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Preface

What is life? What type of system is life? How can we understand life? Or
what does “understanding life” really mean? Sixty years since the publication
of What Is Life? by Schrödinger and after the rise and success of molecular
biology, have we reached the answer to these questions?

In the recent years, I have often been asked by young researchers and
students in biology: “I am afraid that such basic questions on a life
system itself are not answered by the main-stream approach of cur-
rent biology that elucidates molecules and genes. We need some alternative
approach. What am I to do?” They are satisfied neither with the current trend
in bioinformatics nor with the detailed computer models, and are striving for
a framework complementary to molecular biology, a one that does not rely on
enumerative approach.

Responding to these voices, I have explained approaches my colleagues
and I have been taking both theoretically and experimentally, in lectures and
seminars. Although they show much interest, introduction of these rather
interdisciplinary style of research is not easy, let alone discussing how we can
understand life. Of course they ask for some books that describe a theoretical
basis of our approach and the summaries of the recent studies. My desire to
answer these requests from the students and researchers was the main force
that had driven me to write the present book.

On the other hand, those working in nonlinear dynamics and theoretical
physics have strived to set up a novel theoretical framework that is compatible
with biological systems. They are both interested in understanding life as a
part of universal dynamic processes in nature and in finding out novel con-
cepts in physics, inspired by and suitable to biology. Indeed, when researchers
embarked on the study of “complex systems” about two decades ago, their
main motivation was to seek a theory to understand biological systems. How-
ever, studies in complex systems so far in most cases have remained as studies
of dynamical systems with many elements or novel type of (nonequilibrium)
phenomena. Although both dynamical systems and statistical physics may
provide some theoretical framework for the study of biological systems, they
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by themselves are not sufficient. We need something beyond , in order to un-
derstand life system. In the present book, I also intend to answer such requests
from physicists’ side, as much as I can do.

To meet these two requests from rather different sides, I have made some
effort in organizing the book.

The first three chapters form the “basic section” of the book. In Chap. 1,
we critically review the current status of molecular biology. Of course, just
making criticisms is not so difficult. Most people who have expressed some
doubt on molecular biology to me share these criticisms, but what they need
is a proposition of an alternative approach, what I here call “complex systems
biology.” It is based on constructive and dynamical systems approach, and in-
tended to understand the basic features of a biological system – metabolism,
heredity, development, evolution, and so forth. In Chap. 2, I outline the “con-
structive biology” approach, where one “constructs” such basic features in
life both experimentally (in a laboratory) and theoretically (in a computer
model) to “understand” them. In Chap. 3, some basic background of dynam-
ical systems and statistical physics is described, as a basis for the studies
described in the later chapters. Most part of this chapter (except the last few
sections) is elementary, but here I explain the basic concepts rather intuitively
in relationship with biology.

Following, and based on, the three introductory chapters, I treat ba-
sic problems in life systems in Chaps. 4–11. The problems include heredity
(Chap. 4), reproduction and metabolism (Chaps. 5 and 6), cell differentiation,
development, and morphogenesis (Chaps. 7–9), evolution in relationship with
biological plasticity (Chap. 10), and speciation for diversification (Chap. 11).
Here, to meet the requests from the two sides, I have organized each chap-
ter as follows: (i) basic question to be addressed, (ii) outline of the logics to
answer the question, (iii) theoretical model embodying the logics, (iv) nu-
merical results of the model and theoretical consideration, (v) corresponding
”constructive” experiment (e.g., laboratory construction of replication sys-
tem, cell differentiation, morphogenesis, and evolution), and (vi) relevance of
the results to biology.

With this organization, one can skip some parts depending on one’s back-
ground and interest. For example, biology-oriented researchers and students
(with little background in theoretical physics or dynamical systems) can skip
the details in parts (iii) and (iv), while for theorists, part (iv) may be more
interesting. Also it is possible for college students to read only (i), (ii), and (vi)
and skim through the other parts. With this organization of (i)–(vi), however,
I have to admit that there remains some overlaps between parts (ii) and (iv)
that justifies such skipped reading.

In Chap. 12, I look back at the previous chapters by summarizing the
basic concepts proposed in the book as universal statistics in steady growth
system, isologous diversification, consolidation, itinerancy, and minority con-
trol principle. Then, I discuss how one can understand biological plasticity,



Preface VII

recursiveness, and evolvability, while emphasizing the necessity and possibility
of phenomenological theory at a system level for biology.

Although most topics in the present book come from the studies at the
level of cell biology, the concepts presented here can be extended to other fields
in biology. For example, I believe that those interested in neuro science can
find sources for inspiration, as the picture ‘dynamics first and consolidation
to symbols later’ will be relevant also to cognitive science.

The original version of the book was published in Japanese texts at the
fall of 2003, from University of Tokyo Press. Most part in Chaps. 1–3 and
Chap. 12 are translation of the Japanese version, while I have updated the
contents to include the advances made since then. Chapters 5 and 10 are newly
added here. As for translation of Chaps. 1–3, and Chap. 12, I am grateful to
Dr. Glenn Paquette. I am indebted to Dr. Philippe Marcq for critical reading
and kind comments on the manuscript.

Contents of the present book are based on collaborative studies and discus-
sions with many researchers, including the members of my laboratory as well
as those from the group of Professor Tetsuya Yomo who kindly provided their
experimental results. Some of the experimental results in Chapters 5 and 9 are
from two colleagues in my campus, Professor Tadashi Sugawara and Professor
Makoto Asashima, while theoretical studies in Chaps. 6 and 8–10 are based
on the collaboration with Professor Chikara Furusawa. I sincerely thank these
people for their courtesy and collaboration.

Most researches presented in the book are supported by Center-of-Excellence
grant by MEXT and ERATO ’Complex Systems Biology’ project by JST,
Japan, to which I am grateful.

May the present volume be a source of inspiration to find appro-
priate answers to the question “What is Life?”

May 2006 Kunihiko Kaneko
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1

How Should Living Systems Be Studied?

1.1 What Is Life?

What is life? Almost everyone has considered this question at some time, yet it
has resisted any kind of definitive answer. For example, all life forms presently
existing on Earth contain information-encoding DNA molecules. Considering
this fact, a simple answer to this question might be that anything containing
DNA is living. In this case, however, we would have to consider an omelette or
a hamburger or vichyssoise to be “alive.” Indeed there is no particular mole-
cule, including DNA, just whose presence implies life. Further more, even if
we were to gather all types of molecules possessed by present-day living organ-
isms and mix them in some way, no one would believe that the result would be
something that possesses life. The conclusion of these simple considerations
would seem to be that the existence of certain molecules or some chemical
structure is not a sufficient condition for life.

Now, let us suppose that we have been sent into outer space with the mis-
sion of determining the presence or absence of life. Then, let us consider the
situation in which on this mission, we were somehow able to determine that
there exists no DNA and, even, no protein molecules beyond Earth. What can
be concluded from such a result? Despite its significance, most people would
probably feel uneasy – on the basis of this evidence alone – to draw the conclu-
sion that there exists no extra-terrestrial life, as it is certainly reasonable that
the molecules used by living creatures on Earth are not the only possible mole-
cules that could play such a role. In other words, it would seem that there are
some conditions other than the existence of some particular chemical struc-
ture or the presence of certain molecules that defines life. In particular, use
of the molecules or chemical structures of organisms existing now on Earth
cannot be considered a necessary condition for life.

From the above elementary discussion, on the basis of very intuitive ideas,
it is evident that the definition of conditions for life should not be based
on some kind of molecular characteristics. However, identifying appropriate
conditions is not a simple task. Certainly, different people would cite different
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properties as necessary conditions for “life.” As just a few examples, the ability
of reproduction (i.e., the spontaneous production of nearly identical individ-
uals), the potentiality to undergo evolution, the existence of some kind of
structure separating an individual’s body from the external world, the abil-
ity to adapt to the external world through interaction with it, some kind of
metabolic capacity through which an individual’s body is maintained, and
the existence of some degree of autonomy could all be considered reasonable
necessary conditions for something to be considered “living.” However, no
matter what conditions we list in this way, there certainly would be no end
to opinions that some are too weak or some are too strong.

Despite the problems inherent in attempting to specify the conditions for
life, in most cases, we have an intuitive ability to distinguish between living
and nonliving things. But if we are asked to identify the criteria on which we
make such a determination, we cannot. Also, we are not able to easily identify
the conditions that allow us to determine at what point a living entity becomes
dead. This is in spite of the fact that as an empirical fact, we are all too aware
that something once dead cannot come back to life.

Perhaps at the present time, it is too difficult to directly confront the
problem of identifying the conditions for life. However, it is probably an in-
disputable fact that there are certain properties that are common to all living
systems. Here we would first like to understand why such common properties
(which we will refer to here as “the universal properties of living systems”)
arise and under what conditions they can arise. We consider this the first step
to answering the question posed by this book.

Here we have to recall that the present mainstream approach in molecular
biology is to count and map all genes, proteins, and other molecules. However,
does accomplishing such a task necessarily provide us with an understanding
of the nature of life itself? Instead of simply constructing such a map, it will
also be necessary to determine some universal properties that are common to
all life and construct some theory that provides an answer to the question of
why these properties necessarily emerge. No matter how difficult this may be,
it cannot be avoided, in order to realize such a goal.

Seeking to identify and understand Nature’s “universal properties” is a way
of thinking that has been developed among physicists. Thus, the approach we
take requires the “spirit” of physics. However, this is not to say that we should
seek a solution to this problem by simply employing the equations of physics or
applying present fields of physics. Any attempt at such a simplistic approach
would reflect only the arrogance of physicists and would fail. Rather, what we
need in this pursuit is the spirit of striving to discover the universal logic that
underlies natural phenomena. Indeed, this is, in its essence, the true scientific
spirit.1

1 In this sense, to understand the discussion in this book requires almost no physics
“knowledge.” What is necessary is only the intellectual desire to understand the
logic underlying Nature, without being biased by “common sense,” and a small
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The field of molecular biology was indeed pioneered with such a truly sci-
entific motivation and spirit in attempting to find a theory of life. From the
rise of molecular biology, now half a century has passed. So, we ask again,
what is life? Has molecular biology given us a satisfactory answer to this
question? Are we at least making steady progress toward finding an answer?
If, on the other hand, we do not yet have an answer, can we say why this is?
And if this is the case, can we introduce some new methodology and with this
set up an effective research program? In this book, we hope to answer these
questions. With this goal, in Chap. 1, we carry out a critical examination of
the field of molecular biology. On the basis this discussion, in Chaps. 2 and
3, we briefly describe a complementary methodology from both theoretical
and experimental perspectives. These three chapters lay the foundation of the
book. In the remaining chapters, we apply in a concrete manner the method-
ology laid out in the first three chapters to several specific problems. In each
chapter we set up a general question associated with some universal property
of life, and give an answer through a synergetic approach among theory, mod-
elling, and experiments. The origin of reproductive cellular systems and the
generation of genetic information are studied in Chap. 4. The universal prop-
erties of reaction networks allowing for self-sustained cellular reproduction are
considered in Chaps. 5 and 6. In Chap. 7, we investigate the phenomena of
cellular differentiation and robustness of development, while in Chap. 8 we
present a treatment of stem cell systems and the irreversibility of differen-
tiation through development. The generation of positional information and
stable pattern formation are studied in Chap. 9. We consider evolution in re-
lationship with plasticity of phenotype, measured by fluctuation in Chap. x10,
while the problem of speciation (species differentiation) is studied as the ge-
netic fixation of phenotype differentiation, by combining Darwinian process
and dynamical systems with interaction, in Chap. 11. In Chap. 12, on the
basis of the understanding gained from the preceding chapters, we reconsider
the question of how living systems are to be comprehended, and formulate
a phenomenological theory of biology. With this, we reconsider the question,
what is life?

1.2 A Half Century of Molecular Biology

More than half a century ago, physicists introduced a major trend in biol-
ogy. Putting aside the question of whether or not the individual studies made
within this new approach were successful, it most certainly had a strong in-
fluence on the foundation of the field of molecular biology.

Life appears in a grand variety of forms. Categorization of this variety is the
main topic of natural history that indeed opened the field of biology. Later,

amount of imagination (in other words, faculties possessed by any curious high
school student).
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Darwin proposed the theory of evolution to describe the universal process
underlying the formation of these categories (Darwin, 1859). Since that time,
one of the main goals of biology has been to connect this process of evolution
with the taxonomical description of the species that has been developed.

It is significant that Darwin’s thought is quite general and written in a
mathematical form. Consider a system that consists of a set of units that ex-
hibit reproduction accompanied by some degree of variation. With the increase
in the number of units that results from reproduction, there emerges a com-
petition between units. In such a system consisting of variation, reproduction,
and selection, there exists a universal logic. In this sense, Darwin’s manner
of thinking provides an extremely important first step toward understanding
the universal structure of living systems. For example, if there exists some
property of an organism that bestows it with a particular faculty, even if this
faculty exists at some very low level initially, through evolution, it can come
to attain some higher level of functioning. Thus, high-level functions, whose
formation would at first sight seem unfeasible, can emerge through evolution.
However, it must be kept in mind here that Darwin’s theory of evolution alone
does not allow us to determine what kinds of properties or functions of organ-
isms are possible, nor does it allow us to determine whether any particular
property can be realized. This leads us to the following fundamentally im-
portant question: Does there exist no universally applicable logic that would
allow us to understand the emergence of the properties fundamental to living
organisms?

Molecular biology attempted to describe the universal properties of the
phenomena exhibited by living systems in terms of molecules. Establishing
the approach of searching for such universal properties itself was a role played
by physicists at the birth of the field of molecular biology. The goal of mole-
cular biology is to trace down from the level of cells to the molecules that
compose them and to understand the functioning of each molecule in such
biological processes such as heredity, metabolism, and motility. It takes the
following viewpoint to attain the goal. With the assumption that these mole-
cular functions are shared by most living organisms, it should be possible to
determine the structure and organization of the universal properties displayed
by living organisms through studying combinations of the roles played by in-
dividual molecules. Of course, behind this assumption of universality is the
assumption that the life forms under consideration all evolved from a common
ancestor. This would imply that these life forms employ the same (or, at least,
similar) molecules and thus the same molecular processes.

This approach of molecular biology was developed by physicists (most
notably, Delbrück and collaborators) who were strongly influenced by the lec-
tures of Neils Bohr (Bohr, 1958) concerning the application of the idea of
complementarity to the study of life. Schrödinger’s What Is Life? (1946) had
a particularly strong influence on the establishment of the direction to be
taken in the study of molecular biology, and particularly with regard to the
search for a universal molecule responsible for the process of heredity. Later,
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Delbrück laid out an effective research program for the advancement of mole-
cular biology. One apex in the half century of the study that succeeded these
efforts was the discovery by Watson and Crick of the double helix of DNA.
With the revelation that this molecule is the universal agent controlling the
process of heredity, the mechanism of reproduction as governed by its double
helix structure became clear. Later, Watson established the methodology in
the textbook The Molecular Biology of Gene (Watson, 1965). Even today, this
book exists in an updated form entitled The Molecular Biology of the Cell,
which is one of the most influential books in cell biology. We can understand
the developments described above as the attempt through molecular biology,
by describing biological phenomena in the universal terms of molecules, to
make a break from the ‘enumerationism” that preceded it.

Let us consider a specific example of the manner in which the approach
of molecular biology is applied. Suppose that we are interested in the motor
activity of an animal. Then, we would, of course, focus on muscles. This would
lead us to study fibers from which muscles are composed, and then eventually
to the underlying proteins. Doing so, we would find two types of proteins,
actin and myosin. The actin forms a rail, while the myosin sometime attaches
this rail protein, and moves along it, to generate a force, by consuming the
chemical energy (supplied by ATP). Furthermore, such type of motor pro-
teins then have turned out to be used in a variety of organisms, including
unicellular organisms, suggesting the universality at a molecular level. Then,
we could investigate the nature of the chemical reaction process with these
proteins that takes place to cause the motor activity and the manner in which
chemical energy is converted into mechanical energy. Having elucidated such
processes, we would then – following the established program of molecular
biology – naturally turn to the task of determining to what extent this type
of protein structure is common among species, and doing so, we would come
to understand the commonality of the mechanism of motor activity.

Now that half a century has passed, molecular biology has become an
essential part of our current description of the phenomena of living systems.
Roughly stated, the present approach of molecular biology can be summarized
as follows (see, e.g., Alberts et al., 1983).

1) Consider a system at the microscopic level. Then, at that level, identify
the molecules or genes that are important in some function in question and
the role played by each.

2) Of course, such molecules do not act as independent entities but, rather,
through their reactions and interactions with other molecules. Thus, we
are to determine the manner in which the various microscopic elements
combine and explicate the rules governing such behavior. For example,
let us consider the case of genes. Here, as the result of a certain gene
being expressed, that is, a particular mRNA is synthesized, which results
in the production of a corresponding protein. Then it acts as an enzyme to
activate and control some other gene. The rules according to which these
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various interactions are carried out and such activation and control are
exercised represent the target of such study.

3) Through such cooperative activity of the microscopic components, the
macroscopic behavior of an organism is realized. Therefore, we must de-
termine the rules according to which such components combine and how,
as a result, macroscopic functions are carried out. For example, we are
to discover how all of the genes within a given genome are wonderfully
combined to call forth some life function.

4) In most cases, the number and variety of molecules or genes that act to-
gether are large. Therefore, the number of possible ways in which combi-
nations of such microscopic elements can be realized is enormous. We thus
face the task of picking out of such combinatorial complexity the particu-
lar sets of relationships among the elements that are actually selected and
realized in living organisms.

For example, within present-day cellular biology, the following is a sce-
nario for cell differentiation. When the concentration of some signal molecule
impinging on a cell membrane is increased beyond some threshold value, a
chemical reaction takes place through which some gene is caused to express.
As a result, some protein is produced, and the state of the cell thereby under-
goes a change. Thus, according to this description, the concentration of some
molecule controls an on–off type switching of a gene, and this, in turn, causes
the execution and cessation of some function; that is, within this scenario, this
gene plays the role of the on–off switch of this function. In fact, the search
for such one-to-one correspondence between individual genes and individual
functions is a mainstream research in the field of cellular biology.

Of course, in some cases the type of one-to-one correspondence described
above does not exist. For example, through the action of one gene some protein
is produced, while through the action of a second gene some other protein is
produced, and as a result of a reaction involving these two types of proteins
some function comes to be carried out. Indeed, in myriad cases the exercise
of some faculty results from such interactive effects of multiple genes. For this
reason, research within the so-called “genome project” is now proceeding to
determine how the expressions of multiple genes combine to yield the functions
found within organisms.

For example, from this point of view, the cell differentiation that occurs
during development, simply stated, consists of a combination of processes in
which a gene is turned on (or off), when the concentration of some signal
molecule exceeds a threshold value. More explicitly, a typical process would
proceed something like the following: Through the turning on and off of one
gene, as controlled by one signal molecule, the properties of a cell come to
change, and as a result, the concentration of some other signal molecule is
altered, with the effect of turning on or off some other gene. Such a process
could be described as a sequence of if...then program (i.e., a combination of
logical operations), and therefore, this point of view leads to the understanding
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that the process of differentiation can, through a step-by-step analysis, be
broken down and written entirely by logical expressions.

The descriptive capability of present-day molecular biology and the suc-
cess of its application, in particular to medicine, obviously cannot be denied.
However, for the purpose of understanding what life is and, specifically, to
elucidate the universal properties possessed by living systems, a description
based on molecular biology encounters some difficulties. Below we give a brief
outline of some of these problems.

Before proceeding, we note here that the point of view described above
is not peculiar to the field of molecular biology but, indeed, represents the
mainstream in all fields of biology. For example, in the field of brain research,
a method of investigation commonly employed consists of (i) elucidating the
function of individual neurons or area of the brain, (ii) investigating synaptic
connections or interarea connections with regard to the effects of inhibition
and excitation, and (iii) obtaining a global description by combining the in-
dividual neuronal activities deduced in (i) according to the results of (ii) (the
neural network approach).

1.3 The Reemergence of Diversity
and the Enumerative “-ome” Doctrine

With the advance of molecular biology, discovery by discovery, the number
of molecules known to participate in biological processes has drastically in-
creased, and it has come to be realized that the molecular diversity possessed
by living organisms far exceeds that imagined by the pioneers in the field. Of
course, among the ever-growing number of molecular species found to be con-
nected with biological processes, some can be considered relatively important
(e.g., genes) and some relatively unimportant. However, such a distinction is
of a comparative nature, and despite the fact that such a distinction can be
made, it is undeniable that the number of molecules that must be taken into
account to obtain a molecular description of living systems is truly vast.

Now, suppose that we wish to construct some biological faculty. Then sup-
pose that, to this end, we set out to create some kind of molecular system
whose function can be described by the simple set of rules that if particular
conditions are met, certain actions result. To create a system of this kind,
a large variety of molecules would not be necessary. Instead, it would seem
much more convenient to realize such a process using a small number of mole-
cule species, with the simple prescription that the presence or absence of each
determines whether a given action is to be carried out. Such a simple system
would be sufficient to carry out a function described above. Why then are,
for example, genetic networks, metabolic networks, and signal transduction
systems as complicated as they are? It would seem evident that simple combi-
nations of molecules with its own role and the combinations of them to form
some optimal faculty is all that we need. Let us pursue this point.
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Fig. 1.1. The complexity of a metabolic system. Pictured is a part of the reaction
network of a metabolic process. Although the network shown here is very detailed,
this represents only a small part of the entire reaction (This figure is a reproduction
of that posted at http://www.expasy.org/cgi-bin/show thumbnails.pl. It is presented
here by permission of Roche Applied Science)

As one example demonstrating the complexity of biological processes, let
us consider Fig. 1.1, which depicts part of the metabolic reaction network ex-
isting within Escherichia coli, a type of bacteria. It is seen that this network
includes many reaction cycles and possesses a great variety of distinct struc-
tures. Obviously, this network is far from simple. And that which is displayed
here represents only a small part of entire metabolic reaction.

Similar complexity is found in the basic biological reproduction process.
However, note that this would not necessarily have to be the case. Indeed, if
we are interested simply in the multiplication of number of a unit, then, as an
extreme situation, in analogy to the “reproduction” of crystals, a collection of
very few types of molecules would be sufficient to exhibit such phenomenon.
However, actual biological reproduction consists of the replication of systems
consisting of molecules not of a few but of myriad types.

Now, let us briefly consider signal transduction. After a particular type of
molecule has adhered to a receptor attached to a cell membrane, as a result,
a signal is transmitted within the cell that leads to the cell responding in a
certain manner. The nature of the signal transmission exhibited in this kind of
process has been investigated in detail. In general, in this transmission, there
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will be one enzyme kinase that promotes one type of reaction, and another ki-
nase that promotes the reaction involving the first kinase, and another kinase
acting as a catalyst for the second kinase. In this way, the signal transmis-
sion is realized from a reaction composed of several levels. However, for the
purpose of simply responding to the external environment, a simpler reaction
consisting of a single level would be sufficient. Furthermore, there are enzyme
phosphatases that act to terminate such reactions through dephosphoryla-
tion. In addition, a single such phosphatase can interact not with a single
enzyme but with multiple enzymes, and for this reason, the path of the reac-
tion will separate into distinct branches. Such branches can then themselves
split into branches or even recombine. The question that interests us here is
the following: Despite the fact that there exist feasible reaction systems con-
sisting of a single component and a single level that could respond optimally
to the external environment, why do the actual reaction networks found in
organisms consist of complicated networks exhibiting many-to-many relations
among numerous components? What is the origin of this complexity? How
can we understand the complexity seen in biological processes, mysterious in
its degree of diversity and, from the point of view of functionality, in its re-
dundancy? Also, does the methodology of present-day molecular biology offer
the means Sto gain such an understanding?

Actually, to the present time, the question of why there exists such diver-
sity and complexity has been left largely unaddressed. Instead, the conven-
tional approach in molecular biology has been to study the molecules them-
selves. Indeed the so-called “–ome” projects of identifying and enumerating
all molecules, such as genome (the complete set of genes of an organism),
proteome (the complete set of proteins), metabolome (the complete set of
molecules involved in metabolic processes) are the present trend. Thus, while
molecular biology originally stared as a pursuit of universality, rejecting the
“enumerationism” that preceded it, it appears that it has now lost its original
spirit and itself has become a kind of enumerative science. We will revisit the
problem of this enumerationism in a subsequent section.

As one possible explanation of the mysterious degree of diversity exhibited
by organic processes, the following simple idea comes immediately to mind.
Because, through the ages, living organisms have experienced many types
of environments and circumstances, it is reasonable that in the process of
evolution, such experiences have in some sense been accumulated within them.
It would follow, then, that great diversity or complexity we observe is a result
of the history of organisms that experienced a great variety of circumstances.
While the idea that through the evolution, the past experiences have come
to be embedded in the structure and function of organisms seems appealing,
the situation may not be so simple. Following this idea, as organic systems
became more and more complex, the relations among them would have become
extremely complicated. Then, the question becomes whether within such a
complicated system it would be feasible that an advantageous state could
be selected through the evolution. Furthermore, is it feasible that stable and
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proper functioning could emerge from such an intricate system? Or, could it
be that in fact there is some inherent and inevitable relation between stability
and this intricacy? Such questions regarding diversity and complexity are yet
unanswered.

Perhaps we need to change the point of view from which we pose such
questions. Rather than inquiring whether it is somehow advantageous for some
faculty of an organism to be built upon a complex and diverse process, it is
better to inquire why such complexity and diversity appears and, indeed, why
it appears universally.

1.4 Diversity and Dependence
on Environmental Circumstances

In studying the roles played by various molecules in organic systems, obviously,
the clearest picture would emerge if each molecule plays a single role and each
role is carried out chiefly by one molecule. In such a situation, the important
task would be to identify the gene responsible for a certain faculty or the
molecule that exhibits a certain type of behavior. However, in fact such one-
to-one relationships among molecules and functions are exceptional in living
systems. Below we consider a number of examples that demonstrate this point.

In recent years, it has been found that there are a number of molecules,
discovered as certain functional units, whose function changes in response to
environmental conditions. A typical example is signal transmission channels.
As discussed above, in general, the relation between the input to a cell and
the resulting output (i.e., the manner in which the state of the cell changes
in response to this input) is not one-to-one. Rather, owing to the presence
of certain proteins in these channels, many paths can emerge. Of particular
interest here is the protein Ras, as transmission channels that include it are
involved in many types of functions. For example, so-called Ras kinase, Raf
kinase, and Map kinase channels have a number of roles. In nematodes2 these
channels play many important roles, including those in the formation of the
excretory tube, in the formation of the vulva (in hermaphrodites), in the
control of meiosis, and in the olfactory system (Sternberg & Han, 1998).

The so-called gene p53 acts to suppress the growth of cancer and, for this
reason, has lately been the subject of much interest. It has been found that
this gene possesses abilities to control, among other things, cellular cycles,
the regeneration of blood vessels, apoptosis, and DNA repair, and the partic-
ular role that it plays in any given case is determined by the environmental
circumstances.

In immune systems there exist diverse responses to the invasion of vari-
ous kinds of antigens. In such responses, the cytokine interleukin can play a
number of roles, depending on the particular situation.
2 This example was brought to my attention by Isao Katsura.
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In many cases it is known that there exist parallel pathways from genes to
functions. For example, there are situations in which removal of a single gene
has no effect on function, but the removal of this and a second gene leads to
mutated functionality (for discussion of the case of nematodes, see, e.g., Solari
& Ahringer, 2000.) Then, it is also known that a change in environmental
conditions often leads to the expression of different genes. Thus, when new
enzymes are synthesized, pathways that previously existed only potentially
can come into use, and molecules that previously possessed no such capacity
can come to play a principal role in some newly appearing process.

In nervous systems, it is often the case that when the neural circuit re-
sponsible for some specific function is destroyed, a new circuit that eventually
comes to play the same role is formed. Such phenomena have been investigated
in relation to the reversibility of neural networks. In the past, it was thought
that new neurons were no longer generated in adults. However, in recent years
it has been discovered that neurons can be regenerated even in adults. At this
time, such regeneration is known to exist only for certain local neural circuits,
but it is also known that when certain areas of the brain are damaged, other
areas can take over the role once played by the damaged area. Indeed, such
cases of the recovery of brain function are described in many textbooks on
the nervous system.

The approach of investigating one-to-one correspondences is not limited
to molecular biology. Indeed, it is commonly employed in many areas of bi-
ological research. Such an approach is typically used in studies aimed at the
construction of “maps.” For example, there exists research whose goal is to
develop a functional map of the brain. Such research is based on the premise
that certain regions of the brain correspond to specific faculties – for example,
sight, movement, high-level information processing, and language. However,
it is known that even for such high-level functions, when one area of the brain
that has been identified as that which controls a particular function becomes
damaged, it is sometimes possible for a different area to take over in this role.

Let us now return to where this discussion began. As discussed with regard
to the various examples given above, the correspondences between molecules
and functions depend strongly on the environmental circumstances. These ex-
amples demonstrate that such correspondences are ambiguous. More specifi-
cally, even when we can identify such correspondences, they are generally not
one-to-one, as often several molecules possess the ability to play a particular
role and, conversely, a single molecule can play many roles. In addition, the
types of correspondences that exist in any given case depend on the environ-
mental conditions, and therefore change in time. In this sense, it is appropriate
to refer to these as “dynamic many-to-many” correspondences.

From the above discussion, we have come to see that to understand the
functioning of living systems, it is not sufficient to simply investigate the roles
of molecules under certain specific conditions. In the background of the diver-
sity discussed in the previous section is the possibility that given conditions
differing from those with which it presently faces, an organism may be capable,
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due to the diversity it possesses, of functioning in a different manner. If we
consider the case in which an organism is faced with very different conditions,
it may be insufficient to adapt to this change through the gradual “knockout”
of genes. Here, it may be the case that something existing within the diversity
that once appeared useless comes to play an important role.

Of course, however, it is not possible to enumerate all kinds of behavior
that could appear under all feasible types of conditions. (While such a task
may be possible if there were a finite number of such cases, obviously it is
not possible in the actual situation of an infinite – indeed uncountably infi-
nite – number of cases.) Given this reality, it is clearly necessary to find some
methodology to replace that of simple enumeration.

Here, we are reminded of the following story about the Chinese philosopher
Zhuangzi (2–3 century B.C.)3 In the story, Zhuangzi is told by his friend, “The
things you say are of no use.” In response to this, Zhuangzi says “When you
understand what is useless, for the first time you also understand what is
useful. For example, the earth is vast, but that part of it that any person uses
is just that upon which he steps. So it follows that the rest is of no use. Now,
if that beyond which we are able to set foot is useless to us, one can make a
steep cliff from the part one uses to make a deep valley. Then, can one live
at the part left over? To this, his friend replied, “No! Of course, one cannot
live upon the left over.” In this way, Zhuangzi was able to elucidate the “use”
existing in potentia in “useless” things. This story points to the idea that it is
possible for humans to live stable lives only when the things existing around
them are not limited to simply those that happen to be of use at the present
time – when there are also things whose potential use is realized only in some
broader set of experiences.

The above story tells that a stable existence is not possible if that which
surrounds us is no more than the land that we will use in our lifetime. There
is a clear analogy between this and the discussion given in this chapter. The
lesson to be learned here is that if we confine our investigation of life to only
the behavior seen under environmental conditions close to those that exist
in the present world, we will be able to obtain only a very limited picture
of living systems. If this study is not extended to include the investigation
of such systems within a broader range of possibility, we will not be able to
truly understand life. In response to this assertion, some may wonder that,
although the set of conditions that exist in the world today is inadequate as
a background for the study of life, it is certainly sufficient if we expand this
to include all the conditions that all livings on this planet have experienced
through the course of evolution. However, considering only the history of the
actual experiences of organisms on Earth corresponds simply to add to the
path taken by all of its ancestors in Zhuangzi’s anecdote. But, returning to
the lesson learned from the story above, addition of only this limited set of
paths would certainly not be sufficient for security, as indeed there may arise
3 Chuang Tzu is another pronunciation.
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a situation in which a novel path is required. Indeed, the range of possible
experiences that a creature could face is far greater than the cumulative ex-
periences of its ancestors. For this reason, rather than looking to the past to
solve the problem we consider, we propose to search for universal characteris-
tics of life that holds under a broad range of conditions. A point of view that
provides a global understanding is necessary. In other words, even if it means
giving up a detailed picture of local topography, we wish to take a point of
view to see the distant mountains and valleys. It is with such a point of view
that we set out to construct a theory of life.

1.5 Systems of Strongly Interacting Elements

Let us take a step back here and reconsider the type of methodology that we
have criticized, that is, understanding living systems by isolating individual
elements and then determining the role played by each. Of course, we do not
wish to claim that such a methodology is meritless, and indeed it is worth-
while discussing the extent of its usefulness. First, in order for it to be possible
to determine some one-to-one relation between elements and roles and then
to investigate its small change by interaction with other elements, it is nec-
essary that the properties that these elements possess in isolation are nearly
unchanged when they are combined with the others. In other words, such an
approach is based on the premise that the properties of individual elements
change little in response to their interaction with other elements. Of course,
there are situations in which such a premise is valid and the description that
it leads to is in fact useful.

However, as will be discussed below, often interactions are not small in
a biological system. Hence, we need an alternative approach that considers
the system globally and then studies the roles played by its elements, as
determined dynamically through the interactions among them and the manner
how these roles can change.

When a person builds a machine, she or he does so in such a way that
the interactions among parts are limited according to some design. The sys-
tem is constructed according to a plan in which quantities (e.g., energy) are
exchanged among parts in some predetermined manner. This is done so that
the designated role of each part does not change through the interactions
among parts. Actually, with the present design of computers, as the physical
extent of their circuits becomes smaller, eventually we will face the situation
in which the interactions among parts communicated through the magnetic
fields they generate will not be negligible. Indeed, this is a serious problem
that will need to be addressed in the design of computers in the future. By
contrast, living systems apparently do not possess a design in which the inter-
actions among parts are limited. Rather, they constitute systems of strongly
interacting elements. (See Sect. 1.4 for related discussion.) For example,
proteins are packed into a cell like passengers on a rush hour train (Fig. 1.2)
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Fig. 1.2. The “congestion” within a cell (Reproduced from Goodsell (1991) under
the courtesy of the author). Often the distances between protein molecules and the
size of the molecules are of the same order

(Goodsell, 1998). In fact, in some cases, the distance between two neighbor-
ing atoms on a single protein molecule is greater than that between either of
these atoms and the closest atoms of other protein molecules. For this reason,
in general it is not the case that interactions among protein molecules are
negligible in comparison with the interactions existing within a given protein
molecule. It is thus seen that if we attempt to treat such a system by first
regarding each protein molecule as an independent unit and then adding some
weak interactions among such units, the description we obtain will be dubious
at best. The proteins within a cell function are under so strong interaction
that it is not possible to treat them separately. Therefore, the protein mole-
cules in a cell are “elements” of a very different nature than the elements of
a machine. In multicellular organisms, in the same way, cells are packed, and
the effects of the communication among cells cannot be treated as a small per-
turbation of the processes going on within cells. In such a situation too, the
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methodology of first determining the roles of individual parts and then adding
to this some small interaction among them cannot yield a faithful description.

It is thus clear that what we seek is to model organisms as systems in
which dynamic and condition-dependent functions appear by virtue of the
interaction among constituent elements. Such an endeavor is discussed further
in Chap. 3.

Before moving on, we should make a brief comment on the use of the term
“interaction.” Usually, when molecular biologists make a statement that cells
interact, probably what they have in mind is, for example, some effect commu-
nicated between cells through receptors or the exchange of certain molecules.
Ecologists would most likely consider interaction to be the relation of indi-
viduals in an ecological system such as prey–predator relationship. Physicists
and chemists would consider interaction to be the influences communicated
by forces – intermolecular, electromagnetic, etc. In this book, we use the term
interaction with a very broad meaning that includes all of the above senses
and more. Simply stated, we use it in reference to any mutual effect, direct or
indirect, that exists among elements. For example, we regard as an interaction
the competition between two cells that seek the same nutrient.

1.6 Are Living Organisms “Computing Machines”?

Presently, in the field of molecular biology, great emphasis is placed on the
study of the information stored within cells and the programs that allow for
its expression. The terms information and program are, of course, used in
the context of computers. The fact that they are also used with regard to
biological systems, however, is not accidental. Indeed, there is a trend to de-
scribe the life phenomena as computational processes, and evidently it is this
manner of thinking that has led to the deliberate choice of such terminology.
For example, let us recall the threshold mechanism involved in the process of
development, touched upon in Sect. 1.2. In general, the state of a cell is de-
termined in accordance with the concentrations of certain molecules existing
in its neighborhood, as detected by the cell membrane. The process of cell
differentiation is an example of a transition in the state of a cell. The mecha-
nism responsible for this transition is the following: If the concentration of a
particular molecule exceeds a certain level, a certain gene will be expressed,
and as a result, the chemical composition of a cell will change to a given di-
rection. In other words, the process of cell differentiation can be expressed in
terms of a simple if–then logical rule relating the concentration of the signal
molecule and the change of the cell state, triggered by the expression of a
particular gene. Then, because the development of a multicellular organism
takes place through repeated cell differentiation, it can be described in terms
of such if–then logical rules. This leads to the conclusion that the process of
development exhibited by living creatures can be represented as some kind
of computer program – a logical expression in the form of a chain of if–then
statements:
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if (the concentration of molecule 1 exceeds a threshold value) then
(gene 1 is expressed)
if (gene 1 is expressed) then (protein 2 is synthesized)
if (the concentration of protein 2 exceeds a threshold value) then (the
concentration of molecule 3 increases)
if (the concentration of molecule 3 exceeds a threshold value) then
(gene 2 is expressed)...

Discoveries have been made of a number of such chain of successive reac-
tions, in which the expression of one gene leads to the expression of another.
For this reason, the developmental process is often referred to as a “program.”

However, all processes occurring within a cell are reactions taking place
among molecules, and therefore it cannot be the case that they proceed as a
succession of errorfree logical operations like a computer program. For exam-
ple, let us once again consider the logical if–then representation of successive
gene expressions. Now, whether or not the condition for the expression of
a particular gene (that the corresponding signal molecule has surpassed a
certain concentration) is met is determined by the chemical reactions taking
place within the cell. Of course, the concentration of a particular molecule
at the position of a cell is given by the number of molecules in this region
divided by its volume. But this number is subject to random fluctuations. For
example, let us consider the case of gene expression. The expression, that is,
if a protein corresponding to the gene is synthesized or not depends on if the
concentration of some signal molecule is larger than some threshold or not.
Suppose that the threshold, is given by some concentration.4 The concentra-
tion is given by the number of molecules divided by the volume. However, for
the number of molecules N , we would expect fluctuations in a number of order√

N , as a natural consequence of probability theory (recall the law of large
numbers and the central limit theorem). Thus, in terms of the concentration,
there would be a blurring of the threshold value of relative magnitude 1√

N
.

In the case of gene expression, typically, N is of order 1000, and thus there
will be an error of order 3% in the “computation” involved in gene expression
(Fig. 1.3).

While it may be thought that a “mistake” rate of 3% is not large, it must be
remembered that this is the error corresponding to a single gene expression.
With such a level of error for each incidence of gene expression, when we
consider the entire chain of reactions involved in some developmental process,
this level of error is easily large enough that the resulting behavior will differ
greatly from that of a computer program. To understand this, let us consider
a computer in which, on average, for every 100 operations there are three
errors. Then, using this computer, we could not expect a program that calls,
say, on the order of 10 operations to give a correct result.

One might think that the problem caused by such a high rate of error
could be solved by some kind of error correction program, and that through
4 Detailed discussion of this point is given in Chap. 7.
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Cell−cell interaction leads to

differentiation into distinct types of cells.

Fig. 1.3. Schematic depiction of an assembly of equivalent cells. Initially the cells
are all of the same type, but through the interactions among cells, they differentiate
into two types

such a mechanism the developmental process could indeed proceed as a logical
if–then computation. This might be true to some extent. However, such an
error correction program too would have to be based on chemical reactions,
and, here again, the number of molecules involved in these reactions could not
be large. Thus the error elimination to be carried out through these chemical
reactions would itself be subject to significantly large fluctuations, and hence,
we would simply have a new source of the same kind of error. Of course, it may
be possible to realize some kind of error reduction with an intricately designed
chain of multiple-level reactions, but in order to correct errors effectively, it
would be necessary to have a design that can recognize whether each molecular
process is correct or incorrect and act accordingly. In the case of a computer
program, such error correction can be carried out, because the programmer
is capable of making a judgment of correctness. However, in the problem we
consider, everything is carried out through (molecular) chemical reactions, and
therefore the situation is very different, as molecules do not know which the
correct process is. Even if we were to assume that such an exquisite design
does exist, in order for it to have come into existence, there must be some
underlying principle ensuring its stable functioning.

The points we have raised above concerning fluctuations are universal
questions encountered in the study of physical phenomena, and it is quite
unlikely that they could be resolved through the introduction of some special-
ized “stabilizing genes” or “stabilizing molecules.” As will be discussed later
in the present chapter, the fluctuations are neither negligible nor eliminated.
Indeed, we report a quantitative measurement of fluctuations in Chap. 5. To
our surprise, the fluctuations are quite large. For example, for bacteria having
same genes (i.e., clones), the number of proteins are different to the factor
10 or more by each individual. Then, we need to understand how a biolog-
ical system is stable under such large fluctuations, by establishing a novel
viewpoint.

One possibility that comes to mind here is that in a developmental process,
the interactions between cells lead to stability. In fact, according to the theory
to be presented in Chap. 7, in an assembly of cells, the interactions between
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cells do indeed introduce a degree of stabilization. In experiments also we
can see such stabilization effects. First, for a cell assembly consisting of cells
possessing identical potentialities, it has been observed that small fluctuations
can lead to differentiation in which some subset of this assembly undergoes
a transition to a new cell type. This differentiation results from only the
interactions among the cells making up this assembly. Because these cells
initially possess the same properties, they are referred to as “equivalent cells”
(Greenwald & Rubin, 1992). In this case, as depicted in Fig. 1.3, if the cells
on one side of the assembly are of one type, due to the interactions among
cells, the transition of neighboring cells to this same type will be suppressed.
In such a situation, it is not clear from the outset which cells will end up as
one or the other type, but in any case, the system will come to exist in a state
in which cells of the two types coexist. Here, the state of each cell is stabilized
by the interactions among cells. This type of stabilization could perhaps be
realized in the situation that, for example, the state of the cell assembly as
a whole in some way reflects the state of each cell, and as a result, some
appropriate distribution of cell types is realized. However, it is not clear how
the condition of the assembly as a whole would be capable of reflecting the
state of each individual cell. This problem is treated in detail in Chap. 7.
There, we present a theory describing how fluctuations between cells become
amplified, and as a result, cells undergo transitions to new types, and through
the cell–cell interactions, the type of each cell becomes stabilized.

Summarizing the above discussion, we have seen that attempting to un-
derstanding a living system as a type of computer, we inevitably encounter
difficulty regarding the stability of the system due to the error introduced
by the presence of fluctuations. Given this situation, however, we then have
to ask why it has become genetic information be regarded as constituting a
program. This problem will be discussed in Chap. 4.

1.7 Problems with the “Program” Point of View

The premise behind the point of view that regards genetic information as
constituting a program is that a specific input leads to a specific output and
that the chain of events that connects the two provides a description of the
actually observed phenomena. Research in biology is often aimed at detangling
such cause-and-effect chains. Indeed, in many cases this approach has clearly
elucidated causal relations. However, what we must keep in mind here is that
when considering complex phenomena, usually all that can be determined
experimentally is whether or not some phenomenon A and some phenomenon
B exhibit a correlation. In particular, it is generally not easy to establish some
kind of A → B causal relation.

Even if this point is recognized and experiments are carried out very care-
fully, keeping in mind the distinction between correlation and causation, it is
quite difficult in studying the kinds of systems considered here to demonstrate
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cause–effect relations. There are two reasons for this. First, for most processes
of interest, there are many causes, and even if for each of these in isolation
there may be some clear if A then B causation, because they, in fact, do not act
in isolation but in some collective manner, it is quite difficult to consider only
one part of the whole and establish a cause–effect relation involving it. Sup-
pose we are considering a process for which there are N causes. Then, if there
are two effects, the number of possible cause–effect relations is N(N − 1)/2,
if there are three effects, this number is N(N − 1)(N − 2)/6 . . .. Thus it is
seen that if we must consider all such possibilities, the number of cause–effect
combinations grows very rapidly, and if N is large, it is essentially impossible
to identify with any degree of certainty-specific causal relations. To see this
more clearly, let us consider a set of N variables that can each take the value
“true” or the value “false.” The value taken by each of these variables at any
time is determined through a set of relations that themselves can each be
either “true” or “false.” In such a situation, if our only means of investigating
the system is to observe the values of the N “effect” variables, for large N
it would be extremely difficult to determine the truth values of the “cause”
relations and the function that assigns the values to the N “effect” variables.

The second problem that we must consider here is that there are cases in
which the variables in question cannot be treated as discrete but continuous,
and in such cases, it is not possible to describe the system in terms of program-
like logical relations. For example, let us consider the situation in which there
are three quantities, X, Y , and Z, and these vary in time in accordance with
some reaction rate equation. As explained in Chap. 3, the evolution of these
quantities can be expressed as a dynamical system in which the rate of varia-
tion in time of each of the quantities X, Y , and Z is given by some function of
X, Y , and Z. For example, let us suppose that the variation in time (the time
derivative) of Y is given by something of the form C × (X−threshold), where
C > 0. In this case, there is a simple causal relation that can be expressed
in words as “if X is greater than some constant threshold value, then Y in-
creases.” If Y does not affect the evolution of X, this expression, to a certain
extent, describes the actual behavior. However, if the variation of X depends
on Y , then in general this is not the case. In such a situation, because X and
Y evolve together, the expression properly describing their dynamics and the
expression above describing a causal sequence of events will not necessarily
be consistent. Next, consider a dynamical process in which there are several
threshold values characterized by such a condition that, for example, if X is
greater than one of these and Z is less than another, then Y increases. In
general, such a process cannot be expressed as a combination of some logical
formulas. It is thus seen that in the context of describing the types of processes
in which we are interested, the distinction between the dynamical and logical
points of view must be kept in mind (Fig. 1.4).

As the discussion given here has made clear, it is important not to con-
fuse correlation and causation in the study of living systems. In general, the
question of whether a particular gene is the cause of some particular behavior
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Fig. 1.4. (a) A reaction circuit system exhibiting negative feedback. (b) A reaction
circuit system exhibiting positive feedback (an autocatalytic reaction system)

cannot be answered by simply removing this gene and observing the result.
Indeed, it is often the case that, even if each gene on DNA codes the synthesis
of some protein, the expression of each gene is determined by the concen-
tration of some other enzyme (i.e., a protein). Thus the situation is one of
mutual influence, not unidirectional causation. Hence, although the genes can
be thought of as in some sense controlling such processes, in fact it is not
true that an understanding of the genes alone is sufficient for their complete
description. For example, even if we were somehow able to obtain the DNA
of a dinosaur, unless we also knew the initial conditions of the cellular com-
position that allow their proper expression of genes, we would not be able to
create a Jurassic Park. The conclusion we reach from these considerations is
that, rather than seeking some sequences of logical formulas, in the model-
ing of living systems, we should be studying models of interactive dynamics.
Then, we should inquire whether, within such dynamics, the asymmetric rela-
tion between two molecules is generated so that one plays a more controlling
role and therefore can be regarded as the bearer of genetic information. (See
Chap. 4 for more detailed discussion on this topic.)

1.8 The Problem of Stability

As discussed above, life processes involve an enormous variety of molecules.
However, often the number of individual molecules of any given type is not
large. For this reason, these systems are subject to a very large degree of
“noise” (i.e., random fluctuations). Despite this fact, however, under normal
conditions these systems are very stable. As an example, let us consider the
process of development of a multicellular organism. It seems miraculous that
systems with such a vast variety of molecules participating in such a large
number of processes can result again and again in almost identical macroscopic
patterns. The situation here is analogous to a person attempting to stack many
irregularly shaped blocks into a particular form during an intense earthquake.

In studying this type of stability, a commonly employed approach is to
consider the system slightly perturbed from the stationary state in question
and to observe whether the evolution of the system then brings it back toward
the stationary state. The mechanism how such displacement by perturbation
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decays is provided by “negative feedback,” and the approach employing this
concept, due to Wiener, is indeed quite effective in a wide range of contexts
(Wiener, 1948). One of the principal approaches in the stability analysis of
reaction networks is to seek “circuits” displaying such negative feedback (see
Fig. 1.8).

For the case of living systems, however, the problem of stability cannot
be fully understood in terms of negative feedback alone. First, there exists a
mechanism acting at every point through which small disturbances are am-
plified. Indeed, this mechanism exercises a strong influence on the evolution
of the system. For example, let us consider the vision by the eye. The retina
contains a structure that amplifies the excitation imparted by a few photons.
It is for this reason that we can perceive the very faint light coming from
distant stars in the night sky. As another example, it is known that there
is a mechanism through which the presence of just a few molecules at a cell
receptor can be amplified into a recognizable signal.

It is also important here to note that living systems have the characteristic
ability of reproduction. In other words, they have the ability to increase the
number of molecules and cells. Such increase implies the existence of an ampli-
fication mechanism. In order to make cell division possible, it is first necessary
that within the cell there take place chemical reactions through which the
number of each of the various types of molecules essentially doubles. For this
purpose, amplification is necessary. The typical type of mechanism through
which this occurs is a type of autocatalytic process in which the presence of
a certain type of molecule leads to the increase in number of the same type.
In fact, this kind of process is such that the number of molecules of a given
type that are created increases with the number that existed originally. Thus
it is an example of positive feedback. For example, the following describes a
simple reaction through which molecules of some species X are reproduced:
X + A → 2X.

In this case, the change in the number of molecules of this species, Nx, is
described by the equation

dNx/dt = aNx . (1.1)

It is therefore easy to see that if the number of molecules is increased, then
the rate of its synthesis also increases. Thus, some random fluctuation in Nx

becomes magnified in time. In other words, increase leads to further increase.
Of course, with an equation of the above type, the amount of molecule X in-
creases without bound, but in general, molecules of this species are consumed
in a reaction through which some other constituent is synthesized, and in this
way, their number is prevented from exploding. In this kind of system, which
includes some positive feedback mechanism and a mechanism that counteracts
it, if there exists a time lag between the two, then there can appear a stable os-
cillatory behavior. The number of molecules in question starts to decrease only
after it goes above the value for which the two mechanisms are balanced, and
this decrease turns to the increase after it passes the balance point. Therefore,
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the stability of a system that includes positive feedback cannot be described
simply in terms of the stabilization of a stationary state provided by negative
feedback (see Fig. 1.4).

Living creatures also exhibit transitions over several states, as exemplified
by the process of cell differentiation. Such behavior, in which the system makes
a transition from one state to another, clearly cannot be understood entirely
in terms of the relaxation to a stable state through the mechanism of negative
feedback. Therefore, the concept of negative feedback does not provide an
adequate understanding of differentiation and the resulting diversity of cell
types displayed by multicellular organisms.

Furthermore, it is often the case that the type of diversity discussed in
Sect. 1.3 prevents the stabilizing relaxation toward stationary states facili-
tated by negative feedback. The reason for this is that in a system consisting
of a large number of interacting constituent elements, as the number of in-
teracting elements increases it becomes increasingly difficult for the system
as a whole to exhibit negative feedback, Such systems will generally include
positive feedback, and small fluctuations become amplified. For this reason,
to understand such systems, it is necessary to think in terms of a type of
stability that preserves the existing diversity (Fig. 1.5).

Fig. 1.5. In a system exhibiting reproduction, if some fluctuation occurs, it is
amplified through the process of reproduction itself

1.9 Systems Evolving Amongst Fluctuations

Above we considered the question of whether a living system can be regarded
as some kind of computer. There also exists a point of view that, while not
going as far as actually using the term “computer” in their description, does
employ a mechanical analogy in an attempt to understand living systems. A
machine is a device constructed according to some plan that, in accordance
with some commands, converts some input (or material) into output (or a
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product). According to this analogy, cell acts under the plan constituted by the
genes it possesses and converts some raw material into an output. In this case,
if the output consists of the construction of a new cell of the same kind, then
the original can be thought of as a reproduction machine (a self-replicating
automaton), or if the output is motion, then the cell can be thought of as
a molecular motor. However, despite the prevalence of this analogy, it would
seem that normally, living organisms are not considered to be “machine-like”
and that nobody actually regards them as machines in the ordinary sense.
What, then, is the difference between machines and living creatures that we
perceive intuitively? Also, if in fact we could understand living organisms as
machines, what kind of machines would these be?

First, we note that probably many people have the image that, in contrast
to machines, living systems possess some kind of flexibility and adaptability.
That is to say, a living organism does not always behave in strict accordance
with the rules applied to it, and depending on the situation, the rules it
perceives will change. There are two points to consider here. First, the relation
between input and output depends on the circumstances (the environmental
conditions), and, second, this dependence itself is not completely determined,
as it exhibits fluctuations.

To proceed with an investigation along this line, we should not focus solely
on elucidating the behavior or average values of characteristic quantities that
are observed under given conditions within a deterministic framework. In-
stead, we must consider the role of fluctuations. However, in the study of
molecular biology, the idea of quantitatively measuring fluctuations has re-
ceived little attention. Indeed, the mainstream approach in all fields of bi-
ological research has been to seek deterministic on-off type conditions – for
example, “if the concentration of molecule A exceeds the value ρ, then be-
havior X results.” Experiments have been designed and carried out in such
manners that minimize stochastic noise and thereby yield results for which
the types of behavior observed under different sets of conditions are as distinct
as possible.

However, to properly investigate the “softness” of living systems, it is
also necessary to consider the question of how the nature of the fluctuations
themselves depends on the environmental conditions. For that purpose, we
must determine how the behavior of a cell can vary under fixed conditions,
through the influence of the fluctuations. An example of such an investigation
is the work of Fumio Oosawa and colleagues on the motion of the paramecium
(Oosawa, 2001). It is known that a paramecium in a liquid displays Brownian
motion in which it moves in a straight line for some time, then changes di-
rection essentially randomly, and then again proceeds in a straight line. It is
interesting to consider the question of the degree to which this motion is truly
Brownian and how this degree depends on such parameters as the temperature
of the liquid, the population density of paramecia, and other environmental
conditions. Then, it is also of great interest to study how the paramecium
uses fluctuations to adapt to the environment. The fluctuations of interest
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are those within the paramecium cell, and these perhaps originate as random
behavior of the molecules inside the cell. However, as discussed above, within
the cell, there are positive and negative feedback mechanisms through which
various quantities existing in the cell are amplified and suppressed. For this
reason, some such fluctuations come to be enhanced and others damped. Thus,
the form of these fluctuations is not simply determined by the temperature.
Rather, the macroscopic fluctuations we consider are involved directly in the
behavior of the cell as a whole and depend on its state. Hence, to obtain an
understanding of the paramecium’s behavior, it is necessary to study how the
fluctuations within it depend on the state of the cell.

Of course, the effect of fluctuations at the molecular level is also very
important, and technologically, it is becoming possible to make precise mea-
surements of these. In the study of molecular machines which was originated
in attempting to elucidate the generation of force by muscle tissue, the impor-
tance of fluctuations has just begun to be recognized. The mechanism through
which power is produced by muscle fiber has been studied in great detail. In
a muscle there are the protein molecules actin and myosin. Myosin is bonded
to the “rails” formed by the actin molecules. Then, it is believed that power is
generated when myosin molecules excited by ATP move on these actin rails.
If this mechanism moved like a gear, then the distance of the movement ex-
hibited by the myosin molecule should be determined uniquely by the energy
of hydrolysis of the ATP. However, carefully considering the fluctuations in-
herent in the motion of molecules, Fumio Oosawa hypothesized that in fact
such “molecular machines” in living organisms do not behave like gears, sug-
gesting, rather, that due to the influence of fluctuations, they behave in less
restricted manners. As a characterization of this type of motion, he coined the
term “loose coupling mechanism” (Oosawa & Hayashi, 1986; Oosawa, 2000).
It has been found that indeed the actin molecule is not “stiff.” As a result
of thermal fluctuations, a myosin molecule is subject to violent shaking as if
it were in a terrible earthquake, and it moves while repeatedly and randomly
colliding with obstacles that possess energies on the same order as its own.
For this reason, it is reasonable to conjecture that there would be no fixed
relation between the dissociation energy of one ATP molecule and the dis-
tance moved by a myosin molecule, and that within actual muscle tissue, the
distribution of such distances should vary from case to case. This conjecture
has been confirmed experimentally by the Yanagida group (Ishijima et al.,
1998).

1.10 Spontaneity

Another reason that we consider living creatures to be different from machines
is that generally they are thought to possess “spontaneity.” (This point is in
fact related to the fluctuations considered in the previous section.) In other
words, an organism may exhibit different types of behavior in two instances
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characterized by identical external conditions. Such variability is apparently
due to some differences in states that we cannot observe directly from out-
side. In general, organisms possess internal states that cannot be controlled
entirely by external conditions alone. For this reason, they appear to behave
spontaneously (Fig. 1.6).

Fig. 1.6. Although the external stimuli are identical, the behavior of an organism
depends on the internal state (represented by the grid pattern), which cannot be
seen directly by an observer

In reflection, the same input results in the same output, while in a sponta-
neous behavior, different outputs are obtained from the same input, depending
on the internal state of an organism. Figure 1.6 depicts the behavior of a para-
mecium in two instances in subject to identical external conditions. Even un-
der the same environmental circumstances, in different cases, the paramecium
may flee from, approach, or show no reaction to the source of the stimulation.
Here we see spontaneity in its most rudimentary form.

In general, the behavior of a living creature is not uniquely determined
by its genes and the environmental conditions to which it is subject. Each
individual also carries with it the effect of its personal history. At any time,
its internal state depends not only on its genes and environment but also on
this history. Then, the behavior that it displays at any given time depends on
this internal state.

Even the behavior of a single cell is not determined completely by its genes
and environment but also depends on its physiological condition. That is, the
manner in which it behaves depends on its internal “state,” which includes, for
example, the concentrations of various metabolic products. Now, if we were
somehow able to obtain complete information concerning the internal state
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of a cell, knowing the number and position of each type of molecule present
within it, and if these could be controlled externally, it may be possible to
describe its behavior as that of a deterministic machine. However, in reality,
the degree to which we are able to observe the state of a cell is limited, and
it is certainly not possible for us to completely control this state. Even if we
assume it is possible to control the concentration of every constituent molecule
in the cell’s environment by placing it in a carefully prepared culture, we would
not be able to dictate the extent to which the various chemicals pass through
the cell’s membrane, and thus we could not control the internal chemical
concentrations on which the state depends.

For example, suppose that we are performing experiments on a number
of individual bacteria E. coli. Then, even if we were able to make the initial
conditions of all the experiments, say the time at which they divided and their
sizes, identical, we would not be able to make everything affecting the cells’
behavior the same. Again, this illustrates how there is an internal state that
cannot be observed externally (by humans or even by other cells), and because
it cannot be observed, it cannot be prepared identically for each of the cells
under investigation. Actually, experimentalists know that bacteria (E. coli)
possessing identical genes and placed in identical environments can exhibit
significantly different behavior if their past cultivation conditions differ.

From the above discussion, we have seen how living systems (including
individual cells) carry their histories with them and that the internal states
in which they exist at any time are partly determined by these histories. In
addition, because we cannot observe all aspects of these internal states, as
long as we rely on external observation to gather information, it appears to us
that the behavior of a living organism has a dependence on history. Further-
more, we cannot know an organism’s entire history and how the conditions
that it has experienced are embedded within its internal state. Then, because
the externally observable behavior exhibited by an organism depends on this
internal state, as illustrated in Fig. 1.6, it is seen to have a “soft” input–output
relation, in which a particular input can result in a range of different outputs.
In this sense, this organism appears to possess “spontaneity.”

If we hope to study the spontaneity of living organisms, we will have to
find appropriate ways to express their internal states, and it will be necessary
to determine how these internal states change according to environmental
conditions and how the relation between input and output is made “soft”
(i.e., not one-to-one) due to the influence of these internal states. It will not
be possible to accomplish this by seeking the role played by each individual
molecule. Rather, we must carry out research that attempts to understand the
overall behavior resulting from the many processes occurring inside organisms.
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1.11 How the Parts Composing the Whole Are
Determined by the Whole

In living systems, it is often the case that each constituent behaves as if it
“knows” the state of the whole. For example, in the process of development,
when the heart attains a certain size, cells stop dividing. As a result, the heart
realizes an appropriate size. As another example, each cell in the liver pos-
sesses the ability to divide, but when the liver reaches a certain size, division
ceases, and from that point, the organ maintains a fixed size. Interestingly, if
part of the liver is removed (e.g., for the purpose of a transplant), its cells will
again begin dividing until the appropriate size is again realized. As a similar
example, consider the planarian, which is an animal with the ability to regen-
erate itself from a piece of it that is cut off. However, if this is done, when
the organism reaches a certain size, the cell multiplication responsible for the
process of regeneration stops. This type of behavior occurs despite the fact
that the growth of each cell is purely a local process. Therefore, unless the size
of the group of cells in question can properly influence such local processes,
it would not be possible for the appropriate size to be realized in this way.
Thus, each cell behaves as if information regarding the properties of the group
to which it belongs is somehow contained within it and, in this sense, as if it
“knows” the whole (Fig. 1.7).

Among newts, there exists a diploid (i.e., a mutant with double the normal
number of genes). In such an individual, each cell too is twice the normal size.
However, in the growth process, the number of cell divisions is half that of a
normal newt, and as a result, the sizes of the normal and mutant forms are
essentially the same. This is an example of a case in which the size of the entire
organism exercises control over the local property of the number of divisions
undergone by each cell. A discovery that clearly demonstrates the existence
of this kind of group effect in the developmental process was made by Gurdon
and collaborators (Gurdon et al., 1993), termed as “community effect.” In

Fig. 1.7. The properties of each constituent comes to be determined through its
relation to the whole
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the developmental process, from the undifferentiated cell of the egg through
repeated cell divisions, an organism undergoes the process of differentiation
and comes to possess many types of cells. In this process, when the cells
reach a certain stage in the differentiation process, they lose the ability to
differentiate, and after that point they can produce only cells of their own
type. When this stage is reached, a cell is referred to as “committed.” Gurdon
et al. began their experiment from a collection of undifferentiated cells, to find
whether these cells would differentiate into certain cell types and eventually
become committed. The purpose of the experiment was to determine whether
this “committed” state depends on the number of cells present. The rationale
here is that if a cell of a given type is surrounded by a sufficient number of
cells of the same type, then perhaps that cell will be able to produce only
cells of its own type. Thus this experiment was to test the hypothesis that a
cell becomes committed through the influence of the surrounding cells. The
result of the experiment was that this hypothesis is correct: Whether a cell
retains the ability to differentiate depends strongly on the number of cells
of its type that surround it. If this number is sufficiently small, the cell will
continue to differentiate, but if it is large, it will become committed. This
kind of importance of cell number was also demonstrated by the experiments
of Asashima, as will be discussed in Chap. 9 (Ariizumi & Asashima, 2001).

How are individual cells apparently able to “know” the properties of the
entire structure or entire organism to which they belong? It seems clear that
this is due to the mutual influence imparted by the cells on each other. To
elucidate the actual mechanism at work here, it is therefore necessary for us
to study the interactions among cells and thereby seek to determine how the
properties of each constituent and the properties of the whole are related.
In other words, it is not sufficient to simply analyze the components and
attempt to elucidate their properties alone. Rather, we must investigate how
the properties of the individual components are related to the whole and the
manner in which these properties are determined through these relations. To
capture the spirit of this approach in a single expression, what we seek is a
methodology to understand the complementarity relation between the whole
and the parts (see Fig. 1.7).

1.12 Universal Properties That Cannot Be Traced Back
to Molecules

As we have discussed, it is evident that living systems possess universal prop-
erties that cannot be expressed simply in terms of combinations of properties
of individual genes or molecules. The most important and distinctive phenom-
ena exhibited by living systems – the stability of the development process, the
irreversibility in developmental process to lose the multipotency from embry-
onic stem cells to stem cells, and to committed cells capable of reproducing
only their own kind, the compatibility of two faces of the reproduction, that is,
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the ability to produce the nearly identical offspring and capacity to generate
variation leading to diversity through evolution, the autonomy possessed by
living creatures to determine their own rules, and so forth – certainly cannot
be attributed to the properties of individual molecules, and the very general
questions that the existence of such phenomena pose cannot be answered by
simply enumerating individual molecules and their roles and combining them
to obtain some overall picture. In the research discussed in this book, we
seek a fundamental theory of life based on complex systems, attempting to
construct a mode of understanding through which such questions can be an-
swered. Specifically, it is hoped that with this “mode of understanding,” we
can elucidate the structures of the dynamic circulation between microscopic
and macroscopic levels of behavior. The problem addressed in this book is
that of obtaining an understanding of the universal properties of living sys-
tems that does not rely on simple enumeration of molecular components and
processes.

To address the problem raised above, perhaps it is first necessary to define
what we regard as constituting an “understanding” in this context. For exam-
ple, suppose that we are able to describe the motion of all of the molecules in-
volved in some phenomenon and that, with this knowledge, in fact we have the
ability to reproduce the phenomena. In general, this would certainly require
an extremely large-scale numerical computation employing a vast amount of
data and an enormous number of equations, but let us suppose hypothetically
that despite such technical obstacles, we actually succeeded in such a project.
For example, suppose that in this way we were able to simulate the metabolic
process of some bacteria (say E. coli). However, if we then wished to construct
some other type of bacteria, we would probably be required to again carry out
a similarly large-scale simulation. Indeed, for each organism that we wished to
construct in this manner, it would be necessary to perform an enormous com-
putation. Of course, the accumulation of information regarding, for example,
how individual cells behave under certain conditions could be of use in medical
applications. However, for the purpose of obtaining an actual understanding,
extracting, and elucidating the general properties of living systems, a more
simplified, condensed description by removing nonessential details through
abstraction, is necessary. Even if such a description is insufficient for the pur-
pose of reproducing the phenomena in an organism, it is the type needed
to answer the questions we consider. Certainly, a theory that simply reduces
to a description of components would not be capable of extracting idealized,
universal properties possessed by living creatures. For this reason, we seek an
approach that is not based on the reduction to component elements.

Many people may doubt that the construction of the kind of theory that
we seek is possible. However, it should be noted that this would not be the
first theory of its kind. Thermodynamics, which is almost miraculous in its
effectiveness, is a macroscopic phenomenological theory very similar in spirit
to that which we seek. Of course, the description offered by thermodynamics
is limited to equilibrium states and transitions between them, but this the-
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oretical framework succeeds in describing the macroscopic state of a system
and provides a general formulation of stability and irreversibility.

Here it is interesting to consider some hypothetical situations regarding
the historical development of science. Suppose that before thermodynamics
was developed, some technical ability that we now possess to study individ-
ual molecules existed. Then, suppose that with this ability, in an attempt to
describe the behavior of a large number of molecules, people had taken the
approach to measure the dynamics of each individual molecule and then con-
struct a description of an ensemble of molecules through enumeration of its
constituent dynamics. Assume that such an approach were successful, then
could the concept of thermodynamics such as entropy be developed accord-
ingly? Some people might believe that this would have been possible, noting
that today we possess a methodology providing a means of deriving macro-
scopic representations from microscopic descriptions, namely, statistical me-
chanics. However, this is a serious misconception. It must be remembered
that the theory of statistical mechanics was developed after (macroscopic)
thermodynamics, and it was constructed by studying consistency of micro-
scopic dynamics with thermodynamics. If thermodynamics had not existed
previously, statistical mechanics could not have been developed.5 In general,
a knowledge of microscopic behavior does not necessarily allow us to au-
tomatically derive macroscopic behavior. One clear example of this is that
despite the fact that thermodynamics provides an understanding and quan-
titative description of the irreversibility for a transition between equilibrium
states, within statistical mechanics, such theory of irreversibility has not yet
been completely established. From this consideration, it would seem that no
matter how carefully and thoroughly it had been carried out, without ther-
modynamics, a study of microscopic dynamics of molecules would not have
led to the concept of entropy. In the actual historical development, Carnot,
Clausius, and others were able to construct the theory of thermodynamics
with no consideration of molecules, focusing only on macroscopic properties.

At the present time, the state of molecular biology, with our increasing
ability to observe individual molecules, is something like the hypothetical sit-
uation described above. Unfortunately, as we see from this case, it is not
always true that a field of study benefits from an increased ability to observe
microscopic phenomena. In the case of thermodynamics, inability to observe
microscopic phenomena led necessarily the success of a theory of a strictly
macroscopic scale The contrast between the situation with which molecular
biology now faces and that which led to the development of thermodynamics,
in this sense, is striking. Of course, we do not wish to claim that no con-
sideration of the molecular level is needed to gain an understanding of life.
However, it is not necessary to account precisely for each molecular process.
On the contrary, it is often important to employ a coarse-grained description
5 In statistical mechanics, which probability measure one should choose is con-

strained from a macroscopic condition provided by thermodynamics.
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in which insignificant details are removed. In fact, one of the approaches we
propound here is that of seeking universal properties by using a coarse-grained
description of the systems under investigation.

The argument that enumeration of all of the molecular processes does not
yield an “understanding” of the system can be made also in the context of
computer simulations. To see this, let us suppose that we carried out an enor-
mous molecular dynamics simulation incorporating the equations of motion
for all the molecules in some system and in this way we were able to track the
trajectory of each molecule. For example, assume that this was done for a gas
or liquid system and in this way we were able to precisely mimic the behavior
of an actual system at the molecular level. However, such a description would
not provide us with an understanding of this behavior. In particular, without
a knowledge of thermodynamics, the concept of entropy would bot be de-
duced. Only after we have become aware of the concepts of thermodynamics
and we have attempted to imagine how these concepts are connected to mi-
croscopic behavior does it become possible to extract useful information from
such a simulation. Presently, there are plans for several projects to carry out
large-scale simulations employing models that incorporate all of the individual
processes taking place in a cell. However, as made clear from the preceding
discussion, even if such a project were successful and a precise description
accounting for all of the molecular-level processes taking place in a cell were
realized, this would not provide us with an understanding of living systems.
This point is treated further in the next section.

1.13 Transcending Enumeration

The current trend in biology is to push ahead projects of enumeration, as
if such a bookkeeping description would be sufficient. First, there was the
“genome project,” with the goal of determining the sequence of the four
constituent compounds making up the DNA molecule. Then, there are the
similar projects to determine the proteome (the set of all proteins) and the
metabolome (the set of all metabolic elements). In fact, we have even come
to hear the term “physiolome,” referring to the specification of an organism’s
entire physiological state.6 However, such a project is hopeless in some sense.
Because the number of molecular species existing in an organism is itself ex-
tremely large, determining the number of individual molecules of each species
would be essentially impossible.

Perhaps a comment regarding the field of systems biology is in order here.
If this field were actually involved in an attempt to understand organisms
as systems, then its aim would be the same as the field we hope to estab-
lish. However, that which is referred to as “systems biology” today has often
degenerated into enumerationism, dedicated to projects of enumerating bio-
logical processes. In fact, it has gone so far that even the term “systeome” has
6 Probably, we need “omome” soon, to enumerate all “–ome” projects!
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become part of its vocabulary. For this reason, here we would like to make
a clear distinction between the approach we advocate and that of so-called
systems biology.

Of course, a set of data obtained in accordance with a fixed standard can
be very useful, and in particular it is helpful in the development of medicines.
However, such an approach amounts to nothing more than the compilation of
data bases, and it cannot be regarded as science by itself. More precisely, an
attempt to form a science of living systems on the basis of such an approach is
inherently problematic. Below, revisiting the points made above, we explicitly
discuss each of the problems that this would entail.

1.13.1 The Absolute Limitation of Enumeration

Obviously, it is not possible to enumerate every possible situation with regard
to a living system or systems, as this would include an infinite (indeed, in many
cases uncountably infinite) number of cases. First, there is the problem of the
vast number of possible combinations of the ways in which genes can act, as
discussed previously (although, strictly speaking, this is still a finite number).
However, there are cases in which the expression of each gene is not a matter
of simply “off” or “on.” In the situation that the degree of gene expression is a
continuous variable, enumeration of the number of possible types of behavior
is impossible even in principle. Also, as discussed in Sect. 1.3, the number of
possible situations that an organism could face is clearly uncountable.

1.13.2 Standard for Enumeration

It may be thought that, even if a total enumeration is impossible, it should be
possible to define some finite bounds within which a complete enumeration can
be carried out and it would be worthwhile to pursue something of this kind.
However, it must be realized that there is a problem of ambiguity involved
in the establishment of a standard that could be used to define appropriate
bounds. For example, consider the metabolic map presented in Fig. 1.2. As
mentioned above, this does not represent the entire reaction, but whether or
not this describes the “important” part is open to debate. In general, the
question of what standard to use in representing a reaction will be answered
differently by each investigator, because in the study of a given system, the
data that one is capable of obtaining or that one chooses to retain will depend
on the particular experimental techniques that she or he can apply and the
interests that (s)he may have.

1.13.3 The Essence of Life Does Not Lie
in Combinatorial Complexity

Let us consider a typical protein molecule forming a chain of, say, 100 amino
acids. In combinatorial terms, there are 20100 ≈ 10130 possible realizations
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of a protein of this length. It is impossible that through the course of evolu-
tion, each one of these possibilities was tried and that through this process
the realization that is actually found in biological systems was selected. In
other words, it is not necessarily the case that the existence of a certain pro-
tein implies that its precise form was selected. Of course, there are certainly
some sequences of amino acids that would be biologically worthless. However,
this said, there is also no reason to believe that there are only a few special
sequences that had to be selected. Rather, it is natural to believe that, to
some extent, whatever protein molecules actually came into use, the nature
of life would have been essentially the same. Realizing this point, we see that
there is no reason to search within the vast realm of possibility for the par-
ticular sequences that happen to be employed by living systems, and taking
great pains to construct models that accurately reflect these sequences will
probably bring us no closer to an understanding of the essence of life.

Actually, in order for some degree of life function to emerge, no delicate
selection of amino acid sequence is necessary. This point has been clearly
demonstrated experimentally. Recently proteins have been synthesized by
constructing random sequences of amino acids, and despite this randomness,
these proteins possess some functions found in the proteins occurring naturally
(Yamauchi et al., 2002). Although the sequence of amino acids is just given
by a random sequence, the synthesized proteins possess a certain level of
function, and if these are then allowed to undergo mutation, high degrees of
functionality can be realized. In other words, in attempting to create protein
molecules with levels of function sufficiently high to allow for life, it is not
necessary to pinpoint some very special initial conditions in the space of pos-
sible sequences. Rather, although there are differences of degree, the faculties
necessary for living systems are possessed quite universally among protein
polymers.

Now, one might conclude from the foregoing discussion that enumeration
may not require such an enormous task, as it would be necessary to consider
only the “important” molecules. However, neither the methodology of enu-
merationism itself nor the field of systems biology in its present form provides
the grounds to judge what molecules are “important.” To make such a deter-
mination, some other theory is needed. In other words, until we can construct
a theory that provides the basis to determine what is important, the informa-
tion gathered in the enumeration procedure yields no definite conclusion.

1.13.4 The Importance of Fluctuations

Let us suppose that the rate equations of chemical reactions for all metabolic
reactions and all other processes that take place within an organism could
be written down, by assuming that we would know the concentration of each
species of molecule (i.e., the numbers of individual molecules of all kinds).
However, the rate equations of chemical reaction can be considered accurate
descriptions of actual processes only if the number of molecules participating
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is very large. In the case of the reactions taking place within cells, the ac-
tual numbers of molecules are not large, and for this reason, fluctuations in
molecule number play an important role. It is then in vain, for example, to
attempt to fit as accurately as possible, say, 1,000 coupled differential equa-
tions describing processes that each contains some significant percentage of
fluctuations.

1.13.5 The Essential Difficulty Involved in Constructing
That Precisely Describe Biological Phenomena

When studying a simple system that can be described with just a few vari-
ables, it is often possible to precisely determine a unique fundamental relation
between these variables that can account for experimental data. However, as
the number of variables needed to describe a system becomes large, given a
finite amount of data, it becomes impossible to carry out a fit that precisely
specifies a particular relation among them. Of course, in such a situation, it
is not difficult to find some relation (indeed, many relations) that provide a
satisfactory fit to the data. (In the extreme case, we could define one para-
meter for each experimental datum.) However, doing this would be of little
worth, as a relation obtained in this way would likely fail to describe the be-
havior observed in some other experiment. It thus becomes clear that there is
a fundamental problem involving the question of how to limit the number of
variables used to fit data. At the present time, there exists no guiding principle
in this regard.

1.13.6 The Lack of Reliable Fundamental Equations

Now, having realized the problems inherent in fitting experimental data, one
might be tempted to think that, without relying on experimental data, it
should be possible to derive some basic equations describing the living process
from the rate equations of chemical reactions, and to carry out simulations
using these. However, there are several points that must be noted here. First,
the reaction rate formulas used to describe the changes in concentration of
various molecule species undergone in chemical reactions are usually only ap-
plicable for systems in (local) equilibrium or very close to equilibrium, and it
is not necessarily the case that the reactions taking place within a cell actu-
ally satisfy such conditions (Blumenfeld & Tikhov, 1994). Also, in many cases,
reaction rate equations are derived with the assumption of dilute solutions,
and therefore it is not clear whether they can be used to describe the condi-
tions of high concentration that exist within cells, as shown in Fig. 1.2. Of
course, despite these complications, there are certainly many cases in which
such equations yield useful approximate accounts of the phenomena found
in cells. However, they cannot be regarded as providing precise quantitative
descriptions. Indeed, equations capable of producing such descriptions can-
not be derived within the present framework of thermodynamics. Employing
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equations of this kind in an attempt to construct a very quantitatively faith-
ful model of such phenomena is almost meaningless, as this is simply beyond
their realm of applicability.

1.13.7 A Description of Phenomena is Not Equivalent
to an Understanding

As discussed in the previous section, an understanding of some phenomenon is
not obtained by constructing and adjusting a set of equations in such a manner
that it provides an accurate model. For example, suppose that we are studying
a system that, under certain conditions, exhibits concentration oscillations of
its various chemical species. Then, let us assume that we were able to write
down all of the equations describing the reactions taking place in this system
and that, upon investigation, we find that they indeed display concentration
oscillations. (The Belousov–Zhabotinsky reaction is a well-known example of
this kind. Even though this is a relatively simple inorganic chemical reaction,
it consists of many intermediate reactions, of which nearly 100 have been
identified, and it has not yet been fully elucidated.) Such a result may be
considered “success,” but we believe that, for the purpose of understanding the
mechanism of the oscillation phenomena seen in chemical reactions, instead
of such a complicated model, it is better to use a simple model describing just
two variables, and elucidate how the oscillation appears through instability of
a stationary state. Such an approach can demonstrate in general terms that
under certain conditions chemical reactions exhibit concentration oscillations,
and it can elucidate the mechanism at work in the original reaction in a
variety of chemical species. Furthermore, with such an approach, the model we
obtain is not specific to a particular reaction, and thus when considering some
other system that displays similar behavior, it is likely that the same model
can be applied to it as well. For these reasons, it is much more meaningful
scientifically to seek the construction of simple models and endeavor to derive
an understanding from these than to attempt to mimic every detail of each
specific system we encounter.

1.13.8 The Necessity for a New Framework

Regarding a living creature as simply a mosaic of chemical processes precludes
the realization of a deeper understanding of life. Of course, we could just
concede that the problem here is too difficult and give up trying to obtain
such an understanding. However, the fact that there exist properties common
to all forms of life that we know – diversity, stability, the irreversibility of the
process leading from birth to death – strongly suggests that the construction of
a science capable of providing an understanding of these universal properties
is possible.

In the task we face, the difficulty does not lie in the problem of accounting
for unfathomably many molecules. Even if we are not able to enumerate all



36 1 How Should Living Systems Be Studied?

of the constituent elements and processes making up a living creature and
construct a precise molecule by molecule account (in fact, we hold that this
is probably impossible), it need not be concluded that living systems cannot
be understood. The understanding of universal properties that do not depend
on the details of individual systems is what we seek, and these should ex-
ist in some realm that is completely separate from that of enumeration and
the mimicry of fine details. The study of combinatorial complexity (in other
words, the so-called “complicated systems” in the enumerationism sense) rep-
resents an approach to the problem of understanding life that differs from that
which we advocate, that of complex systems (Kaneko & Tsuda, 2000; Kaneko
(editor), 2001; Kaneko, 1998b). What we hope to construct is a “mode of un-
derstanding” for the problems that cannot be understood by simply treating
systems as a collection of microscopic if–then logical processes. Furthermore,
we wish to construct a scientific method of treating a system with the circu-
lation between micro and macro scales, a system in which the understanding
of the parts requires understanding the whole system.

In this chapter, we have critically reviewed present-day molecular biology
and the “-ome doctrine.” However, with criticism alone and by simply stating
that with the methods used to this time living systems cannot be understood,
we cannot contribute to the advance of science. With this book, we hope to
offer a system of study to replace these previously existing methods. Then,
to promote the development of this system of study as a science, we propose
a new point of view from which to develop experimental methodology and a
concrete research program. What we describe in this book is the collabora-
tion of theory and experiment. The importance of the book by Schrödinger
mentioned in Sect. 1.1, which appeared when molecular biology was in its
infancy, and the book by Watson, which was largely responsible for the rise
in prominence of molecular biology, lies in the fact that they provided for
biology a new point of view and a new system of study. In this book, we hope
to present a point of view and system of study that differ from those which
came to form the field of molecular biology. With this goal, in Chaps. 2 and
3, we summarize the two points of view that we take.
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Constructive Biology

2.1 The Understanding Obtained Through Construction

As discussed in Chap. 1, we do not wish to investigate the detailed processes
of present-day living creatures and to construct some kind of precise organism
“blueprints” for them. Rather, our goal is to elucidate the universal proper-
ties possessed by living systems. With this goal, there is no reason to focus
on the organisms that happen to exist on Earth at this time. However, as a
minimal requirement, we set out to construct systems incorporating structure
and processes common to the organisms of which we have direct knowledge.
Thus, we attempt to uncover universal properties. We call this approach “con-
structive biology.” The thinking that underlies this approach is to construct a
world that reflects and captures the essence of biological systems and to find
the phenomena that appear universally and inevitably in that world.

If there exists a universal structure of living systems that is potentially
amenable to some general theory, it should be possible to make progress to-
ward developing such a theory with the constructive approach that we pro-
pose. However, if such structure in fact does not exist, and if living systems
are complicated and intricate in their very essence, then the problem of under-
standing life may be hopelessly difficult. If the reality is that living organisms
represent extremely exquisitely formed designs precisely selected from unfath-
omably many possibilities, then there would be no way to elucidate the char-
acteristics of living systems other than creating very intricate imitations. But,
of course, producing models that could describe all of these details would be
extremely difficult. By contrast, our basic philosophical point of view is that
there is some universal structure for fundamental properties of living systems.
Following this manner of thinking, we believe that if we consider systems
that possess the proper conditions, the fundamental properties of biological
systems should appear naturally. To carry through with such an approach,
obviously it is necessary to develop appropriate experiments.

Now, before proceeding, we should first give some discussion of what we
mean by “fundamental properties.” What we are interested in is a universal
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theory of life, and therefore we do not wish to limit our attention to only
the organisms that exist now or have existed in the past on Earth. We do
not confine our investigation to the characteristics that this set of organisms
happen to possess – the molecules they employ, the forms they take, or the
chemical structures they exhibit. Rather, we seek the universal properties
that all possible organisms must possess, without being constrained by the
particular paths that by chance evolution took on this planet. So, what might
these properties be?

The question we pose here is obviously not an easy one. The following are
some properties that immediately come to mind: a distinct boundary sepa-
rating the organism from the external world; some degree of autonomy with
which the organism is able to maintain its internal state; some degree of com-
plexity characterizing the metabolic activity that carries out this maintenance;
the ability of production through which similar but not identical individuals
come into being; the existence of a structure that carries the information al-
lowing for such reproduction; for multicellular organisms, the existence of a
mechanism of differentiation through which cells possessing a variety of roles
are formed and a developmental process arises; the ability to pass the develop-
mental process to the next generation through germ cells. In addition, one may
include the capacity for diversification through evolution over generations.

Present living systems are extremely complicated products of history, and
for this reason, it is probably not possible to judge what is essential by consid-
ering only these. In other words, studying these organisms alone, we cannot
determine what properties are simply the accidental results of evolution and
what properties are indeed inevitable. This point elucidates the potential use-
fulness of the constructive method in identifying truly universal properties.

There have been research programs in biology whose goal is to identify
molecules essential for living systems – those molecules whose presence is
absolutely necessary for such a system to function. For example, studies of the
following type have been carried out. Suppose that we removed a particular
gene from some organism, and that as a result, some important element X
became lost. Then, suppose that because of its absence, some function A
could no longer be carried out. Thus, because the absence of X resulted in
the loss of A, we are led to conclude that the former must be necessary for the
latter. This simple description represents the manner in which such studies
seek necessary conditions for the functions of living organisms.

