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Preface

This is a book about money, but it will not help you very much in learning how to

make money. Rather, it will instruct you about the distribution of various kinds of

income and their related economic size distributions. Specifically, we have

painstakingly traced the numerous statistical models of income distribution, from

the late nineteenth century when Vilfredo Pareto developed a bold and astonishing

model for the distribution of personal income until the latest models developed some

100 years later. Our goal was to review, compare, and somehow connect all these

models and to pinpoint the unfortunate lack of coordination among various

researchers, which has resulted in the duplication of effort and waste of talent and to

some extent has reduced the value of their contributions. We also discuss the size

distributions of loss in actuarial applications that involve a number of distributions

used for income purposes. An impatient reader may wish to consult the list of

distributions covered in this book and their basic properties presented in Appendix C.

The task of compiling this interdisciplinary book took longer and was more

arduous than originally anticipated. We have tried to describe the distributions

outlined here within the context of the personalities of their originators since in our

opinion the personality, temperament, and background of the authors cited did affect

to some extent the nature and scope of their discoveries and contributions.

We hope that our readers come to regard this book as a reliable source of

information and we gladly welcome all efforts to bring any remaining errors to our

attention.

CHRISTIAN KLEIBER

Dortmund, Germany

SAMUEL KOTZ

Washington, D.C.
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C H A P T E R O N E

Introduction

Certum est quia impossibile est. TERTULLIAN, 155/160 A.D.—after 220 A.D.

This book is devoted to the parametric statistical distributions of economic size

phenomena of various types—a subject that has been explored in both statistical and

economic literature for over 100 years since the publication of V. Pareto’s famous

breakthrough volume Cours d’économie politique in 1897. To the best of our

knowledge, this is the first collection that systematically investigates various

parametric models—a more respectful term for distributions—dealing with income,

wealth, and related notions. Our aim is marshaling and knitting together the

immense body of information scattered in diverse sources in at least eight

languages. We present empirical studies from all continents, spanning a period of

more than 100 years.

We realize that a useful book on this subject matter should be interesting, a

task that appears to be, in T. S. Eliot’s words, “not one of the least difficult.” We

have tried to avoid reducing our exposition to a box of disconnected facts

or to an information storage or retrieval system. We also tried to avoid easy

armchair research that involves computerized records and heavy reliance on the

Web.

Unfortunately, the introduction by its very nature is always somewhat fragmentary

since it surveys, in our case rather extensively, the content of the volume. After

reading this introduction, the reader could decide whether continuing further study

of the book is worthwhile for his or her purposes. It is our hope that the decision will

be positive. To provide a better panorama, we have included in the Appendix brief

biographies of the leading players.

1.1 OUR AIMS

The modeling of economic size distributions originated over 100 years ago with the

work of Vilfredo Pareto on the distribution of income. He apparently was the first to
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observe that, for many populations, a plot of the logarithm of the number of incomes

Nx above a level x against the logarithm of x yields points close to a straight line of

slope �a for some a . 0. This suggests a distribution with a survival function

proportional to x�a, nowadays known as the Pareto distribution.

“Economic size distributions” comprise the distributions of personal incomes of

various types, the distribution of wealth, and the distribution of firm sizes. We also

include work on the distribution of actuarial losses for which similar models have

been in use at least since Scandinavian actuaries (Meidell, 1912; Hagstrœm, 1925)

observed that—initially in life insurance—the sum insured is likely to be

proportional to the incomes of the policy holders, although subsequently there

appears to have been hardly any coordination between the two areas. Since the lion’s

share of the available literature comprises work on the distribution of income, we

shall often speak of income distributions, although most results apply with minor

modifications to the other size variables mentioned above.

Zipf (1949) in his monograph Human Behavior and the Principle of Least

Effort and Simon (1955) in his article “On a class of skew distribution functions”

suggest that Pareto-type distributions are appropriate to model such different

variables as city sizes, geological site sizes, the number of scientific publications

by a certain author, and also the word frequencies in a given text. Since the early

1990s, there has been an explosion of work on economic size phenomena in the

physics literature, leading to an emerging new field called econophysics (e.g.,

Takayasu, 2002). In addition, computer scientists are nowadays studying file size

distributions in the World Wide Web (e.g., Crovella, Taqqu, and Bestavros, 1998),

but these works are not covered in this volume. We also exclude discrete Pareto-

type distributions such as the Yule distribution that have been utilized in

connection with the size distribution of firms by Simon and his co-authors (see

Ijiri and Simon, 1977).

Regarding the distribution of income, the twentieth century witnessed

unprecedented attempts by powerful nations such as Russia (in 1917) and China

(in 1949) and almost all Eastern European countries (around the same time) to carry

out far-reaching economic reforms and establish economic regimes that will reduce

drastically income inequality and result in something approaching the single-point

distribution of income when everyone is paid the same wages.

The most radical example is, of course, the blueprint for the economy of the

Peoples’ Republic of China (PRC) proclaimed by Mao Tse Tung on October 1, 1949

(his delivery of this plan was witnessed by one of the authors of this book in his

youth). Mao’s daring and possibly utopian promise of total economic equality for

close to 1 billion Chinese and a guaranteed “iron bowl” of rice for every citizen

totally receded into the background over the next 30 years due partially to blunders,

unfavorable weather conditions, fanaticism, and cruelty, but perhaps mainly because

of—as claimed by Pareto in the 1890s— the inability to change human nature and to

suppress the natural instinct for economic betterment each human seems to possess.

It is remarkable that only eight years after Mao’s death, the following appeared in

the Declaration of the Central Committee of the Communist Party of China in

October 1984:
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There has long been a misunderstanding about the distribution of consumer goods under

socialism as if it meant egalitarianism.

If some members of society got higher wages through their labor, resulting in a wide gap in

income it was considered polarization and a deviation from socialism. This egalitarian

thinking is utterly incompatible with scientific Marxist views of socialism.

In modern terminology, this translates to “wealth creation seems to be more

important than wealth redistribution.” Even the rigid Stalinist regime in North Korea

began flirting with capitalism after May 2002, triggering income inequality.

Much milder attempts at socialism (practiced, e.g., in Scandinavian countries in

the early years of the second part of the twentieth century) to reduce inequality by

government regulators, especially by substantial taxation on the rich, were a colossal

failure, as we are witnessing now in the early years of the twenty-first century.

Almost the entire world is fully entrenched in a capitalistic market economy that

appears to lead to a mathematical expression of the income distribution close to the

one discovered by Pareto, with possibly different a and insignificant modifications.

In fact, in our opinion the bulk of this book is devoted to an analysis of Pareto-type

distributions, some of them in a heavily disguised form, leading sometimes to

unrecognizable mathematical expressions.

It was therefore encouraging for us to read a recent book review of

Champernowne and Cowell’s Economic Inequality and Income Distribution

(1998) written by Thomas Piketty, in which Piketty defends the “old-fashionedness”

of the authors in their frequent reference to Pareto coefficients and claims that due to

the tremendous advances in computer calculations “at the age of SAS and STATA,”

young economists have never heard of “Pareto coefficients” and tend to assume “that

serious research started in the 1980s or 1990s.” We will attempt to provide the

background on and hopefully a proper perspective of the area of parametric income

distributions throughout its 100-year-plus history.

It should be admitted that research on income distribution was somewhat dormant

during the period from 1910–1970 in Western countries, although periodically

publications—mainly of a polemical nature—have appeared in basic statistical and

economic journals (see the bibliography). (An exception is Italy where, possibly due

to the influence of Pareto and Gini, the distribution of income has always been a

favorite research topic among prominent Italian economists and statisticians.) This

changed during the last 15 years with the rising inequality in Western economies

over the 1980s and a surge in inequality in the transition economies of Eastern

Europe in the 1990s. Both called for an explanation and prompted novel empirical

research. Indeed, as indicated on a recent Web page of the Distributional Analysis

Research Programme (DARP) at the London School of Economics (http://
darp.lse.ac.uk/),

the study of income distribution is enjoying an extraordinary renaissance: interest in the

history of the eighties, the recent development of theoretical models of economic growth

that persistent wealth inequalities, and the contemporary policy focus upon the concept of

social exclusion are evidence of new found concern with distributional issues.

1.1 OUR AIMS 3



Readers are referred to the recently published 1,000-page Handbook of Income

Distribution edited by Atkinson and Bourguignon (2000) for a comprehensive

discussion of the economic aspects of income distributions. We shall concentrate on

statistical issues here.

On the statistical side, methods can broadly be classified as parametric and

nonparametric. The availability of ever more powerful computer resources during

recent decades gave rise to various nonparametric methods of density estimation, the

most popular being probably the kernel density approach. Their main attraction is

that they do not impose any distributional assumptions; however, with small data

sets—not uncommon in actuarial science—they might result in imprecise estimates.

These inaccuracies may be reduced by applying parametric models.

A recent comment by Cowell (2000, p. 145) seems to capture lucidly and

succinctly the controversy existing between the proponents and opponents to the

parametric approach in the analysis of size distributions:

The use of the parametric approach to distributional analysis runs counter to the general

trend towards the pursuit of non-parametric methods, although [it] is extensively applied in

the statistical literature. Perhaps it is because some versions of the parametric approach

have had bad press: Pareto’s seminal works led to some fanciful interpretations of “laws” of

income distribution (Davis, 1941), perhaps it is because the non-parametric method seems

to be more general in its approach.

Nevertheless, a parametric approach can be particularly useful for estimation of indices or

other statistics in cases where information is sparse [such as given in the form of grouped

data, our addition] . . . . Furthermore, some standard functional forms claim attention, not

only for their suitability in modelling some features of many empirical income

distributions but also because of their role as equilibrium distributions in economic

processes.

We are not concerned with economic/empirical issues in this book that involve

the choice of a type of data such as labor of nonlabor earnings, incomes before or

after taxes, individual or household incomes. These are, of course, of great

importance in empirical economic studies. Nor are we dealing with the equally

important aspects of data quality; we refer interested readers to van Praag,

Hagenaars, and van Eck (1983); Lillard, Smith, and Welch (1986); or Angle (1994)

in this connection. This problem is becoming more prominent as more data become

available and new techniques to cope with the incompleteness of data such as “top-

coding” and outliers are receiving significant attention. In the latter part of the

twentieth century, the works of Victoria-Feser and Ronchetti (1994, 1997), Cowell

and Victoria-Feser (1996), and more recently Victoria-Feser (2000), provided a

number of new tools for the application of parametric models of income distri-

butions, among them robust estimators and related diagnostic tools. They can pro-

tect the researcher against model deviations such as gross errors in the data or

grouping effects and therefore allow for more reliable estimation of, for example,

income distributions and inequality indices. (The latter task has occupied numerous

researchers for over half a century.)
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1.2 TYPES OF ECONOMIC SIZE DISTRIBUTIONS

In this short section we shall enumerate for completeness the types of size

distributions studied in this book. Readers who are interested solely in statistical

aspects may wish to skip this section. Those inclined toward broader economic-

statistical issues may wish to supplement our brief exposition by referring to

numerous books and sources, such as Atkinson and Harrison (1978),

Champernowne and Cowell (1998), Ijiri and Simon (1977), Sen (1997), or Wolff

(1987) and books on actuarial economics and statistics.

Distributions of Income and Wealth

As Okun (1975, p. 65) put it, “income and wealth are the two box scores in the

record book of people’s economic positions.” It is undoubtedly true that the size

distribution of income is of vital interest to all (market) economies with respect to

social and economic policy-making. In economic and social statistics, the size

distribution of income is the basis of concentration and Lorenz curves and thus at the

heart of the measurement of inequality and more general social welfare evaluations.

From here, it takes only a few steps to grasp its importance for further economic

issues such as the development of adequate taxation schemes or the evaluation of

effectiveness of tax reforms. Income distribution also affects market demand and its

elasticity, and consequently the behavior of firms and a fortiori market equilibrium.

It is often mentioned that income distribution is an important factor in determining

the amount of saving in a society; it is also a factor influencing the productive effort

made by various groups in the society.

Distributions of Firm Sizes

Knowledge of the size distribution of firms is important to economists studying

industrial organization, to government regulators, as well as to courts. For example,

courts use firm and industry measures of market share in a variety of antitrust cases.

Under the merger guidelines of the U.S. Department of Justice and the Federal Trade

Commission, whether mergers are challenged depends on the relative sizes of the

firms involved and the degree of concentration in the industry. In recent years, for

example, the Department of Justice challenged mergers in railroads, banks, soft

drink, and airline industries using data on concentration and relative firm size.

As of 2002 tremendous upheavals in corporate institutions that involve great

firms are taking place throughout the world especially in the United States and

Germany. This will no doubt result in drastic changes in the near future in the size

distribution of firms, and the recent frequent mergers and occasional breakdowns of

firms may even require a new methodology. We will not address these aspects, but it

is safe to predict new theoretical and empirical research along these lines.

Distributions of Actuarial Losses

Coincidentally, the unprecedented forest fires that recently occurred in the western

United States (especially in Colorado and Arizona) may challenge the conventional

wisdom that “fire liabilities are rare.” The model of the total amount of losses in a

1.2 TYPES OF ECONOMIC SIZE DISTRIBUTIONS 5



given period presented below may undergo substantial changes: In particular, the

existing probability distributions of an individual loss amount F(x) will no doubt be

reexamined and reevaluated.

In actuarial sciences, the total amount of losses in a given period is usually

modeled as a risk process characterized by two (independent) random variables: the

number of losses and the amount of individual losses. If

. pn(t) is the probability of exactly n losses in the observed period [0, t],

. F(x) is the probability that, given a loss, its amount is � x,

. F�n(x) is the nth convolution of the c.d.f. of loss amount F(x),

then the probability that the total loss in a period of length t is � x can be expressed

as the compound distribution

G(x, t) ¼
X1
n¼0

pn(t)F�n(x):

Although the total loss distribution G(x, t) is of great importance for insurers in

their task of determining appropriate premiums or reinsurance policies, it is the

probability distribution of an individual loss amount, F(x), that is relevant when a

property owner has to decide whether to purchase insurance or when an insurer

designs deductible schedules. Here we are solely concerned with the distributions of

individual losses.

1.3 BRIEF HISTORY OF THE MODELS FOR STUDYING

ECONOMIC SIZE DISTRIBUTIONS

A statistical study of personal income distributions originated with Pareto’s

formulation of “laws” of income distribution in his famous Cours d’économie

politique (1897) that is discussed in detail in this book and in Arnold’s (1983) book

Pareto Distributions.

Pareto was well aware of the imperfections of statistical data, insufficient

reliability of the sources, and lack of veracity of income tax statements. Nonetheless,

he boldly analyzed the data using his extensive engineering and mathematical

training and succeeded in showing that there is a relation between Nx—the number

of taxpayers with personal income greater or equal to x—and the value of the income

x given by a downward sloping line

log Nx ¼ log A� a log x (1:1)

or equivalently,

Nx ¼
A

xa
, A . 0, a . 0, x . x0, (1:2)
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x0 being the minimum income (Pareto, 1895). Economists and economic statisticians

(e.g., Brambilla, 1960; Dagum, 1977) often refer to a (or rather �a) as the elasticity

of the survival function with respect to income x

d log {1� F(x)}

d log x
¼ �a:

Thus, a is the elasticity of a reduction in the number of income-receiving units when

moving to a higher income class. The graph with coordinates (log x, log Nx) is often

referred to as the Pareto diagram. An exact straight line in this display defines the

Pareto distribution.

Pareto (1896, 1897a) also suggested the second and third approximation equations

Nx ¼
A

(xþ x0)a , A . 0, a . 0, x0 þ x . 0, (1:3)

and

Nx ¼
A

(xþ x0)a e�bx, A . 0, a . 0, x . x0, b . 0: (1:4)

Interestingly enough, equation (1.2) provided the most adequate fit for the income

distribution in the African nation of Botswana, a republic in South Central Africa, in

1974 (Arnold, 1985).

The fact that empirically the values of parameter a remain “stable” if not

constant (see Table 1.1—based on the fitting of his equations for widely diverse

economies such as semifeudal Prussia, Victorian England, capitalist but highly

diversified Italian cities circa 1887, and the Communist-like regime of the Jesuits

in Peru during Spanish rule (1556–1821)—caused Pareto to conclude that human

nature, that is, humankind’s varying capabilities, is the main cause of income

inequality, rather than the organization of the economy and society. If we were to

examine a community of thieves, Pareto wrote (1897a, p. 371), we might well find

an income distribution similar to that which experience has shown is generally

obtained. In this case, the determinant of the distribution of income “earners”

would be their aptitude for theft. What presumably determines the distribution in a

community in which the production of wealth is the only way to gain an income is

the aptitude for work and saving, steadiness and good conduct. This prevents

necessity or desirability of legislative redistribution of income. Pareto asserted

(1897a, p. 360),

This curve gives an equilibrium position and if one diverts society from this position

automatic forces develop which lead it back there.

In the subsequent version of his Cours, Pareto slightly modified his position by

asserting that “we cannot state that the shape of the income curve would not change

1.3 HISTORY OF ECONOMIC SIZE DISTRIBUTIONS 7



if the social constitution were to radically change; were, for example, collectivism to

replace private property” (p. 376). He also admitted that “during the course of the

19th century there are cases when the curve (of income) has slightly changed form,

the type of curve remaining the same, but the constants changing.” [See, e.g.,

Bresciani Turroni (1905) for empirical evidence using German data from the

nineteenth century.]

However, Pareto still maintained that “statistics tells us that the curve varies very

little in time and space: different peoples, and at different times, give very similar

curves. There is therefore a notable stability in the figure of this curve.”

The first fact discovered by Ammon (1895, 1898) and Pareto at the end of the

nineteenth century was that “the distribution of income is highly skewed.” It was a

somewhat uneasy discovery since several decades earlier the leading statistician

Quetelet and the father of biometrics Galton emphasized that many human

characteristics including mental abilities were normally distributed.

Numerous attempts have been made in the last 100 years to explain this paradox.

Firstly it was soon discovered that the original Pareto function describes only a

portion of the reported income distribution. It was originally recognized by Pareto

but apparently this point was later underemphasized.

Table 1.1 Pareto’s Estimates of a

Country Date a

England 1843 1.50

1879–1880 1.35

Prussia 1852 1.89

1876 1.72

1881 1.73

1886 1.68

1890 1.60

1894 1.60

Saxony 1880 1.58

1886 1.51

Florence 1887 1.41

Perugia (city) 1889 1.69

Perugia (countryside) 1889 1.37

Ancona, Arezzo, Parma, Pisa (total) 1889 1.32

Italian cities (total) 1889 1.45

Basle 1887 1.24

Paris (rents) 1887 1.57

Augsburg 1471 1.43

1498 1.47

1512 1.26

1526 1.13

Peru ca. 1800 1.79

Source: Pareto, 1897a, Tome II, p. 312.
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Pareto’s work has been developed by a number of Italian economists and

statisticians. Statisticians concentrated on the meaning and significance of the

parameter a and suggested alternative indices. Most notable is the work of Gini

(1909a,b) who introduced a measure of inequality commonly denoted as d. [See also

Gini’s (1936) Cowles Commission paper: On the Measurement of Concentration

with Special Reference to Income and Wealth.] This quantity describes to which

power one must raise the fraction of total income composed of incomes above a

given level to obtain the fraction of all income earners composed of high-income

earners.

If we let x1, x2, . . . , xn indicate incomes of progressively increasing amounts and

r the number of income earners, out of the totality of n income earners, with

incomes of xn�rþ1 and up, the distribution of incomes satisfies the following simple

equation:

xn�rþ1 þ xn�rþ2 þ � � � þ xn

x1 þ x2 þ � � � þ xn

� �d

¼
r

n
: (1:5)

If the incomes are equally distributed, then d ¼ 1. Also, d varies with changes

in the selected limit (xn�rþ1) chosen and increases as the concentration of

incomes increases. Nevertheless, despite its variation with the selected limit,

in applications to the incomes in many countries, the d index does not vary

substantially.

Analytically, for a Pareto type I distribution (1.2)

d ¼
a

a� 1
, (1:6)

however, repeated testing on empirical income data shows that calculated d often

appreciably differs from the theoretical values derived (for a known a) from this

equation.

As early as 1905 Benini in his paper “I diagramma a scala logarithmica,” and

1906 in his Principii de Statistica Metodologica, noted that many economic

phenomena such as savings accounts and the division of bequests when graphed on a

double logarithmic scale generate a parabolic curve

log Nx ¼ log A� a log xþ b( log x)2, (1:7)

which provides a good fit to the distributions of legacies in Italy (1901–1902),

France (1902), and England (1901–1902). This equation, however, contains two

constants that may render comparisons between countries somewhat dubious. Benini

thus finally proposes the “quadratic relation”

log Nx ¼ log Aþ b( log x)2: (1:8)
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Mortara (1917) concurred with Benini’s conclusions that the graph with the

coordinates (log x, log Nx) is more likely to be an upward convex curve and

suggested an equation of the type

log Nx ¼ a0 þ a1 log xþ a2( log x)2 þ a3( log x)3 þ � � � �

In his study of the income distribution in Saxony in 1908, he included the first four

terms, whereas in a much later publication (1949) he used only the first three terms

for the distribution of the total revenue in Brazil in the years 1945–1946. Bresciani

Turroni (1914) used the same function in his investigation of the distribution of

wealth in Prussia in 1905.

Observing the fragmentary form of the part of the curve representing lower

incomes (which presumably must slope sharply upward), Vinci (1921, pp. 230–231)

suggests that the complete income curve should be a Pearson’s type V distribution

with density

f (x) ¼ Ce�b=xx�p�1, x . 0, (1:9)

or more generally,

f (x) ¼ Ce�b=(x�x0)(x� x0)�p�1, x . x0, (1:10)

where b, p . 0, x0 denotes as above the minimum income, and C is the normalizing

constant.

Cantelli (1921, 1929) provided a probabilistic derivation of “Pareto’s second

approximation” (1.3), and similarly D’Addario (1934, 1939) carried out a detailed

investigation of this distribution that (together with the initial first approximation)

has the following property: The average income f(x) of earners above a certain level

x is an increasing linear function of the variable x. However, this is not a

characterization of the Pareto distribution(s). D’Addario proposed an ingenious

average excess value method that involves indirect determination of the graph of the

function f (x) by means of f(x) utilizing the formula

f (x) ¼
af0(x)

x� f(x)
exp

ð1

x

f(z)

z� f(z)
dz

� �
:

This approach requires selecting the average f(x) and its parameters based on the

empirical data. The method was later refined by D’Addario (1969) and rechecked

by Guerrieri (1969–1970) for the lognormal and Pearson’s distributions of type III

and V.

For a complete income curve, Amoroso (1924–1925) provided the density

function

f (x) ¼ Ce�b(x�x0)1=s

(x� x0)( p�s)=s, x . x0, (1:11)
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x0 being the minimum income, C, b, p . 0, and s a nonzero constant such that

pþ s . 0 and fit it to Prussian data. This distribution is well known in the English

language statistical literature as the generalized gamma distribution introduced by

Stacy in 1962 in the Annals of Mathematical Statistics—which is an indication of

lack of coordination between the European Continental and Anglo-American

statistical literature as late as the sixties of the twentieth century. The cases s ¼ 1 and

s ¼ �1 correspond to Pearson’s type III and type V distributions, respectively.

Rhodes (1944), in a neglected work, succeeded in showing that the Pareto

distribution can be derived from comparatively simple hypotheses. These involve

constancy of the coefficient of variation and constancy of the type of distribution of

income of those in the same “talent” group, and require that, on average, the

consequent income increases with the possession of more talents.

D’Addario—like many other investigators of income distributions—was

concerned with the multitude of disconnected forms proposed by various

researchers. He attempted to obtain a general, relatively simply structured formula

that would incorporate numerous special forms. In his seminal contribution La

Trasformate Euleriane, he showed how transforming variables in several expressions

for the density of the income distribution lead to the general equation

f (x) ¼
1

G( p)
e�w(x)[w(x)] p�1jw0(x)j (1:12)

[here G( p) is the gamma function]. Given a density g(z), transforming the variable

x ¼ u(z) and obtaining its inverse z ¼ w(x), we calculate the density of the

transformed variable, f (x), say, by the formula

f (x) ¼ g[w(x)]jw0(x)j:

Here, if we use D’Addario’s terminology, g(z) is the generating function, z ¼ w(x)

the transforming function, and f (x) the transformed function. If the generating

function is the gamma distribution

g(z) ¼
1

G( p)
e�zz p�1, z � 0,

then the Eulerian transform is given by (1.12). This approach was earlier suggested

by Edgeworth (1898), Kapteyn (1903) in his Skew Frequency Curves in Biology and

Statistics, and van Uven (1917) in his Logarithmic Frequency Distributions, but

D’Addario applied it skillfully to income distributions. More details are provided in

Section 2.4.

In 1931 Gibrat, a French engineer and economist, developed a widely used

lognormal model for the size distributions of income and of firms based on

Kapteyn’s (1903) idea of the proportional effect (by adding increments of income

to an initial income distribution in proportion to the level already achieved).

Champernowne (1952, 1953) refined Gibrat’s approach and developed formulas
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that often fit better than Gibrat’s lognormal distribution. However, when applied to

U.S. income data of 1947 that incorporate low-income recipients, his results are not

totally satisfactory. Even his four-parameter model gives unacceptable, gross errors.

Somewhat earlier Kalecki (1945) modified Gibrat’s approach by assuming that the

increments of the income are proportional to the excess in ability of given members

of the distribution over the lowest (or median) member. (A thoughtful observation by

Tinbergen, made as early as 1956, prompts to distinguish between two underlying

causes for income distribution. One is dealing here simultaneously with the

distribution of abilities to earn income as well as with a distribution of preferences

for income.)

A somewhat neglected (in the English literature) contribution is the so-called

van der Wijk’s law (1939). Here it is assumed that the average income above a limit

x,
P

xi.x xi=Nx, is proportional to the selected income level x, leading to the “law”

P
xi.x xi

Nx

¼ gx, (1:13)

where g is a constant of proportionality. For instance, if g ¼ 2, then the average

income of people with at least $20,000 must be in the vicinity of $40,000 and so on.

Bresciani Turroni proposed a similar relationship in 1910, but it was not widely

noticed in the subsequent literature.

Van der Wijk in his rather obscure volume Inkomens- en Vermogensverdeling

(1939) also provided an interpretation of Gibrat’s equation by involving the concept

of psychic income. This was in accordance with the original discovery of the

lognormal distribution inspired by the Weber–Fechner law in psychology (Fechner,

1860), quite unrelated to income distributions.

Pareto’s contribution stimulated further research in the specification of new

models to fit the whole range of income. One of the earliest may be traced to the

French statistician Lucien March who as early as 1898 proposed using the gamma

distribution and fitted it to the distribution of wages in France, Germany, and the

United States. March claimed that the suggestion of employing the gamma

distribution was due to the work of German social anthropologist Otto Ammon

(1842–1916) in his book Die Gesellschaftsordnung und ihre natürlichen

Grundlagen (1896 [second edition]), but we were unable to find this reference in

any one of the three editions of Ammon’s text. Some 75 years later Salem and Mount

(1974) fit the gamma distribution to U.S. income data (presumably unaware of

March’s priority).

Champernowne (1952) specified versions of the log-logistic distribution with two,

three, and four parameters. Fisk (1961a,b) studied the two-parameter version in detail.

Mandelbrot (1960, p. 79) observed that

over a certain range of values of income, its distribution is not markedly influenced either

by the socio-economic structure of the community under study, or by the definition chosen

for “income.” That is, these two elements may at most influence the values taken by certain

parameters of an apparently universal distribution law.
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and proposed nonnormal stable distributions as appropriate models for the size

distribution of incomes.

Metcalf (1969) used a three-parameter lognormal distribution. Thurow (1970)

and McDonald and Ransom (1979a) dealt with the beta type I distribution.

Dagum in 1977 devised two categories of properties for a p.d.f. to be specified as

a model of income or wealth distribution: The first category includes essential

properties, the second category important (but not necessary) properties. The

essential properties are

. Model foundations

. Convergence to the Pareto law

. Existence of only a small number of finite moments

. Economic significance of the parameters

. Model flexibility to fit both unimodal and zeromodal distributions

(It seems to us that property 3 is implied by property 2.) Among the important

properties are

. Good fit of the whole range of income

. Good fit of distributions with null and negative incomes

. Good fit of the whole income range of distributions starting from an unknown

positive origin

. Derivation of an explicit mathematical form of the Lorenz curve from the

specified model of income distributions and conversely

Dagum attributed special importance to the concept of income elasticity

Z(x, F) ¼
x

F(x)

dF(x)

dx
¼

d log F(x)

d log x

of a distribution function as a criterion for an income distribution.

He noted that the observed income elasticity of a c.d.f. behaves as a nonlinear and

decreasing function of F. To represent this characteristic of the income elasticity,

Dagum specified (in the simplest case) the differential equation

Z(x, F) ¼ ap{1� [F(x)]1=p}, x � 0,

subject to p . 0 and ap . 0, which leads to the Dagum type I distribution

F(x) ¼ 1þ
x

b

� ��ah i�p

, x . 0,

where a, b, p . 0.
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It was noted by Dagum (1980c, 1983) [see also Dagum (1990a, 1996)] that it is

appropriate to classify the income distributions based on three generating systems:

. Pearson system

. D’Addario’s system

. Generalized logistic (or Burr logistic) system

Only Champernowne’s model does not belong to any of the three systems.

The pioneering work of McDonald (1984) and Venter (1983) led to the

generalized beta (or transformed beta) distribution given by

f (x) ¼
axap�1

bapB( p, q)[1þ (x=b)a] pþq
, x . 0: (1:14)

It is also known in the statistical literature as the generalized F (see, e.g., Kalbfleisch

and Prentice, 1980) and was rediscovered in a slightly different parameterization by

Majumder and Chakravarty (1990) a few years later. This family includes numerous

models used as income and size distributions, in particular the Singh and Maddala

(1976) model, the Dagum type I model (Dagum, 1977), the Fisk model, and

evidently the beta distribution of the second kind. In actuarial science the Singh–

Maddala and Dagum models are usually referred to as the Burr and inverse Burr

distributions, respectively, since they are members of the Burr (1942) system of

distributions.

We also mention the natural generalization of the Pareto distribution proposed by

Stoppa in 1990b,c. It is given by

F(x) ¼ 1�
x

x0

� ��a� �u

, 0 , x0 � x: (1:15)

This book is devoted to a detailed study of the distributions surveyed in this

section and their interrelations. The literature is immense and omissions are

unavoidable although we tried to utilize all the references collected during a

six-month extensive search. Due to the rather sporadic developments in that area,

only some isolated multivariate distributions are included.

1.4 STOCHASTIC PROCESS MODELS FOR

SIZE DISTRIBUTIONS

Interestingly enough, income and wealth distributions of various types can be

obtained as steady-state solutions of stochastic processes.

The first example is Gibrat’s (1931) model leading to the lognormal distribution.

He views income dynamics as a multiplicative random process in which the product

of a large number of individual random variables tends to the lognormal distribution.

This multiplicative central limit theorem leads to a simple Markov model of the “law
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of proportionate effect.” Let Xt denote the income in period t. It is generated by a

first-order Markov process, depending only on Xt�1 and a stochastic influence

Xt ¼ RtXt�1:

Here {Rt} is a sequence of independent and identically distributed random variables

that are independent of Xt�1 as well. X0 is the income in the initial period.

Substituting backward, we see that

Xt ¼ X0 � R0 � R1 � R2 � . . . Rt�1,

and as t increases, the distribution of Xt tends to a lognormal distribution provided

var( log Rt) , 1.

In the Gibrat model we assume the independence of Rt, which may not be

realistic. Moreover, the variance of log Xt is an increasing function of t and this often

contradicts the data. Kalecki (1945), in a paper already mentioned, modified the

model by introducing a negative correlation between Xt�1 and Rt that prevents

var( log Xt) from growing. Economically, it means that the probability that income

will rise by a given percentage is lower for the rich than for the poor. (The

modification is an example of an ingenious but possibly ad hoc assumption.)

Champernowne (1953) demonstrated that under certain assumptions the

stationary income distribution will approximate the Pareto distribution irrespectively

of the initial distribution. He also viewed income determination as a Markov process

(income for the current period depends only on one’s income for the last period and

random influence). He subdivided the income into a finite number of classes and

defined pij as the probability of being in class j at time t þ 1 given that one was in

class i at time t. The income intervals defining each class are assumed (1) to form a

geometric (not arithmetic) progression. The limits of class j are higher than those of

class j � 1 by a certain percentage rather than a certain absolute amount of income

and the transitional probabilities pij depend only on the differences j � i. (2) Income

cannot move up more than one interval nor down more than n intervals in any one

period; (3) there is a lowest interval beneath which no income can fall, and (4) the

average number of intervals shifted in a period is negative in each income bracket.

Under these assumptions, Champernowne proved that the distribution eventually

behaves like the Pareto law.

The assumptions of the Champernowne model can be relaxed by allowing for

groups of people (classified by age, occupation, etc.) and permitting movement from

one group to another. However, constancy of the transition matrix is essential;

otherwise, no stationary distribution will emerge from the Markov process.

Moreover, probabilities of advancing or declining ought to be independent of the

amount of income. Many would doubt the existence of a society whose institutional

framework is so static, noting that such phenomena as “inherited privilege,” and

cycles of poverty or prosperity are part and parcel of all viable societies.

To complicate the matter with the applicability of Champernowne’s model, it was

shown by Aitchison and Brown (1954) that if the transition probabilities pij depend
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on j=i (rather than j � i, as is the case in Champernowne’s model) and further that

the income brackets form an arithmetic (rather than geometric) progression, then the

limiting distribution is lognormal rather than Pareto. In our opinion the dependence

on j � i may seem to be more natural, but it is a matter of subjective opinion.

It should also be noted that the Champernowne and Gibrat models and some

others require long durations of time until the approach to stationarity is obtained.

This point has been emphasized by Shorrocks (1975).

Rutherford (1955) incorporated birth–death considerations into a Markov model.

His assumptions were as follows:

. The supply of new entrants grows at a constant rate.

. These people enter the labor force with a lognormal distribution of income.

. The number of survivors in each cohort declines exponentially with age.

Under these assumptions, the data eventually approximate the Gram–Charlier type

A distribution, which often provides a better fit than the lognormal. In Rutherford’s

model the overall variance remains constant over time.

Mandelbrot (1961) constructed a Markov model that approximates the Pareto

distribution similarly to Champernowne’s model, but does not require the strict law

of proportionate effect (a random walk in logarithms).

Wold and Whittle (1957) offered a rather general continuous-time model that also

generates the Pareto distribution: It is applied to stocks of wealth that grow at a

compound interest rate during the lifetime of a wealth-holder and are then divided

among his heirs. Deaths occur randomly with a known mortality rate per unit time.

Applying the model to wealth above a certain minimum (this is necessary because

the Pareto distribution only applies above some positive minimum wealth), Wold and

Whittle derived the Pareto law and expressed the exponent a as a function of (1) the

number of heirs per person, (2) the growth rate of wealth, and (3) the mortality rate

of the wealth owners.

The most complicated model known to us seems to be due to Sargan (1957). It is

a continuous-time Markov process: The ways in which transitions occur are

explicitly spelled out. His approach is quite general; it accommodates

. Setting of new households and dissolving of old ones

. Gifts between households

. Savings and capital gains

. Inheritance and death

It is its generality that makes it unwieldy and unintelligible.

As an alternative to the use of ergodic Markov processes, one can also explain

wealth or income distributions by means of branching processes. Steindl (1972),

building on the model of Wold and Whittle (1957) mentioned above, showed in this

way that the distribution of wealth can be regarded as a certain transformation of an

age distribution. Shorrocks (1975) explained wealth accumulations using the theory
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of queues. He criticized previously developed stochastic models for concentrating on

equilibrium distributions and proposed a model in which the transition probabilities

or parameters of the distribution are allowed to change over time.

These models were often criticized by applied economists who favor models

based on human capital and the concept of economic man (Mincer, 1958; Becker,

1962, 1964). Some of them scorn size distribution of income and refer to them as

antitheories. Their criticism often goes like this:

Allowing a stochastic mechanism to be the sole determinant of the income distribution is

TO GIVE UP BEFORE YOU START. The deterministic part of a model (in econometrics)

is “what we think we know,” the disturbance term is “what we don’t know.” The

probabilistic approach allocates 100% variance in income to the latter.

In our opinion this type of argument shows a lack of understanding of the concept

of stochastic model and by extension of the probabilistic-statistical approach.
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C H A P T E R T W O

General Principles

Before embarking on a detailed discussion of the models for economic and actuarial

size phenomena, we will discuss a number of unifying themes along with several

tools that are required in the sequel. These include, among others, the ubiquitous

Lorenz curve and associated inequality measures. In addition, we present some

concepts usually associated with reliability and engineering statistics such as the

hazard rate and the mean residual life function that are known in actuarial science

under different names. Here these functions are often used for preliminary model

selection because they highlight the area of a distribution that is of central interest in

these applications, the extreme right tail.

We also briefly discuss systems of distributions in order to facilitate subsequent

classifications, namely, the Pearson and Burr systems and the less widely known

Stoppa system. The largest branch of the size distributions literature, dealing with

the size distribution of personal income, has developed its own systems for the

generation of distributions; these we survey in Section 2.4.

Unless explicitly stated otherwise, we assume throughout this chapter that the

underlying c.d.f. F is continuous and supported on an interval.

2.1 SOME CONCEPTS FROM ECONOMICS

The literature on Lorenz curves, inequality measures, and related notions is by now

so substantial that it would be easy to write a 500-page volume dealing exclusively

with these concepts and their ramifications. We shall be rather brief and only present

the basic results. For refinements and further developments, we refer the interested

reader to Kakwani (1980b), Arnold (1987), Chakravarty (1990), Mosler (1994), or

Cowell (2000) and the references therein.
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2.1.1 Lorenz Curves and the Lorenz Order

In June 1905 a paper entitled “Methods of measuring the concentration of wealth,”

written by Max Otto Lorenz (who was completing at that time his Ph.D. dissertation

at the University of Wisconsin and destined to become an important U.S.

Government statistician), appeared in the Journal of the American Statistical

Association.

It truly revolutionized the economic and statistical studies of income

distributions, and even today it generates a fertile field of investigation into the

bordering area between statistics and economics. The Current Index of Statistics (for

the year 1999) lists 13 papers with the titles Lorenz curve and Lorenz ordering. It

would not be an exaggeration to estimate that several hundred papers have been

written in the last 50 years in statistical journals and at least the same number in

econometric literature. It should be acknowledged that Lorenz’s pioneering work lay

somewhat dormant for a number of decades in the English statistical literature until it

was resurrected by Gastwirth in 1971.

To draw the Lorenz curve of an n-point empirical distribution, say, of household

income, one plots the share L(k=n) of total income received by the k=n � 100% of the

lower-income households, k ¼ 0, 1, 2, . . . , n, and interpolates linearly.

In the discrete (or empirical) case, the Lorenz curve is thus defined in terms of the

nþ 1 points

L
k

n

� �
¼

Pk
i¼1 xi:nPn
i¼1 xi:n

, k ¼ 0, 1, . . . , n, (2:1)

where xi:n denotes the ith smallest income, and a continuous curve L(u), u [ [0, 1],

is given by

L(u) ¼
1

n�xx

Xbunc

i¼1

xi:n þ (un� bunc)xbuncþ1:n

( )
, 0 � u � 1, ð2:1aÞ

where bunc denotes the largest integer not exceeding un.

Figure 2.1 depicts the Lorenz curve for the (income) vector x ¼ (1, 3, 5, 11). By

definition, the diagonal of the unit square corresponds to the Lorenz curve of a

society in which everybody receives the same income and thus serves as a

benchmark case against which actual income distributions may be measured.

The appropriate definition of the Lorenz curve for a general distribution follows

easily by recognizing the expression (2.1) as a sequence of standardized empirical

incomplete first moments. In view of E(X ) ¼
Ð 1

0
F�1(t) dt, where the quantile

function F�1 is defined as

F�1(t) ¼ sup{x j F(x) � t}, t [ [0, 1], (2:2)

20 GENERAL PRINCIPLES



equation (2.1a) may be rewritten as

L(u) ¼
1

E(X )

ðu

0

F�1(t) dt, u [ [0, 1]: (2:3)

It follows that any distribution supported on the nonnegative halfline with a finite

and positive first moment admits a Lorenz curve. Following Arnold (1987), we shall

occasionally denote the set of all random variables with distributions satisfying

these conditions by L. Clearly, the empirical Lorenz curve can now be rewritten in

the form

Ln(u) ¼
1

�xx

ðu

0

F�1
n (t) dt, u [ [0, 1], (2:4)

an expression that is useful for the derivation of the sampling properties of the

Lorenz curve.

Figure 2.1 Lorenz curve of x ¼ (1, 3, 5, 11).
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In the Italian literature the representation (2.3) in terms of the quantile function

was used as early as 1915 by Pietra who obviously was not aware of Lorenz’s

contribution. It has also been popularized by Piesch (1967, 1971) in the German

literature.

In the era preceding Gastwirth’s (1971) influential article (reviving the interest in

Lorenz curves in the English statistical literature), the Lorenz curve was commonly

defined in terms of the first-moment distribution. The moment distributions are

defined by

F(k)(x) ¼
1

E(X k)

ðx

0

tk f (t) dt, x � 0, k ¼ 0, 1, 2, . . . , (2:5)

provided E(X k ) , 1. Hence, they are merely normalized partial moments. Like the

higher-order moments themselves, the higher-order moment distributions are

difficult to interpret; however, the c.d.f. F(1)(x) of the first-moment distribution

simply gives the share of the variable X accruing to the population below x. In the

context of income distributions, Champernowne (1974) refers to F(0), that is, the

underlying c.d.f. F, as the people curve and to F(1) as the income curve.

It is thus not difficult to see that the Lorenz curve can alternatively be expressed as

{(u, L(u))} ¼ {(u, v)ju ¼ F(x), v ¼ F(1)(x); x � 0}: (2:6)

Although the representation (2.3) is often more convenient for theoretical

considerations, the “moment distribution form” (2.6) also has its moments,

especially for parametric families that do not admit a quantile function expressed

in terms of elementary functions. In the following chapters, we shall therefore use

whatever form is more tractable in a given context. It is also worth noting that several

of the distributions considered in this book are closed with respect to the formation

of moment distributions, that is, F(k) is of the same type as F but with a different set

of parameters (Butler and McDonald, 1989). Examples include the Pareto and

lognormal distributions and the generalized beta distribution of the second kind

discussed in Chapter 6.

It follows directly from (2.3) that the Lorenz curve has the following properties:

. L is continuous on [0, 1], with L(0) ¼ 0 and L(1) ¼ 1.

. L is increasing.

. L is convex.

Conversely, any function possessing these properties is the Lorenz curve of a certain

statistical distribution (Thompson, 1976).

Since any distribution is characterized by its quantile function, it is clear from

(2.3) that the Lorenz curve characterizes a distribution in L up to a scale parameter

(e.g., Iritani and Kuga, 1983). It is also worth noting that the Lorenz curve itself may

be considered a c.d.f. on the unit interval. This implies, among other things, that this
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“Lorenz curve distribution”—having bounded support—can be characterized in

terms of its moments, and moreover that these “Lorenz curve moments” characterize

the underlying income distribution up to a scale, even if this distribution is of the

Pareto type and only a few of the moments exist (Aaberge, 2000).

By construction, the quantile function associated with the “Lorenz curve

distribution” is also a c.d.f. It is sometimes referred to as the Goldie curve, after

Goldie (1977) who studied its asymptotic properties.

Although the Lorenz curve has been used mainly as a convenient graphical tool

for representing distributions of income or wealth, it can be used in all contexts

where “size” plays a role. As recently as 1992, Aebi, Embrechts, and Mikosch have

used Lorenz curves under the name of large claim index in actuarial sciences. Also,

the Lorenz curve is intimately related to several concepts from engineering statistics

such as the so-called total-time-on-test transform (TTT) (Chandra and Singpurwalla,

1981; Klefsjö, 1984; Heilmann, 1985; Pham and Turkkan, 1994). It continues to find

new applications in many branches of statistics; recently, Zenga (1996) introduced a

new concept of kurtosis based on the Lorenz curve (see also Polisicchio and Zenga,

1996).

As an example of Lorenz curves, consider the classical Pareto distribution (see

Chapter 3) with c.d.f. F(x) ¼ 1� (x=x0)�a, x � x0 . 0, and quantile function

F�1(u) ¼ x0(1� u)�1=a, 0 , u , 1. The mean E(X ) ¼ a x0=(a� 1) exists if and

only if a . 1. This yields

L(u) ¼ 1� (1� u)1�1=a, 0 , u , 1, (2:7)

provided a . 1. We see that Lorenz curves from Pareto distributions with a different

a never intersect. Empirical Lorenz curves occasionally do intersect, so Pareto

distributions may not be useful in these situations. Figure 2.2 depicts the Lorenz

curves of two Pareto distributions, with a ¼ 1:5 and a ¼ 2:5.

It is natural to study the geometric aspects of Lorenz curves, for example, their

symmetry (or lack thereof ) with respect to the alternate diagonal

{(x, 1� x)jx [ [0, 1]}, the line perpendicular to the line of equal distribution. A

general condition for self-symmetry was given by Kendall (1956) in the form of a

functional equation for the density

f (x) ¼
E(X )

x

� �3=2

g log
x

E(X )

� �
, (2:8)

where g( y) is an even function of y.

Clearly, the Lorenz curve of the Pareto distribution (2.7) does not possess this

symmetry property. The best known example of a distribution with self-symmetric

Lorenz curves is the lognormal; see Figure 4.3 in Chapter 4. See also

Champernowne (1956), Taguchi (1968), and especially Piesch (1975) for further

details on the geometry of Lorenz curves.
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Arnold et al. (1987) observed that every distribution F which is strongly

unimodal and symmetric about 0 leads to a self-symmetric Lorenz curve

representable as Lt(u) ¼ F[F�1(u)� t], u [ (0, 1), t � 0. The prime example is

the normal distribution that leads to a lognormal Lorenz curve.

Figure 2.2 also prompts us to compare two distributions, in a global sense, by

comparing their corresponding Lorenz curves. If two Lorenz curves do not intersect,

it may perhaps be appropriate to call the distribution with the lower curve “more

unequal” or “more variable,” and indeed a stochastic ordering based on this notion,

the Lorenz partial ordering, was found to be a useful tool in many applications. For

X1, X2 [ L, the Lorenz ordering is defined as

X1 �L X2 :()F1 �L F2 :()LX1
(u) � LX2

(u), for all u [ [0, 1]: (2:9)

Here X1 is said to be larger than X2 (or more unequal) in the Lorenz sense. From

(2.3) it is evident that the Lorenz ordering is scale-free; hence,

X1 �L X2() a � X1 �L b � X2, a, b . 0: (2:10)

Figure 2.2 Lorenz curves of two Pareto distributions: a ¼ 1:5 (solid) and a ¼ 2:5 (dashed).
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Economists usually prefer to denote the situation where LX1
� LX2

as X2 �L X1,

because F2 is, in a certain sense, associated with a higher level of economic welfare

(Atkinson, 1970). We shall use the notation (2.9) that appears to be the common one

in the statistical literature, employed by Arnold (1987) or Shaked and Shanthikumar

(1994), among others.

Among the methods for verifying Lorenz ordering relationships, we mention that

if X2¼
d

g(X1), then (Fellman, 1976)

g(x)

x
is nonincreasing on (0, 1)¼)X1 �L g(X1): (2:11)

Under the additional assumption that g be increasing on [0, 1), the condition is also

necessary (Arnold, 1987). This result is useful, among other things, in connection

with the lognormal distribution; see Section 4.5.

Closely connected conditions are in terms of two stronger concepts of stochastic

ordering, the convex and star-shaped orderings. For two distributions Fi, i ¼ 1, 2,

supported on [0, 1) or a subinterval thereof, distribution F1 is said to be convex

(star-shaped) ordered with respect to a distribution F2, denoted as

F1 �conv F2(F1 �� F2), if F�1
1 F2 is convex [F�1

1 F2(x)=x is nonincreasing] on the

support of F2. It can be shown that the convex ordering implies the star-shaped

ordering, which in turn implies the Lorenz ordering (Chandra and Singpurwalla,

1981; Taillie, 1981).

These criteria are useful when the quantile function is available in a simple closed

form, as is the case with, among others, the Weibull distribution; see Chapter 5.

Several further methods for verifying Lorenz dominance were discussed by Arnold

(1987) or Kleiber (2000a).

Various suggestions have been made as to how to proceed when two Lorenz

curves intersect. In international comparisons of income distributions, this is

particularly common for countries on different economic levels, for example,

industrialized and developing countries. This suggests that the problem can be

resolved by scaling up the Lorenz curves by the first moment, leading to the

so-called generalized Lorenz curve (Shorrocks, 1983; Kakwani, 1984)

GL(u) ¼ E(X ) � L(u) ¼

ðu

0

F�1(t) dt, 0 , u , 1: (2:12)

In contrast to the classical Lorenz curve, the generalized Lorenz curve is no longer

scale-free and so it completely determines any distribution with a finite mean (Thistle,

1989a). The associated ordering concept is the generalized Lorenz ordering, denoted

as X1 �GL X2. In economic parlance, the generalized Lorenz ordering is a welfare

order, since it takes not only distributional aspects into account (as does the Lorenz

ordering) but also size-related aspects such as the first moment. In statistical terms it is

simply second-order stochastic dominance (SSD), since (e.g., Thistle, 1989b)

X1 �GL X2()

ðx

0

F1(t) dt �

ðx

0

F2(t) dt, for all x � 0:
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Shorrocks and others have provided many empirical examples for which generalized

Lorenz dominance applies; hence, this extension appears to be of considerable

practical importance.

Another variation on this theme is the absolute Lorenz ordering introduced by

Moyes (1987); it replaces scale invariance with location invariance and is defined in

terms of the absolute Lorenz curve

AL(u) ¼ E(X ) � {L(u)� u} ¼

ðu

0

{F�1(t)� E(X )} dt, 0 , u , 1: (2:13)

However, these proposals clearly do not exhaust the possibilities. See Alzaid

(1990) for additional Lorenz-type orderings defined via weighting functions that

emphasize certain parts of the Lorenz curves.

2.1.2 Parametric Families of Lorenz Curves

In view of the importance of the Lorenz curve in statistical and economic analyses of

income inequality, it should not come as a surprise that a plethora of parametric

models for approximating empirical Lorenz curves has been suggested. Since the

Lorenz curve characterizes a distribution up to scale, it is indeed quite natural to start

directly from the Lorenz curve (or the quantile function), especially since many

statistical offices report distributional data in the form of quintiles or deciles,

occasionally even in the form of percentiles. In these cases the shape of the income

distribution is only indirectly available and perhaps not even required if an

assessment of inequality associated with the distribution is all that is desired. In

short, does one fit a distribution function to the data and obtain the implied Lorenz

curve (and Gini coefficient), or does one fit a Lorenz curve and obtain the implied

distribution function (and Gini coefficient)?

The pioneering effort of Kakwani and Podder (1973) triggered a veritable

avalanche of papers concerned with the direct modeling of the Lorenz curve, of

which we shall only present a brief account. Since any function that passes through

(0, 0) and (1, 1) and that is monotonically increasing and convex in between is a

bona fide Lorenz curve, the possibilities are virtually endless. Kakwani and Podder

(1973, 1976) suggested two forms. Their 1973 form is

L(u) ¼ ude�h(1�u), 0 , u , 1, (2:14)

where h . 0 and 1 , d , 2, whereas the more widely known second form

(Kakwani and Podder, 1976) has a geometric motivation. Introducing a new

coordinate system defined in terms of

h ¼
1ffiffiffi
2
p (uþ v) and p ¼

1ffiffiffi
2
p (u� v), (2:15)
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where 0 , u , 1 and v ¼ L(u), this form is given by

h ¼ apa(
ffiffiffi
2
p
� p)b: (2:16)

Here a � 0, 0 � a � 1 and 0 , b � 1. This model amounts to expressing a point

[F(x), F(1)(x)] on the Lorenz curve in the form (p, h), where h is the length of the

ordinate from [F(x), F(1)(x)] on the egalitarian line and p is the distance of the

ordinate from the origin along the egalitarian line. [As pointed out by Dagum (1986),

the new coordinate system (2.15) was initially introduced by Gini (1932) in the

Italian literature.]

Other geometrically motivated specifications include several models based on

conic sections: Ogwang and Rao (1996) suggested the use of a circle’s arc, Arnold

(1986) employed a hyperbolic model, whereas Villaseñor and Arnold (1989) used a

segment of an ellipse. Although the resulting fit is sometimes excellent, all these

models have the drawbacks that their parameters must satisfy certain constraints

which are not easily implemented in the estimation process and also that the

expressions for the Gini coefficients are somewhat formidable (an exception is the

Ogwang–Rao specification).

A further well-known functional form is the one proposed by Rasche et al. (1980)

who suggested

L(u) ¼ [1� (1� u)a]1=b, 0 , u , 1, (2:17)

where 0 , a, b � 1. This is a direct generalization of the Lorenz curve of the Pareto

distribution (2.7) obtained for b ¼ 1 and a , 1. For a ¼ b the curve is self-

symmetric (in the sense of Section 2.1.1), as pointed out by Anstis (1978).

In order to overcome the drawback of many previously considered functional

forms, namely, a lack of fit over the entire range of income, several authors have

proposed generalizations or combinations of the previously considered functions.

Quite recently, Sarabia, Castillo, and Slottje (1999) have suggested a family of

parametric Lorenz curves that synthetizes and unifies some of the previously

considered functions. They point out that for any Lorenz curve L0 the following

curves are also Lorenz curves that generalize the initial model L0:

. L1(u) ¼ uaL0(u), 0 , u , 1, where either a � 1 or 0 � a , 1 and L0000 (u) � 0.

. L2(u) ¼ {L0(u)}g, 0 , u , 1, where g � 1.

. L3(u) ¼ ua{L0(u)}g, 0 , u , 1, and a, g � 1.

An advantage of this approach is that Lorenz ordering results are easily obtained,

in particular

. L1(u; a1) �L L1(u; a2), if and only if a1 � a2 . 0.

. L2(u; g1) �L L2(u; g2), if and only if g1 � g2 . 0.

. A combination of the preceding two cases yields results for L3.
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For the particular choice L0(u) ¼ 1� (1� u)k , k � 1, the Lorenz curve of the

Pareto distribution (2.7), Sarabia, Castillo, and Slottje obtained a class of parametric

Lorenz curves comprising two previously considered functions: the model proposed

by Rasche et al. (1980), cf. (2.17), and a proposal due to Ortega et al. (1991).

The resulting family is baptized the Pareto family; its members are listed in Table 2.1.

Sarabia, Castillo, and Slottje obtained excellent results when fitting this family to

Swedish and Brazilian data given in Shorrocks (1983) and concluded that the Pareto

distribution, which has the disadvantage not to fit the entire income range, does

much better when serving as a generator of parametric Lorenz curves.

The process may be repeated using other Lorenz curves as the generating function

L0. Specifically, for the model proposed by Chotikapanich (1993),

L0(u) ¼
eku � 1

ek � 1
, 0 , u , 1, (2:18)

where k . 0, one obtains a family that is called the exponential family of Lorenz

curves by Sarabia, Castillo, and Slottje (2001), whereas for

L0(u) ¼ ubu�1, 0 , u , 1, (2:19)

where b . 0, a specification proposed by Gupta (1984), one obtains the Rao–Tam

(1987) curve as the L1-type curve, namely

L1(u) ¼ uabu�1, 0 , u , 1: (2:20)

A further method for generating new parametric Lorenz curves from previously

considered ones has been suggested by Ogwang and Rao (2000) who employed

convex combinations—their “additive model”—and weighted products—their

“multiplicative model”—of two constituent Lorenz curves. Employing combinations

Table 2.1 Parametric Lorenz Curves: The Pareto Family

Lorenz Curve Gini Coefficient Source

L0(u) ¼ 1� (1� u)k 1� k

1þ k

L1(u) ¼ ua[1� (1� u)k ] 1� 2[B(aþ 1, 1)

�B(aþ 1, k þ 1)]

Ortega et al. (1991)

L2(u) ¼ [1� (1� u)k ]g 1�
2

k
B(k�1, gþ 1) Rasche et al. (1980)

L3(u) ¼ ua[1� (1� u)k ]g 1� 2
P1

i¼0

G(i� g)

G(iþ 1)G(�g)
�B(aþ 1, kiþ 1)

Sarabia, Castillo, and

Slottje (1999)
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of the Ortega et al. (1991) and Chotikapanich (1993) as well as the Rao–Tam (1987)

and Chotikapanich (1993) models, they concluded that the additive models perform

distinctly better than either constituent model and moreover yield a satisfactory fit

over the entire range of income.

Among the many further proposals, we should mention the work of Maddala and

Singh (1977b) who suggested expressing the Lorenz curve as a sum of powers of u

and 1� u. Holm (1993) proposed a maximum entropy approach using side

conditions on the Gini coefficient and the distance of the mean income from the

minimum income. For the resulting maximum entropy Lorenz curve, the fit is often

excellent. Ryu and Slottje (1996) considered nonparametric series estimators based

on Bernstein or exponential polynomials and Sarabia (1997) took one of the few

distributions parameterized in terms of their associated quantile function, the Tukey’s

lambda distribution, as the starting point.

For any given parametric Lorenz curve, it is natural to inquire about the form of

the implied p.d.f. of the income distribution. Not surprisingly, the resulting

expressions are often rather involved, yielding, for example, distributions with

bounded support—this being the case, for instance, for the Chotikapanich (1993)

model—or a severely restricted behavior in the upper tail. For example, the elliptical

model of Villaseñor and Arnold (1989) implies that f (x) � x�3, for large x,

irrespective of the parameters. This does however not diminish the usefulness

of these models for approximating the Lorenz curve. It is also interesting that a sub-

class of the Rasche et al. curve corresponds to a subclass of Lorenz curves implied

by the Singh–Maddala income distribution (cf. Section 6.2). See Chotikapanich

(1994) for a discussion of the general form of the p.d.f. implied by the Rasche et al.

curves.

All the specifications considered are usually estimated by a nonlinear

(generalized) least-squares procedure, possibly after a logarithmic transformation.

In a comprehensive study fitting 13 parametric Lorenz curves to 16 data sets

describing the disposable household incomes in the Federal Republic of Germany

for several nonconsecutive years between 1950 and 1988, Schader and Schmid

(1994) concluded that one- and two-parameter models are often inappropriate for

this purpose. (The investigation also include several curves obtained from parametric

models of the income density, namely, the lognormal, Singh–Maddala, and Dagum

type I models.) Their criterion is a comparison with Gastwirth’s (1972) non-

parametric bounds for the Gini coefficient that are violated by a number of curves. In

particular, the Kakwani–Podder (1973) and Gupta (1984) models perform rather

poorly, whereas the Kakwani–Podder (1976) model does very well.

A popular benchmark data set in this line of research consists of the deciles of the

income distributions of 19 countries derived from Jain (1975) and later published by

Shorrocks (1983).

2.1.3 Inequality Measures

Inequality measures are an immensely popular and favorite topic in the modern

statistical and econometric literature, especially among “progressive” researchers.
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Oceans of ink and tons of computer software have been used to analyze this

somewhat controversial and touchy topic, and numerous books, theses, pamphlets,

technical and research reports, memoranda, etc. are devoted to this subject matter

(see, e.g., Chakravarty, 1990; Sen, 1997; or Cowell, 1995, 2000). It is not our aim to

analyze these works and we shall take it for granted that the reader is familiar with

the structure of the basic time-honored inequality measure, the Gini coefficient.

However, in the authors’ opinion the overemphasis—bordering on obsession—on

the Gini coefficient as the measure of income inequality that permeates the relevant

publications of research staffs and their consultants in the IMF and World Bank is an

unhealthy and possibly misleading development.

One of the numerous definitions of the Gini index is given as twice the area

between the Lorenz curve and the “equality line”:

G ¼ 2

ð1

0

[u� L(u)] du ¼ 1� 2

ð1

0

L(u) du: (2:21)

Clearly, the Gini coefficient satisfies the Lorenz order; in economic parlance: It is

“Lorenz consistent.” Alternative representations are too numerous to mention here;

see Giorgi (1990) for a partial bibliography with 385 mainly Italian sources. We do

however require a formula in terms of the expectations of order statistics

G ¼ 1�
E(X1:2)

E(X )
¼ 1�

Ð1

0
[1� F(x)]2 dx

E(X )
, (2:22)

which is presumably due to Arnold and Laguna (1977), at least in the non-Italian

literature. In the economics literature it has been independently rediscovered by

Dorfman (1979).

It should not come as a surprise that various generalizations of the Gini

coefficient have also been suggested. Kakwani (1980a), Donaldson and Weymark

(1980, 1983), and Yitzhaki (1983) proposed a one-parameter family of generalized

Gini indices by introducing different weighting functions for the area under the

Lorenz curve

Gn ¼ 1� n(n� 1)

ð1

0

L(u)(1� u)n�2 du, (2:23)

where n . 1. Muliere and Scarsini (1989) observed that

Gn ¼ 1�
E(X1:n)

E(X )
: (2:24)

Equation (2.24) is a direct generalization of (2.22).

It is of some at least theoretical interest that income distributions can be

characterized in terms of these generalized Gini coefficients, which is equivalent—in
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view of (2.22)—to a characterization in terms of the first moments of the order

statistics. As we shall see in the following chapters, most parametric models for

the size distribution of incomes possess heavy (polynomial) tails, so only a few

of the moments exist. However, these distributions are determined by the sequence

of the associated generalized Gini coefficients, provided the mean is finite (Kleiber

and Kotz, 2002).

Another classical index is the Pietra coefficient or relative mean deviation,

defined as

P ¼
EjX � E(X )j

2E(X )
: (2:25)

It has the interesting geometrical property of being equal to the maximum distance

between the Lorenz curve and the equality line.

Being a natural scale-free index, the variance of logarithms

VL(X ) ¼ var( log X ) (2:26)

has also attracted some attention, especially in applied work, apparently because of

its simple interpretation in connection with the popular lognormal distribution.

However, Foster and Ok (1999) showed that it can grossly violate the Lorenz

ordering, thus casting some doubt on its usefulness. [Earlier although less extreme

results in this regard were obtained by Creedy (1977).]

Among the many further inequality coefficients proposed over the last 100 years,

we shall confine ourselves to two one-parameter families that are widely used in

applied work. These are the Atkinson (1970) measures

Ae ¼ 1�
1

E(X )

ð1

0

x1�edF(x)

� �1=(1�e)

, (2:27)

where e . 0 is a sensitivity parameter giving more and more weight to the small

incomes as it increases, and the so-called generalized entropy measures (Cowell and

Kuga, 1981)

GEu ¼
1

u(u� 1)

ð1

0

x

E(X )

� �u

�1

" #
dF(x), (2:28)

where u [ Rn{0, 1}. Again, u is a sensitivity parameter emphasizing the upper tail

for u . 0 and the lower tail for u , 0. It is worth noting that for u ¼ 2 we

essentially obtain the squared coefficient of variation; hence, this widely used

characteristic of a distribution is of special significance in connection with size

phenomena. For u ¼ 0, 1 the generalized entropy coefficients are defined via a

limiting argument, yielding

T1 :¼ GE1 ¼

ð1

0

x

E(X )
log

x

E(X )

� �
dF(x) (2:29)
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and

T2 :¼ GE0 ¼

ð1

0

log
E(X )

x

� �
dF(x): (2:30)

The latter two measures are known as the Theil coefficients—after Theil (1967)

who derived them from information-theoretic considerations—T1 being often

referred to as the Theil coefficient and T2 as Theil’s second measure or the mean

logarithmic deviation.

A drawback of both families of coefficients is that they are simple functions of the

moments of the distributions; hence, they will only be meaningful for a limited range

of the sensitivity parameters e and u if the underlying distribution possesses only a

few finite moments (Kleiber, 1997). Unfortunately, this is precisely the type of

distributions we shall encounter below.

2.1.4 Sampling Theory of Lorenz Curves and Inequality Measures

In view of the long history of inequality measurement, it is rather surprising that only

comparatively recently the asymptotics of time-honored tools such as the Lorenz

curve and associated inequality measures have been investigated. A possible

explanation is that in earlier literature income data were often believed to come from

censuses. Nowadays it is however generally acknowledged that most data are, in fact,

obtained from surveys (although not necessarily from simple random samples). In

addition, the applications of Lorenz curves extend to other areas such as actuarial

science where samples may be much smaller. This creates the need for an adequate

theory of sampling variation.

As mentioned above, it would by now be easy to write a 500-page monograph

dealing exclusively with inequality measurement, parametric and nonparametric,

classical and computer-intensive. Our following brief account presents the core

results in the sampling theory of Lorenz curves and some popular inequality

measures when raw microdata are available, and only in the case of complete data.

[We do not even discuss the celebrated Gastwirth (1972) bounds on the Gini

coefficient and its associated sampling theory.]

Lorenz Curves

The pointwise strong consistency of the empirical Lorenz curve was proved by Gail

and Gastwirth (1978) and Sendler (1979) under the assumption of a finite mean and

uniqueness of the quantile under consideration. The question arises if, and under

what conditions, the entire empirical Lorenz curve can be considered a good

estimator of its theoretical counterpart. This requires the use of more advanced

probabilistic tools from the theory of weak convergence of stochastic processes. The

first results in this area were due to Goldie (1977) who showed that (1) the empirical

Lorenz curve Ln converges almost surely uniformly to the population Lorenz curve

sup
u[[0,1]

jLn(u)� L(u)j �!
a:s:

0
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(a Glivenko–Cantelli-type result), and (2) a functional central limit theorem holds.

For the latter one must consider the normed difference between the empirical and

theoretical Lorenz curves—the empirical Lorenz process

ffiffiffi
n
p

{Ln � L};

under appropriate regularity conditions it converges weakly (in the space C[0, 1] of

continuous functions on [0, 1]) to a Gaussian process that is related to (without being

identical to) the familiar Brownian bridge process.

More recent results along these lines include works on the rate of convergence of

the empirical Lorenz process (a function-space law of the iterated logarithm) due to

Rao and Zhao (1995), and subsequently refined by Csörgó́ and Zitikis (1996, 1997).

These results allow for the construction of asymptotic confidence bands for the

entire Lorenz curves; see Csörgó́, Gastwirth, and Zitikis (1998). [Confidence

intervals for single points on the Lorenz curves—a much easier problem—were

obtained by Sendler (1979).]

However, although the empirical process approach considering the entire Lorenz

curve as the random element of interest is perhaps the most appropriate setup from a

theoretical point of view, in applied work it is often sufficient to consider the Lorenz

curve at a finite set of points (the deciles, say). A line of research dealing with

inference based on a vector of Lorenz curve ordinates was initiated by Beach and

Davidson (1983). Consider the k points 0 , u1 , u2 , � � � , uk , 1, with

corresponding quantiles F�1(ui), i ¼ 1, . . . , k. (Note that under the general

assumption of this chapter—namely, that F be supported on an interval—these

quantiles are unique.) Writing the conditional mean of incomes less than or equal to

F�1(ui) as gi :¼ E[X jX � F�1(ui)], i ¼ 1, . . . , k, and m ¼ E(X ) we can express the

corresponding Lorenz curve ordinates in the form

L(ui) ¼
1

m

ðF�1(ui)

0

x dF(x) ¼
ui

m

ðF�1(ui)

0

x dF(x)

ui

¼ ui �
gi

m
: (2:31)

Natural estimates of these quantities are computed as ûui ¼ Xri:n, where ri ¼ bnuic, and

L̂L(ui) ¼

Pri

j¼1 Xj:nPn
j¼1 Xj:n

� ui

ĝgi

m̂m
,

with ĝgi ¼
Pri

j¼1 Xj:n=ri and m̂m ¼ �XX n. This shows that the asymptotics of sample

Lorenz curve ordinates can be reduced to the asymptotics of the sample quantiles for

which there is a well-developed theory (e.g., David, 1981, pp. 254–258).

Under the assumption that the observations form a simple random sample from an

underlying distribution with finite variance (s 2, say), Beach and Davidson showed

that the (k þ 1)-dimensional random vector ûu :¼ (u1ĝg1, . . . , uk ĝgk , ukþ1ĝgkþ1)`, with

ukþ1 ¼ 1 and ĝgkþ1 ¼
�XX n, is asymptotically jointly multivariate normal

ffiffiffi
n
p

(ûu � u)�!
d

N (0, V), (2:32)
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where the asymptotic covariance matrix V ¼ (vij) is given by

vij ¼ ui

�
l2

i þ (1� ui){F�1(ui)� gi}{F�1(uj)� gj}

þ {F�1(ui)� gi}(gj � gi)

�
, i � j: (2:33)

Here l2
i :¼ var[X jX � F�1(ui)]. (Note that vkþ1,kþ1=n ¼ s 2=n, the variance of the

sample mean.) Writing

L̂L(u) :¼ [L̂L(u1), . . . , L̂L(uk)]` ¼ [u1ĝg1=(ukþ1ĝgkþ1), . . . , uk ĝgk=(ukþ1ĝgkþ1)]`

an application of the delta method shows that the k-dimensional vector of sample

Lorenz curve ordinates L̂L(u) is also jointly multivariate normal, specifically

ffiffiffi
n
p

[L̂L(u)� L(u)]�!
d

N (0, V ), (2:34)

where V ¼ (vij) is given by

vij ¼
1

m2

� �
vij þ

uigi

m2

� �
ujgj

m2

� �
s 2

�
uigi

m3

� �
vj,kþ1 �

ujgj

m3

� �
vi,kþ1, i � j: (2:35)

We see that V depends solely on the ui, the unconditional mean and variance m

and s 2, the income quantiles F�1(ui), and the conditional means and variances gi

and l2
i . All these quantities can be estimated consistently. For example, a natural

consistent estimator of l2
i is

l̂l 2
i ¼

1

ri

Xri

j¼1

(Xj:n � ĝgi)
2: (2:36)

Consequently, tests of joint hypotheses on Lorenz curve ordinates are now

available in a straightforward manner. For example, if it is required to compare an

estimated Lorenz curve L̂L(u) ¼ [L̂L(u1), . . . , L̂L(uk)] against a theoretical Lorenz curve

L0(u) ¼ [L0(u1), . . . , L0(uk)] in order to test H0 : L(u) ¼ L0(u), we may use the

quadratic form

n[L̂L(u)� L0(u)]`V̂V�1[L̂L(u)� L0(u)],

a statistic that is asymptotically distributed as a x 2
k under the null hypothesis.

Similarly, to compare two estimated Lorenz curves from independent samples in

order to test H0 : L1(u) ¼ L2(u), we may use

n[L̂L1(u)� L̂L2(u)]`[V̂V1=n1 þ V̂V2=n2]�1[L̂L1(u)� L̂L2(u)],

which is also asymptotically distributed as a x 2
k under the null hypothesis.
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These procedures are omnibus tests in that they have power against a wide variety

of differences between two Lorenz curves. In particular, they are asymptotically

distribution-free and consistent tests against the alternative of crossing Lorenz curves.

