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Preface

This book provides an introduction to stochastic control models in eco-
nomics that feature fixed adjustment costs or other elements that lead to
inaction regions. Such models arise in many areas, including monetary eco-
nomics, where price-setting decisions are involved; business cycle theory,
where investment decisions are central; and labor issues in macroeconom-
ics, where hiring and firing decisions are critical.

The book arose from lecture notes for a course for advanced graduate
students at the University of Chicago. The modeling techniques it presents
are typically not covered in basic micro- or macroeconomics courses, al-
though they are useful in a variety of areas. The goal of the book is to make
these techniques accessible to a broad group of economists.

Consequently, an effort has been made to keep the mathematical pre-
requisites at a level that is comfortable for economists, while at the same
time making the arguments rigorous enough to be useful in model build-
ing. Some background in probability theory is required, and familiarity with
stochastic processes is useful, but the book is largely self-contained.

Many friends, colleagues, and students provided advice and support
during the writing of this book. I am grateful to several cohorts of Chicago
students, whose comments and feedback on successive drafts greatly im-
proved both the substantive coverage and the exposition. Particular thanks
go to Rubens P. Cysne and Jose Plehn-Dujowich, who provided detailed com-
ments on early drafts, and to Yong Wang, who read the entire manuscript at
a late stage. I thank Thomas Chaney, Willie Fuchs, Larry Jones, Patrick Ke-
hoe, John Leahy, and Alessandro Pavan for many stimulating conversations
and helpful comments, and I am especially grateful to Fernando Alvarez
and Robert Shimer, who played the role of exceptionally probing, demand-
ing, and inspiring students when they sat in the course. I am also grateful
to the Federal Reserve Bank of Minneapolis, where early drafts were written
and rewritten over the course of several visits. Finally, I thank Robert Lucas
for his unfailing encouragement, advice, and support over the many years
during which the book was in progress.
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1
Introduction

In situations where action entails a fixed cost, optimal policies involve
doing nothing most of the time and exercising control only occasionally.
Interest in economic models that exhibit this type of behavior has exploded
in recent years, spurred by growing evidence that “lumpy” adjustment is
typical in a number of important economic settings.

For example, the short-run effects of monetary policy are connected
with the degree of price stickiness. Data from the U.S. Bureau of Labor
Statistics on price changes at retail establishments for the period 1988–
2003 suggest that price adjustment is sluggish, at least for some products.
The average duration of a price varies greatly across different types of
products, with some—gasoline, airfares, and produce—displaying frequent
price changes, and others—taxi fares and many types of personal services—
displaying much longer durations. The average duration across all products
is about 5 months, but the range is wide, from 1.5 months at the 10th
percentile to 15 months at the 90th percentile. The size distribution of
adjustments is perhaps even more informative about price stickiness. Many
adjustments are large, even after short-term sale prices have been removed.
The average size is more than 8%. Moreover, 1988–2003 was a period of low
inflation, so in the broad sample 45% of price changes are negative, and
price cuts are almost as large as price increases. More detailed data for the
largest three urban areas (New York, Los Angeles, and Chicago), show that
about 30% of price changes are greater than 10% in magnitude, and the
figure is about the same for increases and decreases.

The fact that many price changes are large suggests that there may
be substantial fixed costs associated with changing a price. Otherwise it is
difficult to explain why the changes are not carried out in series of smaller,
more frequent increments.

Investment behavior provides a second example. Establishment-level
data from the U.S. Census Bureau on 13,700 manufacturing plants for the

1



2 1. Introduction

period 1972–1988 show lumpy adjustment in two ways. First, more than half
of the plants in the sample display an episode of large adjustment, at least
37%. In addition, a substantial fraction of aggregate investment, 25%, is
concentrated in plants that are increasing their capital stock by more than
30%. At the other end of the distribution, over half of plants increase their
capital stock by less than 2.5%, accounting for about 20% of total investment.
Thus, for individual plants, changes in size come in substantial part from
large one-year increases. From the aggregate point of view, a sizable share
of total investment is devoted to these episodes of large increase. As with
the price data, the evidence on investment suggests that fixed costs are
important.

Evidence on job creation and destruction displays patterns similar to
those in the investment data. The opening of a new establishment, the ex-
pansion of an old one, or the addition of a shift leads to concentrated job
creation, while plant closings and mergers lead to concentrated destruc-
tion. Data from the U.S. Census Bureau on 300,000–400,000 manufacturing
plants for the period 1972–88 show that two-thirds of total job creation and
destruction occurs at plants where employment expands or contracts by
more than 25% within a twelve-month period. One-quarter of job destruc-
tion arises from plant closings. Again, these adjustment patterns suggest that
fixed costs are important.

For consumers, fixed costs are clearly important for durable goods such
as housing and automobiles. U.S. Census Bureau data for 1996 show that
among individuals aged 15 and older living in owner-occupied housing,
the median tenure at the current residence is eight years, and about 40%
have been at their current residence for more than eleven years. Although
individuals have many motives for staying in their current residences, the
substantial transaction costs—including time costs—involved in buying, sell-
ing, and moving clearly make frequent moves unattractive.

Evidence suggests that fixed costs are also important for explaining in-
dividual portfolio behavior. Absent fixed costs, it is hard to understand why
so many households fail to participate in the stock market. The fact that
lagged stock market participation increases the likelihood of current par-
ticipation very strongly—by 32 percentage points, even after controlling for
age, education, race, income, and other factors—strongly suggests that fixed
entry costs are important. In addition, the fact that wealthier households are
more likely both to own stocks and to trade suggests that fixed costs per pe-
riod or per transaction are also important. In this context and others the
costs of gathering and processing information are likely to be important
components of the fixed cost.

These examples suggest that models using a representative firm and rep-
resentative household may be inadequate for studying some questions. For
example, the economic effects of an aggregate productivity shock or aggre-
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gate demand shock depend on the investment and hiring/firing response
of firms. If fixed costs are important, describing the aggregate response
requires averaging over a group of firms that are doing little or nothing
and a group making substantial adjustments. Although it may happen that
movements in the aggregate can be generated by a representative agent, it
is difficult to confirm this—or to determine what the representative agent
should look like—without explicitly carrying out the aggregation. Moreover,
a representative agent that serves as an adequate proxy during periods of
calm may be misleading during episodes when the economic environment
becomes more turbulent. And on the household side, explicitly taking het-
erogeneity into account may have a substantial impact on conclusions about
welfare.

In situations where fixed costs are important, continuous-time models
in which the stochastic shocks follow a Brownian motion or some other diffu-
sion have strong theoretical appeal. An optimal policy in this type of setting
involves taking action when the state variable reaches or exceeds appropri-
ately chosen upper and/or lower thresholds and doing nothing when the
state lies inside the region defined by those thresholds. Continuous-time
models permit a very sharp characterization of the thresholds that trigger
an adjustment and the level(s) to which adjustment is made. Indeed, the
thresholds and return points can often be characterized as the solution to
a system of three or four equations in as many unknowns. The goal in this
book is to develop the mathematical apparatus for analyzing models of this
type. In the rest of this introduction the structure of typical models is briefly
described and a few examples are discussed.

Suppose that in the absence of control the increments to a state variable
X(t) are those of a Brownian motion. The (flow) return to the decision
maker at any date, g(X(t)), depends on the current state, where the function
g is continuous and single peaked. Suppose the peak is at x = a , so that g is
increasing on (−∞, a) and decreasing on (a , +∞). The decision maker can
adjust the state by discrete amounts, and there is a fixed cost c associated
with making any adjustment. For now suppose that the fixed cost is the
only cost of adjustment. The decision maker’s objective is to maximize the
expected discounted value of returns net of adjustment costs, where future
returns and costs are discounted at a constant interest rate r . The standard
menu cost model has this structure, with X(t) interpreted as the firm’s price
(in log form) relative to an industrywide or economywide price index that
fluctuates stochastically.

The problem for the decision maker is to balance two conflicting goals:
maintaining a high return flow by keeping the state in the region around a

and avoiding frequent payment of adjustment costs. An optimal policy in
this setting has the following form: the decision maker chooses threshold
values b, B for the points where control will be exercised, with b < a < B ,
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and a return point S ∈ (b, B) to which the state is adjusted when control is ex-
ercised. As long as the state remains inside the open interval (b, B)—called
the inaction region—the decision maker exercises no control: adjustment is
not required. When the state falls to b or rises to B the fixed cost is paid
and the state variable is adjusted to the return point S. If the initial state lies
outside (b, B) an adjustment to S is made immediately. If the fixed cost c is
sufficiently large relative to the range of the return function g, it is possible
that b = −∞, B = +∞, or both.

Notice that in general an optimal policy does not involve returning
to the point a where instantaneous returns are at a maximum. That is, in
general S �= a. For example, if the drift is positive, μ > 0, the decision maker
might choose S < a , anticipating that (on average) the state will rise. Or, if
the return function g is asymmetric around a , he might skew the return
point in the direction of higher returns.

Let v(x) denote the expected discounted return from following an
optimal policy, given the initial state X(0) = x . The first step in finding the
optimum is to formulate a Bellman equation involving the function v. That
equation can then be used to characterize the optimal policy. Indeed, it can
be used in two different ways.

Suppose that thresholds b and B have been selected and that the initial
state X(0) = x lies between them, b < x < B. Let Ex [.] and Prx [.] denote
expectations and probabilities conditional on the initial state x , and define
the random variable T = T (b) ∧ T (B) as the first time the process X(t)

reaches b or B. T is an example of a stopping time . It is useful to think of
v(x) as the sum of three terms:

v(x) = expected returns over [0, T )

+ expected returns over [T , +∞) if b is reached before B

+ expected returns over [T , +∞) if B is reached before b.

Let w(x , b, B) denote the first of these terms, the expected returns up to
the stopping time T . The key to making this problem tractable is the fact
that w(x , b, B), which is the expected value of an integral over time up to
the stopping time T = T (b) ∧ T (B), can be written as an integral over states
in the interval [b, B] . Specifically,

w(x , b, B) ≡ Ex

[∫ T

0
e−rtg(X(t))dt

]

=
∫ B

b

L̂(ξ ; z, b, B)g(ξ)dξ ,
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where L̂(.; x , b, B) is the expected discounted local time function. It is a weighting
function—like a density—for each state ξ up to the stopping time T (b) ∧
T (B), conditional on the initial state x . For the second and third terms it is
useful to define

ψ(x , b, B) ≡ Ex

[
e−rT | X(T ) = b

]
Prx [X(T ) = b] ,

�(x , b, B) ≡ Ex

[
e−rT | X(T ) = B

]
Prx [X(T ) = B] .

Thus, ψ(x , b, B) is the expected discounted value, conditional on the initial
state x , of an indicator function for the event of reaching the lower threshold
b before the upper threshold B is reached. The value �(x , b, B) has a
similar interpretation, with the roles of the thresholds reversed. For any
r ≥ 0, clearly ψ and � are bounded, taking values on the interval [0, 1].
With w, ψ , and � so defined, the Principle of Optimality implies that v

satisfies the Bellman equation

v(x) = sup
b ,B ,S

{
w(x , b, B) + ψ (x , b, B) [v(S) − c]

+ � (x , b, B) [v(S) − c]
}
,

(1.1)

where the optimization is over the choice of the threshold values b and B

and return point S.
If X is a Brownian motion or geometric Brownian motion, closed-form

expressions can be derived for the functions L̂, ψ , and � , and (1.1) provides
a direct method for characterizing the optimal policy. If X is a more general
diffusion, closed forms for L̂, ψ , and � are not available, but fairly sharp
characterizations can often be obtained. In either case, several properties
of the solution are worth noting. First, it is immediate from (1.1) that
the optimal return point S∗ maximizes v(S) and does not depend on x .
Second, the Principal of Optimality implies that the thresholds b∗ and B∗
do not depend on x . That is, if b∗, B∗ attain the maximum in (1.1) for
any x ∈ (

b∗, B∗), then they attain the maximum for all x ∈ (
b∗, B∗). The

rational decision maker does not alter his choice of thresholds as the state
variable evolves. Finally, it is immediate from (1.1) that the value function
is a constant function outside the inaction region, v(x) = v(S∗) − c, for all
x �∈ (

b∗, B∗).
An alternative method for characterizing the optimum involves an in-

direct approach based on (1.1). Notice that if x lies inside the open interval(
b∗, B∗), then for �t sufficiently small the probability of reaching either

threshold can be made arbitrarily small. Hence it follows from (1.1) and
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the definition of v that

v(x) ≈ g(x)�t + 1
1+ r�t

Ex [v(x + �X)] ,

where �X is the (random) increment to the state over �t . As will be shown
more formally in Chapter 3, if X is a Brownian motion with parameters
(μ, σ 2), then a second-order Taylor series approximation gives

Ex [v(x + �X)]≈ v(x) + v′(x)μ �t + 1
2v′′(x)σ 2 �t .

Using this fact, rearranging terms, and letting �t → 0 gives

rv(x) = g(x) + μv′(x) + 1
2σ 2v′′(x). (1.2)

This equation, a second-order ordinary differential equation (ODE),
is called the Hamilton-Jacobi-Bellman (HJB) equation. The optimal value func-
tion v satisfies this equation on the inaction region, the interval

(
b∗, B∗).

To complete the solution of a second-order ODE two boundary condi-
tions are needed. In addition, for this problem the thresholds b∗ and B∗
must be determined. Recall that v is known outside the inaction region,
v(x) = v(S) − c, all x �∈ (

b∗, B∗). The two boundary conditions for (1.2) and
the thresholds b∗ and B∗ are determined by requiring that v and v′ be con-
tinuous at b∗ and B∗. These conditions, called value matching and smooth
pasting, reproduce the solution obtained by maximizing in (1.1).

