is a cycle of n disjoint intervals J0, . . . , Jn�1 that the map f
permutes so that f is quadratic on J0 and linear on the remaining Ji’s. Specifically,
fn(a, x) � Ln�1 
 
 
 L1Q(a, x), for constants L1, . . . , Ln�1 which, in the ideal
case, do not depend on a, for a quadratic map Q, which depends on both x and a,
and for x � J0 and a � [ac � as]. Notice that under this simplifying assumption
fn
a : J0 → J0 is quadratic. Ideally, the parameter extent of the window, ac � as,
is sufficiently small that the n � 1 points in the orbit remain far away from the
critical point and that the constants L1, . . . , Ln�1 remain good approximations
to the slopes of fa near these points throughout the parameter window.

Let S � �fn�1 � �x(a0, x1). (For our idealized map, S is the product of slopes
L1 
 
 
 Ln�1.) We make the following specific assumptions incorporating the ideas
in the previous paragraph:

2- 2 

2

- 2 

Figure 12.15 A superstable period-5 orbit.
The map is f(x) � x2 � 1.6254.
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(1) S grows exponentially with n; that is, there is a constant r, r � 1, such
that S is O(rn). (This assumption holds if the remaining points in the
orbit, �x1, . . . , xn�1�, are “far” from the critical point. How far, will
determine in part how well the renormalization procedure succeeds in
approximating the canonical map.)

(2) The second partial � 2fn � �x2 is nonzero at (a0, x0).
(3) The partial �fn � �a(a0, x0) is nonzero.

By rescaling both x and a near (a0, x0), we can make the lowest order terms
in the Taylor series for fn match those of the canonical map. The hard part then
is to show that the higher-order terms are made small by the rescaling. We give
a heuristic argument here, based on estimating the order of the error term in
a Taylor expansion of fn. More technical estimates including bounds on higher
order partial derivatives can be found in (Hunt, Gallas, Grebogi, and Yorke, 1995).

Step 3 Typically, all the kth order partial derivatives of fn�1 taken with
respect to a and x near (a0, x1) are of order Sk. We illustrate this technical point
with an example:

Show that � 2fn�1 � �x2(a0, x1) is of order S2. [Hint:

�fn�1

�x
(a0, x1) �

�f
�x

(a0, xn�1)
�f
�x

(a0, xn�3) . . .
�f
�x

(a0, x1).

Use the product rule (together with the chain rule) to obtain the second partial
derivative.]

Step 4 Using Taylor’s Theorem, verify:

(i) There is a nonzero constant p1 such that

fn�1(a, x) � x0 � S(x � x1) � p1S(a � a0)

� O(S2(|x � x1|2 � |a � a0|2)),
provided |x � x1| and |a � a0| are small compared with S�1.

(ii) There are nonzero constants q and p2 such that

f(a, x) � x1 � q(x � x0)
2 � p2(a � a0)

� O(|x � x0|3 � |x � x0||a � a0| � |a � a0|2),
for (a, x) near (a0, x0). Recall that x1 is f(a0, x0).

Step 5 Compose (i) and (ii) of Step 4 to obtain

(iii) fn(a, x) � x0 � qS(x � x0)
2 � pS(a � a0)

� O(S2(|x � x0|4 � |a � a0|2))
� O(S(|x � x0|3 � |x � x0||a � a0|)), (12.2)
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Window size Period a0 Rf |Rf � 9
4 |� ( 9

4 )

0.04506988 7 1.226617 1.635 0.27
0.00956120 7 1.299116 2.032 0.097
0.00197090 8 1.121835 2.229 0.0093
0.00084633 9 1.172384 2.245 0.0022
0.00049277 8 1.323307 2.248 0.00097
0.00033056 10 1.176765 2.244 0.0027
0.00032251 15 1.421811 1.637 0.27
0.00030118 9 1.402762 2.249 0.00036
0.00024599 13 1.353915 2.211 0.017
0.00022962 10 1.142882 2.246 0.0018
0.00022952 9 1.293955 2.246 0.0019

Table 12.3 Values of the ratio Rf for the Hénon map f(x1, x2) � (1 � ax2
1 


x2, 0.3x1).
Data is drawn from windows in the range 1.12 � a � 1.43 with window widths
greater than 2 � 10�4.

for (a, x) near (a0, x0), where p � p1 � p2. To be precise, q � 1
2 � 2f � �x2(a0, x0)

and p � S�1�fn � �a(a0, x0).

The rescaling is given by the linear change of coordinates

y � qS(x � x0), u � �pqS2(a � a0).

In the terminology of the discussion above, the conjugacy H is defined as

H(a, x) � (u, y) � (�pqS2(a � a0), qS(x � x0)).

Step 6 Let g(u, y) be the family of maps conjugate to fn(a, x) under this
change of coordinates. From the expansion for fn in Step 5, show that

g(u, y) � y2 � u � O(S�1(|y|3 � |y||u| � |u|2)).
Since all cascades of the canonical map take place in a bounded region of (u, y)-
space, say (u, y) � [�2.5, 2.5] � [�2.5, 2.5], conclude that g converges to the
canonical map as n → �.

The universality of the ratio Rg appears to apply through a wide class
of chaotic systems, including multidimensional systems that contain cascades.
Table 12.3 shows a numerical study of periodic windows for the Hénon map
f(x1, x2) � (1 � ax2

1 � x2, 0.3x1). The relative error between the calculated Rf

and 9
4 is seen to be typically quite small.
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EXERCISES

12.1. Show that there are parameters a0 and ac such that the quadratic family fa(x) �

a � x2 satisfies Hypotheses 12.7, the hypotheses of the Cascade Theorem.

12.2. Show that neither the quadratic family fa(x) � a � x2 nor the logistic family ga(x) �

ax(1 � x) has a period-two saddle node. Show, on the other hand, that each must
have a period-four saddle node.

12.3. Let g4(x) � 4x(1 � x), and let k be an odd number. Show that half the periodic
orbits of period k are regular repellers and half are flip repellers. Similarly, for a map
that forms a hyperbolic horseshoe, half the periodic orbits of period k are regular
saddles and half are flip saddles. Do the same results hold for any even k?

12.4. Let g denote either the logistic map g4 or the horseshoe map. Use the following step
to show that for n 	 24, at least 49% of the period n orbits of g are regular unstable
orbits and at least 49% are flip unstable.

(a) Let N be the number of fixed points of gn
4 that are not period-n points. Show

that the proportion of one type of orbits (flip or regular) is at least 2n�1�N
2n �

1
2 � N

2n . In the remaining two parts we show that N
2n � .01, for n 	 24.

(b) Show that the number N of fixed points of gn
4 of period less than n is at most

2n � 2 � 2n � 3 � 2n � 4 � 
 
 
 � 2 � n2n � 2.

(c) Show that the function x2�x � 2 is decreasing for x � 2
ln 2 , and that it is less

than .01 for n 	 24.

12.5. Assume that a family of maps fa satisfies Hypotheses 12.7 of the Cascade Theorem.
Let p be a periodic orbit of period k at a � ac. Show that each such orbit p is
contained in a connected set of orbits that contains a cascade from period k.

The result follows from the Cascade Theorem if p is a regular unstable orbit.
We assume, therefore, that p is a flip-unstable orbit.

(a) Let G be the following set of orbits: U� orbits of period k, and U� and S
orbits of period j, for all j 	 2k. Show that there is a path of orbits of G through
each saddle node of period 2k or higher and through each period-doubling
bifurcation of period k or higher.

(b) Orient the branches of orbits in G to form a new type of “snake”, as follows:
S →, U� ←, and U� ←. Show that Lemmas 12.10, 12.11, 12.12, 12.13, and
12.14 hold for these snakes to obtain the result. (Don’t forget to show that
period-k stable orbits are contained in the connected set of orbits.)
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☞ L A B V I S I T 12

Experimental Cascades

THE PERIOD-DOUBLING cascade is perhaps the most easily identifiable route
to chaos for a dynamical system. For this reason, experimental researchers at-
tempting to identify and study chaos in real systems are often drawn to look for
cascades. Here we will survey the findings of laboratories in Lille, France and
Berkeley, California. On the surface, the experiments have little in common—
one involves nonlinear optics, and the other an electrical circuit, but the cascades
that signal a transition to chaos are seen in both.

Scientists at the Laboratoire de Spectroscopie Hertzienne in Lille found period-
doubling cascades in two different laser systems. The first, reported in 1991, was a
CO2 laser with modulated losses. The laser contains an electro-optic modulator
in the laser cavity, that modulates the amplitude of the laser output intensity.
The alternating current C(t) � a � b sin �t applied to the modulator can be
controlled by the experimenter, and various behaviors are found as a, the dc bias,
and b, the modulation amplitude, are varied. The modulation frequency � is fixed
at 640 kHz, the resonance frequency of the device.

Fixing b and using a as a bifurcation parameter yields Figure 12.16 (also
shown as Color Plate 23). The modulation amplitude was set at b � 3V, and
the dc bias was varied from 60V at the left side of the picture to 460V at the
right side. To make this picture on the oscilloscope, the output intensity of the
laser was sampled 640,000 times per second, the modulation frequency. The
intensity makes a periodic orbit during each sampling period. A single value
branch in Figure 12.16 corresponds to a periodic intensity oscillation in step with
the modulation. The double branch that emanates from the single branch means
that the oscillation takes two periods of the modulation to repeat, and so on.
The orbit with doubled period is often called a subharmonic of the original orbit.

Lepers, C., Legrand, J., and Glorieux, P. 1991. Experimental investigation of the colli-
sion of Feigenbaum cascades in lasers. Physical Review A 43:2573–5.
Bielawski, S., Bouazaoui, M., Derozier, D., and Glorieux, P. 1993. Stabilization and
characterization of unstable steady states in a laser. Physical Review A 47:3276–9.
Kocarev, L., Halle, K. S., Eckert, K., and Chua, L. O. 1993. Experimental observation
of antimonotonicity in Chua’s circuit. Int. J. of Bifurcations and Chaos 3:1051–5.
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Figure 12.16 Period-doubling cascade from a CO2 laser.
The dc bias of the modulator in the laser cavity is used as a bifurcation parameter, and
is increased from the left side of the diagram to the right. The resulting bifurcation
diagram of laser intensity shows a period-doubling cascade followed by a period-
halving cascade.

Cascades originate from both the right and the left, colliding in the chaotic region
in the middle. The orbits that are created in the initial cascade are systematically
destroyed as the dc bias is further increased, resulting in a reverse cascade.

The same laboratory also produced Figure 12.17, which is a bifurcation
diagram of the power output of an optical-fiber laser. The active medium is a 5-
meter long silica fiber doped with 300 parts per million of trivalent neodymium,
a rare-earth metallic element. The medium is pumped by a laser diode. The input
power provided by the laser diode is the bifurcation parameter. Increasing the
power from 5.5 milliwatts (mW) to 7 mW results in the oscilloscope picture shown
here, which exhibits a period-doubling cascade ending in chaotic behavior for
large values of the power. By adjusting the tilting of the mirrors in this experiment,
various other nonlinear phenomena can be found, including Hopf bifurcations.
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Figure 12.17 Period-doubling cascade from an optical-fiber laser.
The pump power is increased from the left of the diagram to the right, resulting in
a bifurcation diagram showing a period-doubling cascade.

L. Chua’s laboratory in Berkeley was the setting for studies of bifurcation
phenomena in Chua’s circuit, which we introduced in Chapter 9. The bifurcation
parameter in this circuit was taken to be the capacitance C1 across one of the
capacitors. (This parameter is proportional to 1 � c1 in the notation used for the
differential equations (9.6).) Figure 12.18(a) shows the readout of an oscilloscope
screen, exhibiting an experimental cascade as the parameter C1 ranges from 3.92
nanoFarads (nF) to 4.72 nF. Each vertical division on the screen represents 200
millivolts.

Several different types of periodic and chaotic behavior can be seen in
this picture, including cascades, periodic windows (parameter ranges with only
periodic behavior), bubbles (collisions of cascades from the left and right) and
reverse bubbles (periodic windows with cascades emanating to both left and
right). A magnification of a part of the bifurcation diagram is shown in Figure
12.18(b). At least three odd-period windows are visible in this picture.
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Figure 12.18 Bifurcation diagrams for Chua’s circuit.
Voltage is graphed vertically as a function of the capacitance parameter C1. (a)
Period-doubling cascade followed by windows of period 5, 4, 3 and 2. (b) Magnifi-
cation of part of (a).
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Experimental bifurcation diagrams from both laboratories show antimono-
tonicity, the destruction of periodic orbits created in a cascade by a reverse
cascade. Although this does not occur for the one-dimensional logistic map, an-
timonotonicity is typical of higher-dimensional systems which contain cascades.

There are many other contributions to the scientific literature demonstrat-
ing period-doubling bifurcations and cascades in laboratory experiments. Many
occurred shortly after Feigenbaum’s published work in 1978.

In 1981, P. Linsay of MIT produced a cascade up to period 16 by varying the
driving voltage in a periodically-driven RLC circuit (Linsay, 1981). His estimate
of the Feigenbaum constant was 4.5 � 0.6. At about the same time, a group
of Italian researchers (Giglio, Musazzi, and Perini 1981), found a cascade up to
period 16 from a Rayleigh-Bénard experiment in a heated chamber filled with
water. Using the temperature gradient as a bifurcation parameter, they estimated
the Feigenbaum constant at approximately 4.3. Cascades were first found in laser
experiments by (Arecchi et al., 1982). Another source with many interesting
examples of cascades and snakes in electronics is (Van Buskirk and Jeffries, 1985),
who studied networks of p-n junctions.
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State Reconstruction
from Data

THE STATE of a system is a primitive concept that unifies the approach to many
sciences. In this chapter we will describe the way states can be inferred from
experimental measurements. In so doing we will revisit the Belousov-Zhabotinskii
chemistry experiment from Lab Visit 3, the Couette-Taylor physics experiment
from Lab Visit 4, and an example from insect physiology.

13 .1 D E L AY P L OT S F R OM T I M E S E R I E S
Our definition in Chapter 2 was that the state is all information necessary to
tell what the system will do next. For example, the state of a falling projectile
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consists of two numbers. Knowledge of its vertical height and velocity are enough
to predict where the projectile will be one second later.

The states of a periodic motion form a simple closed curve. Figure 13.1(a)
shows a series of velocity measurements at a single point in the Couette-Taylor
experiment, as described in Lab Visit 4. A plot of a system measurement versus
time, as shown in Figure 13.1(a), is called a time series. For these experimental
settings, the system settles into a periodic motion, so the time series of velocity
measurements is periodic.