This line of research has been extended in several directions: Beach and

Richmond (1985) provided asymptotically distribution-free simultaneous confidence

intervals for Lorenz curve ordinates. More recently, Dardanoni and Forcina (1999)

considered comparisons among more than two population distributions using

methodology from the literature on order-restricted statistical inference. Davidson

and Duclos (2000) derived asymptotic distributions for the ranking of distributions

in terms of poverty, inequality, and stochastic dominance of arbitrary order (note that

the generalized Lorenz order is equivalent to second-order stochastic dominance).

Zheng (2002) extended the Beach–Davidson results to stratified, cluster, and

multistage samples.

Inequality Measures

Several possibilities exist to study the asymptotic properties of inequality measures.

Since the classical and generalized Gini coefficients are defined in terms of the Lorenz

curve, a natural line of attack is to consider them as functionals of the empirical

Lorenz process. This was the approach followed by Goldie (1977) for the case of the

classical Gini coefficient and by Barrett and Donald (2000) for the generalized Gini.

However, an alternative approach using somewhat simpler probabilistic tools (not

requiring empirical process techniques) is also feasible. It was developed by Sendler

(1979) for the classical Gini coefficient and more recently by Zitikis and Gastwirth

(2002) for the generalized version. An additional benefit is that fewer assumptions—

essentially only moment assumptions—are required.

Using general representations for the moments of order statistics (see David,

1981), the generalized Gini coefficient (2.24) can be expressed in the form

Gn ¼ 1�
n

m

ð1

0

F�1(t)(1� t)n�1dt ¼ 1þ
1

m

ð1

0

F�1(t) d{(1� t)n}: (2:37)

This suggests that Gn can be estimated by

ĜGn,n ¼ 1�
1

�XX nnn

Xn

i¼1

(n� iþ 1)n � (n� i)n
� 	

Xi:n,

which is a ratio of two linear functions of the order statistics. In the case of n ¼ 2

(the classical Gini coefficient), we obtain

ĜGn,2 ¼ 1�
1

�XX nn2

Xn

i¼1

(n� iþ 1)2 � (n� i)2
� 	

Xi:n

¼
1

�XX nn2

Xn

i¼1

Xn

j¼1

jXi � Xjj,
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the numerator of which is recognized as a variant of a measure of spread commonly

referred to as Gini’s mean difference; see, for example, David (1968).

From (2.37) we moreover see that the weight function (1� t)n is smooth and

bounded (for n . 1) on [0, 1]. Using limit theory for such functions of order

statistics (see, e.g., Stigler, 1974), Zitikis and Gastwirth obtained for n . 1 under the

sole assumption that E(X 2) is finite

ffiffiffi
n
p

(ĜGn,n � Gn)�!
d

N (0, s 2
F,n),

where

s 2
F,n ¼

1

m2
sF (n, n)þ 2(Gn � 1)sF (1, n)þ (Gn � 1)2sF (1, 1)
� 	

(2:38)

with, for a, b [ {1, n},

sF (a, b) ¼

ð1

0

ð1

0

{F(s ^ t)� F(s)F(t)}{1� F(s)}a�1{1� F(t)}b�1 ds dt:

Alternative expressions for the asymptotic variance of the classical Gini index

(n ¼ 2) may be found in Goldie (1977) and Sendler (1979).

To apply this result for the construction of approximate confidence intervals, a

consistent estimate of (2.38) is required. A simple nonparametric estimate of s 2
F ,n is

obtained by replacing F in (2.38) by its empirical counterpart Fn. This yields the

estimator

s2
n,n ¼

1

�XX
2

sn(n, n)þ 2(Gn,n � 1) sn(1, n)þ (Gn,n � 1)2 sn(1, 1)
� 	

with, for a, b [ {1, n},

sn(a, b) ¼
Xn�1

i¼1

Xn�1

j¼1

f
(n)
ij (a, b)(Xiþ1:n � Xi:n)(Xjþ1:n � Xj:n),

where

f
(n)
ij (a, b) ¼ ab

i

n
^

j

n

� �
�

i

n

j

n

� �
1�

i

n

� �a�1

1�
j

n

� �b�1

:

Under the previously stated assumptions, Zitikis and Gastwirth showed that this

estimator is strongly consistent, implying that an approximate 100(1� a)%

confidence interval for Gn is given by

ĜGn,n + za=2sn,n=
ffiffiffi
n
p

,
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where za=2 denotes the a=2 fractile of the standard normal distribution. For the case

where instead of complete data only a vector of Lorenz curve ordinates is available,

Barrett and Pendakar (1995) provided the asymptotic results for the generalized Gini

measures following the Beach and Davidson (1983) approach.

A similar derivation yields the asymptotic distribution of the Pietra coefficient,

although the presence of absolute values provides some additional complications. A

natural estimator of (2.25) is

P̂Pn ¼

Pn
i¼1 jXi � �XX j

2n �XX
¼:

D

�XX
: (2:39)

Writing

Xn

i¼1

jXi � �XX j ¼
X
Xi� �XX

( �XX � Xi)þ
X
Xi. �XX

(Xi � �XX ),

we see that 2nD may be expressed in the form

Xn

i¼1

jXi � �XX j ¼ 2

 
N �XX �

X
Xi� �XX

Xi

!
,

where N denotes the random number of observations less than �XX .

Gastwirth (1974) showed that if E(X 2) , 1 and the underlying density is

continuous in the neighborhood of m ¼ E(X ), the numerator and denominator of

(2.39) are asymptotically jointly bivariate normally distributed. Hence, an

application of the delta method yields

ffiffiffi
n
p

(P̂Pn � P)�!
d

N (0, s 2
P);

where the asymptotic variance s 2
P has the somewhat formidable representation

s 2
P ¼

v2

m2
þ
d2s 2

4m2
�

d

m3
ps 2 �

ðm
0

(x� m)2 dF(x)

� �
,

with p ¼ F(m), d ¼ EjX � E(X )j and

v2 ¼ p2

ð1

m

(x� m)2 dF(x)þ (1� p)2

ðm
0

(x� m)2 dF(x)�
d2

4
:

Although the Gini and Pietra coefficients are directly related to the Lorenz curve

and can therefore be treated using results on the asymptotics of linear functions of

order statistics, this is not true for the Atkinson and generalized entropy measures.

However, these quantities are simple functions of the moments of the size
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distribution, so it is natural to estimate them by the method of moments. For

complete random samples the large sample properties of the resulting estimators

ÂAn,e ¼ 1�
m(e)1=e

m(1)
(2:40)

and

cGEGEn,u ¼
1

u(u� 1)

m(u)

m(1)u
� 1

� �
, (2:41)

where m(e) denotes the sample moment of order e, were derived by Thistle (1990)

and Kakwani (1990). It is also convenient to denote the variance of
ffiffiffi
n
p

m(e) by s 2(e)

and the covariance of
ffiffiffi
n
p

m(e) and
ffiffiffi
n
p

m(e 0) by g (e, e 0).

Provided the required moments exist, a straightforward application of the delta

method yields

ffiffiffi
n
p ÂAn,e � Aeffiffiffiffiffiffiffiffiffiffi

vA(e)
p �!

d
N (0, 1), (2:42)

where

vA(e) ¼
1� Ae

em(e)

� �2

s 2(e)�
2em(e)

m
g (e, 1)þ

em(e)

m

� �2

s 2

( )
, (2:43)

with m(e) :¼ E(X e) and s 2(e) :¼ m(2e)� m(e)2 Thistle also showed that the

estimator ÂAe is strongly consistent and that (2.43) can be consistently estimated by

replacing the population moments with their sample counterparts, thus allowing for

the construction of asymptotic confidence intervals and tests based on (2.42).

An analogous result is available for the generalized entropy measures

ffiffiffi
n
p cGEGEn,u � GEuffiffiffiffiffiffiffiffiffiffiffiffiffi

vGE(u)
p �!

d
N (0, 1), (2:44)

where

vGE(u) ¼
1

u 2(u� 1)2m 2(uþ1)
m2s 2(u)� 2umm(u)g(u, 1)þ u 2m2(u)s 2
� 	

, (2:45)

Again, (2.45) can be estimated consistently so that asymptotic tests and confidence

intervals based on (2.44) are feasible.

Alternatively, confidence intervals for inequality measures may be obtained via

the bootstrap method; see Mills and Zandvakili (1997) for a bootstrap approach in
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the case of the Theil and classical Gini coefficients and Xu (2000) for the

generalized Gini case.

2.1.5 Multivariate Lorenz Curves

With the increasing use of multivariate data, multivariate Lorenz curves are no doubt

the wave of the future. So far only a limited number of results are available on this

challenging concept. The following exposition draws heavily on Koshevoy and

Mosler (1996).

Taguchi (1972a,b) suggested defining a bivariate Lorenz curve—or rather

surface—as the set of points [s, t, LT (s, t)] [ R3
þ, where

s ¼

ð
R2
þ

xa(x) dF(x),

t ¼

ð
R2
þ

xa(x)~xx1 dF(x),

LT (s, t) ¼

ð
R2
þ

xa(x)~xx2 dF(x)

and

xa(x) ¼
1, x � a,

0, otherwise,

�

with x ¼ (x1, x2), a ¼ (a1, a2), 0 � aj � 1, and ~xxi ¼ xi=E(Xi), i ¼ 1, 2. [x � a is

defined in the componentwise sense.]

This may be called the Lorenz–Taguchi surface. A problem with Taguchi’s proposal

is that it does not treat the coordinate random variables in a symmetric fashion.

Arnold (1983, 1987) introduced the following definition which is somewhat

easier to handle. The Lorenz–Arnold surface LA is the graph of the function

LA(u1, u2) ¼

Ð j1

0

Ð j2

0
x1x2 dF(x1, x2)Ð1

0

Ð1

0
x1x2 dF(x1, x2)

(2:46)

where

ui ¼

ðji

0

dF (i)(xi), 0 � ui � 1, i ¼ 1, 2,

F (i), i ¼ 1, 2, being the marginals of F and ji [ Rþ. An appealing feature of this

approach is that if F is a product distribution function, F(x1, x2) ¼ F (1)(x1) � F (2)(x2),

then LA(u1, u2) is just the product of the marginal Lorenz curves. Hence for two
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product distribution functions F and G, LA
F (u1, u2) � LA

G(u1, u2) if and only if the

two univariate marginals are ordered in the usual sense.

Unfortunately, apart from the case of independent marginals, neither the Lorenz–

Taguchi nor the Lorenz–Arnold approach has a simple economic interpretation.

Koshevoy and Mosler (1996) took a different route. Their multivariate Lorenz

“curve” is a manifold in (d þ 1) space. They started from a special view of the univariate

Lorenz curve: Defining a dual Lorenz curve via �LL(u) ¼ 1� L(1� u), 0 � u � 1, they

introduced the Lorenz zonoid as the convex region bordered by L and �LL. Clearly, the area

between these two curves is equal to the classical Gini coefficient.

The Koshevoy–Mosler multivariate Lorenz curve is now given by a

generalization of this idea to (d þ 1) space. Let Ld be the set of d-variate random

variables that have finite and positive expectation vectors, E(Xj) ¼
Ð

Rd
þ

xj dF(x) . 0,

j ¼ 1, . . . , d, and set

~xx ¼ (~xx1, . . . , ~xxd)`, ~xxj ¼ xj=E(Xj), j ¼ 1, . . . , d:

Thus, ~XX is the normalization of X with expectation 1d ¼ (1, . . . , 1)`. If we set

6(h) ¼

ð
Rd
þ

h(x) dF(x),

ð
Rd
þ

h(x)~xx dF(x)

" #
,

for every (measurable) h : Rd
þ ! [0, 1], the d þ 1 dimensional Lorenz zonoid

LZ(F) is defined as

LZ(F) ¼ {z [ Rdþ1
j z ¼ (z0, z1, . . . , zd)` ¼ 6(h)}: (2:47)

The Lorenz zonoid is therefore a convex compact subset of the unit (hyper) cube

in Rdþ1
þ —it may be shown to be strictly convex if F is an absolutely continuous

distribution—containing the origin as well as the point 1dþ1 ¼ (1, . . . , 1)` in Rdþ1.

Now that we have defined a generalization of the area between the Lorenz and

inverse Lorenz functions as a convex set in d þ 1 space, it remains to define a

generalization of the curve itself. The solution is as follows. Consider the set

Z(F) ¼ y [ Rd
þ y ¼

ð
Rd
þ

h(x)~xx dF(x), h : Rd
þ ! [0, 1] measurable







( )

: (2:48)

Z(F) is called the F zonoid. Note that if (z0, z1, . . . , zd)` [ LZ(F), then

(z1, . . . , zd)` [ Z(F). Z(F) is contained in the unit cube of Rd
þ and consists of all

total portion vectors ~xx held by subpopulations. In particular, for d ¼ 1 the F zonoid

Z(F) is equal to the unit interval. Now for a given (z1, . . . , zd)` [ Z(F), we have

(z0, z1, . . . , zd)` [ LZ(F) if and only if z0 is an element of the closed interval

between the smallest and largest percentage of the population by which the portion

vector (z1, . . . , zd)` is held.
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The function lF Z(F)! Rþ defined by

lF (y) ¼ max{t [ Rþj (t, y) [ LZ(F)} (2:49)

is now called the d-dimensional inverse Lorenz function and its graph is the

Koshevoy–Mosler Lorenz surface of F. Because LZ(F) and Z(F) are convex sets, lF
is a concave function that is continuous on Z(F) > Rd

þ, with lF (1d) ¼ 1. If F has no

mass at the origin, then lF (0) ¼ 0. In this sense, it represents a natural generalization

of the univariate Lorenz curve. It may also be shown that the Lorenz surface

determines the distribution F uniquely up to a vector of scaling factors. [It should be

noted that the Lorenz surface is not necessarily a surface in the usual sense but a

manifold that may have any dimension between 1 and d. Its dimension equals the

dimension of Z(F).]

In terms of a distribution of commodities, lF (y) is equal to the maximum

percentage of the population whose total portion amounts to y. The Lorenz zonoid

has the following economic interpretation: To every unit of a population the vector X
of endowments in d commodities is assigned. This unit then holds the vector ~XX of

portions of the mean endowment. A given function h may now be considered a

selection of a subpopulation. Of all those units that have endowment vector x or

portion vector ~xx, the percentage h(x) is selected. Thus,
Ð

h(x) dF(x) is the size of the

subpopulation selected by h, and
Ð

h(x)x̃x dF(x) amounts to the total portion vector

held by this subpopulation.

The Koshevoy–Mosler multivariate Lorenz order is now defined as the set

inclusion ordering of Lorenz zonoids, that is,

F �LZ G :() LZ(F) $ LZ(G): (2:50)

It has the appealing property that it implies the classical Lorenz ordering of all

univariate marginal distributions.

In view of the geometric motivation of the classical Gini coefficient (2.21), the

question of what a multivariate Gini index might look like arises. Koshevoy and

Mosler (1997) discussed a multivariate Gini index defined as the volume of their

Lorenz zonoid LZ(F), specifically

G :¼ vol[LZ(F)] ¼
1

(d þ 1)!
Qd

j¼1 E(Xj)
E(jdet QF j), (2:51)

where QF is the (d þ 1)� (d þ 1) matrix with rows (1, Xi), i ¼ 1, . . . , d þ 1, and

X1, X2, . . . , Xdþ1 are i.i.d. with the c.d.f. F.

It follows that this multivariate Gini coefficient may be equal to zero without all

commodities being equally distributed. In fact, it will be equal to zero if at least one

of the commodities is equally distributed or if two commodities have the same
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distribution. (It will also be equal to zero if there are fewer income receiving units

than commodities, that is, if n , d.)

2.1.6 Zenga Curves and Associated Inequality Measures

Fairly recently, an alternative to the Lorenz curve has received some attention in the

Italian literature. Like the Lorenz curve, the Zenga curve (Zenga, 1984) is defined

via the first-moment distribution, hence, we require E(X ) , 1. The Zenga curve is

now defined in terms of the quantiles of the size distribution and the corresponding

first-moment distribution: For

Z(u) ¼
F�1

(1) (u)� F�1(u)

F�1
(1) (u)

¼ 1�
F�1(u)

F�1
(1) (u)

, 0 , u , 1, (2:52)

the set

{[u, Z(u)] j u [ (0, 1)}

is the Zenga concentration curve. Note that F(1) � F implies F�1 � F�1
(1) , so that the

Zenga curve belongs to the unit square. It is also evident from (2.52) that the curve is

scale-free.

It is instructive to compare the Zenga and Lorenz curves: For the Lorenz curve,

the amount of concentration associated with the u � 100% poorest of the population

is described by the difference u� L(u). Rewriting the normalized form [u� L(u)]=u
in the form

u� L(u)

u
¼ 1�

F(1)[F
�1(u)]

F[F�1(u)]
,

we see that concentration measurement according to Lorenz amounts to comparing

the c.d.f. F and the c.d.f. of the first-moment distribution F(1) at the same abscissa

F�1(u). An alternative approach consists of comparing the abscissas at which F and

F(1) take the same value u. This is the idea behind the Zenga curve. Zenga refers to

Z(u) as a point measure of inequality.

If the Zenga curve is an alternative to the Lorenz curve, the question of what

corresponding summary measures look like arises. There are several possibilities to

aggregate the information contained in the point measure (2.52) into a single

coefficient. Zenga (1984, 1985) proposed two measures; the first suggested taking

the arithmetic mean of the Z(u), u [ [0, 1],

j ¼

ð1

0

Z(u) du ¼ 1�

ð1

0

F�1(u)

F�1
(1) (u)

du, (2:53)
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whereas the second utilizes the geometric mean of the ratios F�1(u)=F�1
(1) (u) and is

therefore given by

j2 ¼ 1� exp

ð1

0

log
F�1(u)

F�1
(1) (u)

" #
du

( )
: (2:54)

j can be rewritten in the form

j ¼ 1�
1

E(X )

ð1

0

F�1[L(u)] du:

Compared to the Lorenz curve, the Zenga curve is somewhat more difficult to

interpret; it is neither necessarily continuous nor is it convex (or concave). For a

classical Pareto distribution with c.d.f. F(x) ¼ 1� (x=x0)�a, 0 , x0 � x, and a . 1,

we obtain F�1(u) ¼ x0(1� u)�1=a and F�1
(1) (u) ¼ x0(1� u)�1=(a�1) and therefore

Z(u) ¼ 1� (1� u)1=[a(a�1)], 0 , u , 1:

Clearly, the Zenga curve of the Pareto distribution is an increasing function on

[0, 1], approaching the u axis with increasing a. Recall from (2.7) that in connection

with the Lorenz ordering, an increase in a is associated with a decrease in inequality.

It is therefore natural to call a distribution F2 less concentrated than another

distribution F1 if its Zenga curve is nowhere above the Zenga curve associated with

F1 and thus to define a new ordering via

X1 �Z X2 :()Z1(u) � Z2(u) for all u [ (0, 1): (2:55)

In general, the Lorenz and Zenga orderings are unrelated; it is however interesting

that the Zenga measure j satisfies the Lorenz ordering (Berti and Rigo, 1995).

Further research in connection with Zenga and Lorenz orderings may be worthwhile.

2.2 HAZARD RATES, MEAN EXCESS FUNCTIONS,

AND TAILWEIGHT

Researchers in the actuarial sciences have addressed the problem of distinguishing

among various skewed probability distributions given sparse observations at the

right tail. Specifically, it has been suggested to employ what Benktander (1963)

called the mortality of claims

r(x) ¼
f (x)

1� F(x)
, x � 0, (2:56)
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and what Benktander and Segerdahl (1960) called the average excess claim

e(x) ¼ E(X � x jX . x) ¼

Ð1

x
(t � x) dF(t)Ð1

x
dF(t)

, x � 0, (2:57)

for distinguishing among potential models. See Benktander (1962, 1963) and

Benktander and Segerdahl (1960) for some early work in the actuarial literature.

The mortality of claims and the average excess claim are more widely known

under different names. The former is usually called the “hazard rate” or “failure rate”

(in reliability theory) and also the “force of mortality” (in life insurance) or

“intensity function” (in extreme value theory); the latter is also known as the “mean

residual life function” (notably in biometrics and engineering statistics) or the “mean

excess function” (in actuarial applications). We shall use the terms hazard rate and

mean excess function in the sequel.

The hazard rate gives the rate at which the risk of large claims is decreasing when

x grows. Shpilberg (1977) argued that this function has a direct connection with the

physical progress of fire in fire insurance: Most fires are extinguished quickly after

they start and the amount of any related claims remains slight. However, if early

extinction fails, then the chance of rapidly stopping the fire decreases, which in

the case of large risk units results in large claims and consequently long tails of the

distribution. In Benktander’s (1963) view, the lower the claims’ rate of mortality, the

skewer and more dangerous is the claim distribution.

Integration by parts shows that the mean excess function can alternatively be

expressed in the form

e(x) ¼
1

�FF(x)

ð1

x

�FF(t) dt, x0 � x; (2:58)

where �FF ¼ 1� F: Conversely, in the continuous case the c.d.f. can also be recovered

from the mean excess function via

F(x) ¼ 1�
e(x0)

e(x)
exp �

ðx

x0

1

e(t)
dt

� �
, x � x0: (2:59)

Often (but not always), we shall encounter the case where x0 ¼ 0. It is a direct

consequence of (2.59) that a continuous c.d.f. with F(0) ¼ 0 is uniquely determined

by its mean excess function (e.g., Kotz and Shanbhag, 1980).

There is a simple relationship between the mean excess function and the hazard

rate r(x): Rewriting (2.58) in the form �FF(x)e(x) ¼
Ð1

x
�FF(t) dt and differentiating, we

see that �FF(x)e0(x)þ �FF
0
(x)e(x) ¼ � �FF(x), which can be rearranged in the form

r(x) ¼ �
�FF
0
(x)

�FF(x)
¼

1þ e0(x)

e(x)
: (2:60)
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In the context of income distributions, the mean excess function arises in

connection with the somewhat neglected van der Wijk’s (1939) law. It asserts that the

average income of everybody above a certain level x is proportional to x itself.

Formally,

Ð1

x
tf (t) dtÐ1

x
f (t) dt

¼ g x, for some g . 0: (2:61)

The l.h.s. is clearly the mean excess or mean residual life function, and since this

function characterizes a distribution (within the class of continuous distributions),

the r.h.s. defines a specific income distribution. In the case of (2.61), this is the

Pareto type I distribution; see Chapter 3 below.

In order to discuss the properties of the functions r(x) and e(x) for large losses—

or, in economic applications, large incomes—in a unified manner, it is convenient to

introduce a concept from classical analysis.

To set the stage, the classical Pareto distribution possesses the survival function

�FF(x) ¼ x�a, x � 1, for some a . 0: (2:62)

Its slow decrease implies that the moments E(X k ) exist if and only if k , a. This is

typical for many size distributions; hence, it is useful to have a general framework

for describing distributions of the Pareto type.

This framework is provided by the concept of regularly varying functions. A

function g : Rþ ! Rþ is regularly varying at infinity with index r [ R,

symbolically, g [ RV1(r), if

lim
x!1

g(tx)

g(x)
¼ tr (2:63)

for all t . 0. If r ¼ 0, g is called slowly varying at infinity. Clearly, xr, xr log x,

xr log log x, r = 0, are all regularly varying at infinity with index r. The functions

log x, log log x are slowly varying. In general, a regularly varying function g [
RV1(r) has a representation of the form g(x) ¼ xr‘(x), where ‘ is a slowly varying

function to which we refer as the slowly varying part of g. In our context, the function

g of (2.63) is the density, distribution function, or survival function of the size

distribution. We refer to Bingham, Goldie, and Teugels (1987) for an encyclopedic

treatment of regularly varying functions. Here we require only some rather basic

properties of these functions, all of which may be found in Chapter 1 of Bingham,

Goldie, and Teugels:

RV 1. The concept can be extended to regular variation at points x0 other than

infinity; one then replaces g(x) by g(x0 � 1=x) in the above definition.
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RV 2. Products and ratios of regularly varying functions are also regularly

varying. Specifically, if f [ RV1(r) and g [ RV1(t), then fg [
RV1(rþ t) and f =g [ RV1(r� t).

RV 3. Derivatives and integrals of regularly varying functions are also regularly

varying, under some regularity conditions (which we omit). Loosely

speaking, the index of regular variation increases by 1 upon integration, it

decreases by 1 upon differentiation. The precise results are referred to as

Karamata’s theorem and the monotone density theorem, respectively.

We can now describe the behavior of the hazard rate and the mean excess

function of distributions with regularly varying tails. It is clear from (2.62) that the

Pareto distribution is the prototypical size distribution with a regularly varying tail.

The hazard rate of a Pareto distribution is given by

r(x) ¼
a

x
, 1 � x, (2:64)

which is in RV1(�1), and for the mean excess function a straightforward calculation

yields [compare van der Wijk’s law (2.61)]

e(x) ¼
x

a� 1
, 1 � x, (2:65)

which is in RV1(1).

These properties can be generalized to distributions with regularly varying tails: If

we are given a distribution with �FF [ RV1(�a), a . 0, it follows from property

RV 2 that

r [ RV1(�1): (2:66)

Similarly, the mean excess function of such a distribution can be shown to possess

the property

e [ RV1(1): (2:67)

In view of the r.h.s. of (2.58) and property RV 3, the latter result is quite transparent.

The preceding results imply that empirical distributions possessing slowly

decaying hazard rates or approximately linearly increasing mean excess functions

can be modeled by distributions with regularly varying tails. This is indeed a

popular approach in applied actuarial work. The work of Benktander and

Segerdahl (1960) constitutes an early example of the use of mean excess plots.

More recently, Hogg and Klugman (1983, 1984); Beirlant, Teugels, and Vynckier

(1996); and Embrechts, Klüppelberg, and Mikosch (1997) suggested employing

the empirical mean excess function for selecting a preliminary model. In addition,

Benktander and Segerdahl (1960) and Benktander (1970) defined two new loss
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distributions in terms of their mean excess function; see Section 7.4 for further

details.

In connection with income distributions, the concept of regular variation is also

useful in several respects. Firstly it helps to clarify the meaning of Pareto’s

coefficient a. Clearly, the usefulness of (regression-type) estimates of the Pareto

parameter is questionable in the absence of an underlying exact Pareto distribution.

On the other hand, empirical Pareto plots are often approximately linear for large

incomes and thus a Pareto-type distribution seems to be an appropriate model. How

does one define “Pareto type”?

In the economic literature, Mandelbrot (1960) referred to the relation

1� F(x)

x�a
¼ 1 (for all x):

as the strong Pareto law. This is equivalent to F following an exact Pareto

distribution. If this property is to be retained for large incomes, an appropriate

condition appears to be

lim
x!1

1� F(x)

x�a
¼ 1: (2:68)

This is Mandelbrot’s weak Pareto law. [Further weak Pareto laws were introduced by

Kakwani (1980b) and Esteban (1986).] Condition (2.68) is closely related to regular

variation, although the two concepts are not equivalent, as claimed by Merkies and

Steyn (1993). The problem is that there are regularly varying functions such as
�FF(x)/ xa log x (for large x) for which the slowly varying part log x is unbounded.

Here �FF is clearly regularly varying, but (2.68) does not hold. It would thus seem that

Mandelbrot’s weak Pareto law should perhaps be rephrased as requiring that the size

distribution be regularly varying in the upper tail.

A second issue concerning the meaning of a in the absence of an underlying

Pareto distribution is its relation to income inequality. For an exact Pareto

distribution, the situation is clear (see Section 3.5 below): A smaller a is associated

with greater inequality in the sense of the Lorenz ordering and several associated

inequality measures. What can be said if the income distribution is just of the Pareto

type? Authors such as Bowman (1945) argued that a steeper Pareto curve is

associated with a more equal distribution of income, but a formal proof of this fact

has been lacking until recently.

Kleiber (1999b, 2000a) showed how this can be proven using properties of

regularly varying functions within the framework of the Lorenz ordering. Briefly, the

argument runs as follows.

The property X1 �L X2 is equivalent to (Arnold, 1987)

ðx

0

~FF1(t) dt �

ðx

0

~FF2(t) dt for all x [ Rþ (2:69)
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and also to

ð1

x

�~FF~FF1(t) dt �

ð1

x

�~FF~FF2(t) dt for all x [ Rþ: (2:70)

Here ~FFi denotes the c.d.f. of the mean-scaled random variable Xi=E(Xi), i ¼ 1, 2. If
�FFi [ RV1(�ai), ai . 0, i ¼ 1, 2, it follows using property RV 3 under appropriate

regularity conditions that the integrated upper tails are in RV1(�ai þ 1). Hence, we

obtain from (2.70)

g(x) :¼

Ð1

x

�~FF~FF1(t) dtÐ1

x

�~FF~FF2(t) dt
� 1, for all x [ Rþ,()a1 � a2:

This shows that if size distributions with regularly varying tails are ordered in the

Lorenz sense, then the more unequal distribution necessarily exhibits heavier tails

(namely, a smaller a). An analogous argument yields that if Fi [ RV0(�bi), bi . 0,

i ¼ 1, 2, then X1 �L X2 implies b1 � b2. Hence, there exists a similar condition for

the lower tails.

This argument provides a useful tool for deriving the necessary conditions for

Lorenz dominance in parametric families. Many distributions studied in this book

are regularly varying at infinity and/or the origin, and the index of regular variation

can usually directly be determined from the density or c.d.f. Consequently, necessary

conditions for the Lorenz ordering are often available in a simple manner.

As a by-product, it turns out that Pareto’s alpha can be considered an inequality

measure even in the absence of an underlying exact Pareto distribution, provided it is

interpreted as an index of regular variation. See Kleiber (1999b, 2000a) for further

details and implications in the context of income distributions.

The preceding discussion has shown how Pareto tail behavior can be formalized

using the concept of regular variation. Although many of the distributions studied in

detail in the following chapters are of this type, there are some that cannot be

discussed within this framework.

To conclude this section, we therefore introduce a somewhat broader

classification of size distributions according to tail behavior. The distributions we

shall encounter below comprise three types of models that we may call Pareto-type

distributions, lognormal-type distributions and gamma-type distributions, respec-

tively. A preliminary classification is given in Table 2.2 (for x! 1).

Here we have distributions with polynomially decreasing tails (type I), expo-

nentially decreasing tails (type III) as well as an intermediate case (type II). These

three types can be modified to enhance flexibility in the left tail.

Type I. The basic form is clearly the Pareto (I) distribution that is zeromodal.

Unimodal generalizations are of the forms (1) f (x)/ e�1=xx�a, leading to
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distributions of the inverse gamma (or Vinci) type that exhibit a light (non-

Paretian) left tails or (2) f (x)/ xp(1þ x)�(aþp), leading to distributions of the

beta (II) type that exhibit heavy (Paretian) left tails and may therefore be

considered “double Pareto” distributions.

Type II. For a ¼ 2 this yields a distribution of lognormal type. For a general a

the densities will be unimodal due to the difference in behavior of log x for

0 , x , 1 and x � 1.

Type III. The prototypical type III distribution is the exponential distribution

with density f (x) ¼ ae�ax that is zeromodal. A more flexible shape is obtained

upon introducing a polynomial term, leading to densities of type

f (x)/ xpe�ax, the prime example being the gamma density. “Weibullized”

versions also fall under type III.

2.3 SYSTEMS OF DISTRIBUTIONS

The most widely known system of statistical distributions is the celebrated Pearson

system, derived by Karl Pearson in the 1890s in connection with his work on

evolution. It contains many of the best known continuous univariate distributions.

Indeed, we shall encounter several members of the Pearson system in the following

chapters, notably Chapters 5 and 6 that comprise models related to the gamma and

beta distributions.

The Pearson densities are defined in terms of the differential equation

f 0(x) ¼
(x� a)f (x)

c0 þ c1xþ c2x2
, (2:71)

where a, c0, c1, c2 are constants determining the particular type of solution. (The

equation originally arose from a corresponding difference equation satisfied by the

hypergeometric distribution by means of a limiting argument.) The most prominent

solution of (2.71) is the normal p.d.f. that is obtained for c1 ¼ c2 ¼ 0. All solutions

are unimodal; however, the maxima may be located at the ends of the support.

There are three basic types of solutions of (2.71), referred to as types I, VI, and

IV, depending on the type of roots of the quadratic in the denominator (real and

opposite signs, real and same sign, and complex, respectively). Ten further types

arise as special cases; see Table 2.3. (For the Pearson type XII distributions, the

constants g and h are functions of the skewness and kurtosis coefficients.)

Table 2.2 Three Types of Size Distributions

Type I Type II Type III

(Pareto type) (Lognormal type) (Gamma type)

f (x) � x�a ¼ e�a log x f (x) � e�( log x)a f (x) � e�ax
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In applications the variable x is often replaced by (z� m)=s for greater flexibility.

The table contains several familiar distributions: Type I is the beta distribution of the

first kind, type VI is the beta distribution of the second kind (with the F distribution

as a special case), type VII is a generalization of Student’s t, types III and V are the

gamma and inverse (or inverted, or reciprocal) gamma, respectively, type X is the

exponential, and type XI is the Pareto distribution.

A key feature of the Pearson system is that the first four moments (provided they

exist) may be expressed in terms of the four parameters a, c0, c1, c2; in turn, the

moment ratios

b1 ¼
m2

3

m3
2

(skewness)

and

b2 ¼
m4

m2
2

(kurtosis)

provide a complete taxonomy of the Pearson curves. Indeed, Pearson suggested

selecting an appropriate density based on estimates of b1, b2 that should then be

fitted by his method of moments.

The main applications of the Pearson system are therefore in approximating

sampling distributions when only low-order moments are available and in providing

a family of reasonably typical non-Gaussian shapes that may be used, among other

things, in robustness studies. For further information on the Pearson distributions, we

Table 2.3 The Pearson Distributions

Type Density Support

I (1þ x)m1 (1� x)m2 21 � x � 1

VI xm2 (1þ x)�m1 0 � x � 1

IV (1þ x2)�m exp (�v arctan x) 21 , x , 1

Normal exp �
1

2
x2

� �
21 , x , 1

II (1� x2)m 21 � x � 1

VII (1þ x2)�m 21 , x , 1

III xm exp (�x) 0 � x , 1

V x�m exp (�1=x) 0 � x , 1

VIII (1þ x)�m 0 � x � 1

IX (1þ x)m 0 � x � 1

X exp (�x) 0 � x , 1

XI x�m 1 � x , 1

XII [(g þ x)(g � x)]h 2g � x � g
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refer the reader to Johnson, Kotz, and Balakrishnan (1994, Chapter 12) or Ord

(1985) and the references therein.

In this book we mainly require the Pearson system for classifying size

distributions, several of which fall into this system (possibly after some simple

transformation). Specifically, we shall encounter the Pearson type XI distribution

(under the more familiar name of Pareto distribution) in Chapter 3, the types III and

V (under the names gamma and inverse gamma distribution, respectively) in Chapter

5, and the type VI distribution (under the name beta distribution of the second kind)

in Chapter 6.

Of the many alternative systems of continuous univariate distributions, we will

also encounter some members of a system introduced by Irving Burr in 1942. Like

the Pearson system of distributions, the Burr family is defined in terms of a

differential equation; unlike the Pearson system, this differential equation describes

the distribution function and not the density. This has the advantage of closed forms

for the c.d.f., sometimes even for the quantile function, which is rarely the case for

the members of the Pearson family. The Burr system comprises 12 distributions that

are usually referred to by number; see Table 2.4.

Table 2.4 The Burr Distributions

Type c.d.f. Support

I x 0 , x , 1

II (1þ e�x)�p �1 , x , 1

III (1þ x�a)�p 0 , x , 1

IV 1þ
c� x

x

� �1=c
� ��q

0 , x , c

V [1þ c exp(� tan x)]�q �p=2 , x , p=2

VI [1þ exp(�c sinh x)]�q �1 , x , 1

VII 2�q(1þ tanh x)q �1 , x , 1

VIII
2

p
arctan (e x)

� �q

�1 , x , 1

IX 1�
2

2þ c[(1þ e x)q � 1]
�1 , x , 1

X [1� exp(�x2)]a 0 � x , 1

XI x�
1

2p
sin(2px)

� �q

0 , x , 1

XII 1� (1þ xa)�q 0 � x , 1
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The c.d.f.’s of all Burr distributions satisfy the differential equation

F 0(x) ¼ F(x)[1� F(x)]g(x), (2:72)

where g is some nonnegative function.

The uniform distribution is clearly obtained for g ; [F(1� F)]�1. The most

widely known of the (nonuniform) Burr distributions is the Burr XII distribution,

frequently just called the Burr distribution. In practice, one often introduces location

and scale parameters upon setting x ¼ (z� m)=s for additional flexibility. See

Kleiber (2003a) for a recent survey of the Burr family.

In Chapter 6 below we shall encounter the Burr III and Burr XII distributions,

albeit under the names of the Dagum and Singh–Maddala distributions.

Stoppa (1990a) proposed a further system of distributions that is closely related to

the Burr system. Rewriting the differential equation defining the Burr distributions in

the form

F 0(x)

F(x)
¼ [1� F(x)] � g[x, F(x)], (2:73)

we see upon setting g(x, y) ¼: ~gg(x, y)=x that Burr’s equation amounts to a

specification of the elasticity h(x, F) ¼ F 0(x) � x=F(x) of a distribution function.

Stoppa then proposed a differential equation for the elasticity

h(x, F) ¼
1� [F(x)]1=u

[F(x)]1=u
� g[x, F(x)], x � x0 . 0, (2:74)

where u . 0, and g(x, y) is positive in 0 , y , 1.

For g(x, y) ¼ g(x), F(x) = 0, 1, and dF1=u=dF ¼ F1�1=u=u, the solution of this

differential equation is

F(x) ¼ 1� exp

ð1

0

‘(t) dt

� �� �
,

where ‘(t) ¼ g(t)=(ut) is a real function integrable on a subset of Rþ. For example,

if g is chosen as bux=(1� bx), b, bx, 1=(b� x), bx sec2x, respectively, with b . 0,

we obtain the following c.d.f.’s:

I: F(x) ¼ (bx)u 0 , x , 1=b

II: F(x) ¼ (1� x�b)u 1 , x , 1

III: F(x) ¼ (1� e�bx)u 0 , x , 1

IV: F(x) ¼ [1� (bx�1 � 1)1=(ub)]u b=2 , x , b

V: F(x) ¼ (1� be� tan x)u �p=2 , x , p=2
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For u ¼ 1 we arrive at various cases of the Burr system, whereas for u = 1 type I

defines a power function distribution, type II a generalized Pareto, and type III a

generalized exponential distribution, respectively.

In a later paper, Stoppa (1993) presented a classification of distributions inspired

by the classical table of chemical elements of Mendeleyev. Stoppa’s table comprises

15 so-called periods defined by families of distributions for which logh(x, F)

depends on a single parameter. Within each period there are subfamilies of

distributions characterized by up to five parameters.

As far as income distributions are concerned, special interest is focused on family

no. 31 of the system whose c.d.f. is given by

�b1

xb3

b3

þ c

� �� ��1=b1

, (2:75)

where in general b1 = 0 and b3 = 0. For b1 , 0, b3 , 0, we get the generalized

Pareto type I (the Stoppa distribution), for b1 . 0, b3 , 0, we obtain the inverted

Stoppa distribution; b1 , 0, b3 . 0 yields a generalized power function; b1 . 0,

b3 . 0 gives us the Burr III (Dagum type I) distribution; and finally for b1 ¼ �1,

b3 , 0, we obtain the classical Pareto type I distribution.

Transformation Systems

The Pearson curves were designed in such a manner that for any possible pairs of

values
ffiffiffiffiffi
b1

p
, b2 there is just one corresponding member of the Pearson family of

distributions. Alternatively, one may be interested in a transformation, to normality,

say, such that for any possible pairs of values
ffiffiffiffiffi
b1

p
, b2 there is one corresponding

normal distribution. Unfortunately, no such single transformation is available;

however, Johnson (1949) has described a set of three transformations which, when

combined, do provide one distribution corresponding to each pair of values
ffiffiffiffiffi
b1

p
, b2.

These transformations are

Z ¼ mþ s log(X � l), X . l, (2:76)

Z ¼ mþ s log
X � l

lþ j� X

� �
, l , X , lþ j, (2:77)

and

Z ¼ mþ s sinh�1 X � l

j

� �
, �1 , X , 1: (2:78)

Here Z follows a standard normal distribution and m, s, l, j represent parameters of

which j must be positive and s non-negative.
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The distributions defined by the preceding equation are usually denoted as SL, SB,

and SU . Below we shall deal only with the SL distributions, under the more familiar

name of three-parameter lognormal distributions.

It is natural to extend Johnson’s approach to nonnormal random variables Z. For a

Z following a standard logistic distribution with c.d.f.

F(z) ¼
1

1þ e�z
, �1 , z , 1,

the distributions associated with the corresponding sets of transformations have been

described by Tadikamalla and Johnson (1982) and Johnson and Tadikamalla (1992).

The resulting distributions are usually denoted as LL, LB, and LU . For a Z following a

Laplace (or double exponential) distribution with p.d.f.

f (z) ¼
1

2
e�jzj, �1 , z , 1,

the corresponding distributions have been discussed by Johnson (1954); they are

denoted as S0L, S0B; and S0U .

We shall encounter distributions of the LL type—that is, log-logistic distributions—

and generalizations thereof in Chapter 6 and (generalizations of) S0L distributions in

Chapter 4, albeit under the name of generalized lognormal distributions. In fact, with

little exaggeration, this book can be considered a monograph on exponential

transformations of some of the more familiar statistical distributions. Specifically,

if Z is

. Exponential, then exp (Z) follows a Pareto distribution—a distribution studied

in Chapter 3.

. Normal, then exp (Z) follows, of course, a lognormal distribution—a distri-

bution studied in Chapter 4.

. Gamma, then exp (Z) follows a loggamma distribution—a distribution studied

in Chapter 5.

. Logistic, then exp (Z) follows a log-logistic distribution—a distribution studied,

along with its generalizations, in Chapter 6.

. Rayleigh, then exp (Z) follows a Benini distribution—a distribution studied in

Chapter 7.

Less prominent choices for Z include the exponential power (Box and Tiao, 1973)

and the Perks (1932) distributions, their exponential siblings are called generalized

lognormal and Champernowne distributions and are explored in Sections 4.10 and

7.3, respectively. Very few distributions studied here do not originate from an

exponential transformation, mainly the gamma-type models of Chapter 5.
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2.4 GENERATING SYSTEMS OF INCOME DISTRIBUTIONS

As was already mentioned in the preceding chapter, a huge variety of size

distributions, including almost all of the best known continuous univariate

distributions supported on the positive halfline, have been introduced during the

last hundred years. It is therefore of particular interest to have, apart from

classification systems like those surveyed in the preceding section, generating

systems that yield, starting from a few basic principles, models that should be useful

for the modeling of size phenomena. Not surprisingly, the largest branch of the size

distributions literature, the literature on income distributions, has come up with

several generating systems for the derivation of suitable models. We present the

systems proposed by D’Addario (1949) and Dagum (1980b,c, 1990a, 1996).

D’Addario’s System

Following the idea of transformation functions applied earlier by Edgeworth (1898),

Kapteyn (1903), van Uven (1917), and Fréchet (1939), D’Addario (1949) specified

his system by means of the generating function

g( y) ¼ A{bþ exp ( y1=p)}�1, (2:79)

where p . 0 and b is real, and the transformation function

yq dy

dx
¼

a

x� c
, c � x0 � x , 1, (2:80)

where a = 0 and q is real. Here x is the income variable and A is a normalizing

constant. The differential equation (2.80) yields

y ¼ h(x) ¼ a(x� c)a, q ¼ �1, a . 0, a = 0, (2:81)

y ¼ h(x) ¼ [(1þ q){alog(x� c)þ a}]1=(1þq), q = �1, a = 0, (2:82)

where a is a constant of integration. Equations (2.79) and (2.80) imply that the

transformed variable y ¼ h(x) is a monotonic function of income, taking values on

the interval [x0, x1] if h(x) is increasing and on the interval [x1, x0] if h(x) is

decreasing, where x0 ¼ h( y0) and x1 ¼ limx!1 h(x).

The general form of solution of D’Addario’s system is given by

f (x) ¼ A
dh(x)

dx










{bþ exp[h(x)1=p]}�1, (2:83)

where dh(x)=dx is obtained from (2.81) or (2.82), depending on the value of q.

Table 2.5 presents the income distributions that can be deduced from D’Addario’s

system.
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It is worth noting that the Davis distribution (see Section 7.2), a distribution

not easily related to any other system of distributions, is a member of

D’Addario’s transformation system. Also, the four-parameter generalized gamma

distribution, introduced by Amoroso (1924–1925), comprises a host of

distributions as special or limiting cases, including the gamma and inverse

gamma, Weibull and inverse Weibull, chi and chi square, Rayleigh, exponential,

and half-normal distributions. The Amoroso distribution will be discussed in

some detail in Chapter 5.

Dagum’s Generalized Logistic System

The Pearson system is a general-purpose system not necessarily derived from

observed stable regularities in a given area of application. D’Addario’s system is a

translation system with flexible generating and transformation functions constructed

to encompass as many income distributions as possible. In contrast, the system

specified by Dagum (1980b,c, 1983, 1990a) starts from the characteristic properties

of empirical income and wealth distributions. He observes that the income elasticity

h(x, F) ¼
dlog{F(x)}

dlog x

of the c.d.f. of income is a decreasing and bounded function of F starting from a

finite and positive value as F(x)! 0 and decreasing toward zero as F(x)! 1, that

is, for x! 1. This pattern leads to the specification of the following generating

system for income and wealth distributions:

dlog{F(x)� d}

dlog x
¼ q(x)f(F) � k, 0 � x0 , x , 1, (2:84)

where k . 0, q(x) . 0, f(x) . 0, d , 1, and d{q(x)f(F)}=dx , 0. These

constraints assure that the income elasticity of the c.d.f. is indeed a positive,

decreasing, and bounded function of F and therefore of x. For each specification of f

Table 2.5 D’Addario’s Generating System

Distribution Generating

Function

Transformation

Function

Support

b p a c q

Pareto (I) 0 1 .0 0 0 x0 � x , 1

Pareto (II) 0 1 .0 =0 0 c , x0 � x , 1

Lognormal (2 parameters) 0 1/2 .0 0 0 0 � x , 1

Lognormal (3 parameters) 0 1/2 .0 =0 0 c � x , 1

Generalized gamma 0 .0 =0 =0 21 c , x0 � x , 1

Davis 21 .0 2p =0 21 c , x0 � x , 1
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and q an income distribution is obtained. Table 2.6 provides a selection of models

that can be deduced from Dagum’s system.

Among those models, the Dagum (II) distribution is mainly used as a model of

wealth distribution.

Since the Fisk distribution is also known as the log-logistic distribution (see

Chapter 6) and the Burr III and Burr XII distributions are generalizations of

this distribution, Dagum (1983) referred to his system as the generalized

logistic-Burr system. Needless to say, this collection of distributions can be enlarged

further by introducing location and scale parameters or using transformation

functions.

Table 2.6 Dagum’s Generating System

Distribution q(x) f(F) (d, b) Support

Pareto (I) a (1� F)=F (0, 0) 0 , x0 � x , 1

Pareto (II)
ax

x� c
(1� F)=F (0, 0) 0 , x0 � x , 1

Pareto (III) bxþ
ax

x� c
(1� F)=F (0, þ) 0 , x0 � x , 1

Benini 2a log x (1� F)=F (0, 0) 0 , x0 � x , 1

Weibull bx(x� c)a�1 (1� F)=F (0, þ) c � x , 1

log-Gompertz � loga � log F (0, 0) 0 � x , 1

Fisk a 1� F (0, 0) 0 � x , 1

Singh–Maddala a
1� (1� F)b

F(1� F)�1
(0, þ) 0 � x , 1

Dagum (I) a 1� F1=b (0, þ) 0 � x , 1

Dagum (II) a 1�
F � a

1� a

� �1=b

(þ, þ) 0 � x , 1

Dagum (III) a 1�
F � a

1� a

� �1=b

(�, þ) 0 , x0 � x , 1
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C H A P T E R T H R E E

Pareto Distributions

The Pareto distribution is the prototypical size distribution. In view of the

unprecedented information explosion on this distribution during the last two

decades, it would be very easy to write a four-volume compendium devoted to this

magical model rehashing the wealth of material available in the periodical and

monographic literature. This distribution—attributed to Vilfredo Pareto (1895)—in

analogy with the Lorenz curve is the pillar of statistical income distributions.

However, due to space limitations we can in this volume only provide a brief but

hopefully succinct account, and we shall concentrate on economic and actuarial

applications. For the literature up to the early 1980s, we refer the interested reader to

the excellent text by Arnold (1983). We shall emphasize contributions from the last 20

years. These include, among others, the unbiased estimation of various Pareto

characteristics. We shall also discuss numerous recent generalizations of the Pareto

distribution in which Stoppa’s contributions play a prominent role (not sufficiently

well represented in the English language literature).

3.1 DEFINITION

The classical Pareto distribution is defined in terms of its c.d.f.

F(x) ¼ 1�
x

x0

� ��a
, x � x0 . 0, (3:1)

where a . 0 is a shape parameter (also measuring the heaviness of the right tail) and

x0 is a scale. The density is

f (x) ¼
axa0
xaþ1

, x � x0 . 0, (3:2)
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and the quantile function equals

F�1(u) ¼ x0(1� u)�1=a, 0 , u , 1: (3:3)

We shall use the standard notation X � Par(x0, a).

In his pioneering contributions at the end of the nineteenth century, Pareto (1895,

1896, 1897a) suggested three variants of his distribution. The first variant is the classical

Pareto distribution as defined in (3.1). Pareto’s second model possesses the c.d.f.

F(x) ¼ 1� 1þ
x� m

x0

� ��a
, x � m, (3:4)

and is occasionally called the three-parameter Pareto distribution. The special case

where m ¼ 0,

F(x) ¼ 1� 1þ
x

x0

� ��a
, x � 0, (3:5)

where x0, a . 0, is often referred to as the Pareto type II distribution. This distribution

was rediscovered by Lomax (1954) some 50 years later in a different context. In our

classification, the Pareto type II distribution falls under “beta-type distributions”;

therefore, it will not be discussed in the present chapter but rather in Chapter 6 below,

although in more general form. It can be considered a special case of the Singh–

Maddala distribution (case a ¼ 1, in the notation of Chapter 6); there is also a simple

relation with the Pareto type I model, namely,

X � Par(II)(x0, a)() X þ x0 � Par(x0, a): (3:6)

It is worth emphasizing that the term “Pareto distribution” is used in connection with

both the Pareto type I and Pareto type II versions. Rytgaard (1990) asserted that “Pareto

distribution” usually means Pareto type I in the European and Pareto type II in the

American literature, but we have not been able to verify this pattern from the references

available to us.

It should also be noted that the Pareto type II distribution belongs to the second

period of Stoppa’s (1993) classification involving two parameters (see Section 2.3).

The third distribution proposed by Pareto—the Pareto type III distribution

(Arnold, 1983, uses a different terminology!)—has the c.d.f.

F(x) ¼ 1�
Ce�bx

(x� m)a
, x � m, (3:7)

where m [ IR, b, a . 0, and C is a function of the three parameters. It arises from

the introduction of a linear term bx in the doubly logarithmic representation

log {1� F(x)} ¼ log C � a log (x� m)� bx:
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The exponential term in (3.7) assures the finiteness of all moments. For income data

the values of b are usually very small—Pareto (1896) obtained a value of b̂b ¼

0:0000274 for data on the Grand Duchy of Oldenburg in 1890—so the Pareto type III

distribution does not seem to be attractive in the sense of income distribution theory

and applications. On the other hand, Creedy (1977) pointed out that “ . . . the values of

b and [m] are not invariant with respect to the units of measurement, and b is likely to

be very small since the units of x are large and are elsewhere transformed by taking

logarithms.” Nonetheless, the Pareto type III model has not been used much.

3.2 HISTORY AND GENESIS

The history of the Pareto distribution is lucidly and comprehensively covered in the

above-mentioned monograph by Arnold (1983). We shall therefore provide selected

highlights of his exposition supplemented by several additional details that have

emerged in the last 20 years or so and describe the very few earlier historical sources

not covered in Arnold (1983). The history of Pareto distributions is still a vibrant

subject of modern research. The Web site sponsored by the University of Lausanne

where Vilfredo Pareto spent some 15 productive years devoted to Walras and Pareto

(http://www.unil.ch/cwp/) constantly updates the information on this topic, and we

encourage the interested reader to consult this valuable source of historical research

to enrich his or her perspective on the income distributions.

3.2.1 Early History

As was already mentioned in Chapter 1, Pareto (1895, 1896) observed a decreasing

linear relationship between the logarithm of income and the logarithm of Nx, the

number of income receivers with income greater than x; x � x0; when analyzing

income reported for income tax purposes. Hence, he specified

log Nx ¼ A� a log x, (3:8)

that is,

Nx ¼ eAx�a, (3:9)

where A, a . 0. Normalizing by the number of income receivers N :¼ Nx0
, one

obtains

Nx

N
¼ 1� F(x) ¼

x

x0

� ��a
, x � x0 . 0: (3:10)

Almost immediately, public interest was aroused and other economists began to

criticize the idea of a universal form with a single shape parameter permitting

inappropriate comparisons between societies. It became clear fairly soon that the
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Pareto distribution is only a good approximation of high incomes above a

certain threshold and also that the mysterious and some claim notorious a is not

always close to 1.5 as Pareto initially believed. Nonetheless, as late as 1941

H. T. Davis considered the value a ¼ 1:5 to be a dividing line between egalitarian

societies (a . 1:5) and inegalitarian ones (a , 1:5). [Kakwani (1980b),

reminiscent of Mandelbrot (1960), referred to a Pareto distribution with a ¼ 1:5
as the strongest Pareto law.]

It should be noted that Pareto’s discovery was initially met with some

resentment by the English and American school (see our biography of Pareto in

Appendix A for further details), with notable exceptions such as Stamp (1914) and

Bowley (1926). And as late as 1935 Shirras (p. 680) asserted that for Indian

income tax and super tax data from the 1910s and 1920s (notably for the year

1929–1930)

There is indeed no Pareto law. It is time that it should be entirely discarded in studies on the

distribution of income.

From the graphical evidence Shirras provided, one is inclined to conclude that if

anything, the data are very much in agreement with a Pareto distribution (Adarkar

and Sen Gupta, 1936).

In his defense of the Pareto distribution as an appropriate model for personal

incomes and wealth, MacGregor (1936) opened with the statement

Economics has not so many inductive laws that it can afford to lose any.

and asserted that “the law and the name mark a stage in investigation, like Boyle’s

Law or Darwin’s Law, and, although amended, they remain authoritative as first

approximations not to be lightly gone back on.” One year later Johnson (1937) was

able to confirm, for U.S. income tax data for each year for the period 1914–1933,

that a does, in fact, not vary substantially, obtaining estimates âa [ [1:34, 1:90].

In the actuarial literature an early contribution was made by a Norwegian

actuary Birger Meidell, who in 1912 employed the Pareto distribution when

trying to determine the maximum risk in life insurance. His working hypothesis

was that the sums insured are proportional to the incomes of the policy holders,

thus incorporating Pareto’s pioneering work. The same idea was later expressed

by Hagstr�m (1925). In subsequent actuarial investigations the Pareto distribution

was more often used in connection with nonlife insurance, notably auto-

mobile and fire insurance, and we shall mention several relevant contributions in

Section 3.7.

3.2.2 Pareto Income Distribution Derived from the Distribution

of Aptitudes

Many (particularly early) writers alluded to a relationship between the distribution of

income and the distribution of talents or aptitudes (e.g., Ammon, 1895; Pareto,
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1897a; Boissevain, 1939). Rhodes (1944), in a neglected paper, assumed that

“talent” is a continuous variable Z, with density h(z), say, with an average income

accruing to those with talent z being given by m(z) ¼ E(X jZ ¼ z). His crucial

assumption is that the conditional coefficient of variation l ¼ CV (X jZ ¼ z) is

constant for all talent groups.

If we write the conditional survival function of income (for those with talent z) in

standardized form

�FF
x� m(z)

lm(z)

� �
(3:11)

where, by assumption, lm(z) is the conditional standard deviation of income, the

unconditional distribution is given by

�FF(x) ¼

ð1

0

h(z) �FF
x� m(z)

lm(z)

� �
dz: (3:12)

Setting x� m(z) ¼: lm(z)v, we can write

m(z) ¼
x

1þ lv
: (3:13)

This allows us to obtain z as a function of x and v. However, we require the

distribution of X . In order to obtain an expression for the c.d.f. of this random

variable, we use

@m(z)

@v

dz

dv
¼ �

lx

(1þ lv)2
: (3:14)

Setting M (v, x) :¼ @m(z)=@v and P(v, x) :¼ h(z), we can now write

ðv2

v1

P(v, x) �FF(v)lx

M (v, x)(1þ lv)2
dv: (3:15)

The new limits of integration are given from (3.13), yielding m0 :¼ m(0) ¼

x=(1þ lv2) for the lowest value of z corresponding to no talent. Thus,

v2 ¼ (x=m0 � 1)=l. For simplicity, assume that m(z)! 1 for z! 1 (“infinite

talent implies infinite income”), which further yields v1 ¼ �1=l. Hence, (3.15) can

be rewritten as

ð(x=m0�1)=l

�1=l

P(v, x) �FF(v)lx

M (v, x)(1þ lv)2
dv: (3:16)
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Note that the upper limit is a function of x. This expression is not very tractable

without introducing further assumptions. However, if P(v, x)=M (v, x) is separable in

the form f(x)c(v), this integral simplifies to

lxf(x)

ð(x=m0�1)=l

�1=l

c(v) �FF(v)

(1þ lv)2
dv ¼: lxf(x) � x(x): (3:17)

Rhodes then considered the special case where x(x) is approximately constant for

large x, which implies �FF(x)/ c � xf(x), for some c . 0. It remains to determine the

form of f(x). To this end we introduce w(z) :¼ M (v, x)=P(v, x), yielding w � fc ¼ 1

under the separability assumption. Taking logarithms and differentiating after x, we

obtain

w0(z)

w(z)

dz

dx
¼ �

f0(x)

f(x)
:

On the other hand, M (v, x)(dz=dx)(1þ lv) ¼ 1, whereby

w0(z)

w(z)

1

M (v, x)(1þ lv)
¼ �

f0(x)

f(x)
,

or, using M (v, x) ¼ h(z) � w(z), we get

w0(z)

w2(z)h(z)

1

1þ lv
¼ �

f0(x)

f(x)
:

Since �f0(x)=f(x) does not depend on v, a further differentiation with respect to v

yields

w0(z)

w2(z)h(z)

� �0
dz

dv

1

1þ lv
�

w0(z)

w2(z)h(z)

l

(1þ lv)2
¼ 0:

In view of (3.13) and (3.14), this can be rearranged in the form

�
w0(z)

w2(z)h(z)

�0��
w0(z)

w2(z)h(z)

�
¼ �

M (v, x)

m(z)
:

All the functions in this equation are functions of z (talent) alone. An integration

yields

w0(z)

w2(z)h(z)
¼

a

m(z)
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for some constant a. If we use M (v, x) ¼ w(z)h(z) again, this equals

w0(z)

w(z)
¼

aM (v, x)

m(z)
:

Hence, w(z) ¼ c � m(z)a, for some constant c. Also,

w0(z)

w2(z)h(z)

1

1þ lv
¼ �

f0(x)

f(x)

yields

f0(x)

f(x)
¼ �

a

m(z)(1þ lv)
¼ �

a

x
:

Hence, f(x) ¼ k � x�a, for some constant k. From the definition wfc ¼ 1 we further

obtain c(v) � c � m(z)a � k � x�a ¼ 1; therefore,

c(v) ¼
1

ck

x

m(z)

� �a

¼
1

ck
(1þ lv)a,

a function of v alone. Thus, (3.17) is reduced to

x(x) ¼
1

ck

ð(x=m0�1)=l

�1=l

�FF(v)(1þ lv)�a�2 dv,

and if this expression is approximately constant for large x, we finally get

�FF(x) � xf(x) ¼ k � x�a�1: (3:18)

Thus, the distribution of income is (approximately) a Pareto distribution.

More recently, the idea of explaining size by (unobserved) aptitudes has also been

used in the literature on the size distribution of firms. Lucas (1978) presented a

model postulating that the observed size distribution is a solution to the problem of

how to allocate productive factors among managers of differing abilities so as to

maximize output. If “managerial talent” follows a Pareto distribution, the implied

size distribution is also of this form in his model.

3.2.3 Markov Processes Leading to the Pareto Distribution

Champernowne (1953) demonstrated that under certain assumptions the stationary

income distribution of an appropriately defined Markov process will approximate the

Pareto distribution irrespectively of the initial distribution.

Champernowne viewed income determination as a discrete-time Markov chain:

Income for the current period—the state of the Markov chain—depends only on
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one’s income for the last period and a random influence. He assumed that there is

some minimum income x0 and that the income intervals defining each state form a

geometric (not arithmetic) progression (the limits of class j are higher than limits of

class j � 1 by a certain factor, c, say, rather than a certain absolute amount of

income). Thus, a person is in class j if his or her income is between x0cj�1 and x0cj.

The transition probabilities pij are defined as the probability of being in class j at

time t þ 1 given that one was in class i at time t.

Champernowne required the assumption that the probability of a jump from one

income class to another depends only on the width of the jump, but not on the

position from which one starts (a form of the law of proportionate effect). In other

words, the (time invariant) transition probability pij is a function of j � i ¼ k only,

which is independent of i. If xj(t) is the number of income earners in the income

class j in period t, the process evolves according to

xj(t þ 1) ¼
Xj

k¼�1

xj�k(t)pk : (3:19)

Champernowne further assumed (his “basic assumption”) that transitions are

possible only in the range between �n and 1. If the process continues for a long

time, the income distribution reaches an equilibrium in which the action of the

transition matrix leaves the distribution unchanged. The equilibrium state is thus

described by

xj ¼
X1

k¼�n

xj�kpk , j . 0: (3:20)

The solution of this difference equation is obtained upon setting xj ¼ z j, yielding

the characteristic equation

g(z) :¼
X1

k¼�n

z1�kpk � z ¼ 0: (3:21)

This equation has two positive real roots, one of which is clearly unity; in order to

ensure that the other will be between zero and 1, Champernowne introduced the

stability assumption

g0(1) ¼ �
X1

k¼�n

kpk . 0: (3:22)

Since g(0) ¼ p1 . 0, and from the stability condition g0(1) . 0, the other root must

satisfy

0 , b , 1,
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yielding the required equilibrium distribution of the form

xj ¼ b j:

The total number of incomes is therefore 1=(1� b) and for any other given number

of incomes N the equilibrium distribution becomes

xj ¼ N (1� b)b j:

The number of incomes greater than or equal to ~xxj :¼ x0c j is therefore

N~xxj
¼ Nb j

or

log N~xxj
¼ log N þ j log b:

Setting a ¼ � log b= log c and g ¼ log N þ a log x0, we finally obtain

log N~xxj
¼ g� a log ~xxj: (3:23)

This means that the logarithm of the number of incomes exceeding ~xxj is a linear

function of log ~xxj, thus giving the Pareto distribution in its original form.

An essential feature of the model is the stability condition (3.22), which means

that the expectation of possible transitions is always a reduction in income, from

whatever amount income one starts with. Steindl (1965) argued that the economic

justification of this assumption is implicit in another feature of Champernowne’s

model: He considered a constant number of incomes and accounted for deaths by

assuming that for any income earner who drops out, there is an heir to his or her

income. But this means that on changing from an old to a young income earner,

there will usually be a considerable drop in income, especially in the case of high

incomes. In fact, the proper economic justification for the stability assumption is that

the growing dispersion of incomes of a given set of people is counteracted by the

limited span of their lives and the predominantly low and relatively uniform income

of new entrants.

Champernowne discussed several generalizations of his basic model. If

transitions are possible in an extended range between �n and m, m . 1, only a

distribution asymptotic to a Pareto distribution can be derived. This is still possible if

people are allowed to fall into groups (by age or occupation) and movements from

one group to another are allowed. However, a Markov process would not yield a

stationary distribution unless the transition matrix is constant. It is hard to imagine a

society whose institutional framework is so static. Also, a crucial assumption is that

the probabilities of advancing or declining are independent of the size of income.
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Mandelbrot (1961) constructed a Markov model that approximates a Pareto

distribution similarly to Champernowne but does not require a law of proportionate

effect (random shocks additive in logarithms). He emphasized weak Pareto laws

whose frequency distributions are asymptotic to the Pareto. Total income is a sum of

many i.i.d. components (e.g., income in different occupations, incomes from

different sources), at least one of which is nonnegligible in size. If the overall income

also follows this probability law, we have “stable laws,” that is, either normal

distributions or a family of Pareto-type laws. To get a normal distribution, one

requires that the largest component is negligible in size. Mandelbrot argued that in

common economic applications the largest component is not negligible; hence, the

sum as well as the limit of properly normalized partial sums can be expected to

follow a nonnormal stable law (with a Pareto exponent a , 2).

Wold and Whittle (1957) offered a further model (in continuous time) that

generates the Pareto distribution, in their case as the distribution of wealth. They

assumed that stocks of wealth grow at a compound interest rate during the lifetime of

a wealth holder and then divide equally among his or her heirs. Death occurs

randomly with the known mortality rate per unit time. Applying the model to wealth

above a certain minimum, Wold and Whittle arrived at the Pareto distribution and

expressed a as a function of (1) the number of heirs and (2) the ratio of the growth

rate of wealth to the mortality rate. [Some 25 years later Walter (1981) derived all

solutions of the Wold–Whittle differential equation, showing that not all of them are

of the desired Paretian form.]

It is remarkable that the Pareto coefficient is here determined as the ratio of

certain growth rates—namely, the ratio of the growth of wealth to the mortality rate

of wealth owners—that apparently represent the dissipative and stabilizing

tendencies in the process. As noted by Steindl (1965, p. 44), this confirms the

intuition of Zipf (1949), who considered the Pareto coefficient the expression of an

equilibrium between counteracting forces.

3.2.4 Lydall’s Model of Hierarchical Earnings

Lydall (1959) assumed that the people working in an organization or firm are

arranged hierarchically and that their salaries reflect the organization of the firm.

Suppose that the levels li, i ¼ 1, 2, . . . , k, are numbered from the lowest upward

and let xi be the salary at li and yi the number of employees at that level. Two

assumptions are made:

yi

yiþ1

¼ n, where n . 1 is constant for every i, (3:24)

and

xiþ1

nxi

¼ p, where p , 1 is constant for all i: (3:25)
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These assumptions reflect the fact that the managers on every level supervise a

constant number of people on the level below them (3.24), and that the salary of a

certain manager is a constant proportion of the aggregate salary of the people whom

he or she supervises directly (3.25). It is then natural to assume that

xiþ1=xi ¼ np . 1. In the highest level there will be one person, in the next level

there will be n persons, then n2, etc. Hence,

yi ¼ nk�i:

The total number Ni of persons on levels li or above is therefore

Ni ¼ 1þ nþ n2 þ � � � þ nk�i ¼
nk�iþ1 � 1

n� 1

and the proportion of all employees, Qi, in the firm who are working on level li or

above is

Qi ¼
Ni

N1

¼
nk�iþ1 � 1

nk � 1
� n1�i:

From (3.25) we see that

xi ¼ (np)i�1 � x1:

Hence,

log Qi ¼
log n

log np
log x1 �

log n

log np
log xi ¼: log c� a log xi

and therefore,

Qi ¼ c � x�ai ,

which is the Pareto distribution. Here the levels li are discrete, but it is easy to cover

the continuous case as well (Lydall, 1968, Appendix 4).

3.2.5 Further Approaches

Mandelbrot (1964) derived a Pareto distribution of the amount of fire damage from

the assumption that the probability of the fire increasing its intensity at any instant of

time is constant. He assumed that the intensity is described by an integer-valued

random variable N—there is no fire when N ¼ 0, the fire starts when N becomes

equal to 1, and it ends when either N becomes equal to zero again or when all that

possibly can be destroyed has already been burned. Assume further that, at any

instant in time, there is a probability p ¼ 1=2 that the fire encounters new material,
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increasing its intensity by 1, and a probability q ¼ 1=2 that the absence of new

materials or the actions of dedicated firefighters decreases the fire’s intensity by 1. In

the absence of a maximum extent of damage and of a lower bound on recorded

damages, the duration of the fire will be an even number given by a well-known

result (familiar from the context of coin tossing),

P(D ¼ x) ¼ 2
1=2

x=2

� �
(� 1)x=2�1,

which is proportional to x�3=2 for reasonably large x. Under the assumption that

small damages, below a threshold x0, say, are not even properly recorded, the extent

of damage is then given by

P(D . x) ¼ (x=x0)�1=2, x0 � x,

a Pareto distribution with shape parameter a ¼ 1=2. [The value of the parameter

a ¼ 1=2 may seem somewhat extreme here; however, values in the vicinity of 0.5

were found to describe the distribution of fire damage in post-war Sweden (Benckert

and Sternberg, 1957).]

Shpilberg (1977) presented a further argument leading to a Pareto distribution as

the distribution of fire loss amount. Suppose that the “mortality rate” l(t) of the fire

is constant, equal to a, say, so that the duration of the fire T is exponentially

distributed. Under the assumption that the resulting damage X is exponentially

related to the duration of the fire,

X ¼ x0 exp (kT ),

for some x0, k . 0, the c.d.f. of X is given by

F(x) ¼ 1�
x0

x

� �a=k
, x � x0,

and so it follows a Pareto distribution. (Clearly, different specifications of the hazard

(mortality) rate can be used to motivate other loss models, and indeed we shall

encounter the Weibull and Benini distributions that can be derived along similar

lines.)

3.3 MOMENTS AND OTHER BASIC PROPERTIES

The Pareto density has a polynomial right tail; specifically, it is regularly varying at

infinity with index �a� 1. Thus, the right tail is heavier as a is smaller, implying

that only low-order moments exist. In particular, the kth moment of the Pareto

distribution exists only if k , a, in that case, it equals

E(X k) ¼
axk

0

a� k
: (3:26)
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Specifically, the mean is

E(X ) ¼
ax0

a� 1
(3:27)

and the variance equals

var(X ) ¼
ax2

0

a(a� 1)2(a� 2)
: (3:28)

Hence, the coefficient of variation is given by

CV ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a(a� 2)
p , (3:29)

and the shape factors are

ffiffiffiffiffi
b1

p
¼ 2

aþ 1

a� 3

ffiffiffiffiffiffiffiffiffiffiffiffi
1�

2

a

r
, a . 3, (3:30)

b2 ¼
3(a� 2)(3a2 þ aþ 2)

a(a� 3)(a� 4)
, a . 4: (3:31)

It follows that
ffiffiffiffiffi
b1

p
! 2 and b2 ! 9, as a! 1.

For the extremely heavy-tailed members (with a , 1) of this class of

distributions, other measures of location than the mean must be used. Options

include the geometric mean xg ¼ exp {E( log X )}, here given by

xg ¼ x0 exp
1

a

� �
, (3:32)

and the harmonic mean xh ¼ {E(X�1)}�1, which equals

xh ¼ x0(1þ a�1): (3:33)

A comparison with (3.3) shows that the geometric mean is equal to the (1� e�1)th

quantile. Also, formulas (3.27), (3.32), and (3.33) provide an illustration of the

familiar inequalities E(X ) � xg � xh.