This approach does not attempt to determine sufficient conditions for
something to be considered a living creature because, clearly, the result de-
scribed above would not establish sufficiency in any sense, as it could be the
case that even if X is present, the lack of some other element Y would re-
sult in A being lost. However, despite this fact, in actual cases when some
element X of this type is discovered, without looking for some other elements
Y , Z, . . . whose absence could yield a similar result, it is often asserted that
X is the element that causes A. In the case that X is a gene, such a result is
often (misinterpreted and erroneously) represented by such assertions as “X
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is the A-gene.” Such a tendency reveals the apparent motivation for seeking
sufficient conditions.

Now, if we indeed are interested in determining a sufficient condition for a
particular characteristic of a living system, how should we proceed? First, let
us suppose that we have prepared a certain set of elemental processes and with
these alone have constructed some system that possesses the characteristic in
question. In this case, because we have constructed this system, we know
what elements it possesses, and thus we are able to say that these elements
are sufficient for the appearance of the characteristic of interest. Of course, for
the purpose we consider, it is best if we include the fewest possible elemental
processes.

To reiterate, what we propose here is to construct a system according to
the conditions we have chosen, and with such a system, to recreate the fun-
damental properties and functions of living systems. This is the approach of
constructive biology. Thus, we do not wish to study those forms of life that
happen to exist here and now, after a certain set of “rules” has been selected
by evolution. Rather, we hope that with the conditions we have established
that we can elucidate how life’s fundamental processes of, for example, repro-
duction and development come into existence.

2.2 The “Way” of Construction

The approach we advocate in constructing model living systems is not to aim
for the description of systems that exist in the present world or systems that
differ only slightly from these, but, rather, to investigate a very wide range
of systems that can differ significantly from the present living systems. With
such a broad scope, we hope to discover the properties common to all systems.

Here, small perturbations of presently existing systems are not sufficient,
as we wish to confront situations far beyond the realm of common experience.
As suggested by the writings of Zhuangzi presented in Chap. 1, we strive
to behold the mountain peaks far from the road we have spent our whole
life traveling. In this way, we believe that the large-scale properties of living
systems will become clear.

Reiterating our stance in different terms, we have no desire to carefully
add complicating details to our models, adjusting and appending in order to
fit the phenomena exhibited by actual organisms. Our goal is not to construct
theoretical models or experimental systems that copy the systems found on
Earth. Instead, we seek a more universal theory of life, one that would apply
even to creatures found on other planets.

At this point, allow us to relate another conversation between Zhuangzi
and his friend. Zhuangzi often expounded the “Way” of things. (According
to his thoughts, the term “Way” represented universal truth or a universal
law.) On one occasion, his friend asked him where this “Way” could be found,
where he could look to discover it. Naturally, Zhuangzi responded that this
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“Way” is something universal that exists everywhere. But the friend was not
satisfied and insisted that unless Zhuangzi explained to him where it is, he
would not know. While Zhuangzi was at a loss to specify where universal
laws can be found, he tried to offer his friend some understanding, saying
that they are in crickets and ants, in millet, in roof tile, and in excrement.
His friend replied that he had imagined that the “Way” is in noble and lofty
things and that he was shocked to hear that it could be found in things
of such a base nature. Actually, Zhuangzi mentioned such examples for just
this purpose, emphasizing the idea that the “Way” is truly everywhere, and
that it may in fact be better to search for it in the common rather than in
the sublime. This manner of thinking expressed by Zhuangzi applies to our
constructive approach as well. For example, suppose that we are interested in
formulating a universal theory of multicellular organisms. Then, if we consider
some highly developed creatures in whom the multicellular structure has been
well established, the process of evolution must have already bestowed these
creatures with some highly refined, detailed mechanisms. Because we are not
interested in such detailed refinement, it would be better for our purposes to
construct systems that possess only the minimal properties that allow for the
functioning of a multicellular structure. Systems of this kind would be much
more useful for formulating a theory to describe the emergence of multicellular
organisms.

As the above discussion indicates, in the constructive approach that we
employ, we aim to include in the systems we study only the basic processes nec-
essary to realize and understand life. We incorporate only such basic properties
as that, for example, elements possess internal degrees of freedom, elements
can display a variety of properties, elements can reproduce, and elements in-
teract with one another and therefore cannot be treated in complete isolation.
Under such general conditions, we search for classes of phenomena that appear
inevitably. Then, having identified such classes, we propose to reinterpret the
world in which we live. This is the essence of the constructive method.

2.3 Examples of Studies in Constructive Biology

Our “constructive biology” consists of the following steps of studies.

(i) construct a model system by combining procedures;
(ii) clarify universal class of phenomena through the constructed model(s);
(iii) reveal the universal logic underlying the class of phenomena and extract

logic that the life process should obey;
(iv) provide a new look at data on the present organisms from our discovered

logic.

There are three possible levels to perform these steps. Three levels are (1)
gedanken experiment (logic), (2) computer model, and (3) real experiment.
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The first one is theoretical study, revealing a logic underlying universal fea-
tures in life processes, essential to understand the logic of “what is life.”

Still, life system is not so easily understood. In particular, such system has
dynamic circulation between each part and the whole system. We have not
gained sufficient theoretical intuition to such system. Then it is relevant to
make computer experiments and heuristically find some logic that cannot be
easily reached by logical reasoning only. This is the second approach mentioned
above, that is, construction of artificial world in a computer. Here we combine
well-defined simple procedures, to extract a general logic therein.

Still, in a system with potentially huge degrees of freedom like life, the
construction in a computer may miss some essential factors. Hence, we need
the third experimental approach, that is, construction in a laboratory. In this
case again, one constructs a possible biology world in laboratory, by combining
several procedures. This is nothing but experimental constructive biology that
will be pursued in the present book at the biochemical reaction level, the
organism level, and the level of ensembles of cells.

In the present book, we discuss the problems listed in the table. The first
two items in the table are related with the construction of a replicating system
with compartment. When we consider the origin of a cellular life, this self-
replication is essential. However, we do not intend to reproduce what has
occurred in the earth. We do not try to guess the environmental condition
of the past earth. Rather we try to construct such replication system from
complex reaction network under a condition set up by us. For example, by
constructing a protocell, we ask the condition for the heredity, or search for
universal features of the reaction process to allow for the recursive production
of cells.

The third to fifth items are related with the construction of multicellular
organisms with developmental process. When cells are aggregated, they start
to form differentiation of roles, and then from a single cell, robust develop-
mental process to form organized structure of differentiated cells is generated.
This developmental process to form a cell aggregate is transferred to the next
generation. Experimentally we try to construct such multicellular organisms
from bacteria. Here again, we do not try to imitate the process of the present
multicellular organisms. For example, by putting bacteria cells into some ar-
tificial condition, we study if the cells can differentiate into distinct types or
form some robust distribution of cells. Also, construction of morphogenesis
is discussed by putting undifferentiated cells of frog into some given artifi-
cial conditions. With these studies, we can establish a viewpoint of universal
dynamics underlying development rather than finely tuned-up process in de-
velopment.

The sixth and seventh items are with regards to the construction of evo-
lution. The first topic concerns with the phenotypic fluctuation, where its
relevance to genetic evolution is studied in relationship with artificial selec-
tion experiments. The second topic is about the speciation process, that is
how a species splits into two distinct groups different both in phenotype and
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in genotype. We also discuss the problem of construction of symbiosis of or-
ganisms and other related problems.

To carry out this plan experimentally, we need a system to design a life
system controlled as we like. As standard experimental tools, we will adopt re-
cent techniques in molecular cell biology, such as flow-cytometry (cell sorter),
imaging techniques, microarray, and so forth (see Sect. 3.1), while microfab-
rication techniques will be powerful in constructing a system regulating the
behavior a single cell or multiple cells.

Here this construction is interesting by itself, but our goal is not the con-
struction itself. Rather we try to extract general features that a life system
should satisfy, and set up general questions. For example, we set up a question
if there are some “information molecules” that control the replication system.
Then we answer the question by setting up a theory. For each item, we set
up general questions, make model simulations, and set up a general theory to
answer the question. This theoretical part is carried out in tight collaboration
with the experiment (Table 2.1).

Table 2.1. Examples of constructive biology under current investigation

Question to
Construction of Experiment Theory be addressed

Replicating In vitro replicating Minority control Origin of
system system with several information

enzymes

Cell system Replicating liposome Dynamic bottleneck Evolvability
with internal in autocatalytic and recursiveness

reaction network reaction system for growth

Multicellular Interaction-induced Isologous diversi- Robustness in
system differentiation of fication in inter- development

an ensemble of cells intra dynamics

Developmental Controlled Emergence of Irreversibility
process (I) differentiation from differentiation in development

undifferentiated cells rule

Developmental Activin-controlled Self-consistency Origin of
process (II) construction of between pattern positional

tissues formation and dynamics information

Evolution Artificial Fluctuation Genetic assimilation
selection response of phenotypic

of bacteria relationship fluctuation

Speciation Interaction-dependent Symbiotic Genetic fixation of
evolution sympatric phenotypic
of bacteria speciation differentiation

Symbiotic Symbiosis between Plasticity in Joinability of
system different organisms coupled systems systems
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Three points are important here.

1) It should be stressed that we are not trying to be a “magician” to synthesize
a life system. Rather, we intend to understand the logic of life through
constructing a life system. By setting up a minimal condition from our
side, we understand logic of life. Hence we pose questions common to a
large class of life, as listed at the third column of the table.

2) What type of a model is best suited for a cell for the present purpose?
With all the current biochemical knowledge, we can say that one could
write down several types of intended models. Because of the complexity
of a cell, there is a tendency of building a complicated model in trying to
capture the essence of a cell. However, doing so only makes one difficult
to extract new concepts, although simulation of the model may produce
similar phenomena as those in living cells. Therefore, to avoid such failures,
it may be more appropriate to start with a simple model that encompasses
only the essential factors of living cells. Simple models may not produce all
the observed natural phenomena, but are comprehensive enough to bring
us new thoughts on the course of events taken in nature.

In setting up a theoretical model here, we do not put many conditions
to imitate the life process. Rather we impose the postulates as minimum
as possible and study universal properties in such system. For example, as
a minimal condition for a cell, we consider a system consisting of chemicals
separated by a membrane. The chemicals are synthesized through catalytic
reactions, and accordingly the amount of chemicals increases, including the
membrane component. As the volume of this system is larger, the surface
tension for the membrane can no longer sustain the system, and it will
divide. After the division of this protocell systems, they should interact
with each other, since they share resource chemicals. Under such minimum
setup as will be discussed later, we study the condition for the recursive
growth of a cell, as well as differentiation of the cell.

Here we note the role of model again. It is a tool to reach some universal
properties, and once we understand how such universal features appear
through model simulations, then the features we found have to be described
independently of the details of the models. We have to clarify the logic why
such universality holds. At this stage, the specific model is not necessary.
The model is a kind of scaffold to reach the universality structure; once
the universal feature is understood, one can get away with the model, as
scaffold. (For example, recall Carnot cycle in thermodynamics. It is a quite
important model for gedanken experiment to construct thermodynamics,
but once it is established, we can formulate it even without it).

3) We are not intending to imitate the real life. Often we take a situation
far from in real-life phenomena, and then we try to understand the uni-
versal logic that the life system should obey (e.g., construction of a logic
of multicellular organism by putting E. coli in a culture with very high
density, that is far from in real life; construction of developmental process
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by putting undifferentiated cells in the environment that does not exist in
real developmental process [e.g., in a very high concentration of activin]).

2.4 On the Mode of Understanding

As stated above, the theoretical models considered here are solely for the pur-
pose of acquiring understanding. In this sense, although these models may
seem to be similar to the typical type of model used in the study of biologi-
cal systems, as both are investigated through numerical simulation, they are
in fact of very different natures, as the purpose of the latter is to precisely
mimic phenomena observed in actual systems. The so-called systems biol-
ogy approach of carrying out simulations of complicated models intended to
closely fit the behavior of real systems is critically reviewed in Chap. 1. Now,
what kind of models should we consider to realize an understanding of living
systems? As previously asserted, we believe that carefully incorporating every
process in a model and precisely describing some phenomenon does not in it-
self provide the understanding. So, if for our purposes, the standard by which
we judge the worth of a model is not the precision of the description it pro-
vides, then what is this standard? We hold that to understand something is in
some sense to be able to reduce it. One way to think of “reduction” is, for ex-
ample, the reduction to a few specific molecules or combinations of molecules
or the reduction to some fundamental system of equations. Such reduction is
easily understood. However, “reduction” in science is not necessarily of such
simple types. If we think of organizing natural phenomena into classes, it is
often the case that phenomena that at some level appear to be quite different
are seen to in fact belong to the same class when unimportant “details” are
removed. In this way, it becomes clear why these different phenomena exhibit
the same kind of behavior, and we come to understand why these phenom-
ena appear.1 When we observe phenomena with “half-closed eyes,” ignoring
details that may obscure the underlying essence, it comes to be realized that
many phenomena that we previously regarded as different are actually of the
same kind. In the case that the commonality of such phenomena can be char-
acterized mathematically, we say that they belong to the same universality
class.

We should point out here that what it means for two phenomena to belong
to the same universality class is not that there is some quantity characterizing
them that is equal in the two cases but that they exhibit behavior that is
1 For example, consider the phenomena of fluid turbulence and the irregular fluc-

tuations in a chemical reaction of chemical concentrations and molecule numbers.
While physically these are different phenomena, when we consider the mathemat-
ical nature of the time evolution that each exhibits, with a knowledge of chaos
theory, we realize that at this level they are of the same type.
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qualitatively the same.2 Therefore, we do not seek quantitative agreement
but, rather, qualitative agreement regarding such questions as the existence
of certain properties.

Later in this book, we consider a number of models. These models serve
as representatives of certain qualitative universality classes. The purpose of
this modeling is to obtain an understanding of why these types of universality
exist and the range of phenomena that belong to the various classes. With this
purpose in mind, the models we employ are chosen for their simplicity. Such
models should possess only the most basic properties, because this will allow
for their effectiveness in demonstrating universality. For example, we consider
as a qualitative universality class the phenomenon of hierarchical differentia-
tion, consisting of the process in which, with multiplication, cells differentiate
into a number of distinct types. In this case, in modeling the properties of the
cells, it is best not to attempt to faithfully mimic the complicated structure of
the cells that exist in the actual organisms with which we are familiar. Instead,
it is advantageous to choose models that exhibit the universal properties of in-
terest while including the fewest number of conditions possible. For example,
in the case of cell differentiation, the minimal set of conditions is that there
exist chemical reactions within cells, that there are interactions among cells
that are facilitated by the diffusion of the constituent chemical species, and
that these properties allow for the multiplication of cells. Because we employ
very simple models, more elaborate models based on the same basic structure
should possess the same basic properties. Therefore, these simple models can
be regarded as the basic forms of a wide range of more “realistic” models, and
they can thus elucidate the types of phenomena common to many systems.
In this way, studying models with very simple forms, we come to see the uni-
versality they possess. Then, if we can construct a theory that describes the
manner in which the universal properties come into being, we should be able
to approach an understanding of this universality itself.

2.4.1 Remark: Synthetic Biology

Constructive approach to complex systems was proposed in early 1990s
(Kaneko & Tsuda, 1994, 2000), while the term “constructive biology” was
coined in mid-1990s (Kaneko, 1998c). Nowadays the term “synthetic biology”
is rather popular (Benner & Sismour, 2005; Sprinzak & Elowitz, 2005). In

2 The term “universality class” originates from renormalization group theory, where
two systems are said to belong to the same universality class if under the renor-
malization group transformation, which has the effect of smoothing out details,
some of their properties come to be quantitatively identical. The concept of a
qualitative universality class has not yet been precisely defined in a theoretical
manner, nor is there a theoretical method to determine universality classes of this
kind. Here we purposely use this term in a general sense, anticipating theoretical
development through which we will obtain a more precise characterization of this
concept.
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both the approaches, intended is the artificial construction of a system that
did not exist in Nature but has some biological features, while there is some
difference in the emphasis in the direction of research. In the synthetic biology,
studies oriented to design and engineering are stressed. In contrast, construc-
tive biology does not aim at goal-oriented project to design some function.
Rather, by setting minimal conditions for basic property of life, we try to
unveil universal logic that a biological system has to satisfy. In this sense,
construction is for the analysis or understanding what life is (Kaneko, 2003b).
Of course, some studies in synthetic biology also aim at unveiling universal
logic of life (Sprinzak & Elowitz, 2005) and the difference between the two
could be in the emphasis in the study.

2.4.2 Remark: Artificial Life

Finally we give a few remarks on the study of the so-called Artificial Life (AL).
Indeed, our approach may have something in common with AL (Langton,
1989, 1992, 1994). In AL study, people intended to construct life-as-it-could-
be, not restricted to the present organisms. Originally, in the study of AL,
they have been interested in logic of life that all possible biological system
should obey, be it on this earth or in other conditions in the universe.

Indeed, there are some important studies on the origin of replicating struc-
ture from the side of computation (e.g., Fotnana & Buss, 1994). However, they
often tried to imitate life, and the study often falls on superficial imitation.
Even though they sometimes succeeded in making something similar to life,
the success did not contribute in understanding the logic of life. As for the
evolution, they usually adopt the genetic algorithm as a simplified version of
Darwinian evolution, but the AL study has not contributed in proposing novel
concepts in evolution.

Next, the study of “artificial life” is often biased into the study in a com-
puter. Similarly with artificial intelligence study, the artificial life is mostly
symbol based, and adopts a complicated combination of logical processes.

Our approach is clearly different from the conventional artificial life study
in the two points. First, we do not take such symbol-based approach, but
rather we use dynamical systems approach. Second, tight collaboration be-
tween experiment and theory is essential. Note, however, this collaboration is
not of the type to “fit the data” by some theoretical expression, but rather,
at much more fundamental and conceptual level (e.g., to understand what
type of developmental process is irreversible, and what kind of operation is
required to reverse it).



3

Basic Concepts in Dynamical Systems
and Statistical Physics for Biological System

3.1 Basic Picture in Dynamical Systems

This section is intended for biologists, who are not familiar with dynamical
systems. Those who know dynamical systems theory and phenomena can skip
this section, although explanation in connection with cell biology and recent
experimental tool may be useful also to those. Note that this section is written
rather loosely or intuitively (picturesque) without any mathematical rigor.
Please refer to standard textbooks on dynamical systems or chaos.1

State Space: Dynamical system consists of time, a set of state variables,
an evolution rule, an initial condition of the states, and a boundary condition.
The state is represented by a set of k variables. This k is the number of
“degrees of freedom.” Thus the state at an instant is represented by a point
in the k-dimensional space, called the state space (or phase space).

For example, consider a list of health check, represented by body tempera-
ture, pulse, pressure. Even if this set of numbers may be insufficient to define
the condition for the health, it could be possible to characterize it by several
variables, as long as one limits the characters in concern. Or characterize a
state of a cell by a set of chemical concentrations x1, x2, . . . xk in a cell. This
set can be the gene expressions that give the numbers of mRNAs. Of course,
it is a crucial question how many degrees of freedom k are sufficient to char-
acterize a cell state, but here we start by such approximate description that
can capture some basic characteristics of a cell.

An example of state representation of a cell can be abundances of metabo-
lites or proteins in a cell. Recently, there are techniques to measure the degree
of gene expression, that is, the abundances of mRNA corresponding from each
gene to a protein. With the use of microarray techniques, one can measure
1 There is a classic book by Rosen (1970), which is pioneering and important, but

unfortunately it is a bit out of date. For ‘picturesque introduction, see Abrahama
and Shaw (1988). For recent introductory textbooks, for example, Kaplan and
Glass (1995), Alligood, et al. (1997), Strogatz (2001).
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the abundances of a variety of mRNAs simultaneously. These roughly give
a measure of abundances of corresponding proteins. Hence, a representation
of {x1, x2, . . . xk} with a huge-dimensional k is available. Under the current
(2006) standard technique, one could measure only the abundances from many
cells, as the average abundances, but the data can provide a useful (statistical)
information on a cell state (Fig. 3.1)

Body temperature

Blood pressure

Pulse number 

X (1)

X(2)

X(3)

Concentration of chemical 1

Concentration of chemical

Concentration of chemical

2

3

State of a cell

X (1)

X(2)

X(3)

State of a Cell

Gene expression 3

Gene expression 

Gene expression 

Gene expression 

2

1

....

4

Gene expression k

x(4)

x(k)

Fig. 3.1. Schematic representation of the state space: radically simplified body
state; representation of cell’s state by chemical abundances or gene expressions (i.e.,
the degree of production of mRNA from some gene to corresponding protein)

A technique to measure distribution of cell’s state is provided by flow
cytometry (or cell sorter). In flow cytometry each cell is separately measured
with laser radiation. From the scattering of the data, information on a cell
size, density, shape, etc., is measured.2 With flow cytometry, one can represent
a cell as a point in the state space. An example of such distribution, plotted
by forward and side scattering intensity (which give a measure for the cell
2 An apparatus that can separate cells according to these data is a cell sorter.
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Fig. 3.2. Characterization of a cell’s state by using flow cytometry. The figure
is obtained from the forward scattering and side scattering from a bacterial cell
radiated by laser beam in a flow cytometry. The two axes correspond to cell size
and the magnitude of the fluorescence from the green-fluorescent protein

size and the density of cell’s ingredients) is shown in Fig. 3.2. By using a cell
sorter, one can take cells from some portion in this state space and cultivate
them. In this sense, choice of “initial conditions” is now possible.

The flow cytometry can also give information on each protein’s abundance
by combining the technique of fluorescent protein. Recently, several proteins
are designed to show the fluorescence with some color such as green, red,
blue, etc. Then by inducing a gene to express such fluorescent protein (at
the downstream of some gene), one can measure the degree of some gene
expression by fluorescence. Since the fluorescence is easily measured by flow
cytometry, one can obtain the distribution of abundances of such fluorescent
proteins that correspond to specific gene expression. Hence the distribution of
some gene expressions is available. With this technique, we have to assign the
position to which this fluorescent protein gene is inserted, and it is not possible
to measure many fluorescent proteins simultaneously. Hence the number of
variables we can measure is usually limited to 3 or 7 or so (e.g., green, red,
blue fluorescent proteins). Still, the direct measurement of distribution is a
very powerful tool for the field of “statistical cell biology.”

Of course, it is a critical issue how many degrees of freedom are necessary,
and in principle, to give a detailed information on a cell, a huge number of de-
grees of freedom are necessary. How many degrees of freedom we need depends
on what aspect of a state we are concerned with. If we need very much details
of the state, the required number of degrees of freedom should be large, while
for some coarse-grained representation, the number could be smaller. This is a
rather difficult question in general, and for the moment we assume that there
is some such number, and the state of a cell is represented by a set of variables
x1, x2, . . . xk. Still, it should be noted that biologists can distinguish cell types
without knowing all gene expressions, and this classification is often valid.
Also they can often distinguish if a cell is active or inactive, by just looking
at it. As long as we do not assume “super” recognition ability of biologists,
these empirical facts suggest that we may not need a such huge dimensional
description of a cell state, and instead some coarse-grained description with
a smaller number of variables will be effective.
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3.1.1 Representation of a Cell Ensemble by the Distribution
of Points in the State Space

By adopting this picture, the state of a cell is represented as a point in the k-
dimensional state space. Then the state of an ensemble of cells is represented
by the distribution of these cells.3 As mentioned, the state of each unit (cell)
can depend on the nature of its ensemble. Hence the state of each cell should be
considered together with its ensemble. Indeed as the number of cells increases,
the characteristics of each unit (cell) may change, as schematically shown in
Fig. 3.3.

X (1)

X(2)

X(3)

Fig. 3.3. As the cell number increases, cell’s state often differentiates. In this case,
the representation in the state space changes from the above to the below. See also
Chap. 7

The technique of flow cytometry (together with fluorescent proteins) is
ideal for such study. A state of a tissue can be characterized by the distribution
of points in the state space obtained by flow cytometry, then. We will discuss
several examples through this book.
3 The spatial configuration of cells is discarded for the moment. This problem will

be discussed later.
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X (1)

X(2)

X(3)

Fig. 3.4. In dynamical systems, the state change in time is represented by a flow
in the state space (schematic diagram)

Dynamical Systems

The temporal evolution of these variables is due to the reaction among these
chemicals, which change their concentration in time. Since we adopt a macro-
scopic picture, the change of chemical concentrations is given by rate equations
for chemical reactions. Then the change of chemical concentrations is given
by a set of equations4

dxi/dt = fi(x1, x2, . . . , xk) (i = 1, 2, . . . , k) (3.1)

As is seen in this example, the temporal change of state variables is given
by a set of equations. In this “deterministic” picture, the state variable at
later time is uniquely determined by the set of variables at a given time. The
temporal change of the state is characterized by a flow in the k-dimensional
phase space. When a point is given, the temporal evolution is shown by an
orbit in the k-dimensional phase space (Fig. 3.4).

4 The fluctuation is later included as a “noise term” in dynamical systems. Sta-
bility against such fluctuation is discussed later in Sect. 3.2. Another related
problem against the present dynamical systems picture is the use of continuous
variable representing, for example, the concentration rather than the number. If
the number is large, this is fine, but sometimes the number of some molecules in
a cell may be too low to be represented as a continuous quantity. The most typi-
cal case for this problem arises when the behavior of a system crucially depends
on the existence (0 or 1) of some specific molecule. This problem is discussed in
Chap. 4 as the origin of information.
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Dissipative System

When the state in concern is represented by a macroscopic variable (i.e., not
at the level of atom or a molecule), the system is usually dissipative. In a
dissipative system, information on initial conditions is lost through temporal
evolution. For example, consider a frictional motion of a ball in a valley. Ir-
respective of initial conditions, it will stop at the bottom. This example may
be too simple. Instead, for example, consider a motion of frictional pendulum
with periodic forcing. Again, it will come to same pattern of periodic motion
independent of initial conditions. Information on the initial condition is lost.
This dissipation is represented as follows in the state space. Take a bunch
of initial conditions of points covering a volume in the k-dimensional space,
and see the temporal evolution of all orbits from the points. Then the volume
covered by the points shrinks in time. This is a nature of dissipative system, in
contrast with a Hamiltonian system (Newtonian dynamics without friction).

Note that this “dissipation” generally appears when we take a macroscopic
(coarse grained) picture. At a macroscopic description that is robust against
microscopic change, many microscopic states are projected on the same macro-
scopic state, and in this description, information on initial conditions is lost
with some rate, giving rise to dissipation. When the change of macroscopic
states is expressed by dynamical systems, it is generally dissipative. For ex-
ample, the macroscopic dynamics of concentrations of biochemicals given by
the rate equation of chemical reactions are generally dissipative.

Attractor

In this dissipative case, an orbit does not necessarily return to the neighbor-
hood of the starting point. With time, the orbit resides only within a restricted
region in the state space. The region within which the orbit recurrently returns
to its neighborhood is called an attractor. Roughly speaking, the attractor is
the region to which the orbit is attracted as time passes. The regime before
the orbit approaches an attractor is called transient (Fig. 3.5).

The abundance of gene expression or chemicals, of course, is not completely
governed by the rate equation (3.1), which is deterministic. As the number
of molecules is finite, there are generally fluctuations, as has been discussed
in Sect. 1.9. (The concentration of some molecules is given by the number of
molecules N = nV divided by the volume V , while there can be generally
fluctuations of the order of

√
N . Then, in the representation of concentration,

fluctuations of the order of 1/
√

N generally appear, which is not necessar-
ily very small.) When represented by “average equations” such as the rate
equations of chemicals, there can be some deviations from this deterministic
equation.

Even if a state is perturbed by such fluctuations, however, there can be a
tendency to recover the original state, when the attraction to the state works.
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X (1)

X(2)

X(3)

Fig. 3.5. Attraction to a fixed-point attractor

In this sense, the attractor can give an answer why a state is stable against
(molecular) fluctuations.5

Chaos; Strange Attractors

If a dissipative dynamical system has a potential and the orbit goes downhill
to the valley of the potential, then the orbit finally is attracted to one of
the minimal points of the potential, with dissipation. The attractor is a fixed
point.

Generally speaking, there is no such potential, in which case, the attractor
is not necessarily a fixed point. Sometimes, it is periodic cycle that leads
to regular oscillation in time. In some other cases, the orbit is on a torus
leading to a quasi-periodic oscillation, which consists of combination of perodic
motions with several (incommensurate) frequencies.

Furthermore, there is a case called strange attractor. In this case, the
attractor is not such a simple geometrical object in general, and the orbit is
neither periodic nor represented by a combination of some cycles as in the
quasi-periodic case.6 The dynamic behavior for this type of orbits is called
chaotic. When we try to represent the dynamics by Fourier modes, as a typical
analysis for the time series, continuum spectra are required, in contrast with
the discrete spectrum for a (quasi)periodic case.

5 In some exceptional cases, there is an attractor that is not asymptotically stable
in this sense (Milnor 1985, Kaneko 1997a, 1998a), though.

6 Remark that there is a rather exceptional case, called strange nonchaotic attrac-
tor, where the torus is not smooth. In this case the attractor is geometrically
fractal, but the motion is quasi periodic.
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Orbital Instability in Chaos

A chaotic attractor is characterized by orbital instability. A small difference
in the initial condition of an orbit (on the attractor) is amplified. The ampli-
fication for tiny difference is exponential in time. Of course, the exponential
deviation does not last forever. As the difference between the two orbits is
larger, the difference will saturate. Indeed, the Lyapunov exponent, charac-
terizing the exponential instability, is defined by taking the limit of the initial
deviation to zero and of the time to infinity. Roughly speaking, the distance
between two orbits with slight initial difference increases as exp(λt), and this
λ gives the Lyapunov exponent.

Compatibility between instability and stability is often an important as-
pect of a biological system. To have diversity in a biological system, there
should be some instability so that the original state of a unit is not main-
tained. On the other hand, a biological system is stable at least at a macro-
scopic level. Cells can differentiate but, the ensemble of cells formed through
developmental process is rather robust against perturbations. To discuss such
compatibility between ensemble stability and individual instability, chaos, or
in general an attractor with orbital instability may give an insight for it, since
each orbit in chaos is unstable in the above sense, but the orbits stay within an
attractor, being robust against perturbations. This feature will be discussed
later in the study of stability in the developmental process.

Diversity of Orbits in Chaos

In contrast with the periodic or quasi-periodic orbit, chaotic orbit has di-
versity. For example, consider the famous chaotic orbit by Lorenz, as given
in Fig. 3.6.7 It rotates around the left “eye” for some times, and then right
“eye” for some time. Now, to represent symbolically the dynamics, one can
write down the symbol sequence like LLLRRRRLR.... If the orbit is peri-
odic, after some time span, no new type of symbol sequence appears, (e.g.,
as in LRLRLR...), while in the chaos, possible diversity of symbol sequence
increases as the number of symbol sequence increases. This diversity in chaos
is also understood as a variety of unstable periodic orbits. Even in a system
with chaotic dynamics, there is an infinite number of periodic orbits immersed
within. These periodic orbits are all unstable, in the sense that any small per-
turbation to such periodic orbit kicks the orbit out of it. The chaotic orbit is
also understood as a wandering over all such unstable periodic orbits. Hence
the chaotic orbit has diversity (Fig. 3.7).8

Diversification is an important nature in a biological system. Chaos, or
dynamics with orbital instability in general, gives one hint how such diversi-
fication occurs.
7 Lorenz equation is written as dx/dt = −s(x − y); dy/dt = rx − y − xz; dz/dt =

xy − bz, where s, r, b are positive parameters.
8 The diversity of orbits is often measured as a Kolmogoirov–Sinai entropy.



3.1 Basic Picture in Dynamical Systems 55
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Fig. 3.6. Lorenz attractor: An example of an attractor with chaotic dynamics dis-
covered in a 3-variable ordinary differential equation, as first discovered by Lorenz
(1963)
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Fig. 3.7. The time series of y(t) of the Lorenz equation, displayed with that when
an initial condition is slightly perturbed. Against the time series represented by the
thick line, the dotted line gives the time series started by perturbing y with 0.000001
at time t = 0

Stochastic Aspects

Although the future of an orbit is unpredictable as long as our precision is
finite, the process may be described by introducing probability. Indeed, the
long-time average of state variables is given by introducing some probability
measure if the ergodicity is satisfied.

In a biological system, we often encounter with a situation intermediary be-
tween programmed behavior or probabilistic behavior, as in the differentiation
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from stem cell, some type of motion, or process of aging, etc. Chaos may pro-
vide a new look to this dualism.

Statistical Description of Chaos

The orbital instability, of course, does not mean the instability of an attractor
itself. Although the perturbed orbit departs from the original orbit, this orbit
again stays within an attractor. Although an orbit is unstable, the statistical
behavior is (in many cases) stable, in the sense that the average value of state,
for example, is independent of initial conditions. At the level of long-term
statistics, chaos (i.e., dynamics with orbital instability) is stable. A residence
probability that an orbit is found in a given region in the phase space exists,
and can be computed. Then the long-term average of states is replaced by
the average of a given probability distribution assigned for the points in the
phase space. This is an example of “ergodicity.”

Basin of Attraction

In some dynamical systems, there are several attractors. Depending on the
initial condition, orbits are attracted into one of them. The set of initial con-
ditions that are attracted to a given attractor is called a basin of attraction.
Some attractors have a large volume of basin volume, while some others are
not. The basin is not necessarily a simple geometrical object again, and some-
times it has a complicated structure. In this case, by small difference in initial
conditions, the attractor reached through the evolution can be different ( see
Figs. 3.8 and 3.9).

Basin for
attractor 1

Basin for attractor 2

Attractor 1

Attractor 2

Fig. 3.8. An orbit in which the state is attracted toward the valley in the land-
scape. If there are multiple valleys, there are several attractors depending on initial
conditions that give a basin for each attractor
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3.2 The Role of Fluctuations

As briefly mentioned in Chap. 1, in the study of living systems, the occur-
rence of fluctuations cannot be avoided, because no matter what quantities
we choose to express the states of a cells, under no circumstances will they
exhibit perfectly constant values. Even if we consider cells of the same type,
the values of the quantities characterizing them will vary from cell to cell,
and for a single cell, these values will fluctuate in time. Now, suppose that
we are considering the reactions taking place in a given cell. Then, even if
it is possible to describe the changes undergone by the concentrations of the
chemical constituents in these reactions by some rate equations, the number
of molecules of each species contained in a cell is, at most, on the order of
several thousand, and because cells exist in states that are by no means “low
temperature,” thermal fluctuations are necessarily significant. Furthermore,
this description of the state of the cell does not include the positions and
numbers of all molecules, and therefore there is necessarily a part missing
from the description. Obviously, this missing part too will change in time,
and thus with respect to this description of the cell’s “state,” this missing
part is considered as noise, which leads to fluctuations.

3.2.1 Fluctuations and Stability

In the theory of equilibrium thermodynamics, fluctuations are represented
as fundamental quantities, and within that framework, fluctuations and the
stability of the system are intimately related. This can be understood by
considering the potential depicted in Fig. 3.10 and the dynamics of a particle
moving about the minimum of the potential. In particular, we are interested
here in how these dynamics are affected by the gentle shaking of the system.
Clearly, in the case that the slope around the minimum is steep, the state
corresponding to this minimum is stable and the fluctuations about it are
small, but when this slope is gentle, the state is relatively unstable and the
fluctuations are large.

This kind of negative correlation between the degree of stability and the
size of fluctuations is conjectured to hold in general. To understand this, let
us consider the dynamics of a system as it evolves toward a stable state and
the effect of fluctuations on these dynamics in the neighborhood of this state.
If the deviation from the minimum of the potential is not large, the combined
effects of the force acting to return the system to the minimum and the noise
result in motion that can be described as follows (Fig. 3.10):

dx/dt = −γx + η(t) (3.2)

Here, η(t) represents the “noise” produced by fluctuations. In other words,
this term introduces a random influence on the state x. Recalling Brownian
motion, let us closely study the situation in which the state of the system is
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X (1)

X(2)

X(3)x(k) .....

Fig. 3.9. A schematic representation of several attractors. Depending on initial
conditions, orbits are attracted into one of them

Fig. 3.10. Schematic of a potential and fluctuations. When the slope about the
potential minimum is large, the fluctuations are small, and when the slope is small,
the fluctuations are large

caused to fluctuate randomly. We consider behavior in which there is a ran-
dom effect that changes instant by instant and acts to increase or decrease
the magnitude of x. If we add the contributions from this effect over a short
time interval of length ∆t, the result can be thought of as a sum of many
random quantities. Therefore, the probability distribution corresponding to
this sum can be assumed to take a Gaussian form. Also, we can assume that
there is no correlation between such sums in different ∆t time intervals. Then,
taking the limit that ∆t becomes infinitesimal, we obtain a stochastic differ-
ential equation like that above.9 For our present purposes, however, it is only
necessary to understand that η(t) is a noise whose instantaneous values form
a distribution of finite width. Here, γ represents the strength with which the
9 The type of random equations (stochastic differential equations) considered here,

as well as the derivation of distributions from them, are treated rigorously in
many mathematics and physics textbooks, and the reader should refer to these
for a more complete exposition. (Readers familiar with the technical aspects of
stochastic differential equations may wish to skip the treatment given below.)
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system attempts to return to the stable state, x = 0. (Considering Fig. 3.10,
the above equation corresponds to the case in which the minimum is located
at x = 0, and the slope of the potential in the neighborhood of this point is
given by γx.) Finally, we assume that the width (variance) of the distribution
corresponding to η(t) is given by ε.

Because the above equation describing the evolution of the state contains
a probabilistic component, it is useful to consider the distribution of values
of x. Referring to the distribution of such values obtained when we consider
an ensemble of samples as P (x), from the above, we obtain the following
stationary form:

P (x) =
√

γ

2πε
exp

(
−γx2

2ε

)
(3.3)

(We do not give the derivation of this distribution, nor do we give a detailed
discussion of its properties. We simply point out its basic features: It is peaked
at x = 0, as γ becomes large the distribution becomes sharp, and as η(t) be-
comes large the distribution becomes flat.) With the notation 〈. . .〉 expressing
an average taken with respect to this distribution, its variance, defined as
〈(x − 〈x〉)2〉, is given by

〈(δx)2〉 = 〈(x − 〈x〉)2〉 = 〈x2〉 ∝ ε/γ (3.4)

(Here we are considering the case in which the average, 〈x〉, is 0, and thus
we see that the variance is given by 〈x2〉. However, here we have expressed
it in the general form, 〈(δx)2〉.) Thus, as seen in Fig. 3.10, as the value of
γ increases (i.e., as the slope of the valley becomes steep), the fluctuations
become smaller, and the state x becomes more and more sharply determined.
In this simple case, the relation between fluctuations and the stability of the
x = 0 state can be represented by the ratio of the stability index, γ, to the
variance.

Now, having considered a very simple case, let us turn to the question of
how stability and fluctuations are related in the case of many interacting cells
that each possesses more complicated internal states. This question is one of
the main topics of this book.

3.2.2 The Relation Between Response and Fluctuations –
the Fluctuation-Response Relation

Let us consider the relation between the change undergone by the state of a
system when its boundary conditions are slightly altered and the fluctuations
existing in the original system. It is reasonable to expect that, in general,
when the conditions to which a system is subject are changed, the amount of
the state change depends on the stability it originally possessed: For a very
stable state with small fluctuations, the change should be small, while for a
less stable state with large fluctuations, the change should be large.
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As an example, let us consider a system described by (3.2) and the value
of x is altered slightly because of a change made to some externally applied
condition. (Note that we need not assume that the change in x is due to
the application to the system of a “force” in the literal sense. Here, we are
thinking in quite general terms, and this perturbation of x could correspond,
for example, to a change in the concentration of a chemical constituent or to
the shift in a phenotype resulting from the addition of some selective pressure
in a particular direction. In any case, whatever the nature of the system
we consider, the effect of the perturbation is to shift the stable state.) We
represent this perturbed system as follows:

dx/dt = −γx + F + η(t) (3.5)

(Here, if there is noise, we can include the term η(t), but below we focus on
average values, and therefore it need not be included.) With the perturbation
represented by this force F , the stable state (its average if there is noise),
corresponding to dx/dt = 0, is given by x = F/γ. In other words, the stable
state has been shifted by the amount

∆x = F/γ

Then, comparing this with (3.3), we find

∆x/F = 〈(δx)2〉/ε (3.6)

Thus, we have found that the amount by which the state of the system is
changed because of the application of an external force is equal to the magni-
tude of this force multiplied by the ratio of the size of the fluctuations to the
strength of the noise in the original system. For the time being, referring to
the shift of the state per unit size of the applied force as the “response coeffi-
cient,” we find that the response coefficient under application of some
operation to the system is proportional to the size of the fluctua-
tions of the system without application of the operation. This type
of relations was first discussed by Einstein (1905) for the theory of Browinan
motion, and in general corresponds to the Fluctuation Dissipation Theorem
(Kubo et al., 1972) in thermodynamics and statistical mechanics. In that case,
the formulation is such that the system is in the thermal equilibrium state
before the application of the operation, ε represents the temperature, and the
amount of work done by F in changing x by the value ∆x is F∆x.10 However,
in the present case, it is not important if the state of the original system can be
considered “equilibrium” or if F∆x can be considered “work.” Rather, here,
the necessary conditions are that the original state is in some general sense
stable and that the deviations from this state are small (which implies that
the distribution of the fluctuations is approximately Gaussian). In the case
10 The explanation given here is greatly simplified. Rigorous treatments are given

in nonequilibrium statistical mechanics textbooks (see, e.g., Kubo et al., 1972).
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that deviations from x = 0 are small, all of the above equations are linear; that
is, for example, in the equation for dx/dt, there are no terms beyond linear
order in x (i.e., no terms ∼ x2 or ∼ x3...). On the other hand, if the system is
not linear, then, in general, the proportionality relation stated above will not
hold, and the fluctuations will not follow a Gaussian distribution. However,
even in that case, there will be a strong positive correlation between the size
of the fluctuations and the response. Thus, if the system can be characterized
by a “state”, and if this state is stable, then we can expect quite generally
that the following two conditions hold.

Proposition (The fluctuation–response relation in a stable system).

0. Fluctuations and the response coefficient are strongly correlated
1. If the externally applied operation is weak, considering the regime in
which its “force” can be treated linearly, the size of fluctuations and the
response coefficient are proportional.

For example, the above should hold in the case that the system we are con-
sidering is a cell, and the relation in question is between the fluctuations of its
state and the response to an operation whose effect is to shift this state. Or,
when one considers the phenotype of some organism, the above relation con-
cerns that between its fluctuations and the response to some selective pressure
which alters the genes in a particular manner, resulting in a shift of phenotype
(Sato et al., 2003). (Of course, there are possible complicating factors here,
for example, whether a description in terms of states is possible, whether the
combined influence of all effects that are not included in the variables chosen
to represent the state can be treated as noise, etc. A complete treatment must
address such problems.) In any case, we believe that an important area of re-
search in life science will be to investigate the validity of the weak relation
0 and the strong relation 1 in many living systems. The connection between
these relations and the evolution is given in Chap. 10, while the relevance to
development is discussed in Chap. 12.

In the field of cell biology, until recently, it had not been a mainstream
approach to quantitatively measure fluctuations and derive results from these.
However, recently, with the development of flow cytometry and other meth-
ods, it has become possible to measure the instantaneous distribution of cell
states. It has also become much easier to alter cell states through the applica-
tion of operations that change environmental conditions. Given these develop-
ments, we believe that measuring fluctuations and seeking fluctuation–
response relations will become an influential experimental methodology in
the future development of biology.

Of course, if we consider the response to changes in external conditions
over long time scales, we encounter the problem of evolution. The extent to
which the states of individuals fluctuate and the nature of the corresponding
distributions will obviously have an effect on the changeability of descendants
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in adaptation to the environment. For this reason, the evolution speed, that
is, the rate of a change of a state by genetic change per generations may
be correlated with the extent to which their phenotypes fluctuate, as will be
treated in Chap. 12.

3.2.3 Fluctuations Are Not due Entirely to Noise
from the Environment But Result also from Internal Dynamics
and Depend on the Internal State

In the above we considered a system fluctuating about a stable state. Now
there are situations where the state of the system becomes unstable and, as a
result, the system makes a transition to another state. Here, when the origi-
nal state becomes unstable, the fluctuations in the direction of the instability
grow. The strength of this instability and the degree of amplification of the
fluctuations are proportional. It should be possible to express the direction-
ality of this transition, discussed briefly in Sect. 3.5, in terms of those state
variables whose fluctuations are amplified.

In general, consider a system that includes a positive feedback mecha-
nism through which (as discussed in Sect. 3.4) a small discrepancy can grow
and become significant. In the case that such a mechanism does exist, small
fluctuations on the molecular level become amplified and, as a result, can ex-
ercise an influence on the macroscopic behavior. Furthermore, as in the case
of chaos discussed in Sect. 3.3, the evolution of the cell’s internal state can
itself introduce irregular behavior that appears as spontaneous fluctuation. In
this case, when some noise or a fluctuation in particle number is introduced
from outside the cell, large fluctuations in the state of the cell can result. In
general (even if there is no chaotic behavior), the degree of amplification of
such influences depends on the state of the system, and thus the size of the
fluctuations existing in a cell depends on its state.

Now, in the situation that the internal state selectively amplifies only
certain types of fluctuations, the fluctuations appearing outside the cell too
can be regarded to some degree as a product of the change of the internal
state of the cell. Then, it can be the case that if the cell is in one state,
fluctuations are amplified, but when the cell makes a transition to another
state, fluctuations come to be suppressed. In such a situation, it is possible that
within the fluctuations there exists some motion with a specific directionality,
and they can therefore have some active influence on the system. This kind
of selection of fluctuations can be found in the chaotic itinerancy as will be
discussed in Sect. 3.6.

Of course, if the state of a system is not stabilized by some negative feed-
back, fluctuations of this type can introduce great change, as through their
amplification, the state becomes unstable. As a result of such destabilization,
in general, the state of the system will change. With regard to such state
transitions, as in cell differentiation or speciation, it is then important to in-
vestigate how in the presence of positive feedback stable behavior can emerge.
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3.3 Plasticity

Now we consider the change undergone by a system, originally in an equi-
librium state, when subject to an externally applied operation. In this case,
according to the Le Chatelier principle of thermodynamics, the system will
exhibit a response in the direction in which the operation is negated. For ex-
ample, if heat is added to one region and the temperature there increases, the
response will be that heat flows from this region. Thus the manner in which
the system responds cancels the increase in temperature resulting from the
operation of heating. With a little thought, we realize that the reason that the
response occurs in this direction is that both the specific heat and the tem-
perature are positive quantities. At a more fundamental level, as discussed
below, we can say that this behavior is due to the stability of an equilibrium
state: As it is stable, when a system is perturbed from such a state, it will
relax back toward this state.

The Le Chatelier principle is implied by the stability of the equilibrium
state. To understand this, let us suppose, contrarily, that the response dis-
played by a system to an operation applied to it in a particular direction
actually acts to strengthen the effect of this operation. First, note that there
will be cases in which, even when no operation is applied, the fluctuations in
the system cause it to move in the same direction as would the operation.
For example, consider the case in which, because of fluctuations, the tem-
perature in a particular region increases slightly. Here, we are assuming that
the opposite of the Le Chatelier principle holds, and therefore, the change
introduced by this fluctuation causes a response in the same direction. For
example, heat would flow into this region of elevated temperature from the
surrounding regions or an exothermic reaction would be promoted there. As
a result, the temperature would increase more and more, becoming farther
and farther removed from that of the original state. Thus, through this phe-
nomenon, the originally stable equilibrium state would cease to exist. From
these considerations, we see that if we deny the Le Chatelier principle, we
are forced to conclude that the fluctuations in the system cause it to spon-
taneously move away from its original state. Hence, the original state cannot
be stable. In other words, if we assume that the Le Chatelier principle does
not hold, the basic premise of thermodynamics that a system isolated from
external disturbances will evolve toward equilibrium itself cannot hold.

Reconsidering the above discussion, it is reasonable that the manner of
thinking of the Le Chatelier principle (or Le Chatelier-Braun principle in a
generalized form) would apply in a very broad context to systems existing in
stable states, not just to those corresponding to thermal equilibrium. With
this observation, we conjecture that, quite generally, the stability of a system
introduces a limitation on the direction in which this system can evolve after
some operation is applied to it. As an example of this idea, let us consider
the case of a stem cell system that possesses the potential to differentiate
into different types of cells. In general, as a result of differentiation from stem
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cells, some structure consisting of a distribution of cell types will form. For
example, the hematogenetic stem cells are able to create a variety of cells in the
blood, including red blood cells, white blood cells, and platelets. Now, within
a given structure or tissue, there will be some appropriate distribution of these
different types of cells. Then, if the proportions of certain types of cells within
this structure come to deviate from their normal values, the structure will
probably no longer function properly. Then, if the population of one species
of cell decreases, we can expect that the stem cells will increase the rate of
differentiation to this species, to return the system to its proper state. In Chap.
8, we present a theoretical model that displays just this type of behavior: In a
system possessing stem cells, when cells of one type are removed, the stem cells
adjust their rates of differentiation to make up for this loss. In other words,
the conclusion derived from this model is that the response of the system is
such that it cancels the effect of the externally applied perturbation. We can
interpret this behavior as resulting from the stability of a system that has
formed through the developmental process.

Basin Boundary
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Perturbation
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Fig. 3.11. The distance from an attractor to the boundary of its basin of attraction.
(a) Here this distance is small, and thus a small disturbance is sufficient to cause
the system to be drawn into another attractor. (b) Here the distance is large, and
therefore unless a large perturbation is applied to the system, it will not escape from
the original attractor
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The stability of a state can be judged by testing whether the system returns
to this state after being pushed slightly away. The amount by which it can be
displaced and still returns is a measure of the degree of stability of the state.
As a simple situation, let us consider the case in which the original state of
the system corresponds to an attractor of the system dynamics. Then, the
problem of whether or not the system will return to its original state upon
perturbation reduces to that of whether or not it has been pushed over the
boundary of this attractor’s basin of attraction. If the system is pushed beyond
this boundary, it will make a transition to another attractor. Thus in this case,
the “distance” from the original attractor and the boundary of its basin of
attraction is a measure of the stability of this state (see Fig. 3.11).

Now, if we apply a sufficiently large perturbation to a system, it will make
a transition to a new state. It would seem that in such a situation, in general,
the manner in which the system makes a transition is not random. Rather,
there should correspond some structure to these transitions. Using large per-
turbations, it should be possible to obtain information not only about the
stability of a given state but also about the relations between different states.
In this way, we should be able to elucidate the paths taken in the processes
of transition between states. Thus, studying the properties of (3.1)–(3.3) us-
ing both small and large perturbations should be useful in our pursuit of an
understanding of biological systems.

In a typical developmental process, initially the system possesses the ca-
pacity to make any type of cell (the quality of totipotency). Then, through the
differentiation process, this potentiality becomes limited, and eventually the
system reaches the situation in which each cell is capable of creating only its
own kind. That is to say, the normal process of development displays an irre-
versibility, because the potential for differentiation decreases as this process
advances. However, this type of irreversible differentiation of cells has been
reversed in certain cloning experiments from somatic cells. In fact, it has been
found that the entire development process can be recreated beginning from
committed somatic cells. This is realized by isolating cells, subjecting them
to a state of starvation, and then using their nuclei. Thus the situation here
is quite different from the natural process of development. Now, is it possible
with this operation to reverse the process of differentiation and completely
return to the original state? Or, when we carry out such an operation, is
there a restriction introduced because of some kind of compensatory effect?
In a broader context, if we appropriately combine a number of operations, is
it possible to return to any kind of state?

Of course, at the present time, it is not possible to take an organism in
a dead state and return it to a living state. (Or, perhaps we should define
dead as the state from which an organism cannot be returned to a functioning
state with any presently available operation [point of no return].) Thus, we
see that there are states from which it is impossible to return to the original
state, and this would appear to put a limitation on possible operations as
well. From another point of view, clearly stipulating all possible processes
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step by step, we may be able to define the corresponding possible operations.
Such a specification of impossibility should be the ultimate goal of research
employing operational experiments.

As a first step, we must obtain a representation of the irreversibility of
differentiation and then investigate the question of what kind of operation is
necessary to reverse this. In the next section, we consider the representation
of irreversibility as a loss of plasticity. There, we discuss experiments in which
plasticity is restored to committed cells through the application of operations
that make survival difficult, such as subjecting them to starvation. These
experiments are related to the clone experiments mentioned above, and here
too, it is worth contemplating the conditions on the operations applied to
return the cells to the totipotency state.

3.4 Representation of “Softness”

In Sect. 1.9, we briefly discussed the “softness” of living organisms. Now we
address the question of how this quality should be expressed. Intuitively, the
idea that living systems are “flexible” and “plastic” is easily understood, but
we wish to define this idea clearly and determine how to treat it in scientific
terms. At the present time, it is not clear how this can be done, and, indeed,
it may be said that the lack of a scientific understanding of “softness” is
the reason that the study of life has largely been pursued by employing the
analogy of a logical system or computer.11 As a first step, we ask, What is
the meaning of “softness” in everyday language? To most people, perhaps
this term brings to mind something that is easily changed. Furthermore, this
changeability may be something that at times reveals itself spontaneously and
at times is revealed by some externally applied operation. Here, we refer to
this quality as “flexibility.”

The quality of flexibility in which we are interested could also be termed
“plasticity.” However, perhaps it is best to use the term “plasticity” with re-
gard to the changeability of the internal state of a system and “flexibility” with
regard to the variety of possible responses of a system to externally applied
operations. But it should be pointed out here that, as stated in Sect. 3.2.2,
for a system existing in a particular state, the size of the fluctuations that it
exhibits and the magnitude of its response coefficient have a strong positive
11 As pointed out in a previous footnote, Fumio Oosawa began a research program

aiming at expressing the concept of the softness of living organisms as molecular
machines (Oosawa & Hayashi, 1986; Oosawa, 1998), with the concept of “loose
coupling.” The softness on which we focus in this book exists on levels that are
more macroscopic than that of molecules. However, the methodology that we
employ to investigate this softness should be effective at the level of molecules as
well. This is because the number of internal states of a polymer molecule can be
so large that a single such molecule itself may well be regarded as a system.
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correlation, and thus these qualities of flexibility and plasticity are closely
related.

Now, the properties of flexibility and plasticity as described above exist
on many different scales. For example, considering the scale at which cell
differentiation takes place, cells that can differentiate into many types (e.g.,
embryonic stem cells) possess large flexibility, while committed cells, which
can produce only their own type, have small flexibility. Thus, here, there is
a natural progression from more flexible to less flexible states. However, it is
also interesting to note that in some cases such flexibility can be regained.
For example, when some tissue is injured because of some external influence,
it is possible for committed cells to dedifferentiate and then differentiate into
different types of cells. In this way, the damaged tissue can be repaired.

Now, let us consider an example illustrating flexibility on a slightly larger
scale. In the development process, it sometimes happens that the properties of
one group of cells will be changed through the influence of another group. This
phenomenon is referred to as “induction.” Through this phenomenon, there
is a successive formation of systems within an organism. Of course, induction
takes place when two groups of cells encounter one another, and therefore it
is just one side of the interaction between the two groups. However, in such a
situation, of the two interacting groups, the state of one is more easily changed
than that of the other. In other words, one of the groups is more flexible with
respect to differentiation. This is the group that becomes induced.

How should we understand these qualities of flexibility and plasticity?

• Fluctuations: In Sect. 3.2.2, we described why for a state with large fluc-
tuations the response coefficient with respect to an externally applied op-
eration is also large. In other words, a system in such a state is highly
susceptible to change through alteration of the environmental conditions.
Such a state is characterized by a large flexibility. Thus the size of the fluc-
tuations exhibited by a system (in the absence of an external influence)
can be regarded as indicating both the degree of plasticity and the degree
of flexibility.

• The distance between an attractor and the boundary of its basin of at-
traction: The property of flexibility should regard not only “quantitative”
fluctuations, as described above, but also responses in which the qualita-
tive nature of the system changes. In fact there are many situations in
which such “qualitative flexibility” is quite important. For example, sys-
tems sometimes suddenly jump from one state to another, and as a result,
the qualitative nature of the system behavior changes. As one such type of
transition, a very typical situation is that in which a system consists of a
number of attractors and because of some operation applied to the system
it is caused to jump from one to another.

As a measure of the susceptibility of a system to transition, the distance
from the attractor to the boundary of its basin of attraction is a natural
choice (Kaneko, 1997a, 1998a). The basin of attraction of an attractor
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Fig. 3.12. A soft state and a hard state. For the soft state on the upper right, the
fluctuations are large, and the state is readily changeable over a wide region up to
the boundary of its basin of attraction

consists of the set of all initial points whose trajectories are attracted to
it. Thus if a system that is initially in the state corresponding to some
attractor is perturbed, it will return to this attractor as long as the per-
turbation does not carry it out of its basin. However, if the perturbation
causes the system to leave this basin, it will be pulled into the state cor-
responding to another attractor. It is thus easy to understand that in the
case that the distance from an attractor to the boundary of its basin of
attraction is small, a weak perturbation can cause the system to make
a transition to a different attractor, while if this distance is large, even a
strong perturbation may not cause such a transition (see Fig. 3.12). Hence,
the distance from an attractor to the boundary of its basin represents a
measure of flexibility.

• Variety of responses and directionality: A characteristic aspect of living
systems is that they can exhibit a wide variety of responses when the
external conditions to which they are subjected are changed only slightly.
In other words, living systems display flexibility in their responses. In
some sense, this flexibility leads to one-to-many correspondence between
input and output, as, for example, only any slight changes in the operation
applied to a cell could make it move to the left or to the right or remain
still. One possible explanation for this behavior is that the transition paths
connecting the various states of the system form a highly tangled structure,
and thus perturbations that differ only very slightly can cause the system
to take different paths and result in transitions to completely different
states. (Here dimensionality of such paths can be one measure). In any
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case, it is meaningful to investigate both experimentally and theoretically
how different operations can result in the selection of different transitions.

From the present point of view, we would have to regard logical systems
like those represented by computers as having the lowest degree of flexibil-
ity. We refer to such systems as “rigid.” Considering processes within a cell,
for example, we can say that a system whose response consists of the on–
off expression of genes is more rigid than that whose response is the more
continuous change in the quantity of protein molecules present.

The flexibility and plasticity of a state are most naturally expressed in
terms of the dynamic nature of that state. Actually, one of the most important
goals of observing states and making measurements of their time-dependent
behavior as well as their response to external operations is to obtain a way of
representing this flexibility and plasticity.

To summarize the above discussion, in the study of the concept of “soft-
ness,” the relations among the following phenomena must be investigated:

• Flexibility: The potentiality to change due to external influence
• Plasticity: The potentiality to change of a cell’s internal state
• Fluctuations in the internal state
• Dynamics of the internal state
• Change in flexibility or plasticity of a group of cells due to interaction

We must also study the nature of the change undergone by the state of a
cell when it is subjected to an external operation, including the extent of
this change and whether it appears in some sense deterministic or with a
degree of unpredictability. Then, we must elucidate how the nature of the
changes undergone by the state of a cell is related to the state of the larger
system to which it belongs. Investigating such behavior of the cell in relation
to interactions among cells and the state of the larger system, we hope to
discover rules governing the manner in which flexibility and plasticity are
determined and can change. We consider these problems in the next section.

Next, let us consider the situation in which there exists a readily change-
able state A and an unchangeable state B and a system makes a transition
from A to B. If we suppose that this system exists in isolation, then, beginning
in state A, the possible transitions are A → A and A → B, and beginning in
B, the only possible transition is B → B. Thus, because a system can jump
from A to B but not from B to A, it is natural that eventually all systems
will be in state B. We can think of the same type of conditions existing more
generally, and it is not difficult to imagine that in such a situation, as long as
the external influence does not change, the number of elements that exist in
the unchangeable state (or states) will gradually increase. Thus, we see how
flexibility can be lost over time (see Fig. 3.13).
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Fig. 3.13. In general, transitions in which the degree of plasticity decreases are
more likely

In the actual process of development, the normal, irreversible progression
is from embryonic stem cells to stem cells to committed cells. In this process,
stem cells exhibit various types of behavior, sometimes producing other stem
cells and sometimes differentiating into committed cells. By contrast, commit-
ted cells can produce only their own type. Thus, in the process of development
there is a gradual loss of plasticity.

The type of decrease in plasticity seen in the process of development will
be further clarified below by the use of theoretical models. We will see in a
variety of models how, as the number of cells increases, and as a result, as
the role of interactions becomes more important, cells begin to differentiate,
creating committed cells. There, using the measure of flexibility defined in the
previous section, we will show directly how its magnitude decreases in stages.
These results support the following hypothesis.

Hypothesis: Consider a set of elements (cells) that is evolving in time. Then,
suppose that the environment in which this set exists is (almost) time inde-
pendent. Furthermore, assume that with regard to the behavior of this set of
elements, interactions with other external systems are insignificant. In other
words, we assume that this is an almost closed reproducing system. Then, the
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plasticity of this system gradually decreases in time, with that of each element
at each time either decreasing or remaining constant.

• Change in plasticity due to an external operation: Clearly, it is possible for
the plasticity of a system to change as a result of an external operation. In
such a situation, it is reasonable that the amount by which a state changes
is positively correlated with its plasticity. Then, the transition from one
rigid state to another can be facilitated by first causing the original state
to make a transition to a state with greater flexibility and then allowing it
to gradually change in the direction of increasing rigidity.

Let us apply this idea to the case of cells. In a natural state, the metabolic
dynamics, directly coupled with the external condition, is easier to be changed
through the interaction with the environment, while it is difficult to directly
change the gene expression. Therefore, to alter the genes, it is necessary to
first cause the metabolic state of the cell to change through some externally
applied conditions or interaction with surrounding cells. Once such a change
has been realized, it can become fixed through a corresponding change of the
gene expressions. Thus, here, the plasticity of the cell’s state is exploited to
change the rigidity in the change in the genetic expression.

The above considerations suggest the following as a possible scenario. Even
though it would appear as if the change in the state of a cell are controlled
by the genes, it may be the case that, first, the flexibility of the cell state is
utilized and, then, through the transition that this allows, the expression state
of the genes is changed. This change, in turn, influences the state of the cell,
and in this way, the states of the cell and the gene expression patterns come to
be fixed. Although it often appears that the cause of a transition undergone
by a cell lies in the genes, the information that we can obtain experimentally
is only that regarding correlations. Hence we cannot rule out the possibility
that change in the states of the genes and the cell are mutually strengthened
through their interaction, and the combined system settles into a stable state
made possible by this interaction. While an organism may appear in some
cases to change in accordance with some blueprint, any system that exhibits
fluctuations as strong as those seen in living systems could not behave like
a computer. Thus, we must keep in mind the possibility that even when the
state of the system seems to be changing in a “rigid” on–off manner, behind
this apparent rigidity is a flexible state and the transition it makes. This new
state is then caused to be consolidated through the influence of the genetic
system that is relatively more rigid, pushing it toward a new stable attractor.

3.5 Coupled Dynamical Systems for the Study
of Cell System

As a theoretical side, our plan is to understand a biological system in which
there is a dynamic circulation between the behavior of each element (unit)
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and the whole behavior. In physics, such relationship between element and
the whole is regarded as a relationship between microscopic level and macro-
scopic level. In thermodynamics, we focus our attention on the macroscopic
phenomena. By restricting our interest to equilibrium systems and the tran-
sition among equilibrium states, thermodynamics has succeeded in extracting
out universal behavior in macroscopic systems, independent of each micro-
scopic details. The laws and formulation of thermodynamics do not depend
on what molecules the system is composed of. Theoretically, the thermody-
namics is possible, since the phenomena at microscopic levels are separated
out from macroscopic levels, under some restrictions imposed on equilibrium
systems. Microscopic properties influence on the parameters in the system,
but not on the theory itself.

On the other hand, the aim of statistical mechanics is to bridge between
microscopic level and macroscopic level. From microscopic (molecular) char-
acteristics, thermodynamic parameters at a macroscopic level are obtained. In
setting a boundary condition of the theory, however macroscopic information
is necessary, but once it is given, there is a formulation to extract macroscopic
behavior from microscopic quantities. (Note that both thermodynamics and
statistical mechanics are formulated on equilibrium states and close to them,
while in thermodynamics, restriction on the transitions between equilibrium
states are also formulated as the second law).

If each element at a microscopic level has internal degrees of freedom, the
behavior at a macroscopic level may influence the characteristic feature of
a microscopic element itself. The dynamics of internal degrees of freedom of
the unit may be influenced by the interaction with the environment, which is
influenced by all the units. For example, consider a cell constituted by several
chemicals whose concentrations change through catalytic chemical reactions.
The behavior of each cell is given by the composition of the chemicals. Here
these cells can interact with each other by transport of chemicals through
cell membranes. Then the state of each cell can be influenced by environment,
which is influenced by the states of all cells. The internal state can be changed
by the cell–cell interaction. Through the interaction, the behavior of a unit
(cell) may be different. Hence there is mutual dependence of each element and
the average behavior of the total cell systems. This type of mutual dependence
between unit and the whole can generally appear if each unit has internal
dynamics and the interaction between these units are not negligible.

If each state is fixed in time, this mutual dependence may not be so serious.
Since the states of the total system (say the chemical concentration of the
environment) and of each unit are constant in time, we can solve the behavior
of each unit, under a fixed boundary condition (say the chemical concentration
of the environment) and then obtain the total behavior (including cell–cell
interactions). By checking the self-consistency of the states, we can solve the
behavior of each state.

In a biological system, however, the state often changes in time. In the case
of cell, the number of cells changes through cell division and cell death, and



3.5 Coupled Dynamical Systems for the Study of Cell System 73

the interaction with other cells cannot be fixed in time. Internally, chemical
concentrations or gene expressions change in time. Hence we need to seriously
consider dynamics of each unit. Furthermore, since each unit does not exist
in isolation, but many units interact with each other to form a total system.

Other examples are seen in an ecological system consisting of a population
of organisms, neural network system, or more microscopically, a population
of interacting polymers within a cell. In such biological system, constituting
units have their own internal dynamics, and they are interacting. Here, both
the internal dynamics and interaction are important. Often, neither of the
two is regarded as a weak perturbation to the other. Hence it is important to
study a coupled dynamical system, where the interference between internal
dynamics and interaction lead to phenomena that cannot be understood by
the dynamics of each element only. Hence a study of coupled dynamical system
is necessary.

Indeed, dynamical systems for interacting elements with internal dynamics
have been investigated extensively and intensively. There, it is clarified how
elements synchronize with each other, and how identical elements form a few
distinct groups with different behaviors. Long-term dynamical change in rela-
tionship between unit dynamics and ensemble behavior are also investigated.
Some concepts developed in the coupled dynamical systems will be relevant
as a basis for our study on complex systems biology.

Here, as an illustrating example, we consider a system of interacting units
which have internal nonlinear dynamics. As the simplest case, we consider
a system in which the units interact only thorough the “mean field,” that
is simply the average of state variables over all elements. (See Fig. 3.14 for
schematic representation).

Even in this simple setting, we have found that elements can come to
take different states, when there is some instability in the dynamics to make
the homogeneous state unstable. Then, the phenomenon called “clustering”

Fig. 3.14. Schematic representation of a globally coupled dynamical systems (in
particular globally coupled map)
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appears in general, where elements differentiate into several clusters. Elements
belonging to a same cluster take the same state, while elements from different
clusters take a different state, for example, different phase of oscillation. It is
remarkable that elements with identical dynamics rule start to show different
states.

Besides the interaction and internal dynamics, the unit in a biological sys-
tem often divides after growth or dies. Sometimes the attractor as dynamical
system is not necessarily a state with the highest growth speed for replica-
tion of the unit. Hence the logic for the fittest and the logic for dynamical
systems do not necessarily match. In some chapters, we will see some exam-
ples for such interplay between dynamics and growth. Also, in a dynamical
system with many variables, there often are many attracting states, depend-
ing on initial condition of the unit. Here, how appropriate initial condition is
selected will also be an important issue, since in a biological system, choice
of initial condition is not given externally, but has to be done autonomously.
This problem will be discussed in later chapters, while we also study how
a state with recursive growth is generated, together with the potentiality to
differentiate into alternate states.

In later chapters we often study a system consisting of (i) internal dynamics
of a unit (by reaction network), (ii) interaction between units, and (iii) the
growth of unit depending on its state. Note that the clustering mentioned
above implies that the cell with identical genes (i.e., rule for dynamics) can
be spontaneously differentiated, through cell–cell interaction. With the set–up
of this minimal condition, the logic for the irreversibility and robustness in
development will be discussed in Chaps. 7 and 8.

Also following this general process in coupled dynamical systems, one can
imagine that even bacteria may differentiate into distinct groups if put in a
state with strong interaction (see Fig. 3.15). Experiments on differentiation
or diversification of bacteria will be discussed in Chaps. 7, 8, and 11.

3.6 Chaotic Itinerancy

In biological systems, the change often occurs through successively visiting
some quasi-stationary states. Cell differentiation process occurs through suc-
cessively visiting several types that themselves are quasi stationary. A cellular
process with the change of gene expression often occurs through visiting sev-
eral discrete states. There, some rule for switching over several states which
are generated from dynamics involving gene expression and metabolic process
exists. To discuss such switching dynamics and rule generation, some concept
on dynamics with successive transitions will be necessary.

About a decade ago, chaotic itinerancy (CI) was proposed as a universal
dynamical concept in high-dimensional dynamical systems. In the study of
high-dimensional chaos, there is often a state that switches back and forth
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Fig. 3.15. A schematic representation of bacteria cell differentiation. As the pop-
ulation density of bacteria is higher, they start to take some distinct states. See
Chaps. 7 and 9 for details

between fully disordered state and several ordered states. Here fully disor-
dered state can be approximated partly by “random motion” which may
be described as the motion consisting of many degrees of freedom. The or-
dered states are given by effectively low degrees of freedom and located in
a low-dimensional region in the phase space. There are several such ordered
states. The itinerant motion among varieties of ordered states through high-
dimensional chaotic motion is commonly observed. The term for this is chaotic
itinerancy.

The dynamics are represented as an itinerancy over several ordered states
through disorganized, desynchronized motion. It consists of a quasi-stationary
high-dimensional state and exits to ordered states with low effective degrees
of freedom, residence therein, and chaotic exits from them.

In CI, an orbit successively itinerates over ordered motion expressed by a
few effective degrees of freedom. Considering attraction to, and the residence
at the ordered motion state, each of such states is called “attractor-ruin.” The
motion at “attractor-ruins” is quasi stationary in the sense that it is close to
that in low-dimensional attractor.
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After staying at one attractor-ruin, the orbit eventually exits from it. This
escape from an attractor-ruin stems from instability of the ruin. (See Fig. 3.16)
for schematic representation). For example, if the effective degrees of freedom
is 2, the dynamics are in the vicinity of two-dimensional subspace in the
original high-dimensional phase space. Such low-dimensional motion is not
described by a stable attractor, even though orbits are attracted to its vicinity.
After staying at an attractor-ruin, an orbit exits from it. This exit arises from
a certain kind of instability.

X (1)

X(2)

X(3)

.....

x(k)

High-dimensional
chaos

High-dimensional

chaos

High-dimensional chaos

High-dimensional
chaos

Fig. 3.16. A schematic representation of chaotic itinerancy

With this instability the orbits enter into a high-dimensional chaotic mo-
tion, losing coherence or correlation among variables. This high-dimensional
dynamic state is also quasi stationary, although after this chaotic wandering
the orbit is again attracted to one of the attractor ruins which again pos-
sesses low dimensionality. In other words, there are some “holes” connecting
to attractor-ruins from the high-dimensional chaotic state. Once the orbit is
trapped at a hole, it is suddenly attracted to one of attractor ruins, that is,
low-dimensional ordered states.

The exit process from ordered state, on the other hand, uses a limited
region in the state space (phase space), and the path lies in a low-dimensional
region in the phase space. The low-dimensionality of this path (unstable man-
ifold) gives a constraint for the itinerancy. For example, if the number of effec-
tive degrees of freedom is 3, the system wanders around a three-dimensional
space, and the exit is typically lower dimensional. In a class of coupled dy-
namical systems, each ordered state is represented by the motion in a low-
dimensional subspace. The state is weakly unstable, and the orbit exits from
it (Fig. 3.17).



3.6 Chaotic Itinerancy 77

X (1)

X(2)

X(3)

.....

x(k)

Exit

C

B

A

Fig. 3.17. A schematic representation of chaotic itinerancy; once an orbit stays at
a state characterized by a few degrees of freedom, it goes out to a disordered state,
and then is trapped to another ordered state

3.6.1 Relevance to Biological System

To date, chaotic itinerancy is considered to be a rather universal phenom-
enon in a system with many degrees of freedom (Kaneko & Tsuda, 2003). In
particular, relevance to brain dynamics has been discussed extensively. Math-
ematical definition of CI is still under discussion, but here we do not go into
this problem, but only briefly mention possible relevance of CI to biological
system. Note also that we use the term “CI” in a rather broad sense to in-
clude the successive transitions over several quasi-stable states, depending on
the state of the system itself. In this sense, even the term “chaotic” does not
necessarily involve the mathematical sense of deterministic chaos.

“CI” provides a novel viewpoint in such “dynamic change of relationships,”
which may shed a new light on how module-type structures are formed spon-
taneously, and also on how rules on dynamic change among these structures
are generated.

• Formation of rules of switching: The ordering of successive visits of states
at CI is not random, but there is some restriction. In the representation
of phase space, an orbit has to pass through some region to some other
region, which leads to a restriction of itinerancy.

In a biological system, there generally exists some rule for successive
changes of states. For example, after some group of genes are expressed,
some other groups are expressed. In this case, one standard case is that
such rule is preprogrammed in genes. Still, CI suggests another alternative
possibility that without such pre-programmed rule, some rule can appear
from dynamics. The rule thus generated can change in accordance with
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external environmental condition without further programmed rules for
it. With some change in environment, the rules are changed flexibly. In
this sense, CI may be relevant to understand flexible, context-dependent
response of a biological system.

• Formation and reorganization of groups of correlated action: In a biological
system, often several elements show correlated motion or work together.
Activities of neurons are often correlated, while a group of genes is some-
times expressed together. For example, search of a group of genes that
express together in time has been a hot topic in cell biology. Alon et al.
have studied how a group of genes express together, by using fluorescent
proteins (Alon et al., 1999, Ronen et al., 2002).

When groups of correlated motion are generated, it is often assumed
that couplings are prepared to be strong within these elements forming
correlated motion. Accordingly, existence of predefined “module” is often
assumed in neuroscience and in cellular biology. Still, there are increasing
reports to suggest that these groups may not be predefined, but can change
in time. Groups of neurons or genes that work correlatively often change
in time or change depending on external condition.

In CI, groups of correlated action are formed at each attractor-ruin, as
a result of dynamics, even without predefined strong couplings among the
elements. The connection strength among elements in each group is not
necessarily strong. The connection among elements may give restriction
for the transition among attractor-ruins, but groupings are not necessarily
determined by them. For example, some elements x1, x2, . . . x5 osculate
synchronously while other elements x6, x7, . . . x9 oscillate synchronously,
even though the coupling among elements is identical, in a system of glob-
ally coupled map [Kaneko 1990, 1991, Kaneko & Tsuda 2000].

In this sense, CI gives a new insight into how module-type structures are
formed spontaneously, and also into how rules on dynamic change among
these structures are generated.

• Evolvability and stability: Biological system consists of a huge number of
elements, say chemical species for a cell, species for ecosystem. How such
high-dimensional dynamical systems keep stability is one of the key ques-
tions in a biological system. Furthermore, a biological system, although it
is stationary over some timespan, can also change in a longer timespan,
as are common in developmental dynamics and in evolution. Biological
system satisfies both recursiveness to maintain its macroscopic state and
changeability to a novel state as evolution. Here, the time regimes for recur-
siveness and evolution are sometimes separated, as seen in metamorphosis
in development, and as discussed as punctuated equilibrium for evolution.
Chaotic itinerancy gives a theoretical mechanism to stability for a recur-
sive state and also to evolution. Stability of ecosystem is discussed with
population dynamics of a variety of species (Kaneko & Ikegami, 1992) in
relationship with CI, while recursive production of biochemical states and
their evolution are studied with itinerant dynamics (see Chap. 5).
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3.6.2 Experimental Method in Studying Itinerancy

To see the temporal ordering in genetic expression, one can use the technique
of a fluorescent protein. Then by observation of a single cell, one can detect
the temporal change of protein number in a cell. Of course, it is rather dif-
ficult to embed and measure several fluorescent proteins simultaneously, still
one can detect the dynamics of several degrees of freedom. On the other hand,
the detection of cell states at an ensemble level is carried out by the use of
cell sorter, where selection of initial cell state will be possible by taking cells
within a specified range of values measured by the cell sorter. At an ensem-
ble level, the use of microarray is useful where a large number of variables
(concentrations of mRNAs) are measured even though the time resolution is
limited. At any rate, there are several possibilities to measure the successive
changes of cell states.
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Origin of Bioinformation

4.1 Question to Be Addressed

Question: A cell consists of several replicating molecules that mu-
tually help the synthesis and keep some synchronization for repli-
cation. At least a membrane that partly separates a cell from the
outside has to be synthesized, keeping some degree of synchroniza-
tion with the replication of other internal chemicals. How is such
recursive production maintained, while keeping diversity of chem-
icals? Furthermore, this recursive production is not complete, and
there appears a “mutational” change over generations, which leads
to evolution. How is evolvability possible in spite of recursive pro-
duction? In a cell, among many chemicals, only some chemicals
(e.g., DNA) are regarded to carry genetic information. Why do
only some specific molecules play the role to carry the genetic in-
formation? How has such separation of roles in molecules between
genetic information and metabolism progressed? Is it a necessary
course of a system with internal degrees and reproduction?

Of course, this problem was addressed in the study on the origin of life or
origin of replicating system. Here we are not necessarily interested in revealing
“what happened in the past,” but rather, we intend to unveil the logic of the
heredity. Still, it is relevant to review the earlier studies.

To consider the origin of replication system, one needs to discuss how
genetic information is faithfully transferred to the next generation. A typical
standpoint is seen in the recent study of “RNA world,” while such approach
has much longer history. For example, Spiegelman et al. (Millis et al., 1967;
Safhill et al., 1970) set up an experiment RNA replication, by using a solution
of RNA and enzyme. In this experiment, one has to supply some enzyme, from
outside, and in this sense it is not an autonomous replication system. Still, his
group found that RNA molecules with proper sequences are reproduced with
some error (see Fig. 4.1). The rate of replication (i.e., selectivity) depends on
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Fig. 4.1. Schematic illustration of Spiegelman’s experiment on in vitro replication
system of RNA molecules

the sequence of RNA, and with error to the original sequence, this rate will
be decreased.

Following this experimental study of Spiegelman on replication of RNA,
Eigen’s group started theoretical study on the replication of molecules (Eigen
& Schuster, 1979) (see Fig. 4.2). The replication process of polymer in bio-
chemical reaction is generally carried out with the aid of enzymes. The enzyme
is given by a polymer, while its catalytic activity strongly depends on its se-
quence. For most sequences of the polymers, the catalytic activity is very
small, but few of them may have high catalytic activity. Depending on the
sequence, some have a much higher catalytic activity, and the replication rate
of polymers depends on the sequence.

Now, as a theoretical argument, consider replication of polymers whose
replication rate depends on its sequence. Here, assume that a “good” sequence
has replication rate α times larger than its mutant with a substitution of a
monomer from the original sequence. Here, the replication progresses under
some error. Without fine machinery for error correction, the error rate is not
negligible. Assume that in each replication process, a monomer is substituted
by another monomer with the rate µ. Then the probability that a polymer

Replication suppressing error

Loose Reproduction

Fig. 4.2. Two standpoints on the origin of life: (upper) faithful replication system
initially (lower) loose reproduction system. Schematic illustration
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consisting of N monomers can produce itself is given by (1−µ)N ≈ exp(−Nµ),
by assuming that µ is small.

Now, let us examine whether the good polymer can continue to replicate,
maintaining the good sequence, so that the information of this sequence is
transferred. Once it is changed to its mutant sequences, the probability that
the original good sequence comes back by mutation is negligible, as long as the
number of monomers is not small. Then, the condition that the good sequence
dominates in populations in the soup of polymers is given by

(1 − µ)Nα > 1 .

Using the expression of small µ, we get exp(−Nµ)α > 1. Accordingly, the
condition that a good sequence is preserved is given by

N < ln(α)/µ (4.1)

Here, ln (α) is typically O(1), while the error rate in the replication of
monomer is estimated to be around 0.01 ∼ 0.1, in usual polymer replication
process. Then the above condition gives N < 100 or so. In other words,
information using a polymer with a sequence longer than this threshold N is
hardly be sustained. This problem was first posed by Eigen and is called “error
catastrophe.” On the other hand, information for the replication for a minimal
life system must require much larger information. Of course, the error rate
could be reduced once some machinery for faithful replication as in the present
life emerges. However, such machinery requires much more information to be
transmitted by the polymer. Thus it cannot solve the problem on the origin
of bioinformation raised by Eigen.

Summing up, for replication to progress, catalysts are necessary, and in-
formation in a polymer to produce it must be preserved. However, the error
rate in replication must have been high at a primitive stage of life, and ac-
cordingly, it is recognized that the information carried on a selected sequence
will be lost within few generations. In other words, faithful replication sys-
tem requires larger information, while a larger information requires faithful
replication system. Thus there appears a catch-22-type paradox.

To resolve this problem of inevitable loss of catalytic activities through
replication errors, Eigen and Schuster proposed hypercycle (Eigen & Schuster,
1979), where replicating chemicals catalyze each other forming a cycle, as A
catalyzes the synthesis of B, B catalyzes the synthesis of C, C catalyzes the
synthesis of A (see Fig. 4.3). In this case, each chemical mutually amplifies the
synthesis of the corresponding chemical species in this cycle. There occurs a
variety of mutations to each species, but this mutant is not generally catalyzed
in some other species in the cycle. For example, consider A′, a mutant of A.
Then, such mutant is not catalyzed by C. Then the growth rate of A′ is much
smaller than A.

This is also understood by writing out the rate equation for the increase
of the population. In this hypercycle the population increase is given by the
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A

BC

A

BC

B’

Hypercycle

Parasite

Fig. 4.3. Eigen’s hypercycle. Replicating molecules catalyze each other, forming a
cycle. The arrows indicate what molecule catalyze which molecule. By forming a
cycle as in the left column, this replication is sustained, while in the right column,
a parasite molecule B′ appears, which is replicated with the aid of A, but does not
catalyze others. With the emergence of such parasite molecule species, the replication
of hypercycle is destroyed

product of the populations of molecules such as NA×NB , NB×NC , NC×NA,
while the growth of the population of the mutants is linear to each population
NA, NB , NC . In the previous estimate for error catastrophe, both the good
and mutant sequences increase in a manner linear to the number. Then the
number of possible varieties of mutants dominates to surpass the difference in
the growth rate. In the present case, once the populations of the good sequence
in the hypercycle dominates, they can sustain the population against possible
emergence of mutants, because of the difference in the order in the growth
term. With this hypercycle, the original problem of error accumulation is
avoided.

Since the proposal of hypercycle, the field of population dynamics of mole-
cules in catalytic networks has been developed (see e.g., Eigen et al. 1989,
Stadler et al. 1993). On the other hand, discovery of RNA with catalytic ac-
tivities (Zaug & Cech, 1986) has led to the RNA world hypothesis, where a
replication system closed only by RNA molecules is discussed as a possible
candidate for the origin of life.

However, the hypercycle itself turned out to be weak against parasitic
molecules, that is, those that are catalyzed by a molecule in the cycle and
replicated rather fast (in contrast to the previous mutant with low replication
rate), but do not catalyze those in the cycle. The growth rate of the population
of these molecules is again the product of the populations of two species,
and such parasitic molecules can invade. For example, the population of the
molecule B′ in Fig. 4.3 grows, catalyzed by molecule A. Once such parasite
molecule dominates in population, this hypercycle collapses, since it does not
catalyze other molecules. Indeed, such parasite problem has been pointed out
by several authors (see e.g., Maynard-Smith 1979, Eigen 1992,).

Although the hypercycle itself may be weak against parasitic molecules,
that is, those that are catalyzed but do not catalyze others, it is then
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discussed that compartmentalization by a cell structure may suppress the
invasion of parasitic molecules (Maynard-Smith, 1979; Szathmary & Demeter,
1987; Eigen, 1992; Szathmary & Maynard-Smith, 1997), or that the reaction–
diffusion system at spatially extended system resolves this parasite problem
(Boerlijst & Hogeweg, 1991; Hogeweg, 1994; Altmeywer & McCaskill, 2001).
Chemically, it is not so surprising that a compartment structure is formed.
Still, as an origin of life, this means that more complexity and diversity in
chemicals are required other than a set of information-carrying molecules (e.g.,
RNA).