A useful graphical device in a situation like this is to plot the time series
using delay coordinates. In Figure 13.1(b) we plot each value of the time series
of velocities �St� versus a time-delayed version, by plotting (St, St�T) for the fixed
delay T � 0.03. This is called a delay-coordinate reconstruction, or delay plot.

In Figure 13.1, part (b) is made from part (a) as follows. At each time
t, a point is plotted in part (b) using the two velocities S(t) and S(t � 0.03).
At time t � 2, for example, the velocity is decreasing with S(2) � 800 and
S(1.97) � 1290. The point (800, 1290) is added to the delay plot. This is repeated
for all t for which recordings of the velocity were made, in this case, every 0.01
time unit. As these delay-coordinate points are plotted, they fit together in a loop
that makes one revolution for each oscillation in the time series.

The interesting feature of a delay plot of periodic dynamics is that it can
reproduce the periodic orbit of the true system state space. If we imagine our
experiment to be ruled by k coupled autonomous differential equations, then the
state space is �k. Each vector v represents a possible state of the experiment, and
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Figure 13.1 Periodic Couette-Taylor experimental data.
(a) Time series of velocities from the experiment. (b) Delay plot of data from (a),
with time delay T � 0.03.
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by solving the differential equations, the state v(t) moves continuously through
the state space as time progresses.

We can imagine a set of coupled differential equations that governs the
behavior of the Couette-Taylor experiment, but it is not easy to write them
down. The state space dimension k would be very large; perhaps thousands of
differential equations modeling the movement of fluid in small regions might
need to be tracked. This is called “modeling from first principles”. In contrast to
the complicated differential equations of motion, the behavior we see in Figure
13.1 is fairly simple. Periodic motion means that trajectories trace out a one-
dimensional curve of states through �k.

Of course, the idea of a real experiment being “governed” by a set of
equations is a fiction. The Couette-Taylor experiment is composed of metal, glass,
fluid, an electric motor, and many other things, but not equations. Yet science has
been built largely on the success of mathematical models for real-world processes.
A set of differential equations, or a map, may model the process closely enough
to achieve useful goals.

Fundamental understanding of a scientific process can be achieved by build-
ing a dynamical model from first principles. In the case of Couette-Taylor, the basic
principles include the equations of fluid flow between concentric cylinders, which
are far from completely understood on a fundamental level. The best differential
equation approximation for a general fluid flow is afforded by the Navier-Stokes
equations, whose solutions are known only approximately. In fact, at present it
has not been proved that solutions exist for all time for Navier-Stokes.

Can we answer questions about the dynamics of the system without un-
derstanding all details of the first principles equations? Suppose we would like
to do time series prediction, for example. The problem is the following: Given
information about the time series of velocity at the present time t � 2, predict the
velocity at some time in the future, say 0.5 time units ahead. What information
about the present system configuration do we need? Formally speaking, we need
to know the state—by definition, that is the information needed to tell the system
what to do next. But we don’t even know the dimension of the state space, let
alone what the differential equations are and how to solve them. To do time
series prediction, we will use the method of analogues. That means we will try
to identify what state the system is in, look to the past for similar states, and see
what ensued at those times.

How do we identify the present state at t � 2? Knowing that S(2) � 800
is not quite enough information. According to the time series Figure 13.1(a),
the velocity is 800 at two separate times; once when the velocity is decreasing,
and once when it is increasing. If we look 0.5 time units into the future from
the times that S � 800, we will get two quite different answers. We need a way
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of distinguishing between the upswings through 800 and downswings through
800, since they represent two different states of the system. The secret is to make
use of delay coordinates. Instead of trying to represent the state by S(t) alone,
use the pair (S(t), S(t � 0.03)). If we use the current velocity S(2) � 800 and
the time-delayed velocity S(1.97) � 1290 to identify the state at t � 2, we can
identify the point as in a downswing. On the other hand, for t � 1.8, the pair
(S(1.8), S(1.77)) � (825, 560), which we identify as an upswing through 800.
The two different states corresponding to S(t) � 800 are separately identified by
the delay plot in Figure 13.1(b).

Figure 13.2 shows how to predict the future. Starting at t � 2, we collect
analogues from the past, by which we mean states of form (S(t), S(t � 0.03)) �

(800, 1290), and find out what happened to the system 0.5 time units later. For
example, the time series reveals that (S(1.1), S(1.07)) � (808, 1294), and that
0.5 time units later, the velocity is S(1.6) � 2125. Also, (S(1.4), S(1.37)) �

(826, 1309) and the future velocity is S(1.9) � 2123. On the basis of this data we
might predict that S(2.5) � 2124, the average of the two. The two analogues and
the resulting prediction at t � 2.5 are shown in Figure 13.2. The prediction does
a fairly good job of matching the actual velocity (shown in the dashed curve) at
t � 2.5.

If the problem is to predict the velocity at some future time, the delay plot
contains all information we need. If we know St and St�T, we can locate our
current position on the curve. Using past observations, we can accurately predict
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Figure 13.2 Prediction of the future by the method of analogues.
The vertical arrows at t � 1.1 and 1.4 show two past analogues for the Couette-
Taylor system state at t � 2. In order to predict the velocity at t � 2.5, one can use
the future evolution of the system encountered by the analogues (the horizontal
arrows at t � 1.6 and 1.9) to predict that the velocity at t � 2.5 should be about
2124.
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where on the curve the system will be in one additional second. We locate the
points on the time series history (on the left of Figure 13.1) which correspond to
points near (St, St�T) in the delay plot (on the right), and mark off the appropriate
amount of time along the time series. If the system is deterministic, meaning that
similar states result in similar outcomes, we will end up with several nearly equal
predictions. In practice, we can average the predictions to improve the statistical
quality of our final prediction, if that were our goal.

✎ EXERCISE T13 .1
Let x(t) be the height at time t of a falling projectile (it obeys the law ẍ � �g).
Decide whether it is always possible to predict x(2) from the knowledge of
x(0) and x(1) alone. Does the pair [x(0), x(1)] uniquely determine the state
of the projectile?

13 .2 D E L AY C O O R D I N AT E S

Periodic orbits move through a one-dimensional set of states. The concept of
dimension is important for quantifying the complexity of a process. The periodic
Couette-Taylor process enters into infinitely many different states, but all states
lie on a one-dimensional curve in the delay plot. In this motion, the system is
restricted to a one-dimensional subset of its (possibly high-dimensional) state
space.

Using the delay coordinates [S(t), S(t � 0.03)], we were able to remove the
self-intersections of the periodic Couette-Taylor attractor. However, the concept
of delay coordinates is not limited to two-dimensional plots. In general, we can
make the m-dimensional delay plot by graphing the vector of delay coordinates

[S(t), S(t � T), S(t � 2T), . . . , S(t � (m � 1)T)]

for each time t in the time series. Attractors that are substantially more compli-
cated than simple closed curves will require more dimensions to be untangled.

Figure 13.3 shows a second example of a periodic orbit. The time series is the
measurement of the electrical impedance across the dorsal vessel, or what passes
for a heart, of a living insect. The heart of Periplaneta americana, the American
cockroach, is a slender pulsatile organ that extends as a long tube from the brain
down the entire body. Electrodes are placed on either side of the tube, about 2
mm apart, and changes in impedance to radio frequencies are recorded which
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Figure 13.3 Cockroach heartbeat data.
(a) Time series of impedances tracks 26 beats. (b) Delay plot of series in (a) cannot
be untangled in two dimensions. Time delay is T � 1� 12 sec. (c) Three-dimensional
delay plot shows successful embedding of the attractor and projection to the hori-
zontal plane, which is the same as (b).

mirror the pumping of hemolymph from the abdomen into the head of the insect.
This data set comes from the laboratory of G. Birchard.

Although periodic motion is again evident for this system, there are two ma-
jor differences between this time series and the series from the periodic Couette-
Taylor experiment. First, the heartbeat is much noisier. By noisier, we don’t mean
in the auditory sense, but in the sense of experimental uncertainty. This is reflected
both in the non-uniformity of peak heights and troughs in Figure 13.3(a), and in
the extra width of the reconstructed cycle of Figure 13.3(b). The noise is char-
acteristic of all real world processes. The cockroach heart, while simple as organs
go, is a complicated multicellular system, and is not in a precisely periodic orbit.
Furthermore, the electrodes measuring the impedance may be wobbling ever so
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slightly, measuring the impedance at slightly different points as time progresses.
Experimental uncertainties like these also affect the Couette-Taylor experiment,
but are much easier to minimize using careful experimental technique than in a
living organism. All things considered, periodicity is still a good description for
the cockroach heartbeat.

✎ EXERCISE T13 .2
Assume that S(t) is a periodic time series that has two local maxima per
period, as shown for example in Figure 13.3(a). Show that for some values
of T smaller than the period of S, the delay plot (S(t), S(t � T)) has a self-
intersection.

The second difference from periodic Couette-Taylor is the crossing point
in Figure 13.3(b). The point at approximately P � (�2 � 3, �1 � 3) is a point
of self-intersection of the reconstruction plot. Our method of prediction via
analogues fails at this point, since the knowledge that the current pair of delay
coordinates (I(t), I(t � T)) is P could mean either of two different states of the
original system. Another measurement is needed to fully untangle the attractor.
The three-dimensional plot of (I(t), I(t � T), I(t � 2T)) in Figure 13.3(c) shows
that it is possible to represent the curve in three dimensions without self-crossings.

A one-to-one continuous function from a compact set to �m is called an
embedding of the set, or sometimes a topological embedding, to distinguish it
from other types. The number m is called the embedding dimension of the set.
In Figure 13.1, the periodic orbit of states in the unseen state space is embedded
in �2; the embedding dimension is 2. In Figure 13.3, the periodic orbit fails to
embed in �2 (because two points are mapped to the same point), but is embedded
in �3 using three delay coordinates.

The achievement of a delay-coordinate embedding is the holy grail of
dynamic data analysis, for the one-to-one property means that every state in
the state space of the system can be uniquely represented by the measured data.
A remarkable theorem says that a finite-dimensional attractor can always be
embedded in some �m; in fact, the necessary embedding dimension m need be
only a little larger than twice the dimension of the attractor.

To develop some intuition about this fact, we return to our example of a
periodic orbit. Can we expect one-dimensional curves to be embedded in �3?
The answer is yes, if by “expect” we mean what usually occurs. Figure 13.4 shows
the basic intuition. A closed curve can have a self-intersection, as in (a), in either
�2 or �3. The difference is that a small bump will dislodge the intersection in �3,
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(a) (b)

Figure 13.4 Self-intersection of a curve.
(a) The image of a one-dimensional curve by a function to the plane may have
a self-intersection that cannot be removed by small perturbations of the function.
(b) For a function to three dimensional space, small perturbations remove the
self-intersection.

while in �2 it will only move the intersection somewhere else. This is a key point.
If the curve represents the series of states of a dynamical system, reconstructed
from measurements, then a slight perturbation in the system dynamics or the
measurement would “typically”, or “generically”, cause the self-intersection in �3

to disappear. Although it is certainly possible for curves to have self-intersections
in �k for k 	 3, we should view them as exceptional cases and expect them to
occur with essentially zero probability.
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Figure 13.5 Chaotic Couette-Taylor experiment.
(a) Time series of velocities from the experiment. (b) Delay plot of data from (a).
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The set of mathematical facts that underlie this point is investigated in
Challenge 13. There we find that two sets of box-counting dimensions d1 and d2

sitting within �m typically fail to intersect if d1 � d2 � m. If we imagine for a
moment that the two strands of the curve in Figure 13.4 are separate manifolds,
then they should generically fail to intersect if 1 � 1 � m. If m � 3, there should
be no intersection.

If all motion were periodic, and all attractors were curves, the story would
be finished. Attractors could be generically embedded in three dimensional delay
plots. However, we already know that attractors can have higher dimension.
Moreover, they can be fractals. Figure 13.5 shows a time series of measurements
from the Couette-Taylor experiment when it is in chaotic motion. Can we embed,
examine, and exploit this chaotic attractor as we did the periodic attractor?

13 .3 EM B E D O L O G Y
It is time to be clearer about the connections between state space, the measure-
ments that comprise a time series, and the reconstructed state space. First suppose
that �k is the state space of a dynamical system, and trajectories are attracted to a
d-dimensional manifold A. Assume that we have a way of making m simultaneous
independent measurements of the system at any given time—not just one, as in a
time series. For each state, then, our measurements yield a vector in �m. We make
the measurements at several different instants, thereby collecting several points
in �m, each one representing m simultaneous measurements. We think of the
measuring process as a function F from �k to �m. At any time, the state is a point
of A in �k, and we can evaluate F at that point by doing the m measurements and
making a vector out of them. The next theorem says that we should expect F(A)
to uniquely represent all states that were in the original manifold A. The proofs
of this theorem and the others that we present in this Chapter are too difficult to
be presented here. However, Challenge 13 explores the main concepts, and gives
directions for those who want to pursue the proofs.

Theorem 13.1 Assume that A is a d-dimensional manifold in �k. If m � 2d
and F : �k → �m is generic, then F is one-to-one on A.

This means that if x � y are points on A, then F(x) � F(y) in �m. Two different
states in A remain different when mapped into �m, or in other words, F(A) has
no self-intersections. Note that Theorem 13.1 does not rule out an embedding
dimension of less than 2d � 1; it simply guarantees that 2d � 1 is sufficient in
generic cases. Figure 13.4(b) shows the case d � 1, m � 3.
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The meaning of generic in Theorem 13.1 was introduced in Chapter 12.
Think of it this way: Even if the image F(A) does have self-intersections, other
functions which are extremely small perturbations of F have no self-intersections.
To be more precise, we can say the following. For any F : �k → �m, define
FM : �k → �m by FM � F � M, where M is the linear map defined by the m � k
matrix with real entries between �1 and 1. For all but a measure zero set of
choices from the unit cube in �mk, the function FM will be one-to-one on A.

Theorem 13.1 is one of the conclusions of the Whitney Embedding Theo-
rem (Whitney, 1936). The statement requires that the coordinates of F are inde-
pendent. Later, it was shown (Takens, 1981) that it is sufficient to choose F from
the special class of functions formed strictly from delay coordinate reconstruc-
tions, using the time series of a single measurement. If we call the measurement
function h : �k → �, then the delay coordinate function is

F(x) � [h(x), h(g�T(x)), . . . , h(g�(m�1)T(x))].

Here g denotes the dynamical system for which A is the attractor. It can be
either an invertible map, in which g�T denotes T steps of the inverse map, or a
differential equation, in which case it denotes the state T time units ago. Figure
13.6 is a schematic view of the dynamics g, the scalar measurement function h,
and the delay coordinate function F.