This approach can be applied to a variety of problems. For inventory
or investment models it is natural to assume that there are proportional
costs of adjustment as well as fixed costs, and that both types of costs can be
different for upward and downward adjustments. Even with these changes,
however, the overall structure of the solution is similar to the one for the
menu cost model. The main difference is that there are two return points,
s∗ < S∗, where the former applies for upward adjustments, from b∗, and the
latter for downward adjustments, from B∗.

Models with two state variables can sometimes be formulated in terms
of a ratio so that they have this form as well. An example is a model of in-
vestment. Suppose that demand X follows a geometric Brownian motion.
Suppose further that labor and raw materials can be continuously and cost-
lessly adjusted, but that capital investment entails a fixed cost. Let revenue
net of operating costs for labor and raw materials be �(X, K), and assume
that � displays constant returns to scale. Assume that the fixed cost of ad-
justing the capital stock, λK , is proportional to the size of the installed base.
This cost can be interpreted as the time of managers and the disruption to
current production. Assume the proportional cost P

(
K ′ − K

)
is the price
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of investment goods multiplied by the size of the investment. Thus, λK/P

can also be interpreted as the fraction of the existing capital stock that must
be scrapped when new capital is installed.

Under either interpretation, the assumption that demand is a geometric
Brownian motion and that � is homogeneous of degree one together imply
that the problem can be formulated in an intensive form that has only one
state variable, the ratio x = X/K . The optimal policy for the problem so
written then takes the form described above. There are thresholds b∗, B∗
that define an inaction region and one or two return points inside that
region. When the ratio x reaches either boundary of the inaction region, or
if the initial condition lies outside that region, the firm immediately invests
or disinvests. The return points are the same or different for upward and
downward adjustments as the proportional costs are the same or different.
Note that in this setting the investment decision involves, implicitly, taking
into account the option to invest in the future. Thus, the rule of thumb
“invest if the expected discounted returns exceed the cost of investment”
does not hold. Instead the problem is one of judiciously choosing when and
how much to invest, mindful that investing immediately in effect destroys
the opportunity to invest in the near future.

Models with fixed adjustment costs for the state variables can also ac-
commodate control variables that are continuously and costlessly adjustable.
These controls affect the evolution of the state variable(s) and may affect
the current return as well. An example is a model of portfolio choice and
housing purchases. The goal in this model is to examine the effect of home
ownership on other parts of the consumer’s portfolio. Suppose that the
consumer has total wealth Q and has a house of value K . Wealth grows
stochastically, with a mean and variance that depend on the portfolio—the
mix of safe and risky assets—held by the consumer. Suppose that when a
house is sold the owner receives only the fraction 1− λ of its value. The frac-
tion λ can be thought of as representing agents’ fees, time spent searching,
moving costs, and so on. Thus, the fixed cost λK is proportional to the level
of the state variable, as in the investment model described above. Assume
that the consumer’s preferences are homogeneous of some degree. That is,
U(K) = Kθ/θ , where θ < 1. Then the value function is homogeneous of de-
gree θ , and the optimal policy functions are homogeneous of degree one.
That is, the optimal policy for purchasing a new house involves only the ratio
of total wealth to housing wealth, q = Q/K , and has the same form as the
policy for the menu cost model.

The new element here is the portfolio, which can be continuously and
costlessly adjusted. That is, the consumer can allow her mix of safe and
risky assets to depend on her ratio q of total wealth to housing wealth. The
question is whether her tolerance for risk varies with this ratio. For example,
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is her risk tolerance different when the ratio q is near a threshold, so that an
adjustment in the near future is likely, and when it is near the return point,
as it is just after a transaction? The key technical point is that her portfolio
decisions affect the evolution of her wealth, so the state no longer follows an
exogenously specified stochastic process between adjustments. Nondurable
consumption can also be incorporated into the model as another control
that can be continuously adjusted. In this case preferences must be assumed
to have a form that preserves the required homogeneity property, but no
other restrictions are needed.

In all of the examples considered so far the fixed cost is discrete, and
the decision maker adjusts the state variable under his control by a discrete
amount if he pays that cost. That is, the fixed cost is lumpy and so are the
adjustments made by the decision maker. Models of this type are sometimes
called impulse control models.

The last section of the book treats a somewhat different class of prob-
lems, called instantaneous control problems, in which adjustments are contin-
uous. The decision maker chooses a rate of upward or downward adjustment
in the state variable and pays a (flow) cost that depends on the rate of adjust-
ment. The cost can have both proportional and convex components, and
they can differ for upward and downward adjustments. Optimal policies in
these settings share an important feature with the previous class of models,
in the sense that there are typically upper and lower thresholds that define
an inaction region. When the state is inside this region no adjustments are
made. When the state reaches or exceeds either threshold control is exer-
cised, with the optimal rate of adjustment depending on how far the state
exceeds the threshold.

Instantaneous control models have an inaction region if the propor-
tional costs are different for upward and downward control. For example,
if the purchase price P for investment goods exceeds the sale price p, then
investment followed quickly by disinvestment costs P − p > 0 per unit. An
optimal policy involves avoiding adjustments of this type, creating an inac-
tion region.

Instantaneous control models do not produce the lumpy adjustment
that is characteristic of impulse control models, but their implications are
similar if control is aggregated over discrete intervals of time. Once the state
variable reaches or exceeds the threshold in a model with instantaneous
control, it is likely to remain in that vicinity for some time. Consequently
control is exercised for some time. Similarly, once the state is well inside
the inaction region, there is likely to be a substantial interval of time during
which no control is exercised. Hence when aggregated over discrete time
intervals total control looks somewhat lumpy, with periods of substantial
control and periods of little or no control.

An example is the following inventory problem. The state variable Z

is the size of the stock, which in the absence of intervention is a Brownian
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motion. The manager’s objective is to minimize total expected discounted
costs. These costs have two components. First there is a (flow) holding cost
h(Z) that depends on the size of the stock. The function h is assumed to
be continuous and U-shaped, with a minimum at zero. Negative stocks are
interpreted as back orders. In addition there is a price P > 0 per unit for
adding to the stock and a price p ≥

< 0 per unit for reducing it. If p is positive
it is interpreted as the revenue per unit from selling off inventory, and
otherwise it is interpreted as the unit cost of disposal. In this example there
are no other costs of control. Clearly p ≤ P is required, so the system is not a
money pump, and p �= P is required to avoid the trivial solution of keeping
the stock identically equal to zero. The interest rate r > 0 is constant.

Suppose the manager chooses thresholds b, B , and adopts the policy of
keeping the inventory inside the closed interval [b, B]. To do this, when the
state is Z = b he makes purchases that are just sufficient to keep the stock
from falling below b, and when the state is Z = B he sells off just enough
inventory to keep the state from rising above B.

Let v(z) denote the expected discounted total cost from following an
optimal policy, given the initial state z. As before it is useful to think of v(z)

as the sum of three parts:

v(z) = expected holding costs

+ expected cost of control at b

+ expected cost of control at B .

Notice that each of these three terms is the expected value of an integral
over the entire time horizon t ∈ [0, +∞). As before, the key to mathematical
tractability is the fact that each of these terms can be written in a convenient
way. In particular, the manager’s problem can be written as

v(z) = min
b ,B

[∫ B

b

π(ζ ; z, b, B)h(ζ )dζ

+ α(z, b, B)P − β(z, b, B)p

]
, z ∈ [b, B],

(1.3)

where π(ζ ; z, b, B) is the expected discounted local time at each level ζ ∈
(b, B), given the initial state z, and

α (z, b, B) ≡ Ez

[∫ ∞

0
e−rsdL

]
,

β (z, b, B) ≡ Ez

[∫ ∞

0
e−rsdU

]
,
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represent the expected discounted control exercised at the two thresholds.
If the underlying process is a Brownian motion explicit formulas are avail-
able for α , β , and π , and (1.3) provides a direct method for characterizing
the optimal thresholds.

As before, there is also an indirect method for characterizing the opti-
mum. Indeed, the first part of the argument is the same as before: if Z lies
inside the interval (b, B), then over a sufficiently short period of time �t

the probability of reaching either threshold is negligible. Using the same
second-order Taylor series approximation as before then produces the HJB
equation, which in this case is

v(z) = h(z) + μv′(z) + 1
2σ 2v′′(z).

As before, solving the HJB equation requires two boundary conditions, and
in addition the optimal thresholds b∗ and B∗ must be determined. In the
present case value matching holds automatically, so requiring v to be contin-
uous at b∗ and B∗ provides no additional restrictions. Here the two constants
and two thresholds required for the solution are determined by requiring
that v′ and v′′ also be continuous at b∗ and B∗. These conditions—smooth
pasting and super contact—reproduce the solution obtained by maximiz-
ing (1.3).

Another example of this type of model is an investment problem in
which demand X(t) follows a geometric Brownian motion and investment
is irreversible. Specifically, suppose that the unit cost of new investment is
constant, P > 0, but capital has no scrap value, p = 0. Suppose, further, that
there are no fixed costs and no other adjustment costs, and that the profit
flow per unit of capital depends on the ratio of the capital stock to demand,
k = K/X. The optimal policy in this setting involves choosing a critical value
κ for the ratio k. When the ratio k falls to κ , the firm invests just enough to
keep the ratio from falling below that threshold. When k exceeds κ , the
firm does nothing. If the initial state k0 is less than κ , the firm makes a one-
time purchase of capital sufficient to bring the ratio up to the threshold.
It is interesting to compare the optimal policy in this setting with optimal
investment in a frictionless world, where the price P applies to sales of capital
as well as to purchases. In the frictionless world the optimal policy involves
maintaining the ratio k at a fixed level kf . It can be shown that irreversibility
makes the firm less willing to invest, in the sense that κ < kf . Larger increases
in demand are required to trigger investment, since subsequent reductions
in demand cannot be accommodated by selling off installed capital.

The discussion so far has concerned problems faced by individual deci-
sion makers, firms, or households. For many questions, however, it is aggre-
gates that are of interest. For example, to assess the role of sticky prices in
generating short-run effects from monetary policy, the behavior of the ag-
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gregate price level must be determined, as well as the distribution of relative
prices across firms. Similarly, to assess the role of hiring and firing rules, the
impact on aggregate job creation and destruction is needed. And to assess
the role of investment in propagating cyclical shocks, the effect on aggregate
investment of a macroeconomic disturbance—such as a change in foreign
demand—must be determined.

The difficulty of describing aggregates in models where individual
agents face fixed adjustment costs depends largely on the nature of the
exogenous shocks. Specifically, it depends on whether the shocks are idio-
syncratic or aggregate. If the shocks that agents face are idiosyncratic and
can be modeled as independently and identically distributed (i.i.d.) across
agents, describing aggregates—at least in the long run—is fairly easy. In
these cases the law of large numbers implies that the joint distribution of
the shock and the endogenous state across agents converges to a station-
ary distribution in the long run. This stationary distribution, which also
describes long-run averages for any individual agent, is easy to calculate.
These distributions are described in Chapters 7, 8, and 10. Thus, describing
aggregates is straightforward when the shocks are idiosyncratic.

If agents face an aggregate shock the situation is much more compli-
cated. In settings of this type the law of large numbers is not helpful, and no
general method is available for describing aggregates. The main issue is that
the distribution of the endogenous states across agents varies over time, and
at any point in time it depends on the history of realizations of the shock
process. Thus, in general the cross-sectional distribution of the endogenous
state does not converge.

For models of this sort there are two possible strategies. The first is to
look for special assumptions that permit a stationary distribution. For exam-
ple, for the menu cost model a uniform distribution of prices is compatible
with individual adjustment behavior under certain assumptions about the
money supply process. Consequently under these assumptions the model is
tractable analytically. Alternatively, one can use computational methods that
describe the evolution of the entire distribution. This approach is broadly
applicable and it has been pursued successfully in several contexts. These
applications are noted as they arise, and the references in these sections
describe in more detail the methods they employ.

The goal in this book has been to keep the mathematical prerequisites at
a level that is comfortable for builders of economic models. The discussion
assumes some background in probability theory and stochastic processes,
but an extensive knowledge of these areas is not required. Recursive ar-
guments are used throughout, and familiarity with Bellman equations in
discrete time is useful but not necessary.

The rest of the book is organized as follows. Chapters 2–5 introduce
some basic mathematical tools. The goal is to provide enough background to
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permit a fairly rigorous treatment of the optimization problems under study,
while keeping the entry barriers low. Thus, the coverage is deliberately se-
lective and proofs are omitted if they play no role later. Chapter 2 introduces
stochastic processes, focusing on continuous-time processes. Brownian mo-
tions and more general diffusions are defined, as well as stopping times.
Chapter 3 treats stochastic integrals, Ito’s lemma, occupancy measure, and
local time, concepts that are used extensively later. Martingales are discussed
in Chapter 4, and the optional stopping theorem is stated. Chapter 5 draws
on this material to study the functions ψ, �, and L̂ defined above. Explicit
formulas are derived for the case in which the underlying stochastic process
is a Brownian motion or geometric Brownian motion, and sharp charac-
terizations are provided for more general diffusions. Later chapters make
repeated use of the explicit formulas developed in this chapter.

Chapters 6–9 treat a sequence of impulse control problems, displaying
a range of applications—price adjustment, investment, and durable goods
problems—as well as various modeling devices. These chapters provide a
rigorous treatment of the value matching and smooth pasting conditions
that describe optima, showing precisely the optimization problems that lead
to those conditions.

Chapters 10 and 11 treat instantaneous control models. In Chapter 10
the notion of a regulated Brownian motion, the basis for these models, is
introduced and is used to analyze a classic inventory problem. In Chapter 11
a variety of investment models are studied using similar techniques. Optimal
control in these settings involves a super contact condition.

Chapter 12 treats two variations on an aggregate menu cost model. In
one of them, an aggregate state variable is a regulated Brownian motion.
On the substantive side, these models provide useful insights about the role
of sticky prices as a source of short-run monetary non-neutrality. On the
methodological side, they illustrate how specific assumptions can be used
to make aggregate models with fixed costs analytically tractable.