If initially there is a variety of chemicals that form a complex network
of mutual catalyzation, this system may be robust against the invasion of
parasitic molecules. Such discussion is similar with that in the problem of
the stability of ecosystem, where coexistence of several species organizing
complex ecological network (e.g., food web) may resist to invasion of external
species. Still, the increase of stability by the complexity in the ecological
network is not necessarily true (May, 1973). Hence if replication of complex
reaction network or not is an issue to be elucidated. For such approach of
study, we assume, from the beginning, there are many molecule species that
mutually catalyze, allowing for the existence of many parasitic molecules.
Here, complete replication of the system is probably difficult (see Fig. 4.2).
Then the question we have to address is whether such complex network can
maintain molecules that catalyze the synthesis of the network species. This
question was addressed by Dyson (1985), as a possibility of loose reproduction
system for an origin of life.

Dyson, noting the experiment of Oparin (1967) on the formation of cell-
like structure, considered a collection of molecules with proteins and others.
These molecules cannot replicate themselves like DNA or RNA. They, on the
other hand, can have enzymatic activities and catalyze the synthesis of other
molecules albeit not faithful reproduction. Still, they may keep similar com-
positions. Although accurate replication of such variety of chemicals is not
possible, chemicals, as a set, may continue reproducing themselves loosely,
while keeping catalytic activity. Indeed, the accurate replication must be dif-
ficult at the early stage of life, but loose reproduction could be easier. How-
ever, whether this collection of molecules can keep catalytic activity through
reproduction or not is not evident.

Dyson obtained a condition for the sustainment of catalytic activities in
these collection of molecules, by taking an abstract model. For simplicity he
classified molecules into two states, depending on whether they have catalytic
activity or not. Furthermore, he assumed that the ratio of the synthesis of
catalytic molecules is amplified as the fraction of catalytic molecules increases,
that is, a positive feedback process is assumed. This model is mapped to a kind
of Ising model, studied extensively in statistical physics for phase transition.
With the aid of mean-field analysis in statistical physics, he showed that the
catalytic activities can be sustained depending on the numbers of molecules
and their species. Although his model is abstract, the results he obtained
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probably can be applied to any system with a set of catalytic molecules, be
it protein, lipids, or other polymers. It could be applied even to a system
with carbon hydrates in deep hot sphere as Gold (1998) claimed, or peptide
replication system as Ghadiri constructed (Lee et al., 1997).

From the standpoint of constructive biology (Chap. 2), it is important
to construct a loose reproduction system consisting of catalytic molecules in
vitro, as will be discussed in Sect. 4.5. On the other hand, construction of
cell-like system with membrane for compartmentalization will be discussed in
the next chapter. Here we should again note that the main purpose of these
experiments is not to reproduce or imitate what might have occurred in the
origin of life in the Earth, but to unveil the logic for the sustainment of loose
reproduction without fine machinery for it.

It is important to study if such loose reproduction as a set is possible in a
mutually catalytic reaction network. If this is possible, and if these chemicals
also include molecules forming a membrane for compartmentalization, repro-
duction of a primitive cell will become possible (Ganti, 1975). In fact, from the
chemical nature of lipid molecules, it is not so surprising that a compartment
structure is formed.

Still, in this reproduction system, any particular molecules carrying infor-
mation for reproduction do not exist, in contrast to the presently existing cells
that have specific molecules (DNA) for it. As for a transition from early loose
reproduction to later accurate replication with genetic information, Dyson did
not give an explicit answer theoretically. He referred only to “genetic take-
over” that was originally proposed by Cairns-Smith (1986), who proposed the
loose reproduction system by using the clay, and that later a precise repli-
cation system by nucleic acids took over it. Indeed, Dyson wrote that his
idea is based on “Cairns-Smith theory minus clay,” and adopted the idea of
“take-over.”1 However, the logic for this “take-over” is not unveiled.

Considering these theoretical studies so far, it is important to study how
recursive production of a cell is possible, with the appearance of some mole-
cules to play a specific role for heredity.2

To consider this problem, we start from a simple prototype cell that con-
sists of mutually catalyzing molecule species whose growth in number leads
to division of the protocell. In this protocell, the molecules that carry the
genetic information are not initially specified. The first question we discuss
here is how heredity to maintain production of the protocell emerges.

The second question related with the first one is whether there appears
some specific molecules to carry information for heredity, to realize continual
reproduction of such protocell. We note that in the present cells, it is generally
1 It seems that clay is not liked by many researchers, but the idea itself is taken

over, say by the use of pyrite (iron–sulfur) by Wac̈htershauser (1990), which is
now discussed seriously as a candidate of the origin of life.

2 Condition for recursive production in a system with a variety of chemicals is
discussed in the next chapter
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believed that information is encoded in DNA, which controls the behavior of
a cell.

In the present book, we do not necessarily take a “geno-centric” stand-
point, in the sense that gene is the only one to determine the course of a cell.
In fact, even in these cells, proteins and DNA mutually influence their repli-
cation process. Still, it cannot be denied that there exists a difference between
DNA and protein molecules with regards to the role as information carrier.
In spite of this mutual dependence, why is DNA molecule usually regarded as
the carrier of heredity? Is there any general rule that some specific molecules
play the role of carrier of genetic information so that the recursive production
of cells continues?

Now, the origin of genetic information in a replicating system is an im-
portant theoretical topic that should be studied, not necessarily as a property
of certain molecules, but as a general property of replicating systems. To in-
vestigate this problem, we need to clarify what the term “information” really
means. In considering information, one often tends to be interested in how
several messages are encoded on a molecule. (In fact, a polymer such as DNA
would be suited to encode many bits of information.) One might point out
that DNA molecules would be suited to encode many bits of information, and
hence would be selected as an information carrier. Although this “combinato-
rial” capacity of an information carrier is important, what we are interested
here is a basic property that has to be satisfied prior to that, that is, origin
of just “1 bit” information.

As Shannon beautifully demonstrated, information means selection of one
branch from several possibilities (Shannon & Weaver, 1949; Brillouin, 1969).
Assume that there are two possibilities in an event, each of which can occur
with the probability 1/2. In this case, when one of these possibilities turns out
to be true, then this choice of a branch is regarded to have 1 bit information
(see Fig. 4.4). In this sense, if a specific cell state is selected from several pos-
sible states, this selection process has information, and a molecule to control
such process carries information.

Now, a molecule that carries the information is postulated to play the
role to control for the choice of cellular state. Furthermore, to play the role
to carry the information for heredity, the molecules must be transmitted to
next generations relatively faithfully. These two features, that is, control and
preservation, are nothing but the problem of heredity.

Let us reconsider what “heredity” really means. The heredity causes a high
correlation in phenotype between ancestor and offspring. Then, for a molecule
to carry heredity, we identify the following two features as necessary.

(1) If this molecule is removed or replaced by a mutant, there is a strong
influence on the behavior of the cell. We refer to this as the “control
property.”

(2) Such molecules are preserved well over generations. The number of such
molecules exhibits smaller fluctuations than that of other molecules, and
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Fig. 4.4. Information according to the definition by Shannon. When one event is
selected from several possibilities, some information is gained. In the figure, selection
from two equally possible events gives 1-bit information. By successive independent
choices of events of equally probable events, another bit of information is gained

their chemical structure (such as polymer sequence) is preserved over
a long timespan, even under potential changes by fluctuations through
the synthesis of these molecules. We refer to this as the “preservation
property.”

These two conditions are regarded as a fundamental condition for a molecule
to establish the heredity. Now, the problem of “information” at a minimal
level, that is, 1-bit information is nothing but the problem of the origin of
heredity. As the origin of heredity, we study how a molecule starts to have
the above two properties in a protocell. In other words, we study how 1-
bit information starts to be encoded on a single molecule in a replicating
cell system. After we answer this basic question, we will then discuss how a
protocell with the heredity in the above sense has incentive to evolve genetic
information in today’s sense.

To sum up, the question we address in the present chapter is restated as
follows. Consider a protocell with mutually catalyzing molecules. Then, under
what conditions, recursive production continues maintaining catalytic activ-
ities? How are recursiveness and diversity in chemicals compatible? How is
evolvability of such protocells possible? To answer these questions, are mole-
cules carrying heredity necessary? Under what conditions, does one molecule
species begin to satisfy conditions (1) and (2) so that the molecule carries
heredity? We show, under rather general conditions in our model of mutually
catalyzing system, that a symmetry breaking between the two kinds of mole-
cules takes place, and through replication and selection, one kind of molecule
comes to satisfy conditions (1) and (2).
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4.2 Logic: Minority Control Hypothesis

Let us start from consideration of a prototype of cell, consisting of molecules
that catalyze each other. As the reaction progresses, the number of mole-
cules in this protocell will increase. Then, considering the physical nature
of membrane, this cell will be divided, when its volume (the total number
of molecules) is beyond some threshold. Then the molecules split into two
“daughter cells.” Then our question in the last section is restated as follows:
How are the compositions transferred to the offspring cells? Do some specific
molecules start to carry heredity in the sense of control and preservation so
that the reproduction continues?

Before considering the logic for the origin of heredity, it may be relevant to
recall the difference of roles between DNA (or RNA) and protein. According to
the present understanding of molecular biology (Alberts et al., 1983), changes
undergone by DNA molecules are believed to exercise stronger influences on
the behavior of cells than other chemicals. Also, a DNA molecule is transferred
to offspring cells relatively accurately, compared with other constituents of the
cell. Hence a DNA molecule satisfies (at least) properties (1) and (2).

In addition, a DNA molecule is stable, and the time scale for the change of
DNA, for example, its replication process as well as its decomposition process,
is much slower. Because of this relatively slow replication, the number of DNA
molecules is smaller than the number of protein molecules. At each generation
of cells, single replication of each DNA molecule typically occurs, while other
molecules undergo more replications (and decompositions).

With these natures of DNA in mind, while without assuming the detailed
biochemical properties of DNA, we seek a general condition for the differen-
tiation of the roles of molecules in a cell and study the origin of the control
and preservation of some specific molecules.

To clarify the logic, we consider the simplest case (see Fig. 4.5), assuming
that only two kinds of molecules X and Y exist in this protocell, and they
catalyze each other for the synthesis of the molecules.

X + Y → 2X + Y ;Y + X → 2Y + X

Here this “catalytic reaction” is not necessarily a single reaction. In general,
there can be several intermediate processes for each “reaction.” The model
simply states that there are two molecules that help the synthesis of the
other, directly or indirectly. In general, the catalytic activities as well as the
synthesis speeds differ by types of molecules. Without losing generality, one
can assume that X is synthesized faster than Y .

With this synthesis of molecules, the total number of molecules in the
protocell will increase, until it divides into two. As long as the molecules
catalyze each other, this synthesis continues, as well as the division (repro-
duction) of protocell. However, some structural changes in molecules can oc-
cur through replication (“replication error”). These structural changes in each



90 4 Origin of Bioinformation
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Fig. 4.5. Schematic representation of our logic. Once an active molecule of each
molecule species is lost, the reproduction does not continue

kind of molecules may result in the loss of catalytic activity. Indeed, the mole-
cules with catalytic activity are not so common. On the other hand, molecules
without catalytic activity can increase their number, if they are catalyzed by
other catalytic molecules. Then, as discussed in the parasite problem for hy-
percycle, the maintenance of reproduction is not so easy.

For example, each of X and Y has several types 0, 1, . . . , F , and only the
type 0 has catalytic activity. Now the question is how the active form 0 is
maintained through reproduction even if F is large.

Recall, because of the difference in the speed of synthesis, in each protocell,
the number of X molecules will be much larger than that of Y . Then, the X
molecules will dominate in the protocell. As long as the number of molecules
in the cell is not large, finally, there comes to a stage that the catalytically
active Y molecule (that is, Y 0) goes extinct. Then, X molecules are no longer
synthesized. Inactive Y molecules (Y j , j > 0) can still be synthesized as long
as active X0 molecules remain. However, after each division, the number of
X0 molecules becomes half, and sooner or later the cell stops dividing. Hence,
once the number of Y 0 becomes 0, the reproductivity of the protocell will be
lost.

Now consider a situation that these protocells reproduce, competing for
chemical resources for reproduction. Then, some cells, because of fluctuations
in molecule numbers, may keep active Y molecules. Since there is little room
for Y molecules in protocells, because of its slow synthesis, the total number
of Y j molecules (for all j = 0, 1, . . . , F ) is small. Hence, typically, to keep
the active Y molecules, the number of all the other Y molecules should be
suppressed, probably to zero. As long as such situation is realized, the protocell
can keep growing.
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Furthermore, if the inactive Y molecules go extinct, they do not reappear
so often, since the number of Y molecules is small. The expectation value for
the reappearance is the product of the number of Y molecules and the error
rate in replications. This expectation value given by the product of these is
much smaller than 1.

Hence, a cell with very few Y 0 molecules and almost zero Y j (j > 0)
can keep reproduction. In the next section, we will discuss the validity of the
logic presented in this scenario, by carrying out numerical simulations of the
stochastic model based on the above argument.

Now, this Y molecule satisfies a condition for heredity-carrying molecules,
that is, “preservation property,” and “control property.”

First, these active Y molecules should be preserved well over generations,
since otherwise they cannot replicate. Next, assume that there occurs a struc-
tural change in Y molecule, to change its catalytic activity. Since the number
of active Y molecules is few and all the X molecules are catalyzed by them,
this influence is enormous. The synthesis speed should drastically change. On
the other hand, a change to X molecules has a weaker influence on the aver-
age, since there are many active X molecules, and influence of one molecule
change is averaged out. Unless almost all molecules change in the same man-
ner, the average catalytic activity of X molecules would not change, but such
coherent change is not possible, as deduced from the law of large numbers.
Hence the change of Y molecule has a crucial influence on the cell behavior,
compared with X molecules.

Remark. Note that the compartmentalization is essential to the above ar-
gument. Indeed, the rare cell state with null inactive Y molecules is selected,
since a “cell” with inactive Y molecules cannot reproduce itself repeatedly.
The necessity of compartmentalization to eliminate inactive states is already
discussed in the “stochastic corrector model” by Szathmary (Szathmary &
Demeter, 1987). The importance of minority molecules, on the other hand, is
pointed out by Koch (1984), with regards to the evolvability to be discussed
below (but not with regards to the controllability here).

4.3 Toy Model

On the basis of the argument of the last section, we consider a very simple pro-
tocell system (Kaneko & Yomo, 2002a), consisting of two species of replicating
molecules that catalyze each other (see Fig. 4.6). Each species has active and
inactive molecule types, with only the active types of one species catalyzing
the replication of the other species for the replication. The rate of replication
is different for the two species. We consider the behavior of a system with
such mutually catalyzing molecules with different replication rate, as a first
step in answering the question posed above.

To study the general features of a system with mutually catalyzing mole-
cules, we consider the following minimal model. First, we envision a (proto)cell
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Fig. 4.6. Schematic representation of our model

containing molecules. With a supply of chemicals available to the cell, these
molecules replicate through catalytic reactions, so that their numbers within
a cell increase. When the total number of molecules exceeds a given threshold,
the cell divides into two, with each daughter cell inheriting half of the mole-
cules of the mother, chosen randomly. Regarding the chemical species and the
reaction, we make the following simplifying assumptions:

(i) There are two species of molecules, X and Y, which are mutually cat-
alyzing.

(ii) For each species, there are active and inactive (I) types. It is natural to
assume that the active molecule type is rather rare. With this in mind,
we assume that there are F types of inactive molecules per active type.
For most simulations, we consider the case in which there is only one
type of active molecules for each species.

Active types are denoted as X0 and Y 0, while there are inactive
types XI and Y I with I = 1, 2, . . . , F . The active type has the ability to
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catalyze the replication of both types of the other species of molecules.
The catalytic reactions for replication are assumed to take the form3

XJ + Y 0 → 2XJ + Y 0 (for J = 0, 1, . . . , F )

and
Y J + X0 → 2Y J + X0 (for J = 0, 1, . . . , F ) .

(iii) The rates of synthesis (or catalytic activity) of the molecules X and Y
differ. We stipulate that the rate of the above replication process for
Y , γy, is much smaller than that for X, γx. This difference in the rates
may also be caused by a difference in catalytic activities between the two
molecule species.

(iv) In the replication process, there may occur structural changes that alter
the activity of molecules. Therefore the type (active or inactive) of a
daughter molecule can differ from that of the mother. The rate of such
structural change is given by µ, which is not necessarily small, because of
thermodynamic fluctuations. This change can consist of the alternation
of a sequence in a polymer or other conformational change, and may be
regarded as replication “error.” Note that the probability for the loss
of activity is F times greater than for its gain, since there are F times
more types of inactive molecules than active molecules. Hence, there are
processes described by

XI → X0; and Y I → Y 0 (with rate µ)
X0 → XI ; and Y 0 → Y I (with rate µ for each) ,

resulting from structural change.
(v) When the total number of molecules in a protocell exceeds a given value

2N , it divides into two, and the chemicals therein are distributed into
the two daughter cells randomly, with N molecules going to each. Sub-
sequently, the total number of molecules in each daughter cell increases
from N to 2N , at which point these divide.

(vi) To include competition, we assume that there is a constant total number
Mtot of protocells, so that one protocell, randomly chosen, is removed
whenever a (different) protocell divides into two.

With the above-described process, we have basically four sets of parameters:
the ratio of synthesis rates γy/γx, the error rate µ, the fraction of active
molecules 1/F , and the number of molecules N . (The number Mtot is not
important, as long as it is not too small.)

We carried out simulation of this model, according to the following pro-
cedure. First, a pair of molecules is chosen randomly. If these molecules are
of different species, then if the X molecule is active, a new Y molecule is
3 More precisely, there is a supply of precursor molecules for the synthesis of X

and Y , and the replication occurs with catalytic influence of either X0 or Y 0.
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produced with the probability γy, and if the Y molecule is active, a new X
molecule is produced with the probability γx. Such replications occur with
the error rates given above. All the simulations were thus carried out stochas-
tically, in this manner.

We consider a stochastic model rather than the corresponding rate equa-
tion, which is valid for large N , since we are interested in the case with rela-
tively small N . This follows from the fact that in a cell, often the number of
molecules of a given species is not large, and thus the continuum limit implied
in the rate equation approach is not necessarily justified (Hess & Mikhailov,
1994 Stange et al., 1998). Furthermore, it has recently been found that the
discrete nature of a molecule population leads to qualitatively different be-
havior than in the continuum case in a simple autocatalytic reaction network
(Togashi & Kaneko, 2001, 2003, 2004, 2005).4

4.4 Result

If N is very large, the above-described stochastic model can be replaced by
a continuous model given by the rate equation. Let us represent the total
number of inactive molecules for each of X and Y as

N I
x =

F∑
j=1

N j
x, N I

y =
F∑

j=1

N j
y

Then the growth dynamics of the number of molecules N j
x and N j

y is
described by the rate equations, using the total number of molecules N t,

dN j
x/dt = γxN j

xN0
y /N t; dN j

y/dt = γyN0
xN j

y/N t . (4.2)

From these equations, under repeated divisions, it is expected that the rela-

tions N0
x

N0
y

= γx

γy
, N0

x

NI
x

= 1
F , and N0

y

NI
y

= 1
F are eventually satisfied. Indeed, even

with our stochastic simulation, this number distribution is approached as N
is increased.

However, when N is small, and with the selection process, there appears a
significant deviation from the above distribution. In Fig. 4.7, we have plotted
the average numbers 〈N0

x〉, 〈N I
x〉, 〈N0

y 〉, and 〈N I
y 〉. Here, each molecule number

is computed for a cell just prior to the division, when the total number of
4 They studied autocatalytic reaction system with a small number of molecules,

numerically by stochastic particle simulations, and found a novel state because
of fluctuation and discreteness in molecular numbers, that is characterized as
extinction of molecule species alternately in the autocatalytic reaction loop. Phase
transition to this state with the change of the system size and flow is clarified,
where a single-molecule switch of the molecule distributions is important. This
gives a clear example in which a discreteness in molecule number leads to a novel
type of phase that is not observed from a continuous rate equation of chemical
reaction.
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molecules is 2N , while the average 〈. . .〉 is taken over all cells that are divided
throughout the simulation. (Accordingly, a cell removed without division does
not contribute to the average.) As shown in the figure, there appears a state

satisfying 〈N0
y 〉 ≈ 2 − 10, 〈N I

y 〉 ≈ 0. Since F � 1, such a state with 〈N0
y 〉

〈NI
y 〉 >

1 is not expected from the rate equation (4.1). Indeed, for the X species,
the number of inactive molecules is much larger than the number of active
ones. Hence, we have found a novel state that can be realized because of the
smallness of the number of molecules and the selection process.
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Fig. 4.7. Dependence of 〈N0
x〉(×), 〈NI

x〉(+), 〈N0
y 〉(�), and 〈NI

y 〉(∗) on N . The
parameters were fixed as γx = 1, γy = 0.01, and µ = 0.05. Plotted are the averages
of N0

x , NI
x , N0

y , and NI
y at the division event, and thus their sum is 2N . In all the

simulations conducted for this chapter, we used Mtot = 100, and the sampling for
the averages were taken over 105 − 3 × 105 steps, where the number of divisions
ranges from 104 to 105, depending on the parameters. (Reproduced from [Kaneko
and Yomo 2002a] with permission)

In Fig. 4.7, γy/γx and F are fixed to 0.01 and 64, respectively, while
the dependence of {〈N0

x〉,〈N I
x〉,〈N0

y 〉,〈N I
y 〉} on these parameters is plotted in

Fig. 4.8. As shown in these figures, the above-mentioned state with 〈N0
y 〉 ≈

2 − 10, 〈N I
y 〉 < 1 is reached and sustained when γy/γx is small and F is

sufficiently large. In fact, for most dividing cells, N I
y is exactly 0, while there

appear a few cells with N I
y > 1 from time to time. It should be noted that

the state with almost no inactive Y molecules appears in the case of larger F ,
that is, in the case of a larger possible variety of inactive molecules. This sup-
pression of Y I for large F contrasts with the behavior found in the continuum

limit (the rate equation). When 〈N0
y 〉

〈NI
y 〉 is plotted as a function of F (Kaneko

& Yomo, 2002a) from the data of Fig. 4.8, we can observe this suppression
clearly. Indeed, up to some value of F , the proportion of active Y molecules
decreases, in agreement with the naive expectation provided by (4.1), but this
proportion increases with further increase of F , in the case that γy/γx is small
(<∼ .02) and N is small.
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2N = 2000. (Reproduced from [Kaneko and Yomo 2002a] with permission)

This behavior of the molecular populations can be understood from the
viewpoint of selection: In a system with mutual catalysis, both X0 and Y 0

are necessary for the replication of protocells to continue. The number of Y
molecules is expected to be rather small, since their synthesis speed is much
slower than that of X molecules. Indeed, the fixed point distribution given
by the continuum limit equations possesses a rather small N0

y . In fact, when
the total number of molecules is sufficiently small, the value of 〈N0

y 〉 given by
these equations is less than 1. However, in a system with mutual catalysis,
both X0 and Y 0 must be present for replication of protocells to continue. In
particular, for the replication of X molecules to continue, at least a single
active Y molecule is necessary. Hence, if N0

y vanishes, only the replication of
inactive Y molecules occurs. For this reason, divisions producing descendants
of this cell cannot proceed indefinitely, because the number of X0 molecules
is cut in half at each division. Thus, a cell with N0

y < 1 cannot leave a
continuing line of descendant cells. Also, for a cell with N0

y = 1, only one of
its daughter cells can have an active Y molecule. Hence a cell with N0

y = 1
has no potentiality to multiple through division, and for this reason, given the
presence of selection, protocells with N0

y > 1 are selected.
The total number of Y molecules is limited to small values, because of their

slow synthesis speed. This implies that a cell that suppresses the number of
Y I molecules to be as small as possible is preferable under selection, so that
there is a room for Y 0 molecules. Hence, a state with almost no Y I molecules
and a few Y 0 molecules, once realized through fluctuations, is expected to be
selected through competition for survival.

Of course, the fluctuations necessary to produce such a state decrease
quite rapidly as the total molecule number increases, and for sufficiently large
numbers, the continuum description of the rate equation is valid. Clearly then,
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a state of the type described above is selected only when the total number of
molecules within a protocell is not too large. In fact, a state with very small
N I

Y appears only if the total number N is smaller than some threshold value
depending on F and γy

5.

4.5 Minority-Controlled State

We showed that in a mutually catalyzing replication system, the selected
state is one in which the number of inactive molecules of the slower replicat-
ing species, Y , is drastically suppressed. In this section, we first show that
the fluctuations of the number of active Y molecules is smaller than those
of active X molecules in this state. Next, we show that the molecule species
Y (the minority species) becomes dominant in determining the growth speed
of the protocell system. Then, considering a model with several active mole-
cule types, the control of chemical composition through specificity symmetry
breaking is demonstrated.

4.5.1 Preservation of Minority Molecule

First, we computed the time evolution of the number of active X and Y
molecules, to see whether the selection process acts more strongly to control
the number of one or the other. We computed N0

x and N0
y at every division

to obtain the histograms of cells with given numbers of active molecules.
The fluctuations in the value of N0

y are found to be much smaller than
those of N0

x . The numbers N0
y and N I

y are more nearly conserved than N0
x

and N I
x , and the selection process discriminates more strongly between dif-

ferent concentrations of active Y molecules than between those of active X
molecules. Hence the active Y molecules are well preserved with relatively
smaller fluctuations in the number.

4.5.2 Control of the Growth Speed

Now, it is expected that the growth speed of our protocell has a stronger
dependence on the number of active Y molecules than the number of active
X molecules. We have found that the division time is a much more rapidly
decreasing function of N0

y than of N0
x . Even a slight change in the number

of active Y molecules has a strong influence on the division time of the cell.
Of course, the growth rate also depends on N0

x , but this dependence is much
weaker (see Fig. 4.9). Hence, the growth speed is controlled mainly by the
number of active Y molecules.
5 In the model considered here, we have included a mechanism for the synthesis

of molecules, but not for their decomposition. To investigate the effect of the
decomposition of molecules, we have also studied a model including a process
to remove molecules randomly at some rate. We found that the above-stated
conclusion is not altered by the inclusion of this mechanism.
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Fig. 4.9. The histogram of division time. The left graph displays that with regards
to Ny, with integrating out the values of Nx, while the right graph displays that
with regards to Nx, by integrating out the value of Nx. The division time sensitively
depends on Ny, but weakly on Nx. (Reproduced from [Kaneko and Yomo 2002a]
with permission)

4.5.3 Control of Chemical Composition by the Minority Molecule

As another demonstration of control, we study a model in which there is more
specific catalysis of molecule synthesis. Here, instead of single active molecule
types for X and Y , we consider a system with k types of active X and Y
molecules, X0i and Y 0i (i = 1, 2, . . . k). In this model, each active molecule
type catalyzes the synthesis of only a few types (m < k) of the other species of
molecules. Graphically representing the ability for such catalysis using arrows
as ix → jy for X → Y and iy → jx for Y → X, the network of arrows defining
the catalyzing relations for the entire system is chosen randomly, and is fixed
throughout each simulation. Here we assume that both X and Y molecules
have the same “specificity” (that is, the same value of m) and study how this
symmetry is broken (see Fig. 4.10).

As already shown, when N , γy, and F satisfy the conditions necessary for
realization of a state in which N I

y is sufficiently small, the surviving cell type
contains only a few active Y molecules, while the number of inactive ones
vanishes or is very small. Our simulations show that in the present model
with several active molecule types, only a single type of active Y molecule
remains after a sufficiently long time. We call this “surviving type,” ir (1 ≤
ir ≤ k). Contrastingly, at least m types of X0 species that can be catalyzed by
the remaining active Y molecule species remain. Accordingly, for a cell that
survived after a sufficiently long time, a single type of Y 0 molecule catalyzes
the synthesis of (at least) m kinds of X molecule species, while the multiple
types of X molecules catalyze this single type of Y 0i molecules. Thus, the
original symmetry regarding the catalytic specificity is broken as a result of
the difference between the synthesis speeds.
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Fig. 4.10. (a) Catalytic network between X(i) and Y (i). The arrows from the top
column points to types of the Y species that each X(i) catalyzes, while those from
the middle points to types of the X species that each Y (i) catalyzes. Each of the
k = 10 active species catalyzes the synthesis of four chemicals. (b) The logarithm of
the average population of X(i) displayed wish a gray scale. From top to bottom, six
samples resulting from different initial conditions are plotted. The type ir of Y (i)
with nonvanishing population Y (i) corresponding to each column is as follows (top to
bottom): ir = 10, 8, 4, 5, 4, and 2. The parameters were chosen as F = 16×k = 160,
µ = 0.03, γx = 1, γy = 0.01, N = 1000. (Reproduced from Kaneko & Yomo, 2002a)

Because of autocatalytic reactions, there is a tendency for further increase
of the molecules that are in the majority. This leads to competition for replica-
tion between molecule types of the same species. Since the total number of Y
molecules is small, this competition leads to all-or-none behavior for the sur-
vival of molecules. As a result, only a single type of species Y remains, while
for species X, the numbers of molecules of different types are statistically
distributed as guaranteed by the uniform replication error rate.

Although X and Y molecules catalyze each other, a change in the type of
the remaining active Y molecule has a much stronger influence on X than a
change in the types of the active X molecules on Y , since the number of Y
molecules is much smaller.

With the results so far, we can conclude that the Y molecules, that is, the
minority species, control the behavior of the system, and are preserved well
over many generations. We therefore call this state the minority-controlled
(MC) state.

4.5.4 Evolvability

An important characteristic of the MC state is evolvability, that is, the ca-
pacity for evolution. To discuss this problem, we consider a variety of active
molecules instead of one type for X and Y , and assume that they have differ-
ent catalytic activities. Then the synthesis rates γx and γy for each molecule
depend on the catalytic activities that catalyze it. Hence, γx can be written
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in terms of the molecule’s inherent growth rate, gx, and the activity, ey(i), of
the corresponding catalyzing molecule Y (i), and γy similarly, as

γx = gx × ey(i); γy = gy × ex(i) .

Since such a biochemical reaction is entirely facilitated by catalytic activity,
a change in ey ex, for example by the structural change of polymers, will be
important. Given the occurrence of such a change to molecules, those with
greater catalytic activities will be selected through competition evolution,
leading to the selection of larger ey and ex. As an example to demonstrate
this point, we have extended the model in Sect. 4.2 to include k kinds of ac-
tive molecules with different catalytic activities. Then, molecules with greater
catalytic activities are selected through competition.

Since only a few molecules of the Y species exist in the MC state, a struc-
tural change to them strongly influences the catalytic activity of the protocell.
On the other hand, a change to X molecules has a weaker influence, on the
average, since the deviation of the average catalytic activity caused by such a
change is smaller, as can be deduced from the law of large numbers.6 Hence,
the MC state is important for a protocell to realize evolvability.

Note that the difference between the synthesis speeds between X and
Y molecules is maintained through the evolution. Hence the MCS is stable
evolutionarily.7 This is because that the evolution of the catalytic activity in
Y molecules is accelerated because of its minority, so that the replication rate
of X is increased, and the difference between the synthesis speeds of X and
Y molecules is maintained.

4.6 Experiment

Recently, there have been some experiments to construct minimal replicating
systems in vitro. As an experiment corresponding to this problem, we describe
an in vitro replication system, constructed by Yomo’s group (Matsuura et al.,
2002).

In general, proteins are synthesized from the information on DNA through
RNA, while DNA are synthesized through the action of proteins. DNA and
protein are both necessary for their replication. They, in addition to other
molecules, autonomously replicate themselves. Now simplifying this replica-
tion process, Matsuura et al. constructed a replication system consisting of
DNA and DNA polymerase, that is, an enzyme for the synthesis of DNA. This
DNA polymerase is synthesized by the corresponding gene in the DNA, while
6 See Koch (1984) for this kind of statistical argument, while the kinetic suppression

of fluctuation of Y molecules is stronger than expected by the standard statistical
analysis.

7 This is in contrast to the result from the stochastic corrector model (Grey et al.,
1995).
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Fig. 4.11. Illustration of in vitro autonomous replication system consisting of DNA
and DNA polymerase. See text and Matsuura et al. (2002) for details. Supplied with
the courtesy of Yomo, Matsuura et al.

it works as the catalyst for the corresponding DNA. Through this mutual
catalytic process the chemicals replicate themselves (see Fig. 4.11).

To amplify the number of DNA, the method PCR (polymerase chain re-
action) is widely used, and is a standard tool for molecular biology. In this
case, however, enzymes that are necessary for the replication of DNA must
be supplied externally. In this sense, it is not a self-contained autonomous
replication system. In the experiment by Yomo’s group, while they use PCR
as one step of experimental procedures, the enzyme (DNA polymerase) for
DNA synthesis is also replicated in vitro within the system. Of course, some
(raw) material, such as amino acid or ATP, and even Ribosome have to be
supplied, but otherwise the DNA and protein replicate by themselves. (see
Fig. 4.12 for experimental step).

In this experiment, there is a mutual synthetic process between gene
and enzymes. Roughly speaking, the polymerase (protein) in the experiment
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Fig. 4.12. Procedure of experiment: In each of 10 test tubes containing a single
DNA molecule, autonomous replication progresses. The components of the tubes
are mixed in a pool, from which a single DNA is chosen to a tube, to repeat the
procedure. See text and Matsuura et al. (2002) for details. Supplied with the courtesy
of Yomo, Matsuura et al.

corresponds to X in our model, while the polymerase gene (DNA) corresponds
to Y .

Now, at each step of replication, about 230 ∼ 240 DNA molecules are repli-
cated.8 Here, of course there are some errors that can occur in the synthesis
of enzyme, and also in the synthesis of DNA. With these errors, there appear
DNA molecules with different sequences. Now a pool of DNA molecules with
a variety of sequences is obtained as a first generation.

From this pool, the DNA and enzymes are split into several tubes. Then,
materials with ATP and amino acids are supplied, and the replication process
is repeated (see Fig. 4.12). In other words, the “test tube” here plays the role
of “cell compartmentalization.” Instead of autonomous cell division, splitting
into several tubes is operated externally. (Spontaneous split of cells will be
discussed in the next chapter.)

In this experiment, instead of changing the synthesis speed γy or N in
the model, one can control the number of genes, by changing how the pool is
split into several test tubes. Indeed, they studied two distinct cases, that is,
splitting to tubes containing a single DNA molecule in each and to tubes
containing 100 DNA molecules. Recall that in the theory, the evolvability by
minority control is predicted. Hence, the behavior between the cases with a
single DNA, that is, minority, and 100 DNA may be drastically different.
8 This high amplification rate is different from the theoretical model, but for the

later discussion this difference is not essential.
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Fig. 4.13. Change of self-replication activity from a system with single DNA.
The activities for 10 tubes are shown, The next generation is produced mostly
from the top DNA. Although activities vary by each tube, higher ones are selected,
so that the activities are maintained. See text and Matsuura et al. (2002) for details.
Supplied with the courtesy of Yomo, Matsuura et al.

First, we describe the case with a single DNA in each tube. Here, as given
in the middle of Fig. 4.13, the pool of chemicals is split into 10 tubes each of
which has a single DNA molecule, and replication process described already
progresses in each tube. The sequence of DNA molecules could be differ-
ent for each tube, since there is replication error. Then the activity of DNA
polymerase in each tube is also different, and the number of DNA molecules
synthesized in each tube is different. In other words, some DNA molecules can
produce more offspring, but others cannot. The variation of self-replication ac-
tivity by tubes is shown in Fig. 4.13, as the values in the generation 2. Then
the contents of each tube are mixed as in the lower column of Fig. 4.13. This
soup of chemicals is used for the next generation. Then in this soup, the DNA
molecules that have higher replication rates, as well as the mutants generated
from them, are included with a larger fraction. Now a single DNA is selected
from the soup in each of 10 tubes, and the same procedures are repeated.
Hence, there is a larger probability that a DNA molecule with a higher repro-
duction activity is selected for the next generation. In other words, Darwinian
selection acts at this stage. The self-replication activity from this soup is plot-
ted in the third generation. Successive plots of the self-replication activity are
given in Fig. 4.14. As shown, the self-replication activity is not lost (or can
evolve in some case), although it varies in each tube in each generation.

One might say that the maintenance of replication is not surprising at all,
since a gene for the DNA polymerase is included in the beginning. However,
enzyme with such catalytic activity is rare. Indeed, with mutations some pro-
teins that lost such catalytic activity but are synthesized in the present system
could appear, which might take over the system. Then the self-replication ac-
tivity would be lost. In fact, this is nothing but the error catastrophe by Eigen,
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Fig. 4.14. Self-replication activities for each generation, measured as described in
the text. Result from a single DNA; lower: result from 100 DNA molecules. Adapted
from Matsuura et al. (2002) with the authors’ courtesy

discussed in the beginning of this chapter. Then, why is the self-replication
activity maintained in the present experiment?

For those who read the theory part, the answer must be clear. In the model
of this chapter, mutants that lost the catalytic activity are much more common
(that is, F times larger in the model). Still, the number of such molecules is
suppressed. This was possible first because the molecules are in a cell. In the
experiment also they are in a test tube, that is, in a compartment. Now the
selection works for this compartment, not for each molecule. Hence the tube
(cell) that includes a gene giving rise to lower enzyme activity produces less
offspring. In this sense, compartmentalization is one essential factor for the
maintenance of catalytic activity (see also (Maynard-Smith 1979, Szathmary
& Demeter 1987, Eigen 1992, Szathmary and Maynard-Smith 1997, Boerilst
& Hogeweg, 1991, Altmeyer & McCaskill 2001)). Here, another important
factor is that in each compartment (cell) there are very few DNA molecules
(in the model Y molecule). In the theory, if the number of Y molecules is
larger, inactive Y molecules surpass the active one in population.

To confirm the validity of our theory, Matsuura et al. carried out a com-
parison experiment. Now, they split the chemicals in the soup so that each
tube has 100 DNA molecules instead of a single one. Otherwise, they adopt
the same procedure. In other words, this corresponds to a cell with 100 copies
of genome. Change of self-replication activity in the experiment is plotted in
the lower column of Fig. 4.14. As shown, the self-replication activity is lost
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by each generation, and after the fourth generation, capability of autonomous
replication is totally lost. This result shows that the number of molecules to
carry genetic information should be small, which is consistent with the theory.

When there are many DNA molecules, there can be mutation to each DNA
molecule. In each tube, the self-replication activity is given by the average
of the enzyme activities from these 100 DNA molecules. Although catalytic
activity of molecules varies by each, the variance of the average by tubes should
be reduced drastically. Recall that the variance of the average of N variables
with the variance µ is reduced to µ/N , according to the central limit theorem
of probability theory (Koch, 1984). Hence the average catalytic activity does
not differ much by tube. Here, the mutant with a higher catalytic activity
is rare. Most changes in the gene lead to smaller or null catalytic activity.
Hence, on the average, the catalytic activity after mutations to original gene
gets smaller, and the variance by tubes around this mean is rather small (see
Fig. 4.14).

By the selection, DNA from a tube with a higher catalytic activity could
be selected, but the variation by tubes is so small that the selection does not
work. Hence deleterious mutations remain in the soup, and the self-replication
activity will be lost in a few generations. In other words, the selection works
because the number of information carrier in a replication unit (cell) is very
small and is free from the statistical law of large numbers.

Summing up, in the experiment, it was found that replication is maintained
even under deleterious mutations (that correspond to structural changes from
active to inactive molecules in our model), only when the population of DNA
polymerase genes is small and competition of replicating systems is applied.
When the number of genes (corresponding to Y ) is small, the information
containing in the DNA polymerase genes is preserved. This is made possible
by the maintenance of rare fluctuations, as found in our study. The system
has evolvability only if the number of DNA in the system is small. Otherwise,
the system gradually loses its activity to replicate itself. These experimental
results are consistent with the minority control theory described.

4.7 Relevance to Biology

4.7.1 Heredity from a Kinetic Viewpoint

In this chapter, we have shown that in a mutually catalyzing system, mole-
cules Y with the slower synthesis speed tend to act as the carrier of heredity.
Through the selection under reproduction, a state, in which there is a very
small number of inactive Y molecules, is selected. This state is termed the
“minority controlled state.” Between the two molecule species, there appears
separation of roles, that with a larger number, and that with a greater cat-
alytic activity. The former has a variety of chemicals and reaction paths, while
the latter works as a basis for the heredity, in the sense of the two properties
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mentioned in Sect. 4.1, “preservation” and “control.” We now discuss these
properties in more detail.

Preservation property : A state that can be reached only through very rare
fluctuations is selected, and it is preserved over many generations, even though
the realization of such a state is very rare when we consider the rate equation
obtained in the continuum limit.

Control property : A change in the number of Y molecules has a stronger
influence on the growth rate of a cell than a change in the number of X
molecules. Also, a change in the catalytic activity of the Y molecules has a
strong influence on the growth of the cell. The catalytic activity of the Y
molecules acts as a control parameter of the system.

Once this MCS is established, it is rather straightforward to assume the
following scenario for the evolution of genetic information. First, a new evo-
lutionary incentive, that is, a new selection pressure is now able to emerge,
to evolve a machinery to ensure that the minority molecule makes it into the
offspring cells, since otherwise the reproduction of the cell is highly damaged.
Hence a machinery to guarantee the faithful transmission of the minority
molecule evolves. In other words, the origin of heredity is established. Note
that this heredity can evolve before the appearance of any specific metabolic
or genetic contents transmitted faithfully. This heredity evolves just as a result
of kinetic phenomenon and is a rather general phenomenon in a reproducing
protocell consisting of mutually catalytic molecules.

Once this faithful transmission of minority molecule is evolved, it provides
a basis for critical information for reproduction of the protocells. Since the
molecule is well taken care of and is guaranteed to be transmitted, other chem-
icals that are synthesized in connection with it are likely to be transmitted,
albeit not always faithfully. Hence there appears a further evolutionary incen-
tive to package life-critical information into the minority molecule. Now more
information (“many bits” of information) are encoded on the minority mole-
cule. Now, the molecules work as a carrier of genetic information in today’s
sense. With this evolution, having more molecules catalyzed by the minority
molecule, it is then easier to further develop the machinery to better take
care of minority molecules, since this minority molecule is essential to many
reactions for the synthesis of many other molecules.

Hence the evolution of faithful transmission of minority molecules and of
coding of more information reinforce each other. At this point one can expect
a separation of metabolism and genetic information.

To sum up, how a single molecule starts to control the heredity is un-
derstood from a kinetic viewpoint.9 We first show that the MCS is a rather
9 Of course, even in the present organisms, some genes exist in a multiple copy –

plasmids in bacteria, genes in macronucleate in ciliates, and so forth. These genes
are transferred to their descendants. In this sense, not all genes are minority.
However, even in these cases, genes in a multiple copy are often less important
than the genes in minority, with regards to the controllability.



4.7 Relevance to Biology 107

general consequence of kinetic process of mutually catalytic molecules. This
provides a basis for heredity. Taking advantage of the evolvability of MCS,
then, preservation mechanism of the minority molecule evolves, which allows
for more information encoded on it, leading to separation of genetic informa-
tion and metabolism. In this sense, the minority molecule species with slower
synthesis speed, leading to the preservation of rare states and control of the
behavior of the system, acts as an information carrier. The important point
of our theory is that heredity arises prior to any metabolic information that
needs to be inherited.

4.7.2 Accessibility to MCS

One important consequence of the existence of the MC state is evolvability.
Mutations introduced to the majority species tend to be canceled out on the
average, in accordance with the law of large numbers. Hence, the catalytic
activity of the minority species (Y in our model) not only is sustained but
has a greater potentiality to increase through evolution as well.

The evolution and stability of the MC state with respect to mutation was
discussed in Sect. 4.4.3. If the initial difference between the catalytic abilities
ex and ey (and other parameters) satisfies the conditions stated in Sect. 4.4,
it is shown that the MC state once realized is stable over generations against
mutations.

A question may still remain. How does the difference in the catalytic ac-
tivity necessary to realize the MC state generally come to exist? Of course,
it is quite natural in a complex chemical system that there will be differences
in synthesis speeds or catalytic activities, and, in fact, this is the case in the
biochemistry of present-day organisms. Still, it would be preferable to have
a theory describing the spontaneous divergence of synthesis speeds without
assuming a difference in advance, to provide a general model of the possible
“origin” of bioinformation from any possible replication system.

There are several possibilities for spontaneous evolution to this differenti-
ation of roles in the molecules.

1. Higher order catalysis: In the first toy model considered in this chapter, in
order to realize the MC state, the difference between the time scales of the
two kinds of molecules often must be rather large. For example, the ratio
γy/γx should typically be less than 0.05 when the number of molecules is
in the range 500–2000.

The condition for this MC state is drastically reduced by considering
Higher order catalytic reaction processes in the replication of molecules.
Consider, for example, a replication of molecules described by the following:

X + X ′ + Y → 2X + X ′ + Y ;Y + Y ′ + X → 2Y + Y ′ + X . (4.3)

In complex biochemical reaction networks, such higher order catalytic
reactions often exist. Indeed, proteins in a cell are catalyzed not solely by
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nucleotides but with collaboration of proteins and nucleotides. Nucleotides,
similarly, are catalyzed not solely by proteins but with collaboration of
nucleotides and proteins.

In this higher order catalytic reaction, difference between the numbers of
X and Y molecules is amplified, and it is shown (Kaneko & Yomo, 2002a)
that the MC state is reached for almost all values of γy/γx.10

2. Network structure: The catalytic network in a cell is generally quite com-
plex, with many molecules participating in mutual catalysis for replication.
The evolution of replication systems with such catalytic networks have been
studied. We will study this problem in the next chapter.

3. Spatial structure of a cell : Considering chemical condition to support a cell,
the roles of molecules are often different from the beginning in a different
context.

For example, in our model, collisions of molecules occur randomly. How-
ever, if one of the molecule species forms a membrane, and the other are in
a contained medium, then the collision rate between the different molecule
species is enhanced.

Also, in the present model we have assumed that the division of the
protocell occurs when the total number of molecules doubles. However, it
may be more natural to have a threshold that depends on the number of
molecules of one species (or, more generally, of some subset of all species),
rather than the total number. For example, consider the case that division
occurs when the size of a membrane synthesized by biochemical reactions
is larger than some threshold.

It is discussed (Kaneko & Yomo, 2002a) that by such changes of collision or
division conditions MC state is easier to evolve.

4.7.3 Closing Remark

In the beginning of this chapter we described two standpoints on the origin
of life, that is, genetic information first or complex metabolism first.11 We
showed that there is a difficulty in each standpoint. In the former picture,
there was a problem on the stability against parasites, while the latter has
10 In the continuum limit, the rate equation corresponding to the reaction (4.2)

is given by dN j
x/dt = γxN j

xNA
x NA

y and dN j
y/dt = γyN j

yNA
y NA

x . Consider the
equation dx/dt = γxx2y and dy/dt = γyy2x. Then the relation

x1/γx/y1/γy = const. = x
1/γx
0 /y

1/γy

0

holds with the initial values x0 and y0 (where x0 + y0 = C). Then, consider
the following division process: if x(t) + y(t) = 2C, then x → x/2 and y → y/2.
With the continued temporal evolution and the division process, y approaches 0
if γy < γx. (Recall that the curve y(x) given by the above equation is concave.)

11 Roughly speaking, one may rephrase these standpoints as egg first or chicken
first.
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not solved how genetic information took over. The minority control gives a
new look to these problems.

The first problem was the appearance of parasitic molecules to destroy the
hypercycle, that is, mutually catalytic reaction cycle. If only the replication
process of molecules is concerned, it is not so easy to resolve the problem.
Here we consider the dual level of replication, that is, molecular and cellular
replication.

In the theory for the origin of information we have presented here, existence
of a cell, unit that reproduces itself is required. Two levels of reproduction,
both molecules and cells, are assumed. Hence a cell with parasitic molecules
cannot grow, and is selected out. Relevance of this type of two-level reproduc-
tion to avoid molecular parasites has been discussed (Maynard-Smith, 1979;
Szathmary & Demeter, 1987; Eigen, 1992; Szathmary & Maynard-Smith,
1997; Boerilst & Hogeweg, 1991). Here, importance of cellular compartment
to the origin of genetic information is more important.

This two-level selection works effectively, with the aid of minority control
of specific molecules for a cell. Indeed, surviving cells satisfy the minority
control. With the selection pressure for reproduction of cells, there appears
a state that is not expected by the rate equation for reaction of molecules,
where the number of inactive Y molecules that are parasitic to the catalytic
reaction is suppressed. Furthermore, resistance against parasitic (inactive) Y
molecules is established by this MCS.

This minority control also resolves the question of the genetic takeover,
the problem in the standpoint of metabolism first. Among several molecules,
a specific minority molecule species controls the behavior of a cell and is well
preserved. The possible scenario mentioned in the beginning of this section
gives one plausible scenario how genetic take-over progresses from this MCS.

The differentiation of role between the two molecules looks like “symmetry
breaking.” In physics, how initially symmetric states become unstable to break
the symmetry has been studied in depth. When initially two (or more) states
are equally possible, and later only one of them is selected, it is said that the
symmetry is broken. Indeed, in Chap. 7, we discuss cell differentiation process
as a kind of symmetry breaking.

In the differentiation of roles of molecules, however, the molecules initially
have different characters as to the replication speed. Here a difference in one
character (that is, the replication speed) is “transformed” into the difference
in the control behavior, and difference as the carrier of heredity. In other
words, a characteristics with already broken symmetry is transformed into
a different type of symmetry breaking. This kind of transformation of one
character’s difference to another is often seen in biology. Indeed we will see
such examples in Chaps. 9 and 11. The result of this chapter is a simple
example for it.
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Origin of a Cell with Recursive Growth

5.1 Question to Be Addressed

Question: A cell consists of several replicating molecules that mutu-
ally help the synthesis of each other and keep some synchronization
for replication. How is such recursive production maintained, while
preserving the diversity of chemicals? Furthermore, this recursive
production is not completely faithful, and there appears a slow “mu-
tational” change over generations, which leads to evolution. How is
evolvability possible in spite of recursive production?

In the discussion of Chap. 4, we considered a system consisting of two
kinds of molecules. In a cell, however, a variety of chemicals form a complex
reaction network to synthesize themselves each other. It is natural to wonder
how such a cell with a huge number of components and complex reaction
network can sustain reproduction, keeping similar chemical compositions. This
“protocell” must produce catalytic molecules that sustain the metabolism,
while for the growth of the cell, it has to synthesize membrane molecules
(Ganti, 1975). Several reaction processes have to proceed with some balance,
to sustain reproduction.

On the other hand, the total number of molecules in a cell is limited. If
there are a huge number of chemical species that catalyze each other, the
number of some molecules species may go to zero. Then molecules that are
catalyzed by them no longer are synthesized. Then, other molecules that are
catalyzed by them cannot be synthesized, either. In this manner, the chemical
compositions may vary drastically, and the cell may lose its reproduction
activity.

Of course, the cell state is not constant, and a cell may not divide for
ever. Still, a cell state is preserved to some degree to keep producing similar
offspring cells. We call “recursive production” or “recursiveness” the set of
such conditions necessary for the reproduction of a cell. The question we ad-
dress here is whether the distribution of chemicals or the structure of reaction
network must fulfill specific conditions.
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In a cell, the number of each molecule changes in time through reaction and
must increase on average to allow cell replication. As mentioned in Chap. 3, a
positive feedback process underlying the replication process may lead to large
fluctuations in the molecule numbers. With such large fluctuations and com-
plexity in the reaction network, how is recursive production of cells sustained?

5.2 Logic

Let us start by discussing what conditions must be satisfied by the biochemical
processes underlying cell growth. In a cell, there is a complex catalytic network
for the synthesis of molecules. These molecules are spatially distributed, and in
some cases such spatial arrangement is crucial to determine cellular function,
while for some others, the discussion on just the composition of chemicals in
a cell is sufficient to determine a state of a cell, since they are not rigidly fixed
in space but can move around randomly to some degree.1 Hence, as a first
approximation we ignore the spatial structure within a cell, and consider just
the composition of chemicals.

To study the general features of a system with mutually catalyzing mole-
cules, it is important to consider a system with a variety of chemicals (k
molecule species), forming a mutually catalyzing network (Eigen & Schuster,
1979; Eigen et al., 1989; Stadler et al., 1993; Kauffman, 1986, 1993). The
molecules replicate through catalytic reactions so that their numbers within
a cell increase. However, as already discussed in Sect. 4.1 parasitic molecules
may disrupt the growth process: Those that are catalyzed but do not catalyze
others may increase their number, and the cell may ultimately lose the ability
of growth.

A minority-control mechanism discussed in Chap. 4 is one solution, while
in a network of chemical reactions, there is a possibility that an ensemble
of molecule species that catalyze each other may resist to the invasion of
parasitic molecules. Even if one molecule species is attacked by some parasite
molecule, when there are several paths that catalyze the attacked molecule,
the decrease of this molecule may be compensated by the synthesis from other
paths. Hence some complex network can be more robust against the parasite
attack. As will be shown numerically, intermingled hypercycle network is thus
robust against the appearance of parasitic molecules by replication errors. The
presence of a complex network can promote recursive growth.

At this stage, however, we need to seriously consider the fluctuation of
the number of molecules. First consider a possible range of the number of
total molecules in a cell. If the number is too small, the fluctuations in each
1 When modeling spatial inhomogeneity, a reaction–diffusion equation is used.

When the concentration of some molecule is low, the molecules exist in a dis-
crete manner in space, in which case amplification of some molecule concentration
occurs (Shnerb et al., 2000; Togashi & Kaneko, 2001, 2003, 2004, 2005).
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molecule number are so large that there will be no possibility to keep the
recursive growth. If the number is too large, the dynamics will be basically
represented by a continuum equation. Then it is often difficult to have a
higher rate of replication, or even if it is found, the chemical compositions
are completely fixed in the beginning, and no evolution may be possible. The
appropriate range for the number of molecules and the number of types of
molecules must be determined.

As long as the total number of molecules is not very large, fluctuation
in each molecule concentration is inevitable. Of course, negative feedback
process to stabilize the concentration is one possible solution, to reduce the
fluctuations. For reproduction of molecules, however, some positive feedback
process is needed to amplify the number of each molecule species. Such positive
feedback process leads to autocatalytic process to synthesize each molecule
species.

To increase the growth speed, it is better to strengthen this amplification
rate, which, however, may also amplify the fluctuations. We need to study
some general features of the fluctuations inherent in such positive feedback
system. As a very simple illustration, let us consider a process where a mole-
cule xm is replicated with the aid of other catalytic molecules.

Then, the growth of the number N(m) of the molecule species xm is given
by dN(m)/dt = AN(m). Here A involves the rate of several reaction processes
to synthesize the molecule xm. Such synthetic reaction process depends on
the number of the molecules involved in the catalytic process. Recall, how-
ever, that all chemical reaction processes are inevitably accompanied with
fluctuations arising from stochastic collision of chemicals. Thus, although the
reactions to synthesize a specific chemical and convert it to other chemicals
is balanced in a steady state, the fluctuation terms remain. Accordingly, the
above rate A has fluctuations η(t) around its temporal average a. Then the
above rate equation is written as dN(m)/dt = N(m)(a + η(t)), one gets

dlogN(m)/dt = a + η(t) . (5.1)

In other words, the logarithm of chemical abundances shows Brownian motion
around its mean. Then, the logarithm of chemical abundances is expected to
obey normal (Gaussian) distribution if η(t) is approximated by a Gaussian
noise, Accordingly, the logarithm of the number molecules is suggested to obey
normal (Gaussian) distribution. Such a distribution is known as log-normal
distribution.

In general, each term of reaction process may include multiplicative sto-
chastic contribution written as η(t)xm. Hence, the log-normal distribution,
rather than Gaussian distribution, may be common in a cell that reproduces
itself recursively.

In contrast to the Gaussian distribution, the log-normal distribution is
characterized by a longer tail for large abundances, if plotted in the original,
normal scale without taking logarithm. This large fluctuation in number may
destroy the recursive growth. Is there some control mechanism to suppress
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some fluctuations there? Note that in a synthesis of molecules with mutual
catalysis, there can appear some key-stone chemicals, as expected from the
minority-control mechanism. These key-stone molecules work as a controlling
part. As discussed in Sect. 4.4, this key-stone molecule has a higher connection
with others in reaction network. The increase of the number of such molecules
by fluctuations results in a drastic change in the number of other molecules,
especially the decrease of molecules that catalyze this key molecule, since
the total number of molecules in a cell is limited. Then the key molecule is
not synthesized so much. In other words, increase of the key-stone molecule
later brings about its decrease. Thus, the dynamics of this key-stone molecule
species has a negative feedback leading to the stabilization of its concentration.
Accordingly, some key-stone molecules have relatively smaller fluctuations,
in contrast to the large fluctuations of other molecules whose abundances
follow a log-normal distribution. With the existence of such key-stone molecule
species, the fluctuations will be suppressed, and recursive production of a cell
is stabilized. Furthermore, with a combination of such key-stone chemicals,
information on recursive growth is generated, which works as a controller for
synchronized growth. A specific example of this mechanism will be discussed
in Sect. 5.4.

5.3 Model

5.3.1 Modeling Strategy for the Chemical Reaction Networks

Now we introduce our standpoint when modeling a cell on the basis of the
discussion of the last section. What type of model of a cell is best suited to
provide an answer to the question in Sect. 5.1? With all the current biochem-
ical knowledge, we can say that one could write down several types of models.
Because of the complexity of a cell, there is a tendency of building a compli-
cated model when trying to capture the essence of a cell. However, doing so
only makes it more difficult to extract new concepts, although simulation of
the model may produce phenomena similar to those in living cells. Therefore,
to avoid such pitfalls, it may be more appropriate to start with a simple model
that encompasses only the essential properties of living cells. Simple models
may not produce all the observed natural phenomena, but are comprehensive
enough to bring us new thoughts on the course of events taken in nature.

In setting up a theoretical model here, we do not impose many conditions
to imitate the life process. Rather we wish to introduce as few postulates as
possible and study the universal properties of the resulting system. For ex-
ample, as a minimal condition for a cell, we consider a system consisting of
chemicals separated by a membrane. The chemicals are synthesized through
catalytic reactions, and accordingly the amount of chemicals increases, includ-
ing the membrane component. As the volume of this system becomes larger,
the surface tension for the membrane can no longer sustain the system, and it



5.3 Model 115

X

X

1

2
X 1

X1

X 2

X iX
iXk

Xm

X 3

X4

X
k

X
i

X
j

X
j

X
i

X4

X
k

X
k

Xm

Xm

X
j

X2

X 3

X3

X
k

X4 X
i

X
j

X5

X 6

X 7

Xm

X
8

X9

X 10

...........

Catalytic Replication Network

Cell

Division

X
i

Fig. 5.1. Schematic representation of our modeling strategy of a cell

will divide.2 Under such minimum setup as will be discussed later, we study
the condition for the recursive growth of a cell, as well as for the differentiation
of the cell.

As discussed, we assume a chemical reaction network in a cell, while spatial
arrangement of molecules is discarded. As discussed above, a cell is modeled
as a chemical reaction network, where the spatial arrangement of molecules
is neglected. Hence, if there are k chemical species in a cell, the cell state
is characterized by the number of molecules of each species as N1, N2, . . . Nk.
These molecules change their number through reaction among these molecules
each other. Since most reactions are catalyzed by some other molecules, the
reaction dynamics consist of a catalytic reaction network.

Through the membrane, some chemicals may flow in, which are succes-
sively transformed to other chemicals through this catalytic reaction network.
For a cell to grow recursively, a set of chemicals has to be synthesized for
the next generation. As the number of molecules is large enough, the mem-
brane is no longer sustained, even just due to the constraint of surface tension.
Then, when the number of molecules is larger than some value, the cell is ex-
pected to divide. The basic picture for a simple toy model of a cell is shown in
Fig. 5.1.
2 After the division of this protocell systems, the daughter cells may interact with

each other, since they share resource chemicals. Interaction among these dividing
cells will be discussed in Chap. 7.



116 5 Origin of a Cell with Recursive Growth

Of course, it is impossible to include all possible chemicals in a cell. As our
constructive biology is aimed at neither making complicated realistic model
for a cell nor imitating specific cellular function, we set up a minimal model
with reaction network, to answer the questions raised in Sect. 5.1. Now, there
are several levels for the modeling depending on what question we try to
answer.

(0) By taking reversible two-body reactions, including all levels of reac-
tions, ranging from metabolites, proteins, nucleic acids, and so forth. Such
level of modeling is, for instance, desirable when investigating how nonequi-
librium conditions may be sustained in a cell (Awazu & Kaneko, 2004).

(1) Assuming that some reaction process are fast, fast reaction processes
can be adiabatically eliminated.3 Most fast reversible reactions can also be
eliminated by assuming that they are already balanced. Then we need to in-
clude only molecule species whose concentration (number) changes relatively
slowly. For example by assuming that an enzyme is synthesized and decom-
posed fast, its concentration can be eliminated, to give an effective catalytic
reaction network dynamics consisting of reactions such as

Xi + Xj → X� + Xj (5.2)

where Xj catalyzes the reaction. The study of catalytic reaction networks in
relationship with the origin of life was pioneered by Kauffman (Farmer et al.,
1986; Kauffman, 1986, 1993), and then adopted for the study of intracellular
reaction dynamics for a replicating cell in (Kaneko & Yomo, 1994; Furusawa
& Kaneko, 2003). If the catalysis progresses through several steps, this process
is replaced by

Xi + mXj → X� + mXj (5.3)

leading to higher order catalysis (Furusawa and Kaneko, 1998).
For a cell to grow, some resource chemicals must be supplied through

the membrane. Through the above catalytic reaction network, the resource
chemicals are transformed to others, and as a result, the cell grows (see also
Ganti, 1975). Indeed, this class of model will be adopted to study the condition
for cell growth, to unveil universal statistics for such cells, and also as a model
for cell differentiation, in Chaps. 7–9.

(2) Model focusing on the dynamics of replicating units (e.g., Hypercycle):
For a cell to grow effectively, there should be some positive feedback process to
amplify the number of each molecule species. Such positive feedback process
leads to autocatalytic process to synthesize each molecule species. For re-
production of a cell, (almost) all molecule species are somehow synthesized.

3 When there are variables of fast change and slow change, the fast variables relax
rapidly to an equilibrium state given by slow variables. By solving a stationary
solution for fast variables, they are eliminated so that the equations only for slow
variables are derived. See, e.g., Haken, 1979.
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Then, it would be possible to take a replication reaction from the beginning
as a model. For example, consider a reaction

S + X + Y → X ′ + Y : S′ + X ′ → 2X .

Then as a total, the reaction is represented as S + S′ + X + Y → 2X + Y .
Assuming the resources S and S′ are constantly supplied, we can consider the
replication reaction

X + Y → 2X + Y, (5.4)

catalyzed by Y . At this level, we can take a unit of replicator and consider
a replication reaction network. This type of model was first discussed in the
hypercycle by Eigen and Schuster, and was adopted in Chap. 4.

(3) coarse-grained (phenomenological) level: Some other reduced model is
adopted for the study of gene expression or signal transduction network. The
modeling at this level is relevant to understand specific function of a cell.

In this present chapter we use the modeling of the level (2). This class of
model can be obtained by reducing from the level (1) model, by restricting
our interest only to take into account of replicating units. In this sense, the
model is a bit simpler than the level (1) model. On the other hand, it may
not be suitable to discuss the condition for cell growth, since at the level (2)
model, the supply of resource chemicals is automatically assumed, and one
cannot discuss how transported chemicals are transformed into others. Study
of the level (1) model will be given in the next chapter.

5.3.2 Specific Model

We envision a (proto)cell containing k molecular species with some of the
species possibly having a zero population. Following the discussion in the last
subsection, a chemical species is assumed to catalyze the synthesis of some
other chemical species as

[i] + [j] → [i] + 2[j] , (5.5)

with i, j = 1, . . . , k, according to a randomly chosen reaction network. (The
reaction is set at far-from-equilibrium) In (5.5), the molecule i works as a cat-
alyst for the synthesis of the molecule j, while the reverse reaction is neglected
as discussed in the hypercycle model. For each chemical the rate for the path
of catalytic reaction (5.1) is given by ρ, that is, each species has about kρ
possible reactions.

Furthermore we assume that catalytic activity for the above reaction (5.5)
depends on each molecule i, and this activity ci is given by a random number
over [0,1] (Once it is chosen, it is fixed). Assuming an environment with an
ample supply of chemicals available to the cell, the molecules then replicate
leading to an increase in their numbers within a cell.

During the replication process, structural changes, for example, the al-
ternation of a sequence in a polymer, may occur, which alter the catalytic
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activities of the molecules. The rate of such structural changes is given by the
replication “error rate” µ. As a simplest case, we assume that this “error”
leads to all other molecule species with equal probability (i.e., with the rate
µ/(k−1)), and could thus regard it as a background fluctuation. In reality, of
course, even after a structural change, the replicated molecule will keep some
similarity with the original molecule, and this equal rate of transition to other
molecule species is a drastic simplification. Some simulations where the errors
in replication lead to only a limited range of molecule species, however, show
that the simplification does not affect the basic conclusions presented here.
Hence we use the simplest case for most simulations.

The model is simulated as follows: At each step, a pair of molecules, say,
i and j, is chosen randomly. If there is a reaction path between species i and
j, and i (j) catalyzes j (i), one molecule of the species j (i) is added with
probability ci (cj), respectively. The molecule is then changed to another
randomly chosen species with the probability of the replication error rate µ.
When the total number of molecules exceeds a given threshold (denoted as N),
the cell divides into two such that each daughter cell inherits half (N/2) of the
molecules of the mother cell, chosen randomly. To take the importance of the
discreteness in the molecule numbers into account, we adopted a stochastic
rather than the usual differential equations approach (see also Segreet et al.,
2000).

5.4 Result

In our model there are four basic parameters: the total number of molecules N ,
the total number of molecule species k, the mutation rate µ, and the reaction
path rate ρ. By carrying out simulations of this model, choosing a variety of
parameter values N, k, µ, ρ, also by taking various random networks, we have
found that the behaviors are classified into the following three types:

(1) Fast switching states without recursiveness
(2) Achievement of recursive production with similar chemical compositions
(3) Switch over several quasi-recursive states

In the first phase, there is no clear recursive production and the dominant
molecule species changes frequently. At one time step, some chemical species
are dominant but only a few generations later, this information is lost, and the
number of the molecules in these species go to zero (see Fig. 5.2a). No stable
set of catalytic networks is formed. Here, the time required for reproduction
of a cell is much larger than in the second case.

In the second phase, on the other hand, a recursive production state (or
recursive state in short) is established, and the chemical composition is sta-
bilized such that it is not altered much by the division process. Generally, all
the observed recursive states consist of 5–10 species, except for those species
with one or two molecule numbers, which exist only as a result of replication
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Fig. 5.2. The number of molecules Nn(i) for the species i is plotted as a function
of generation n of cells, that is, at each successive division event n. In (a), a random
network with k = 500 and p = 0.2, and in (b) that with k = 200 and p = 0.2, and
in (c) that with k = 200 and p = 0.2 was adopted, with N = 64, 000 and µ = 0.01.
Only some species (whose population becomes large enough at some generation)
are plotted. In (a), dominant species change successively in generation, while in (b)
recursive production with similar chemical compositions is achieved. In (c) three
quasi-recursive states are observed with switching
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errors (see Fig. 5.2b). These 5–10 chemicals mutually catalyze, by forming a
catalytic network as will be discussed later. The set of these 5–10 species does
not change between generations, and the chemical compositions are trans-
ferred to the offspring cells. Once reached, this state is preserved throughout
whole simulations, lasting more than 10,000 generations. Even in this case,
the number of each molecule shows relatively large fluctuations, since the total
number of molecules N is not large (typically we choose N ∼ (102 ∼ 105) in
our simulations).4

In the third phase, after one recursive state lasts over many generations
(typically a thousand generations), a fast switching state appears until a new
(quasi-)recursive state appears. As shown in Fig. 5.2c, for example, each
(quasi-)recursive state is similar to that in phase (2), but in this case, its
lifetime is finite, and it is replaced by the fast switching state as in the phase
(1). Then the same or different (quasi-)recursive state is reached again, which
lasts until the next switching occurs. In the example of Fig. 5.2(c), around
the 12,000th generation, the core network is taken over by parasites to enter
the phase (1) like fast switching state, which in turn gives way for a new
quasi-recursive state around the 14,000th generation.

5.4.1 Dependence of Phases on the Basic Parameters

Although the behavior of the system depends on the choice of the network,
there is a general trend with regards to the phase change from (1), to (3), and
then to (2) with the increase of N , or with the decrease of k, as schematically
shown in Fig. 5.3. By choosing a variety of networks, however, we find a clear
dependence of the fraction of the networks on the parameters, leading to a
rough sketch of the phase diagram. Generally, the fraction of (2) increases and
the fraction of (1) decreases also with the decrease of ρ or µ. For example,
the fraction of (1) (or (3)) gets larger as k is decreased from k

<∼ 300 for
N = 50, 000 (with ρ = 0.1 and µ = 0.01), while the dependence on ρ will be
discussed below.

For a quantitative investigation, it is useful to classify the phases by the
similarity of the chemical compositions between two cell division events. To

check the similarity, we first define a k-dimensional vector
→
Vn= (pn(1), . . . ,

pn(k)) with pn(i) = Nn(i)/N . Then, we measure the similarity between 

successive generations with the help of the inner product as

H� =
→
Vn ·

→
Vn+� /(|Vn||Vn+�|) (5.6)

(see Fig. 5.4).

4 The recursive state observed here is not necessarily a fixed point with regards
to the population dynamics of the chemical concentrations. In some case, the
chemical concentrations oscillate in time, but the nature of the oscillation is not
altered by the process of cell division.
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In Fig. 5.5, the average similarity H20 and the average division time are
plotted for 50 randomly chosen reaction networks as a function of the path
probability ρ. Roughly speaking, the networks with H20 > 0.9 belong to (2),
and those with H20 < 0.4 to (1), empirically. Hence, for ρ > 0.2, the phase
(1) is observed for nearly all the networks (e.g., 48/50), while for lower path
rates, the fraction of (2) or (3) increases. The value ρ ∼ 0.2 gives the phase
boundary in this case. Generally speaking, a positive correlation between the
growth speed of a cell and the similarity H exists. In Fig. 5.5, the division
time is also plotted, where to each point with a high similarity H corresponds
to a lower division time. The network with higher similarity (i.e., in the phase
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Fig. 5.5. The average similarity H20 (+) and the average division time (×) are
plotted as a function of the path rate ρ. For each ρ, data from 50 randomly chosen
networks are plotted. The average is taken over 600 division events. The dotted line
indicates the average of H20 over the 50 networks for each ρ. For ρ > 0.2, networks
over 98% have H < 0.4, and they show fast switching, while for ρ = 0.08, about 95%
belong to the phase (2) or (3) At ρ = 0.02, 25 out of 50 networks cannot support
cell growth, 4 cannot at ρ = 0.04 (Adapted from Kaneko, 2005a)

(2)) gives a higher growth speed. Indeed, the recursive states maintain higher
growth speeds since they effectively suppress parasitic molecules.

In Fig. 5.5, by decreasing path rates, the variations in the division speeds
of the networks become larger, and some networks that reach recursive states
have higher division speeds than networks with larger ρ. On the other hand,
when the path rate is too low, the protocells generally cannot grow since the
probability to have mutually catalytic connections in the network is nearly
zero. Indeed there seems to exist an optimal path rate (e.g., around 0.05 for
k = 200, N = 12, 800 as in Fig. 5.5 for having a network with high growth
speeds)(Kaneko, 2005a).

Besides the correlation between the growth speed and similarity, the cor-
relation with the diversity of the molecules also exists. Protocells with higher
growth speed and similarity in the phase (2) have higher chemical diversity
also. In the phase (1), one (or a very few) molecule species is dominant in the
population, while about 10 species have higher population in the phase (2),
where the chemical diversity is maintained.

5.4.2 Maintenance of Recursive Production

How is the recursive production sustained in the phase (2)? In Sect. 4.1, we
have discussed already the danger of parasitic molecules that have lower cat-
alytic activities and are catalyzed by molecules with higher catalytic activities.
As discussed there, such parasitic molecules can invade the hypercycle. In-
deed, under the structural changes and fluctuations, the recursive production
state could be destabilized. To answer the question, we have examined several
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Fig. 5.6. The catalytic network of the dominant species that constitutes the re-
cursive state. The catalytic reaction is plotted by an arrow i → j, representing the
replication of the species j with the catalytic species i. The numbers in () denote
ci of the species. Only species that continue to exist with a population larger than
10 are plotted. (Note many other species can appear thanks to replication errors at
each generation.) (a): Corresponding to the recursive state of Fig. 5.2a, where the
three species connected by thick arrows are the top 3 species in Fig. 5.2b, obtained
universally. (b) A schematic example of mutually catalytic network in our model.
The core network for the recursive state is shown by circles, while parasitic mole-
cules (X,Y ,..) connected by broken arrows, are suppressed in the (quasi-)recursive
state

reaction networks. The unveiled logic for the maintenance of a recursive state
is summarized as follows.

(a) Stabilization by intermingled hypercycle network: The 5–12 species
in the recursive state form a mutually catalytic network, for example, as
in Fig. 5.6. This network has a core hypercycle network, as shown in thick
arrows in Fig. 5.6). As shown in the figure, such core hypercycle has a
mutually catalytic relationship, as “A catalyzes B, B catalyzes C, and
C catalyzes A.” However, they are connected with other hypercycle net-
works such as G → D → B → G, and D → C → E → D, and so forth.
The hypercycles are intermingled to form a network. Coexistence of a core
hypercycle and other attached hypercycles are common to the recursive
states we have found in our model. This intermingled hypercycle network
(IHN) leads to stability against parasites and fluctuations.

Assume that there appears a parasitic molecule to one species in the
member of IHN (say X as a parasite to C in Fig. 5.6b). The species X may
decrease the number of the species C. If there were only a single hypercycle
A → B → C → A, the population of all the members A,B,C would be
easily decreased by this invasion of parasitic molecules, resulting in the
collapse of the hypercycle. In the present case, however, other parts of the
network (say, that consisting of A,B,G,D in Fig. 5.6b), compensate the
decrease of the population of C by the parasite, so that the population of A
and B do not decrease so much. Then, through the catalysis of the species
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B, the replication of the molecule C progresses so that the population of
C is recovered. Hence the complexity in the hypercycle network leads to
stability against the attack of parasite molecules.

Next, IHN is also relevant to the stability against fluctuations. It is
known that in the population dynamics of a simple hypercycle the popu-
lation of one (or a few) molecule species may approach 0, and then grow
again. For a continuum model, the population density can come arbitrar-
ily close to zero, and then grow again. This type of recurrent dynamical
behavior is known as a heteroclinic cycle (Hofbauer & Sigmund, 1988).
In a stochastic model, however, the number of the some molecule species
may sometimes become exactly zero, because of fluctuations. Once this
species becomes extinct, its recovery by replication error would be hope-
less. Hence, to achieve stability against fluctuations, oscillations in which
some of the molecule numbers become very low should be avoided. In-
deed, by forming an IHN, such oscillatory instability is avoided or reduced.
Thanks to the coexistence of several hypercycle processes, instability in
each hypercycle cancels out, leading to fixed-point dynamics or to oscil-
lation with a smaller amplitude. Thus the danger that the population of
some molecules in the hypercycle goes to zero because of fluctuations is
reduced. Stabilization obtained from the coexistence of many species is
discussed as “homeochaos” (Kaneko & Ikegami, 1992), while the possibil-
ity of stable reproduction in reaction network is also discussed in (Ikegami
& Hashimoto, 1996).

(b) Minority in the core hypercycle: Now we study more closely the pop-
ulation dynamics of a core hypercycle. Here, the number of molecules Nj

of molecule species j is in the inverse order of their catalytic activity cj ,
that is, NA > NB > NC for cA < cB < cC . Because a molecule with
higher catalytic activity helps the synthesis of others more, this inverse
relationship is expected. Here, the C molecule is catalyzed by a mole-
cule species with higher activities but larger populations (A). Hence, the
parasitic molecule species cannot easily invade to destroy this mutually
catalytic network. Since the minority molecule (C) is catalyzed by the
majority molecule (A) (with the aid of another molecule (B)), a large
fluctuation in molecule numbers is required to destroy this network.

The stability in the minority molecule is also accelerated by the com-
plexity in IHN. If the catalytic activity of C is highest, the recursive state
here is mainly achieved by catalysis of the molecule C. On the other hand,
this also implies that C is the minority in the core network. (The pop-
ulation of the molecule C is usually larger than D, E, etc. in Fig. 5.6b,
though.) Hence the attack to C molecule is most relevant to destroy this
recursive state. In the IHN, this minority molecule species is involved in
several hypercycles as in C in Fig. 5.6b. On the one hand, this confirms
the prediction made in Sect. 4.5, according to which more species are
catalyzed by the minority molecules. On the other hand, this also leads
to the suppression of fluctuations in the number of minority molecules,
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as will be discussed in Sect. 5.4.4. With the decrease of the fluctuation,
the probability that the minority molecules becomes extinct is reduced so
that the recursive state is robust.

5.4.3 Switching

Next, we discuss the mechanism of switching. In the phase (3), the recursive
production state is destabilized, when the number of parasitic molecules in-
creases. For example, the number of the molecule C may decrease because of
fluctuations, while the number of some parasitic molecules (X) that are not
originally in the catalytic network but are catalyzed by C, may increase. The
frequency of such a fluctuation is larger when the total population of molecules
in a cell is smaller. If such a fluctuation appears, other molecule species in the
original network successively lose the main source of molecules that catalyze
their synthesis. Then the new parasitic molecule X occupies a large portion
of populations. However, the molecule’s main catalyst (C) soon disappears,
the synthesis of X is stopped, and this species X is taken over by some mole-
cules Y that are catalyzed by X. Then, within a few generations, dominant
species changes, and recursive production does not continue. Indeed, this is
what occurred in the phase (1). Then the parasitic molecule X is taken over
by some other Y . This take-over by parasites continues successively, until a
new (or same) recursive state with hypercycle network is formed. Hence the
fluctuation in the minority molecule in the core network is relevant to the
switching process.

As discussed in Sect. 3.6, switching over several quasi-stationary states has
been also studied as chaotic itinerancy (Kaneko, 1990, 1994a; Tsuda, 1991ab;
Kaneko & Tsuda, 2003), while Jain and Krishna (2002) analyzed transitions
over autocatalytic sets in a linear reaction network, by introducing the mu-
tation of the network only after the temporal evolution of growth dynamics
reaches a stationary state.

5.4.4 Fluctuations

Finally, we investigate the fluctuations of the molecule numbers of each of
the species. Since the number of molecules is not very large, the fluctuations
over the generations can possibly have a significant impact on the dynamics
of the system. To quantify the sizes of these fluctuations, we have measured
the distribution P (Ni) for each molecule species i, by sampling over division
events. Our numerical results are summarized as follows:

(I) For the fast switching states, the distribution P (Ni) satisfies the power
law P (Ni) ≈ N−α

i , with α ≈ (1 ∼ 2).5

5 The exponent α depends on the parameter and species [Kaneko, 2005a].
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Fig. 5.7. The number distribution of the molecules corresponding to the network in
Fig. 5.2. The distribution is sampled from 1000 division events. From right to left,
the plotted species are 11,109,13,155,176,181,195,196,23 of Fig. 5.6a. Log–Log plot

(II) For recursive states, the fluctuations in the core network (i.e., 13,11,109 in
Fig. 2) are typically small. On the other hand, species that are peripheral
to but catalyzed by the core hypercycle have log-normal distributions
P (Ni) ≈ exp(− (logNi−logNi)

2

2σ ), as shown in Fig. 5.7. By measuring the

variance (Ni − Ni)2 (· · · denotes the average over time), it is shown that
the variance in the core network is small, especially for the minority
species (i.e., 13) (Kaneko, 2005a).

The origin of the log-normal distributions here can be understood by the
argument already given in Sect. 5.1: for a replicating system, the growth of the
molecule number Nm of the species m is given by dNm/dt = ANm, where A is
the average effect of all the molecules that catalyze m. We can then obtain the
estimate d log Nm/dt = a + η(t). By replacing A with its temporal average a
plus fluctuations η(t) around it. If η(t) is approximated by a Gaussian noise,
P (Nm) follows a log-normal distribution (this argument is valid if a > 0).
For the fast-switching state the growth of each molecule species is close to
zero on the average and in this case, by considering the Langevin equation
with boundary conditions, the power law is obtained as discussed in (Kaneko,
2005a).

By studying a variety of networks, the observed distributions of the
molecule numbers can be generally summarized as (1) Distribution close to
Gaussian form, with relatively small variances in the core (hypercycle) of the
network such as (A,B,C) of Fig. 5.6b. (2) Distribution close to log-normal,
with larger fluctuations for a peripheral part of the network with others; (3)
Power-law distributions for parasitic molecules that appear intermittently.
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5.5 Experiment

Let us discuss the synthesis of a cell that reproduces itself. To construct such
a cell, we need the following steps:

(1) a system consisting of chemicals (polymers) with some catalytic activity,
which reproduces itself as a set, even though the reproduction may not
be precise.

(2) a membrane that splits the cell’s internal system from outside grows
through chemical reactions, so that it divides when its size is large enough.

(3) within the membrane the reaction system (1) works, while the synthesis
of the membrane is coupled to this internal reaction system.

(4) the internal reaction process and the synthesis of membrane work in some
synchrony, so that a system with membrane and internal chemicals is
reproduced recursively.

Here we choose liposome (vesicle) as a “membrane” for a self-replicating cell,
while the constituents include protein (enzyme) and nucleotides (RNA and
DNA). If the synthesis of membrane and other internal reactions (that are
also involved for the former) sustain some synchrony, we can construct a
protocell (or protolife) artificially.

The experimental study at the step (1) is already discussed in Chap. 4. For
the step (2), replication of liposome has been successful, while for the step (3),
transcription of RNA, and protein synthesis in a liposome have been achieved
separately. Here we discuss ongoing experiments on steps (2) and (3).

5.5.1 Replicating Liposome

All existing cells are surrounded by a lipid bilayer. Their in- and out-side
are separated by this membrane, within which the membrane catalytic reac-
tions progress. The synthesis of such a cell structure is an important problem
(Bachman et al., 1992; Szostak et al., 2001; Hanczyc et al., 2003).

In general, oil molecules have a part that avoids the contact with water
molecules. Hence they often form a bilayer membrane with this hydrophobic
part inside the membrane. This membrane often forms a closed spherical
structure. A closed unit with lipid-bilayer structure is called a liposome or
a vesicle.6 If the constituent molecules are supplied, the membrane surface
increases. Because of the balance with the surface tension, this growth cannot
continue forever, and a large membrane becomes unstable. In some case, this
results in division of the vesicle. Indeed Luisi and others succeeded in observing
such division process of liposomes (Bachmann et al., 1992).

Quite recently, Sugawara and collaborators succeeded in synthesizing a sys-
tem with stable replication of liposome that recursively replicates over several
6 The terms vesicle and liposome are used interchangeably, mostly according to the

field of research.
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Fig. 5.8. Schematic representation of the replication process of a liposome. Drawings
reproduced under the courtesy of Takakura, Shoda, Toyota, and Sugawara

generations (Takakura et al., 2003; Takakura & Sugawara, 2004). Schematic
illustration of their self-replicating membrane system is shown in Fig. 5.8.
The original liposome is composed of amphiphile V. Now for the growth of
liposome, some nutrients in the solution have to be transformed into the am-
phihile V. Here, a precursor molecule V′ is put in the solution, which flows
into the liposome, while within the liposome, an enzyme E to transform V′

to V exists. After the synthesis of V within the liposome, it fuses into the
membrane. With this process the liposome increases its size, as displayed in
Fig. 5.9. As it grows, there is “budding” of liposome as shown, and when the
budded part is sufficiently large, the liposome splits. This growth process con-
tinues in the daughter liposome so that the next generation of liposome splits
from it. As shown in Fig. 5.9, the process from mother to daughter and then
to granddaughter liposome is observed, while the succession of this process is
statistically confirmed by using the flow cytometry.

5.5.2 Protein Synthesis within a Liposome

The second necessary step to construct an artificial replication cell is to achieve
synthesis of nucleic acids (such as RNA or DNA) as well as proteins within the
liposome. This is a difficult task, since the environment within the liposome
is very much “oily.”

Quite recently the process of DNA→mRNA and separately the process
of mRNA→ protein were realized by Yomo’s group as schematically shown
in Fig. 5.10 (Yu et al., 2001). (See also (Noireaux and Libchaber, 2004) for
cell-free expression system encapsulated in a liposome). Within a liposome
of diameter 1 µm there is an autonomous replicating system consisting of
RNA that produces its RNA syntheses. Here RNA and the enzyme mutually
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Fig. 5.9. Division process of liposome measured by differential interference contrast
optical microscopy. Morphological changes in giant vesicle (liposome) are displayed.
The white bars show 10 µm. For details of the experimental condition, see Takakura
and Sugawara (2004). Reproduced with the courtesy of Takakura and Sugawara

Fig. 5.10. Schematic representation of RNA and protein synthesis in a liposome.
Drawings by Sato et al., (reproduced under their courtesy). For details see (Sato
et al. 2005)
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Fig. 5.11. Synthesis of fluorescent proteins in a liposome, detected by fluorescence
microscopy. The left figure shows the existence of liposome. The figure on the left-
hand side shows a liposome. The figure on the right-hand side is an image by flu-
orescence microscopy, where fluorescent proteins are clearly detected within the
liposome. Based on the result by Sato et al. (2005). Reproduced by the courtesy of
Sato et al.

synthesize each other as in the experiment of Sect. 4.5. This was possible by
modifying genes so that a higher rate of synthesis of enzymes (that catalyze
the RNA synthesis) is possible.