Figure 13.7 shows the result of a delay coordinate reconstruction for the
Lorenz attractor. Figure 13.7(a) is the original state space �k (k � 3) of xyz-

h
RmRk

F

v

g-T(v)g-2T(v)
F(v) = [h(v),h(g-T(v)),h(g-2T(v))]

Figure 13.6 Delay coordinate reconstruction function.
With each state v in the state space �k is associated a vector F(v) in reconstruction
space �m. The function h is the measurement function, which is a scalar function
of the state space.
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Figure 13.7 The Lorenz attractor reconstructed from a time series.
(a) A trajectory from the Lorenz system, 30 time units long. (b) The x-coordinate of
the trajectory in (a) is plotted as a function of t. (c) A delay-coordinate embedding
of the Lorenz attractor, using three delayed values of the time series in (b). The
projection to the first two coordinates is also shown. The delay is T � 0.1.
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variables. The x-coordinate alone is measured and graphed as a time series in (b).
Even though the y and z variables have been thrown away, the three dimensional
graph of [x(t), x(t � T), x(t � 2T)] in Figure 13.7(c) gives a fairly faithful visual
reproduction of the original attractor.

Theorem 13.2 Assume that A is a d-dimensional submanifold of �k which
is invariant under the dynamical system g. If m � 2d and F : �k → �m is a delay
coordinate reconstruction function with a generic measurement function h and generic
time delay T, then F is one-to-one on A.

Takens’ Theorem 13.2 says that if the attractor dimension is the integer d, then
for generic delay plots, the embedding dimension is at most 2d � 1.

✎ EXERCISE T13 .3
The genericity requirement on T in Theorem 13.2 is necessary. (a) Show
that if A is a periodic orbit whose period equals the time delay T, then no
delay coordinate reconstruction function can be one-to-one on A. (b) Show
that the same is true if the period is 2T. [Note: There is no such restriction
for a period 3T orbit.]

Takens’ Theorem 13.2 triggered an avalanche of research, as scientists tried
to interpret time series collected from experiments by drawing delay plots in
enough dimensions to untangle the attractor. In fact, delay coordinate plots were
advocated independently in the physics literature by (Packard et al., 1980). This
technique was one of few available techniques for analyzing potentially chaotic
data. A one-to-one reconstruction means that the method of analogues can be
used to predict short-term future behavior of a system, even in case it is chaotic.

As we already saw in Lab Visit 4, the Couette-Taylor experiment can
exhibit nonperiodic dynamics. Figure 13.5 shows a chaotic Couette-Taylor time
series and reconstructed trajectory. This plot raises the question whether there
is a fact similar to Theorem 13.2 for attractors A which are fractal rather than
manifolds. It turns out that Theorems 13.1 and 13.2 are true for non-manifolds,
as long as the dimension d is interpreted as box-counting dimension.

Theorem 13.3 Assume that A is a subset of �k with box-counting dimension
d. If F : �k → �m is generic and m � 2d, then F is one-to-one on A.

Theorem 13.4 Assume that A is a subset of �k with box-counting dimension
d, which is invariant under the dynamical system g. If m � 2d and F : �k → �m is
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a delay coordinate reconstruction with a generic measurement function h and a generic
delay T, then F is one-to-one on A.

In Chapter 4 we found the box-counting dimension of the Hénon attractor
of Example 4.11 to be approximately 1.27. Since 2d � 2.54, we expect the
attractor to be embedded in three dimensions, but not necessarily in two. We test
this conclusion in Figure 13.8. Define a “measurement” function on the xy state
space of the Hénon map by H(x, y) � y � 3 sin(x � y). Figure 13.8 should be read
in the order (b) → (a) → (c). After each (x, y) point is produced on the attractor
in (b), the value of H is plotted in the times series (a). Then a delay map in
(c) is made from (a), using a delay of T � 1 iteration. There are self-crossings of
the image attractor in (c), corresponding to the fact that the assumption m � 2d
is not satisfied. In (d), a three-dimensional reconstruction, the image does not
cross itself. For this example, the attractor dimension is 1.27, and the embedding
dimension is 3.

✎ EXERCISE T13 .4
A set with a small box-counting dimension need not lie in a Euclidean
space of low dimension. For each m � 1, find a subset A of �m such that
boxdim(A) � 1, but A does not lie in a smooth surface of dimension less
than m. [Hint: Find a subset B of �1 such that boxdim(B) � 1 � m. Then let
A � �(x1, . . . , xm) : xi in B, i � 1, . . . , m�.]

The Belousov-Zhabotinskii reaction, the subject of Lab Visit 3, was one of
the first real experiments to be subjected to delay coordinate reconstruction as
an analysis tool. Figure 13.9(a) shows a time series of the measured bromide ion
concentration from a fixed spot in the reaction apparatus. The time series shows
a certain amount of structure, but it is clearly aperiodic.

Two- and three-dimensional reconstructions of the BZ attractor from the
time series are shown in Figure 13.9(b) and (c). The embedding dimension
appears to be three, using delay T � 0.05. In panels (d), (e), and (f) of Figure
13.9 the effect of changing the time delay T is explored. As T is varied, one gets
geometrically different but topologically equivalent fractal sets.

For relatively large T � 0.4, as in panel (f), the reconstructed set begins to
resemble spaghetti. For experimentally measured data from chaotic systems such
as the Belousov-Zhabotinskii reaction, there is a practical upper limit on the time
delay T. Since nearby states are diverging exponentially in time, an experimental
error eventually grows to be comparable to the size of the attractor. If this can
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Figure 13.8 Hénon attractor reconstructed from a time series.
(a) A time series of the function h(i) � yi � 3 sin(xi � yi), where xi and yi are taken
from the Hénon attractor in (b). (c) A two-dimensional delay reconstruction of the
attractor. (d) A three-dimensional reconstruction. The projection of this set onto
the horizontal plane is seen in (c).
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Figure 13.9 Belousov-Zhabotinskii reaction data.
(a) Time series of bromide ion concentration, provided by Anke Brandstater.
(b) Two-dimensional delay reconstruction of the BZ attractor, with time delay
T � 0.05. (c) Three-dimensional reconstruction whose projection is (b). The re-
maining three panels show delay plots with three different choices of delay time T.
(d) T � 0.02 (e) T � 0.1 (f) T � 0.4
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happen during the time spanned by a single delay coordinate vector, the state
that the vector specifies will have limited value for applications like prediction.

Entire books have been written about state reconstruction from data and
the scientific applications that follow. Ott, Sauer, and Yorke, 1994 is a starting
point for further exploration.
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☞ C H A L L E N G E 13

Box-Counting Dimension and Intersection

HOW LARGE does a space have to be so that two sets can move around
and generally avoid one another? The x-axis and y-axis of the plane intersect at
the origin. If we move either or both of them slightly, they still intersect, at a
point somewhere near the origin. But if we add another dimension, they hardly
ever intersect. The x and y axes in �3 intersect at the origin, but a small push of
either one in almost any direction (except a push precisely along the xy-plane)
eliminates the intersection.

In Challenge 13 we want to explore and eventually prove the fact that two
sets of dimension d1 and d2 sitting in �m usually don’t intersect if d1 � d2 � m. By
dimension, we mean box-counting dimension. There are interesting applications
of this fact for fractal sets. By “usually”, we mean that intersections are possible
but that they are unusual cases in some sense—a little push, or spatial translation,
causes the intersections to disappear. The x and y axes have dimensions d1 � 1
and d2 � 1, so d1 � d2 � 2. Two lines in a Euclidean space of dimension three or
more should intersect only if they are placed just so.

Certainly we can make any two nonempty sets intersect by moving them
so that they have a point in common. If the intersection is robust, the sets should
still intersect if they are moved a small amount. This is the situation for two lines
in the plane, but not for two lines in �3.

What do we mean by moving the sets? We could allow many kinds of
rigid motions, that change the location of the set without changing the relative
positions of the points in the set. To keep things simple, let’s restrict our movement
to spatial translations, which are the result of vector addition of a single point to
each of the sets. Adding the vector (1, 1) to a set in the plane moves the set one
unit up and one unit to the right. We might as well let one of the two sets stay
fixed and move the other, to simplify matters.

Let S be a subset of �m, and let v be a point in �m. We will call the set
S � v � �s � v : s in S� the translation of the set S by v. The translated set is
found by adding v to each point in S, in other words, moving S rigidly to a
new location specified by v. For two subsets S1 and S2 of �m, we will say that the
translates of S1 almost never intersect S2 if the set �v in �m : (S1 � v) � S2 � 
�
has m-dimensional volume zero. This definition is symmetric in S1 and S2; it is
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equivalent that the translates of S2 almost never intersect S1. We can now restate
our goal in these more precise terms:

Theorem 13.5 Let S1 and S2 be subsets of �m of box-counting dimensions d1

and d2, respectively. If d1 � d2 � m, then the translates of S1 almost never intersect
S2.

In this sense, the x and y axes always intersect in �2, but almost never
intersect in �3. To see the latter, notice that of all possible translations in �3,
only those of form v � (x, y, 0) preserve the intersection. This exceptional set
of translations corresponds to the xy-plane, which is a set of three-dimensional
volume 0.

Challenge 13 has three parts. The first two concern self-intersection inside
the real line, which refers to the case S1 � S2 and m � 1. The Cantor middle-
third set has dimension greater than 1 � 2, so the Theorem does not apply. In
fact, you will show that every translation of the Cantor set S1 � v intersects
the (untranslated) Cantor set S2, provided �1 � v � 1. Second, we consider the
middle three-fifths Cantor set, which has dimension less than 1 � 2. A pair of these
sets almost never intersect under translation, which is consistent with Theorem
13.5. Finally, you will put together a proof of the theorem.

We learned earlier that the box-counting dimension of the middle-third
Cantor set S is ln 2 � ln 3 � 0.63. Because 2 � 0.63 � 1, we do not expect two
translated middle-third Cantor sets to be able to avoid one another within the
real line. In fact, Step 3 shows that for any 0 � v � 1, the translated Cantor
set S � v has a point in common with the Cantor set S. Recall that in base 3
arithmetic, the middle-third Cantor set consists of all expansions that can be
made using only the digits 0 and 2.

Step 1 Explain the fact that if x is in the middle-third Cantor set, then so
is 1 � x.

Step 2 Show that if x is in [0, 1], then x can be written as the sum of two
base 3 expansions each of which use only the digits 0 and 1.

Step 3 Let v be any number in [0, 1]. Then (v � 1)� 2 is also in [0, 1]. Use
Step 2 to show that v � 1 is the sum of two numbers belonging to the middle-third
Cantor set S. Use Step 1 to conclude that there is a number in S which when
added to v gives another number in S. Therefore for each number v in [0, 1], the
set S � v intersects with S.

The next three steps refer to the middle-3/5 Cantor set K(5). This set is
analogous to the middle-third Cantor set, except that we remove the middle 3 � 5
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Figure 13.10 The middle three-fifths Cantor set construction.
At each step, the middle three-fifths of each remaining interval is removed. This
Cantor set contains all numbers whose base 5 expansion can be made with only
the digits 0 and 4. The set denoted .04 consists of all numbers in the interval [0, 1]
whose expansion begins with .04.

of each remaining interval instead of the middle one-third. See Figure 13.10 for
a schematic view of the construction.

Step 4 Verify that the middle-3/5 Cantor set consists of all numbers in
[0, 1] possessing a base 5 expansion containing only the digits 0 and 4. Find the
box-counting dimension of K(5). Show that if S1 and S2 are both the middle-3/5
Cantor set, then the dimensions satisfy d1 � d2 � 1.

Step 5 Let v be a number in [0, 1] whose base 5 expansion contains a 22
(two adjacent base 5 digits are 2). Show that S1 � v does not intersect S2.

Step 6 Show that the set of numbers whose base 5 expansion does not
contain a 22 is a length 0 set. Conclude that translates of the middle-3/5 Cantor
set almost never intersects itself. [Hint: Sketch the subinterval .22, which consists
of 1 � 25 of the interval [0, 1]. Each of the remaining subintervals .s1s2 of length
1 � 25 have a subinterval .s1s222, and so on. Sum up the lengths.]

Next you will prove Theorem 13.5. Assume that S1 and S2 are bounded
subsets of �m of box-counting dimensions d1 and d2, respectively. Put down an
�-grid over �m for some � � 0. Consider two �-cubes, one containing points of
S1 and the other containing points of S2. To begin, Step 7 asks you to find out
how likely it is for the two cubes to intersect under translation.
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Step 7 Let C1 and C2 be m-dimensional cubes of side � chosen from the
grid in �m. Show that the subset of points v such that the translation C1 � v
intersects C2 is less than C�m, for some constant C. [Hint: Denote by P1 and P2

the centers of the cubes. The cubes can’t intersect unless the distance between
P1 � v and P2 is less than

√
m�. Show that the cubes don’t intersect as long as v

avoids the ball of radius
√

m� centered at P2 � P1.]

Step 8 Let N1(�) be the number of �-cubes covering S1, and N2(�) be the
number covering S2. The number of pairs of �-cubes, one from S1 and one from
S2, is N1(�)N2(�). Denote by Bm(r) the set of points in �m within a distance r
of the origin. Use Step 7 to conclude that the subset of Bm(r) corresponding to
vectors v that cause any of these pairs to collide under translation by v has volume
at most CN1(�)N2(�)�m, where C is a constant.

Step 9 Use the definition of box-counting dimension and the assumption
that d1 � d2 � m to prove that the volume in Step 8 goes to zero as � → 0. Thus
the volume of translating vectors within Bm(r) which cause any intersections of
the translated S1 with S2 is zero. This is true no matter how large r is, so the
translates of S1 almost never intersect S2.

Postscript. Theorem 13.5 and its proof in Step 9 are closely related to Theorems
13.3 and 13.4. To achieve the embedding in Theorem 13.3 it is necessary for the images
of distant sections of the attractor in state space to almost always miss each other in
reconstruction space �m. It can be shown that small linear perturbations of the function
F : �k → �m in Theorem 13.3 have a similar effect as rigid translations in Theorem 13.5.
Since the distant sections each have box-counting dimension d, the necessary condition
of Theorem 13.5 amounts to 2d � m in the notation of Theorem 13.3. Theorem 13.4
follows from showing that small perturbations of the scalar measurement function h alone
are sufficient to restrict self-intersections to occur with probability zero. See (Sauer, Yorke,
and Casdagli, 1991) for full details.
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Matrix Algebra

IN THIS APPENDIX we review important concepts from matrix algebra.

A .1 E I G E N V A L U E S A N D E I G E N V E C TO R S
Definition A.1 Let A be an m � m matrix and x a nonzero m-dimensional

real or complex vector. If Ax � 
x for some real or complex number 
 , then 
 is
called an eigenvalue of A and x the corresponding eigenvector.