Notes

Bils and Klenow (2004) look at detailed data on the frequency of price
changes over 1995–97, and Klenow and Kryvtsov (2008) describe the magni-
tude of these changes over 1988–2003. Both use data from the U.S. Bureau
of Labor Statistics. Doms and Dunne (1998) look at investment at the plant
level, and Davis, Haltiwanger, and Schuh (1996) look at job creation and de-
struction at the plant level. Both use data from the U.S. Bureau of the Census
on manufacturing plants for the period 1973–88. See Schachter and Kuenzi
(2002) for data on the duration of residence. Vissing-Jorgensen (2002) and
the references there discuss evidence on household portfolio behavior.
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Many of the ideas developed in this book have appeared elsewhere, at
various levels of mathematical rigor and with various emphases on tech-
niques and economic questions. Dixit (1993) is an good introduction to
impulse and instantaneous control models, with many examples and illus-
trations. Dixit and Pindyck (1994) treat a variety of investment problems,
with excellent discussions of the economic issues these models address and
the empirical predictions they lead to. Harrison (1985) has a detailed treat-
ment of mathematical issues related to instantaneous control models, as well
as many examples.

The methods developed here have many applications in finance. Ex-
cellent treatments of these problems are available elsewhere, however, as in
Duffie (1988, 1996), so they have been neglected here.

The term Principle of Optimality was introduced by Richard Bellman.
The idea was developed in Bellman (1957), which is still a rich source of
applications and problems. See Stokey and Lucas (1989) for a discussion of
recursive techniques in discrete time.
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2
Stochastic Processes,

Brownian Motions,
and Diffusions

This chapter contains background material on stochastic processes in
general, and on Brownian motions and other diffusions in particular. Ap-
pendix A provides more detail on some of the topics treated here.

2.1. Random Variables and Stochastic Processes

To define a random variable, one starts with a probability space (�, F, P),
where � is a set, F is a σ -algebra of its subsets, and P is a probability measure
on F. Each ω ∈ � is an outcome , and each set E ∈ F is an event . Given a
probability space (�, F, P), a random variable is a measurable function x :
� → R. For each ω ∈ �, the real number x(ω) is the realization of the random
variable. The probability measure for x is then

μ(A) = P
{
x−1(A)

}
= P {ω ∈ � : x(ω) ∈ A}, A ∈ B,

where B denotes the Borel sets. Since the function x is measurable, each
set x−1(A) is in F, and the probability μ(A) is well defined. The distribution
function for x is

G(a) = μ((−∞, a]), a ∈ R.

Probability measures or distribution functions for (measurable) functions
of x can be constructed from μ or G.

To define a stochastic process one proceeds in a similar way, except that a
time index t must be added. This index can be discrete or continuous, finite
or infinite. In most of what follows the time index is continuous, starting at
date 0 and having an infinite horizon; attention here will be focused on the
case t ∈ [0, ∞). Let �, F, and P be defined as before, but add an increasing

17
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family of σ -algebras F ≡ {
Ft , t ≥ 0

}
contained in F. That is,

Fs ⊆ Ft , all s ≤ t , and Ft ⊆ F, all t ,

where F = F∞ is the smallest σ -algebra containing all the Fts. The family
F ≡ {

Ft

}
is called a filtration, and (�, F, P) is called a filtered probability space .

The interpretation of Ft is that it is the set of events known at time t .
A stochastic process is a function on a filtered probability space with

certain measurability properties. Specifically, let (�, F, P) be a filtered prob-
ability space with time index t ∈ [0, ∞) = R+, and let B+ denote the Borel
subsets of R+. A continuous-time stochastic process is a mapping x: [0, ∞) × � →
R that is measurable with respect to B+ × F. That is, x is jointly measur-
able in (t , ω). Given a probability space (�, F, P) and a filtration F = {

Ft

}
,

the stochastic process x: [0, ∞) × � → R is adapted to F if x(t , ω) is Ft -
measurable for all t .

For each fixed t ∈ [0, ∞), the mapping x(t , .) : � → R is an ordinary
random variable on the probability space

(
�, Ft , Pt

)
, where Pt is the restric-

tion of P to Ft . That is, x(t , .) is an Ft -measurable function of ω. For each
fixed ω ∈ �, the mapping x(., ω) : [0, ∞) → R is a Borel-measurable func-
tion of t . The mapping x(., ω) is called a realization, or trajectory or sample
path.

For some purposes it is convenient to view a sample path x(., ω):
[0, +∞) → R as a point in an appropriate space of functions. Here the
focus is on stochastic processes that have continuous sample paths. Let
C = C[0, ∞) denote the space of continuous functions x: [0, ∞) → R. A
stochastic process x is continuous if x(., ω) ∈ C, almost every (a.e.) ω ∈ �.
Stated a little differently, a continuous stochastic process is a mapping
x: � → C[0, ∞).

2.2. Independence

Let (�, F, P) be a probability space. Two events D , E ∈ F are independent if

P(D ∩ E) = P(D)P (E).

Two families of sets D,E ⊂ F are independent if every pair of events chosen
from the two families are independent, if

P(D ∩ E) = P(D)P (E), all D ∈ D, E ∈ E.

The random variables x1, x2, . . . , xn (a finite collection) on (�, F, P) are
mutually independent if for any Borel sets A1, A2, . . . , An,
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P(xi ∈ Ai , i = 1, . . . , n) =
n∏

i=1

P(xi ∈ Ai),

where

P(xi ∈ Ai) ≡ P(ω ∈ � : xi(ω) ∈ Ai).

The random variables x1, x2, x3, . . . (an infinite collection) are mutually
independent if any finite collection of them are mutually independent.

Exercise 2.1. Let (�, F, P) be a probability space; let D, E ⊂ F be σ -
algebras; and let x , y be random variables that are D-measurable and E-
measurable, respectively. Show that if D and E are independent, then x

and y are independent. Show that if x and y are independent, then the
σ -algebras Dx and Ey generated by x and y are independent.

2.3. Wiener Processes and Brownian Motions

A Wiener process (or standard Brownian motion) is a stochastic process W having

i. continuous sample paths,
ii. stationary independent increments, and

iii. W(t) ∼ N (0, t), all t .

If W(t) is a Wiener process, then over any time interval �t , the correspond-
ing (random) change is normally distributed with mean zero and variance
�t . That is,

�W = εt

√
�t , where εt ∼ N (0, 1) .

As �t becomes infinitesimally small, write dW = εt

√
dt , so

E [dW] = E
[
εt

√
dt
]

= 0,

E
[
(dW)2

]
= E

[
ε2
t
dt
]

= dt .

A stochastic process X is a Brownian motion with drift μ and variance σ 2 if

X(t) = X(0) + μt + σW(t), all t, (2.1)

where W is a Wiener process. Clearly, the state space for any Brownian
motion, including a Wiener process, is all of R. Since E[W(t)]= 0 and
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Var[W(t)]= t , it follows that

E [X(t) − X(0)] = μt ,

Var [X(t) − X(0)] = σ 2t, all t.

Notice that the both the drift and variance of a Brownian motion increase
linearly with the time interval.

The next result states that any continuous stochastic process {X(t),
t ≥ 0} that has stationary independent increments is a Brownian motion.

Theorem 2.1. If the stochastic process {X(t), t ≥ 0} has continuous sam-
ple paths with stationary, independent, and identically distributed incre-
ments, then it is a Brownian motion. That is, there exists

(
μ, σ 2) such that

for each t ≥ 0, the random variable [X(t) − X(0)]has a normal distribution
with parameters

(
μt , σ 2t

)
.

See Breiman (1968, Prop. 12.4) for a proof. The idea is to use the central
limit theorem.

Theorem 2.1 says that to work in continuous time with a stochastic
process that has continuous sample paths and i.i.d. increments, one must ac-
cept normality. The parameters

(
μ, σ 2) of the Brownian motion in (2.1) can

be chosen, but nothing more. (Thus, part (iii) in the definition of a Wiener
process is redundant.) In Section 2.7 a broader class of continuous stochas-
tic processes is defined by dropping the requirement that the increments
be identically distributed.

Since the mean of a Brownian motion grows like t and the standard
deviation like

√
t , the standard deviation dictates the overall nature of the

path in the short run and the drift—unless it is zero—dominates in the long
run. Figure 2.1 displays the expected value and three confidence bands, at
66%, 95%, and 99%, for Brownian motions X(t) with and without drift.

2.4. Random Walk Approximation of a Brownian Motion

A Brownian motion can be viewed as the limit of discrete-time random
walks as the time interval and the step size shrink together in a certain
way. Suppose that over each time increment �t the process X increases
by h with probability p and decreases by h with probability (1− p). Let
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Figure 2.1. Confidence bands for a Brownian motion with (a) μ = 0, σ = 1 and
(b) μ = 2, σ = 1.
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�X = X(t + �t) − X(t) denote the increment in X. Then

E [�X] = ph − (1− p) h

= (2p − 1) h,

Var [�X] = E
[
(�X)2

]
− [E (�X)]2

=
[
1− (2p − 1)2

]
h2.

Thus, to approximate the drift and variance of a Brownian motion with
parameters

(
μ, σ 2), p and h must satisfy

μ�t = (2p − 1) h,

σ 2�t = 4p (1− p) h2.
(2.2)

Eliminating h gives a quadratic in p,

p2 − p + σ 2

4
(
σ 2 + μ2�t

) = 0.

Hence

p = 1
2

⎛⎝1+
√

1− σ 2

σ 2 + μ2�t

⎞⎠
= 1

2

(
1+ μ

√
�t√

σ 2 + μ2�t

)

≈ 1
2

(
1+ μ

σ

√
�t

)
, (2.3)

where the root is chosen so that p ≥
< 1/2 as μ ≥

< 0, and the last line is a good
approximation if �t is small relative to σ 2/μ2. For the step size h, use (2.2)
to find that

h = μ�t

2p − 1
= σ

√
�t . (2.4)

The idea is that since the drift and variance both have order �t , if �t is
small relative to σ 2/μ2, then [E (�X)]2 = μ2 (�t)2 is negligible relative to

E
[
(�X)2] = σ 2�t . Hence Var [�X]≈ E

[
(�X)2

]
or σ 2�t ≈ h2, as in (2.4).
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In summary, to approximate a Brownian motion with parameters(
μ, σ 2), choose �t small relative to σ 2/μ2, and choose h and p so that

(2p − 1) h = μ�t, and h2 = σ 2�t,

as in (2.3) and (2.4). Notice that as the time increment �t shrinks to zero,
the step size h also shrinks to zero.

The following sequence of approximations, with decreasing time incre-
ment �n, illustrates the idea behind Theorem 2.1 and also suggests methods
for numerically approximating Brownian motions to any desired degree of
accuracy. Fix a time interval T > 0, and define

�n ≡ T/n, hn ≡ σ
√

T/n, pn ≡ 1
2

(
1+ μ

σ

√
T/n

)
,

Xn ≡ {−nhn, . . . , 0, . . . , +nhn

}
=
{
−σ

√
nT , . . . , 0, . . . , +σ

√
nT

}
, n = 1, 2, . . . .

For each n, let
{
ξn
i

}n

i=1 be a sequence of i.i.d. random variables taking values
±hn with probabilities pn and

(
1− pn

)
, and let

Xn = ξn
1 + ξn

2 + . . . + ξn
n

, n = 1, 2, . . . ,

be their sum. Each of the random variables ξn
i has mean μT/n and variance

σ 2T/n, so each of the random variables Xn has mean μT and variance σ 2T .
Moreover, each Xn takes values in the finite set Xn consisting of a grid of
2n + 1 evenly spaced points centered around 0. The grid is on an interval
of length 2σ

√
nT , and the step size is σ

√
T/n. Thus, the number of grid

points grows like n, with the interval length and the number of grid points
on any subinterval both increasing like

√
n. Hence as n → ∞ the number of

points on any subinterval grows without bound, and the state space expands
to cover all of R. Moreover, by the central limit theorem the sequence

{
Xn

}
converges in distribution to a normal random variable.

Exercise 2.2. Consider a
(
μ, σ 2) Brownian motion with initial state x(0) =

0. Fix T > 0 and a > 0. Use a sequence of discrete time approximations to
calculate

Pr
{

max
0≤t≤T

x(t) ≥ a

}
.
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2.5. Stopping Times

A stopping time on a filtered probability space (�, F, P) is a measurable
function T : � → [0, +∞) ∪ +∞ with the property that

{ω ∈ � : T (ω) ≤ t} ∈ Ft , all t ≥ 0. (2.5)

The idea is that T (ω) is the (random) date when something happens, with
T (ω) = +∞ interpreted as meaning it never happens. The measurability
condition (2.5) states that it must be possible to tell at date t , given the
available information Ft , whether the event has already happened. Notice
that the filtration F is crucial for deciding whether a function T is a stopping
time. If T takes values in R+ with probability one, then T is a random
variable. Here T < +∞ is used as a shorthand notation for P {T < +∞} = 1.

The following are some standard examples of stopping times:

i. Any fixed date T = T̂ is a stopping time.
ii. Suppose {X(t)} is a stochastic process on (�, F, P), and let A be

any Borel set. Then the first date t for which X(t) ∈ A is a stopping
time. The kth date for which X(t) ∈ A is also a stopping time, for
any k = 2, 3, 4, . . . .

iii. If S and T are stopping times, then S + T , S ∧ T , and S ∨ T are also
stopping times, where a ∧ b ≡ min {a , b}, and a ∨ b ≡ max {a , b}.