Furthermore, Sunami et al. (2005) have also succeeded in synthesizing
proteins from the mRNA. By making the corresponding protein fluorescent,
they have confirmed that the synthesis indeed occurs within the liposome
by the measurement of fluorescence as shown in Fig. 5.11. This rate of pro-
tein synthesis is so high that the fluorescence of protein is measured by flow
cytometry. In Fig. 5.12, we show the two-dimensional distribution of the size
of liposome (longitudinal axis) and fluorescence intensity (horizontal axis).
The liposomes at the left region correspond to those that could not synthesize
proteins well. Hence, by selecting liposomes by using the cell sorter, one can
select “good” RNA to have a higher protein synthesis rate within the lipo-
some. Now the evolution to a better RNA is possible. (Sunami et al., 2005;
Sato et al., 2005).

This selection process can also yield a better “oil” molecule for the lipo-
some. Then evolution will ensure that the liposome is well suited to the protein
synthesis within. By repeating the same process the third step (of Sect. 5.1)
leading to the realization of an artificial cell will be achieved.

Since the protein synthesis efficiency in liposomes in this system has
reached 103 molecules per gene, which is comparable to that in a living cell,
more complex genetic reactions can occur. Indeed they have succeeded in car-
rying out a cascading genetic network in liposomes (Ishikawa et al., 2004).
Indeed, they have encapsulated a plasmid encoding the gene network “SP6
promoter” → “T7 RNA polymerase” → “T7 promoter” → GFP gene into
liposomes, to detect the synthesis of GFP. As long as the networks are not
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Fig. 5.12. The distribution of fluorescence (corresponding roughly to the abun-
dance of the GFP protein) versus the size of the liposome, obtained from the same
experiment as in Fig. 5.11. The number of GFP molecules synthesized and inter-
nal aqueous volume for each liposome are estimated by flow cytometry (dots). The
internal aqueous volume is estimated on the basis of the red fluorescent protein,
which was added to the solution before encapsulation. Gray dots represent back-
ground noise, which is detected from protein synthesis in liposome without GFP
gene. The inset shows the distribution of GFP molecules among liposomes for the
internal aqueous volume from 50 µm3 to 100 µm3. Reproduced from Sunami et al.
(2005), under the courtesy of the authors

too complex, genetic networks can proceed with the current level of protein
synthesis.

Finally, we discuss the distribution of protein abundances. Since the fluo-
rescent protein is synthesized with the aid of other molecules (such as RNA),
the fluctuations should be large, and the distribution will be close to log nor-
mal, if the argument of Sect. 5.2 is valid. The distribution obtained from the
experiment is given in Fig. 5.12. Although it is not easy to confirm if the
size distribution is log normal as yet, at least it is sure that the distribution
is far from Gaussian, and has a large tail for the abundant size. Indeed by
taking the logarithmic scale for the abundance, the distribution is close to be
symmetric, which suggests a log-normal-type distribution.

The above result was obtained for protein abundances within a liposome
synthesized artificially. In a living cell, do fluctuations obey a Gaussian distri-
bution? Or, is the distribution still log normal? Indeed the data suggest the
latter answer, as we shall discuss in the next chapter.

5.5.3 For the Synthesis of Artificial Replicating Cell

The last step leading to the synthesis of an artificial replicating cell is to
combine the replication of liposome with that of the proteins it contains. Here
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it is important to balance the two processes to obtain recursive production. If
the replication of the membrane is faster, then the inside ingredients will be
sparse, while if the protein synthesis is faster the density of molecules will be
too high to destroy the liposome. To achieve this balanced replication, some
link between the liposome growth and the internal reaction will be required.
Unfortunately, this step has not yet been completed.

One might think that there will be a long way to achieve the autonomous
replication of artificial cell. However, once a minimal replication process with
any loose reproduction is realized, then such “cell” can be an object for Dar-
winian selection process. By selecting a relatively “better” reproducing cell
through cell sorter, a more reliable replication system will be obtained.

5.6 Relevance to Biology

Understanding how recursive production of cells arises is important not only
with respect to the question of the origin of life, but also in order to understand
the characteristics of existing cells. This second aspect will be discussed in the
next chapter (Sect. 6.5).

Another important question is with regards to that of evolvability. How
does the primitive cell with loose recursive production evolve into the present
finely tuned cell? Is the minority control important as discussed in Chap. 4?
We have recently carried out several simulations to discuss the evolution of
the network (Kaneko, 2005a). For example, we set the catalytic activity as
c(i) = i/k so that the activity is monotonically increasing with the chemical
species index, and then instead of global change to any molecule species by
replication error, we modify the rule so that the change occurs only within
a given range i0(
 k), in order to prohibit sudden change to molecules with
very high activity and only to allow for gradual changes. In other words, when
the molecule species j is synthesized, with the error rate µ, the molecule j +j′

with j′ a random number over [−i0, i0] is synthesized.
The network is fixed and is not changed through the simulation. How-

ever, by local change of structural error, the range of species evolves over
generations. Here we take species only with i < iini in the initial condition,
and examine whether the evolution to a network with higher catalytic activ-
ities (i.e., with much larger i) progresses or not. In other words, we examine
whether the indices i in the network increase successively or not. An example
of the evolution is shown in Fig. 5.13, where the catalytic activity increases
through successively switching from one (quasi-)recursive state (consisting of
species within the width of the order 2i0) to another.

Here the switching occurs as in phase (3). With the pressure for selection
of the protocells, cells with a new (quasi-)recursive state are selected, which
consist of molecules with higher catalytic activities (i.e., with larger indices
of species). Again each recursive state consists of IHN, and the species with
the highest catalytic activity in the core hypercycle has the lowest population
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Fig. 5.13. Evolution of species in a cell: Those species i with N(i) > 100 are
plotted with the vertical axis as the species index i, and the longitudinal axis as the
generation. The total number of species k is 5000, where c(i) is chosen as c(i) = i/k,
so that it ranges from 0.0002 to 1.0 equally distributed. The number of molecules
in a cell is set at 8000, so that the cell divided when the total molecule number is
16,000. The path rate is set at ρ = 0.1. The replication error for the species occurs
within the range of species [i − 100, i + 100], instead of global selection from all
species. Totally there are Mtot = 10 cells so that one of 10 cells is eliminated when
one cell is divided into two

(minority species). Once the population of such species is decreased because
of fluctuation, there occurs a switch to a new state that has higher catalytic
activities, and the species indices successively increase. Hence, evolution from
a rather primitive cell consisting of low catalytic activities to that with higher
activities is possible, by taking advantage of minority molecules.

Now the itinerancy over several recursive states leads to evolvability. Here
the fluctuation in the minority molecules is a trigger to the instability of the
recursive production state. Such relationship between fluctuation and evolv-
ability will be discussed again in Chap. 10, together with the results of labo-
ratory experiments.

Note that this switching cannot occur if the total number of molecules N
is small. When the number is too small, the mutation of paths to destroy the
recursive state is very unlikely to occur. On the other hand, if the total number
of molecules is too large, it is harder to establish a recursive state, because
of a larger possibility to change the network. Hence, the realization of both
recursive production and evolution require an optimal value of the number
of molecules in a protocell. Similarly, it will be important to determine what
is the minimal (or optimal) size of cells, or minimal number of chemicals (or
genes) to realize both sustainability and evolvability of a cell.



6

Universal Statistics of a Cell
with Recursive Growth

6.1 Question to Be Addressed

Question: A cell takes nutrient chemicals from the outside and
transforms them into other chemicals, among which catalysts to fur-
ther these reactions are synthesized, while a membrane that roughly
separates a cell from the outside is also to be synthesized. These
syntheses of chemicals need to respect some degree of synchroniza-
tion. For example, for a higher growth rate of a cell, it is better
to take in more nutrients, while the catalysts for other reactions
have to follow up. Both catalysts and nutrient chemicals exist in
some balance to maintain recursive production. How is such effi-
cient recursive production possible while keeping the diversity of
other chemicals including catalysts? Is there some universal statis-
tics in abundances of chemicals and in the network for a cell with
steady recursive growth?

In the last chapter, we have discussed the problem of recursive production,
by using a unit of replicating molecules (Level II model in Sect. 5.2). In real-
ity, synthesis of each molecule requires some other molecules. Instead of the
simple direct autocatalytic production process adopted in Chap. 5, biochem-
ical reaction consists of a huge number of catalytic reaction process, where
a huge number of molecule species participate. Then how is such balanced
replication possible? Is there some universal statistical behavior inherent in
a system that can grow with recursive production as a collection of catalytic
reactions?

Currently this set of questions has been addressed in two ways: (1) what is
the topology of the reaction network structure (static aspect) and (2) what is
the number distribution of chemical species and their dynamics? Of course, we
need combine the two aspects to fully understand the condition for recursive
production of a cell.

There is currently a very strong interest concerning the reaction network
structure. For example, Barabasi et al studied the metabolic reaction network,
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without going into details of the topology (Barabasi & Albert, 1999; Jeong
et al., 2000). Write down all (known) metabolic reaction equations. Here, the
rate of reactions is neglected: only the presence or absence of each reaction
equation is considered. Then compute how many times a specific molecule
species appears in such reaction equations. If this number is large, the mole-
cule species is related with many biochemical reactions. For example, H2O
appears in a large number of reactions in either the left-handside or the right-
hand side of the equation. Now the number of occurrence is treated as the
number of connection paths in the reaction network. CO2 must have a high
number also. Among more complex molecules ATP must have a relatively high
number. From these data they obtained the histogram P (n) of the number
of molecules species that appears n times in the equations. Of course, this
distribution gradually decreases with the increase of n. From the data they
obtained P (n) ≈ n−α with α ≈ (2.3 ∼ 2.7) (Jeong et al., 2000).

If a network has a specific scale for the size of connection paths, this distrib-
ution decays exponentially as P (n) ∝ exp(−n/n0). The observed distribution
decays more slowly with n than this exponential decay. The observed power
law distribution suggests that there is a relatively large number of molecule
species that are involved in many reactions. Since the power law distribution
does not have a specific scale of the size of connection in the network, such
a network is also called a scale-free network (Barabási & Albert, 1999). In
statistical physics, the power law distribution without specific scale is often
observed when there is a hierarchical structure.

In other words, the scale-free network may suggest the following structure.
In a network, there is a hub part that is connected with many other nodes, and
then there is a little weaker hub that is connected to a smaller range of nodes,
and so forth. This kind of hierarchical network structure is also observed in
the link of Web, Internet connection. In these examples, the network structure
is understood by assuming that the network is developed so that a new link
is likely to be added to a node that is already well connected. If a similar
argument is also applicable to the metabolic network, this may give some new
ideas on the evolution path of the network until its present form.

Of course, these distributions on the connectivities in the reaction path are
just one aspect of the network structure. For example, we detect larger and
smaller loops in the metabolic network, while some linear chains of reactions
are detected. Some kind of modular structure may exist. Distribution of paths
is not sufficient to represent such structures. Furthermore, how such network
structure has evolved is not yet fully explored.

To this day, most studies of the metabolic network focused on its static
topological structure. In the reaction network dynamics, however, the number
of molecules is different for each species. Hence on each “node” of the network,
one should assign the abundances of the corresponding molecule species. Ac-
cordingly, some reactions occur much more frequently than others. In other
words, some paths in the network are “thicker.” Besides the static network
structure, the statistics of abundances as well as the possible relationship
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between abundance statistics and static network structure also need to be
studied.

In this chapter, we first investigate the statistics of abundances of the
chemical components of a cell. The discovery of universal statistical laws leads
to that of a hierarchical structure of reaction dynamics. We discuss how re-
cursive production of a cell is possible amidst large fluctuations arising from
the finiteness of the number of molecules.

6.2 Logic

Following the study of the last chapter, we study the statistical characteristics
that a cell with recursive growth has to satisfy. In contrast to the last chapter,
however, we do not start from a replicating unit, since the replication of a
molecule appears as a result of several catalytic reactions.

Through the membrane, some nutrient chemicals flow in, which are succes-
sively transformed to other chemicals through this catalytic reaction network.
For a cell to grow recursively, a set of chemicals has to be synthesized for the
next generation. Each chemical for its synthesis requires some other chemi-
cals as a catalyst. Then, generally speaking, there should exist some mutual
relationship among molecules to catalyze each other.

The number of molecule species is huge in a cell, while the number of
each molecule species is not necessarily large. Then fluctuations in molecule
number are inevitable, since reactions occur through stochastic collision. The
number of some molecules may go to zero, which sometimes may be dangerous,
since the molecule may be essential as a catalyst to the synthesis of some
molecules. Then, it is not trivial how recursive production of molecules in a
cell is sustained.

Requiring that all the molecule species within a cell keep an identical
number after recursive production would be too demanding. The chemical
compositions are expected to vary between cells obtained by division, where
some fluctuations always occur. Even if the reproduction of a cell is not faith-
ful, the catalytic activities should be sustained to keep reproduction of cells.
In this sense we need to understand how an ensemble of molecules keep cat-
alytic activity and loose reproduction amid large fluctuations in the chemical
compositions.

The biochemical reactions for metabolism, synthesis of membrane, and
nucleic acid keep some synchrony. In a cell, some transported nutrients are
successively transformed to some other chemicals that include catalysts for
other reactions. If the transport of nutrients is faster, growth will also be
faster. However, with too many nutrients, catalysts may become too few, to
the point where the reaction may stop.

Let us assume that all chemicals have roughly the same concentration.
Then the probability for each molecule to meet its catalysts will be lower, and
the effective transformation of nutrients may become impossible. Furthermore,
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the reaction events will progress in a completely random fashion since there
are many molecule species that are low in concentration. As a result, chemical
compositions will vary substantially between generations.

We conclude that some structuring within the abundances of chemicals
should improve the effective transformation of nutrients. Indeed, in catalytic
reactions, there is a successive structure, as indicated by the existence of cata-
lysts for the reactions to transform nutrients, then catalysts for such catalysts
for nutrients, and then catalysts for catalysts for catalysts for nutrients, and
so on, as this cascade continues. It would then be expected that these levels
of catalysts do exist in different levels of abundances. On the other hand, if
such biased distribution in abundances of chemicals exist, the reaction proba-
bility is also not homogeneous for each reaction. This will lead to decrease the
random change of concentrations, as compared with the case of almost equal
distribution in numbers.

Hence, for an effective use, some hierarchical structure among catalysts
is expected, with regards to the abundances. Indeed, by taking a specific cell
model, we explicitly demonstrate the existence of such cascade structure, when
recursive production of chemicals is sustained. When a hierarchical structure
exists, there often appears some power law in the statistics of abundances over
all chemical species. The probability ρ(x)dx that the abundance of a chem-
ical is between x and x+ dx then gives some characteristics of the possible
structure in the reaction dynamics, and it is expected that a power law in
abundance statistics may appear. Indeed, from several model simulations, we
find universal power law statistics for a cell that grows efficiently and recur-
sively.

The next question concerns fluctuations. As discussed in the last chap-
ter, the chemical abundance of each molecule is a fluctuating quantity, since
the collision process of molecules is basically stochastic. Still, the argument
we used in the last chapter to derive the log-normal distribution cannot be
directly applied, since we assumed then the existence of a replication unit.
However, the “multiplicative” nature of catalytic reaction as mentioned in
Sect. 5.2 is general.

Now recalling the above hierarchical structure, consider the successive cat-
alytic process as a chemical in i-th group is catalyzed by (i + 1)-th, and that
in the (i+1)-th group is catalyzed by (i+2)-th, and so forth. In other words,
let us assume that a “modular structure” with groups of successive catalytic
reactions is self-organized. With this cascade of catalytic reactions, the fluc-
tuations are propagated “multiplicatively”; for example, the concentration
fluctuation of a chemical in the (i + 2)-th group influences multiplicatively
on that of (i + 1)-th, which then influences multiplicatively on that of the
i-th, and so forth. By taking the logarithm of concentrations (i.e., log xm),
these successive multiplications become successive additions of fluctuations.
Considering the central limit theorem, the additive fluctuations for log xm im-
plies that the dynamics of log xm is driven by Gaussian noise, resulting in the
log-normal distribution of xm.
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This argument is rather primitive, and we need to check whether it really
works in a model and in experiments. In the following, we will investigate these
statistical laws by considering a class of catalytic reaction network models and
compare the results with experimental data measured in natural cells.

6.3 Model

To investigate the above questions, we adopt a simple model of cellular dynam-
ics that captures only its basic features. It consists of intracellular catalytic
reaction networks that transform nutrient chemicals into proteins. By study-
ing a class of simple models with these features, we demonstrate the existence
of universal statistical laws on the abundances of chemicals for a cell that
grows recursively (Furusawa & Kaneko, 2003a).

Of course, real intracellular processes are much more complicated, but
if the statistical laws to be presented are universal, they should be valid,
regardless of how complicated the actual processes are. Hence it is relevant
to study a model as simple as possible, when trying to find such laws and
compare with real data.

Consider a cell consisting of a variety of chemicals. The internal state of
the cell can be represented by a set of numbers (n1, n2, . . . , nk), where ni is
the number of molecules of the chemical species i with i ranging from i = 1 to
k. For the internal chemical reaction dynamics, we chose a catalytic network
among these k chemical species, where each reaction from some chemical i to
some other chemical j is assumed to be catalyzed by a third chemical 
, that
is, (i + 
 → j + 
). The rate of increase of nj (and decrease of ni) through
this reaction is given by εnin�/N

2, where ε is the coefficient for the chemical
reaction. For simplicity all the reaction coefficients were chosen to be equal,1

and the connection paths of this catalytic network were chosen randomly such
that the probability of any two chemicals i and j to be connected is given by
the connection rate ρ (Kaneko & Yomo, 1997).

Some nutrients are supplied from the environment by diffusion through
the membrane (with a diffusion coefficient D), to ensure the growth of a cell.
Through the catalytic reactions, these nutrients are transformed into other
chemicals. (Note that the nutrient chemicals have no catalytic activity, since
they are not products by intracellular reactions. Indeed, catalytic reactions do
not occur in the environment.) Besides these nutrients, some of these chemicals
may penetrate2 the membrane and diffuse out while others will not. With
the synthesis of the impenetrable chemicals that do not diffuse out, the total
number of chemicals N =

∑
i ni in a cell can increase, and accordingly the cell

1 We have examined the case where the coefficients are distributed, but the results
to be discussed are not altered.

2 Even if the reaction coefficient and diffusion coefficient of penetrating chemicals
are not identical but distributed, identical results are obtained.
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volume will increase. We study how this cell growth is sustained by dividing a
cell into two when the volume is larger than some threshold. For simplicity the
division is assumed to occur when the total number of molecules N =

∑
i ni

in a cell exceeds a given threshold Nmax. Each daughter cell inherits one half
of the mother cell’s molecules, chosen randomly.

In the case with N � k (i.e., continuous limit), the reaction dynamics is
represented by the following rate equation:

dni/dt =
∑
j,�

Con(j, i, 
) ε nj n�/N
2 −

∑
j′,�′

Con(i, j′, 
′) ε ni n�′/N
2

+ Dσi(ni/V − ni/N) , (6.1)

where Con(i, j, 
) is 1 if there is a reaction i + 
 → j + 
, and 0 otherwise,
whereas σi is set to 1 if the chemical i can penetrate the membrane, and 0
otherwise. The third term describes the transport of chemicals through the
membrane, where ni is a constant, representing the number of the i-th chem-
ical species in the environment and V denotes the volume of the environment
in units of the initial cell size. The number ni is nonzero only for the nutrient
chemicals.

Here, however, we are also interested in the fluctuations of chemicals be-
cause of the finiteness of N . Hence, we adopt a stochastic simulation as in
Chaps. 4 and 5. In our numerical simulations, we randomly pick up a pair of
molecules in a cell, and transform them according to the reaction network. In
the same way, diffusion through the membrane is also computed by randomly
choosing molecules inside the cell and nutrients in the environment.

6.4 Result

If the total number of molecules Nmax is larger than the number of chemical
species k, the population ratios {ni/N} are generally fixed, since the daughter
cells inherit the chemical compositions of their mother cells. For k > Nmax,
the population ratios do not settle down and can change from generation to
generation. In both cases, dependence of the intracellular reaction dynamics
on the membrane diffusion coefficient D is similar, though.3

As D is increased, the growth speed of a cell is increased as shown in
Fig. 6.1, since the intake of nutrients is hastened. The increase of the growth
speed with D is quite natural. However, we found that there is a critical
value D = Dc beyond which the cell cannot grow. For D > Dc, a cell can-
not grow continuously. Even if it can grow and divide a few times, it stops
3 Instead of changing D, the same change of behaviors is observed when changing

the connection rate ρ. Instead of a critical D (to be described), there is a critical
value ρ = ρc, where in the case ρ < ρc the cell stops growing. The power law
distribution of chemical abundances with an exponent−1 found at Dc appears at
ρ = ρc also.
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Fig. 6.1. The growth speed of a cell and the similarity between the chemical com-
positions of the mother and daughter cells, plotted as a function of the diffusion
coefficient D. The growth speed is measured as the inverse of the time for a cell
to divide. Following Sect. 5.4, the degree of similarity between two different states
m (mother) and d (daughter) is measured as the scalar product of k-dimensional
vectors H1(nm,nd) = (nm/|nm|) · (nd/|nd|), where n = (n1, n2, . . . , nk) represents
the chemical composition of a cell and |n| is the norm of n, as defined in Sect. 5.3
(see Fig. 5.4). Both the growth speed and the similarity are averaged over 500 cell
divisions. Note that the case H1 = 1 indicates an identical chemical composition
between the mother and daughter cells

growing then. This is explained as follows. When D > Dc, the flow of nutri-
ents from the environment is so fast that the internal reactions transforming
them into chemicals sustaining “metabolism” cannot keep up. In this case all
the molecules in the cell will finally be substituted by the nutrient chemicals
and the cell stops growing since the nutrients alone cannot catalyze any reac-
tions to generate impenetrable chemicals, while the diffusive transport stops
as the nutrient concentration in a cell reaches the level at the environment.
Hence, continuous cellular growth and successive divisions are possible only
for D ≤ Dc. As shown in Fig. 6.1, the growth speed of a cell is maximal at
D = Dc. This suggests that a cell whose reaction dynamics are in the critical
state should be selected by natural selection.

Second, we discuss the similarity of chemical compositions between the
mother cell and the daughter cell. To characterize the similarity of cell com-
positions by divisions, we again use the quantity introduced in Sect. 5.3. As
plotted in Fig. 6.1, the similarity is maximal around D ∼ Dc.

When the diffusion coefficient D is sufficiently small, the internal reactions
progress faster than the flow of nutrients from the environment, and all the
existing chemical species have small numbers of approximately the same level.
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There, the similarity between the mother and daughter cells is low, because of
the stochastic change of chemical abundances. As D approaches Dc, the abun-
dance of nutrients increases, and the abundance of those that are synthesized
effectively from the nutrients increases. Such inhomogeneous abundances by
chemical species is preserved over generations, leading to a higher similarity
as given in Fig. 6.1.

For k > N , the chemical compositions differ significantly from genera-
tion to generation when D 
 Dc. When D ≈ Dc, several semistable states
with distinct chemical compositions appear. Daughter cells in the semistable
states inherit chemical compositions that are nearly identical to their mother
cells over many generations, until fluctuations in molecule numbers induce a
transition to another semistable state.

To sum up, the most faithful transfer of the information determining a
cell’s intracellular state is at the critical state D ∼ Dc. In this state, chemical
compositions of cells are well transferred to offspring through divisions, amid
fluctuations, and furthermore the growth of a cell (division speed) is maximal.
For these reasons it is natural to conclude that evolution favors a critical state
for the reaction dynamics.

Accordingly, we study the statistics of the abundances of chemicals focus-
ing on the case with D ∼ Dc. Here we are interested in the inhomogeneity
of abundances by chemical species. The number of some molecule species is
quite high, while some others are not, at around D ∼ Dc. As a measure of
such inhomogeneity in abundances, we have computed the rank-ordered num-
ber distributions of chemical species. They are plotted in Fig. 6.2, where the
ordinate indicates the number of molecules ni and abscissa shows the rank
determined by ni. As shown in the figure, the slope in the rank-ordered num-
ber distribution increases with an increase of the diffusion coefficient D. We
found that at the critical point D = Dc, the distribution converges to a power
law with an exponent −1. This power law with the exponent −1 is observed
independently of the choice of the network, as long as D ∼ Dc (Furusawa &
Kaneko, 2003a). The power law in the abundance–rank relationship was first
studied in linguistics as the frequency of appearance of words by Zipf (1949),
and is called Zipf’s law.

The power-law distribution at this critical point is maintained by a hierar-
chical organization of catalytic reactions, where the synthesis of higher ranking
chemicals is catalyzed by lower ranking chemicals. For example, major chem-
ical species (with, e.g., ni > 1000) are directly synthesized from nutrients and
catalyzed by chemicals that are slightly less abundant (e.g., ni ∼ 200). The
latter chemicals are mostly synthesized from nutrients (or other major chemi-
cals), and catalyzed by chemicals that are much less abundant. In turn, these
chemicals are catalyzed by chemicals that are even less abundant, and this
hierarchy of catalytic reactions continues until it reaches the minor chemical
species (with, e.g., ni < 5). In fact, in the case depicted in Fig. 6.3, a hierar-
chical organization of catalytic reactions with 5 ∼ 6 layers is observed at the
critical point.
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Fig. 6.2. Rank-ordered number distributions of chemical species. (a) Distributions
with different diffusion coefficients D are overlaid. The parameters were set as k =
5 × 106, Nmax = 5 × 105, and ρ = 0.022. Thirty percent of chemical species are
penetrating the membrane, and others are not. Within the former ones, chemical
species are continuously supplied to the environment, as nutrients. In this figure,
the numbers of nutrient chemicals in a cell are not plotted. With these parameters,
Dc is approximately 0.1. (b) Inset: Distributions at the critical points with different
total number of chemicals k are overlaid. The numbers of chemicals were set as
k = 5 × 104, k = 5 × 105, and k = 5 × 106, respectively. Other parameters were set
the same as those in (a) (Reproduced from Furusawa and Kaneko (2003a)

On the basis of this catalytic hierarchy, the observed exponent −1 can be
explained using a mean field approximation. First, we replace the concentra-
tion ni/N of each chemical i, except the nutrient chemicals, by a single average
concentration (mean field) x, while the concentration of nutrient chemicals S
is given by the average concentration S = 1 − k∗x, where k∗ is the number
of nonnutrient chemical species. From this mean field equation, we obtain
S = DS0

D+ερ with S0 =
∑

j nj/V . With linear stability analysis, the solution
with S �= 1 is stable if D < ερ

S0−1 ≡ Dc. Indeed, this critical value does not
differ much from numerical observation.

Next, we study how the concentrations of nonnutrient chemicals differ-
entiate. Suppose that chemicals {i0} are synthesized directly from nutrients
through catalysis by chemicals j. As the next step of the mean-field approx-
imation, we assume that the concentrations of the chemicals {i0} are larger
than the others. Now we represent the dynamics by two mean-field concen-
trations: the concentration of {i0} chemicals, x0, and the concentration of the
others, x1. The solution with x0 �= x1 satisfies x0 ≈ x1/ρ at the critical point
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Fig. 6.3. Schematic representation of the catalytic cascade. Higher rank chemicals
are mainly catalyzed by lower level ones. This is a schematic representation showing
a rough structure and indeed there are several other cascade paths also

Dc. Since the fraction of the {i0} chemicals among the non-nutrient chemicals
is ρ, the relative abundance of the chemicals {i0} is inversely proportional
to this fraction. Similarly, one can compute the relative abundances of the
chemicals of the next layer synthesized from i0. At D ≈ Dc, this hierarchy of
the catalytic network is continued. In general, a given layer of the hierarchy
is defined by the chemicals whose synthesis from the nutrients is catalyzed by
the layer one step down in the hierarchy. The abundance of chemical species
in a given layer is 1/ρ times larger than chemicals in the layer one step down.
Then, in the same way as this hierarchical organization of chemicals, the in-
crease of chemical abundances and the decrease of number of chemical species
are given by factors of 1/ρ and ρ, respectively. This is the reason for the
emergence of power-law with an exponent −1 in the rank-ordered distribu-
tion. Within a given layer, a further hierarchy exists, which again leads to the
Zipf rank distribution.

In general, as the flow of nutrients from the environment increases, the
hierarchical catalyzation network pops up from random reaction networks.
This hierarchy continues until it covers all chemicals, at D → Dc − 0.4 Hence,
the emergence of a power-law distribution of chemical abundances near the
critical point is quite general, and does not rely on the details of our model,
such as the network configuration or the kinetic rules of the reactions. Instead
it is a universal property of a cell with an intracellular reaction network to
grow, by taking in nutrients, at the critical state, as has been confirmed from
simulations of a variety of models.
4 Dc − 0 here means that D approaches Dc from the side with D < Dc. Since the

cell cannot grow for D > Dc, the behavior at the limit of Dc + 0, that is, from
the side with D > Dc is different.
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We have checked the universality of Zipf’s law by adopting distributed
network connectivity, distributed parameters, and so forth. Our result is ro-
bust against these changes of the model. This power law in abundances seems
to be a quite universal law as long as a cell achieves a recursive growth (i.e.,
relatively faithful reproduction) and efficient growth. Since the current cell
also satisfies relatively faithful reproduction (as well as effective growth for a
suitable condition), the above behavior at D ∼ Dc may be expected to be true
also in a real cell. Then, does Zipf’s law also hold in a natural cell? To inves-
tigate possible universal properties of the reaction dynamics, we examine the
distributions of the abundances of expressed genes (that are the abundances
of the mRNA that produce corresponding proteins). As will be discussed in
Sect. 6.4, the data from several tissues suggest the validity of the present law.

Remark: Equivalently with the Zipf’s law on the abundance-rank relation, the
distribution p(x) of the chemical species with abundance x is proportional to
x−2. This is easily obtained by noting that the rank distribution, that is,
the abundances x plotted by rank n, can be transformed into the density
distribution function p(x), which is the probability that the abundance is
between x and x+ dx. Recalling that dx = dx/dn×dn, there are −(dx/dn)−1

chemical species between x and x+ dx (recall dx/dn < 0 since the rank is in
descending order). Thus, if the abundance–rank relation is given by a power
law with exponent −1, p(x) = −(dx/dn)−1 ∝ n2 ∝ x−2.

6.4.1 Log-Normal Distribution

In the last subsection, we discussed the average abundances of each chemi-
cal, and studied the universal statistic over molecule species (Furusawa et al.,
2005). Since the chemical reaction process is stochastic, each number of mole-
cule differs by cells. For example, if x3 in Sect. 6.2.1 is 3000, it can be 2831,
3203, 2903, 3111,. . . for each cell. Now we study the distribution of each mole-
cule number, sampled over cells. In Fig. 6.4, we plotted the number distribu-
tions of several chemicals in the condition D ∼ Dc. We measure the number
of chemicals when a cell is divided into two. Since the total number of chem-
icals is constant when the cell is divided, the abundances of each chemical
are just proportional to the concentration of each. As shown in Fig. 6.4, the
distribution is fitted quite well by the log-normal distribution, that is,

P (ni) ∝
(

1
ni

)
exp

(
− (log ni − log ni)2

2σ

)
, (6.2)

where ni indicates the average of ni over cells.
This log-normal distribution holds for the abundances of all chemicals,

except for a few chemicals that are supplied externally to a cell as nutrients,
which obey the standard Gaussian distribution. In other words, those mole-
cules that are reproduced in a cell obey the log-normal distributions, while
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those that are just transported from the outside of a cell follow the normal
distribution.

Why does the log-normal distribution law generally hold, in spite of the
threat by the central limit because of addition of several fluctuation terms? We
have discussed already the possible mechanism for the log-normal distribution
in the last chapter. However, there is slight difference here. In the discussion of
the last chapter, there is autocatalytic reaction process, as given by dxi/dt =
cxjxi, which leads to multiplicative stochastic process. In the present example,
the reaction process is given by dxi/dt = cxjx�. Thus, the discussion of the
last chapter is not directly applicable.

Still, a multiplicative reaction process is also involved here. Furthermore,
as discussed in the last subsection, there is a cascade reaction process, to
support the recursive production around the critical state D ∼ Dc. There, only
a fraction of all possible reaction pathways is used dominantly to organize a
cascade of catalytic reactions so that a chemical in the i-th group is catalyzed
by a chemical in the (i+1)-th, and one in the (i + 1)-th group is catalyzed by
one in the (i+2)-th group. As expected in Sect. 6.2, a “modular structure” with
groups of successive catalytic reactions is self-organized in the network. Then
the fluctuations are amplified multiplicatively through the cascade. By taking
the logarithm of concentrations (i.e., log xm), these successive multiplications
are transformed to successive additions. Now, if many numbers of random
numbers are added, its distribution approaches the Gaussian distribution, as
given by the central limit theorem. The distribution of log xm is then expected
to obey the normal distribution. Hence, the log-normal distribution of xm is
derived. Note that at the critical state we study here, this cascade of catalytic
reaction continues for all chemical species that are reproduced, and the log-
normal distribution holds clearly.

Next we discuss how the magnitude of fluctuations depends on each chem-
ical species. As shown in Fig. 6.4, the width of the distribution hardly changes
with the average abundance, itself plotted with a logarithmic scale. This sug-
gests that some relationship holds between the fluctuation and the average for
all chemicals. We have thus plotted the standard deviation of each chemical√

(ni − ni)2 as a function of the average. As shown in Fig. 6.5, the standard
deviation (not the variance) increases linearly with the average.

To discuss the relationship between the mean and the standard deviation,
one should recall the steady growth and cascade structure in catalytic reac-
tions. Consider two chemicals i and j, one of which (j) belongs to a group of
catalyzing molecules for the other. Then the balance between the synthesis
and the conversion implies xi × A − xj × B = 0, where A and B are average
concentrations of other chemicals involved in the catalytic reaction. Assuming
the steady growth of a cell, the average concentration satisfies xi/xj = A/B.
If we further assume the steady state condition for the fluctuations also, then
〈(δxi)2〉/〈(δxj)2〉 = (A/B)2 = xi

2/xj
2. Hence with this rough argument, the
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Fig. 6.4. The number distribution of the molecules of chemical abundances. Dis-
tributions are plotted for several chemical species with different average molecule
numbers. The data were obtained by observing 178,800 cell divisions. The parame-
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percent of the chemical species are penetrating the membrane, and the others are
not. Within the penetrable chemicals, two chemical species are continuously supplied
from the environment as nutrients. The diffusion coefficient D of the membrane was
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2005)
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variance is expected to be proportional to the square of the mean, leading to
the linear relationship between mean and standard deviation.

The linear relationship is also found with regards to the variation of chem-
ical abundances by the change of external conditions. For example, we have
computed the change from xi to x′

i by changing the concentrations of supplied
nutrients. The variation |x′

i − xi| is again found to be proportional to xi for
each chemical i, similarly as the data plotted in Fig. 6.5.

The discovered laws on the distribution and the linear relationship between
the average and fluctuation are universally observed, near the critical point
with the largest reproduction speed, hold generally and do not rely on the
details of the model, such as the network configuration of the kinetic rules of
the reactions, as has been confirmed from simulations of a variety of models.
Instead it is a universal property of replicating cellular dynamics near the
critical state D ∼ Dc, giving a recursive and optimal reproduction of cells.

Note, however, that the above arguments for the two laws are based on
the steady growth of a cell with catalytic cascade process, realized at D ∼ Dc.
Indeed, as the parameter D is much smaller, all possible reaction pathways
are used with a similar weight, where the cascades of catalytic reactions are
replaced by random reaction network. In this case, the fluctuations of each
molecule number are highly suppressed, and the distribution is close to nor-
mal Gaussian. The variance (not the standard deviation) increases linearly
with the average concentrations. In other words, the behavior is “normal” as
expected from the central limit theorem.

6.5 Experiment

6.5.1 Confirmation of Zipf’s Law

First we discuss the validity of Zipf’s law with regards to the abundances of
many chemicals within the cell. Here we study this problem in a real cell, since
an artificial cell with a large variety of chemicals has not yet been created. To
investigate possible universal properties of the reaction dynamics, examined
are the distributions of the abundances of expressed genes, that are nothing
but the abundances of the mRNA that produce the corresponding proteins
in a variety of organisms and a variety of tissues. In Furusawa and Kaneko,
(2003a), we used the data publicly available from SAGE (Serial Analysis of
Gene Expression) databases (Lash et al., 2000; Velculescu et al., 1997; Jones
et al., 2001) over 6 organisms and more than 40 tissues. SAGE allows the
number of copies of any given mRNA to be quantitatively evaluated by de-
termining the abundances of the short sequence tags that uniquely identify it
(Velculescu et al., 1995).

In Fig. 6.6, we show the rank-ordered frequency distributions of the ex-
pressed genes, where the ordinate indicates the frequency of the observed
sequence tags (i.e., the population ratio of the corresponding mRNA to the
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Fig. 6.6. Rank-ordered frequency distributions of expressed genes. (a) human liver;
(b) kidney; (c) human colorectal cancer (CACO2); (d) mouse embryonic stem cells;
and (e) C. elegans; (f) yeast (Saccharomyces cerevisiae). The exponent α of the
power law is in the range from −1 to −0.86 for all the samples inspected, except
for two plant data (seedlings of Arabidopsis thaliana and the trunk of Pinus taeda),
whose exponents are approximately −0.63 (Reproduced from Furusawa & Kaneko
2003a)
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total mRNA), and the abscissa shows the rank determined from this fre-
quency. As shown, the distributions follow a power-law with an exponent
close to −1 (Zipf’s law). We observed this power-law distribution for all the
available samples, including 18 human normal tissues, human cancer tissues,
mouse (including embryonic stem cells), rat, nematode (C. elegans), and yeast
(S. cerevisiae) cells. All the data more than 40 samples (except for two plant
seedling data) show a power-law distribution with an exponent in the range
from −1 to −0.86. Even though there are some factors that may bias the re-
sults of the SAGE experiments, such as sequencing errors and nonuniqueness
of tag sequences, it seems rather unlikely that the distribution is an artifact
of the experimental procedure. Indeed, by using gene-chip (microarray analy-
sis), Zipf’s law is also observed (Kuznetsov et al., 2002), and recently for more
than 100 examples ranging from bacteria to human (Ueda et al., 2004).

6.5.2 Confirmation of Laws on Fluctuations

Now, we report experimental confirmations of the law on the distributions
of abundances (Furusawa et al., 2005). Recalling that the laws are expected
to hold for the abundances of a protein synthesized within cells with recur-
sive (steady) growth, we measured the distribution of the protein abundances
in Escherichia coli that are in the log phase growth, that is, in a stage of
steady growth. To obtain the distribution of the protein abundances, we in-
troduced the fluorescent proteins with appropriate promoters into the cells
and measured the fluorescence intensity by flow cytometry. To demonstrate
the universality of the laws, we have carried out several sets of experiments by
using a variety of promoters and also by changing locations where the reporter
genes are introduced (i.e., on the plasmid and on the genome).

In Fig. 6.7, we have plotted the distributions of the emitted fluorescence
intensity from E. coli cells with the reporter plasmids containing either EGFP
under the control of the tetA promoter without repression, or DsRed5 under
the control of the trc promoter with and without IPTG6 induction. In gen-
eral, the fluorescence intensity (the abundance of the protein) increases with
the cell size. To avoid the effect of variation of cell size, which may also obey
log-normal distribution, we normalized the fluorescence intensity by the vol-
ume of each cell. Here we adopt the forward-scatter (FS) signal from the flow
cytometry, to estimate the cell volume. Indeed, by plotting data of the fluo-
rescence intensity versus FS signal, the two are proportional on the average.
(The data points are distributed around the proportionality line between the
two, as are generally observed for the plot of fluorescence intensity by flow cy-
tometry). Hence, we normalized the fluorescence intensity by dividing the FS

5 Both EGFP (enhanced green fluorescent protein) and DsRed are some fluorescent
proteins.

6 Isopropyl-β-D-thiogalactopyranosid, which induces synthesis of β-galactosidase,
an enzyme that promotes lactose use.
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Fig. 6.7. The number distribution of the proteins measured by fluorescence in-
tensity, normalized by the cell volume. Distributions are obtained from three Es-
cherichia coli cell populations containing different reporter plasmids (see text). Note
that, although the IPTG induction changes the average fluorescence intensity, both
the distributions (with and without the induction) can be fitted by log-normal dis-
tributions well

signal. Figure 6.7 is the distribution of this normalized fluorescence intensity.
Note that all these data are fitted well by log-normal, rather than Gaussian,
distributions, even though each of the expressions is controlled by a different
condition of the promoter.

The abundances of fluorescent proteins expressed from the chromosome are
also found to obey the log-normal distribution, as shown in Fig. 6.8. Here, the
data are obtained by Escherichia coli cells with an expression of glutamine
synthetase (GS) fused to GFP (Green Fluorescent protein) in the chromo-
some, whose expression is controlled by the upstream tetA promoter. In Fig.
6.8, plotted are the distribution of fluorescence intensity again normalized by
the cell volume. As can be seen, when using the logarithmic scale (a), the dis-
tribution is roughly symmetric and close to Gaussian, while when using the
normal scale (b), the distribution has a larger tail on the side of greater abun-
dances. We have also examined several other cases, using different reporter
genes both on the plasmids and on the genome, and obtained similar results
supporting the universality of the log-normal distributions. It is furthermore
interesting to note that the abundances of the fluorescent proteins, reported
in the literature so far, are often plotted with a logarithmic scale (Hasty et al.,
2000). (See also Banerjee et al., [2004] for a report of log-normal distribution
of gene expression, and Krishna et al., [2005] for a theoretical arguement.)

It should be noted that the log-normal distribution of protein abundances
is observed when the Escherichia coli are in the log phase of growth, that is,
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Fig. 6.8. The distribution of the fluorescence intensity normalized by the cell vol-
ume, plotted with a logarithmic scale and with a normal scale. Data are obtained
from a population of isogenic bacterial cells with an expression of GFP-GS fusion
protein in the chromosome. It is clear that the distribution with the logarithmic
scale is symmetric and close to a Gaussian form (Reproduced from Furusawa et al.
2005)

when the bacteria are in steady growth. For other phases of growth, without
steady growth, the distribution can deviate from the log-normal distribution
and sometimes possesses two peaks, as will be reported in the future. Note
that the theory also supports the log-normal distribution for the steady growth
case only.

6.6 Relevance to Biology

6.6.1 Cluster Analysis of Gene Expression

First, we discuss the possible biological significance of Zipf’s law in abun-
dances. This law theoretically predicted agrees well with experimental data.
This agreement is universal over 50 cell types we have examined. On the other
hand, it is too universal to lead to some specific biological meaning. It would,
however, be possible to deduce such a meaning if a deviation from this law
were observed under some condition.

Theoretically, the validation of Zipf’s law is based on recursive production.
If a cell’s state is not in the steady recursive growth, there could be deviation
from it. In this respect, further studies on embrionic stem (ES) cells should be
important. As can be seen in Fig. 6.6, there might be some deviation from the
power law at abundant mRNAS for ES cells. However, at the current accuracy
of microarray data, it would be difficult to make conclusive statement.7

Note that in the observed Zipf’s law, the ranking can change in time,
or depending on the environment. In a theoretical model, we can see some
7 In some data in the seedlings of a plant, the power seems to be than 1. Since the

state of seedlings is a transient from the seed to the steady tissue, this deviation
if confirmed, is consistent with the theoretical argument.
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cascade structure with regards to the catalytic relationship. Then, it should
be important to study from microarray data how the abundances and the
relationship within the network change in time.

6.6.2 Remark on Universal Log-Normal Statistics

In this chapter we have observed ubiquity of log-normal distribution, in several
models.8 The fluctuations in such distribution are generally very large. This
is in contrast to our naive impression that a process in a cell system must be
well controlled.

Then, is there some relevance of such large fluctuations to biology? Quite
recently, we have extended the idea of fluctuation–dissipation theorem in sta-
tistical physics to evolution and proposed a linear relationship (or high corre-
lation) between (genetic) evolution speed and (phenotypic) fluctuations. This
proposition turns out to be supported by experimental data on the evolution
of bacteria to enhance the fluorescence in its proteins, as will be discussed in
Chap. 10, while relevance of fluctuation to adaptation is recently discussed by
Kashiwagi et al. (2005). Hence the fluctuations are quite important biologi-
cally.

The log-normal distribution is also rather universal in the present cell, as
demonstrated in the distribution of some proteins, measured by the degree
of fluorescence. We have to be cautious here, since too universal laws may
not be so relevant to biological function. In fact, chemicals that obey the log-
normal distribution may have too large fluctuations to control some function.
For example, the abundances of DNA should deviate from the log-normal
distribution. Some other mechanism to suppress the fluctuation may work in
a cell.9

Indeed, the minority control suggests the possibility of such control to
suppress the fluctuation, as discussed in Sect. 4.5. For a recursive production
system, some mechanism to decrease the fluctuation in minority molecule may
be evolved. As discussed in Chap. 5, there can be two possibilities to decrease
the fluctuation leading to deviation from log-normal distribution.

The first one is some negative feedback process. In general, the negative
feedback can suppress the response as well as the fluctuation. Still, it is not
a trivial question how chemical reactions can suppress fluctuations: the pro-
duction of some molecules, which may further contribute to fluctuations, is
indeed necessary to realize such a negative feedback.
8 Lognormal distribution is also discussed in ecology (see e.g., [Preston 1962, May

1999, Hubbel 2001]. However, the log-normal distribution in ecosystem is observed
with regards to the number distribution of species that have population x. In the
term of cell, it corresponds to the distribution of chemical species (proteins) that
have abundances x, which is p(x) of Sect. 6.4 (page 145), and is estimated not as
lognormal but as x−2, corresponding to Zipf’s law.

9 It is interesting to note that the weight distribution of adult humans obeys the log-
normal distribution while the height distribution obeys the Gaussian distribution.
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The second possible mechanism is the use of multiple parallel reaction
paths. If several processes work sequentially, the fluctuations would gener-
ally be increased. When reaction processes work in parallel for some species,
the population change of such molecule is influenced by several fluctuation
terms added in parallel. If a synthesis (or decomposition) of some chemical
species is a result of the average of these processes working in parallel, the
fluctuation around this average can be decreased by the law of large numbers.
Indeed, the minority in the core network that has higher reaction paths has
relatively lower fluctuation as discussed in Sect. 5.3. Suppression of fluctu-
ation by multiple parallel paths may be a strategy adopted in a cell. Note
that this is also consistent with the scenario that more and more molecules
are related with the minority species as discussed in Sect. 4.5. With the in-
crease of the paths connected with the minority molecules, the fluctuation of
minority molecules is reduced, which further reinforces the minority control
mechanism. Hence the increase of the reaction paths connected with the mi-
nority molecule species through evolution, decrease of the fluctuation in the
population of minority molecules, and enhancement of minority control rein-
force each other. In the respect, the search for molecules that deviate from
log-normal distribution should be important, in future. Here it is important to
measure the distribution of chemicals in relationship with its characteristics
(such as the connectivity) in the reaction network.

In physics, we are often interested in some quantities that deviate from
Gaussian (normal) distribution, since the deviation is exceptional. Indeed, in
physics, search for power-law distribution or log-normal distributions has been
popular over a few decades. On the other hand, a biological unit can grow and
reproduce, to increase the number. For such system, the components within
have to be synthesized, so that amplification process is common. Then, the
fluctuation is also amplified. In such system, the power-law or log-normal
distributions are quite common, as already discussed here. In this case, the
Gaussian (normal) distribution is not so common (normal). Then exceptional
molecules that obey the normal distribution with regards to their concentra-
tion may be more important.

Also, the ubiquity of log-normal distribution we found is true for a state
with recursive production. If a cell is not in a stationary growth state but in
a transient process switching from one steady state to another, the universal
statistics can be violated. Search for such violation will be important both
experimentally and theoretically.

6.6.3 Relationship Between Abundance Statistics
and Network Topology

In the beginning of this chapter, we referred to some universal statistics in
network topology, in particular power-law distribution in the connectivity in
the network (Jeong et al., 2000; Almaas et al., 2004). On the other hand,
the power law in abundances we discussed here holds independently of the
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network structure, as long as the cell satisfies efficient and recursive growth.
Then is there some relationship between the two power laws?

Of course, how these reactions progress depends on the intracellular reac-
tion network. Still we can set the parameter values for each reaction network
dynamics so that the cell state is at a critical point satisfying recursive and
efficient growth, where the power law in abundances is universally observed.
Still, the growth speed at each critical point can differ by each network. Hence
it will be possible to study the network structure in relationship with the abun-
dance distribution by taking into account of the evolutionary process in the
network structure to select cells with higher growth.

To discuss this problem, we studied the evolution of the network, by us-
ing the model in Sect. 6.3 (Furusawa & Kaneko, 2005a). We generate slightly
modified networks and then select those that grow faster. We repeat this
procedure. To be specific, n cells are first generated, having a randomly con-
nected catalytic network with a given initial path number. Then, from each of
n mother cells having a randomly connected catalytic network, m mutant cells
are generated by randomly adding one reaction path to the reaction network
of the parent cell. Then, for each of the n × m cells, reaction dynamics are
simulated, to obtain the growth speed of each cell. Among the cell population,
n cells with higher growth speeds are selected as the mother cells of the next
generation, and m mutant cells are generated again from each mother cell in
the same manner. We have carried out a variety of these network evolution
simulations by using several different initial networks, different parameters,
and variations of settings.

Recall that the critical D value in Sect. 6.4 depends on the network. Ini-
tially, the system is not near the critical point, and hence the abundance
distribution does not follow the power law. Through the evolutionary process
to select cells with a higher growth, however, the Zipf law in abundances
emerges within 10 generations or so. Indeed, the emergence of such power
law by selecting cells with higher growth speeds is a natural consequence of
the result in Sect. 6.4. To increase the growth speed of cells, change in the
network that enhances the uptake of nutrients from the environment is fa-
vored. This nutrient uptake is facilitated by increasing the concentrations of
some catalysts, while if the uptake of nutrient is too large, the cell can no
longer grow continuously, since there is no room to synthesize the catalysts
to “metabolize” the nutrient, as discussed in Sect. 6.4. Hence with the change
in the network, a critical value for the nutrient uptake is approached, where
the power-law distribution of chemical abundance appears in the intracellular
dynamics.

So far the network structure does not differ much from the initial networks
that are generated randomly. Next, we investigate topological properties of the
reaction networks. Although the additions of reaction paths are chosen ran-
domly, topological properties of networks after this evolutionary process show
a significant deviation from those expected from random networks. In Fig. 6.9,
the connectivity distributions P (k) of chemicals obtained from the network
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Fig. 6.9. Connectivity distribution P (k) of chemical species obtained from the
network of the 1000th generation. The model given in Sect. 6.3 is adopted. At each
generation, networks giving a higher growth speed are selected. In the figure, kin,
kout, and kcat indicate the number of incoming, outgoing, and catalyzing paths
of chemicals, respectively. The solid line indicates the power law P (k) ∝ k−3. In
comparison, we show the distribution of krand, obtained by a randomly generated
reaction network having the same number of paths with the network of 1000th
generation (For details, see Furusawa and Kaneko [2006a] from which the figure is
reproduced)

of the 1000th generation are plotted, where kin, kout, and kcat indicate the
number of incoming, outgoing, and catalyzing paths of chemicals, respectively,
and P (k) is the frequency of nodes with the connection number k. As shown,
these distributions are fitted by power laws with an exponent close to −3.
The evolved reaction network here forms a cascade structure, in which each
chemical species is mainly synthesized from more abundant species.

The reason why the scale-free-type connectivity distribution emerges in
this evolution is the following: attachment of paths to the chemicals with
larger abundances is preferred as a result of selection process. Note that the
power-law distribution of chemical abundances has already been established
through evolution. Now, a connection of a reaction path to a more abundant
chemical is more effective to increase the growth speed of a cell. For example,
it is natural to assume that change of the growth speed by the addition of
a path outgoing from a chemical increases with its abundance x, since the
degree of influence on the cellular state is generally proportional to the flux
of the reaction path added to the network, that is the product of substrate
and catalyst abundances. Then the probability qout(x) to have such outgo-
ing path after selection will increase with x, even though the network change
itself is random. If such probability linearly increases with x, then the abun-
dance power law (p(x) ∝ x−2) is transformed to the connectivity power law
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as P (kout) ∝ kout
−2, as the abundance x is mapped to the path number k

according to the probability. Then, the scale-free network with the exponent
−2 should be evolved.

Numerically, we found that the probabilities qout(x) and qcat(x) are fitted
by q(x) ∝ xα with α ≈ 1/2. In this case, the connectivity distribution is given
by k−(α+1)/α = k−3. (See Furusawa and Kaneko [2006a] for detailed analysis.)

As for the evolution of the reaction network, preferential attachment to
more connected nodes is often discussed (Simon 1955, Barabasi & Albert,
1999; Jeong et al., 2000). The present mechanism is related with this pref-
erential attachment, but here the selection depending only on the cellular
growth speed results in such preference, even though the attachment itself
is random. Chemical species with a higher abundance acquire more reaction
links, since attachment of new links to such chemicals gives larger influence to
the cellular state and higher probability to be selected. With this mechanism,
the power law in abundance is naturally embedded into the intracellular reac-
tion network structure through evolution, that is simply the process to select
cells with higher growth speed.

The emergence of the two statistical features is quite general and does not
rely on the details of our model, such as the kinetic rules of the reactions
and the parameters. We have studied various extensions of the present model,
but the power laws both in abundances (through reaction dynamics) and in
connectivity (in network structure) are universally observed as a result of
evolution.

Here it is interesting to note that first the power law in abundances ap-
pears, and later through the evolution it is embedded into the power law in
the network connectivity. Here the power law abundance is that of proteins (or
other metabolites), while the paths in the network is given by genes, that ulti-
mately determine whether a particular enzyme species that catalyzes a given
reaction is present or not. When genes mutate, the network path is changed
accordingly. In this sense, what we have observed here can be rephrased as
“metabolic process (with proteins) first, and genes later.” The power law in
the abundance in the former is later “assimilated” by the gene, as network
structure. We will discuss again such genetic assimilation (Waddington, 1957),
in Chap. 10.
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Cell Differentiation and Development

7.1 Question to Be Addressed: Stability of Development

Question: How does an identical cell diversify into a discrete set of
types through development? Together with the diversification, how
is recursive production of cells sustained? How is each character of
each cell type stable, and how is the number distribution of cell
types stably maintained?

The process whereby just a single fertilized egg gives rise to a body consist-
ing of many different cell types and showing distinctive patterns looks quite
mysterious. Through a complicated process, a complex adult body is formed,
which takes almost identical patterns – this looks like a miracle.

Each cell has at least the potentiality to process almost identical biochemi-
cal reactions. Through the developmental process, the character of cells starts
to be differentiated. Organisms of the same species have identical sets of cell
types, which form organized patterns that are again almost identical.

Studies to attribute a cause for differentiation to specific molecules have
been pursued over several decades. Indeed, at early stages of development,
a gradient of specific signaling molecules, called morphogen, is formed in a
fertilized egg. This gradient brings about asymmetric cell divisions, which in
turn lead to spatial pattern such as anteroposterior and dorsoventral axes.
The spatial asymmetries formed by cells then lead to the creation of further
asymmetry. As development proceeds in constructing more detailed struc-
tures, neighboring similar cells should be able to recognize small differences
among them in order to differentiate.

Let us briefly summarize the standard picture of the cell differentiation
process. Initially there is a gradient of some chemical, which works as a sig-
naling molecule. Depending on the concentration of the signaling molecule,
states of receptors, which are located at the cell membrane and influenced by
the signaling molecules, are changed. Then this change is transferred into a
cell state, and finally the expression of genes of the cell (or, in other words,
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composition of chemicals in the cell) is changed. In this way, expressions of
genes in a cell are changed according to the concentration of a morphogen.

In general, small differences among cells brought about by their surround-
ings or by physiological conditions can be amplified if a given threshold of
some biochemical is within the range of the difference. That is, if, within one
cell, the concentration of a certain chemical (for instance, a morphogen) ex-
ceeds a threshold value, the corresponding gene is switched on. Vice versa,
if a neighboring cell has slightly lower concentration of the biochemical, it
turns off the gene. (See Forgacs and Newman (2005) for physical approach to
development).

In the traditional threshold mechanism, it is generally believed that genes
switch on and off depending on the concentrations of signal molecules. Indeed,
several researches have done good justice in showing how cells interact with
each other through signals, and how such received signals are amplified to
change the state of a cell.

Hence, the standard answer to the origin of differentiation is as follows:
Assume the existence of a gradient of concentrations of some chemicals. De-
pending on the position of the cell, the chemical concentration changes. Then,
assume that a gene is on or off depending on whether the chemical is larger
than a given threshold or not. Then depending on the position of the cell, a
certain gene is on or off, and cells differentiate accordingly. By differentiation
of cells, then each cell starts to have a different chemical composition. Then,
a new gradient of other chemicals may be formed, which may lead to a new
differentiation.

Although this picture may be correct to explain each step of cell differenti-
ation, the above-mentioned experimental results cast a question on the thresh-
old mechanism when it comes to the robustness of development process. Since
each signal involves stochastic error due to molecular fluctuations, the issue
then is basically on how the matured body comes to have a well-developed
form with all the accumulated uncertainties involved in the whole development
(Kaneko & Yomo, 1999).

Recall that all the intracellular processes consist of molecular reactions.
The number of molecules in a cell and the signalling molecules at each cell po-
sition fluctuate. Typically, the concentration fluctuation for a molecule with
the number N should be 1/

√
N . Since the number is not so large, fluctu-

ations of the concentration are not necessarily tiny. As long as the mole-
cules show Brownian motion, these fluctuations are inevitable. When there
are N signal molecules per cell, there exists fluctuation of the order of

√
N

for “N” molecules as a result of Brownian motion. This stochasticity is a gen-
eral consequence of probability theory and thermodynamics, and cannot be
avoided. (Recall also the quantitative measurements of fluctuations presented
in Chap. 6).

The condition that the concentration is larger than some threshold is given
by the number of molecules per cell, that is not necessarily so large. Then, in
the terms of concentrations, fluctuations of the order of 1/

√
N are inevitable.
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Accordingly the probability that a gene is not switched on or off as designed
is 1/

√
N (see Fig. 7.1).

For example, consider the differentiation process, schematically shown in
Fig. 7.1, where a cell located beyond the threshold concentration becomes
“white” type and otherwise “black” type. As a concentration crosses the
threshold value between two neighboring cells, one becomes white and the
other black, which leads to cell differentiation with white–black pattern. Still,
with the above rate of error, the cell pattern with white–white or black–black
may appear.

Fig. 7.1. The threshold mechanism and its robustness against fluctuations. The
chemical concentrations show fluctuations as shown. Then the differentiation to
distinct type of cells does not follow

Let us take an example from Drosophila, a fruit fly. In Drosophila, the
developmental process is studied in depth. The process is believed to be rather
well programmed among multicellular organisms. As shown in Fig. 7.2, recent
experiments show that there are about 30% fluctuations in the Bicoid protein,
that is believed to be an important signal molecule to determine the cell
differentiation from the Drosophila egg. This is nothing but the fluctuation
expected from the above argument (Houchmandzadeh et al., 2002). In spite
of such errors, however, the morphogenesis proceeds without large errors. In
fact, even by disturbing the Bicoid concentrations externally, the development
was found to progress normally (Lacalli & Harrison, 1991).

This is an error for a single gene. Let us assume that there are M genes,
each of which is turned on or off in accordance to the signal with the thresh-
old of N molecules. Each on/off pattern of M genes corresponds to a cell
type. Then the probability that a “correct” cell type is formed as designed is
(1 − 1/

√
N)M ≈ exp(−M/

√
N). This probability is so small (e.g., 0.04 for

N = 1000 and M = 100) that the developmental process will scarcely pro-
ceed constitutively.
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Fig. 7.2. Concentration of Bicoid along the axis of Drosophila. The x axis denotes
the position, normalized at one end as 0, and at the other end as 1. The concen-
trations of several eggs are plotted with this position x, which is scaled so that the
maximum is 1. The range denoted by the arrows is roughly 0.3, which means about
30% error by each egg. Reproduced from the result of Houchmandzadeh et al. (2002)

One might argue that the error could be eliminated by proofreading mech-
anisms that exist in a natural cell to some extent, to support the threshold
mechanism. However, such proofreading mechanisms will be triggered only
when a certain condition is satisfied. Since the required condition is also error
prone, then another molecular fluctuation sets in. In short, different mecha-
nisms to correct errors in a cell give rise to a chain of fluctuations. Hence,
there will always be fluctuations even if we consider all possible fine-tunings
of the threshold value through evolution.

Put differently, a threshold mechanism is regarded as a process of cutting
the state space into two, along a plane. The cellular state with a signal mole-
cule larger than a threshold is given on one side of the state space separated
by the surface. Then, several conditions for successive gene expressions corre-
spond to successive cuts by surfaces, as schematically shown in Fig. 7.3. By
several switches of on and off of genes, state space is separated into several ar-
eas corresponding to different cell types. Then assume each surface fluctuates
by a few percent error width, as shown in the figure. By successive errors of
these “blurred” surfaces of section, the separation into areas would be fused.
As the number of surfaces increases, the probability of forming a “correct”
section will go to zero.

Let us discuss this problem again from a different point of view, that is,
in terms of programming. Indeed developmental process is often described in
terms of “program” as in the discussion of body plan. Each threshold mecha-
nism gives a condition like a program “If concentration of signal molecule is
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Fig. 7.3. Threshold condition for cellular state corresponds to splitting the phase
space by the surface given by the threshold condition. This surface is blurred because
of the fluctuations. As the number of conditions for split increases, the number of
surfaces increases also. If each surface is blurred with some width, then with the
increase of the number of conditions, the split by some condition will not work

larger than a threshold, then, a gene is on, ....” Combination of these if–then
processes form a program of development. This looks like a process written by
computer programming. One important problem, however, is that each step
in this procedure involves some errors (say 3%). Then it is hard to believe
that the total development process will work correctly as planned. In other
words, even if one intends to write a “computer program” in terms of reac-
tions with the molecule number of O(1000), the probability that the program
works “correctly” will go to zero. We need some viewpoint other than logical
“if–then” operations in a computer programming.

In spite of these fluctuations in molecule numbers, however, the develop-
ment is surprisingly robust. All organisms of the same species have almost
identical spatial patterns consisting of the same set of cell types. Cells of the
same cell type, although they differ from each other, adopt roughly the same
intracellular composition of chemicals. How is such robustness in development
possible?
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Fig. 7.4. Schematic picture of a cellular reaction network. Some chemicals form a
complex network through catalytic reactions as discussed in the last chapter, while
some other are synthesized passively. Here we concentrate on a part with positive
feedback process through mutual catalytic process

7.1.1 Kauffman’s Gene Network Model

One possibility to answer this “robustness” question is given by the use of
the “attractor” picture. As mentioned already, metabolic and genetic reac-
tion processes form mutually catalyzing reaction network, as schematically
shown in Fig. 7.4. Then chemical concentrations of each cell (as well as gene
expression) change in time as a result of temporal evolution. By adopting a
dynamical systems viewpoint, cell state can be represented as a point of state
space representing chemical concentrations of a cell. Then, each cell type may
be regarded as an attractor of intracellular dynamics. If this picture is valid,
the above error problem may be resolved: After some perturbation, the cell
state represented by an attractor comes back to the original state through the
temporal evolution of intracellular reaction dynamics.

Indeed, Kauffman (1969) pioneered this attractor picture of cell differ-
entiation. In a cell, genes are expressed into mRNA and then into proteins
including many enzymes, which may catalyze biochemical reactions, including
metabolic reactions. These enzymes influence the expressions of genes. With
these reaction processes, the concentrations of proteins are changed, which
again activate or suppress gene expressions. These reactions are very much
complicated and complex. Instead of considering reaction processes including
metabolites, Kauffman focused only on the genetic expressions. Of course,
these dynamics are not self-contained by the gene expressions only, but all
other metabolites are involved. As a drastic simplification, however, Kauff-
man treated all states other than gene expressions as a black box. Through
this black box, genes mutually activate or suppress their expressions. Fur-
thermore, Kauffman represented the gene expressions by only two levels, that
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is, on or off. The feedback of the reaction process onto the gene expressions
is represented by a transition rule, represented by a combination of Boolean
operators. (Since each gene has just two states on–off, the influence of one
gene upon another through the black box is given by a rule table of on–off
patterns. For example, a rule “a specific gene is on, if and only if two genes
are on” is represented by “AND” operation in Boolean algebra, and so forth.)

In this model there are N genes with “on” or “off” states, a total of 2N

states. For example, take two genes. Depending on their state (on or off),
another gene is on or off. This transition rule is then represented by Boolean
algebra, say “AND,” “OR,” “exclusive-OR,” and so forth. The connection
among genes is chosen randomly and fixed. By again adopting a random table
from all Boolean functions, one can set up a rule for the change of on–off states
of each gene. Since each “on–off” is given by a randomly chosen network of
Boolean functions, this model is called the random Boolean network model
(Kauffman, 1969, 1993).

With this rule for the dynamics of switching genes, the on–off pattern of
genes changes in time. Through the dynamics of the gene regulation network,
only restricted combinations of on–off patterns of genes are allowed as attrac-
tors. In general, there exist multiple attractors, and in this case, depending
on different initial genetic expression patterns, the state will be attracted to
one of the attractors. Indeed, in this model, Kauffman has shown that many
attractors coexist as a different pattern of gene expressions, each of which is
regarded to correspond to a differentiated cell type.1 Even if there are some
fluctuations to bring about errors in the on/off of gene expression, such er-
ror can be removed to recover the original pattern of each cell type through
the mutual interaction among genes, as each cell type is represented as an
attractor. Hence, stability of each cell type could be expected.

As for differentiation from one type to another, Kauffman assumed that
signal molecule may switch the expression of some gene between on and off,
with which an attractor may be switched to a different attractor. Hence differ-
entiation of cell type is represented as a switch among attractors by external
inputs, while each cell type corresponds to a different attractor. Kauffman’s
work was pioneering and the picture he proposed is quite important. Still,
some problems remain to be solved.

(1) Depending on the initial condition, an attractor is selected. However, how
is the initial condition of a cellular state selected? In physics, the initial
condition can be set by the experimentalist, but in the developmental
biology, one must also understand how the initial conditions of cells are
selected through the developmental process of an ensemble of cells.

(2) Once gene expression pattern falls on an attractor, the gene expression
pattern will come back to the original pattern of the attractor even when
some error leads to switch on or off a single gene. Thus, the attractor
picture helps explain the robustness of a final cellular state. However, for
cell differentiation in the developmental process, a switch from one state

1 The number of attractors increases with some power of the number of genes.
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to another has to occur, because of the external input supplied by sig-
nal molecules. Then, the original state has to be destabilized when some
perturbation is applied. This, on the one hand, implies instability in the
cellular state to specific perturbations. Now, there exists fluctuation in
the concentrations. Hence, some fluctuation may determine whether the
cell state is differentiated or to which attractor it is switched. Some error
to change the gene expression at this event of differentiation process may
alter the destination of the final cellular state (attractor). If error occurs
during cell differentiation process, the cellular state, that is, the gene ex-
pression pattern after this differentiation would be affected. As dynamics
for differentiation from one cellular state (attractor) to another generally
passes through unstable orbit (imagine a path crossing the top of the hill),
instability in the developmental path against molecular fluctuations is not
resolved.

Summing up, although the stability of a given cell type may be ex-
plained by attractor picture, the stability of differentiation process is not
answered yet. Stability of differentiation against molecular fluctuations is
not clarified.

(3) In the attractor picture so far, only the stability of a single cell state is
concerned. However, to discuss the stability of an ensemble of cells, we
need to understand how the stability at a population distribution level
is achieved – that is, the number distribution of existing cell types in a
tissue, an ensemble of cells. This number distribution is selected through
the course of developmental process. As the number increases, the cell
differentiation proceeds, to form a tissue consisting of different cell types
with given number distribution. We need understand the stability at this
distribution level also, besides the stability of each cell state.

To discuss this problem, we need to seriously consider cell–cell interac-
tion. The importance of cell–cell interaction to developmental robustness
is also discussed as the community effect (Gurdon et al., 1993) from exper-
imental observations, as well as from theoretical considerations (Kaneko
& Yomo, 1999).

Considering the points (1)–(3), the attractor picture of a single cell state is not
sufficient. To answer this question, we need to consider a system of interacting
cells, as simple as possible, but not too simple. We need to take into account
at least intracellular reaction network, cellular interactions through chemicals
that serve as signals, and the increase of cell number by cell divisions.2

To close the present section, we repeat the question that is asked here:
Each cell differentiation comprising the whole development is inevitably
2 Attraction to different states is also studied by using a coupled system of Boolean-

network-type differential equations (Glass & Kauffman, 1973), while a coupled-
map-lattice corresponding to it is studied by Bignone (1993). Also, Mjoliness et al.
(1991) studied a “realistic” genetic network model with cell-to-cell interaction.
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accompanied by stochastic errors, since it is triggered by stochastically fluctu-
ating events like diffusion of a molecule or binding to a certain receptor, which
are no other than the so-called signals by most of the researches. Assuming
that the embryo is a machine like a parallel processor, then all cell differentia-
tions occurring in the development have to follow a strictly organized course.
However, this does not hold true because of the uncertainty of each cell differ-
entiation. Therefore, the whole development cannot proceed in a machine-like
manner via only the threshold mechanism. Then, how is developmental stabil-
ity with cell differentiations possible? How does the cell–cell interaction lead
to cell differentiation to several cell types, and how are they stable? Besides
the stability of each cell type, how is the realized number distribution of each
cell type robust against molecular fluctuations?

7.2 Logic: Isologous Diversification

Here we will discuss a logic to answer the question raised in the last section.
Indeed, this theory is derived from extensive simulations of models introduced
in the next section. Here we sketch the logic, while detailed accounts are given
in Sect. 7.4.

Let us start with a very primitive description of a cellular state, following
the discussions in Chap. 6. In a cell, there are several chemical components.
Then a cellular state depends on chemical compositions within a cell. These
chemicals include proteins, RNA, membrane, and so forth. Through chemical
reaction processes, the chemical compositions of a cell can change in time. Of
course, a cell is more complicated, but this basic standpoint will at least be
required to study a cell state.

With the intracellular reactions, some chemicals are converted to prod-
ucts, and at some stage, the cell becomes large enough to be divided into two.
Without assuming any sophisticated programs, the two divided cells take al-
most identical chemical compositions, although there are some differences due
to molecular fluctuations (Fig. 7.5).

Note that positive feedback process exists in the intracellular reactions.
On the other hand, these cells interact with each other through diffusion of
chemicals across the membrane. With nonlinear dynamics in the reaction,
the fixed cell state may be unstable and change in time, also depending on
the states of other cells. Furthermore, with the positive feedback process in the
intracellular reaction, tiny differences between the two cells may be amplified.
This amplification depends also on cell–cell interaction, including competition
for nutrient chemicals for cell growth. As the cell number is increased, this
cell–cell interaction is stronger, and the amplification of tiny difference can
be stronger. At some stage of cell numbers, this amplification becomes large
enough to make a macroscopic difference between the two cells. Now a cell
ensemble with homogeneous states will be unstable.
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Fig. 7.5. Schematic representation of our logic. See text for details. Reproduced
from Kaneko and Yomo (1999) with permission

Here, it is expected that cells with similar states compete strongly for nu-
trients for growth whereas cells taking different states do not compete with
each other for the nutrients so much. It may then be expected that differen-
tiation of cells comes to a stage that different types of cells mutually stabilize
others’ states.

A schematic example is shown in Fig. 7.6. Here two types of cells A and
B exist, where existence of type B cells stabilizes the state of A cells through
cell–cell interaction, and vice versa. In other words, the states A and B are “at-
tractors” of intracellular dynamics, under the condition of cell–cell interaction
with each other. Now, these states are stable under molecular fluctuations.

This mutual stabilization is possible under suitable cell–cell interactions.
To achieve stability, the number distributions of cell types A and B should be
under some range. If the distributions are biased, the states will be unstable.
This is understood by taking an extreme limit. If only the type of A cells
exists, the cell states are almost homogeneous. However, the type A cell state
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Stabilize
each other 

Fig. 7.6. Schematic representation of state space and differentiation. A homoge-
neous cell state is destabilized, and by taking distinct states, the cells mutually
stabilize each other’s state

is not an attractor of a single cell dynamics. Thus this homogeneous cell state
becomes unstable, to make de-differentiation of type A cells, and some of them
will be type B cells, so that the cell ensemble becomes stable. In other words,
because of instability in the homogeneous cell state and cell–cell interactions,
the differentiated cell types and the number distribution of cell types are
stable.

This diversification of cell types into a discrete set of types from a sin-
gle cell type is a general consequence of interacting cells with biochemical
networks and cell divisions, as will be confirmed by several model simula-
tions. According to the simulation results, differentiation proceeds first by
loss of synchrony of intracellular oscillations of chemical concentration, as
the number of cells increases. Then the chemical composition of the cells is
differentiated. The differentiated compositions become inherited by the next
generation and lead to determined cell types. As a result of successive occur-
rence of the cell differentiation, the cell society will be composed of different
cell types. Here a threshold mechanism is not implemented in advance, but a
threshold-type behavior emerges as an outcome, accompanied with robustness
in the development process.

The present mechanism leading to differentiation is called isologous di-
versification, since it shows a mechanism how identical (cell) state can be
diversified through the interplay between internal (reaction) dynamics and
cell–cell interaction. With this mechanism, cell differentiation is shown to be
stable against molecular and other external fluctuations, where amplification
of noise-induced slight difference between cells leads to a noise-tolerant society
with differentiated cell types.
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7.3 Model

Following the prescription discussed so far, we adopt some simple models
consisting only of basic features of cells. Some common features are extracted
among the results from the computer simulations of several models, although,
of course, there remain specific phenomena depending on each model and
the parameter values adopted. A run-through on the common characteristics
brings us essential features and mechanisms in cell differentiation.

The environment of a cell culture is always taken as one of the essen-
tial factors for cell differentiation. If there is spatial bias among the cells,
for example, a gradient of an activator protein, the cells may easily undergo
differentiation. However, experimental studies on some bacterial cultures (Ko
et al., 1994) showed that even in a homogeneous environment, cells can dif-
ferentiate in due time. In other words, spatial bias is, in fact, not required for
cell differentiation. Hence, the cells in our models are grown in a homogeneous
environment where there is no spatial bias in chemical concentration. (In fact,
by further allowing for spatial bias in our model, the cells in our model show
cell differentiation and morphogenesis, as will be shown in Chap. 9.)

Our model consists of intracellular biochemical reaction dynamics, cell–
cell interaction through medium, molecular fluctuation, and cell division (see
Fig. 7.7 for schematic diagram). Let us describe each process.

Cell

Cell
Cell

Cell

Cell division

Chemicals

Chemical medium

Source

Chemical medium

Cell

Cell

Cell

Pumping

Diffusion

Fig. 7.7. Schematic representation of our model: reproduced from Kaneko and Yomo
(1999) with permission. The cells are in a well stirred medium to which nutrition
components are supplied. A cell takes the nutrition by inflow through the membrane,
and there is a mutually catalytic reaction network in each cell, identical for every
cell
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7.3.1 Internal Biochemical Reaction Network

The reaction network in a cell consists of numerous biochemicals. A protein
activates a certain gene, whose product (e.g., enzymes) catalyzes a certain
metabolic reaction. The product of metabolic reaction plays the role of an
activator to the previous activator protein or to an enzyme in the intermediate
reaction. These chain reactions or autocatalytic reactions in a cell (or simply
the nature of catalytic reaction with activation or inhibition) constitutes a
nonlinear reaction network.

To be specific, we choose the concentration x�
i(t) of the chemical 
 of

the cell i as dynamic variable, and study its evolution. With the internal
reaction dynamics from the chemical m to 
 catalyzed by the chemical j, dxm

i (t)
dt

includes the Michaelis–Mentens term e1x
(j)
i (t)x(m)

i (t)/(aM + x
(m)
i (t)). The

total intracellular dynamics consists of a network of reactions. This network
is chosen randomly and fixed throughout the simulation. When the reaction is
autocatalytic, j agrees with m, in the above term. Such autocatalytic reaction
often leads to oscillatory behavior in chemical concentrations (Fig. 7.8).

As shown by Hess and Boiteux (1971), concentrations of metabolites in-
volved in glycolysis oscillate the nonlinear reactions catalyzed by some en-
zymes involved in the reaction network. In general, the biochemical reaction
network of a cell is composed of highly complex nonlinear reactions. Hence,
we choose such reaction network allowing for oscillatory dynamics.3 The con-
centrations of the biochemicals may be regarded as that of metabolites or
expression level of a gene or of a gene network. The importance of temporal
oscillations in cellular dynamics was studied in pioneering work by Good-
win (1963). Recently, the existence of oscillatory dynamics for cell division
processes has been discussed both experimentally and theoretically in cycline
and M-phase-promoting factor (Tyson et al., 1996).

7.3.2 Interaction Among the Cells

There are many types of cellular interaction ranging from the diffusion of
morphogen to simple competition for nutrients among cells. Here, it will be
relevant to choose the most fundamental type of intercellular interaction. Let
us consider some of the simplest organisms like Anabaena, a cyanobacterium
or Escherichia coli. Under ammonia or nitrate deprivation, cells of Anabaena
differentiate into two types, one specialized for nitrogen fixation, and the other
for photosynthesis (Golden et al., 1985). To our knowledge, no reports to date
have suggested any special mechanism that governs its cell differentiation.
It is also shown that E. coli cells can differentiate even in a homogeneous
environment (Ko et al., 1994) (see Sect. 7.6). Simple as they are, the most

3 Indeed, the proposed scenario may work, without oscillatory dynamics, as long
as some instability is included. Also, in some models, oscillation that existed in
initial stage of cells disappears for some cell types determined later.
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Fig. 7.8. An example of oscillation of chemical concentrations in a model (repro-
duced from Kaneko and Yomo (1997) with permission)

probable fundamental factor to be considered is then the interactions among
the cells through the biochemicals in the reaction network of the cells.

Our models, therefore, include a simple diffusion process of biochemicals
in and out of each cell. By denoting the concentration of the chemical m at
the medium by Xm, the diffusion term from the medium to the cell i is given
just by Dm(Xm(t)− xm

i (t)), while the chemical in the medium is reduced by
−Dm

∑
i(X

m(t) − xm
i (t))Vrel, where Vrel is the ratio of the volume of each

cell to that of the medium.
In some models, besides the simple diffusion process, we have also included

active transport from the medium to the cell, which keeps the cellular state
out of equilibrium. This gives a transport term Xm × F , with some activity
F , which generally depends on the concentrations of biochemicals in the cell.
For example, the activity F is given by sum of chemicals in the cell (see also
the Appendix). Again, this term leads to global cell–cell interaction through
the medium.

As is shown below, there will be differences in the concentrations (and
composition) of biochemicals between the cells. Existence of a gradient in
turn leads the cells to share the chemicals in a simple manner. That is, from
the medium, one cell can take up a chemical that is produced by the other
cells and diffused into the medium. In short, cells interact with each other
through the process of diffusion.
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7.3.3 Cell Division

To proliferate, a single cell undergoes cell division resulting in its maintenance
in the society. In our models, cell divisions occur when the sum of concentra-
tions of some chemicals reaches a given threshold value, following the models
in earlier chapters. In one class of models (adopted in this chapter), the con-
centration of a “final” product determines the next division.4 It is to be noted
that two cells arising from a single cell contain almost identical chemical com-
positions with some deviation (e.g., 0.1% used in most of the simulations). It
will be shown that differentiation occurs among the cells, although a cell in
our model divides into nearly identical ones.

Cell division and intracellular dynamics are mutually related. It will be
shown below that the intracellular dynamics show oscillation in an ensemble
of cells. This oscillation is maintained by cell–cell interaction. If one of the cells
divides, the balance that maintained a certain type of oscillation is disturbed,
because the new cell introduces new interactions into the system. As a result,
the dynamics of the individual cells will continue to change. In fact, in this
kind of “open” system, where the number of variables grows as in a cell culture
system, several types of different dynamics appear successively, even if each
element alone has simple oscillating patterns.

7.3.4 Molecular Fluctuation

So far, the rate equations of chemical concentrations are obtained by ne-
glecting molecular fluctuations: this approximation is valid if the number of
molecules is large enough. In contrast to the simulations of earlier chapters,
we adopted the rate equation for chemical concentrations here. “Continuous”
variables xm

i (t), concentrations of chemicals, are adopted instead of “integer”
numbers of molecules. In reality, the number of molecules for each chemical
is not necessarily huge, and the number of each signal molecule is typically
of the order of 1000 or so, as discussed already. Thus a noise term should be
included to take into account (thermal) fluctuations arising from finiteness in
the number of molecules. Considering fluctuations of

√
N for the reaction of

N molecules, we have added a noise term proportional to
√

xm
i (t)η(t), with a

random force η(t), represented by a Langevin equation. The amplitude of the
noise is denoted by σ.5

4 In the model of the next chapter, the sum of all chemical abundances, giving a
cell volume, determines the division. The scenario to be presented holds in this
case also.

5 Of course, another approach is the use of stochastic model, as adopted in earlier
chapters, and includes cell–cell interactions. Indeed we have carried out such
simulations also, but the results to be presented below are not altered.
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7.3.5 Model Equation

Specific form of the equation adopted in our computer experiments is not so
important. In the Appendix, we list an example of a set of equations, adopted
in our computer experiment, mainly for readers who are interested in working
in this type of study.

Remark. Instead of using catalytic reaction network model, we can adopt a
gene expression model, where gene expression takes either high or low value
depending on the “input” to the gene. For example, one can adopt a threshold-
type response for an element xi as

dxi/dt = −γxi + F (xi
inp) (7.1)

where F is a monotonous function approaching 0 for small xi
inp and some

positive constant for large xi
inp, such as the form

F (z) = zn/(1 + zn) .

The input into a given gene xi
inp is given by activation or inhibition from

other genes, and for example given by xi
inp =

∑
j Jij(xj − thrj). For some

network, the final expression level of genes xj approaches a stationary pattern
corresponding to fixed on/off pattern of genes. However, for many complex
networks, there appears oscillatory dynamics in gene expressions. As for intra-
cellular dynamics, we can choose this gene expression network model instead
of catalytic reaction network model. By including interaction and growth suit-
ably, an intra-intercellular dynamics model as in the present section is derived.
Indeed, the results to be presented in the next sections hold for this class of
model also.

7.4 Results

From several numerical experiments of the model, the logic mentioned in
Sect. 7.2 is confirmed. Here we first show numerical results for each step
of the differentiation. Indeed, the scenario, originally extracted from simula-
tions without molecular fluctuations, works completely well up to some noise
threshold, as will be discussed later.

7.4.1 Five Stages of Isologous Diversification

1) Synchronous oscillations of the chemicals in the cells. Only up to a certain
number of cells (e.g. eight cells) can the dividing cells from a single cell
have the same characteristics. Although each cell division is not exactly
symmetrical because of the accompanying noise-level of perturbation in
the biochemical composition, the phase of oscillation in the concentrations
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Fig. 7.9. Schematic representation of the stages of our differentiation scenario.
These results are supported by numerical simulations of several models. See Kaneko
and Yomo (1997) and Furusawa and Kaneko (1998a) for direct numerical results

is synchronized (see Fig. 7.9a). Consequently cells divide almost at the
same time.

Such synchronous cell division is also observed with the cells in the em-
bryogenesis of mammals up to eight cells. In our model, the synchronous
division is kept until small differences due to molecular fluctuations or
slightly unequal distribution of metabolites in each cell division are ampli-
fied.

2) Clustering in the phases of oscillations. As slight differences among cells
are amplified, the synchronous oscillation breaks and hence, cells start to
show different phases of oscillations. Cells split into few clusters where the
cells belonging to each cluster are identical in phase.
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However, this diversification in the phases is not to be mistaken as cell
differentiation, since taking the average concentration of biochemicals in
time reveals that all the cells are almost identical. Hence, in the second
stage of isologous diversification, the cells are different only in their phase of
oscillation, brought by the difference in the concentration of biochemicals.

The time course of changes in the concentration of biochemicals, since
it is governed by nonlinear reaction network, is sensitive to slight dif-
ferences brought by molecular fluctuations or cell division. Once these
small differences are amplified, the newly divided cells will produce dif-
ferent phases of oscillations. For instance, if two cells from a single
cell have slightly different compositions, rates of biochemical reaction
are affected by the difference in the phase of metabolic oscillations be-
tween the cells, since the reactions involved are autocatalytic. Hence the
phases of metabolic oscillations start to be different between the cells (see
Fig. 7.9b).