For example, the matrix A �

(
1 3
2 2

)
has an eigenvector

(
1
1

)
, and cor-

responding eigenvalue 4.
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Eigenvalues are found as roots 
 of the characteristic polynomial det(A �


I). If 
 is an eigenvalue of A, then any nonzero vector in the nullspace of A � 
I
is an eigenvector corresponding to 
 . For this example,

det(A � 
I) � det

(
1 � 
 3

2 2 � 


)
� (
 � 1)(
 � 2) � 6

� (
 � 4)(
 � 1), (A.1)

so the eigenvalues are 
 � 4, �1. The eigenvectors corresponding to 
 � 4 are
found in the nullspace of

A � 4I �

(
�3 3

2 �2

)
(A.2)

and so consist of all nonzero multiples of

(
1
1

)
. Similarly, the eigenvectors corre-

sponding to 
 � �1 are all nonzero multiples of

(
3

�2

)
.

If A and B are m � m matrices, then the set of eigenvalues of the product
matrix AB is the same as the set of eigenvalues of the product BA. In fact, let 


be an eigenvalue of AB, so that ABx � 
x for some x � 0. If 
 � 0, then

0 � det(AB � 
I) � det(AB) � (det A)(det B) � det(BA � 
I),

so 
 � 0 is also an eigenvalue of BA. If 
 � 0, then ABx � 
x implies BA(Bx) �


Bx. Note that Bx � 0 because 
 � 0 and x � 0. Therefore Bx is an eigenvector
of the matrix BA with eigenvalue 
 .

A generalization of this fact is Lemma A.2.

Lemma A.2 If A1, . . . , An are m � m matrices, then A1 
 
 
 An and the
cyclic permutation Ar�1 
 
 
 AnA1 
 
 
 Ar have the same set of eigenvalues, where
1 � r � n.

This follows from the previous paragraph by setting A � A1 
 
 
 Ar and B �

Ar�1 
 
 
 An.

Definition A.3 The m � m matrices A1 and A2 are similar, denoted
A1 � A2, if there exists an invertible m � m matrix S such that A1 � SA2S�1.

Similar matrices have identical eigenvalues, because their characteristic
polynomials are identical:

A1 � 
I � SA2S
�1 � 
I � S(A2 � 
I)S�1 (A.3)
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implies that

det(A1 � 
I) � (det S) det(A2 � 
I) det S�1 � det(A2 � 
I). (A.4)

If a matrix A has eigenvectors that form a basis for Rm, then A is similar to
a diagonal matrix, and A is called diagonalizable. In fact, assume Axi � 
ixi for
i � 1, . . . , m, and define the matrix

S �


x1 
 
 
 xm


 .

Then one can check that the matrix equation

AS � S





1

. . .


m


 (A.5)

holds. The matrix S is invertible because its columns span Rm. Therefore A is
similar to the diagonal matrix containing its eigenvalues.

Not all matrices are diagonalizable, even in the 2 � 2 case. In fact, all 2 � 2
matrices are similar to one of the following three types:

1. A1 �

(
a 0
0 b

)

2. A2 �

(
a 1
0 a

)

3. A3 �

(
a �b
b a

)

Remember that eigenvalues are identical for similar matrices. A matrix is similar
to case 1 if there are two eigenvectors that span �2; a matrix is similar to case 2 if
there is a repeated eigenvalue with only one dimensional space of eigenvectors;
and to case 3 if it has a complex pair of eigenvalues.

The proof of the fact that the three types suffice for 2 � 2 matrices fol-
lows from the Cayley-Hamilton Theorem, which states that a matrix satisfies its
characteristic equation.

Theorem A.4 (Cayley-Hamilton) If P(
) is the characteristic polynomial of
the matrix A, then P(A) � 0 (as a matrix equation).
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There are three parts to the above classification. Let A be a 2 � 2 real
matrix.

Fact 1. If A has real distinct eigenvalues a and b, or if A � aI, then A �

(
a 0
0 b

)
.

Proof: If A � aI we are done and a � b. If the eigenvalues are distinct,
then A is diagonalizable. To see this, choose eigenvectors v and x satisfying
Av � av and Ax � bx. Note that v and x are not multiples of one another since
a � b, so that the matrix whose columns are v and x is invertible. Then

A


v x


 �


av bx


 �


v x




(
a 0
0 b

)
.

Now A is of form SDS�1, where D � diag�a, b�.

Fact 2. If A has a repeated eigenvalue 
 � a and A � aI, then A �

(
a 1
0 a

)
.

Proof: (A � aI)2 � 0. Since A � aI, there exists a vector x such that
v � (A � aI)x � 0. Then (A � aI)v � (A � aI)2x � 0, so v is an eigenvector
of A. Note that v and x are not linearly dependent, since v is an eigenvector of A
and x is not. The facts Ax � ax � v and Av � av can be written

A


v x


 �


v x




(
a 1
0 a

)
.

Fact 3. If A has eigenvalues a � bi, with b � 0, then A �

(
a �b
b a

)
.

Proof: (A � (a � bi)I)(A � (a � bi)I) � 0 can be rewritten as (A � aI)2 �

�b2I. Let x be a (real) nonzero vector and define v � 1
b (A � aI)x, so that (A �

aI)v � �bx. Since b � 0, v and x are not linearly dependent because x is not
an eigenvector of A. The equations Ax � bv � ax and Av � av � bx can be
rewritten

A


x v


 �


x v




(
a �b
b a

)
.

The similarity equivalence classes for m � 2 become a little more com-
plicated. Look up Jordan canonical form in a linear algebra book to investigate
further.
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A .2 COO R D I N AT E C H A N G E S
We work in two dimensions, although almost everything we say extends to higher
dimensions with minor changes. A vector in �2 can be represented in many dif-
ferent ways, depending on the coordinate system chosen. Choosing a coordinate
system is equivalent to choosing a basis of �2; then the coordinates of a vector
are simply the coefficients that express the vector in that basis.

Consider the standard basis

B1 �

{(
1
0

)
,

(
0
1

)}

and another basis

B2 �

{(
1
0

)
,

(
1
1

)}
.

The coefficients of a general vector

(
x1

x2

)
are x1 and x2 in the basis B1, and are

x1 � x2 and x2 in the basis B2. This is because

x1

(
1
0

)
� x2

(
0
1

)
�

(
x1

x2

)
� (x1 � x2)

(
1
0

)
� x2

(
1
1

)
, (A.6)

or in matrix terms,(
x1

x2

)
�

(
1 1
0 1

)(
x1 � x2

x2

)
� S

(
x1 � x2

x2

)
. (A.7)

This gives us a convenient rule of thumb. To get coordinates of a vector
in the second coordinate system, multiply the original coordinates by the matrix
S�1, where S is a matrix whose columns are the coordinates of the second basis
vectors written in terms of the first basis. Therefore in retrospect, we could have
computed (

x1 � x2

x2

)
� S�1

(
x1

x2

)
�

(
1 �1
0 1

)(
x1

x2

)
(A.8)

as the coordinates, in the second coordinate system B2, of the vector

(
x1

x2

)
in

the original coordinate system B1. For example, the new coordinates of

(
1
1

)
are
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S�1

(
1
1

)
�

(
0
1

)
, which is equivalent to the statement that

1

(
1
0

)
� 1

(
0
1

)
� 0

(
1
0

)
� 1

(
1
1

)
. (A.9)

Now let F be a linear map on �2. For a fixed basis (coordinate system), we
find a matrix representation for F by building a matrix whose columns are the
images of the basis vectors under F, expressed in that coordinate system.

For example, let F be the linear map that reflects vectors through the
diagonal line y � x. In the coordinate system B1 the map F is represented by

A1 �

(
0 1
1 0

)
(A.10)

since F

(
1
0

)
�

(
0
1

)
and F

(
0
1

)
�

(
1
0

)
. In the second coordinate system B2,

the vector F

(
1
0

)
�

(
0
1

)
has coordinates

S�1

(
0
1

)
�

(
1 �1
0 1

)(
0
1

)
�

(
�1
1

)
,

and F fixes the other basis vector

(
1
1

)
, so the map F is represented by

A2 �

(
�1 0

1 1

)
. (A.11)

The matrix representation of the linear map F depends on the coordinate
system being used. What is the relation between the two representations? If x
is a vector in the first coordinate system, then S�1x gives the coordinates in
the second system. Then A2S�1x applies the map F, and SA2S�1x returns to
the original coordinate system. Since we could more directly accomplish this by
multiplying x by A1, we have discovered that

A1 � SA2S
�1, (A.12)

or in other words, that A1 and A2 are similar matrices. Thus similar matrices are
those that represent the same map in different coordinate systems.
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A .3 M AT R I X T I M E S C I R C L E EQ U A L S E L L I P S E

In this section we show that the image of the unit sphere in �m under a linear
map is an ellipse, and we show how to find that ellipse.

Definition A.5 Let A be an m � n matrix. The transpose of A, denoted
AT, is the n � m matrix formed by changing the rows of A into columns. A square
matrix is symmetric if AT � A.

In terms of matrix entries, AT
ij � Aji. In particular, if the matrices are column

vectors x and y, then xTy, using standard matrix multiplication, is the dot product,
or scalar product, of x and y. It can be checked that (AB)T � BTAT.

It is a standard fact found in elementary matrix algebra books that for any
symmetric m � m matrix A with real entries, there is an orthonormal eigenbasis,
meaning that there exist m real-valued eigenvectors w1, . . . , wm of A satisfying
wT

i wj � 0 if i � j, and wT
i wi � 1, for 1 � i, j � m.

Now assume that A is an m � m matrix that is not necessarily symmetric.
The product ATA is symmetric (since (ATA)T � AT(AT)T � ATA), so it has an
orthogonal basis of eigenvectors. It turns out that the corresponding eigenvalues
must be nonnegative.

Lemma A.6 Let A be an m � m matrix. The eigenvalues of ATA are
nonnegative.

Proof: Let v be a unit eigenvector of ATA, and ATAv � 
v. Then

0 � |Av|2 � vTATAv � 
vTv � 
.

These ideas lead to an interesting way to describe the result of multiplying
a vector by the matrix A. This approach involves the eigenvectors of ATA. Let
v1, . . . , vm denote the m unit eigenvectors of ATA, and denote the (nonnegative)
eigenvalues by s2

1 	 
 
 
 	 s2
m. For 1 � i � m, define ui by the equation siui � Avi

if si � 0; if si � 0, choose ui as an arbitrary unit vector subject to being orthogonal
to u1, . . . , ui�1. The reader should check that this choice implies that u1, . . . , un

are pairwise orthogonal unit vectors, and therefore another orthonormal basis of
�m. In fact, u1, . . . , un forms an orthonormal eigenbasis of AAT.

Figure A.1 shows a succinct view of the action of a matrix on the unit
circle in the m � 2 case. There is a pair of orthonormal coordinate systems, with
bases �v1, v2� and �u1, u2�, so that the matrix acts very simply: v1 �→ s1u1 and
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v2
v1

x1

x2

0

s1u1

s2u2

x2

x1

A

Figure A.1 The ellipse associated to a matrix.
Every 2 � 2 matrix A can be viewed in the following simple way. There is a coor-
dinate system �v1, v2� for which A sends v1 → s1u1 and v2 → s2u2, where �u1, u2�
is another coordinate system and s1, s2 are nonnegative numbers. Geometrically
speaking, a matrix A can be broken down into a dilation (stretching or shrinking
in orthogonal directions) followed by a rotation. This picture extends to �m for an
m � m matrix.

v2 �→ s2u2. This means that the unit circle of vectors is mapped into an ellipse
with axes �s1u1, s2u2�. In order to find where Ax goes for a vector x, we can write
x � a1v1 � a2v2 (where a1v1 (resp. a2v2) is the projection of x onto the direction
v1 (resp. v2)), and then Ax � a1s1u1 � a2s2u2. Summarizing, we have proved
Theorem A.7.

Theorem A.7 Let A be an m � m matrix. Then there exist two orthonormal
bases of �m, �v1, . . . , vm� and �u1, . . . , um�, and real numbers s1 	 
 
 
 	 sm 	 0
such that Avi � siui for 1 � i � m.

We conclude from this theorem that the image of the unit sphere of vectors
is an ellipsoid of vectors, centered at the origin, with semi-major axes siui.

The foregoing discussion is sometimes summarized in a single matrix equa-
tion. Define S to be a diagonal matrix whose entries are s1 	 
 
 
 	 sm 	 0. Define
U to be the matrix whose columns are u1, . . . , um, and V to be the matrix whose
columns are v1, . . . , vm. Notice that USVTvi � siui for i � 1, . . . , m. Since the
matrices A and USVT agree on the basis v1, . . . , vm, they are identical m � m
matrices. The equation

A � USVT (A.13)
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is called the singular value decomposition of A, and the si are called the singular
values. The matrices U and V are called orthogonal matrices because they satisfy
UTU � I and VTV � I. Orthogonal matrices correspond geometrically to rigid
body transformations like rotations and reflections.
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Computer Solution
of ODEs
SOME ORDINARY DIFFERENTIAL EQUATIONS can be solved explicitly. The initial
value problem

ẋ � ax

x(0) � x0 (B.1)

has solution

x(t) � x0e
at. (B.2)

The solution can be found using the separation of variables technique introduced
in Chapter 7. The fact that the problem yields an explicit solution makes it
atypical among differential equations. In the large majority of cases, there does
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not exist an expression for the solution of the initial value problem in terms of
elementary functions. In these cases, we have no choice but to use the computer
to approximate a solution.

B .1 ODE SO L V E R S
A computational method for producing an approximate solution to an initial
value problem (IVP) is called an ODE solver. Figure B.1(a) shows how a typical
ODE solver works. Starting with the initial value x0, the method calculates
approximate values of the solution x(t) on a grid �t0, t1, . . . , tn�.

The simplest ODE solver is the Euler method. For the initial value problem

ẋ � f(t, x)

x(t0) � x0, (B.3)

the Euler method produces approximations by an iterative formula. Choosing
a step size h � 0 determines a grid �t0, t0 � h, t0 � 2h, . . .�. Denote the correct
values of the solution x(t) by xn � x(tn). The Euler method approximations at
the grid points tn � t0 � nh are given by

w0 � x0

wn�1 � wn � hf(tn, wn) for n 	 1. (B.4)

Each wn is the Euler method approximation for the value xn � x(tn) of the
solution.

It is easy to write a simple program implementing the Euler method. The
code fragment

w[0] = w0;

t[0] = t0;

for(n=0;n<=N;n++){

t[n+1] = t[n]+h;

w[n+1] = w[n]+h*f(t[n],w[n]);

}

together with a defined function f from the differential equation will generate
the grid of points �tn� along with the approximate solutions �wn� at those points.
Remember to set the step size h. The smaller the value for h, the smaller the error,
which is the subject of the next section.