Exercise 2.3. Let {X(t)} be a stochastic process on (�, F, P). Explain
briefly why each of the following is or is not a stopping time:

(a) T − S , where S and T are stopping times with S ≤ T .
(b) Let

{
aj

}n

j=1 be a sequence of real numbers, and consider the first
time X reaches an, after first reaching an−1, after first reaching
an−2, . . . , after first reaching a1.

(c) Let
{
Aj

}n

j=1 be a sequence of measurable sets, and consider the first
time X reaches An, after first reaching An−1, after first reaching
An−2, . . . , after first reaching A1.

(d) T − �, where T is any one of the stopping times above and � > 0
is a constant.

2.6. Strong Markov Property

Let {X(t , ω)} be a stationary stochastic process on the filtered space (�, F,
P). Then X has the strong Markov property if, for any sequence of stopping
times T0 < T1 < . . . < Tn, any s > 0, any x0, x1, . . . , xn, and any measurable
set A,
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Pr
{
X(Tn + s) ⊂ A | X(T0) = x0, X(T1) = x1, . . . , X(Tn) = xn

}
= Pr

{
X(Tn + s) ⊂ A | X(Tn) = xn

}
.

(2.6)

That is, given the state at stopping time Tn, outcomes at earlier stopping
times are not useful for predicting outcomes at later dates. Stated a little
differently, (2.6) states that the evolution of the system after any stopping
time Tn, given X(Tn), is conditionally independent of the earlier outcomes.
If the process is not stationary the condition is more complex but similar in
essence.

The next theorem states that if a Brownian motion X is reinitialized at
a stopping time T , the resulting process is also a Brownian motion, with the
same mean and variance as the original. That is, Brownian motions have the
strong Markov property.

Theorem 2.2. Let X be a
(
μ, σ 2) Brownian motion and T < ∞ a stopping

time on the filtered space (�, F, P), and let

X∗(t , ω) = X(T + t , ω) − X(T , ω), all t ≥ 0, all ω ∈ �.

Then X∗ is a
(
μ, σ 2) Brownian motion with initial value zero, and for any

t > 0, the random variables X∗(t) and T are independent.

See Billingsley (1995, Theorem 37.5) for a proof. The idea is that since X

has continuous sample paths and increments that are i.i.d. (and normally
distributed), X∗ also has these properties. Hence

{
X∗(t)

}
satisfies the hy-

potheses of Theorem 2.1.
Since a constant value T (ω) = T̂ is a valid stopping time, the theorem

implies that a Brownian motion that is reinitialized at a fixed date is itself a
Brownian motion, with the same drift and variance.

Notice, however, that the filtration F is not appropriate for the process
X∗. One that is can be constructed in the usual way. For each t ≥ 0, let F∗

t
be

the smallest σ -algebra for which the random variables X∗(s , ω), 0 ≤ s ≤ t

are measurable; let F∗ = F∗
∞ be the smallest σ -algebra containing all of the

F∗
t
s; and define the filtration F

∗ = {
F∗

t
, t ≥ 0

}
. Then

(
�, F

∗, P
)

is a filtered
space and, by construction, X∗ is adapted to F

∗.

2.7. Diffusions

The term diffusion will be used here to refer to a continuous-time stochastic
process that (i) has continuous sample paths and (ii) has the strong Markov
property. The state space for a diffusion can be all of R or any open, closed,
or half-open interval. That is, the state space is an interval of the form (�, r),
[�, r), (�, r], [�, r], where � = −∞ or r = +∞ are allowed at open endpoints.
Clearly, any Brownian motion is a diffusion, and its state space is all of R.
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A diffusion is regular if, starting from any point in the interior of the
state space, any other interior point is, with positive probability, reached in
finite time. That is, if Ty denotes the first time the process reaches y , then

Pr
{
Ty < ∞ | X(0) = x

}
> 0, all � < x , y < r .

This assumption rules out the possibility of noncommunicating subsets. All
of the diffusions considered in this book are regular.

Continuity implies that the probability of a large change in the state
can be made arbitrarily small by making the time interval sufficiently short.
Formally, let � > 0 denote a time increment, and let

h(t , �) ≡ X(t + �) − X(t)

be the change in the level of the process during an interval of length � after
date t . A diffusion has the property that for any ε > 0,

lim
�↓0

Pr {|h(t , �)| > ε | X(t) = x} = 0, all x , all t .

That is, the probability of a change of fixed size ε > 0 goes to zero as the
time interval � gets arbitrarily short.

Any diffusion is characterized by its infinitesimal parameters μ(t , x) and
σ 2(t , x), defined by

μ(t , x) ≡ lim
�↓0

1
�

E
[
h(t , �) | X(t) = x

]
,

σ 2(t , x) ≡ lim
�↓0

1
�

E
[
[h(t , �)]2 | X(t) = x

]
, all x , t ,

(2.7)

where h(t , �) is the increment between t and t + �, defined above. The
function μ is called the drift or infinitesimal mean, and σ 2 is called the
diffusion parameter or infinitesimal variance. The functions μ and σ 2 in (2.7)
are assumed to be continuous, and the latter to be strictly positive on the
interior of the state space. In most of applications of interest here, μ and σ

are time-invariant, so the argument t does not appear.
All higher moments are usually zero:

lim
�↓0

1
�

E
[
[h(t , �)]r | X(t) = x

] = 0, all x , t , r = 3, 4, . . .

Although this is not required, it holds for all the diffusions considered in
this book.
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Two particular diffusions are widely used in economics.

Example 1. In many contexts it is useful to employ a stochastic process that
has relative increments �X/X that are i.i.d. A stochastic process X(t) is a
geometric Brownian motion if

dX = μXdt + σXdW,

so (with an obvious abuse of notation) μ(t , x) = μx and σ 2(t , x) = σ 2x . The
state space for a geometric Brownian motion is R+.

Example 2. In other contexts it is useful to employ a stochastic process
that is mean reverting . A process with this property is the Ornstein-Uhlenbeck
process, which has infinitesimal parameters μ(x) = −αx , where α > 0, and
σ 2 > 0. The state space for this process is all of R, but the process has a
central tendency toward zero: the drift is negative if the state exceeds zero
and is positive if the state is less than zero, with the magnitude of the drift
increasing with the distance from zero.

In contrast to a Brownian motion or geometric Brownian motion, the
Ornstein-Uhlenbeck process has a stationary distribution. In particular, the
stationary distribution is normal with mean zero and variance γ = σ 2/2α.
Hence it has the stationary density ψ(x) = ce−γ x2

, where c > 0 is a constant
that depends on the parameters

(
α , σ 2).

2.8. Discrete Approximation of an Ornstein-Uhlenbeck Process

An Ornstein-Uhlenbeck process can be approximated with a sequence of
discrete-time, discrete-state processes in the same way that a Brownian mo-
tion can be. Fix the parameters

(
α , σ 2) and a time interval T > 0. For each

n = 1, 2, . . . , define the time increment �n as before:

�n ≡ T/n.

Suppose, also as before, that during each time increment the process moves
up or down one step. Notice that for an Ornstein-Uhlenbeck process, both
the step size hn and transition probabilities, pn and 1− pn, could, in princi-
ple depend on the current state x . It would be extremely awkward if the step
size varied with x , however, since a fixed grid could no longer be used: one
step up from x followed by one step down from x + hn(x) would bring the
process to x + hn(x) − hn[x + hn(x)] �= x . Fortunately, this does not happen.
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As before, the condition for the variance pins down the step size:

hn = σ
√

�n, all n.

Hence the step size is independent of x , and the state space

Xn ≡ {
. . . , −2hn, −hn, 0, +hn, +2hn, . . .

}
, n = 1, 2, . . .

can be used. Let

pn(x) = 1
2 − εn(x), x ∈ Xn,

be the probability of an upward step. The transition probabilities must satisfy
the drift condition,

−αx�n = pn(x)hn − [
1− pn(x)

]
hn

=
[

1
2 − εn(x)

]
hn −

[
1
2 + εn(x)

]
hn

= −2εn(x)hn,

so

εn(x) = αx

2
�n

hn

= αx

2σ

√
�n, all x ∈ Xn, all n.

It is straightforward to verify that all higher moments converge to zero as
n → ∞.

Notes

A good introduction to basic probability theory is Ross (1989). Feller (1968)
is a classic treatment at a basic level, and Feller (1971) continues to more
advanced material. Both contain many examples and helpful discussions. At
an advanced level Breiman (1968), Chung (1974), and Billingsley (1995) are
also excellent. Breiman includes a nice introduction to stochastic processes
in general and to Brownian motion and Ornstein-Uhlenbeck processes in
particular.

For an introduction to the basics of stochastic processes see Cinlar
(1975) or Ross (1983). Karlin and Taylor (1975, 1981) provide an out-
standing treatment at a more advanced level, with many applications and
examples and an emphasis on problem solving. See Chapter 7 in the first
volume for a discussion of many of the properties of Brownian motion. See
chapters 14 and 15 in the second volume for a more detailed treatment of the
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strong Markov property and an excellent discussion of diffusions, including
many examples and useful results.

If the stopping times in the definition of the strong Markov property are
replaced with fixed dates, then X has the Markov property. For discrete-time
processes the two concepts are equivalent, but for continuous-time processes
they differ. See Chung (1974, Section 9.2) for a further discussion. Note that
the definition here is for stationary processes only.



3
Stochastic Integrals

and Ito’s Lemma

Consider the present discounted value of a stream of returns over an
infinite horizon,

v(x0) ≡
∫ ∞

0
e−ρtπ(x(t))dt (3.1)

with ẋ(t) = g(x(t)), t ≥ 0,

x(0) = x0,

where ρ > 0 is a discount rate, π(x) is a return function, x(t) is a state variable
that evolves according to the law of motion g(x), and x0 is the initial state.
For example, v(x0) might be the value of a firm, where ρ is the interest rate,
x(t) describes the size of the market for the firm’s product, π(x) is the profit
flow as a function of market size, and g(x) describes the evolution of market
size. Since the horizon is infinite, ρ is constant, and π and g are stationary
(time invariant), the function v(x0) representing the discounted value of
the profit flow depends only on the initial state.

A standard and fairly simple argument, to be developed below, estab-
lishes that v satisfies the continuous-time Bellman equation

ρv(x) = π(x) + v′(x)g(x). (3.2)

If v is the value of an asset, the interpretation of (3.2) is straightforward: the
return on the asset, the term on the left, is the sum of the dividend and the
capital gain, the terms on the right. A key step in deriving (3.2) from (3.1)
involves using a first-order Taylor series approximation to the change in the

30
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value over a short interval of time �t ,

�v ≡ v(x(t + �t)) − v(x(t))

≈ v′(x(t)) [x(t + �t) − x(t)]

≈ v′(x(t))g(x(t))�t .

In many applications where value functions like v arise, it is natural to
think of the exogenous state variable x(t) as stochastic. Thus, instead of
assuming that x(t) is governed by a deterministic differential equation, as
in (3.1), it is more accurately modeled as including a component that is a
Brownian motion, a geometric Brownian motion, or some other diffusion.
Then to develop the analog of (3.2), the analog of a Taylor series approx-
imation is needed for the case where the state variable is a diffusion. Ito’s
lemma is the key ingredient for this task.

Ito’s lemma and related results are developed in this chapter. In Sec-
tion 3.1 the stochastic analog of (3.2) is derived using a heuristic approach.
A brief discussion of stochastic integrals is provided in Section 3.2, and in
Section 3.3 Ito’s lemma is formally stated and used to obtain the stochastic
analog of (3.2) more rigorously. In Section 3.4 Ito’s lemma is used to de-
rive some results about geometric Brownian motion. Occupancy measure
and local time are defined in Section 3.5 and used in Section 3.6 to develop
Tanaka’s formula, an extension of Ito’s lemma that applies to functions with
kinks. Sections 3.7 and 3.8 develop the Kolmogorov backward and forward
equations.

3.1. The Hamilton-Jacobi-Bellman Equation

Fix a filtered probability space (�, F, P), and let X(t , ω) be a Brownian
motion with initial value X(0) = x0 and parameters

(
μ, σ 2). Then X can be

written as

X(t) = X(0) + μt + σW(t), all t , all ω, (3.3)

where W is a Wiener process, and where for notational simplicity the ω is
suppressed. A shorthand notation for (3.3) is the differential form

dX(t) = μdt + σdW(t), all t , all ω. (3.4)

Note that given the initial condition X(0), (3.4) is simply an alternative way
of writing (3.3).

More generally, suppose X is a diffusion with initial value X(0) = x0 and
infinitesimal parameters (μ(t , x), σ(t , x)). Then the differential form, the



32 3. Stochastic Integrals and Ito’s Lemma

analog of (3.4), is

dX(t) = μ(t , X(t))dt + σ(t , X(t))dW(t), all t , all ω. (3.5)

There is also an analog of (3.3), which will be developed later.
Let F(t , x) be a function that is differentiable at least once in t and twice

in x. The “total differential” of F(t , X(t , ω)), call it dF , can be approximated
with a Taylor series expansion. Use Ft ≡ ∂F/∂t , Fx ≡ ∂F/∂x , and so on, to
denote the derivatives of F and substitute from (3.5) to find that

dF = Ft dt + Fx dX + 1
2Fxx (dX)2 + . . .

= Ft dt + Fx

[
μ dt + σ dW

]
+ 1

2Fxx

[
μ2 (dt)2 + 2μσ dt dW + σ 2 (dW)2

]
+ . . . ,

where the dots indicate higher order terms, and μ and σ are evaluated at
(t , X(t)). Then rearrange terms and drop those of order higher than dt or
(dW)2 to obtain

dF = Ftdt + μFxdt + σFx dW + 1
2σ 2Fxx (dW)2 . (3.6)

Notice that dF is the sum of four components, two in dt , one in dW , and
one in (dW)2.

Since E[dW]= 0 and E
[
(dW)2

]
= dt , taking expectations in (3.6) gives

E [dF ] =
[
Ft + μFx + 1

2σ 2Fxx

]
dt ,

Var [dF ] = E [ dF − E [dF ]]2

= σ 2F 2
x
dt .