It is easy to see that for a1 � a2 and x01 � x02, the c.d.f.s’ of two Par(x0i, ai)

distributions, i ¼ 1, 2, do not intersect, so under these conditions Pareto distributions

are stochastically ordered, with X1 �FSD X2. This implies, among other things, that the

moments are also ordered (provided they exist), in particular E(X1) � E(X2).

The density is decreasing; thus, the mode of this distribution is at x0. Figure 3.1

provides some examples of Pareto densities.

From (3.3), the median is F�1(0:5) ¼ 21=ax0.
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The Pareto distribution is closed with respect to minimization, in the sense that

X � Par(x0, a)¼)X1:n � Par(x0, na): (3:34)

However, other order statistics do not possess Pareto distributions. In particular,

the distribution of the sample maximum is given by

Fn:n(x) ¼ 1�
x

x0

� ��a� �n

, 0 , x0 � x: (3:35)

Fairly recently, Stoppa (1990a,b) proposed this distribution, for a general n [ IR,

as a model for the size distribution of personal income. It will be discussed in

Section 3.8 below in some detail.

The Pareto distribution is also closed with respect to the formation of moment

distributions and with respect to power transformations: if

F � Par(x0, a)¼)F(k) � Par(x0, a� k), (3:36)

provided a , k, and, for a . 0,

X � Par(x0, a)¼)X a � Par xa
0,

a

a

� �
: (3:37)

Figure 1 Pareto densities: x0 ¼ 1 and a ¼ 1(1)5 (from bottom left).
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Also, if X follows a standard Pareto distribution, then W ¼ X�1 has the density

f (w) ¼ axa0 wa�1, 0 , w , x�1
0 : (3:38)

This is a power function distribution and thus a special case of the Pearson type I

distribution that will be encountered in Chapter 6.

The hazard rate is given by

r(x) ¼
a

x
, x . x0, (3:39)

which is monotonically decreasing. Its slow decrease reflects the heavy-tailed nature

of the Pareto distribution. The mean excess function is

e(x) ¼
x

a� 1
, x � x0: (3:40)

Thus, the Pareto distribution obeys van der Wijk’s law (1.13). (Since the mean

excess function characterizes a distribution, the Pareto distribution is, in fact,

characterized by van der Wijk’s law within the class of continuous distributions.)

From (3.39) and (3.40) it follows that the product of the hazard rate and the mean

excess function is constant

r(x) � e(x) ¼
a

a� 1
: (3:41)

The distribution theory associated with samples from Pareto distributions is

generally somewhat complicated. From general results in, for example, Feller (1971,

p. 279), it follows that convolutions of Pareto distributions also exhibit Paretian tail

behavior; however, expressions for the resulting distributions are quite involved.

Nonetheless, asymptotically the situation is under control, an important probabilistic

property of the Pareto distribution being associated with the central limit theorem:

properly normalized partial sums of i.i.d. Par(x0, a) random variables are asymp-

totically normally distributed only if a � 2, for a , 2 nonnormal stable

distributions arise (see, e.g., Zolotarev, 1986). The Pareto distribution is perhaps

the simplest distribution with this property.

A basic distributional property of the standard Par(x0, a) distribution is its close

relationship with the exponential distribution

X ¼
d

x0 exp
Y

a

� �
, (3:42)

where Y is a standard exponential variable, that is, fY ( y) ¼ exp (�y), y . 0. The

classical Pareto distribution may therefore be viewed as the “log-exponential”

distribution. This yields, for example, the following relationship between Pareto and
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gamma distributions: If Xi, i ¼ 1, . . . , n, are i.i.d. with Xi � Par(x0, a), then

a log
Yn

i¼1

Xi

x0

� �
¼ a

Xn

i¼1

log
Xi

x0

� �
¼ Ga(n, 1): (3:43)

More general results on distributions of products and ratios of Pareto variables with

possibly different parameters were derived by Pederzoli and Rathie (1980) using

Mellin transforms.

In general, the intimate relationship between the Pareto and exponential

distributions implies that one can obtain many properties of the former from

properties of the latter, in particular characterizations to which we now turn.

3.4 CHARACTERIZATIONS

A large number of characterizations of Pareto distributions are based on the behavior

of functions of order statistics, which is a consequence of the vast literature on

characterizations of the exponential distribution in terms of these functions. Since we

are unaware of meaningful interpretations in connection with size phenomena, we

only present the most prominent example to illustrate the flavor of the results.

The example under consideration is

Xi:n,
Xiþ1:n

Xi:n

independent¼)X � Pareto: (3:44)

This is essentially an “exponentiated” version of a classical exponential charac-

terization in terms of spacings due to Fisz (1958). (The quantities Xiþ1:n=Xi:n are

often referred to as geometric spacings.) Refinements and related results may be

found in Galambos and Kotz (1978) and Arnold (1983).

Several characterizations of the Pareto distributions are based on the linearity of

the mean excess (or mean residual life) function, although sometimes in heavily

disguised form. This essentially goes back to Hagstr�m (1925) and D’Addario

(1939), however rigorous proofs are of a more recent date (Arnold, 1971; Huang,

1974).

A closely related class of characterizations can be subsumed under the heading

“truncation equivalent to rescaling,” a line of research initiated by Bhattacharya

(1963). The basic result is that

P(X . y jX . z) ¼ P
z

x0

X . y

� �
, for all y . z � x0, (3:45)

characterizes the Par(x0, a) distribution. If one supposes that moments exist, this

characterization is reduced to the linearity of the mean excess function as a function

of z (e.g., Kotz and Shanbhag, 1980). Note that income distributions arising from
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income tax statistics are generally of the truncated form, and Lorenz curves and

inequality measures are quite often calculated for such data. The preceding

characterization implies that only if the entire distribution is of the Pareto form, the

truncated distribution can be safely used for inferences about the inequality

associated with the entire distribution. Otherwise, reported inequality statistics will

often be too low. See Ord, Patil, and Taillie (1983) for an additional discussion of the

effect. Further variations on this theme are the truncation invariance of the Gini and

generalized entropy indices (Ord, Patil, and Taillie, 1983) and the truncation

invariance, both from above and from below, of the Lorenz curve of a two-

component Pareto-power function mixture (Moothathu, 1993). (Recall that the

power function distribution is the inverse Pareto distribution.)

Several characterizations of the Pareto distribution have been cast in the

framework of income underreporting, although it is difficult to believe that the

proposed mechanisms describe the actual underreporting process.

Krishnaji (1970) provided widely quoted characterization assuming that reported

income Y is related to true (but unobservable) income X through a multiplicative

error

Y ¼
d

RX ,

where R, X are independent. In order to be meaningful as an underreporting factor, it

is clearly necessary that R take values in [0, 1]. (In an actuarial context, the

appropriate framework would be the overreporting of insurance claims. If we set

Y ¼
d

X=R, the characterizations given below apply with minor modifications.)

Assuming that R possesses a power function distribution (a special case of the beta

distribution) with the density

f (r) ¼ pr p�1, 0 � r � 1, (3:46)

where p . 0, Krishnaji obtained the following characterization: If P(X . x0) ¼ 1,

for some x0 . 0, and P(RX . x0) . 0 with R, X independent, then

P(RX . y jRX . x0) ¼ P(X . y), y . x0, (3:47)

if and only if X � Par(x0, a). However, there is nothing special about the distribution

(3.46) of R. Fosam and Sapatinas (1995) have shown that the result holds true for

any R supported on (a subset of) (0, 1) such that the distribution of log R is non-

arithmetic. Indeed, (3.47) may be rewritten as

P R
X

x0

� �
. y� R

X

x0

� �
. 1

				


¼ P

X

x0

. y�
� 


, y� ¼
y

x0

. 1,

�
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which is seen to be equivalent to

P log
X

x0

� �
. � log Rþ x log

X

x0

� �
. � log R

				


¼ P log

X

x0

� �
. x

� 
�
,

x ¼ log y� . 0:

The conclusion follows therefore directly from the (strong) lack of memory

property of the exponential distribution; hence, this characterization is a

consequence of (3.42).

The result remains unaffected if condition (3.47) is replaced by the condition

E(Y � x j Y . x) ¼ E(X � x jX . x), x . x0 . 0, (3:48)

with E(Xþ) , 1, as follows from Kotz and Shanbhag (1980).

An interesting alternative characterization in the framework described above is as

follows. If there exists a random variable Z such that the regression E(Z jX ¼ y) is

linear, then, under some smoothness conditions, E(Z jRX ¼ y) is also linear if and

only if X follows a Pareto distribution (Krishnaji, 1970). The result was extended by

Dimaki and Xekalaki (1990) and further generalized by Fosam and Sapatinas (1995)

who weakened (3.46) to R � beta( p, q), q [ IN, requiring only E(Z jX ¼ y) ¼

dþ bxa, for some positive a.

Revankar, Hartley, and Pagano (1974) provided a second characterization in

terms of underreported incomes. However, in contrast to Krishnaji’s approach

utilizing a multiplicative reporting error, they postulated an additive relation between

true and reported income. Let the random variables X , Y , and U denote the actual

(unobserved) income, reported income, and the underreporting error, respectively,

and define

Y ¼ X � U , where 0 , U , max{0, X �m},

where m is the tax-exempt level. Under the assumptions that (1) the average amount

of underreported income from a given X ¼ x . m is proportional to x� m, that is,

E(U j X ¼ x) ¼ b(x� m) ¼ aþ bx, (3:49)

0 , b , 1 and a ¼ �bm, and (2) E(X ) , 1, it follows that

E(U j X . y) ¼ aþ by, (3:50)

with b . b . 0, if and only if X follows a Pareto distribution with a finite first

moment. In particular, for a ¼ a the Par(x0, a) distribution is obtained. [For a , a

we obtain a Pareto (II) distribution, while b ¼ b yields a characterization of the

exponential distribution. The case b , b was investigated by Stoppa (1989).]
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The classical Pareto distribution is also the maximum entropy density on [x0, 1)

subject to the constraint of a fixed geometric mean (e.g., Näslund, 1977; Kapur,

1989, p. 56). This may also be considered a restatement of the corresponding

exponential characterization: The exponential distribution is the maximum entropy

distribution on [0, 1) when the first moment is prescribed (Kapur, 1989, p. 56).

Thus, the Pareto result follows from (3.42) together with (3.32).

Nair and Hitha (1990) provided a characterization in terms of the “equilibrium

distribution” defined via the p.d.f. fZ (x) ¼ 1=E(X ){1� FX (x)}, a concept of special

significance in renewal theory. They showed that the condition E(X ) ¼ kE(Z), for

some k . 1, characterizes the Pareto distribution within a subclass of the one-

parameter exponential family specified by f (x) ¼ u(u)v(x) exp{�u log x}, where u

lies in an open interval on the positive halfline. They also showed that, for a

distribution with a finite mean, the condition F(1)(x) ¼ F(x) for all x . x0 . 0

[where F(1) denotes the c.d.f. of the first-moment distribution] characterizes the

Pareto distribution.

Moothathu (1990b) obtained the following characterization in terms of the

independence of certain random variables. For a fixed integer k � 2, consider the

i.i.d. random variables Z1, . . . , Zk , with P(Z1 . 1) ¼ 1 and let Y ¼ (Y1, . . . , Yk�1)

be a further vector of random variables supported on IRk�1
þ , independent of the Z’s.

Set T ¼ 1þ Y1 þ � � � þ Yk�1 and define

V ¼ min ZT
1 , Z

T=Y1

2 , . . . , Z
T=Yk�1

k

n o
:

Now the random variable Z1 follows a Pareto distribution if and only if V and Y are

independent. (The result follows from a characterization of the Weibull distribution

obtained in the same paper.) This result has potential applications in that it enables

one to treat a problem of testing k-sample homogeneity as a problem of testing

independence.

3.5 LORENZ CURVE AND INEQUALITY MEASURES

The Lorenz curve, which exists whenever a . 1, is given by

L(u) ¼ 1� (1� u)1�1=a, 0 , u , 1: (3:51)

As was already mentioned in the preceding chapter, it follows that Pareto Lorenz

curves never intersect and that, for Xi � Par(x0, a),

X1 �L X2()a1 � a2, (3:52)

provided ai . 1, i ¼ 1, 2. There is an interesting alternative but less direct argument

leading to this result. Arnold et al. (1987) observed that every distribution F

corresponding to an unbounded random variable and possessing a strongly unimodal
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density generates an ordered family of Lorenz curves via Lt(u) ¼ F(F�1(u)� t),

t � 0. The Pareto distribution admits such a representation, the generating

distribution being the (Gumbel-type) extreme value distribution.

The Gini coefficient of the Pareto distribution is

G ¼
1

2a� 1
, (3:53)

and the generalized Gini coefficients are given by (Kleiber and Kotz, 2002)

Gn ¼
n� 1

na� 1
, n � 2: (3:54)

Hence for a ¼ 1:5, the value originally obtained by Pareto for most of his data, we

have G ¼ 0:5.

The Pietra index equals

P ¼
(a� 1)�1

aa
: (3:55)

and the Theil coefficient is

T1 ¼
1

a� 1
� log

a

a� 1

� �
: (3:56)

All of these expressions are decreasing with increasing a, showing that the

parameter a, or rather its inverse, may be considered a measure of inequality.

In the Italian literature the Zenga curve and inequality measures derived from it

have also been considered. As was mentioned in the preceding chapter, the Zenga

curve is given by (Zenga, 1984)

Z(u) ¼ 1� (1� u)1=[(a�1)a], 0 , u , 1, (3:57)

and the two Zenga coefficients are (Zenga, 1984)

j ¼

ð1

0

Z(u) du ¼
1

1þ a(a� 1)
(3:58)

and (Pollastri, 1987a)

j2 ¼ 1� exp
�1

a(a� 1)

� 

: (3:59)

This shows that the Zenga curve of the Pareto distribution is an increasing function

on [0, 1], approaching the x axis with increasing a, and that the two coefficients are

decreasing as a increases.
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3.6 ESTIMATION

The estimation of Pareto characteristics is covered in depth in Arnold (1983) and

Johnson, Kotz, and Balakrishnan (1994). Here we shall only include the classical

regression-type estimators, ML estimation, and several recent developments, notably

in connection with UMVU estimation. For the method of moments, quantile and

Bayes estimators, as well as methods based on order statistics, we refer the interested

reader to the above-mentioned works.

3.6.1 Regression Estimators

Since the Pareto distribution was originally discovered as the distribution whose

survival function is linear in a double-logarithmic plot, the Pareto diagram, it is

not surprising that the regression estimators of its parameters have been used from

the very beginning. The least-squares estimators

âaLS ¼
�n

Pn
i¼1 log Xi � log �FF(Xi)þ

Pn
i¼1 log Xi �

Pn
i¼1 log �FF(Xi)

n
Pn

i¼1 ( log Xi)
2 �

Pn
i¼1 log Xi

� 
2
(3:60)

and x̂x0, defined by

log �FF(X ) ¼ âaLS � log x̂x0 � âaLS � log (X )

(where a bar denotes averaging), are still quite popular in applied work; Quandt

(1966b) has shown that they are consistent.

Early writers such as Pareto (1896, 1897a,b), Benini (1897), or Gini (1909a)

employed Cauchy regression (e.g., Linnik, 1961), a method that is seldom used

nowadays. Interestingly, in a fairly recent small Monte Carlo study Pollastri (1990)

found that Cauchy’s method is often slightly better, in terms of MSE, than least-

squares regression. More recently, Hossain and Zimmer (2000) recommended that

the least-squares estimators be generally preferred over the maximum likelihood and

related estimators for estimating x0, and also for estimating a for small values of the

parameter (a � 4).

3.6.2 Maximum Likelihood Estimation

The likelihood for a sample from a Pareto distribution is

L ¼
Yn

j¼1

axa0

xaþ1
j

: (3:61)

This yields the MLE of a

âa ¼ n
Xn

j¼1

log
Xj

x̂x0

� �" #�1

, (3:62)
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whereas for the threshold x0 the estimator is given by

x0 ¼ X1:n: (3:63)

It should be noted that, since x0 � x and x̂x0, x̂x0 overestimates x0. If this estimator is

used to solve for âa in (3.62), it is seen that a is also overestimated.

Some direct calculations show that

E(âa) ¼
na

n� 2
, n . 2,

var(âa) ¼
n2a2

(n� 2)2(n� 3)
, n . 3,

yielding

MSE(âa) ¼
a2(n2 þ 4n� 12)

(n� 2)2(n� 3)
, n . 3:

The corresponding results for x̂x0 are

E(x̂x0) ¼
nx0a

na� 1
, n .

1

a
,

var(x̂x0) ¼
nx0a

2

(na� 1)2(na� 2)
, n .

2

a
,

yielding

MSE(x̂x0) ¼
2x2

0

(na� 1)(na� 2)
, n .

2

a
:

Both estimators are consistent (Quandt, 1966b). Since 1=âa is asymptotically

efficient in the exponential case, the same is true of âa . On the other hand, n(X1:n �

x0) follows asymptotically an Exp(0, x0=a) distribution and hence is biased. Saksena

and Johnson (1984) showed that the maximum likelihood estimators are jointly

complete.

If the parameter a is known, then T ¼ X1:n will be the complete sufficient statistic

with p.d.f.

f (t) ¼
na

tnaþ1
xna

0 , x0 � t, (3:64)

a Par(na, x0) distribution [cf. (3.34)].
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The MLE for the shape parameter a, for known scale x0, equals

âa ¼
nPn

i¼1 log(Xj=x0)
:

This estimator is also complete and sufficient. Incidentally, its distribution has

the p.d.f.

f (x) ¼
(an)n

G(n)
x�(nþ1)e�(an)=x, x . 0, (3:65)

which can be recognized as the density of a Vinci (1921) distribution that is

discussed in greater detail in Chapter 5. It should be noted that the situation where x0

is known is not uncommon in actuarial applications, where, for example, in

reinsurance the reinsurer is only concerned with losses above a certain

predetermined level, the retention level.

If the parameters a, x0 are both unknown, then the complete sufficient statistic is

(T , S), where

T ¼ X1:n, S ¼
Xn

i¼1

log
Xi

X1:n

� �
, (3:66)

which has the density function

f (s, t) ¼
nanxna

0

G(n� 1)
�
sn�2e�as

tnaþ1
, x0 � t, 0 � s, (3:67)

showing that âa and x̂x0 are mutually independent. [This is also a direct consequence

of the independence of exponential spacings, the property underlying characteri-

zation (3.44).] Hence, the marginal density of âa is now given by

f (x) ¼
ðanÞn�1

G(n� 1)
x�ne�an=x, x . 0, (3:68)

again an inverse gamma (Vinci) distribution.

In view of the importance of grouped data in connection with size distributions,

we briefly mention relevant work pertaining to the classical Pareto distribution.

Maximum likelihood estimation from grouped data when x0 is known was studied

by Fisk (1961b) and Aigner and Goldberger (1970). Let x0 ¼ 1 , x1 , x2 , � � � ,

xkþ1 ¼ 1 be the boundaries of the k þ 1 groups and denote the number of

observations, in a random sample of size n, falling into the interval [xi, xiþ1) by ni

(
Pk

i¼0 ni ¼ n). The MLE of a is then the solution of

Xk�1

i¼0

ni

x�aiþ1 log xiþ1 � x�ai log xi

x�aiþ1 � x�ai

� �
þ nk log xk ¼ 0: (3:69)
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It is worth noting that if the group boundaries form a geometric progression, with

xiþ1 ¼ cxi, i ¼ 1, . . . , k, then the MLE can be expressed in closed form, namely,

âa ¼
1

log c
log 1þ

nPk
i¼0 ini

 !
: (3:70)

3.6.3 Optimal Grouping

The prevalence of grouped data in connection with the distribution of income or

wealth leads naturally to the question of optimal groupings. Only fairly recently,

Schader and Schmid (1986) have addressed this problem in a likelihood framework.

Suppose that a sample X ¼ (X1, . . . , Xn)` of size n is available and the parameter

of interest is a. (Clearly, this is the relevant parameter in connection with inequality

measurement as the formulas in Section 3.5 indicate.) By independence, the Fisher

information of the sample on a is

I (a) ¼ nI1(a) ¼
n

a2
,

where I1 denotes the information in a single observation. For a given number of

groups k with group boundaries X0 ¼ a0 , a1 , � � � , ak�1 , ak ¼ 1, define the

class frequencies Nj as the number of Xi in [aj�1, aj), j ¼ 1, . . . , k. Thus, the joint

distribution of N ¼ (N1, . . . , Nk )` is multinomial with parameters n and pj ¼ pj(a),

where

pj(a) ¼

ðaj

aj�1

f (x ja) dx, j ¼ 1, . . . , k:

Now the Fisher information in N is

IN (a) ¼ n
Xk

i¼1

[@pj(a)=@a]2

pj(a)
¼

n

a2

Xk

i¼1

[ log (zj)zj � log (zj�1)zj�1]2

zj�1 � zj

,

where z0 ¼ 1, zk ¼ 0, zj ¼ (aj=x0)�a, j ¼ 1, . . . , k � 1. This expression is, for fixed

a, a function of k and the k � 1 class boundaries a1, . . . , ak�1.

Passing from the complete data X to the class frequencies N implies a loss of

information that may be expressed in terms of the decomposition

IX (a) ¼ IN (a)þ IX jN (a):

The relative loss of information is then given by

L ¼ 1� a2IN (a):

82 PARETO DISTRIBUTIONS



L is a function of k, a, and a1, . . . , ak�1, but not a function of n. Given k and a, the

loss of information is now minimized if and only if the class boundaries a�1, . . . , a�k�1

are defined by

IN (a; a�1, . . . , a�k�1) ¼ sup
a�

1
,���,a�

k�1

IN (a; a1, . . . , ak�1):

The boundaries a�1, . . . , a�k�1 are now called optimal class boundaries and the

corresponding intervals [a�j�1, a�j ), j ¼ 1, . . . , k, are called an optimal grouping. By

using these boundaries, the number of classes k may now be determined in such a

way that the loss of information due to grouping does not exceed a given bound, g,

say. Thus, one requires, for given g [ (0, 1) and a, the smallest integer k� such that

L(a; k�; a�1, . . . , a�k�1) � g:

The relevant k can now be found by determining the boundaries and the information

loss for k ¼ 1, 2, . . . until for the first time L is less than or equal to g. In practice,

the parameter a will remain unknown and have to be replaced by an estimate.

Schader and Schmid (1986) argued that, although the corresponding class

boundaries will not be optimal in that case, the loss of information will often be

less than using ad hoc determined class boundaries.

Table 3.1 provides optimal class boundaries z�j based on the least number

of classes k� for which the loss of information is less than or equal to a given value of

g, for g ¼ 0:1, 0.05, 0.025, and 0.01. From the table, optimal class boundaries a�j
for a Pareto distribution with parameters a and x0 can be obtained by setting

a�j ¼ x0z
��1=a
j .

3.6.4 Unbiased Estimation of Pareto Characteristics

Over the last 10–15 years there has been considerable interest in the UMVU

estimation of various Pareto characteristics, notably the parameters, the density, the

c.d.f., the moments, and several inequality indices.

An improvement over the MLEs is obtained by removing their biases. In the case

where both parameters are unknown, this amounts to replacing x̂x0 by the estimator

x�0 ¼ X1:n 1�
1

(n� 1)âa

� 

, (3:71)

Table 3.1 Optimal Class Boundaries for Pareto Data

g k� z�1, . . . , z�k��1

0.1 5 0.5486 0.2581 0.0933 0.0190

0.05 7 0.6521 0.3958 0.2171 0.1021 0.0369 0.0075

0.025 9 0.7173 0.4935 0.3218 0.1953 0.1071 0.0504 0.0182

0.01 15 0.8192 0.6616 0.5256 0.4097 0.3122 0.2315 0.1660

0.1142 0.0745 0.0452 0.0248 0.0117 0.0042 0.0009

Source: Schader and Schmid (1986).
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and replacing âa by

a� ¼ 1�
2

n

� �
âa: (3:72)

These are, in fact, the UMVU estimators of the parameters. This is a direct

consequence of the fact that (âa, x̂x0) is a sufficient statistic and (a�, x�0) is a function

of (âa, x̂x0). These estimators were obtained by Like�ss (1969), with simplified

derivations later given by Baxter (1980).

The variances of the UMVUEs are found to be

var(a�) ¼
a2

n� 3
, n . 3, (3:73)

and

var(x�0) ¼
x2

0

a(n� 1)(an� 2)
, n .

2

a
: (3:74)

Equation 3.73 shows that the UMVUE almost attains the Cramér–Rao bound

for a, which is a2=n.

Being a rescaled ML estimator, the UMVUE of a evidently also follows an

inverse gamma distribution. In addition, note that, although x0 is necessarily

positive, x�0 is negative if âa , 1=(n� 1), that is, if 2na=âa . 2n(n� 1)a. Since

2na=âa follows an inverse gamma distribution, this occurs with nonzero probability.

However, this probability appears to be quite small in practice.

If x0 is known, the UMVUE of a is

a� ¼ 1�
1

n

� �
âa,

with variance

var(a�) ¼
a2

n� 2
, n . 2:

Similarly, for known a the UMVUE of x0 is

x�0 ¼ X1:n 1�
1

na

� 

,

with variance

var(x�0) ¼
x2

0

an(an� 2)
, n .

2

a
:
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Moothathu (1986) has studied the UMVU estimation of the quantiles, the mean,

as well as the geometric and harmonic means, for both known and unknown x0. [For

known x0, the estimators of the moments, the geometric mean, and the median were

derived by Kern (1983) somewhat earlier.] The estimators are conveniently

expressed in terms of various special functions.

The estimators of the mean are given by

x0 1F1(1; n; nS1) if x0 is known (3:75)

X1:n 1F1(1; n� 1; nS2)�
S2

n� 1
1F1(1; n� 1; nS2) if x0 is unknown, (3:76)

where 1F1 is Kummer’s confluent hypergeometric function.

Here

S1 ¼
1

n

Xn

i¼1

log
Xi

x0

� �
, (3:77)

S2 ¼
1

n

Xn

i¼1

log
Xi

X1:n

� �
: (3:78)

The estimators for the uth quantile are

x0 0F1[�; n; �nS1log(1� u)] if x0 is known, (3:79)

X1:n 0F1[�; n� 1; �nS2log(1� u)]

�

�
S2

n� 1
0 F1[�; n; �nS2log(1� u)]



if x0 is unknown, (3:80)

where 0F1 is a Bessel function. (See p. 288 for a definition of pFq:)
Being equal to the (1� 1=e)th quantile, the geometric mean is therefore esti-

mated by

x0 0F1(�; n; nS1) if x0 is known, (3:81)

X1:n 0F1(�; n� 1; nS2)�
S2

n� 1
0F1(�; n; nS2)

� 

if x0 is unknown: (3:82)

In the case of the harmonic mean, the corresponding estimators are

x0(1þ S1) if x0 is known, (3:83)

X1:n 1F1(�1; n� 1; �nS2)�
S2

n� 1
1F1(�1; n; �nS2) if x0 is unknown: (3:84)
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All of the previously given estimators are moreover strongly consistent.

Further results are available for the coefficient of variation, for which the

UMVUEs are (Moothathu, 1988)

S1 1F1

1

2
; nþ 1; 2nS1

� �
if x0 is known, (3:85)

S2 1F1

1

2
; n; 2nS2

� �
if x0 is unknown, (3:86)

the mode (Moothathu, 1986), the skewness and kurtosis coefficients (Moothathu, 1988),

the p.d.f. and c.d.f. (Asrabadi, 1990), and the mean excess function (Rytgaard, 1990).

Independently, Woo and Kang (1990) obtained the UMVUEs for a whole class of

functions of the two Pareto parameters, namely, x
p
0a

q(a� r)s, such that n� s�

q� 1 . 0 and na . p, along with their variances. This clearly includes the

parameters themselves as special cases, as well as the moments, the harmonic mean,

the mode, the coefficient of variation, the mean excess function, and the Gini index

(see Section 3.6.7 below), but not the quantiles, the geometric mean, and

the skewness and kurtosis coefficients. The resulting family of estimators can be

expressed in terms of a difference in the confluent hypergeometric function and the

variances in terms of a bivariate hypergeometric function.

3.6.5 Robust Estimation

A well-known problem with ML estimators (and indeed many classical estimators) is

that they are very sensitive to extreme observations and model deviations such as

gross errors in the data. Victoria-Feser (1993) and Victoria-Feser and Ronchetti

(1994) proposed robust alternatives to ML estimation in the context of income

distribution models. Following Hampel et al. (1986), they assessed the robustness of

a statistic Tn ¼ Tn(x1, . . . , xn) in terms of the influence function. In order to define

this function, it is convenient to consider Tn as a functional of the empirical

distribution function

Fn(x) ¼
1

n

Xn

i¼1

dxi
(x),

where dx denotes a point mass in x. If we write T (Fn) :¼ Tn(x1, . . . , xn), the influence

function (IF) at the (parametric) model Fu, u [ Q # IRk , is defined by the

population counterpart of T (Fn), namely, T (Fu), as

IF(x; T ; Fu) ¼ lim
e!0

T [(1� e)Fu þ edx]� T (Fu)

e
, (3:87)

that is, as the directional derivative of T at Fu in the direction of dx.
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The IF describes the effect of a small contamination (namely, edx) at a point x on

the functional/estimate, standardized by the mass e of the contamination. Hence, the

linear approximation eIF(x; T ; Fu) measures the asymptotic bias of the estimator

caused by the contamination.

In the case of the ML estimator, the IF is proportional to the score function

s(x; u) ¼ (@=@u) log f (x; u). In the Pareto case we have

s(x; a) ¼
1

a
� log xþ log x0,

which is seen to be unbounded in x. Thus, a single point can carry the MLE

arbitrarily far. (This is also the case for most other size distributions.) Clearly,

a desirable robustness property for an estimator is a bounded IF. Estimators

possessing this property are referred to as bias-robust (or, more concisely, B-robust)

estimators. An optimal B-robust estimator (OBRE) as defined by Hampel et al.

(1986) belongs to the class of M estimators, that is, it is a solution Tn of the system

of equations

Xn

i¼1

c (xi; Tn) ¼ 0

for some function c.

The OBRE is optimal in the sense that it is the M estimator that minimizes the

trace of the asymptotic covariance matrix under the constraint that it has a bounded

influence function. There are several variants of this estimator depending on the way

one chooses to bound the IF. Victoria-Feser and Ronchetti (1994) employed the

so-called standardized OBRE. For a given bound, c, say, on the IF, it is defined

implicitly by

Xn

i¼1

c (xi; Tn) ¼
Xn

i¼1

{s(xi; u)� a(u)}Wc(xi; u) ¼ 0,

where

Wc(xi; u) ¼ min 1;
c

kA(u){s(x; u)� a(u)}k

� 

:

Here the k � k matrix A(u) and k � 1 vector a(u) are defined implicitly by

E{c(x; u)c(x; u)`} ¼ {A(u)A(u)`}�1

and

Ec(x; u) ¼ 0:
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The idea behind the OBRE is to have an estimator that is as similar as possible to

the ML estimator for the bulk of the data (for efficiency reasons) and therefore to use

the score as its c function for those values and to truncate the score if a certain

bound c is exceeded (for robustness reasons). The constant c can be considered the

regulator between robustness and efficiency: for small c the estimator is quite robust

but loses efficiency relative to the MLE, and vice versa for large c. The matrix A(u)

and vector c(x; u) can be considered the Lagrange multipliers for the constraints

resulting from a bounded IF and the condition of Fisher consistency, T (Fu) ¼ u.

Victoria-Feser and Ronchetti suggested using a c so that 95% efficiency at

the model is achieved. In the Pareto case this means that c ¼ 3 should be employed.

For computational purposes they recommend an algorithm based on the Newton–

Raphson method using the MLE, a trimmed moment estimate, or a less robust

OBRE (large c) as the initial value. We refer the interested reader to Victoria-Feser

and Ronchetti (1994) for further algorithmic details.

Also aiming at a favorable tradeoff between efficiency and robustness, Brazauskas

and Serfling (2001a) proposed a new class of estimators called the generalized median

(GM) estimators. These are defined by taking the median of the evaluations

h(X1, . . . , Xn) of a given kernel h(x1, . . . , xn) over all subsets of observations taken k at

a time [of which there are ( n
k

)]. Specifically, in the case of the Pareto parameter a,

âaGM ¼ med{h(Xi1 , . . . , Xik )}, (3:88)

where {i1, . . . , ik} is a set of distinct indices from {1, . . . , n}, with two particular

choices of kernel h(x1, . . . , xn):

h(1)(x1, . . . , xn) ¼
1

Ck

1

k�1
Pk

j¼1 log xj � log X1:k

(3:89)

and

h(2)(x1, . . . , xn; X1:n) ¼
1

Cn,k

1

k�1
Pk

j¼1 log xj � log X1:n

: (3:90)

Here Ck and Cn,k are median unbiasing factors, chosen in order to assure that

in each case the distribution of h( j)(Xi1 , . . . , Xik ), j ¼ 1, 2, has median a. For n ¼ 50,

100, and 200, Brazauskas and Serfling provided the approximation Cn,k � k=
[k(1� 1=n)� 1=3]. Note that the kernel h(1) can be viewed as providing the MLE

based on a particular subsample and thus inherits the efficiency properties of the MLE

in extracting the information about a pertaining to that sample. h(2) is a modification

that always employs the minimum of the whole sample instead of the minimum of the

particular subsample.

In Brazauskas and Serfling (2001b), these estimators are compared to several

estimators of trimmed mean and quantile type with respect to efficiency-robustness

tradeoffs. Efficiency criteria are exact and asymptotic relative MSEs with respect to
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the MLE, robustness criterion is the breakdown point, with upper outliers receiving

special attention. It turns out that the GM types dominate all trimmed mean and

quantile-type estimators for all sample sizes under consideration. For instance, if

n � 25 and protection against 10% upper outliers is considered sufficient, âa
(2)
GM with

k ¼ 4 yields a relative efficiency of more than 0.89 and a breakdown point �0:12.

3.6.6 Miscellaneous Estimators

Kang and Cho (1997) derived the MSE-optimal estimator of the shape parameter a,

for unknown scale x0, within the class of estimators of the form c= log(Xj=x̂x0) [note

that both the MLE (3.62) and UMVUE (3.72) are of this form] obtaining

~aa ¼
n� 3Pn

i¼1 log(Xi=x̂x0)
(3:91)

with an MSE of

MSE( ~aa) ¼
a2

n� 2
, n . 2: (3:92)

They referred to this estimator as the minimum risk estimator (MRE). Compared to

the MLE (3.62), it not only has smaller MSE but a smaller bias as well

bias( ~aa) ¼ �
a

n� 2
(3:93)

(half of the bias of the MLE, in absolute value). Kang and Cho also studied

jackknifed and bootstrapped versions of the MLEs and MREs when one of the

parameters is known.

In Section 3.4 we saw that the Pareto distribution can be characterized in terms of

maximum entropy, and it is also possible to obtain estimators of its parameters based

on this principle. This leads to the estimating equations

�xx0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

var( log X )

s
(3:94)

and

�aa ¼ exp E( log X )�
1

�xx0

� 

: (3:95)

Singh and Guo (1995) have studied the performance of these estimators in relation to

the MLEs and two further estimators by Monte Carlo. It turns out that the maximum

entropy estimators perform about as well as the MLEs in terms of bias and root mean

square error, and often much better than the method of moments estimators,

especially in small samples.
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3.6.7 Inequality Measures

The maximum likelihood estimators of the Lorenz curve (3.51), Gini index (3.53),

and Theil index (3.56) are obtained by replacing the shape parameter a by its

estimator âa depending on whether x0 is known or unknown and then introducing the

condition L(u) � 0.

Moothathu (1985) has studied the sampling distributions of the ML estimators of

L(u) and the Gini index, which are of the mixed type, and shown that the estimators

are strongly consistent. In the case of the Gini coefficient, the sampling distribution

of the MLE possesses the density f
ĜG

(w) ¼ pþ (1� p) f (w), where p ¼ P(ĜG � 1) ¼

P(âa � 1) and

f (w) ¼
(2na)n�sþ1

G(n� sþ 1)

w

1þ w

� �n�s

(1þ w)�2 exp
�2naw

1þ w

� �
, 0 , w , 1, (3:96)

with s ¼ 1(2) if x0 is known (unknown).

UMVUEs of the Lorenz curve, Gini index, and Theil coefficient were derived by

Moothathu (1990c). [The UMVUE of the Gini coefficient for both parameters

unknown may already be found in Arnold (1983, p. 200).] In what follows,

Si, i ¼ 1, 2, are defined as in (3.77) and (3.78). For known x0, an unbiased estimator

of L(u) is

L̂L� ¼ 1� (1� u) 0F1[�; n; �nS1log(1� u)]

¼ 1� (1� u)
X1
j¼0

{�nS1log(1� u)}j

(n)j j!
, (3:97)

where 0F1 is a Bessel function and (n)j is Pochhammer’s symbol for the forward

factorial function (see p. 287 for a definition), and in the case where x0 is unknown,

the UMVUE is

L̂L� ¼ 1� (1� u) 0F1[�; n� 1; �nS2log(1� u)]: (3:98)

The UMVUEs of the Gini coefficient are

1F1 1; n;
nS1

2

� �
� 1 if x0 is known (3:99)

1F1 1; n� 1;
nS2

2

� �
� 1 if x0 is unknown, (3:100)

where 1F1 is Kummer’s confluent hypergeometric function.
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The UMVUEs of the coefficient of variation were given in Section 3.6.4 above.

For the Theil coefficient, the UMVUEs are

nS2
1

2(nþ 1)
2F2(2, 2; 3, nþ 2; nS1) if x0 is known (3:101)

nS2
2

2(n� 1)
2F2(2, 2; 3, nþ 1; nS2) if x0 is unknown, (3:102)

where 2F2 is a generalized hypergeometric function (see p. 288 for a definition).

Ali et al. (2001) showed that the UMVUE of the Gini coefficient has a variance in

the vicinity of the Cramér–Rao bound and is considerably more efficient than the

MLE in terms of MSE, in small samples. The same holds true for the Lorenz curve

for large quantiles.

Latorre (1987) derived the asymptotic distributions of the ML estimators of the

Gini coefficient and of Zenga’s measures j and j2, and the sampling distributions of

the latter indices were obtained by Stoppa (1994). Since P(âa � 1) . 0 although the

coefficients only exist for a . 1, these distributions are all of the mixed type.

3.7 EMPIRICAL RESULTS

Having already sketched the early history of income distributions in Chapter 1 we

shall here confine ourselves to the comparatively few more recent studies employing

Pareto distributions in that area and add some material on the distribution of wealth

and on the size distributions of firms and insurance losses.

Income Data

In a reexamination of Pareto’s (1896, 1897b) results for the Pareto type II

distribution, Creedy (1977) noted some inconsistencies in Pareto’s statements. He

obtained parameter estimates of the location parameter m that are highly significant

and moreover have opposite signs (compared to Pareto’s work), contradicting

Pareto’s remark that the shift parameter m is positive for earnings from employment.

In a study aimed at a reassessment of the “conventional wisdom” that earnings are

approximately lognormally distributed but with an upper tail that is better modeled

by a Pareto distribution, Harrison (1981) considered the gross weekly earnings of

91,968 full-time male workers aged 21 and over from the 1972 British New Earnings

Survey, disaggregated by occupational groups and divided into 34 earnings ranges.

Although for the aggregated data he found that the main body of the distribution

comprising 85% of the total number of employees is “tolerably well described” by

the lognormal distribution for the (extreme) upper tail, the fit provided by the Pareto

distribution is “distinctly superior.” Specifically, there is evidence for a fairly stable

Pareto tail with a coefficient in the vicinity of 3.85. However, he pointed out that

“ . . .a strict interpretation . . .suggests that . . . [the Pareto distribution] applies to only

a small part of the distribution rather than to the top 20% of all employees”

[as implied by Lydall’s (1959) model of hierarchical earnings]. When disaggregated
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data divided into 16 occupational groups are considered, the stability of the Pareto

tail often disappears, with estimates for the Pareto coefficient varying quite markedly

for different lower thresholds.

Ratz and van Scherrenberg (1981) studied the distribution of incomes of

registered professional engineers, in all disciplines, in the province of Ontario,

Canada, annually for the period 1955–1978. Modeling the relationship between the

distribution’s parameters and years of experience by regression techniques, they

found a negative relation between that variable and the shape parameter a. Thus,

evidence exists that the incomes of more experienced engineers are more spread out

than those of engineers at the beginning of their careers, a fairly intuitive result.

Ransom and Cramer (1983) argued that in most studies income distribution

functions are put forth as approximate descriptive devices that are not meant to hold

exactly. They therefore suggested employing a measurement error model, viewing

observed income y as the sum of two independent variates, y ¼ xþ u, where x is the

systematic component and u is a N(0, s2) error term. Fitting a model of this type with a

systematic component following a Pareto distribution to U.S. family incomes for 1960

and 1969, they discovered that the error accounts for about a third of the total variation,

rendering the underlying distribution almost meaningless. The results are also inferior to

those of other three-parameter models, notably the Singh–Maddala distribution.

Cowell, Ferreira, and Litchfield (1998) studied income distribution in Brazil over

the 1980s (the decade of the international debt crisis). Brazil is a rather interesting

country for scholars researching the distribution of income because it exhibits one of

the most unequal distributions in the world, with 51% of total income going to the

richest 10% and only 2.1% going to the poorest 20% (in 1995). Applying

nonparametric density estimates, the authors found that the conventional nonpara-

metric approach employing a normal kernel and a fixed window width does not seem

to work well with data as heavily skewed as these. When fitting a Pareto distribution

through incomes above $1,000, it turns out that inequality among the very rich was

not too extreme in 1981, with an a in the vicinity of 3. However, the situation

considerably worsened over the 1980s and a decreased to about 2 in 1990.

More recently, analyzing the extreme right tail of Japanese incomes and income

tax payments for the fiscal year 1998, Aoyama et al. (2000) obtained estimates of a

in the vicinity of 2.

From these studies (and the older ones cited in Chapter 1), it emerges that the

Pareto distribution is usually unsuitable to approximate the full distribution of

income (as has long been known). However, it should be noted that the distribution

has been successfully used for interpolation purposes in connection with grouped

income data where is often desirable to introduce a distributional assumption for the

open-ended category (e.g., “U.S. $100,000 and over”). See Cowell and Mehta (1982)

or Parker and Fenwick (1983) for further discussion of this topic.

Wealth Data

Steindl (1972) obtained an estimate of 1.7 for a from Swedish wealth data of 1955

and 1968. For Dutch data, he found that the Pareto coefficient increased slightly

from 1.45 in 1959 to 1.52 in 1967.
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Chesher (1979) estimated a Pareto type I model for Irish wealth data (grouped

into 26 classes) of 1966, obtaining an estimate of a as low as 0.45. However, it

emerges that the lognormal distribution performs much better on these data, with x2

and likelihood improvements of about 93%. The fit of the Pareto distribution is very

poor in the upper tail, 274 times the observed number of individuals being predicted

in the highest wealth class. Chesher attributed this to the fact that the sparsely

populated upper classes carry little weight in the multinomial ML procedure he

employed. When attempting to incorporate the 65% of individuals whose estate size

is unrecorded, the Pareto distribution outperforms the lognormal distribution only

for individuals whose wealth exceeds £40,000 (comprising only 0.4% of the

population). Thus, the Pareto distribution does not seem to be appropriate for

these data.

Analyzing data from the 1996 Forbes 400 list of the richest people in the United

States, Levy and Solomon (1997) obtained an estimate of the Pareto coefficient of

1.36. Since the data comprise only extremely large incomes, their agreement with a

Pareto tail is quite adequate.

Firm Sizes

In a classical study on the size distribution of firms, Steindl (1965) obtained Pareto

coefficients in the range between 1.0 and 1.5. For all corporations in the United

States in 1931 and 1955 (by assets), the parameter a is approximately equal to 1.1;

for German firms in 1950 and 1959 (by turnover), it is about 1.1 in manufacturing

and about 1.3 in retail trade, whereas for German firms in 1954 (by employment) it is

about 1.2 in manufacturing.

Quandt (1966a) investigated the distribution of firm sizes (size being measured in

terms of assets) in the United States. Using the Fortune lists of the 500 largest firms

in 1955 and 1960 and 30 samples representing industries according to four-digit

S.I.C. classes, he concluded that the Pareto types I–III (the Pareto type III is

erroneously referred to as the Champernowne distribution in his paper) are

appropriate models for only about half of the samples. The best of the three appears

to be the type III variant, while the classical Pareto type I provides only six adequate

fits. Pareto type I and II distributions seem to be appropriate for the two Fortune

samples, however. Overall, the lognormal distribution does considerably better than

Pareto distributions for these data.

Engwall (1968) studied the largest firms (according to sales) in 1965 within five

areas: the United States, all countries outside the United States, Europe, Scandinavia,

and Sweden, obtaining a shape parameter a between 1 and 2 in all cases.

More recently, Okuyama, Takayasu, and Takayasu (1999) obtained Pareto

coefficients in the range (0.7, 1.4). They considered annual company incomes

utilizing Moody’s Company Data and Moody’s International Company Data as well

as Japanese data on companies having incomes above 40 million yen (the former

databases comprise about 10,000 U.S. companies and 11,000 non-U.S. companies,

respectively; the latter comprises 85,375 Japanese firms). It turns out that there are

not only differences between countries but also between industry sectors, thus

confirming earlier work by Takayasu and Okuyama (1998).
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It becomes clear that for firm sizes the Pareto coefficient is somewhat smaller

than for incomes and bounded by 2 from above, implying firm size distributions in

the domain of attraction of a nonnormal stable law.

Insurance Losses

A number of researchers have suggested the use of the Pareto distribution as a

plausible model for fire loss amount.

Benckert and Sternberg (1957) postulated the Pareto law for the distribution of

fire losses in Swedish homes during the period 1948–1952, obtaining estimates in

the vicinity of 0.5 for the damages to four types of houses.

Andersson (1971) used the Pareto distribution to model fire losses in the Northern

countries (Denmark, Finland, Norway, and Sweden) for the periods 1951–1958 and

1959–1966, obtaining Pareto coefficients in the range from 1.25 to 1.76 and

confirming an international trend toward an increase in the number of large claims

from the first to the second period, as measured by a decrease in the parameter a.

However, this trend appeared to be less pronounced for the Northern countries.

As was the case with firm sizes, it is noteworthy that fire insurance data seem to

imply an a less than 2, thus pointing toward distributions in the domain of attraction

of a nonnormal stable law. However, for automobile insurance data Benktander

(1962) obtained a considerably larger estimate of âa ¼ 2:7. The paper by Seal (1980)

contains a more extensive list of estimates of a compiled from the early actuarial

literature up to the 1970s.

We must reitereate that a number of studies using “the Pareto distribution,” notably

in the actuarial literature, actually employ not the classical Pareto distribution (3.1) but

the Pareto type II distribution that is a special case of the beta type II (Pearson type VI)

distribution. They will therefore be mentioned in Chapter 6.

3.8 STOPPA DISTRIBUTIONS

Stoppa (1990a,b) proposed a generalization of the classical Pareto distribution by

introducing a power transformation of the Pareto c.d.f. Thus, the c.d.f. of the Stoppa

distribution is given by

F(x) ¼ 1�
x

x0

� ��a� �u
, 0 , x0 � x, (3:103)

where a, u . 0. The classical Pareto distribution is obtained for u ¼ 1. The p.d.f. is

f (x) ¼ uaxa0 x�a�1 1�
x

x0

� ��a� �u�1

, 0 , x0 � x, (3:104)

and the quantile function is given by

F�1(u) ¼ x0(1� u1=u)�1=a, 0 , u , 1: (3:105)
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Stoppa’s generalized Pareto distribution can be derived from a differential

equation for the elasticity h(x, F) of the distribution function. If one supposes that

(1) the resulting income density is either unimodal or decreasing, (2) the support of

the distribution is [x0, 1), for some x0 . 0, (3) h(x, F) is a decreasing function of

F(x), with limx!x0
h(x, F) ¼ 1 and limx!1 h(x, F) ¼ 0, the differential equation

h(x, F) ¼
F 0(x)

F(x)
� x

� �
¼ au

1� [F(x)]1=u

[F(x)]1=u
, a, u . 0, (3:106)

leads to an income distribution with the p.d.f. (3.104).

For integer values n of u, the distribution can be viewed as the distribution of Xn:n

from a Pareto parent distribution; cf. (3.35). Thus, the distribution itself is closed

under maximization, namely,

X � Stoppa(x0, a, u)¼)Xn:n � Stoppa(x0, a, nu): (3:107)

In contrast, the Pareto distribution is closed under minimization; cf. (3.34).

Compared to the classical Pareto distribution, the Stoppa distribution is more

flexible since it has an additional shape parameter u that allows for unimodal (for

u . 1) and zeromodal (for u � 1) densities. The mode is at

xmode ¼ x0

1þ ua

1þ a

� �1=a

, u . 1, (3:108)

and at x0 otherwise. As u increases, the mode shifts to the right. Figure 3.2 illustrates

the effect of the new parameter u.

The kth moment exists for k , a and equals

E(X k) ¼ uxk
0B 1�

k

a
, u

� �
: (3:109)

The Lorenz curve is of the form

L(u) ¼
Bz(u, 1� 1=a)

B(u, 1� 1=a)
, 0 , u , 1, (3:110)

where z ¼ u1=u and Bz denotes the incomplete beta function, and the Gini coefficient

is given by

G ¼
2B(2u, 1� 1=a)

B(u, 1� 1=a)
� 1: (3:111)

It follows that for Xi � Stoppa(x0, ai, u), i ¼ 1, 2, with 1 , a1 � a2, we have

X1 �L X2, and for Xi � Stoppa(x0, a, ui), i ¼ 1, 2, with u1 � u2, we have X1 �L X2.

Analogous implications hold true for the Zenga ordering (Polisicchio, 1990).

Consequently, the Gini coefficient is an increasing function of u, for fixed a, and a
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decreasing function of a, for fixed u. Also, for fixed u and a! 1 (a! 1) the

Lorenz curve tends to the Lorenz curve associated with maximal (minimal)

concentration, whereas for fixed a and u! 0 (u! 1) the Lorenz curve tends to

the Lorenz curve associated with minimal (maximal) concentration (Domma, 1994).

Zenga’s inequality measure j2 is given by (Stoppa, 1990c)

j2 ¼ 1� exp
1

a
c(uþ 1)� c u�

1

a
þ 1

� �
þ c 1�

1

a

� �
� g

� �� 

, (3:112)

where g is Euler’s constant.

The parameters of (3.103) can be estimated in several ways. Stoppa (1990b,c)

considered nonlinear least-squares estimation in the Pareto diagram as well as ML

estimation. The corresponding estimators are not available in closed form and must

be derived numerically. In the ML case the parameter x0, defining the endpoint of the

support of F, poses the usual problem arising in connection with threshold

parameters, the likelihood being unbounded in the x0 direction. Stoppa suggested

using modified ML estimators as discussed by Cohen and Whitten (1988). Starting

values for ML estimation may be obtained from, for example, regression estimators

as proposed by Stoppa (1995). He pointed out that the c.d.f. can be rewritten as

log{[1� F1=u(x)]} ¼ alog x0 � alog x,

Figure 2 Stoppa densities: x0 ¼ 1, a ¼ 1:5, and u ¼ 1(1)5 (from top left).
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yielding for the elasticity

logh(F, x) ¼ log(uaxa0 )� alog x�
1

u
log F(x):

Thus, log(uaxa0 ), a and 1=u can be estimated by least squares, say, and estimates for

the original parameters are then obtained by solving the defining equations of the

new parameters.

For known x0 the Fisher information matrix is given by

I (u, a)

¼

n

u2

n[c(2)� c(uþ 2)]

a(uþ 1)

�
n

a2
þ

u

a(uþ 1)(uþ 2)
{2logx0[c(2)� c(uþ 4)]

�
1

a3
[c0(1)þ c0(uþ 3)]}

0
BBBBBBB@

1
CCCCCCCA

,
(3:113)

from which an estimate of the asymptotic covariance matrix of (ûu, âa) may be obtained

by numerical inversion of I ðûu ; âaÞ. Properties of estimators of functions of a and/or u

can be derived by means of the delta method. It should be noted that most of the

functions arising in connection with inequality measurement are scale-free and are

therefore functions of only a and u. In particular, Stoppa (1990c) derived the

asymptotic distributions of the ML estimates of the Gini index (3.111) and of Zenga’s

inequality measure (3.112).

Stoppa (1990b) proposed a second generalized Pareto distribution—which we

shall call the Stoppa type II distribution—with the c.d.f.

F(x) ¼ 1�
x� c

x0

� ��a� 
u

, x . c, (3:114)

which is seen to be a two-parameter Stoppa type I distribution amended with location

and scale parameters c and x0. It can be derived along similar lines as the type I model.

The procedure leading to the Stoppa distribution (power transformation of the c.d.f.)

was recently applied to more general distributions by Zandonatti (2001); see Chapter 6

for generalizations of the Pareto (II) and Singh–Maddala distributions, among others.

3.9 CONIC DISTRIBUTION

In spite of being an unpublished discussion paper, Houthakker (1992) has received

substantial attention among the admittedly relatively narrow circle of researchers and

users in the area of statistical income distributions.
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Resurrecting the geometrical approach to income distributions that takes the

Pareto diagram as the starting point, Houthakker introduced a flexible family of

generalized Pareto distributions defined in terms of conic sections. A conic section

in the Pareto diagram is given by

c0U2 þ 2c1UV þ c2V 2 þ 2c3U þ 2c4V þ c5 ¼ 0, (3:115)

where U ¼ log{ �FF(x)}, V ¼ log x, and c0, c1, . . . , c5 are parameters. In order to

retain the weak Pareto law, a conic section with a linear asymptote is required.

Consequently, circles and ellipses have to be excluded and the only admissible conic

section in our context is the hyperbola. Since exp U must define a survival function,

further constraints have to be imposed. It is not difficult but somewhat tedious to

derive the resulting c.d.f. and p.d.f. We present the basic properties of the conic

distributions using a reparameterization suggested by Kleiber (1994). He utilizes the

earlier work of Barndorff-Nielsen (1977, 1978) on so-called hyperbolic distributions

that leads to a more transparent functional form.

The c.d.f. of a general conic distribution is given by

F(x) ¼ 1� exp �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ( log x� l)2

q
þ j ( log x� l)þ m

� 

, x � x0 . 0,

(3:116)

where h . 0, �1 , j � h, m ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ( log x0 � l)2

p
� j ( log x0 � l). It is also

required that

h( log x0 � l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ( log x0 � l)2

p � j � 0: (3:117)

The density is therefore

f (x) ¼ x�j�1 exp �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ( log x� l)2

q
� jlþ m

� 

�

h( log x� l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ( log x� l)2

p � j

" #
:

(3:118)

Houthakker discussed two subclasses of the conic distributions in detail. These

are the conic-linear distributions defined via the condition h� j ¼ 0 and the conic-

quadratic models defined by f (x0) ¼ 0. The latter condition is equivalent to the l.h.s.

of (3.117) being equal to zero. Consequently, for non-“quadratic” conic

distributions, we always have f (x0) . 0.

It is not difficult to see that the c.d.f. is asymptotically of the form x�(h�j); hence,

the kth moment of this distribution exists only for k , h� j, and h� j plays the

role of Pareto’s a. For the moments we obtain a rather formidable expression

involving a complete as well as an incomplete modified Bessel function of the third

kind (also known as a MacDonald function), which will not be given here. The
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probably easiest way to the Gini coefficient is via the representation in terms of

moments of order statistics (2.22); the resulting expression also involves incomplete

Bessel functions.

Kleiber (1994) pointed out that a simple regression estimator may be used to obtain

parameter estimates for the conic distribution. In a doubly logarithmic representation

of (3.116), only the parameter l enters in a nonlinear fashion, so a quick method is to

estimate m, h, j via linear regression while performing a grid search over l. However,

it is evident from (3.116) that the regressors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ( log x� l)2

p
and log x� l are

highly collinear, suggesting that the model is essentially overparameterized. Indeed,

Brachmann, Stich, and Trede (1996) reported on numerical problems when trying to

fit linear and quadratic conic distributions to German household incomes.

3.10 A “LOG-ADJUSTED” PARETO DISTRIBUTION

Ziebach (2000) proposed a generalization of the Pareto distribution by introducing a

logarithmic adjustment term that allows for a more flexible shape. Like Houthakker

(1992), he started from the Pareto diagram, specifying a c.d.f. with the representation

log{1� F(x)} ¼ �a log x� b log(log x)þ g:

Clearly, the new term does not affect the asymptotic linearity in the doubly logarithmic

representation, so that the resulting distribution obeys the weak Pareto law. The

condition F(x0) ¼ 0, for some x0 . 0, yields eg ¼ xa0 ( log x0)b, leading to the c.d.f.

F(x) ¼ 1�
x0

x

� �a log x0

log x

� �b

, 1 , x0 � x, (3:119)

where either a . 0 and b � �alog x0 or a ¼ 0 and b . 0. The density is given by a

more complex expression

f (x) ¼
xa0 (log x0)b(alog xþ b)

xaþ1(log x)bþ1
, 1 , x0 � x, (3:120)

which is decreasing for b � 0 and unimodal for

b [ �alog x0, �alog x0 þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( log x0 þ 1)2 þ 4alog x0

q
� ( log x0 þ 1)

� 
� �
:

Only if b ¼ �alog x0, do we have f (x0) ¼ 0; otherwise, f (x0) . 0. Figure 3.3

illustrates the effect of the new parameter b.

The moments of the distribution are

E(X k ) ¼
axk

0

a� k
� kb(a� k)b�1xa0 ( log x0)bG[�b; (a� k)log x0], (3:121)
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for k , a, and

E(X k) ¼ xk
0 þ kxk

0 �
log x0

b� 1
,

for k ¼ a and b . 1; otherwise, they do not exist. Equation (3.121) illustrates the

effect of the new parameter b: The first term is simply the kth moment of a classical

Pareto distribution, the second terms describes the adjustment due to b.

The Lorenz curve is available via the first-moment distribution and the Gini

coefficient via the representation (2.22) in terms of expectations of order statistics,

but the resulting expressions are again somewhat involved.

The “log-Pareto” distribution is quite similar to the log-gamma distribution

f (x) ¼
abxa0
G(b)

x�a�1 log
x

x0

� �� 
b�1

, 0 , x0 � x, (3:122)

where b � 1, a . 1, a model to be discussed in Section 5.4. It appears that the latter

distribution is perhaps more tractable, especially since there is a well-developed

theory of estimation for the gamma distribution.

Figure 3 “Log-adjusted” Pareto densities: x0 ¼ 2, a ¼ 1:5, b ¼ �1:03, �1(:2)0 (from bottom left).

(Here b ¼ 1:03 represents the boundary of the admissible parameter space.)
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3.11 STABLE DISTRIBUTIONS

In a series of pioneering contributions around 1960, Mandelbrot (1959, 1960, 1961)

argued that incomes follow what he calls a Pareto–Lévy distribution, that is, a

maximally skewed stable distribution with a characteristic exponent a between 1 and

2. Here stability means that if X1 and X2 are independent copies of X and bi, i ¼ 1, 2,

are positive constants, then

b1X1 þ b2X2¼
d

bX þ a

for some positive b and real a. In other words, the shape of X is preserved under

addition, up to location and scale.

There is by now a very substantial literature on stable distributions, partially

furnished by successful applications, notably in finance, and partially due to recent

advances in statistical computing. We refer the interested reader to the classical text

by Zolotarev (1986) for probabilistic properties of stable laws. Their main attraction

is that they represent the only limits of properly normalized sums of i.i.d. random

variables and therefore generalize the normal distribution. Indeed, nonnormal stable

laws arise in the (generalized) central limit problem for i.i.d. random variables if

these variables do not possess finite variances. In that case, the limit distribution does

not have finite variance either, its right tail being regularly varying and therefore of

the Pareto type (without following an exact Pareto distribution), thus justifying the

inclusion of stable distributions here.

Mandelbrot argued that the total income of any income recipient is obtained by

adding incomes from different sources (e.g., family income is obtained as the sum of

the incomes of all family members). If all these types of income follow the same

type of distribution and one is willing to make an independence assumption, one

expects that total income will be adequately approximated by a stable distribution.

Although that sounds very attractive, the drawback is that stable laws must

generally be defined in terms of their characteristic functions, as only in three

exceptional cases—the normal and Cauchy distributions and a special case of the

inverse gamma distribution (see Section 5.4)—are the densities and/or distribution

functions are available in terms of elementary functions. The characteristic function

of the stable laws is

logf(t) ¼ log E(eitx) ¼ imt � ljtja exp
p

2
ig sign(t)

n o
: (3:123)

Here 0 , a , 1 or 1 , a � 2. For a ¼ 1, comprising a small family of Cauchy-

type distributions, a slightly different form must be used. The parameter a is usually

referred to as the characteristic exponent or index of stability; in a certain sense, it is

the most important of the four parameters since it governs the tail behavior of the

distribution and therefore the existence of moments. The kth absolute moment EjX jk

exists iff k , a. The parameter m [ IR is a location parameter, l . 0 is a scale,

and g is a skewness parameter, with jgj � 1� j1� aj. Clearly, a ¼ 2 yields the

normal distribution. [We warn our readers that there are a multitude of alternative
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parameterizations of the stable laws! The form (3.123) of the characteristic function

is a variant of Zolotarev’s (1986, p. 12) parameterization (B).]

The connection with income distributions is as follows: If 1 , a � 2, which is

broadly consistent with Pareto’s original a ¼ 1:5, we have jgj � 2� a. Thus, the

distribution is maximally skewed to the right if g ¼ 2� a. Mandelbrot suggested

that this is the relevant case for applications to income data because otherwise

the probability of negative incomes might become too large. [Stable densities are

positive on the whole real line unless a , 1 and the distribution is maximally

positively (negatively) skewed, in which case the support is the positive (negative)

halfline.] Thus, the maximally skewed stable laws define a three-parameter

subfamily of all stable distributions. In view of jg j � 1� j1� aj for all stable

laws, the parameter g becomes less and less meaningful (as well as harder to

estimate) as a approaches 2. This means that in the maximally skewed stable case a

must stay well below 2 in order to retain a reasonably skewed distribution.

It took almost 20 years after Mandelbrot’s discovery for an attempt to be made to

fit a maximally skewed stable distribution to income data. Van Dijk and Kloek

(1978, 1980) addressed the problem of estimation from grouped data. They

employed multinomial maximum likelihood and minimum x2 estimates that are

based on numerical inversion of the characteristic function, followed by numerical

integration of the resulting densities. (This was a somewhat burdensome com-

putational procedure in 1980.) Van Dijk and Kloek’s estimates of a, for Australian

family disposable income in 1966–1968 and for the Dutch gross incomes in 1973,

ranged from 1.17 to 1.72.

These authors also considered log-stable distributions, assuming that not income

itself but rather its logarithm (income power) follows a stable distribution. This is

quite natural since the normal distribution is a particular stable distribution and its

offspring, the lognormal, is one of the classical size distributions. The appearance of

the stable distributions in connection with income data could therefore be justified

by appealing to a generalized form of Gibrat’s law of proportionate effect (leading to

the lognormal distribution; see Section 4.2). Although this approach is arguably best

discussed within the framework of the following chapter, dealing with lognormal

distributions, we mention it here since the estimation of stable and log-stable models

is completely analogous. In a log-stable framework it is no longer necessary to

confine ourselves to the three-parameter subclass of Pareto-Lévy distributions, and

consequently the unrestricted four-parameter family of stable distributions can be

used. Van Dijk and Kloek obtained estimates of a between 1.53 and 1.96 for the

logarithmic incomes.

Van Dijk and Klock preferred log-stable distributions over stable ones on the

grounds of some pooled tests. We are however somewhat skeptical as far as the

usefulness of the log-stable model is concerned. From Kleiber (2000b) the log-stable

densities lack moments of any order and moreover they exhibit a pole at the origin, a

feature that does not seem to be consistent with the data. (Of course, the latter feature

cannot be verified from grouped data.)

Van Dijk and Kloek reported that both the maximally skewed stable and log-

stable family perform generally better than the log-t and Champernowne

102 PARETO DISTRIBUTIONS



distributions. However, they also noted that “the data considered were not sufficient

to settle the dispute about the question what is the correct model to describe the

right-hand tail of an income distribution” (van Dijk and Kloek, 1978, p. 19). In fact,

no data however abundant can settle this basic dispute.

On the actuarial side, Holcomb (1973; see also Paulson, Holcomb, and Leitch, 1975,

p. 169) asserted that the claim experience for a line of nonlife insurance is a mixture of

independent random variables, from nonidentical distributions all lying within the

domain of attraction of a stable law with a support that is bounded from below (a , 1).

This would imply that the aggregate claim distribution converges to a stable law.

Holcomb considered three data sets. The first comprised data for the period

1965–1970, detailing 2,326 national losses due to burglaries experienced by a U.S.

chain of retail stores. The second contained 2,483 records of vandalism for the same

chain and the same period, whereas the third comprised 1,142 records constituting a

different chain’s combined history of insured losses due to all property and liability

perils. Holcomb obtained estimates of 0.82, 0.88, and 0.67, respectively, for a.

A problem with this approach is that the employed distributions possess infinite

means that are difficult to reconcile with common actuarial premium principles, most

of which require a finite first moment. This may explain to some extent why

maximally skewed stable distributions have not been used much in actuarial

applications.

3.12 FURTHER PARETO-TYPE DISTRIBUTIONS

Krishnan, Ng, and Shihadeh (1990) proposed a generalized Pareto distribution by

introducing a more flexible (polynomial) form for the elasticity

@ log{1� F(x)}

@ log x
¼ �a�

Xk

i¼1

bix
i: (3:124)

This approach yields c.d.f.’s of the type

1� F(x)/ x�a exp �
Xk

i¼1

bix
i

( )
, (3:125)

called polynomial Pareto curves by Krishnan, Ng, and Shihadeh and comprising the

Pareto type I (for b1 ¼ � � � ¼ bk ¼ 0) distribution as a special case. When we apply

their linear specification (b2 ¼ � � � ¼ bk ¼ 0), which is very close to Pareto’s third

proposal (3.7), to two data sets, it turns out that the estimates of the new parameter

b1 are rather small, confirming Pareto’s work.

Perhaps somewhat unexpectedly, the size distribution of prizes in many popular

lotteries and prize competitions is also intimately related to the Pareto distribution.

Observing that the prizes in German lotteries are often characterized by the fact that

the number of prizes ni of a certain class i is inversely proportional to their values xi,
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Bomsdorf (1977) was led to a study of the discrete distributions with probability

mass function

f (x) ¼
p

di

, xi ¼ di � a, i ¼ 1, . . . , k,

where a . 0, d1 ¼ 1, di , diþ1, p ¼ 1=
Pk

i¼1 d�1
i , which he called the prize-

competition distribution. A continuous analog is clearly given by the density

f (x) ¼
c

x
, a1 � x � a2: (3:126)

If we rewrite the supporting interval in the form [an, anþ1], where n ¼ logaa1 [ IR

and a ¼ a2=a1, the normalizing constant is found to be c ¼ logae. Thus for the case

where a ¼ e, matters simplify to the hyperbolic function

f (x) ¼
1

x
, en � x � enþ1, (3:127)

with the c.d.f.

F(x) ¼ log x� n, en � x � enþ1,

an expression that is seen to describe a doubly truncated Pareto-type distribution

corresponding to a ¼ 0 in (3.2). [Note that in (3.2) a ¼ 0 is inadmissible because on

an unbounded support the resulting function would not be a distribution function.]

The moment generating function of the prize-competition distribution (3.127) is

given by the formula

m(t) ¼ 1þ
X1
i¼1

ti einþi

i � i!
�
X1
i¼1

ti ein

i � i!
,

from which the first moment and the variance are found to be

E(X ) ¼ enþ1 � en

and

var(X ) ¼ 2 � e2nþ1 �
e2nþ2

2
�

3e2n

2
:

The Bomsdorf (1977) distribution (the continuous version) has been extended to

the distribution with c.d.f.

F(x) ¼ k � x
( log x)b

bþ 1
, b = �1, 1 � x � e1=b,
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by Stoppa (1993) and constitutes family 6 in the first period of his extensive

table of distributions based on a differential equation for the elasticity described in

Section 2.3. This is an L-shaped distribution with the mode at zero for b . 1 and at

e(1�b)=b for b � 1.

A so-called generalized Pareto distribution with c.d.f.

Fc(x) ¼
1� 1�

cx

b

� �1=c

, if c = 0,

1� e�x, if c ¼ 0,

8<
: (3:128)

where

x � 0 if c � 0,

0 � x � �
1

c
if c , 0,

is of great importance in the analysis of extremal events (see, e.g., Embrechts,

Klüppelberg, and Mikosch, 1997, or Kotz and Nadarajah, 2000). In the context

of income distributions, this model was fitted to the 1969 personal incomes in 157

counties of Texas, and to lifetime tournament earnings of 50 professional golfers

through 1980 by Dargahi-Noubary (1994). [The data are given in Arnold (1983),

Appendix B.]

Colombi (1990) proposed a “Pareto-lognormal” distribution that is defined as the

distribution of the product X :¼ Y � Z of two independent random variables, one

following a Par(1, a) distribution and the other following a two-parameter lognormal

distribution (to be described in detail in the next chapter). The p.d.f. of the product is

given by

f (x) ¼
u

xuþ1
exp u mþ

us 2

2

� �� 

L(x; mþ us 2, s), x . 0,

where u . 0, m [ IR, s . 0, and

L(x; mþ us 2, s) ¼ F
log x� m� us 2

s

� �
, x . 0,

denotes the c.d.f. of the two-parameter lognormal distribution.

The kth moment of the Pareto-lognormal distribution exists for k , u and equals

E(X k ) ¼
u

u� k
ekmþ(km)2=2:

Similarly to the Pareto distribution, the Pareto-lognormal family is closed with

respect to the formation of moment distributions.
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Colombi showed that the distribution is unimodal and provided an implicit

expression for the mode. He also discussed sufficient conditions for Lorenz ordering

and derived the Gini coefficient, which is of the form

G ¼ 1� 2F �
sffiffiffi
2
p

� �
þ

2

2u� 1
eus(us�s)F �

2us� sffiffiffi
2
p

� �
,

an expression that is seen to be decreasing in s.

Moreover, he fit the distribution to Italian family incomes for 1984 and 1986.

For the 1984 data the model is outperformed by both the Dagum type I and

Singh–Maddala distribution in terms of likelihood and minimum chi-square, but for

the 1986 data the situation is reversed.

We should like to add that several further distributions included in this book,

notably those of Chapter 6, may also be considered “generalized Pareto

distributions,” in that they possess a polynomially decreasing upper tail but are

more flexible than the original Pareto model in the lower-income range.
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C H A P T E R F O U R

Lognormal Distributions

Naturally we cannot present all that is known about the lognormal distribution in a

chapter of moderate length within the scope of this book. For example, in

quantitative economics and finance, the lognormal distribution is ubiquitous and it

arises, among other things, in connection with geometric Brownian motion, the

standard model for the price dynamics of securities in mathematical finance.

At least two books have been devoted to the lognormal distribution: Aitchison and

Brown (1957) presented the early contributions with an emphasis on economic

applications, whereas the compendium edited by Crow and Shimizu (1988) contains

wider coverage. The lognormal distribution is also systematically covered in a 50-page

chapter in Johnson, Kotz, and Balakrishnan (1994). Below we shall concentrate on the

“size” aspects of the distribution and emphasize topics that were either omitted or only

briefly covered in these three sources. These include a generalized lognormal

distribution for which the literature available is mainly in Italian.