A far more powerful method that requires just a few more lines is the
Runge-Kutta method of order 4. A code fragment implementing this method is
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w[0] = x0;

t[0] = t0;

for(n=0;n<=N;n++){

t[n+1] = t[n]+h;

k1 = h*f(t[n],w[n]);

k2 = h*f(t[n]+h/2,w[n]+k1/2);

k3 = h*f(t[n]+h/2,w[n]+k2/2);

k4 = h*f(t[n+1],w[n]+k3);

w[n+1] = w[n]+(k1 + 2*k2 + 2*k3 + k4)/6;

}

To run a simulation of a three-dimensional system such as the Lorenz at-
tractor, it is necessary to implement Runge-Kutta for a system of three differential
equations. This involves using the above formulas for each of the three variables
in parallel. A possible implementation:

wx[0] = x0;

wy[0] = y0;

wz[0] = z0;

t[0] = t0;

for(n=0;n<=N;n++){

t[n+1] = t[n]+h;

kx1 = h*fx(t[n],wx[n],wy[n],wz[n]);

ky1 = h*fy(t[n],wx[n],wy[n],wz[n]);

kz1 = h*fz(t[n],wx[n],wy[n],wz[n]);

kx2 = h*fx(t[n]+h/2,wx[n]+kx1/2,wy[n]+ky1/2,wz[n]+kz1/2);

ky2 = h*fy(t[n]+h/2,wx[n]+kx1/2,wy[n]+ky1/2,wz[n]+kz1/2);

kz2 = h*fz(t[n]+h/2,wx[n]+kx1/2,wy[n]+ky1/2,wz[n]+kz1/2);

kx3 = h*fx(t[n]+h/2,wx[n]+kx2/2,wy[n]+ky2/2,wz[n]+kz2/2);

ky3 = h*fy(t[n]+h/2,wx[n]+kx2/2,wy[n]+ky2/2,wz[n]+kz2/2);

kz3 = h*fz(t[n]+h/2,wx[n]+kx2/2,wy[n]+ky2/2,wz[n]+kz2/2);

kx4 = h*fx(t[n+1],wx[n]+kx3,wy[n]+ky3,wz[n]+kz3);

ky4 = h*fy(t[n+1],wx[n]+kx3,wy[n]+ky3,wz[n]+kz3);

kz4 = h*fz(t[n+1],wx[n]+kx3,wy[n]+ky3,wz[n]+kz3);

wx[n+1] = wx[n]+(kx1 + 2*kx2 + 2*kx3 + kx4)/6;

wy[n+1] = wy[n]+(ky1 + 2*ky2 + 2*ky3 + ky4)/6;

wz[n+1] = wz[n]+(kz1 + 2*kz2 + 2*kz3 + kz4)/6;

}

Here it is necessary to define one function for each of the differential equations:

fx(t,x,y,z) = 10.0*(y-x);

fy(t,x,y,z) = -x*z + 28*x - y;

fz(t,x,y,z) = x*y - (8/3)*z;
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This code can be economized significantly using object-oriented programming
ideas, which we will not pursue here. Any other three-dimensional system can
be approximated using this code, by changing the function calls fx,fy and fz.
Higher-dimensional systems require only a simple extension to more variables.

So far we have given no advice on the choice of step size h. The smaller h
is, the better the computer approximation will be. For the Lorenz equations, the
choice h � 10�2 is small enough to produce representative trajectories.

Coding time can be reduced to a minimum by using a software package
with ODE solvers available. Matlab is a general-purpose mathematics software
package whose programode45 is an implementation of the Runge-Kutta method,
in which step size h is set automatically and monitored to keep error within
reasonable bounds. To use this method one needs only to create a file named f.m
containing the differential equations;ode45 does the rest. Typehelp ode45 in
Matlab for full details. Other generally available mathematical software routines
such as Maple and Mathematica have similar capabilities.

Finally, the software package Dynamics has a built-in graphical user interface
that runs Runge-Kutta simulations of the Lorenz equations and several other
systems with no programming required. See (Nusse and Yorke, 1995).

B .2 E R R O R I N NUM E R I C A L I N T E G R AT I O N

As suggested in Figure B.1(a), there is usually a difference between the true
solution x(t) to the IVP and the approximation. Denote the total error at tn by
En � xn � wn. Error results from the fact that an approximation is being made by
discretizing the differential equation. For Euler’s method, this occurs by replacing
ẋ by (xn�1 � xn)� h in moving from (B.3) to (B.4).

The initial value problem (B.1) has an explicit solution, so we can work
out the exact error to illustrate what is going on. Set t0 � 0, so that tn � nh. The
Euler method formula from (B.4) is

w0 � x0

wn�1 � wn � ahwn for n 	 0. (B.5)

For example, assume a � 1, x0 � 1, and the stepsize is set at h � 0.1. Then w1 �

1 � 0.1 � 1.1, which is not too far from the correct answer x1 � e0.1 � 1.105.
The error made in one step of the Euler method is � 0.005. A formula for the
one-step error is e1 � w0(eah � (1 � ah)).
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x3

w3

x0

t0 t1 t2 t3

en+1

En+1

En

tn tn+1

(a) (b)

Figure B.1 Output from an ODE solver.
(a) The Euler method follows a line segment with the slope of the vector field at
the current point to the next point. The upper curve represents the true solution to
the differential equation. (b) The total error En�1 is the total of the one-step error
en�1 and accumulated error from previous steps.

After one step, the total error E1 is the same as the one-step error e1. The
total error E2 after two steps has two contributions. First, because of the error E1,
the right side f of the differential equation is going to be sampled at an incorrect
point w1 instead of x1. Second, a new one-step error e2 will be made because of
the discretization of the derivative. As Figure B.1(b) shows, the new total error
E2 will have a contribution from the accumulated error from the previous step as
well as a new one-step error.

The output of the Euler method is wn � x0(1 � ah)n for n 	 0. The true
solution is xn � x0eahn, so that the difference is

En � xn � wn

� x0eahn � x0(1 � ah)n

� x0eahn � x0(1 � ah)n�1eah � x0(1 � ah)n�1eah � x0(1 � ah)n

� eah 
 x0(eah(n�1) � (1 � ah)n�1) � wn�1(eah � (1 � ah)). (B.6)

We recognize En�1, the total error at step n � 1, and en, the one-step error at
step n, in the above equation. If we set A � eah, we can write the result in the
following general form.
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TOTAL ERRO R FO R AN ODE SO LVER

En � AEn�1 � en

In this expression, the term A is the amplification factor. It depends on the
method being used and the particular differential equation. If A � 1, one expects
the total error to be approximately the sum of the one-step errors. For IVPs that
are sensitive to initial conditions, however, the amplification factor is commonly
greater than one. For system (B.1), this case holds when a � 0.

The order of an ODE solver is a measure of its relative accuracy. Let t0 be
the initial time of the IVP, and let te � t0 be a later time. By definition, the order
of an ODE solver is k if the total error evaluated at te is

E � Chk (B.7)

for small h. More precisely, one requires

lim
h→0

E
hk

� �.

Order measures the dependence of the total error on the stepsize h, and is helpful
in a relative way. It gives no absolute estimate of the error, but it tells us that the
error of a second-order method, for example, would decrease by a factor of 4 if we
cut the step size in half (replace h by h� 2 in (B.7)). This concept of order is used
to rank methods by accuracy.

The order of an ODE solver can be informally determined by expressing
the one-step error in terms of h. Using the differential equation (B.3), the Taylor
expansion of the solution at t0 can be written

x(t0 � h) � x0 � hẋ(t0) �
h2

2
ẍ(t0) � 
 
 


� x0 � hf(t0, x0) �
h2

2

[
�f
�x

(t0, x0) �
�f
�t

]
� 
 
 
 . (B.8)

Comparing with the Euler’s method approximation (B.4), we find the one-step
error e1 to be proportional to h2, where terms of higher degree in h are neglected
for small h. To find the order of the method, subtract one from the power of h in
the one-step error. The reasoning is as follows. Assuming that the amplification
factor is approximately one, the simplest case, the total error made by the ODE-
solver between to and te will be approximately the sum of the one-step errors.
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The number of steps needed to reach the desired time te grows as h decreases: It
is proportional to h�1. The total error for the Euler method, as a function of h,
should therefore be proportional to h2 
 h�1 � h1. On this basis, the Euler method
is of order one. Cutting the step size in half results in cutting the total error in
half.

Higher order methods can be derived by more elaborate versions of the
reasoning used in the Euler method. The modified-Euler method is

z0 � x0

zn�1 � zn � h
s1 � s2

2
for n 	 1, (B.9)

where s1 � f(tn, zn) and s2 � f(tn � h, zn � hs1). It can be checked that the one-
step error for this method is � h3 (see, for example, (Burden and Faires, 1993)).
Figure B.2(a) shows one step of the method along with the roles of s1, which is
the slope of f as in the Euler method, and s2, which is the slope at tn�1, where the
Euler method is used as a guess for xn�1. Instead of taking the Euler method step,
the two slopes s1 and s2 are averaged, and a step is taken with the averaged slope.
This is a simple predictor-corrector method, in which the Euler method is used
to predict the new solution value, followed by a more accurate correction. Note
that the correction cannot be made without knowing the prediction.

tn tn+1

zn

zn+1

s2

s1

s1+ s2
2

tn tn+1

zn

zn+1

s2

s1

s3

wn+1

s3

(a) (b)

Figure B.2 The geometry of a higher-order one-step method.
(a) The Modified Euler method takes an Euler step whose slope is the average of
the two slopes shown. (b) A third-order method first uses modified Euler to find the
vector field in the middle of the time interval, and translates the slope s3 determined
there back to tn. Then an Euler step is taken with slope s3 to produce (tn�1, wn�1).
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B .3 A DA P T I V E S T E P -S I Z E M E T H O D S

Thus far we have treated the step size h as a constant throughout the calculation.
We have given no advice on how to choose h, except to say that the smaller the
h, the smaller the error. Adaptive methods find the best step size automatically,
and constantly recalculate the optimal size as the calculation proceeds.

Matlab’s ode23 program is an adaptive method using second-order modi-
fied Euler along with the third-order method

w0 � x0

wn�1 � wn � h
s1 � 4s3 � s2

6
for n 	 1, (B.10)

where s1 and s2 are as defined for the modified Euler method and s3 � f(tn �

h� 2, wn � (h� 2)(s1 � s2)� 2). As sketched in Figure B.2(b), the average slope
used to calculate zn�1 in the Euler-type step in the modified Euler method is used
instead to sample the differential equation for a new slope at tn � h� 2. This slope
is used for the Euler-type step from tn to tn�1.

To get the program to adjust the step size h automatically, the user must set
a tolerance TOL for the one-step error. For the new step, both the second-order
approximation zn�1 from (B.9) and the third-order approximation wn�1 from
(B.10) are calculated. Since the third-order approximation is so much better, the
difference between the two is a good approximation for the one-step error of zn�1,
that is, e(h) � |zn�1 � wn�1|. Denote by c the factor by which we want to change
the step size. Then the new step size should be the ch that satisfies TOL � e(ch),
which can be approximated as follows:

TOL � e(ch) � c3e(h) � c3|zn�1 � wn�1|. (B.11)

Here we have used the fact that the one-step error of the (second-order) modified
Euler method is proportional to h3. Now (B.11) can be solved for c:

c �

(
TOL

|zn�1 � wn�1|
)1 � 3

. (B.12)

Two further points make the automatic choice of step size conservative. First, the
new h is set to be 0.9ch instead of ch. Second, although the step size is being set
to keep one-step error within the preset tolerance for the second-order method,
the third-order approximation wn�1 is accepted as the new value of the solution.

Matlab also provides a higher-order adaptive method called ode45. This
is an implementation of the Runge-Kutta-Fehlberg method. It uses a variation
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of the fourth-order Runge-Kutta method described above together with a fifth-
order method that can be accomplished while reusing some of the fourth-order
calculations, in the same spirit as ode23. This method, often denoted RK45 in
other sources, is very popular for applications in which running time is not a
critical factor.

Depending on your intended use, we have either completely solved the
problem of computational solution of differential equations, or have barely
scratched the surface. One-step methods are fine for the simulations we have
outlined in this book, but are too slow for industrial-strength applications. A
rough way to compare the computational effort required for ODE methods is to
count the number of times per step that f , the right-hand side of the equation,
needs to be evaluated.

As we saw in the above code fragment, fourth-order Runge-Kutta requires
four function evaluations per step, for a one-dimensional system. It is not hard
to derive multistep methods that are fourth order but require only one function
evaluation per step. A multi-step ODE method uses not only the previous esti-
mate wn, but several previous estimates wn, wn�1, . . . to produce wn�1. In fact,
it is fairly wasteful of one-step methods to ignore this available information. If
most of the computational effort lies in the evaluation of f , we would expect a
fourth-order multistep method to run four times as fast as RK4.

Multistep methods have some liabilities. The most obvious is that starting
the method is nontrivial. Usually, a one-step method is used to intialize the pre-
vious wi estimates that are needed. Second, when adaptive step sizing is used, the
fact that the previous estimates wn, wn�1, . . . are not equally spaced complicates
the formulas significantly. A new generation of methods called multivalue ODE
methods has recently been introduced to alleviate some of these problems. We
refer you to a current numerical analysis textbook, such as (Burden and Faires,
1993) to read more about these issues.
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Answers and Hints to
Selected Exercises
T1.2 Hint: Mimic the proof of Part 1.

T1.3 The points in the open intervals (�1, 0) and (0, 1) satisfy |f(x)| � |x|, and
converge to sinks �1 and 1, respectively. The points |x| �

√
5 satisfy |f(x)| � |x|,

and because they increase the distance from the origin on each iteration they
cannot converge to either of the sinks.

T1.4 One condition is that f lies strictly between the lines y � p and y � x in (p � �,
p � �).

T1.5 �1 �
√

2, 1 �
√

2�.

T1.7 �(5 �
√

5) � 8, (5 �
√

5) � 8�.

T1.8 fk has 2k fixed points. Some are also fixed points of period less than k, but since
2k � (2k�1 � 2k�2 � . . . � 21) � 2, not all can have period less than k.
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T1.10 If x is eventually periodic, then 3mx � 3nx (mod 1). Since (3m � 3n)x is an integer
p, x � p� (3m � 3n) is a rational number. Conversely, assume x � p� q, where p
and q are integers. The integers 3mp cannot all be distinct modulo q, since there
are only q possibilities. For some integers m and n, 3mp � 3np (mod q), which
implies 3mp� q � 3np� q (mod 1).