A case of particular interest is one in which the drift and variance μ(x) and
σ(x) are stationary and F is the discounted value of a stationary function.
That is, F(t , x) = e−rtf (x), where r ≥ 0 is the discount rate. For this case

E
[
d
(
e−rtf

)] =
[
−rf + μf ′ + 1

2σ 2f ′′] e−rtdt , (3.7)

where μ, σ 2, f , f ′, and f ′′ are evaluated at X(t). For r = 0 this equation is
simply

E
[
df

] =
[
μf ′ + 1

2σ 2f ′′] dt . (3.8)
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One application of (3.7) is in deriving the analog of the Bellman equa-
tion (3.2). Consider an infinite stream of returns as in (3.1), but where X is
a diffusion with infinitesimal parameters μ(x) and σ(x). Let π and ρ be as
before, with π bounded and continuous and ρ > 0. Define v(x0) to be the
expected discounted value of the stream of returns given the initial state
X(0) = x0,

v(x0) ≡ E
[∫ ∞

0
e−ρtπ(X(t , ω))dt | X(0) = x0

]
, all x0. (3.9)

The integral on the right, an integral over time for a fixed sample path,
is an ordinary Riemann integral. To see this note that since X(., ω) is the
sample path of a diffusion, it is a continuous function. Since by assumption
π is continuous, the integral over the horizon [0, T ] exists for any finite T .
Moreover, since π is bounded and ρ > 0, the limit exists as T → ∞, so the
integral over the infinite horizon is also well defined. The integral is then
a bounded random variable defined on �, so the expected value is well
defined.

For any small interval of time �t , (3.9) has the Bellman-type property

v(x0) ≈ π(x0)�t + 1
1+ ρ�t

E
[
v(X(0 + �t)) | X(0) = x0

]
.

Multiply this equation by (1+ ρ�t) and subtract v(x0) from each side to get

ρv(x0)�t ≈ π(x0) (1+ ρ�t) �t + E
[
�v | X(0) = x0

]
,

where

�v ≡ v(X(�t , ω)) − v(x0) (3.10)

is the change in the value function over the interval �t . Then divide by �t

and let �t → 0 to find that

ρv(x0) = lim
�t→0

{
π(x0) (1+ ρ�t) + 1

�t
E
[
�v | X(0) = x0

]}
= π(x0) + 1

dt
E
[
dv | X(0) = x0

]
.

The function v does not depend directly on time, so using (3.8) to evaluate
E[dv] and dropping the subscript on the initial condition produces the
Hamilton-Jacobi-Bellman equation

ρv(x) = π(x) + μ(x)v′(x) + 1
2σ 2(x)v′′(x), all x . (3.11)
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This equation is the stochastic counterpart of the Bellman equation (3.2),
and with μ(x) = g(x) and σ 2(x) = 0 the two are identical.

In the next section the differentials dX and dF in (3.5) and (3.6) are
described in more detail. As with dX in (3.4), each is a shorthand notation
for a more precise expression.

3.2. Stochastic Integrals

In this section the definition of the stochastic integral is first examined
briefly. Doing so is useful because it shows why stochastic integrals have
a certain fundamental property. Theorems 3.1 and 3.2 then characterize
a class of integrable functions and state several properties of stochastic
integrals.

All integrals are defined by first considering functions for which the
integral of interest is an easily calculated sum and then extending the defi-
nition to a broader class of functions. For example, the Riemann integral is
first defined for step functions. It is then extended to a broader class by ap-
proximating any other function of interest with a sequence of step functions,
where the sequence is chosen so that the approximations become arbitrar-
ily good. The integral of each function in the sequence is easily computed,
and the integral of the function of interest is defined as the limit of the inte-
grals of the approximating sequence. Similarly, integrals on measure spaces
are defined first for simple functions, and the definition is then extended
by approximating other measurable functions with sequences of simple
functions.

The Ito integral is defined in a similar way. As with other integrals, the
main issues are to show that the integral defined in this way exists and is
unique: that there exists at least one approximating sequence, and that
if there are many such sequences all have a common limit. Stated a little
differently, the key step in defining an integral is to determine for which
functions the approximation process leads to a uniquely defined value, that
is, to determine what class of functions is integrable.

Fix a filtered probability space (�, F, P), let W be a Wiener process
on this space, and let Y be a stochastic process adapted to it. That is,
Y : [0, ∞) × � → R is jointly measurable in (t , ω). The goal is to define a
stochastic integral of Y with respect to W :

IY (t , ω) =
∫ t

0
Y (s , ω) dW(s , ω), all t > 0, all ω. (3.12)

Notice that IY (t , ω) is an integral of Y along a particular sample path ω

up to date t . Since it is a function of (t , ω), assuming the required joint
measurability condition holds, IY is itself a stochastic process adapted to
(�, F, P).
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Since Y is jointly measurable, if it is also suitably bounded there is no
problem integrating it with respect to t and then taking the expected value.
To this end assume that

E
[∫ t

0
Y 2(s , ω) ds

]
< ∞, all t > 0. (3.13)

Let H 2 be the set of all stochastic processes Y satisfying (3.13). Any Brownian
motion satisfies (3.13).

The stochastic integral in (3.12) is first defined in terms of sums for
simple (step-type) functions and then extended to a broader class through
approximating sequences. A stochastic process Y is called simple if there
exists a countable sequence

{
tk
}

with 0 = t0 < t1 < . . . < tk → ∞, such that

Y (s , ω) = Y (tk−1, ω), all s ∈ [tk−1, tk), all ω.

Note that the tks do not vary with ω. Let S2 ⊂ H 2 be the set of all simple
stochastic processes that satisfy (3.13).

It is easy to integrate functions in S2 with respect to W over any finite
time interval. Choose Y ∈ S2, with steps at

{
tk
}∞
k=0 . Fix t > 0 and ω ∈ �, and

choose n ≥ 0 such that tn < t ≤ tn+1. Define the integral∫ t

0
Y (s , ω)dW(s , ω) ≡

n−1∑
k=0

Y (tk , ω)
[
W(tk+1, ω) − W(tk , ω)

]
(3.14)

+ Y (tn, ω)
[
W(t , ω) − W(tn, ω)

]
.

The terms on the right side of (3.14) have a very important feature: the
value of the state Y at date tk is multiplied by the increment to W that comes
after that date, the increment between tk and tk+1.

As noted above, the extension to a broader class of functions involves
the use of approximating sequences, and the argument has two parts. First,
it must be shown that for any function in the broader class there exists at
least one sequence in S2 that approximates it. Second, it must be shown
that if there are many approximating sequences, all converge to a common
value. The integral is then defined to be that common value. Both of these
arguments are rather complicated, and they are not especially useful in the
applications here. Therefore, several main results are simply stated.

The first part of Theorem 3.1 identifies a class of integrable functions,
those in H 2. As noted above, the integral IY (t , ω) is a stochastic process. The
second part of the theorem concerns the expected values of this process.

Theorem 3.1. (i) If Y ∈ H 2, then Y is integrable; that is, there exists a
stochastic process IY (t , ω) satisfying (3.12).
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(ii) If Y is integrable, then the expected value of IY (t , ω) is zero at all
dates,

E
[∫ t

0
Y (s , ω)dW(s , ω)

]
= 0, all t ≥ 0.

Part (ii) of Theorem 3.1 asserts a remarkable property: the expected value of
a stochastic integral is identically zero. Although this claim looks astonishing
at first sight, the idea behind it is really very simple. Consider again the
definition in (3.14) of the stochastic integral of a simple function. Each
term in (3.14) involves Y (tk) multiplied by the increment to W(t) over the
subsequent interval, from tk to tk+1. The expected value of this increment at
date tk is zero, and the expected value of the integral is just the sum of these
terms. Hence the zero expectation property holds for any simple function.
But the stochastic integral of any other function is simply the limit of a
sequence of integrals of simple functions, so the zero expectation property
holds for all integrable functions.

The next result establishes two additional properties of stochastic
integrals.

Theorem 3.2. If X, Y ∈ H 2, and a , b ∈ R , then

i. the stochastic integral of the weighted sum (aX + bY ) is the weight-
ed sum of the stochastic integrals of X and Y :∫ t

0
(aX + bY ) dW

= a

∫ t

0
X dW + b

∫ t

0
Y dW , all ω, all t ≥ 0; and

ii. the expected value of the product of the stochastic integrals of X

and Y is the expected value of the (Riemann) integral of XY :

E
[∫ t

0
X dW

∫ t

0
Y dW

]
= E

[∫ t

0
X Y ds

]
, all t ≥ 0.

The first part of Theorem 3.2 states that, like other types of integra-
tion, stochastic integration is a linear operator. The second part says that
the expected value of the product of two stochastic integrals is equal
to the expected value of the integral of their product. To see why this is
so, consider approximating each of the integrals on the left with a finite
sum. Since each of the increments dW over various subintervals has mean
zero and all are mutually independent, all of the terms in the product have
expected value zero except those that involve common time increments.



3.3. Ito’s Lemma 37

For these, E
[
(dW)2

]
= ds , so the integral becomes an ordinary Riemann

integral. Also note that since the integrals
∫ t

0 X dW and
∫ t

0 Y dW are random
variables with means of zero, the expression in part (ii) of Theorem 3.2 is
simply their covariance.

3.3. Ito’s Lemma

Let W be a Wiener process on the filtered space (�, F, P), let μ(t , x) and
σ(t , x) > 0 be continuous functions, and let X(0, ω) = x0(ω) be a measurable
function. The stochastic process X satisfying

X(t , ω) = X(0, ω) +
∫ t

0
μ(s , X(s , ω))ds

+
∫ t

0
σ(s , X(s , ω)) dW(s , ω), all t , ω,

(3.15)

is a diffusion. Notice that the first integral in (3.15) is a Riemann integral,
while the second is a stochastic integral of the type defined in the previous
section. This equation is the integral form of the differential in (3.5), and a
Brownian motion is simply the special case in which μ and σ are constant.

The next result, Ito’s lemma, is the basis for calculating values of a
function F(t , x) that has a diffusion as its second argument.

Theorem 3.3 (Ito’s lemma). Let F : R+×R → R be once continuously dif-
ferentiable in its first argument and twice continuously differentiable in its
second, and let X be the diffusion in (3.15). Then

F(t , X(t , ω)) = F(0, X(0, ω)) +
∫ t

0
Ft(s , X) ds

+
∫ t

0
Fx(s , X)μ(s , X) ds

+
∫ t

0
Fx(s , X)σ(s , X) dW(s , ω)

+ 1
2

∫ t

0
Fxx(s , X)σ 2(s , X) ds, all t , ω,

(3.16)

where the arguments of X(s , ω) have been suppressed.

The right side of (3.16) contains four integrals. The third is a stochastic
integral and the others are Riemann integrals. These four terms are the
counterparts of the four terms in (3.6).
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If μ and σ are stationary and F(t , x) = e−rtf (x), where r ≥ 0 is a con-
stant discount rate, then (3.16) takes the form

e−rtf (X(t)) = f (X(0)) − r

∫ t

0
e−rsf (X) ds

+
∫ t

0
e−rsf ′(X)μ(X) ds +

∫ t

0
e−rsf ′(X)σ(X) dW

+ 1
2

∫ t

0
e−rsf ′′(X)σ 2(X) ds .

(3.17)

The expected value of the differential form of this equation is in (3.7).
These results can be used to derive the Hamilton-Jacobi-Bellman equa-

tion (3.11) more rigorously. Consider the term �v in (3.10). Use (3.17) with
r = 0, X(0) = x0, and constant functions for μ and σ to get

�v ≡ v(X(�t)) − v(x0)

= μ

∫ �t

0
v′(X(s)) ds + σ

∫ �t

0
v′(X(s)) dW

+ 1
2
σ 2

∫ �t

0
v′′(X(s)) ds .

Then take the expected value, use the zero expectation property, and divide
by �t to obtain

1
�t

E [�v]= 1
�t

[
μ

∫ �t

0
E
[
v′(X(s))

]
ds + 1

2
σ 2

∫ �t

0
E
[
v′′(X(s))

]
ds

]
.

Finally, take the limit to get

lim
�t→0

1
�t

E [�v]= μv′(x0) + 1
2
σ 2v′′(x0),

which agrees with the earlier result.
The next section shows how Ito’s lemma can be used to characterize the

moments of a geometric Brownian motion.

3.4. Geometric Brownian Motion

Recall from Chapter 1 that a geometric Brownian motion is a diffusion X(t) with
infinitesimal parameters μ(x) = μx and σ(x) = σx . Thus, for a geometric
Brownian motion
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dX = μXdt + σXdW , (3.18)

so the relative increments dX/X are i.i.d. with fixed mean and variance.
Several facts about this family can be proved using Ito’s lemma.

Let X be as in (3.18), with X(0) ≡ 1, and consider the stochastic process
Y = ln(X). Then (3.16) with r = 0 implies that

Y (t , ω) = ln (X(t , ω))

= ln (X(0)) +
∫ t

0

(
1
X

μX − 1
2

1
X2

σ 2X2
)

ds +
∫ t

0

1
X

σX dW

= 0 +
∫ t

0

(
μ − 1

2σ 2
)

ds +
∫ t

0
σ dW

=
(
μ − 1

2σ 2
)

t + σW(t), all t , ω.

Thus, Y = ln(X) is an ordinary Brownian motion with drift and variance

μ̂ = μ − 1
2σ 2, and σ̂ 2 = σ 2.

To understand the downward adjustment in the drift, notice that
since the logarithm is a concave function, Jensen’s inequality implies that
E[ln(X(t))]< ln

(
E[X(t)]

)
. Moreover, since the variance of X(t) increases

linearly with t , the difference between the two increases over time. Hence
it is the drift that must be adjusted.