4.1 DEFINITION

The p.d.f. of the lognormal distribution is given by

f (x) ¼
1

x
ffiffiffiffiffiffi
2p
p

s
exp �

1

2s 2
(log x� m)2

� �
, x . 0: (4:1)

Thus, the distribution arises as the distribution of X ¼ exp Y ; where Y � N(m, s 2):
Hence, the c.d.f. is given by

F(x) ¼ F
log x� m

s

� �
, x . 0, (4:2)

where F denotes the c.d.f. of the standard normal distribution.

107



There is also a three-parameter (shifted) lognormal distribution, to be discussed in

Section 4.7 below.

4.2 HISTORY AND GENESIS

As far as economic size distributions are concerned, the pioneering study marking

initial use of the lognormal distribution was Gibrat’s thesis of 1931. (See Appendix

A for a short biography of Robert Gibrat.) Gibrat asserted that the income of an

individual (or the size of a firm) may be considered the joint effect of a large number

of mutually independent causes that have worked during a long period of time. At a

certain time t it is assumed that the change in some variate X is a random proportion

of a function g(Xt�1) of the value Xt�1 already attained. Thus, the underlying law of

motion is

Xt � Xt�1 ¼ etg(Xt�1),

where the et’s are mutually independent and also independent of Xt�1: In the special

case where g(X ) ; X ; the so-called law of proportionate effect results, meaning that

the change in the variate at any step of the process is a random proportion of the

previous value of the variate. Thus,

Xt � Xt�1 ¼ etXt�1,

which may be rewritten as

Xt � Xt�1

Xt�1

¼ et,

whereby through summation over t

Xn

t¼1

Xt � Xt�1

Xt�1

¼
Xn

t¼1

et:

Assuming that the effect at each step is small, we get

Xn

t¼1

Xt � Xt�1

Xt�1

�

ðXn

X0

dX

X
¼ log Xn � log X0,

which yields

log Xn ¼ log X0 þ
Xn

t¼1

et:

If we use a suitable central limit theorem (CLT) it follows that Xn are asymptotically

lognormally distributed. In the original derivation the et were assumed to be i.i.d. so
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Table 4.1 Gibrat’s Fittings

Variable Location Date

Food expenditures England 1918

Income England 1893–1894, 1911–1912

Oldenburg 1890

France 1919–1927

Prussia 1852, 1876, 1881, 1886, 1892,

1893, 1894, 1901, 1911

Saxony 1878, 1880, 1886, 1888, 1904,

1910

Austria 1898, 1899, 1903, 1910

Japan 1904

Wealth tax Netherlands 1893–1910

Wealth Basel 1454, 1887

Old-age state

pensions

France 1922–1927

Postal check

accounts

France 1921–1922

Legacies France 1902–1913, 1925–1927

England 1913–1914

Italy 1910–1912

9 French

départements

1912, 1926

Rents Paris 1878, 1888, 1913

Real estate (tilled) France 1899–1900

Real estate Belgium 1850

Real estate sales France 1914

Security holdings France 1896

Wages United Kingdom 1906–1907

Italy 1906

Denmark 1906

Bavaria 1909

Dividends Germany 1886, 1896

Firm profits France 1927

Firm sizes France 1896, 1901, 1906, 1921, 1926

Alsace-Lorraine 1907, 1921, 1926

European countries

and the United States

around 1907

Turkey 1925

Germany 1907, 1925

City sizes France 1866, 1906, 1911, 1921, 1926

Europe 1850, 1910, 1920, 1927

United States 1900, 1920, 1927

Family sizes France 1926

Source: Gibrat (1931).
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that the Lindeberg–Lévy CLT is sufficient to handle the problem. The same limiting

result may, of course, be obtained using more general CLTs if the et are

heterogeneous; see Hart (1973, Appendix B) for a discussion.

It should be noted that Gibrat’s approach is very close to the one exhibited in

Edgeworth’s (1898) method of translations, by means of which a exponential

transform of a normal variable is carried out. Gibrat followed Kapteyn’s (1903)

generic approach (the so-called Kapteyn’s engine) to construct a binomial process

and provided a modification of the independence assumption inherent in this

process, trying to justify its application in economics. fMuch earlier Galton (1879)

and McAlister (1879) suggested the exponential of a normal variable, inspired by the

Weber–Fechner law in psychophysics [details are presented in a later publication of

Fechner (1897): Kollektivmasslehre].g Being a French engineer trained to think

geometrically, Gibrat did not use “sophisticated” mathematical tools (such as least-

squares or Cauchy methods). Gibrat argued in favor of his model as compared with

its classical earlier competitor, the Pareto distribution, for a number of cases in

various economic areas. See Table 4.1 for a listing of the data to which Gibrat

successfully fit lognormal distributions.

An innovative feature of Gibrat’s model is its potential application in all economic

domains. The Pareto law seemed to be restricted solely to income distributions,

whereas the application of the Gibrat law of proportional effect appeared to be

more extensive. As indicated in Table 4.1, in his 1931 dissertation Gibrat applied

it to other areas of economics such as fortunes and estates, firm profits, firm sizes

(by number of workers), number of city inhabitants, and family sizes.

Gibrat’s law of proportionate effect was subsequently modified, for example, to

prevent the variance of log X to grow without bound (see Section 1.4). However, for

more than 70 years it has proved to be a useful first approximation of firm size

dynamics against which alternatives have to be tested; see, for example, Mansfield

(1962), Evans (1987a,b), Hall (1987), or Dunne and Hughes (1994). Sutton (1997)

provided a recent survey of Gibrat’s law in connection with the size distribution

of firms.

4.3 MOMENTS AND OTHER BASIC PROPERTIES

In view of the close relationship with the normal distribution, many properties of the

lognormal distribution follow directly from corresponding results for the normal

distribution. For example, random samples from a lognormal population are

commonly generated from normal random numbers via exponentiation. The main

difference is the new role of the parameters: exp(m) becomes a scale parameter,

whereas s is now a shape parameter. Figure 4.1 illustrates the effect of s; showing

the well-known fact that for small s; a LN(m,s 2) distribution can be approximated

by a N(expm, s 2) distribution.

One of the main attractions of the normal distribution is its stability properties

under summation, namely, that sums of independent normal random variables are
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also normally distributed. This translates into the following multiplicative

stability property of the lognormal distribution: For independent Xi � LN(mi, s
2
i ),

i ¼ 1, 2;

X1X2 � LN(m1 þ m2, s 2
1 þ s 2

2 ), (4:3)

in particular for the sample geometric mean of n i.i.d. lognormal random variables

Yn

i¼1

Xi

 !1=n

� LN m,
s 2

n

� �
: (4:4)

However, sums of lognormal random variables are not very tractable. Unfortu-

nately, as noted by Mandelbrot (1997), “dollars and firm sizes do not multiply, they

add and subtract . . . [hence] the lognormal has invariance properties but not very

useful ones.” In his view this constitutes a strong case against the lognormal

distribution.

Figure 1 Lognormal densities: m ¼ 0 and s ¼ 0:25, 0:5, 1:0, 1:5 (modes from right to left).
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The structure of the lognormal distribution makes it convenient to express its

moments. They are obtained in terms of the moment-generating function mY ( � ) of

the normal distribution

E(X k) ¼ E(ekY ) ¼ exp kmþ
1

2
k2s 2

� �
: (4:5)

Hence, the lognormal distribution is one of the few well-known distributions that

possesses moments of all orders, positive, negative, and fractional. However, the

sequence of integer moments does not characterize the lognormal distribution;

see Heyde (1963) for a continuous distribution having the same moments as the

lognormal and Leipnik (1991) for a discrete counterexample. This somewhat

unexpected property is of interest in probability theory and has attracted the

attention of numerous researchers.

The low-order moments and other basic characteristics of the lognormal

distribution are as follows. [For compactness the notation v ¼ exp(s 2) is used in

several formulas.] From (4.5), the mean of the lognormal distribution is

E(X ) ¼ exp
mþ s 2

2

� �
(4:6)

and the variance is given by

var(X ) ¼ e2mþs 2

(es
2

� 1) ¼ e2mv(v� 1): (4:7)

Hence, the coefficient of variation equals

CV(X ) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exps 2 � 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
v� 1
p

: (4:8)

The coefficient of skewness is

a3 ¼ (vþ 2)
ffiffiffiffiffiffiffiffiffiffiffiffi
v� 1
p

and the coefficient of kurtosis equals

a4 ¼ v4 þ 2v3 þ 3v2 � 3:

Note that a3 . 0 and a4 . 3; that is, the distribution is positively skewed and

leptokurtic.

The geometric mean is given by

xgeo ¼ exp E(log X )
� �

¼ em, (4:9)

which coincides with the median (see below).

112 LOGNORMAL DISTRIBUTIONS



The distribution is unimodal, the mode being at

xmode ¼ exp(m� s 2): (4:10)

A comparison of (4.6) and (4.10) illustrates the effect of the shape parameter s: For a

fixed scale expm; an increase in s moves the mode toward zero while at the same

time the mean increases, and both movements are exponentially fast. This means

that the p.d.f. becomes fairly skewed for moderate increases in s (compare with

Figure 4.1).

By construction, the lognormal quantiles are given by

F�1(u) ¼ exp{mþ sF�1(u)}, 0 , u , 1, (4:11)

where F is the c.d.f. of the standard normal distribution. In particular, the median is

xmed ¼ F�1(0:5) ¼ exp(m), (4:12)

which is a direct consequence of the symmetry of the normal distribution.

Thus, the mean–median–mode inequality

E(X ) . xmed . xmode

is satisfied by the lognormal distribution.

The lognormal distribution is closed under power transformations, in the sense

that

X � LN(m, s 2) ¼) X r � LN(rm, r2s 2), for all r [ IR: (4:13)

Note that power transformation is a popular device in applications of statistical

distribution theory.

The entropy is

E{�log f (X )} ¼
1

2
þ m� log

1

s
ffiffiffiffiffiffi
2p
p

� �
: (4:14)

The form of the characteristic function has been a long-standing challenging

problem; fairly recently Leipnik (1991) provided a series expansion in terms of

Hermite functions in a logarithmic variable. It is of special interest because the

formula for the characteristic function of its generator—the normal distribution—is

a basic fact in probability theory discovered possibly 150 years ago. It follows from

more general results of Bondesson (1979) that the distribution is infinitely divisible.

4.3 MOMENTS AND OTHER BASIC PROPERTIES 113



The mean excess (or mean residual life) function has an asymptotic

representation of the form (e.g., Embrechts, Klüppelberg, and Mikosch 1997)

e(x) ¼
s 2x

log x� m
[1þ o(1)]: (4:15)

Its asymptotically linear increase reflects the heavy-tailed nature of the lognormal

distribution.

Sweet (1990) has studied the hazard rate of lognormal distributions. Figure 4.2

exhibits the typical shape, which is unimodal with r(0) ¼ 0 [in fact, all derivatives of

r(x) are zero at x ¼ 0], and a slow decrease to zero as x! 1:
The value of x that maximizes r(x) is

xM ¼ exp(mþ zMs),

where zM is given by (zM þ s) ¼ w(zM )=[1�F(zM )]: Thus, �s , zM , �sþ

s�1; and therefore

exp(m� s 2) , xM , exp(m� s 2 þ 1):

Figure 2 Lognormal hazard rates: m ¼ 0 and s ¼ 0:5, 0:75, 1:0 (from top).
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As s! 1; xM ! exp(m� s 2); and so for large s;

max
x

r(x) �
exp(m� s 2=2)

s
ffiffiffiffiffiffi
2p
p :

Similarly, as s! 0; xM ! exp(m� s 2 þ 1); and so for small s;

max
x

r(x) � {s 2 exp(m� s 2 þ 1)}�1:

The properties of the order statistics from lognormal parent distributions can

usually only be derived numerically. Recently, Balakrishnan and Chen (1999)

provided comprehensive tables on moments, variances, and covariances of order

statistics for all sample sizes up to 25 and for several choices of the shape parameter s:

4.4 CHARACTERIZATIONS

The lognormal distribution can conveniently be characterized by the maximum

entropy property (similar to the Pareto, exponential, and normal distributions). In

this particular case, we have the following result: If E(log X ) and E(log2 X ) are

prescribed, the lognormal distribution is the maximum entropy distribution on [0, 1)

(Kapur, 1989, p. 68). (The result may, of course, also be stated as prescribing the

geometric mean and variance of logarithms.)

From (4.3) we know that products of independent lognormal random variables

are also lognormally distributed. This can be extended to a characterization

parallelling Cramér’s (1936) celebrated characterization of the normal distribution: If

Xi; i ¼ 1, 2; are independent and positive, then their product X1X2 is lognormally

distributed if and only if each Xi follows a lognormal distribution.

4.5 LORENZ CURVE AND INEQUALITY MEASURES

Unfortunately, the lognormal Lorenz curve cannot be expressed in a simple closed

form; it is given implicitly by

L(u) ¼ F[F�1(u)� s 2], 0 , u , 1: (4:16)

It follows directly from the monotonicity of F that the Lorenz order is linear within

the family of two-parameter lognormal distributions, specifically

X1 �L X2 () s 2
1 � s 2

2 : (4:17)

This basic result can be derived in various other ways: First, as was noted

above, the parameter exp(m) is a scale parameter and hence plays no role in
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connection to the Lorenz ordering. Thus, for Xi � LN(0, s 2
i ), i ¼ 1, 2; we have

X1¼
d
f(X2); where f(x) ¼ xs1=s2 ; cf. (4.13). Therefore, F�1

1 F2 ¼ f(F�1
2 F2) ¼ f:

This function is clearly convex iff s1 � s2: Hence, X1 is more spread out than X2

in the sense of the convex (transform) order that is known to imply the Lorenz

ordering (see Chapter 2). Second, a slightly different argument due to Fellman

(1976) uses the fact that the function f is star-shaped, that is, that f(x)=x is

increasing on [0, 1); which implies that X1 is more spread out than X2 in the sense

of the star-shaped ordering, an ordering that is also known to imply the Lorenz

ordering (see Chapter 2). (In fact, the star-shaped ordering is intermediate between

the convex and Lorenz orderings.) For a third approach, see Arnold et al. (1987),

who showed that the result (4.17) follows also from the strong unimodality of the

normal distribution.

The lognormal Lorenz curve has an interesting geometric property, namely, it is

symmetric about the alternate diagonal of the unit square; see Figure 4.3. This can be

verified analytically using Kendall’s condition (2.8). At the point of intersection with

Figure 3 Lognormal Lorenz curves: s ¼ 0:5(0:5)3 (from left to right).
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the alternate diagonal, that is, the point [w(s=2), w(�s=2)]; the slope of the Lorenz

curve is unity (e.g., Moothathu, 1981).

The Lorenz curve may alternatively be represented in terms of the first-

moment distribution. The c.d.f.’s of the higher-order moment distributions of

lognormal distributions can be expressed as the c.d.f.’s of lognormal distributions

with a different set of parameters (see, e.g., Aitchison and Brown, 1957).

Specifically, for X � LN(m, s 2) we have

F(k);m,s 2 (x) ¼ F(0)(x; mþ ks 2, s 2), (4:18)

where F(0) stands for the c.d.f. of the lognormal distribution.

This closure property is most useful in connection with size phenomena. In

particular, the lognormal Lorenz curve can now be expressed as

{[u, L(u)]ju [ [0, 1]} ¼ {[F(0)(x), F(1)(x)]jx [ [0, 1)}:

It can also be exploited for the derivation of various inequality measures. The

Pietra and Gini coefficients are remarkably simple; the former is given by

P ¼ 2F
s

2

� 	
� 1 (4:19)

and the Gini coefficient equals

G ¼ 2F
sffiffiffi
2
p

� �
� 1: (4:20)

The Theil measure is

T1 ¼ E
X

E(X )
log

X

E(X )

� �
 �
¼

1

2
s 2, (4:21)

which coincides with the expression for Theil’s second measure T2: The variance of

logarithms is, of course,

VL(X ) ¼ var(log X ) ¼ s 2: (4:22)

It is interesting that the preceding three coefficients are closely related in the case of

the lognormal distribution, namely,

T1 ¼ T2 ¼
1

2
VL(X )

[Theil (1967), see also Maasoumi and Theil (1979)]. It should also be noted that

(4.22) is increasing in s; in agreement with (4.17); thus, in the lognormal case the
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variance of logarithms satisfies the Lorenz ordering (Hart, 1975). (As mentioned in

Chapter 2, this is not true in general.)

Two modifications of the first Theil coefficient with the median and the mode

replacing the mean were provided by Shimizu and Crow (1988, p. 11). They are

Tmed(X ) ¼ E
X

xmed

log
X

xmed

� �
 �
¼ s 2exp

s 2

2

� �

and

Tmode(X ) ¼ E
X

xmode

log
X

xmode

� �
 �
¼ 2s 2exp

3s 2

2

� �
:

The Zenga curve is of the form (Zenga, 1984)

Z(u) ¼ 1� e�s
2

, 0 � u � 1, (4:23)

and hence constant. Note that it is an increasing function of the shape parameter s ;

hence, inequality is increasing in s according to both Lorenz and Zenga curves

(Polisicchio, 1990). Zenga’s first index is given by (Zenga, 1984)

j ¼ 1� exp(�s 2), (4:24)

which is also the expression for his second measure j2 (Pollastri, 1987a). Thus,

like the two Theil coefficients, the two Zenga coefficients coincide in the lognormal

case.

4.6 ESTIMATION

Due to its close relationship with the normal distribution, the estimation of

lognormal parameters presents few difficulties. The maximum likelihood esti-

mators are

m̂m ¼ log x ¼
1

n

Xn

i¼1

log xj (4:25)

and

ŝs 2 ¼
1

n

Xn

i¼1

(log xj � log x): (4:26)
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The Fisher information on (m, s 2)` in one observation is

I (m, s 2) ¼

1

s 2
0

0
1

2s 4

2
664

3
775: (4:27)

Thus, the lognormal parameterization (4.1) enjoys the attractive property that the

parameters are orthogonal.

From these expressions, parametric estimators of, for example, the mean, median,

or mode, are easily available via the invariance of the ML estimators; asymptotic

standard errors follow via the delta method. For example, Iyengar (1960) and Latorre

(1987) derived the asymptotic distributions of the ML estimators of the Gini

coefficient; the latter paper also presents the asymptotic distribution of Zenga’s

inequality measure j: For the Gini coefficient,

ĜG ¼ 2F
ŝsffiffiffi
2
p

� �
� 1 � N G,

s 2es
2=2

2pn

" #
: (4:28)

It is also worth noting that the UMVUE of s 2; namely, ~ss 2
¼
Pn

j¼1(log xj�

log x)=(n� 1); may be interpreted, in our context, as the UMVUE of the variance of

logarithms, VL(X ):
The unbiased estimation of some classical inequality measures from lognormal

populations was studied by Moothathu (1989). He observes that for functionals

t(b, l) ¼ erf (bl), (4:29)

where erf(x) ¼ 2=
ffiffiffiffi
p
p Ð x

0
e�t2

is the error function and b is some known constant,

UMVU estimators are given by

U2(b) ¼ h b,
n� 1

2
, �V 2

2

� �
,

when both parameters of the distribution are unknown, and

U1(b) ¼ h b,
n� 1

2
, �V 2

1

� �
,

when only s is unknown. Here

V 2
1 ¼

1

2

Xn

j¼1

(log Xj � m)2
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and

V 2
2 ¼

1

2

Xn

j¼1

(log Xj � log X )2

and

h(b, m, t) ¼
2b

ffiffi
t
p

G(m)ffiffiffiffi
p
p

G(mþ 1=2)
1F2

1

2
;

3

2
, mþ

1

2
; �b2t

� �
,

where 1F2 is a generalized hypergeometric function (see p. 288 for a definition). The

Gini and Pietra measures are clearly of the form (4.29) (see Section 4.5 above),

namely, G ¼ erf (s=2) and P ¼ erf (s=23=2): Moothathu also provided unbiased

estimators of their variances, as well as strongly consistent and asymptotically

normally distributed estimators of G and P:
The optimal grouping of samples from lognormal populations was stu-

died by Schader and Schmid (1986). Suppose that a sample X ¼ (X1, . . . , Xn)` of

size n is available and the parameter of interest is s: (This is the relevant

parameter in connection with inequality measurement, as the formulas in

Section 4.5 indicate.) By independence, the Fisher information of the sample for s is

I (s) ¼ nI1(s) ¼
2n

s 2
,

where I1 denotes the information in one observation. For a given number of groups k

with group boundaries 0 ¼ a0 , a1 , � � � , ak�1 , ak ¼ 1; define the class

frequencies Nj as the number of Xi in [aj�1, aj), j ¼ 1, . . . , k: Thus, the joint

distribution of N ¼ (N1, . . . , Nk)` is multinomial with parameters n and pj ¼ pj(s);
where

pj(s) ¼

ðaj

aj�1

f (xjs) dx, j ¼ 1, . . . , k:

Now the Fisher information in N is

IN (s) ¼ n
Xk

j¼1

[@pj(s)=@s]2

pj(s)
¼

n

s 2

Xk

j¼1

[f(zj)zj � f(zj�1)zj�1]2

F(zj)�F(zj�1)
,

where z0 ¼ �1; zk ¼ 1; zj ¼ ( log aj � m)=s; j ¼ 1, . . . , k � 1; and f and F again

denote the p.d.f. and c.d.f. of the standard normal distribution. This expression is, for

fixed s; a function of k and the k � 1 class boundaries a1, . . . , ak�1:
As was described in greater detail in Section 3.6 in the Pareto case, passing from

the complete data X to the class frequencies N implies a loss of information, which
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may be expressed in terms of the decomposition

IX (s) ¼ IN (s)þ IX jN (s):

The relative loss of information is now given by

L ¼
IX (s)� IN (s)

IX (s)
¼ 1�

[@pj(s)=@s]2=pj(s)

Eu[@ log f (X js)=@s]2
1�

s2

n
InðsÞ:

Thus, one requires, for given g [ (0, 1) and s; the smallest integer k� such that

L(s; k�; a�1, . . . , a�k�1) � g:

Schader and Schmid (1986) found that only for k odd there is a unique global

optimum of this optimization problem and provided optimal class boundaries z�j
based on the least odd number of classes k� for which the loss of information is

less than or equal to a given value of g; for g ¼ 0:1; 0.05, 0.025, and 0:01: See

Table 4.2. From the table, optimal class boundaries a�j for a lognormal distribution

with parameters m and s can be obtained upon setting a�j :¼ expðsz�j þ mÞ:
It is interesting that compared to the Pareto distribution (cf. Section 3.6),

a considerably larger number of classes is required for a given loss of information.

4.7 THREE- AND FOUR-PARAMETER LOGNORMAL

DISTRIBUTIONS

If there exists a l [ IR such that Z ¼ log (X � l) follows a normal distribution, then

X is said to follow a three-parameter lognormal distribution. For this to be the case, it

is clearly necessary that X take any value exceeding l but have zero probability of

taking any value below l: Thus, the p.d.f. of X is

f (x) ¼
1

(x� l)
ffiffiffiffiffiffi
2p
p

s
exp �

1

2s 2
[ log (x� l)� m]2

� �
, x . l: (4:30)

Table 4.2 Optimal Class Boundaries for Lognormal Data

g k� z�1, . . . , z�k��1

0.1 9 22.5408 21.9003 21.3715 20.8355 0.8355 . . .

0.05 13 22.8602 22.2974 21.8646 21.4793 21.1011 20.6833 0.6833 . . .

0.025 17 23.0834 22.5636 22.1764 21.8460 21.5424 21.2466 20.9398

20.5833 0.5833 . . .

0.01 29 23.5038 23.0486 22.7227 22.4569 22.2258 22.0166 21.8216

21.6355 21.4541 21.2736 21.0898 20.8971 20.6861 20.4341 0.4341 . . .

Source: Schader and Schmid (1986).
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As a size distribution, this distribution was already considered by Gibrat (1931). The

distribution is obtained through one of the three transformations in Johnsons’s

(1949) translation system; see (2.76) in Chapter 2.

The location characteristics of the three-parameter form are greater by l than

those of the LN(m, s 2) distribution. The mean is at lþ exp(mþ s 2=2); the median

at lþ exp(m); and the mode at lþ exp(m� s 2): The quantiles are displaced from

F�1(u) to lþ F�1(u); 0 , u , 1: The kth moment about l is

E[(X � l)k ] ¼ exp kmþ
k2s 2

2

� �
(4:31)

so that the moments about the mean and hence the shape factors remain unchanged.

If the threshold parameter l is known, as is, for example, the case in actuarial

applications when it represents a deductible for claim amounts, estimation can, of

course, proceed as described in Section 4.6 after adjusting the data by l: If this

parameter is unknown, there are considerable additional difficulties. Since the books

by Cohen and Whitten (1988) and Crow and Shimizu (1988) contain several

chapters studying estimation problems associated with the three-parameter

lognormal distribution, we shall be rather brief here. The main difficulty appears

to be that likelihood methods lead to an estimation problem with an unbounded

likelihood. Specifically, Hill (1963) demonstrated that there exists a path along

which the likelihood function

L(x1, . . . , xn; m, s 2, l) ¼
Yn

i¼1

f (xi; m, s 2, l) (4:32)

tends to þ1 as (m, s 2, l) approaches (�1, 1, x1:n):
One way of circumventing this difficulty consists of considering the observations

as measured with error (being recorded only to the nearest unit of measurement),

leading to a multinomial model as suggested by Giesbrecht and Kempthorne (1976).

With individual data considered error-free, Hill (1963) and Griffiths (1980)

justified using estimates corresponding to the largest finite local maximum of the

likelihood function. Smith (1985, p. 88) noted the existence of a local maximum that

defines an asymptotically normal and efficient estimator. On differentiating the

logarithm of the likelihood (4.32), we obtain the estimating equations

@log L

@m
¼

1

s 2

Xn

i¼1

[ log(xi � l)� m] ¼ 0, (4:33)

@log L

@s
¼ �

n

s
þ

1

s3

Xn

i¼1

[ log(xi � l)� m]2 ¼ 0, (4:34)

and

@log L

@l
¼

1

s 2

Xn

i¼1

log(xi � l)� m

xi � l
þ
Xn

i¼1

1

xi � l
¼ 0: (4:35)
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Eliminating m and s from these equations, we get (Cohen, 1951)

g(l̂l ) :¼
Xn

i¼1

1

xi � l̂l

"Xn

i¼1

log(xi � l̂l)�
Xn

i¼1

log2(xi � l̂l)

þ
1

n

Xn

i¼1

log(xi � l̂l)

( )2#
� n

Xn

i¼1

log(xi � l̂l)

xi � l̂l
¼ 0, (4:36)

a highly nonlinear equation in one variable. The probably most commonly used

approach to ML estimation seems to be solving (4.36) by, for example, Newton–

Raphson and subsequently obtaining estimates of m and s 2 from this solution

(namely, the mean and variance of the logarithms of the data adjusted by l̂l).

However, a practical difficulty appears to be that the search for the local MLEs

(LMLEs) must be conducted with great care. Wingo (1984) argued that convergence

problems in early attempts (prior to the mid-1970s) resulted from trying to find

stationary values of the likelihood function using Newton’s or related methods

without proper safeguards for avoiding the region of attraction of the infinite

maximum. He proposed avoiding the solution of g(l̂l) ¼ 0 altogether and instead

numerically maximizing a reparameterized conditional log-likelihood function with

univariate global optimization methods. This involves a parameter transformation

l(u) :¼ x1:n � exp(�u), u [ (�1, 1); discussed by Griffiths (1980), that renders

the reparameterized log-likelihood approximately quadratic and symmetric in the

neighborhood of its finite (local) maximum.

The Fisher information on u ¼ (m, s 2, l)` in one observation is

I (u) ¼

1

s 2
0

e�mþs
2=2

s 2

0
1

2s4

�e�mþs
2=2

s 2

e�mþs
2=2

s 2

�e�mþs
2=2

s 2

e�2mþ2s 2

(1þ s 2)

s 2

2
66666664

3
77777775

, (4:37)

from which approximate variances of the MLEs can be obtained by inversion.

It is noteworthy that all ML estimators converge to their limiting values at the

usual
ffiffiffi
n
p

rate. This is even the case for l despite it being a threshold parameter. The

reason is the high contact (exponential decrease) of the density for x! l:
A further estimation technique that is suitable in this context is maximum

product-of-spacings (MPS) estimation, proposed by Cheng and Amin (1983). Here

the idea is to choose u ¼ (m, s, l)` to maximize the geometric mean of the spacings

GM ¼
Ynþ1

i¼1

Di

( )1=(nþ1)

,
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where Di ¼ F(xi)� F(xi�1); or equivalently its logarithm. For the three-parameter

lognormal distribution it can be shown that

ffiffiffi
n
p

(~uu� u)!
d

N [0, I (u)�1]:

Thus, the MPS estimators are asymptotically efficient and also converge at the usualffiffiffi
n
p

rate.

A modified method of moments estimator (MMME) has seen suggested by Cohen

and Whitten (1980); see also Cohen and Whitten (1988). Here the idea is to replace the

third sample moment by a function of the first order statistic (which contains more

information about the shift parameter l than any other observation). As with the local

MLE, this leads to a nonlinear equation in one variable. Cohen and Whitten reported

that it can be satisfactorily solved by the Newton–Raphson technique.

We note that a so-called four-parameter lognormal distribution has been defined by

Z ¼ m� þ s�log
X � l

d

� �
, (4:38)

where Z denotes a standard normal random variable. Since this can be rewritten as

Z ¼ m�� þ s�log(X � l),

with m�� ¼ m� � s�log d; it is really just the three-parameter lognormal distribution

that is defined by (4.30).

4.8 MULTIVARIATE LOGNORMAL DISTRIBUTION

The most natural definition of a multivariate lognormal distribution is perhaps in

terms of a multivariate normal distribution as the joint distribution of log Xi, i ¼

1, . . . , k: This approach leads to the p.d.f.

f (x1, . . . , xk ) ¼
1

(2p)n=2
ffiffiffiffiffiffi
jSj

p
x1 � � � xk

exp �
1

2
(log x� m)`S

�1
(log x� m)

� �
,

xi . 0, i ¼ 1, . . . , k, (4:39)

where x ¼ (x1, . . . , xk)`, log x ¼ (log x1, . . . , log xk )`; m ¼ (m1, . . . , mk )`; and

S ¼ (sij): If X ¼ (X1, . . . , Xk)` is a random vector following this distribution,

this is denoted as X � LNk (m, S). From the form of the moment-generating

function of the multivariate normal distribution, we get

E(X r1

1 � � �X
rk

k ) ¼ exp r`mþ
1

2
r`Sm

� �
,
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where r ¼ (r1, . . . , rk)`: It follows that for any i ¼ 1, . . . , k

E(X s
i ) ¼ exp smi þ

1

2
s2s 2

ii

� �
,

and for any i, j ¼ 1, . . . , k

cov(Xi, Xj) ¼ exp mi þ mj þ
1

2
(sii þ sjj)

� �
{exp(sij)� 1}: (4:40)

The conditional distributions of, for example, X1 given X2, . . . , Xk may be shown to

be also lognormal. However, despite the close relationship with the familiar

multivariate normal distribution, some differences arise. For example, although

Pearson’s measure of (pairwise) correlation @Yi,Yj
can assume any value between �1

and 1 for the multivariate normal distribution (for which the marginals differ only in

location and scale), the range of this coefficient is much narrower in the multivariate

lognormal case and depends on the shape parameters sij: Specifically, if Y is

bivariate normal with unit variances, a calculation based on (4.40) shows that for the

corresponding bivariate lognormal distribution the range of @Xi,Xj
is

e�1 � 1

e� 1
, 1


 �
¼ [�0:3679, 1],

so only a limited amount of negative correlation is possible. For further information

on the dependence structure of the multivariate lognormal distribution, see Nalbach-

Leniewska (1979).

In the context of income distributions, Singh and Singh (1992) considered a

likelihood ratio test for comparing the coefficients of variation in lognormal

distributions. Since from (4.8) the coefficients of variation are given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp(s 2

i )� 1
p

, i ¼ 1, . . . , k; the problem is equivalent to comparing the variances

of Yi ¼ log Xi, i ¼ 1, . . . , k: Thus, the null hypothesis may be stated as H0: s 2
1 ¼

� � � ¼ s 2
k ¼: s 2

0 (say). More generally, any statistical test for the equality of

lognormal characteristics depending only on the shape parameter s—such as the

coefficient of variation, the Gini coefficient, and various other inequality measures—

is equivalent to a test for equality of the variances computed for the logarithms of the

data, having a normal distribution, as noted by Iyengar (1960) who used this

approach when testing for the equality of Gini coefficients. Thus, the problem may

be solved, in the case where k independent samples are available, by the classical

Bartlett test for the homogeneity of variances. If dependence must be taken into

account, Singh and Singh suggested the following LR statistic:

Q ¼ nlog jGj þ n tr G � nk,

where G ¼ I þ nŝs 2
0 S�1 � S�1Sd , ŝs 2

0 ¼ tr Sd=nk; and S is a standard estimator of

the covariance matrix, namely, S ¼ (sij); where sij ¼
P

(Yil � �YY i)(Yjl � �YY j) and Sd is
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a diagonal matrix defined in terms of the diagonal of S: The approximate distribution

of Q is a x 2
k�1:

4.9 EMPIRICAL RESULTS

Being one of the two classical size distributions, a large number of empirical studies

employing lognormal distributions are available.

Income Data

The lognormal distribution has been fit to various income data for at least the last

50 years. One of the earliest investigations was completed by Kalecki (1945) who

considered it for the United Kingdom personal incomes for 1938–1939. He found

the two-parameter lognormal fit for the whole range of incomes to be quite poor, but

a two-parameter model for incomes above a certain threshold—that is, a three-

parameter lognormal distribution—provides a good approximation.

Champernowne (1952) employed the three-parameter lognormal when studying

Bohemian data of 1933. He found that a two-parameter log-logistic distribution fits

as good as the lognormal.

Steyn (1959, 1966) considered income data for South African white males for

1951 and 1960 that are adequately described by a mixture of a lognormal and a

doubly truncated lognormal distribution.

Employing a three-parameter lognormal distribution, Metcalf (1969) studied

the changes between three distributional characteristics—the mean as well as income

levels at certain bottom and top quantiles divided by median income—and aggregate

economic activity by means of regression techniques for the period 1949–1965.

He established separate patterns of movement in these measures for each of three

family groups: families with a male head and a wife in the paid labor force, families

with a male head and a wife not in the labor force, and families with a female head

(these groups received about 88% of all personal income and almost 98% of all personal

income going to families for the period under study). In particular, increases in real

wages and employment rates appear to improve the relative position of low-income

families that are labor-force-oriented and to lower the relative—but not absolute—

position of high-income families. Also, families with a female head responded less

elastically to employment and real wage changes than did families with a male head.

Using nonparametric bounds on the Gini coefficient developed by Gastwirth

(1972), Gastwirth and Smith (1972) found that the implied Gini indices derived from

two- and three-parameter lognormal distributions fall outside these bounds for U.S.

individual gross adjusted incomes for 1955–1969 and concluded that lognormal

distributions are inappropriate for modeling these data.

In a very thorough and exhaustive study, Kmietowicz and Webley (1975) fit the

lognormal distribution to data for rural households from the 1963–1964 Income and

Expenditure Survey of the Central Province of Kenya. They employed various fitting

procedures in order to cope with some peculiarities of the data and found that the fit

is better for the entire province than for any of its five districts. Also, they used
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lognormal distributions to “predict” the size distribution for urban households, for

which only the average household income was available.

Kloek and van Dijk (1977) fit the lognormal distribution to Australian family

disposable incomes for the period 1966–1968, disaggregated by age of the head of

the family, occupation and education of the head of the family, and by family size.

For some subsamples, the fit of the distribution is comparable to the log-t (which has

one additional parameter); however the Champernowne distribution often performs

better.

Kloek and van Dijk (1978) considered 1973 Dutch earnings data, to which they

fit several income distributions. They found that a substantially better approximation

(compared to the two-parameter lognormal distribution) is obtained by using three-

and four-parameter families such as the log-t or Champernowne distributions.

McDonald and Ransom (1979a) considered the distribution of U.S. family

income for 1960 and 1969 through 1975. When compared to alternative beta,

gamma, and Singh–Maddala approximations using three different estimation

techniques, the lognormal always provides the worst approximation in terms of

sum of squared errors (SSE) and chi-square criteria.

In a detailed study comparing the performance of the Pareto and lognormal

distributions, Harrison (1979, 1981) considered the gross weekly earnings of 91,968

full-time male workers aged 21 and over from the 1972 British New Earnings

Survey, disaggregated by occupational groups and divided into 34 earnings ranges.

For the aggregated data he found that the main body of the distribution comprising

85% of the total number of employees is “tolerably well described” by the lognormal

distribution, whereas for the (extreme) upper tail the Pareto distribution is “distinctly

superior.” However, he pointed out that “the lognormal performs less well, even in

the main body of the distribution, than is usually believed . . . ; and a strict

interpretation . . .suggests that it [the Pareto distribution] applies to only a small part

of the distribution rather than to the top 20% of all employees” [as implied

approximately by Lydall’s (1968) model of hierarchical earnings]. When

disaggregated data divided into 16 occupational groups is considered, the fit of

the lognormal distribution improves considerably, the strongest evidence for

lognormality being found for the group “textiles, clothing and footwear.”

Nonetheless, there are still problems in the tails for some distributions, with the

difficulties being more persistent in the lower tail in a number of cases.

Dagum (1983) estimated a two-parameter lognormal distribution for 1978 U.S.

family incomes. The distribution is outperformed by wide margins by the Dagum

type III and type I as well as the Singh–Maddala distribution (four- and three-

parameter models, respectively), and even the two-parameter gamma distribution

does considerably better. In particular, the mean income is substantially

overestimated.

For the French wages stratified by occupation for 1970–1978 the three-parameter

model outperforms a three-parameter Weibull distribution as well as a four-

parameter beta type I model, but the Dagum type II, the Singh–Maddala, and a

Box–Cox-transformed logistic appear to be more appropriate for these data

(Espinguet and Terraza, 1983).
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Arguing that in most studies income distribution functions are put forth as

approximate descriptive devices that are not meant to hold exactly, Ransom and

Cramer (1983) suggested employing a measurement error model, viewing observed

income as the sum of a systematic component and an independent N (0, s 2) error

term. Utilizing models with systematic components following Pareto, lognormal,

and gamma distributions, they found that the lognormal variant performs best in

terms of chi-square statistics for U.S. family incomes for 1960. However, these

goodness-of-fit tests still reject all three models.

McDonald (1984) estimated the lognormal distribution for 1970, 1975, and

1980 U.S. family incomes. However, the distribution is outperformed by 9 out of

10 alternative models (of gamma or beta type), for all three data sets. In McDonald

and Xu (1995), the distribution is outperformed by all 10 alternative models, again

mainly of beta and gamma type, for 1985 U.S. family incomes.

Kmietowicz (1984) used a bivariate lognormal model for the distribution of

household size and income when analyzing a subsample consisting of 200 rural

households from the Household Budget and Living Conditions Survey, Iraq, for the

period 1971–1972. The model was also fitted to data from other household budget

surveys, namely, Iraq 1971–1972 (urban), Iraq 1976 (rural and urban), and Kenya

1963–1964 (rural). In all cases, the distribution of household income per head

follows the lognormal distribution more closely than the marginal distribution of

household income.

Kmietowicz and Ding (1993) considered the distribution of household incomes

per head in the Jiangsu province of China (the city of Shanghai is located at the

southeastern tip of this province), for 1980, 1983, and 1986. The fit is quite poor for

the 1980 data but somewhat better for 1983 incomes; however, chi-square goodness-

of-fit tests reject the lognormal distribution as an appropriate model. For 1986 this is

no longer the case and hence the lognormal distribution may be considered

appropriate for these data. (Note the substantial economic changes in China

beginning in 1982–1983.)

For Japanese incomes for 1963–1971 the distribution is outperformed by the

Singh–Maddala, Fisk, beta, and gamma distributions, with only the one-parameter

Pareto (II) yielding inferior results (Suruga, 1982). Compared to eight other

distributions utilizing income data from the 1975 Japanese Income Redistribution

Survey (in grouped form), the lognormal ranks 6–8th for various strata in terms of SSE

and information criteria (Atoda, Suruga, and Tachibanaki, 1988). In a later study

modeling individual incomes from the same source, Tachibanaki, Suruga, and Atoda

(1997) employed six different distributions; here the lognormal is almost always the

worst model.

Henniger and Schmitz (1989) considered the lognormal distribution when

comparing various parametric models (including, among others, gamma and

Singh–Maddala) for the UK Family Expenditure Survey for the period 1968–

1983 to nonparametric fittings. However, for the whole population all parametric

models are rejected; for subgroups models such as the Singh–Maddala or

Fisk perform considerably better than the lognormal, in terms of goodness-of-fit

tests.
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Summarizing research on the distribution of income in Poland over 50 years,

Kordos (1990) observed that the two-parameter lognormal distribution describes the

Polish data until 1980 with a reasonable degree of accuracy. In particular, for the

distribution of monthly wages in 1973 the lognormal model compares favorably with

alternative beta type I, beta type II, and gamma fittings.

Bordley, McDonald, and Mantrala (1996) fit the lognormal model to U.S. family

incomes for 1970, 1975, 1980, 1985, and 1990. For all five data sets the distribution

is outperformed by 13 out of 15 considered distributions, mainly of beta and gamma

type, by very wide margins; only the (one-parameter) exponential distribution does

worse.

Creedy, Lye, and Martin (1997) estimated the two-parameter lognormal

distribution for individual earnings from the 1987 U.S. Current Population Survey

(March Supplement). The distribution is outperformed, by wide margins, by a

generalized lognormal-type distribution; see (4.67) below, as well as the standard

and a generalized gamma distribution.

Botargues and Petrecolla (1997, 1999a,b) fit the lognormal distribution to the

labor incomes for the province of greater Buenos Aires for each year from 1992–

1997. However, the model is outperformed by several other distributions, notably the

Dagum models.

Wealth Data

Sargan (1957) considered British wealth data for 1911–1913, 1924–1930, 1935–

1938, and 1946–1947. Graphical methods indicate a fairly good approximation to a

lognormal distribution.

Chesher (1979) estimated a lognormal model for the distribution of wealth in

Ireland (grouped into 26 classes) in 1966 over the population of individuals with a

recorded estate size. It is clear that the lognormal distribution is superior to the Pareto

distribution on these data, with x 2 and likelihood improvements of about 93%. In view

of the conventional wisdom that the Pareto distribution is an appropriate model for the

upper tail, it is particularly noteworthy that the fit is “unexpectedly good in the upper

tail” (p. 7).

Bhattacharjee and Krishnaji (1985) fit the lognormal distribution to Indian data of

landholdings, for 14 states for 1961–1962. However, the distribution is out-

performed by both the gamma and loggamma distributions.

Firm Sizes

In his pioneering research, Kalecki (1945) considered the size distribution of factories

(size being defined as “number of workers”) in the U.S. manufacturing industry in

1937, finding the agreement between actual and calculated series to be “fairly good.”

Observing that the empirical Lorenz curve for British firm size data is roughly

symmetric about the alternate diagonal of the unit square, Hart and Prais (1956)

approximated the distribution of firm sizes by a lognormal distribution, the best-

known distribution possessing this property. However, in the discussion of the Hart

and Prais paper, their choice was criticized by Champernowne (1956) and

Kendall (1956), both of whom provided general expressions for distributions with

this property.
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Quandt (1966a), in a study investigating the distribution of firm sizes (size being

measured in terms of assets) in the United States, found the lognormal distribution to

be more appropriate than the Pareto distributions of types I–III for his data. He

considered the Fortune lists of the 500 largest firms in the United States in 1955 and

1960, and 30 samples representing industries according to four-digit S.I.C. classes.

However, Pareto type I and II distributions appear to fit the two Fortune samples

rather well.

More recently, Stanley et al. (1995) used the lognormal to model the size

distribution of American firms (by sales), noting that the model overpredicts in the

upper tails. Hart and Oulton (1997) studied the size distribution (by employment) of

50,441 independent UK firms in 1993 and arrived at the opposite conclusion—for

UK firms there is excess mass in the upper tail compared to a lognormal benchmark

model. Voit (2001) considered the size (defined in terms of annual sales) of 570

German firms over the period 1987–1997. He noted that for these data the

lognormal lower tail decreases too fast toward the abscissa.

Insurance Losses

The lognormal distribution is favored by a number of studies for a diverse variety of

types of insurance.

Benckert (1962) studied industrial and nonindustrial fire losses and business

interruption and accident insurance as well as automobile third-party insurance in

Sweden for 1948–1952.

Ferrara (1971) employed a three-parameter lognormal distribution for modeling

industrial fire losses in Italy for the period 1963–1965.

Benckert and Jung (1974) studied fire insurance claims for four types of houses in

Sweden for the period 1958–1969, concluding that for one class of buildings (“stone

dwellings”) the lognormal distribution provides a reasonable fit.

Considering automobile bodily injury loss data, Hewitt and Lefkowitz (1979)

employed the two-parameter lognormal distribution as well as a lognormal-gamma

mixture. The latter model performs considerably better on these data.

Hogg and Klugman (1983) fit the lognormal distribution to a small data set (35

observations) of hurricane losses and found that it fits about as well as the Weibull

distribution. They also considered data for malpractice losses, for which (variants of )

Pareto distributions are preferable to the lognormal distribution.

Cummins et al. (1990) fit the two-parameter lognormal distribution to aggregate

fire losses. However, most of the distributions they considered (mainly of the gamma

and beta type) seem to be more appropriate. The same authors also considered data

on the severity of fire losses and fit the lognormal distribution to both grouped and

individual observations. Again, most of the other distributions they considered do

considerably better for these data.

Burnecki, Kukla, and Weron (2000) used the lognormal distribution when model-

ing property insurance losses and found that it outperforms the Pareto distribution for

these data.

Overall, it would thus seem that the popular lognormal distribution is not the best

choice for modeling income, firm sizes, and insurance losses.
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4.10 GENERALIZED LOGNORMAL DISTRIBUTION

The material in this section has been collected from diverse sources and to the best

of our knowledge appears here in unified form for the first time.

Vianelli (1982a,b, 1983) proposed a three-parameter generalized lognormal

distribution. It is obtained as the distribution of X ¼ exp Y ; where Y follows a

generalized error distribution, with density

f ( y) ¼
1

2r1=rsrG(1þ 1=r)
exp �

1

rs r
r

jy� mjr
� �

, �1 , y , 1, (4:41)

where �1 , m , 1 is the location parameter, sr ¼ [EjY � mjr]1=r is the scale

parameter, and r . 0 is the shape parameter. Like many of the distributions discussed

in this book, the generalized error distribution is known under a variety of names and

it was (re)discovered several times in different contexts. For r ¼ 2 we arrive at the

normal distribution and r ¼ 1 yields the Laplace distribution. The generalized error

distribution is thus known as both a generalized normal distribution, in particular in

the Italian literature (Vianelli, 1963), and a generalized Laplace distribution. The

generalized form was apparently first proposed by Subbotin (1923) in a Russian

publication. Box and Tiao (1973) called it the exponential power distribution, the

name under which this distribution is presumably best known in statistical literature,

and used the following parameterization of the p.d.f.:

f ( y) ¼
1

2(3þb)=2sG[(3þ b)=2]
exp �

1

2s
jy� mj2=(1þb)

� �
, �1 , y , 1,

(4:42)

where �1 , b � 1, s . 0: Here b ¼ 0 corresponds to the normal and b ¼ 1 to the

Laplace distribution.

The exponential power distribution has been frequently employed in robustness

studies, and also as a prior distribution in various Bayesian models (see Box and

Tiao, 1973, for several examples).

If we start from (4.41), the density of X ¼ exp Y is

f (x) ¼
1

2xr1=rsrG(1þ 1=r)
exp �

1

rs r
r

jlog x� mjr
� �

, 0 , x , 1: (4:43)

Here em is a scale parameter and sr, r are shape parameters. The effect of the new

parameter r is illustrated in Figures 4.4 and 4.5.

Figure 4.5 suggests that the density becomes more and more concentrated on a

bounded interval with increasing r. This is indeed the case: For m ¼ 0; r! 1; the

limiting form is the distribution of the exponential of a random variable following a

uniform distribution on [�1, 1]; as may be seen from the following argument given
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by Lunetta (1963). The characteristic function of the generalized error distribution

(4.41) is given by

f(t) ¼
1

srr1=rG(1þ 1=r)

ð1

0

exp �
jxjr

rs r
r

� �
cos(tx) dx

¼
X1
s¼0

(�1)s G[(2sþ 1)=r]t2s

r2s=rs2s
r G(1=r)(2s)!

: (4:44)

Now,

lim
r!1

G[(2sþ 1)=r]

r2s=rs2s
r G(1=r)

¼ lim
r!1

G[1þ (2sþ 1)=r]

(2sþ 1)r2s=rs2s
r G(1þ 1=r)

¼
1

2sþ 1
,

yielding

lim
r!1

f(t) ¼
1

t

X1
s¼0

(�1)s t2sþ1

(2sþ 1)!
¼

sin t

t
,

Figure 4 From the log-Laplace to the lognormal distribution: m ¼ 0, s ¼ 1, and r ¼ 1(0:1)2 (from

the bottom).
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which can be recognized as the characteristic function of a random variable

distributed uniformly on the interval [�1, 1]: The resulting distribution therefore

possesses the p.d.f.

f (x) ¼
1

2x
, e�1 � x � e: (4:45)

Interestingly, this is the p.d.f. of a doubly truncated Pareto-type variable, a

distribution considered by Bomsdorf (1977) which was briefly mentioned in the

preceding chapter, under the name of prize-competition distribution.

The case where r ¼ 1 (the log-Laplace distribution) was proposed as an income

distribution by Fréchet as early as 1939. Here closed forms for the c.d.f. and quantile

function are available, namely,

F(x) ¼

1

2
exp �

m� log x

s1

� �
, for 0 , x , expm,

1�
1

2
exp �

log x� m

s1

� �
, for x � expm,

8>>><
>>>:

and

F�1(u) ¼
exp{mþ s1 log(2u)}, for 0 , u , 0:5,

exp{m� s1 log[2(1� u)]}, for 0:5 � u , 1:

�

Figure 5 Beyond the lognormal distribution: m ¼ 0, s ¼ 1, and r ¼ 2, 10, 100 (from left to right).
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In the general case, the c.d.f. may be written in the form (Pollastri, 1987b)

F(x) ¼

G[1=r, B(x)]

2G(1=r)
, for x , expm,

1

2
, for x ¼ expm,

1

2
þ
g[1=r, M (x)]

2G(1=r)
, for x . expm,

8>>>>>>><
>>>>>>>:

(4:46)

where B(x) ¼ [(m� log x)=sr]
r=r; M (x) ¼ [(log x� m)=sr]

r=r; and G(n, x) ¼Ð1

x
e�t tn�1 dt; g(n, x) ¼

Ð x

0
e�t tn�1 dt are the incomplete gamma functions.

The moments of the generalized lognormal distribution are (see, e.g., Brunazzo

and Pollastri, 1986)

E(X k) ¼
exp(km)

G(1=r)

X1
i¼0

(ksr)
2i

(2i)!
r2i=rG

2iþ 1

r

� �
: (4:47)

For r ¼ 1; that is, for the log-Laplace distribution, the infinite sum on the r.h.s.

converges only for jks1j , 1; in that case, it equals (Vianelli, 1982b)

E(X k ) ¼
exp(km)

1� (ks1)2
: (4:48)

In particular, for k ¼ 1 we get E(X ) ¼ expm=(1� s 2
1 ): For generalized lognormal

distributions with r . 1; all the moments exist. Brunazzo and Pollastri (1986) noted

that the mean, variance, and standard deviation are increasing in sr and decreasing

in r; whereas for Pearson’s coefficient of skewness the opposite behavior is

observed. Thus, the distribution becomes more symmetric as sr increases. Pollastri

(1997) investigated the kurtosis of the distribution utilizing Zenga’s (1996) kurtosis

diagram and found that for fixed median and mean deviation from the median the

kurtosis decreases as r and/or sr increase.

Since the exponential power distribution (4.41) is symmetric about m; the median

of the generalized lognormal distribution is given by

xmed ¼ exp(m) (4:49)

and the mode equals

xmode ¼ exp[m� s r=(r�1)
r ] for r . 1, (4:50)

while

xmode ¼ expm for r ¼ 1, s1 , 1: (4:51)

The distribution is thus unimodal, with a cusped mode in the log-Laplace case.
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From (4.47), (4.49), and (4.50) it follows that the generalized lognormal

distribution satisfies the mean-median-mode inequality, namely,

expm

G(1=r)

X1
i¼0

s 2i
r

(2i)!
r2i=rG

2iþ 1

r

� �
. expm . exp[m� s r=(r�1)

r ]:

The entropy of the distribution is (Scheid, 2001)

E[�log f (X )] ¼
1

r
� log

c

sr

þ m, (4:52)

where c ¼ [2r1=rG(1þ 1=r)]�1; which simplifies to

E[�log f (X )] ¼ 1þ log(2s1)þ m (4:53)

for the log-Laplace distribution. It can be shown that the entropy is a decreasing

function of r:
The Lorenz and Zenga curves may be obtained numerically in terms of the first-

moment distribution; Pollastri (1987b) provided some illustrations. She observed

that inequality, as measured by the Lorenz curve, is decreasing in r for fixed sr and

increasing in sr for fixed r:
Expressions for inequality measures of the generalized lognormal are often

somewhat involved. For the Gini coefficient there does not seem to be a simple

expression for a general r: Pollastri (1987b) suggested evaluating numerically

G ¼ 1�
Xk

i¼1

[F(xi)� F(xi�1)][F(1)(xi)þ F(1)(xi�1)],

where F(x0) ¼ F(1)(x0) ¼ 0. However, in the log-Laplace case there is a simple

closed form for the Gini index (Moothathu and Christudas, 1992)

G ¼
3s�1

1

(4s�2
1 � 1)

: (4:54)

The formulas of Theil’s inequality measures were derived by Scheid (2001). The

(first) Theil coefficient is given by

T1 ¼
exp(m)

G(1=r)E(X )

X1
i¼0

(sr)
2iþ2

(2iþ 1)!
r(2iþ2)=rG

2iþ 3

r

� �

� log {E(X )= expm}, (4:55)
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and Theil’s second measure equals

T2 ¼ log[E(X )=expm]: (4:56)

Again, in the log-Laplace case these expressions are simplified and reduced to

T1 ¼ log(1� s 2
1 )þ

2s 2
1

1� s 2
1

(4:57)

and

T2 ¼ �log(1� s 2
1 ), (4:58)

respectively, provided s1 , 1:
Variants of the first measure with the median and mode replacing the mean, as

suggested by Shimizu and Crow (1988) for the standard lognormal distribution, are

(Scheid, 2001)

Tmed ¼
sr

G(1=r)
r2=r

X1
i¼0

(sr)
2iþ1

(2iþ 1)!
r2i=rG

2iþ 3

r

� �
,

and, for r . 1;

Tmode ¼
sr exp [s r=(r�1)

r ]

G(1=r)

X1
i¼0

(sr)
2i

(2i)!
r2i=r



sr

2iþ 1
r2=rG

2iþ 3

r

� �

þ s1=(r�1)
r G

2iþ 1

r

� ��
:

Like the Gini coefficient, the Pietra coefficient can only be evaluated numerically.

However, for a modified version where the mean deviation from the mean is replaced

by the mean deviation from the median, Scheid (2001) provided the expression

Pmed ¼
E(jX � xmedj)

2E(X )
¼

P1
i¼0 [(sr)

2iþ1=(2iþ 1)! r(2iþ1)=rG((2iþ 2)=r)]

2
P1

i¼0 [(sr)
2i=(2i)! r2i=rG((2iþ 1)=r)]

:

In the log-Laplace case this is simply

Pmed ¼
s1

2
,

implying that as in the lognormal case, inequality increases as the shape parameter

s1 increases.
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Finally, the variance of logarithms equals

VL(X ) ¼ r2=rs 2
r

G(3=r)

G(1=r)
: (4:59)

It would seem that all the measures cited decrease with r and increase with sr; but a

rigorous proof of this fact is still lacking.

Brunazzo and Pollastri (1986) suggested estimating the parameters via a method

of moments estimation of the generalized normal parameters, that is, a method of

moments estimation for the logarithms of the data. It is easy to see that m and sr may

be estimated by

m̂m ¼
1

n

Xn

i¼1

log xi and ŝsr ¼
1

2

Xn

i¼1

jlog xi � log xjr̂r

" #1=r̂r

,

once an estimate of r is available. To obtain such an estimate, one requires a certain

ratio of absolute central moments of log X : For the generalized normal distribution

(Lunetta, 1963),

m0p :¼ E(jY � mjp) ¼
1

rp=rs
p

r

G[( pþ 1)=r]

G(1=r)
:

Thus,

bp :¼
E(jY � mj2p)

E(jY � mjp)
¼

G(1=r)G[(2pþ 1)=r]

G2[( pþ 1)=r]
:

If we set p ¼ r; this simplifies to

br ¼ r þ 1:

Thus, r may be estimated using the empirical counterpart of br: Brunazzo and

Pollastri (1986) suggested solving the equation

cm02rm02r � (r þ 1)bm0rm0r2 ¼ 0

by means of the regula falsi. [Using the parameterization of the exponential power

distribution (4.42), for which the additional shape parameter b varies on a bounded

set, Rahman and Gokhale (1996) suggested using the bisection method.]
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Scheid (2001) considered the maximum likelihood estimation of the parameters.

The gradient of the log-likelihood is given by

@ log L

@m
¼

1

sr

Xn

i¼1

log xi � m

sr

����
����
r�1

sign(log xi � m)

@ log L

@sr

¼ �
n

sr

þ
1

s rþ1
r

Xn

i¼1

jlog xi � mjr

@ log L

@r
¼

n log r

r2
�

n

r2
þ

n

r2
c 1þ

1

r

� �
þ

1

r2

Xn

i¼1

log xi � m

sr

����
����
r

�
1

r

Xn

i¼1

log xi � m

sr

����
����
r�1

log
log xi � m

sr

����
����
r�1

 !
,

wherec denotes the digamma function. [Somewhat earlier, Bologna (1985) obtained the

ML estimators in the log-Laplace case as well as their sampling distributions, and also the

distributions of the sample median and sample geometric mean.]

The Fisher information matrix for the parameter u :¼ (m, sr, r)` can be shown to

be (Scheid, 2001)

I (u) ¼

(r � 1)G(1� 1=r)

s 2
r r2=rG(s)

0 0

0
r

s 2
r

�
B

rsr

0 �
B

rsr

sc 0(s)þ B2 � 1

r3

2
666666664

3
777777775

, (4:60)

where s :¼ 1þ 1=r and B :¼ log r þ c(s):
This matrix coincides with the Fisher information of the generalized normal

distribution, which had previously been derived by Agrò (1995); see also Rahman

and Gokhale (1996). Both of these works use the term exponential power distribution.

An expression for the asymptotic covariances of the ML estimates is obtained by

inversion of the Fisher information; thus, for a sample of size n we obtain

I�1(u) ¼
1

n

s 2
r r2=rG(s)

(r � 1)G(1� 1=r)
0 0

0
s 2

r

r
1þ

B2

sc 0(s)� 1


 �
rBsr

sc 0(s)� 1

0
rBsr

sc 0(s)� 1

r3

sc 0(s)� 1

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

For the generalized normal distribution, two simulation studies have been

conducted in order to investigate the small sample behavior of the estimators.
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Rahman and Gokhale (1996) found that the method of moments (MM) and ML

estimators for m and sr perform similarly for r � 2; whereas for r . 2 the ML

estimator of r seems to perform better than its MM counterpart for small samples.

For r , 2 the situation is reversed. Agrò (1995) noted that for samples of size

n � 100 there is sometimes no well-defined optimum of the likelihood when r � 3

and that r is frequently overestimated in small samples for r . 2:
In both of these works, random samples were obtained using a rejection method

following Tiao and Lund (1970). However, it is possible to generate simulated data

using methods that exploit the structure of the generalized normal distribution. The

following algorithm for the generation of samples from the generalized lognormal

distribution makes use of a mixture representation utilizing the gamma (Ga)

distribution and is adapted from Devroye (1986, p. 175):

. Generate V � U [�1, 1] and W � Ga(1þ 1=r, 1):

. Compute Y :¼ r1=rsrVW 1=r þ m:

. Obtain X ¼ exp(Y ):

Jakuszenkow (1979) and Sharma (1984) studied the estimation of the variance of

a generalized normal distribution. (In the terminology of inequality measurement,

this is the variance of logarithms of the generalized lognormal distribution.) Since

the variance of the distribution is a multiple of s 2
r ; one may equivalently study the

estimation of s 2
r : Sharma showed that the estimator

G[(nþ 2)=r](
Pn

i¼1 jxij
k )2=k

G[(nþ 4)=k]

is Lehmann-unbiased for the loss function L(u) ¼ (ûu� u)u�2 and also admissible, for

fixed r:Thus, the result may be best perceived as pertaining to the familiar special cases

of the generalized lognormal family, the lognormal and log-Laplace distributions.

Further results on estimation are available in the log-Laplace case (where r ¼ 1).

Moothathu and Christudas (1992) considered the UMVU estimation of log-Laplace

characteristics when m ¼ 0: They noted, that the statistic T ¼
Pn

i¼1 jlog xij follows a

gamma distribution and is complete as well as sufficient for s1: An unbiased

estimator of s
p

1 ; p ¼ 1, 2, . . . ; is given by

ŝs
p

1 ¼
Tp

(n)p

,

where (n)p denotes Pochhammer’s symbol for the forward factorial function.

Furthermore, they showed that the UMVUE of the Gini coefficient is given by

ĜG ¼
3T

n
1F2 1;

nþ 1

2
,

nþ 2

2
;

T2

16


 �
,

where 1F2 is a generalized hypergeometric function.
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We conclude our brief survey of the generalized lognormal distribution by

reporting on some empirical applications. The distribution was fitted to Italian and

German income data with mixed success. Brunazzo and Pollastri (1986) used the

distribution for approximating Italian data of 1948 and obtained a shape parameter

r ¼ 1:4476; considerably below the lognormal benchmark value of r ¼ 2: Scheid

(2001) fit the distribution to 1993 German household incomes (sample size: 40,000).

Estimating by the method of moments and maximum likelihood, she found that the

distribution improves upon the two-parameter lognormal, but the estimate of r is

only slightly below 2. Although both likelihood ratio and score tests confirm the

significance of the difference, the standard as well as the generalized lognormal

distributions are empirically rejected using nonparametric goodness-of-fit tests.

Inoue (1978) postulated a stochastic process giving rise to the log-Laplace

distribution and fit the distribution to British data for the period 1959–1960 by the

method of maximum likelihood. He found that the fit is more satisfactory than for

the lognormal for this period.

Vianelli (1982a, 1983) briefly considered a family of generalized lognormal

distributions with bounded support. The p.d.f. is of the form

f (x) ¼
r

2sr(rq)1=rB(1=r, qþ 1)x
1�

1

s r
r

jlog x� mj

� �
,

where me�sr(rq)1=r

� x � mesr(rq)1=r

: The logarithm of a random variable following

this distribution with r ¼ 2 can be viewed a Pearson type II distribution. For b ¼

sr(rq)1=r ! 1; we get the generalized lognormal distribution (4.43).

4.11 AN ASYMMETRIC LOG-LAPLACE DISTRIBUTION

The preceding section presented a one-parameter family of generalizations for the

lognormal distribution. Interestingly, an asymmetric variant of one of its members,

the log-Laplace distribution (a generalized lognormal distribution with r ¼ 1),

appears in a recent dynamic model of economic size phenomena proposed by Reed

(2001a,b, 2003).

He started from a continuous-time model with a varying but size-independent

growth rate. The probably most widely known dynamic model possessing this

property is a stochastic version of simple exponential growth, geometric Brownian

motion, that is defined in terms of the stochastic differential equation

dXt ¼ mXt dt þ sXt dBt, (4:61)

where Bt denotes a standard Brownian motion. Hence, the proportional increase in X

during dt has a systematic drift component m dt and a stochastic diffusion

component s dBt: This is essentially a continuous-time version of Gibrat’s law of

proportionate effect.
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The novelty of Reed’s approach lies in the assumption that the time of observation

T is not fixed—this would lead to the well-known lognormal case—but random.

An economic interpretation is that even if the evolution of each individual income

follows a geometric Brownian motion (Gibrat’s law of proportionate effect)

when observing the income distribution at a fixed point in time, we may not

know for how long a person has lived. If different age groups are mixed and the

distribution of time in the workforce of any individual follows an exponential

distribution, the observed distribution should be that of the state of the geometric

Brownian motion stopped after an exponentially distributed time. What does this

distribution look like?

For a geometric Brownian motion with a fixed initial state x0; the conditional state

at time T is lognormally distributed

Y jT :¼ log (X jT ) � N x0 þ m�
s 2

2

� �
T , s 2T


 �
:

Hence, Y jT possesses the m.g.f.

mY jT (t) ¼ exp x0t þ m�
s 2

2

� �
t þ

s 2t2

2

� �
:

Assuming that T itself follows an exponential distribution, T � Exp(l); with m.g.f.

mT (t) ¼
l

l� t
,

we obtain for the m.g.f. of the unconditional state variable Y

mY (t) ¼ E(eYt) ¼ ET [E(eY jT �tjT )] ¼
lex0t

lþ (m� s 2=2)t � s 2t2
, (4:62)

which may be rewritten in the form

mY (t) ¼
le x0tab

(a� t)(bþ t)
, (4:63)

where a, �b are the roots of the quadratic equation defined by the denominator of

(4.62). These parameters are therefore functions of the drift and diffusion constants

of the underlying geometric Brownian motion and of the scale parameter l of the

exponentially distributed random time T : Expression (4.63) is recognized as the

m.g.f. of an asymmetric Laplace distribution (see, e.g., Kotz, Kozubowski, and
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Podgórski, 2001), and so the unconditional distribution of the size variable X ¼

exp(Y ) randomly stopped at T is given by

f (x) ¼

x0ab

aþ b

x

x0

� �b�1

, x , x0,

ab

x0(aþ b)

x

x0

� ��a�1

, x � x0,

8>>>><
>>>>:

(4:64)

a density that exhibits power-law behavior in both tails. This is noteworthy, since the

underlying geometric Brownian motion is essentially a multiplicative generative

model and hence in view of the law of proportionate effect a lognormal distribution

would be expected (see Section 4.2). Thus, a seemingly minor modification—

introducing a random observational time—yields a power-law behavior. This type of

effect was noticed some 20 years earlier by Montroll and Schlesinger (1982, 1983)

who showed that a mixture of lognormal distributions with a geometric weighting

distribution would have essentially a lognormal main part but a Pareto-type

distribution in the upper tail.

Because of the power-law behavior in both tails, Reed referred to (4.64) as a

double-Pareto distribution; in view of its genesis, it could also be called a “log-

asymmetric Laplace distribution.”

A generalization of the above model assumes that the initial state X0 is also

random, following a lognormal distribution. This yields an unconditional

distribution to which Reed (2001b) referred as the double-Pareto-lognormal

distribution. He estimated this four-parameter model for U.S. household incomes

of 1997, Canadian personal earnings in 1996, 6-month household incomes in

Sri Lanka for 1981, and Bohemian personal incomes in 1933 (considered earlier

by Champernowne, 1952), for all of which the fit is excellent.

It is worth mentioning that the distribution (4.64) appears in a model of

underreported income discussed by Hartley and Revankar (1974); see also Hinkley

and Revankar (1977). In an underreporting model the goal is to make an inference

about the distribution of the true income X� when only a random sample from

observable income X is available. It is therefore necessary to relate the p.d.f. of X to

the parameters of the p.d.f. of X�: Suppose the true but unobservable incomes X�
follow a Pareto type I distribution (3.2)

f (x�) ¼
a

x0

x�

x0

� ��a�1

, x0 � x�;

and assume that observable income X is given by

X ¼ X� � U ,
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where U is the underreporting factor. It is natural to assume that 0 , U , X�:
Hartley and Revankar (1974) postulated that the proportion of X� that is

underreported, denoted by

W� ¼
U

X�
,

is distributed independently of X� with the p.d.f.

f (w) ¼ b(1� w)b�1, 0 � w � 1, b . 0,

a special case of the beta distribution. It is not difficult to show that the observable

income X has the p.d.f. (4.64).

4.12 RELATED DISTRIBUTIONS

Since the t distribution can be viewed as a generalization of the normal distribution,

it is not surprising that the log -t distribution has also been suggested as a model for

the size distribution of incomes (Kloek and van Dijk, 1977) or of insurance losses

(Hogg and Klugman, 1983). Its p.d.f. is

f (x) ¼
nn=2

B(1=2, n=2)x
� nþ

(log x� logm)

s 2


 ��(nþ1)=2

, x . 0, (4:65)

where m [ IR; s, n . 0: As in the case of the t distribution, no closed-form

expression of the c.d.f. is available. From the properties of the t distribution, the

variance of logarithms is given by

VL(X ) ¼
ns 2

n� 2
, (4:66)

provided n . 2: Apparently it has not been appreciated in the econometrics literature

how heavy the tails of this distribution are. Kleiber (2000b) pointed out that the log -t

distribution does not have a single finite moment, that is, E(X k) ¼ 1 for

all k [ IRn{0}: However, the Lorenz curve and most of the standard inequality

measures only exist when the mean is finite. Specifically, for (4.65) the variance of

logarithms is the only inequality measure among the common ones that exists,

provided n is sufficiently large. (In the case where n ¼ 1; i.e., the log-Cauchy case,

even the variance of logarithms is infinite.)

Hogg and Klugman (1983) presented the following interesting mixture

representation for the log t distribution: Suppose X has a lognormal distribution,

parameterized in the form

f (x j u) ¼
1

u

ffiffiffiffiffiffi
u

2p

r
exp
�u(log x� m)2

2


 �
, x . 0,
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that is, log X has a normal distribution with mean m and variance 1=u; and u �

Ga(n, l): Then

f (x) ¼

ð1

0

1

u

ffiffiffiffiffiffi
u

2p

r
exp �u

(log x� m)2

2


 �( )
lnun�1e�lu

G(n)


 �
du

¼
lnG(nþ 1=2)ffiffiffiffiffiffi

2p
p

G(n)x[lþ (log x� m)2]nþ1=2
:

Thus, the log -t distribution may be considered a shape mixture of lognormal variates

with inverse gamma weights.

Kloek and van Dijk (1977) fit a three-parameter log -t distribution to Australian

family disposable incomes for the period 1966–1968, disaggregated by age,

occupation, education, and family size. Although for about one half of the samples

they considered, “one may doubt whether it is worthwhile to introduce the extra

parameter [namely, n]” (p. 447), for other cases the fit is considerably better. Using

Cox tests (Cox, 1961), they found that the lognormal distribution is rejected when

compared with the log -t; but not vice versa. Overall, they concluded that the log -t

distribution appears to be a useful improvement over the lognormal.