T1.14 (a) Any number between (2 �

√
2 �

√
2) � 4 and (2 �

√
2) � 4 will do.

T1.16 (a) Greater than 1 � 2 (b) Less than 1 � 2.

1.1 l has an attracting fixed point if and only if �1 � a � 1, and has a repelling
fixed point if and only if a � �1 or a � 1. There is a fixed point that is neither
attracting nor repelling if a � �1, and many such if a � 1 and b � 0. If a � 1
and b � 0, the map l has no fixed point.

1.3 x � 0 is a source.

1.5 Source.

1.9 (a)
√

2. (b) �
√

2 and all preimages of �1. Hints: Draw the graph and show that
except for the undefined orbit with x0 � �1, all orbits that ever reach outside
[�1.5, �1.4] converge to

√
2. Note that the endpoints of this interval both map

to �1, so the remainder of the orbit (and limit) is undefined. Next show that
any point inside this interval is repelled from �

√
2 at the rate of more than a

factor of 4 per iterate, so that no orbit other than the fixed orbit ��
√

2� can
avoid eventually leaving the interval. Most leave the interval and converge to√

2; a few unlucky ones land on �1.5 or �1.4 on the way out and end up with
undefined orbits.

1.11 (b) Hint: Show that (f2) ′(x) 	 0 for all x.

1.15 The only fixed point is x � 0. Orbits with initial conditions in [�1, 0] are
attracted to 0; all other orbits diverge.

1.16 Hint: Check for n � 0. To prove the formula for n � 1, you may need the
double-angle formula: cos 2x � 1 � 2 sin2 x.

T2.4 Hint: Write the vector in polar coordinates and use the sin and cos addition laws.

T2.7 (b) �1. (d) �1.

T2.8 The inverse map is g(x, y) � (y, (x � a � y2) � b). If b � 0, then the points (1, 0)
and (1, 1) map to the same point, so the map is not one-to-one.

T2.9 (b) Part (a) confirms that the orbit of any point on S stays on S, a parabola through
0. Since the x-coordinate of the orbit is halved each iteration, it converges to 0,
and the y coordinate must follow.

T2.10 The axes of AN are of length 4 � 3 and 1� 3 along the directions (2, 1) and (1, �2),
respectively.
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2.1 (a) Source (b) Saddle (c) Sink.

2.2 (0, 0).

2.3 (0, 0) is a saddle and (3, 9) is a source.

2.4 (a) (�0.7, �0.7) is a fixed sink, (�0.8, �0.8) is a fixed saddle; there are no
period-two orbits. (b) (�0.7, �0.7) and (0.3, 0.3) are saddles and �(0.5, �0.1),
(�0.1, 0.5)� is a period-two sink orbit.

2.7 (a) �0.1225 � a � 0.3675 (b) 0.3675 � a � 0.9125

2.8 (a) Image ellipse has one axis of length 2
√

2 in the direction (1, 1), and another
of length 1�

√
2 in the (�1, 1) direction. Area is 2�. (b) Ellipse has axes of

length 3 and 2, and area of 6�.

T3.2 Hint: Find the Lyapunov exponents of all fixed points, and then show that all
orbits either are unbounded or converge to one of the fixed points.

T3.3 If f has a period-n orbit, then fn(x0) � x0 � nq � x0 (mod 1), so that nq is an
integer. That is not possible since q is irrational. The Lyapunov exponent of the
orbit of any x0 is limn→�

1
n [ln 1 � . . . � ln 1] � 0.

T3.4 The set of points which share the same length-k itinerary is a single subinterval
of length 2�k. An infinite itinerary corresponds to the nested intersection of
subintervals of length 2�k, k 	 1, which is a single point.

T3.7 First check that Tn(x) � x if and only if GnC(x) � C(x), for any positive integer
n. If x is a period-k point for T, then Tk(x) � x implies GkC(x) � C(x). The
equality GnC(x) � C(x) cannot hold for any n � k because it would imply
Tn(x) � x, which is not true—x is a period-k point. Therefore C(x) is a period-k
point for G.

T3.8 The first statement of Theorem 3.11 is Exercise T3.7. Secondly, apply the
chain rule to the equation gk(C(x)) � C(fk(x)) to get (gk) ′(C(x))C ′(x) �

C ′(fk(x))(fk) ′(x). Since fk(x) � x and C ′(x) � 0, cancelling yields (gk) ′(C(x)) �

(fk) ′(x).

T3.10 (a) The itinerary LRR 
 
 
 R, consisting of one L and k � 1R’s, is not periodic for
any period less than k. (b) According to Corollary 3.18, the interval LRR 
 
 
 RL
contains a fixed point of fk. By part (a), that point must be part of a period-k
orbit.

T3.12 The twelve distinct periodic orbits of period � 5 are: L, KL, JKL, KLL, JKLL, KLLL,
IJKL, JKLLL, KLLLL, KLJKL, KLKLL, and IJKLL.

3.1 (a) a1 � �1� 4. (b) ��. (c) a2 � 3� 4. (d) a3 � 5� 4. (e) First find an interval
which maps onto itself. Then find a partition as was done for the logistic map G.
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3.3 (a) G maps [0, 1] onto itself and g maps another interval onto itself. C will be a
one-to-one continuous map between [0, 1] and the other domain interval.

3.4 Hint: See Exercise T3.2.

3.5 (b) [1, 2] and [2, 3]. (c) The transition graph is the fully connected graph on two
symbols. There exists periodic points of all periods.

3.8 (a) All positive integers except 3, 5, and 7. (b) All positive integers.

3.9 (c) All positive integers.

3.10 All positive integers except for 3.

3.11 (b) Hint: Explain why either f or f2 must have points 0 � x1 � x2 � 1 such that
x1 maps to 0 and x2 maps to 1.

3.12 Hint: Find a positive lower bound for f ′ on [0, 1].

T4.2 The expansions end in 02.

T4.7 Complete the square by replacing w � x � 1� 2.

T4.8 Hint: Count the number of boxes needed to cover a square contained in (respec-
tively, containing) the disk.

T4.9 1 � ln 2� ln 3.

T4.10 (b) 1.

T4.11 (a) 0. (b) 1.

4.1 (a) Hint: Define f(x) � 3x. Show that f is a one-to-one function from one set
onto the other.

4.2 (a) 1. (b) In base 4 arithmetic, all numbers whose expansions use only 0 and 3.
(c) 1� 5 � .03, and 17� 21 is also in K(4). (d) 0, 1� 2. (e) a � 4.

4.4 Hint: Consider a family �Qn� of intervals such that the nth rational is contained
in Qn and the length of Qn is �� (2n), for each n, n 	 1.

4.8 ln 2 � ln 3.

4.11 (a) True. Prove for a union of two sets, then generalize. (b) False.

4.12 (a) Hint: Find out the distance between points 1 � (n � 1) and 1 � n. Show that
N(�) � 2n for � � 1� n(n � 1).

4.13 (a) 1/(1�p). (b) 0.

T5.1 (2� 3)n.

T5.4 Cat map: 2; Ikéda map: 1 � .51� .72 � 1.7.
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T5.6 (3� 4, 1� 3) and (1� 4, 2� 3); there are no others.

5.1 Since Jn � Df(vn�1) 
 
 
 Df(v0), the matrix JnJT
n has determinant D2n. (The

determinant is unchanged under the transpose operation.) Since the prod-
uct of the m eigenvalues of JnJT

n is D2n, the product of the semimajor axes
of JnU is rn

1 
 
 
 rn
m � |D|n. Therefore (rn

1)1 � n 
 
 
 (rn
m)1 � n � |D| for n 	 1, and

L1 
 
 
 Lm � [limn→�(rn
1)1 � n] 
 
 
 [limn→�(rn

m)1 � n] � |D|, assuming the Lyapunov
numbers exist.

5.2 The Lyapunov numbers will be the absolute values of the eigenvalues of the
symmetric defining matrix, which are (1 �

√
5) � 2. The Lyapunov exponents are

ln(1 �
√

5) � 2 and ln(
√

5 � 1) � 2. These are smaller than the cat map Lyapunov
exponents by a factor of 2 because the cat map matrix is the square of this one.

5.6 Hint: Design a two-sided symbol sequence that contains every finite subsequence
of L and R on both sides. There is a positive Lyapunov exponent as explained in
Section 5.6.

5.7 (b) The unit circle r � 1. (c) Orbits on the unit circle have Lyapunov exponents
ln 2 and ln 2. Orbits inside the unit circle have Lyapunov numbers 0 and 0, so
the Lyapunov exponents do not exist.

T6.2 Yes; consider G(x) � 4x(1 � x).

T6.3 (b) Hint: You will need to find the symbol sequence of a dense orbit. Any
neighborhood of a point in the invariant set of the horseshoe contains a block
determined by specifying a finite number of symbols to the left and to the right of
the decimal point. Proceed, as in the construction of a dense orbit for the logistic
map g4, by listing every finite block of symbols, ordered by length.

T6.6 Hint: Points in the attractor A can be assigned two–sided symbol sequences
just as points in the chaotic set of the horseshoe map. Notice that the orbit of
a point in the solenoid depends entirely on its t coordinate. Specifically, code
points symbolically by the following rule: the ith symbol is 0 if the t coordinate
of fi(t, z) is in [0, 1

2 ); otherwise, the ith symbol is 1. Show that any neighborhood
of a point in A can be represented by a symbol block with a finite number of
symbols specified to the right and to the left of the decimal point. (The symbols
to the right determine a neighborhood of the t coordinate, while those to the
left determine on which local branch the point is located.) Then follow the
construction for a dense orbit in the horseshoe.

T6.7 Hint: Construct an orbit similar to the dense orbit in the tent map T2 or the
logistic map g4, which includes all allowable symbol sequences, ordered by length.

6.1 Hint: See Exercise T6.2.

6.2 Figure 6.10(a): All positive integers. Figure 6.13(a): All positive integers. Figure
6.14(a): All even positive integers.
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6.3 The fixed points (�1, 0), (0, 0), (1, 0) are forward limit sets; (�1, 0) and (1, 0)
are attracting fixed points. The left half-plane is the basin of (�1, 0) and the
right half-plane is the basin of (1, 0). The basin boundary is the y-axis. These
points tend to the saddle (0, 0) on iteration.

6.4 F(x0, �0�) �

{
0 if x0 � 0
1 if x0 � 0

. F(x0, N(r, �0�)) � 1 for all x0, r � 0. F(x0, [0, �)) �{
1� 2 if x0 � 0
1 if x0 � 0

. The natural measure �f is the atomic measure located at 0.

6.7 Hint: This map is conjugate to the tent map. See Exercise 3.3 and Challenge 6.

6.8 (e) p(x) �




2� 7 if 0 � x � 1� 4
9� 7 if 1� 4 � x � 3� 4
8� 7 if 3� 4 � x � 1

T7.2 (a) The characteristic equation of A is f(
) � (
 � 3)2. Solving (A � 3I)v �

0 for v yields only v � (1, 0). (b) The first equation is ẋ � 3x � y � c1e3t.
Multiplying through by e�3t yields (xe�3t) ′ � c1, or xe�3t � c1t � c2. Therefore
(x(t), y(t)) � (c1te3t � c2e3t, c1e3t).

T7.4 The ellipses are y2 � xy � 5
2 x2 � y2

0, where y0 is the y-intercept. Solutions are
x(t) � � 2

3 y0 sin 3t, y(t) � y0 cos 3t �
y0
3 sin 3t, using initial condition (0, y0).

T7.7 L �
√

a2 � b2 � c2 � d2 works. This constant is not optimal. The smallest Lip-
schitz constant for A is the square root of the largest eigenvalue of AAT .

T7.9 The existence and uniqueness Theorem 7.14 applies to (7.32). Solutions with
positive x(0) are of form x(t) � (2t � 1� x2

0)
�1 � 2; those with negative x(0) are

x(t) � �(2t � 1� x2
0)

�1 � 2. All approach the equilibrium x � 0 monotonically as
t → 0, so x � 0 is asymptotically stable.

T7.11 The orbit starting at (x, ẋ) � (0, 0); the orbit that begins along one wall and has
just enough initial energy to reach (0, 0); etc.

T7.14 Hint: Try the function E � x2 � y2.

T7.17 (b) First, determine which points on the x-axis belong to the largest possible W.
Then extend W to the plane so that it will be a forward invariant set.

T7.21 The constant K may be set so that E( c
d , a

b ) � 0. Show that E( c
d , a

b ) is a relative
minimum of E. (A test for finding relative maximum/minimum values that in-
volves the second-order partial derivatives can be found in most standard calculus
texts.)

7.3 The repeller (0, 0) and the saddle (�8, �16) are both unstable.

7.4 (b) x � (b � cKea(b�c)t) � (1 � Kea(b�c)t), where K � (b � x0) � (x0 � c).

(c) T �
ln |x0�b|

|x0�c|
a(c � b)

.
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7.7 (a) Hint: Setting y � ẋ, try E(x, y) � y2 � 2 � x2 � 2 � x4 � 4.

7.8 Hint: Use the LaSalle Corollary.

7.9 (a) (x1, 0) and (x2, 0) are stable; there is an unstable equilibrium (x3, 0) in
between. (b) (x1, 0) stable, (x2, 0) unstable.

7.14 x � 0 and x(t) �

{
0 if x � 0
2t3 � 2 � 3 if x 	 0

T8.4 Let z be in the orbit of u. Then there is a number t1 such that z � F(t1, y). Since
u is in �(v0), there is a sequence �F(tn, v0)�, �tn� → � as n → �, converging to
u. By Theorem 7.16, given � � 0, there is an N � 0, such that F(t1, F(tn, v0))
is in N�(z), for n � N. Now use the composition property to get these points on
the orbit of v0.

T8.6 Assume that there are distinct points v1 and v2 in �(v0) such that V(v1) � a
and V(v2) � b, where a � b. Reach a contradiction by showing that the value
of V along F(t, v0) must increase (with t) from values near a to values near b.

T8.7 If v(t1) � v(t2), t1 � t2, and if v(t) is not an equilibrium, then it can be shown (by
the composition property of autonomous equations) that v(t � (t2 � t1)) � v(t),
for any t. In this case, t2 � t1 must be an integer multiple of the period of the
orbit.

8.2 The �-limit sets of (0, 0) and (1� 2, 0) are both the origin. The �-limit set of
(1, 0) is the circle r � 1 and of (2, 0) is the circle r � 3.

8.3 (a) Refer to the similarity types given in Appendix A.

8.6 D.

8.7 A, C, D, P, Y.

8.9 Hint: Set E(x, y) � y2 � 2 �
∫

g(x) dx where y � ẋ. Show that Ė(x, y) � 0, with
equality possible only when y � 0.