Exercise 3.1. (a) Let Y (t) be a
(
μ, σ 2) Brownian motion. Use Ito’s lemma

to show that for any ρ �= 0, X(t) = exp {ρY (t)} is a geometric Brownian

motion with parameters
(
ρμ + 1

2(ρσ)2, (ρσ)2
)

.

(b) Let X(t) be a geometric Brownian motion with parameters
(
m, s2).

Show that for any λ �= 0, p(t) = Xλ(t) is a geometric Brownian motion with

parameters
(
λm + 1

2s2λ(λ − 1), λ2s2
)

.

The mean, variance, and higher moments of a geometric Brown-
ian motion can be computed by using the fact that the expected values
E
[
Xk(t)

]
, k = 1, 2, . . . are deterministic functions of time that satisfy sim-

ple ordinary differential equations.
Fix the initial value X(0) = x0 and assume |μ| , σ 2 < ∞. Then E

[
X2(t)

]
is bounded, for all t , so stochastic integrals involving X are well defined.
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Integrate (3.18) to get

X(t) = x0 + μ

∫ t

0
X(s)ds + σ

∫ t

0
X(s)dW, all t .

Then take the expected value and use the zero expectation property in
part (ii) of Theorem 3.1 to find that

E [X(t)]= x0 + μ

∫ t

0
E [X(s)]ds , all t . (3.19)

Define h(t) ≡ E [X(t)] , and write (3.19) as

h(t) = x0 + μ

∫ t

0
h(s)ds , all t .

Then h satisfies the differential equation

h′(t) = μh(t), all t ,

with the boundary condition h(0) = x0. Hence

E [X(t)]≡ h(t) = x0e
μt , all t .

The argument also works for higher moments, with Ito’s lemma provid-
ing a key step. For example, consider the second moment. Since E

[
X4(t)

]
is bounded for all t , stochastic integrals involving X2 are well defined. Ap-
plying Ito’s lemma to the function f (x) = x2, one finds that (3.17) implies

X2(t) = x2
0 +

(
2μ + σ 2

) ∫ t

0
X2(s)ds + 2σ

∫ t

0
X2dW , all t , ω.

Taking the expected value and using the zero expectation property then
gives

E
[
X2(t)

]
= x2

0 +
(

2μ + σ 2
) ∫ t

0
E
[
X2(s)

]
ds .

Define h2(t) ≡ E
[
X2(t)

]
. Then

h2(t) = x2
0 +

(
2μ + σ 2

) ∫ t

0
h2(s)ds ,

so h2 satisfies the ordinary differential equation

h′
2(t) =

(
2μ + σ 2

)
h2(t), all t ,
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with initial condition h2(0) = x2
0 . Hence

E
[
X2(t)

]
= h2(t) = x2

0e

(
2μ+σ 2

)
t , all t .

The variance of X(t) can be computed by combining the formulas above,

Var [X(t)] = E
[
X2(t)

]
− E [X(t)]2

= x2
0e

2μt
(
eσ 2t − 1

)
, all t .

Note that if the drift is negative and sufficiently large relative to the vari-
ance, so 2μ + σ 2 < 0, then E

[
X2(t)

]
decreases over time. In this case

limt→∞E
[
X2(t)

] = 0 and limt→∞Var[X(t)]= 0. For large t , the (non-nega-
tive) value X(t) is, with high probability, very close to zero.

Higher moments of X(t) can be computed in the same way.

Exercise 3.2. Calculate the skewness measure E[X(t) − E [X(t)]]3.

3.5. Occupancy Measure and Local Time

Let X(s) be a Brownian motion on the filtered space (�, F, P). The occupancy
measure of the process X is the function m: B × [0, ∞) × � → R+ defined by

m(A, t , ω) =
∫ t

0
1A(X(s , ω))ds , all A ∈ B, t ≥ 0, ω ∈ �, (3.20)

where 1A is the indicator function for the set A, and B denotes the Borel
sets. The value m(A, t , ω) is the total time the sample path X(., ω) has spent
in the set A up to date t . Thus,

i. for any fixed (t , ω), the mapping m(., t , ω): B → [0, 1] is a measure
(and hence the name) with total mass m(R , t , ω) = t ;

ii. for any fixed (A, t), the function m(A, t , .): � → R+ is a random
variable; and

iii. for any fixed (A, ω), the function m(A, ., ω): R+ → R is continuous
and nondecreasing, and it is strictly increasing only when X (t , ω) ∈
A.

The following result states that the function m defined above is abso-
lutely continuous with respect to Lebesgue measure and has a continuous
density. That is, it can be written as the integral of a continuous function.

Theorem 3.4. There exists a function � : R × [0, ∞) × � → R+ with the
property that �(x , t , ω) is jointly continuous in (x , t) for almost every (a.e.)
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ω, and

m(A, t , ω) =
∫

A

�(x , t , ω)dx , all A ∈ B, t ≥ 0, ω ∈ �. (3.21)

See Chung and Williams (1990, Theorem 7.3) for a proof.
The process �(x , ., .) is called the local time of X at level x . For fixed x ,

�(x , ., .) is a continuous stochastic process with the property that it is positive
if and only if X(t , ω) = x . Thus, the local time �(x , t , ω) is a measure of the
time that the process has spent at state x . Note that

�(x , t , ω) = lim
ε→0

1
2ε

m((x − ε, x + ε), t , ω). (3.22)

Theorem 3.4 suggests that � can play the role of a density function. The
following theorem shows that this conjecture is correct, leading to a useful
fact about integrals along sample paths.

Theorem 3.5. Let f : R → R be a bounded, measurable function. Then∫ t

0
f (X(s , ω))ds =

∫
R

f (x) �(x , t , ω) dx , all t ≥ 0, ω ∈ �. (3.23)

Theorem 3.5 says that an integral over time can be replaced with an integral
over states, weighting outcomes by their local time �. In this sense � plays
exactly the role of a density function.

For many economic applications these definitions and results must be
extended in two ways: to allow final dates that are stopping times rather than
fixed dates and to incorporate discounting. Both extensions are straightfor-
ward. For the former, it suffices to note that since (3.20)–(3.23) hold for
all t and all ω, they also hold if t is replaced by a stopping time τ(ω). To
incorporate discounting, let r > 0 be an interest rate. At the risk of being
tedious, the definitions and results so far are restated for this case.

Define the discounted occupancy measure of the process X, call it m̂ (.; r) :
B × R+ × � → R+ by

m̂(A, t , ω; r) ≡
∫ t

0
e−rs 1A(X(s , ω))ds , all A ∈ B, t ≥ 0, ω ∈ �. (3.24)

The value m̂(A, t , ω; r) is the total discounted time, discounted at the rate
r , that the sample path X(., ω) has spent in the set A up to date t . Note
that m̂ has the same three properties as m, except that it has total mass
m̂(R , t , ω; r) = (1 − e−rt)/r . Note that m̂(.; r) is continuous at r = 0:
limr→0 m̂(A, t , ω; r) = m(A, t , ω).
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Like m, the function m̂ can be written as the integral of a continuous
function.

Theorem 3.6. There exists a function �̂(.; r) : R × [0, ∞) × � → R+ with
the property that �̂(x , t , ω; r) is jointly continuous in (x , t) for almost every
ω, and

m̂(A, t , ω; r) =
∫

A

�̂(x , t , ω; r)dx , all A ∈ B, t ≥ 0, ω ∈ �. (3.25)

The stochastic process �̂(x , ., .; r) is called the discounted local time of X at
level x . As before, it follows from (3.24) and (3.25) that

�̂(x , t , ω; r) = lim
ε→0

1
2ε

m̂((x − ε, x + ε), t , ω; r). (3.26)

Like �, �̂ plays the role of a density function, giving the following analog of
Theorem 3.5.

Theorem 3.7. Let f : R → R be a bounded, measurable function. Then∫ t

0
e−rsf (X(s , ω))ds

=
∫

R
f (x) �̂(x , t , ω; r) dx , all t ≥ 0, ω ∈ �.

(3.27)

Thus, an integral of discounted values over time can be written as an integral
over states, weighting outcomes by their discounted local time �̂. Equations
(3.24)–(3.27) are the analogs, with discounting, of (3.20)–(3.23). In Chap-
ter 5 explicit formulas for � and �̂ in (3.22) and (3.26) will be developed for
the case where X is a Brownian motion.

3.6. Tanaka’s Formula

In this section Tanaka’s formula is derived, an extension of Ito’s lemma
that applies to functions with kinks, that is, those with discontinuous first
derivatives.

Let X(t) be a
(
μ, σ 2) Brownian motion, and recall that for any twice

continuously differentiable function f , Ito’s lemma states

f (X(t)) = f (X(0)) + μ

∫ t

0
f ′(X) ds

+ σ

∫ t

0
f ′(X) dW(s) + 1

2
σ 2

∫ t

0
f ′′(X) ds .

(3.28)
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Consider the function

f (x) = max{0, cx}, c > 0. (3.29)

This function is continuous, but it has a kink at x = 0, so

f ′(x) =
⎧⎨⎩

0, x < 0,
undefined, x = 0,
c, x > 0,

and

f ′′(x) =
⎧⎨⎩

0, x < 0,
undefined, x = 0,
0, x > 0.

Calculating the first and second integrals on the right side in (3.28) poses
no problem: f ′ is discontinuous at x = 0, but a function with a finite number
of jumps can be integrated in the usual way. The problem is the last term:
f ′′ has an impulse at x = 0. This suggests that it may be helpful to think of f ′
as analogous to the cumulative distribution function (c.d.f.) for a (signed)
measure. Tanaka’s formula develops this observation more rigorously.

To begin, note that the function in (3.29) can be approximated arbitrar-
ily closely with functions having continuous first derivatives. For example,
for any ε > 0, define the function

fε(x) =
⎧⎨⎩

0, x < −ε,
c (x + ε)2/4ε, −ε ≤ x ≤ +ε,
cx , x > +ε.

This function is continuously differentiable, even at x = ±ε:

f ′
ε
(x) =

⎧⎨⎩
0, x < −ε,
c (x + ε)/2ε, −ε ≤ x ≤ +ε,
c, x > +ε.

Hence f ′′
ε
(x) is also well defined and continuous, except at the points

x = ±ε:

f ′′
ε
(x) =

⎧⎨⎩
0, x < −ε,
c/2ε, −ε < x < +ε,
0, x > +ε.

For computing the last integral term in (3.28), it does not matter that f ′′
ε

is
discontinuous at these two points. Figure 3.1 displays the functions f and
fε and their first two derivatives, for two values of ε.
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Figure 3.1. For the functions f and fε , the (a) levels, (b) first derivatives, and
(c) second derivatives.

The idea is to approximate the last term in (3.28) using f ′′
ε

and then to
take the limit as ε → 0. The approximating functions f ′′

ε
take only two values,

0 and c/2ε. Therefore, using the definition of the occupancy measure in
(3.20) one finds that

∫ t

0
f ′′

ε
(X(s))ds = c

2ε
m((−ε, +ε), t , ω).



46 3. Stochastic Integrals and Ito’s Lemma

Hence

lim
ε→0

∫ t

0
f ′′

ε
(X(s , ω))ds = lim

ε→0

c

2ε
m((−ε, +ε), t , ω)

= c�(0, t , ω),

where the second line uses the expression for local time in (3.22). Hence
for the function in (3.29), the analog of (3.28) is

f (X(t)) = f (X(0)) + μ

∫ t

0
f ′(X)ds

+ σ

∫ t

0
f ′(X) dW(s) + σ 2

2
c�(0, t), all ω.

More generally, the following result holds.

Theorem 3.8 (Tanaka’s formula). Let X be a
(
μ, σ 2) Brownian motion.

Let f be a continuous function, with a derivative f ′ that is well defined and
continuous except at a finite number of points. Define the signed measure
ν on (R , B) by ν((a , b]) ≡ f ′(b) − f ′(a), for −∞ < a < b < ∞. Then

f (X(t)) = f (X(0)) + μ

∫ t

0
f ′(X) ds

+ σ

∫ t

0
f ′(X) dW(s) + σ 2

2

∫
R

�(x , t) ν(dx).

See Harrison (1985) or Chung and Williams (1990) for more general ver-
sions of this result. In the example above the signed measure takes the simple
form

ν(A) =
{

c, if 0 ∈ A,
0, if 0 �∈ A.

Notice that if f is twice continuously differentiable, Tanaka’s formula
reverts to the expression in Ito’s lemma. Specifically, the final term is

σ 2

2

∫
R

�(x , t) ν(dx) = σ 2

2

∫
R

�(x , t) f ′′(x) dx

= σ 2

2

∫ t

0
f ′′(X(s)) ds ,

where the first line uses the definition of ν and the second uses Theorem
3.5. This expression agrees with the final term in (3.28).
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3.7. The Kolmogorov Backward Equation

The Kolmogorov backward equation (KBE) is a second-order partial differ-
ential equation (PDE) satisfied by the densities at dates t > 0 generated by
diffusions with different initial values x at date 0. The distribution functions
corresponding to these densities also satisfy the KBE. The argument is as
follows.