Sensitivity of the time course (of chemical concentrations) to tiny pertur-
bation is nothing but orbital instability as explained in Sect. 3.1. Although
perturbations caused by cell division would be amplified so that all the cells
would have their own different phases of oscillation, our models show that
the cells are not completely diversified in their phase but rather tend to
resolve into an ordered clustering as schematically shown in Fig. 7.9(b).

This clustering of phases is due to cell–cell interaction. In our model, the
state with identical cells (i.e., xm

i (t) = xm
j (t) for different cells i and j) is

unstable at the second stage. With this orbital instability, small differences
between cells are amplified. However, by forming clusters with different
phases, such instability is smeared out. Because of the cell–cell coupling,
the dynamics in each group retains stability. Now small differences in each
group are no longer amplified.

Differences in the metabolite concentrations between the clusters are
being balanced by the biochemicals secreted from all the cells. The sensi-
tivity to small change is smeared out by this balance. This event in turn
leads the cells to stay at a certain phase of oscillation, resulting in the
clustering. In other words, it is the transport of biochemicals from one cell
to another or cellular interactions (regarded as cell signals) that gives rise
to the different clusters in phase.

The mechanism governing the clustering of the phases is nothing but the
clustering discussed in Sect. 3.5, where robustness of the state is mathe-
matically clarified. Such robustness is expected as stability is achieved by
the clustering. The number of cells in each cluster has to be within a certain
range, to have such stability. In other words, developmental process leads
the number to stay within the range, independent of initial conditions and
perturbations. Hence, the distribution of cell numbers into each cluster is
rather robust against perturbations.

3) Differentiation in metabolite composition. As the cells with different phases
continue to undergo cell division, the average concentrations of the
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biochemicals over a cell cycle become different between clusters of cells.
That is, the composition of biochemicals as well as the rates of catalytic
reactions and transport of biochemicals across membrane become different
between the clusters.

The composition of biochemicals as well as the rates of catalytic reac-
tions and transport of the biochemicals become different for each group.
The orbits of chemical dynamics plotted in the phase space of biochemical
concentrations lie in a distinct region within the phase space, while within
each group, the phases of oscillation vary from cell to cell (see Fig. 7.9c).

Hence distinct groups of cells are formed with different chemical char-
acters. Each group is regarded as a different cell type, and the process to
form such types is called differentiation. In biological terms, the third stage
is no other than the division of labor of several biochemical reactions in
the cell, since the use of nutrients is different for each group.

The temporal difference in the phases leads to the difference in chemical
concentrations between cells. The difference of each biochemical activates
its transport by a simple diffusion process and makes a small difference
in its composition among the cells. The small difference is then amplified
through the nonlinear nature of reaction network, leading to clusters of
the cells with different intracellular dynamics.

The composition of biochemicals of each cell is not yet an inherent prop-
erty, since the intracellular dynamics governed by the nonlinear reaction
network, generally, if not in all cases, may vary in time. Hence, the compo-
sition of a newly divided cell can be different from that of the parent cell.
Therefore, each newly divided cell has a different rate of biochemical reac-
tions depending on the composition. In short, cells are at the intermediate
stage of the differentiation process.

4) Determination of the differentiated cells. As the cells continuously undergo
further cell divisions, they start to have their own inherent composition
that is preserved by the next generation of cells (see Fig. 7.9d). That is,
the cells come to a stage where the reaction dynamics and the chemical
composition are not much influenced by the environment and other cells.
Hence, the biochemical properties of a cell are inherited by its progeny,
or in other words, the properties of differentiated cells are stable, fixed,
or determined over the generations. This is the fourth stage of isologous
diversification.

Now the recursive production is achieved. In Fig. 7.10, chemical averages
of cells between successive divisions are plotted as the “return map,” that
is the relation between the chemical averages between the mother and
daughter cells. Up to around the 6th division here, chemical averages differ
by divisions. Later, the recursive production is seen as points lying around
the diagonal (y = x) line.

The balance between the clusters, each having its own compositions in
the third stage, is attained through cellular interactions in the same way
as in the dynamical clustering of the oscillation phase at the second stage.
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Fig. 7.10. Return map of chemical concentrations x
(m)
i averaged over two successive

divisions. A daughter cell’s average concentration is plotted versus its mother cell’s
average before the division to the daughter. Chemicals 2, 5, and 8 are plotted with
different marks, while the dotted lines are drawn only for convenience. The lower
column is the expansion of the upper column. See Kaneko and Yomo (1997) for
details

Although the metabolite composition of the cells tends to change over the
generations, this tendency is compensated by the intake of biochemicals
secreted from the cells belonging to the other clusters.

In the present theory, the inheritance is achieved through the transfer
of “initial conditions” at the division. The discreteness in the types of
chemical characters, noted previously, is relevant to preservation of the type
to daughter cells, since continuous change (like the phase of oscillations)
may easily be blurred by the division process and cannot be transmitted
to daughters robustly.

As soon as the features of the cells are inheritable, a cell lineage map
can be drawn, to show where the cell types branch out from their origin.
Generation of cell lineage gives rather useful information to be compared
with that obtained in cell biology. From the cell lineage, one can see how
the differentiation processes hierarchically, and how inheritance of cellular
state is realized.

In Fig. 7.11, we have plotted the cell lineage diagram, where the division
process with time is represented by the connected line between mother and
daughter cells. The gray scale in the figure shows the cell type determined
according to the chemical averages in Fig. 7.9.
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Fig. 7.11. Cell lineage diagram obtained from a simulation. The gray scale of the line
represents a cell’s character defined as the average chemical composition of the cell.
The dark line corresponds to undifferentiated type (i.e., the particular composition
of this cell type may change from division to division). The medium and light lines
correspond to determined cell types with different chemical compositions that do
not change after the cell division. Reproduced from Kaneko and Yomo (1999)

Cellular memory is clearly seen in this figure, where medium and light
lines are preserved through divisions for t > 550. As shown in Fig. 7.11,
emergence of certain cell types at different branches is observed in the
model. Such convergence of cell types from different branches is also known
in cell biology. In fact, such lineage is similar to that in tissues such as
the hypodermis, neural tissue, and muscle in the development of the C.
elegans (Kenyon, 1985). In Fig. 7.11, cells of a certain phenotype (e.g.,
given by “light lines”) arise in isolation individually at different points
in a lineage. Therefore, not only the history of each cell lineage accounts
for the maintenance of different cell types over the generations. Instead,
the global interaction among cells is important. In short, the emergence
of certain cell types at different branches is but one of the features of the
interaction-driven society.

The obtained cell lineage is not changed even if some fluctuations are
included in chemical reaction process and at the cell division process. With
the noise term mentioned in Sect. 7.2, the same cell types and the same
differentiation process are observed up to a certain noise strength, as will
be discussed in the next section.
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5) Hierarchical organization of cell types. By means of global cellular interac-
tion among the clusters of different cell types, the cellular phenotypes are
stable at stage 4. However, as the cells continuously proliferate, cellular
interaction within each cluster can result in further differentiation to the
cells. Subgroups, undergoing the cycle of stages 1–4, are formed within a
cluster.

Successive differentiation and determination of cells are seen in the
cell lineage (Fig. 7.11). After two types of cells are differentiated around
t ≈ 550, one of the types is later differentiated. Once this differentiation
occurs, this character is fixed again, and after some time, such charac-
ters are determined by the daughter cells. We will discuss the hierarchical
differentiation in more detail in the next chapter.

7.5 Further Results on Robustness
and Dynamics of Differentiation

7.5.1 Robustness of Developmental Process

In our model, the robustness of the cell society is shown in different stages of
developmental process. When the system is perturbed externally by changing
the concentrations of the metabolites, still a similar developmental path is
taken by the cells in the society. As a result, similar cell lineages are obtained.

To demonstrate this robustness, we discuss the influence of the molecular
fluctuation (given by the Langevin equation), in more detail. In Fig. 7.12,
we have plotted the average of two chemicals (x2(i), x3(i)) at time step 2000,
when 64 cells split into two distinct clusters with different biochemical com-
positions, in a simulation without molecular fluctuations. As shown in the
figure, the formation of two distinct clusters is robust while their biochemical
compositions are hardly modified, as long as the noise strength σ is less than
σthr ≈ .008. The number distribution of cells at the two clusters lies within
the range 25 ± 1:39 ∓1 again when the noise strength is less than σthr.

As discussed already, the final cell types are dynamically selected by cell–
cell interaction, overcoming the instability brought about by the intracellular
dynamics. If the chemical composition or the number of each cell type deviated
from that of the selected cell society, the instability would reappear, which
would enforce the system to revert to the original composition and distribu-
tion. Hence robustness against molecular fluctuations is a logical consequence
of our scenario.

It may also be interesting to study how the differentiation pattern is de-
stroyed when the molecular fluctuation is too large. As shown in Fig. 7.12,
the two types start to merge at σ ≈ σthr, and for larger σ, no distinct types
are observed any more. In this case, the biochemical characteristics of each
cell are continuously distributed.
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Fig. 7.12. The average concentrations of (x2
i (t), x

3
i (t)), at the time step 2000. Plot-

ted are the temporal averages, taken from the latest division to a time step 2000.
The noise amplitudes σ are 0.0001(�), 0.0003 (×), 0.001 (�), 0.02 (◦), and 0.05
(�). For each symbol, there are the number of points corresponding to each cell
existing at the time step 2000 (64 up to σ = 0.005, 62 for σ = 0.02, 53 for σ = 0.05),
although for σ ≤ 0.001, some of the points are overlaid and may be invisible since
the plotted concentrations of the cells are rather close by each other. Reproduced
from Kaneko and Yomo (1999) with permission

If the cells cannot form different types exploiting different chemical
“niches,” the competition between cells for nutrients is higher. In fact, with
the increase of noise amplitude σ > σthr, the cell replication is suppressed.
With the further increase of σ, (say σ > 0.06), some cells lose their chemi-
cal activity, and the amount of chemicals starts to decrease toward zero with
time. In other words, if the noise becomes too large, a developmental process
with the increase in the cell number does no longer occur.

From the threshold noise σthr, it may be possible to estimate the minimal
number of molecules in a cell, required to have a robust development process.
For it, note that the concentration variable xm

t (i) is the number of molecules
Nm

t (i) divided by the cell volume V (xm
t (i) = Nm

t (i)/V ). Assuming the fluc-
tuation of the order of

√
N for a system with N molecules, the noise strength

σ for the concentration equation is estimated as
√

1/V . Then the number



182 7 Cell Differentiation and Development

of molecules necessary to have robustness is given by N = V x = x/σ2
thr.

In our simulation, the concentration x for typical biochemicals is of the or-
der of 0.01 ∼ 0.1. Hence, the threshold number of molecules in our model is
estimated as 100 ∼ 1000. Of course, we have to admit that this is a rough
estimate and that the present model is too simple to claim the number as
a value comparable to the number of signal molecules in a real cell. Still, it
should be stressed that a huge number of molecules are not required to have
robustness, according to our scenario.

7.5.2 Transplant Experiment and Cellular Memory

Our cell society is not just robust against molecular fluctuations. It is even
robust against “macroscopic” perturbations, for example, against removal of
some cells. To study this problem, we first discuss how memory in differ-
entiated cell types is sustained. Recall that the differentiation in our theory
originates in the interaction among cells, but later, at the third stage, chemical
characters of a cell are memorized through the initial condition after division.
The differentiation at the initial stage is reversible, while the latter mechanism
leads to determination.

In the natural course of differentiation and in the simulations so far, it is
not possible to separate the memory in the inherited initial condition from
the interaction with other cells. To see the tolerance of the memory, one
effective method is to choose a determined cell and transplant it in a novel
environment, surrounded by a variety of cells. Let us discuss the results of
these “transplantation” experiments.

Here, we have made several numerical experiments taking such “artificial”
initial conditions. Numerically, transplantation experiments are carried out by
choosing determined cells (obtained from the normal differentiation process)
and putting them into a different set of surrounding cells, to make a cell
society that does not appear through the normal course of development.

When a determined cell is transplanted to another cell society, the offspring
of the cell keeps the same type, unless the cell-type distribution of the society
is strongly biased (e.g., a society consisting only of the same cell type as
transplanted). When a cell is transplanted into a biased society, differentiation
from a “determined” cell occurs. For example, a homogeneous society only
of one determined cell type is unstable, and some cells start to switch to a
different type. Hence, the cell memory is preserved mainly in each individual
cell, but suitable intercellular interactions are also necessary to keep it.

Thus the cellular interactions play the role not only of the trigger to differ-
entiation, but also of the maintenance of diversity of cells. Now, the relevance
of cellular interactions to robustness is again confirmed. The cellular inter-
actions do not only trigger differentiation but they also make a society with
diversified cell types robust.
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Fig. 7.13. Time series of a concentration of chemical component 2 (x
(2)
i (t)) plotted

over 800 < t < 805, overlaid over all cells i. Each line corresponds to the time series
of each cell. Oscillations with a larger amplitude correspond to cells with larger

activity (
∑

m x
(m)
i ). Reproduced from Kaneko and Yomo (1997) with permission

7.5.3 Separation of Inherent Time Scales

Another important feature here is the differentiation of the frequency. One
group of cells oscillates faster than the other group. Typically cells with low
activities oscillate more slowly in time with smaller amplitudes and divide
slowly (see Fig. 7.13). Hence inherent time scales differ by cells, which is also
seen in the differentiation of speed of division. Indeed, one group of cells di-
vides faster than the other group of cells. It should be noted that the inherent
time scales of cells are created spontaneously through cell divisions and dif-
ferentiations.

7.5.4 Relevance of Low-Concentration Chemical to the Initiation
of Differentiation

In our simulation, the differentiation starts after some divisions have occurred.
Since the division leads to almost equal cells, a minor difference is enhanced
to lead to macroscopic differentiation. We have found that small difference
of chemicals with very low concentration leads to the amplification of the
difference in the concentration of other chemicals. (see Fig. 7.14). At the ini-
tial stage of differentiation, difference in chemical concentration of chemical
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Fig. 7.14. Snapshot chemical concentrations of x
(m)
i , at t = 63, just the onset of

chemical difference by cells (clustering). Chemicals 4, 5, and 7 are plotted in a loga-
rithmic scale, in the order of cell index, the order that the cell is born. Reproduced
from Kaneko and Yomo (1997) with permission

species with high concentration is negligible while the difference in the concen-
tration of the species with very low concentration is remarkable. Such chemical
with a low concentration in fact triggers the differentiation and thus plays a
much more important role than that with a high concentration. Through cat-
alytic reaction, change in the concentration of such minor chemical species is
amplified. The importance of species with such low concentrations reminds us
of minority control in Chap. 4.

7.6 Experiment

If we take seriously the consequences of the theory so far, we do not necessarily
need to study the differentiation process of a multicellular organism. Any cells,
under suitable conditions, may start differentiating to form a multicellular
society.

7.6.1 Differentiation of E. coli Through Interaction

Here we discuss an experimental study made about a decade ago by Ko et al.
(1994), who observed populations of E. coli in liquid culture over long times.
The bacteria live in a culture with rather high density of cell populations.
This experiment is “constructive,” since a rather high-density liquid culture of
mutant E. coli is studied, to see a differentiation process that is not commonly
observed in nature.
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They found that E. coli differentiate into two groups, with regards to the
enzymatic activity of xylanase. They also selected out the bacteria to see what
type of colony the bacteria form. The two groups of bacteria are found to show
a quite different form of colony. This also supports the differentiation of the
characteristics of E. coli.

One might still ask whether these differentiations may be brought about by
mutations. They first checked the genes with regards to this enzyme activity,
and no mutations were observed. Next, they carried out the experiment of the
same liquid culture, but by selecting out only one type of E. coli from the two
groups. Then, again, as the cell number is increased to reach the high density,
the cells differentiate again to form the initial two groups with different enzyme
activities. If the differentiation were due to just rare mutations, this result
would not be explained. Hence the result also suggests that the differentiation
is not due to the genetic change, but due to cell–cell interactions. One may
conclude that some of E. coli (prokaryotes cells) with identical genes can be
differentiated. We note that these cells are under liquid culture, and thus they
are in an identical environment. No spatial factor is relevant as in the theory
discussed in this chapter.

The fraction of the number of each cell type exhibited a complex oscilla-
tion. The amplitude of oscillation was higher than statistical expectation, that
is,

√
N for the population size N . This result suggests existence of complex

dynamics due to cell–cell interaction.
The above experiment was carried out about a decade ago. Now with

the use of fluorescent proteins, this type of experiment is much easier. By
inserting a gene for fluorescent protein just at the downstream of a gene,
and measuring the degree of fluorescence of each cell by flow cytometry (see
Chap. 3), one can obtain the distribution of expression of the gene per cell
which gives a measure for the concentration of the corresponding protein. If
the distribution of fluorescence over many cells has a double peak, one can
detect the differentiation. With the cell sorter, it is also possible to select one
group of cells with higher (or lower) fluorescence.

The differentiation of bacteria at a colony on a plate has been exten-
sively studied by Shapiro. Indeed, Shapiro and Dworkin (1997) edited a book
Bacteria as Multicellular Organisms, where several forms of differentiation of
bacteria in a colony are discussed in depth.

In cells cultured on a plate, one can also see how differentiation progresses
as spatiotemporal pattern. Fractal patterns of cells are studied by Matsushita,
Ben-Jacob, Visceck, and so forth (Ben-Jacb et al., 1994; Matsuyama & Mat-
sushita, 1993). Quite recently Elowitz and Shapiro (2003) have observed the
change of gene expressions of E. coli, by inserting the Green Fluorescent Pro-
tein into a specific gene, as mentioned above. An example of development of
these bacteria is displayed in Fig. 7.15. As the colony develops, one can see dif-
ferentiated E. coli forming a pattern, indicated by changes of the fluorescence
strength.
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Fig. 7.15. Differentiation of E. coli in colony. Time-lapse images of E. coli cells
expressing GFP from a promoter upstream of the serA locus. The gray-scale levels
indicate the relative amount of GFP present in the cells at each time point. The
numbers under each frame indicate the time of incubation on LB agar at 37 C in
minutes. The time-lapse sequences were recorded by Michael Elowitz and James
Shapiro. The GFP – promoter fusion constructs were prepared by Alon Zaslaver,
Mike Surette, and Uri Alon as referenced in Ronen et al. (2002) and James Shapiro
(2003). Under the courtesy of Elowitz & Shapiro (2003)

Of course, each gene expression fluctuates, even at the level of a single
cell (Elowitz et al., 2002). Still, in the figure one can see some specific pat-
tern that is not random. Hence it is reasonable to assume that the cell–cell
interaction has some relevance to differentiation of these gene expressions. Of
course, in this experiment one has to seriously take into account the spatial
configuration. We will discuss this problem in Chap. 9 again.6

The gene expression is a result of complex intracellular reaction dynamics.
Some part in the network has a positive feedback process leading to differen-
tiation, while other part has a negative feedback process. Hence it is expected
that the differentiation in fluorescence pattern depends on the position in
DNA where the gene for the GFP is inserted. Indeed, Elowitz and Shapiro
have carried out several experiments changing the position of the insertion of
GFP gene. Now at the downstream of some genes, the differentiation is not
observed, whereas for some others, differentiation patterns as in Fig. 7.15 are
observed.

Importance of cell–cell interaction in bacteria has been extensively studied
as “quorum sensing” (Miller & Bassler, 2001). There are also studies to synthe-
size such interaction by embedding gene network in bacteria (You et al., 2004),
while synthesis of oscillatory gene expression has been achieved by Elowitz and
6 See also Suel et al. (2006), for recent report on transient cellular differentiation in

Bacillus subtilis (bacterium), induced by an excitable gene regulatory dynamics.
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Leibler (2000). Bistable gene expression related with quorum sensing is also
reported for some mutant bacteria (Veening et al., 2005). Hence it will be
possible to synthesize “isologous diversification,” by embedding a gene net-
work to bacteria with suitable gene expression dynamics and cell–cell inter-
action.

7.6.2 Interaction-Dependent Tumor Genesis

Rubin (Yao & Rubin, 1994; Chow et al., 1994; Rubin 1994a, 1994b), in a
series of experiments, has shown that formation of a type of tumors strongly
depends on the density of cells, not on their number. In general, mutation
is believed to be a trigger to the genesis of tumors. If the tumor formation
were totally dependent on random event of mutation as independent events by
cells, the formation would depend on the number of cells, not on the density.
The experiment shows that even if the mutation may be relevant, at least the
rate of formation of tumor also depends on the cell interaction. This suggests
that some type of tumor formation depends on epigenetic factors, and cell–cell
interaction has to be seriously considered there.

Note that the tumor formation most certainly is not a well-controlled,
highly programmed event. The interaction dependence on the tumor formation
suggests again the relevance of cell–cell interaction to the fate of cell type.

7.7 Relevance to Biology

7.7.1 Summary of the Result

To discuss the relevance of our isologous diversification to biology, let us briefly
summarize our results:

• Cell differentiation occurs through the interplay between intracellular chem-
ical reaction dynamics and the interaction among cells through chemical
media.

• Cell differentiation is initiated by the clustering of chemical oscillations,
appearing at some cell number, which is explained by general features of
coupled nonlinear oscillators.

• Chemicals with tiny amounts in cells are relevant to trigger differentiations.
• Distinct and memorized cell types are formed as discrete sets of chemical

states, characterized by chemical compositions, while intermediate states
among these types are unstable, which are not sustained. The distinct types
are later transferred to their offspring cells, as determination.

• Inherent time scales, given by the oscillation period, depend on the cell.
Generally active cells oscillate faster and divide faster. This separation of
timescale brings about the separation of growth speed of cells and leads to
the disparity between rapidly growing and inactive cells.
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• Determined cell types formed at the later stage are preserved by their trans-
plantation to another cell society as long as there are not too many cells
of the same type. On the other hand, cells may de-differentiate when sur-
rounded by a biased distribution of cell types.

It should be mentioned that these results naturally appear as a general
consequence of our isologous diversification theory without preprogrammed
implementation, and are independent of details in the model.

We should also mention that our theory is compatible with the genetic
switching mechanism for the differentiation. Here such switching-type expres-
sion appears naturally through cellular interactions. Note that these results
are consistent with the experimental observations so far, while they include
some predictions related to the generality of these features. We discuss a few
more points here.

7.7.2 Robustness from Unstable Dynamics

Even though the model disregards space as a factor, a society of diversified
cell types exists. This indicates that spatial bias, for example, a morphogen
gradient, is not necessary for cell differentiation. It is to be noted that this
statement does not deny that in the developmental process, the gradients of
morphogen are imperative for constructing the body in space. Under a certain
threshold of the morphogen concentration shown in Fig. 7.1, cells differenti-
ate. If the concentration difference of the morphogen between two adjacent
cells exceeds the threshold, the cells differentiate. However, if a differentiation
process would simply rely on gradients created and maintained by a diffusion
process, a developmental process with successive differentiations would not
succeed because the diffusion of a small number of molecules is stochastic.
The threshold mechanism based on the gradient cannot by itself overcome
the stochastic effect of diffusion, regarding cell differentiation.

On the other hand, in our isologous diversification, there is no uncertainty
in cell differentiation process. Even though the gradient of morphogen around
the adjacent cells is perturbed, the concentration difference is amplified and
gives rise to cell differentiation. Here, some experimental studies on equiva-
lent group of cells proved that cellular interaction is necessary for cell differ-
entiation (Greenwald & Rubin, 1992), as proposed in the present isologous
diversification theory.

In the same way as each of the cell differentiations, the final cell-type dis-
tribution is reproducible. If the development process works like a programmed
machine, then the signals and switches that trigger each cell differentiation
event must work as programmed. Nevertheless, since only a small number of
biochemical molecules trigger each cell differentiation, stochastic errors due to
molecular fluctuation are inevitable. Hence, the machine-like mechanism for
development cannot cope with the errors in each cell differentiation. In our
theory, even without a “fixed” mechanism for controlling cell differentiation,
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the system shows a reproducible distribution in cell-types during the devel-
opment. Moreover, the whole development is robust against any perturbation
such as removing and adding some cells. The robustness of our model cells
indicates that the embryo is not necessarily a programmed machine that re-
quires strict control. Rather, it has a certain flexibility to develop a precise
cell-type distribution.

7.7.3 Relevance of Molecules with Very Low Concentration
to Development

The relevance of minority molecule reminds us of a certain protein that is
known to trigger a switch of differentiation with only a small number of mole-
cules. The relevance of chemicals with low concentration is also seen in the
determined differentiation. As noted in Fig. 7.14, the difference is most re-
markable for chemicals with low concentrations. It is interesting to check this
proposition from experimental cell biology. The relevance, on the other hand,
is a consequence of our theory. Since the theory is based on the amplification
of tiny differences by a nonlinear mechanism, difference of “rare” chemicals
by cells can be easily amplified to lead to a macroscopic difference at the cell
level.

7.7.4 Oscillation

In our model, the differentiation results from nonlinear oscillation in chemical
reaction dynamics. Although our theory is applicable even without oscillation,
as long as there exists instability in the state. Still, it is interesting to dis-
cuss the relevance of oscillation. Biochemical oscillations are studied in Ca2+,
NADH, glycolysis, and so forth, and theoretical models for them are also de-
veloped (Goldbeter, 1996; Tyson et al., 1996). Still, relevance of oscillation to
cell differentiation was not seriously discussed.

Here, it is interesting to note a report by Dolmetsch et al. (1998). They
have shown that the Ca2+ oscillation in a cell depends on the cellular state,
and the gene expression pattern can be changed by externally varying the
frequency of oscillation. According to their experiment, cell-types are tightly
correlated with the frequency of Ca2+ oscillation. Studying biochemical dy-
namics in relationship with cell differentiation should be important in the
future.

7.7.5 Control of Tumor Formation

In simulations with a larger diffusion coupling, a peculiar type of cells ap-
pears. They destroy the ordered use of nutrients, which makes the cell society
disorganized. This type of cell is a different type of a specialized cell and has
a much higher concentration of one chemical than other species. The cells
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destroy the mutual relationships among cells, which was achieved through the
successive stages of the isologous diversification. Taking into account the fact
that these cells destruct the chemical order sustained in the cell society, they
may be regarded as “tumor”-type cells.

The formation of these “tumor”-type cells may be triggered by the muta-
tion, which, in our model, is represented by the “noise” term in the division
process. Still the growth of tumor cells depends on the cellular interactions,
for example, on the diffusion constant or the density of differentiated cells.
Depending on the interaction term, errors in the division process may or may
not lead to the “tumor”-type cells.

Of course, the high concentration of a single chemical species here is due
to the simplicity of our biochemical network consisting only of a few chemical
species. For a network with more components, the bias must be weakened.
However, it is still expected that there appears a cell-type with biased com-
position of chemicals.

Indeed potentiality to form “tumor”-type cells is a consequence of isol-
ogous diversification theory. In the theory the differentiation process is not
programmed explicitly as a rule but occurs through the interaction. Thus,
when a suitable condition of the interaction is lost, for example, by the in-
crease of density, “selfish” cells destroying the cooperative use of nutrients
may be formed.

Then, to reverse these tumor-type cells to a normal state in our model,
the diversity in the metabolite composition should be recovered. Indeed, if
the “tumor”-type cells in the model are mixed with the undifferentiated cells
containing various biochemicals, most of them regain a diverse biochemical
composition and reverse to a normal state. Similarly, by introducing cytosol
from undifferentiated cells or egg, into some human cancer cells, through the
liposome, their malignancy may be cured.

7.8 Appendix: An Example of Model Equation

Here we give the explicit model equations used in the simulations in Sect. 5.
The dynamics of the 
th biochemical concentration x

(�)
i (t), in cell i consists of

an internal reaction term React, an active transport Transp, a diffusion term
Diff , and molecular fluctuations Fluct, as

dx
(�)
i (t)/dt = React

(�)
i (t) + Transp

(�)
i (t) + Diff

(�)
i (t) + Fluct

(�)
i (t) . (7.2)

In this chapter, the reaction term React consists of autocatalytic reaction
network with a set of reaction paths from j to 
, written as
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React
(�)
i (t) = S(
)e0x

(0)
i (t)x(�)

i (t)

+
∑

j

Con(
, j)e1(x
(j)
i (t))α�,j x

(�)
i (t)/(1 + x

(�)
i (t)/xM )

−
∑
j′

Con(
, j′)e1x
(�)
i (t)(x(j′)

i (t))α�,j′/(1 + x
(�)
i (t)/xM )

− γP (
)x(�)
i (t), (7.3)

where Con(
, j) = 1 if there is a reaction path from the chemical 
 to the
chemical j, and Con(
, j) = 0 otherwise. This network is chosen randomly.
The value xM comes from the Michaelis–Menten’s kinetics, while the exponent
α�,j is the degree of catalytic reaction, which is set at 1 for simple catalytic
reaction which is adopted in this chapter. j to 
, and Con(
, j) = 0 otherwise.
Here we assume that there is a source chemical 0, from which other chemicals
are formed by the term S(
)e0x

(0)
i (t)x(�)

i (t). There is a flow to a product
required for cell division, given by the term γP (
)x(�)

i (t). Again, S(
) or P (
)
is 1 if such a path exists and 0 otherwise. (The equation form for x

(0)
i (t) is

obtained straightforwardly.)
With the flow at the rate of γP (
)x(�)

i (t), the product initiating cell division
is accumulated. Hence, cell i divides if the condition

∫
dtγ

∑
� P (
)x(�)

i (t) >
Threshold is satisfied. After the division, the two cells have the same chemical
composition as the mother cell i, with some tiny fluctuation (e.g., 0.1% for
each chemical x

(�)
i (t)).

The transport term expresses active transport from the medium to each
cell. The rate of transport in general depends on intracellular chemical con-
centrations. As a simple model, we choose that the activity is given by∑

k=1 x
(k)
i (t). Then, the term is given by

Transp
(m)
i (t) = p

(∑
�=1

x
(�)
i (t)

)
X(m)(t) , (7.4)

where X(m)(t) denotes concentration of chemical m in the medium. Apart
from the active transport, chemicals diffuse through the membrane as

Diff
(m)
i (t) = D(X(m)(t) − x

(m)
i ) . (7.5)

Since the active transport and diffusion processes are just the transportation
of chemicals to and from the medium, equations for the chemicals X(m)(t) in
the medium are equal to the sum of Transp

(m)
i (t) and Diff

(m)
i (t) over cells i

(divided by the volume ratio of the medium to a cell). (For the source chemical
X0

i (t), we assume a flux from the outside, so that the consumed nutrients are
supplied.)

So far we have adopted the model given in the earlier paper (Kaneko &
Yomo, 1997) in details. In this Chap. 7, we add a molecular fluctuation term,
given by the Langevin equation
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Fluct
(m)
i (t) = η

(m)
i (t)

√
x

(m)
i (t) (7.6)

with Gaussian white noise satisfying 〈η(m)
i (t)η(m)

i (t′)〉 = σ2δ(t − t′).
Note that the model choice in this section is just a specific example. In

other models such as the model given in Furusawa and Kaneko (1998), the
same scenario for the developmental process is confirmed.



8

Irreversible Differentiation from Stem Cell
and Robust Development

8.1 Question to Be Addressed: Regulation
for Differentiation of Stem Cell

Question: In the development of multicellular organisms, there ex-
ists a cell, called stem cell, that either replicates (proliferates) or
differentiates to several other cell types. There exists a rule for such
differentiation from multipotent stem cells. How are such differenti-
ation rules generated? How can the rule and several cell types coex-
ist stably under fluctuations? Furthermore, such stem cell systems
form a hierarchy. In the development of multicellular organisms,
there is a successive determination from totipotent embryonic stem
(ES) cell, to multipotent stem cells, and to several committed cell
types (that are determined to self-replicate). There exists a clear
time’s arrow in the direction of the loss of potency to form a vari-
ety of cell types, at least in the normal development course. How
is such irreversibility generated and how is it characterized quan-
titatively? On the other hand, the developmental process is robust
against fluctuations and perturbations. Is this robustness related
with developmental irreversibility?

In a multicellular organism, cells differentiate into several types, as dis-
cussed in the last chapter. In the developmental process, cells at the initial
stage of embryo have the potentiality to produce all other cell types. This
capability to produce all types of cells is named totipotency, while a cell with
totipotency is called an ES cell. As differentiation from this ES cell progresses,
a differentiated cell loses such potentiality. Some cells can produce only one
fixed type of cell in the course of development, while other types of cell still
partially keep the potentiality to differentiate. The latter type of cell either
produces the same type of cell or differentiates to a few other types of cell,
from which some other cells are differentiated. This type of cell is said to have
multipotency, and such cells are called stem cells. Stem cells are defined as
cells that have a potential to divide throughout the life of an organism and
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Fig. 8.1. Schematic representation of hierarchical differentiation from a stem cell

to produce either stem cells or other differentiated cells. They have both the
potentiality of self-replication and differentiation.

For example, the neuro-stem cell has the potentiality to produce all cells in
neural systems including neuron, glya, and so forth. The blood stem cells have
the potentiality to produce all cells in the blood, such as leucocyte including
neutrophil, acidophil and basophil, red blood cell (eythrocyte) blood platelet
(thrombocyte), and so forth. In the normal development, the stem cells have
this potentiality to produce a limited range of type of cells, in contrast to the
totipotency of ES cells. In this way, as shown in Fig. 8.1. The cell differen-
tiation process is organized in a tree-like graph, where the node at a higher
level has the potentiality to produce the cells at the lower branches derived
from it.

Through the developmental process, the potency, that is, the ability to
create different types of cells decreases. Initially, the embryonic stem cell has
totipotency and has the potentiality to create all types of cells in the organism.
Then a stem cell can create a limited variety of cells, having multipotency.
In the normal developmental process, this hierarchical loss of potency termi-
nates the level of “committed” cells, which are determined only to replicate
itself while preserving its own type. The degree of determination increases in
the normal course of development. How can one understand such irreversibil-
ity? Hence, in a multicellular organism with a developmental process, there
is a definite time’s arrow. Indeed, we know that irreversibility is common in
biological systems. As an empirical fact, we know that the direction from the
alive to the dead is irreversible.

Such universal time’s arrow may remind us of the second law of thermody-
namics. However, it is clearly impossible to simply attribute this irreversibility
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to the second law of thermodynamics. One can hardly imagine that the ther-
modynamic entropy, even if it were possible to define it for a biological system,
suddenly increases at death or successively increases at each step of the cell
differentiation process. Furthermore, it should be generally very difficult to
define a thermodynamic entropy to a nonequilibrium system such as a cell.
The irreversibility we discuss here holds at a different level than that of usual
thermodynamics.

On the other hand, it is also very difficult to imagine that only some spe-
cific molecules or genes play a decisive role responsible for irreversibility or
stability (such as “stability gene” or “irreversibility gene”). If there were such
gene or molecule, one might imagine the possibility of some long sought-after
“miracle medicine” for eternal youth! Probably, the stability and irreversibil-
ity are too universal features to be attributed solely to the characteristics of
a few molecules. Such a general feature is the property of a system. In this
sense, some analogy with thermodynamics might be relevant, even though the
concept “thermodynamic entropy” cannot be applied here: Thermodynamic
irreversibility is not restricted to a system composed of some specific mole-
cules. Analogously, we need to find a logic that universally holds in all cellular
systems.

Note, however, that this loss of potency holds in the case of a normal devel-
opment process. For example, consider a branching cell differentiation process
as displayed in Fig. 8.1. In this case, each cell can replicate or differentiate
into cells at a lower level to the original one by an arrow. This process is
observed during the normal developmental process. If a stem cell is extracted
from the tissue and is transplanted to other tissues, the stem cell may regain
the potency to produce cells of other branches.

Here it should be noted that the self-replicating, committed (determined)
cell can recover the potentiality to differentiate into other cell types, once
its nucleus is transplanted by a suitable operation. For example, the trans-
planted nucleus of somatic cells can produce all other types of cells. This
was first known in plants (Steward et al., 1958). Then Gurdon succeeded in
somatic clone experiments by using Xenopus (frog) (Gurdon et al., 1975),
which demonstrated that committed somatic cells can produce all other types
of cells. This was followed by Campbell, Wilmut for mammals (Campbell
et al., 1996).

When discussing this irreversibility, one should make sure that the con-
dition(s) under which “normal development” occurs must be fulfilled. Con-
versely, to reverse the differentiation, some operation violating the condition
for “normal development” is necessary. What are these conditions condition,
then? How is the condition for irreversibility in the normal development char-
acterized? Once such condition has been stated explicitly, it becomes possible
to discuss which operation is necessary to reverse the differentiation.

Let us come back to the discussion of normal development. In the devel-
opmental process of the multicellular organism, stem cells play an important
role to make the body, since they can replicate as well as produce all other cell
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types of the down-flow. Stem cells are essential to the development of mul-
ticellular organisms. They sustain tissues including cells that have a limited
life span and lose the ability of self-renewal (e.g., blood and epidermis), by
supplying differentiated cells continuously. For example, in the development
of plants, the self-replication and differentiations of stem cells at the apical
meristem is responsible for the buildup of the whole organism.

In some tissues, stem cells disappear after the development has progressed,
while in some other tissues, they remain to exist, which are responsible to keep
the tissues. Asexual reproduction of most primitive multicellular organisms,
such as Hydra (David & MacWilliams, 1978), is based on their stem cells.
Since stem cells can produce all other cell types, it is important to know
whether stem cells remain present or disappear at later stages of development.
The ability to regenerate some tissues after damage may be related with the
existence of stem cells.

Note that the stem cells have to possess two quite different properties, that
is, self-replication1 and differentiation. For the self-replication, the stem cell
has to keep its state through its growth up to division. For the differentiation,
on the other hand, the stem cell has to switch to other states so that its original
state should be somehow destabilized. These two distinct features for self-
replication and differentiation have to be satisfied in a single stem cell: After
cell division, one of the cells keeps its state, and the other is differentiated.
Now the problem how stem cells determine their fate (to self-renew or to
differentiate) is still unsolved.

Roughly speaking, there are two major hypotheses about the determina-
tion of stem cell differentiation. The first one is the cell-intrinsic hypothe-
sis, according to which the fate of a stem cell is determined by a program
driven autonomously, inside the cell. The other is the inductive hypothesis,
in which the differentiation is caused by inductive signals from the outside of
the system, which provide asymmetry among the cells. Different cells appear
from different signals. A most important model formalizing the cell-intrinsic
hypothesis is the stochastic differentiation model, proposed to describe the
hematopoietic stem cell system by Till and McCulloch (1964). They observed
variations in the number of stem cells in spleen colonies that originate from
a single stem cell and explained this heterogeneity in terms of the hypothesis
that each decision of a stem cell to undergo either self-replication or differen-
tiation is stochastic, with a given fixed probability. Nakahata et al. extended
this stochastic determination and made some experimental observations that
support it (Nakahata et al., 1982). They prepared two daughter cells derived
from a single multipotent stem cell and cultivated them independently un-
der identical conditions. Repeating this experiment a number of times, they
found that the cell number distributions of two such colonies generated by
paired daughter cells often turned out to be different from each other. These
experiments demonstrate the stochastic character of stem cell differentiation.
1 Or, sometimes called as “proliferation.”
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In experiments on several stem cell systems, spontaneous differentiation
has been observed, and in terms of the observations, it appears that it occurs
in a stochastic manner. Although external signal molecules, such as growth
factors, are required to maintain these systems, it has been found that the
differentiation of stem cells does not require any signals from the outside,
providing inhomogeneity among the state of stem cells.

Then, does the differentiation occur just randomly by some probability?
If so, it would be difficult to understand the stability of the stem cell system.
Indeed, an important feature of a stem cell system lies in the robustness of
a multicellular organism at a cell population level, as, for example, shown in
regeneration. When a tissue is damaged, active stem cells reappear through
activation of quiescent stem cells or de-differentiation of neighboring cells.
The self-replication and differentiation of these cells, by which the damaged
tissue can be reconstructed, are regulated depending on the environment.
For example, in the hematopoietic system, when the number of committed
cells (e.g., red blood cells) is made artificially lower, the replication of and/or
differentiation to this cell type have to be enhanced, so as to recover the
original distribution of blood cells.

To achieve such stability, the choice of differentiation and proliferation
should depend on the surrounding cells. Depending on which types of cells are
dominant in a population, the choice can change. Here, regulation of the prob-
ability is required as long as a developmental process satisfies some robustness
against external perturbation. For example, let us consider the differentiation
from a stem cell to some other cell types. Assume that some of the committed
cell types is continuously eliminated. If there were no regulation to the rate of
differentiation from the stem cell to the damaged cell-type, the distribution
of cell types would deviate fatally.

On the other hand, consider the situation in which only a single stem
cell exists in an ensemble of cells. If, after the division, the two daughter cells
happen to differentiate into different types, there is no more stem cells, and the
ability to produce several other cell types will be lost in this cell ensemble. In
contrast, transplantation of even a single blood stem cell seems to be sufficient
to regenerate the whole blood system. When a single hematopoietic stem cell
is transplanted into a mouse whose hematopoietic system has been destroyed
through irradiation, this cell can reconstitute the hematopoietic system with
high probability (Ogawa, 1993). This result implies that the probability of
differentiation is externally controlled at least in the case where there are
only a small number of stem cells.2

Now, it is expected that the choice of the differentiation or self-replication
depends on the cell–cell interactions. But how is this possible if the choice
of proliferation and differentiation is stochastic? In other words, it is yet
unknown whether the probabilities involved in differentiation are controlled
2 The regulation of this probability has also been reported in the spontaneous

differentiation of hydra stem cells (David & MacWilliams, 1978).
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extrinsically. The original form of the stochastic model assumes that the prob-
ability of differentiation is fixed, and that a cell population is regulated by
controlling the proliferation and survival of cells. The experiments mentioned
above suggest that this probability can be controlled by extrinsic factors, and
that the stochastic behavior cannot be separated from the complex cell–cell
interaction, and is regulated depending on the population distribution of cell
types.

Summing up, the following features are necessary for a stem cell system.

1. The diversity of cell types through differentiations from stem cells can
emerge without any information from the outside of the system. These
differentiations occur stochastically.

2. The self-replication and differentiation of cells in the system are regulated
depending on the complex cell–cell interactions. This regulation makes it
possible to maintain the robustness of the system.

In other words, the stem cell system has both the features of stochasticity
and regulation. Since molecular fluctuations are inevitable to a cell system, it
might be natural to assign the origin of the probabilistic behavior to molecular
fluctuations. For example, reactions among specific chemical substances, such
as a DNA molecule and a regulator protein occur stochastically due to random
collision of the molecules. However, if stochastic molecular events are the only
origin of stochasticity, it would be very difficult to imagine a mechanism to
regulate the probability itself. Now, control to change the rate for some specific
reaction in such network should be very difficult.

Then, how are the two features – stochasticity and regulation – under-
stood? In the present chapter, we will show that these features are a general
consequence of intracellular chemical dynamics and cell–cell interaction, in-
dependently of the details of specific chemical substances. In particular, sto-
chastic differentiation and the regulation of probability of differentiations are
naturally derived as a general property of interacting dynamical systems.

8.2 Logic: Chaotic Stem Cell

To answer the question in the last section, we have extended our isologous
diversification theory, to consider plasticity in the dynamics more seriously.

When a cell includes a large variety of chemicals, the chemical dynamics
are not generally stable, as also mentioned in Sect. 7.2. Furthermore, for a
cell to grow efficiently, some autocatalytic chemical reactions with positive
feedback process must be present to amplify some chemical concentrations.
Then instability in dynamics, as well as flexibility is also present at the level
of the cell state. Although the description of the cell state may involve a large
number of degrees of freedom, considering a large variety of molecule species,
its temporal evolution is not generally random. What happens then when such
a cell, whose state is unstable, increases its number?
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For these reasons we consider a cell with high plasticity, for example,
derived from chaotic reaction dynamics. Then, as the number of such cells
increases, the intra-cellular biochemical state starts to be unstable, because of
the cell–cell interaction. Through this instability, chemical composition starts
to be different, and cells with different compositions are formed, while cells
with the original chaotic dynamics remain to exist with some fraction.

With cell–cell interactions, it is expected that cells start to form distinct
states that mutually stabilize each other. (Recall the results of the previous
chapter.) With this process, different cell types are formed, which mutually
stabilize their state. The initial state has a higher instability in dynamics and
fluctuations in the chemical compositions. It has flexibility. The new state that
appears later will be more stable and loses some degree of such flexibility. As
mentioned in Sect. 3.3, irreversibility in the transition is expected: Consider
two states with and without flexibility. The flexible state can switch to another
state possibly less flexible than itself, whereas the less flexible one can only
remain as is. Hence irreversibility is expected. Generation of differentiation
rules, discrete stable cell-types, as well as stable tissue within a certain range
of cell-type distribution is a result of the instability in biochemical states. The
initial cell type with flexibility is regarded as a stem cell, from which hierar-
chical differentiation progresses to a finally committed cell that can proliferate
itself.

Now, two fundamental features of stem cell systems – stochastic differen-
tiation of stem cells and the robustness of a system due to regulation of this
differentiation – are found to be general properties of a system of interacting
cells exhibiting chaotic intracellular reaction dynamics.

Here, the initial cell type S either self-replicates (proliferates) or differen-
tiates, with some probability due to spontaneous fluctuations generated by
the flexibility in the dynamics. This “probability” depends on the internal
cellular state that also depends on the surroundings of cells, since the stabi-
lization to each cell state occurs through cell–cell interaction. For example, as
the fraction of the number of cell type S is increased, the original instability
that existed for the cell state in the condition consisting only of the type S
cells appears again, and the probability for differentiation from the type S to
other types increases. Hence the probability of the differentiation is regulated
so that it increases (decreases) as the fraction of type S cells is decreased
(increased). In other words, there should generally exist a spontaneous reg-
ulation of differentiation probability so that the number distribution of each
cell type is stabilized against perturbations. Note, as will be discussed later,
this stabilization is similar to the Le Chatelier principle in thermodynamics.

Here, it should be noted that unstable (chaotic) dynamics provides a plau-
sible mechanism for such control of probability, since it leads to stochastic
behavior as to the fate of an orbit, starting from a set of deterministic equa-
tions that can model the biochemical reaction networks of a cell (see Chap. 3).
As long as the complete description of the internal cellular state is not pre-
cisely known, the differentiation can look like stochastic. Since “stochastic”
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behavior is generated by a deterministic mechanism, it naturally opens up the
possibility of self-generated regulation of differentiation. The developmental
process in these dynamical systems must be stable against molecular fluctu-
ations. First, intracellular dynamics of each cell type are stable against such
perturbations. This stability is not solely determined by intracellular chemical
reaction dynamics. With the increase of the cell number, the cellular state of
chemical compositions is destabilized, but then through cell–cell interaction,
the differentiated states are stabilized. Given cell-to-cell interactions, the cell
state is stable against perturbations on the level of each intracellular dynam-
ics. Even if the cell type number distribution is perturbed slightly, each cellular
dynamics keeps its type. Hence discrete, stable types are formed through the
interplay between intracellular dynamics and interaction, starting from unsta-
ble dynamics. The recursive production is attained through the selection of
initial conditions of the intracellular dynamics of each cell so that it is rather
robust against the change of interaction terms as well.

As mentioned, this also allows for the stability at a macroscopic level, that
is, with regards to the number distribution of cell types. When macroscopic
perturbation is applied, to change the number distribution, the probability of
differentiation from stem cells is altered leading to recovery of the original cell
type distribution. Hence macroscopic robustness arises (Fig. 8.2).

8.2.1 Direction of Determination: Logic

Then, is the differentiation from the type S cell irreversible? As the process
mentioned above progresses, the differentiated cells tend to adopt biased

Type S 

Type B 
Type A1

Type A2

Type A 

Division

Fig. 8.2. Schematic representation of hierarchical differentiation from stem cell,
represented in the state space. By using the model described in the next section, we
obtain such differentiation process
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chemical concentrations: a few chemicals have higher chemical concentrations.
For example, consider differentiation from the type S cell to differentiated
types A and B. The type A cell possesses a higher concentration of some
chemical(s) than other types, and the type B cell possesses a higher concen-
tration of different chemical(s). With this, cells are differentiated in roles. One
group of cells (say type A) synthesizes some molecules, which are used also
for another differentiated type of cells (say type B), which synthesizes dif-
ferent molecules that are also used for the other type. Then, the diversity of
chemicals within each differentiated cell is lower than that of the initial stem
cell. In general, recovering the diversity is harder than losing it, which brings
about a source of irreversibility. As the remaining degrees of chemical species
are decreased, the reaction dynamics become simpler (are lower dimensional),
so that the variation or fluctuation of chemical concentrations in the cells will
decrease. Hence the decrease of “plasticity, or changeability of cells” is natu-
rally expected. This is nothing but the loss of plasticity discussed in Chap. 3.
As discussed there, switch from a state with higher plasticity to that with a
lower plasticity is irreversible. In this sense, the irreversibility in cell differen-
tiation is discussed in terms of the loss of diversity in intracellular chemicals
and plasticity.

8.3 Model

Here we basically follow the modeling strategy of Chap. 7, while intracellu-
lar dynamics are slightly revised to allow for chaotic dynamics, as given in
Fig. 8.3a. We choose a catalytic network among the k chemicals. Each reac-
tion from some chemical i to some chemical j is assumed to be catalyzed by
a third chemical 
, which is determined randomly.

We again denote that the rate of increase of x
(m)
i (t) (and decrease of

x
(j)
i (t)) through a reaction from chemical j to chemical m catalyzed by 
 as

ex
(j)
i (t)(x(�)

i (t))α, where e is the coefficient for the chemical reaction and α
is the degree of catalyzation. For simplicity, we use identical values of e and
α for all paths. In this chapter, instead of α = 1 (as in the last chapter), we
adopt α = 2, which implies a quadratic effect of enzymes. This specific choice
of a quadratic effect is not essential in our model of cell differentiation, but
this higher nonlinearity introduces a higher degree of instability in the steady
state of chemical concentrations, and often leads to chaotic dynamics. That is
the necessary part. (See also Appendix of Chap. 7 for details of the equation,
as well as (Furusawa & Kaneko, 1998a, 2000b, 2001)).

Furthermore, we take into account the change in the volume of a cell,
which varies as a result of the transportation of chemicals between the cell
and the environment. For simplicity, we assume that the total concentration
of chemicals in a cell is constant,

∑
m x

(m)
i = const. It follows that the volume

of a cell is proportional to the sum of the quantities of all chemicals in the
cell. The volume change is calculated from the transport, as discussed below.
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Fig. 8.3. (a): Overlaid time series of x(m)(t) for the type-0 cell. The vertical axis
represents the concentration of chemicals and the horizontal axis represents time.
In this figure, we have plotted the time series of only 6 of the 32 internal chemicals,
for clarity. (b)–(f): Time series of x(m)(t) in a cell, representing the course of differ-
entiation to type A, B, and type A1, A2, A3 cells, respectively. Reproduced from
Furusawa and Kaneko, (2001) with permission

8.4 Results

8.4.1 Hierarchical Differentiation

First, we shall give numerical results obtained by using a fixed reaction net-
work. It is a typical example, when initial intracellular concentration dynamics
is chaotic. As an initial condition, we take a single cell, with randomly chosen
chemical concentrations of x

(�)
i satisfying

∑
� x

(�)
i = 1. In Fig. 8.3, we have

plotted a time series of concentration of the chemicals in a cell, when only a
single cell is in the medium. This attractor of the internal chemical dynamics
is a limit cycle, whose period is longer than the plotted range in Fig. 8.3. We
call this state “attractor-S” or “type-S” in this chapter. Here the abbreviation
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S is used in considering the correspondence to a stem cell, to be clarified be-
low. This is the only attractor that is detected from randomly chosen initial
conditions.

As already discussed in Chap. 7, the cell volume increases as external
chemicals flow into the cell through diffusion. Thus the cell is divided into two,
with almost identical chemical concentrations. Chemicals of the two daughter
cells oscillate coherently, with the same dynamical behavior as the mother cell
(i.e., attractor-S). Successive cell divisions occur simultaneously, and the cell
number increases as 1−2−4−8 . . ., up to some threshold number. After a few
divisions, internal dynamics of each cell still belongs to the same attractor (i.e.,
attractor-S), but the oscillations are no longer synchronized. The microscopic
differences introduced at each cell division are amplified to a macroscopic level
through cell–cell interaction that destroys the phase coherence.

When the number of cells exceeds some threshold value, some cells begin to
display different types of dynamics. In Fig. 8.3, the time series of the chemical
concentrations in these new types of cells is plotted. We call here this new
type of cell as “type A”. The orbits of the chemical concentrations of cells in
the phase space are displayed in Fig. 8.4. As the cell number further increases,
another type of cell, type B appears here, again differentiated from the type
S cell, as shown in Figs. 8.3 and 8.4. These figures show that each of the
these dynamics occupies a distinct region in the state space, and that each
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Fig. 8.5. Rule of differentiation generated in the model

can be clearly distinguished as a distinct state. The type S cells have the
potentiality to differentiate to either “A” or “B,” while some of the type “S”
cells preserve their type, that is, proliferate. These transitions of the cellular
state are interpreted as differentiation. Note that these discrete states are not
attractors of the intracellular dynamics of a single cell (Fig. 8.5).

Then, with the further increase of cell numbers, cell type “A” further
differentiates into either of three groups represented as “A1,” “A2,” or “A3.”
The time series of these three types are shown in Fig. 8.3, while representation
at the phase space of each type is also plotted in a projected phase space in
Fig. 8.4. The orbit of type A cell itinerates over the three regions corresponding
to “A1,” “A2,” and “A3.”

In the simulations starting from a single (or a few cells) without external
operation, cells of the types “B” and “A1,” “A2,” and “A3” reproduce only
themselves, without further differentiation. The type S cell either reproduces
the identical type or forms different cell types, denoted for example as type A
and type B. The type A cell reproduces or further differentiates to A1, A2, or
A3 cells but none of the offspring ever becomes a type S cell again.3 The self-
replication (proliferation) and differentiation that occur in this developmental
process is summarized as S → S,A,B, A → A,A1, A2, A3, and B → B,
A1 → A1, A2 → A2, and A3 → A3. The rule that governs differentiations
into cell types is generated from the reaction dynamics.

Note that this differentiation is not induced directly by the tiny differences
introduced at the division. The switch from one cell type to another does not
occur simultaneously with the division, but occurs later through the interac-
tion among the cells. This phenomenon is caused by an instability in the total
system consisting of all cells and of the medium. In the present example, six
distinct cell types are observed. The number of cell types appearing in the cell
3 Among these five cell types, only the cell type S and type A3 cells are attrac-

tors of intracellular dynamics, while other types appear and replicate only when
surrounded by different types of cells.
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Fig. 8.6. Another example of differentiation from a different reaction network. Here
six types of cells are generated from the stem-type cell S. Plotted are the timeseries
of chemical concentrations of 6 species among 20. Reproduced from Furusawa and
Kaneko (2001)

society depends on the nature of the catalytic network we choose. The hierar-
chical differentiation represented by tree-like rules, however, is often observed
when the internal dynamics has sufficient complexity with oscillation, as will
be the case when dynamics is chaotic. Another example of differentiation is
given in Fig. 8.6.

8.4.2 Dual Coding of Cellular State: Discrete Types
and Continuous Modulation of Each Type

One might think that our definition of types is rather ambiguous and is not
clearly defined. However, one can clearly distinguish them by plotting and
comparing the time series of various chemical concentrations and check how
these orbits are separated. Some differences remain within the same cell type.
However, such difference is clearly much smaller than that between different
cell types. There are no reproducing cells and chemical concentrations inter-
mediate between those of displayed cell types never correspond to reproducing
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cells. This demonstrates that the differentiated cell types are well-defined as
“digitally” distinct states.

Note that the cell state of each type is slightly modulated depending on
the number distribution of cell types around it. For example, as the numbers
Ns, NA, NB for type S, A, B cells are changed, the chemical state (i.e., the
average composition or location of the orbit in the phase space) is modified
slightly. This change, however, is much smaller than the change between the
types. Hence the cell system has both discrete changes of types and continuous
change of the state of each type depending on the number distribution.

8.4.3 Regulation of Stochastic Differentiation

Now a differentiation rule has been generated, which can be represented on a
tree structure. When there are multiple choices of differentiation process (as
in “S,” → “S,” or “S” → “A,” and “S” → “B” (see Fig. 8.5), the question
remains as to how each arrow for differentiation is selected. Here, when the
cell types that exist at a given time are specified, whereas all values of x

(k)
i (t)

for all chemicals over all cells are not known precisely, the choice of each arrow
from the type S cell is probabilistic. For a stem cell also, whether to replicate
or to differentiate is regarded as probabilistic.4

Since such stochasticity is not due to external fluctuation but is a result of
the internal dynamics, the probability of differentiation can be regulated by
the intracellular state. To consider this problem, we focus on the differentiation
from type S to types A and B. Then after a cell division, one can assign the
probabilities pS , pA, and pB for the type S cell to self-replicate (pS) or to
differentiate to A or B, respectively. Now we study how these rates of self-
replication or differentiation from the type S cell (pS , pA, or pB) depends on
the surrounding distributions, that is, the number distribution of cell types
(nS , nA, nB , ..).

When the number of type A (resp. B) cells is decreased artificially, we
find that the probability pA (resp. pB) of differentiation to A (resp. B) is
increased. The frequency of differentiation from the cell type S to other cell
types increases almost linearly with nS when the fraction of type S cells is
larger than approximately 40%. By decreasing the number of type S cell, on
the other hand, the self-replication rate pS increases.

To sum up, this stochastic branching is accompanied by a regulative mech-
anism, to the direction that suppresses external perturbations. When some
type of cells is removed by some external operator during the developmental
4 Of course, if one determined completely the chemical composition and the

division-induced asymmetry, then the fate of the cell would be determined, as
long as there were no fluctuations. Here, however, such possibility is practically
irrelevant, since as one knows from chaos theory, such deterministic dynamics
leads to stochastic behavior, as long as one cannot know the initial condition of
the internal cell state in every detail.
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process, the rate of differentiation changes so that the number of the cells of
the removed type is increased and that the final cell distribution is recovered.
Through this emergent regulation, the cell distribution is attracted toward
the proportions approximately equal to (nS , nA, nB) = (40, 30, 30).

How is this interaction-dependent rule formed? Note that depending on
the distribution of the other cell types, the orbit of internal cell states is
slightly modified.5 Such modulation is possible, because of the “dual” coding
mentioned in the last subsection. The state of a cell is mainly characterized
by its discrete type. However, a continuous modulation between cell types
also exists and carries global information about cell type distribution. For
example, when the number of “A” type cells is reduced, the orbit of an “S”
type cell is shifted toward the orbits of “A,” with which the rate of switch to
“A” is enhanced. The information of the cell type distribution is represented
by the internal dynamics of “S” type cells, and it is essential to the regulation
of differentiation rate (Furusawa & Kaneko, 1998a).

8.4.4 Differentiation of Colony

The result of the last subsection implies the emergence of a higher level dy-
namics, which controls the rate of cell division and differentiation according to
the number of each cell type. In other words, the stochastic dynamics on the
number of each cell type nS ,nA,nB that depends on {nk} (k = S,A,B, . . .)
possesses a stable fixed point at about (nS , nA, nB) ≈ (40, 30, 30). Recall that
the differentiation rate of cells (each arrow in Fig. 8.5), and accordingly the
higher level dynamics of nk depend on the distribution of cells nk. The result
of the last subsection implies that the state reached through development is
an attractor on this higher level dynamics on nk. Indeed, the “attractor” of
this higher level dynamics is stable against perturbations whereby some cells
of each type are removed.

Then, is such a “macroscopic” attractor always unique? Or, can the dy-
namics on the number of cells of each type also possess several stable attractors
with autonomous control of the rate of differentiation? In a biological term,
this corresponds to the existence of different tissues. If the answer is positive,
then different types of cell colonies consisting of different stable distributions
of cell types can be developed from a single stem cell.

To study this problem, we have performed the simulations, by simula-
tions starting from a variety of single-cell initial conditions, with different
internal chemical concentrations, and measured the distribution of cell types
nS , nA, nB when the total cell number reaches a given threshold value (set at
300 here). In Fig. 8.7, the number of initial configurations (among 100 runs)
leading to a cell type distribution with a given range of nB is plotted as a
5 This is a continuous modulation of the orbit depending on the distribution (or

environment), and is compatible with discreteness in cell types without interme-
diary state.
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Fig. 8.7. Histogram of the number nB of type B cells. Starting from a single cell
with randomly chosen chemical concentrations, the simulation is carried out until
the total cell number reaches 300, when the number nB of type B cells is measured.
Repeating the runs 347 times, we have counted the number of such initial conditions
that nB falls onto a given bin (with the size 5). The histogram of nB is obtained from
the count. There are four peaks at nB = 0, 100, 150, 220, each of which corresponds
to a stable distribution of the cell colony. Reproduced from Furusawa and Kaneko
(1998a) with permission

histogram, by computing the number of type B cells nB among the total cell
number 300. Four peaks are clearly visible at nB = 0 , ∼100, ∼150, and ∼220,
which correspond to possible distinct sets of cell distributions. As mentioned,
the possible set of cell types (from “S” to “A3”) and the temporal ordering
of their appearance (e.g., S → S, S → A, S → B) are independent of the ini-
tial conditions. However, at a later stage, several types of cell groups emerge
depending on the initial conditions. To each peak corresponds a cell colony
consisting of different cell types, for example, that consisting only of type S,
A, and B cells, of only type S, B, and A2 cells. Here, four types of cell colonies,
that is, four stable distributions of cell types, appear through developmental
processes with different initial conditions (see Furusawa & Kaneko [1998a] for
details). The choice of each colony state is history-dependent, that is, depends
on how the development process unfolds.

Recall that the differentiation rate of cells (each arrow in Fig. 8.6) and,
accordingly, the higher level dynamics of nk depend on the distribution of cells
nk. The above result implies that there are several attractors on this higher
level dynamics on nk. To see this population dynamics of cell numbers in the
colony, we have studied the flow chart of the change of (nS , nA, nB), where
the direction of change of nS and nA is represented by an arrow, starting from
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the initial distribution given by (nS , nA, nB) of the corresponding site.6 The
chart shows that cell colonies on the cell type distribution {nS , . . . nA3} have
at least 5 stable states around (nS , nB) = (0,0), (38,32), (30,50), (18,58), and
(0,78) respectively. Each state has a basin of attraction, and the corresponding
cell type distribution is stable against external perturbations, as is supported
by the higher level dynamics on {nS , . . . , nA3}.

The fixed point at (nS , nB) = (0, 0) corresponds to a colony consisting
only of type A3 cells, while the fixed points denoted by “II,” “III,” and “IV”
correspond to colonies consisting only of S,A,B, of S,B,A1, and of S,B,A2,
respectively. Indeed, these cell type distributions correspond to each of the
peaks of Fig. 8.7, respectively.

Still we note that one of the “attractors” at the distribution level observed
here is not realized in the simulation starting from a single cell: The state
“V” consisting of types B and A2 cannot be obtained from the developmen-
tal process from a single cell. This discrepancy is caused by the conjunction
of cell number change with the population dynamics of cell types. Through
the change of the number of cells, the population dynamics shifts from one
flow chart for a given cell number (e.g., shown in Fig. 8.8) to another for a
different number of cells. The organized cell colony from a single cell has such
developmental constraints.

Now the coexistence of several stable cell colonies is clear. Depending on
the initial cell condition, different cell colonies are obtained. The result here
means that several types of tissues can appear through the interactions among
cells.

8.4.5 Stability

As has been discussed already, stability of development process is miraculous
when one considers the number of involved molecules, cells, and processes. In
spite of molecular fluctuations, and other external perturbations, the “error”
in the development is quite small. In a developmental system, there are at
least three kinds of stability, which are mutually interrelated.

• Microscopic: The developmental process is robust against molecular fluctu-
ations.

• Macroscopic: The process is robust against macroscopic perturbations such
as the removal of some cells or somatic mutations.

• Path: Not only the final states but also the developmental path resulting in
such states is stable against microscopic and macroscopic perturbations.

6 To draw the figure, we kill the division rule for the moment, and the total cell
number (nS + nA + nB) is fixed to 100, and the division rule is removed for the
moment. This change of rule is only for the convenience, to eliminate the change
in the dynamics due to the increase in the cell number, and is not important.
From the two-dimensional plane, the number of cells of types A, A1,A2, and A3
are given by 100 − nS − nB .
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Fig. 8.8. Flow chart of the change of (nS , nA, nB). We have carried out the simula-
tions starting from the initial condition at each (nS , 100−nS −nB , nB) by fixing the
total cell number to 100 (by removing the cell division process). Change of the num-
ber of cell types is measured from simulations, from which the direction of changes
of (nS , nB) is shown as an arrow in the (nS , nB) space. As is seen, there are five
fixed points, each of which corresponds to the stable population distribution of cell
types. Reproduced from Furusawa and Kaneko (1998a) with permission

Our theory, being based on unstable state dynamics, might look inappro-
priate to generate such stability properties. Still, the result of our model is
stable both microscopically and macroscopically. To check the microscopic
stability of our model, we have included molecular fluctuations as a noise
term. Again, the cell types and number fractions obtained remain the same.

Furthermore, macroscopic stability is also present. For example, after re-
moval of some types of cells, the number distributions are recovered, thanks
to a change of differentiation rate as mentioned in Sect. 8.4.2. In general,
stability at the ensemble level is a rather general consequence when units
with unstable dynamics interact with each other (Kaneko, 1992; Kaneko &
Ikegami, 1992). In the present case, macroscopic stability is sustained by the
change of the rate of differentiation, that is achieved by the change of internal
dynamics through the interaction. But why is the regulation oriented to keep
the stability, instead of the other direction? In the example discussed here,
the differentiation from S to A is enhanced when the type A cell is removed.
Assume that the regulation worked in the other way (i.e., when removing A,
the rate S → A decreases). Then, at the initial stage when type A cells are
produced for the first time, their number would in fact decrease to zero, since
this number is lower than that in the final state at that time. Hence, the type
A cell would in fact never appear. In other words, only the cell types that
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have a regulation mechanism to stabilize their coexistence with other types
can appear through the developmental process.

It should be stressed that our dynamical differentiation process is always
accompanied by this kind of regulation process, without any sophisticated
programs implemented in advance. This autonomous robustness provides a
novel viewpoint to the stability of the cell society in multicellular organisms.

The regulation of differentiation probability we have discovered has the
same structure as the Le Chatelier priniciple (or Le Chatelier-Braun principle
in a generalized form) in thermodynamics, in the sense that a response occurs
in the direction to resist external perturbation. Since the basis of thermo-
dynamics lies in the stability of a system, it may be natural that a similar
response appears for the stability of developmental system. We will come back
to this problem in Chap. 12.

8.4.6 Irreversibility

Often, stability and irreversibility are two sides of the same coin. The sta-
bility properties of a thermodynamical system are modeled by introducing a
thermodynamic potential (e.g., the free energy) that takes a minimal value
when the system reaches equilibrium. When perturbed, the system relaxes
to equilibrium by evolving toward the state with a minimal value of the po-
tential. This evolution toward the minimum, as well as the approach to the
equilibrium state is not reversible, as is beautifully described by the second
law of thermodynamics. This is the expression of the irreversibility in ther-
modynamics.

In a similar way, the stability of the development process is likely to be
related to some kind of irreversibility. In fact, there is a clear “time’s arrow” in
the cell system, as already discussed. Initially cells have totipotency, that is,
the potentiality to differentiate to all other types of cells. Later this potential-
ity is successively limited, and in a committed cell type, only the same type of
cell can be reproduced (Kaneko & Furusawa, 2000; Furusawa & Kaneko, 2001;
Kaneko, 2003a). The evolution of the degree of determination is an irreversible
process.

• (U)“Undifferentiated cell class”: cells that change their chemical composi-
tion from generation to generation.

• (S) “Stem cell class”: cells that either replicate faithfully or switch to dif-
ferent types with some rate.

• (C) “Committed (determined) cell class”: chemical compositions are pre-
served after the division process7 (Fig. 8.9).

7 Germ-line cell class: As a special case of a determined cell, the following cell
type can appear: In the course of development, it replicates as a committed cell
type.When isolated, however, it comes back to the undifferentiated cell state,
from which all the other cell types are formed. We come back to this problem in
Chap. 9.
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Fig. 8.9. Schematic representation of the hierarchical cell differentiation process.
The degree of determination increases as (U) → (S) → (C), where the letters U, S,
and C stand for undifferentiated cells with a varying state, stem cells, and committed
(determined) cells

The degree of determination increases as (U) → (S) → (C). In the class (U),
the cell is in a transient state as a dynamical system and changes its character
(e.g., the average chemical composition) in time (and accordingly by division).
The class (S) is a stable state and is regarded as a kind of “attractor” once
interaction is fixed. Still, the type is only weakly robust against a change of
interaction, and can switch to a different state, as mentioned. The determined
type is both an attractor for the internal dynamics and a stable state under
cell–cell interaction: it remains stable over a wide range of interactions and
environments. Unless the interaction term is changed to a large extent, it
neither becomes unstable, nor switches to (U).

The temporal flow ((U) → (S) → (C)) that accompanies the development
is characterized quantitatively as follows (see also Fig. 8.10 for a schematic
representation).

• (I) the diversity of chemicals decreases
• (II) the plasticity (variation) of the states decreases
• (III) the stability of the states increases

First, we study the diversity of chemicals in the cellular dynamics. In our
model, a variety of chemicals participate in the oscillatory dynamics of the
stem-type cell. On the other hand, in differentiated cell types, the concentra-
tions of some chemicals fall approximately to zero. As a simple measure to
study the decrease of chemical diversity quantitatively, we define this diversity
for the i-th cell by

Si = −
k∑

j=1

pi(j) log pi(j), (8.1)

with

pi(j) =

〈
x

(j)
i∑k

m=1 x
(m)
i

〉
, (8.2)
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Fig. 8.10. Schematic representation of irreversibility in differentiation with regards
to the loss of diversity in chemicals and the growth speed of a cell

where 〈. . .〉 represents the temporal average taken over successive cell divi-
sions.

In Fig. 8.11, we display some examples of the change in the chemical
diversity accompanying the developmental process. In the figure, the chemical
diversity of a cell, averaged over its lifetime, is plotted at each cell division
event. As shown, with the course of hierarchical differentiation, the diversity
of chemicals decreases successively through the developmental process.

Next, the variations in the cellular state decreases with the loss of multi-
potency. The totipotent cell in our model shows large temporal variations of
chemical concentrations. These variations decrease as the cells lose the multi-
potency. For example, one can see clearly in the phase–space plot of chemical
concentrations of each cell that the variations decrease with the differentiation
from S to A and then to A1, A2, and A3.8

Step (III) could be characterized by determining the minimal perturbation
necessary to switch a cell state (see Kaneko [2002b] for a definition of such “at-
tractor strength”). (U)-type cells can switch state without any perturbation
of the interaction term, while (S)-type cells require a tiny change. Indeed, a
tiny change in the interaction made during a single cell division event suffices
8 The decrease in complexity of the dynamics along with the loss of multipotency

is also confirmed by measuring quantities characterizing variety of dynamics or
instability in the dynamics. For example, the Kolmogorov–Sinai (KS) entropy is
computed, characterizing the variety of orbits and the degree of chaos. We have
found that this local KS entropy of differentiated cells is always smaller than that
of stem-type cells before differentiation.



214 8 Irreversible Differentiation from Stem Cell and Robust Development

0.5

1

1.5

2

2.5

3

3.5

0 50000 100000 150000 200000

D
i
v
e
r
s
i
t
y
 
o
f
 
c
h
e
m
i
c
a
l
s

Time

Type A1

Type A

Type B

Type S

Fig. 8.11. Change of chemical diversity in a cell, through the differentiation from
type S to A, B, and A1. During the first stage of development (time < 10000 in
Fig. 8.3(a)), cells have not yet differentiated, and the dynamics of cells are those with
a high diversity of chemicals. At a later time, differentiated cells begin to appear
from the initial cell type. Reproduced from Furusawa and Kaneko (2001)

to switch an (S)-type cell to some other cell type.9 On the other hand, (C)
cells require a sufficiently large change in the interaction (or environment) to
make a switch to another cell state. Indeed, the degree of determination of
(C) cells can be measured as the minimum perturbation strength required for
a switch to a different state.

Change in the Growth Speed of Cells
with the Developmental Process

According to our results here, the growth speed of stem-type cells is found
to be smaller than that of differentiated cell that appear up to some stage.
In Fig. 8.12, we display an example of the relationship between the growth
speed of a type of cell and the chemical diversity within the cell. Through
several simulations, we have found that the growth speed increases up to
some stage of differentiation. In other words, there is a negative correlation
between the growth speed and the chemical diversity in a cell, up to some
9 By any small change in the interaction term, the stem cell state changes its

stability, as it reproduces or differentiates. In this sense the state is marginally
stable. The minimum distance between the attractor and basin boundary is zero
(see also Chap. 3). In dynamical systems, such state is studied called a “Milnor
attractor” (Milnor, 1985), while its prevalence in coupled dynamical systems has
been discussed in Kaneko (1997a, 1998a).
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Fig. 8.12. Relationship between diversity of chemicals and growth speed of a cell,
obtained from the model, through the course of differentiation from type S to A, B,
and A1. Reproduced from Furusawa and Kaneko (2001)

stage. Then the speed decreases again for the final committed cell. Consider
the successive differentiation process represented as S → I1 → I2 → · · · →
C, where I1, I2, . . . are intermediate types between the stem cell S and the
final committed cell type C.10 Then, the growth speed has a single humped
structure in the above order of cell types, that is, has a maximum at some
intermediate cell type Ij .11 The increase of growth speed from the stem cell
to the next level of differentiated cell, and the decrease of the growth speed
at the final terminal cell type, is generally observed in our model simulations
(Yoshida et al., 2005).

The increase in the growth speed from the stem cell to the next differ-
entiated cell can be explained in terms of a change in the requirement for
nutrients. A stem-type cell with high chemical diversity absorbs a variety of
nutrients from the medium. On the other hand, a differentiated cell type with
simple internal dynamics and lower chemical diversity is specialized in the use
of only a few kinds of nutrients. In such a cell with simple internal dynamics,
a small number of reaction paths is used dominantly and they often form a
simple autocatalytic reaction network. Since each reaction rate is governed by
products of the involved chemical concentration, the internal reaction dynam-
ics of such simple cell progresses faster, when the chemical concentration is
biased. Then, required nutrients are transformed into nonpenetrating chemi-
cals much faster than those in stem-type cell with complex cellular dynamics.
When the stem-type cells and differentiated types of cells coexist, differen-
tiated cells can efficiently obtain the nutrients they require, while stem-type
10 In the example in Sect. 8.4, A = I1 and Am = C (m = 1, 2, 3). In general, there

are several intermediate types in our model and in natural cells.
11 It should be noted that the growth speed of stem-type cells decreases only when

the differentiated cell types begin to coexist with them. That is, the growth
speed of an isolated stem-type cell is not always smaller than that of an isolated
differentiated cell.
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cells, which are not specialized in taking specific nutrients, cannot do it so
efficiently.

As the differentiated cell has a higher growth speed, the number density
of stem cells generally decreases as the total cell number increases. If the total
number of cells does not increase indefinitely, because of probabilistic deaths
of each cell type, then the stem cell may disappear. Indeed, there are cases
where the stem cells either continue to constitute a small fraction of the total
number of cells and maintain a slow division speed or disappear in the steady
state. In the former case, the spontaneous regulation of differentiation from
the stem cells insures the stability of the cell number distribution with respect
to changes in the death rates of each cell type. In this case, the decrease in
the growth speed of the final committed cell is relevant to sustaining the stem
cell.

8.4.7 Universality of Differentiation

So far we have demonstrated the possibility of a hierarchical differentiation
from “stem”-type cells by choosing some parameter values and specific re-
action networks. But is this behavior universal? To confirm the universality
of our differentiation scenario, we have carried out numerical experiments,
using several different sets of parameter values by choosing thousands of dif-
ferent reaction networks. The results found then are changed little when we
change the model parameters. They are essentially unchanged as long as the
magnitudes of the internal reaction term and the cell–cell interaction term
are of comparable order, and provided that the set of equations describing
the internal reactions are sufficiently complex to exhibit nonlinear oscillatory
dynamics that in some case can be chaotic.

Next, we would like to discuss whether most of randomly chosen networks
lead to hierarchical differentiation from a unique stem-type cell. This turns out
not to be the case. For most networks chosen randomly, the reaction dynamics
are stable, and show neither temporal oscillation of chemical concentrations
nor cell differentiation. Of course, in the present cells, concentrations of some
chemicals, for example, the Ca2+ ion, oscillate. Still, we are not making a
model to “imitate” a natural cell but rather try to answer general questions.
As emphasized in Chap. 2, we do not wish to select models uniquely on the
basis of the reality of existing cells.

To answer the question about the choice of networks, we have carried out
numerical experiments by taking a huge number of networks and examined
the growth speed of the cell and an ensemble of cells (Furusawa & Kaneko,
2000a). In Fig. 8.13, we plot the growth speed of a single cell versus the growth
speed of an ensemble of cells.12 In the figure, the horizontal axis denotes the
12 The data used here are based on the model with spatial pattern that will be

discussed in the next chapter. Still, the result is identical even if one adopts the
model with all-to-all cell interaction as in this chapter
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Fig. 8.13. Relationship between the growth speed of a single cell and that of an
ensemble. The ordinate shows the growth speed of an ensemble, measured as the
inverse of the time for the cell number to double from 100 to 200, while the abscissa
represents the inverse of the time for a single cell to divide. Each point is obtained by
using a different chemical reaction network. The points + are the results of the case
without differentiation, where the concentration dynamics are mostly fixed points.
The points with ◦ are results from the case with differentiation, where the chemical
concentration of initial cell type shows chaotic dynamics. Adapted from Furusawa
and Kaneko (2000a) with permission

inverse of the time for a cell to divide, and the vertical axis is the inverse of
the time for cell aggregates to reach 200 cells. In other words, we plot the
speed of the growth of a cell ensemble versus the growth speed of a single
cell. Each point is a result of a simulation carried out for a different network,
chosen randomly (we used 800 samples). For each example, the parameters
are identical.

The points plotted by the circles are the results of the simulations including
initially chaotic dynamics and differentiation. Here, the growth speed of a
single cell is not so large, but the growth speed as an ensemble is higher than
in the case without differentiation. In each cell, a variety of chemicals coexist,
supporting complex reaction dynamics and cell differentiation.

For the other points represented by +, there are much simpler intracellular
reaction processes, with only a few autocatalytic reactions used dominantly,
that can produce the rapid replication of a single cell. In this case, the growth
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speed of a single cell is often large, while the growth speed of an ensemble al-
ways remains small. In some sense, simple cells with rapid growth are “selfish”:
Although such simple cells with low diversity of chemical species can exhibit
large growth speeds as single cells, they cannot grow cooperatively, and their
growth speeds as an ensemble are suppressed because of strong competition
for resources. On the other hand, those cells with initially chaotic dynamics
and differentiation, even though they have a lower growth speed as a single
cell, the growth is not much hindered in cell aggregates. With differentiation,
cells adopt different roles and do not compete for nutrients or cooperate for
synthesis of chemicals, which is the reason why the growth is sustained in an
ensemble.

To sum up, our study has provided evidence that an ensemble of cells
with a variety of dynamics and stable states (cell types) has a larger growth
speed than an ensemble of simple cells with a homogeneous pattern, because
of the greater capability of the former to transport and differentiation in
the use of nutritive chemicals. Note that no elaborate mechanism is required
for the appearance of such heterogeneous cell ensembles. Some fraction of
the randomly chosen biochemical networks we considered exhibit dynamics
sufficiently complex to allow for spontaneous cell differentiation. Once such
networks appear by chance, they are selected as a result of higher growth speed
as an ensemble. The result here suggests that the complexity of multicellular
organisms with differentiated cell types is a necessary course in evolution, once
a multicellular unit emerges from cell aggregates.

Remark: Instead of using catalytic reaction network, one can adopt gene
network as also mentioned in Chap. 7. Even though each single gene expression
dynamics possesses only bistable fixed points, when coupled, the gene network
dynamics can exhibit chaotic dynamics. Indeed, the fraction of the network
that exhibit chaotic dynamics is larger when more genes interact globally
with each other (Ishihara & Kaneko, 2005). Hence gene networks that possess
unstable dynamics of the present stem-cell type is rather large.13

8.5 Experiment

8.5.1 Constructive Experiment from Embryonic Stem Cell

What type of “constructive experiment” is possible corresponding to the the-
ory in the present chapter? As an experiment with a small amount of construc-
tion, one can use a stem cell in the present multicellular organisms and then
study the differentiation process under externally imposed, well-controlled
13 To be precise, we do not necessarily need the chaotic dynamics. As long as there

exists some instability in the dynamics leading to differentiation such cells can
remain, and the argument in the present section holds (Takagi & Kaneko, 2005).
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conditions. For example, the embryonic stem cells of mammals have the po-
tentiality to produce all types of cells of the organism. Then, it is desirable first
to devise an environment where the culture of ES cells is well controlled (with-
out the use of “serum” whose components are not completely controlled), and
in a second stage, to change the condition (e.g., by varying the concentration
of some nutrient in the medium or the number density of cells) to see what
impact is made on the differentiation process. This process can be studied
with the use of flow cytometry, by using some fluorescent proteins. With the
recent advances in the fluorescent protein studies and the measurement by
flow cytometry, this direction of research should be promising. The difficulty,
at the moment, lies in the precise control of the culture system in the above
sense, to carry out a precise, reproducible experiment. Still, there are several
progresses toward this direction also. Another related possibility is the use of
blood stem cells where construction of a well-controlled proliferation system
is in progress (Zandstra & Nagy, 2001).

8.5.2 Differentiation from Callus of Plant

In plants when a piece of tissue is cultivated in a suitable medium, an ag-
gregate of undifferentiated cells, called callus, is formed. In other words, de-
differentiation from committed (differentiated) cells easily occurs compared
with animal cells (Steward et al., 1958). By adding some hormone (some
chemicals) such as auxin or cyokinin into these callus cells, it is possible to
force these cells to differentiate into root or bud cells, or even to produce
the whole body of plant. In this case, how this differentiation depends on the
concentration of the hormone has also been studied. Hence, by using these
hormones as control parameters for differentiation, and measuring some in-
dices of cells, it should be possible to study the differentiation process in the
state space of chemical concentrations. With this experiment, one can study
the degree of plasticity in relationship with the reversibility of the differen-
tiation. Such study is essential to answer a very naive question why or how
plant cells have a higher plasticity than animal cells.

8.5.3 Construction of “Stem-type Cell” from Bacteria

Of course, as a higher level of constructive experiment, it is desirable to use
cells of uni-cellular organisms and make “stem cells” from them. For exam-
ple, take a bacteria (E. coli) cell, and embed a gene network (into a plasmid)
within the cell. Such introduction of genes is now experimentally feasible.
Then by embedding a network that can show plastic dynamics, we can exam-
ine the scenario presented here. Although such experiment has not yet been
completed, a related experiment with embedded network has recently been
carried out by Kashiwagi et al. (2005). Here, we have introduced the feed-
back network as shown in Fig. 8.14. In this network, two genetic subsystems
A and B that mutually suppress each other are embedded. When one gene
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Fig. 8.14. An example of embedded gene network with mutual inhibition, into
E. coli (see Kashiwagi et al. [2005] for details)

is expressed, it suppresses the expression of the other, and vice versa. To be
specific,

(1) when the system A is on, enzyme A (glutamine synthetase), protein A,
and Green fluorescent protein A are synthesized. Protein A works on the
promoter of system B to suppress the expression of system B.

(2) When system B is on, enzyme B (tetrathydrofolate synthetase), protein
B, and Red fluorescent protein are synthesized. Protein B works on the
promoter of system A to suppress the expression of system A.

This gene expression process can be modeled by [Hasting et al. 2000]

dx1/dt = syn(s)/(1 + x2
2) − deg(s)x1

dx2/dt = syn(s)/(1 + x2
1) − deg(s)x2 (8.3)

where x1 and x2 are the expression of each gene, that is, the concentra-
tion of the corresponding mRNA, and the mutual inhibition is expressed by
the term 1/(1 + x2

i ), that shows the synthesis of each mRNA is suppressed
by the other gene, while the last term represents the decomposition. Here
the rates of synthesis (syn) and decomposition (deg) depends on the cel-
lular activity s. As the synthesis process is complex, it is easily saturated
with regards to the growth of the activity, while the degradation process
increases more straightforwardly with the activity. For example, let us take
syn(s) = as/(1+s), and deg(s) = s. Then, as the activity s decreases, eq. (8.3)
shows bifurcation. When the activity s is small, there are two fixed point so-
lutions x1 > x2 ∼ 0 and x2 > x1 ∼ 0. When the activity s is larger, there is
only a solution x1 = x2, which is not close to zero. As the resource (nutrient)



8.5 Experiment 221

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 1

s

Fig. 8.15. The stationary solution (x1, x2) of the model (8.3), plotted as a function
of s, for a = 10. Here the solution bifurcates into two solutions (xL, xS) and (xS , xL)
with xL > xS from the solution with x1 = x2, at s = 4 (see Kashiwagi et al. [2005]
for details)

for the growth is decreased, and the activity of the cell is decreased, there is
a bifurcation, into two multiple states occurs, as shown in Fig. 8.15:

(i) For large S (for syn(s)/deg(s) ≤ 2) x1 ∼ x2 with small values. In other
words, both the genetic systems A and B are weakly expressed.