8.10 Yes.

8.12 (a) Hint: Use the Monotonicity Lemma 8.12.

8.16 If �(t) is the direction of travel of x(t), measured in radians, show that |�̇| � L.

T9.3 Hints: Find some r0 and � � 0 depending only on the constants ai, bi, and c such
that (9.2) implies V̇(u) � �� whenever |u| 	 r0. Define m to be the maximum
of the function V(u) on the ball of radius r0. The set S � �u : V(u) � m� is
forced to be a bounded set by the hypotheses. Trajectories can get into S from
the outside but no trajectory can leave S, because all points of the boundary are
outside radius r0. Choose B large enough so that a ball of radius B contains S.
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9.1 Hint: Set x � y � 0 in (9.1) and solve.

9.3 Area contraction rate is e�2�c per iterate; the system is dissipative if c � 0.

9.6 Both are 0.

9.7 Note that all orbits are identical except for a rescaling of time. The Lyapunov
exponents of v̇ � cf(v) are obtained by multiplying c by each of the Lyapunov
exponents of v̇ � f(v).

9.9 (a) ẋ � y, ẏ � �x. (b) ẋ � y, ẏ � x. (c) J1(x0, y0) � [(cos 1)x0 � (sin 1)y0,
(� sin 1)x0 � (cos 1)y0], Lyapunov exponents are �0, 0�. (d) J1(x0, y0) � [ 1

2 (e �

e�1)x0 � 1
2 (e � e�1)y0, 1

2 (e � e�1)x0 � 1
2 (e � e�1)y0], Lyapunov exponents are

�1, �1�. (e) The stable equilibria (2n�, 0) for integer n have Lyapunov expo-
nents �0, 0�. The saddle equilbria �(2n � 1)�, 0) for integer n have Lyapunov
exponents �1, �1�, as do the connecting arcs converging to them. All periodic
orbits have Lyapunov exponents �0, 0�.

T10.2 Any point on a stable (resp., unstable) manifold maps to another point on the
stable (resp., unstable) manifold under both f and f�1. Therefore a homoclinic
point, which lies on both, remains homoclinic under mapping by either f or f�1.

T10.3 When c2 � 0, the inverse of the Ikéda map f(z) � c1 � c2z exp[i(c3 �
a

1 � |z|2 )]

is f�1(w) �
w � c1

c2
exp[i(a� (1 � |w � c1

c2
|2) � c3)].

T10.5 Let Qa and f(Qa) denote the two pieces of the attractor for a � ac. Each piece
attracts a branch of U(p). As a crosses ac, Qa crosses one branch of the stable
manifold of p, while f(Qa) simultaneously crosses the other. For each a � ac,
each point in U(p) is a limit point of forward iterates of Qa. Notice that Qa is
invariant under f2. There is a crisis at a � ac for the map f2 in which the attractor
Qa suddenly jumps in size to contain f(Qa).

10.3 (a) Hint: Show that curves g1 and g2 intersect at a nonzero angle at x if and only
if f(g1) and f(g2) intersect at a nonzero angle at f(x).

10.6 Hint: Sufficiently large forward iterates of an endpoint or a crossing point must
be on the local stable manifold.

10.7 The unstable manifold of the cat map is the line y � [(1 �
√

5) � 2]x, treated
modulo one. In the unit square, it consists of infinitely many parallel line segments
dense in the square; on the torus, it is a curve which wraps around infinitely many
times without intersecting itself. The stable manifold y � [(1 �

√
5) � 2]x does

the same, crossing the unstable manifold at right angles because the vectors
(1, (1 �

√
5) � 2) and (1, (1 �

√
5) � 2) are perpendicular.

10.9 The part of the stable manifold lying within the unit square consists of the
horizontal length-one segments whose y-coordinates are middle-third Cantor set
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endpoints—in other words, 0 � x � 1, y � p� 3k for integers k 	 0 and integers
0 � p � 3k. These segments are connected via the part of the stable manifold
lying outside the unit square in the order y � 0, y � 1, y � 2� 3, y � 1� 3, y �

2� 9, y � 7� 9, y � 8� 9, y � 1� 9, . . .. The part of the unstable manifold lying
within the unit square consists of the vertical length-one segments whose x-
coordinates are middle-third Cantor set endpoints. The second fact follows from
the first by noticing that the unstable manifold of f is the stable manifold of the
inverse map

f�1(x, y) �

{
(3x, y� 3) if 0 � x � 1� 3
(3 � 3x, 1 � y� 3) if 2� 3 � x � 1,

which is f with the roles of x and y reversed. (In fact, f�1 is conjugate to f via the
conjugacy C(x, y) � (y, x)).

T11.1 Yes. The chain rule shows that f2 ′
� f ′(f(x))f ′(x), and f2 ′′

� f ′′(f(x))f ′(x)2 �

f ′(f(x))f ′′(x) � f ′′(x)[f ′(x)2 � f ′(x)] � f ′′(x)[1 � 1] � 0.

T11.3 (a) See, for fixed d � 0, how the family of graphs y � fa,d(x) varies with a.

T11.5 Hint: See the proof of Theorem 11.9.

T11.8 (a) Show that e1 � e2 � m11 � m22 and e1e2 � det A � m11m22 � m21m12.

T11.14 (b) 0 � a � 2.

T11.15 (a) First show that for r � 1, the sequence is increasing and bounded and,
therefore, must have a limit. Conclude that the limit is the fixed point r � 1. A
similar argument works for r � 1. (b) e�2�b. (c) r 	 0.

T11.16 Linked. The outside edge of a Möbius strip, regarded as a closed curve, is linked
with the equator.

T11.17 Hint: Let g be a periodic orbit and let L be a line segment which crosses g
transversally. A period-doubling bifurcation from g would produce a periodic
orbit which crosses L on both sides of g, violating uniqueness of solutions.

11.2 There is a period-doubling bifurcation of the origin for a � 1. The period-two
orbit created is a sink for 1 � a �

√
6 � 1, when it loses stability in a period-

doubling bifurcation to a period-four sink.

11.3 Period-doubling bifurcation of the origin for a � �1.

11.5 (a) Saddle-node at a � 1, no period-doubling. (b) No saddle-node, period-
doubling at a � 1. (c) Saddle-node at a � e, period-doubling at a � �1� e.
(d) Period-doubling at a � 2.

11.6 The origin is a fixed point for all a. The other path of fixed points (�(1 � a)3,
�(1 � a)2) crosses the origin at a � 1, at which point the origin changes from
attracting to repelling.
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11.10 (b) Hint: 0 is attracting for g if and only if 0 is attracting for g ◦ g. Find the power
series expansion for g ◦ g, and apply part(a) of this problem.

11.12 The minus sign can be moved to the denominator of the left side of the equation.
Reverse the direction of time.

11.14 (c) In Chapter 7, H(x, y) � �c ln x � dx � a ln y � by was shown to be a
Lyapunov function for the equilibrium ( c

d , a
b ) when r � 0. Calculate dH

dt �
�H
�x

dx
dt � �H

�y
dy
dt for r � 0.

T12.1 Hint: If �x1, x2, x3� is a periodic orbit of fa, then f3
a

′(x1) � f3
a

′(x2) � f3
a

′(x3) by the
Chain Rule.

T12.5 Assume that there are infinitely many zeros of g in the interval. First show that
g ′ can be zero at only a finite subset of these zeros. Is this fact compatible with
the hypotheses?

T12.8 Hint: Check the direction of the snake that returns to a � ac to obtain a contra-
diction.

T12.9 The snake cannot have an endpoint.

T12.11 First argue that the snake must pass through period–doubling bifurcation orbits
of these periods.

12.1 Use the fact that f2 is conjugate to the logistic map g(x) � 4x(1 � x), and hence
to the tent map T2, to show that all periodic orbits of f2 are (hyperbolic) repellers.

12.3 Hint: Use symbol sequences to classify regular and flip unstable orbits.
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Rössler, O. 1976. An equation for continuous chaos. Phys. Lett. A 57:397.

592



B I B L I O G R A P H Y

Roux, J.-C., Simoyi, R. H., and Swinney, H. L. 1983 Observation of a strange attractor.
Physica D 8:257–266.

Roy, R., and Thornburg, K.S. 1994. Experimental synchronization of chaotic lasers. Phys-
ical Review Letters 72:2009–2012.

Ruelle, D. 1989. Chaotic Evolution and Strange Attractors. Cambridge University Press,
Cambridge.

Ruelle, D. and Takens, F. 1971. On the nature of turbulence, Commun. Math. Phys.
20:167.

Salzmann, B. 1962. Finite amplitude free convection as an initial value problem. J. Atmos.
Sci. 19:239–341.

Sartorelli, J. C., Goncalves, W. M., and Pinto, R. D. 1994. Crisis and intermittence in a
leaky-faucet experiment. Physical Review E 49: 3963–3975.

Sauer, T., Yorke, J. A., and Casdagli, M. 1991. Embedology. J. Statistical Physics 65:579.
Sazou, D., Karantonis, A., and Pagitsas, M. 1993. Generalized Hopf, saddle-node infinite

period bifurcations and excitability during the electrodissolution and passivation of
iron in a sulfuric acid solution. Int. J. Bifurcations and Chaos 3:981–997.

Schiff., S., Jerger, K., Duong, D., Chang, T., Spano, M., and Ditto, W. 1994. Controlling
chaos in the brain. Nature 370:615–620.

Shaw, R. 1984. The Dripping Faucet as a Model Chaotic System. Aerial Press.
Shil’nikov, L. 1994. Chua’s circuit: Rigorous results and future problems. Int. Journal of

Bifurcation and Chaos 4:489–519.
Smale, S. 1967. Differentiable dynamical systems, Bulletin Am. Math. Soc 73:747.
Sommerer, J. 1994. Fractal tracer distributions in complicated surface flows: an application

of random maps to fluid dynamics. Physica D 76:85–98.
Sparrow, C. 1982. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors.

Springer-Verlag, New York, Heidelberg, Berlin.
Stewart, I. 1989. Does God Play Dice? The Mathematics of Chaos. Basil Blackwell.
Strang, G. 1988. Linear Algebra and its Applications. Harcourt Brace Jovanovich, San

Diego (1988).
Strogatz, S. H. 1994. Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, MA.
Strogatz, S. H. 1985. Yeast oscillations, Belousov-Zhabotinsky waves, and the nonretrac-

tion theorem. Math. Intelligencer 7 (2):9.
Sussman, G. J. and Wisdom, J. 1988. Numerical evidence that the motion of Pluto is

chaotic. Science 241:433–7.
Sussman, G. J. and Wisdom, J. 1992. Chaotic evolution of the solar system. Science

257:56–62.
Tabor, M. 1989. Chaos and Integrability in Nonlinear Dynamics: An Introduction. Wiley-

Interscience, New York, NY.
Takens, F. 1981. Detecting strange attractors in turbulence. Lecture Notes in Mathematics

898, Springer-Verlag.
Thompson, J.M.T. and Stewart, H. B. 1986. Nonlinear Dynamics and Chaos. John Wiley

and Sons, Chichester.

593



B I B L I O G R A P H Y

Touma, J. and Wisdom, J. 1993. The chaotic obliquity of Mars. Science 259:1294–1297.
Tufillaro, N. B., Abbott, T., and Reilly, J. 1992. An Experimental Approach to Nonlinear

Dynamics and Chaos. Addison-Wesley, Redwood City.
Van Buskirk, R. and Jeffries, C. 1985. Observation of chaotic dynamics of coupled nonlinear

oscillators. Phys. Rev. A 31:3332–57.
Vincent, T. L., Mees, A., and Jennings, L., ed. 1990. Dynamics of Complex Interconnected

Biological Systems. Birkhauser, Boston, MA.
Whitelaw, W. A., Derenne, J.-Ph., and Cabane, J. 1995. Hiccups as a dynamical disease.

Chaos 5:14.
Whitney, H. 1936. Differentiable manifolds. Annals of Math. 37:645.
Wiggins, S. 1990. Introduction to Applied Nonlinear Dynamical Systems and Chaos.

Springer-Verlag, New York, Heidelberg, Berlin.
Winfree, A. T. 1980. The Geometry of Biological Time. Springer-Verlag, New York,

Heidelberg, Berlin.
Yorke, J. A., Alligood, K. T. 1985. Period doubling cascades of attractors: a prerequisite for

horseshoes. Communications in Mathematical Physics 101:305–321.
Yorke, J. A., Yorke, E. D., and Mallet-Paret, J. 1987. Lorenz-like chaos in a partial differ-

ential equation for a heated fluid loop. Physica D 24:279–291.
You, Z.-P., Kostelich, E. J., and Yorke, J. A. 1991. Calculating Stable and Unstable Mani-

folds. International Journal of Bifurcation and Chaos, 1:605–623.
Young, L.-S. 1982. Dimension, entropy and Lyapunov exponents. Ergodic Th. and Dyn.

Sys. 2:109.