Let {X(t), t ≥ 0} be a regular diffusion on the open interval (�, r),
with infinitesimal parameters

(
μ(x), σ 2(x)

)
. Fix any bounded, piecewise

continuous function g on (�, r), and define

u(t , x) ≡ E[g(X(t)) | X(0) = x],

which is the expectation of g(X) at date t , conditional on the initial value x

at date 0. The first step is to show that u satisfies a certain PDE.
Fix any t > 0. By the law of iterated expectations, for any h > 0,

u(t + h, x) = E
[
g(X(t + h)) | X(0) = x

]
= E

{
E
[
g(X(t + h)) | X(h)

] | X(0) = x
}

= E[u(t , X(h)) | X(0) = x],

where the second line inserts an inner expectation conditioned on informa-
tion at date h > 0, and the third rewrites the second in term of u. It follows
that for any h > 0,

1
h

[u(t + h, x) − u(t , x)]= 1
h

E
[
u(t , X(h)) − u(t , x) | X(0) = x

]
. (3.30)

Taking the limit in (3.30) as h → 0 and using Ito’s lemma on the right leads to

∂u(t , x)

∂t
= μ(x)

∂u(t , x)

∂x
+ 1

2
σ 2(x)

∂2u(t , x)

∂x2
. (3.31)

The initial condition for this PDE is u(0, x) = g(x), all x .
For the indicator function g = 1(�,y] this construction leads to u(t , x) =

P(t , x , y), where

P(t , x , y) ≡ Pr
[
X(t) ≤ y | X(0) = x

]
is the probability that the process is below y at date t , given the initial
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condition x at date 0. In this case (3.31) implies

∂P (t , x , y)

∂t
= μ(x)

∂P (t , x , y)

∂x

+ 1
2
σ 2(x)

∂2P(t , x , y)

∂x2
, t > 0, x ∈ (�, r).

(3.32)

Equation (3.32) is called the Kolmogorov backward equation. The boundary
condition for P is

P(0, x , y) =
{

1, if x ≤ y,
0, if x > y.

Since X is a regular diffusion, for each t > 0 and x ∈ (�, r), P has a den-
sity: ∂P (t , x , y)/∂y = p(t , x , y). Consequently (3.32) can be differentiated
with respect to y to get

∂p(t , x , y)

∂t
= μ(x)

∂p(t , x , y)

∂x

+ 1
2
σ 2(x)

∂2p(t , x , y)

∂x2
, t > 0, x ∈ (�, r).

(3.33)

That is, the transition density also satisfies the KBE. In this case the boundary
condition is different, however: as t ↓ 0, the density function p(t , x , y)

collapses to a mass point at x = y .
Notice that (3.32) and (3.33) do not involve y , which enters only

through the boundary conditions. The KBE itself involves only the date
t and the initial condition x . It describes, for fixed y , how the density at y ,
the value p(t , x , y) varies with (t , x).

The PDE in (3.32) and (3.33) has many solutions. Indeed, there are
many solutions that are c.d.f.s and densities. Thus, a boundary condition is
needed to identify the one of interest in any particular context.

To illustrate more concretely what (3.32) and (3.33) imply, it is useful
to look at specific examples: a Brownian motion, a geometric Brownian
motion, and an Ornstein-Uhlenbeck (OU) process.

Recall that a normal distribution with mean and variance (m, v) has
density

φ(v , m, y) = 1√
2πv

exp

{
− (y − m)2

2v

}
, y ∈ (−∞, +∞). (3.34)

Example 1. For a Brownian motion the state space is R and the infinitesi-
mal parameters are μ(x) = μ, σ(x) = σ . Hence (3.33) takes the form



3.7. The Kolmogorov Backward Equation 49

∂p

∂t
= μ

∂p

∂x
+ 1

2
σ 2∂2p

∂x2
, t > 0, x ∈ R. (3.35)

A normal distribution with parameters (m, v) = (
x + μt , σ 2t

)
has density

φ(σ 2t , x + μt ; y), where φ is as in (3.34). Thus, the claim is that the function

p(t , x , y) = φ(σ 2t , x + μt , y)

satisfies (3.35). Let φv = ∂φ/∂v , φm = ∂φ/∂m, and so on, denote the partial
derivatives of φ . Then it follows from the chain rule for differentiation that
p satisfies (3.35) if

σ 2φv + μφm = μφm + 1
2
σ 2φmm,

or

φv = 1
2
φmm, all v , m, y .

Using (3.34) it is straightforward to show that this condition holds.

Example 2. For a geometric Brownian motion the state space is R+ and
the infinitesimal parameters are μ(x) = μx , σ(x) = σx . Hence (3.33) takes
the form

∂p

∂t
= μx

∂p

∂x
+ 1

2
σ 2x2∂2p

∂x2
, t > 0, x ∈ R+. (3.36)

It is straightforward to verify that

p(t , x , y) = φ
[
σ 2t , ln x +

(
μ − 1

2σ 2
)

t , ln y
]

satisfies (3.36).

Example 3. For an OU process the state space is R and the infinitesimal
parameters are μ(x) = −αx , σ(x) = σ . Hence (3.33) takes the form

∂p

∂t
= −αx

∂p

∂x
+ 1

2
σ 2∂2p

∂x2
, t > 0, x ∈ R+. (3.37)

An OU process has increments that are Gaussian but not independent, and
it is straightforward to verify that the transition density

p(t , x , y) = φ

(
σ 2

2α

(
1− e−2αt

)
, xe−αt , y

)
satisfies (3.37).
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3.8. The Kolmogorov Forward Equation

The backward equation involves time t and the initial condition x , with
the current state y held fixed. A similar PDE, the Kolmogorov forward
equation (KFE), involves t and y , with the initial state x fixed. The forward
equation is useful for characterizing the limiting distribution, if one exists. It
is worth emphasizing that while the backward equation holds for all regular
diffusions, the forward equation does not. For example, it may not hold if
the state space is bounded and probability accumulates at the boundaries.
It does hold for Brownian motions (both ordinary and geometric) and for
OU processes.

To derive the forward equation, start by considering any smooth func-
tion η satisfying

η(t + s , y) =
∫

η(t , ξ)p(s , ξ , y)dξ , all t , s , y . (3.38)

For example, the density p(t, x , ξ) satisfies (3.38), for any initial value x . The
stationary density ψ(ξ) also satisfies (3.38), if one exists.

For diffusions that are well behaved in the sense noted above, it can be
shown that for any function η satisfying (3.38),

∂η(t , y)

∂t
= − ∂

∂y

[
μ(y)η(t , y)

] + 1
2

∂2

∂y2

[
σ 2(y)η(t , y)

]
. (3.39)

For the density p(t , x , ξ), (3.39) takes the form

∂p(t , x , y)

∂t
= − ∂

∂y

[
μ(y)p(t , x , y)

] + 1
2

∂2

∂y2

[
σ 2(y)p(t , x , y)

]
, (3.40)

where x is fixed. Equation (3.40) is called the Kolmogorov forward equation.
Perhaps the most important use of (3.39) is to characterize the station-

ary density ψ(y), if one exists. If it does exist, (3.39) implies that it satisfies

0 = − d

dy

[
μ(y)ψ(y)

] + 1
2

d2

dy2

[
σ 2(y)ψ(y)

]
. (3.41)

Exercise 3.3. Use (3.41) to show that a Brownian motion does not have a
stationary density.

If there is a stationary density, it can be found as follows. Integrate (3.41)
once to get

c1 = d

dy

[
σ 2(y)ψ(y)

]
− 2μ(y)ψ(y),
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where c1 is a constant that must be determined. Then use the integrating
factor

s(y) = exp
{
−
∫ y 2μ(ξ)

σ 2(ξ)
dξ

}
to write this equation as

d

dy

[
s(y)σ 2(y)ψ(y)

]
= c1s(y),

and integrate again to get

ψ(x) = 1
s(x)σ 2(x)

[
c1

∫ x

s(y)dy + c2

]
.

The constants c1, c2 must be chosen so that ψ(x) ≥ 0, all x , and∫
ψ(x)dx = 1.

Example 4. For an OU process σ(x) = σ and μ(x) = −αx , so the integrat-
ing factor is

s(y) = exp
{

α

σ 2

∫ y

2ξdξ

}
= exp

{
γy2

}
,

where γ ≡ α/σ 2. Hence

ψ(x) = ĉ1

∫ x

0
e
γ
(
y2−x2

)
dy + ĉ2e

−γ x2
,

where the variance has been absorbed into the constants. If ĉ1 �= 0, the first
term diverges as |x| gets large, and ψ(x) cannot be a density. Hence ĉ1 = 0,
and the stationary density has the form ψ(x) = ĉ2e

−γ x2
, where ĉ2 is chosen

so that
∫

ψ = 1. Thus, from (3.34) we see that ψ(x) = φ(1/2γ , 0, x), and the
limiting distribution is a normal with mean m = 0 and variance v = 1/2γ .

Notes

Fleming and Rishel (1975), Harrison (1985), Fleming and Soner (1993),
and Krylov (1995) all provide good treatments of stochastic integration.
Karatzas and Shreve (1991), which is very complete, is useful as a reference.
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The discussion of geometric Brownian motion in Section 3.4 follows Kar-
lin and Taylor (1975, Section 7.4). See Chung and Williams (1990, Chapter
7) for a rigorous development of occupancy measure and local time. The
discussion of Tanaka’s formula in Section 3.6 follows Harrison (1985, Sec-
tion 4.6). There are many good treatments of the Kolmogorov backward
and forward equations. The discussion in Sections 3.7 and 3.8 is based on
Karlin and Taylor (1981, Section 15.5).



4
Martingales

Martingales are an example of mathematics at its best, sublimely elegant
and at the same time enormously useful. Initially developed to study ques-
tions that arise in gambling, the theory of martingales has subsequently been
used to study a wide array of questions.

The treatment here is only an introduction, covering the key concepts
and major results. Section 4.1 provides a formal definition and illustrates
the idea with some examples. Section 4.2 shows how martingales can be con-
structed from the (stationary) transition function for a discrete-time Markov
process, using an eigenvector of the transition matrix if the state space is dis-
crete and an eigenfunction if the state space is continuous. Section 4.3 shows
a systematic way to carry out the construction if the Markov process is the
sum of i.i.d. random variables and extends the method to continuous-time
processes, both Brownian motions and more general diffusions. Sub- and
supermartingales are defined in Section 4.4, and two results are proved. The
first describes two important ways that submartingales arise, and the second
provides an extension of Kolmogorov’s inequality. The optional stopping
theorem, a fundamental result for stopping times applied to martingales, is
presented in Section 4.5 and extended in Section 4.6. Section 4.7 provides
a statement and proof of the martingale convergence theorem.

4.1. Definition and Examples

Let (�, F, P) be a probability space, F = {
Ft , t ≥ 0

}
a filtration contained

in F, and {Z(t), t ≥ 0} a stochastic process adapted to F. Then [Z , F] is a
martingale (or Z is a martingale with respect to F) if for all t ≥ 0,

E [ |Z(t)| ]< ∞, (4.1)

53
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and with probability one,

E
[
Z(t) | Fs

] = Z(s), all 0 ≤ s < t . (4.2)

Note that the time index t may be discrete or continuous, and the horizon
may be finite or infinite. Also note that the definition involves the filtration
F in a fundamental way. If the filtration is understood, however, one may say
simply that Z is a martingale.

It is useful to consider a few examples, which illustrate some of the many
ways that martingales arise. In each case, to establish that a process is a
martingale requires verifying that it is adapted to an appropriate filtered
space and that it satisfies (4.1) and (4.2).

The first and most obvious way to construct a martingale is as the sum of
independent random variables with mean zero. Indeed, the idea originated
as the stochastic process describing the wealth of a gambler playing games
of chance at fair odds.

Example 1 (gambler’s wealth). Let X1, . . . , Xi , . . . be a (finite or
infinite) sequence of independent random variables on the probability
space (�, F, P), each with mean zero and with finite absolute deviation:
E
[
Xi

] = 0 and E
[∣∣Xi

∣∣] < ∞, all i. Let Z0 = 0, and for each k = 1, 2, . . . ,
define the random variable Zk =∑k

i=1 Xi to be the partial sum of the first k

elements in the sequence. For each k let Fk ⊂ F be the smallest σ -algebra for
which

{
Zj

}k

j=1 are measurable, and let F = {
Fk

}
be the filtration consisting

of this (increasing) sequence. Then the stochastic process Z is a martingale
on the filtered space (�, F, P).

To see this, first note that by construction Z is adapted to F. Then note
that for any k,

E
[∣∣Zk

∣∣] = E

[∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
]

≤ E

[
k∑

i=1

∣∣Xi

∣∣]

=
k∑

i=1

E
[∣∣Xi

∣∣] < ∞,

so (4.1) holds. Finally, to see that (4.2) holds, note that for any j < k ,
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E
[
Zk | Fj

] = E

[
k∑

i=1

Xi

∣∣∣∣∣ Fj

]

=
j∑

i=1

Xi +
k∑

i=j+1

E
[
Xi | Fj

]
= Zj ,

where the second line uses the fact that Xi is Fj -measurable for i ≤ j , and
the third uses the fact that the Xis are mutually independent and all have
mean zero.

An analogous argument establishes that a Brownian motion without
drift is a martingale. The following exercise identifies some other useful
martingales connected with Brownian motions.

Exercise 4.1. (a) Show that if X is
(
0, σ 2) Brownian motion, then X2 − σ 2t

and (X/σ)2 − t are martingales.
(b) Show that if X is

(
μ, σ 2)Brownian motion, then X − μt , (X − μt)2 −

σ 2t , and
[
(X − μt) /σ

]2 − t are martingales.

The key feature of a martingale is that it has increments, at every point
along every sample path, with (conditional) mean zero. Thus, martingales
can be created from other stochastic processes by repeatedly (in discrete
time) or continuously adjusting for the (conditional) expected increment
along each sample path, as in part (b) of the previous exercise. The next
examples illustrate other situations in which martingales arise.

Example 2 (family composition). Consider a society in which each family
has exactly N children. Children are born in succession (no twins), and the
probability is π = 1/2 that any new addition is a girl.

To analyze various questions about family composition in this society,
an appropriate probability space is needed. To construct one, note first
that an outcome in this setting is a vector of length N of the form ω =
(b, g , . . . , g , b, . . . , b) describing the sequence of births. Let � be the set
consisting of all such vectors. Note that � is a discrete space containing
2N elements. Let F be the complete σ -algebra for �, that is, the σ -algebra
consisting of all subsets. Each outcome is equally likely, so let P be the
probability measure on F that assigns probability 1/2N to each point. Then
(�, F, P) is a probability space.