Cummins et al. (1990) applied the log -t distribution to aggregate fire losses,

a data set that seems to be better modeled by simpler distributions such as the inverse

exponential or inverse gamma distribution.

Recently, Azzalini and Kotz (2002) fit a log-skewed-t distribution to U.S. family

income data for 1970(5)1990 with rather encouraging but preliminary results.

Other generalized lognormal distributions—not to be confused with the

distribution discussed in Section 4.10 above—were considered by Bakker and

Creedy (1997, 1998) and Creedy, Lye, and Martin (1997). Their distributions

arise as the stationary distribution of a certain stochastic model and possesses

the p.d.f.

f (x) ¼ exp{u1(log x)3 þ u2(log x)2 þ u3 log xþ u4x� h}, 0 , x , 1, (4:67)

where exp(h) is the normalizing constant. Clearly, the two-parameter lognormal

distribution is obtained for u1 ¼ u4 ¼ 0: (Observe that the gamma distribution is

also a special case, arising for u1 ¼ u2 ¼ 0.)

Creedy, Lye, and Martin (1997) estimated this generalized lognormal distribution

for individual earnings from the 1987 U.S. Current Population Survey (March

Supplement), for which the model does about as well as a generalized gamma

distribution and much better than the standard gamma and lognormal distributions.

When applied to New Zealand wages and salaries for 1991, classified by age groups

and sex, the distribution performs again consistently better than the two-parameter

lognormal and about as well as the gamma distribution, in terms of chi-square
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criteria. However, in nine out of ten cases for males and in six out of ten cases for

females it is outperformed by a generalized gamma distribution with the same

number of parameters (Bakker and Creedy, 1997, 1998).

Saving (1965) used a SB-type distribution (Johnson, 1949; see also Section 2.4) as

a model for firm sizes that is a four-parameter lognormal-type distribution on a

bounded domain.

Two additional distributions closely related to the lognormal, the Benini and

Benktander type I distributions, will be discussed in Chapter 7.
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C H A P T E R F I V E

Gamma-type Size Distributions

For our purposes, gamma-type distributions comprise all distributions that are

members of the generalized gamma family introduced by Luigi Amoroso in the 1920s,

including the classical gamma and Weibull distributions and simple transformations

of them, such as inverted or exponentiated forms.

The literature dealing with these models is rather substantial, notably in

engineering and more recently in medical applications, and detailed accounts of the

gamma and Weibull distributions are, for instance, available in Chapters 17 and 21

of Johnson, Kotz, and Balakrishnan (1994). There is a book-length treatment of

estimation for the gamma distribution, written by Bowman and Shenton (1988).

Our exposition therefore focuses on the “size aspects” and log-gamma and log-

Gompertz distributions, two distributions whose applications (as of today) appear to

be mainly in connection with size phenomena.

5.1 GENERALIZED GAMMA DISTRIBUTION

In the American literature the generalized gamma distribution is most often referred

to as the Stacy (1962) distribution although by now it is acknowledged that

Amoroso’s (1924–1925) paper in Annali di Matematica was probably the first work

in which the generalized gamma distribution appeared. To this, we add the less

known fact that D’Addario in the 1930s dealt with this generalization of the gamma

distribution. In a report by A. C. Cohen (1969) entitled A Generalization of the

Weibull Distribution, this distribution was rediscovered again! It is not out of the

question that a more thorough search would locate a source for this distribution

during the years 1940–1960.
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5.1.1 Definition and Interrelations

The classical gamma distribution is defined by

f (z) ¼
1

b pG( p)
z p�1e�z=b, z . 0, (5:1)

where p, b . 0. If a power transformation X a, a . 0, of some random variable X

follows this distribution, the p.d.f. of X is

f (x) ¼
a

bapG( p)
xap�1e�(x=b)a

, x . 0: (5:2)

Here b ¼ b1=a is a scale and a, p are shape parameters. This was introduced by

Amoroso (1924–1925) as the family of generalized gamma distributions. Amoroso

originally considered a four-parameter variant defined by X � m, m [ IR, but we

shall confine ourselves to the three-parameter version (5.2). We use the notation

X � GG(a, b, p). It is sometimes convenient to allow for a , 0 in (5.2); one then

simply replaces a by jaj in the numerator. For clarity, we shall always refer to a

generalized gamma distribution as the distribution with the p.d.f. (5.2) and a . 0;

the variant with a , 0 will be called an inverse generalized gamma distribution and

denoted as InvGG(a, b, p).

There are a number of alternative parameterizations: Amoroso used (s, g, p) ;
(1=a, 1=b, p), Stacy (1962) employed (a, b, d) ; (a, b, ap), whereas Taguchi

(1980) suggested (a, b, h) ; (ap, b, 1=p). We shall use (5.2), which was

also employed by McDonald (1984) and Johnson, Kotz, and Balakrishnan (1994).

The generalized gamma distribution is a fairly flexible family of distributions; it

includes many distributions supported on the positive halfline as special or limiting

cases:

. The gamma distribution is obtained for a ¼ 1; hence, if X � GG(a, b, p), then

X 1=a � Ga(b, p). In particular, the chi-squared distribution with n degrees of

freedom is obtained for a ¼ 1 and p ¼ n=2.

. The inverse gamma (or Vinci) distribution is obtained for a ¼ �1.

. p ¼ 1, a . 0 yields the Weibull distribution.

. p ¼ 1, a , 0 yields the inverse Weibull distribution (to be called the log-

Gompertz distribution in this chapter).

. a ¼ p ¼ 1 (a ¼ �1, p ¼ 1) yields the (inverse) exponential distribution.

. a ¼ 2, p ¼ 1=2 yields the half-normal distribution. This caused Cammillieri

(1972) to refer to the generalized gamma distribution as the generalized

seminormal distribution. More generally, all positive even powers and all
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positive powers of the modulus of a normal random variable (with mean zero)

follow a generalized gamma distribution.

. As a! 0, p! 1, b! 1 but a2 ! 1=s 2 and bp1=a ! m, the distribution

tends to a lognormal LN(m, s 2).

. For a! 0, p! 1, with ap! r, r . 0, the distribution tends to a power

function distribution PF(r, b). Since the power function distribution is the inverse

Pareto distribution [see (3.38)], one directly determines that for a! 0, p!�1,

with ap!�r, the Pareto distribution Par(b, r) is also a limiting case.

Figure 5.1 summarizes the interrelations between the distributions that are

included in the present chapter.

We should note that the preceding list comprises several of the most popular

lifetime distributions. The generalized gamma distribution is also useful for

discriminating among these models.

5.1.2 The Generalized Gamma Distribution as an Income

Distribution

Esteban (1986) proposed characterizing income distributions in terms of their

income share elasticity. If j(x, xþ h) denotes the share of total income earned by

individuals with incomes in the interval [x, xþ h], we can write j(x, xþ h) ¼

Figure 1 Gamma-type distributions and their interrelations: generalized gamma distribution (GG), inverse

generalized gamma distribution (InvGG), gamma distribution (Ga), Weibull distribution (Wei), inverse

Weibull (¼ log-Gompertz) distribution (InvWei), inverse gamma distribution (InvGa), exponential

distribution (Exp), and inverse exponential distribution (InvExp).
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F(1)(xþ h)� F(1)(x) and define the elasticity h(x, f ) of this quantity

h(x, f ) ¼ lim
h!0

d log j(x, xþ h)

d log x
(5:3)

¼ lim
h!0

d log
Ð xþh

x
tf (t) dt

E(X )d log x
(5:4)

¼ lim
h!0

x(xþ h)f (xþ h)� x2f (x)

E(X )j(x, xþ h)
(5:5)

¼ 1þ
xf 0(x)

f (x)
: (5:6)

It indicates the rate of change for the first-moment distribution (the distribution of

income shares) at each income level. Since f is a density, the income share elasticity

characterizes an income distribution. It is therefore possible to characterize the

generalized gamma distribution in terms of h(x, f ): Suppose that, for a distribution

supported on (0, 1),

. limx!1 h(x, f ) ¼ �a, for some a . 0 (a type of weak Pareto law).

. There is at least one interior mode, that is, f 0(m) ¼ 0 for some m [ (0, 1).

. h(x, f ) exhibits a constant rate of decline, that is, either h0(x, f ) ¼ 0 or

d logh0(x, f )

d log x
¼ �(1þ 1)

for some 1 . �1.

Upon integration, the third assumption can be rephrased as requiring either

h(x, f ) ¼ �aþ
d

log x
, if 1 ¼ 0,

or

h(x, f ) ¼ �aþ
d

j1jx1
, if 1 = 0,

where a and d are constants of integration.

If we combine the first and third assumption, it follows that both a and 1 must be

positive. If there is to be a unique maximum m, we must further have h(m, f ) ¼ 1

and therefore

m ¼
d

(1þ a)1

� �1=1

:
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Hence, d . 0. A reparameterization yields the desired elasticity

h(x, f ) ¼ �aþ (1þ a)
x

m

� ��1
, a . 1, 1 . 0, m . 0: (5:7)

On the other hand, for the generalized gamma distribution (5.2) we have

h(x, f ) ¼ apþ a
x

b

� �a

: (5:8)

A direct comparison shows that (5.7) defines a generalized gamma distribution

with �1 ¼ a and a ¼ �ap, an inverse generalized gamma distribution in our

terminology.

This shows that the (inverse) generalized gamma distribution can be derived from three

salient features of an income distribution, all of which can be verified from empirical data.

5.1.3 Moments and Other Basic Properties

Like the c.d.f. of the standard gamma distribution (5.1) (see below), the c.d.f. of the

generalized gamma distribution can be expressed in terms of Kummer’s confluent

hypergeometric function

1F1(c1; c2; x) ¼
X1
n¼0

(c1)n

(c2)n

xn

n!
, (5:9)

where (c)n ¼ c(cþ 1)(cþ 2) � � � (cþ n� 1) is Pochhammer’s symbol, in the form

F(x) ¼
e�(x=b)a

(x=b)ap

G( pþ 1)
1F1 1; pþ 1;

x

b

� �a� �
, x � 0: (5:10)

Equivalently, it can be expressed in terms of an incomplete gamma function ratio

F(x) ¼
1

G( p)

ðz

0

t p�1e�tdt, x � 0, (5:11)

where z ¼ (x=b)a. Here g(n, z) ¼
Ð z

0
tn�1e�tdt is often called an incomplete gamma

function, although in the statistical literature this name is sometimes also used in

connection with (5.11).

The moments of the distribution (5.2) are given by

E(X k) ¼
bkG( pþ k=a)

G( p)
: (5:12)

Hence, the first moment is

E(X ) ¼
bG( pþ 1=a)

G( p)
(5:13)
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and the variance equals

var(X ) ¼ b2 G( pþ 2=a)G( p)� [G( pþ 1=a)]2

[G( p)]2

� �
: (5:14)

The expressions for the skewness and kurtosis coefficients are rather lengthy and

therefore not given here. It is however interesting that there is a value a ¼ a( p) for

which the shape factor
ffiffiffiffiffi
b1

p
¼ 0. For a , a( p),

ffiffiffiffiffi
b1

p
, 0; for a . a( p),

ffiffiffiffiffi
b1

p
. 0.

This property of the generalized gamma distribution is inherited by the Weibull

distribution discussed below. Figures 5.2 and 5.3 depict some generalized gamma

densities, including left-skewed examples.

As noted in the preceding chapter, the best known distribution that is not

determined by the sequence of its moments (despite all the moments being finite) is

the lognormal distribution. Pakes and Khattree (1992) showed that the generalized

gamma distribution provides a further example of a distribution possessing this

somewhat pathological and unexpected property. Specifically, the distribution is

determined by the moments only if a . 1
2
, whereas for a � 1

2
, any distribution with

p.d.f.

f (x){1� e sin(2papþ xa tan 2pa)} (5:15)

has the same moments for �1 � e , 1.

Figure 2 Generalized gamma densities: a ¼ 8, b ¼ 1; and p ¼ 0:25, 0:5, 1, 2, 4 (from left to right).
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The mode of the generalized gamma distribution occurs at

xmode ¼ b p�
1

a

� �1=a

, for ap . 1: (5:16)

Otherwise, the distribution is zeromodal with a pole at the origin if ap , 1.

The generalized gamma distribution allows for a wide array of shapes of the

hazard rate. The situation is best analyzed utilizing general results due to Glaser

(1980). He considered the reciprocal hazard rate

g(x) ¼
1

r(x)
¼

1� F(x)

f (x)

whose derivative is

g0(x) ¼ g(x)q(x)� 1,

where

q(x) ¼ �
f 0(x)

f (x)
:

The shape of r(x) now depends on the behavior of q 0. It is not difficult to see that

q 0(x) . 0 (q 0(x) , 0), for all x . 0, implies an increasing (decreasing) hazard rate.

Figure 3 Generalized gamma densities: p ¼ 4, b ¼ 1; and a ¼ 1, 1:5, 2, 2:5, 3 (from right to left).
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If q 0 changes signs, with q 0(x0) ¼ 0 for some x0 . 0, and q 0(x) , 0 for x , x0 and

q 0(x) . 0 for x . x0, we have an increasing hazard rate if limx!0 f (x) ¼ 0 and aS
-shaped hazard rate if limx!0 f (x) ¼ 1. Similarly, we obtain decreasing andT
-shaped hazard rates if the inequalities in the preceding conditions are reversed.

For the generalized gamma distribution the function q is

q(x) ¼
1� ap

x
þ

axa�1

ba :

Hence,

q 0(x) ¼
xa[a(a� 1)]þ (ap� 1)ba

x2ba :

This shows that the overall shape of the hazard rate ultimately depends on the signs

of a(a� 1) and ap� 1. The salient features now follow easily from the preceding

conditions; Table 5.1 summarizes the results.

A closer look reveals that
S

- and
T

-shaped hazard rates are only possible if

neither a nor p equals 1; hence, these cases cannot occur with the gamma or Weibull

distributions.

5.1.4 Lorenz Curve and Inequality Measures

The quantile function of the generalized gamma distribution is not available in

closed form; hence, we must use the representation of the Lorenz curve in terms of

the first moment distribution. From Butler and McDonald (1989) we know that the

kth moment distribution is

F(k)(x; a, b, p) ¼ F x; a, b, pþ
k

a

� �
, x � 0, (5:17)

and therefore of the same form as the underlying distribution. Utilizing (2.6), we obtain

{[u, L(u)]} ¼ F(x; a, b, p), F x; a, b, pþ
1

a

� �� �
j x [ (0, 1)

� �
: (5:18)

Table 5.1 Hazard Rates of Generalized Gamma Distributions

Sign of a(a 2 1) Sign of ap 2 1 Shape of r(x)

2 2 decreasing

2 þ
T

-shaped

þ 2
S

-shaped

þ þ increasing

Source: Glaser (1980), McDonald and Richards (1987).
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Regarding the Lorenz ordering, Taillie (1981) asserted (without detailed derivation)

the result

X1� LX2() a1 � a2 and a1p1 � a2p2: (5:19)

A detailed proof using a density crossing argument was later provided by Wilfling

(1996a).

For the Gini coefficient McDonald (1984) derived the expression

G ¼
1

22pþ1=aB( p, pþ 1=a)

1

p

� �
2F1 1, 2pþ

1

a
; pþ 1;

1

2

� ��

�
1

pþ 1=a

� �
2F1 1, 2pþ

1

a
; pþ 1þ

1

a
;

1

2

� ��
: (5:20)

Special cases of this result were already known to Amoroso (1924–1925).

5.1.5 A Compound Generalized Gamma Distribution

Starting from (5.2), compound gamma distributions can be constructed by assigning

(joint) distributions to the parameters a, b, p. If the parameter b itself follows a

three-parameter inverse generalized gamma distribution (with the same parameter a

as the structural distribution),

f (b) ¼
jaj

G(q)
baq�1e�b

a

(a , 0),

the resulting compound distribution has the p.d.f. (Malik, 1967; Ahuja, 1969)

f (x) ¼
axap�1

B( p, q)(1þ xa) pþq , x . 0, (5:21)

which is the density of a power transformation of a random variable following a

Pearson type VI distribution (or beta distribution of the second kind). This family

will be studied in greater detail in the following chapter; for the moment it should be

noted that equation (5.21) provides the link between Chapters 5 and 6.

5.1.6 Estimation

In early work with the generalized gamma distribution, there were significant

problems in developing inference procedures. The essential difficulty is the esti-

mation of the additional (compared to the classical gamma distribution) shape

parameter a. In fact, if a is known, one can apply the transformation X a and use the
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methods appropriate to gamma distributions (as described in, e.g., Bowman and

Shenton, 1988).

Much of the difficulty with the model arises because distributions with rather

different sets of parameters can look very much alike. For example, the work of

Johnson and Kotz (1972) showed that for certain values a , 0 (an inverse generalized

gamma distribution in our terminology) two generalized gamma distributions exist for

certain constellations of the shape factors
ffiffiffiffiffi
b1

p
and b2. Consequently, it will not be

possible to estimate such distributions by moments alone.

Maximum likelihood estimation is also not straightforward. Unfortunately, the

likelihood function is in general not unimodal, nor does it necessarily exhibit a

maximum. There are two main approaches for obtaining MLEs. The first consists of the

direct maximization of the likelihood; see Lawless (1980) who used a parameterization

of the distribution of Y ¼ log X proposed by Prentice (1974). Here the likelihood is

maximized over a subset of the parameters, with the remaining parameters temporarily

held fixed at some initial values. This is followed by a heuristic interpolation scheme that

attempts to refine further the values of the fixed parameters. This approach is not very

efficient computationally and guarantees at most a local maximum of the likelihood

function. It also relies to some extent on the judgment of the statistician when

determining appropriate values for the parameters that are held fixed.

The second approach, proposed by Hager and Bain (1970), suggests solving a

scalar nonlinear equation derived from the likelihood equations

�np̂pþ
Xn

i¼1

Xi

b̂b

 !âa

¼ 0, (5:22)

n

âa
þ p̂p

Xn

i¼1

log
Xi

b̂b

 !
�
Xn

i¼1

Xi

b̂b

 !âa

log
Xi

b̂b

 !
¼ 0, (5:23)

�nc(p̂p)þ âa
Xn

i¼1

Xi

b̂b

 !
¼ 0: (5:24)

The first equation (5.22) yields an expression for the scale parameter in terms of

the shape parameters, b̂b ; b̂b(âa, p̂p) ¼ [
Pn

i¼1 X âa
i =(np̂p)]1=âa. Upon substituting this

expression into the second equation (5.23), we get

p̂p ; p̂p(âa) ¼ âa
Xn

i¼1

log Xi

n

 !
�

Pn
i¼1 X âa

i log Xi


 �
Pn

i¼1 X âa
i


 �
" #( )�1

: (5:25)

Substituting this into the remaining equation (5.24) gives us an equation in âa

f(âa) :¼ �c( p̂p)þ
âa

n

Xn

i¼1

log Xi � log
Xn

i¼1

X âa
i

 !
þ log(np̂p) ¼ 0, (5:26)
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where p̂p is determined by (5.25). When trying to solve the preceding equations, for

example, Hager and Bain (1970) reported persistent divergence using an unstabilized

Newton algorithm.

Wingo (1987b) argued that these problems stem from an inappropriate use of zero-

finding algorithms striving for fast local convergence that often diverge upon application

to highly nonlinear problems such as the present one. Also, (5.26) is defined only for

a . 0; hence, any iterative numerical procedure must assure that only positive iterates

are obtained. Wingo (1987a) showed that âa ¼ 0 is a double root of (5.26), which

explains to some extent the numerical problems reported in the earlier literature.

Wingo recommended (1987b) a derivative-free numerical root isolation method

developed by Jones, Waller, and Feldman (1978) that assures globally optimal

maximum likelihood estimators for the parameters. The procedure is able to locate

all of the zeros of the likelihood equations or indicate that none exist. The method

determines all of the real zeros of f(âa)=âa2 ¼ 0 on a sufficiently large interval [f(âa)

being defined in (5.26)], if any, and obtains estimates of p and b from (5.25) and

(5.22). For the resulting sets of parameter estimates, the likelihoods are compared

and the parameter set with the largest likelihood is selected. Wingo applied this

method to three data sets containing zero, one, and two solutions of f(âa)=âa2 ¼ 0,

respectively. [In Wingo (1987a) it is also conjectured, based on extensive

computational tests, that f(âa) ¼ 0 never has more than two positive zeros.]

The Fisher information on u ¼ (a, b, p)` is given by

I (u) ¼

1

a2
{1þ c( p)[2þ c( p)]þ pc 0( p)} �

1þ pc( p)

b
�
c( p)

a

�
1þ pc( p)

b

a2p

b2

1

b

�
c( p)

a

1

b
c0( p)

0
BBBBBB@

1
CCCCCCA

, (5:27)

from which the asymptotic covariance matrix of
ffiffiffi
n
p

(âa, b̂b, p̂p)` can be obtained by

inversion.

In our context, Kloek and van Dijk (1978) reported that for their data the

asymptotic correlation matrix of generalized gamma parameter estimates is nearly

singular, with highly correlated estimates âa and p̂p. This once again underlines the

problems associated with parameter estimation in connection with this distribution.

5.1.7 Empirical Results

Incomes and Wealth

Amoroso (1924–1925) fit a four-parameter generalized gamma distribution to

Prussian incomes of 1912. Some 50 years later Bartels (1977) applied the three-

parameter version to 1969 fiscal incomes for three regions in the Netherlands and

found that it does better than the gamma and Weibull special cases, but not as good

as the log-logistic and Champernowne distributions.
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Analyzing 1973 Dutch earnings, Kloek and van Dijk (1978) determined the

generalized gamma distribution to be superior to the gamma and lognormal models

but also reported on numerical problems. They preferred other three-parameter

models such as the Champernowne and log-t distributions.

McDonald (1984) estimated the generalized gamma distribution for 1970,

1975, and 1980 U.S. family incomes. It outperforms eight other distributions and

is inferior to only the GB2 and Singh–Maddala distributions (see the following

chapter).

Atoda, Suruga, and Tachibanaki (1988) considered grouped data from the

Japanese Income Redistribution Survey for 1975, stratified by occupation. Among

the distributions they employed, the Singh–Maddala appears to be the most

appropriate for the majority of strata. It is noteworthy that when a model is selected

via information criteria such as the AIC, the generalized gamma is always inferior to

one of its special cases, the Weibull and gamma distributions. In a later study

employing individual data from the same source, the generalized gamma was

sometimes the best distribution in terms of likelihood but only marginally better than

its Weibull and gamma special cases (Tachibanaki, Suruga, and Atoda, 1997).

In a comprehensive study employing 15 income distribution models of the beta

and gamma type, Bordley, McDonald, and Mantrala (1996) fit the generalized

gamma distribution to U.S. family incomes for 1970, 1975, 1980, 1985, and 1990. It

is outperformed by the (G)B2, (G)B1, Dagum, and Singh–Maddala distributions—

see the following chapter—but does significantly better than all two-parameter

models considered.

In an application using 1984–1993 German household incomes, the generalized

gamma distribution is revealed as inappropriate model for these data (Brachmann,

Stich, and Trede, 1996). Specifically, it does not provide an improvement over the

two-parameter gamma distribution. The data seem to require a more flexible model

such as the GB2 and Singh–Maddala distribution.

Actuarial Losses

In the actuarial literature, Cummins et al. (1990) considered 16 loss distributions

when modeling the Cummins and Freifelder (1978) fire loss data. They found that

an inverse generalized gamma provides an excellent fit but contains too many

parameters. It emerges that one- or two-parameter special cases such as the inverse

gamma, inverse Weibull, and inverse exponential distributions are already

sufficiently flexible. For the Cummins and Freifelder (1978) severity data the

Singh–Maddala distribution is preferable.

5.1.8 Related Distributions

A “quadratic elasticity” distribution with p.d.f.

f (x) ¼
1

d( p, b, g)
x p�1e�bx�g2x2

, x . 0, (5:28)
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was considered by Bordley, McDonald, and Mantrala (1996). Here the normalizing

constant is given by

d( p, b, g) ¼ (2b2)�p=2G( p)eb
2=(8g 2)D�p

bffiffiffi
2
p

g

� �
, (5:29)

where D�p is a parabolic cylinder function. (An alternative but more lengthy

expression occurs in terms of the confluent hypergeometric function 1F1.)

The quadratic elasticity distribution was originally motivated by Bordley and

McDonald (1993) in connection with the estimation of income elasticity in an

aggregate demand model for specific car lines. The gamma distribution is associated

with a linear income share elasticity [see (5.8)], whereas the data considered by

Bordley and McDonald showed signs of being slightly quadratic. The income share

elasticity of the new distribution is

h(x, f ) ¼ ( p� 1)� bx� 2g 2x2: (5:30)

Clearly, the gamma distribution is the special case where g ¼ 0 and a generalized

gamma with a ¼ 2 is obtained for b ¼ 0. The moments of (5.28) are given by

E(X k) ¼
d( pþ k, b, g)

d( p, b, g)
, (5:31)

where d is defined in (5.29).

This model was fitted to U.S. family incomes for 1970, 1975, 1980, 1985, and

1990 by Bordley, McDonald, and Mantrala (1996); the performance was found to be

intermediate between gamma and generalized gamma but inferior to beta-type

distributions with a comparable number of parameters.

A further generalization along these lines is a member of the so-called

generalized exponential family used by Bakker and Creedy (1997, 2000) and

Creedy, Lye, and Martin (1997). Its p.d.f. is given by

f (x) ¼ exp u1 log xþ u2xþ u3x2 þ u4x3 � h
� 


, x � 0: (5:32)

Here exp(h), is the normalizing constant. A generalized gamma distribution with

a ¼ 2 [using the notation of (5.2)] is obtained for u2 ¼ 0 ¼ u4 and the quadratic

elasticity distribution (5.28) is the special case where u4 ¼ 0. An important feature

of this model is that it can accommodate multimodality.

Creedy, Lye, and Martin (1997) estimated this generalized gamma-type

distribution for individual earnings from the 1987 U.S. Current Population Survey

(March Supplement), for which it does about as well as a generalized lognormal

distribution and considerably better than the standard gamma and lognormal

distributions. When fit to New Zealand wages and salaries for 1991, classified by age

groups and sex, the distribution is superior to generalized lognormal, lognormal, and

gamma fittings in nine of ten cases for males and in six of ten cases for females, in

terms of chi-square criteria (Bakker and Creedy, 1997, 1998). In a further application
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of this model to male individual incomes (before tax, but including transfer

payments) from the New Zealand Household Expenditure Surveys for each year over

the period 1985–1994, Bakker and Creedy (2000) found the coefficient on x3 to be

statistically insignificant and therefore confined themselves to the special case where

u4 ¼ 0, which is the quadratic elasticity model (5.28). Their data exhibit bimodality

that they attribute to the inclusion of transfer payments in their measure of income.

Following earlier work by, for example, Metcalf (1969) (mentioned in the preceding

chapter) they investigated how macroeconomic variables influence the parameters of

distribution over time. It emerges that the rate of unemployment is the primary

influence on the shape of the distribution.

5.2 GAMMA DISTRIBUTION

The gamma (more precisely, the Pearson type III) distribution is certainly among the

five most popular distributions in applied statistical work when unimodal and

positive data are available. In economic and engineering applications it has two

rivals—lognormal and Weibull. It is hard to state categorically which one is the

frontrunner. Lancaster (1966) asserted that both Laplace (in the 1836 third edition of

his Théorie analytique des probabilités) and Bienaymé in 1838 (in his Mémoires de

l’Academie de Sciences de l’Institute de France) obtained the gamma distribution.

However, these references pertain to normal sampling theory and therefore

essentially to the history of x 2 distributions. For a gamma distribution with a general

(i.e., not limited to half-integers) shape parameter, an early reference predating

Pearson’s (1895) seminal work on asymmetric curves may be attributed to De Forest

(1882–1883), as pointed out by Stigler (1978).

Here we shall briefly sketch the basic properties of the gamma distribution and

concentrate on aspects more closely related to size and income distributions.

5.2.1 Definition, History, and Basic Properties

The pioneering work marking the initial use of the gamma distribution as an income

distribution is due to the French statistician Lucien March, who in 1898 fit

the gamma distribution to various French, German, and U.S. earnings distributions.

March was inspired by Pearson’s work on asymmetric curves. As mentioned above,

some 25 years later Amoroso in 1924 introduced a generalized gamma distribution,

and another 50 years later the standard gamma distribution resurfaced as a size

distribution almost simultaneously but independently in the cybernetics (Peterson

and von Foerster, 1971) and econometrics (Salem and Mount, 1974) literatures.

The p.d.f. of the gamma distribution is

f (x) ¼
1

b pG( p)
x p�1e�x=b, x . 0, (5:33)

where p, b . 0, with p being a shape and b a scale parameter.
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As mentioned in the preceding section, the gamma distribution includes the

exponential (for p ¼ 1) and chi-square distributions (for p ¼ n=2, n an integer) as

special cases.

From (5.12), the moments of the gamma distribution are given by

E(X k ) ¼ bk G( pþ k)

G( p)
: (5:34)

Hence, the mean is

E(X ) ¼ bp, (5:35)

and the variance equals

var(X ) ¼ b2p: (5:36)

The coefficient of variation is therefore of the simple form

CV ¼
1ffiffiffi
p
p : (5:37)

The shape factors are

ffiffiffiffiffi
b1

p
¼

2ffiffiffi
p
p (5:38)

and

b2 ¼ 3þ
6

p
: (5:39)

Hence, in the gamma case we have the relation

ffiffiffiffiffi
b1

p
¼ 2 � CV: (5:40)

The mode is at b( p� 1), for p . 1, and at zero otherwise.

A basic property of gamma variables is their closure under addition: Suppose that

Xi � Ga( pi b), i ¼ 1, 2, are independent. Then

X1 þ X2 � Ga( p1 þ p2, b): (5:41)

The mean excess function is not available in simple closed form; we have the

expansion

e(x) ¼ 1þ
p� 1

x
þ

( p� 1)( p� 2)

x2
þ O(x�3), (5:42)
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which shows that e(x) eventually decreases for large x for p . 1 and increases

for p , 1.

Similarly, the hazard rate is

r(x) ¼ 1þ
p� 1

x
þ

( p� 1)( p� 2)

x2
þ O(x�3)

� ��1

, (5:43)

which is an increasing function for large x for p . 1 and a decreasing function

for p , 1.

5.2.2 The Angle Process

In a series of papers in the sociological literature, Angle (1986a,b, 1990, 1992,

1993a, 2000) discussed a stochastic model whose long-term wealth distribution

appears to be well approximated by a gamma distribution.

His generating mechanism is motivated by the surplus theory of social

stratification from sociology and anthropology (e.g., Lenski, 1966) that encompasses

two concepts of wealth: (1) subsistence wealth, which is the wealth necessary to

keep producers of wealth alive and to cover the long-term costs of production, and

(2) surplus wealth, which is the difference between subsistence wealth and total

wealth (net product). The central concept of this theory, inequality resulting from

contagious competition, is perhaps as old as the adage “the rich get richer, the poor

get poorer.”

We confine ourselves here to the perhaps most elementary version of the surplus

theory that may be described by the following propositions:

1. When people are able to produce a surplus, some of it will become fugitive

and leave the possession of its producers.

2. Wealth confers, on those who possess it, the ability to extract wealth from

others. Each person’s ability to do this in a general competition for surplus

wealth depends on his or her own surplus wealth; specifically, the rich tend to

take the surplus away from the poor.

Angle’s inequality process formalizes these propositions in what is known in

mathematical physics as an interacting particle system with binary interactions.

(Binary interactions are employed because no others are specified by the surplus

theory.) The process describes a competition between random pairs of individuals

for each other’s wealth in which the richer individual has a fixed probability p of

winning (:5 , p , 1). Also, the loser in a random encounter loses a fixed proportion

v of wealth (0 , v , 1). v and p are the parameters of the process.

The transition equations for the wealth of a random pair of individuals i, j are

Xi,t ¼ Xi,t�1 þ DtvXj,t�1 � (1� Dt)vXi,t�1, (5:44)

Xj,t ¼ Xj,t�1 þ (1� Dt)vXi,t�1 � DtvXj,t�1, (5:45)
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where Xi,t is i’s surplus wealth after an encounter with j, Xi,t�1 is i’s surplus wealth

before the encounter, and Dt is a sequence of identically distributed Bernoulli

variables with P(Dt ¼ 1) ¼ p.

Proposition 1 states only that surplus wealth will be fugitive in encounters

between members of a population and is implemented in (5.44) and (5.45).

Proposition 2 states that people with greater surplus wealth will tend to win

encounters. This can be implemented by specifying Dt to be

Dt ¼
1 with probability p, if Xi,t�1 � Xj,t�1,

0 with probability 1� p, if Xi,t�1 , Xj,t�1,

�
(5:46)

with :5 , p , 1.

There are several generalizations of this basic mechanism: Angle (1990, 1992)

introduced coalitions among the wealth holders, whereas in 1999 he allowed for random

shares of lost wealth v. Angle found, by means of extensive simulation studies, that all

these variants of the inequality process generate income or wealth distributions that are

well approximated by gamma distributions, although a rigorous proof of this fact

appears to be unavailable at present. He further conjectured (1999) that the shape

parameter p of this approximating gamma distribution is related to the parameters of the

process as p ¼ (1� v)=v. No doubt the Angle process deserves further scrutiny.

5.2.3 Characterizations

A characterization of the gamma distributions in terms of maximum entropy among

all distributions supported on [0, 1) is as follows: If both the arithmetic and

geometric means are prescribed, the maximum entropy p.d.f. is the gamma density

(Peterson and von Foerster, 1971; see also Kapur, 1989, pp. 56–57).

Another useful characterization occurs by the following property: If X1 and X2 are

independent positive random variables and

X1 þ X2 and
X1

X1 þ X2

are also independent, then each Xi is gamma with a common b but possibly different

p. This characterization is due to Lukacs (1965) and has been extended by Marsaglia

(1989) relaxing the positivity condition.

In Chapter 2 we saw that the coefficient of variation is, up to a monotonic

transformation, a member of the family of generalized entropy measures of

inequality. A characterization of the gamma distribution in terms of the (sample)

coefficient of variation should therefore be of special interest in our context. Hwang

and Hu (1999) showed that if X1, . . . , Xn (n � 3) are i.i.d. random variables

possessing a density, the independence of the sample mean �XX n and the sample

coefficient of variation CVn ¼ Sn= �XX n characterizes the gamma distribution. This

result can be refined by replacing the sample standard deviation Sn in the numerator

of CVn with other measures of dispersion. Specifically, we may use Gini’s mean
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difference Dn ¼
Pn

i¼1

Pn
j¼1 jXi � Xjj=[n(n� 1)] and obtain that independence of �XX n

and Dn= �XX n characterizes the gamma distribution under the previously stated

assumptions (Hwang and Hu, 2000). In our context the latter result is probably best

remembered as stating that independence of the sample mean and the sample Gini

index Gn characterizes the gamma distribution, since one of the many

representations of this inequality measure is Gn ¼ Dn=(2 �XX n).

5.2.4 Lorenz Curve and Inequality Measures

Specializing from (5.17), we see that the kth moment distribution is given by

F(k)(x; b, p) ¼ F(x; b, pþ k), x . 0: (5:47)

Hence the gamma distribution provides a further example of a distribution that is

closed with respect to the formation of moment distributions. This yields the

parametric expression for the Lorenz curve

{[u, L(u)]} ¼ {[F(x; b, p), F(x; b, pþ 1)]jx [ (0, 1)}: (5:48)

From (5.19) moreover we get

X1 �L X2() p1 � p2: (5:49)

Hence, the Lorenz order is linear within the family of two-parameter gamma

distributions.

Expressions for inequality measures are not as cumbersome as those of the

generalized gamma distribution. Specifically, the Gini coefficient is given by

(McDonald and Jensen, 1979)

G ¼
G( pþ 1=2)

G( pþ 1)
ffiffiffiffi
p
p : (5:50)

The Pietra coefficient can be written in the two forms (McDonald and Jensen,

1979; Pham and Turkkan, 1994)

P ¼
p

e

� �p 1

G( pþ 2)
1 F1(2; pþ 2; p) ¼

p

e

� �p 1

G( pþ 1)
, (5:51)

where 1F1 is the confluent hypergeometric function.

Theil’s entropy measure T1 is given by (Salem and Mount, 1974)

T1 ¼
1

p
þ c( p)� log p: (5:52)

As was to be expected from (5.49), all three coefficients are decreasing in p.
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5.2.5 Estimation

Regarding estimation, we shall again be brief since detailed accounts for the

estimation of two- and three-parameter gamma distributions are available in

Bowman and Shenton (1988) and Cohen and Whitten (1988), among other sources.

The likelihood equations for a simple random sample of size n are

Xn

i¼1

log Xi � n log b̂b� nc(p̂p) ¼ 0, (5:53)

Xn

i¼1

Xi � np̂pb̂b ¼ 0: (5:54)

These can be solved iteratively, and indeed procedures for estimation in the gamma

distribution are nowadays available in many statistical software packages.

The Fisher information on u ¼ (b, p)` is given by

I (u) ¼

p

b2

1

b

1

b
c 0( p)

2
664

3
775, (5:55)

from which the asymptotic covariance matrix of
ffiffiffi
n
p

(b̂b, p̂p)` can be obtained by

inversion or direct computation.

Equation (5.53) shows that the score function of the gamma distribution is

unbounded, implying that the MLE is very sensitive to outliers and other aberrant

observations. Victoria-Feser and Ronchetti (1994) and Cowell and Victoria-Feser

(1996) demonstrated by simulation for complete as well as truncated data that

parameter estimates and implied inequality measures for a gamma population can

indeed be severely biased when a nonrobust estimator such as the MLE is used.

They suggested employing robust methods such as an optimal bias-robust estimator

(OBRE) (see Section 3.6 for an outline of the basic ideas behind this estimator). If

only grouped data are available, Victoria-Feser and Ronchetti (1997) proposed a type

of minimum Hellinger distance estimator that enjoys better robustness properties

than the classical MLEs for grouped data.

McDonald and Jensen (1979) studied the sampling behavior of method of

moment estimators and MLEs of the Theil, Gini, and Pietra coefficients. They noted

that the knowledge of the sample arithmetic mean, geometric mean, and sample

variance are sufficient to calculate both the MLEs and method of moment estimators

of the Gini, Pietra, and Theil coefficients of inequality and provided a table that

facilitates these calculations.

The optimal grouping of data from a gamma population was considered by

Schader and Schmid (1986). The situation is somewhat more difficult than in the

Pareto or lognormal cases (see Sections 3.6 and 4.6, respectively), since the optimal

class boundaries now depend on the shape parameter p and must therefore be
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derived separately for each value of this parameter. Schader and Schmid reported

that there is always a unique set of optimal class boundaries in the gamma case.

Table 5.2 provides these boundaries z�1, . . . , z�k��1 based on the least number of

classes k� for which the loss of information is less than or equal to a given value of

g, for g ¼ 0:1, 0:05, 0:025, and 0:01 and for p ¼ 0:5, 1, 2 and b ¼ 1. (See Section

3.6 for further details about this problem.)

From the table, optimal class boundaries a�j for a gamma distribution with

parameters p and b can be obtained upon setting a�j ¼ bz�j .

5.2.6 Empirical Results

Incomes and Wealth

March (1898) in his pioneering contribution fit the gamma model to wage

distributions for France, Germany, and the United States, stratified by occupation.

Salem and Mount (1974) applied the gamma distribution to U.S. pre-tax personal

incomes for 1960–1969, concluding that the gamma provides a better fit than the

lognormal distribution. Specifically, the Gini coefficients implied by the estimated

gamma distributions mostly fall within the feasible bounds defined by Gastwirth

(1972), whereas those implied by lognormal fittings do not.

Kloek and van Dijk (1977) employed the gamma distribution when analyzing

data originating from the Australian survey of consumer expenditures and finances

Table 5.2 Optimal Class Boundaries for Gamma Data

p g k� z�1; . . . ; z�k��1

0.5 0.1 5 0.0005 0.0127 0.1002 0.5119

0.05 7 0.0001 0.0021 0.0161 0.0742 0.2603 0.8293

0.025 10 0.0000 0.0003 0.0023 0.0102 0.0342 0.0946 0.2313 0.5313

1.2486

0.01 16 0.0000 0.0000 0.0002 0.0007 0.0024 0.0065 0.0153 0.0325

0.0638 0.1179 0.2083 0.3574 0.6057 1.0401 1.9170

1 0.1 5 0.0351 0.1792 0.5416 1.4073

0.05 7 0.0143 0.0712 0.2036 0.4607 0.9398 1.9215

0.025 10 0.0054 0.0265 0.0742 0.1611 0.3041 0.5289 0.8804 1.4543

2.5316

0.01 17 0.0012 0.0059 0.0164 0.0350 0.0643 0.1070 0.1665 0.2468

0.3531 0.4923 0.6744 0.9148 1.2370 1.6872 2.3615 3.5437

2 0.1 5 0.3479 0.8515 1.6372 3.0202

0.05 7 0.2174 0.5113 0.9195 1.4884 2.3246 3.7469

0.025 10 0.1314 0.3017 0.5241 0.8996 1.1640 1.6233 2.2347 3.1071

4.5599

0.01 17 0.0615 0.1386 0.2350 0.3505 0.4859 0.6428 0.8238 1.0326

1.2746 1.5574 1.8920 2.2956 2.7965 3.4460 4.3535 5.8377

Source: Schader and Schmid (1986).
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for the period 1966–1968 (see Podder, 1972). Here the fit is not impressive, the

distribution being outperformed by the Champernowne, log-t, and lognormal

distributions, two of which have one additional parameter. For 1973 Dutch earnings

(Kloek and van Dijk, 1978), the distribution does also not do well, notably in the

middle income range, and considerable improvements are possible utilizing three-

and four-parameter models such as the Champernowne and log-t distributions.

Suruga (1982) considered Japanese incomes for 1963–1971. Here the gamma

distribution is outperformed by the Singh–Maddala, Fisk, and beta distributions but does

somewhat better than the lognormal and one-parameter Pareto (II) distribution. In an

extension of Suruga’s work, Atoda, Suruga, and Tachibanaki (1988) considered grouped

data from the Japanese Income Redistribution Survey for 1975, stratified by occupation.

Although among the distributions they employed the Singh–Maddala appears to be the

most appropriate for the majority of strata, it is remarkable that when a model is selected

via information criteria (such as the AIC), the gamma distribution is often preferred over

the more flexible generalized gamma distribution. In a later study employing individual

data from the same source the gamma is again often indistinguishable from the

generalized gamma distribution (Tachibanaki, Suruga, and Atoda, 1997).

Dagum (1983) fit a gamma distribution to 1978 U.S. family incomes. The (four-

and three-parameter) Dagum type III and type I as well as the Singh–Maddala

distribution perform considerably better; however, the gamma distribution outper-

forms the lognormal by wide margins.

Ransom and Cramer (1983) considered a measurement error model, viewing

observed income as the sum of a systematic component and an independent N(0, s 2)

error term. For competing models with systematic components following Pareto or

lognormal distributions, they found that the gamma variant is rejected by chi-square

goodness-of-fit tests for U.S. family incomes for 1960 and 1969.

McDonald (1984) estimated the gamma model for 1970, 1975, and 1980

U.S. family incomes. The distribution is outperformed by three- and four-parameter

families such as the (generalized) beta, generalized gamma, and Singh–Maddala

distributions, but is superior to all other two-parameter models, notably the lognormal

and Weibull distributions (an exception being the 1980 data for which the Weibull

does somewhat better). Also, the improvements achieved by employing the

generalized gamma are quite small for the 1970 and 1975 data.

Bhattacharjee and Krishnaji (1985) found that the landholdings in 17 Indian

states for 1961–1962 appear to be more adequately approximated by a gamma

distribution with a decreasing density ( p , 1) than by a lognormal distribution. A

log-gamma distribution provides a comparable fit.

Bordley and McDonald (1993) employed the gamma distribution for the

estimation of the income elasticity in an aggregate demand model for automotive

data. It turns out that the income-elasticity estimates provided by the gamma

are fairly similar to those associated with distributions providing good approxi-

mations to U.S. income distribution, such as the generalized beta distribution of the

second kind (GB2; see Chapter 6).

Angle (1993b, 1996) found that personal income data from the 1980–1987 U.S.

Current Population Survey as well as from the Luxembourg Income Study (for eight
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countries in the 1980s) stratified by levels of education are well approximated by

gamma distributions, with shape parameters that moreover increase with educational

attainment. Somewhat surprisingly, it turns out that the aggregate distribution can

also be fitted by a gamma distribution, although finite mixtures of gamma

distributions are known in general not to follow this distribution.

Victoria-Feser and Ronchetti (1994) fit a gamma distribution to incomes of

households on income support using the 1979 UK Family Expenditure Survey. They

employed the MLE as well as an optimal B-robust estimator (OBRE) (see above) and

concluded that the latter provides a better fit because it gives more importance to the

majority of data.

In the study of Brachmann, Stich, and Trede (1996) utilizing 1984–1993 German

household incomes, the gamma distribution emerges as the best two-parameter

model. However, only the more flexible GB2 and Singh–Maddala distributions

seem to be appropriate for these data.

Bordley, McDonald, and Mantrala (1996) fit the gamma distribution to U.S.

family incomes for 1970, 1975, 1980, 1985, and 1990. Although it is outperformed

by all three- and four-parameter models, notably the GB2, Dagum, and Singh–

Maddala distributions, it turns out to be the best two-parameter model except for

1980 and 1985, where the Weibull distribution does equally well.

Creedy, Lye, and Martin (1997) estimated the gamma distribution for individual

earnings from the 1987 U.S. Current Population Survey (March Supplement). The

performance is comparable to, although slightly worse than, the one provided by a

generalized gamma and a generalized lognormal distribution. The standard

lognormal distribution does much worse for these data.

From these studies it would seem that the gamma distribution is perhaps the best

two-parameter model for approximating the size distribution of personal income.

Actuarial Losses

In the actuarial literature Ramlau-Hansen (1988) fit a gamma distribution to

windstorm losses for a portfolio of single-family houses and dwellings in Denmark

for the period 1977–1981. However, there are problems with his choice because the

empirical skewness and coefficient of variation are very close, whereas for a gamma

distribution the former necessarily equals twice the latter [see (5.40)].

Cummins et al. (1990), who employed 16 loss distributions when modeling

the Cummins and Freifelder (1978) fire loss data, found the gamma distribution to be

among the worst distributions they considered. Specifically, the data seem to require

a model with much heavier tails, such as an inverse gamma distribution.

5.3 LOG-GAMMA DISTRIBUTION

If there is a lognormal distribution that enjoys wide applicability, why should we

deprive ourselves of a log-gamma distribution? A logarithmic transform is often a

sensible operation to smooth the data, especially if we confine ourselves to the

interval (1, 1).
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5.3.1 Definition and Basic Properties

If Y follows a two-parameter gamma distribution, the random variable X ¼ exp Y is

said to possess a log-gamma distribution. The density of X is therefore

f (x) ¼
b p

G( p)
x�b�1{log (x)}p�1, 1 � x, (5:56)

where p . 0, b . 0. Here both parameters b, p are shape parameters. Many

distributional properties of this model are given in Taguchi, Sakurai, and Nakajima

(1993), who also discuss a bivariate form. [The parameterization (5.56) differs

slightly from the one used in connection with the gamma distribution in that,

compared to (5.33), we use 1=b instead of b. (5.56) appears to be the standard

parameterization of this distribution in the literature.]

Despite its genesis, the log-gamma distribution is perhaps best considered a

generalized Pareto distribution since the classical Pareto type I with a unit scale is

the special case where p ¼ 1. (The parameter b now plays the role of Pareto’s a.)

Although the Pareto type I has a decreasing density, the log-gamma is more flexible

in that it allows for unimodal densities. Specifically, the density is decreasing for

p � 1, whereas for p . 1 an interior mode exists. The parameter b determines the

shape in the upper income range, whereas p governs the lower tail.

In order to enhance the flexibility of this distribution, it is sometimes desirable to

introduce a scale parameter, yielding

f (x) ¼
b pbb

G( p)
x�b�1 log

x

b

� �n op�1

, 0 , b � x, (5:57)

where p . 0, b . 0, and b . 0 is the scale. A further generalization along the lines

of the generalized gamma distribution is the generalized log-gamma—or rather log-

“generalized gamma”—distribution given by the p.d.f. (Taguchi, Sakurai, and

Nakajima, 1993)

f (x) ¼
abap

xG( p)
log

x

b

n oap�1

exp � b log
x

b

� �ah i
, 0 , b � x, (5:58)

where a, b, p, b . 0. The logarithm of a random variable with this density follows a

four-parameter generalized gamma distribution. In our presentation of the basic

properties of the log-gamma distribution, we shall confine ourselves to the two-

parameter case (5.56).

The moments exist for k , b, in which case they are given by

E(X k) ¼
b

b� k

� �p

: (5:59)
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Note that the latter expression does not contain any terms involving the gamma

function. This reflects the fact that the log-gamma distribution is closely related to

the classical Pareto distribution, whose moments are obtained for p ¼ 1.

From (5.59) we get

E(X ) ¼
b

b� 1

� �p

(5:60)

and

var(X ) ¼
b

b� 2

� �p

�
b

b� 1

� �2p

, b . 2: (5:61)

The mode and geometric mean are given by

xmode ¼ exp
p� 1

bþ 1

� �
(5:62)

and

xgeo ¼ exp
p

b

� �
, (5:63)

respectively. We see that xmode , xgeo , E(X ).

The basic reproductive property of the distribution is a direct consequence of the

well-known reproductive property of the gamma distribution (5.41). Since the latter

is closed under addition, if the scale parameters are equal, we determine that the

log-gamma distribution is closed with respect to the formation of products: if

Xi � log Ga( pi, b), i ¼ 1, 2, are independent, we have

X1 � X2 � log Ga( p1 þ p2, b): (5:64)

Regarding estimation, we can be brief, because in view of its genesis, we may

translate this problem to that of parameter estimation for a two-parameter gamma

distribution and make use of the extensive literature devoted to that topic.

Specifically, the Fisher information on u ¼ (b, p)` is identical to the Fisher

information I (~uu) of the classical gamma distribution with parameters ~uu ¼ (1=b, p)`;

see (5.55). (Recall that for the log-gamma distribution the p.d.f. was reparameterized

via b! 1=b:) The Fisher information I (u) of the reparameterization is thus

obtained using the relation I (u) ¼ JI (~uu)J `, where J is the Jacobian of the inverse
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transformation (see, e.g., Lehmann and Casella, 1998, p. 125), and therefore

given by

I (u) ¼

p

b2
�

1

b

�1

b
c 0( p)

2
664

3
775: (5:65)

5.3.2 Lorenz Curve and Inequality Measures

The Lorenz curve of the log-gamma distribution is not available in a simple closed

form. It can be expressed in terms of a moment distribution in the form

(u, v) j u ¼
g( p, by)

G( p)
, v ¼

g[ p, (b� 1)y]

G( p)
, where y ¼ log x

� �
: (5:66)

Here g(�, �) is the incomplete gamma function.

The Gini coefficient of the two-parameter log-gamma distribution is (Bhattacharjee

and Krishnaji, 1985)

G ¼ 1� 2Ba( p, p), a ¼
b� 1

2b� 1
: (5:67)

This shows that, for a fixed p, the Gini coefficient decreases with increasing b, with a

(positive) lower bound that depends on the second shape parameter p.

5.3.3 Empirical Results

Bhattacharjee and Krishnaji (1985) showed that the landholdings in 17 Indian states

for 1961–1962 are better approximated by a log-gamma than by a lognormal

distribution. A gamma distribution with a decreasing density provides a comparable

fit.

In the actuarial literature, Hewitt and Lefkowitz (1979) estimated a two-

component gamma-loggamma mixture for automobile bodily injury loss data. This

mixture model does considerably better than a two-parameter lognormal distribution.

Also, Ramlau-Hansen (1988) reported that the log-gamma distribution provides a

satisfactory fit when modeling fire losses for a portfolio of single-family houses and

dwellings in Denmark for the period 1977–1981. His estimated tail index b

(essentially Pareto’s alpha) falls in the vicinity of 1.4.
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5.4 INVERSE GAMMA (VINCI) DISTRIBUTION

5.4.1 Definition and Basic Properties

Some authors, especially those dealing with reliability applications such as Barlow

and Proschan (1981), call this distribution the inverted gamma. Indeed, if Z is a

gamma variable, then X ¼ 1=Z is a variable with the density

f (x) ¼
b p

G( p)
x�p�1e�(b=x), x . 0, (5:68)

where p, b . 0. (As in the preceding section, we have reparameterized the density

using b! 1=b.)

The distribution is encountered in Bayesian reliability applications. It is also

hidden among the Pearson curves, specifically Pearson V, and Vinci (1921) should

be credited for his income distribution applications.

Distribution (5.68) is a special case of the inverse generalized gamma distribution

(a ¼ �1); for p ¼ 1 we obtain a special case of the log-Gompertz distribution to be

discussed below. The case where p ¼ 1=2, more widely known as the Lévy

distribution, is of special interest in probability theory: It is one of the few stable

distributions for which an expression of the density in terms of elementary functions

is available and arises as the distribution of first-passage times in Brownian motion

(see, e.g., Feller, 1971).

Since the density (5.68) is regularly varying (at infinity) with index �p�1, the

moments exist only for k , p. They are given by [compare with (5.12)]

E(X k ) ¼ bk G( p)

G( p� k)
: (5:69)

The mode occurs at ( pþ 1)b.

As mentioned above, the classical gamma distribution arises as the maximum

entropy distribution under the constraints of a fixed first moment and a fixed

geometric mean. Similarly, the inverse gamma distribution is the maximum entropy

distribution if the first moment and harmonic mean are prescribed (Ord, Patil, and

Taillie, 1981).

Regular variation of the p.d.f. also gives us the basic asymptotic property of the

hazard rate and mean excess function

r(x) [ RV1(�1) (5:70)

and

e(x) [ RV1(1): (5:71)
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5.4.2 Inequality Measurement

From (5.49) we know that the gamma distributions are Lorenz-ordered with respect

to the shape parameter p, with diminishing inequality being associated with

increasing p. Unfortunately, this does not translate directly into a corresponding

result for the inverse gamma distribution. In order to obtain such a result, a stronger

ordering concept than the Lorenz ordering is required. As mentioned in Chapter 2,

the star-shaped ordering implies Lorenz ordering, and van Zwet (1964) showed

that the gamma distribution is ordered according to the convex transform ordering

and therefore also in the sense of the weaker star-shaped ordering. Since the star-

shaped ordering is closed under inversion, in the sense that (e.g., Taillie, 1981)

X1 �� X2()
1

X1

��
1

X2

, (5:72)

these results translate into

X1 �L X2() p1 � p2, (5:73)

for the inverse gamma distributions, provided p . 1 [in order to assure the existence

of E(X ) and therefore that of the Lorenz curve].

5.4.3 Estimation

In view of the genesis of the distribution, estimation can proceed by considering the

“inverted” data 1=xi, i ¼ 1, . . . , n, and using methods appropriate for the gamma

distribution. Alternatively, the likelihood equations

np

b
�
Xn

i¼1

1

xi

¼ 0, (5:74)

nlogb� nc( p)�
Xn

i¼1

log xi ¼ 0 (5:75)

can be solved directly.

From (5.74) and (5.75) we get the Fisher information on u ¼ (b, p)`

I (u) ¼

p

b2
�

1

b

�
1

b
c 0( p)

2
664

3
775: (5:76)

5.4.4 Empirical Results

Although the Vinci distribution was proposed as an income distribution some 80

years ago, we have not been able to track down fittings to income data in the

5.4 INVERSE GAMMA (VINCI) DISTRIBUTION 173



literature available to us. In the actuarial literature, Cummins et al. (1990) used the

inverse gamma distribution for approximating the fire loss experiences of a major

university. The distribution turns out to be one of the best two-parameter models; in

fact, the data are appropriately modeled by the one-parameter special case where

a ¼ 1, an inverse exponential distribution.

5.5 WEIBULL DISTRIBUTION

All that Waloddi Weibull, a Swedish physicist, did in his pioneering reports No.’s

151 and 153 for the Engineering Academy in 1939 was to add a “small a” to the

c.d.f. of the exponential distribution, and what a difference it did cause! Nowadays

we refer to this operation as Weibullization. The Weibull distribution has no doubt

received maximum attention in the statistical and engineering literature of the last ten

years and is still going strong. In economics it is probably less prominent, but

D’Addario (1974) noticed its potentials for income data and Hogg and Klugman

(1983) for insurance losses.

Even the strong evidence that the Weibull distribution is indeed due to Weibull is

shrouded in minor controversy. Rosin and Rammler in 1933 used this distribution in

their paper “The laws governing the fineness of powdered coal.” Some Russian

sources insist that it should be called Weibull–Gnedenko (or preferably Gnedenko–

Weibull!) since it turns out to be one of the three types of extreme value limit

distributions established rigorously by Gnedenko in his famous paper in the Annals

of Mathematics, published during World War II. And the French would argue that

this is nothing else but Fréchet’s distribution, who initially identified it in 1927 to be

an extreme-value distribution in his “Sur la loi de probabilité de l’écart maximum.”

Here we shall follow the same pattern as in the gamma distribution section and

concentrate on the income and size applications of the Weibull distribution, some of

them quite recent.

5.5.1 Definition and Basic Properties

Being a generalized gamma distribution with p ¼ 1, the Weibull density is given

by

f (x) ¼
a

b

x

b

� �a�1

e�(x=b)a

, x . 0, (5:77)

where a, b . 0. Unlike the c.d.f. of the classical and generalized gamma

distributions, the c.d.f. of the Weibull distribution is available in terms of

elementary functions; it is simply

F(x) ¼ 1� e�(x=b)a

, x . 0: (5:78)
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We note that irrespective of the value of a,

F(b) ¼ 1� e�1:

From (5.78) we see that even the quantile function is available in closed form

F�1(u) ¼ b{� log(1� u)}1=a, 0 , u , 1, (5:79)

a property that facilitates the derivation of Lorenz-ordering results (see below).

From (5.79) we determine that the median of the distribution is

xmed ¼ b(log 2)1=a: (5:80)

A simple argument leading to a Weibull distribution as the distribution of fire

loss amount was given by Ramachandran (1974). Under the two assumptions that

(1) the hazard rate of the fire duration T is given by l(t) ¼ exp(at), a . 0, and (2)

that the resulting damage X is an exponential function of the duration,

X ¼ x0exp(kT ), for some x0, k . 0, the c.d.f. is given by (5.78).

The inverse Weibull distribution, that is, the distribution of 1=X for

X �Wei(a, b), is discussed in the following section, under the name of the log-

Gompertz distribution.

From (5.12), the moments of the Weibull distribution are

E(X k ) ¼ bkG 1þ
k

a

� �
, (5:81)

specifically

E(X ) ¼ bG 1þ
1

a

� �
, (5:82)

and

var(X ) ¼ b2 G 1þ
2

a

� �
� G 1þ

1

a

� �� �2
( )

: (5:83)

The mode is at b(1� 1=a)1=a if a . 1; otherwise, the distribution is zero-modal,

with a pole at the origin if a , 1.

The somewhat peculiar skewness properties of the Weibull distribution have been

studied by several authors; see for example, Cohen (1973), Rousu (1973), or

Groeneveld (1986). As is the case with the generalized gamma distribution, there is

a value a for which the shape factor
ffiffiffiffiffi
b1

p
¼ 0. Unlike in the generalized gamma

case, this value does not depend on other parameters of the distribution; it equals (to

four decimals) a0 ¼ 3:6023. For a , a0 we have
ffiffiffiffiffi
b1

p
. 0, while for a . a0
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we have
ffiffiffiffiffi
b1

p
, 0. Since empirical size distributions are heavily skewed to the right,

it would seem that a , a0 is the relevant range in our context.

The mean excess function is

e(x) ¼ e(x=b)a

ð1

x

e�(t=b)a

dt, x . 0, (5:84)

which is asymptotic to x1�a (Beirlant and Teugels, 1992). [Incidentally, e(x)/ x1�a,

0 , a � 1, defines the Benktander type II distribution, a loss distribution that will be

discussed in Section 7.4 below.]

The Weibull hazard rate

r(x) ¼
a

b

x

b

� �a�1

, x . 0, (5:85)

is a decreasing function when the shape parameter a is less than 1, a constant when

a equals 1 (the exponential distribution), and an increasing function when a is

greater than 1. The simple and flexible form of the hazard rate may explain why the

Weibull distribution is quite popular in lifetime studies.

A useful property of the Weibull order statistics is distributional closure of the

minima. Specifically,

f1:n(x) ¼ n{(1� F(x)}n�1f (x)

¼
na

b

x

b

� �a�1

exp �n
x

b

� �a� �
, x . 0: (5:86)

Hence, X1:n �Wei(a, bn�1=a).

5.5.2 Lorenz Curve and Inequality Measurement

Lorenz-ordering relations are easily obtained using the star-shaped ordering (see

Section 2.1.1). Specifically, we have for Xi � Wei(ai, 1), i ¼ 1, 2, using (5.79)

F�1
1 (u)

F�1
2 (u)

¼
{� log (1� u)}1=a1

{� log (1� u)}1=a2
, 0 , u , 1,

which is seen to be increasing in u if and only if a1 � a2. Since the star-shaped

ordering implies the Lorenz ordering, we get (Chandra and Singpurwalla, 1981)

X1 �L X2() a1 � a2: (5:87)

Hence, the Lorenz order is linear within the family of two-parameter Weibull

distributions. The result could, of course, also have been obtained directly from (5.19).
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In view of (5.86), the Gini coefficient is most easily derived using the

representation in terms of order statistics (2.22), yielding

G ¼ 1�
E(X1:2)

E(X )
¼ 1� 2�1=a, (5:88)

which is decreasing in a.

5.5.3 Estimation

Parameter estimation for the Weibull distribution is discussed in many sources,

notably in texts on engineering statistics. See also Cohen and Whitten (1988) and

Johnson, Kotz, and Balakrishnan (1994).

Briefly, the ML estimators satisfy the equations

âa ¼
Xn

i¼1

xâa
i log xi

( ) Xn

i¼1

xâa
i

( )�1

�
1

n

Xn

i¼1

log xi

2
4

3
5
�1

, (5:89)

b̂b ¼
1

n

Xn

i¼1

xâa
i

( )1=âa

: (5:90)

Here (5.89) is solved for âa; the result is then substituted in (5.90).

We note that only if a . 2, are we in a situation where the regularity conditions

for ML estimation are satisfied. In this case, the Fisher information on u ¼ (a, b)` is

given by

I (u) ¼

6(C � 1)2 þ p 2

6a2

C � 1

b

C � 1

b

a2

b2

2
6664

3
7775, (5:91)

where C ¼ 0:577216. . . is Euler’s constant. If a , 1, the density is unbounded.

5.5.4 Empirical Results

As noted in the introduction to this chapter, the Weibull distribution was apparently

used only sporadically as an income or size distribution and most applications are of

comparatively recent date.

Incomes

Bartels (1977) fit the distribution to 1969 fiscal incomes in three regions of the

Netherlands. Here the model seems to provide a rather unsatisfactory fit; it is
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outperformed by (generalized) gamma and Champernowne distributions and

variants of it. For the French wages stratified by occupation for 1970–1978

the three-parameter distribution is also not satisfactory, being outperformed by the

Dagum type II, a Box–Cox-transformed logistic, the Singh–Maddala, and the three-

parameter lognormal distributions (Espinguet and Terraza, 1983). However, it does

better than a four-parameter beta type I distribution for these data.

McDonald (1984) applied the Weibull distribution for 1970, 1975, and 1980 U.S.

family incomes. The distribution is outperformed by three- and four-parameter

models such as the (generalized) beta, generalized gamma, and Singh–Maddala

distributions, but is superior to all other two-parameter models—notably the

lognormal and gamma distributions—for the 1980 data, where it ranks fourth out of

11 models considered.

Atoda, Suruga, and Tachibanaki (1988) considered grouped income data from the

Japanese Income Redistribution Survey for 1975, stratified by occupation. Although

among the distributions they employed, the Singh–Maddala often appears to be the

most appropriate, the Weibull does only slightly worse than the more flexible

generalized gamma distribution, in one case even better when the selection criterion

is the AIC. In a later study employing individual data from the same source, the

Weibull distribution is again comparable to the generalized gamma distribution for

one stratum, and only slightly worse for the remaining ones (Tachibanaki, Suruga,

and Atoda, 1997).

Bordley, McDonald, and Mantrala (1996) fit the Weibull distribution to U.S.

family incomes for 1970, 1975, 1980, 1985, and 1990. It is outperformed by all

three- and four-parameter models—notably the GB2, Dagum, and Singh–Maddala

distributions—and by the two-parameter gamma distribution for three data sets. For

the remaining years it is comparable to the gamma distribution.

Brachmann, Stich, and Trede (1996), in their study of German household

incomes over the period 1984–1993, found the Weibull distribution to perform

better than the lognormal, but not nearly as well as the gamma distribution. However,

only the GB2 and Singh–Maddala distribution seem to provide a satisfactory fit for

these data.

Actuarial Losses

In the actuarial literature, Hogg and Klugman (1983) fit the Weibull distribution to a

small data set (35 observations) of hurricane losses and found that it performs about

as well as the lognormal distribution. They also considered data for malpractice

losses, for which beta type II and Lomax (Pareto type II) distributions are preferable.

In the Cummins et al. (1990) study employing 16 loss distributions, the Weibull

distribution does not provide an adequate fit to the Cummins and Freifelder (1978)

fire loss data. Specifically, the data seem to require a model with heavier tails such as

an inverse Weibull distribution.

Nonetheless, from these works it is clear that the Weibull distribution often does

considerably better than the more popular lognormal distribution. Among the two-

parameter models it appears to be comparable to the gamma distribution.
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5.6 LOG-GOMPERTZ DISTRIBUTION

The Gompertz distribution was introduced some 120 years before the Weibull one by

Benjamin Gompertz in 1825 in the Philosophical Transactions of the Royal Society,

to fit mortality tables. It is usually defined for positive values. Nowadays it is used in

actuarial statistics and competing risks, in the early 1970s it attracted attention in

Applied Statistics (Garg, Rao, and Redmond, 1970; Prentice and El Shaarawi, 1973).

When defined over the real line, the Gompertz c.d.f. is

F( y) ¼ exp (�ae�y=b), �1 , y , 1, (5:92)

where a, b . 0, which is a type I extreme value distribution.

5.6.1 Definition and Basic Properties

The log-Gompertz distribution appears to be used mainly in income and size

distributions and was noticed by Dagum (1980c) in this connection. It is a member

of Dagum’s (1980c, 1990a, 1996) generating system; see Section 2.4.

From (5.92), the c.d.f. of X ¼ exp Y is

F(x) ¼ exp �
x

b

� ��a� �
, x . 0, (5:93)

where b . 0 and a . 0. This yields the log-Gompertz density

f (x) ¼ abax�a�1e�(x=b)�a

, x . 0, (5:94)

which is easily recognized as the p.d.f. of an inverse Weibull distribution. The case

where a ¼ 1, the inverse exponential distribution, is also a special case of the inverse

gamma (Vinci) distribution discussed in Section 5.4.

As in the Weibull case, the quantile function is available in closed form, being

F�1(u) ¼ b{(� log u)�1=a}, 0 , u , 1: (5:95)

The median therefore occurs at

xmed ¼ b( log 2)�1=a: (5:96)

The moments exist only for k , a; in that case, they are given by

E(X k) ¼ bkG 1�
k

a

� �
: (5:97)

5.6 LOG-GOMPERTZ DISTRIBUTION 179



Specifically,

E(X ) ¼ bG 1�
1

a

� �
(5:98)

and

var(X ) ¼ b2 G 1�
2

a

� �
� G2 1�

1

a

� �� �
: (5:99)

The mode is at

xmode ¼ b
a

aþ 1

� �1=a

: (5:100)

We see that in contrast to the Weibull distribution, there is always an interior mode.

The hazard rate and mean excess function were studied by Erto (1989) in an

Italian publication dealing with lifetime applications. The hazard rate is

r(x) ¼
abax�a�1e�(x=b)�a

1� exp{�(x=b)�a}
, x � 0: (5:101)

It is noteworthy that, irrespectively of the value of the shape parameter a, r(0) ¼ 0

and limx!1 r(x) ¼ 0; in fact, r(x) is a unimodal function (similar to the lognormal

hazard rate). There is no simple expression for the abscissa of the mode, but it can be

bounded: From the derivative of log r(x) we obtain the first-order condition

exp �
x

b

� ��a� �
1

x
¼

1

x
�

a

b(aþ 1)

x

b

� ��a�1

,

which is of the form

u(x) ¼ v(x):

It is not difficult to see that both functions u(x) and v(x) are increasing up to a point

xn ¼ ba1=a,

which is to the right of the mode (5.100), and decreasing thereafter. Also,

limx!0 u(x) ¼ 0 and v(xmode) ¼ 0. This yields

u(xmode) . v(xmode) ¼ 0, u(xn) , v(xn), xmode , xn,

from which it follows that the point of intersection of u(x) and v(x)—defining the

mode of r(x)—is contained in the interval (xmode, xn).
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Since the log-Gompertz density is regularly varying at infinity, we determine that

the mean excess function is asymptotically linearly increasing [see (2.67)]

e(x) [ RV1(1): (5:102)

5.6.2 Estimation

Being the inverse Weibull distribution, parameter estimation for the log-Gompertz

distribution proceeds most easily by considering the reciprocal observations 1=xi,

i ¼ 1, . . . , n, and using methods appropriate for Weibull data.

The relationship with the Weibull distribution also yields the Fisher information

on u ¼ (a, b)`

I (u) ¼

6(C � 1)2 þ p 2

6a2

1� C

b

1� C

b

a2

b2

2
6664

3
7775, (5:103)

which coincides up to the sign of the off-diagonal elements with (5.91).

Erto has suggested a simple estimator utilizing a linearization of the survival

function. He proposed estimating parameters in the equation

log
1

x

� �
¼

1

a
log log

1

1� F(x)

� �
þ log b (5:104)

by least squares.

5.6.3 Inequality Measurement

As in the Weibull case, Lorenz ordering relations are easily obtained using the star-

shaped ordering (see Section 2.1.1). Specifically, we have for Xi � logGomp(ai, 1),

i ¼ 1, 2, using (5.95),

F�1
1 (u)

F�1
2 (u)

¼
(� log u)�1=a1

(� log u)�1=a2
, 0 , u , 1,

which is seen to be increasing in u if and only if a1 � a2. Since the star-shaped

ordering implies the Lorenz ordering—provided ai . 1, so that E(Xi) , 1—we

have

X1� L X2() a1 � a2: (5:105)

Hence, the log-Gompertz family is another family of distributions within which the

Lorenz ordering is linear.
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5.6.4 Empirical Results

Cummins et al. (1990), in their comprehensive study employing 16 loss

distributions, fit the log-Gompertz (under the name of inverse Weibull) distribu-

tion to the annual fire loss experiences of a major university. The distribution turns

out to be the best two-parameter model; however, the data are appropriately

modeled by the one-parameter special case where a ¼ 1, an inverse exponential

distribution.
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C H A P T E R S I X

Beta-type Size Distributions

Beta distributions (there are two kinds of this distribution) are members of the

celebrated Pearson system and have been widely utilized in all branches of

sciences—both soft and hard. They are intrinsically related to the incomplete beta

function ratio

Ix( p, q) ¼
1

B( p, q)

ðx

0

up�1(1� u)q�1 du, 0 � x � 1, (6:1)

and the incomplete beta function

Bx( p, q) ¼

ðx

0

up�1(1� u)q�1 du, 0 � x � 1: (6:2)

A historical account of these functions was provided by Dutka (1981), who traced

them to a letter from Isaac Newton to Henry Oldenberg in 1676. Needless to say, as

Thurow (1970) put it, “using a beta distribution is not meant to imply that God is a

beta generating function.”