(ii) For small S (for syn(s)/deg(s) ≥ 2) there are two stable states with
x1 � x2 ∼ 0 and x2 � x1 ∼ 0. In other words either the genetic system
A or B is expressed.

By using the fluorescent proteins, this change is clearly detected. Indeed,
when the resource (nutrient) is supplied sufficiently, the bacteria show weak
fluorescence, while for poor resource condition, either of the genetic subsys-
tems A or B is on, as measured by green or red fluorescence. Now in the en-
vironment without glutamine, glutamine synthetase by system A is essential
for survival, while in the environment lacking tetrahydrofolate the expression
of system B is essential. Surprsingly it is found that in the medium lacking
glutamine, the state in which the gene network A is expressed appears in spite
of the symmetry of (8.3).14

In other words, when the medium is rich in both glutamate and tetrahy-
drofolate, the cell state with weak expression of both A and B appears. When
one of these resources is insufficient, the cell state differentiates into either the
A-expressed or the B-expressed state, thus compensating the lack of resources.
14 A plausible and general mechanism for this adaptive attractor selection is pro-

posed in Kashiwagi et al. (2005).



222 8 Irreversible Differentiation from Stem Cell and Robust Development

Finally, when the medium lacks both glutamine and tetrahydrofolate, it is ex-
pected that the differentiated cells with A-expressed and B-expressed types
coexist and support each other for their survival. Now it will be possible to
construct an experimental system showing differentiation from A&B weakly
expressed state into a specialized states with the expression only of A or B.
This will lead to a minimal construction of a differentiation system from a
stem type cell to differentiated cell types.

8.6 Relevance to Biology

The stem cell system is basic in multicellular organisms to produce diversity
in cell types. We expect that the properties we have found through Sect. 8.3
hold also in the real stem cells of the present organisms, since the results
here are rather universal. Some of these universal features we have found are
consistent with some experimental data, while some have not yet been ex-
amined experimentally. Hence we make some predictions here concerning the
general features that have to be commonly satisfied in real stem-cell systems
and discuss the possibility of experimental verification.

(i) Interaction-based differentiation. In our theory, the differentiation
of a stem cell is induced by interactions between cells in the system.
Thus, the behavior of each cell in a stem cell system depends strongly
on the existence of surrounding cells as well as on the states of these
cells. For example, we expect that if a stem cell is maintained in an
isolated environment by continuously removing divided cells, it will not
be able to differentiate and will replicate only itself.

Recall that in our model, differentiation of a stem cell is not necessarily
concurrent with its cell division. Rather, this differentiation occurs when
the instability of the cellular dynamics exceeds some threshold, and this
is caused by the increase of cell number through cell division.

(ii) Regulation of the differentiation probability leading to the ro-
bustness of the cell society. As mentioned, the probabilities govern-
ing differentiation of a stem cell are not fixed in our theory, but are
autonomously regulated by the distribution of surrounding cell types.
An important point here is that this regulation of differentiation occurs
in such a manner that the effect of an external perturbation is com-
pensated, in analogy to the Le Chatelier principle in thermodynamics.
This regulation is that which creates the robustness of the system. By
controlling the population density of each cell type, one can examine
experimentally if the rate of differentiation of stem cells is regulated so
as to compensate for external change. For example, if the death rate of
one type of cell is increased, or cells of this type are continually removed,
the differentiation rate from the stem cell into that type of cell should
be increased.
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(iii) Irreversible loss of multipotency characterized by some char-
acteristic indices of intracellular process
(iiia) Decrease in diversity of chemicals. In our theory, stem cells

possess a higher diversity of chemicals, while differentiated cell
types always possess more biased chemical compositions. In terms
of cell biology, the decrease in diversity of chemicals and diversity
of use of reaction paths in cellular dynamics can be interpreted
as the decrease of the number of expressed genes. Considering the
generality of our conjecture, it is relevant to check how the di-
versity of gene expressions changes in the course of development
from a stem cell. The confirmation should be possible with the
use of microarray data, and by checking how the expressions are
biased with the course of differentiation. Indeed, such decrease in
the number of expressed genes has been observed in real systems,
for example, multipotent progenitor cells in hematopoietic sys-
tems (Hu et al., 1997). Quantitative analysis in diversity change
will be possible by adopting the method in Sect. 8.5.1, and then
examining the gene expressions of cells taken from a given range
in some indices using the flow cytometry.

(iiib) Loss of variation of cellular state. In the theory variation
in chemical concentrations in time and by cells decreases as the
differentiation from stem cell progresses. Such variation can be
measured by flow cytometry, as the distribution in some chemical
concentration, for example, with the use of fluorescent proteins.

The direct observation of the intracellular dynamics, on the
other hand, may be difficult. It was reported that the Ca2+ oscil-
lation in a cell depends on the cellular state, and that can change
the pattern of gene expressions (Dolmetsch et al., 1998). It may
also be interesting to study the oscillatory reaction dynamics, such
as Ca2+ oscillation, in a cell and check how the irregularity in the
oscillation differs between a stem cell and a differentiated cell.
Studying the dynamic change of gene expression patterns is also
important.

(iv) Recovery of the loss of plasticity. While during the normal course
of development, the loss of multipotency is irreversible, it is possible to
recover the multipotency of a differentiated cell through perturbation, by
changing the diversity of chemicals or by putting the cell into a suitable
environmental condition. For example, by forcing the expression of a
variety of genes in some committed cells, the original multipotency may
be regained.

(v) Smaller growth speed of stem cells. According to our result, the
growth speed of stem cells is generally smaller than that of daugh-
ter differentiated cells, when both coexist. In general, there is nega-
tive correlation between the chemical diversity (or the diversity in gene
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expressions) and the growth speed, up to some stage of differentiation,
which can be experimentally examined.

Of course, in a real biological system, the activation or suppression of
cell growth and division involves several factors, including signal mole-
cules called “growth factors”, in addition to the condition for nutrients.
Still, we believe that this smaller growth speed of stem cells is a general
characteristic of the diversification process in stem cell systems.

In real multicellular systems, stem cells, such as neural or hematopoi-
etic stem cells, often enter a quiescent state (i.e., a G0 state) without
division. These stem cells resume division actively when some external
condition is changed, for example, an injury that decreases the popula-
tion of differentiated cells. On the other hand, differentiated cells, such
as progenitor cells in the hematopoietic system and interstitial crypt,
generally have a faster growth speed. Here, as an experimentally verifi-
able proposition, we conjecture that the growth of stem cells generally is
hindered if they are surrounded by a sufficient number of differentiated
cells (that are produced by that stem cell), while the decrease of the
number of surrounding cells leads to a resumption of the division and
differentiation.

(vi) Positive correlation between growth speed of cell ensemble and
cellular diversity. As shown, an ensemble of cells with a variety of cell
types that is sustained by differentiations from stem-type cells gener-
ally has a larger growth speed than an ensemble of homogeneous cells,
because of the greater capability of the former to transport and share
nutritive chemicals. This positive correlation between the growth speed
and the diversity of cell types (at the cell ensemble level) can be exper-
imentally verified in any stem-cell system. For example, if a stem cell
loses the ability to differentiate through mutation, tissue consisting only
of the homogeneous cells has smaller growth speed as a whole than tissue
of the wild type with various cell types.

Since even primitive organisms such as Anabena (Yoon & Golden,
1998) and Volvox (Kirk & Harper, 1986; Tam & Kirk, 1991) exhibit
differentiation in cell types and some spatial pattern, the relationship
between complexity and growth can be verified. In fact, for a mutant of
Volvox that possesses only homogeneous cells, the growth becomes slower
in comparison to the wild type. Further study of this correlation will also
be important to understand the evolutionary process of multicellular
organisms.

To sum up, it is important to study that the stem cells have higher plas-
ticity, and the differentiation is a result of cell–cell interaction. Stem cells can
change flexibly according to the environment, while differentiated cells have
no such flexibility. This flexibility of stem cells results from the complexity of
their internal dynamics with a variety of chemical species.
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Indeed, there are several recent attempts that seriously discuss the bio-
logical relevance of our theory from the experimental side. With the recent
advances in microarray analysis, fluorescent techniques, flow cytometry, and
controlled cultivation of (embryonic) stem cells, we hope that the predictions
here will be confirmed experimentally in the near future.

In relationship with the topic (iv), recall that in somatic clone experiments
mentioned in Sect. 8.1, the “irreversible” differentiation to committed cells is
“reversed” to recover the totipotency, by external operation. Following the
theory presented here, this means that the cell plasticity (measured by diver-
sity and stability) is regained through the operation. It is important to reveal
the condition to reverse the time’s arrow in cell differentiation. This problem
will be discussed in Chap. 12.

Finally we briefly discuss about the phenomenon of metamorphosis that is
often seen in the development of insects and shellfish (crustacea) and others.
The process of metamorphosis is quite mysterious. In complete metamorpho-
sis, a large number of cells are destroyed at some developmental stage, and
novel tissues consisting of new cell types are formed from remaining stem cells.
Whether such metamorphosis occurs or not should depend on how many stem
cells remain. At some stage of differentiation, many cells show apoptosis, and
a novel course of differentiation from stem cells starts, leading to new types
of cells and a new attractor at a cell ensemble level.

Indeed, Takagi and Kaneko (2005) have revised the model in this chapter,
to include more stable states in intracellular dynamics, and to add the cell
death process depending on the cell state.15 In this model again, cells differ-
entiate as the cell number increases, and a stable state consisting of various
committed cell types is formed, as discussed in this chapter. Then, after fur-
ther temporal evolution, some type of cells start to die when the total number
of cells reaches some value. With these cell deaths, the plasticity of cells (as
measured by diversity in chemicals and attractor stability) can increase, and a
new differentiation process progresses to reach a new type of cell ensemble, as
postulated in the metamorphosis. In the future, it will be important to study
the metamorphosis as a dynamical change in the plasticity, both theoretically
and experimentally.

15 In the model, cells die when the total chemical abundances in a cell decrease
below some threshold.
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Pattern Formation and Origin
of Positional Information

9.1 Question to Be Addressed: Origin
of Positional Information

Question: Biological pattern formation (morphogenesis) is under-
stood as a change of genetic expression, depending spatially on the
gradient of chemicals. To encompass the macroscopic pattern for-
mation, it is often argued that the positional information is formed
according to the gradient of a chemical, leading to the change in
the concentration of the signal molecules, and finally leading to the
change in genetic expressions. However, how is such positional in-
formation generated? To form positional information, spatial differ-
entiation of cells (at least at some part) is necessary. If the gradient
of chemicals is required for cell differentiation, how is the bootstrap
between this gradient and differentiation resolved?

In the morphogenesis, cells differentiate as the developmental process pro-
gresses and these differentiated cells form an ordered spatial pattern. Recent
experimental studies have clarified how the change of gene expressions takes
place in the process of differentiation, and in the spatial ordering process.
However, the description of genetic changes only is not sufficient to fully ex-
plain the whole morphogenesis, since how some genes are on or off depends
on the chemical states of a cell, which are also influenced by interaction with
surrounding cells.

Note that the pattern formation process during normal development is
rather stable. Considering possible fluctuations of molecules and perturbations
on cell behaviors, they are quite robust in the normal developmental process.
Almost identical final patterns are formed and the temporal course for the
pattern formation is also repeated. Furthermore, some experiments to perturb
externally the process by removal or addition of cells suggest that the cells
somehow “know” their position within the whole system of an ensemble of
cells so that the damage is repaired. Following these observations, Wolpert
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Fig. 9.1. Schematic representation of positional information

proposed the concept of positional information, which states that the cell
knows its position by determining the spatial dependence of concentrations of
diffusible chemicals (see Fig. 9.1).

However, some questions remain unanswered by this positional informa-
tion idea. The first problem is with regards to the origin of positional infor-
mation. If some chemical gradient is externally given, then the position can
be specified. However, the question of the generation of the chemical gradient
is not addressed within the positional information theory. To form a gradient
in chemicals, cells at one end and cells at the other end have to behave in
a different manner. However, to trigger such differentiation, the existence of
gradient is required in the positional information theory. In other words, how
polarity is generated spontaneously is not solved. In this sense, it is desirable
to set up a theory in which the formation of positional information and the
cell differentiation reinforce each other.

Of course, in some cases, the gradient is given as a condition from its
mother, and exists in a fertilized egg, as the concentration of some proteins
(such as bicoid), by which the pattern formation processes at the first stage
of development is believed to be controlled.

However, the axis for the pattern is not completely determined by the
mother cell. Also, in mammals, the homogeneity seems to exist up to four
divisions. For example, even though the initial concentration gradient of bicoid
in Drosophila egg is changed experimentally, final pattern of the entire body is
robust with respect to this perturbation up to certain range. This means that
the positional information is not always embedded in the initial condition
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of developmental process, but rather it is generated during developmental
process.1

The second problem is on that of robustness. As a standard picture of
developmental biology, cell differentiation progresses depending on the con-
centration of signal molecules. Since this concentration depends on the space,
the cell state changes according to its position. In this way, a cell is believed
to “read” the positional information. However, as we have already discussed
in Chap. 1, there should be large fluctuations in the chemical concentrations,
which may cause a serious problem.

Recall that these signal molecules work often with very low concentration.
The quantity of chemical “concentration” is given by the number of molecules
per tiny volume around the cell. Here, the chemical concentration of relevance
is the number of molecules per unit volume in the tiny region around the cell.
Hence the number of signal molecules associated with cell differentiation is
often quite small, while in diffusion processes, each molecule moves randomly.
Thus there can be large fluctuations in the concentration of molecules affecting
a single cell in general. In fact, as discussed in Sect. 7.1, Houchmandzadeh et al.
(2002) have demonstrated such large variation of bicoid concentration in the
Drosophila eggs with the same developmental stage. Such large fluctuations
no longer appear at later steps in the developmental process, and the pattern
formation is robust. Accordingly the threshold mechanism, only by itself, is
vulnerable under the fluctuation and cannot resolve the error arising from the
fluctuation.

Prior to positional information theory, Turing proposed a theory in which
spatial inhomogeneity of diffusible chemical concentrations emerge sponta-
neously (Turing, 1952). In fact, the term morphogen was introduced by Tur-
ing. In this pioneering study Turing introduced a system of coupled elements
interacting diffusively with each other. He has shown how a spatial pattern
is formed with regards to the chemical concentration, starting from spatially
homogeneous initial condition.

The first one activates the reaction (“activator”), while the second one
inhibits the reaction (“inhibitor”). When the diffusion constant of the inhibitor
is larger than that of the activator, under a certain condition, a homogeneous
state with a constant concentration of the chemical is destabilized. Because
of the instability of the homogeneous state, a pattern with some wavelength
is formed that stabilizes the system.

Consider two types of chemicals X and Y , where X activates the synthe-
sis both of X and Y , and Y inhibits the synthesis both of X and Y . Such
relationship can be considered by suitably taking a reaction system. In gen-
eral, the diffusion coefficients can differ between X and Y . Consider the case
1 Even among insects, the basic segmentation process is not necessarily governed

by genetic control, depending on the gradient. Importance of such mechanism is
true for the so-called long-germ egg, but not necessarily so for short-germ ones,
which are quite common in insects.
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Fig. 9.2. Schematic representation of Turing pattern. Fluctuation in the activator
concentration (given by thick line) leads to the change in that of inhibitor (given by
dotted line), which leads to the wave pattern

that Y , the inhibitor, diffuses much faster than X. In this case, a spatially
homogeneous state is unstable, under some (but rather general) choice of pa-
rameters, and through this reaction and diffusion, and a spatially periodic
pattern of concentrations is formed. Although this instability can be shown
mathematically by linear stability analysis, here we simply describe an intu-
itive explanation (see Fig. 9.2 for schematic representation). First consider
a stationary state with a homogeneous concentration of X and Y , and then
assume that there is small perturbation to increase the concentration of X
at some localized region. Then, since the concentration of X is larger, both
the synthesis of X and Y are enhanced. Then, since Y diffuses faster, at the
neighboring region, the concentration of Y first starts to increase without the
increase of X. Since Y suppresses the synthesis of both the chemicals, this
results in the decrease both the concentrations of X and Y therein. Then,
this decrease of the concentration Y will be propagated to the further neigh-
boring domain, where the increase in both the concentrations of X and Y
is enhanced. With this process, spatially periodic pattern of concentrations
with high, low, high,. . . are formed. This is a rather simplified sketch, but by
carrying out stability analysis, one can show that the homogeneous state is
unstable against some perturbation for a given range of wavelength, and a
periodic pattern with such wavelength is formed, if some conditions for the
values of reaction and diffusion coefficients are satisfied.

Indeed Turing discussed generally the pattern formation in a diffusion–
reaction system. There is a case that the instability leads to temporal rhythm.
With more than two chemicals, there is also a case with spatiotemporal pat-
tern dynamics.2 Turing proposed to call such diffusive chemical relevant to
the morphogenesis as “morphogen.” Although his theory has not yet been
fully appreciated by developmental biologists, the theory, on the other hand,
2 Although in his pioneering paper, chaos was not discussed, in a general case there

appears spatiotemporal chaos in a class of reaction diffusion equations.
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is fully appreciated by physicists and chemists interested in nonequilibrium
systems.

Turing’s theory partially answers the first question for the positional in-
formation. However, in spite of his pioneering work on morphogenesis, some
basic problems remain unsolved, that is, on the origin and the robustness of
the positional information. Furthermore, Turing’s theory was not seriously
considered by biologists, since the genetic control mechanism discovered since
then is thought to answer the basic questions on development.

First, although a periodic stripe pattern with alternation of chemical con-
centrations is generated as a Turing pattern, how the difference in concen-
trations leads to cell differentiation to “discrete” cell types is not solved yet.
Indeed, the change in chemical concentrations is rather continuous, and it is
not clear how discrete types represented also by switching on or off genetic
expressions emerge from it. As differentiation to discrete types is not fully
discussed, the irreversible loss of potentiality is not studied either, in Turing’s
theory.

Second, in the standard Turing model, the developmental process with the
increase of cell numbers is not considered. In his original model, the system
size, that is, the number of cells, is fixed in time. Hence, neither the robustness
nor irreversibility of the developmental process is discussed.

Accordingly, the irreversible loss of potentiality, as has been discussed in
Chap. 8, cannot be discussed. In the development, the initial few cells have po-
tentiality to differentiate to all other cell types. In the normal developmental
process, some cells lose the potentiality. This irreversible loss of potentiality
is influenced by interaction with surrounding cells, and is related with the
pattern formed by cells. Indeed the potentiality generally depends tissues.
For some tissues, when some cells are externally removed from the pattern,
regeneration can occur. For some other tissues, cells are determined in their
type, and such regeneration is not possible. How such irreversible loss of po-
tentiality for differentiation is related with the morphogenesis is not answered
yet.

The third problem concerns the discovery of gene regulatory mechanisms
made after the publication of the Turing’s paper. For example, in Drosophila,
each segmentation corresponds to the expression of some gene. From the
gene regulatory dynamics, gene expressions are on or off according to the
concentration of some signal molecules. Hence Turing’s mechanism has not
been considered seriously. Still, these observations do not necessarily lead to
reject Turing’s idea itself. If Turing’s idea is generalized, one can say that the
interplay between intracellular reaction dynamics and the diffusion of chemi-
cals leads to morphogenesis. This generalized viewpoint is consistent with the
present molecular biology view based on the interplay between intracellular
gene regulatory dynamics and diffusive signal molecules. What we need to add
to the original Turing’s mechanism is sufficient complexity in the intracellular
reaction dynamics. This is another missing link between Turing’s pattern and
gene-regulatory network dynamics.
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In spite of extensive studies in Turing patterns (Meinhardt & Gierer, 2000),
the above three problems were not completely resolved yet. In Chaps. 7 and 8,
we proposed a theory to overcome such drawbacks and to explain the sponta-
neous differentiation of cells to discrete types with the increase in the number
of cells. In the theory so far, we have disregarded spatial factor for simplic-
ity. By including spatially local process, it is possible to study how dynamic
differentiation process and spatial pattern formation are mutually reinforced,
and form stable pattern and stable cell types. This is the topic we wish to
discuss in this chapter.

9.2 Logic

To discuss morphogenesis, we need consider also the spatial structure of these
differentiated cell types. We thus take into account the spatial locations of
cells as well as the diffusion of chemicals in space. Then, it is rather natural
that the cell types differentiated by the mechanism discussed in the previ-
ous chapters are organized spatially to form a pattern, that is robust against
perturbation. With this pattern formation, gradients of chemicals are formed
that consolidate the differentiation of cell types. Here, cell differentiation by
intracellular dynamics lead to a gradient of chemicals, and form positional in-
formation, while positional information strengthens differentiation of internal
states. With this reinforcement, differentiation by inter–intra-cellular dynam-
ics is transferred to a spatial pattern, while by it the differentiation is further
stabilized. Cell differentiation is consolidated with the spatial pattern forma-
tion. Interplay among internal dynamics, inter-cellular diffusion of chemicals,
cell division process, and spatial pattern formation leads to such consolidation.

9.3 Model

In the models of Chaps. 7 and 8, cells interact globally with each other through
a well-stirred medium. Accordingly, the spatial position of cells does not mat-
ter. We extend the model to consider a spatially local interaction. The position
of each cells must be specified, and chemicals diffuse in space, so that nearby
cells interact more strongly as a result. Chemicals that are penetrable from
the membrane diffuse through the space with a given diffusion constant, while
nutrients are supplied with such diffusion rate from the outside.

Here as a form of intracellular dynamics we use the model of Sect. 8.3.
Cells have a given size within this space, and when a cell divides, its offspring
cells are located in the neighborhood of the original cell. In the numerical
computations, cells are assumed to repel each other up to a given length that
is the diameter of the cell, so that adjacent cells are separated by this distance
(the direction of putting cells is chosen randomly). See Furuswa and Kaneko
(1998b, 2000a, 2001, 2002) for detailed account of the model.
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9.4 Results

In this case also, as the number of cells increases, the cells start to differentiate
as already seen in the previous chapters. The different cell types correspond to
different chemical compositions. Together with this process of differentiation,
these different types of cells start to form some spatial pattern. Here, first
intracellular reaction dynamics and cell-cell interaction lead to cell differenti-
ation, which later are fixed into a spatial pattern.

Let us discuss three examples. The first one is the case in which cells
are located on a one-dimensional chain (see Fig. 9.3). Here, stem-cell type S
reproduces itself up to a certain number, and then as the number goes beyond
some value, there starts differentiation from this type S cell to different types
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Fig. 9.3. An example of the developmental process. (a) The developmental process
of the spatial pattern with differentiated cells, starting from a single cell. Up to
several divisions, a single type of cell reproduces, maintaining its characteristic type
of dynamics. This type is represented as “black” cells. The time series of the chemical
concentrations of this type of cell are plotted in (b), where the time series of only
6 chemical concentrations among the 20 are overlaid, to avoid indistinct figure.
(The other chemicals exhibit similar dynamics for each.) With further increase of
cell number, some of the type S cells start to exhibit different types of chemical
dynamics, plotted as different levels of gray scales. The transitions from the type
S cells to three distinct cell types are represented by the plots in (c), (d), and (e).
The time series of concentrations of the six chemicals are again plotted. In this
example, only these four types of cells appear in the developmental process, while
no intermediate types exist. Here, the type S cells are regarded as the stem cells
that have the potential both to reproduce themselves and to differentiate into other
cell types, while the differentiated cells have lost such potential and reproduce only
the same type. A part of the spatial pattern formed by these four types of cells is
shown in (a). Adopted from Furusawa and Kaneko (2000a) with permission
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A, B, and C. These types S, A, B, and C form a complex spatial pattern.
Here the initial type S cells have a larger chemical diversity in composition,
while differentiated types A, B, C have less diversity. In this example, the
pattern is rather complex, while in some other cases the pattern is more regular
with regards to the configuration of cell types. Generally, there is a minimum
distance between the closest type S cells, that is, they are located only farther
than some distance. Note that one-dimensional pattern with differentiated
cells as seen here is observed in Anabena, where the cell called heterocyst,
which fixes the nitrogen, is located with some distance at minimum (Golden
et al., 1995; Yoon & Golden, 1998).

The next two examples involve a developmental process in a two-
dimensional space. In the example of Fig. 9.4, from the initial stem type S,
there appears first a type-X, at the inside of the circle. The concentric circle
pattern with type-X cells inside is formed first. As these cells increase, there
appears a new type of cell Y, between the X and the S cells. These cell types

Type-S
Type-X
Type-Y
Type-Z

Fig. 9.4. Development of a cell cluster toward a “ring pattern” in a two-dimensional
medium. Each mark corresponds to a particular cell type, with different cell types
distinguished by significantly different internal dynamics. Adopted from Furusawa
and Kaneko (1998b) with permission, under the courtesy of Chikara Furusawa
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again take distinct chemical compositions. The type S cells have greater chem-
ical diversity and variation. Here successive differentiation (S → S,X, Y ),
(X → X,Z), (Y → Y ), (Z → Z) can be observed.

The third example that we wish to discuss at length here is that of stripe
formation. In this case, a single cell placed at the center of the medium exhibits
oscillatory reaction dynamics, and has high chemical diversity. There, type
A cells first differentiate from the original S cells, at one side, as shown in
Fig. 9.5. Along a specific axis S and A are differentiated. At this stage the
differentiation rule is given by S → S,A and A → A. As the number further
increases, the state of type S cells at the other side of A is destabilized, to
differentiate to a new type B. Hence the stripe pattern with A,S,B is formed,
Here the differentiation rules are S → S,A,B, and A → A, and B → B. As
a result of these differentiations, a spatial pattern of cells consisting of three
stripes, each containing cells of just one kind, is formed, as shown in Fig. 9.5.
Later another type C is differentiated near the border of S and A.

In a system exhibiting the striped pattern, point symmetry is broken, in
contrast to the ring pattern (Fig. 9.4). This is because of the development
that takes place at the beginning of the differentiation process from type S to
type A cells when there are still only a few cells (Fig. 9.5(b)). It is at this stage
that point symmetry is lost, and this asymmetric small cluster of cells expands
through further cell divisions. Because of the difference regarding both rates
and types of nutrients absorbed and released by type S and type A cells,
the asymmetric distribution of cells brings about asymmetric concentration
gradients of nutrients in the medium, as shown later.

9.4.1 Generation of Positional Information

Now we discuss how the positional information is generated with this differ-
entiation process. Before going into specific discussion, we recall again the
requisite for “information.” As discussed in Chap. 4, the information carrier
has to satisfy (1) controllability and (2) preservation. If a given chemical con-
centration gradient works as positional information, we need to discuss (i)
how it is generated from dynamics, (ii) how it controls the differentiation of
cells, and (iii) how such gradient is preserved under molecular fluctuations as
well as external disturbances.

Hereafter we focus on the third example with a stripe pattern formation.
In the upper part of Fig. 9.6, we have plotted the concentration of nutrients
(resources) along the longer axis of this cell aggregate. A chemical gradient
arises, although the boundary condition to supply this chemical is constant
in time and homogeneous in space. Here the type of cell that occupies a given
region is related with the concentration gradient. For example, the nutrient 0
has a higher concentration where we find type S and type B cells, whereas the
region where type A cells are present corresponds to a higher concentration
of chemical 1.
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Fig. 9.5. Development of a cell cluster toward “striped pattern” in a two-
dimensional medium. Each mark corresponds to a particular cell type, distinguished
by its particular type of internal dynamics. From the stem-type cell S (black circle),
type A is differentiated, and forms a cluster (in the lower part of the figure). With
further increase of the number of cells, another type of cell B is differentiated which
forms a cluster at the upper side. With these processes, a stripe pattern is formed.
Plotted also are the change of the chemical concentrations. Adopted from Furusawa
and Kaneko (2003b) with the courtesy of Chikara Furusawa

Conversely, if we place a type S cell in a region with a higher concentration
of chemical 1 (or 2), differentiation to type A (or B) follows. In this sense, the
gradients of these chemicals serve to control the differentiation of a cell into
each type. Accordingly, the chemical concentrations are “read” by each cell,
and act as its positional “information.”
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Fig. 9.6. (Upper) Generated chemical gradient, corresponding to the stripe pattern.
Inside the dotted region the cells are present. (Lower) Variation of intracellular states
with respect to position. To measure the change undergone by the intracellular
dynamics when the position of a cell is changed, we determined the average position
of the orbit of each cell in the k-dimensional phase space, which was calculated as
the averages of the k concentrations c(m)(t) over a certain period for that cell. Based
on Furusawa and Kaneko (2003b)

Depending on the concentration of the particular chemical environment for
each cell, the cell state will change slightly, even if it belongs to the same type.
Although differentiation into types is discrete, there arises a slight modulation
of each cell’s state depending on its position. In the lower part of Fig. 9.6,
we have plotted

∑
j(xj)2 of each cell along the axis, where xj indicates the

intracellular concentration of the jth chemical. One can first see clear dis-
crete differentiation into types as the states of the cells of the same type are
slightly modulated by their individual positions. This modulation (analogue
difference) is well discernible for type S and B cells. It is interesting to note
that, besides the digital information on type, there is analogue information
provided by cell position, which brings about a continuous modulation of the
cell state. Note that, for the type A cells, this modulation is much smaller.
We will return to this point later.
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(b)(a)

Fig. 9.7. Spatial patterns of cells when multiple cells, instead of a single cell,
are placed in the generated positional information (i.e., chemical gradient). In
this simulation, the reaction network and parameter values of Fig. 9.5 were used.
The initial chemical concentrations in the medium were set to be the same as in
Fig. 9.5. Note that positional information only is not sufficient to reproduce the
original pattern. Adapted from Furusawa and Kaneko (2003b), under the courtesy of
Chikara Furusawa

9.4.2 Complementary Relationship between Internal Cell State
and Positional Information

Once a pattern is formed together with the generation of positional informa-
tion by a concentration gradient, both the pattern and information are stable
against some perturbations, such as the removal of some cells, or perturba-
tions of chemical concentrations into some cells. After perturbations, both the
pattern and chemical concentration gradient return to the original states be-
cause the cell state and gradient are mutually stabilized. Thus, the property
required for preserving information is realized.

However, this does not necessarily mean that only the positional informa-
tion by itself is sufficient to produce the pattern. For example, if we randomize
the cell state, by changing each intracellular concentration, while maintain-
ing the environmental chemical gradient, then the subsequently generated cell
pattern is quite disordered, as in Fig. 9.7. The original regular stripe pattern
is totally lost. Hence positional information alone is insufficient to regenerate
the pattern. If the intracellular state is too different, the cell cannot read the
information. Such a complementary interaction between the internal cell state
and positional information is important.

9.4.3 Regeneration Process

Now we discuss the problem of regeneration in relationship with irreversible
differentiation. In the present model case of stripe pattern formation, the type
A cell proliferates both the same type of cell, and the type B. What happens if
some cells are removed to destroy the field of original positional information?
Does the cell ensemble have the potential for regeneration?
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Fig. 9.8. Regeneration process (left) when the type B cells are removed, the type B
cells are differentiated from the type S cells to reproduce the original stripe pattern.
(Middle) When the type S cells are removed, the type S cells are de-differentiated
from the type B cells to reproduce the original stripe pattern. (Right) When the
type A cells are removed, the type B cells are differentiated from the type S cells
to produce a novel BSB pattern. Adapted from Furusawa and Kaneko (2003b) with
the courtesy of Chikara Furusawa

(I) Recovery from the removal of the entire type B region: In one
case, we removed all the type B cells (Fig. 9.8(left)), after the stripe
pattern had developed. After this operation, the rate of transitions from
type S to type B cells was enhanced at the side of type S region farthest
from the type A region; as a result, the stripe pattern with three layers
gradually re-appeared.

(II) Recovery following the removal of the entire type S region –
de-differentiation of type B cells into type S, induced by the
interaction with type A cells: In this case, we removed all the type
S cells located in the middle of the stripe pattern, and combined the
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remaining cell clusters consisting of only type A and type B cells, as
shown in Fig. 9.8(middle). After this alteration, type B cells located at
the boundary between the type A and type B regions de-differentiated
back into type S cells, and the stripe pattern with three layers was
thereby recovered. It is important to note that de-differentiation from a
type B cell to a type S cell never occurs during the “normal” course of
development (i.e., without perturbation).

As shown, recovery is possible after major damage to the system.
Via this damage, positional information by concentration gradient is
also largely destroyed. However, positional information is regenerated
through the recovery process. This is possible because the positional
information is not given externally, but rather is generated through in-
tracellular chemical reaction dynamics and cell–cell interactions.

(III) Formation of a new pattern resulting from the removal of the
type A region: Here, all the type A cells were removed from a cluster
with a striped pattern (Fig. 9.8(right)). In this case, regeneration of the
type A region was not observed. Instead, type S cells at the periphery of
the cluster differentiated into type B cells. As a result, a sandwich-like
B–S–B structure formed and, with further development, a ring structure
with inner type S cells and outer type B cells formed. In this case, the
final cell society consisted only of type S and type B cells.

In this example, once a type B cell is formed, the differentiation from
S to A is inhibited. In the “normal” process, the type A cell is already
differentiated before the type B; the A–S–B pattern is generated, and
inhibition is ineffective. In the present case, without the existence of type
A cells, the existing type B cells inhibit the differentiation into type A
from type S. In this way, the ordering (or history) of the developmental
process is important.

Why did type B cells, rather than type A cells, differentiate when
type A and B cells were attached? Here one should note that the vari-
ation of the chemical concentrations of type A cells is much smaller
than the other types, as displayed in Fig. 9.6. As discussed in Chap. 3,
the state with smaller fluctuations or variations has a smaller response
against external change, and has a lower plasticity. The type B cells have
larger fluctuations or variations against the external changes, and has
a lower plasticity. The type B cells have larger fluctuations and varia-
tions against external changes than the type A cells. Hence, the type B
cells have a higher plasticity, and are more readily changed. Thus, they
have a higher potential for de-differentiation when external conditions
are varied.

9.4.4 Importance of the Ordering in Development

As shown in the above examples, the history of how an ensemble of cells
develops along with increasing cell numbers is essential to the selection of a
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pattern. The cells that are generated later are put in a field of chemical con-
centration that has already been produced. The selection of cell state is then
determined accordingly. This point is not well discussed, at least within the
original theory of Turing patterns. To reexamine this issue, we put 100 cells
initially in the configuration that was generated through the original simula-
tion. Here the initial condition was set so that it had a homogeneous chemical
concentration. The pattern thus formed and plotted had no regularity, as in
Fig. 9.7. In terms of dynamical systems, the selection of initial and boundary
conditions through development is essential to form an ordered pattern.

9.5 Experiment

Here we discuss a constructive experiment to form a tissue from undiffer-
entiated cells artificially. To be specific, we explain about recent controlled
tissue generation by Asashima’s group (Ariizumi & Asashima, 2001; Uochi &
Asashima, 1996). They removed some cells from a region of a frog’s (Xeno-
pus) egg, which is called the animal cap. These cells were isolated from each
other, and then put into a solution of activin (a protein) for a while. This
ensemble of undifferentiated cells was cultured to examine development. Here
the initial cells were almost homogeneous. Surprisingly, merely by changing
the concentration of activin, various frog tissues, including notochord, heart,
and muscle, were generated. Furthermore, using a solution of retinoic acid
and Conacanavalin A, they succeeded in forming over a dozen tissues, includ-
ing nephrons and sensory organs such as eyes and ears. These results will be
important for tissue engineering. Indeed, they have confirmed that such gen-
erated tissues are functional, by transplanting them into an adult body. The
eye thus synthesized and transported form a neuronal connection with brain,
and the frog can see by this new eye. The technological importance of these
results goes without saying but here we discuss the importance of the result
when trying to better understand the logic of development.

The following two points should be noted in relationship to our theoretical
results. The first feature suggests the existence of attractors or attracting
states as a dynamical system at a tissue level. The second feature suggests
that differentiation is determined through an interplay between intracellular
dynamics and cell–cell interaction, as adopted in our study.

(i) Jump-over – generation of tissues, jumping over normal tempo-
ral course of development. Activin concentration is used as a control
parameter in their experiment. Indeed, the molecule activin is impor-
tant in normal developmental as Asashima discovered. However, the high
concentration used in their experiment is not actually achieved in nor-
mal development. In addition, during normal development, several other
molecules are involved as controllers. Hence the experimental process they
adopted progressed in a rather different situation from that in normal de-
velopment. The most surprising outcome is that despite this difference
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Fig. 9.9. Jump-over phenomena discovered by the development experiment ar-
tificially controlled by activin. Based on the experiment shown in (Ariizumi and
Asashima (2001). Drawings under the courtesy of Makoto Asashima

from the normal course, the tissue eventually generated was the same
as those emerging from normal development. This was verified by the
morphology of tissues, cell types, and gene expression patterns. Normal
function was confirmed as already mentioned.

However, the “process” to achieve these tissues is quite different from
the normal case. During normal development, starting from undifferenti-
ated cells, first mesoderm, including notochord and muscles, forms, from
which neural systems are generated, and later some sensory organs are
formed. In these “constructive experiments,” the goal tissue was gener-
ated by jumping over processes that would normally form earlier tissues
(see Fig. 9.9).

Furthermore by changing the concentration of Concanavalin A and
retinoic acid, again sensory organs such as eye or ear are generated, by
jumping over intermediate tissues. This is a result of “constructive biol-
ogy” that even though the normal developmental process is not completely
followed final tissue is formed.

The present results contest the viewpoint according to which devel-
opmental process should constitute a succession of finely tuned stepwise
processes. Rather, it is more natural to adopt the viewpoint that the final
tissue is a kind of “attractor” a dynamical system with a huge number
of variables, and there can be several paths to reach it other than via
normal development. Of course, such paths to attractors are intermingled
and complex. Obviously, the basis for such attractors needs some con-
trol. The results of Asashima’s group suggest that the change of activin
concentration they used was not a finely tuned control, but rather served
to perturb the initial state by destabilizing the cellular state so that it
moved toward a state of attraction to some other tissues.
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Of course, some attractors may have smaller basin volumes and are
reached only through restricted initial conditions. In the latter case, suc-
cessive operation to reach the final attractor would be necessary. In this
case, suitably controlled time-lag between successive operations is neces-
sary to reach the attractor. Indeed, by changing the timing of the oper-
ation of activin and retinoic acid operations, different tissues were gen-
erated: When the activin and retinoic acid are simultaneously added to
undifferentiated cells, nephros (pronephros) are generated. On the other
hand, when the retinoic acid was added only after 5 h of the activin op-
eration, pancrea was generated. With this time difference, novel tissue
genesis is possible. Theoretically, one can say that the memory of this
operation is at least maintained in cells for a few hours.

(ii) Community effect – the formation of tissue is highly dependent
on the number of cells. In the experiments of Asashima’s group, a num-
ber of undifferentiated cells were taken from the animal cap of Xenopus
embryos, and with these the construction of several types of tissue (e.g.,
heart, notochord, and muscle) was caused by controlling the concentration
of activin. In these experiments, how the construction of tissues proceeded
depended on the numbers of cells used. Indeed, normal tissues were gen-
erated only for a precise range of initial cell numbers. For pronephros
formation by the solution of activin (with 10 ng/mL) and retinoic acid,
the normal tissue was formed only if the number of cells was around
300–500. When there were fewer than 100 cells, the cells died, whereas
when more than 500 cells were used, inhomogeneous tissues were gener-
ated. Construction of heart tissue by activin was also possible only for
a limited range of cell numbers (see Fig. 9.10). This experimental result
cannot be understood solely by signaling to one of the cells, and cell–cell
interaction is essential, as has been discussed in the previous section.

9.6 Relevance to Biology

9.6.1 Summary

We now summarize the logic of our theory and the results of our simulations,
and discuss their relevance to biological morphogenesis.

In our theory, cells possessing internal nonlinear reaction dynamics differ-
entiate into several distinct cell types when the cell number exceeds a threshold
value. The transition from one cell type to another is regulated by the position
of the cell in question. This regulation leads to an ordered spatial pattern con-
sisting of differentiated cells, as shown in Figs. 9.4 and 9.5. Each cell “reads”
information from the external field and reacts to this information by modu-
lating its intracellular dynamics in accordance. This modulation controls the
rates of differentiation into various cell types, while such cell differentiations,
in turn, alter the state of the environment. With this circular relationship
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Fig. 9.10. The cell number dependence on the formation of nephros by activin
and retinoic acid. Drawings under the courtesy of Makoto Asashima, based on the
experiment reported in Ariizumi and Asashima (2001)

between intra- and inter-cellular dynamics, the gradients of chemicals in the
medium act as positional information controlling the fate of each cell. This
interaction between intra- and inter-cellular dynamics is responsible for the
robustness of the developmental process.

9.6.2 Community Effect

Gurdon showed that cell commitment (i.e., determination to a certain cell
type) depends on the total cell number, and termed this cell-number effect
as the “community effect” (Gurdon et al., 1993). When the number of cells
is small, differentiation is not determined, and the cell state changes in time;
whereas when the cell number is larger, the cell state is mutually stabilized
and is maintained. The experiments by Asashima’s group also show clearly
how tissue formation is critically dependent on cell numbers.

Because our theory is based on cell–cell interactions, a “community effect”
is to be expected. Indeed, we have studied this problem by taking the stripe
case. For example, when a single type B cell (such as that in Fig. 9.5) is placed
in a medium containing no other cells, this cell de-differentiates back into a
type S cell. However, as shown in Fig. 9.11, the type B cell state is stable
when such a cell is surrounded by a sufficient number of other type B cells.
To confirm this point, we have carried out simulations with the same model,
but placing a large number (more than 10) of type B cells in an otherwise
unoccupied medium. In this case, a cell colony consisting of only type B cells
grows.

As discussed in the previous section, there can be multiple stable cell
colony states. A cluster consisting only of type B cells corresponds to one
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Fig. 9.11. The community effect in the case of a striped pattern. From an ensemble
of cells exhibiting a striped pattern, a group of type B cells or a single type B cell
were transplanted into a new, otherwise unoccupied medium, and they developed
under the same rules and parameter values with the previous case. The type B cells
transplanted as a group remain type B cells, while the type B cell transplanted as a
single cell transforms into a type S cell and then, eventually develops into a striped
pattern. Adapted from Furusawa and Kaneko (2003b), with the courtesy of Chikara
Furusawa
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such stable state, but this state never appears in the ordinary developmental
process starting from a single cell. In this case, only when the number of type
B cells initially placed in the medium is more than around 15 do these cells
remain in their type B states. Otherwise, all the cells de-differentiate into type
S cells. This clearly indicates that the states of the cells existing in a cluster
can be mutually stabilized by their interactions.

9.6.3 Induction and Plasticity

The term “induction” is often adopted to describe development. This means
that when some group of cells start to interact with another group, cells of one
group change their state to form a different tissue. In fact, both cell groups
interact mutually, but only one group of cells is changed, or “induced” by the
other group. This means that “changeability” of the cell state is higher for
the former group than for the latter group. This is nothing more than the
problem of the degree of plasticity in cells we discussed already. Then, it is
reasonable to propose the following hypothesis (Furusawa & Kaneko 2006b):

When two groups of cells with different plasticity meet, the group
of cells with higher plasticity is changed more. In other words, the
group with lower plasticity brings about the induction on the other
group of cells with a higher plasticity.

Now we can check the validity of this hypothesis from our simulation.
In the model we studied here, when the type A and B cells are put next to
each other, the type B cells de-differentiate and change to type S cells, whereas
when type S and B cells are adjacent, there is differentiation from type S cells.
The “changeability” of cells is in the order of S>B>A. Now recall the data
of variation of chemical concentrations among cell types. These variations,
and fluctuations of each cell type, again decrease in the order of S>B>A.
Hence, the hypothesis that the variation or fluctuation gives the degree of
plasticity is confirmed. When there are two types of cells, generally those with
higher plasticity are changed (induced), and this plasticity can be measured
quantitatively as variation or fluctuation of cellular states.

9.6.4 Transformation of State Differentiation into Spatial Pattern

It should be noted again that the pattern formation seen here is not prede-
termined from spatial information, but rather through intracellular dynamics
and interaction. Spatial patterns and intracellular states mutually stabilize
robust pattern formation consisting of several cell types. Here differentiation
by intracellular dynamics is consolidated to a pattern.

Although we have here adopted oscillatory catalytic reaction dynamics
for intracellular dynamics, the present mechanism does not necessarily re-
quire such dynamics. As long as there is some instability in intracellular
dynamics, this mechanism is effective. Indeed, Takagi and Kaneko (2005)
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have shown that the present mechanism works starting from intracellular dy-
namics with multiple fixed points. Another choice for intracellular dynamics,
which straightforwardly corresponds to gene regulatory dynamics, is the use
of threshold dynamics so that each gene expression takes either high or low
values, corresponding to “on” or “off” states of genes, respectively (Mjolsness,
et al., 1991; Salazar-Ciudad et al., 2000). Even with these dynamics, there can
be instability in the intracellular state (Ishihara & Kaneko, 2005). Using such
gene regulatory dynamics, and applying the present scheme, it is shown that
the present scenario for morphogenesis works. In this sense, the third question
addressed when we discussed Turing’s mechanism – how dynamical systems
mechanism and gene regulatory mechanisms are consistent – is answered.

We should mention here that Newman put forward the idea that Turing
patterns will be consolidated to gene expression (Newman and Comper, 1990;
Newman, 1994, 2003). The present theory is consistent with this idea.

9.6.5 Destabilization of Intracellular State and Regain
of Plasticity: An Interpretation of Gastrulation

In the development of vertebrates, there is an important epoch: gastrulation.
As the number of cells increases beyond some threshold value, the cells start
to move, triggered by mechanical instability such as buckling, so that some
cells start to move inside the other group. Although the origin of gastrulation
itself could be mechanical, an important consequence of this is that cells that
were far apart and that did not interact with each other start to make contact
directly, and this novel cell–cell interaction leads to a drastic change in cellular
states.

Now, the stability of the cell state is not determined solely by intracellular
factors, but also through interaction with neighboring cells. Then, when cells
start to contact some other cells that were originally far away, the cell state
can be destabilized, which may lead to novel differentiation.

Note that the plasticity in a “closed” system generally decreases (or does
not change) over time. All of our simulation results of cell differentiation
processes support this proposition. As long as the change of chemical states
of cell follows their intracellular chemical reaction dynamics and cell–cell in-
teraction in a given spatial configuration, plasticity will decrease with time.
In the case of gastrulation, however, it seems that the plasticity is regained,
following the destabilization of the cell state, as it is triggered by novel con-
tacts of cells that were not initially adjacent. Here, mechanical instability of
cell configurations leads to cell movement, and to novel arrangements of cells.
Hence, a novel type of dynamics that was not included in the original chemical
system sets in here. In this sense the system is “open” to a new dimension of
interaction and allows for the recovery of plasticity.

Now we reconsider the experiments of Asashima’s group from this view-
point. We propose that, after cells are put in the solution of activin, the cell
state must be destabilized to recover some degree of plasticity. Through this
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destabilization, a new path emerges to states that were hitherto inaccessible.
As the concentration of activin is increased, a new path to a tissue that was
hard to reach is opened. Now, in the process of gastrulation, contact with
new cell aggregates will lead to a similar destabilization. Then, the longer
the contact, the greater the instability and a developmental path to a tissue
that was harder to reach should be opened. If the argument here is correct,
the increase of contact time between cells that were initially separate in the
course of gastrulation and the increase of the concentration of activin in the
artificial development experiment must have similar effects. In fact, the order-
ing of notochord, pronephros, muscle, in the order of concentration of activin
in the experiments by Asashima et al. corresponds exactly to the order of
tissues generated during gastrulation. (Here the cells that first make contact
with new cells in gastrulation have a longer time of contact and then develop
to form muscle.) Although the discussion here is still premature, it will be
important in the future to understand the relationship between the plasticity
of cellular state and the ordering of induction as well as the tissue formation
by external control.

9.6.6 Origin of Individuality

Through Chaps. 7-9, we have shown that the robust morphogenesis with cell
differentiation is a natural course in a coupled cell system with intracellular
reaction dynamics. However, one important unresolved question here is that of
the recursive production of a multicellular organism itself. Any biological unit,
albeit whether a cell or an individual multicellular organism, has a specific
boundary with some size. How such a unit is formed remains an open question.

Also, for a multicellular organism to reproduce over successive generations,
cell aggregates themselves have to replicate recursively (i.e., recursiveness at
a cell ensemble level). How is this recursive production at an ensemble level
achieved? Here, the next generation of a multicellular organism usually starts
not from all cell types of the mother (parents) but only from a specific cell
type, called a germ cell. Indeed in the present multicellular organism, the
next generation starts from a specific cell such as an egg cell (and sperm) or
a seed. Such cells are segregated at the rather early stage of development, as
germ cells, which are passed to the offspring. On the other hand, most part
of cells, that is, somatic cells, cannot produce the offspring. The germ cells
are determined to some specific state, but when they are separated, they have
totipotency to produce all cells of the next generation.

For some multicellular organisms, it is possible to leave the offspring from
cells other than the germ cells. In plants, a new generation sometimes can be
produced without passing through the seed. In planaria, when a part of the
body is cut out, a new organism is formed from it, and hence the reproduction
without passing through the germ cell is possible. However, the cut part of
cells has to include stem cells to produce the next generation. Also, as long as
nutrition condition is satisfied, they reproduce sexually so that offspring are
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generated from the germ cells. For some primitive organisms like Volvox, the
germ cells do not exit, while the cells are differentiated here, and only some
specific cells can produce the next generation.

To sum up, only specific cell types can produce the next generation in mul-
ticellular organisms in general. Now, to maximize the number of the offspring
cells, it is a waste of resources that only the specific (germ) cells produce the
offspring. Usually the number of somatic cells is much larger. However, most
cells in a multicellular organism cannot produce the offspring for the next
generation.

Why does the development of multicellular organisms “waste” most so-
matic cells? Why does the process for the next generation have to pass through
such a narrow bottleneck?

To answer this question, we extend the study made in this chapter, by
further considering how cells are united into one aggregate. Note that without
cell adhesion the cells will leave from the aggregate when random force acts on
them, as in the Brownian motion. To form one united aggregate, cells adhere
with each other. In cell biology, each cell adheres to its neighbor cells through
some adhesion molecules on the membrane surface. The nature of membrane
proteins depends on the internal state of the cell, and it is natural to assume
that whether adhesion occurs or not depends on the pair of neighboring cell
types.

As the cell aggregate grows, however, the nutrition cannot come efficiently
to the inside cells, as the increase of the surface area of cell aggregates that are
contacted with the external environment providing resources is slower than
the increase of the volume of the cell aggregate. Then the growth of this cell
aggregate will become slower.

Here, if a few cells are detached from the aggregate and move out of the
aggregate, then they can get external resources (nutrients) more and restart
the growth process. This detachment is possible, if the cell adhesion depends
on the cell types that are contacted, and between some cell types the adhesion
does not work. Now, by adopting the model of this chapter, and by introducing
the cell-dependent adhesion force, the following course of the development of
the cell aggregate is naturally expected.

As cells grow, they start to differentiate, and form a pattern, as shown in
this chapter. Up to this stage, cells adhere with each other (otherwise, they
cannot form a multicellular organism). Then some specific cell type appears
as a result of differentiation, which loses the cell adhesion to the neighboring
cells, so that such cells are released from the cell aggregate. The number
of thus released cells is just a few. After being released, these cells are de-
differentiated (as in the type C cell in Fig. 9.11), and become a stem cell to
create a new cell aggregate. Recursive production of a cell aggregate is thus
possible.

Note that the de-differentiation occurs only if a small number of cells is
released as given in Fig. 9.12. If more cells are released together, they keep
their cell type so that a new cell aggregate is formed only of the same cell type,
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Fig. 9.12. Schematic diagram of the cycle of multicellular organism: (A) a number
of cells start to increase from the initial one or two cells. (B) They further increase
their number. (C) Cells start to differentiate with the further increase in the number.
(D) A few cells of a specific differentiated type are detached from the aggregate (E).
After several releases of cells, the remained cell aggregate ceases growing. Adapted
from Kaneko (2003a)

and easily loses the ability of the cell to grow. Hence, it is relevant that one
or only a few cells are released to make the recursive growth of multicellular
organism. Note that these released cells are of a specific cell type, and when
detached from the aggregate they recover the totipotency to form all the cell
types of the next generation. Indeed, we have shown that this scenario works
well numerically. (See the Appendix for results of model simulation.)

As shown, the next generation of a multicellular organism is generated
only by passing through a few specific cells, which can be regarded as a basis
of germ-line segregation. Now we briefly discuss the biological significance of
this result.

If the organism of the next generation grows from an initial aggregate con-
sisting of many cells, it will depend on the initial distribution of cell types. If
this distribution includes only specific types of determined (committed) cells,
then the next generation consists of only cells of the same types. Furthermore,
we have also observed cases where an irregular pattern is formed when the
initial condition consists of many cells (see Fig. 9.7). On the other hand, if
the next generation starts only from one or a few cells, the initial condition
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for the next generation is well determined, and the recursive production of
cell aggregates can be realized (see also Yoshida et al. (2005)).

Indeed, for some organisms that adopt two types of reproduction, those
both from germ cells and from somatic cells, there is a tendency that errors
accumulate to the point of damaging the recursive production, unless repro-
duction from germ cells is adopted from time to time. In fact, it is often argued
that sexual reproduction is relevant to remove fatal mutational errors (Muller,
1964).

The proposition according to which recursive production of multicellular
organisms is possible because the next generation starts only from one or a few
cells may be rephrased simply as control by minority cells. This reminds us of
the minority control discussed in Chap. 4. Instead of the control by minority
molecules, here minority cells control the recursive production. Probably, there
may be a common law by minority control in a system that reproduces itself.
In Chap. 4, we pointed out that minority control is relevant to the evolvability.
Is this true in the present case?

In fact, the argument in Chap. 4 will be valid here. When some mutational
change occurs in the germ cell, this definitely affects the next generation. On
the one hand, some mechanism to preserve the character of the germ cell
will be developed so that the fatal mutation does not occur often, but on
the other hand, there may appear mutation to produce novel function, which
affects the offspring. If the transfer to the next generation comes through
many somatic cells, then the average change by mutation will be decreased as
in the discussion of the central limit theorem in Sect. 4.5. Hence the minority
control by one or a few germ cells is relevant to evolvability at the level of a
multicellular organism.

The significance of germ-line segregation to evolution was pointed out by
Weisman (1893) and has been discussed since then (Buss, 1987). Indeed, this
is one important evidence that Lamarckism does not occur in evolution –
(according to Lamarckism if some biological state is acquired during one’s
lifetime, it is transferred to the offspring). Because change in somatic cells
is not transferred to the next generation, change in them by use of them is
not transferred to the offspring (even if you use your brain hard, the neurons
are not transferred: see also Chap. 10). Since the mutation in germ cells is
independent of which type of somatic cells are adapted in a given environment,
the Lamarckian mechanism is prohibited.

9.7 Appendix: Model for Recursive Growth
of Multicellular Organism

Cell differentiation itself is given as a general consequence of our theory as
shown in Chaps. 7–9. Following the argument in the last section, recursive
production of a multicellular organism may be possible if some mechanism
is included into the model in the present chapter, so that some cells can be
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separated from an aggregate of cells. For it, it is necessary to introduce either
cell-cell force or motility or cell-death.

As a minimal model for adhesion, we assume that cells within a given
threshold distance have a “connection,” where a “spring” is put between them
so that they adhere within the natural length of the spring if the combination
of the two cell types satisfies a given condition. For example, cells with the
same cell type will be connected by the same spring (with the same strength
and natural length) if a distance condition is satisfied, while pairs with any
combination of two different cell types do not adhere. Here we change the
condition of adhesion between the cells, to see continuous growth in our cell
society.

In addition to the adhesion force, a random fluctuation force is applied to
all cells that is expected from molecular Brownian motion. We seek a configu-
ration that is stable against perturbations including these fluctuations. When
a cell divides, two daughter cells are placed at randomly chosen positions close
to the mother cell, and each daughter cell makes new connections with the
neighbor cells.

Here we adopt the model that leads to the ring pattern with three layers
of differentiated cell types as given in Fig. 9.4. When all the cell types adhere
with each other in this model, the growth of cell aggregate stops at a certain
stage, and new cell clusters are not formed. Thus, such a cellular system
cannot be sustained for long. If a change in the adhesion properties allows for
the continuous growth and formation of a new generation of cell clusters, such
cellular systems will come to dominate.

To study this problem, we introduce dependence of the adhesion force
on cell types. Since the force of adhesion should depend on the membrane
proteins on the cell surface, it is natural to include dependence of adhesion
on the relative internal states of two adjacent cells. As a simple example, we
assume that no connection is allowed between a type Y cell and a type Z cell
in Fig. 9.4, while the connections for all other combinations are preserved.

We have made several simulations with these adhesion rules and found
that cell clusters divide into multiple parts during development. The first
stage of the developmental process is unchanged from the previous example.
A cluster of type S cells grows through cell divisions, and type X and type
Y cells appear at the inside of this cluster by differentiations until the inner
core is formed as a result of further differentiations. When the growth of the
inner core that consists mainly of type Z cells reaches the edge of the cell
cluster, however, a small cluster of cells, or a solitary cell, is released from
the periphery of the mother cluster, as shown in Fig. 9.13(c). This figure
depicts the process that gives rise to the fourth generation from the third
generation of our multicellular organism. As will be shown, the formation of
the second generation proceeds in the same way. The peripheral layer of type
S and type Y cells is cut off by the growth of the inner core, and the type Y
and type Z cells at the contact surface of these layers do not adhere any more
by our model assumption.
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Fig. 9.13. Emergence of a life cycle in multicellular organism. (a) Gives a part of
snapshot pattern of our model, while each of (b) and (c) is an expansion of the
corresponding area in (a). The cluster in (b) has already fallen into a halting state,
where the oscillation and the growth of almost all cells have stopped. The cluster
in (c) is the second-next generation from the cluster in (b). It is just releasing its
peripheral cells (the two type S cells at the upper part of (c)), which will lead to
the next generation. Adapted from Furusawa and Kaneko (2002)

The released small clusters move away by the diffusion through the ran-
dom force. They encounter a new environment with rich chemical substances
and start to divide actively. In the new clusters, development proceeds as in
their mother-cluster: The cells at the inside of a type S cluster differentiate
to type X and type Y cells, while the type Z core is formed through further
differentiations, until their peripheral cells are released again (Fig. 9.13c)).
Hence a life cycle of multicellular replicating units is observed, which emerges
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without explicit implementation. Thus, we observe the emergence of a repli-
cating unit on a higher hierarchical level than individual cell replication. Note
that this emergence of replicating cell aggregate is a natural consequence of
a system with internal cellular dynamics with nonlinear oscillation, cell–cell
interaction through media, and cell-type-dependent adhesion.

After the release of peripheral cells, the remnant core with type S and
type Z cells stops cell divisions (Fig. 9.13(b)). This determines the lifetime
of the replicating multicellular unit, given by its cell configurations and the
deficiency of nutrition. This fact provides an interesting point of view with
respect to the death of multicellular organism. As is well known, the death
of a multicellular organism is not identical with the death of cells in the
organism, but rather coincides with the death of the organism as a “system.”
For example, cells in a dead body often survive for a while. The emergence of
multicellular organisms must be accompanied with such a “halting” state of
the system. This halting state limits the size and the lifetime of an organism,
which is required to complete a life cycle and to give rise to a new generation.
In the present model, at some stage of development of cell aggregate, such a
halting state is brought about by the lack of nutrition. At the first stage of
multicellularity, where no special organ for transportation of nutrition exists,
it is natural that there is a halting state in a cell cluster when it reaches a
certain size.

At the first stage of multicellularity in evolution, two daughter cells fail to
separate after division, and a cluster of identical cell types is formed first. To
survive as a unit, differentiation of cells has to occur, and subsequently the
multicellular cluster needs to release their active cells before the system falls
into the halting state. Hence, germ-line segregation and a closed life cycle
is expected to emerge simultaneously with a multicellular organism, as our
simulation have demonstrated.
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Genetic Evolution with Phenotypic
Fluctuations

10.1 Question to Be Addressed

Question: As discussed previously, the number of molecules in var-
ious cells of the same type can fluctuate strongly, even when each
of the cells has identical genes. As molecules are synthesized and
decomposed by chemical processes, the number fluctuations are an
inevitable consequence of the laws of physics and chemistry, no mat-
ter how well the organism is designed. Indeed, the variation from
cell to cell is quite large, as has already been discussed in Chap. 6.
More generally, quantities characterizing the nature of an organism
can fluctuate from individual to individual (Spudich & Koshland,
1976), even when they have identical genes and are put in the same
environment, as has been confirmed quantitatively for bacteria
in investigations involving the fluctuations of abundances of fluo-
rescent proteins (Gardner et al., 2000; Ueda et al., 2001; Elowitz
et al., 2002; Sato et al., 2003; Furusawa et al., 2005). Since living
organisms are composed of many different types of molecules, such
as proteins, RNA molecules, phospholipid molecules, and so on,
their overall composition varies significantly even if they have iden-
tical genes. Thus, external features of organisms (“phenotypes”),
including their behavior, vary from individual to individual also.
The question that naturally arises is whether these fluctuations
have some biological significance, and indeed, as evolution is one
of the most important issues in biology, one should ask whether
phenotypic fluctuations are relevant to evolution. At this point, it
should be noted that most study of evolutionary genetics so far
has focused on genetic variations because it is assumed that pheno-
types are uniquely determined by genotypes. Our question of how
(or whether) phenotypic fluctuations are related with (genetic) evo-
lution has not been discussed. In short, are phenotypic fluctuations
relevant to evolution?
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To discuss the above question, let us first start by reviewing the basic
viewpoints in evolution theory.

(i) Existence of genotypes and phenotypes. Phenotypes are characteristics of
organisms that can be observed from the outside, and consequently that
can influence other organisms. The size of an organism, the concentra-
tions of chemicals, or enzyme activities that determine the characteristics
of an organism, and behavior (such as motility) are examples of pheno-
types. Genes neither directly influence other organisms, nor directly are
observed by other organisms. Genes influence phenotypes in the ways
they are expressed.

(ii) Fitness is a function of the phenotype and the environment. It gives an
index of the average number of offspring (that survives for the next gen-
eration) per individual organism. Note that “environment” is used in a
broad sense to include interactions with other individuals. Indeed, for
an organism, other organisms surrounding it are a most important as-
pect of the environment, and hence populations of the same and other
species need to be taken into account. (For example, how much of the
available resources an organism can get depends crucially on the popu-
lation density.) As long as organisms reproduce with the aim to increase
their number while being constrained by finite resources, competition is
inevitable. Thus selection works. As Darwin clearly pointed out, selection
by fitness is a universal and inevitable consequence of a system consisting
of replication units. To sum up, the fitness F of an organism is a func-
tion of its phenotype and its environment, that is, we have F (phenotype,
environment), and is not directly a function of its genes.

(iii) Only the gene is transferred to the next generation. Phenotypes are not
directly transferred to offspring. Although a phenotype may change de-
pending on the history of an organism or its environment, such a pheno-
type “acquired” over the life span of an individual is not transferred to
its offspring. For example, even if one has engaged in vigorous exercise to
strengthen one’s muscles, such strong muscles are not transferred to one’s
children. Only the genes are transferred. This is called the “Weissman
doctrine.”

(iv) Mutations of genes occur randomly without any specific direction. (Note:
this is closely related with assumption (iii).) As changes in genes occur
at the molecular level of the DNA, and as such molecular changes occur
through microscopic random processes which cannot “know” about the
macroscopic state, this assumption of random change is rather natural.

(v) There is a flow only from gene to phenotype. This is what is called the
central dogma of molecular biology. For example, through the develop-
mental process the phenotype is determined depending on the genotype.
Hence, the process can be summarized as Gene → (Development) →
Phenotype.
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Indeed, there is some controversy regarding assumption (iii). For example,
in a unicellular organism, when a cell divides into two, some constituents other
than DNA are also transferred, such as abundances of proteins, the structure of
the membrane, and so forth. Examples of nongenetic inheritance have indeed
been discussed (Jablonka & Lamb, 1995).1 It is, however, generally believed
that this kind of transfer to offspring constitutes a short-term memory which
will decay within a few generations, while the genetic transfer to offspring
is more precise thus constituting a long-term memory lasting over a large
number of generations.

In multicellular organisms, usually only the germ cells are transferred to
the offspring and changes in somatic cells cannot be transferred as shown
by Weissmann. Still, there are possibilities that some maternal information
may be transferred to offspring through aspects of an egg’s composition other
than DNA. However, it is again believed that such nongenetic inheritance
is not important in most cases. Although it would be interesting to discuss
the problem of this nongenetic or epigenetic inheritance, here we accept the
standard assumption (iii), since epigenetice inheritance is thought not to play
a major role in evolution in most cases.

As for assumption (iv), some controversy has arisen because of an experi-
mental report of so-called “directed mutation” or “adaptive mutation” (Cairns
et al., 1988; Shapiro, 1995). However, the result of the port is controversial and
at least significance of the reported results is still unclear. We will therefore
not investigate them further here and assume (iv) to be applicable following
standard theory.2

In short, for the discussion on speciation, we adopt the standard assump-
tions above. It should be noted, however, that in evolutionary genetics, as-
sumption (v) is generally replaced by the stronger form (v′): “a phenotype
is a single valued function of a genotype.” If this were always true, we could
replace F (phenotype, environment) in (i) by F (f(genotype), environment)
and then we could discuss the evolutionary process in terms of the population
dynamics only of genotypes (and environment).

Now, let us return to the original question. As we have confirmed that
“gene → phenotype” involves nonnegligible fluctuations, assumption (v′) is
not necessarily valid although such fluctuations could, of course, be irrelevant
to evolution. However, we have to recall that selection does not work directly
at the gene level, but at the phenotype level according to postulate (ii). Hence
it is rather natural to expect that phenotypic fluctuations are relevant to
evolution to some degree. On the basis of these notions, we conclude that
1 Sonneborn gave an explicit example where the nature of the cilia of Paramecium

is transferred to offspring without genetic change.
2 Indeed, the theory to be discussed in Chaps. 10 and 11 is valid even if assumption

(iii) or (iv) is violated, for example, under the epigenetic inheritance or under
directed mutation.
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it is important to investigate evolution while considering the role played by
phenotypic fluctuations.

The question we address here is not just to satisfy the curiosity of theo-
rists interested in fluctuations. It is also fundamentally related with general
questions on evolution such as “Why do some organisms seem to evolve faster
while the forms of some others have remained almost unchanged over huge
time spans becoming so-called “living fossils”?” Besides selection pressure, is
the mutation rate, that is, the change in the DNA sequence at the molecular
level, the sole factor determining the tempo of evolution? Here we have to re-
call that the selection process works at the phenotype level, and not the gene
level, and indeed our notion of interest – the speed in evolution – concerns
the rate of change in the phenotype. Thus, the nature of the mapping from
gene to phenotype is important for determining the speed of evolution. As
the degree of phenotypic fluctuations decreases, this mapping becomes more
rigid. Hence, it is relevant to consider the relationship between phenotypic
fluctuations and evolution speed. If it is established, it will provide important
clues to answer the above naive question on the tempo of evolution.

10.2 Logic

The simplest form of selection in evolution is regarded as a process in which the
phenotype of a more advantageous form of some trait is chosen successively.
In this simple case, evolution can be thought of as a process that moves the
phenotype in a particular direction.

According to the central dogma of molecular biology (requisite (v)), gene
controls phenotype. If we represent the phenotype as a variable in a dynamical
system, then it is natural to assume that a gene controls the equations of the
dynamical system, or, to be more specific, that it is a control parameter for a
phenotype variable. Then, genetic mutations are represented as changes in the
values of this control parameter, while evolution is modelled by selecting genes
that gives rise to a higher fitness of the phenotype. Hence by the changes in the
control parameter, a “force” that shifts the phenotype variable is assumed to
be applied toward a certain direction, as a result of the selection. The evolution
speed we are concerned with here is the rate of the change in the phenotype
variable by the “force” that changes the genetic parameter.

On the other hand, even for organisms with identical gene parameters, the
phenotype variable should vary among individuals to account for the pheno-
typic fluctuations. The question on the relationship between evolution speed
and phenotypic fluctuations addressed here can, therefore, be rephrased as a
question on the relationship between the rate of response of a variable against
a force to change and the fluctuations of this variable. This interpretation is
even clearer in the case of an artificial selection process where a given prop-
erty, such as, for example, the enzyme activity, the concentration of some
chemical, the body size, the running speed, etc., is enhanced (i.e., evolves)
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as a response to the applied selection condition. Consequently, the question
investigated concerns the relationship between response and fluctuation, and
it is natural to recall the fluctuation–response relation discussed in Chap. 3.

Before recasting the fluctuation–response relationship to adapt it to the
present evolutionary context, it is useful to elucidate the terminology we adopt
here. We refer to a measurable phenotype quantity (e.g., the concentration of
a protein) in a biological system (say a cell or an organism) as a “variable”
x of the system, while the term “parameter” is adopted for a quantity that
controls the changing of the variable. The parameter corresponding to x is
indicated as a. According to this definition, a gene given by a DNA sequence
in a cell is regarded as one of the system’s parameters in the artificial evolution
experiment that we will discuss later. Now, even if the gene (the parameter)
a is identical for several individuals, there are fluctuations in the variable x.
Then one can define a distribution P (x; a) of the variable x over biological
systems (e.g., over cells) for a given parameter a (i.e., gene). Here we apply the
terms “average” and “variance” of x with regards to the distribution P (x; a)
of the variable x.

With this terminology, we will state our theoretical proposition as follows:
When we change the value of a parameter a slightly so that a → a + δa,
the change in the average value of the variable x will be proportional to its
variance, that is,

〈x〉a+∆a − 〈x〉a
∆a

∝ 〈(δx)2〉, (10.1)

where 〈x〉a and 〈(δx)2〉 are the average and variance of the variable x
for a given parameter value a, respectively. They are explicitly defined as
〈x〉a =

∫
xP (x; a)dx and 〈(δx)2〉 =

∫
(x − 〈x〉a)2P (x; a)dx, where P (x; a) is

the normalized distribution function of x for the parameter value a. The in-
tegral is taken over the whole range of x, and the symbol 〈. . .〉 denotes the
average with respect to the distribution function P (x; a).

Now we first derive a general relation, assuming that the distribution is
approximately Gaussian. At a = a0, we then have

P (x; a0) = N0 exp
(
− (x − X0)2

2α0

)
, (10.2)

with N0 a normalization constant so that
∫

P (x : a)dx = 1. Even when
the control parameter a changes somewhat, we assume that the distribution
function remains approximately Gaussian, while its peak position shifts from
X0. Specifically, we consider the following form for the distribution:

P (x; a) = N exp
(
− (x − X0)2

2α(a)
+ v(x, a)

)
. (10.3)

As mentioned, X0 is the peak position at a = a0, while as a changes, the
peak position shifts because of the term v(x, a). In general, we can take any
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function v(x, a) as long as the condition v(x, a0) = 0 is fulfilled, by recalling
that the distribution at a = a0 is given by (10.2). As the x-independent term
in v(x, a) (i.e., the terms that depend only on a) can be incorporated into the
normalization constant, v(x, a) can be expanded as v(x, a) = C(a − a0)(x −
X0) + · · · , with C as a constant, where ... is a higher order term in (a − a0)
and (x − X0). Neglecting the higher order terms, the distribution function
becomes

P (x : a) = N(a) exp
(
− (x − X0)2

2α(a)
+ C(a − a0)(x − X0)

)
, (10.4)

with N(a) a normalization constant so that
∫

P (x : a)dx = 1.
Through the evolutionary process the peak position in the distribution of

x shifts because of the generalized force C(a − a0)(x − X0). Assuming this
distribution form, we study the change of the average values 〈x〉 against the
change of the parameter from a0 to a0 + ∆a. Next we determine how the
distribution P (x; a + ∆a) changes from P (x; a0) by expanding as

P (x; a0 + ∆a) = N ′ exp
(
− (x − X0 − C∆aα(a0 + ∆a))2

2α(a0 + ∆a)

)
, (10.5)

where N’ is the normalization factor that absorbs all the x-independent terms
in the exponential that depend on a. From the above equation, we obtain

〈x〉a=a0+∆a − 〈x〉a=a0

∆a
= Cα(a0 + ∆a) . (10.6)

Noting that α = 〈(δx)2〉

〈x〉a=a0+∆a − 〈x〉a=a0

∆a
= C〈(δx)2〉 , (10.7)

where the deviation between α(a0 + ∆a) and α(a0) is neglected as the above
formulation is up to the lowest order in ∆a. As long as ∆a is small, the
∆a dependence of α = 〈(δx)2〉 is negligible, and the variance in the above
equation can be replaced by 〈(δx)2〉a. Equation (10.7) is a general result that
will always hold for Gaussian-like distributions if higher order changes in the
distribution can be neglected and if changes in parameters can be represented
by a linear force that shifts its corresponding variable.

Now we reconsider the assumptions underlying this derivation by compar-
ing it to the fluctuation–dissipation theorem in statistical physics (see, e.g.,
Kubo et al., 1985). In thermodynamics, the left-hand side is called a general-
ized force that produces a deviation of the variable from an equilibrium point.
The magnitude of the deviation is small because the fluctuation–dissipation
theorem in statistical physics is restricted to linear nonequilibrium thermody-
namics. As the relation holds only near the equilibrium point, the condition
for the smallness in the change of a is assured.
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Although our formula is formally similar to the fluctuation–dissipation
theorem, the system in question is not near thermal equilibrium and hence,
neglecting higher order a-dependence in P (x; a) is an assumption that will
need to be justified. The validity of this assumption and the plausibility of the
correlation between the fluctuation and response should therefore be examined
experimentally.

On the basis of the arguments given above, we propose that for a cer-
tain class of biological systems, the fluctuation–response relationship given by
(10.1) holds for variables with Gaussian-like distributions under changes of
the control parameter corresponding to the variable.

For example, consider the measurement of the growth rate of bacteria in
a medium with some source of nutrition. The growth rate is influenced by
the concentration of the nutrient, which works as a control parameter for the
growth rate. Then, the fluctuation–response relationship suggests that the
change in the growth rate x by the change of the concentration of nutrient a
is proportional to the fluctuation of x.

Now let us apply this fluctuation–response relationship to evolution and
represent a gene as a continuous (scalar) parameter. We would like to note
the following two points with regard to this representation of a “gene as a
parameter.”

First, since genes are originally represented by a symbol sequence consist-
ing of the letters A, G, C, T, a representation by a continuous parameter a
may look a bit strange. However, a gene is usually not represented by just a
few letters but by a large number of letters. A mutation of a gene is due to
a change in these letters. When introducing more changes in the letters suc-
cessively, a larger influence on the phenotype can be expected. For example,
in an evolution experiment often adopted in evolutionary engineering where
the goal is to amplify some enzymatic activity (of bacteria), the enzymatic
activity increases continuously from generation to generation, through a selec-
tion process applied after adding a mutation at each generation. Or, as a very
simple theoretical illustration, one can consider the case in which the fitness
decreases with the increase of the Hamming distance between the sequence
under consideration and that of the fittest. Then, by starting from a nonfit
sequence, the fitness increases continuously as the Hamming distance between
the sequence and that of the fittest decreases. Consequently, it is, in general,
appropriate to represent a gene as a continuous parameter, and indeed, this
assumption is adopted in most theories of evolutionary processes.

Second, since genes are nothing but information expressed on DNA, they
could, in principle, be included in the set of variables. However, according
to the central dogma of molecular biology (requisite (v)), genes can affect
phenotypes, the set of variables, but the phenotypes cannot change the code
of the genes. During a life cycle, changes in genes are negligible compared
with those of the phenotypic variables they control. Accordingly, we represent
genes by a parameter.
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Consider, for example, an artificial selection process to enhance a given
quantity (e.g., enzyme activity or the abundance of some protein) which we
call the fitness here. At each generation, by introducing mutations to organ-
isms having identical genes, new organisms with different genes are produced.
Among these, those with the highest fitness are selected for the next genera-
tion. Then, at the next generation, those with the highest fitness are selected
again and so on.

On the other hand, this fitness, that is, the quantity used as the index for
selection, fluctuates even among the clones, that is, isogenic individuals. This
represents the phenotype fluctuations.

Here, we consider a particular gene that controls fitness, that is, the char-
acteristic quantity under consideration. If the DNA sequence for the gene
changes through mutation, there is an influence on fitness. As the mutations
accumulate, so do the changes in fitness. In this case, the parameter associated
with the characteristic quantity (phenotype) is the degree of substitution in
the DNA sequence of the gene, and the rate of change of the parameter is
given by the mutation rate.

In Fig. 10.1, we give a schematic representation of the above process. The
peak of the distribution increases from generation to generation as a result
of the selection process, while the evolution speed, that is, the increment be-
tween successive generations may change. In the above example, the mutation
and selection processes at each generation introduce a force that changes the
parameter a toward the direction of increased fitness, whereas the “response”
is the change (i.e., increase) in the phenotype (i.e., the measured quantity).
Then, by adopting this interpretation, the following interpretation is possible
for (10.1):

• change in a, genetic mutation,
• change in 〈x〉, change in the average phenotype due to the genetic change,
• 〈(x − 〈x〉)2〉, variance of the phenotypic distribution (fluctuations) of the

clones.

With this interpretation (10.1) suggests that the evolution speed of a phe-
notype (that is, the change of the average phenotype per genera-
tion) divided by the mutation rate is proportional to the phenotypic
variance of the clone.

Note that both the evolution speed, that is, the rate of change in the
phenotype quantity per generation, and the variance of the quantity over
the clones are experimentally measurable, so that the above relation between
fluctuations and evolution speed is testable.

The above proposition can be interpreted as follows: As the degree of the
fluctuations of the phenotype decreases, the change of the phenotype under
a given rate of genetic change also decreases. In other words, the larger the
phenotypic fluctuations are, the larger the evolution speed is. In this sense,
we have a theoretical basis to characterize the degree of evolvability. This
theory provides a first step in quantitatively characterizing our impression
that organisms with larger phenotype fluctuations evolve faster.
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Freqeuncy

Generation

Chemical Abundances (log scale)

(e.g., degree of flourescence per volume)

Fig. 10.1. Schematic representation of an experimental outcome concerning the
fluctuation–response relation in an evolutionary context. At each generation, a given
characteristic quantity is measured in each organism. This quantity varies depending
on the organism’s genes, but even among individuals with identical genes, the values
are distributed. The combination of these two factors gives the initial distribution
P (x) as plotted. Then, the organisms with the gene that yields the largest value of
the quantity x are selected for the next generation. Hence the functions plotted in
the graph for later generations are the distributions of this quantity for the clones,
that is, individuals possessing the same genes (In other words, each of these graphs
represents the distribution of phenotypes for a group of organisms that possess
identical genes)

10.3 Model and Result of the Simulation

As an illustration of the above theory we consider a simple cell model
with intra-cellular catalytic reactions, allowing for cell growth and divi-
sion, that consist of a variety of chemicals whose concentrations are given
by (N1, N2, . . . , NK), for K chemical species as was discussed in Sect. 6.3
(Furusawa & Kaneko, 2003a; Furusawa et al., 2005a). Depending on whether
there is an enzymatic reaction from i to j catalyzed by some other chemical

 or not, a reaction path is connected in the network as (i + 
 → j + 
).
Here, nutrients (which have no catalytic activity) are transported through
the cell membrane with the aid of some other chemicals that are “trans-
porters.”3 Transported nutrients are successively transformed into other chem-
icals through catalytic reactions, including transporters. When these reactions
3 In this chapter, we have revised the model of Sect. 6.3 to use transporters, but

this revision is not essential for the overall behavior. All the results on Zipf’s law
and the log-normal distribution in Sect. 6.3 are still valid here.
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progress because of the flow of nutrients, the number of molecules in a cell
increases, until it goes beyond a given threshold N and the cell divides into
two.

Of course, how these reactions progress depends on the network, which
is coded by genes. A change in a gene corresponds to a change in a network
path. Here, we carry out evolution experiments where those reproducing cells
are selected that have a higher concentration cis

(or abundances Nis
) of a

given specific chemical is. To be specific, we first evolve cells so that they grow
recursively, starting from a catalytic network chosen randomly. As discussed in
Chap. 6, this is possible near a certain critical point that gives rise to efficient
growth. After obtaining mother cells with recursive growth, we carry out an
evolution experiment that increases the concentration of some chemical as
follows. First, from each parent cell, L mutant cells are generated by randomly
adding or removing m reaction paths to the reaction network of the parent
cell. Thus the mutation rate µ is given by m/M , with M the total number of
paths. Then, for each of the networks, the reaction dynamics is simulated to
identify those cells that can reproduce. (Indeed there are lethal mutants that
cannot reproduce, which corresponds to the state with D > Dc in Sect. 6.3.)
Lastly, among those networks that can grow recursively, the top n cells with
regard to the abundances of the chemical species is are selected for the next
generation.

As the number of molecules is finite, for a given network, there are fluc-
tuations in the abundances of each chemical as discussed in Sect. 6.3. Corre-
sponding to the variable x, in the theory is the abundance Nis

. To be precise,
we choose x = log(Nis

) since the distribution of Ni is close to the log-normal
distribution as already mentioned, and since our theory is better suited for a
variable x, whose distribution is close to a Gaussian distribution. As a measure
of the phenotypic fluctuations, we compute the variance of x for a network
that gives the peak abundances at each generation.

The evolutionary changes in the phenotype distributions of the clones P (x)
are plotted in Fig. 10.2. Here, as the evolution progresses, both the speed of
improvement (that is, increment of x from one generation to the next) and the
variance of the fluctuations decrease. To check the validity of the fluctuation–
response relationship, we have plotted the increment of the phenotype x (that
is, the logarithm of the number of the molecules Nis

) at each generation
for the selected species successively. As shown in Fig. 10.3, the data plotted
against the variance of x are fitted well by a linear relationship, while the
proportion coefficient increases with the mutation rate. The slope divided by
the mutation rate is roughly constant. Hence the relationship we discussed in
the last section

evolution speed per mutation rate ∝ the phenotypic variance of clone

is confirmed in this simulation.
Note that there is no a priori reason in the setup of the model that makes

this relationship trivially hold. The relationship is confirmed for cells that
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Fig. 10.2. Histogram of the phenotype x, which is defined as the logarithm of
the number of molecules nis in the reaction-net cell model. Distributions for five
generations in the course of evolution with a mutation rate µ = 0.01 are plotted
with changing colors. (a) Distribution P (x) of the phenotype x = log(nis) of the
selected clones at each generation. The distributions plotted here are obtained from
10,000 cells of the clone. (b) Distribution Q(x) of the phenotype x = log(nis) over
10,000 mutants from the selected clones at each generation (see Sect. 10.5). For
the simulations presented in this chapter, the parameters were set to k = 1 × 103,
Nmax = 1 × 104, and ρ = 0.01. The number of mutant networks L is 1 × 104, and
the top n = 500 cells with regard to the abundances of the chemical species is are
selected for the next generation. Reproduced from Kaneko and Furusawa (2006)
with permission
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Fig. 10.3. Evolution speed versus phenotype fluctuations of clones. The abscissa
gives the evolution speed that is measured as the difference between the average
phenotypes x of two successive generations, where the average is computed from the
selected 500 cells. The ordinate gives the fluctuations as measured by the variance
of x of the clones of the selected cells, at each generation, computed from 200 clones
per cell. Reproduced from Kaneko and Furusawa (2006) with permission

grow recursively, and indeed, such recursive growth is possible only near a
critical state, as discussed in Sect. 6.3. If a phenotype changed drastically
from generation to generation, it would be impossible to define an average
phenotype for a given gene.

10.4 Experiment

To check whether the proposed relationship holds true in biological systems,
we analyzed data from an E. coli evolution experiment. In our experiment, we
use a fluorescent protein and select mutants with the highest fluorescence at
each generation. The starting point for the experiment is a “weakly fluorescent
protein,” which was constructed by Ito et al. (2004).

Previously, Ito et al. (2004) succeeded in synthesizing a protein with a
random sequence. By genetically attaching an arbitrarily chosen random se-
quence to the N terminus of a wild-type GFP (Green Fluorescent Protein)
gene and transforming E. coli with the gene, a GFP mutant with low fluo-
rescence was formed as the initial material for the evolution experiment. By
applying random mutagenesis to only the attached fragment, a mutant pool
with a diversity of 106 cells was prepared. These mutants can have different
degrees of fluorescence. One of the transformed E. coli cells was then selected
on the basis of the level of its fluorescence intensity to be the parent for the
next generation of clones. Successive generations were generated so that the
(n+1)-th generation was generated from a parent clone selected from the nth
generation, while always keeping diversity size and selection pressure the same
as in the first generation.
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To observe the diversity of the green fluorescence under identical exper-
imental conditions, the clone selected at each generation was cultured in a
liquid medium, and the distribution of the fluorescence intensity of the grown
cells was measured with the help of flow cytometry. In this experiment, the
fluorescence magnitude is the natural choice for the variable x. The fluores-
cence distributions obtained for each generation are shown in Fig. 10.4. It
should be noted that each distribution has a finite width even though the E.
coli cells are clones with the same genetic information living under the same
conditions. The distribution here originates from the phenotypic fluctuation
(i.e., the fluorescence variation) of the clones and does not relate to genetic
variation.