594



Index

�-limit set, 331

acceleration, 45
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affine contraction map, 157
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Andronov-Hopf bifurcation, see Hopf
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antimonotonicity, 536
area-contracting, 243, 470
area-preserving, 471
Arnold, V., 476
aspect ratio, 190
asteroid, 47, 50
astronomical unit, 100, 101
asymptotically stable, 290

attractor, 75, 235, 281
nonhyperbolic, 452
two-piece, 75

autonomous, 275

base 3 arithmetic, 152
basin, 11, 52, 56, 129

infinite, 133
of infinity, 12, 59, 61, 131, 161, 167, 184
of pendulum, 54, 55
of stable equilibrium, 307
riddled, 170

basin boundary, 83, 84, 527
fractal, 164, 166, 183

basin cell, 435
beetles, 39
Belousov-Zhabotinskii reaction, 143, 549
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generic, 513
Hopf, 483
nongeneric, 460, 468
period-doubling, 21, 74, 451, 494, 499
pitchfork, 459, 467
saddle-node, 21, 450, 464
subcritical, 486
supercritical, 486
tangency, 21
transcritical, 458, 467
value, 448

bifurcation diagram, 18, 21, 74, 450
billions and billions, 101
binary numbers, 111
birth rate, 39
bit, 111
blow-up in finite time, 280, 283
Bolzano-Weierstrass Theorem, 338
boom and bust, 40
Borel measure, 251
Borel set, 251
boundary, 433
branch

of bifurcation diagram, 506
bronze ribbon, 229
Brouwer Fixed-Point Theorem, 210
Brouwer, L., 432

cannibalism, 39
Cantor set, 150, 186, 244, 411

box dimension of, 177
middle-3/5, 554
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middle-third, 158, 177, 554

cascade, 18, 499, 520, 526
Chua’s circuit, 534
experimental, 532
reverse, 533

Cascade Theorem, 520
cat map, 95, 97, 197
Cayley-Hamilton Theorem, 559
celestial mechanics, 46, 101
cell, 435

center
equilibrium, 491

chain rule, 15, 16, 71, 118
change of coordinates, 62, 67, 80, 561
chaos, 27, 82, 99
chaotic attractor, 232, 235, 247
chaotic orbit, 106, 110, 196

of flow, 385
chaotic set, 235
chemical reaction, 143, 321
Chua’s circuit, 375

crisis, 421
Lyapunov exponents of, 390
period-doubling, 377
synchronization of, 391

circle map, 92
closed curve

simple, 333
closed set, 186, 337
cobweb plot, 5–7, 12
coexistence

of species, 312, 326
coexisting attractors, 355
Colorado Corollary, 211
comet

Giacobini-Zinner, 103
commensurate, 352
competing species, 310
complement, 250
complex multiplication, 167
composition property

of autonomous equations, 339
conjugate, 115, 527
connected, 520
connected set, 339
connecting arc, 334, 335, 407
conservation of energy, 300
continuable, 460
continuous dependence, 280, 295, 296
convection rolls, 362, 363
cooling
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correlation dimension, 180
correlation function, 180
Couette-Taylor experiment, 538
countable, 121, 123, 153
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crisis, 18, 414

boundary, 420, 444
interior, 416

critical point, 32, 114, 167, 306, 527
is period three, 248, 260

cycle, 333

damping, 54
death rate, 39
decreasing, 37
delay coordinates, 145, 541
delay plot, 538
delta diamond, 342
dengue fever, 325
dense, 122, 204
dense orbit, 247
density

of measure, 257
derivative

partial, 60, 69
determinant, 67, 76, 94
deterministic, 2, 294
diagonalizable, 559
diamond construction, 343
dichotomy

spaghetti-lasagna, 205
diffeomorphism, 403
Digital Orrery, 99
dilation, 66
dimension

box-counting, 174, 545, 555
correlation, 180

discontinuity, 25
discrete-time, 50
disk, 58
dissipative, 366, 519

flow, 385
distance

Euclidean, 58
domain, 77
double-loop attractor, 368
double scroll attractor, 390
double scroll chaotic attractor,

377

double-well Duffing equation, 303,
378–380, 406, 412

doughnut, 79, 92
dynamical system, 1

continuous-time, 2
discrete-time, 2

eigenvalue, 62, 87, 558
simple, 259

eigenvalues
complex, 66, 90, 91, 289, 491
distinct, 63, 88
repeated, 65, 89, 90

eigenvector, 62, 87
electrodissolution, 496
ellipse, 47, 63, 69, 87, 89
ellipsoid, 563
elliptical orbit, 46
embedding, 543
embedding dimension, 543
energy function, 491
ENIAC, 361
epsilon neighborhood, 9, 11, 58
error

one-step, 571
total, 570

ESP, see exchange of stability principle
Euler method, 568, 573

modified, 573
eventually periodic, 25, 94
exchange of stability principle, 515
existence of solutions, 296
expanding interval map, 245
exponential convergence, 11
exponential decay, 274
exponential growth, 3, 100
exponential separation, 106
exponential separation time, 101
extinction, 310

Fatou’s Theorem, 167
faucet

leaky, 442
Feigenbaum’s constant, 502, 525
Feigenbaum, M., 500
Fibonacci number, 95, 97
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figure-eight, 338
final state prediction, 184
first-return map, 318
fixed point, 5, 62

attracting, 10
elliptic, 473
repelling, 10

Fixed-Point Theorem, 137, 208
flip repeller, 506
Floquet multipliers, 479
flow, 277, 331
forced damped pendulum, 187, 228, 239,

400
area contraction rate, 385
basin cell, 438
bifurcation, 504
horseshoe in, 220

forward invariant set, 308
forward limit set, 234

for flow, 331
Fourier series, 362
fractal, 51, 52, 56, 149

fat, 179
fractal dimension, 172, 188
fractal structure

in mixing, 269
fraction

of iterates, 253
friction, 54

generalized eigenspace, 293
generic, 510, 546
global synchronization, 389
globally asymptotically stable, 290
gravity, 45, 55
Gronwall inequality, 296

halo orbit, 103
Hamiltonian, 50, 491
heart

of cockroach, 541
Hénon attractor, 61, 163, 174, 232

box dimension of, 178
Lyapunov dimension of, 205

Hénon map, 51, 70, 72–74
area-contracting, 470

area-preserving, 473
basin cell, 437
bifurcation, 456
cascade, 503
crisis, 418
inverse, 77
stable manifold, 407
two-piece attractor, 418

Hénon, M., 50
heteroclinic, 410
Hodgkin-Huxley equations, 357
homeomorphism, 403
homoclinic, 48, 50, 85, 86, 87, 409, 422,

440
homoclinic point

transverse, 413
Hooke’s law, 321
Hopf bifurcation, 375, 483

subcritical, 358, 484, 488, 496
supercritical, 486

Hopf, E., 485
horizontally aligned, 425
horse, 64
horseshoe, 521

contains chaotic set, 236
near homoclinic point, 411

horseshoe map, 216, 440
chaotic orbits of, 221

hyperbolic, 68, 70
equilibrium point, 298

hyperbolic horseshoe, 411
hysteresis, 486, 496

Ikeda attractor, 232
Ikeda map, 202, 414

crisis, 416
Ikeda measure, 250
Implicit Function Theorem, 97, 463
Inclination Lemma, see Lambda

Lemma
increasing, 37
infinite

uncountably, 32, 35
infinite series, 48
inflection point, 452
initial value, 5
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initial value problem, 276, 568
interdrip time, 443
interior, 433
intersection theory, 553
initial condition, 28
invariant, 339
invariant circle, 478
invariant measure, 251

nonunique, 261
of logistic map, 264

invariant set, 86, 196
inverse map, 76, 77, 81
invertible, 77
irrational number, 93
irrational rotation, 112
irreducible, 240
isolated, 336
iterated function system, 157
itinerary, 28, 36, 113, 123–124, 214, 218

Jacobian matrix, 60, 69, 70, 72, 74, 76, 80,
97, 298, 401

Jordan Curve Theorem, 344
Julia set, 167

as fractal basin boundary, 169

KAM curve, 476
King Oscar II, 46, 85, 99

Lagrange point, 103
lakes of Wada, 432
Lambda Lemma, 415, 438
LaSalle’s Corollary, 309, 341
laser, 191, 394, 532
Lebesgue measure, 250
letters

as omega limit sets, 353
level curve, 301
level set, 314
lie across, 211, 224
limit point, 186, 337
linear

differential equation, 275
linear approximation, 60
linear stability, 68, 69
linearization, 68

Liouville’s Formula, 384
Lipschitz constant, 296, 354
local stable set, 423
local synchronization, 389
locally continuable, 460
logistic differential equation, 279

slope field, 280
logistic growth, 4
logistic map, 13, 17, 18, 51, 106, 112

bifurcation, 448, 456
chaos, 121
conjugate to tent map, 116, 264
crisis, 422
dense orbit, 123
Lyapunov exponent, 121

Lorenz, E., 359
Lorenz attractor, 363

Lyapunov dimension of, 366
Lyapunov exponents of, 363, 366
reconstructed from time series, 546
symmetry of, 363

Lorenz equations, 362
are dissipative, 385
subcritical Hopf for, 489
time-T map, 383

Lorenz tent map, 367
Lorenz windows, 367
Lotka-Volterra equations, 309
Lyapunov Center Theorem, 492
Lyapunov dimension, 203

of corn syrup, 271
Lyapunov exponent, 100, 106, 107, 107,

194, 270
calculation of, 200
for flow, 381
for logistic family, 237
positive, 110
zero along direction of flow, 384

Lyapunov function, 305, 340, 392
strict, 305

Lyapunov number, 87, 106, 107, 107,
194

Lyapunov stable, 290

Mandelbrot, B., 149
Mandelbrot set, 167
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manifold, 430
stable, 48
topological, 79
unstable, 48
with boundary, 79

map, 5
linear, 62, 62
nonlinear, 69

Markov matrix, 260
Markov partition, 212, 245
mathematical modeling, 44
Mean Value Theorem, 510
measure

atomic, 255
Borel, 251
invariant, 251
Lebesgue, 250
natural, 253

measure zero, 151, 180, 511, 546
method of analogues, 539
method of nullclines, 310
Möbius band, 79
Monotonicity Lemma, 344
mortality rate, 40
Moser, J., 476
mosquito, 325

n-body problem, 46
NASA, 103
Navier-Stokes equations, 539
near-collisions, 48
neuronal circuit, 355
Newton

law of cooling, 44, 274
laws of motion, 45, 46, 48, 53

node, 450
non-periodic, 32
nonautonomous, 275
nonlinear, 51
nonlinear optics, 394
nullclines, 310–314

obliquity, 101
of Mars, 103

ODE method
adaptive step, 574

ODE solver, 568
Euler, 568
multi-step, 575
order of, 572
Runge-Kutta, 568
Runge-Kutta-Fehlberg, 574

omega-limit set
for flow, 331

one-parameter family, 448
generic, 514

one-to-one, 76, 543
one-to-one correspondence, 153
one-way coupling, 391
open set, 433
orbit, 5

periodic, 13
shadowing, 225

orbiting masses, 46
order, 528

of differential equation, 275
of ODE solver, 572

order-n subinterval, 245
orientation-preserving, 503
orthogonal, 87
orthogonal matrix, 565

parabola, 22
partition, 125
party trick, 142
path connected, 434
pendulum, 52–54, 56, 228, 274,

334
damped, 308
forced damped, 55, 84, 85

perfect set, 186
perfect shuffle, 142
period

of periodic orbit of flow, 333
period-doubling, 236, 373, 442
period-doubling cascade, 368, 375
period-halving, 375
period-three, 23, 135

implies all periods, 127
implies sensitive dependence, 32
saddle node bifurcation, 453
window, 19
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periodic
asymptotically, 108

periodic forcing, 55
periodic orbit, 49, 58

of flow, 317, 333
periodic point, 13
periodic points

infinitely many, 92
periodic table, 24, 37, 215
periodic window, 236, 526
phase plane, 285
phase portrait, 277
phase space, 285
piecewise expanding, 256
piecewise linear, 245
piecewise smooth, 256
piecewise-linear nonlinearity, 375
plane map, 49
planetary collision, 99
Pluto, 100
Poincaré-Bendixson Theorem, 337, 341,

386
Poincaré, H., 46, 85, 99
Poincaré map, 49, 50, 479
Poincaré section, 145, 190
polar coordinates, 404
population model, 1, 39
potential energy, 300
potential well, 302
Prandtl number, 362
predator-prey

Hopf bifurcation for, 495
predator-prey model, 313
predictability, 99
probability measure, 251
projectile, 45

quadratic map, 170, 500
bifurcation, 449

quasiperiodic, 199, 352

rabbit, 168
rain gauge technique, 250
random number generator, 252
random process, 2
range, 77

rational number, 26, 93
rational numbers, 154
Rayleigh number, 362
Rayleigh-Benard convection, 360
regular repeller, 506
renormalization, 526
repeller, 451, 506
repelling, 281
resonance, 101
Riemann sum, 179
RLC circuit, 375
Rössler attractor

Lyapunov exponents of, 371
Rössler equations, 371

bifurcation diagram, 374
rotation, 66
rotation number, 476
roundoff error, 222
Runge-Kutta method, 568
Runge-Kutta-Fehlberg method, 574

saddle, 68, 76, 84, 89, 400
equilibrium point, 286, 291
flip, 80, 85
regular, 80, 85

Saltzman, B., 360
Sard’s Theorem, 511
satellite, 46, 103
Schwarzian derivative, 132, 502
self-intersection, 544
self-similar, 149, 162, 525
semi-group property, 339
semi-major axis, 65
semilog, 100
sensitive dependence, 25, 26, 27, 30–32,

36, 58, 99, 107, 362
sensitive point, 27
separation of variables, 282
shadowing, 225
Sharkovskii’s Theorem, 135
shift map, 124, 221
Sierpinski carpet, 160
Sierpinski gasket, 159, 179
similar matrix, 67, 67
simple closed curve, 344
single-well potential, 303
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singular value decomposition, 565
sink, 10, 10, 11, 58, 60, 68, 70,

281
periodic, 15

sinks
coexisting, 132

skinny baker map, 157, 196, 213,
223

slope field, 280
Smale, S., 216, 410
smooth, 10
snake, 522
solar system, 99, 101
solenoid map, 243
solid torus, 243
source, 10, 58, 68, 70, 76, 281

periodic, 15
specific heat, 44
squid axon, 356
stability shedding, 519
stable

asymptotically, 290, 307
equilibrium point, 290
globally asymptotically, 389
Lyapunov, 290, 306

stable manifold, 48, 78, 399, 436
local, 422

Stable Manifold Theorem, 440
standard map, 475, 478
state, 44, 538
state space, 44
steady state, 105
stick and socket model, 504, 517
stochastic process, 2
stretching factor, 245
stretching partition, 245
stroboscopic, 49
subharmonic, 533
superstable, 37, 527
surface of section, 49
swingby, 103
symbol sequences, 127, 137

for W-map, 246
symbol space, 124
symmetric matrix, 563
symmetry, 459

synchronization, 387
applied to communication, 392
of lasers, 397

tangent line, 60
Taylor’s Theorem, 424, 529
Taylor-Couette flow, 188
tent map, 36, 112, 161

congugacy, 116
Lyapunov exponent of, 114

ternary expansion, 152
three-body problem, 46, 49, 103, 225

restricted, 48
three-headed coin, 157
time series, 538
time-T map, 44, 277

Jacobian matrix of, 382, 390
tinker toy, 504
Tinkerbell map, 199
topological embedding, 543
torus, 92, 348

irrational flow, 386
total energy

for pendulum, 300
trace, 95, 384
trajectory segments, 342
transient, 106
transient chaos, 365, 369, 421
transition graph, 30, 33, 36, 112, 125, 136,

146, 247
transitivity, 340
transpose, 563
transversal, 341

crossing, 411
trapping region, 242, 308, 366, 368, 434
Tribolium, 39
two-way coupling, 387

uncertainty exponent, 184
uncountable, 153
unimodal, 32
uniqueness, 296

of solutions, 280
universality, 502, 526
unstable manifold, 48, 78, 399, 436

numerical calculation, 407
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Van der Pol equation, 316, 323
variational equation, 382, 390
vector field

on torus, 349
vertically aligned, 425

W-map, 241, 257
Wada basin, 438

weak coupling, 389, 396
weather forecasting, 359
Whitney Embedding Theorem, 546

Yoneyama, M., 432

Z-matrix, 258
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