6.1 (GENERALIZED) BETA DISTRIBUTION OF THE

SECOND KIND

For our purposes, the pivotal distribution in this family is the so-called generalized

beta distribution of the second kind (hereafter referred to as GB2). We should note

the contributions of McDonald (1984) and his associates in the development of GB2

distributions as an income distribution and in unifying the various research activities

in closely related fields. We could mention as an example the multiauthor paper by

Cummins et al. (1990), which is a combination of two manuscripts by McDonald
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and Pritchett (the Brigham Young University School) and Cummins and Dionne (the

University of Pennsylvania School) dealing with applications of the GB2 family of

distributions to insurance losses submitted independently to Insurance: Mathematics

and Economics in early 1988 and resulted in a unified treatment.

The interrelations between particular cases of the GB2 distributions and other

distributions known in the literature are somewhat confusing, but a natural

consequence of the independent uncoordinated research that has been so prevalent

the last 20–30 years. One indication is the discovery that the distribution proposed

by Majumder and Chakravarty (1990) is simply a reparameterization of the GB2

distribution. This observation escaped researchers for at least five years in spite of

the fact that the papers appeared in not unrelated journals: one oriented toward

applications and the other of a more theoretical bent.

6.1.1 Definition and Interrelations

The c.d.f. of the GB2 distribution may be introduced using an alternative expression

for the incomplete beta function ratio that is obtained upon setting u :¼ t=(1þ t)

in (6.1)

Iz( p, q) ¼
1

B( p, q)

ðz

0

tp�1

(1þ t)pþq dt, z . 0: (6:3)

Introducing additional scale and shape parameters b and a and setting z :¼ (x=b)a, we

get a distribution with c.d.f.

F(x) ¼ Iz( p, q), where z ¼
x

b

� �a

, x . 0, (6:4)

with corresponding density

f (x) ¼
axap�1

bapB( p, q)[1þ (x=b)a]pþq , x . 0: (6:5)

Here all four parameters a, b, p, q are positive, b is a scale, and a, p, q are shape

parameters. It is not difficult to see that the GB2 density is regularly varying at infinity

with index �aq� 1 and regularly varying at the origin with index �ap� 1; thus, all

three shape parameters control the tail behavior of the model. Nonetheless, these three

parameters are not on an equal footing: If the distribution of Y ¼ log X , with density

f ( y) ¼
aeap( y�log b)

B( p, q)[1þ ea( y�log b)]pþq , �1 , y , 1, (6:6)

is considered, a turns out to be a scale parameter, whereas p and q are still shape

parameters.
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We see that the larger the value of a, the thinner the tails of the density (6.5) are,

whereas the relative values of p and q are important in determining the skewness of

the distribution of log X . Figures 6.1–6.3 illustrate the effect of the three shape

parameters; each graph keeps two parameters constant and varies the remaining one.

(Note that there is considerable variation in the shape of the density for small a and p

in Figures 6.1 and 6.2.)

As an income distribution, (6.5) was proposed by McDonald (1984) and

independently as a model for the size-of-loss distribution in actuarial science by

Venter (1983), who called it a transformed beta distribution. A decade earlier, it was

briefly discussed by Mielke and Johnson (1974) in a meteorological application as a

generalization of two distributions that are included in the following sections under

the names of the Singh–Maddala and Dagum distributions, respectively. It may also

be considered a generalized F distribution, and it appears under this name in, for

example, Kalbfleisch and Prentice (1980). The distribution is further referred to as a

Feller–Pareto distribution by Arnold (1983), who introduced an additional location

parameter, and it was rediscovered, in a different parameterization, in the

econometrics literature by Majumder and Chakravarty (1990). McDonald and

Mantrala (1993, 1995) observed that the Majumder–Chakravarty model is

equivalent to the GB2 distribution. We shall use McDonald’s (1984) notation below.

The case where a ¼ 1, that is, the beta distribution of the second kind (B2) with

p.d.f. is a member of the Pearson system of distributions (see Chapter 2), namely,

f (x) ¼
xp�1

bpB( p, q)[1þ x=b]pþq , x . 0, (6:7)

Figure 1 GB2 densities: p ¼ 0:5, q ¼ 2, and a ¼ 1, 2, 3, 4, 6, 8, 12, 16 (from left to right).

6.1 (GENERALIZED) BETA DISTRIBUTION OF THE SECOND KIND 185



the Pearson VI distribution. As an income distribution, it was proposed some-

what earlier than the GB2, in an application to Finnish data (Vartia and Vartia,

1980).

The GB2 can also be considered a generalized log-logistic distribution: Setting

a ¼ b ¼ p ¼ q ¼ 1 in (6.6), we get

f ( y) ¼
ey

(1þ ey)2
, �1 , y , 1,

which is the density of a standard logistic distribution (see, e.g., Johnson, Kotz, and

Balakrishnan, 1995, Chapter 23). Specifically, the distribution of (6.6) is a skewed

generalized logistic distribution, symmetry being attained only for p ¼ q. McDonald

and Xu (1995) referred to (6.6) as the density of an exponential GB2 distribution.

Recently, Parker (1999a,b) derived GB2 and B2 earnings distributions from

microeconomic principles (a neoclassical model of optimizing firm behavior),

thereby providing some rationale as to why such distributions may be observed. In

his model the shape parameters p and q are functions of the output-labor elasticity

and the elasticity of income returns with respect to human capital, thus permitting

some insight into the potential causes of observed inequality trends.

The GB2 model is most useful for unifying a substantial part of the size

distributions literature. It contains a large number of income and loss distributions as

special or limiting cases: The Singh–Maddala distribution is obtained for p ¼ 1, the

Dagum distribution for q ¼ 1, the beta distribution of the second kind (B2) for

Figure 2 GB2 densities: a ¼ 5, q ¼ 0:5, and p ¼ 0:17, 0.25, 0.5, 1, 2, 4 (from left to right).

186 BETA-TYPE SIZE DISTRIBUTIONS



a ¼ 1, the Fisk (or log-logistic) distribution for p ¼ q ¼ 1, and the Lomax (or Pareto

type II) distribution for a ¼ p ¼ 1. Figure 6.4 illustrates these interrelations. [For

completeness (and symmetry!) we include an inverse form of the Lomax

distribution, although there appears to be hardly any work dealing explicitly with

this distribution.] Apart from the B2 distribution, which is included in the present

section, these models will be discussed in greater detail in the following sections.

Furthermore, the generalized gamma distribution (see Chapter 5) emerges as a

limiting case upon setting b ¼ q1=ab and letting q!1. Consequently, the gamma

and Weibull distributions are also limiting cases of the GB2, since both are special

cases of the generalized gamma distribution.

6.1.2 Moments and Other Basic Properties

In (6.4) the GB2 distribution was introduced via the incomplete beta function ratio.

Utilizing the relation with Gauss’s hypergeometric function 2F1 (e.g., Temme, 1996),

we obtain

Iz( p, q) ¼
zp

pB( p, q)
2F1( p, 1� q; pþ 1; z), 0 � z � 1, (6:8)

where

2F1(a1, a2; b; x) ¼
X1
n¼0

(a1)n(a2)n

(b)n

xn

n!
, jxj , 1: (6:9)

Figure 3 GB2 densities: a ¼ 5, p ¼ 0:3, and q ¼ 0:25, 0.5, 1, 2, 4 (from right to left).
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The c.d.f. can also be expressed in the form (McDonald, 1984)

F(x) ¼
[(x=b)a=(1þ (x=b)a)]p

pB( p, q)
2F1 p, 1� q; pþ 1;

(x=b)a

1þ (x=b)a

� �� �
, x . 0:

(6:10)

If an expression for the survival function is required, we may use the complementary

relation

I1�z( p, q) ¼ 1� Iz(q, p)

in conjunction with (6.4).

The mode of the GB2 distribution occurs at

xmode ¼ b
ap� 1

aqþ 1

� �1=a

, if ap . 1, (6:11)

and at zero otherwise.

As noted above, the density of the GB2 distribution is regularly varying at infinity

with index �aq� 1 and also regularly varying at the origin with index �ap� 1.

This implies that the moments exist only for �ap , k , aq. They are

E(X k) ¼
bkB( pþ k=a, q� k=a)

B( p, q)
¼

bkG( pþ k=a)G(q� k=a)

G( p)G(q)
: (6:12)

Figure 4 Beta-type size distributions and their interrelations: generalized beta distribution of the second

kind (GB2), Dagum distribution (D), beta distribution of the second kind (B2), Singh–Maddala

distribution (SM), inverse Lomax distribution (IL), Fisk (log-logistic) distribution (Fisk), Lomax

distribution (L).
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Note that this last expression is, when considered a function of k, equal to the

moment-generating function mY (�) of Y ¼ log X , in view of the relation

mY (k) ¼ E(ekY ) ¼ E(X k). This point of view is useful for the computation of the

moments of log X , which are required for deriving, for example, the Fisher

information matrix of the GB2 distribution and its subfamilies.

It is easy to see that the GB2 is closed under power transformations:

X � GB2(a, b, p, q)¼)X r � GB2
a

r
, br, p, q

� �
, r . 0: (6:13)

Also, Venter (1983) observed that the GB2 distribution is closed under inversion, in

the sense that

X � GB2(a, b, p, q)()
1

X
� GB2 a,

1

b
, q, p

� �
: (6:14)

Thus, it is sometimes convenient to allow for a , 0 in (6.5), one then simply

replaces a by jaj in the numerator.

The hazard rate of the GB2 distributions can exhibit a wide variety of

shapes. Considering the special case where p ¼ q ¼ 1, it is clear that it can at

least be monotonically decreasing as well as unimodal. Since a detailed

analysis is rather involved, we refer the interested reader to McDonald and

Richards (1987).

In view of the density being regularly varying and general results for the mean

excess function of such distributions (see Chapter 2), it follows that the mean excess

function is asymptotically linearly increasing

e(x) [ RV1(1): (6:15)

6.1.3 Characterizations and Representations

It is possible to characterize the B2 distribution in terms of maximum entropy among

all distributions supported on [0, 1): If both E[log X ] and E[log(1þ X )] are

prescribed, then the maximum entropy p.d.f. is the B2 density. Hence, this distribution

is characterized by the geometric means of X and 1þ X (Kapur, 1989, p. 66).

An extension of the classical maximum entropy approach was considered by

Leipnik (1990), who used a relative maximum entropy principle that leads to several

income distributions included in the present chapter, such as the GB2, GB1 (see

Section 6.5), and Singh–Maddala distributions. The idea here is that income

recipients are affected by ordinal as well as cardinal considerations, and therefore

subjectively reduce their incomes by multiplication with a subjective, but not

individualized, reduction factor f[x, 1� F(x)], which depends on the actual income

x as well as the income status, here measured by the proportion 1� F(x) of income

receivers earning more than a preassigned income x. This leads to an adjusted

6.1 (GENERALIZED) BETA DISTRIBUTION OF THE SECOND KIND 189



income j(x) ¼ xf[x, 1� F(x)] that is perhaps best interpreted as utility. A relative

income entropy density f is now defined in terms of the p.d.f. f and the marginal

subjective income @j[x, F(x)]=@x and determined by the maximization of
Ð

f (x) dx

under constraints on Ej(X ) and Ej2(X ), the first two moments of j with respect to F.

The resulting nonlinear differential equation (according to Leipnik of a type that is

not much studied outside of hydrology and astrophysics) is sometimes solvable and

leads, under appropriate specifications of the adjustment function f, to income

distributions of the generalized beta type.

As mentioned in the preceding chapter, Malik (1967) and Ahuja (1969) both

showed that if X1 � GG(a, 1, p), X2 � GG(a, 1, q), and X1 and X2 are independent

(note the identical shape parameter a!),

X1

X2

� GB2(a, 1, p, q): (6:16)

The relation (6.16) is perhaps more familiar in the form

X1

X2

� �1=a

� GB2(a, 1, p, q): (6:17)

where now X1 � Ga(1, p), X2 � Ga(1, q), and X1 and X2 are independent, which is a

generalization of the well-known relation between the standard gamma and B2

distributions

X1

X2

� B2(1, p, q): (6:18)

These relations can be exploited to obtain random samples from the GB2

distribution: There is a large number of gamma random number generators (see

Devroye, 1986), from which generalized gamma samples can be obtained by a power

transformation. Simulating independent data from two generalized gamma

distributions with the required shape parameters we arrive at GB2 samples via the

above relation.

All this can be further rephrased, utilizing the familiar relation between the

gamma distribution and the classical beta distribution (Pearson type I).

If X1 � Ga(1, p), X2 � Ga(1, q), and X1 and X2 are independent, the random

variable

W :¼
X1

X1 þ X2

(6:19)

follows a beta type I distribution with parameters p and q. In view of (6.18), it is

therefore possible to define the B2 distribution via

X � W�1 � 1,
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as was done by, for example, Feller (1971, p. 50), who notes that the resulting

distribution is sometimes named after Pareto. This caused Arnold (1983) to refer to

the GB2 distribution, which can evidently be expressed as

X � b[W�1 � 1]1=a (6:20)

as the Feller –Pareto distribution.

The representation (6.16) can also be considered a mixture representation,

namely, as a scale mixture of generalized gamma distributions with inverse

generalized gamma weights (Venter, 1983; McDonald and Butler, 1987). Recall that

the generalized gamma distribution has the density

f (x) ¼
a

uapG( p)
xap�1e�(x=u)a

:

Now, if the parameter u � InvGG(a, b, q), then, in an obvious notation,

GG(a, u, p)
^
u

InvGG(a, b, q) ¼ GB2(a, b, p, q): (6:21)

Evidently, this is just a restatement of (6.16). For the beta distribution of the second

kind, that is, the case where a ¼ 1, the above representation simplifies to

Ga(u, p)
^
u

InvGa(b, q) ¼ B2(b, p, q), (6:22)

where InvGa denotes an inverse gamma (or Vinci) distribution.

Thus, the GB2 distribution and its subfamilies have a theoretical justification as a

representation of incomes arising from a heterogeneous population of income

receivers, or, in actuarial terminology, as a representation of claims arising from a

heterogeneous population of exposures. This argument was used by Parker (1997)

when utilizing a B2 distribution (6.22) as the distribution of self-employment

income; he argued that individuals are heterogeneous with regard to entrepreneurial

characteristics.

Table 6.1 presents the mixture representations for all the distributions discussed in

the present chapter (McDonald and Butler, 1987).

6.1.4 Lorenz Curves and Inequality Measures

The Lorenz curve of the GB2 distribution, which exists whenever aq . 1, cannot

be obtained directly from the Gastwirth representation since the quantile function

is not available in closed form. However, the Lorenz curve is available in terms

of the first-moment distribution in the following manner: Butler and McDonald

(1989) observed that the normalized incomplete moments, that is, the c.d.f.’s

of the higher-order moment distributions, can be expressed as the c.d.f.’s of
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GB2 distributions with different sets of parameters. Namely, for X � GB2(a, b,

p, q) and

F(k)(x) ¼

Ð x

0
tk f (t) dt

E(X k )
, 0 , x , 1,

we have

F(k)(x) ¼ F x; a, b, pþ
k

a
, q�

k

a

� �
, 0 , x , 1: (6:23)

This closure property is of practical importance in that computer programs used

to evaluate the distribution function of the GB2 distribution can also be used to

evaluate the higher-order moment distributions by merely changing the values of the

parameters. In particular, theoretical Lorenz curves of GB2 distributions can be

obtained by plotting F(1)(x) against F(x), 0 , x , 1. This closure property is

special to the GB2 and B2 distributions; it does not extend to any of the subfamilies

discussed in the following sections.

Using the ratio representation (6.16), Kleiber (1999a) showed that for

Xi � GB2(ai, bi, pi, qi), i ¼ 1, 2,

a1 � a2, a1p1 � a2p2 and a1q1 � a2q2 (6:24)

together imply X1 �L X2. This generalizes earlier results obtained by Wilfling

(1996b). However, the condition is not necessary. The necessary conditions for

Lorenz dominance are

a1p1 � a2p2 and a1q1 � a2q2: (6:25)

This result was first obtained by Wilfling (1996b); for an alternative approach see

Kleiber (2000a). It is worth noting that, although a full characterization of Lorenz

Table 6.1 Mixture Representations for Beta-type Size Distributions

Distribution Structural Distribution Mixing Distribution

GB2(x; a, b, p, q) GG(x; a, u, p) InvGG(u; a, b, q)

B2(x; b, p, q) Ga(x; u, p) InvGa(u; b, q)

SM(x; a, b, q) Wei(x; a, u) InvGG(u; a, b, q)

Dagum(x; a, b, p) GG(x; a, u, p) InvWei(u; a, b)

Fisk(x; a, b) Wei(x; a, u) InvWei(u; a, b)

Lomax(x; b, q) Exp(x; u) InvGa(u; b, p)

Source: McDonald and Butler (1987).
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order within the GB2 family is currently unavailable, the conditions (6.24) and

(6.25) are strong enough to yield complete characterizations for all the subfamilies

considered in the following sections.

Sarabia, Castillo, and Slottje (2002) obtained some Lorenz ordering results for

nonnested models. In particular, if X � GG(~aa, ~bb, ~pp), Y � GB2(a, b, p, q), and

aq . 1, ~aa � a, ~aa~pp � a, then Y �L X .

As noted in the previous section, the GB2 distribution has heavy tails; hence, only

a few of the moments exist. This implies that inequality measures such as the

generalized entropy measures only exist for sensitivity parameters within a certain

range (Kleiber, 1997) that is often rather narrow in practice.

The above relation (6.23) also provides a simple way to obtain the Pietra index of

inequality, namely,

P ¼ F(m)� F(1)(m),

where m is the mean of X (Butler and McDonald, 1989).

The Gini coefficient of the GB2 is available in McDonald (1984) as a lengthy

expression involving the generalized hypergeometric function 3F2

G ¼
2B(2pþ 1=a, 2q� 1=a)

pB( p, q)B( pþ 1=a, q� 1=a)

1

p
3F2 1, pþ q, 2pþ

1

a
; pþ 1, 2( pþ q); 1

� ��

�
1

pþ 1=a
3F2

�
1, pþ q, 2pþ

1

a
; pþ

1

a
þ 1, 2( pþ q); 1

��
:

For the B2 subfamily the expression is less cumbersome and equals (McDonald, 1984)

G ¼
2B(2p, 2q� 1)

pB2( p, q)
:

This is decreasing in both p and q.

6.1.5 Estimation

There are comparatively few results concerning parameter estimation for this

somewhat complicated four-parameter distribution. Venter (1983) provided a brief

discussion of ML estimation. The log-likelihood for a complete random sample of

size n equals

log L ¼ nlogG( pþ q)þ nlog aþ (ap� 1)
Xn

i¼1

log xi � naplog b

� nlogG( p)� nlogG(q)� ( pþ q)
Xn

i¼1

log 1þ
xi

b

� �ah i
:
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Denoting as above the derivative of logG(�), the digamma function, by c (�) we

obtain the following four equations from the partial derivatives with respect to

a, b, p, q (in this order):

n

a
þ p

Xn

i¼1

log
xi

b

� �
¼ ( pþ q)

Xn

i¼1

log
xi

b

� � b

xi

� �a

þ1

� ��1

, (6:26)

np ¼ ( pþ q)
Xn

i¼1

1þ
b

xi

� �a� ��1

, (6:27)

nc( pþ q)þ a
Xn

i¼1

log
xi

b

� �
¼ nc ( p)þ

Xn

i¼1

log 1þ
xi

b

� �ah i
, (6:28)

nc( pþ q) ¼ nc (q)þ
Xn

i¼1

log 1þ
xi

b

� �ah i
: (6:29)

Venter noted that the first and second equations are linear in p and q; hence, they

can easily be solved to yield p and q as functions of a and b. Substituting the

resulting expressions into the third and fourth equations, one obtains two nonlinear

equations in two unknowns that can be solved by, for example, Newton–Raphson

iteration.

Recently, Brazauskas (2002) obtained the Fisher information matrix of the GB2

distributions. This family is a regular family (in terms of ML estimation); hence, we

may use the expression

I (u) ¼ �E
@2log L

@ui@uj

� �
i,j

" #
¼:

I11 I12 I13 I14

I21 I22 I23 I24

I31 I32 I33 I34

I41 I42 I43 I44

0
BB@

1
CCA: (6:30)

For u ¼ (a, b, p, q)`, it follows from (6.28) and (6.29) that the second derivatives of

the log-likelihood with respect to p and q are constants; hence, I33, I34 ¼ I43, and I44

are easily obtained. The remaining derivations are rather tedious and will not be

given here. The elements of I (u) are

I11 ¼
1

a2(1þ pþ q)
1þ pþ qþ pq c0(q)þ c0( p)

��

þ c (q)� c ( p)þ
p� q

pq

� �2

�
p2 þ q2

p2q2

#)
, (6:31)

I21 ¼ I12 ¼
p� q� pq[c ( p)� c (q)]

b(1þ pþ q)
, (6:32)
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I22 ¼
a2pq

b2(1þ pþ q)
, (6:33)

I23 ¼ I32 ¼
aq

b( pþ q)
, (6:34)

I24 ¼ I42 ¼ �
ap

b( pþ q)
, (6:35)

I31 ¼ I13 ¼ �
q[c ( p)� c (q)]� 1

a( pþ q)
, (6:36)

I14 ¼ I41 ¼ �
p[c (q)� c ( p)]� 1

a( pþ q)
, (6:37)

I33 ¼ c0( p)� c0( pþ q), (6:38)

I34 ¼ I43 ¼ �c
0( pþ q), (6:39)

I44 ¼ c0(q)� c0( pþ q): (6:40)

It is worth noting that these results were essentially obtained by Prentice (1975)

some 25 years earlier. (He worked with the distribution of log X that leads to the

same Fisher information, although using a different parameterization from which the

equivalence is not easily recognized.) Prentice also discussed a reparameterization

that is useful for discriminating between special and limiting cases of the GB2.

6.1.6 Empirical Results

Incomes and Wealth

Vartia and Vartia (1980) fit a four-parameter shifted B2 distribution (under the

name of scaled and shifted F distribution) to the 1967 distribution of taxed income

in Finland. Using ML and method-of-moments estimators, they found that their

model fits systematically better than the two- and three-parameter lognormal

distributions.

McDonald (1984) estimated the GB2 and B2 distributions for 1970, 1975, and

1980 U.S. family incomes. The GB2 outperforms 10 other distributions (mainly of

the beta and gamma type), whereas the B2 fit is comparable to the fit obtained using

gamma or generalized gamma distributions but is inferior to the Singh–Maddala

distribution for each one of the data sets considered.

Butler and McDonald (1989) gave GB2 parameter estimates for U.S. Caucasian

family incomes from 1948–1980, using maximum likelihood estimators applied to

grouped data. They found shape parameters a [ (2:8, 8:4), roughly decreasing over
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time, p [ (0:17, 0:6), and q [ (0:4, 1:7), with larger values of p and q pertaining to

the post-1966 data. This shows that the tail indexes ap, aq are roughly constant over

time, while there are considerable changes in the center of the distribution.

Majumder and Chakravarty (1990) considered the GB2 distribution when

modeling U.S. income data for 1960, 1969, 1980, and 1983. The distribution ranks

second when compared to their own distribution. However, there are some

contradictory results in their paper, and in a reassessment of their findings

emphasizing that the Majumder–Chakravarty distribution is merely a reparame-

trization of the GB2 distribution, McDonald and Mantrala (1993, 1995) fit this

model to 1970, 1980, and 1990 U.S. family incomes using two different methods of

estimation and alternative groupings of the data. The distribution provides the best fit

among all the models considered. Majumder and Chakravarty’s paper provides us

with an important lesson in fitting income data and signals the dangers and pitfalls

when data are not properly scrutinized.

In a study of the aggregate demand for specific car lines, Bordley and McDonald

(1993) employed the GB2 distribution for the direct estimation of income elasticity

from population income distribution. Their results are consistent with those of

traditional econometric studies of automotive demand.

McDonald and Xu (1995) studied 1985 U.S. family incomes. Out of

11 distributions considered—mainly of the gamma and beta type—the GB2 ranks

first (being observationally equivalent to the more general GB distribution, which is

briefly mentioned in Section 6.5 below) in terms of likelihood.

In a very comprehensive already mentioned study employing 15 income

distribution models (again of the beta and gamma type), Bordley, McDonald, and

Mantrala (1996) fit the GB2 distribution to U.S. family incomes for 1970, 1975,

1980, 1985, and 1990. For all but the 1970 data (where the five-parameter GB

distribution—see Section 6.5 below—provides a slight improvement) the GB2

outperforms every other distribution, with the improvements relative to the nested

models being statistically significant. Bordley, McDonald, and Mantrala concluded

that the GB2 distribution is the best-fitting four-parameter distribution for these data.

Brachmann, Stich, and Trede (1996) fit the GB2 (and many of its subfamilies and

limiting cases) to individual household incomes from the German Socio-Economic

Panel (SOEP) for the years 1984–1993. A comparison with nonparametric density

estimates shows that only the GB2 and, to a lesser extent, the Singh–Maddala

distribution to be discussed in the following section are satisfactory. However, the

means and Gini coefficients appear to be slightly underestimated.

Parker (1997) considered a three-parameter B2 distribution when studying UK

self-employment incomes from 1976–1991. Starting from a dynamic economic

model of self-employment income, he found that incomes above some threshold

g , 0 follow a two-parameter B2 distribution. He estimated parameters by modified

method-of-moments estimators (MMME), as advocated by Cohen and Whitten

(1988) for models containing a threshold parameter, finding that incomes became

progressively more unequally distributed, a fact he attributed to an increase of

heterogeneity among the self-employed.
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Actuarial Losses

In actuarial science, the already mentioned paper by Cummins et al. (1990) used the

GB2 family to model the annual fire losses experienced by a major university

(Cummins and Freifelder, 1978). It turns out that, in terms of likelihood, the full

flexibility of the GB2 is not required and a one-parameter limiting case, the inverse

exponential distribution, agrees very well with the four-parameter GB2. The same

authors also considered data on the severity of fire losses and fit the GB2 to both

grouped and individual observations. Here three-parameter special and limiting cases

of the GB2 such as the Singh–Maddala and inverse generalized gamma distributions

are selected.

Cummins et al. (1990) provided an important lesson about unnecessary

overparameterization. In summary, the GB2 family is indeed an attractive, flexible,

elegant, and ingenious family but it involves four parameters. The experience

collected by statistical applications during the last 100 years teaches us that four-

parameter distributions can sometimes be almost omnipotent and do not allow us

to penetrate to the crux of the matter: in our case the mechanism and factors that

determine the size distributions. One (almost) becomes nostalgic about Pareto’s

simple model proposed at the end of the nineteenth century about 90 years before

McDonald’s pioneering effort. Perhaps the leap forward is just too great?

(Evidently, without the disastrous consequences of the Chinese leap forward in the

late 1950s.)

6.1.7 Extensions

Zandonatti (2001) presented a generalization of the GB2 following Feller’s definition

of a GB2 distribution; cf. (6.20). The distribution is defined by (we omit an

additional location parameter)

X ¼ b[W�1=u � 1]1=a,

where W denotes a standard beta( p, q) variable, and possesses the density

f (x) ¼
auxa�1

baB( p, q)
1þ

x

b

� �ah i�up

1� 1þ
x

b

� �ah i�u� �q�1

: (6:41)

We may call the distribution given by (6.41) the Zandonatti distribution. Clearly,

for u ¼ 1 we obtain (6.5).

6.2 SINGH–MADDALA DISTRIBUTION

The Singh–Maddala distribution introduced by Singh and Maddala in 1975 and in a

more polished form in 1976 has received special attention in the literature of income

distributions. Although it was discovered under the above name before the GB2
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distribution, it would be convenient to treat it as a special case of the GB2. In the

recent econometric literature, it is often compared with the Dagum distribution (see

the following section), perhaps due to the similarity of their c.d.f.’s.

6.2.1 Definition and Motivation

The Singh–Maddala distribution is a special case of the GB2 distribution, with

p ¼ 1. Its density is

f (x) ¼
aqxa�1

ba[1þ (x=b)a]1þq
, x . 0, (6:42)

where all three parameters a, b, q are positive. Here b is a scale parameter and a, q

are shape parameters; q only affects the right tail, whereas a affects both tails. We

shall use the notation GB2(a, b, 1, q) ; SM(a, b, q).

This distribution was independently rediscovered many times in several loosely

related areas. Consequently, it is known under a variety of names: It seems that it was

first considered by Burr (1942), where it appears as the twelfth example of solutions

of a differential equation defining the Burr system of distributions [see Kleiber,

(2003a) for a recent survey of this family]. It is therefore usually called the Burr XII

distribution, or—being the most popular Burr distribution—simply the Burr

distribution. Kakwani (1980b, p. 24) reported that it was proposed as an income

distribution as early as 1958 in an unpublished paper presented at a meeting of the

Econometric Society by Sargan. It is also known as the Pareto (IV) distribution

(Arnold, 1983), the beta-P distribution (Mielke and Johnson, 1974), or as a

generalized log-logistic distribution (e.g., El-Saidi, Singh, and Bartolucci, 1990).

This distribution is among the most commonly used models for the distribution of

personal incomes. In actuarial science it is usually called the Burr distribution (e.g.,

Hogg and Klugman, 1983, 1984).

The special case where a ¼ q is sometimes called the paralogistic distribution

(Klugman, Panjer, and Willmot, 1998). Further special cases are known as the Fisk

(1961) or log-logistic, for q ¼ 1, and the Lomax (1954) distribution, for a ¼ 1. They

will be discussed in greater detail in the following sections.

Unlike the c.d.f. of the GB2 distribution, the c.d.f. of the Singh–Maddala

distribution is available in closed form; it is given by the pleasantly simple

expression

F(x) ¼ 1� 1þ
x

b

� �ah i�q

, x . 0: (6:43)

We directly determine that the quantile function is equally straightforward

F�1(u) ¼ b[(1� u)�1=q � 1]1=a, for 0 , u , 1: (6:44)
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Hence, the Singh–Maddala distribution is one of the few distributions for which

the density, c.d.f., and quantile function all have simple closed forms. This may

partly explain why it was rediscovered so many times in various contexts.

Singh and Maddala (1976) derived their distribution by considering the hazard

rate r(x) of income. They observed that, although decreasing failure rate (DFR)

distributions are unlikely to be observed when the underlying variable is time, when

the variable is income, “ . . . a priori plausibility on theoretical reasoning for DFR

after a point is obvious” (p. 964), in that “income may help in earning more. The

ability to make more money might increase with one’s income.” [A similar idea may

be found some 50 years earlier in Hagstrœm (1925) in connection with the classical

Pareto distribution.]

Singh and Maddala then introduced the hazard rate of z :¼ log x, that is,

r�(z) ¼
@F(z)

@z

1

1� F(z)
,

a quantity they called the proportional failure rate (PFR). It measures, at any

income, the odds against advancing further to higher incomes, in a proportional

sense. For the classical Pareto distribution (3.2) we have r�(z) ¼ a. We know from

Chapter 3 that this is also the slope of the survival function of income in the Pareto

diagram. This suggests that r�(z) must be asymptotically constant. Singh and

Maddala further assumed that r�(z) grows with z first with an increasing, then a

decreasing, rate. Defining y :¼ �log(1� F), y0 . 0, y00 . 0, they started from the

differential equation

y00 ¼ a � y0(a� y0),

where a is a constant. This may be rearranged, yielding

y00

y0
þ

y00

a� y
¼ aa,

which integrates to

log y0 � log(a� y0) ¼ aazþ c1,

where c1 is the constant of integration. From this we get

y0

a� y0
¼ eaazþc1 ,

or

y0 ¼
aeaazþc1

1þ eaazþc1
:
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Further integration yields

log y ¼
1

a
log(1þ eaazþc1 )þ c2,

where c2 is another constant of integration. Substituting �log(1� F) for y, log x

for z, and rearranging, we obtain

F(x) ¼ 1�
c

(bþ xaa)1=a
,

where c ¼ (�c2 � c1)=a and b ¼ 1=ec1 . The boundary condition F(0) ¼ 0 results in

c ¼ b1=a. Thus,

F(x) ¼ 1�
b1=a

(bþ xaa)1=a
,

or

F(x) ¼ 1�
1

(1þ a1xa2 )a3
, (6:45)

where a1 ¼ 1=b, a2 ¼ aa, and a3 ¼ 1=a, which is the Singh–Maddala c.d.f. given

above with a2 ¼ a, a3 ¼ q, and a1 ¼ ba2 .

This derivation shows that the Singh–Maddala distribution is characterized by

a proportional failure rate

r�(z) ¼
aq � eaz�log b

1þ eaz�log b
,

a three-parameter logistic function with respect to income power z ¼ log x. Singh

and Maddala’s approach was criticized by Cramer (1978) who found the analogy

with failure rates unconvincing, writing that “it is not clear what the DFR property of

income distributions means, but since it applies to distributions that hold at a given

time all references to the passage of time and to the process whereby individuals

move from one income level to the next are inappropriate.” Nonetheless, these

reliability properties seem to capture some salient features of empirical income

distributions.

The parameterization utilized in (6.45) is quite common in applications; a variant

with ~aa1 ¼ 1=ba was employed, for example, by Schmittlein (1983). However, in the

size distributions area the parameterization based on (6.42) is often more convenient,

because there b is a scale parameter and hence it is eliminated when scale-free

quantities such as the Lorenz curve and common inequality measures are

considered. We shall use this variant in the subsequent discussion.
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6.2.2 Moments and Other Basic Properties

The kth moment exists for �a , k , aq; it equals [compare (6.12)]

E(X k) ¼
bkB(1þ k=a, q� k=a)

B(1, q)
¼

bkG(1þ k=a)G(q� k=a)

G(q)
: (6:46)

In particular,

E(X ) ¼
bB(1þ 1=a, q� 1=a)

B(1, q)
¼

bG(1þ 1=a)G(q� 1=a)

G(q)
(6:47)

and

var(X ) ¼
b2{G(q)G(1þ 2=a)G(q� 2=a)� G2(1þ 1=a)G2(q� 1=a)}

G2(q)
: (6:48)

Hence, the coefficient of variation is (McDonald, 1981)

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G(q)G(1þ 2=a)G(q� 2=a)

G2(1þ 1=a)G2(q� 1=a)
� 1

s
(6:49)

and the shape factors are

ffiffiffiffiffi
b1

p
¼

G2(q)l3 � 3G(q)l2l1 þ 2l3
1

[G(q)l2 � l2
1]3=2

(6:50)

and

b2 ¼
G3(q)l4 � 4G2(q)l3l1 þ 6G(q)l2l

2
1 � 3l4

1

[G(q)l2 � l2
1]2

, (6:51)

where we have set li ¼ G(1þ i=a)G(q� i=a), i ¼ 1, 2, 3, 4. These expressions are

rather unwieldy.

From (6.11), the mode of the Singh–Maddala distribution is at

xmode ¼ b
a� 1

aqþ 1

� �1=a

, if a . 1, (6:52)

and at zero otherwise. Thus, the mode is seen to be decreasing with q, reflecting the

fact that the right tail becomes lighter as q increases.
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The closed forms of the c.d.f and the quantile function of the Singh–Maddala

distribution also permit convenient manipulations with the characteristics of order

statistics. In particular,

E(X1:n) ¼
bG(1þ 1=a)G(nq� 1=a)

G(nq)
: (6:53)

This follows from the closure property (Arnold and Laguna, 1977; Arnold, 1983)

X � SM(a, b, q)¼)X1:n � SM(a, b, nq) (6:54)

and the expression for the moments (6.46).

The moments of Xk:n, 2 � k � n can now be generated using recurrence relations,

yielding (Tadikamalla, 1977)

E(X k
i:n) ¼ i

n

i

� �
bkq

Xi�1

j¼0

(�1) j i� 1

j

� �
B qn� qiþ q�

k

a
þ qj, 1þ

k

a

� �
:

However, expectation of minima is all we need for the derivation of the generalized

Gini coefficients below.

Arnold and Laguna (1977) provided tables of E(Xk:n), 1 � k � n, for n ¼ 1(1)10

and parameter values of b ¼ 1, q ¼ 0:5(0:5)5:0, and a�1 ¼ 0:1(0:1)1:0.

Since the c.d.f. is available in a simple closed form, this is also the case for the

hazard rate, which is given by

r(x) ¼
aqxa�1

ba{1þ (x=b)a}
, x . 0: (6:55)

The general shape of this function depends on the value of the shape parameter a:

For all a . 0 the hazard rate is eventually decreasing. For a . 1 we have a unimodal

function, whereas for a � 1 it is decreasing for all x . 0. [The special case where

a ¼ 2 (which is associated with a unimodal hazard rate) is discussed by Greenwich

(1992) in some detail.] Note that the parameter q is only a scale factor in (6.55) and

does not determine the shape of the function.

From general results for the mean excess function of regularly varying

distributions (see Chapter 2), we determine that the mean excess function is

asymptotically linearly increasing

e(x) [ RV1(1): (6:56)

6.2.3 Representations and Characterizations

Several characterizations of the Singh–Maddala distribution are available in the

statistical and econometric literature. Most of them are probably best understood by

relating them to characterizations of the exponential distribution, the most widely
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known and used distribution on IRþ. The exponential distribution is remarkably well

behaved, in that its c.d.f., quantile function, m.g.f., mean excess function, etc. are

all available in simple closed form. Not surprisingly, it has generated a substantial

characterizations literature. For a more extensive discussion of exponential

characterizations, see Galambos and Kotz (1978) for results until the late 1970s

and Johnson, Kotz, and Balakrishnan (1994, Section 19.8) for selected results that

were obtained thereafter.

For any monotonic function h(�), the characterization of X is equivalent to that of

h(X ). Thus, if a specific distribution can be associated with the exponential

distribution, a host of characterization results become available. The Singh–

Maddala distribution is related to the exponential distribution via

X � SM(a, b, q)() log 1þ
X

b

� �a� �
� Exp(q), (6:57)

where Exp(q) denotes an exponential distribution with scale parameter q. Hence,

h(x) ¼ log 1þ
x

b

� �ah i
, a . 0,

is the required monotonic transformation, and many characterizations of Singh–

Maddala distributions are now available by applying the transformation h�1(�) on

exponential variables.

The lack of memory property is perhaps the most popular and intuitively

transparent characterization of the exponential distribution. One of its many

equivalent expressions is given in terms of the functional equation

P(X . xþ y) ¼ P(X . x)P(X . y): (6:58)

El-Saidi, Singh, and Bartolucci (1990) showed that the functional equation

P 1þ
X

b

� �a

. xy

� �
¼ P 1þ

X

b

� �a

. x

� �
� P 1þ

X

b

� �a

. y

� �
,

where a, b . 0 and x, y . 1, characterizes the Singh–Maddala distribution (which

they call a generalized log-logistic distribution) among all continuous distributions

supported on [0, 1). Ghitany (1996) pointed out that this result, and others to be

discussed below, derive essentially from the lack of memory property (6.58) of the

exponential distribution. For the remainder of this section we shall ignore the scale

parameter b and consider h(x) ¼ log(1þ xa).

Further Singh–Maddala characterizations are in terms of order statistics. Suppose

that X1, . . . , Xn are a random sample from an absolutely continuous distribution with

c.d.f. F and let X1:n, . . . , Xn:n denote their order statistics. Al-Hussaini (1991)

showed that Xi � SM(a, 1, q), i ¼ 1, . . . , n, if and only if, for some a . 0,

Z1 ¼ 1þ X a
1:n, Z2 ¼

1þ X a
2:n

1þ X a
1:n

, Z2 ¼
1þ X a

3:n

1þ X a
2:n

, . . . , Z2 ¼
1þ X a

n:n

1þ X a
n�1:n
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are independent. Since the exponential distribution is characterized by the

independence of successive spacings, this result can also be traced back to the

exponential case via the transformation h(�) defined above [Ghitany (1996), who was

however unaware of Al-Hussaini’s (1991) result].

Another group of characterizations is related to the mean excess (or mean residual

life) function. Dimaki and Xekalaki (1996) showed that the Singh–Maddala

distribution is characterized by the property

E[log(1þ X a)jX . y] ¼ log(1þ ya)þ c, (6:59)

for all nonnegative values of y and for some a . 0, c . 0 among the continuous

distributions with the support on [0, 1) and such that Ejh(X )j , 1. This is

essentially a restatement of the condition E(X jX . y) ¼ yþ E(X ), for all non-

negative y, which is known to characterize the exponential distribution (Shanbhag,

1970).

Fakhry (1996) provided three related results. First, for h(x) ¼ log(1þ xa) the

recurrence relation

E[hk (X )jX . y] ¼ hk ( y)þ
1

q
kE[hk�1(X )jX . y] (6:60)

characterizes the SM(a, 1, q) distribution. Under the additional condition that

Eh2(X ) , 1, the same is true if, for all y and some fixed c,

var[h(X )jX . y] ¼ c2: (6:61)

Third, he observed that the condition

E[hk(Xi:n)] ¼ E[hk(Xi�1:n)]þ
k

q(n� iþ 1)
E[hk�1(Xi:n)] (6:62)

also characterizes the SM(a, 1, q) distribution. Again, all three results are connected

to characterizations of the exponential distribution via the transformation h.

Characterization (6.60) is a higher-order moment version of (6.59). The exponential

characterization associated with (6.61) is due to Azlarov, Dzamirzaev, and Sultanova

(1972) and Laurent (1974), whereas the characterization (6.62) via relationships

between the moments of order statistics is reduced to an exponential characterization

provided by Lin (1988).

Khan and Khan (1987) presented further characterizations based on conditional

expectations of order statistics. If a ¼ q(n� i) is independent of x,

E[X k
iþ1:njXi:n ¼ x] ¼

a

a� 1
xk þ

1

a

� �
(6:63)
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characterizes the Singh–Maddala distribution (referred to as the Burr XII by Khan

and Khan) among all continuous distributions with support on [0, 1) and F(0) ¼ 0.

In view of E[X k
n:njXn�1:n ¼ x] ¼ E[X k jX . x] and E[X k

1:njX2:n ¼ y] ¼ E[X k jX � y],

this can be expressed alternatively as

E[X k jX � x] ¼
q

q� 1
xk þ

1

q

� �
:

Also, the distribution is characterized by

E[X k
1:njX2:n ¼ x] ¼

1

q� 1
�

q

q� 1

1� F(x)

F(x)
xk : (6:64)

Both results can be restated in terms of E[X k jX1:n ¼ x] or E[X k jXn:n ¼ x].

Specializing from the mixture representation of the GB2 distribution (6.21), the

Singh–Maddala distribution can be considered a compound Weibull distribution

whose scale parameter follows an inverse generalized gamma distribution (Takahasi,

1965; Dubey, 1968)

Wei(a, u)
^
u

InvGG(a, b, q) ¼ SM(a, b, q): (6:65)

6.2.4 Lorenz Curve and Inequality Measures

As we have already mentioned, the quantile function of the Singh–Maddala

distribution is available in closed form. Consequently, its (normalized) integral, the

Lorenz curve, is also of a comparatively simple form, namely,

L(u) ¼ Iy 1þ
1

a
, q�

1

a

� �
, 0 � u � 1, (6:66)

where y ¼ 1� (1� u)1=q. The subclass where q ¼ (aþ 1)=a is even simpler

analytically and yields

L(u) ¼ [1� (1� u)a=(aþ1)](aþ1)=a, 0 , u , 1, (6:67)

a Lorenz curve that is symmetric (in the sense of Section 2.1.1). It is interesting that

this is also a subclass of the Rasche et al. (1980) family of Lorenz curves; cf. Section

2.1. Thus, the Rasche et al. model and the Singh–Maddala distribution share the

same underlying structure.

For Xi � SM(ai, bi, qi), i ¼ 1, 2, the necessary and sufficient conditions for

X1 �L X2 are

a1 � a2 and a1q1 � a2q2: (6:68)

[See (6.24) and (6.25).] This result is due to Wilfling and Krämer (1993).

6.2 SINGH – MADDALA DISTRIBUTION 205



From (6.53) we obtain the generalized Gini coefficients (Kleiber and Kotz, 2002)

Gn ¼ 1�
E(X1:n)

E(X )
¼ 1�

G(nq� 1=a)G(q)

G(nq)G(q� 1=a)

for n ¼ 2, 3, 4, . . . , where n ¼ 2 yields the ordinary Gini coefficient (Cronin, 1979;

McDonald and Ransom, 1979a)

G ¼ 1�
G(q)G(2q� 1=a)

G(q� 1=a)G(2q)
: (6:69)

The Theil measure is (McDonald, 1981)

T (X ) ¼
1

a
2c

1

a

� �
� c qþ 1ð Þ � c q�

1

a

� �� �
� log(q)� log B 1þ

1

a
, q�

1

a

� �
,

and the Pietra index can be written, using (6.23) and the representation P ¼ F(m)�

F(1)(m) (Butler and McDonald, 1989),

P(X ) ¼ FSM(m; a, b, q)� FGB2 m; a, b, 1þ
1

a
, q�

1

a

� �
,

where m is the first moment. Finally, the variance of logarithms is (Schmittlein,

1983)

VL(X ) ¼ var(log X ) ¼
1

a2
[c0(q)þ c0(1)]:

Unlike in the lognormal case, these measures are not very attractive analytically.

Klonner (2000) presented necessary as well as sufficient conditions for first-order

stochastic dominance (FSD) within the Singh–Maddala family. The conditions

a1 � a2, a1q1 � a2q2, and b1 � b2 are sufficient for X1 �FSD X2, whereas the

conditions a1 � a2 and a1q1 � a2q2 are necessary. It is instructive to compare these

conditions to those for the Lorenz ordering (6.68): Although a1q1 � a2q2 is also a

condition for X1 �L X2, the second condition a1 � a2 appears in reversed form in

(6.68). The reason is that FSD describes “size,” whereas the Lorenz ordering

describes variability. Namely, a1 � a2 and a1q1 � a2q2 mean that X1 is associated

with both a heavier left and a heavier right tail and thus more variable than X2. On

the other hand, a1 � a2 and a1q1 � a2q2 mean that X1 is associated with a lighter left

and a heavier right tail and thus stochastically larger than X2. See Chapter 2 for

details of the argument in connection with the Lorenz ordering.

Zenga ordering within the Singh–Maddala family was studied by Polisicchio

(1990). It emerges that a1 � a2 implies X1 �Z X2, for a fixed q, and similarly that

q1 � q2 implies X1 �Z X2, for a fixed a. Under these conditions we know from
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(6.68) that X1 �L X2; however, a complete characterization of the Zenga order

among Singh–Maddala distributions appears to be unavailable at present.

6.2.5 Estimation

Singh and Maddala (1976) estimated parameters by using a regression method

minimizing

Xn

i¼1

log[1� F(xi)]þ q log 1þ
xi

b

� �ah in o2

, (6:70)

that is, a nonlinear least-squares regression in the Pareto diagram. Stoppa (1995)

discussed a further regression method utilizing the elasticity dlog F(x)=dlog x of the

distribution. The resulting estimators could be used, for example, as starting values

in ML estimation.

The log-likelihood for a complete random sample of size n equals

log L ¼ nlog qþ nlog aþ (a� 1)
Xn

i¼1

log xi � nalog b

� (1þ q)
Xn

i¼1

log 1þ
xi

b

� �ah i
,

yielding the likelihood equations

n

a
þ
Xn

i¼1

log
xi

b

� �
¼ (1þ q)

Xn

i¼1

log
xi

b

� � b

xi

� �a

þ 1

� ��1

, (6:71)

n ¼ (1þ q)
Xn

i¼1

1þ
b

xi

� �a� ��1

, (6:72)

n

q
¼
Xn

i¼1

log 1þ
xi

b

� �ah i
: (6:73)

The algorithmic aspects of this optimization problem are discussed in Mielke and

Johnson (1974), Wingo (1983), and Watkins (1999).

Specializing from the information matrix for the GB2 distribution (6.30), we

obtain for u ¼ (a, b, q)`

I (u) ¼ �E
@2log L

@ui@uj

� �
i, j

" #
¼:

I11 I12 I13

I21 I22 I23

I31 I32 I33

0
@

1
A, (6:74)
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where

I11 ¼
1

a2(2þ q)
{q[(c (q)� c (1)� 1)2 þ c0(q)þ c0(1)]

þ 2[c (q)� c (1)]}, (6:75)

I21 ¼ I12 ¼
1� qþ q[c (q)� c (1)]

b(2þ q)
, (6:76)

I22 ¼
a2q

b2(2þ q)
, (6:77)

I23 ¼ I32 ¼ �
a

b(1þ q)
, (6:78)

I31 ¼ I13 ¼ �
c (q)� c (1)� 1

a(1þ q)
, (6:79)

I33 ¼
1

q2
: (6:80)

[For I33 we used the identity c0(x)� c0(xþ 1) ¼ x�2.]

Schmittlein (1983) provided an explicit expression for the inverse of the Fisher

information (using a different parameterization) as well as the information matrix

when the data are grouped and/or type I censored. Comparing these formulae

with the expressions above permits an evaluation of the information loss due to

the effect of grouping and/or censoring. Asymptotic variances for functionals of

the distribution can be obtained by the delta method. Since the resulting

expressions for the asymptotic variances of, for example, the Gini, Pietra, and

variance of logarithms measures of inequality are not very attractive analytically,

we omit the corresponding formulae and refer the interested reader to Schmittlein

(1983).

As an alternative to ML estimation, the maximum product of spacings (MPS)

estimation was considered by Shah and Gokhale (1993). This method obtains

estimates of a vector-valued parameter u by maximizing

H ¼
1

nþ 1

Xnþ1

i¼1

log{F(xi, u)� F(xi�1, u)},

i ¼ 1, 2, . . . , nþ 1, with x0 ¼ �1 and xnþ1 ¼ 1. From a simulation study

employing ten parameter combinations and nine sample sizes ranging from n ¼ 10

to n ¼ 150, Shah and Gokhale concluded that MPS is superior to ML estimation, in

the sense of smaller MSE, at least for small samples.
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6.2.6 Empirical Results

Incomes and Wealth

Singh and Maddala (1976) compared their model to Salem and Mount’s (1974) results

for the gamma distribution using 1960–1972 U.S. family incomes and concluded that

their model provides a better fit than either the gamma or lognormal functions.

However, Cronin (1979), in a comment on the Singh and Maddala paper, observed

that the implied Gini indices for the Singh–Maddala model almost always fall outside

the Gastwirth (1972) bounds (calculated by Salem and Mount, 1974) for their data.

He concluded that Singh and Maddala’s claim that the “Burr distribution fits the data

better [than the gamma distribution] would now appear to be questionable” (p. 774).

When compared to lognormal, gamma, and beta type I fittings for U.S. family

incomes for 1960 and 1969 through 1975, the Singh–Maddala distribution generally

outperforms all these distributions, with only the beta type I being slightly better in a

few cases (McDonald and Ransom, 1979a).

Dagum (1983) fit a Singh–Maddala distribution to 1978 U.S. family incomes for

which it outperforms the (two-parameter) lognormal and gamma distributions by

wide margins. However, the (four- and three-parameter) Dagum type III and type I

distributions fit even better.

In McDonald (1984) the distribution ranks second out of 11 considered models—

being inferior only to the GB2 distribution—when fitted to 1970, 1975, and 1980

U.S. family incomes.

For Japanese incomes for 1963–1971, the distribution outperforms the Fisk, beta,

gamma, lognormal, and Pareto (II) distribution. However, a likelihood ratio test

reveals that the full flexibility of the Singh–Maddala distribution is not required and

that the two-parameter Fisk distribution already provides an adequate fit (Suruga,

1982). The distribution was also fitted to various strata from the 1975 Japanese

Income Redistribution Survey by Atoda, Suruga, and Tachibanaki (1988). Four

occupational classes as well as primary and redistributed incomes were considered,

and five different estimation techniques were applied. In a later study using the same

data set, Tachibanaki, Suruga, and Atoda (1997) considered ML estimators on the

basis of individual observations. Here the Singh–Maddala model is almost always

the best out of six different functions [including (generalized) gamma and Weibull

distributions] in terms of several fit criteria. However, when the AIC is employed for

model selection, the Singh–Maddala distribution turns out to be essentially

overparameterized for one stratum, with a two-parameter log-logistic special case

providing an adequate fit.

Henniger and Schmitz (1989) employed the Singh–Maddala distribution when

fitting five parametric models to data from the UK Family Expenditure Survey for

1968–1983. However, for the whole population all parametric models are rejected;

for subgroups the Singh–Maddala distribution performs better than any other

parametric model considered and appears to be adequate for their data, in terms of

goodness-of-fit tests.

Majumder and Chakravarty (1990) considered the Singh–Maddala distribution

when modeling U.S. income data from 1960, 1969, 1980, and 1983. The
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distribution is among the best three-parameter models. In a reassessment of

Majumder and Chakravarty’s findings, McDonald and Mantrala (1993, 1995) fit

the Singh–Maddala distribution to 1970, 1980, and 1990 U.S. family incomes,

using two different fitting methods and alternative groupings of the data. Here the

distribution is outperformed by the more flexible GB2 as well as the Dagum

distribution.

McDonald and Xu (1995) studied 1985 U.S. family incomes; out of 11 distri-

butions of the beta and gamma type, the Singh–Maddala ranks fourth in terms of

likelihood and several other goodness-of-fit criteria.

In an application to 1984–1993 German household incomes, the Singh–Maddala

distribution emerges as one of two suitable models (Brachmann, Stich, and

Trede, 1996), being comparable to the more general GB2 distribution. Two-

parameter models such as the gamma or Weibull distributions are not appropriate for

these data.

Bordley, McDonald, and Mantrala (1996) fit the Singh–Maddala distribution to

U.S. family incomes for 1970, 1975, 1980, 1985, and 1990. The distribution ranks

fourth out of 15 considered models of the beta and gamma type, being outperformed

only by the GB2, GB, and Dagum type I distributions and improving on three- and

four-parameter models such as the generalized gamma and GB1 distributions. For

1985 the relative ranking of the Singh–Maddala and Dagum distributions depends

on the criterion selected; in terms of likelihood and x 2, the Singh–Maddala does

slightly better.

Bell, Klonner, and Moos (1999) fit the Singh–Maddala distribution to the per

capita consumption expenditure data of rural Indian households for 28 survey

periods, stretching from 1954–1955 to 1993–1994. They reported that for a total of

44.4% of all 378 possible pairs, a ranking in terms of first-order stochastic

dominance is possible, and another 47.7% can be Lorenz-ordered.

Botargues and Petrecolla (1997) estimated the Singh–Maddala model for the

income distribution in the Buenos Aires region, for the years 1990–1996. However,

the Dagum distributions (of various types) perform better on these data.

Actuarial Losses

In the actuarial literature, Hogg and Klugman (1983) fit a Singh–Maddala

distribution (under the name of Burr distribution) to 35 observations on hurricane

losses in the United States. Compared to the Weibull and lognormal models, the

distribution appears to be overparameterized for these data.

Cummins et al. (1990), in their hybrid paper already mentioned above, fit the

Singh–Maddala distribution (under the name of Burr XII) to aggregate fire losses

(the data are provided in Cummins and Freifelder, 1978). The distribution performs

quite well; however, less generously parameterized limiting forms of the GB2 such

as the inverse exponential distribution seem to do even better. The same authors also

considered data on the severity of fire losses and fit the GB2 to both grouped and

individual observations. Here the Singh–Maddala is indistinguishable from the four-

parameter GB2 distribution for individual observations and is therefore a distribution

of choice for these data.
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6.2.7 Extensions

A generalization of the Singh–Maddala distribution was recently proposed by

Zandonatti (2001). Using Stoppa’s (1990a,b) method leading to a power

transformation of the c.d.f., the resulting density is given by

f (x) ¼
aquxa�1

ba
1þ

x

b

� �ah i�q�1

1� 1þ
x

b

� �ah i�qn ou�1

, x . 0: (6:81)

Clearly, for u ¼ 1 we arrive at the Singh–Maddala distribution.

More than a decade before the publication of Singh and Maddala’s pioneering

1976 paper, a multivariate Singh–Maddala distribution was proposed by Takahasi

(1965), under the name of multivariate Burr distribution. This distribution is defined

by the joint survival function

�FF(x1, . . . , xk) ¼ 1þ
Xk

i¼1

xi

bi

� �ai

( )�q

, xi . 0, i ¼ 1, . . . , k, (6:82)

and is often referred to as the Takahasi–Burr distribution. For the components Xi of

a random vector (X1, . . . , Xk) following this distribution, we have the representation

Xi ¼
d

bi

Yi

Z

� �1=ai

, i ¼ 1, . . . , k, (6:83)

where the Yi’s are i.i.d. following a standard exponential distribution and Z has a

gamma(q, 1) distribution. Note that Y
1=ai

i follows a Weibull and Z1=ai a generalized

gamma distribution; hence, (6.83) is a direct generalization of the univariate mixture

representation (6.65). The Takahasi–Burr distribution possesses Singh–Maddala

marginals as well as conditionals.

As is well known from the theory of copulas (e.g., Nelsen, 1998), a multivariate

survival function can be decomposed in the form

�FF(x1, . . . , xk) ¼ G[ �FF1(x1), . . . , �FFk(xk)],

where the �FFi(xi), i ¼ 1, . . . , xk , are the marginal survival functions and G is the

copula (a c.d.f. on [0, 1]k that captures the dependence structure of F). The

dependence structure within the Takahasi–Burr family has been studied by Cook

and Johnson (1981); the copula is

G(u1, . . . , uk) ¼
Xk

i¼1

u
�1=q
i � (k � 1)

( )�q

, 0 , ui , 1, i ¼ 1, . . . , k, (6:84)

which is often called the Clayton (1978) copula. However, considering data on

annual incomes for successive years, Kleiber and Trede (2003) found that this model
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does not provide a good fit. When combining an elliptical copula (associated with,

e.g., a multivariate normal distribution) with Singh–Maddala marginal distributions,

they obtained rather encouraging preliminary results.

6.3 DAGUM DISTRIBUTIONS

Although introduced as an income distribution only one year after the Singh–

Maddala model, the Dagum distribution is less widely known. Presumably, this is

due to the fact that Dagum’s work was published in the French journal Economie

Appliquée, whereas the Singh–Maddala paper appeared in the more widely read

Econometrica. However, in recent years there are indications that the Dagum

distribution is, in fact, a more appropriate choice in many applications.

6.3.1 Definition and Motivation

The Dagum distribution is a GB2 distribution with the shape parameter q ¼ 1;

hence, its density is

f (x) ¼
apxap�1

bap[1þ (x=b)a]pþ1
, x . 0, (6:85)

where a, b, p . 0.

Like the Singh–Maddala distribution considered in the previous section, the

Dagum distribution was rediscovered many times in various fields of science.

Apparently, it occurred for the first time in Burr (1942) as the third example of

solutions to his differential equation defining the Burr system of distributions. Thus,

it is known as the Burr III distribution. As mentioned above, the Dagum distribution

is closely related to the Singh–Maddala distribution, specifically

X � D(a, b, p)()
1

X
� SM a,

1

b
, p

� �
: (6:86)

This relation permits us to translate several results pertaining to the Singh–Maddala

family to corresponding results for the Dagum distributions.

The Singh–Maddala is the Burr XII, or simply the Burr distribution, so it is

not surprising that the Dagum distribution is also called the inverse Burr

distribution, notably in the actuarial literature (e.g., Klugman, Panjer, and

Willmot, 1998). Like the Singh–Maddala, the Dagum distribution can be

considered a generalized log-logistic distribution. The special case where a ¼ p is

sometimes called the inverse paralogistic distribution (Klugman, Panjer, and

Willmot, 1998). Prior to its use as an income distribution, the Dagum family was

proposed as a model for precipitation amounts in the meteorological literature

(Mielke, 1973), where it is called the (three-parameter) kappa distribution.
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Mielke and Johnson (1974) nested it within the GB2 and called it the beta-K

distribution. In a parallel development—aware of Mielke (1973) but presumably

unaware of Dagum (1977)—Fattorini and Lemmi (1979) proposed the

distribution as an income distribution. [See also Lemmi (1987).] Nonetheless,

the distribution is usually called the Dagum distribution in the income

distribution literature, and we shall follow this convention below.

Dagum (1977) derived his model from the empirical observation that the income

elasticity of the c.d.f. of income is a decreasing and bounded function of F. Starting

from the differential equation,

h(x, F) ¼
dlog F(x)

dlog x
¼ ap{1� [F(x)]1=p}, x � 0, (6:87)

subject to p . 0 and ap . 0, one obtains the density (6.85).

Fattorini and Lemmi (1979) independently arrived at the Dagum distribution as

the equilibrium distribution of a continuous-time stochastic process under certain

assumptions on its infinitesimal mean and variance (see also Dagum and Lemmi,

1989).

6.3.2 Moments and Other Basic Properties

Like the c.d.f. of the Singh–Maddala distribution discussed in the previous section,

the c.d.f. of the Dagum distribution is available in closed form, namely,

F(x) ¼ 1þ
x

b

� ��ah i�p

, x . 0: (6:88)

This is also true of the quantile function

F�1(u) ¼ b[u�1=p � 1]�1=a, for 0 , u , 1: (6:89)

As was the case with the Singh–Maddala distribution discussed in the previous

section, the Dagum family was considered in several equivalent parameterizations.

Mielke (1973) and later Fattorini and Lemmi (1979) used (a, b, u) ¼ (1=p, bp1=a, ap),

whereas Dagum (1977) employed (b, d, l) ¼ ( p, a, ba).

From (6.12), the kth moment exists for �ap , k , a; it equals

E(X k) ¼
bkB( pþ k=a, 1� k=a)

B( p, 1)
¼

bkG( pþ k=a)G(1� k=a)

G( p)
: (6:90)

[In view of (6.86), this result can alternatively be obtained upon replacing q with p

and a with �a in (6.46).]

6.3 DAGUM DISTRIBUTIONS 213



Specifically,

E(X ) ¼
bG( pþ 1=a)G(1� 1=a)

G( p)
(6:91)

and

var(X ) ¼
b2{G( p)G( pþ 2=a)G(1� 2=a)� G2( pþ 1=a)G2(1� 1=a)}

G2( p)
: (6:92)

Hence, the coefficient of variation is

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G( p)G( pþ 2=a)G(1� 2=a)

G2( pþ 1=a)G2(1� 1=a)
� 1

s
(6:93)

and the shape factors are

ffiffiffiffiffi
b1

p
¼

G2( p)l3 � 3G( p)l2l1 þ 2l3
1

[G( p)l2 � l2
1]3=2

(6:94)

and

b2 ¼
G3( p)l4 � 4G2( p)l3l1 þ 6G( p)l2l

2
1 � 3l4

1

[G( p)l2 � l2
1]2

, (6:95)

where we have set li ¼ G(1� i=a)G( pþ i=a), i ¼ 1, 2, 3, 4. These expressions are

not easily interpreted.

From a moment-ratio diagram—a graphical display of (
ffiffiffiffiffi
b1

p
, b2)—of the Dagum

and the closely related Singh–Maddala distributions (Rodriguez, 1983; Tadikamalla,

1980) it may be inferred that both distributions allow for various degrees of positive

skewness and leptokurtosis, and even for a considerable degree of negative skewness,

although this feature does not seem to be of particular interest in our context.

Tadikamalla (1980, p. 342) observed “that although the Burr III [¼Dagum] distri-

bution covers all of the region . . . as covered by the Burr XII [¼Singh–Maddala]

distribution and more, much attention has not been paid to this distribution.” Kleiber

(1996) noted that the same has happened in the econometrics literature.

The mode of this distribution is at

xmode ¼ b
ap� 1

aþ 1

� �1=a

, if ap . 1, (6:96)
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and at zero otherwise. This built-in flexibility is an attractive feature in that the

model can approximate income distributions, which are usually unimodal, and

wealth distributions, which are zeromodal.

From (6.89) the median is (Dagum, 1977)

xm ¼ b[21=p � 1]�1=a:

Moments of the order statistics can be obtained in an analogous manner to the

Singh–Maddala case. In view of the relation (6.86) presented above and the

corresponding result (6.53) for Singh–Maddala minima, we have the closure property

X � D(a, b, p)¼)Xn:n � D(a, b, np) (6:97)

and thus, using (6.90), we obtain

E(Xn:n) ¼
bkG(npþ 1=a)G(1� 1=a)

G(np)
: (6:98)

As in the Singh–Maddala case, the moments of other order statistics can be

obtained using recurrence relations. This will be necessary for the computation of

generalized Gini coefficients where expectations of sample minima are required.

Domma (1997) provided some further distributional properties of the sample median

and the sample range.

To the best of our knowledge, the hazard rate and mean excess function of the

Dagum distribution have not been investigated in the statistical literature.

Nonetheless, from the general properties of regularly varying functions (see

Chapter 2) we can infer that the hazard rate is decreasing for large x, specifically

r(x) [ RV1(�1), and similarly that the mean excess function is increasing,

e(x) [ RV1(1).

6.3.3 Representations and Characterizations

There are comparatively few explicit characterizations of the Dagum (Burr III)

distribution in the statistical literature. However, in view of the close relationship

with the Singh–Maddala distribution, all characterizations presented for that

distribution translate easily into characterizations of the Dagum distribution.

For example, El-Saidi, Singh, and Bartolucci (1990) showed that the functional

equation

P 1þ
b

X

� �a

. xy

� �
¼ P 1þ

b

X

� �a

. x

� �
� P 1þ

b

X

� �a

. y

� �
,

where a, b . 0 and x, y . 1, characterizes the Dagum (which they called a genera-

lized log-logistic) distribution among all continuous distributions supported on

[0, 1). This follows directly from the corresponding characterization of the
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Singh–Maddala distribution considered above via the relation (6.86). Ghitany

(1996) observed that this characterization can be considered a restatement of the

well-known characterization of the exponential distribution in terms of its lack of

memory property, as described in connection with the Singh–Maddala distribution.

Utilizing the mixture representation of the GB2 distribution (6.21), the Dagum

distribution can be considered a compound generalized gamma distribution whose

scale parameter follows an inverse Weibull distribution

GG(a, u, p)
^
u

InvWei(a, b) ¼ D(a, b, p): (6:99)

6.3.4 Lorenz Curve and Inequality Measures

Since the quantile function of the Dagum distribution is available in closed form, its

(normalized) integral, the Lorenz curve, is also of a comparatively simple form,

namely (Dagum, 1977),

L(u) ¼ Iz pþ
1

a
, 1�

1

a

� �
, 0 � u � 1, (6:100)

where z ¼ u1=p.

A subclass of the Dagum distributions, defined by

F(x) ¼ 1þ
x

b

� ��ah i�1þ1=a

, x . 0, (6:101)

where a . 1, exhibits symmetric Lorenz curves (in the sense of Chapter 2).

Interestingly, this was noted by Champernowne (1956, p. 182) long before the

distribution was proposed as an income distribution. However, Champernowne did

not develop the model further.

From (6.24) and (6.25) the necessary and sufficient conditions for Lorenz domi-

nance are

a1p1 � a2p2 and a1 � a2: (6:102)

This was derived by Kleiber (1996) from the corresponding result for the Singh–

Maddala distribution using (6.86); for a different approach see Kleiber (1999b,

2000a). [Dancelli (1986) had shown somewhat earlier that (income) inequality is

decreasing to zero for both a! 1 and p! 1 and increasing to 1 for a! 1 and

p! 0, respectively, keeping the other parameter fixed.]

Klonner (2000) presented necessary as well as sufficient conditions for first-order

stochastic dominance within the Dagum family. The conditions a1 � a2,

a1p1 � a2p2, and b1 � b2 are sufficient for X2 �FSD X1, whereas the conditions

a1 � a2 and a1p1 � a2p2 are necessary. (See the corresponding conclusions for the

Singh–Maddala distribution for an interpretation of these results.)
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Zenga ordering among the Dagum distributions was studied by Polisicchio

(1990). Similar to the Singh–Maddala case, it turns out that a1 � a2 implies

X1 �Z X2, for a fixed p, and analogously that p1 � p2 implies X1 �Z X2, for a fixed

a. Under these conditions, we know from (6.68) that the distributions are also

Lorenz-ordered, specifically X1 �L X2. However, a complete characterization of the

Zenga order within the family of Dagum distributions seems to be currently

unavailable.

The Gini coefficient is (Dagum, 1977)

G ¼
G( p)G(2pþ 1=a)

G(2p)G( pþ 1=a)
� 1: (6:103)

The generalized Gini coefficients can be obtained as follows: Combining the

well-known recurrence relation (Arnold and Balakrishnan, 1989, p. 7)

E(Xk:n) ¼
Xn

j¼1

(�1) j�i n

j

� �
j � 1

i� 1

� �
E(Xj:j)

and the expression for the expectations of Dagum maxima (6.98) yields

Gn ¼
G( p)

G( pþ 1=a)

Xn

j¼1

(�1) j�1 n

j

� �
G( jpþ 1=a)

G( jp)
: (6:104)

The Zenga index j2 is (Latorre, 1988)

j2 ¼ 1� exp E( log X )�
E(X log X )

E(X )

� �

¼ 1� exp
1

a
c ( p)þ c 1�

1

a

� �
� c pþ

1

a

� �
� c (1)

� �� �
:

6.3.5 Estimation

Dagum (1977) discussed five methods for estimating the model parameters and

recommended a nonlinear least-squares method minimizing

Xn

i¼1

Fn(xi)� 1þ
xi

b

� ��ah i�pn o
, (6:105)

a minimum distance technique based on the c.d.f. A further regression-type

estimator utilizing the elasticity (6.87) was considered by Stoppa (1995).
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The log-likelihood for a complete random sample of size n is

log L ¼ nlog aþ nlog pþ (ap� 1)
Xn

i¼1

log xi � naplog b� ( pþ 1)

�
Xn

i¼1

log 1þ
xi

b

� �ah i
, (6:106)

yielding the likelihood equations

n

a
þ p

Xn

i¼1

log
xi

b

� �
¼ ( pþ 1)

Xn

i¼1

log(xi=b)

1þ (b=xi)
a , (6:107)

np ¼ ( pþ 1)
Xn

i¼1

1

1þ (b=xi)
a , (6:108)

n

p
þ a

Xn

i¼1

log
xi

b

� �
¼
Xn

i¼1

log 1þ
xi

b

� �ah i
: (6:109)

However, likelihood estimation in this family is not without problems:

Considering the distribution of log X , a generalized logistic distribution, Zelterman

(1987) showed that there is a path in the parameter space along which the likelihood

becomes unbounded. This implies that the global maximizer of the likelihood does

not define a consistent estimator of the parameters. Fortunately, there nonetheless

exists a sequence of local maxima that yields consistent estimators (Abberger and

Heiler, 2000).