Note that the distribution functions in Fig. 10.4 are plotted using the
logarithm of the fluorescence intensity. The distribution of the fluorescence
intensity among the individual cells is close to a log-normal form, as has been
discussed in Sect. 6.5 (at least, it is close to being symmetric after taking the
logarithm, while without taking it, the distribution has a larger tail on the
higher intensity side). Therefore, as the quantity representing the phenotype,
it is convenient to use the logarithm of the fluorescence. (Indeed, the results
of flow-cytometry measurements are usually displayed on a log scale.)

Fig. 10.4. Schematic representation of the selection process in the experiment;
Reproduced from [Yomo et al. 2005] with permission

The genetic mutation at each generation changes the protein structure,
leading to an increase in the average fluorescence through the selection process.
Hence the mutation, that is, amino-acid substitution of the polypeptide se-
quence attached to the GFP corresponds to change in the scalar parameter a
in our theory, which controls the variable x, the fluorescence intensity.

Shown in Fig. 10.5 is the average value of the distribution and its vari-
ance plotted against the generation number. Note that both the change in the
average value between two successive generations and the variance decreases
from generation to generation. Thus this result shows a positive correlation
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Fig. 10.5. Histogram of the logarithm of the fluorescence intensity for each gener-
ation, for the experiment described in the text. The number above the peak of each
distribution indicates its generation number. We evaluated the fluorescence intensity
of each E. coli in each generation by dividing its FF value by its FS (forward scatter)
value measured by cytometry. This is because the FS value roughly indicates the size
of E. coli, while the FF value is usually proportional to the FS value. Reproduced
from Sato et al. (2003)

between the response and the fluctuation that is roughly consistent with our
result (10.1) which predicts that the change of average value should be pro-
portional to its variance.

To check the validity of relationship (10.1) more quantitatively from the
experimental results, we plot in Fig. 10.6 the change in the average value per
generation against the variance multiplied by the parameter change, where
the parameter change is given by the synonymous mutation rate, also shown
there. If the proportionality in (10.1) holds perfectly, all these points should lie
on a straight line that passes through the origin. Also, in Fig. 10.7, to serve as
a comparison, we plot the change in the average value per generation directly
against the parameter, that is, without multiplying by the variance. The corre-
lation shown by the results where we multiply by the variance is clearly much
better than that shown by the results when we do not. Indeed, the correla-
tion coefficient of the variance-multiplied results is 0.8, while the unmultiplied
one is only 0.2. From this result it is reasonable to state that the change of
fluorescence is more highly correlated in the case where the mutation rate is
multiplied by the variance than in the case where only the mutation rate is
considered. It should also be noted that this correlation appears irrespective of
the sudden change in the mutation rate that we introduced in this experiment
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Fig. 10.6. The average (squares) and variance (circles) of the fluorescence intensity
for the clone cells selected at each generation, plotted versus the generation number.
The average values and variances are computed from the Gaussian-like distributions
as their peak positions and half widths. The synonymous mutation rate for each
generation is also plotted as triangles. Reproduced from Sato et al. (2003)

at the fifth generation, as can be seen in Fig. 10.6. This observed correlation
is not a trivial result because the variance has decreased by about one third
in later generations compared to the first generation. In other words, explicit
a-dependence in α(a) in (10.5), if it exists at all, is not very strong.

To close this subsection, we note again that the variable under considera-
tion here is not the fluorescence intensity itself but its logarithm. The averages
in Figs. 10.6 and 10.7 are also computed from the logarithm of the fluores-
cence. In other words, we adopted the logarithm of the fluorescence as the
variable a of our theory. The reason for this choice is as follows. First, the dis-
tribution is nearly Gaussian in the logarithmic scale, as discussed in Chap. 6.
Since our theory is based on Gaussian-like distributions, it is natural to use
the logarithm of the abundances as the variable. Indeed, the observed linear
relationship between the response and variance is true only with this choice
of variable. Second, it should also be noted that most chemical characteris-
tics depend on the logarithm of chemical abundances (recall that in chemical
thermodynamics equations, the logarithm of the concentration generally ap-
pears as the relevant term, as for example is seen in the definition of the pH
or the expression for the chemical potential in dilute solutions). Finally, the
use of the logarithm as a measure of phenotypic quantities is often adopted in
evolution theory, as also proposed by Haldane (1949) (see also Kimura, 1983).
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Fig. 10.7. The variance of the fluorescence intensity multiplied by the synonymous
mutation rate are plotted versus the change of average fluorescence intensity as
circles, using the data from Fig. 10.6. The line is a linear fit to the data, which turns
out to pass through the origin. For reference, the synonymous mutation rate versus
the change of average fluorescence intensity value is also plotted as squares. The
correlation coefficient for the linear fit for the variance mutiplied by the mutation
rate (circles) is 0.79, while that for just the synonymous mutation rate (squares)
is 0.21. We see that the former shows a better linear correlation than the latter.
Reproduced from Sato et al. (2003)

Selected
Next generation

Distribution of phenotype x due to the distribution of gene

Fig. 10.8. Schematic representation of Fisher’s theorem
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10.5 Relevance to Biology

10.5.1 Phenotype–Genotype Relationship at the Fluctuation Level

Fluctuations are, of course, discussed in the standard theory of population ge-
netics. In that theory, however, the phenotypic fluctuations of organisms with
identical genes is not explicitly discussed, as assumption (v′) in Sect. 10.1 is
adopted. Instead, the distributions of genes and their relevance to evolution
speed are considered in detail. Recall that following the postulate, the selec-
tion process works through fitness, which is a function of the phenotype. With
a genetic change, the phenotype, and accordingly the fitness, of an organism
changes in turn influencing the rate at which offspring can be produced. Con-
sequently, it is expected that a larger fitness variance due to a wider genetic
distribution results in a larger change in fitness from one generation to the
next (see Fig. 10.8).

Indeed, the proportionality between evolution speed and the variance of
fitness due to the genetic distribution was established by Fisher and is called
the fundamental theorem of natural selection (Fisher, 1930; Edwards, 2000).

In contrast, the relationship we have proposed here concerns the evolution
speed and the phenotypic fluctuations of clones (i.e., organisms having identi-
cal genes). In this case, the detailed mechanism producing the phenotypic fluc-
tuations has not yet been elucidated, and no established formula is available
for the degree of phenotypic fluctuations. Since Fisher’s theorem states the
proportionality between evolution speed and phenotypic variance due to ge-
netic variance and the study presented here demonstrates the proportionality
between evolution speed and intrinsic phenotypic fluctuations of clones, it is
reasonable to conclude that there should be some relationship between phe-
notypic variance due to the genetic variance and the phenotypic variance of
clones.

In general, however, one would not expect a straightforward relationship
between the two since the genetic fluctuations generally depend on the mu-
tation rate and the population distribution of organisms with different genes,
while the phenotypic fluctuations of clones do not. The existence of a rela-
tionship, if there is one at all, must therefore originate in some evolutionary
constraints concerning stability.

Quite recently, a possible relationship between the two was found by means
of a stability analysis of the statistical distribution of phenotypes and geno-
types (Kaneko & Furusawa, 2006). In this analysis, the assumption is made
that there is a two-variable distribution in gene and phenotype. With this
assumption, an inequality between the two fluctuations is first derived, and
then, it is shown that for the mutation rate that achieves the highest evolution
speed, this inequality is replaced by an equality. For a general mutation rate,
the genetic variance increases roughly proportionally to the mutation rate.
Accordingly, the proportionality between the phenotypic variance of differ-
ent genes (genetic fluctuations measured by a phenotype) and the phenotypic
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variance of the clones of the most dominant genotype is derived. If this ar-
gument is valid, the fluctuation–response relationship in evolution discussed
above and Fisher’s theorem can be shown to consistently be related with each
other. We will now explain this in some more detail (Kaneko & Furusawa,
2006).4

In considering evolution, we also need to take into account the distribu-
tion of the genotype a, instead of regarding it as a given parameter. Through
the evolutionary process, the dominant genotype a changes, and the domi-
nant phenotype x0(a) changes accordingly. Now, to investigate evolution with
regards both to the distribution of phenotype and gene, we introduce a two-
variable distribution P (x, a;h) with h, a given environmental condition. Then
by changing the environment h (or the selection pressure in artificial evolu-
tion experiment), the most dominant genotype a and the phenotype change
in accordance with the peak in this two-variable distribution P (x, a;h). The
existence of such a distribution function is the first assumption here. The sec-
ond assumption we make is that at each stage of the evolutionary process,
the distribution has a single peak in (x, a) space. Through the evolution-
ary course, the dominant gene a changes, which is given by the peak posi-
tion of P (x, a : h), which in turn changes depending on the environmental
condition h.

This second assumption is based on the notion that some kind of evolu-
tionary stability exits, that is, that at each stage in the evolutionary process,
neither the phenotype nor the genotype distribution is spread out, and that
the distribution has a clear peak around a dominant gene and phenotype.
This stability condition might be a bit strong to postulate for every evolu-
tionary process, but for a gradual evolution process (without speciation), it
would be a reasonable assumption. In the artificial selection experiment, a
gradual change in the phenotype could be reinterpreted as a gradual increase
of the selection pressure to increase the parameter h (e.g., by increasing the
threshold value beyond which a cell [or an organism] is selected so that it has a
higher concentration of some protein or function). Or, by borrowing a concept
from thermodynamics, it may be formulated as “quasi-static process”, where
a transition process is modelled as a series of successive (slightly different)
equilibrium states.

We now modify the distribution P (x; a) in Sect. 10.3 to become a two-
variable distribution P (x, a) as follows:

P (x, a) = N exp
[
− (x − X0)2

2α(a)
+ C(a − a0)(x − X0) −

1
2µ

(a − a0)2
]

, (10.8)

4 The theory outlined below follows the spirit of Einstien in his theory of Brown-
ian motion, which is the original form of fluctuation–response relationship (Ein-
stein, 1905, 1906). In the theory, consistentcy between microscopic fluctuation
and macroscopic motion leads to the relationship, while we study the relation-
ship between microscopic phenotypic fluctuation and genetic change here.
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where N is a normalization constant. Here the Gaussian distribution
exp(− 1

2µ (a−a0)2) is introduced to represent the distribution of genes around
a = a0. The variance here is (in a suitable unit) nothing but the mutation
rate µ. The above equation can then be rewritten as

P (x, a) = N exp
[
− (x − X0 − C(a − a0)α)2

2α(a)
+

(
αC2

2
− 1

2µ

)
(a − a0)2

]
.

(10.9)

In order for this distribution to have a single peak (i.e., not to be flattened
along the direction of a) the following condition (besides α > 0) should be
satisfied: α(a0)C

2

2 − 1
2µ ≤ 0, i.e.,

µ ≤ 1
C2α(a0)

≡ µc (10.10)

This means that the mutation rate has an upper bound beyond which the
distribution does not have a peak in the gene-phenotype space.

Indeed, such a limit in the mutation rate for a single-peaked distribution
has already been discussed for a fitness landscape where one type is the fittest
among other neutral types (Eigen & Schuster, 1979) (see also Sect. 4.1). Eigen
and Schuster have shown that there is a critical mutation rate beyond which
the fittest organisms cannot maintain their dominance in the population, and
error catastrophe discussed in Sect. 4.1 occurs. Since our formulation assumes
a continuous change of genes by mutation, and explicitly takes into account
phenotypic fluctuations, it differs from Eigen’s approach, but the two are
similar with regards to the limit on the mutation rate required to maintain
the stability of the single-peaked distribution.

Now we investigate the phenotypic variance due to the genetic distribution.
First, we consider the average xa over the distribution P (x, a) for a given fixed
a, and then we consider the distributions of xa for changes in a around a0.
The variance Vg of this distribution of xa, that is,

Vg = 〈(xa − xa0)
2〉 (10.11)

is that discussed in Fisher’s theorem. Then noting that

xa ≡
∫

x exp(−V (x, a))dx = X0 + C(a − a0) , (10.12)

we obtain
Vg = 〈(xa − xa0)

2〉 = C2〈(δa)2〉 = C2µ . (10.13)

Accordingly, the inequality µ < 1/(C2α(a0)) is rewritten as

Vg ≤ α(a0). (10.14)



274 10 Genetic Evolution with Phenotypic Fluctuations

Recall that α is the phenotypic variance 〈δx2〉 of organisms with identical
genes. To distinguish α from Vg, let us call it “intrinsic phenotypic fluctuation”
(variance) and denote it as Vip. Then the above inequality is written as

Vg ≤ Vip. (10.15)

This means that the phenotypic fluctuation over clones (organisms with iden-
tical genes) is larger than the phenotypic variance due to the genetic variance.
For a more general derivation of the above inequality (see Kaneko & Furusawa,
2005b).

Now, the genetic variance in the population 〈(δa)2〉 is proportional to the
mutation rate, and the evolution speed increases with it. Still there is a limit
given by the inequality, beyond which the evolutionary process yielding suc-
cessively better types no longer works since an error catastrophe occurs that
leads to a breakdown of the single peak distribution. Hence the highest evo-
lution speed is achieved just before this catastrophe occurs. This condition
is given by the above critical mutation rate, where the inequality (10.15) is
replaced by the equality Vg = Vip. At the critical mutation rate, the evolu-
tionary path passes through marginally stable states so that the phenotypic
fluctuations due to the distribution of genes equals the phenotypic variance
of the clones.

Recall that Fisher’s fundamental theorem of natural selection states that
the evolution speed is proportional to Vg, the phenotypic variance by genetic
variance. Then, at the state with optimal evolution speed, the above relation-
ship means that the phenotypic variance of the clones is proportional to the
evolution speed. When the mutation rate is smaller than this optimal value,
the original inequality is satisfied.

Note, in the above formulation, 〈(δa)2〉 = µ and Vg ∝ µ. Recalling that Vg

at µc equals Vip, we get
Vg =

µ

µc
Vip . (10.16)

(Note that Vip is independent of µ.) Since Vg is proportional to the evolution
speed according to Fisher’s theorem, Vipµ ∝ Vg ∝ (evolution speed) fol-
lows. Hence, the evolution speed is proportional to µVip, and the fluctuation–
response relationship in the earlier sections is shown to be consistent with
Fisher’s theorem.

It should be stressed that the derivation of our expression uses only the
stability condition, and does not depend on specific mechanisms of evolution or
selection pressure. The assumption we made is the existence of a distribution
P (x, a) = exp(−V (x, a)) (or in other words, the existence of the “potential
function” V (x, a)) and evolutionary stability, where we assume that at each
generation in the evolutionary course, the distribution has a single peak, that
is, stability in both genetic and phenotypic space. This is not obvious at all.
Since a phenotype is a function of a gene, assuming the existence of a two-
variable distribution is a tricky matter as genetic and phenotypic fluctuations
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are treated in the same way. Hence, we need to check our theory by models
and experiments.

10.5.2 Confirmation of the Relationship by the Model Presented
in Sect. 10.3

To confirm the validity of our theory, we have carried out several simulations
of the simple cell model studied in Sect. 10.3. Here, to investigate the distri-
butions of phenotypes due to genetic variation, we compute the phenotypes
x (the logarithm of the concentration of the chemical in concern) over 200
clonal cells to obtain the peak position of the phenotype distribution. This
peak position of the phenotype x differs from mutant to mutant, and when
considering L mutants we can obtain the distribution Q(x) of these peaks.
The variance of the peak positions over all mutant networks Vg is nothing
but the variance of Q(x). Q(x) is plotted in Fig. 10.2b, while the phenotype
distribution of the clones P (x) is shown in Fig. 10.2a. As can clearly be seen,
the distributions evolve jointly, satisfying Vip > Vg as is expected from the
theory.
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Fig. 10.9. The relationship between Vip, the variance of the phenotype x of the
clone as measured in Fig. 10.2, and Vg, the variance of the phenotype x over 10,000
mutants of the selected cell. Plotted with identical symbols are the relationships over
courses of evolution with fixed mutation rates as indicated in the figure. (Reproduced
from Kaneko & Furusawa, 2005)

We have plotted Vg versus Vip in Fig. 10.9, and find that the expected
inequality is indeed satisfied, and also that Vip ∝ Vg holds for each evolution-
ary process with a fixed mutation rate.5 As the mutation rate µ increases, the
5 One may wonder whether in this model the phenotypic variance Vip decreases as

1/N when increasing of the total number molecules N in a cell, while Vg does
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Fig. 10.10. Distribution of the phenotypes x over 10,000 mutants, generated with
the mutation rates 0.003, 0.01, 0.02, 0.03, and 0.05. Around the mutation rate 0.03,
the distribution flattens, and the peak position starts to shift downward. (Repro-
duced from Kaneko & Furusawa, 2006)

slope of Vg/Vip increases approaching the diagonal line Vg = Vip. On the other
hand, with the increase of µ, mutant populations exhibiting very low values
of x increase, a situation that corresponds to the collapse of the catalytic
reaction process for cell growth. As shown in Fig. 10.10, beyond some muta-
tion rate µthr, the distribution becomes flat, and the peak in the distribution
starts to shift downward. By investigating the Vg − Vip relationship, we have
confirmed that around µ ≈ µc, Vg approaches Vg ≈ Vip. Indeed, for mutation
rates beyond this threshold mutation rate, evolution does not progress, as the
distribution is almost flat, and the value of x after selection cannot increase
from generation to generation. Thus the evolution speed is optimal around
µ ≈ µc. Summing up, there is a threshold mutation rate µ beyond which the
evolutionary process does not progress (that is, an error catastrophe occurs),
where Vg approaches Vip. All of these numerical results support the theoretical
prediction described earlier. It should also be stressed that the results here
do not depend on the specific algorithm for evolution, such as the ratio of se-
lected networks for the next generation. The selection pressure, given by the
fraction of selected networks, influences only the proportionality coefficient
between the evolution speed and Vg as predicted by Fisher’s theorem, but it
does not influence the inequality and proportionality between Vg and Vip.

not. Here we have to recall that a cell with recursive and efficient growth is at
a critical state represented by a power law distribution (Zipf’s law), as shown in
Chap. 6. At this critical state Vip does not decrease with an increase in N , and
the results here are therefore valid independently of N as long as it is sufficiently
large.
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We have now confirmed our theoretical predictions. However, we have
not yet completely clarified why the theory is actually valid, although one
possible reason is that certain genetic changes can give rise to the same kind of
effects on the reaction dynamics as can phenotypic fluctuations. For example,
consider a reaction process i to j catalyzed by 
. If the concentration c� changes
because of fluctuations, then the rate of the reaction will change as well. Still,
such a change in the rate could equally well be induced by changing a path
in the network or the catalytic activity of the reaction, which is coded by a
gene. In this sense there is a correspondence between the phenotype change
induced by genetic change and that induced by the phenotypic fluctuations.

Of course it is very important to verify our proposition experimentally,
for example by using the example discussed in Sect. 10.4. Indeed, preliminary
data from the experiments seem to suggest the validity of our proposition.

10.5.3 Biological Significance

Genetic Assimilation

Waddington, in his pioneering study, proposed the concept of “genetic assimi-
lation” (Waddington, 1957), in which a phenotype change by an environmental
change is later “assimilated” into a genetic change. Indeed, such assimilation
is possible under the standard Darwinian framework satisfying postulates (i)–
(v) in Sect. 10.1. Here we should note that the degree of such a phenotype
change is also correlated with the fluctuations of the phenotype according
to the fluctuation–response relationship described in this chapter. Then, by
also noting the linear relationship between evolution speed and phenotypic
fluctuations, it is expected that the evolution speed is correlated with the
response rate of the phenotype against environmental change. This is often
called phenotypic plasticity (Callahan et al., 1997; West-Eberhard, 2003). The
relationship between the phenotype change due to environmental factors and
evolution will be established through phenotypic fluctuations. Hence, on the
basis of our present study, it will be possible to reformulate Waddington’s no-
tion of genetic assimilation or the Baldwin effect (see next chapter) (Baldwin,
1896; Bonner, 1980; Ancel & Fontana, 2002) quantitatively, and study the
evolutionary process in terms of the plasticity measured through phenotypic
fluctuations (de Visser et al., 2003).

Evolution Speed

According to our theory, evolution speed is highly correlated with phenotypic
fluctuations that depend on intracellular reaction processes, developmental
processes, and so forth. Even for identical mutation rates, the evolution speed
can differ depending on phenotypic fluctuations. This viewpoint will be im-
portant for understanding the tempo of evolution, for example, why in some
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organisms called living fossils the phenotype has changed only little over many
generations.

Furthermore, by considering that the phenotype fluctuations can also de-
pend on environmental conditions, it is expected that the evolution speed can
be enhanced under some environmental conditions that amplify the pheno-
typic fluctuations. Such a dependence of the evolution speed on the environ-
ment was also discussed in the context of the concept of adaptive mutation,
and controversy has continued for over a decade about its interpretation and
biological relevance (Cairns et al., 1988; Shapiro, 1995). The present study on
evolution speed may shed a new light on this controversy.

Heritability

The inequality Vip > Vg concerns phenotypic variances due to genetic and
nongenetic origins. If these variances are independent and added naively, the
total phenotypic variance we observe from the wild-type population could be
represented as Vtot = Vip + Vg (or Vip + Vg + Ve, when the phenotypic vari-
ance due to environmental fluctuation Ve is also added independently). In
this simple representation, the inequality we propose implies that phenotypic
fluctuations by genetic variations are smaller than those of nongenetic origin,
that is, Vg/Vtot is less than half. Indeed this quantity Vg/Vtot is called her-
itability h2 (Futuyma, 1986; Maynard-Smith, 1989). In standard population
genetics, Vtot − Vg is attributed to the phenotypic variance Ve of nongenetic
origin, while it is not clear how much of it is attributed to Vip or Ve. Indeed
“intrinsic” phenotypic fluctuations through “developmental noise” (Spudich
& Koshland, 1976; West-Eberhard, 2003; de Visser et al., 2003), as discussed
here, contribute to the total phenotypic fluctuation as well. Although one
needs to be careful when considering the correlations among the variances
and the quantitative estimate of Vg, it is interesting to note that this heri-
tability h2 often takes a value around 1/3 (Maynard-Smith, 1989), and less
than half for most cases. It will be important to discuss the heritability in the
light of our inequality with regards to intrinsic phenotype fluctuations.

Decrease in Phenotypic Fluctuation Through Evolution

In both the model and the experiment, the phenotypic fluctuations decrease
while the evolutionary process progresses. This suggests the empirical rule
that the more optimized a certain gene is, the less likely is the appearance
of mutants with higher fitness. This rule is also confirmed by many evolu-
tion experiments. In the evolution experiment of Sect. 10.4, the change in the
fluorescence intensity at each generation decreases, while the fluorescence in-
tensity becomes larger as the optimization process progresses. This decrease in
phenotypic fluctuations is consistent with the increase in robustness through
evolution as often suggested (West-Eberhard, 2003; de Visser et al., 2003),
and is also consistent with the decline in phenotypic fluctuations in “closed
systems,” as proposed in Chap. 3.
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Relevance of the Phenotypic Fluctuations to Evolution Revisited

Although we have succeeded in demonstrating the relevance of phenotypic
fluctuations, the results of our model and experiment suggest that the fluctu-
ations decrease during the course of the evolution. Hence the evolution speed
will decline accordingly, and one might wonder whether evolution may finally
come to a halt.

Here we have to be cautious in applying the above arguments to evolution
in nature. First, for both the experiment and the model, we have assumed a
fixed fitness criterium for selecting a surviving phenotype. In nature where or-
ganisms interact with many other organisms, such fixed fitness criteria cannot
generally be defined. Fitness can change over time, depending on environmen-
tal fluctuations and populations of surrounding organisms. In such cases, if
the phenotypic fluctuations have declined, the organisms lose the ability to
adapt to environmental change. Hence only those that maintain sufficiently
large fluctuations will survive.

Another topic associated with phenotypic fluctuations is the error catastro-
phe that occurs for Vg ≈ Vip. Results of our model in Sect. 10.3 show a decrease
in Vip while evolution progresses. Then when Vip is small, an error catastrophe
occurs around Vg ∼ Vip if the mutation rate is increased a little bit. When
this catastrophe occurs, the phenotype distribution is flattened as shown in
Fig. 10.10, and the fluctuations are suddenly enhanced. In other words, the
plasticity in the phenotype is regained. Indeed, we have studied several other
models, and found that such a sudden increase in phenotype fluctuations al-
ways follows an error catastrophe, reached through evolution. Hence recoveries
of phenotypic fluctuations (plasticity) can occur, leading to the regaining of
evolvability.

Note that although we have chosen a one-dimensional parameter a in our
theory (say, as a Hamming distance from the fittest DNA sequence), evolution
in nature occurs in a high-dimensional space, represented by a set of symbol
sequences. Up to some stage of artificial selection in a given direction, the one-
dimensional representation may be valid, but as the phenotypic fluctuations
decrease, the residual directions in the gene cannot be negligible, and the
instability along that direction has to be taken into account.

Indeed, such an increase in the instability through evolution is also dis-
cussed by several biologists (Visser et al., 2003) as due to the influence of
“hidden genes,” together with the increase in robustness (i.e., the decrease in
fluctuations) mentioned above. We will come back to this problem in Chap. 12.
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Speciation as a Fixation
of Phenotypic Differentiation

11.1 Question to Be Addressed

Question: Characteristics of biological species are not distributed
continuously, but are separated into discrete types, that form
species. Indeed, Darwin asked why organisms are separated into dis-
tinct groups, rather than their character being continuously distrib-
uted (Darwin, 1859). Consider the problem of “origin of species,”
that is, how two (or more) species are formed from single identical
species. In the beginning of this speciation process, all individuals
have similar genes. If two organisms with minor genetic change only
slightly differ in phenotype, then they share the common niche and
compete for survival. Then it is hard that two groups with only
slight genetic difference coexist. Only individuals having phenotype
that are fitted better at the environment should survive. Then, how
can the speciation occur when organisms live in the same space in-
teracting each other?

On the earth, there are a huge variety of species. To consider the origin
of such diversity, it is crucial to understand the process how a single species
differentiates into two or more. This is the problem of speciation.

Of course there has been debates on the speciation over a century. Still,
as will be discussed now, one could say that in spite of progress in the under-
standing of evolution ever since Darwin (1859), the speciation is not yet fully
understood. In the recent book, Maynard-Smith and Szathmary (1995) wrote
that we are not aware of any explicit model demonstrating the instability of
a sexual continuum.

Let us first recall the discussion in Chap. 10. As stated therein, the basic
standpoints in evolution theory are as follows:

(i) Existence of genotype and phenotype.
(ii) Fitness is given as a function of the phenotype and the environment.
(iii) Only the gene is transferred to the next generation.
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(iv) The mutation of genes occur randomly without any specific direction.
(v) There is flow only from gene to phenotype. The process is summarized

as Gene → Development → Phenotype.

Here again, we adopt these standard assumptions, for the discussion on spe-
ciation. Still as in Chap. 10, we do not take the assumption (v′) “phenotype
is uniquley determined from gene”. In other words, phenotype is not neces-
sarily uniquley determined from gene, i.e., it is not a single valued function
of genotype, in contrast to the often-adopted assumption in the theory of
evolutionary genetics.

Indeed, explanation of the speciation under the assumption of (v′) is not so
easy. The reason is as follows: If slight genetic change leads to slight phenotype
change, then individuals arising from mutation from the same genetic group
differ only slightly according to this picture. Then, these individuals compete
each other for the same niche. Unless the phenotype in concern is neutral, it
is generally difficult that two (or more) groups coexist. Those with a higher
fitness would survive.

One possible way to get out of this difficulty is to assume that two groups
are “effectively” isolated, so that they do not compete. Some candidates for
such isolation have been searched for, where the most well-known example
is spatial segregation. This is the mechanism, so-called allopatric speciation,
which we briefly discuss now.

In the speciation, there are two classes, roughly speaking; that is, sym-
patric speciation and allopatric speciation. The former is the speciation shar-
ing the same space, that is, the former individuals live in the same space,
interact, and mate each other during the course of speciation. The latter is
the speciation when individuals are separated in space so that they neither
interact nor mate during the speciation. Indeed, often two species that are
derived from a single species live separately in space. It sounds also natural
to assume that the organisms that live in different environmental conditions
tend to evolve different characteristics. Accordingly, allopatric speciation is
often believed to be the basic and most frequent mechanism.

Still, is it obvious that speciation progresses when individuals live distant
in space? For example, even if individuals live either at the top or foot of
the mountain, it does not necessarily mean that they will be different species.
Characteristics of individuals may change continuously according to their lo-
cation, but they do not necessarily differentiate into distinct groups. Two or-
ganisms from distinct space, isolated from each other, cannot mate, but when
these two are put at the same place, they may mate to produce offspring which
again reproduce. Furthermore, the fact that different species live in distinct
space at present does not necessarily mean that the spatial isolation is the
“cause” of speciation. It may be a result of speciation, instead. Indeed, we
will show such example later.

On the other hand, sympatric speciation, if a general theory for it is es-
tablished, can be more fundamental, since it does not require spatial segrega-
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tion in the beginning. As will also be discussed, once sympatric speciation is
established, then, later spatial segregation can evolve naturally. Furthermore,
there are several examples that suggest sympatric speciation. In some lakes
or in isolated islands, speciation is observed. For example, in Lake Victoria,
which is known to have dried out about 12 thousands years ago, about few
hundred species of specific fish, Cichlid, coexist. Similar examples are known
for Tanganica or Malawi lakes. Since there are no spatially separated regions
in the lakes so that fish can go everywhere in the lake, the diversification into
many species is considered to be progressed sympatrically. The diversification
to a great many species in tropical rain forest is also suggested to be due to
sympatric speciation.

Hence mechanisms for sympatric speciation have been sought for over
decades. However, sympatric speciation is often regarded to be rather dif-
ficult theoretically, since it confronts with the question already raised. If the
organisms with only slight difference have similar phenotype, they compete
each other for the same niche at the same space. Then genes with better phe-
notypes are selected, and coexistence of two separated groups sound difficult.

Again, one possible way to resolve the question is that the two groups are
“effectively” isolated even though they live in the same space. Accordingly,
people searched for some mechanisms how two groups do not mix and survive
independently. The most well known and thoroughly studied mechanism is
the sexual isolation by mating preference.

For such study, one assumes two groups that are almost identical with
regards to the survivability, and then search for a mechanism that these
two groups do not mutually interact with regards to (sexual) reproduction
(Maynard-Smith, 1966; Felsenstein, 1981; Lande, 1981; Doebeli, 1996; Coyne
& Orr, 1998; Howard & Berlocher, 1998). As a simplified illustration, consider
that individuals have color from blue to red, and bluish individuals prefer to
mating bluish, and reddish prefer to mate reddish ones. Then, even if these in-
dividuals live in the same space, they somehow separate in the “color” space.
In this way, the interactions are eliminated even if they live in the same space.
In general, if one considers a mechanism of mating preference with regards to
some character, and assumes that there is a tendency that each does not mate
with those with different characters, then the separation would be possible.
In the above example of color, the red and blue groups will be separated from
each other, to form blue and red species. Of course, this description on the
speciation by mating preference is too simplified, and one needs theoretical
elaboration to give a condition for speciation, but in the mainstream theory of
sympatric speciation there underlies this type of argument. In fact, there have
recently appeared some models showing the instability of sexual continuum,
without assuming the existence of discrete groups in the beginning. (Probably,
the argument based on the runaway is most persuasive [Lande, 1981; Turner
& Burrows, 1995; Howard & Barlocher, 1998].)

Even though two groups coexist at the same spatial location, they can be
genetically separated if two groups do not mate each other. Hence, the mating
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preference is now established as a mechanism for sympatric speciation. Indeed,
often, between two close species, the individuals from different species avoid
mating. However, here again, we cannot conclude that the mating preference
that exists at present is the “cause” of speciation. Such mating preference
could be a “result” of speciation. Furthermore, in this theory, why there is
such mating preference itself is not answered. In this sense, as a theory it is
not completely self-contained.

In addition, what one can show in the mating preference theory is only
that the two groups may exist, but not that two groups should exist, because
the blue group can exist by itself and the red by itself. Hence, if during the
course of speciation one group is extinct by fluctuations, there is no reason
that the lost group is recovered. In this sense one cannot answer the “necessity
of speciation” in the theory.1

Then if one does not assume some kind of mating preference in advance,
isn’t it too possible to consider any plausible, general mechanism for sympatric
speciation? Recall that in most studies of speciation, the interaction between
individuals leads to competition for their survival. Difficulty in stable sym-
patric speciation without mating preference lies in the lack of a known clear
mechanism how two groups, which have just started to be separated, coexist
in the presence of mutual interaction. Of course, if the two groups were in
a symbiotic state, the coexistence could help the survival of each. Then the
coexistence of two groups would be possible. However, the two groups have
little difference in genotype in the beginning of speciation process, according
to the assumption (v)’. Then, it would be quite difficult to imagine such a
“symbiotic” mechanism.

Note that the above difficulty comes from the assumption that the phe-
notype is a single-valued function of genotype (v)’, a stronger version of (v).
Is this single-valued-ness always true? To address this question, we reconsider
the genotype–phenotype relationship. Indeed, there are three reasons that we
doubt this single-valued-ness.
1 Another recent proposal is the introduction of (almost) neutral fitness landscape

and exclusion of individuals with similar phenotypes, as was discussed as evolu-
tionary branching in adaptive dynamics (Geritz et al., 1998). If the phenotype
is almost neutral, then similar phenotypes coexist at a rather broad range. On
the other hand, if there is exclusion for similar phenotypes, it is natural that the
phenotypes split into discrete bands separated with some distance. For exam-
ple, Dieckmann and Doebeli (1999) have succeeded in showing that two groups
are formed and coexist, to avoid the competition among organisms with similar
phenotypes, assuming a rather flat fitness-landscape. A similar idea has been ex-
tended to several models recently (Dieckmann & Doebeli, 1999; Kondrashov &
Kondrashov, 1999; Kawata & Yoshimura, 2001). This provides one explanation
and can be relevant to some sympatric speciation. However, it is not so clear
how the phenotype that is not so important as a fitness works strongly as a fac-
tor for exclusion for a closer value. Furthermore, we are more interested in the
differentiation of phenotypes that are functionally different and not neutral.
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First, as discussed in Chap. 7, Yomo and his colleagues have reported that
specific mutants of E. coli show (at least) two distinct types of enzyme activity,
although they have identical genes (Ko et al., 1994). These different types
coexist in an unstructured environment of a chemostat, and this coexistence
is not due to spatial localization. Coexistence of each type is supported by each
other. Indeed, when one type of E. coli is removed externally, the remained
type starts differentiation again to recover the coexistence of the two types.
The experiment demonstrates that the enzyme activity of these E. coli are
differentiated into two (or more) groups, because of the interaction with each
other, even though they have identical genes.

Second, some organisms are known to show various phenotype from a
single genotype. This phenomenon is often related to malfunctions of a mutant
(Holmes, 1979), and is called as low or incomplete penetrance (Opitz, 1981).

Third, we have explained a theoretical mechanism of phenotypic diversifi-
cation in Chaps. 7 and 8, as the isologous diversification for cell differentiation
(Kaneko & Yomo, 1994, 1997, 1999; Furusawa & Kaneko, 1998). As already
stated, phenotypic diversity will arise from a single genotype and develop dy-
namically through intracellular complexity and intercellular connection. Al-
though we have explained the theory for the behavior of each cell, the theory
itself is applied to any unit with replication. Then, when organisms with plas-
tic developmental dynamics interact with each other, the dynamics of each
unit can be stabilized by forming distinct groups with differentiated states in
the pheno-space. Here the two differentiated groups are necessary to stabilize
the states of each other. Otherwise, the developmental process is unstable,
and because of the interaction the two types will be formed again (provided
there is a sufficient number of individuals). In this sense the two groups are
in a “symbiotic” state, as requested. This theoretical mechanism is demon-
strated by several models and shown to be a general consequence of coupled
dynamical systems.

Now, the problem we address here is as follows: If we do not assume (v)’
(but by assuming (i)–(v)), is there any mechanism that two groups mutually
require each other for the survival in the beginning of the separation of the
two groups. Here, we seriously take this problem of this interaction-induced
phenotypic differentiation from the same genotype, and discuss its relevance
to evolution. We will show that this phenotypic differentiation is later fixed
to genotypes through mutation to genes and gives a general mechanism for
the sympatric speciation, in spite of the fact that we have assumed only the
flow from gene to phenotype.

From a different point of view, we will study a possible relationship be-
tween plasticity in phenotype introduced by interaction and evolution, as
also studied in Chap. 10. In contrast to the phenotypic fluctuation discussed
there, we are interested in differentiation of phenotype through developmental
process. The isologous diversification theory shows that there can be devel-
opmental “flexibility,” in which different phenotypes arise from identical gene
sets, as in the incomplete penetrance aforementioned. Here we study how
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this theory is relevant to evolution. Indeed, the question how developmental
process and evolution are related has been addressed over decades (Maynard-
Smith et al., 1985). The so-called Evo-Devo study has attracted much atten-
tion these days following the accumulation of genome information including
discover of homeobox (Gehring, 1998) and progresses in developmental biol-
ogy. So far, most of the study remains at the re-consideration of accumulated
data, but theoretical study to relate with developmental plasticity and evolv-
ability is strongly requested.

We consider correspondence between genotype and phenotype seriously,
by introducing a developmental process with which a given initial condition
is led to some phenotype according to a given genotype. “Development” here
means a dynamic process from an initial state to a matured state through rules
associated with genes. (In this sense, it is not necessarily restricted to multi-
cellular organisms.) With this study, we hope to establish a novel viewpoint
for the EvoDevo study.

11.2 Logic: Interaction-Based Speciation

Consider an organism with internal phenotype states that reproduce. As the
number of such organisms is increased, they start to interact strongly. Here fol-
lowing the isologous diversification theory in Chaps. 7–9, we assume that phe-
notypes of individuals with identical genotypes differentiate into two groups.
This can occur through developmental dynamics associated with the inter-
action among individuals. At this moment, the two groups have identical
(or almost identical) genes, but they take a different phenotype. Of course,
such differentiation does not always occur, but as long as the homogeneous
phenotype state over individuals is destabilized through the interaction, such
differentiation is possible as shown in Chaps. 7 and 8. Now we consider how
this differentiation introduces differentiation also in gene over a long-term
span through mutation of genes and selection process, assuming the standard
evolution theory (i)–(v).

Following the above setup, there are two groups with distinct phenotypes,
which we call “upper” and “lower” groups as in Fig. 11.1. For example, these
two groups have different chemicals and different way in the use of resources.
Here the existence of two groups is mutually necessary. At this moment, they
have same genotypes, while the offspring of each group can either take the
same phenotype with its mother or take the other phenotype, since the two
have the same genes. The phenotype differentiation is not fixed.

In reproduction, there occurs some mutational change to genes randomly.
Of course, this mutational change occurs in the same way for the upper and
lower groups. However, the selection can work in a different way. For example,
consider that the upper group uses a (metabolic) reaction path A for growth,
and the lower group uses a different path B. Then if the genetic change to
enhance the enzyme activity for the reaction A occurs for the upper group,
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Fig. 11.1. Schematic representation of the speciation scenario obtained from our
simulation and theory. A pair (phenotype, genotype) is plotted successively with
time: (a) the stage of interaction-induced phenotypic separation, (b) the stage of
genotype–phenotype feedback amplification, (c) the stage of genetic fixation, and
(d) speciation completed. Reproduced from Kaneko and Yomo (2002b)

the organism can grow faster, and has a higher fitness. On the other hand,
for the lower group the change to suppress the reaction A and enhance the
reaction B will be favored. Hence the opposite direction in the genetic change
between the upper and lower groups are favored for the reproduction. Now the
opposite change for some gene is selected (see Fig. 11.1c). This change in gene
will enhance the difference in phenotypes between the two groups, that is, the
upper group becomes shows a further “upper” phenotype and vice versa.

After this process the two groups start to have a different genotypes also.
When the difference in genes is so large that each group can take only a sin-
gle phenotype. For example, if the enzymatic reaction for A is enhanced and
that for B is highly suppressed, then the organism can take only the pheno-
type with higher A and lower B, but not that with lower A and higher B.
At this stage, each group recovers a one-to-one correspondence between the
phenotype and the genotype, and the two have different phenotypes and geno-
types. Through competition for reproduction and mutational change of genes,
the phenotypic differences are fixed to genes, until the groups (“species”) are
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completely separated in genes as well as in phenotypes. Now the speciation
process is completed.

When we view only the starting stage (i) and the final stage (iv), it looks
like nothing but the speciation by genetic change. However, if we view whole
the process (i)–(iii), it is hard to conclude that the speciation is caused by
genetic change. Rather, the phenotypic change exists first, and later it is
consolidated to gene.

Note this process is rather stable against external and internal distur-
bances. Indeed, it will also be demonstrated that the proposed theory for spe-
ciation works also under sexual recombination. Indeed, the hybrid offspring of
the two groups becomes sterile, and also provides a basis for mating prefer-
ence, a major mechanism in sympatric speciation. The hybrid offspring of the
two groups becomes streile, which also provides a basis for mating preference,
a major mechanism in sympatric speciation.

Here we again recall that the two groups are “symbiotic” at the stage (i).
As already seen in Chaps. 7 and 8, each of the two groups reproduces under the
existence of the other. Hence the interaction is essential to the differentiation.
In our theory, interaction is not an obstacle to speciation but promotes it.
Thus the “sympatric” speciation is favored rather than “allopatric.” Also, the
speciation process is robust with respect to fluctuations, because if one group
disappears by fluctuations, it is recovered at the stage (i), as discussed in
Chaps. 7 and 8.

11.3 Model

11.3.1 Basic Strategy

Since we have to study the correspondence between genotype and phenotype,
we need to introduce a developmental process that leads a given initial condi-
tion to some phenotype according to a given genotype. “Development” here
means a dynamic process from an initial state to a matured state through
rules associated with genes, in its general sense. (In this definition, it is not
necessarily restricted to multicellular organisms.) To consider this process, we
assume that the state of each individual organism is characterized by a set
of variables and parameters that govern the dynamics of the variables. As in
Chap. 10, it is appropriate to represent phenotype by a set of state variables.
For example, each individual i has variables (X1

t (i),X2
t (i), . . . , Xk

t (i)), which
defines the phenotype. This set of variables can be regarded as concentrations
of chemicals, rates of metabolic processes, or some quantity corresponding to
a higher function characterizing the behavior of the organism. The state is
not fixed in time, but develops from the initial state at birth to a matured
state when the organism is ready to produce its offspring. The dynamics of
the state variables (X1

t (i),X2
t (i), . . . , Xk

t (i)) is given by a set of equations with
some parameters.
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Genes, since they are nothing but information expressed on DNA, could
in principle be included in the set of variables. However, following the argu-
ment in Chap. 10 it is reasonable to represent it by a set of parameters in the
dynamics governing the phenotype. In terms of dynamical systems, the set cor-
responding to genes can be represented by parameters {g1(i), g2(i), . . . gm(i)}
that govern the dynamics of phenotypes, since the parameters in an equation
are not changed through the developmental process, while the parameters
control the dynamics of phenotypic variables. Only when an individual organ-
ism is reproduced, this set of parameters changes slightly by mutation. For
example, when {X�

t (j)} represents the concentrations of metabolic chemicals,
{g1(i), g2(i), . . . gm(i)} is the catalytic activity of enzymes that controls the
corresponding chemical reaction.

Now, our model is set up as follows:

(1) Dynamical change of states giving a phenotype: The temporal evolution
of the state variables (X1

t (i),X2
t (i), . . . , Xk

t (i)) is given by a set of de-
terministic equations, which are described by the state of the individual,
and parameters {g1(i), g2(i), . . . gm(i)} (gene), and the interaction with
other individuals. This temporal evolution of the state consists of internal
dynamics and interaction.
(1-i) The internal dynamics (say metabolic process in an organism)

are represented by the equation governed only of (X1
t (i),X2

t (i),
. . . , Xk

t (i)) (without dependence on {(X�
t (j)} (j �= i)), and are con-

trolled by the parameter sets {g1(i), g2(i), . . . gm(i)}.
(1-ii) Interaction between the individuals: The interaction is given through

the set of variables (X1
t (i), X2

t (i), . . . , Xk
t (i)). For example, we con-

sider such interaction form that the individuals interact with all
others through competition for some “resources.” The resources are
taken by all the individuals, giving competition among all the in-
dividuals. Since we are interested in sympatric speciation, we take
this extreme all-to-all interaction, by taking a well-stirred soup of
resources, without including any spatially localized interaction.

(2) Reproduction and death: Each individual gives offspring (or splits into
two) when a given “maturity condition” for growth is satisfied. This con-
dition is given by a set of variables (X1

t (i), X2
t (i), . . . , Xk

t (i)). For example,
if (X1

t (i), X2
t (i), . . . , Xk

t (i)) represents cyclic process corresponding to a
metabolic, genetic, or other process that is required for reproduction, we
assume that the unit replicates when the accumulated number of cyclic
processes goes beyond some threshold, or one can use a cell division condi-
tion adopted through Chaps. 4–9 where the variables {Xi

k(t)} are chemical
concentrations.

(3) Mutation: When each organism reproduces, the set of parameters {gj(i)}
changes slightly by mutation, by adding a random number with a small
amplitude δ, corresponding to the mutation rate. The values of vari-
ables (X1

t (i), X2
t (i), . . . , Xk

t (i)) are not transferred but are reset to initial
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conditions. If one wants to include some factor of epigenetic inheritance,
one could assume that some of the values of state variables are trans-
ferred. Indeed we have carried out this simulation also, but the results to
be discussed are not altered (or confirmed more strongly).

(4) Competition: To introduce competition for survival, death is included both
by random removal of organisms at some rate and by a given death con-
dition based on their state.

We have carried out numerical experiments of several models with the
above conditions (1)–(5). For example, we have chosen a model with reaction
dynamics, where the phenotypic variables are chemical concentrations and
genetic parameters are reaction coefficients showing the catalytic activities of
enzymes. We have also chosen coupled dynamical systems with dynamic vari-
ables for phenotypes and genetic parameters giving the equation of motion.
The results to be discussed are commonly observed, as long as the variables
show differentiation with the interplay between internal dynamics and inter-
action.

11.4 Result

11.4.1 Process for Genetic Diversification

From several simulations satisfying the condition of the model in Sect. 11.3, we
have obtained a scenario for a sympatric speciation process. We have studied
several models (Kaneko & Yomo, 2000, 2002b), including that with a catalytic
reaction network (Takagi et al., 2000), and same scenario is confirmed, with
the speciation process we observed. This is schematically shown in Fig. 11.1,
where the change of the correspondence between a phenotypic variable (“P”)
and a genetic parameter (“G”) is plotted at every reproduction event.

First, we sketch our interaction-induced process of genetic diversification
triggered by isologous diversification, obtained from simulations of several
models. This scenario is summarized as follows.

In the beginning, there is a single species, with one-to-one correspondence
between phenotype and genotype. Here, there are little genetic and pheno-
typic diversity that are continuously distributed (see Fig. 11.1a). We assume
that the isologous diversification starts because of developmental plasticity
with interaction, when the number of these organisms increase. Indeed, the
existence of such phenotypic differentiation is described by isologous diver-
sification as is supported by several numerical experiments. This gives the
following stage I.

Stage I: Interaction-Induced Phenotypic Differentiation

When there are many individuals interacting for finite resources, their phe-
notypes start to differentiate even though the genotypes are identical or
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differ only slightly. Phenotypic variables split into two (or more) types (see
Fig. 11.2). This interaction-induced differentiation is an outcome of the mech-
anism aforementioned. Slight phenotypic difference between individuals is am-
plified by the internal dynamics, while the phenotypes tend to be clustered
into two (or more) types, through the interaction between organisms. The two
distinct phenotype groups (brought about by interaction) are called “upper”
and “lower” groups, tentatively.

This differentiation is brought about, since the population consisting of
individuals taking identical phenotypes is destabilized by the interaction. Such
instability is, for example, caused by the increase of population or decrease
of resources, leading to strong competition. Of course, if the phenotype Xj

t (i)
at a matured state is rigidly determined by developmental dynamics, such
differentiation does not occur. It is the assumption we make in the present
theory that permits this – that there exists such developmental plasticity in
the internal dynamics, when the interaction is strong. Recall again that this
assumption is theoretically supported.

Note that the difference is fixed at this stage at neither the genetic nor
phenotypic level. After reproduction, an individual’s phenotype can switch to
another type.

Stage II: Amplification of the Difference Through
Genotype–Phenotype Relationship

At the second stage the difference between the two groups is amplified at both
the genetic and the phenotypic levels. This is realized by a positive feedback
process between the change of geno- and phenotypes.

First the genetic parameter(s) separate as a result of the phenotypic
change. This occurs if the parameter dependence of the growth rate is dif-
ferent between the two phenotypes. Generally, there are one or several para-
meter(s) g�, such that the growth rate increases with g� for the upper group
and decreases for the lower group (or the other way round) (see Figs. 11.2 and
11.3).

Certainly, such a parameter dependence is not exceptional. As a simple
illustration, assume that the use of metabolic processes is different between
the two phenotypic groups. If the upper group uses one metabolic cycle more,
then the mutational change of the parameter g� to enhance the cycle is in
favor for the upper group, while the change to reduce it may be in favor
for the lower group. Indeed all numerical results support the existence of
such parameter(s). This dependence of growth rate on the genotypes leads to
the genetic separation of the two groups, as long as there is competition for
survival, to keep the population numbers limited. Hence, this second stage is
always observed in our model simulation when the phenotypic differentiation
at the first stage occurred.
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Fig. 11.2. Evolution of genotype–phenotype relationship. In the model adopted
here, there are several cyclic processes, and when the sum of the times of each
cyclic process R�(i) completed is larger than some threshold, the element divides.
Here phenotype is represented by R1, R2, . . . Rk (we take K = 3). These cyclic
processes mutually interact through some dynamical processes controlled by pa-
rameters a�j . Here (R1, a12) is plotted for every division of individuals. Different
division steps (first 2500, 2501–5000,. . . , 66,000–71,000) are plotted with different
symbols as shown. Initially, phenotypes are separated, even though the genotypes
are identical (or only slightly differ), as shown in light blue. Later, the genotypes
are also separated, according to the difference in phenotypes. In the simulation, the
population size fluctuates around 300, after an initial transient. (Hence the genera-
tion number is given roughly by dividing this division number by 300.) Reproduced
from Kaneko and Yomo (2000), with permission

The genetic separation is often accompanied by a second process, the
amplification of the phenotypic difference by the genetic difference. In the
situation of Fig. 11.1c, as a parameter G increases, a phenotype P (i.e., a
characteristic quantity for the phenotype) increases for the upper group, and
decreases (or remains the same) for the lower group.

Stage III: Genetic Fixation

After the separation of two groups has progressed, each phenotype (and geno-
type) starts to be preserved by the offspring, in contrast to the situation at
the first stage. However, up to the second stage, the two groups with different
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Fig. 11.3. The evolution of the genetic parameter. The parameter g = a12(i) is plot-
ted as a dot at every division (reproduction) event, with the abscissa as the division
number. The average time necessary for division (reproduction) is plotted for the
upper and lower groups, where the average is taken over 2,000 division events (6th–
8th generation). As the two groups are formed around the 2,000th division event,
the population size becomes twice the initial, and each division time is also approxi-
mately doubled. Note that the two average division speeds of the two groups remain
of the same order, even when the genetic parameter evolves in time. Reproduced
from Kaneko & Yomo (2000)

phenotypes cannot exist in isolation by itself. When isolated, offspring with
the phenotype of the other group starts to appear. The two groups coexist
depending on each other (see Fig. 11.1d).

Only at this third stage, each group starts to exist by its own. Even if one
group of units is isolated, no offspring with the phenotype of the other group
appears. Now the two groups exist on their own. Such a fixation of phenotypes
is possible through the evolution of genes (parameters). In other words, the
differentiation is fixed into the genes (parameters). Now each group exists as
an independent “species,” separated both genetically and phenotypically. The
initial phenotypic change introduced by interaction is fixed to genes, and the
“speciation process” is completed.

To check the third stage of our scenario, it is straightforward to study
the further evolutionary process if only one isolated group exists. To do this,
we pick out some population of units only of one type after the genetic fix-
ation is completed and both the geno- and phenotypes are separated into
two groups. Then we start the simulation again. When the groups are picked
from later generations after the genetic fixation process, the offspring keep the
same phenotype and genotype. Now, only one of the two groups can exist in
isolation. Here, the other group is no longer necessary to maintain stability.
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This recursive production by each group characterizes the third stage of our
scenario.

In contrast, at the second stage, the separation is not fixed rigidly. Units
selected from one group at this earlier stage again start to show phenotypic
differentiation, followed by genetic separation, as demonstrated by several
simulations. After some generations, one of the differentiated groups recovers
the geno- and phenotype that had existed before the transplant experiment.
This means that there remains some plasticity at this stage, which is in a
sharp contrast with the third stage.

At the third stage, two groups with distinct genotypes and phenotypes are
formed, each of which has one-to-one mapping from genotype to phenotype.
This stage now is regarded as speciation. (In the next section we will show
that this separation satisfies hybrid sterility in sexual reproduction and is
appropriate to be called speciation.) Summarizing the stages I-III, phenotrype
differentiation drives the genetic separation, in spite of the flow only from gene
to phenotype. Phenotype differentiation is consolidated to genotype, and then
the offspring take the same phenotype as their ancestor.

11.5 Further Remarks on the Differentiation Scenario

11.5.1 Condition for Genetic Diversification

Now, we show in our model that interaction-induced phenotypic differentiation
is a necessary (and sufficient) condition for the formation of genetically distinct
groups.

Phenotype differentiation is necessary and sufficient for the sym-
patric speciation in our theory.

Sufficient

If phenotypic differentiation at stage I occurs in our model, then the genetic
differentiation of the later stages always follows, in spite of the random muta-
tion process included. How long it takes to reach the third stage can depend
on the mutation rate, but the speciation process itself does not depend on
the mutation rate. However small the mutation rate may be, the speciation
(genetic fixation) always occurs.

Once the initial parameters of the model are chosen, it is already deter-
mined whether the interaction-induced phenotype differentiation will occur or
not. If it occurs, then always the genetic differentiation follows.

Necessary

On the other hand, in our setting, if the interaction-induced differentiation
does not exist initially, there is no later genetic diversification process. If the
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Fig. 11.4. Schematic representation of the evolution starting from large genetic
variance. (a) Initial genetic and phenotypic distribution, (b) without the phenotypic
differentiation, no speciation follows, and (c) if phenotypic differentiation occurs,
then the speciation follows later (d)

initial parameters characterizing nonlinear internal dynamics or the coupling
parameters characterizing interaction are small, no phenotypic differentiation
occurs. Also, the larger the resource per individual is, the smaller the effective
interaction is. Then, phenotypic differentiation does not occur. In these cases,
even if we take a large mutation rate, there does not appear differentiation
into distinct genetic groups, although the distribution of genes (parameters)
is broader. We have also made several simulations starting from a population
of units with widely distributed parameters (i.e., genotypes). However, unless
the phenotypic separation into distinct groups is formed, the genetic differen-
tiation does not follow (Fig. 11.4a, b). The genetic diversification process is
not driven by imposing distributed genotypes initially. Only if the phenotype
differentiation occurs, the genetic differentiation follows (Fig.11.4c, d).

It is also important to note that the separation into discrete phenotypic
groups is necessary to have differentiation into discrete genetic groups. Indeed
when the phenotype is broadly distributed without forming discrete groups,
the evolution does not lead to form discrete groups in genotype and phenotype,
even though the phenotype variation is large. For some other models with
many variables and parameters, the phenotypes are often distributed broadly,
but continuously without making distinct groups. In this case, distinct genetic
groups do not appear through the mutations, although the genotypes are
broadly distributed (see Fig. 11.5).
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Fig. 11.5. Schematic representation of the evolution when phenotype is distributed
without clear differentiation to discrete states. (a) Initial distribution of phenotypes
and genotypes. (b) After the evolution, genes are also distributed broadly, but no
speciation follows

11.5.2 Coevolution of Differentiated Groups

Note that each of the two groups forms a niche for the other group’s survival
mutually, and each of the groups is specialized in this created niche. For
example, some chemicals secreted out by one group are used as resources for
the other, and vice versa.

Hence the evolution of two groups is mutually related. At the first and
second stages of the evolution, the speed for reproduction is not so much
different between the two groups. Indeed, at these stages, the reproduction
of each group is strongly dependent on the other group, and the “fitness”
as a reproduction speed of each group by itself alone cannot be defined. At
stage II, the reproduction of each group is balanced through the interaction
so that one group cannot dominate in the population. This is why the growth
speeds of the two groups are almost same, as shown in Fig. 11.2.

Later at the third stage, the division speeds start to be different. Here,
the degree of the interaction term between the two groups gets weaker than
that of the internal dynamics term. Now the fitness as a reproduction speed
can be defined, and a group with a higher reproduction rate surpasses in the
population.

11.5.3 Robust Speciation

Note that the speciation process of ours occurs under strong interaction. At
the second stage, these two groups form symbiotic relationship. As a result,
the speciation is robust in the following sense. If one group is eliminated exter-
nally, or extinct accidentally at the first or second stage, the remaining group
forms the other phenotype group again, and then the genetic differentiation
is started again. The speciation process here is robust against perturbations.
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11.5.4 Deterministic Nature of Evolutionary Process

As mentioned, if phenotypic differentiation (stage I) occurs in our model, then
the genetic differentiation of the second stage always follows, in spite of the
random mutation process included. Once the initial parameters of the model
are chosen, it is already determined whether such differentiation will occur
or not. Indeed, we have numerically studied the differentiation and evolution
process of the two groups by taking different random number sequence for
mutation. As far as we checked more than a dozen runs, the differentiation
and evolution of the two groups always occur. The phenotypes and genotypes
of each of the two groups are almost identical for each run. Of course, the
existence of mutation is required, but the genetic separation is not mutation
driven. The evolution to distinct genetic groups is rather deterministic in
nature, in this sense.

Note also that the evolution process is rather fast. In the simulations, the
phenotypic separation is completed around 50 generations after it is started.
The speed of the change of the parameters (genes), of course, depends on the
mutation rate. The velocity of the parameter change per generation is found to
be proportional to the mutation rate. Although this velocity goes smaller with
the mutation rate, the time required for the split of the two groups, indeed,
does not increase so much: If the mutation rate is smaller, the difference in
the parameter values (for gene) between the two groups is smaller, but the
phenotype is separated. Also the genotype distribution is more tightly focused
around the two groups as the mutation rate is lower. Thus, the separation of
the two groups in genes is easily established. To sum up, a fast separation
process is a characteristic feature of our mechanism.

11.5.5 Speciation: Reproductive Isolation
Under Sexual Recombination

The speciation process is defined both by genetic differentiation and by repro-
ductive isolation (Dobzhansky, 1937). Although the evolution through stages
I–III leads to genetically isolated reproductive units, one might still say that
it should not be called “speciation” unless the process shows isolated repro-
ductive groups under the sexual recombination. In fact, it is not trivial if
the present process works under sexual recombination, since the genes from
parents are mixed by each recombination. To check this problem, we have con-
sidered some models so that the sexual recombination occurs to mix genes. To
be specific, the reproduction occurs when two individuals i1 and i2 satisfy the
maturity condition, and then the two genotypes are mixed. As an example we
consider two offspring j = j1 and j2, from the individuals i1 and i2 as

g�(j) = g�(i1)r�
j + g�(i2)(1 − r�

j) + δ (11.1)

with a random number 0 < r�
j < 1 to mix the parents’ genotypes.
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In spite of this strong mixing of genotype parameters, the two distinct
groups are again formed. Of course, the mating between the two groups can
produce an individual with the parameters in the middle of the two groups.
When parameters of an individual take intermediate values between those of
the two groups, at whatever phenotypes it can take, it either does not reach
the condition for reproduction, or even if it does, it takes much longer time
than those of the two groups. Before the maturity condition for reproduction
is satisfied, the individual will be removed by death with a high probability.
As the separation process to the two groups further progresses, an individ-
ual with intermediate parameter values never reaches the condition for the
reproduction before it dies.

This process for increasing sterility is demonstrated clearly by measuring
the average offspring number of individuals over given parameter (genotype)
ranges and over some time span. An example of this average offspring number
is plotted in Fig. 11.6, with the progress of the speciation process. As the two
groups with distinct values of parameters are formed, the average offspring
number of an individual having the parameter between those of the two groups
starts to decrease. Soon the number goes to zero, implying that the hybrid
between the two groups is sterile.

In this sense, sterility (or low reproduction) of the hybrid appears as a
result, without any assumption on mating preference. Now genetic differenti-
ation and reproductive isolation are satisfied. Hence it is proper to call the
process through stages I–III as speciation.

Before closing this subsection, it should be noted that our mechanism for
the speciation works in asexual and sexual reproduction in the same way. The
phenotype separates into two groups first, also in the present case with sex-
ual recombination. Later the change is mapped onto the parameters gm. The
speciation process progresses following the three stages given in Sect. 10.4. In-
deed the stability of the speciation against sexual recombination is naturally
expected, since the coexistence of two distinct phenotype groups is supported
by isologous diversification, that is, differentiation to distinct phenotypes un-
der the same genotypes. Even though the genes are mixed, the phenotypes
tend to be separated into distinct groups, because of the interaction. Hence
the separation into distinct groups is not blurred by the recombination. Here,
sexual recombination is just another factor to fix the differentiation, and is not
the essence of the present process. In short, the speciation process is initiated
by phenotype difference, which is later fixed to genotypes by mutation and/or
sexual recombination.

11.5.6 Evolution of Mating Preference2

So far we have not assumed any preference in mating choice. The mating
to produce a sterile hybrid continues, and the split into two groups occurs
2 This and the next subsetcions can be skipped unless one is interested especially

in these topics.



11.5 Further Remarks on the Differentiation Scenario 299

0

0.5

1

1.5

2

2.5

-0.019 -0.018 -0.017 -0.016 -0.015 -0.014 -0.013 -0.012 -0.011

A
ve

ra
ge

 o
ffs

pr
in

g 
nu

m
be

r

a12

I
II
III
IV
V

Fig. 11.6. The average offspring number before death is plotted as a function of the
parameter (genotype), for simulations with sexual recombination. As an extension to
include sexual recombination, we have also studied a model in which two organisms
satisfying the above threshold condition mate to reproduce two offspring. When
they mate, the offspring have parameter values that are randomly weighted average
of those of the parents, as given in the text. We have measured the number of
offspring for each individual during its life span. By taking a bin width 0.005 for
the genotype parameter g = a12, the average offspring number over a given time
span is measured to give a histogram. The histogram over the first 7,500 divisions
(about 20 generations) is plotted by the solid line (I), and the histogram for later
divisions is overlaid with a different line, as given by II (over 7,500–15,000 divisions),
III (15,000–22,500), IV (22,500–30,000), and V (37,500–45,000). As shown, a hybrid
offspring will be sterile after some generations. Here we have used the model for
Fig. 11.2 and the same initial condition and imposed recombination. In the run, the
population fluctuates around 340 (reproduced from Kaneko & Yomo, 2000)

after mating, and thus can be called postmating isolation. However, it is then
natural to expect that some kind of mating preference evolves to reduce the
probability to produce a sterile hybrid. Here we study how mating preference
evolves as a result of postmating isolation.

As a simple example, we include loci that can act as a gene for determining
mating preference. We assume another set of genetic parameters that con-
trols the mating behavior. For example, each individual i has a set of mating
threshold parameters (ρ1(i), ρ2(i), . . . ρk(i)), corresponding to the phenotype
(X1(i), X2(i), . . . , Xk(i)). If ρ�(i1) > X�(i2) for some 
, the individual i1 de-
nies the mating with i2 even if i1 and i2 satisfy the maturity condition. In
simulations with mating thresholds {ρm(i)}, we choose a pair of individuals
who satisfy the maturity condition, and check if one does not deny the other.
Only if neither denies mating with the other, the mating occurs to produce
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offspring, when the genes from parents are mixed in the same way as in the
previous section. If these conditions are not satisfied, the individuals i1 and
i2 wait for the next step to find a partner again.

Here the set of {ρm} is regarded as a set of (genetic) parameters, and
changes by mutation and recombination. The mutation is given by addition
of a random value to {ρm}. Initially all of {ρm} (for m = 1, . . . , k) are smaller
than the minimal value of (X1(i), X2(i), . . . , Xk(i)), so that any mating pref-
erence does not exist. If some ρ�(i) gets larger than some of X�(i′), the mating
preference appears. Hence we do not assume any mating preference in advance
and examine if it evolves or not.

An example of numerical results is shown in Fig. 11.7, where the change
of phenotype Xm and some of the parameters gj are plotted. Here, by the
phenotype differentiation, one group (to be called “up” group) has a large Xm

Fig. 11.7. An example of the speciation process with sexual recombination and the
evolution of mating preference, Here two groups of distinct phenotype (large X1,
small X2) and (small X1, large X2) are formed at the first few generation, which we
call “up” and “down” groups. We have measured the average Xj at reproduction
events, a�m, ρj for each group per 500 divisions. (The population here is roughly
500, and thus the average is roughly over one generation.) Change of the average Xj ,
a�m, and ρj is plotted with divisions (generations). (a) X1 (up group; solid line), X1

(down group; broken line), (b) a12 (up group; solid line), a12 (down group; broken
line), (c) ρ1 (up group; solid line), ρ1 (down group; broken line), ρ2 (up group; broken
line), ρ2 (down group; thin broken line). Adapted from Kaneko & Yomo (2002b)
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value for some m = 
 and almost null values for some other m = 
′. Hence,
sufficiently large positive ρ�′ gives a candidate for mating preference.

Right after the formation of two genetically distinct groups following the
phenotype separation, one of the mating threshold parameters (ρ1(i1)) starts
to increase for one group. In the example of the figure, “up” group has
phenotype with (large X1, small X2) and the other (“down”) group with
(small X1, large X2). There the “up” group starts to increase ρ1(iup), and
ρ1(iup) > X1(idown) is satisfied for an individual idown of the “down” group.
Now the mating between the two groups is no longer allowed, and the mating
occurs only within each group. Thus the mating preference evolves to prohibit
intergroup mating producing sterile hybrids (Fig. 11.7).

Although the evolution of the mating preference here is a direct conse-
quence of the postmating isolation, it is interesting to note that the coexis-
tence of the two species is further stabilized with the establishment of mating
preference. Without this establishment, there are some cases that one of the
species disappears because of the fluctuation after very long time in the simu-
lation. With the establishment, the two species coexist much longer (at least
within our time of numerical simulation).

11.5.7 Formation of Allele–Allele Correlation

In diploid organisms, there are two alleles, and the two alleles do not equally
contribute to the phenotype. For example, often only one allele contributes
to the control of the phenotype. If by recombination, the loci from two alleles
are randomly mixed, then the correlation between genotype and phenotype
achieved by the mechanism so far discussed might be destroyed. Indeed, this
problem was pointed out by Felsenstein (1981) as one difficulty for sympatric
speciation.

Of course, this problem is resolved if genotypes from two alleles establish
high correlation. To check whether this correlation is generated, we have ex-
tended our model to have two alleles and examined whether the two alleles
become correlated. Here, we adopted the model studied so far, and added two
alleles further. In mating, the alleles from the parents are randomly shuffled
for each locus. In other words, each organism i has two sets of parameters
{g(+)�(i)} and {g(−)�(i)}. Each g(+)m(i) is inherited from either g(+)m or
g(−)m of one of the parents, and the other g(−)m(i) is inherited from either
g(+)m of g(−)m of the other parents. Here parameters at only one of the alleles
work as a control parameter for the developmental dynamics of phenotype.

We have carried out some simulations of this version of our model (Kaneko,
2002c). Here again, the speciation proceeds in the same way, through stages I,
II, and III. Hence our speciation scenario works well in the presence of alleles.
In this model, the genotype–phenotype correspondence achieved at stage III
could be destroyed if there were no correlation between two alleles. Hence we
have plotted the correlation between two alleles by showing two-dimensional
pattern (g(+)1(i), g(−)1(i)) in Fig. 11.8. Initially there was no correlation, but
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Fig. 11.8. Correlation in alleles. The point (a(+)12(i), a(−)12(i)) is plotted at every
reproduction event, Two alternate groups with distinct phenotypes are plotted with
alternate gray scales. (a) Plots at the division from 20,000th to 36,000th. Here phe-
notypic differentiation already occurred but the genetic separation is not completed.
(b) Plots at the division at a much later stage (from 50,000th to 63,000th) where
genetic separation already occurred. Adapted from Kaneko (2002c)

through temporal evolution, the correlation is established. In other words, the
speciation in phenotype is consolidated to genes, and later is consolidated to
the correlation between two alleles.

11.5.8 Allopatric Speciation as a Result of Sympatric Speciation

By extending our theory so far, we can show that spatial separation of two
species is resulted from the sympatric speciation discussed here. To study
this problem, we have extended our model by allocating to each organism a
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resident position in a two-dimensional space. Each organism can move around
the space randomly but slowly, while resources leading to the competitive
interaction diffuse throughout space much faster. If the two organisms that
satisfy the maturation condition meet in the space (i.e., they are located
within a given distance), then they mate each other to produce offspring.

In this model, we have confirmed that the sympatric speciation first occurs
through stages I–III in Sect. 10.2. Later these two differentiated groups start
to be spatially segregated, as shown in Fig. 11.9. Now sympatric speciation is
shown to be consolidated to spatial segregation (Kaneko, 2002c).

The spatial segregation here is observed when the range of interaction is
larger than the typical range of mating. For example, if mobility of resources
causing competitive interaction is larger than the mobility of organisms, spa-
tial segregation of sympatrically formed species results.
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Fig. 11.9. Spatial separation of two species, observed in a numerical experi-
ment. Model is with spatially local mating. Each organism moves the position with
Brownian motion, given as the random number over [−δf , δf ] = [−0.0025, 0.0025],
while it is located within a two-dimensional square of size 5×5, with periodic bound-
ary condition. Mating is possible if two organisms satisfying maturing condition are
located within the distance 0.25. Position of the organisms at every division is plot-
ted, at each division event from 45,000 to 50,000. Two alternate groups with distinct
pheno- and geno-types are plotted with alternate gray scale. Adapted from Kaneko
(2002c)

Instead of spatially local mating process, one can assume slight gradient
of environmental condition, for example, a gradient in resources. In this case
again, it is expected that sympatric speciation takes place first, and later
spatial separation occurs accordingly.



304 11 Speciation as a Fixation of Phenotypic Differentiation

To sum up, we have pointed out here the possibility that speciation events
considered to be allopatric when viewed only from the present pattern can be a
result of the sympatric speciation of our mechanism. The sympatric speciation
is later consolidated to spatial segregation of organisms.

11.6 Constructive Experiment

Discussion on the actual mechanism of evolution, however, often remains any-
one’s guess. Most importantly in our scenario, in contrast, is experimentally
verifiable. For example, the evolution of E. coli is observed in the laboratory, as
has been demonstrated by Kashiwagi et al. (1998, 2001) and Xu et al. (1996).
Since the strength of interaction can be controlled by the resources and the
population density, one can check whether or not the evolution at a genetic
level is accelerated through interaction-induced phenotypic diversification.

Although the confirmation has not yet been completed, there are already
some experiments supporting the importance of interaction to the genetic di-
versification (Kashiwagi et al., 2001). Here we will briefly discuss the results.
We again use the bacteria E. coli for this experiment. They are cultured in liq-
uid media, while mutations to genes for Glutamine synthetase are introduced
by mutagenesis, at three times each separated by many generations. This en-
zyme is essential to nitrogen metabolic process and is essential to the survival
of the bacteria in the medium we set in the experiment. In the mutagenesis, we
amplify DNA by the PCR method and introduce random change in the DNA
sequence of the gene that codes the enzyme Glutamine synthetase. By using
these bacteria after mutagenesis, we get a population of bacteria whose genes
are almost identical except the genes for the Glutamine synthetase. With this
experiment, we can study the change of bacterial population distribution with
different genes for the enzyme.

In the liquid media, populations of the bacteria are continuously cultured,
where some nutrition chemicals are supplied at constant rate while the liquid
including the bacteria is poured out with the same rate. After some time, the
culture reaches a steady state so that the environment and the total population
of bacteria are constant (with some fluctuations). In this culture, Glutamine
acid is included as an important nutrient, which the bacteria have to transform
into the glutamine that is essential for survival, with the aid of the enzyme
Glutamine synthetase. Depending on the catalytic activity of the enzyme, the
efficiency for the Glutamine synthesis differs, and hence the growth speeds
also differ. Since there are mutations to the genes for this enzyme, bacteria
with different genes have different growth speed with regards to the glutamine
synthesis.

After the cultivation, we extract out the bacteria and perform mutagenesis
as mentioned above and repeat the cultivation. We have repeated this cycle
three times. Now we found that within the medium, several types of bacteria
coexist with different genes for the enzyme. Each type has a different enzyme
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activity. In Fig. 11.10 plotted are the population distribution of each type
of bacteria. Recall that in this medium, as a single cell, the bacteria with
the highest catalytic activity of glutamine is the fittest. This is indeed the
wild-type W2. However, we have found here that W2 does not dominate in
the population but other types with much lower catalytic activity coexist,
as shown in Fig. 11.10. Furthermore, the population distribution in each type
changes over the generations. This suggests that the growth speed of each type
is not solely determined by its own, but depends strongly on the interaction
with other types.

To confirm the importance of the interaction, Kashiwagi et al. have carried
out two sets of experiments. First they changed the population density in the
tank, which is controlled by changing the flow rate into and out of it. In

Fig. 11.10. Evolution experiment in a high density of bacteria, E. coli. After cul-
tured over some time span, the cells are under mutagenesis, to produce the next
stage. The three stages are repeated. The population density of different strains,
that is, with different genotypes is shown, with corresponding photogenic tree mea-
sured from the genetic change. Based on Kashiwagi et al. (2001) under the courtesy
of Kashwagi and Yomo
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the above experiment, there are 1010 bacteria cells per 75 m
. As another
experiment, they studied the case of much lower density 107 bacteria cells per
75 m
. In Fig. 11.11, the fractions of the population of W2 type are plotted
for three examples of 1010 cells per 75 ml, and also 107 cells per 75 ml. In
the former cases, the fraction of W2 cells is less than half, which fluctuates in
time, but does not depend much on each experiment. On the other hand, in
the latter case with lower density, only the W2 population exists and occupies
the whole population. In a low density only the type with the highest fitness
survives, while in a higher density the interaction allows for the coexistence
of several types. The result suggests that the coexistence of diverse types is
facilitated by the interaction. In the case with weak interaction due to low-
density populations, only the fittest survives. On the other hand, in a high-
density case the fitness is determined through interactions, and depends on the
population distribution. Hence it is not possible to assign a single fittest type.
To sum up, their experimental results confirm the viewpoint schematically
displayed in Fig. 11.12.

The interaction here is mediated by some chemicals between cells. Hence
as a candidate of important chemical, we choose glutamine. Indeed, when
a variety of cells coexist, the concentration of glutamine in the medium is
∼1.7 µM, even though it is not introduced (note that supplied are glutamine
acid, not glutamine). This suggests that the glutamine synthesized in some
cells is diffused out, which influence all other cells. This interaction is nothing
but we have introduced in the models of Chaps. 7–9 and 11. In these models,
some chemicals that are synthesized within a cell diffuse out, through which
the cells interact.

As a control of interaction, it is natural to cut off the interchange of this
glutamine among cells. For this, we introduce an enzyme into the medium
to transform glutamine back into glutamine acid that already exists in the
medium. This is carried out by supplying Glutaminase into the medium (see

Fig. 11.11. Changes in the population fraction of W2 strain, which is the “fittest”
with regards to the Glutaminase catalytic activity. The solid line shows three sets
of experiment by using the total population density of 1010 cells per 75 m�, showing
coexistence of diverse cell strains. The dotted line shows a result from the density
of 107 cells per per 75 m�, where the population fraction of W2 strains reach 100%.
Based on Kashiwagi et al. (2001) under the courtesy of Kashwagi and Yomo
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Fig. 11.12. Schematic representation of the relationship between the population
density and diversity of cell types. When crowded diverse types of E. coli coexist,
while in low density the fittest one is selected

Fig. 11.13). The temporal evolution of the population fraction of cell types
other than W2 are plotted in Fig. 11.13. As a result of this “cutting-off-
glutamine” experiment, only the “fittest” W2 type survives. This indicates
that coexistence of a variety of cell types is mediated by the cell–cell interac-
tion due to glutamine.

So far we have confirmed the relevance of interaction to diversification of
cell types. Next, we discuss the phenotypic plasticity. A quantitative study
with the use of flow cytometry is under progress, but here we will briefly
mention change in the morphology of the colony of the bacteria. To avoid too
much complexification, let us focus only on two types of strains, W1 and H.
Here the strain H has a higher catalytic activity of Glutaminase, but these
two coexist through the interaction.

In this case when the strain H is cultured in the agar medium, they show
two different patterns, one “crumbled” and the other “flower-like.” Further-
more, to confirm that these changes are not due to the genetic change, cells are
taken from the flower-like colony, and cultured. Again two types of colonies
are formed with some fraction. To sum up, the phenotypes (the colony shape)
of H strain are differentiated, and these two phenotypes coexist.

So far, we have not completely clarified the relationship between this phe-
notypic plasticity and the genetic diversification into different types. Still,
through the long-term experiment to change the concentration of the H strain
cells, it is suggested that together with a drastic change of population ratio of
H to W1 strain cells, the fractions of two colonies of H strains are also changed.
Still, we have not yet confirmed which is first, but at least the change in pheno-



308 11 Speciation as a Fixation of Phenotypic Differentiation

Fig. 11.13. Result of an experiment to cut off the interaction by adding Glutaminase
in the medium. Schematic representation (above), and the population fraction of cell
types other than W2 strains (below), where the data from the cutoff experiment are
plotted as the dotted line. By cutting off the interaction the fraction of bacteria other
than W2 vanishes, and the coexistence of different types is no longer possible

typic plasticity and the genetic diversification at a population level are highly
correlated.

11.7 Relevance to Biology

The conclusion in this chapter is that sympatric speciation can generally oc-
cur under strong interaction if the condition for interaction-induced pheno-
type differentiation is satisfied. We briefly discuss relevance of our theory to
biological evolution.

11.7.1 Tempo in the Evolution

Since the present speciation is triggered by interaction, the process is not so
much random but rather deterministic. Once the interaction among individu-
als brings about phenotypic diversification, speciation always proceeds direc-
tionally without waiting for a rare, specific mutation. The evolution in our
scenario has a “deterministic” nature and a fast tempo for speciation, which
is different from a typical ‘stochastic’ view of mutation-driven evolution.
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Some of the phenotypic explosions in the history of evolution have been
recorded as having occurred within short geologic periods. Following these ob-
servations, punctuated equilibrium was proposed (Gould & Eldegridge, 1977).
Our speciation scenario possibly gives an interpretation of this punctuated
equilibrium. It may have followed the deterministic and fast way of interaction-
induced speciation.

11.7.2 Decrease in the Phenotypic Plasticity

In the process of speciation we outlined, the potentiality of a single gene to pro-
duce several phenotypes that existed initially is consumed and decline. After
the phenotypic diversification of a single genotype, each gene through muta-
tion takes only one of the diversified phenotypes in the population. Thus, the
original one-to-many correspondence between the genotype and phenotypes is
consumed. Through the present process of speciation, the potentiality of single
genotypes to produce various phenotypes decreases unless the new genotypes
introduce another positive feedback process to amplify the small difference.

As a result, one may see single genotypes expressing only one (or a small
number of) phenotypes in nature. Since most organisms at the present time
have gone through several speciation processes, they may have reduced their
potentiality to produce various phenotypes. According to our theory, if the
organisms have a high potentiality, they will undergo a speciation process be-
fore long and the potentiality will decrease. In other words, natural organisms
tend to lose the potentiality to produce various phenotypes in the course of
evolution. As a reflection on the evolutionary decline of the potentiality, one
can expect that mutant genes tend to have a higher potentiality than the
wild-type gene. As mentioned in Sect. 10.1, the low or incomplete penetrance
(Opitz, 1981), i.e., higher potentiality to produce diverse phenotypes from
clones, is known to often occur in mutants, compared with higher penetrance
(i.e., lower variety in phenotypes) in a wild type. Our result is consistent with
these observations, since wild types are in most cases a consequence of evolu-
tion, and so in them the one-to-one correspondence is recovered. However, in
mutants, there is a greater potential to have phenotypic plasticity.

11.7.3 Relevance of Developmental Plasticity to Speciation

The relationship between development and evolution has been discussed
extensively. Our theory states the relevance of developmental plasticity to
speciation. Taking our results and experimental facts into account, one can
predict that organisms emerging as a new species have a high potential to
produce a variety of phenotypes. It is interesting to discuss why insects, for
example, have a higher potential to speciation from this viewpoint. Also ex-
amining if living fossils, such as Latimeria chalumnae, Limulus, and so forth,
have a stable expression of a small number of phenotypes.
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Note that through the speciation process discussed here, plasticity in phe-
notypes declines as mentioned. Through the speciation process, the original
plasticity is “consumed” so that a single phenotype is generated from each
genotype. In this sense, the process agrees with the hypothesis in Chap. 3
stating that in a closed system the plasticity decreases. Then, how does the
speciation process continue on the Earth?

Here we should consider the meaning of “closed system.” Indeed, there
should be some occasions when the potentiality is regained, so that the evo-
lution continues. For example, changes in the environment may influence the
developmental dynamics to regain loose correspondence, or introduction of
novel degrees of freedom or genes may provide such looseness. If, by exter-
nal environmental change, the population distribution is drastically changed,
some interactions are added or eliminated. If by geographical change (say by
the collision of continents) species that were not interacting before start to
meet, a new interaction term is added.

It should also be noted that developmental processes are often sensitive to
environmental conditions, as recent studies on environmental endocrine dis-
ruptors have suggested. The developmental plasticity, once lost by the com-
pletion of speciation, may be regained by some change in the environmental
condition or by interactions with other organisms.

Another source in regaining the plasticity is endosymbiosis. In endosym-
biosis, two organisms that were independent join and have tight interaction.
In terms of dynamical systems, some terms or some variables in the equa-
tions are added or eliminated. In these cases, the recovery of plasticity may
be possible. We will briefly discuss an example in Chap. 12.

Remark: Phenotypic Plasticity

Note that the so-called “phenotypic plasticity” usually means such property
that a single genotype produces alternative phenotypes in alternative en-
vironments (Callahan et al., 1987; Spitze & Sadler, 1996; Weinig, 2000). In
contrast, in our phenotypic differentiation, distinct phenotypes from a single
genotype are formed under the same environment. In fact, in our model,
this phenotypic differentiation is necessary to show the later genetic differ-
entiation. Without this differentiation, even if distinct phenotypes appear for
different environmental conditions as in the case of “phenotypic plasticity,”
genetic differentiation does not follow. In spite of this difference, it is true
that both are concerned with flexibility in phenotypes. Some of phenotypic
plasticity studied so far may bring about developmental flexibility of ours, by
slightly changing the environmental condition.

11.7.4 Unified Theory for Speciation in Sexual
and Asexual (and Unicellular) Organisms

One important point in our theory is that the speciation in asexual and sex-
ual organisms are explained within the same theory. Of course, the standard
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definition of species using hybrid sterility is applied only for sexual organisms.
However, it is true that the asexual organisms, or even bacteria, exhibit dis-
crete geno- and pheno-types. It is suggested that “species,” that is, discrete
types with reproductive isolation, may exist in asexual organisms (Roberts &
Cohan, 1995; Holman, 1987). There are also discussions that the potentiality
of speciation in asexual organisms is not lower than the sexual organisms. In
this sense, the present theory sheds a new light to the problem of speciation
in asexual organisms as well.

In relation to this, it should be more natural to define “species,” without
assuming sexual reproduction. Our proposition is as follows: Consider a state
space (see Chap. 3) for phenotype and genotype. Each organism is represented
as a point in this space. When a huge variety of organisms are plotted in
the space, all of them are not continuously distributed, but the points are
concentrated onto several clusters. The points form clusters (“clouds”) that
are separated from each other. When successive descendants of an organism
in a given cluster continue to belong in the same cluster, this cluster continues
to exist, separated from others, through temporal evolution. Then this cluster
is called “species,” which naturally satisfies reproductive isolation.

11.7.5 Adaptive Radiation

When a new environment is opened, a successive speciation process often
follows – this is called adaptive radiation. By choosing a model with many
cyclic processes, we can observe successive speciation into several groups from
a single genotype. With the increase of population, the phenotypes first split
into two groups, each of which is specialized in some processes. They survive
depending on each other. With evolution, they form distinct genetic groups.
With the further increase of population, new instability appears resulting in
further separation into more groups from (each) group, which is later fixed
to genes. This process can continue successively. Accordingly we can study
adaptive radiation on the basis of our theory.

11.7.6 On the Interaction

Our theory for speciation crucially depends on the interaction. Indeed there is
an established theory, called “frequency-dependent selections” which considers
the interaction. In the frequency-dependent selection, fitness is modulated by
the population distribution of other species. As genetically (and accordingly
phenotypically) different groups interact with each other, the fitness changes
according to the population of each group (Futuyma, 1986). At the third
stage of our theory, the condition for this frequency-dependent selection is
satisfied, and the evolution progresses with the frequency-dependent selection.
However, the important point in our theory lies in the earlier stages where
a single genotype leads to different phenotypes. Indeed this intrinsic nature
of differentiation is the reason why the speciation process here works at any
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(small) mutation rate and also under sexual recombination, without any other
ad hoc assumptions.

Another theory that takes advantage of interaction is resource competi-
tion. There, coexistence of two (or more) species after the completion of the
speciation is discussed (Tilman, 1976, 1981). This theory gives an explana-
tion how two species are specialized in their own niche, by separating out
their resource use. Still, the speciation process itself is not discussed, because
two individuals with a slight genetic difference can have only a slight differ-
ence there, in contrast to our theory. Rather, our theory provides a basis for
resource competition also.

11.7.7 Allopatric Speciation

It is often believed that allopatric speciation is more common than sympatric
speciation. However, we have to be careful in judging if the speciation is sym-
patric or allopatric, because in a biological system, we often tend to assume
causal relationship between two factors, from the observation of just corre-
lation of the two factors. For example, when the resident area of two species,
which share a common ancestor species, is spatially separated, we often guess
that the spatial separation is a cause for the speciation. Indeed, allopatric spe-
ciation is often adopted for the explanation of speciation in nature. However,
in many cases, what we observed in field is just correlation between spatial sep-
aration and speciation. Which is the cause is not necessarily proved. Rather,
spatial segregation can be a result of (sympatric) speciation. Consider, for
example, the segregation of resident area in a city between rich and poor peo-
ple. Most of us do not assume that people in the “rich area” are rich because
they live there. Rather, in most cases, the spatial separation is a result of
differentiation in wealth, but not a cause. In the same way, it is sometimes
dangerous to assume allopatric speciation even if the residence of two species
are separated.

Of course, geographical isolation by sudden change of environment may
lead to allopatric speciation. Still, some of the data regarded as an evidence of
allopatric speciation could be interpreted otherwise. It is possible to consider
otherwise: After sympatric speciation has taken place and is established, the
niche of the two species becomes different. Then the two groups may segregate
in space according to the difference in the environment. After this process is
completed, the two species are spatially separated, as we have discussed in
Sect. 11.5.8. This might be regarded as a demonstration of allopatric specia-
tion, but in this case sympatric mechanism is the trigger to this speciation.

11.7.8 Baldwin’s Effect

In our theory phenotype change is later consolidated to genotype. Indeed, ge-
netic “takeover” of phenotype change was also discussed as Baldwin’s effect
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(Baldwin, 1896; Bonner, 1980), where the displacement of phenotypic charac-
ter is fixed to genes. Genetic assimilation of phenotype is then discussed by
Waddingtom (1957) as mentioned in Chap. 10. The fixation to genotype at
the second stage in our theory is understood as an example of this Baldwin’s
effect, while the phenotypic differentiation in the first stage is also essential
to the speciation mechanism proposed here.

Here, we have demonstrated the relevance of the Baldwin’s effect to spe-
ciation explicitly by considering the developmental process, using a model
with (metabolic) reaction dynamics. The phenotype differentiation is formed
through the developmental process to generate different characters due to the
interaction. Distinct characters are stabilized by each other through the in-
teraction. With this interaction dependence, the two groups are necessary for
each other, and robust speciation progresses. The stabilization of development
by genetic assimilation is also discussed by Newman (1994).

The Baldwin’s effect was often discussed in the context of transmission
of a novel type of behavior. Such behavior is sometimes related with the
morphology of an organism. For example, consider sympatric speciation of
cichlid in African lakes. It is known that two species coexist that eat the
gills of other fish from the left or right side, respectively. This difference in
behavior is also reflected in the morphology of the mouth of the fish. The jaw
of each species is curved to the right or to the left, respectively, so that it
is easier for them to attack other fish from one side. In other words, distinct
types of behavior and developmental process are tightly coupled. Our theory
suggests that developmental plasticity induced by the interaction with other
fish first leads to differentiation of phenotypes into “right-side” and “left-side”
types, with regards to both behavior and development. Later this difference is
assimilated to genes, as shown by the second stage of our theory that is given
by Baldwin’s effect. We suggest that the speciation into these two types thus
progressed rapidly in these lakes.

11.7.9 Reversing the Order

According to our theory, sympatric speciation under sexual reproduction
starts first from phenotypic differentiation. Developmental plasticity induced
by interaction leads to phenotypic differentiation, and then genetic diversifi-
cation takes place. This leads to hybrid sterility, and later mating preference
evolves. Further later, this differentiation can be fixed to correlation in alleles
or to spatial segregation.

This order may be different from most commonly adopted studies (while
the order from phenotype to genotype was discussed as Baldwin’s effect, as
mentioned). Hence, our theory will be verified by confirming this chronic or-
der in the field. One difficulty here, however, lies in that the process from
phenotypic differentiation to the last stage is rather fast according to the the-
ory, and it may not be so easy to observe the intermediate process in the
field. Still, there may be some hope for the observation, by first searching
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for phenotypic differentiation of organisms with identical genotype under the
identical environment. In this respect, the cichlid data of Lake Nicaraguan
may be promising (Wilson et al., 2000), since phenotypic differentiation cor-
responding to different ecological niche is observed even though clear genetic
difference is not observed yet.
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Conclusion

12.1 Summary

In this book, we have presented an understanding of living systems in which
they are regarded not as finely tuned machines but, rather, as realizations
of the universal structure characteristic of reproductive systems arising from
complex dynamical systems. From this point of view, we have proposed a the-
oretical framework to answer questions like the following. (1) In a cell, there
exist many chemical components that reproduce through mutually catalytic
processes. Given this kind of reaction network, why is it the case that the
component responsible for carrying genetic information is separated from the
rest? Also, how do the genotype and phenotype come to diverge, and how is
their relation formed? (2) Why are such catalytic reaction networks possess-
ing so many variables able to reproduce recursively on the one hand, while
keeping some variability that makes evolution possible on the other? What
statistical properties must be possessed by the state of the constituent chem-
ical components to realize such behavior? (3) From interactions among cells,
there arises differentiation into distinct cell types. How, in the presence of
large fluctuations of chemical concentrations, can this generate a stable de-
velopmental process? Furthermore, how does each cell contained within some
group “know” the properties of the group? (4) In the developmental process,
the omnipotence of the original embryonic stem cells is gradually lost, as they
differentiate into stem cells and then into committed cells. How does this ir-
reversibility arise? In general, the plasticity of cell states decreases through
this irreversible differentiation process. How is this plasticity characterized?
(5) During the process of cell differentiation, how do cells create and read
positional information and with this carry out a stable process of pattern for-
mation? (6) How is the plasticity of phenotypes related with evolution, that
is given by genetic changes? Does the differentiation in phenotype caused by
interactions among individual organisms bring about a divergence of genotype
and lead to speciation?
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In Chaps. 4–11, we have provided answers to these questions from the re-
sults of both theoretical and experimental studies. These answers are given not
as a result of fine control in a biological system, but as the universal proper-
ties of dynamical systems possessing the capacity of reproduction. As we have
seen, these properties arise (to a certain extent) in appropriately constructed
experimental systems also. We do not propose to understand life in terms of
the “rigid,” precisely determined behavior of logical systems. Rather, the pic-
ture we present is based on complex, “loose” dynamics from which recursive
“types” are formed. These types then come to be fixed in the relatively rigid
system represented by the genes. From this point of view, we have treated the
stability of the developmental process, the (ir)reversibility of differentiation,
and the possibility for evolution.

Allow us here to summarize the understanding we have realized into the
following four concepts, which lie at its heart.

12.1.1 Isologous Diversification – General Tendency Toward
Differentiation from Identical Units Through Interaction

The phenomenon in which two originally identical states become distinct
through the amplification of small fluctuations is known in physics as “sym-
metry breaking.” A state is said to possess symmetry if there exists a trans-
formation of the system under which this state does not change. Such a trans-
formation could be, for example, the exchange of left and right, the spatial
translation of the system as a whole, etc. Symmetry breaking is the loss of a
symmetry property that a state once possessed. Note that the Turing theory
discussed in Chap. 9 represents one type of symmetry breaking. In that case,
an initially spatially uniform state (i.e., a state that is invariant under spatial
translation) becomes nonuniform when a periodic pattern appears. As a result
of this change, the system loses its symmetry with respect to arbitrary spatial
translations, and now possesses symmetry with respect to only the special
translations that shift the pattern by integer multiples of its wavelength.

Now, let us consider cell differentiation. Here, initially, all cells are the
same. Then, as the cells increase in number, they begin to differentiate, and
cells possessing different internal states appear. The process of differentia-
tion thus can be interpreted as a type of symmetry breaking. This symmetry
breaking results from the dynamics of the internal states of the cells and the
interactions among cells. In this process, the states of the cells that were once
all the same are caused to diverge, as small fluctuations become amplified.
Then, through interactions among cells, the respective states consisting of
these now diverse individuals are stabilized, and the differentiated state is
thereby maintained.

In general, the systems we consider consist of units (e.g., individual cells)
characterized by internal dynamics (e.g., catalytic reaction systems) that are
nonlinear in nature. Then, because of these internal dynamics and the in-
teractions among units, the state of the system in which all cells are in the
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same state becomes unstable. As a result, the units undergo differentiation
and come to exist in a variety of states.

One of the important results of our theory is the stability of the process
of development. Given a system with some distribution of cell types, we have
found that if the state of just one cell changes from the original, then, because
this new state is not stable, this cell will be drawn back to the original state.
This can be understood from consideration of the stability of states in terms
of attractors, as discussed in Chap. 3. Consider the situation in which we fix
the states of all but one cell. Then, the original state of the one “test” cell
corresponds to the attractor determined by the fixed cells. In this situation,
if the state of this cell is perturbed slightly, it will be pulled back to this
attractor. Also, the stability of the system can survive such a “macroscopic”
perturbation as the removal of many cells. The reason for this is that the
distributions of the states and types of the cells are interrelated, and if the
proportion of each cell type is not maintained within a certain range, the
stabilizing mechanism mentioned above ceases to exist, and the system as a
whole becomes unstable. For this reason, the states of some of the cells will
begin to change, and eventually, the system will recover a distribution of cell
types that is close to the original distribution. The stabilization mechanism
acting in this case thus becomes clear.

In the cell differentiation model presented in Chaps. 7–9, the destabiliza-
tion that results from the increase in cell number is stabilized through differ-
entiation. However, in general, instability is not triggered only by the increase
of the number of cells. It can also result from changes in the environmental
conditions, for example, because the strengths of interactions depend on these
conditions. Actually, it is known that if some bacteria (such as E. coli) are
cultivated in an environment lacking nutrients, their cellular states split into
two types. (This can be observed by using a cell sorter to separate cells ac-
cording to the quantity of a certain protein that they contain. When this is
done, the distribution of this quantity is found to exhibit a two-peak form.)
One example of such an experiment is discussed in Chap. 7. If this type of dif-
ferentiation becomes genetically fixed, it represents a step in evolution. This
is an example of a general type of phenomenon in which effects at different
levels are mutually strengthened and thereby fixed. Below we discuss this type
of phenomenon in more detail.

12.1.2 Dynamic Consolidation – a Process Through which Plastic
Differentiation is Fixed at a Separate Level with the Aid
of Dynamic Interference Among Processes

The general idea of the differentiation discussed above is that a system of
originally identical cells comes to possess a variety of cell types through the
amplification of fluctuations, and this differentiated state is stabilized by the
interactions among cells. We now discuss how differentiation at one level is
transferred to a different level. Indeed, in living systems, it is often the case
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that a differentiation at one level leads to a differentiation at another level,
and, through the mutual strengthening of these effects at different levels, they
become fixed. We refer to this phenomenon as “dynamic consolidation.”

As an example of dynamic consolidation, in Chap. 9, we saw how the
processes of cellular differentiation and pattern formation can have a mutu-
ally strengthening interaction. There, the differentiation of cell states causes
the appearance of a spatial pattern and, then, this pattern promotes differen-
tiation. This is an example of positive reciprocal feedback through which both
differentiation and pattern formation become stabilized. In this way, each cell
acquires positional information, and this allows for stable pattern formation.
Indeed, a pattern formed in this manner is able to restore itself when subjected
to many kinds of disturbances, including the removal of multiple cells.

As another example, we discussed in Chap. 11 how the differentiation of
phenotype can be transferred into a differentiation in genotype, and how this
process thus becomes stabilized in the form of new species. In the first stage of
this process, with the differentiation of phenotype, the type of the descendants
diverges somewhat from the original. Then, when this change becomes fixed in
the genotype, and the descendants thus come to possess the same genotypes
and phenotypes, the original differentiation becomes strengthened. Although
the change appears first in the phenotype, when the genotype also differenti-
ates, the differences among phenotypes become amplified. Thus, through this
positive feedback, the difference in phenotype causes a difference in genotype,
which furthers the difference in phenotype. In addition, the differentiation
in genotype leads to a change in mating preference, and mating thereby be-
comes limited to pairs of the same type. In this way, the difference between
the two (or more) types is amplified, and they become stabilized as distinct
species. Then, in the case that the individual organisms are motile, there is a
tendency for them to become spatially separated into species-specific groups.
This further strengthens their distinct existences.

This type of behavior, in which the divergence of types on one level spreads
to another level, was also considered in Chap. 4, where we discussed the phe-
nomenon of the division of roles of molecules in a catalytic reaction network.
In this case, the degrees of enzymatic action among the molecule species and,
accordingly, their replication rates vary. These differences then come to rep-
resent the differences among molecule species with respect to the degrees to
which they control cell properties and the degrees to which their concentra-
tions are preserved in cell reproduction. Although no such model calculation
has yet been carried out, we conjecture that the evolutionary process that
follows this kind of differentiation also involves some kind of positive feedback
mechanism, as a clear division of roles among the elements in charge of genetic
information and those in charge of metabolic processes emerges (see Sect. 6
of Chap. 4).

With the above examples, we have elucidated the role of dynamic consol-
idation in the origin of life, the process of development and the process of
speciation.
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12.1.3 Itinerancy – Long-Term Change of Several Quasi-Steady
States with Self-Organized Transition Rules

The different types that emerge from differentiation through isologous diver-
sification represent stable states. By contrast, from a plastic state, several
types of states will be differentiated. In the case of a plastic state, the system
will make repeated transitions, approaching one metastable state and then
moving away, then approaching another metastable state, and moving away
again . . . . This kind of dynamic process, in which a system jumps among
metastable states is known as “chaotic itinerancy.” If we consider such a sys-
tem on a long-time scale, we can regard this behavior of jumping among states
itself as constituting a single global state corresponding to a single attractor.
(Of course, this would be an attractor in an extremely high-dimensional state
space.) However, here instead of representing this entire temporal trajectory of
the system as a single attractor, we focus on the transitions among the “lower
level” states that this trajectory visits. There are many variables involved in
these transitions, and for this reason they appear to be somewhat erratic,
but they are not completely random. For example, it is not the case that a
transition can happen from any state to any other state. Indeed, there exist
rules governing the probabilities for transitions among the various states, and
given that the system is in a particular state, there are some states to which
it is likely to make a transition and some states to which it is very unlikely to
make a transition. In addition, these transitions depend on the internal states
of the individual elements, and thus the actual transitions that occur depend
on the circumstances under which the system exists. We discussed an example
of this type of behavior in Chap. 8. There, in a model of differentiation from
stem cells, while in the original plastic state, the system exhibits chaotic itin-
erancy globally, over the entire state space. Then, as the development process
progresses, the system becomes fixed at one state. In this way, the chaotic
itinerancy ceases, and a differentiated state is realized.

In the mutually catalytic reaction network presented in Chap. 6, the sys-
tem makes transitions among a number of states exhibiting recursive produc-
tion. These dynamics allow for the evolution of so-called “protocells.” In this
situation, after the system remains for some time in a state in which recursive
production is carried out, the original combination of cellular chemical com-
positions becomes unstable, and as a result, the number of chemical species
present decreases. Following this decrease in the number of chemical species
existing within a cell, there is great variation among the states of cells appear-
ing in successive generations, until there is realized a new cell state in which,
again, nearly recursive production is carried out in a stable manner, with the
variety of chemical species maintained. In this sense, the process consisting
of the decrease in the the number of effective degrees of freedom (number
of variables) and the resulting destabilization of the system and subsequent
transition can also be understood in terms of the chaotic itinerancy considered
in Chap. 3.
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In the transition processes that appear in living systems, it is often the
case that unless the system passes through one particular state it cannot
proceed to the next one, and in this way the range of the states that can
be visited becomes irreversibly limited. The existence of such behavior may
explain why the changes undergone by cellular states are often described as
chains of if–then relations. Although the internal changes experienced by a cell
are realized as the result of many chemical reactions and therefore, strictly
speaking, cannot be expressed in terms of logical operations, the fact that they
sometimes do behave approximately like if–then systems may be attributable
to the existence of such underlying itinerant dynamics.

12.1.4 Minority Control – the Tendency for Replicators
with Minority Populations to Control the Behavior of the System

There is a fundamentally important question of why within the cell only a few
special molecules are responsible for carrying the so-called genetic informa-
tion. (This is related to the topic of Sect. 12.1.2.) With the hope of answering
this question, in Chaps. 4 and 5, we investigated reaction networks modeling
systems of multiple mutually catalytic replicating molecules. There, because
the numbers of individual molecules of the various species within an actual
cell will not necessarily be large, we represented these by discrete (0, 1, 2 . . . )
rather then continuous variables. Doing this, we found that in this type of
system, some species for which there are just a few molecules take on the
important role of controlling cellular reproduction. If an element exhibits re-
production and selection, and the constituent species composing its internal
states are represented by discrete variables, as is the case for cells and the
chemicals they contain, the selected states differ from those in the case that
the species are represented as continuous-valued variables. This behavior can
be understood as follows. In a system consisting of a number of constituent
species that all are essential in the synthesis of the others, if one species were
to disappear completely, the system as a whole would be affected strongly. For
this reason, those species whose numbers are small play a relatively important
role in determining the behavior of the system. In fact, we may consider this
to be the reason that genotype and phenotype are separate characterizations.

We believe that the situation in which control is exercised by constituent
elements that are minority in the population is a general characteristic of
reproductive systems. In particular, as we saw in Chap. 6, in the itinerancy
discussed above, it is often the case that constituent species with minority
populations play important roles in opening the narrow path followed by the
system trajectory. Then, because the behavior comes to be determined by
a sort of on-off condition – that is, whether molecules of these species are
present or not – the system can appear to be functioning according to logical
operations. The apparent control of cell states by the on and off of genes may
be related to this mechanism of minority control.
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As discussed in Sect. 12.1.1, cell differentiation occurs when a state be-
comes unstable. This change is initiated by minority molecular species. Also,
considering this phenomenon of minority control on a more macroscopic level,
it may be possible to understand the role of germ line segregation in multicel-
lular organisms. In the reproduction of multicellular organisms, none of the
large number of somatic cells are passed on to the next generation. Instead,
in the reproductive process, only a small number of germ cells are passed on
to the next generation, and these cells control the entire process. Indeed, with
this minority control by germ cells, the capacity for evolution is maintained,
as in the experiment discussed in Sect. 4.4. It is necessary to study this point
both theoretically and with constructive experiments.

12.1.5 The Universal Properties of Reproductive Systems

The four concepts summarized above are fundamental in the understanding
of living systems presented in this book. The other fundamental concept is
that of a system composed of reproductive elements possessing internal states.
One very important characteristic property of living systems is the capacity for
reproduction at multiple levels. Within a cell, there is replication of proteins
and DNA. At a higher level, cells, and again at a higher level, individual
organisms also possess the ability to reproduce. To this time, the dynamics of
systems of elements possessing internal states have been widely studied, with
much attention given to the role of interactions among elements. In addition,
the phenomenon of selection in reproductive systems has been investigated
as a fundamental theory of evolution. However, in such studies, the point of
view of studying reproductive systems with the goal of elucidating universal
properties has not played a prominent role.

In Chaps. 5 and 6, we saw that the dynamics of systems exhibiting repro-
duction are intrinsically governed by equations of the form dx/dt = ax, and
in such situations, the distribution of the concentrations of various chemical
components generally takes a log normal form. The reason that distributions
of this form appear is that the size of the fluctuations in the concentration
of each component grows at a rate that is essentially proportional to the av-
erage of this concentration. In general, with fluctuations of this form, even if
the distribution is not exactly log normal, the distribution of concentrations
will not be symmetric (in particular, will not be Gaussian). Rather, it will be
weighed to the side of larger population.

In replicating chemical reaction systems, distributions of concentrations
usually take a log-normal form, and, in general, such systems display large
fluctuations. However, in living systems, precise control may often be neces-
sary. How is it possible to reconcile these two apparently opposing factors?
Although we cannot yet give a definitive answer to this question, we believe
that the phenomenon of minority control, discussed above, is universal in
replicating systems, and thus it would appear that this is one source of the
control that is exercised in these strongly fluctuating systems.
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In the type of systems we now consider, the size of the fluctuations of a
given constituent depends on the quantity of that constituent present. This
implies that there is a tendency for the system to change in a particular direc-
tion. Also, in the case that there are many coupled variables, the randomness
introduced by noise will be largely canceled out, and hence fluctuations will be
suppressed. In addition, in a complex reaction network, the strengths of the
fluctuations vary among the variables. In systems that include autocatalytic
processes, treated in Sect. 5.4 and Chaps. 7 and 8, the strength of the fluc-
tuations and the nature of the temporal variation differ among the variables.
This type of state dependence of the time evolution and fluctuations of the
variables leads to the itinerancy summarized in Sect. 12.1.3.

Systems of reproducing elements possessing internal states can, through
interactions among elements, exhibit isologous diversification, as discussed in
Sect. 12.1.1. In this way, differentiation and diversity of states emerge. As
described in Chap. 7, in the process of isologous diversification, the type of
instability peculiar to reproductive systems is removed through interactions,
and a stable process of differentiation results. Thus isologous diversification
is the foundation of the stability exhibited by living systems.

As discussed above, states of reproductive systems, in general, can exhibit
large fluctuations and temporal variation. Indeed, each time a new element is
produced, the internal state changes. In a system exhibiting such constantly
changing states, if there happens to appear a state that changes only little
in time, it will probably be easily maintained as it continues to carry out
reproduction. In this type of system, transitions from very plastic states that
exhibit large changes to less plastic states that are largely fixed occur quite
generally. Dynamics of this kind are easily expressed in terms of the itinerancy
discussed in Sect. 12.1.3, but if the relations among different processes become
fixed, these dynamics will become those of dynamic consolidation, touched
upon in Sect. 12.1.2.

From the point of view of physics and dynamical systems, in the last
decade, the universal properties of systems of interacting elements with inter-
nal states have become clear (Kaneko & Tsuda, 2000). Analogously, formu-
lating the universal laws governing “reproductive systems” will represent an
important step in realizing an understanding of living systems.

12.2 Machine Versus Life Revisited

In Chap. 1, we emphasized the difference between machines and life. With
the understanding obtained through consideration of results presented in this
book, it is worthwhile returning to this point.

• Fluctuations. In our standard machine, we exercise a control to reduce
the fluctuations in the output. A negative feedback mechanism is some-
times adopted for this purpose. In a living system with the potentiality
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for reproduction, however, a positive feedback process is unavoidable. The
log-normal distribution discussed in Chap. 6 is a result of such a process,
which leads to large fluctuations. Living systems generally function in the
presence of such large fluctuations.

Of course, at some stage it is important to reduce fluctuations. In a liv-
ing system, however, a process for reducing fluctuations itself will exhibit
fluctuations. As there exists no “supervisor” that can reduce the fluctu-
ations in a living system, if such a process of reduction exists, it must
operate within the system. The minority control mechanism discussed in
Chap. 4 may provide one solution, while parallel mutual feedback loops
that appear in the intermingled hypercycle networks considered in Chap. 5
offers another possible mechanism for the reduction of fluctuations.

However, notwithstanding the possible existence of such fluctuation re-
duction mechanisms, fluctuations are unavoidable, and biological systems
often take advantage of them. The cellular differentiation process discussed
in Chaps. 7–9 is triggered by fluctuations, while it was shown there that
coupled dynamical systems provide models of developmental process ro-
bust against fluctuations.

In Chap. 10, we studied the problem of evolution as another phenomenon
in which fluctuations play a role. There, it was shown that the rate of
evolution is proportional to (or strongly correlated with) the strength of
phenotypic fluctuations. On the basis of an experiment performed on an
embedded gene network described in Sect. 8.5 (Kashiwagi et al., 2005), we
have recently shown that spontaneous adaptation (without the use of a
signaling network) can be realized by taking advantage of the fluctuations
in gene expression.

• Strong interference among parts. We usually design our standard machine
in such a manner that interference among its parts is reduced. In a liv-
ing system also, “modular” structure is often adopted to separate out one
process from all other complicated processes. However, such separation is
usually incomplete, and therefore interaction among processes and parts
is almost always unavoidable. However, rather than posing a problem, this
interaction is often useful, as biological systems often take advantage of
such strong interactions. For example, in the developmental process dis-
cussed in Chaps. 7–9, intracellular reaction processes and cell–cell inter-
actions yield contributions to the dynamics of cells that are of the same
order, and therefore neither can be treated as a small perturbation. Indeed
such an interplay between intracellular and intercellular dynamics leads
to cell differentiation and robust development in the theory discussed in
Chaps. 7–9. The speciation process described in Chap. 11 also requires
such strong interactions among individuals.

Although we have not discussed it in the present book, this type of
interplay between intracellular and intercellular dynamics (i.e., the con-
dition in which interactions within cells and among cells exercise influ-
ences of similar magnitudes on the cellular dynamics) is also important
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in studying molecular processes, as the molecules (i.e., proteins) are very
densely crowded in a cell, as shown in Sect. 1.5, and therefore molecule–
molecule interactions cannot be treated as perturbations of the intramole-
cular dynamics. (See Nakagawa & Kaneko [2004] and Kaneko [2005b] for
examples of such inter/intramolecular dynamics.)

• The interrelationship between rules and dynamics. In a machine, a designer
is outside of the system, while in a living system, there is no external de-
signer. Of course, a “gene” is regarded as providing a blueprint for such
a design, and it acts as a rule to control the behavior of a cell. On the
other hand, a gene exists within a cell system, and therefore the manner
in which it is expressed and the manner in which it was generated through
evolution are related to the cellular state, that is, the phenotype. Indeed,
even though there is information flow only from gene to phenotype, the
phenotype dynamics constrain the evolution of the gene, as discussed in
Chaps. 10 and 11. Indeed, the relationship between the intrinsic pheno-
typic fluctuations (Vip), and the fluctuations due to genetic variance, (Vg),
studied in Chap. 10, is a result of such an interrelationship. The inequality
Vip ≥ Vg is conjectured on the basis of evolutionary stability. In contrast,
there is no such constraint in a machine, and thus in that case, Vip can be
controlled in such a way that it is much smaller than Vg. In this sense, the
rate Vip

Vg
may serve as an index for biological plasticity, or deviation from

a “machine-like” behavior.

12.3 Fluctuations, Response, and Stability

In this book, we have investigated what we call the “softness” or plasticity of
cellular systems. In Chap. 3, we presented the hypothesis that this softness
can be expressed in terms of the size of the fluctuations displayed by a system.
We also consider the property of softness to be that which is responsible for
the ease with which a system changes in response to an external operation.
Thus, we believe there is a connection between the size of fluctuations and the
response exhibited by the system. In Chap. 3, we presented the idea that
the fluctuations in a system and the response coefficient corresponding to
an externally applied operation are proportional, as a generalization of the
Fluctuation–Dissipation Theorem of thermodynamics.1

The idea of a relation between fluctuations and response is not new in
physics. This idea was originally formulated in Einstein’s theory of Brown-
ian motion [Einstein 1905, 1906]. In particular, for systems near equilibrium,2

1 Although “fluctuation–dissipation” is the standard terminology in physics (Kubo
et al., 1972), in its generalized form in the context of living systems, rather than
“dissipation,” the term “response” is more easily understood, and we use it for
this reason.

2 The states to which this statement applies are those for which the deviation from
equilibrium can be expressed and treated linearly.
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their proportionality has been clearly established. Here, as an extension of the
concept of the equilibrium state in thermodynamics, we consider in a general
context a stable system and the fluctuations about some values of the variables
used to express the state of this system. We suppose that the distribution for
each of these variables possesses a single peak. Now, we study the manner in
which the system changes when the parameters controlling the state of the
system (e.g., those representing the external environment, such as the concen-
trations of the various chemical species surrounding the system, those corre-
sponding to the genes controlling the state of a cell, etc.) are changed slightly.
Then, it is shown that the response (i.e., the changes in the peak positions of
the distributions) is proportional to the strength of the fluctuations (i.e., the
widths of the distributions). Mathematically, there is nothing surprising about
this. What is important here is that we propose to describe a living system in
terms of a state, (x1, x2 . . .), a distribution, P (x1, x2 . . . ; a1, a2 . . .), and pa-
rameters, (a1, a2 . . .). It is our fundamental hypothesis that such a point of
view is effective for the purpose of understanding the phenomena exhibited by
living systems. Here, we regard the application of a “generalized force” as the
alteration of the parameter a, and we consider small such changes (i.e., those
in the linear response regime). Here, we stress that the feasibility of such a
treatment is a hypothesis, and the fluctuation–response relation in biological
contexts should not be considered in strict mathematical terms. Rather, this
is something whose rigorous formulation will require extensive experimental
study.

In this approach, we can consider the “generalized force” applied to the
system as corresponding to, for example, the change in the environmental con-
ditions or the combined process of mutation and selection. With the premises
stated here, the response coefficient and the size of the fluctuations are pro-
portional.

In our treatment, care must be taken in the choice of the variables used
to express the system. As mentioned in Chap. 6, in most reproduction sys-
tems, log-normal distributions are the fundamental form in which the system
behavior appears. By contrast, in equilibrium statistical physics, Gaussian
distributions appear most commonly, and indeed the fluctuation–response re-
lationship is formulated assuming Gaussian distributions. Thus, in situations
that the distributions of variables of interest take log-normal forms, as in
the case of cell reproduction systems, in order to apply relationships of a
fluctuation–response type, we need to employ the logarithms of the original
variables.

Now, let us reconsider the softness of living systems treated in this book
from the point of view of the relation between the response coefficient and
fluctuations.

• Fluctuation–response relations in the development process. As seen in
Chaps. 7 and 8, as the number of cells in a system increases and the
process of development progresses, cell differentiation begins to take place.
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In this process, the plasticity of the cells, that is, the ability they possess
to change into different types, decreases. Now, note that from the point of
view of a single cell, the change in the number of cells that occurs during
development appears as a change in the environmental conditions. Thus,
the change in the state of a cell during the development process can be
considered a response to changes in the environment. With this manner
of thinking, in consideration of the hypothesized fluctuation–response re-
lation, it is natural to conjecture that there is a correlation between the
change in the fluctuations in the state of a cell and that cell’s plasticity. In-
deed, the theory studied in Chaps. 7 and 8 predicts that as the embryonic
stem cells change, eventually yielding committed cells, and the omnipo-
tence of these original cells is lost, the size of the fluctuations exhibited
by the cell states decreases. In other words, the plasticity and fluctuation
strength are reduced together.3

It is vitally important to conduct experiments investigating the changes
exhibited by fluctuations in cell states. These studies could examine, for
example, (well-controlled) experimental systems of differentiating cells be-
ginning from stem cells, or the changes undergone by the fluctuations in in-
testinal bacteria (E. coli) as they experience differentiation (see Chap. 6).
Such systems would provide the opportunity to elucidate the nature of
fluctuation–response relations in differentiation processes.

It is a fundamental concept in the theory of thermodynamics that fluc-
tuations diverge at phase transitions of certain kinds (i.e., second-order
phase transitions). From this point of view, then, it is natural to hypoth-
esize that at the beginning of the differentiation process, in which stem
cells produce cells of various types, the states of the stem cells exhibit
large fluctuations. Again in physics, it is also known that in a first-order
transition, for example, from a solid to a liquid or gas, the temperature
can remain constant despite the input of heat, because of the latent heat
of the transition. Extending this idea to the case of cellular differentiation,
we can imagine the situation in which a cell does not immediately respond
to an effect that would alter its state. For example, suppose a cell exists
in some differentiated state A. Then, suppose that an external operation
whose effect is to push the cell into some state B is applied. For example,
such an operation could consist of altering the concentrations of the chem-
ical species in the cell’s environment. Then, in analogy to the first-order
thermodynamic phase transition, it may be the case that the cell remains
in the original state for some significant period of time before making the
transition to state B. By carrying out experiments that investigate such
behavior, it should be possible to make quantitative determinations of

3 The theory discussed here does not provide predictions about the direction of the
change but only that the plasticity and fluctuations change together. Separate
considerations are necessary to demonstrate that these in fact decrease during
the development process. Discussion of this point is given in the following section.
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the ease or difficulty with which cell states can be changed. Experimental
results of this kind would certainly be useful in the development of a phe-
nomenological theory that can describe the phase transitions exhibited by
cellular systems.

• The fluctuation–response relation in evolution. As discussed in Chap. 10,
the phenomenon of selection in evolution can be regarded as a process in
which the fittest phenotype with respect to some trait is chosen. With this
interpretation, evolution can be thought of as a process that is pulled along
in a particular direction. It is natural, then, to consider a fluctuation–
response relation in the context of evolution and to consider evolution
itself as a response to some externally applied operations. In this case,
the response in question is that of the phenotype, and thus if there are
fluctuations of the phenotype and these can be measured, the idea of a
fluctuation–response relation can be applied.

As discussed in Chap. 10, since living systems necessarily experience
fluctuations, even for a fixed set of genes, there are fluctuations in the
phenotype. With these considerations, we have investigated evolution in
Chap. 10 while considering the role played by phenotypic fluctuations. The
validity of the fluctuation–response relationship has been demonstrated in
numerical simulations of a cell consisting of a reaction network, while the
positive correlation of phenotypic fluctuations and the rate of evolution was
also observed in an artificial selection experiment that employed bacteria
to enhance fluorescence of the proteins within the investigated cells.

Note that the relationship studied here regards the phenotypic fluc-
tuations exhibited by clones, that is, individuals who possess identical
genes. By contrast, most study in evolutionary genetics carried out to this
time concerns phenotypic fluctuations that result from genetic variation.
In Chap. 10, we proposed a relationship between these two types of phe-
notypic fluctuations, that is, those exhibited by clones and those resulting
from genetic variations.

• The fluctuation–response relation corresponding to operations. Perhaps the
most direct way of investigating the fluctuation–response relation is to
make measurements of the change undergone by the state of a cell as its
environmental conditions (e.g., the concentrations of certain chemical sub-
stances) are altered. For example, we could study the relation between the
fluctuations in the cellular state of bacteria and the amount of change dis-
played by this state as the nutritional level of the environment is changed
little by little.

• Development and evolution from the operational point of view. Elucidating
the relation between evolution and development is one of the fundamental
problems in biology, and it has been the subject of investigation for many
years. Häckel asserted that ontogeny repeats phylogeny. In other words,
each stage in the process of development of an individual corresponds to
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a stage in the evolution of the species to which that individual belongs.
The relation described by Häckel, however, is no longer considered a “law”
in any sense, because of its overly broad and vague expression. However,
there are probably very few biologists who would deny that there is some
relationship between the processes of development and evolution. This
“sense” of a connection, however, has not yet been successfully formulated
theoretically.

Operations capable of bringing about evolution have been a main topic
in the realm of biotechnology from ancient times, when humans began
developing techniques of artificial selection to create domesticated plants
and animals to their liking, to the present, in the context of evolution-
ary engineering. Also, today, operations that can affect development, for
example, with regard to somatic clone technology and regenerative en-
gineering, are of great interest. It may be the case that the relationship
between development and evolution can be understood by considering the
types of operations that can influence either.

The fluctuation–response relation enters the discussion here because the
change in development and evolution caused by such operations are re-
garded as responses to external “forces” and thus are connected to fluctu-
ations of some kind. Now, if the fluctuations relevant to the processes of
development and evolution are not independent, their relationship would
represent an interesting connection between development and evolution.
Indeed, if the “responses” to operations affecting evolution and develop-
ment possess proportionality relations with the same fluctuations, then,
through these fluctuations, clearly there must be a relation between the
two different types of operations. We believe that if experiments are carried
out from this point of view, the relation between the processes of develop-
ment and evolution and their relation to fluctuations can be clarified.

• Problems to address. Although we believe that such an approach will be
effective, there are several fundamental problems concerning the appli-
cation of the fluctuation – response relation to living systems. First, in
normal thermodynamic contexts, the coefficient in the proportionality re-
lation between the fluctuations and response is expressed in terms of a
universal quantity, the temperature. However, for the situations in which
we are interested, whether we are considering the states of a cell or an
organism, the coefficient of proportionality in the fluctuation – response
relation cannot be the thermodynamic temperature. Furthermore, even if
we were able to construct fluctuation–response relations for a number of
systems, it is quite possible that the proportionality coefficient would not
be a universal quantity, but vary from case to case. If, on the other hand,
we could identify coefficients that are each universal for at least a certain
class of cells, then it may be possible to formulate a theoretical description
of the “activity” of cells that experimentalists know on an intuitive level.
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Next, we must recognize that the formulation of the fluctuation–response
relation involves a number of conditions. First, this is a relation that applies
to responses to “small” perturbations. Thus, in order for it to be of use in any
given case, there must exist a realm of small yet meaningful perturbations of
the system. It should be noted, however, that even for perturbations that are
somewhat too large for a strict proportionality relation to hold, it will likely
be the case that there remains a strong correlation between fluctuations and
response, and therefore in this situation too, it should be possible to formulate
some kind of relation between the two. Nevertheless, in any attempt to for-
mulate for application to living systems a fluctuation – response relation that
goes beyond the usual proportionality form, we must first treat the following
points. (The discussion below is of a somewhat speculative nature, and the
reader may wish to skip it.)

• First, in the usual situation, the fluctuation–response relation applies to
a response to the change in a system parameter that results from an ex-
ternally applied operation. However, in the cases of the evolution and de-
velopment of organisms, the parameter change in question represents au-
tonomous behavior of the system. For example, the change in cell number
that occurs during the process of development is due to the reproduction
carried out by the cells themselves. Thus, here, the change undergone by
the parameter of interest is determined by the properties of the system of
cells under consideration. In situations like this, there arise phenomena of
reciprocal influences between the properties of the whole and the proper-
ties of the parts – something of a circulation of effects between different
scales, which is characteristic of so-called complex systems. In Chaps. 7–9,
we saw how through this circulation, stable states of individual cells and
the properties of the cell aggregate are formed. To obtain an understanding
of living systems, it is necessary to elucidate the relation between the fluc-
tuations exhibited by the states of individual cells and the fluctuations in
the distribution of cells in the structure to which they belong. For example,
in the models studied in Chaps. 7–9, initially, each cell possesses a vari-
ety of components, and the fluctuations in their concentrations are large.
Then, as the cells differentiate and their properties become more fixed, the
fluctuations in the cell states are attenuated, but in the system as a whole,
there comes to appear a distribution of various cell types. It is important
to obtain a general theory with which this reciprocal relationship between
the “parts” and the “whole” can be understood.

• How do we separate the “state” from the “noise” (fluctuations)? Accord-
ing to the equilibrium fluctuation-dissipation theorem in thermodynamics,
fluctuations in the state of a system consist of unbiased noise, that is,
thermal noise and molecular fluctuations. In this case, it is not difficult
to clearly distinguish the state from the random fluctuations. However, in
the study of life, the systems of interest are quite generally in nonequi-
librium states, and for this reason, we must consider the validity of the
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approximation we make when we separate the system into state variables
and fluctuations.

First, if the dynamics of the system state themselves possess some di-
rectionality, what we wish to consider as noise are the deviations from this
directional change. However, if we cannot make a clear distinction between
the dynamics of the state and the fluctuations, it will no longer be possi-
ble to regard the fluctuations as random. Then, we will have situations in
which, for example, when some state variable realizes a particular value,
the noise will become more intense, or if we move in a specific direction
in state space, the size of the fluctuations will increase, and in this way,
fluctuations will come to possess directionality and selectivity. In general,
as the number of state variables increases, it becomes more likely for this
type of situation to be realized. Indeed, it has been proposed that chaotic
itinerancy should be understood in terms of such behavior as a general
phenomenon characterizing state spaces of many variables. In that inter-
pretation, when the system is near one attractor, its state can be described
by the dynamics of a small number of state variables and fluctuations about
these dynamics. Then, as those fluctuations gradually increase in intensity,
it eventually becomes necessary to use a larger number of variables in order
to express the state of the system. Again, after some time, the system will
settle into the neighborhood of another attractor, and it will again be pos-
sible to describe its state in terms of a (different) small set of variables and
fluctuations. Considering this kind of behavior, it becomes clear that for
application to living systems, we must formulate generalized fluctuation–
response relations that can account for the role played by fluctuations in
the selection of transitions between states.

• How do we distinguish between variables and parameters? In the case of
physical phenomena, the concept of an externally applied operation and
the response to it can usually be clearly defined. A typical example is an
externally controlled magnetic field and the effect this introduces through
a magnetic interaction. In the case of biological systems, of course, there
are similar situations. For example, we can alter the concentrations of
the chemical species in the environment of a cell and observe the result-
ing change in the cell state. However, in the cases of development and
evolution, the situation would seem to be different. Here, the processes
to which the systems respond – the increase in cell number and the se-
lection of individuals according to the fitness – exist within the systems
themselves. Thus here, to apply the idea of the system changing in re-
sponse to an external operation, it is necessary to somehow take these
processes outside the system, treating them as changes undergone by
external parameters. For example, in the experiments discussed in Chap. 10
investigating the evolution of bacteria, it is necessary to regard the change
undergone by the genes as a change in the parameters controlling the cell
state. Implicit in this manner of description are the assumptions that the
genes change much more slowly than the phenotypes of the cell states and,
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of course, that genes can in fact be treated as parameters that control the
cell state. As discussed in Chaps. 10–11, this point of view and its assump-
tions underlie present-day evolutionary biology. To verify the validity of
this approach, or to make progress toward a more effective approach, it
is necessary to determine to what extent such a separation of state vari-
ables and control parameters is possible and what the limit on this extent
implies about the nature of the fluctuation-response relation that can be
applied to such a system.

• Memory. If the present behavior of a system depends on the states in
which it existed to this time, then this history must be accounted for in
the state variables used to describe it. For example, the behavior of a cell
depends on whether or not at some time in its past it was kept in a culture
lacking in nutritional components. In this case, the memory of the past
experience would be reflected in the cell state. In the dynamical systems
approach that we employ, the effects of such historical conditions must be
accounted for by the values of the variables describing the present cell state.
Now, if it were possible to introduce a set of variables that correspond to
this system “memory,” we could use the type of approach considered to
this point, that is, that of treating a state and the fluctuations around
it. However, if we did attempt to account for memory in this manner,
it would be necessary to prepare a very large number of variables. In
consideration of this fact, it seems that a more effective approach would be
to employ a smaller number of state variables and regard everything that
is not described by these as noise. Then, as time goes on and the system
“acquires history,” certain components of the fluctuations due to noise
can be successively reinterpreted and treated as new variables. Obviously,
the problems inherent in such an approach are closely related to those of
distinguishing the state from the fluctuations.

12.4 The “Law” of Decreasing Plasticity
in a Closed System

In the previous section, we discussed the representation of plasticity in terms
of fluctuations and its relation to response. Now, it is an important concept
that even in the absence of an external operation, the plasticity of a system
can decrease in time. This is seen, for example, in the processes of development
and evolution. Experimental and numerical results obtained from the models
considered in this book have led us to conjecture the “law” that the plasticity
of a closed system decreases in time (see also Chap. 3). Below we present some
specific examples of such behavior.

• The decrease in plasticity of cell states during the process of development:
As cells differentiate and become committed, they lose plasticity. Accord-
ing to theoretical models, this is realized as a decrease of the variation in
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the chemical constituents of the cell (in other words, a decrease of the vari-
ation in gene expression) and transitions to states that are more resistant
to change.

• In the evolution process discussed in Chap. 10, we considered a fixed con-
dition of selection to increase some chemical concentration or the degree of
fluorescence. In this case, as evolution progresses, the phenotypic fluctua-
tions always decrease in successive generations. In this sense, the plasticity
decreases through evolution resulting from a given fixed selection condi-
tion.

• Loss of phenotypic plasticity in the speciation process through fixing in
genotype: According to the models of speciation considered in Chap. 11,
in the case that there exist several possible phenotype states, as these
become fixed in the genes, the phenotypes of the individuals come to be
determined by the genotypes so defined. In this way, there is a loss of
plasticity in the phenotypes.

• Cell models constructed to describe the origin of life suggest that within a
system characterized by a diverse and unstable state there exists a mecha-
nism through which the state becomes “consolidated” into one exhibiting
recursive reproduction controlled by certain chemicals by certain minority
chemical species.

Let us consider a system described by a fixed set of variables and its dy-
namics in the state space of these variables. Usually, if such a system happens
to fall into a state characterized by small variations of the variables, it will
tend to remain there for a long time. This can be interpreted as directionality
in the time evolution of the system toward states of decreasing plasticity.

It is important to carry out theoretical and experimental studies through
which we can formulate a quantitative expression of this “law of decreasing
plasticity.” In addition, it is necessary to elucidate the conditions needed to
define a “closed system” characterized by an invariant state space.

12.5 The Restoration of Plasticity in an “Open” System

With only the loss of plasticity discussed above, a living system would, from
its original “soft” state, gradually approach something resembling a logical
machine. In fact, however, this is not what we always see in actual living
systems. To resolve this discrepancy, it is necessary to study how and in what
cases the plasticity of a system can be restored. In this book, to this point we
have considered the following examples.

• Interference among processes. There are situations, for example in gas-
trulation, in which, because of their migration, the arrangement of cells
is altered, and cells (or groups of cells) that were previously separated
by large distances, and therefore had essentially no interaction, come into
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immediate contact and begin to interact strongly. Here, there is an inter-
ference between two processes representing different aspects of the system,
one of a mechanical nature (cell migration) and one of a chemical nature
(cell differentiation). Through this interference, a previously stable cellular
state is changed, and as a result, a new process of differentiation begins.

• Interference with a new set of variables. In Chap. 10, we studied the se-
lection process of a cell through which the fitness, represented by the con-
centration of some chemical, increases. With this evolutionary process, the
plasticity of the phenotype decreases. In this evolutionary process, when
we increase the mutation rate, an error catastrophe is encountered. As a
result, the distribution that was sharply peaked at the state of highest fit-
ness collapses, and a very broad distribution extending to individuals with
very low fitness appears (see Sect. 10.5). Through this process, phenotypic
fluctuations and, accordingly, plasticity increase.

Note that the evolutionary process to increase some phenotypic vari-
able is represented by the increase of a single (scalar) parameter, as dis-
cussed in Chap. 10. Recall, however, that a gene in the model there cor-
responds to a reaction network, which is originally represented by a very
high-dimensional space. Only for a given selection process can it be ap-
proximately represented by a single parameter, say the Hamming distance
from the fittest network. For this reason, when the collapse of the distri-
bution occurs through error catastrophe, the original high dimensionality
continues to have an effect on the system behavior, and consequently, the
one-dimensional representation of evolution is not valid. Now, the change
in network paths influences the phenotype (representing the fitness), and
this leads to a restoration of the plasticity.

• Restoration caused by an external operation. In somatic clone experiments
[Gurodn et al., 1975, Campbell et al., 1996], the restoration of plastic-
ity takes the form of a recovery of the omnipotence of cells that was lost
through differentiation. Such experiments have succeeded in restoring the
plasticity of differentiated cells by subjecting the nuclei of cells to new con-
ditions. In the field of embryological engineering, such operations capable
of restoring plasticity have been sought. In this case, clearly, the operation
causing this return to the original plasticity is applied externally. At this
time, the question of what kinds of operations can lead to the restoration
of plasticity has not been theoretically settled.

• Symbiosis. There are situations in which two different organisms exist in a
state of strong mutual interaction, and for each, the existence of the other
is necessary for its survival and reproduction. Such a state is referred to
as “symbiosis.”

In some sense, symbiosis is a miraculous state, as, in general, combining
distinct systems requires very delicate matching of functions. For example,
consider the joining of two independent logical systems, say two indepen-
dent programs written separately. If these programs have even a slight
degree of complexity, then it would be almost impossible that simply con-
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necting them would yield a combined program that runs without error.
However, among biological systems, such joining of separate systems has
occurred from time to time, during the course of evolution. For example,
it is believed that endosymbiosis (Margulis, 1981) played an essential role
in the formation of the eucaryotic cell. It is interesting then to consider
how two independent biological systems (e.g., independent biochemical
networks) can join to form a new composite system without damaging (or
killing) each system.

If two such systems were rigid logical systems programmed by genes
through some hard “if–then” rules, such fusion would be quite difficult to
realize. However, according to the understanding presented in this book,
biological systems are originally dynamically flexible, whereas they may
become rigidly determined by genetics later. Also, there is the possibility
that when two such rigidly fixed systems are joined under extremely harsh
environmental conditions, their rigid genetic rules could be relaxed and
they may regain their dynamical flexibility. Recall, for example, the situ-
ation regarding context-dependent rules of cell differentiation in Chap. 8.
In particular, under certain unusual conditions, such as the removal of all
cells of a given type, it is possible for the de-differentiation of determined
cells to result and the generated differentiation rules to be lost.

In modeling this kind of situation, among the variables used to describe
the internal state of one individual, it is necessary to include variables
corresponding to the other (see Fig. 12.1). Thus, this symbiotic relation
results in a state space of higher dimension. In such a situation, it is possi-
ble that a stable recursive production that would exist for these organisms
if they existed independently is now unstable due to the interaction be-
tween them, and a new, intrinsically symbiotic state emerges. Indeed, from
a theoretical point of view, it is generally the case that a system with many
strongly interacting variables is easily destabilized.

Fig. 12.1. Schematic representation of the interference between two organisms rep-
resented as a network. Two organisms with different reaction networks influence
each other, resulting in the mutual change of their states
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The first observation of such symbiosis in laboratory was made by Jeon
(1972), somewhat accidentally. Recently, Todoriki et al. (2002a,b) have
succeeded in constructing a symbiotic system, using amoeba (slime mold)
and bacteria (E. Coli). Usually, the latter is eaten by the former, but
by creating a situation in which the amoeba could not survive if they
completely consumed the bacteria, the two species are found to form a
symbiotic relationship. In this case, bacteria are “breeded” by amoeba.
In the system studied there, the bacteria and amoeba began to interact
strongly, and as a result, the phenotypes that each possessed previously
become unstable. Indeed, their gene expressions changed drastically [Mat-
suyama et al. 2004], and this led to a novel composition of proteins and
morphology. This combined system then made a transition to a new stable
state that was preserved over a number of generations.

In the experiment described above, the bacteria and amoeba did not
form a new individual with recursive production sharing the genes. How-
ever, it is believed that in the history of living organisms, there have been
cases in which two previously distinct organisms have formed a symbiotic
relationship through which they eventually began to share genes and fi-
nally merged into a single organism. In such a situation, we can imagine
that, while the plasticity of the system is restored when the two individuals
first form a symbiotic relationship, after the passage of many generations,
the system evolves in a new state space, and through this process it again
loses plasticity. This loss of plasticity can be understood as resulting from
the “consolidation” of the phenotype into the genotype, as discussed in
Chap. 11.

• Environmental change (change in organism population). In the process of
the evolution of some species, it will generally be the case that, because
of many factors, the environment in which the species exists is constantly
changing. Here, that which we regard as the “environment” is not limited
to such things as climate. Rather, this will include a much broader range of
factors, including the types of other organisms living in the vicinity of the
species in question, as well as their populations and distributions. Now, as
the result of some change in the environment, we can imagine the states of
some individuals of a given species will become unstable, and because of
the restored plasticity that this instability represents, evolutionary change
can occur. Indeed, we can think of the process of evolution as progressing
in this manner.

As discussed in Chap. 10, it is believed that the phenotypic plasticity
that emerges in this manner effects change in the genes, which is eventually
fixed. In this way, the plasticity of the phenotype is gradually lost.

The restoration of plasticity resulting from environmental changes should
be experimentally observable. In fact, this is the case for the experiments
studying the differentiation of E. coli mentioned in Chap. 8. There, the ini-
tial conditions, in which the bacteria are placed in an environment of poor
nutritional composition, are such that survival and reproduction become
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difficult. In those experiments, it was investigated how this change leads to
an increase in the plasticity of the phenotype and affects gene expression.

Within the present context, perhaps the most significant environmen-
tal change is the variation in population of individuals. Obviously, such
changes are important in the study of the evolution of ecosystems. How-
ever, they also play an important role in the developmental process of
single organisms, where there exist mechanisms for both the increase (re-
production) and decrease (apoptosis) of cell number. Recently, Takagi et al.
(2005), studying a model of cell differentiation similar to those discussed in
Chaps. 7–9, discovered that at a certain stage in the development process,
a large number of cells die spontaneously. They observed that as a re-
sult of this change, the states of the remaining cells become unstable and
thereby regain plasticity. From these conditions, then, a new process of
differentiation occurs, and new cell types appear. Such behavior is clearly
related to the processes of metamorphosis exhibited by insects and other
organisms, which can be interpreted in the same way: At some stage, the
cell structures that existed previously become unstable and plasticity is
(locally) restored, with the result that new kinds of cells begin to emerge.

12.6 A Theoretical Approach to Plasticity Dynamics

We now consider the question of how to construct a theoretical framework
within which we can understand the types of plasticity dynamics discussed
above. Of course, here it is necessary to take account of the role of fluctuations,
but below we discuss some new points of interest from a dynamical systems
point of view. (The treatment given below is intended only for specialists.)

• Chaotic itinerancy. As discussed above, itinerant phenomena in which a
system makes transitions between stable states that are described by a rela-
tively small number of variables can be interpreted as transition processes
characterized by high plasticity between steady states characterized by
low plasticity. With this understanding, we see that it is important here
to more closely study the nature of chaotic itinerancy.

• Number of variables (i.e., degrees of freedom). First, let us address the
question of the number of variables allowing for stable states. Of course,
this number depends on the relationships among the variables and the
strengths of their couplings. (In the case of reaction networks, this is de-
termined by several factors, including the number of reaction paths cor-
responding to each component chemical, whether or not the structure of
the coupling network is random, and the reaction rates.)4 It is important

4 In a model describing the variation in populations of an ecosystem, Robert May
found that as the number of species increases, it becomes more difficult to realize
the coexistence of species as stable fixed points, representing constant popula-
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to treat this problem of variable number within the context of some ap-
propriate set of conditions.

Recently, it has been found (Kaneko, 2002d) in chaotic systems in which
all elements interact strongly (globally coupled chaotic systems (Kaneko,
1990)) that if the number of variables is at least on the order of 5–10, the
system will tend to exhibit chaotic itinerancy. For systems with smaller
numbers of variables, it is usually the case that there exist in state space
a number of well-separated attractors representing stable states. Then, as
the number of variables increases, attractors and the boundaries of their
basins of attraction will begin to approach one another (see Sect. 3.2.4)
(Kaneko, 1997a, 1998a). When the distances between these become van-
ishingly small, a system can be caused to jump from one attractor to
another by arbitrarily small perturbations. The result is a system that ex-
hibits chaotic itinerancy as it makes transitions among a number of stable
states. Thus, the situation seen in the case that the number of variables
is less than 5–10 (with attractors and the boundaries of their basins sepa-
rated by significant distances) gradually changes as the number of variables
increases, and itinerant behavior appears.

With regard to the question of why there is a crossover at N ≈ 5–
10, it has been asserted that the number representing a sufficiently large
system for chaotic itinerancy to occur may be the value N at which (N−1)!
becomes larger than 2N . The reasoning behind this conjecture is as follows.
First, we can think of the ‘size’ of state space as increasing with the number
of elements N as ∼ mN , where m represents the number of regions in state
space characterized by values of a single variable that we regard as distinct.
In the simplest case, we can think of distinguishing between, for example,
only negative and positive values of a given variable, in which case we
would have m = 2. Now, the number of possible ways of forming different
clusters of N elements, that is, the number of ways of dividing N elements
into different groups, is of order (N−1)!. Next, note that a boundary of an
attractor basin can be expressed in the form of an equation involving some
combination of the variables. In many situations, an equation obtained
by replacing the variables appearing in such an equation with any other
variables will also represent a boundary (Kaneko, 2002d). If all possible
combinations of variables yield such boundaries when substituted into this
equation, then the number of boundaries in state space increases as (N −
1)!. Thus, no matter how finely we wish to divide state space into distinct
cells (i.e., no matter how large we choose m), as N increases, the number
of boundaries grows much more quickly than the size of state space, and
therefore eventually they impinge upon one another.

tions of individual species (May, 1973). However, in the case that the populations
of individual species vary chaotically, in general, there is no such problem of
coexistence.
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Although the argument given above is quite rough, and indeed to de-
rive a precise number of the kind in which we are interested here would be
nearly impossible, the very rapid increase of the quantity (N −1)! strongly
suggests that beyond some point, there is a “crowding effect” among the
boundaries, and the fact that (N − 1)! becomes greater than 2N at ap-
proximately N = 6 indicates that perhaps in the range N = 5–10, the
well-separated configuration of boundaries starts to become lost.

The discussion given to this point applies to the simple case in which
a set of identical elements all interact in identical manners. However, the
argument that the number of combinations of elements, which increases
as a factorial, grows more rapidly and will at some point surpass the size
of the state space, which increases as an exponential, is both simple and
quite generally valid. Thus the idea that the point beyond which the system
possesses “many” elements corresponds to the point at which the factorial
exceeds the exponential perhaps applies to many types of systems.

For example, Ishihara and Kaneko (2005) considered a system consist-
ing of threshold-type elements that generate an output of tanh(β(x−xthr)
when given an input of x. Because each element yields an on–off output
depending on whether or not x > xthr, this type of system is often used as
a model for neural networks and gene networks. Consider a feed-forward
network composed of such elements interfering with each other in parallel.
When the number of elements acting in parallel, N , is larger than 6, it is
found that the on–off type behavior is lost, and it is replaced by a fuzzy
output. (Recall the discussion given in Sect. 7.1 concerning the collapse
of on–off behavior through the influence of noise.) This crossover number
again can be understood from the condition (N −1)! > 2N . From this con-
sideration, it is seen why when many elements interfere, “logical” behavior
of such an on–off nature is lost.

With a crossover value of order 5–10 in mind, it is quite interesting
that, as discussed in Sect. 5.4, stable mutually catalytic states first appear
in a system of catalytic chemical components when the number of such
strongly interacting components is on the order of 5–10.5

The discussion given above regards variables that are mutually inter-
acting. In general, the “magic” number in which we are interested will
change with the coupling structure among the variables. Thus, to obtain
a better understanding of the situation regarding the number of variables,

5 The existence of a “magic number” on this order was first pointed out in psy-
chology, where it was found experimentally that the number of items that can be
stored in the mind for a short term is 7± 2. For example, a person can remember
a 7-digit number (e.g., a phone number), but certainly not a 20-digit number.
It has been argued that this magic number of 7 ± 2 is common to all groups of
people, noting that, for example, the number of colors that people claim to see
in a rainbow varies little among cultures. It is not clear, however, whether the
argument given above involving combinatorial divergence offers an understanding
of this phenomenon.
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it is necessary to study the structure of the coupling network. First, con-
sider the case in which there are several “clusters” of variables that are
defined by the condition that variables within each cluster influence each
other strongly, while variables in different clusters influence each other only
weakly. Here, the situation differs from that described above. Considering
that a group of fewer than 5–10 strongly interacting variables is easily sta-
bilized, a system exhibiting hierarchical coupling structure in which there
are a few weakly coupled modules consisting of several strongly interact-
ing variables should tend to display stability. In the model of catalytic
reaction network in Sect. 5.4, it has been found that modules of this kind
will be formed, but as the number of constituents increases, such struc-
ture becomes unstable, and itinerant behavior appears. Then, in time, new
modular structure is formed, and the itinerant behavior ceases. Thus, we
see repeated alternation between the itinerancy discussed in Sect. 12.1.3
and the dynamic consolidation discussed in Sect. 12.1.2.

This behavior can also be interpreted as the repeated loss and restora-
tion of plasticity. If the number of elements coupled strongly is few, there
is a deterministic on–off output obtained from inputs, and hence the net-
work has low plasticity, while if the number is larger, the output is fuzzy
or chaotic, and the system has high plasticity. For example, in the stem
cell dynamics studied in Chap. 8, many strongly interacting chemicals
coexist, while the number of such chemicals is smaller for differentiated
(committed) cells. The restoration of plasticity discussed in the last sub-
section often involves the increase of the number of strongly interacting
degrees of freedom.

The problem concerning the degrees of freedom considered here is also
related to symbiotic behavior. The situation in which distinct organisms
exist separately corresponds to the case in which there are separate net-
works of variables forming closed systems. If those networks begin to in-
teract strongly, the number of coupled variables increases. As a result of
this increase, the state of the system becomes unstable, and the phenotype
comes to display diversity and plasticity. Then, after some time, the vari-
ables again become separated into a number of groups, and fixed, stable
states again begin to emerge.

• Interference of slow and fast processes. Such properties as reactivity, rate
of synthesis and stability vary greatly among molecules. For example, in
comparison to DNA, enzymes are synthesized and decomposed quickly.
Considering such different rates, we realize that in a system consisting of
a number of chemical constituents, the dynamics of variables representing
the concentrations of these constituents are characterized by different time
scales.

In physics, in the case that fast and slow variables interact, the method
of “adiabatic elimination” has proved useful. In this method, the following
approximation is made. As seen from the point of view of the fast vari-
ables, the slow variables are nearly static. Then, with the approximation



340 12 Conclusion

that the behavior of the fast variables can be determined by treating the
slow variables as fixed, it is assumed that the fast variables are always in a
state of equilibrium with respect to the values taken by the slow variables.
In this way, the fast variables can be eliminated from consideration, and
the description of the system is made in terms of the slow variables alone.
Within this description, the fast variables evolve in an entirely “passive”
manner with respect to the slow variables. In connection to this method,
it is interesting to reconsider the assumption made in the field of popu-
lation genetics (see Chap. 10) that the phenotype is determined uniquely
by the genotype. Note that because the genotype changes only between
generations, whereas the phenotype can change in the process of develop-
ment during a single generation, we can interpret the genotype as a slow
variable and the phenotype as a fast variable. Hence, the assumption made
in population genetics is supported by the idea of adiabatic elimination.

Now, it is necessary to consider the realm in which the method of adia-
batic elimination is valid, as, in fact, for certain types of time dependence
of the fast variables, they cannot be considered as evolving passively. In
particular, if the dynamics of the fast variables straddle a transition point
(i.e., bifurcation point) at which the system makes a transition from one
stable state to another, it is known that there appears a slow time scale
associated with these dynamics. The dynamical behavior displayed in spe-
ciation (discussed in Chap. 11), which consists of a transition of the phe-
notype between two states, is precisely of this kind. This bifurcation in
the phenotype then becomes fixed in the genotype, and hence, through
this transition, the fast variables exercise a “reverse” influence on the slow
variables. Also, in the case that the fast variables exhibit chaotic dynamics,
because chaos includes motion of arbitrarily long periods, these fast vari-
ables actually possess modes much slower than the underlying time scale.
Thus in this case too, the fast variables do not change passively with re-
spect to the slow variables but, rather, mutually interact with them. (For
an investigation of an actual case of this kind, see Fujimoto & Kaneko,
2003.)

When there exist such transitions or chaos, and the system evolves
through the mutual influence of both slow and fast variables, it is no longer
sufficient to consider only the slow variables. Here, the effective number
of variables (i.e., the number of degrees of freedom) cannot be reduced
through the separation of time scales. Because there are more degrees of
freedom in this case, there can arise instabilities that do not exist in the
case when such a separation of time scales can be carried out. Thus, situ-
ations in which there is mutual influence of slow and fast modes represent
states of greater plasticity. In connection to problems involving the number
of variables necessary to describe a system, it is a very important theoret-
ical problem to obtain a more complete understanding of the interference
between dynamics on different time scales.
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It is interesting here to reconsider the experiments discussed in
Chap. 8. There it was seen that when a cell is subjected to harsh con-
ditions, its metabolic time scale can be increased to the point that it
regains plasticity, which results in the ability to create new states. It may
be possible to account for this behavior in terms of the interference of slow
and fast scales, as here, the slowing down of the metabolic rate can cause
its time scale to become of the same order of or slower than that of gene
dynamics.

12.7 Developmental Phenomenology: Stability,
Irreversibility, Operations, Equation of State

In this book, we have sought to lay out a proper phenomenology and ascertain
the principles necessary to understand living organisms as dynamical systems.
If it happens that the phenomena of life are nothing more than a complicated
mixture of many processes, then the search for new principles is of no use, and
the study of life would be reduced to an investigation of how these individual
processes are delicately combined. Of course, it is important to understand
how successful combinations are selected, but ultimately, this is merely Dar-
win’s principle. Contrastingly, in this book, we have attempted to construct
a universal phenomenology based on the dynamic relationship between the
whole and the parts.

As mentioned in Chap. 1, the field of thermodynamics is an example of an
almost miraculously successful phenomenological theory. There, considering
appropriate types of systems, and working within certain limitations on their
description, the theory has succeeded in extracting universal properties that
are independent of the details of individual systems. What we contemplate
here is whether such a miraculous phenomenological theory can be devel-
oped to describe the phenomena of living systems. Here, let us reconsider the
feasibility of such a program as a counterpart to cellular biology (a system
consisting of an ensemble of cells).

Question 1: The field of thermodynamics defines the concept of equi-
librium states and limits its scope to the description of these states and
transitions between them. It is this limitation that allowed for the con-
struction of a successful phenomenological theory. Is it possible in the
study of life to impose a limitation that can play a similar role?

At the very least, we can say that the properties of internal diversity
and the ability to multiply (i.e., create nearly identical copies) are pos-
sessed by all life forms. Now, we ask if it is possible, as a counterpart to
the key concept of an equilibrium state in thermodynamics, to base the
construction of a phenomenological theory of life on the key concept of a
steady growth system, or in other words, a reproducing system.
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Question 2: Thermodynamics grew out of intuitive knowledge we have
based on our own experience with the concepts of heat, temperature, irre-
versibility, etc. Do we have such knowledge of living systems from which
we could create a phenomenological theory?

By comparison to our understanding of thermodynamic phenomena, our
comprehension of the phenomena of living systems is more vague, and it
probably cannot lead so easily to a mathematically formalized phenom-
enological theory. However, although it is not as clear as our direct un-
derstanding of heat or temperature, we certainly do have some intuitive
idea of the qualities possessed by living creatures, and good experimen-
tal biologists have a feeling for the characteristic “vigor” or activity of
organisms. Of course, we do not wish for this pursuit to degenerate into a
simplistic vitalism, but we believe that it should be possible to construct
a phenomenological theory of life by supplementing and strengthening our
intuitive understanding with phenomenological results derived from ap-
propriate models and developing a theory that can account for these.
Question 3: In the case of thermodynamics, the macroscopic state is de-
scribed by a small number of variables. There, the fact that it is possible
to separate the micro and macro scales makes it possible to have a phe-
nomenology expressed in terms of just these few variables. Can something
similar be accomplished in the case of living systems?

For living systems, it seems unfeasible to develop a phenomenological
theory in which behavior on microscopic levels is completely separated out.
If in fact this cannot be done, it would be necessary to take the point of
view of complex systems, in which we consider the complementarity of the
“whole” and the “parts.” However, we conjecture that, to at least some
degree, it is possible to describe the universal properties of living systems
with a small number of variables. Indeed, when we observe creatures casu-
ally, it would seem that the number of variables that we actually apprehend
is not large. Therefore, even if we cannot completely separate microscopic
phenomena (e.g., the dynamics of individual chemical constituents within
a cell) from macroscopic phenomena (e.g., the state of an entire cell), it is
reasonable that, properly limiting the scope of our description, we should
be able to realize such a separation as a useful approximation.

Of course, from another point of view, the stability that is realized as a
consequence of the inseparability between micro and macro scales is itself a
topic of study in complex systems. In Chaps. 7–9, we considered examples
in which the stability of each element (one cell) and the stability of the
entire set of elements (a cell complex) are realized cooperatively. In this
case, the limitless number of possible microscopic states become segregated
into just a few types of cells. Thus, because of this interaction of micro
and macro scales, the number of variables needed to describe the system
is greatly reduced, at least when we consider one particular property.
Question 4: In thermodynamics, stability and irreversibility, which are
intimately related properties of a system, are fundamentally important
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concepts. In fact, the framework of thermodynamics was constructed by
taking the point of view that we need only focus on stable properties and
can ignore (or perhaps must ignore) details. Is an analogous description
focusing on stability possible for living systems?

Now, note that irreversibility and stability are also key concepts with
regard to living organisms. Of course, in the case of living systems, these
properties cannot be expressed simply in terms of ordinary thermodynamic
quantities, and it is important to keep in mind that what we consider here
is a phenomenological theory that is very different from thermodynamics.
However, it is also important to realize that in the mathematical models
presented in Chaps. 7–9, stability has been observed from the level of cells
to the level of entire cell aggregates, and some degree of understanding of
this stability has been obtained from a dynamical systems point of view.
In particular, the control of cell-type distributions in the process of cell
differentiation (treated in Chap. 8) is such that the system responds to an
external perturbation so as to cancel its effect, in a manner analogous to
that described by the Le Chatelier principle of thermodynamics. Also, cell
differentiation is characterized by irreversibility as it progresses from stem
cells to the final, committed cells. These considerations lead us to believe
that indeed it may be possible to construct a phenomenological theory of
life based on the concepts of stability and irreversibility (Table 12.1).
Question 5: Is there some quantity analogous to thermodynamic entropy
in terms of which irreversibility can be expressed?

Although it is likely difficult to find a single quantity with which this
can be done, we may be able to define some functions of the pattern of
gene expressions that can quantify the loss of plasticity. In attempting
to construct such functions, clearly, the universal distribution law of gene
expression presented in Chap. 6 will certainly be important. In addition,
as discussed in Chaps. 7–9, as an organism develops, there is a gradual
decrease in both the diversity of chemical constituents within each cell
and the instability of the dynamics (or, roughly speaking, the variability
of states) displayed by their concentrations. Of course, this directional-
ity characterizes a normal developmental process, and it should be kept in
mind that there are exceptional cases. In thermodynamics, for the purpose
of clearly exposing the inherent temporal directionality of the phenom-
ena under consideration, the idea of an adiabatic process was introduced.
Similarly, to illuminate the irreversibility of cellular processes, we propose
to study “idealized developmental processes,” in which external operations
are regarded as nonexistent.6

Question 6: In thermodynamics, we define two types of quantities, exten-
sive and intensive. Extensive quantities are those that increase when we

6 In any case, constructing a theory that demonstrates the impossibility of “eternal
youth,” in analogy to the impossibility of a perpetual machine of the second kind
demonstrated by thermodynamics, would be one worthy goal.
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combine two identical systems (e.g., volume and entropy), while intensive
quantities are those that remain unchanged (e.g., pressure and temper-
ature). It is not clear, however, whether we can apply similar ideas of
additivity to living systems.

Indeed, the existence of an organism that could be scaled to any size
seems an utter impossibility, as in most cases, the development process
of an organism ceases after it reaches a certain size. In connection to this
phenomenon, the question of how each cell “knows” the size of the en-
tire organism is of fundamental importance in the study of living systems.
Because there is such a special characteristic size in the case of an organ-
ism, the type of scale invariance found in thermodynamics does not hold
here. However, we believe that it is possible to account for this “knowl-
edge” possessed by cells as a property of complex systems in which the
whole and the parts are mutually determined through their inherent com-
plementarity. Such an understanding could play an important role in the
construction of a phenomenological theory of life.
Question 7: In the development of thermodynamics, such idealized mod-
els as the Carnot cycle played major roles. Can we find models of this kind
to play similar roles in the present context?

The Carnot cycle is a repeatable cycle extracted as an idealization from a
class of irreversible natural phenomena. Although the Carnot cycle played
a crucial role in the development of thermodynamics, once this theory
came into being, it could be established independently of the Carnot cycle.
Analogously, the models presented in this book were developed as idealiza-
tions of the complicated phenomena displayed by living systems. As in the
case of the Carnot cycle, if we can formulate a general theory capable of
accounting for such fundamental phenomena as stable processes of devel-
opment and irreversible processes of differentiation, these models too will
become unnecessary.7 Now, it is not unreasonable to speculate that the
concept of idealized reversible processes will play an important role here
as in thermodynamics. With this in mind, in analogy to the Carnot cy-
cle, perhaps we should consider recent somatic clone experiments [Gurodn
et al., 1975, Campbell et al., 1996], as these too present the possibility
of repeatable cycles: allowing irreversible differentiation to progress from
embryonic stem cells to somatic cells, and then creating embryonic stem
cells for the next generation from these somatic cells.8

Question 8: Although thermodynamics is an independent theory, it is
believed to be consistent with the microscopic mechanical description pro-
vided by statistical mechanics. However, if the complementarity of micro
and macro scales is a necessary aspect of biological systems, then would

7 In general, we believe that models should act as “scaffolds” to reach conclusions
that are independent of the models themselves.

8 It is important to determine experimentally the degree to which such a process
can approximate truly repeatable cycles.
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it not be the case that the phenomenological theory we seek cannot be
confined to the macro domain?

As stated repeatedly throughout this book, living systems are repro-
ducing systems, and as such they possess the universal properties charac-
terizing such systems. For example, there is the universal statistical law
of recursively reproducing systems, presented in Chap. 6. In the theory
treated in Chaps. 7–9, the instability of the internal state is important.
There, through the instability of the reaction dynamics, a stable develop-
mental process is realized. Similarly, in statistical mechanics, the existence
of unstable trajectories (e.g., as in the case of high-dimensional chaos) on
the microscopic level precludes a stable description at that level, and this
leaves the macroscopic variables considered in thermodynamics as provid-
ing the only stable description of the system. The situation regarding the
process of development is similar, but in this case, the analogous insta-
bility exists in a system in which even the number of degrees of freedom
(i.e., the number of cells) is changing. Thus, the underlying dynamics here
are not ordinary high-dimensional chaos, but what we might term “open
chaos” (Kaneko, 1994b).

There are several other differences between the systems treated within
ordinary thermodynamics and the systems we consider. First, because the
number of molecules existing within a cell is much smaller than Avogadro’s
number, a description that treats the stability of trajectories in a phase
space of continuous variables is quite likely insufficient. Indeed, to proceed
with such an approach, it is probably necessary to first define the very
concept of an unstable trajectory representing discrete variables in a noisy
system. Second, within a cell, the number of species of molecular con-
stituents is much larger than that in ordinary chemical reactions. Thus, in
cellular systems, the limit we consider is not the thermodynamic limit, in
which the total number of molecules of each species is large (on the order
of or larger than Avogadro’s number), but the limit in which the number
of species is large (Table 12.1).

12.8 Toward an Understanding of the Dynamics
of Cognition and Human Society

The keen reader may have realized that some of the phenomena we have
treated in this book – differentiation through mutual interaction of elements
possessing internal states, formation of rules through system dynamics, control
by minority constituents, itinerancy and formation of recursive states – are
relevant not only to cellular biology but also to cognition and the dynamics
of human society (i.e., history).

With regard to cognition, the point of view we propose differs from
that of so-called artificial intelligence, which advocates the description of the
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Table 12.1. Plan for a systematic comparison to be carried out between thermo-
dynamics and a proposed phenomenological theory of cellular biology

Field Complex systems cellular biology Thermodynamics

Stability Cell state, cellular aggregate, organism Macroscopic

Macroscopic stability with Regulation of differentiated Le Chatelier–Braun

respect to perturbation cell type ratios principle

Irreversibility Creation of committed cells The second law of

from stem cells, developmental thermodynamics

process as a whole

Quantity defining direction Degree of variation in pattern Thermodynamic

of irreversibility of gene expressions (?) entropy

Cyclic phenomena Somatic cell clone cycle (?) Carnot cycle

Naive expression on Eternal youth (?) Perpetual machine

impossibility (of the second kind)

Nature of microscopic instability Open chaos (?) (Molecular) chaos

Large number of relevance Number of molecular species Avogadro’s number

cognition process through symbolic logic. In this study, we believe that the
important problem is to determine how rules depending on the conditions of
the system emerge from the dynamics of its state and how these rules become
fixed. From this point of view, we see that properly adapting the theory pre-
sented in this book, it can almost certainly be applied to investigating the
development of the cognition process as well.

In this book, we have not considered systems in which there exists some
fixed set of functional modules with predetermined properties. Rather, we have
studied processes of development in which interactions among elements lead
to their differentiation and emergence as units possessing context-dependent
function. Interestingly, this is precisely the fundamental point at which human
cognition differs from processes carried out on computers, as the former does
not take place within a system consisting of fixed modules with predefined
functions governed by predetermined rules. Also, unlike computers, in the
case of the human thought process, a mistake does not result in the system
coming to a halt. When humans encounter some such difficulty, they have the
ability to change the rules under which they operate and thereby overcome
the dilemma and proceed. The differentiation law discussed in Chap. 8 clearly
implies a similar property. According to this law, through differentiation, rules
come to form in a plastic system. Then, if there is change in the conditions
to which the system is subject, its state will become unstable through the
interactions among its degrees of freedom. Finally, new rules will form as this
unstable state evolves into a new stable state. Phenomena of this kind must be
addressed in the study of cognition. Also, the theory treated in the contexts of
development and evolution that describes the fixing of patterns and parameter
values in a previously plastic state may be applicable here. Specifically, it may
be possible to extend this to the process of symbolization that takes place in
the brain. In particular, the dynamic consolidation of fast-mode phenomena



12.8 Understanding of the Dynamics of Cognition and Human Society 347

to slow-mode phenomena should be a key concept in elucidating the dynamics
of memory.

Finally, it may also be possible to apply the theoretical ideas presented
in this book to the study of human group behavior and the evolution of hu-
man society. In this regard, first note that some of the ideas concerning cell
differentiation also apply to humans. As the population of a human group
increases, eventually there will occur a kind of differentiation in which hi-
erarchical structure is formed. Then (in analogy to the consolidation of the
phenotype into the genotype, discussed in Chap. 11), there will be a fixing of
this hierarchical structure into societal norms.9 Expanding these ideas further,
we may be able to understand such phenomena as the behavioral norms of in-
dividuals in a society, economic and social structure, and forms of civilizations
as temporal manifestations characterizing the state of a system that evolves
through the circulating interactions of micro and macro scales. Then, history
could be interpreted as transitions between such states. In 1979, Braudel, one
of the greatest historians of the 20th century, proposed that the development
of social systems can be understood as proceeding through the interference
of phenomena existing on three different time scales: material civilization,
commerce (exchange), and capitalism. We believe that if his work can be re-
constructed from the point of view presented in this book, a new theory for
the study of history can be developed (Kaneko & Yasutomi, 2002, 2005). Of
course, at the present time, introducing this problem as a topic for scien-
tific inquiry would likely receive little support. However, if our approach can
first yield a breakthrough in life science, the climate for its acceptance will
undoubtedly change, and turning our efforts to the construction of such a
theory of history will receive serious attention.

9 It should be possible to construct a mathematical model that describes the re-
production of a variety of mutually catalyzing commodities, in analogy to the
models we have seen describing the reproduction of a variety of mutually cat-
alyzing chemical species in living systems. Here, the emergence of a system that
maintains diversity while exhibiting a process of reproduction corresponds to the
appearance of a capitalistic society.



References

Abraham, R. and Shaw, C. (1988) Dynamics – The Geometry of Behavior,
vols. 1–4 (Aerial Press, Santa Cruz, CA).

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. (1983,
1989, 1994, 2002) The Molecular Biology of the Cell.

Alligood, K., Sauer, T., and Yorke, J.A. (1997) CHAOS: An Introduction to
Dynamical Systems (Springer).

Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N., and Barabási, A.-L. (2004)
Global organization of metabolic fluxes in the bacterium Escherichia coli.
Nature 427, 839–843.

Altmeyer, S. and McCaskill, J.S. (2001) Error threshold for spatially resolved
evolution in the Quasispecies Model. Phys. Rev. Lett. 86, 5819–5822.

Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., and
Levine, A.J. (1999) Broad Patterns of Gene Expression Revealed by Clus-
tering Analysis of Tumor and Normal Colon Tissues Probed by Oligonu-
cleotide Arrays. Proc. Natl. Acad. Sci. U.S.A. 96, 6745–6750.

Ancel, L.W. (2000) Undermining the Baldwin expediting effect: Does pheno-
typic plasticity accelerate evolution? Theor Popul Biol. 58, 307–319.

Ancel, L.W. and Fontana, W. (2002) Plasticity, evolvability, and modularity
in RNA. J. Exp. Zool. 288, 242–283.

Ariizumi, T. and Asashima, M. (2001) In vitro induction systems for analyses
of amphibian organogenesis and body patterning. Int. J. Dev. Biol. 45,
273–279.

Bachman, P.A., Luisi, P.L., and Lang, J. (1992) Autocatalytic self-replicating
micelles as models for prebiotic structures. Nature 357, 57–59.

Baguna, J., Salo, E., and Auladell, C. (1989) Regeneration and pattern for-
mation in planarians. Development 107, 77–86.

Baldwin, M. (1896) A new factor in evolution. Am. Nat. 30, 441–451; 536–553.
Barabási, A.-L., and Albert, R. (1999) Emergence of scaling in random net-

works. Science 286, 509–512.



350 References

Banerjee, B., Balasubramanian, S., Ananthakrishna, G., Ramakrishnan, T.V.,
and Shivashankar, G.V. (2004) Tracking operator state fluctuations in gene
expression in single cells. Biophys. J. 86, 3052–3059.

Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Czirok A., and Vicsek,
T. (1994) Generic modelling of cooperative growth patterns in bacterial
colonies. Nature 368, 46–49.

Benner S.A., and Sismour A.M. (2005) Synthetic biology. Nat. Rev. Genet.
6(7), 533–543.

Bignone, F.A. (1993) Cells–gene interactions simulation on a coupled map
lattice. Theo J. Biol. 161, 231.

Bjornson, C.R., Rietze, R.L., Reynolds, B.A., Magli, M.C., and Vescovi A.L.
(1999) Turning brain into blood: A hematopoietic fate adopted by adult
neural stem cells in vivo. Science 283(5401), 534–537.

Boerlijst, M. and Hogeweg, P. (1991) Physica 48D 17; Spiral wave structure
in prebiotic evolution – Hypercycles stable against parasites.

Bonner, J.T. (1980) The Evolution of Culture in Animals (Princeton Univer-
sity Press).

Bohr, N. (1958) Atomic Physics and Human Knowledge (Wiley).
Braudel, F. Civilisation Materielle, Economie er Capitalisme XV-XVIII Siecle.
Brillouin, L. (1969) Science and Information Theory (Academic Press).
Buss, L.W. (1987) The Evolution of Individuality (Princeton University

Press).
Cairns, J., Overbaugh, J., and Miller, S. (1988) The origin of mutants. Nature

335, 142–145.
Cairns-Smith, A.G. (1986) Clay Minerals and the Origin of Life
Callahan, H.S., Pigliucci, M., and Schlichting, C.D. (1997) Developmental

phenotypic plasticity: Where ecology and evolution meet molecular biology.
Bioessays 19, 519–525.

Campbell, K.H.S., McWhir, J., Ritchie, W.A., and Wilmut, I. (1996) Sheep
cloned by transfer from a cultured cell line. Nature 380, 64–66.

Chow, M., Yao, A., and Rubin, H. (1994) Cellular epigenesis: Topochronology
of progressive spontaneous transformation of cells under growth constraint.
Proc. Nat. Acad. Sci. U.S.A. 91, 599–603.

Coyne, J.A. and Orr, H.A. (1998) The evolutionary genetics of speciation.
Phil. Trans. R. Soc. Lond. B 353, 287–305.

David, N.D. and MacWilliams, H. (1978) Regulation of the self-renewal prob-
ability in Hydra stem cell clones. Proc. Nat. Acad. Sci. U.S.A. 75(2), 886–
890.

Darwin, C. (1859) On the Origin of Species by Means of Natural Selection or
the Preservation of Favored Races in the Struggle for Life (Murray, London).

Dieckmann, U. and Doebeli, M. (1999) On the origin of species by sympatric
speciation. Nature 400, 354–357.

Doebeli, M. (1996) A quantitative genetic competition model for sympatric
speciation. J. Evol. Biol. 9, 893–909.



References 351

Dobzhansky, T. (1937, 1951) Genetics and the Origin of Species (Columbia
University Press, New York).

Dolmetsch, R.E., Xu, K., and Lewis, R.S. (1998) Calcium oscillations increase
the efficiency and specificity of gene expression. Nature 392, 933–936.

Douarin, N.M., and Dupin, E. (1993) Cell lineage analysis in neural crest
ontogeny. J. Neurobiol. 24(2), 146–161.
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