Apparently unaware of these problems, Domański and Jedrzejczak (1998)

provided a simulation study for the performance of MLEs for samples of size n ¼

1,000(1,000)10,000. It emerges that estimates of the shape parameters a, p can be

considered as unbiased for samples of sizes 2,000–3,000, and as approximately

normally distributed and efficient for n � 7,000. Reliable estimation of the scale

parameter seems to require even larger samples. Estimators appear to be unbiased

for n � 4,000, but even for n ¼ 10,000 there are considerable departures from

normality.

Analogously to the Singh–Maddala distribution, we can obtain the Fisher

information matrix

I (u) ¼ �E
@2log L

@ui@uj

� �
i,j

" #
¼:

I11 I12 I13

I21 I22 I23

I31 I32 I33

0
@

1
A, (6:110)
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where u ¼ (a, b, p)`, from the information matrix of the GB2 distribution (6.30).

This yields

I11 ¼
1

a2(2þ p)
{p[(c ( p)� c (1)� 1)2 þ c0( p)þ c0(1)]

þ 2[c ( p)� c (1)]}, (6:111)

I21 ¼ I12 ¼
p� 1� p[c ( p)� c (1)]

b(2þ p)
, (6:112)

I22 ¼
a2p

b2(2þ p)
, (6:113)

I23 ¼ I32 ¼
a

b(1þ p)
, (6:114)

I31 ¼ I13 ¼
c (2)� c ( p)

a(1þ p)
, (6:115)

I33 ¼
1

p2
: (6:116)

We note that there are at least two earlier derivations of the Fisher information in

the statistical literature: a detailed one using Dagum’s parameterization due to

Latorre (1988) and a second one due to Zelterman (1987). As mentioned above, the

latter article considers the distribution of log X , a generalized logistic distribution,

using the parameterization (u, s, a) ¼ ( log b, 1=a, p). Latorre (1988) also provided

asymptotic standard errors for the Gini and Zenga coefficients derived from MLEs

for the Dagum model.

However, an inspection of the scores (6.107–6.109) reveals that supxk@L=@uk ¼ 1;

thus, the scores function is unbounded in the Dagum case. This implies that the MLE is

rather sensitive to isolated observations located sufficiently far away from the majority of

the data. There appears therefore to be some interest in more robust procedures. For a

robust approach to the estimation of the Dagum model parameters using an optimal B-

robust estimator (OBRE), see Victoria-Feser (1995). (The basic ideas underlying this

estimator are outlined in Section 3.6 in connection with the Pareto distribution.)

6.3.6 Extensions

Dagum (1977, 1980a) introduced two further variants of his distribution; thus, we

shall refer to the previously discussed standard version as the Dagum type I

distribution in what follows. The Dagum type II distribution has the c.d.f.

F(x) ¼ aþ (1� a) 1þ
x

b

� ��ah i�p

, x � 0, (6:117)
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where a, b, p . 0 and a [ (0, 1). Clearly, this is a mixture of a point mass at the

origin with a Dagum (type I) distribution over the positive halfline. Thus, the kth

moment exists for 0 , k , a.

The type II distribution was proposed as a model for income distributions with

null and negative incomes, but more particularly to fit wealth distributions, which

frequently present a large number of economic units with null gross assets and with

null and negative net assets.

There is also a Dagum type III distribution, defined via

F(x) ¼ aþ (1� a) 1þ
x

b

� ��ah i�p

, (6:118)

where again a, b, p . 0 but a , 0. Consequently, the support of this variant is

[x0, 1), x0 . 0, where x0 ¼ {b[(1� 1=a)1=p � 1]}�1=a is determined implicitly from

the constraint F(x) � 0. Clearly, for the Dagum (III) distribution the kth moment

exists for k , a.

Both the Dagum type II and type III can be derived from the differential equation

h(x, F) ¼
d[log F(x)� a]

dlog x
¼ ap 1�

F(x)� a

1� a

� �1=p
( )

, x � 0,

subject to p . 0 and ap . 0. This is a generalization of the differential equation

(6.87) considered above.

Investigating the relation between the functional and personal distribution of

income, Dagum (1999) obtained the following bivariate c.d.f. specifying the joint

distribution of human capital and wealth:

F(x1, x2) ¼ (1þ b1x�a1

1 þ b2x�a2

2 þ b3x�a1

1 x�a2

2 )�p, xi . 0, i ¼ 1, 2: (6:119)

If b3 ¼ b1b2,

F(x1, x2) ¼ (1þ b1x�a1

1 )�p(1þ b2x�a2

2 )�p:

Hence, the marginals are independent. As far as we are aware, there are no empirical

applications of this multivariate Dagum distribution.

However, there is a recent application of a bivariate Dagum distribution in the

actuarial literature. In the section dealing with the Singh–Maddala distribution, we

presented a bivariate income distribution defined in terms of a copula. This is also

the approach of Klugman and Parsa (1999), who combined Frank’s (1979) copula

G(u1, u2) ¼ �
1

a
log 1þ

(e�au1 � 1)(e�au2 � 1)

e�a � 1

� �
,

0 , ui , 1, i ¼ 1, 2, a = 1, (6:120)
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with two Dagum marginal distributions Fi, i ¼ 1, 2, and applied the resulting model

F(x1, x2) ¼ G[F1(x1), F2(x2)],

to the joint distribution of loss and allocated loss adjustment expense on a single

claim. They obtained âa ¼ 3:07, indicating moderate positive dependence.

6.3.7 Empirical Results

Although the Dagum distribution was virtually unknown in major English language

economics and econometrics journals until well into the 1990s, there were several

early applications to income and wealth data, most of which appeared in French,

Italian, and Latin American publications.

Incomes and Wealth

Dagum (1977, 1980a) applied his type II distribution to U.S. family incomes of 1960

and 1969, for which the model outperforms the Singh–Maddala, gamma, and

lognormal functions, and in his Encyclopedia of Statistical Sciences entry of 1983 he fit

Dagum types I and III as well as Singh–Maddala, gamma, and lognormal distributions

to 1978 U.S. family incomes. Here the Dagum types III and I rank first and second; both

outperform the (two-parameter) lognormal and gamma distributions by wide margins.

Espinguet and Terraza (1983) employed the Dagum type II distribution when

modeling French wages, stratified by occupation for 1970–1978. The distribution is

superior to a Box–Cox-transformed logistic, the Singh–Maddala and three-parameter

lognormal and Weibull distributions, as well as a four-parameter beta type I model.

Dagum and Lemmi (1989) fit the Dagum type I–III distributions to Italian

income data from the Banca d’Italia sample surveys of 1977, 1980, and 1984, for

which the fit is in general quite satisfactory. The data were disaggregated by sex,

region, and source of income.

Majumder and Chakravarty (1990) considered the Dagum type I distribution when

modeling U.S. income data for 1960, 1969, 1980, and 1983. The distribution

improves upon all other two- and three-parameter models. In a reassessment of

Majumder and Chakravarty’s findings, McDonald and Mantrala (1993, 1995) fit the

Dagum type I distribution to 1970, 1980, and 1990 U.S. family incomes using two

different fitting methods and alternative groupings of the data; for the 1970 and 1990

data the distribution performs almost as well as the four-parameter GB2 distribution,

confirming Majumder and Chakravarty’s conclusions.

McDonald and Xu (1995) studied 1985 U.S. family incomes. Out of 11

distributions considered, the Dagum type I ranks third in terms of likelihood and

several other criteria, being outperformed only by the four-parameter GB2 and a

five-parameter generalized beta distribution [see (6.142) below].

Victoria-Feser (1995, 2000) applied a Dagum type I distribution to incomes of

households in receipt of social benefits using the 1979 UK Family Expenditure

Survey (FES) and to incomes from the 1985 UK FES. She employed the MLE as

well as an optimal B-robust estimator (OBRE) and concluded that the latter provides
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a better fit for the bulk of the 1979 data. The Dagum distribution is also preferred

over the gamma distribution here. For the 1985 data, however, the differences

between the two estimators are insignificant and the Dagum distribution does not do

appreciably improve on the gamma.

Bantilan et al. (1995) modeled incomes from the Family Income and Expenditure

Surveys (FIES) in the Philippines for 1957, 1961, 1965, 1971, 1985, and 1988 using

a Dagum type I distribution. They noted that the model fits the data rather well,

particularly in the tails.

Bordley, McDonald, and Mantrala (1996) fit the Dagum type I distribution to U.S.

family incomes for 1970, 1975, 1980, 1985, and 1990. For all data sets it turns out to be

the best three-parameter model, being inferior only to the GB2 distribution and an

observationally equivalent generalization and outperforming three- and four-parameter

models such as the generalized gamma and GB1 distributions by wide margins.

Botargues and Petrecolla (1997, 1999a,b) estimated Dagum type I–III models for

income distribution in the Buenos Aires region, for all years from 1990–1997. They

found that the Dagum models outperform lognormal and Singh–Maddala

distributions, sometimes by wide margins.

Actuarial Losses

In the actuarial literature, Cummins et al. (1990) fit the Dagum type I distribution

(under the name of Burr III) to aggregate fire losses from Cummins and Freifelder

(1978). The distribution performs rather well; however, its full flexibility is not

required and a one-parameter limiting case, the inverse exponential, is fully adequate.

The same paper also considered data on the severity of fire losses and fit the GB2 and

its subfamilies to both grouped and individual observations. Although the fit of the

Dagum model is very good, that of the Singh–Maddala distribution is slightly better.

6.4 FISK (LOG-LOGISTIC) AND LOMAX DISTRIBUTIONS

In this section we collect some results on the one- and two-parameter subfamilies of

the GB2 distribution. Although these models may not be sufficiently flexible in the

present context, they have also been considered in various applications and some

results pertaining to them—but not to their generalizations—are available. Since the

moments and other basic properties have been presented in a more general form in

the previous sections, we shall be brief and mention only those results that have not

been extended to more general distributions.

6.4.1 Fisk Distribution

The first of these distributions is the Fisk distribution with c.d.f.

F(x) ¼ 1� 1þ
x

b

� �ah i�1

¼ 1þ
x

b

� ��ah i�1

, x . 0, (6:121)
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and p.d.f.

f (x) ¼
axa�1

ba[1þ (x=b)a]2
, x . 0, (6:122)

where a, b . 0, a Singh–Maddala distribution with q ¼ 1. Alternatively, it can be

considered a Dagum distribution with p ¼ 1. This model is also a special case of the

three-parameter Champernowne distribution to be discussed in Chapter 7 and was

actually briefly considered by Champernowne (1952). However, in view of the more

extensive treatment by Fisk (1961a,b), it is usually called the Fisk distribution in

the income distribution literature. Some authors, for example, Dagum (1975) and

Shoukri, Mian, and Tracy (1988), refer to the Fisk distribution as the log-logistic

distribution, whereas Arnold (1983) calls it a Pareto (III) distribution and includes an

additional location parameter. The term log-logistic may be explained by noting that

the distribution of log X is logistic with scale parameter a and location parameter

log b.

A useful property of the Fisk distribution is that it allows for nonmonotonic

hazard rates, specifically

h(x) ¼
axa�1

ba[1þ (x=b)a]
, x . 0, (6:123)

which is decreasing for a � 1 and unimodal with the mode at x ¼ b(a� 1)1=a

otherwise. Among the distributions discussed in the present chapter, the Fisk

distribution is the simplest model with this property. In contrast, more popular

two-parameter distributions such as the Weibull only allow for monotonic hazard

rates.

Dagum (1975) considered a mixture of this distribution with a point mass at the

origin, a model that may be viewed as a predecessor of the Dagum type II

distribution considered in the previous section.

Interestingly, the distributions of the order statistics from a Fisk distribution have

been encountered earlier in this chapter: For a Fisk(a,b) parent distribution, the p.d.f.

of Xi:n is

fi:n(x) ¼ i
n

i

� �
F(x)i�1[1� F(x)]n�if (x)

¼
n!axai�1

(i� 1)!(n� i)!bai[1þ (x=b)a]nþ1
: (6:124)

This can be recognized as the p.d.f. of a GB2 distribution, specifically, Xi:n �

GB2(a, b, i, n� iþ 1) (Arnold, 1983, p. 60). [Much earlier, Shah and Dave (1963)

already presented percentile points of log-logistic order statistics for n ¼ 1(1)10,

1 � k � n, when a ¼ b ¼ 1.]
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Since b is a scale and a is the only shape parameter, we cannot expect much

flexibility in connection with inequality measurement. For the Fisk distributions the

Lorenz order is linear, specifically for Xi � Fisk(ai, bi), i ¼ 1, 2, we get from (6.24)

X1 �L X2() a1 � a2, (6:125)

provided that ai . 1, i ¼ 1, 2. It should also be noted that the expression for the Gini

coefficient is even simpler than for the classical Pareto distribution; it is just

G ¼
1

a
: (6:126)

The Fisk distribution is characterized by

P 1þ
X

b

� �a

. xy

� �
¼ P 1þ

X

b

� �a

. x

� �
� P 1þ

X

b

� �a

. y

� �
,

where a, b . 0 and x, y . 1, among all continuous distributions supported on [0, 1)

(Shoukri, Mian, and Tracy, 1988). As discussed above in Sections 6.2 and 6.3, this

was generalized to the Singh–Maddala and Dagum distributions by El-Saidi, Singh,

and Bartolucci (1990) and is intimately related to the lack of memory property of the

exponential distribution.

Following the earlier work of Arnold and Laguna (1977), Arnold, Robertson, and

Yeh (1986) provided a characterization of the Fisk distribution (which they call a

Pareto (III) distribution) in terms of geometric minimization. Suppose Np is a

geometric random variable independent of Xi � Fisk(a, b), i ¼ 1, 2, . . . , with

P(Np ¼ i) ¼ p(1� p)i�1, i ¼ 1, 2, . . . , for some p [ (0, 1). Then

Up ¼ min
i�Np

Xi � Fisk bp1=a,
1

a

� �

and

Vp ¼ max
i�Np

Xi � Fisk bp�1=a,
1

a

� �
,

that is,

p�1=aUp � p1=aVp � X1: (6:127)

Under the regularity condition limx#0þ x�aF(x) ¼ b�a, it follows that if any one

of the statements in (6.127) holds for a fixed p [ (0, 1) then Xi � Fisk(a, b). [This

mechanism has been generalized in several directions by Pakes (1983), among other

things relaxing the assumption that Np be geometrically distributed. However, in
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general it is no longer possible to obtain the resulting income distribution in

closed form.]

Regarding estimation, it is worth noting that the Fisher information of the Fisk

model is diagonal; thus, the distribution is characterized by orthogonal parameters.

This is a direct consequence of the fact that the distribution of Y ¼ log X is a

location-scale family, afY [( y� log b)a], with an fY that is symmetric about the origin

(clearly, fY is logistic). See Lehmann and Casella (1998), Example 2.6.5. For Fisk

distributions there is therefore no loss of asymptotic efficiency in estimating a or b

when the other parameter is unknown. This property does not extend to the three-

and four-parameter distributions discussed in this chapter.

Shoukri, Mian, and Tracy (1988) considered probability-weighted moments

estimation of the Fisk model parameters. The probability-weighted moments

(PWMs) are defined as

Wl, j,k ¼ E{X l{F(X )}j[1� F(X )]k},

where l, j, k are real numbers. For l ¼ 1 and k ¼ 0, Wr ¼ W1,r,0 ¼ E[XF(X )r] will

denote the PWMs of order r. For the Fisk distribution,

Wr ¼
bG(r þ 1þ 1=a)G(1� 1=a)

G(r þ 2)
:

In particular,

W0 ¼ bG 1þ
1

a

� �
G 1�

1

a

� �
¼

bp

a
sin

p

a

� ��1

(6:128)

and

W1 ¼
1þ a

a
W0: (6:129)

Given a complete random sample of size n, the estimation of Wr is most

conveniently based on the order statistics. The statistic

ŴWr ¼
1

n

Xn

j¼1

xj:n

Yr

i¼1

j � i

n� i

is an unbiased estimator of Wr (Landwehr, Matalas, and Wallis, 1979). The PWM

estimators are now solutions of (6.128) and (6.129) when the Wr are replaced by

their estimators ŴWr. Thus,

a� ¼
ŴW0

2ŴW1 � ŴW0
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and

b� ¼
ŴW 2

0 sin(p=a�)

p(2ŴW1 � ŴW0)

are the PWM estimators of the parameters a and b, respectively. Shoukri, Mian, and

Tracy presented the asymptotic covariance matrix of the estimators that can be

derived from the general properties of statistics representable as linear functions of

order statistics. They also showed that for the parameter a the PWM estimator is

asymptotically less biased than the ML estimator for a � 4, and that for a . 7 each

parameter estimator has asymptotic efficiency of more than 90% relative to the

MLE. A small simulation study comparing PWM and ML estimators for samples of

size n ¼ 15 and n ¼ 25 shows that the PWMs compare favorably with the MLEs:

The PWN estimators seem to be less biased and almost consistently have smaller

variances. In addition, for the Fisk distribution the PWM estimators are fast and

straightforward to compute and always yield feasible values for the estimated

parameters. However, for shape parameters a � 6 the MLE is generally more

efficient, and this seems to be the relevant range in the present context.

Chen (1997) derived exact confidence intervals and tests for the Fisk shape

parameter a. Observing that the distribution of the ratio j ¼ MA=MG of the

arithmetic mean and the geometric mean of

X1:n

b

� �a

,
X2:n

b

� �a

, . . . ,
Xk:n

b

� �a

is parameter-free with a strictly increasing c.d.f., he obtained percentile points for

3 � k � n � 30 by a Monte Carlo simulation. These tables can also be used to

perform tests on the shape parameter a. In view of the small sample sizes considered,

these results will perhaps be more useful in the actuarial field rather than in the

income distribution area.

We conclude this section by mentioning that Zandonatti (2001) recently suggested

a “generalized” Fisk distribution employing the procedure leading to Stoppa’s

generalized Pareto distribution. However, since a power transformation of the c.d.f.

leads to the c.d.f. of X1:n (or rather a generalization of its distribution with noninteger

n) and the order statistics of a Fisk parent follow a GB2 distribution [see (6.124)],

this approach does not lead to a “new” distribution.

6.4.2 Lomax (Pareto II) Distribution

A further two-parameter special case of the GB2 distribution, the Lomax

distribution—more precisely, the first Lomax distribution, since Lomax (1954)

introduced two distributions—has the c.d.f.

F(x) ¼ 1� 1þ
x

b

� �h i�q

, x . 0, (6:130)
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and the density

f (x) ¼
q

b
1þ

x

b

� ��q�1

, x . 0: (6:131)

Hence, it is a Singh–Maddala distribution with a ¼ 1. The Lomax distribution is

perhaps more widely known as the Pareto (II) distribution—this term is used, for

example, by Arnold (1983)—and is related to the classical Pareto distribution via

X � Lomax(b, q)()X þ b � Par(b, q). It is also a Pearson type VI distribution.

Lomax (1954) considered it a suitable model for business failure data.

There is not as much variety in the possible basic shapes of the Pareto (II)

distribution—after all, it is just a shifted classical Pareto distribution—as with other

two-parameter models such as the gamma, Weibull, or Fisk, all of which allow for

zeromodal as well as unimodal densities. Its hazard rate is given by

r(x) ¼
q

bþ x
, x . 0, (6:132)

which is a strictly decreasing function for all admissible values of the parameters.

Nair and Hitha (1990) presented a characterization of the Lomax distribution

[under the name of the Pareto (II) distribution] in terms of the “equilibrium

distribution” defined via the p.d.f. fZ (x) ¼ [1=E(X )]{1� FX (x)} (this distribution is

of special significance in renewal theory). They showed that the condition eX (x) ¼

peZ(x) (where e denotes the mean excess function) for all x . 0, for some

0 , p , 1, characterizes the Lomax distribution. The distribution is also

characterized by the condition of proportionality of the corresponding hazard

rates, that is, by the condition hX (x) ¼ phZ (x) for all x . 0, for some p . 1.

The distribution can furthermore be characterized within the framework of a

model of underreported incomes (Revankar, Hartley, and Pagano, 1974); see

Section 3.4 for a detailed discussion. This result essentially exploits the linearity of

the mean excess function

e(x) ¼
xþ b

q� 1
, x . 0: (6:133)

As in the case of the Fisk distribution, the Lorenz order is linear for Lomax

random variables, specifically for Xi � Lomax(bi, qi), i ¼ 1, 2,

q1 � q2()X1 �L X2, (6:134)
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provided qi . 1. The Gini coefficient is also of a very simple form

G ¼
q

2q� 1
: (6:135)

Note that 1=2 � G � 1, which casts some doubt on the usefulness of this model to

approximate income distributions of, for example, some European Union countries,

for which such extreme inequality is not observed.

Finally, we present some results pertaining to estimation.

For the scale parameter b ¼ 1, the statistic T ¼
Pn

i¼1log(1þ xi) is sufficient and

complete for q�1, and a minimum variance unbiased (MVU) estimator of q is given

by (n� 1)=T (Patel, 1973). The c.d.f. F(x) ¼ 1� (1þ x)�q, x � 0, can also be

estimated in an unbiased way; the estimator is

F̂F(x) ¼
1� 1�

log(1þ x)

T

� �n�1

, T . log(1þ x)

1, T � log(1þ x):

8><
>: ,

For further unbiased estimators of functions of Lomax parameters, see Voinov and

Nikulin (1993, pp. 435–436), who refer to these results as results for the Burr—

meaning Burr XII, that is, Singh–Maddala—distribution that involves an additional

shape parameter a. However, since all results given therein require a to be known, we

prefer to consider them as results pertaining to the Lomax subfamily. Algorithmic

aspects of ML estimation in the Lomax distribution (under the name of a Pareto

distribution) are discussed by Wingo (1979), who used a numerical method for the

univariate global optimization of functions expressible as the sum of a concave and a

convex function.

A generalization of the Lomax distribution was recently suggested by Zandonatti

(2001). Following Stoppa’s (1990b,c) approach leading to a generalized Pareto (I)

distribution (see Section 3.8), he arrived at a distribution with density

f (x) ¼
qu

b
1þ

x

b

� ��q�1

1� 1þ
x

b

� ��qh iu�1

, x . 0: (6:136)

6.4.3 Empirical Applications

Incomes and Wealth

Fisk (1961a) considered weekly earnings in agriculture in England and Wales for

1955–1956 and U.S. income distribution for 1954 (by occupational categories). He

concluded that the distribution may prove useful when income distributions that are

homogeneous in at least one characteristic (here occupation) are examined.

Using nonparametric bounds on the Gini coefficient developed by Gastwirth

(1972), Gastwirth and Smith (1972) found that the implied Gini indices derived from
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a Fisk distribution fall outside these bounds for U.S. individual adjusted gross

incomes for 1955–1969 and concluded that Fisk distributions are inappropriate for

modeling these data.

Arnold and Laguna (1977) fit the Fisk distribution, with an extra location

parameter, to income data for 17 metropolitan areas in Peru for the period 1971–

1972 and concluded that their results are reasonably consonant with a (shifted) Fisk

distribution. It is of historical interest to note that Vilfredo Pareto in his Cours d’

économie politique (1897) also used Peruvian income data (for the year 1800).

Harrison (1979) used the Fisk distribution (under the name of sech2 distribution;

see Chapter 7 for an explanation of this terminology) for the gross weekly earnings

of full-time male workers aged 21 and over, in Great Britain, collected in April 1972,

for seven occupational groups. The distribution performs about as well as a

lognormal distribution when the data are disaggregated, but considerably better in

the upper tail for the aggregate data.

McDonald (1984) fit the Fisk distribution to 1970, 1975, and 1980 U.S. family

incomes. However, the distribution does not do well: It is outperformed by the

(G)B1, (G)B2, Singh–Maddala, and generalized gamma distributions, usually by

wide margins, and even the gamma and Weibull distributions (having the same

number of parameters) are preferable.

For the Japanese incomes (in grouped form) for 1963–1971, the Fisk distribution

does only slightly worse than the Singh–Maddala and outperforms the beta, gamma,

lognormal, and Pareto (II) distributions (Suruga, 1982). In fact, a likelihood ratio test

reveals that there are no significant differences between the Fisk and Singh–

Maddala distributions for these data; hence, the simpler Fisk distribution is entirely

adequate. The distribution was also fitted to several strata from the 1975 Japanese

Income Redistribution Survey by Atoda, Suruga, and Tachibanaki (1988). Four

occupational classes as well as primary and redistributed incomes were considered,

and five different estimation techniques applied. In a later study using the same data

set, Tachibanaki, Suruga, and Atoda (1997) applied ML estimation on the basis of

individual observations. In both studies, it became clear that the data require a more

flexible model such as the Singh–Maddala distribution. Among the two-parameter

functions, gamma and Weibull distributions both fit better.

Henniger and Schmitz (1989) considered the Fisk distribution when com-

paring five parametric models for the UK Family Expenditure Survey for 1968–

1983 to nonparametric fittings. Although for the entire population all parametric

models are rejected, the Fisk distribution performs reasonably well for some

subgroups.

Actuarial Losses

In the actuarial literature, Benckert and Jung (1974) employed the Pareto (II)

distribution to model the distribution of fire insurance claims in Sweden for the

period 1958–1969. They found that for one class of buildings (wooden houses) the

distribution provides a good fit, with estimates of the tail index q less than 1 in all

cases.
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Hogg and Klugman (1983) fit the Lomax distribution (under the name of Pareto

distribution) to data on malpractice losses, for which it is preferable over the beta II,

Singh–Maddala, lognormal, and Weibull distributions. The data require a very

heavy-tailed model with a parameter q slightly below 1.

Cummins et al. (1990) applied the distribution to two sets of fire liability data but

the performance of the Lomax distribution is not impressive. It ranks only 12th and

13th out of 16 distributions of the gamma and beta type.

In a recent investigation studying losses from catastrophic events in the United

States, Burnecki, Kukla, and Weron (2000) employed a Pareto type II distribution

and obtained a tail index q in the vicinity of 2.7.

In summary, it would seem that most data on size distributions require a more

flexible distribution than the Fisk or Lomax distributions. Specifically, an additional

shape parameter appears to be appropriate.

6.5 (GENERALIZED) BETA DISTRIBUTION OF THE

FIRST KIND

Occasionally, distributions supported on a bounded domain have been considered for

the modeling of size phenomena, notably the distribution of income. The most

flexible of these are the generalized beta distribution of the first kind (hereafter

referred to as GB1) and its special case, the standard beta distribution. We refer to

Johnson, Kotz, and Balakrishnan (1995, Chapter 25) for the basic properties of this

well-known distribution, and we shall briefly mention below some aspects pertaining

to size phenomena. The GB1 was introduced by McDonald (1984) as an income

distribution, whereas the B1 was used for the same purpose more than a decade

earlier by Thurow (1970).

6.5.1 Definition and Properties

The GB1 is defined in terms of its density

f (x) ¼
axap�1[1� (x=b)a]q�1

bapB( p, q)
, 0 � x � b, (6:137)

where all four parameters a, b, p, q are positive. Here b is a scale and a, p, q are

shape parameters. When a ¼ 1, we get

f (x) ¼
xp�1[1� x=b]q�1

bpB( p, q)
, 0 � x � b, (6:138)

the three-parameter beta distribution.
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The GB1 is related to the GB2 distribution via the relation

X � GB2(a, b, p, q)¼)
X a

1þ X a

� �1=a

� GB1(a, b, p, q):

This generalizes a well-known relationship between the B1 and B2 distributions.

The c.d.f.’s of the GB1 and B1 distributions cannot be expressed in terms of

elementary functions. However, in view of (6.8), they are available in terms of

Gauss’s hypergeometric function 2F1, in the form (McDonald, 1984)

F(x) ¼
(x=b)a

pB( p, q)
2F1 p, 1� q; pþ 1;

x

b

� �ah i
: (6:139)

In analogy with the GB2 case discussed in Section 6.1, they can also be written as an

incomplete beta function ratio

F(x) ¼ Iz( p, q), where z ¼
x

b

� �a

, (6:140)

in the GB1 case (of course, a ¼ 1 yields the c.d.f. of the three-parameter B1

distribution).

The moments of the GB1 exist for �ap , k , 1; they are

E(X k) ¼
bkB( pþ k=a, q)

B( p, q)
¼

bkG( pþ k=a)G( pþ q)

G( pþ qþ k=a)G( p)
: (6:141)

An analysis of the hazard rate is more involved than for either the generalized

gamma or the GB2 distribution. Monotonically decreasing, monotonically

increasing,
T

as well as
S

-shapes are possible; see McDonald and Richards

(1987) for a discussion of these possibilities.

The Lorenz ordering within the GB1 family was studied by Wilfling (1996c),

who provided four sets of sufficient conditions. Noting that the GB1 density is

regularly varying at the origin with index �ap� 1, it can be deduced along the lines

of Kleiber (1999b, 2000a) that a1p1 � a2p2 is a necessary condition for X1 �L X2. A

complete characterization of the Lorenz ordering within this family appears to be

unavailable at present.

However, Sarabia, Castillo, and Slottje (2002) provided Lorenz ordering

results for nonnested income distributions. These include the following: That for

X � GB2(a, b, p, q) and Y � GB1(a, b, p, q), one has X �L Y , and for X �

GB1(a, b, p, q) and Y following a generalized gamma distribution (cf. Chapter 5),

that is, Y � GG( ~aa, ~bb, ~pp) with a � ~aa and ap � ~aa~pp, it follows that Y �L X .

McDonald (1984) provided the Gini coefficient of the GB1 as a somewhat

lengthy expression involving the generalized hypergeometric function 4F3. For the
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B1 subfamily the expression is less cumbersome and equals (McDonald and

Ransom, 1979a)

G ¼
2B( pþ q, 1=2)B( pþ 1=2, 1=2)

pB(q, 1=2)
¼

G( pþ q)G( pþ 1=2)G(qþ 1=2)ffiffiffiffi
p
p

G( pþ qþ 1=2)G( pþ 1)G(q)
:

The Pietra index and the (first) Theil coefficient of the B1 distribution are

(McDonald, 1981; Pham-Gia and Turkkan, 1992)

P ¼
[ p=( pþ q)]p

p( pþ 1)B( p, q)
2F1 p, 1� q, pþ 2;

p

pþ q

� �

and

T1(X ) ¼ c ( pþ 1)� c ( pþ qþ 1)� log
p

pþ q

� �
,

respectively.

A distribution encompassing both the GB1 and GB2 families was proposed

by McDonald and Xu (1995). This five-parameter generalized beta distribution has

the p.d.f.

f (x) ¼
jajxap�1[1þ (1� c)(x=b)a]q�1

bapB( p, q)[1þ c(x=b)a]pþq , (6:142)

where 0 , xa , ba=(1� c), and all parameters a, b, p, q are positive. Again, b is a

scale and a, p, q are shape parameters. The new parameter c [ [0, 1] permits a

smooth transition between the special cases c ¼ 0, the GB1 distribution, and c ¼ 1,

the GB2 distribution. The moments of this generalized distribution exist for all k if

c , 1 or for k , aq if c ¼ 1; they are

E(X k) ¼
bkB( pþ k=a, q)

B( p, q)
2F1 pþ

k

a
,

k

a
; pþ qþ

k

a
; c

� �
:

However, when fitting this model to 1985 family incomes, McDonald and Xu found

that the GB2 subfamily is selected (in terms of likelihood and several other criteria).

Thus, it appears that the five-parameter GB distribution does not provide additional

flexibility, at least in our context. The authors of this book remain skeptical about the

usefulness and meaning of five-parameter distributions and consider the distribution

described by (6.142) to be just a curious theoretical generalization.
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A further application of beta type I income distribution models is given in Pham-

Gia and Turkkan (1997), who derived the density of income X ¼ X1 þ X2, where X1

is true income and X2 an independent (additive) reporting error under the assumption

that Xi, i ¼ 1, 2, follow B1( pi, qi) distributions with general support [0, ui]. The

density of X can be expressed in terms of an Appell function (a bivariate

hypergeometric function).

6.5.2 Empirical Applications

In an influential paper, Thurow (1970) applied the B1 distribution to U.S. Census

Bureau constant dollar (1959) income distributions for households (families and

unrelated individuals) for every year from 1949–1966, stratified by race. [The

estimated parameters are not given in Thurow (1970) but in McDonald (1984).]

He also studied the impact of various macroeconomic factors on the parameters

of the distribution via regression techniques. In particular, his results raise

questions as to whether economic growth is associated with a more egalitarian

distribution and also suggest that inflation may lead to a more equal distribution

for whites. However, McDonald (1984) expressed some doubts concerning

Thurow’s results. He pointed out that none of the estimated densities is
T

-shaped

(as is to be expected) and that the implied Gini coefficients differ from census

estimates by about 30%, concluding that theses differences highlight estimation

problems.

McDonald and Ransom (1979a) employed the B1 distribution for approximating

U.S. family incomes for 1960 and 1969 through 1975. When utilizing three different

estimators, it turns out that the distribution is preferable to the gamma and lognormal

distributions but inferior to the Singh–Maddala, which has the same number of

parameters.

McDonald (1984) estimated both the B1 and GB1 distribution for 1970, 1975,

and 1980 U.S. family incomes. The performance of the GB1 is comparable to the

generalized gamma and B2 distribution—both of which have the same number of

parameters—but inferior to the GB2 or Singh–Maddala distributions.

The B1 distribution was also fitted to Japanese income data, in grouped form,

from the 1975 Income Redistribution Survey by Atoda, Suruga, and Tachibanaki

(1988). Four occupational classes as well as primary and redistributed incomes were

considered, and five different estimation techniques applied. The distribution

provides a considerably better fit than the (generalized) gamma and lognormal

distributions, but the Singh–Maddala is superior.

Bordley, McDonald, and Mantrala (1996) fit the (G)B1 and GB distributions to

U.S. family incomes for 1970, 1975, 1980, 1985, and 1990. The GB distribution is

observationally equivalent to the GB2 distribution for four of the data sets; for the

1970 data it provides a slight improvement. The GB1 comes in fifth out of 15 beta-

and gamma-type distributions, being observationally equivalent to the generalized

gamma distribution for all these years. However, the three-parameter Dagum type I

and Singh–Maddala distributions perform considerably better.
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Brachmann, Stich, and Trede (1996) estimated both the B1 and GB1 distributions

for household income data from the German Socio-Economic Panel (SOEP) for

1984–1993. They noted that the ML estimation of the GB1 proved to be rather

difficult since the gradient of the log likelihood in the parameter b was rather small.

Also, both models tend to underestimate the mean for these data.

All these studies appear to suggest that there are several distributions supported

on an unbounded domain which provide a considerably better fit than a GB1 or B1

distribution.
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C H A P T E R S E V E N

Miscellaneous Size Distributions

In this chapter we shall study a number of size distributions that may not be in the

mainstream of current research, but are definitely of historical interest as well as

containing potential applications. We have tried to unify the results scattered in the

literature, sometimes in the most unexpected sources.

7.1 BENINI DISTRIBUTION

As was discussed in detail in Chapter 3 (the reader may wish to consult Section 3.2),

Vilfredo Pareto (1896, 1897)—the father of the statistical-probabilistic theory of

income distributions—announced in his classical works La courbe de la répartition de

la richesse and Cours d’économie politique the remarkable discovery that the survival

function of an income distribution is approximately linear in a double-logarithmic

plot. He provided empirical verifications of his law for a multitude of data, showing

that the relationship is valid for any (geographical) location, any time period (for

which the data are available), and any economic level of a country or region. An alert

and energetic Italian statistician and demographer, Rodolfo Benini (a short biography

of Benini is presented in Appendix A) was able to confirm almost immediately in 1897

that the Pareto law indeed holds for incomes as well as various other economic

variables. While analyzing additional different data sources, Benini subsequently

discovered in 1905–1906 that for the distribution of legacies a quadratic (rather than

linear) function

log �FF(x) ¼ a0 � a1log x� a2( log x)2 (7:1)

provides a better fit. This leads to a distribution with the c.d.f.

F(x) ¼ 1� exp{�a( log x� log x0)� b( log x� log x0)2}, (7:2)
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where x � x0 . 0 and a, b . 0. For parsimony, Benini (1905) considered only the

case where a ¼ 0, that is,

F(x) ¼ 1� exp{�b( log x� log x0)2} (7:3)

¼ 1�
x

x0

� ��b( log x�log x0)

, x � x0 . 0:

Subsequently, this idea was used by several other Italian economists and

statisticians, including Bresciani Turroni (1914) and Mortara (1917, 1949). They

however introduced higher-order terms. Independently, a well-known Austrian

statistician Winkler (1950) some 45 years later also suggested that, in the Pareto

diagram, a higher-order polynomial in log x may provide an even better fit to empirical

income distributions than the Pareto distribution and he fit a quadratic—that is, the

original Benini distribution (7.1)—to the U.S. income distribution of 1919.

Also independently, but somewhat later, in the actuarial literature, the distribution

with c.d.f. (7.1) was proposed as a model for the size-of-loss distribution. In Head

(1968) it appears as a nameless distribution resulting in a better fit than the Pareto

distribution for several empirical fire loss-severity distributions. Ramachandran

(1969) also found this model to be preferable to the Pareto distribution when dealing

with UK fire losses. DuMouchel and Olshen (1975) called it an approximate

lognormal distribution, whereas Shpilberg (1977) referred to it as the quasi-

lognormal distribution. We shall refer to all the variants (i.e., a ¼ 0 and a = 0) of

this multidiscovered distribution as the Benini distribution.

It is perhaps worthwhile to examine briefly the actuarial motivation for (7.2).

Ramachandran (1969) and Shpilberg (1977) searched for a model for the probability

distribution of an individual fire loss amount and started from the hazard rate of fire

duration, assuming that, for a homogeneous group of risks, the fire loss increases

exponentially with the duration of the fire. They observed that an exponential

distribution of fire duration leads to a Pareto distribution as the distribution of the fire

loss amount (see Section 3.2) and claimed that a model which reflects a gradual

decrease in the probability of survival of the fire (as implied by an increasing failure

rate distribution) would be more plausible empirically. The simplest functional form

for the hazard rate with the required properties is the linear function

r(t) ¼ aþ bt, (a, b . 0), (7:4)

where t is the duration of the fire, resulting in a fire duration distribution with the

c.d.f.

F(t) ¼ 1� exp �at �
1

2
bt2

� �
:

This distribution was previously discussed by Flehinger and Lewis (1959) in a

reliability context. Under the assumption that x=x0 / ekt, k . 0, that is, the ratio of
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the fire loss amount x to the minimum discernible loss x0 increases exponentially

with the fire duration, one directly obtains the Benini c.d.f. in the form (7.1).

The density of the three-parameter Benini distribution (7.2) is

f (x) ¼ exp �a log
x

x0

� �
� b log

x

x0

� �� �2
( )

a

x
þ

2b log (x=x0)

x

� �
, x0 � x, (7:5)

whereas in the two-parameter case (7.3) we get

f (x) ¼ 2bx�1 � exp �b log
x

x0

� �� �2
( )

� log
x

x0

� �
, x0 � x: (7:6)

Here x0 is a scale and a and b are shape parameters. For a ¼ 0, that is, Benini’s

original form, it moreover follows from (7.3) that the quantile function is available in

a closed form, namely,

F�1(u) ¼ x0exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1

b
log (1� u)

s
, for 0 , u , 1: (7:7)

This is an attractive feature for simulation purposes.

Figure 7.1 depicts several two-parameter Benini densities.

Figure 7.1 Benini densities: x0 ¼ 1, a ¼ 0, and b ¼ 1(1)5 (from right to left).
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For a ¼ 0 and x0 ¼ 1, the distribution can also be recognized as a log-Rayleigh

distribution [namely, if Y follows a Rayleigh distribution, with c.d.f. F( y) ¼

1� exp(�y2), y . 0, then X :¼ exp(Y ) has the distribution with c.d.f. (7.3),

where b ¼ 1 and x0 ¼ 1]. Hence, the log-Weibull family, with c.d.f. F(x) ¼

1� exp{�( log x) p}, can be viewed as a natural generalization of the Benini

distribution. Indeed, Benini (1905, p. 231) discussed rather briefly this model and

reported that, for his data, when p ¼ 2:15, the fit is superior to that using model

(7.3).

The Benini distribution is a member of Dagum’s generating system of income

distributions (Dagum 1980a, 1983, 1990a); see Section 2.4.

An attractive feature of the three-parameter Benini distributions is that this family

contains the Pareto distribution as a special case (for b ¼ 0). This led DuMouchel

and Olshen (1975) to suggest a method of testing Pareto vs. Benini distributions.

Their test is based on the idea that, if X follows a Par(x0, a) distribution, then

log(X=x0) is an exponentially distributed variable and hence the mean and standard

deviation of log(X=x0) coincide. Therefore, an appropriate test of H0: b ¼ 0 vs.

H1: b . 0 depends on the ratio of the sample standard deviation to the sample mean.

Their test statistic is

ffiffiffi
n

8

r
1�

s2

�yy2

� �
, (7:8)

where n is the sample size, �yy the sample mean, and s2 the sample variance of the

logarithms of the observations. This test is derived by using the Neyman’s C(a)

principle and is therefore locally asymptotically most powerful. Under H0, the test

statistic is asymptotically standard normal and the test rejects the null hypothesis for

large values of (7.8).

Since the Benini distribution is quite close to the lognormal distribution, the

DuMouchel-Olshen test may be viewed as a test of the Pareto distribution vs. the

lognormal, that is, it enables one to choose at least approximately between the two

classical size distributions.

Benini (1905, 1906) estimated the parameters of his distribution via regression

in the Pareto diagram using Cauchy’s method that is seldom used nowadays

(see, e.g., Linnik, 1961); later authors (Winkler, 1950; Head, 1968) preferred

ordinary least-squares.

7.2 DAVIS DISTRIBUTION

Harold T. Davis (1892–1974), in his 1941 monographs The Theory of Econometrics

and Analysis of Economic Time Series, proposed another income size distribution,

which is a generalization of the so-called Planck’s law of radiation from statistical

physics.

Davis was one of the pioneers of econometrics in the United States; he helped to

found the professional journal Econometrica and served as its Associate Editor for
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26 years. He also worked on the staff of the Cowles Commission in its early days in

Colorado Springs. See Farebrother (1999) for a recent account of Davis’s life.

In an attempt to derive an expression that would represent not merely the upper

tail of the distribution of income, Davis required an appropriate model with the

following properties:

. f (x0) ¼ 0, for some x0 . 0, that may be interpreted as the subsistence income.

In Davis’s words, x0 represents the wolf point, since below this point “the wolf,

which lurks so close to the doors of those in the neighborhood of the modal

income [here he assumes that the distribution is highly skewed with a mode

close to the lower bound of the support, our addition], actually enters the

house” (1941a, p. 405).

. A modal income exists.

. For large x the distribution approaches a Pareto distribution

f (x) v A(x� x0)�a�1:

Davis then postulated that f is of the form

fD(z) ¼
C

znþ1

1

e1=z � 1
, n . 1,

where z ¼ x� x0. This is, for x0 ¼ 0 and n ¼ 4, the distribution of 1=V , where

V follows the Planck distribution mentioned above. Clearly, fD(0) ¼ 0 and the

density exhibits an interior mode. It remains to determine the normalizing constant

C. From, for example, Prudnikov et al. (1986, Formula 2.3.14.6), we have

ð1

0

fD(z) dz ¼ C � G(n)z(n), (7:9)

where z(n) ¼
P1

j¼1 j�n, n . 1, is the Riemann zeta function. If we add scale and

location parameters, the Davis density becomes

f (x) ¼
bn

G(n)z(n)
(x� x0)�n�1 1

exp{b(x� x0)�1}� 1
, 0 , x0 � x, (7:10)

where x0, b . 0 and n . 1. Utilizing the well-known series expansion

x

ex � 1
¼
X1
n¼0

Bn

n!
xn,

where Bn are the Bernoulli numbers, it is not difficult to see that the parameter n is

related to Pareto’s a as n ¼ aþ 1.
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For x close to x0, the density is approximately of the form

f (x) ’ C � (x� x0)�n�1exp{�b(x� x0)�1}, 0 , x0 � x,

and therefore resembles the Vinci (inverse gamma) distribution of Section 5.2.

From (7.9) we directly obtain the moments

E[(X � x0)k] ¼
bkG(n� k)z(n� k)

G(n)z(n)
, (7:11)

provided k þ 1 , n.

It is quite remarkable that the Davis distribution—not easily related to other

continuous univariate distributions—is a member of D’Addario’s (1949) generating

system of income distributions; cf. Section 2.4. [See also Dagum (1990a, 1996).]

Davis (1941a,b) fit his model to the distribution of income among personal-

income recipients in the United States in 1918 and obtained a value of n in the

vicinity of 2.7. His method of estimation is a two-stage procedure: After estimating

Pareto’s parameter a by least-squares in the Pareto diagram, yielding n̂n ¼ âaþ 1, he

essentially determined b from the estimating equation (7.11) for k ¼ 1.

The distribution was later used by Champernowne (1952), who reconsidered

Davis’s data but found the model not to fit as well as his own three-parameter

distribution. We shall next study the Champernowne distribution.

7.3 CHAMPERNOWNE DISTRIBUTION

Champernowne (1937, 1952) considered the distribution of log-income Y ¼ log X ,

also termed “income power,” as the starting point and assumed that it has a density

function of the form

f ( y) ¼
n

cosh[a( y� y0)]þ l
, �1 , y , 1, (7:12)

where a, l, y0, n are positive parameters, n being the normalizing constant and

hence a function of the others. (The reader will hopefully consult the biography of

Champernowne presented in the appendix to learn more about this colorful person.)

The function given by (7.12) defines a symmetrical distribution, with median y0,

whose tails are somewhat heavier than those of the normal distribution. It is

included in a large family of generalized logistic distributions due to Perks (1932),

a British actuary. In view of the relation cosh y ¼ (e y þ e�y)=2, (7.12) may be

rewritten as

f ( y) ¼
n

1=2ea( y�y0) þ lþ 1=2e�a( y�y0)
:
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This explains why (7.12) defines a generalization of the logistic distribution. For

y0 ¼ 0, a ¼ 1, n ¼ 1=2, and l ¼ 1 we obtain

f ( y) ¼
1

e y þ 2þ e�y
¼

ey

(1þ e y)2
,

the density of the standard logistic distribution, in view of sech y ¼ (cosh y)�1 also

known as the sech square distribution.

If we set log x0 ¼ y0, the density function of the income X ¼ exp Y is given by

f (x) ¼
n

x[1=2(x=x0)�a þ lþ 1=2(x=x0)a]
, x . 0: (7:13)

By construction, x0 is the median value of income. The form of the c.d.f. depends on

the value of l. There are three variants: jlj , 1, l ¼ 1, and l . 1, which are

discussed in Champernowne’s publications at some length.

The simplest case occurs for l ¼ 1, only briefly mentioned by Champernowne

(1952). However, it was discussed in greater detail by Fisk (1961a,b) and is therefore

often referred to as the Fisk distribution (see Section 6.4). Its density is

f (x) ¼
a

2x{cosh[alog(x=x0)]þ 1}
¼

a xa�1

xa0 [1þ (x=x0)a]2
, x . 0: (7:14)

Here x0 is a scale parameter and a . 0 is a shape parameter. The parameter a is the

celebrated Pareto’s alpha. This special case of the Champernowne distribution is also

a special case of the Dagum type I distribution (for p ¼ 1) and of the Singh–

Maddala distribution (for q ¼ 1). Consequently, all the distributional properties of

this model were presented in Chapter 6. (In the notation of Chapter 6, a equals a and

x0 equals b.) The c.d.f. of (7.14) is

F(x) ¼ 1�
1

1þ (x=x0)a
¼ 1þ

x

x0

� ��a� ��1

, x . 0: (7:15)

For jlj , 1, the Champernowne density can be written as

f (x) ¼
asin u

2ux{cosh[alog(x=x0)]þ cos u}
, x . 0, (7:16)

or alternatively,

f (x) ¼
asin u

ux[(x=x0)�a þ 2cos uþ (x=x0)a]
, (7:17)
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where cos u ¼ l and�p , u , p. (Actually, one must confine oneself to 0 , u , p

because otherwise the model may not be identifiable.) The latter expression can be

rewritten as

f (x) ¼
asin u(x=x0)a�1

ux0[1þ 2cos u(x=x0)a þ (x=x0)2a]

¼
asin u(x=x0)a�1

ux0{[cos uþ (x=x0)a]2 þ sin2 u}
,

which integrates to the c.d.f.

F(x) ¼ 1�
1

u
arctan

sin u

cos uþ (x=x0)a

� �
, x . 0: (7:18)

Parameters a and x0 play the same role as in the case where l ¼ 1. Unfortunately,

the new parameter u evades simple interpretation; Champernowne (1952) noted that

it may be regarded as a parameter for adjusting the kurtosis of the distribution of log

income. Harrison (1974) observed that, for u! p, the distribution approaches a

point mass concentrated at x0. For u! 0, the distribution becomes the one with

l ¼ 1, that is, the Fisk distribution. The role of the parameter u is illustrated in

Figure 7.2.

Figure 7.2 Champernowne densities:a ¼ 1:5, x0 ¼ 1, u ¼ d � p, and d ¼ 0:1(0:1)0:9 (from left to right).
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A stochastic model leading to the Champernowne distribution as the equilibrium

distribution was briefly discussed by Ord (1975).

Equation (7.18) implies that the quantile function is available in closed form; it is

F�1(u) ¼ x0

sin u

tan[u(1� u)]
� cos u

� �1=a

, 0 , u , 1: (7:19)

As always, this is an attractive feature for simulation purposes.

The mode of this form of the Champernowne distribution occurs at

xmode ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � sin2 u
p

� cos u

aþ 1

( )1=a

: (7:20)

Finally, for l . 1 the density becomes

f (x) ¼
asinhh

hx[(x=x0)a þ 2coshhþ (x=x0)�a]
, x . 0, (7:21)

and the corresponding c.d.f. is

F(x) ¼ 1�
1

2h
log

xa þ ehxa0
xa þ e�hxa0

� �
, (7:22)

where coshh ¼ l. The mode of this form of the Champernowne distribution

occurs at

xmode ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � sinh2 h

p
� coshh

aþ 1

( )1=a

: (7:23)

In view of the earlier remarks, all three forms of the Champernowne distribu-

tion may be regarded as “generalized log-logistic distributions.” However,

Champernowne (1952) reported that the majority of income distributions which

he graduated throughout his investigations give values of l numerically less than

1. Most authors (e.g., Harrison, 1974; Kloek and van Dijk, 1977, 1978; Campano,

1987) who have used the Champernowne distribution have confined themselves to

the case jlj , 1. We shall follow their convention below. (The case l ¼ 1, of course,

is dealt with in Chapter 6.)

During the course of preparing the section on the Champernowne distribution, the

authors—to their delight—were able to discover in the widely scattered literature a

number of somewhat unexpected sources in which the distribution (7.16) is

discussed, albeit under different names. (We are not sure whether Champernowne—

who continued to develop and modify his original distributions for some 35 years—

was aware of these new forms and descriptions of his model.)
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This fact (similar to the situation with the Benini distribution; see Section 7.1) is

another indication of the wide diversity of sources for derivations and uses of

statistical distributions, especially in the last 50 years. [The Champernowne

distribution is possibly not the mainstream distribution utilized in standard income

studies; it was revisited after some 30 years in a paper by Campano (1987), who

found it to be appropriate to more recent income data.]

Our observations pertain to the appearance of the distribution in the applied and

theoretical probabilistic literature and to its strong relation to stable distributions of

various kinds, which are of increasing importance in financial applications.

1. The three-parameter Champernowne distribution (7.18) with a ¼ 1 is nothing

but a truncated Cauchy distribution, that is, the distribution with the density

f (x) ¼
1

ps[1þ {(x� q)=s}2]
, �1 , x , 1, (7:24)

truncated from below at zero [for the Champernowne distribution (7.18),

q ¼ �cos u and s ¼ sin u]. This fact was overlooked even in the

comprehensive two-volume compendium Continuous Univariate Distri-

butions by Johnson, Kotz, and Balakrishnan (1994, 1995), who discussed

these distributions in different volumes without connecting them.

2. More unexpectedly, another special case of the Champernowne distribution,

namely, the case where a [ (0, 2] and u ¼ pa=2, is discussed in Section 3.3

of the classical book on stable distributions by Zolotarev (1986). There it

occurs in connection with the distribution of functions (ratios) of independent

strictly stable variables with the same characteristic exponent a. Zolotarev also

provided an alternative integral representation of this special case of the

Champernowne c.d.f.

Fa(x) ¼
1

2
þ

1

ap2

ð1

0

log
1þ jxþ yja

1þ jx� yja

� �
dy

y
: (7:25)

He further pointed out that Fa(�) is a distribution function even for a . 2 and

moreover, for any integer n � 1, F2n(�) is a mixture of Cauchy distributions

with a linearly transformed argument.

3. The Champernowne distribution is also associated with the so-called Linnik

(1953) distribution (a generalization of the Laplace distribution) that possesses

a simple characteristic function

1

1þ sajtja
, a [ (0, 2], (7:26)
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but does not have a simple expression for the density and c.d.f. Specifically, it

appears in a mixture representation of the Linnik distribution discussed by

Kozubowski (1998).

These interesting theoretical properties in the spirit of modern developments in

the theory of statistical distributions could lead to a better understanding of the

hidden structure of the Champernowne distribution and perhaps provide an avenue

for further generalizations and discoveries. Needless to say, the original motivation

and model leading to this distribution are quite removed from its genesis related to

the stable and Linnik laws. See Kleiber (2003b) for further details and applications

of the above interrelations.

In the case where jlj , 1, the moments E(X k ) of (7.17) exist only for

�a , k , a. They are [Champernowne (1952), for k ¼ 1, and Fisk (1961a), for a

general k]

E(X k) ¼ xk
0

p

u

sin ku=a

sin kp=a
: (7:27)

The coefficient of variation is therefore given by

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

p
cot

u

a

� �
cot

p

a

� 	
� 1

s
: (7:28)

Harrison (1974) presented the Atkinson measures of inequality for the

distribution (7.16) that are given by

Ae ¼ 1�
p

u

� 	e=(1�e) sin[(1� e)u=a]

sin[(1� e)p=a]

� �1=(1�e)
sin(p=a)

sin(u=a)
: (7:29)

Here e is the inequality aversion parameter. In the case where e ¼ 1, the last formula

is not applicable. Instead, one obtains the simple expression

A1 ¼ 1�
x0

E(X )
¼ 1�

sin(p=a)

sin(u=a)
, (7:30)

an inequality measure that was previously proposed by Champernowne (1952).

Harrison (1974) showed graphically that the measure Ae is, for a fixed e,

monotonically decreasing in u, for 0 , u , p, approaching complete equality of

incomes for u! p, that is, for a point mass concentrated at x0.

All three forms of the Champernowne distribution discussed above possess the

property of symmetry for the distribution of the income power. There is, however, an
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asymmetric (on a log-scale) four-parameter generalization of the case where jlj , 1,

given by the c.d.f. (Champernowne, 1952)

F(x) ¼

1�
1

(1þ s)u
(s� 1)uþ 2 arctan

sin u

cos uþ (x=x0)sa

� �� �
, for 0 � x � x0,

1�
2s

(1þ s)u
arctan

sin u

cos uþ (x=x0)a

� �
, for x0 , x,

8>>><
>>>:

(7:31)

where the new parameter s may be viewed as a skewness parameter, since when

s . 1, the curve exhibits positive skewness, and for s , 1, the curve is negatively

skewed. The case where s ¼ 1 yields the distribution (7.18). The p.d.f. of (7.31) is

given by

f (x) ¼
2sasin u(x=x0)c

x(1þ s)u[1þ 2cos u(x=x0)c þ (x=x0)ac]
, (7:32)

where c ¼ sa for x � x0 and c ¼ a for x . x0. [We note that (7.31) is sometimes

referred to as “Champernowne’s five-parameter formula” (see, e.g., Campano,

1987), although (7.31) defines a four-parameter distribution. This is presumably due

to Champernowne’s unusual notation (7.12), where n is a function of the remaining

three parameters y0, a, and l.]

As far as the estimation is concerned, only methods for grouped data have been

discussed in the literature. Rather than employing the computationally complex maxi-

mum likelihood method—note the precomputer era of his work!—Champernowne

(1952) attributed special importance to methods which yield “solutions that agree

with the observed distribution in such economically important matters as the total

number of incomes, the average income and the position and slope of the Pareto

line for high incomes” (pp. 597–598). Most of the methods he considered start

with the total number of incomes and some form of average income (mean, median,

mode), proceed with an estimation of Pareto’s alpha by a regression technique, and

finally obtain u via interpolation.

He fit the three-parameter distribution to 1929 U.S. family incomes, 1938

Japanese incomes (previously also considered by Hayakawa, 1951), 1930

Norwegian incomes, and 1938–1939 UK incomes, and the four-parameter model

to 1918 (previously considered by Davis, 1941a,b) and 1947 U.S. incomes. The fit of

the 1918 data is comparable to that provided by Davis’s model (see Section 7.2).

In addition, it emerges that for 1933 Bohemian incomes the two-parameter

Champernowne (i.e., Fisk) distribution provides as good a fit as several three-

parameter models.

Harrison (1974) suggested a minimum-distance estimator, determining

parameters simultaneously using an iterative generalized least-squares approach.

Analyzing British data for the years 1954–1955, 1959–1960 and 1969–1970, he

246 MISCELLANEOUS SIZE DISTRIBUTIONS



contrasted it with Champernowne’s methods and found his estimator to be more

reliable.

When fitted to the distribution of 1969 fiscal incomes in three regions of the

Netherlands, it outperforms gamma, generalized gamma Weibull, and log-logistic

distributions (Bartels, 1977). A Box–Cox-transformed Champernowne distribution

does even better on these data.

Kloek and van Dijk (1977) analyzed the distribution of Australian family incomes

during 1966–1968. Using minimum x2 as well as maximum likelihood estimates,

they noted that, compared to the lognormal, gamma, log Pearson type IV, and log-t

distributions, the Champernowne function “. . .fits rather well, but . . . the parameters

cannot easily be interpreted” (p. 446). Employing Cox tests (Cox, 1961), they found

that “. . .neither the log-t [when] compared with the Champernowne nor the log

Pearson IV compared with the Champernowne can be rejected, and vice versa.” In

other words, the distributions are statistically on the same footing.

Kloek and van Dijk (1978) utilized the four-parameter Champernowne

distribution when analyzing Dutch earnings data for 1973. Estimating parameters

by the minimum x2 method, they found that the distribution outperforms the two-

parameter lognormal and two-parameter gamma distributions and is comparable to

the three-parameter generalized gamma and the three-parameter log-t distributions.

Fattorini and Lemmi (1979) fit the three-parameter Champernowne distribution to

Italian, U.S., and Swedish data for the years 1967–1976, 1954–1957, 1960–1962,

and 1965–1966, respectively. They found that it almost always outperforms the

lognormal distribution, but their kappa 3 (i.e., Dagum type I) distribution is even

better, in terms of the sum of squared errors and the Kolmogorov distance.

Interestingly enough, their estimates of l turn out to be numerically greater than 1 for

Italian and Swedish data, whereas Champernowne considered this case to be rather

exceptional.

More recently, Campano (1987), a statistician with the United Nations in Geneva,

reconsidered Champernowne’s own results for the four-parameter version (7.32) for

U.S. income data of 1947. He also compared Champernowne and Dagum type I

fittings for 1969 U.S. family incomes (previously investigated by Dagum, 1977) and

found the Champernowne distribution to fit slightly better. (However, this version of

the Champernowne distribution has one additional parameter compared to the

Dagum type I.)

7.4 BENKTANDER DISTRIBUTIONS

Starting from the observation that empirical mean excess functions point to

distributions that are intermediate between the Pareto and exponential distributions,

the Swedish actuary Gunnar Benktander (1970) discussed two new loss models.

Whereas for the exponential distribution the mean excess function is given by

e(x) ¼ l, x � 0, (7:33)
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l being the exponential scale parameter, in the Pareto case we have

e(x) ¼
x

a� 1
, x � x0: (7:34)

However, empirically one observes mean excess functions that are increasing but at a

decreasing rate. Two intermediate versions are therefore defined by

eI (x) ¼
x

aþ 2blog x
, a . 0, b � 0, (7:35)

and

eII (x) ¼
x1�b

a
, a . 0, 0 , b � 1: (7:36)

It follows from Watson and Wells (1961) that the first form is of the lognormal type,

whereas the second asymptotically resembles the mean excess function of a Weibull

distribution (Beirlant and Teugels, 1992).

Using the relation between the mean excess function and the c.d.f.,

F(x) ¼ 1�
e(x0)

e(x)
exp �

ðx

x0

1

e(t)
dt

� �
, x � x0,

we obtain after some calculations

FI (x) ¼ 1� x�(1þaþblog x) 1þ
2b

a
log x

� �
, 1 � x, (7:37)

where a . 0, b � 0, and

FII (x) ¼ 1� x�(1�b) exp
a

b
�

axb

b

� �
, 1 � x, (7:38)

where a . 0, 0 , b � 1. Equation (7.37) defines the Benktander type I and (7.38)

defines the Benktander type II distribution. We note that although the distributions

are commonly known under these names (see Beirlant, Teugels, and Vynckier, 1996;

Embrechts, Klüppelberg, and Mikosch, 1997), they seem to have appeared for the

first time in Benktander and Segerdahl (1960).

The densities are given by

fI (x) ¼ x�2�a�blog x 1þ
2blog x

a

� �
(1þ aþ 2blog x)�

2b

a

� �
, 1 � x, (7:39)
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and

fII (x) ¼ exp
a

b
�

axb

b

� �
x�2þb{(1� b)þ axb}, 1 � x, (7:40)

respectively.

Using the relation between the mean excess function and the hazard rate,

r(x) ¼
1þ e0(x)

e(x)
,

the hazard rates are easily obtained as

rI (x) ¼
aþ 1þ 2blog x

x
�

2b

x(aþ 2blog x)
, 1 � x, (7:41)

and

rII (x) ¼
a

x1�b
þ

1� b

x
, 1 � x, (7:42)

from which it is again obvious that the Pareto distribution is a limiting case (for

b ¼ 0 in both cases).

It follows directly from the expressions for the mean excess functions that the

means of both Benktander distributions are equal to

E(X ) ¼ 1þ
1

a

and are independent of b.

Klüppelberg (1988) has shown that both distributions, as well as the associated

integrated tail distributions

Fint(x) ¼
1

E(X )

ðx

0

�FF( y) dy, x � 0, (7:43)

belong to the class of subexponential distributions, that is, they satisfy the condition

lim
x!1

�FF
�2

(x)

�FF(x)
¼ 2,

where F�2 stands for the convolution product F * F. This property is of importance

in risk theory (and other fields) since it allows for a convenient treatment of

problems related to convolutions of heavy-tailed distributions. It is interesting that

the Benktander I survival function is proportional to the Benini density (see
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Section 7.1), that is, the distributions are related as in (7.43) with Fint being the

Benini c.d.f. Klüppelberg’s results therefore imply that the Benini distribution is also

subexponential.

To the best of our knowledge, the classical methods of estimation have not

been used in connection with these two models. Since the Benktander distributions

are close to the lognormal and Weibull distributions, respectively, the authors are

inclined to consider the more tractable lognormal and Weibull distributions

as preferable in applications, at least if the mean excess function itself is not of

central importance.
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A P P E N D I X A

Biographies

The theory of economic size distributions is closely associated with two quite

different personalities whose contributions had substantial impact.

These are the Swiss-Italian Vilfredo Pareto (1848–1923), a brilliant scholar but

somewhat eccentric person, and Max Otto Lorenz (1876–1959), a very stable

American statistician and economist whose paper in 1905 generated a flood of

investigations, mostly after his death.

Although Pareto’s name is currently widely associated with concepts to which he

contributed only indirectly (e.g., the so-called Pareto chart and the Pareto set of

designs in engineering statistics), his contributions to income distributions are

fundamental. Pareto had two distinguished careers in his lifetime: economics up to

about 1907 and sociology until his death in 1923. His initially very liberal political

views rapidly changed and he eventually became sympathetic to the cause of

fascism—albeit in its very early stages—a fact that is often obscured by his

biographers.

For most of his career, Max Otto Lorenz served as a bureaucrat in Washington,

D.C., mainly at the Interstate Commerce Commission for some 35 years. He is well

known professionally for a single innovative paper that was only indirectly related to

his Ph.D. thesis in Economics at the University of Wisconsin.

Other personalities whose biographies are presented in this chapter include Rodolfo

Benini, Corrado Gini, Luigi Amoroso, Raffaele D’Addario, Robert Gibrat, and

David Champernowne. Pareto’s biography is by far the longest due to an abundance

of biographical material, the references cited here represent just a small portion of

them. Note the predominance of Italian scholars. For cultural and historical reasons,

it seems that there was greater interest in the quantitative analysis of income
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distributions in Italy in the twentieth century than in Germany, France, and Great

Britain. A possible impetus is the influence of Pareto and Gini.

A.1 VILFREDO FEDERICO DOMASO PARETO, MARCHESE

DI PARIGI

Born: July 15, 1848, Paris, France.

Died: August 19, 1923, Céligny (near Geneva), Switzerland.

Vilfredo Pareto was the only son of Genoese nobleman Raffaele Pareto—a follower

of the Italian revolutionary Mazzini, exiled in 1836 from his native city because of

his political views—and French calvinist Marie Métenier, a woman of “modest

social origins.” He had two sisters Aurelia and Cristina. The title of Marquis was

bestowed on Pareto’s great-great-great-grandfather in 1729 (according to other

sources, on his grandfather) and, after his father’s death in 1882, it passed to Pareto

himself. He never used the title, insisting that since it was not earned, it held little

meaning for him.

It should be noted at the outset that Pareto’s life and work are surrounded by

legends and shrouded in contradictions, and there is even conflicting information

about his Christian names. In about a dozen biographies of Pareto, his Christian

name is invariably given as Vilfredo Federico Domaso. It was therefore with great

interest that we were able to discover based on a clue provided in Eisermann (1987)

that his dissertation submitted to the School of Engineering Applications in Turin in

1869 (entitled Principj fondamentali della teoria della elasticità de’corpi solidi

e richerche sulla integrazione delle equazioni differenziali che ne definiscono

l’equilibrio) explicitly states his name on the front page as Fritz Wilerid, whereas the

signature on the last page of the paper (where Pareto thanks his professors Genocchi

and Rosellini for developing his love of mathematics) is correctly given as Fritz

Wilfrid Pareto. The thesis is reprinted on pp. 591–639 of his Scritti teorici

(Milan, 1952). In view of the fluidity of his father’s situation at the time of Pareto’s

birth, this official German name adds an additional level of mystery to Pareto’s

background. Turin was in 1869 an exclusively Italian city with no trace of a German

or Swiss connection (if anything, it had remained under French rule during an earlier

period). Although we were unable to examine Pareto’s birth records, the name as

given in the thesis should be viewed as Pareto’s original name, which was apparently

“Italianized” after the family returned to Italy. It remains a mystery as to why Pareto’s

parents may have chosen a German name for their son.

It was only in 1858 after 20 years in exile and 10 years after Vilfredo Pareto’s birth

that political amnesty enabled the family to return to Italy. Because his father earned a

reasonably comfortable living as a successful hydrological engineer, Pareto was reared

in an upper-middle-class environment, enjoying the many advantages that accrued to

people of his class during that age. He received a quality education in both France and

Italy. His secondary studies were mainly mathematical and classical, but his superior
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intellect transcended the boundaries of applied sciences into the realm of pure general

concepts, realizing that all exact sciences are fundamentally one.

After the family’s return to Italy, Raffaele Pareto briefly moved in 1859 to Casale

Monferrato, where he taught various subjects at the Leardi Technical School.

Its principal at that time was the mathematician F. Pio Rosellini, whose course in

mathematical physics Vilfredo Pareto later attended. At the same time, young Pareto

studied Italian (not spoken at home) and also Latin and Greek. Studying the classics

and Greek, he cultivated a knowledge of literature and history. In late 1862 the

family moved to Florence (the capital of Italy at that time), and in 1864 at age 16,

Vilfredo Pareto obtained his high-school diploma and that same year he passed the

entrance exams to the University of Turin. In his initial studies at Turin, Pareto

concentrated on courses in mathematical studies, and in 1866 he published his first

paper on the application of asymmetric designs. He received his degree in mathe-

matics and physical sciences in 1867 and immediately entered the engineering

school at the University of Turin (the school was established in 1859), from which he

graduated in January 1870 after writing a thesis entitled Theory of Elasticities of

Solid Bodies (1869). Pareto then started work as an engineer at the Joint Stock

Railway Company of Florence (Val d’Arno Lines) but soon realized the limited

career prospects associated with such a profession. He left this job in 1873, accepting

the post of Deputy Head of the Iron Works Company at San Giovanni in Valdarno.

In 1872 he met the mayor of Florence, Ubaldino Peruzzi, and began to attend the

literary salon held by Peruzzi’s wife, where he became acquainted with politicians,

artists, and writers. Pareto started writing articles on commerce, the state of Italian

industry, and railway problems. In 1874 he was nominated as a member of the

Accademia di Georgofili of Florence and continued his writings in support of free

trade, advocating against state intervention in economic activities. He fought against

protectionism, custom duties, and state subsidies to industry. He was one of the

founders of the Adam Smith Society that upheld the doctrine of economic liberalism.

In May 1875 Pareto became the technical director of the Iron Works company,

and in 1877 he was elected to the Town Council of San Giovanni, Valdarno. During

1876–1880 Pareto traveled extensively in Belgium, France, Switzerland, England,

and Germany. His famous comment “we are given to believe that the English are

hard working people—it is but an illusion” may serve as an indication of his anti-

British feelings, which later became quite clear in his fiery confrontation with

F. Y. Edgeworth and K. Pearson.

In 1880 he was appointed the director-general of the Iron Works Company, whose

name he changed to Ferriere Italiane (Italian Ironworks Company), and in 1883 he was

awarded the knighthood of the order of the Crown of Italy. He continued to publish

fiercely liberal free-trade articles and his relationship with the government branches

public administration deteriorated as a result. He became increasingly isolated.

Pareto married in December 1889. His first spouse Alessandrina (Dina) Bakunin,

of Russian descent, apparently loved an active social life, which stood in direct

conflict with Pareto’s own preference of privacy and solitude. Later after 12 years of

marriage, Dina abandoned her husband, running away with a young servant

(a socialist according to another version).
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In the meantime, the financial situation of Ferriere Italiane became extremely

precarious, and in July 1890 the company’s board of directors requested Pareto’s

resignation. He left the company and was able (with his bride) to retire to Villa Rosa

in Frisole and live comfortably on consulting fees.

A chance meeting—on a train according to some sources—with a famous and

influential Italian economist Maffeo Panteleoni in 1890 had a significant impact on

Pareto’s future career. They became good friends, and Panteleoni advised Pareto to

study the works of the political and mathematical economist Leon Walras, whom he

met in September 1890 in Switzerland. Although he had at first been rather

indifferent to Walras’s work, on rereading it, Pareto was much impressed by the

theory of general economic equilibrium. Walras was considering resigning his

professorship at Lausanne University and was pleased to find somebody capable of

understanding the scope and importance of his work, he suggested to Pareto that he

might become his successor. In 1893 Walras did retire, at the age of 58 due to ill

health, and Pareto, who was then 45, succeeded him. During the final decades of the

nineteenth century Pareto acquired a deep interest in the political life of his country

and expressed his views on a variety of topics in public lectures and in articles for

various journals, and in direct political activity. Steadfast in his support of the

economic theory of free enterprise and free trade, he never ceased arguing that these

concepts were vital necessities for the development of Italy. Vociferous and

polemical in his advocacy of these ideas, and sharp in his denunciation of his

opponents (who happened to be in power in Italy at that time), Pareto’s public

lectures were sufficiently controversial that they were sometimes raided and closed

down by the police, and occasionally brought threats of violence from hired

thugs.

Pareto’s professorial appointment at the University of Lausanne marked the

beginning of his scientific career, during the course of which he produced books of

remarkable quality: the Cours d’économie politique (1896–1897); the Systèmes

socialistes (1902–1903); the Manuale di economia politica, which appeared in 1906

and was published in French, with various improvements, as Le manuel d’économie

politique in 1909; and the Trattato di sociologica generale, which appeared in Italian

in 1916 and in French in 1917–1919. His original appointment was as an associate

professor in April 1893; exactly one year later he became a full professor. In 1896 he

was elected a senior member of the law faculty at the University of Lausanne.

In October 1891 the Parisian Revue des deux mondes published Pareto’s article

“L’Italie économique,” which became renowned for its condemnation of the Italian

government’s economic policies. The publication unleashed a storm of protest and

controversy in Italy and abroad. Pareto, however, carried on undaunted, producing

articles and giving lectures attacking Italian economic policy. In 1893—the year of his

appointment at the University of Lausanne—he wrote a refutation of Marx’ theory of

value that was published as the introduction to an anthology of passages from Karl

Marx’s Das Kapital. Although widespread dissatisfaction was expressed particularly by

Marx’s “comrade in arms” Friedrich Engels, Pareto’s activism did not harm his relations

with socialists and he continued to write for left-wing publications and adopt radical

ideas.
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Pareto’s two main contributions to economics, which also contain his develop-

ments in income distributions, are Cours d’économie politique (1896–1897) written

during his tenure at the University of Lausanne and Manuale di economia politica

(1906) written after his semiretirement in 1900. His massive contribution to sociology

was the four-volume The Mind and Society: A Treatise on General Sociology (1916)

that he completed during the last decade of his active life. Both the Cours and the first

two chapters of the Manual contain a remarkable discussion of the methodology of

economics, which shows Pareto to have been widely read in the literature on the

philosophy of science, perhaps better than any other economist of the period. The

uneven and poorly organized Cours contained, among its many historical and

statistical illustrations, the so-called Pareto’s law of income distribution which states

in a nutshell that the slope of the line connecting the percentage of income received

above a certain level to the percentage of relevant income-receivers is a constant, thus

demonstrating that the distribution of income in all countries and in all ages conforms

to an invariant pattern.

The Manual is famous for at least three ideas: the (unsuccessful) attempts to

banish the term utility and replace it with ophelimité, a word coined by Pareto to

denote the power of goods to satisfy demands; the clear distinction between cardinal

and ordinal utility, and the demonstration, via Edgeworth’s indifference curves, that

ordinal utility or the mere ranking of preferences is sufficient to deduce all the

important propositions of demand theory; and the apparently innocent, noncon-

troversial definition of an economic optimum as that configuration of prices which

commands unanimous approval—any other configuration might make some

individuals better off but only by making at least one person worse off—the far-

reaching concept of Pareto optimality, coupled with the (not altogether successful)

attempt to show that a perfectly competitive economy in fact achieves a Pareto

optimum, and vice versa.

Along with Walras and the American Irving Fisher of Yale University, Pareto may

be regarded as one of the three founders of modern economic science. The three,

although different in their personalities and backgrounds, have much in common.

Walras and Fisher, like the early Pareto, were ardent champions of normative ideas,

and in all three the scientist struggled with the crusader. They were either ignored or

hated, especially by their compatriots, but the reputations of all three have been

steadily rising ever since.

As to Pareto’s law and curve, which is the topic of main interest to the readers of

this book, it should be stressed that he developed here a fundamental yardstick.

Unfortunately, Pareto failed to make a proper distinction between the law in the

rational sense and the concept of an empirical law although he was conscious that his

law was an empirical one. Looking back on Pareto’s discovery from the vantage

point of a hundred years, we may think it being somewhat odd that he was so

determined to contrast his law of the distribution of income with “the law of

probability,” by which, in effect, he meant a model of the lottery type. As pointed out

by the leading British economist and statistician F. Y. Edgeworth as early as 1896

[the year in which the initial contribution of Pareto, La courbe de la répartition de la

richesse (Lausanne, 1896), on this topic was published],
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The reference to asymmetrical statistical curves leads me on to supplement my remarks on

this subject in this Journal [of the Royal Statistical Society] for September, 1895, by

calling attention to a remarkable formula for the frequency of incomes which has been

lately given by the eminent mathematical economist Professor Pareto in his La courbe de

la répartition de la richesse (Lausanne 1896). Designating each amount of incomes as x,

and the number of incomes equal or superior to x as N he finds the following simple

relation between the logarithms of these quantities

log N ¼ log A� a log x;

where a is a constant which proves to be much the same for different countries, whence

N ¼
A

xa
:

This law is of considerable economic interest. The approximate identity of the law as

ascertained for different countries, points to the dependence of the distribution of income

upon constant causes not to be easily set aside by hasty reformers. (pp. 529–539)

Edgeworth compared Pearson’s formula that is of the form

N ¼
A

(xþ a)a
10�bx,

a and b being constant, with Pareto’s formula cited above by emphasizing that N in

Pearson’s formula denotes only the valuations at a certain x. He, however, pointed

out that the difference between the two curves occurs in form rather than in essence.

He then added the following rather puzzling comment:

I do not forget that there are certain theoretical arguments in favour of the Pearsonian

formula, and I have allowed a certain weight to them in the critical paper above referred to.

I have allowed great weight to the authority of Professor Karl Pearson. Where opinions

on a matter of this sort differ, the presumption is certainly in favour of the author who

has made the greatest advance in the science of Probabilities which has been made since

the era of Poisson.

This comment justifiably infuriated Pareto, who responded to it in a letter to his

friend and mentor Pantaleoni, accusing Edgeworth of saying “all he could against

my work; nevertheless since he did not understand it, he directed against me a

superficial criticism, highly dishonest.” He also blasted Edgeworth in his two papers

in Giornale degli economisti. Edgeworth’s response in his 1899 paper “On the

representation of statistics by mathematical formulae”, also reproduced in his article

on Pareto’s law published in Palgrave (second edition) 1926, was as follows:

An article in the Journal of the (Royal) Statistical Society (1896) in which the discontinuity

of incomes at the lower extremity of the curve was pointed out called forth from Pareto a

somewhat acrimonious explanation . . . which is of interest as throwing light not only on

the character of the curve but also on that of its discoverer.
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Nevertheless in the same Palgrave entry, Edgeworth presented a rather positive

(albeit somewhat restrained) assessment of Pareto’s contributions to economics.

(It should be mentioned—to emphasize the magnitude of the animosity—that in

another letter to Pantaleoni, Pareto referred to Edgeworth as a “real Jesuit [who]

could only show how to solve the equations of exchange. These are the only ones he

knows.”)

The interpretation and significance of the change in the value of the constant a in

Pareto’s formula

log N ¼ log A� a log x

(which measures the slope of the income curve) was a source of another minor

controversy. In his original publication Pareto stated that as a increases, so does the

inequality of incomes. Arthur Bowley (1869–1957), the well-known and influential

British statistician and economist, in his early writings adhered to Pareto’s

interpretation, but later on he declared that Pareto was wrong. Benini (see the

next biographical sketch) and some other Italian statisticians did not accept Pareto’s

interpretation either. There were some who characterized Pareto’s assertion as a

“curious slip” or even as a printer’s error. Bresciani Turroni—an eminent

economist—in a 1939 paper published in the Egyptian journal Revue Al Qanoun

Wal Iqtisad asserted that Pareto’s statement is a logical consequence of his concept of

inequality. According to it, incomes tend toward inequality when “poor become

rich,” ignoring the fact that the increase in the proportion of higher incomes is not an

indication of less inequality of individual incomes.

We are not going to discuss Pareto’s contributions to sociology which he began

writing in 1912 in detail. Rather, we will refer the interested reader, among other

sources, to the slim volume by F. Borkenau in the Modern Sociologists series

entitled Pareto (1936) for this purpose. It would seem that Pareto’s most important

sociological writings dealt with his theory of the “circulation of elites.” He wrote on

the sociology of the political process, in which history consists essentially of a

succession of elites, whereby those with superior ability in the prevailing lower strata

at any time challenge, and eventually overcome, the existing elite in the topmost

stratum and replace them as the ruling minority. In Pareto’s view, this pattern is

repeated over and over again.

In 1899 on the death of an uncle (his father’s brother, an ambassador to the

Ottoman Empire), Pareto inherited a substantial fortune that allowed him to resign

his professorship in Lausanne (which included teaching duties) and to move to the

town of Céligny, in the canton of Geneva, Switzerland. From 1900 until his death in

1923, he led a rather reclusive life, wholly devoted to his studies and writings. Pareto

remained at his country villa, seldom venturing into nearby cities and entertaining

only a few close friends, thus becoming “the lone thinker of Céligny.”

However, Pareto did not completely sever his connections with the University of

Lausanne and—according to a personal communication from Professor F. Mornati

there—from 1900 until June 4, 1909 (the day of his last lecture in economics) he was

still teaching but less and less. He was instrumental in reforming the teaching of
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social studies at the university in 1910. According to some sources, Pareto officially

retired in 1911, but in May 1916 he gave a final series of lectures on sociology.

As was earlier mentioned, Pareto suffered a personal misfortune in 1901 when

his wife left him; luckily in February 1902 (when he was 53 years old) he met a

22-year-old French woman Jeanne Régis, who became his devoted companion until

his death in 1923. The first edition of his Trattato di sociologica (1916) was

dedicated to “Signora Jane Regis.” He was finally able to obtain a formal divorce

from his first wife in 1922 (after becoming a citizen of the Free State of Fiume), and

he married Jeanne two months before his death in June 1923. He was afflicted with a

heart ailment toward the end of his life and his last years were marked by considerable

ill health. Throughout his life, Pareto also suffered from insomnia, which was perhaps

one reason for his outstanding productivity.

Borkenau (1936) asserted that there are certain analogies between Pareto’s socio-

logy and Hitler’s Mein Kampf. He pointed out the similarity between Pareto’s theory

of elites and Hitler’s theory of race. He also quoted two of Pareto’s statements that

resonate in Hitler’s work and his convictions. The first deals with the principles of

mass propaganda:

Speaking briefly but without scientific exactness, ideas must be transformed into passions

in order to influence society, or in other words, the derivations must be transformed into

residues.

The second concerns with the dictum of repeating your statements over and over

again, not necessarily to prove them:

Repetition works principally upon the feelings, proofs upon reason, and then, at best,

modify the derivations, but have little influence upon feelings.

Pareto sometimes had this tendency to generalize a certain single aspect prevalent in

his own time and to apply it to the theory of mankind—thus substantially reducing

its scientific value.

During the period 1900–1919 in his “semiretirement,” Pareto wrote his most

important works, which present a continuous discussion of the problems of

liberalism. In his Cours d’économie politique (1896–1897) and Manuel d’economie

politique (Italian version 1906, French 1909), he tried to prove mathematically the

absolute superiority of free trade over any other economic system. On the other hand,

he later developed the reasons why this solution “does not obtain in practice as a

rule,” which led him to his study of sociology. He turned to sociology rather late in

life, but his previously cited Treatise on General Sociology and two smaller volumes,

The Rise and Fall of the Elites and (in 1921) The Transformation of Democracies,

are acclaimed masterpieces in the field. In the latter work he described the

dissolution of the Italian democratic state. This work was written only a few months

before the final victory of fascism in Italy in October 1922. In 1898 witnessing the

police repression that followed the May riots in Milan, Pareto probably made a

conscious decision to reject liberalism at that time. As indicated above he later
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gravitated toward fascism, but somewhat hesitatingly. Possibly, Pareto’s intellectual

detachment made it quite impossible for him to be an ardent adherent of any political

movement.

In the first years of Mussolini’s rule, the policies executed were along the lines

advocated by Pareto, such as replacing state management by private enterprise,

diminishing taxes on property, and favoring industrial development. When political

events compelled King Victor Emmanuel III to appoint Mussolini as the Prime

Minister of Italy in October 1922, Pareto was able to rise from his sick bed and utter

a triumphant, “I told you so.” Yet unlike his friend and mentor Pantaleoni, he never

joined the Fascist Party. In his autobiography Mussolini provided a few comments on

Pareto’s lectures in Lausanne: “I looked forward to every one . . . for here was a

teacher who was outlining the fundamental economic philosophy of the future.” He

even attended a course on applied economics at Lausanne during the first term of the

academic year 1903–1904 that was officially taught by Pareto (but mostly delivered

by Pareto’s successor Boninsegni). The Mussolini government extended several

honors on Pareto. He was designated as a delegate to the Disarmament Conference

in Geneva (but excused himself on account of poor health); he was nominated as a

senator of the Italian Kingdom in 1923 but (according to G. Busino) refused to

submit the required papers for ratification. Other sources (Cirillo, 1979) claim that

he accepted the nomination. Pareto also contributed to the Duce’s personal periodical

Gerarchia. Some of Pareto’s biographers claim that after a lifetime of disappoint-

ments with politics, he welcomed fascism as “a sort of messianic revolution,” and in

turn the new fascist government regraded with sympathy the man whose sociological

theories seemed to favor their doctrine.

One thing is certain: In the last years of his life, Pareto was a bitter man. He was

disappointed by the treatment he received from his “native” country of Italy when he

left in 1893 for the professorship at Lausanne. He was asked to teach a course in

sociology at the University of Bologna for a few weeks in 1906, but much later,

when an offer of professorship finally came, he was already too ill to accept it.

In the six years preceding his death, Pareto’s main joy were his Angora cats, said

to number at least 18 at one time. They were given precedence over anyone else, and

were often fed before his (very occasional) visitors. Near the end of his life, Pareto

developed an affinity for birds and squirrels. His home in Céligny was called Villa

Angora and boasted the best wine cellar in Switzerland. He alienated many of his

friends by his irony and sarcasm. It was in Pareto’s nature to find faults with nearly

all political regimes and many human beings.

All his life, Pareto was confident in his own intellect and could be stubborn in his

views, disdainful of those with divergent opinions and often careless of other

people’s feelings. On the other hand, in his early years especially up to and including

1898, he was generous to “underdogs” and offered money, shelter, and counsel to

political exiles and strongly protested against antisemitic incidents in Algeria. He

was (like his father) conservative in his personal tastes and inclinations, but in some

respects—because he was a free thinker—he combined this trait with an ardent

belief (at least in his younger years) in personal liberty. In one of his last essays

written shortly before his death, he declared “. . . most people are incapable of
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having a will, not to mention a will which has a positive effect on the nation, whose

fate always seems to be in the hands of a minority which imposes itself with faith

helped by force, and often by means of the dictatorship of a group, an aristocracy, a

party, a few men, or one man.”

Pareto always shunned scientific honors so common among Italian scientists:

He became a member of only one academy—the Academy of Science of Turin—

the city where he received his academic education. His physical appearance in

later years reminded one of Michelangelo’s “Moses”; he felt himself to be

profoundly Italian and considered the fact that he was born in France an

“unfortunate circumstance.”

The almost unprecedented scholarly activity surrounding Pareto’s work including

Italian, Swiss, British, and American scholars who dedicated their lives to the

clarification and popularization of his ideas serve as testimony to his great talent and

originality and his impact on economics and sociology. Pareto’s influence,

particularly as propagated by his student Enrico Barone (1858–1924), on the

famous interwar controversy on the economic merit of a socialist (collectivist)

economy and the very feasibility of central planning was also substantial. As was

already mentioned in connection with the Pareto distribution in Chapter 3,

there exists a Walras–Pareto Web site maintained by the University of Lausanne.

There is also a French journal entitled Cahiers Vilfredo Pareto/Revue européenne

d’histoire des sciences sociales (now entitled Revue européenne des sciences

sociales et Cahiers Vilfredo Pareto), founded in 1963.

His widow, who died in 1948, had a rough time after Pareto’s death. In 1936 she

had to surrender the copyright to her husband’s work in exchange for a pension,

which was slow in coming and forced her to sell Villa Angora. She was not entitled

to a Swiss state pension or a widow’s pension from the University of Lausanne.
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Pareto, V. (1952). Scritti teorici. Milan: Malfasi Editore.
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A.2 RODOLFO BENINI*

Born: June 11, 1862, Cremona, Italy.

Died: February 12, 1956, Rome, Italy.

At the beginning of his university career, Rodolfo Benini taught a history of

commerce course at the University of Bari (1889–1895). Then he became a

professor of economics at the University of Perugia (1896), a professor of statistics

at the University of Pavia (1897–1907) and at the Bocconi University of Milan

(1905–1909). Finally, he moved to the University of Rome (currently La Sapienza

*The following biography is a slightly edited version of text provided to the authors by Professor Giovanni

M. Giorgi of the “La Sapienza” University in Rome.
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University), where he was the first professor of statistics (1908–1928) and then

professor of political economy (1928–1935). He was appointed professor emeritus

at the University of Rome in 1935. Benini held various positions at the national and

international levels, including president of the Higher Council of Statistics and of the

Commission of Statistics and Law at the Ministry of Justice. He also represented

the Italian government at the Geneva Conference in 1921 and served as the president

of the Commission of Statistics at the General Assembly for the World

Agriculture Census in 1926. In addition, he taught social sciences to the Crown

Prince in 1922–1923 when the monarchy still existed in Italy.

Benini was a member of various societies and scientific bodies: the Lincei

Academy, the Academy of Italy, the International Statistical Institute, and the

American Statistical Association. He had a wide range of scientific interests, but his

scientific output can be classified into the following main groups: statistics,

demography and economics, social sciences, as well as studies on Dante’s Divine

Comedy.

With regard to statistics, Benini used economic and demographic empirical

studies with the aim of constructing tools of general validity. In this context, we may

include the study of the relations between the distribution of particular economic

phenomena and the distribution of more general phenomena such as income or

patrimony. His pioneering book Principles of Statistics (1906) contains his main

contributions and successfully combines statistical methodology into a unified

theory. In this way, Benini tried to give statistics an autonomous role in relation to

economics, demography, and social sciences, with which it often became confused at

the end of nineteenth and the beginning of the twentieth century. Among Benini’s

major original contributions we may mention, for example, the attraction indices, the

extension to the patrimonies of the Paretian laws of income (Benini, 1897) discussed

in Section 7.1 of this volume, and a probabilistic study of factors determining the

proportion of the sexes in twins.

Despite his varied scientific interests, Benini was mainly a statistician, “the first

complete Italian statistician” as C. Gini defined him. He considered the statistician to

be a scholar who would not stop at the formal aspect but proceed to study

phenomena in greater depth. In his opinion formulae should be adapted to reality

and not vice versa.

As far as demography is concerned, which is subdivided into qualitative and

quantitative population theory, Benini viewed it as a statistical science of human

categories. In this field he completed an exemplary work on the classification of

knowledge in his book Principles of Demography (1901). He also held a statistical

vision of political economy that allowed him to keep in touch with demographic-

social reality on the basis of a “statistical demand” for the critical review of reality.

Benini was the first to use multiple regression for the empirical analysis of the curve

of demand (Benini, 1907) not as a simple application of a particular statistical

tool, but within the framework of a program that he called “inductive economics”

used in order to “reduce economic sciences to a type of experimental science”

(Benini, 1908). His view of economics is reflected in the organization of the final

version of his Lectures on Political Economy (1936). Benini’s thoughts were
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conditioned so much by statistics that he even used it, albeit indirectly, in his studies

of Dante’s Divine Comedy (1948).
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A.3 MAX OTTO LORENZ

Born: September 19, 1876, Burlington, Iowa.

Died: July 1, 1959, Sunnyvale, California.

Max Otto Lorenz was the son of Carl Wilhelm Otto and Amalie Marie (Brautigam)

Lorenz. His father was born in Essen, Germany, in 1841. In 1851 his (father’s)

parents came to America and after a short sojourn in New Jersey took up permanent

residence in Burlington, Iowa. For a number of years Otto Lorenz maintained a

wholesale and retail grocery store and afterwards became a successful businessman

engaging in wholesale trade—cigars, teas, coffees, and spices. He was a sterling

citizen who served several times on the city council and provided an excellent

education to his three children. Max’s brother Charles was a physicist in Cleveland.

His sister also had her Ph.D. and served as the head of the Spanish department at a

college in Wisconsin. She married Charles Wachsmuth—a distinguished paleontol-

ogist in Burlington—and assisted him in amassing his fossil collection, one of the

most complete collections known in the world at the time.

Max O. Lorenz was educated in public schools in Burlington and graduated from

the University of Iowa with a B.A. in 1899 and obtained his Ph.D. at the University

of Wisconsin in 1906 for a thesis entitled, Economic Theory of Railroad Rates. He

was a high-school teacher in Burlington, Iowa, during the years 1899–1901 and an
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instructor of economics while studying for his doctorate. In June 1905 he published

in the Publications of the American Statistical Association (now the Journal of the

American Statistical Association) his most influential paper “Methods of measuring

the concentration of wealth,” in which he proposed what is now known as the Lorenz

curve as a basic tool for measuring inequalities in population or income and wealth,

although it is applicable to any problem of a similar nature. As applied to the

distribution of income or wealth, Lorenz suggested that one

plot along one axis cumulated per cents of the population from poorest to richest, and

along the other the per cent, of the total wealth held by these per cents, of the population.

He criticized Pareto’s approach to measuring inequality or income concentration:

Pareto, in his “Cours d’Economie Politique,” does this, but in an erroneous way. He represents

logarithms of class divisions in wealth along one axis, and the logarithms of the number of

persons having more than each class division along the other. The error in this procedure lies in

adhering to a fixed classification for two epochs. The number of persons having more than, say,

$10 in each of the two periods of time is, as we have seen, of no significance in the question of

degree of concentration when the per capita wealth of the community is growing.

An approach similar to that of Lorenz has been advocated independently by

L. G. Chiozza Money in his classical book Riches and Poverty (1905), but even in

the revised tenth edition (1911) of this work, Money still had not developed his idea

any further. He continued to present his original “Lorenz curve” based on only three

subdivisions: rich, comfortable, and poor.

The Lorenz curve received substantial attention in the literature (both economic and

statistical) especially in the early 1970s. It remains a topic of active current research.

The Lorenz curve was initially used extensively by the Bureau of the Census and

other U.S. government agencies from the early years of the twentieth century. It has

been mistakenly assumed that it was developed by Lorenz during his association

with the Bureau of the Census in 1910. After earning his Ph.D. degree, Lorenz

served for several years as deputy commissioner of labor and industrial statistics

for the state of Wisconsin. After a brief stint at the U.S. Bureau of the Census

(1909–1910) and at the Bureau of Railway Economics in Washington, D.C.

(1910–1911), he joined in 1911 the Interstate Commerce Commission (I.C.C.) in

Washington, D.C., where he remained for 38 years until his retirement (to California)

in 1944. From 1920 onward he was the director of the Bureau of Statistics and later

the Bureau of Transport Economics and Statistics. His work with the I.C.C.

consisted largely of planning, collecting, tabulating, and publishing data on rail, bus,

and water transportation in the United States. These data were used for rate-making

purposes and for improving operations.

He was married in Columbus, Ohio, in October 1911 to Nellie Florence (née

Sheets), the daughter of a prominent Columbus lawyer; they had three sons during

the course of their 48 years of marriage. Lorenz was the director of the so-called

Eight-Hour Commission in 1916–1917, which was established to assess the effects
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of the eight-hour standard workday mandated by the U.S. Congress in September

1916 on production (it was the first U.S. legislation protecting workers’ rights).

Lorenz was the co-author (with three other economists) of a popular textbook

Outlines in Economics (4th edition, 1923). He was a member of the American

Statistical Association, Western Economic Association, and Cosmos Club of

Washington, D.C. His special interests included scientific developments, calendar

reform, and Interlingua, a proposed international language.
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A.4 CORRADO GINI*

Born: May 23, 1884, Motta di Livenza, Italy.

Died: March 13, 1965, Rome, Italy.

Corrado Gini is considered the leading Italian statistician of the twentieth century.

He was born into an old family of landed gentry in northeast Italy and graduated

with a degree in law in 1905 from the ancient and prestigious University of Bologna

(founded in 1088). His thesis was on gender from a statistical point of view. During

his studies at the university, which demonstrate the multidisciplinary interests

characterizing his life, he took additional courses in mathematics and biology.

In 1908 he was awarded the libera docenza, which qualified him to teach statistics

at the university level; in 1909 he was appointed a temporary professor of statistics at

the University of Cagliari and by 1910 he held the chair of statistics at the same

university. In 1913 Gini moved to the University of Padua and in 1925 he was called

to the University of Rome (today La Sapienza University), first to the chair of

political and economic statistics and then to the chair of statistics from 1927–1955.

During his long academic career, he also taught other subjects, such as economics,

economic statistics, demography, biometry, and sociology. He was the founder and

director of the Institutes of Statistics at the Universities of Padua and Rome, and it

was at the University of Rome that in 1936 he founded the Faculty of Statistical,

Demographic, and Actuarial Sciences, of which he was dean until 1954. In 1955 he

was awarded the title professor emeritus. He was also awarded honoris causa

degrees from various universities in Italy and abroad (e.g., in economics at the

Catholic University of Milan, in sociology at the University of Geneva, in the

sciences at Harvard University, and in social science at the University of Cordoba in

Argentina). Gini devoted a lot of time to scientific publication; in fact, in 1920 he

founded Metron, an international journal in statistics, and in 1934 Genus, a journal

of the Italian Committee for the Study of Population Problems. He was director of

*The following biography is a slightly edited version of text provided to the authors by Professor Giovanni

M. Giorgi of the “La Sapienza” University in Rome.
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both until his death. From 1926–1943 he also directed the periodical La Vita

Economica Italiana, which provided analyses of and information on various aspects

of the Italian economy.

Gini belonged to many national and international societies and scientific bodies;

he was honorary fellow of the Royal Statistical Society, president of the International

Sociological Institute, president of the Italian Genetics and Eugenics Society,

president of the International Federation of Eugenics Society in Latin-Language

Countries, president of the Italian Sociological Society, honorary member of the

International Statistical Institute, president of the Italian Statistical Society, and a

national member of the Lincei Academy.

Gini held many public positions at both the national and international level, so

many so that here we will only mention the most important and that is his leadership

as the president of the Central Institute of Statistics from 1926–1932. During this

period he attempted to centralize statistical services and was therefore in direct

contact with central and peripheral state institutions, including Benito Mussolini

who came to power in 1922 and seemed to have an interest in statistics as a govern-

ment instrument (Leti, 1996). Although he possessed only limited economic re-

sources and his positions often differed from those of state administrators, he was

able to modernize the Italian statistical system. In connection with this period, it is

necessary to underscore the fact that although Gini respected political power, he did

not submit to its authority; on the contrary, he exploited it in an attempt to improve the

quality of the official statistical service in Italy and to reach other scientific objectives.

Gini was a renaissance type of scholar with numerous and varied interests in the

fields of statistics, economics, demography, sociology, and biology. He published a

very large number of scientific writings (over 800, including articles, conference

papers, books, etc.), of which it is impossible to mention even some briefly here

(see Benedetti, 1984; Castellano, 1965; Federici, 1960; Forcina, 1982). As far as

statistics is concerned, his principal contributions mainly concerned three topics:

mean values, variability, and the association between statistical variates. An

important group of papers concerning variability and concentration were collected in

one volume (Gini, 1939), whereas his studies on fundamental issues of probability

and statistics were reproduced in two posthumous volumes (Gini, 1968), for which

the scientific material published had been chosen by Gini himself shortly before his

death. He particularly wished to insert an inedited paper on the logical and

psychological theory of probability that he had left in the drawer of his desk for more

than 50 years, as if he had wanted to wait for his experience in life to confirm some

of his ideas.

Despite the large number of seminal contributions in the most varied fields, Gini

is especially remembered for his concentration ratio (Gini, 1914), a summary

inequality index that is still of topical interest today (Giorgi, 1990, 1993, 1999). He

also proposed another index (Gini, 1909) that is a direct measure of concentration

and is more sensitive than Pareto’s.

Gini was married and had two daughters, but according to one of his biographers

(Giorgi, 1996), the numerous positions that he held at the university and elsewhere as

well as the efforts dedicated to scientific production did not leave him much time for his

family.
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A.5 LUIGI AMOROSO*

Born: May 23, 1886, Naples, Italy.

Died: October 28, 1965, Rome, Italy.

Luigi Amoroso’s father Nicola played an important role in his son’s moral,

intellectual, and scientific development. He was an engineer and important technical

official, first in the Southern Railway Company and then in the Italian State Railway.

*The following biography is a slightly edited version of text provided to the authors by Professor Giovanni

M. Giorgi of the “La Sapienza” University in Rome.
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Despite his heavy work load, in the evenings, after supper, the father would dedicate

his time to research in pure mathematics, thereby setting an example

and demonstrating the importance of study to his six sons, of whom Luigi was

the eldest. In 1903 Luigi entered the Normale in Pisa where he studied mathematics.

In 1905, when the family moved to Rome, he left the Normale and enrolled at

Rome University from which he graduated with a degree in mathematics in 1907.

He wrote his thesis on a difficult problem concerning the theory of holomorphic

functions.

Amoroso’s university career began in 1908 when he became assistant professor of

analytic geometry at the University of Rome (today La Sapienza University). While

studying mathematics, he also carried out research in the field of administration and

economics, and in recognition of his eclecticism, he was awarded the libera docenza,

which qualified him to teach at the university level in economics (1910) and

mathematical physics (1913). In 1914 he held the chair in financial mathematics at the

University of Bari and in 1921 at the University of Naples. In 1926 Amoroso was

called to the University of Rome to hold the chair in economics at the Faculty of

Political Science, of which he served as dean between 1950 and 1961. During the same

period he was also Director of the Institute of Economic, Financial and Statistical

Studies at the same Faculty. In 1962 he was awarded the title of professor emeritus.

Amoroso held additional important positions, such as government advisor to the

Bank of Naples, vice commissioner and later counsellor of the National Insurance

Institute, managing director of the company Le Assicurazioni d’Italia, and advisor to

the Banca Nazionale del Lavoro. He was member of the Higher Council for

Statistics, the National Research Council, and the Higher Council for Public

Education. He was also a member of various societies and scientific bodies,

including the Lincei Academy, the Econometric Society, and the International

Statistical Institute. Amoroso had a very rigid lifestyle, inspired by his deep Catholic

faith and a multitude of interests not only concerning pure and financial

mathematics, economics, and statistics but also the humanities and philosophy.

His various pursuits permitted a healthy and prolific eclecticism.

Amoroso’s scientific publications began in 1909 with a paper on economic theory

according to Pareto that was followed by a completely different type of note on the

criteria of resolvability of the integral linear equation of the first kind. His last work

appeared in 1961, when his bad health prevented him from dedicating time to

research, as a volume on the natural laws of economics. In more than half a century

of scientific research, the area of study that attracted him the most and to which he

made the most important contributions was without doubt economic science. Most

notable, are some books in which he skilfully synthesized his most important results;

in particular, we refer the interested reader to his Economic Mechanics (1942), in

which he collected his lectures given in 1940–1941 at the National Institute of

Higher Mathematics. In the topics dealt with in this volume, Amoroso used

sophisticated mathematical tools to reach his objectives and, in extreme synthesis,

presented the main results concerning the generalization of Walras’s and Pareto’s

equilibrium, which is static, through the dynamic consideration of the factors that

intervene in the optimal solution of consumer and producer problems. In his Lessons
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on Mathematical Economics (1921), he lucidly outlined the methods, limits, and

aims of mathematical economics, whereas in The Natural Laws of Economics (1961)

he laid out a definitive description of the fundamental aspects of his favorite

scientific problem, that is, the parallelism between mechanical and economic

phenomena and the transfer of mechanical laws in the economic world. Finally, we

must mention Amoroso’s (1925) contribution on the analytical representation of

income distribution, with which he proposed an equation that is an extension and

generalization (see D’Addario, 1936) of those proposed by March and Vinci,

suitable for describing, according to the value of the parameters, both unimodal and

zeromodal distributions.
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Amoroso, L. (1961). Le leggi naturali dell’economia politica. Turin: UTET.

D’Addario, R. (1936). Sulla curva dei redditi di Amoroso. In: Annali dell’Istituto di Statistica
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A.6 RAFFAELE D’ADDARIO*

Born: December 17, 1899, Grottaglie, Italy.

Died: September 1, 1974, Rome, Italy.

Before he was even eighteen years old, Raffaele D’Addario served in World War I,

an unforgettable experience that remained with him for all of his life. After the war

he enrolled at Bari University from which he graduated in 1924 with a degree in

economics and business administration. Carlo Emilio Bonferroni supervised

*The following biography is a slightly edited version of text provided to the authors by Professor Giovanni

M. Giorgi of the La Sapienza University in Rome.
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D’Addario in the writing of his thesis and soon thereafter D’Addario became

Bonferroni’s assistant in mathematics. Later he resigned from the University of Bari

and moved to Rome. Here he worked for ISTAT, the National Institute of Statistics,

where he became head of the Office of Studies in 1929 and met Corrado Gini who at

that time was president of the institute. However, D’Addario did not remain long at

ISTAT. According to some biographers, it may have been due to incompatibility with

the president; others maintain that it was because he met Luigi Amoroso who, as

administrator of the company Le Assicurazioni d’Italia, appointed him as the

company’s technical consultant in October 1931. The experience that he gained first

at ISTAT and then in the field of insurance gave D’Addario not only the opportunity

to analyze concrete phenomena, but also provided stimuli for continuing theoretical-

methodological studies within the university environment. He was awarded the

libera docenza, which qualified him to teach statistics at the university level, in 1931,

and in 1936 he was appointed to the chair of statistics at the Faculty of Economics

and Business Administration at the University of Bari. During the academic year

1950–1951 he moved to Rome University (now La Sapienza University) to

the Faculty of Political Science, of which he was dean from the academic year

1963–1964 until the time of his death.

D’Addario held important public positions at the National Council of Labour and

Economics, the Higher Council for Public Education, and the Higher Council

for Statistics. He was a member of various societies and scientific bodies, including

the Lincei Academy, the International Statistical Institute, the International Institute

of Public Finance, the International Union for the Scientific Study of the Population,

the Econometric Society, the Italian Actuarial Institute, the Italian Society of

Economists, and the Italian Society of Economics, Demography and Statistics.

D’Addario’s scientific interests were rather wide and may be classified into the

following main groups: the distribution of personal income and wealth, the economics

and statistics of insurance, and the division of taxes. His most important studies belong

to the first group. D’Addario was motivated to study income distribution following the

results obtained by Pareto on the topic. After having ascertained (D’Addario, 1934) that

of the three curves [called first (I), second (II), and third (III) approximation] by which

the Paretian model is expressed (the literature at that time mainly dwelled on the I-type

curve), he investigated the analytical properties of the II-type curve and proposed

three methods for determining its parameters. Subsequently, he studied the subject in

more detail and suggested a further method for calculating the parameters. D’Addario

(1936, 1949, 1953) also showed that the functions proposed by various authors (e.g.,

Pareto, Kapteyn, March, Vinci, Amoroso, Davis, Mortara, and Benini, etc.) for the

analytical representation of the income and patrimony distributions are particular cases

of a more general function that formally synthesizes Boltzmann, Bose–Einstein, and

Fermi–Dirac statistics.

As far as research in the field of insurance is concerned, we can briefly say that

D’Addario dealt, among other things, with the “rational evaluations” of the “rates”

and “reserves,” and of the existence—restricted to the branch of accidents and civil

liability—of a specific law for the distribution of damages. Furthermore, he analyzed

insurance problems in relation to fluctuations in currency value.
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Finally, D’Addario’s studies on the division of taxes were mainly concerned with

the issues relating to progressive taxation. In this context he proposed some methods

for measuring the structural progressivity of taxation and a general method for

establishing the scale of tax rates. He also investigated the influence of a proportional

property tax on corresponding incomes as well as the influence of a proportional

income tax on corresponding property.
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A.7 ROBERT PIERRE LOUIS GIBRAT

Born: March 23, 1904, Lorient, France.

Died: May 13, 1980, Paris, France.

The son of a chief navy physician, Robert Pierre Louis Gibrat studied in Lorient,

Rennes, and Brest (Normandy) and later on at the Lycée Saint-Louis in Paris. He entered

the École Polytechnique in 1922 and specialized in mining engineering at the École des

Mines. He started his professional career as a technical consultant for private firms.

While working, he studied at the universities of science and law in Paris and Lyon and

received a joint bachelor’s degree in science and doctorate in law with honors. His
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doctoral thesis was on economic inequality. He married Yseult Viel in 1928 with whom

he had three daughters. During the period from 1927–1931 he was employed as a

professor at and served as an assistant director of the St. Etienne École des Mines.

Returning to Paris, he taught at the École des Mines and became Professor in

1936. It is at this point that there is a gap in Gibrat’s biography. David E. R. Gay

(1988) claims that he stayed with the École des Mines until 1968; the school records

show that he left in 1940 but the library there possesses a copy of his industrial

electricity course for 1943–1944. More importantly, it should be noted that his 1931

doctoral thesis at Lyon was a historical study of the lognormal law and its utilization

for modeling revenue (income) distributions. In his thesis Gibrat confined himself to

a study of one-parameter distributions of wealth and income. This research con-

tinued to preoccupy him until 1940. After that he pursued two further professional

interests: the hydroelectric energy of rivers and tides and nuclear energy.

In the 1930s, after joining a nonconformist political group Ordre Nouveau, Gibrat

became an active member of the avant-garde group X-Crise. Created after the

Great Depression of 1929, it focused on solving economic and social problems,

without the petty quarrels and dogmatic points of view characteristic of political

parties. Gibrat published in the journal X-Information, which became the monthly

bulletin of the Centre Polytechnicien d’Études Économiques.

The above mentioned 1931 doctoral dissertation entitled

Les inégalités économiques. Applications: aux inégalités des richesses, a la concentration

des enterprises, aux populations des villes, aux statistiques des familles, etc., d’une loi

nouvelle, la loi de l’effet proportionnel*

remained Gibrat’s main economic publication. In 1930 he contributed a lengthy

article in the Bulletin de la statistique generale de la France and also later reprinted

his dissertation under the title Les inégalités économiques as well as writing a note

La loi de l’effet proportionnel for the Paris Academy of Sciences’ Comptes rendus.

Like Pareto, Gibrat used the term law, but explicitly admitted that it is essentially

statistical in the form of a mathematical model. He introduced his own “law,”

brushing aside the Pareto and Pearson empirical fittings. In the second part of his

thesis he discussed a measure of inequality made possible by this law and defended

its superiority over other approaches. He criticized Pearson’s method of moments,

claiming that “its automatism makes any control difficult.” For this contribution he

was elected a Fellow of the Econometric Society in 1948.

After 1940 Gibrat had a distinguished scientific and administrative career, although

his behavior during the German occupation of France may be regarded in a negative

light. In June 1940, he was appointed Director of Electricity for the Ministry of

Industrial Production in the first puppet pro-German Laval government; he was named

Secrétaire d’Etat aux Communications during the second Laval regime in April 1942. In

November 1942 Gibrat happened to be in North Africa inspecting the Trans-Saharian

*“Economic inequalities. Applications: to the inequality of wealth, the concentration of industry, the

population of cities, the statistics of families, etc., of a new law, the law of proportional effect.”
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railway when the American landing took place. It is not clear when he returned to France

(after the Germans occupied the entire country), but it is known that he resigned from his

post. After the liberation he spent a year in a Fresnes prison where he had the

opportunity to develop (theoretically) a new type of hydraulic power station. In March

1946 he was sentenced to 10 years of “national unworthiness.”

All of this did not prevent Gibrat from resuming his professional activities

in 1945. He served as a consulting engineer for French Electric on tidal energy

(1945–1968) (he had published his first article on the subject in the Revue de

l’industrie minerale in 1944). He then held high-level positions in institutions

involved in the development of French atomic policy. These posts included his role as

general manager for atomic energy at the Groupement de l’Industrie Atomique

(INDATOM) (1955–1974), general manager of the Société pour l’Industrie

Atomique (SOCIA) (1960), and as president of the European Atomic Energy

Community (EURATOM) Scientific Committee (1962). He was also a long-term

consulting engineer for Central Thermique (1942–1980).

Gibrat was a member of the International Statistical Institute and served as

president of the French Society of Electricians and the Civil Engineer Society of

France (1966), the Statistical Society of Paris (1966), the French Statistical Society

(1978), the Technical Committee for the Hydrotechnical Society of France and the

French Meteorological Society (1969), the World Federation of Organizations of

Engineers and the French Section of the American Nuclear Society (1972).

He was one of the first French members of the Econometric Society (founded in

December 1930 in Cleveland, Ohio) and before World War II published three articles

in Econometrica.

Gibrat was the author of numerous reports to the Academy of Sciences, some 100

professional articles, and two books (on economics and tidal energy). He was also a

Knight of the Legion of Honor.
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A.8 DAVID GAWEN CHAMPERNOWNE

Born: July 9, 1912, Oxford, England.

Died: August 19, 2000, Devon, England.

David Gawen Champernowne was the only child of Francis Champernowne, the

bursar of Keble College at Oxford University. The family was originally from
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South Devon, and one of his ancestor, Katherine Champernowne, was the mother of

Sir Walter Ralegh. Champernowne was educated at the College of Winchester,

excelling in mathematics. Later on as a scholar at King’s College in Cambridge, he

became very friendly with Alan Turing and together they designed and constructed a

chess computer named “Turochamp.” He was one of the few mathematicians able to

keep up with Turing. Champernowne achieved special distinction when he published

a scientific paper in the Journal of the London Mathematical Society (1933) that

produced an example of a normal number 0.1234567891011. . . , nowadays known

as Champernowne’s constant. He then developed an interest in economics and

obtained a First in the Economics Tripos. Using his mathematical skills,

Champernowne was particularly gifted in the application of statistical techniques

to economics. He was made an assistant lecturer at the London School of Economics

in 1936 and in 1938 returned to Cambridge as a university lecturer in statistics.

At LSE Champernowne worked with William Beveridge, the eventual architect of

the British welfare state. W. Beveridge and J. M. Keynes greatly influenced his

approach to economics and statistics. During World War II he first (in 1940) worked

in the statistical section of the Prime Minister’s office. Then Prime Minister Winston

Churchill asked his “think tank” to explore questions about home and enemy

resources, and the unit’s head, Professor F. A. Lindemann (later Lord Cherwell)

became, in turn, extremely demanding of his staff. Champernowne did not get on

well with him, and in 1941 he moved to the Ministry of Aircraft Production, staying

there for the remainder of the war.

In 1944 Champernowne got involved with J. M. Keynes of the Cambridge

economics faculty in establishing a separate Department of Applied Economics. In

1945 he became Director of the Oxford Institute of Statistics and a Fellow of

Nuffield College, attaining a full professorship in 1948.

In 1948 Champernowne married Wilhelmina (“Mieke”) Dullaert who had had the

good grace to lose to “Turochamp” in their chess matches. They had two sons. That

same year he also presented a pioneering paper at the Royal Statistical Society on the

Bayesian approach to the time series analysis of autoregressive processes. A related

paper presented in 1960 dealt with the spurious correlation problem, anticipating the

work of Granger and Newbold (Journal of Econometrics, 1974) on this topic.

However, Champernowne came to regret his change of university and began to look

for a way to return to Cambridge. This he could achieve only through a highly

unusual step, by assuming a lower academic rank, which he did when he became a

reader in economics at Cambridge and a teaching fellow at Trinity from 1959–1970.

During the subsequent decade Champernowne combined his work on income

distributions with investigations of uncertainty in economic analysis in a three-

volume book: Uncertainty and Estimation in Economics (1969). In this magnum

opus he attempted to integrate quantitative analysis with decision theory. This unique

(but currently overlooked) study resulted in Champernowne’s being given a personal

chair at Cambridge in economics and statistics and his election as a Fellow of the

British Academy in 1970. During 1971–1976 he was a co-editor of the Economic

Journal. As mentioned above, his economic studies in the early 1930s were

supervised by J. M. Keynes and he made a valuable contribution in his published
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review of Keynes’s General Theory (1936) to the debate between Keynes’s approach

and upholders of the classical theory of employment, specifically whether money or

real wages are the proper subject of bargaining between management and workers.

He courageously (at the age of 23) took a controversial stand, respectfully

disagreeing with his eminent supervisor and history proved him right.

From 1935, for over 50 years, Champernowne carried out research on income dis-

tributions, producing a rigorous stochastic model using the technique of the Markov

chain (see Chapter 3 for a brief description of his model leading to the Pareto

distribution). His 1937 work earned him a prize fellowship at King’s College and

was widely discussed and consulted by researchers worldwide. However, this work

was only officially published some 36 years later (Champernowne, 1973). His last

book Economic Inequality and Income Distribution he wrote jointly with a former

student, Frank Cowell; it was published in 1998.

Champernowne retired in 1978 but remained an emeritus professor for almost

20 years. When he fell ill in his final years, he moved with Mieke to Budleigh

Salterton in Devon, close to his family roots—the birthplace of Sir Walter Raleigh

and to be near one of his sons.
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A P P E N D I X B

Data on Size Distributions

Below we provide a list of data sources, mostly of data in grouped form, along with

information on the distributions that were fitted to these data. Our list is in no way

exhaustive and merely pertains to the references presented in this book.

Sources for large data sets on individual incomes include the U.S. Panel Study of

Income Dynamics (PSID), maintained by the University of Michigan (Hill, 1992)

and the German Socio-Economic Panel (SOEP), maintained by the Deutsches

Institut für Wirtschaftsforschung (DIW), Berlin (Burkhauser, Kreyenfeld, and

Wagner, 1997). Further actuarial data sets may be found in textbooks on

actuarial statistics such as Klugman, Panjer, and Willmot (1998).

Table B.1 Individual Data (Incomes)

Source Description

No. of

Observations Distributions Fitted

Aggarwal and

Singh (1984)

Kenyan annual earnings 200 No distribution fitted

Arnold (1983) Lifetime earnings of

professional golfers

50 Par, Par(II), Fisk, SM

Arnold (1983) Texas county data (1969

total personal incomes)

157 Par, Par(II), Fisk, SM

Dyer (1981) Annual wages of production-line

workers under age 40 in large

U.S. industrial firm

30 Par
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Table B.2 Grouped Data (Incomes)

Source Description No. of Groups Distributions Fitted

Anand (1983) Malaysia 1970 32 Par

Aoyama et al. (2000) Japan 1998 18 Par

Bordley, McDonald, and

Mantrala (1996)

United States 1970, 1975, 1980,

1985, 1990

9 15 distributions of gamma and

beta type

Bowley (1926) UK 1911–1912 11 Par

Bowman (1945) United States 1935–1936 25 No distribution fitted

Brunazzo and Pollastri (1986) Italy 1948 21 Generalized LN

Champernowne (1952) United States 1918 18 4-parameter Champernowne,

Davis

Champernowne (1952) Norwegian townsmen 1930 11 3-parameter Champernowne

Champernowne (1952) United States 1947 12 3-parameter Champernowne

Champernowne (1952) Bohemia 1933 16 3-parameter Champernowne,

Davis, Par, LN

Champernowne (1952) UK 1938–1939 12 3-parameter Champernowne

Champernowne and Cowell

(1998)

UK 1994–1995 16 No distribution fitted

Cowell and Mehta (1982) Sweden 1977 21 No distritbution fitted

Creedy, Lye, and Martin (1997) United States 1986 15 LN, generalized LN, GG,

generalized Ga

Dagum (1980a) United States 1969 10 LN, Ga, D

Dagum (1983) United States 1978 21 LN, Ga, SM, D I-III

Dagum (1985) Canada 1965, 1967, 1969, 1971,

1973, 1975, 1977, 1979, and

1981

16 D I, II, and III

Dagum and Lemmi (1989) Italy 1977, 1980, and 1984 15 D I, II, and III

Davies and Shorrocks (1989) Canada 1983, 1984 18, 12* No distribution fitted

Davis (1941b) United States 1918 73 Davis
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Espinguet and Terraza (1983) France 1978 11 D II

Fattorini and Lemmi (1979) Italy 1967–1976 19 Champernowne, D I

Gastwirth and Smith (1972) United States 1955 26 2- and 3-parameter LN, Fisk

Hayakawa (1951) Japan 1932 34 Par

Iyengar (1960) India 1955–1956 12 LN

Kakwani and Podder (1976) Australia 1967–1978 11 No distribution fitted

Kalecki (1945) UK 1938–1939 10 LN

Kloek and van Dijk (1978) Netherlands 1973 16 LN, Ga, log-t, GG,

Champernowne, log-Pearson

IV

Kmietowicz and Webley (1975) Kenya 1963–1964 (5 rural

districts)

16 LN

Kmietowicz and Ding (1993) China 1980, 1983, 1986 7, 9, 12 LN

Kordos (1990) Poland 1973 10 LN, B2, B1, Ga

Kordos (1990) Poland 1985 14 LN

Kordos (1990) Poland 1987 10 LN

MacGregor (1936) UK 1918–1919 27 Par

March (1898) French, German, and American

wages

�70 Ga

McDonald and Mantrala (1993) United States 1970, 1980, 1990 9, 11 Many gamma and beta types

Pham-Gia and Turkkan (1992) Canada 1989 18 Ga, B1

Ransom and Cramer (1983) United States 1960, 1969 10 Ga, LN, Par (with measurement

error)

Stamp (1914) UK 1801 9 Par

Steyn (1966) South Africa 1951 15 LN

Suruga (1982) Japan 1975 16 Par(II), LN, Ga, Beta, Fisk, SM

Vartia and Vartia (1980) Finland 1967 15 B2

Yardi (1951) United States 1922–1936 10 Par

Notes: *Two groupings for each year: Statistics Canada and optimal groupings.
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Table B.3 Quantile Data (Incomes)

Source Description No. of Groups

Basmann et al. (1990) United States 1977 100

Champernowne and Cowell

(1998)

UK 1993–1994 (incomes before

and after taxes)

10

Chotikapanich (1994) Thailand 1981 10

Nygård and Sandström (1981) Finland 1971 10

Nygård and Sandström (1981) Sweden 1972 10

Shorrocks (1983) 19 countries (from all continents) 11

Table B.4 Bivariate Income Data

Source Description

No. of

Groups

Distributions

Fitted

Anand (1983) Malaysia 1970 (household

income and size)

32 � 10 Only marginal

distribution

Bakker and

Creedy (1997)

New Zealand 1991

(earnings and age)

19 � 10 Only marginal

distribution

Hart (1976a) UK 1963, 1966, 1970* �14 Bivariate LN

Kmietowicz (1984) Iraq 1971–1972 (household

income and size)

9 � 8 Bivariate LN

*Constant sample of 800 men aged 30 in 1963.

Table B.5 Wealth Data

Source Description

No. of

Groups

Distributions

Fitted

Bhattacharjee and

Krishnaji (1985)

Indian landholdings

1961–1962

5 LN, log-Ga, Ga

Champernowne and

Cowell (1998)

UK personal wealth

1994

13 No distribution

fitted

Chesher (1979) Ireland 1966 26 Par, LN

Dagum (1990b) Italy 1977, 1980, 1984 15 D II

Sargan (1957) British wealth 1911–1913,

1924–1930, 1935–1938,

1946–1947

6 LN

Steindl (1972) Sweden 1955, 1968 12 Par

Steindl (1972) Netherlands 1959, 1967 5 Par
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Table B.6 Data on Actuarial Losses

Source Description No. of Observations Distributions Fitted

Benckert and Jung (1974) Fire insurance claims

(Sweden 1958–1969)

17 groups LN, Par

Benktander (1963) Automobile insurance losses

(France 1955–1958)

10 groups Par

Cummins et al. (1990) Aggregate fire losses* 23 individual

observations

16 distributions of beta and

gamma type

Cummins et al. (1990) Fire claims* 12 groups 16 distributions of beta and

gamma type

Ferrara (1971) Industrial fire insurance losses

(Italy 1963–1965)

10 groups 3-parameter LN

Hewitt and Lefkowitz (1979) Automobile bodily injury losses 18 groups LN, LN-Ga mixture

Hogg and Klugman (1983) Hurricane losses 35 individual

observations

LN, Wei, SM

Hogg and Klugman (1983) Malpractice losses 23 groups LN, Wei, Par(II), SM, B2

Klugman (1986) Basic dental coverage 21 groups Par(II), LN, SM

*Earlier given in Cummins and Freifelder (1978).
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A P P E N D I X C

Size Distributions

For the convenience of the readers we collect here the basic properties (definitions

and moments) of the main distributions studied in detail in the preceding chapters.

Pareto Type I Distribution

f (x) ¼
a xa0
xaþ1

, x � x0 . 0: (C:1)

Here a . 0 is a shape and x0 . 0 a scale parameter. The moments exist for k , a

only and are given by

E(X k) ¼
a xk

0

a� k
: (C:2)

Stoppa Distribution

f (x) ¼ ua xa0 x�a�1 1�
x

x0

� ��a� �u�1

, 0 , x0 � x: (C:3)

The kth moment exists for k , a and equals

E(X k) ¼ uxk
0B 1�

k

a
, u

� �
: (C:4)
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Lognormal Distribution

f (x) ¼
1

x
ffiffiffiffiffiffi
2p
p

s
exp �

1

2s 2
(log x� m)2

� �
, x . 0: (C:5)

Here expm is a scale and s . 0 a shape parameter. All the moments exist and are

given by

E(X k) ¼ exp kmþ
1

2
k2s 2

� �
: (C:6)

Generalized Gamma Distribution

f (x) ¼
a

bapG( p)
xap�1e�(x=b)a

, x . 0: (C:7)

Here b . 0 is a scale and a, p . 0 are shape parameters.

The moments exist for �ap , k , 1 and are given by

E(X k) ¼
bkG( pþ k=a)

G( p)
: (C:8)

Gamma Distribution

f (x) ¼
1

b pG( p)
x p�1e�x=b, x . 0: (C:9)

Here b . 0 is a scale and p . 0 a shape parameter.

The moments exist for �p , k , 1 and are given by

E(X k) ¼
bkG( pþ k)

G( p)
: (C:10)

Inverse Gamma Distribution

f (x) ¼
b p

G( p)
x�p�1e�(b=x), x . 0: (C:11)

Here b . 0 is a scale and p . 0 a shape parameter.
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The moments exist for �1 , k , p and are given by

E(X k) ¼
G( p)

G( p� k)
bk : (C:12)

Loggamma Distribution

f (x) ¼
ba

G(a)
x�b�1{log(x)}a�1, 1 � x, (C:13)

where a1b . 0, and both parameters are shape parameters.

The moments exist for k , b, in which case they are given by

E(X k) ¼
b

b� k

� �a

: (C:14)

Weibull Distribution

f (x) ¼
a

b

x

b

� �a�1

e�(x=b)a

, x . 0, (C:15)

where a, b . 0. Here b is a scale and a a shape parameter.

Moments exist for �a , k , 1 and are given by

E(X k) ¼ G 1þ
k

a

� �
bk : (C:16)

Log-Gompertz (Inverse Weibull) Distribution

f (x) ¼ abax�a�1e�(x=b)�a

, x . 0: (C:17)

Here b . 0 is a scale and a . 0 a shape parameter.

Moments exist for �1 , k , a; they are

E(X k) ¼ G 1�
k

a

� �
bk : (C:18)

Generalized Beta Distribution of the Second Kind

f (x) ¼
axap�1

bapB( p, q)[1þ (x=b)a]pþq , x . 0, (C:19)

where all four parameters a, b, p, q are positive. Here b is a scale and a, p, q are

shape parameters.
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The moments exist for �ap , k , aq and are given by

E(X k) ¼
bkB( pþ k=a, q� k=a)

B( p, q)
¼

bkG( pþ k=a)G(q� k=a)

G( p)G(q)
: (C:20)

Singh–Maddala Distribution

f (x) ¼
aqxa�1

ba[1þ (x=b)a]1þq
, x . 0, (C:21)

where all three parameters a, b, q are positive. Here b is a scale and a, q are shape

parameters.

The moments exist for �a , k , aq and are given by

E(X k ) ¼
bkG(1þ k=a)G(q� k=a)

G(q)
: (C:22)

Dagum Type I Distribution

f (x) ¼
apxap�1

bap[1þ (x=b)a]pþ1
, (C:23)

where all three parameters a, b, p are positive. Here b is a scale and a, p are shape

parameters.

The moments exist for �ap , k , a and are given by

E(X k) ¼
bkG( pþ k=a)G(1� k=a)

G( p)
: (C:24)

Benini Distribution

f (x) ¼ 2bx�1 � exp �b log
x

x0

� �� �2
( )

� log
x

x0

� �
, x0 � x: (C:25)

All moments exist for this distribution.

Champernowne Distribution

f (x) ¼
asin u

ux[(x=x0)�a þ 2cos uþ (x=x0)a]
: (C:26)

Here x0 . 0 is a scale and a . 0 and 0 , u , p are shape parameters.

The moments exist if �a , k , a and are given by

E(X k) ¼ xk
0

p

u

sin (ku=a)

sin (kp=a)
: (C:27)
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List of Symbols

Basic Notation

e, eX mean excess function (mean residual life)

F, FX cumulative distribution function (c.d.f.)

F�1, F�1
X quantile function (generalized inverse of F)

�FF, �FFX survival function of F

f , fX probability density function (p.d.f.)

F(k) c.d.f. of kth moment distribution

Fi:n c.d.f. of Xi:n

F � H convolution of F and H

F(�; u)
V

u H(�) mixture of F w.r.t. H

G Gini coefficient

L, LX Lorenz curve

P Pietra coefficient

r, rX hazard rate

sign x sign function

tr A trace of the matrix A

Xi:n ith (smallest) order statistic

Z, ZX Zenga curve

¼
d

equality in distribution

!
d

convergence in distribution

!
a:s:

almost sure convergence

btc largest integer not exceeding t

jAj determinant of the matrix A

(n)p Pochhammer’s symbol, (n)p ¼ n(nþ 1)(nþ 2) � � � (nþ p� 1)

s ^ t min{s, t}
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Special Functions

erf(x) error function, erf(x) ¼ (2=
ffiffiffiffi
p
p

)
Ð x

0
exp (�t2) dt

G(x) gamma function, G(x) ¼
Ð1

0
tx�1e�t dt

G(n, x) incomplete gamma function, G(n, x) ¼
Ð1

x
tn�1e�t dt

g (n, x) incomplete gamma function, g(n, x) ¼
Ð x

0
tn�1e�t dt

c (x) psi function (digamma function), c(x) ¼ dlogG(x)=dx

B(x, y) beta function, B(x, y) ¼ G(x)G(y)=G(xþ y)

Bz(x, y) incomplete beta function

1F1(a; b; x) confluent hypergeometric function (Kummer’s function)

2F1(a1, a2; b; x) Gauss’s hypergeometric series

pFq generalized hypergeometric function, pFq(a1, . . . , ap; b1, . . . ,

bq; x) ¼
P1

n¼0 [((a1)n � � � (ap)n)=((b1)n � � � (bq)n)](xn=n!), jxj , 1

z( p) Riemann zeta function, z( p) ¼
P1

j¼1 j�p, p . 1

F(x) c.d.f. of the standard normal distribution

w(x) p.d.f. of the standard normal distribution

Distributions

B1( p, q) beta distribution of the first kind with parameters p, q

B2( p, q) beta distribution of the second kind with parameters p, q

D(a, b, p) Dagum distribution with parameters a, b, p

Exp(l, x0) exponential distribution with parameters l, x0

Fisk(a, b) Fisk (log-logistic) distribution with parameters a, b

Ga(b, p) gamma distribution with parameters b, p

GB1(a, b, p, q) GB1 distribution with parameters a, b, p, q

GB2(a, b, p, q) GB2 distribution with parameters a, b, p, q

genLN(m, sr, r) generalized lognormal distribution with parameters m, sr, r

GG(a, b, p) generalized gamma distribution with parameters a, b, p

LN(m, s 2) two-parameter lognormal distribution with parameters m, s 2

LN(m, s 2, l) three-parameter lognormal distribution with parameters m, s 2, l

N(m, s 2) normal distribution with parameters m, s 2

Par(x0, a) (classical) Pareto distribution with parameters x0, a

Par(II)(b, q) Pareto type II distribution (Lomax distribution) with

parameters b, q

SM(a, b, q) Singh–Maddala distribution with parameters a, b, q

U[a, b] uniform distribution supported on [a, b]

Wei(a, b) Weibull distribution with parameters a, b

Stochastic Order Relations

�FSD first-order stochastic dominance (usual stochastic order)

�L Lorenz order

�SSD second-order stochastic dominance

�Z Zenga order
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América Latina, Santafé de Bogotá, D. C., Fedesarrollo, Lacea, Colciencias, Tercer

Mundo. Also Documento de Trabajo Instituto Torcuato Di Tella, DTE 216.

Botargues, P., and Petrecolla, D. (1999b). Estimaciones parametricos y no parametricos de la

distribucion del ingreso de los ocupados del Gran Buenos Aires, 1992–1997. Economica

(National University of La Plata), XLV (no. 1), 13–34.

Bowley, A. L. (1926). Elements of Statistics, 5th ed. Westminster: P. S. King and Sons.

Bowman, K. O., and Shenton, L. R. (1988). Properties of Estimators for the Gamma

Distribution. New York: Marcel Dekker.

Bowman, M. J. (1945). A graphical analysis of personal income distribution in the United

States. American Economic Review, 35, 607–628.

Box, G. E. P., and Tiao, G. (1973). Bayesian Inference in Statistical Analysis. Reading, MA:

Addison-Wesley.

REFERENCES 293



Brachmann, K., Stich, A., and Trede, M. (1996). Evaluating parametric income distribution

models. Allgemeines Statistisches Archiv, 80, 285–298.

Brambilla, F. (1960). La Distribuzione dei Redditi. Pavia: Fusi.

Brazauskas, V. (2002). Fisher information matrix for the Feller–Pareto distribution. Statistics

& Probability Letters, 59, 159–167.

Brazauskas, V., and Serfling, R. (2001a). Robust estimation of tail parameters for two-parameter

Pareto and exponential models via generalized quantile statistics. Extremes, 3, 231–249.

Brazauskas, V., and Serfling, R. (2001b). Small sample performance of robust estimators of

tail parameters for Pareto and exponential models. Journal of Statistical Computation

and Simulation, 70, 1–19.

Bresciani Turroni, C. (1905). Dell’influenza delle condizioni economiche sulla forma della

curva dei redditi. Giornale degli Economisti, 31, 115–138. English translation in Rivista

di Politica Economica, 87 (1997), 745–767.

Bresciani Turroni, C. (1910). Di un indice misuratore della disuguaglianza nella

distribuzione della richezza. In: Studi in onore di Biagio Brugi, Palermo, pp. 797–812.

Bresciani Turroni, C. (1914). Osservazioni critiche sul “Metodo di Wolf ” per lo studio della

distribuzione dei redditi. Giornale degli Economisti e Rivista di Statistica, Series IV, 25,

382–394.

Bresciani Turroni, C. (1939a). On some methods of measuring the inequality of incomes.

Revue Al Qanoun Wal Iqtisad, 371–403.

Bresciani Turroni, C. (1939b). Annual survey of statistical data: Pareto’s law and the index of

inequality of incomes. Econometrica, 7, 107–133.

Brunazzo, A., and Pollastri, A. (1986). Proposta di una nuova distribuzione: la lognormale

generalizzata. In: Scritti in Onore di Francesco Brambilla, Vol. 1, Milano: Ed. Bocconi

Comunicazioni, pp. 57–83.

Burkhauser, R. V., Kreyenfeld, M., and Wagner, G. G. (1997). The German-Socio-Economic

Panel: A representative sample of reunited Germany and its parts. Vierteljahrshefte zur

Wirtschaftsforschung, 66, 7–16.

Burnecki, K, Kukla, G., and Weron, R. (2000). Property insurance loss distributions. Physica,

A287, 269–278.

Burr, I. W. (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13,

215–232.

Butler, R. J., and McDonald, J. B. (1989). Using incomplete moments to measure inequality.

Journal of Econometrics, 42, 109–119.

Campano, F. (1987). A fresh look at Champernowne’s five-parameter formula. Economie

Appliquée, 40, 161–175.

Cammillieri, G. (1972). Di una distribuzione del prodotto di variabili stocastiche. Università di
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densità marginale dei redditi. Archivio Scientifico (Bari), 9, 35–73.

296 REFERENCES



D’Addario, R. (1936). Sulla curve dei redditi di Amoroso. Annali dell’Istituto di Statistica
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D’Addario, R. (1939). Un metodo per la rappresentazione analitica delle distribuzione

statistiche. Annali dell’Istituto di Statistica dell’Università di Bari, 16, 3–56.
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Likeš, J. (1969). Minimum variance unbiased estimation of the parameters of power-function

and Pareto’s distribution. Statistische Hefte, 10, 104–110.

Lillard, L., Smith, J. P., and Welch, F. (1986). What do we really know about wages? The

importance of nonreporting and census imputation. Journal of Political Economy, 94,

489–506.

Lin, G. D. (1988). Characterizations of distributions via relationships between two moments

of order statistics. Journal of Statistical Planning and Inference, 19, 73–80.

Linnik, Yu. V. (1953). Linear forms and statistical criteria, I, II. Ukrainskii Mat. Zhournal, 5,

207–290 (in Russian). Also in Selected Translations in Mathematical Statistics and

Probability, 3 (1963), 1–90.

Linnik, Yu. V. (1961). Method of Least Squares and Principles of the Theory of Observations.

New York: Pergamon Press.

Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data.

Journal of the American Statistical Association, 49, 847–852.

Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Journal of the

American Statistical Association, 9, 209–219.

Lucas, R. E. (1978). On the size distribution of business firms. Bell Journal of Economics, 9,

508–523.

Lukacs, E. (1965). A characterization of the gamma distribution. Annals of Mathematical

Statistics, 26, 319–324.

Lunetta, G. (1963). Di una generalizzazione dello schema della curva normale. Annali della

Facolta di Economia e Commercio di Palermo, 17, 237–244.

Lydall, H. F. (1959). The distribution of employment incomes. Econometrica, 27,

110–115.

Lydall, H. F. (1968). The Structure of Earnings. London: Oxford University Press.

Maasoumi, E., and Theil, H. (1979). The effect of the shape of the income distribution on two

inequality measures. Economics Letters, 4, 289–291.

MacGregor, D. H. (1936). Pareto’s law. Economic Journal, 46, 80–87.

Maddala, G. S., and Singh, S. K. (1977a). Estimation problems in size distributions of

incomes. Economie Appliquée, 30, 461–480.

Maddala, G. S., and Singh, S. K. (1977b). A flexible functional form for Lorenz curves.

Economie Appliquée, 30, 481–486.

Malik, H. J. (1967). Exact distribution of the quotient of independent generalized gamma

variables. Canadian Mathematical Bulletin, 10, 463–465.

Majumder, A., and Chakravarty, S. R. (1990). Distribution of personal income: Development

of a new model and its application to U.S. income data. Journal of Applied Econometrics,

5, 189–196.

306 REFERENCES



Mandelbrot, B. (1959). Variables et processus stochastiques de Pareto-Lévy, et la répartition
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Moothathu, T. S. K. (1992). On unbiased estimation of Gini, Piesch and Mehran inequality indices

of Log-Laplace distribution. Calcutta Statistical Association Bulletin, 42, 163–175.

308 REFERENCES



Moothathu, T. S. K. (1993). A characterization of the a-mixture Pareto distribution through a

property of the Lorenz curve. Sankhyā, B55, 130–134.

Moothathu, T. S. K., and Christudas, D. (1992). On unbiased estimation of Gini, Piesch and

Mehran inequality indices of log-Laplace distribution. Calcutta Statistical Association

Bulletin, 42, 163–175.

Mortara, G. (1917). Elementi di Statistica. Rome: Athenaeum.
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Vetenskaps Akademiens Hadligar, Stockholm.

Weibull, W. (1939b). The phenomenon of rupture in solids. Report No. 153, Ingeniörs
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Wilfling, B., and Krämer, W. (1993). Lorenz ordering of Singh–Maddala income

distributions. Economics Letters, 43, 53–57.

Wingo, D. R. (1979). Estimation in a Pareto distribution: Theory & computation. IEEE

Transactions on Reliability, 28, 35–37.

Wingo, D. R. (1983). Maximum likelihood methods for fitting the Burr type XII distribution

to life test data. Biometrical Journal, 25, 77–84.

Wingo, D. R. (1984). Fitting three-parameter lognormal models by numerical global

optimization—an improved algorithm. Computational Statistics & Data Analysis, 2,

13–25.

Wingo, D. R. (1987a). Computing globally optimal maximum-likelihood estimates of

generalized gamma distribution parameters—some new numerical approaches and

analytical results. Proceedings of the 19th Symposium on the Interface of Computing

Science and Statistics, pp. 454–457.

Wingo, D. R. (1987b). Computing maximum-likelihood parameter estimates of the

generalized gamma distribution by numerical root isolation. IEEE Transactions on

Reliability, 36, 586–590.

Winkler, W. (1950). The corrected Pareto law and its economic meaning. Bulletin of the

International Statistical Institute, 32, 441–449.

Wold, H. O. A., and Whittle, P. (1957). A model explaining the Pareto distribution of wealth.

Econometrica, 25, 591–595.

Wolff, E. N. (ed.) (1987). International Comparisons of Household Wealth. Oxford:

Clarendon Press.

REFERENCES 317



Woo, J., and Kang, S.-B. (1990). Estimation for functions of two parameters in the Pareto

distributions. Youngnam Statistical Letters, 1, 67–76.

Xu, K. (2000). Inference for the generalized Gini indices using the iterated-bootstrap method.

Journal of Business and Economic Statistics, 18, 223–227.

Yardi, M. R. (1951). The validity of Pareto’s law. Bulletin of the International Statistical

Institute, 33, 133–146.

Yitzhaki, S. (1983). On an extension of the Gini inequality index. International Economic

Review, 24, 617–628.

Zandonatti, A. (2001). Distribuzioni de Pareto Generalizzate. Tesi di Laurea, Dept. of

Economics, University of Trento, Italy.

Zelterman, D. (1987). Parameter estimation in the generalized logistic distribution.

Computational Statistics & Data Analysis, 5, 177–184.

Zenga, M. (1984). Proposta per un indice di concentrazione basato sui rapporti fra quantili di

popolazione e quantili reddito. Giornale degli Economisti e Annali di Economia, 48,

301–326.

Zenga, M. (1985). Un secondo indice di concentrazione basato sui rapporti fra quantili di

reddito e quantili di popolazione. Rivista di Statistica Applicata, 3, 143–154.

Zenga, M. (ed.) (1987). La Distribuzione Personale del Reddito: Problemi di Formazione, di

Ripartizione e di Misurazione. Milan: Publicazioni dell’Unversità Cattolica di Milano.
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Näslund, B., 77, 309
Nagahara, Y., 92, 278, 290
Nakajima, S., 169, 315
Nalbach-Leniewska, A., 125, 309
Nelsen, R.B., 211, 309
Ng, E., 103, 305
Nikulin, M.S., 228, 317
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