Define a filtration on this space by the sequence of births. Specifically,
let ωi , i = 1, . . . , N , denote the ith component of the vector ω; for each k,
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let Fk ⊂ F be the smallest σ -algebra for which ω1, . . . , ωk are measurable;
and let F = {

Fk

}
be the filtration defined by this (increasing) sequence.

A number of different stochastic processes can be defined on the filtered
space (�, F, P). For example, let g0 = 0 and for k = 1, . . . , N , let gk be the
number of girls among the first k children. Notice that each gk is a random
variable on (�, F, P). Other processes can be constructed from

{
gk

}
.

Let X0 = 0 and

Xk = gk − (
k − gk

)
, k = 1, 2, . . . , N ,

be the excess of girls over boys in the first k births. Let Y0 = 0 and

Yk = gk − k

2
, k = 1, 2, . . . , N ,

be the excess of girls over k/2 in the first k births. Let Z0 = 0 and

Zk = gk

k
− 1

2
, k = 1, 2, . . . , N ,

be the deviation from 1/2 of the fraction of girls in the first k births.

Exercise 4.2. (a) Verify that
{
gk

}
,
{
Xk

}
,
{
Yk

}
, and

{
Zk

}
in Example 2 are

stochastic processes on (�, F, P).
(b) Show that

{
Xk

}
and

{
Yk

}
are martingales and that

{
Zk

}
is not.

The next example illustrates the very general principle that in a learning
context, the sequence of Bayesian posteriors is a martingale. The intuition
for this fact is clear: if this were not so the observer would want to revise his
current beliefs to incorporate the expected change next period.

Example 3 (Bayesian learning). Consider an experimenter trying to de-
termine whether an urn is of type A or type B . Both types of (outwardly
identical) urn contain a large number of black and white balls, but in dif-
ferent proportions. In the former the proportion of black balls is a and in
the latter it is b, where 0 ≤ a , b ≤ 1, with a �= b. The urn the experimenter
faces was drawn randomly from a population in which the proportion of
type A urns is p0 ∈ (0, 1). To determine more precisely which type it is, he
samples balls (with replacement), updating his beliefs by using Bayes’ rule
after each draw. Let pk , k = 1, 2, . . . , denote his posterior probability after
k balls have been drawn. Notice that each pk is a random variable that takes
k + 1 possible values. (Why?)

Exercise 4.3. (a) Define an appropriate probability space for the situation
described in Example 3.
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(b) Define a filtration that makes the sequence of posteriors
{
pk

}∞
k=0 a

stochastic process.
(c) Show that

{
pk

}∞
k=0 is a martingale.

4.2. Martingales Based on Eigenvalues

The next two examples show how martingales can be constructed from the
(stationary) transition function for a discrete-time Markov process. If the
state space is discrete the construction uses an eigenvector of the transition
matrix. If the state space is continuous it uses the continuous analog, an
eigenfunction associated with the transition function.

Example 4 (based on eigenvectors). Consider a Markov chain with state
space i ∈ {1, 2, . . . , I } and the I × I transition matrix � = [

πij

]
, where πij

is the probability of a transition from state i to state j .
Any function of the state is represented by a vector f T = (

f1, . . . , fI

)
containing the values for the function in states 1, . . . , I , and the vector �f

contains the conditional expected values for the function next period, given
the possible states 1, . . . , I this period. Recall that the pair (λ, v), with λ �= 0
and v ∈ Rk , is an eigenvalue and associated right eigenvector of � if �v = λv.

Let (λ, v) be such a pair, q0 be a probability vector describing the distri-
bution of the initial state, and

{
ik
}∞
k=0 with ik ∈ {1, 2, . . . , I } be the integer-

valued stochastic process indicating the outcomes. Define the stochastic
process

{
Vk

}∞
k=0 by Vk = vik

, all k. Then

E
[
Vk+1 | ik

] = E
[
vik+1

| ik

]
= eik

�v

= λvik

= λVk , k = 0, 1, . . . ,

where ei = (0, . . . , 0, 1, 0, . . . , 0) is a vector with a one in the ith position
and zeros elsewhere, and the third line uses the eigenvector property. If
λ = 1 then V is a martingale. Otherwise, the stochastic process Z defined by

Zk = λ−kVk = λ−kvik
, k = 0, 1, . . . ,

is a martingale. In either case the filtration is the one generated by {ik}. This
filtration is strictly finer than the one generated by {vik

} if v has two elements
that are identical, vi = vj , for i �= j .

Note that the argument in Example 4 continues to hold if the state space
is infinite, if I = ∞.
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The next example provides an analogous construction for Markov
chains taking values in all of R.

Example 5 (based on eigenfunctions). Let F be the (stationary) transition
function for a Markov chain Y = {

Yk

}
with a continuous state space. That is,

Pr
{
Yk+1 ≤ b | Yk = a

} = F(b | a), k = 1, 2, . . . .

Let λ �= 0 be a real number and ν(.) a function such that

E
[∣∣ν(Yk)

∣∣] < ∞, all k ,

and ∫
ν(y)dF (y | a) = λν(a), all a.

Then ν is called an eigenfunction of F , with associated eigenvalue λ. An
argument like the one above establishes that the stochastic process

Zk = λ−kν(Yk), k = 0, 1, 2, . . . ,

is a martingale.

4.3. The Wald Martingale

An important class of Markov processes are those constructed as sequences
of partial sums of i.i.d. random variables. In this case there is a systematic
way to construct eigenfunctions, and the associated martingales are called
Wald martingales. The next three examples show how they are constructed
for discrete-time processes, Brownian motions, and general diffusions,
respectively,

Example 6 (discrete time). Let
{
Xk

}∞
k=1 be a sequence of i.i.d. random

variables with a common c.d.f. G. Then the partial sums Y0 = 0 and Yk =
Yk−1 + Xk , k = 1, 2, . . . , form a Markov process with stationary increments,
and the transition function is F(b | a) = G(b − a), all a, b .

Suppose that for η �= 0 the expected value

λ(η) =
∫

eηxdG(x)

exists. Then the function ν(y; η) = eηy is an eigenfunction of F with associ-
ated eigenvalue λ(η). To see this, note that
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∫
ν(y; η)dF (y | a) =

∫
eηydG(y − a)

=
∫

eη(a+x)dG(x)

= ν(a; η)λ(η).

Hence the argument in Example 5 implies that the stochastic process

Zk = λ−k(η)ν(Yk; η), all k ,

is a martingale.

A family of martingales can be constructed by varying the parameter η in
Example 6. In particular, if η can be chosen so that λ(η) = 1+ r , where r is
a discount rate, then λ(η)−k = 1/(1+ r)k plays the role of a discount factor.

The next two examples show that a similar argument can be used to
construct martingales for Brownian motions and other diffusions. These
martingales are used extensively in later chapters.

Example 7 (Brownian motion). Let X be a
(
μ, σ 2) Brownian motion. Re-

call (see Exercise 3.1) that for any ρ �= 0, the stochastic process Y (t) =
exp {ρX(t)} is a geometric Brownian motion with parameters

(
q(ρ), (ρσ)2

)
,

where

q(ρ) ≡ ρμ + 1
2(ρσ)2. (4.3)

Consequently,

E
[
exp {ρX(t)}] = E [Y (t)]

= Y (0)eq(ρ)t

= exp {ρX(0) + q(ρ)t}, all t .

Hence the stochastic process

M(t ; ρ) ≡ exp {ρX(t) − q(ρ)t}, all t , (4.4)

is a martingale.
Similarly, if Y is a geometric Brownian motion with parameters

(
μ̂, σ 2),

then for any ρ �= 0 the stochastic process

M(t ; ρ) ≡ Yρ(t)e−q̂(ρ)t, all t ,
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is a martingale, where

q̂(ρ) ≡ ρ
(
μ̂ − 1

2σ 2
)

+ 1
2 (ρσ)2.

Example 8 (diffusions). More generally, let X be a diffusion with stationary
infinitesimal parameters μ(.) and σ(.). Suppose the function F(t , x) satis-
fies

Ft(t , x) + μ(x)Fx(t , x) + 1
2σ 2(x)Fxx(t , x) = 0, all t , x . (4.5)

Then the stochastic process

M(t) = F(t , X(t)), all t , ω,

is a martingale. To see this, note that

E [dM] = E
[
Ftdt + Fxμ(X)dt + Fxσ(X)dW + 1

2Fxxσ
2(x)dt

]
= 0,

where the first line uses Ito’s lemma, and the second uses (4.5) and the zero
expectation property of stochastic integrals (Theorem 3.1).

In particular, the stochastic process

M(t) = e−rtf (X(t)), all t , ω,

is a martingale if the pair (r , f ) satisfies

−rf (x) + μ(x)f ′(x) + 1
2σ 2(x)f ′′(x) = 0, all x . (4.6)

For a Brownian motion, μ and σ 2 are constants, and (4.6) holds for any
(r , f ) defined by

r = q(ρ), f (x) = eρx , all x ,

where ρ �= 0 and the function q(.) is defined in (4.3).

4.4. Sub- and Supermartingales

Submartingales and supermartingales are defined by replacing condition
(4.2) with an inequality. A stochastic process Z on the filtered space (�, F, P )
is a submartingale if for all t ≥ 0, (4.1) holds and with probability one,

E
[
Z(t) | Fs

] ≥ Z(s), all 0 ≤ s < t . (4.7)
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It is a supermartingale if the inequality in (4.7) is reversed. Thus, on average
a submartingale rises over time and a supermartingale falls. Notice that

Z is a submartingale if and only if −Z is a supermartingale;
Z is a martingale if and only if it is both a submartingale and a super-

martingale;
Z is a martingale if and only if both Z and −Z are submartingales.

Exercise 4.4. Consider a modified version of Example 1: suppose the
gambler is playing at less than fair odds. That is, suppose that each of the
Xis has a nonpositive mean, E

[
Xi

] ≤ 0, all i . For k = 1, 2, . . . , let Yk = −Zk

denote the gambler’s net loss after k rounds of play. Show that Zk is a
submartingale.

Exercise 4.5. Consider a modified version of the society in Example 2.
Suppose that at each birth the probability of a girl is π < 1/2. Define the se-
quences gk , Xk, and Yk as before. Show that Xk and Yk are supermartingales.

Exercise 4.6. Consider a modified version of the Bayesian learning in
Example 3. Suppose that the experimenter is mistaken about the fraction
of type A urns in the population from which the urn under study was
drawn. The experimenter believes that the fraction of type A urns is p̂0,
with 0 < p̂0 < p0. As before the experimenter draws balls from the urn
sequentially, with replacement, and updates his beliefs after each draw by
using Bayes’ rule. Let

{
p̂k

}
denote his sequence of posteriors. Show that{

p̂k

}
is a submartingale.

Exercise 4.7. Show that if X is a Brownian motion with positive (negative)
drift, then it is a submartingale (a supermartingale).

The following theorem describes two ways that submartingales arise.

Theorem 4.1. (i) If Z is a martingale on the filtered space (�, F, P), φ

is a measurable convex function, and φ(Z(t)) is integrable, all t , then the
stochastic process φ(Z) is a submartingale.

(ii) If Z is a submartingale on the filtered space (�, F, P); φ is a mea-
surable, increasing, convex function; and φ(Z(t)) is integrable, all t , then
the stochastic process φ(Z) is a submartingale.

Proof. In each case it must be shown that φ(Z) is adapted to (�, F, P) and
that it satisfies (4.1) and (4.7), for all t .

(i) For each t , since Z(t) is Ft -measurable and φ is a measurable func-
tion, it follows immediately that φ(Z(t)) is also Ft -measurable. Hence φ(Z) is
adapted to (�, F, P). By assumption φ(Z(t)) is integrable, so it satisfies (4.1),
for all t , and since Z is a martingale it satisfies (4.2), for all t . Then since φ
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is convex, it follows from Jensen’s inequality that with probability one,

φ(Z(s)) = φ(E[Z(t) | Fs])

≤ E[φ(Z(t) | Fs)], all 0 ≤ s < t , (4.8)

so φ(Z) satisfies (4.7), for all t .
(ii) Most of the argument for part (i) applies. For the last step notice

that since Z is a submartingale, it satisfies (4.7) for all t . Hence, since φ is
increasing,

φ(Z(s)) ≤ φ(E[Z(t) | Fs]), all 0 ≤ s < t ,

The inequality in (4.8) then follows from convexity, as before.

Part (i) of Theorem 4.1 implies that if Z is a martingale, then |Z| and
Z2 are submartingales. In particular, if X is a

(
μ, σ 2) Brownian motion then

X − μt is a martingale, so |X − μt | and
[
X − μt

]2 are submartingales.
The following result, an extension of Kolmogorov’s inequality, provides

a useful bound.

Theorem 4.2. If
{
Zk

}n

k=1 is a submartingale, then for any α > 0,

P

[
max
1≤k≤n

∣∣Zk

∣∣ ≥ α

]
≤ 1

α
E
[∣∣Zn

∣∣].
Proof. Fix α > 0 and define the (disjoint) sets Ak by

Ak = {
ω ∈ � : Zk ≥ α and Zj < α , j = 1, 2, . . . , k − 1

}
.

Then

E
[∣∣Zn

∣∣] ≥
n∑

k=1

∫
Ak

∣∣Zn

∣∣ dP

≥
n∑

k=1

∫
Ak

Zk dP

≥
n∑

k=1

α P (Ak)

= αP (∪n
k=1Ak)

= αP

[
max
1≤k≤n

∣∣Zk

∣∣ ≥ α

]
,
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where the first line uses the fact that the Aks are disjoint, with ∪n
k=1Ak ⊆ �;

the second line uses the fact that
{
Zk

}
is a submartingale; and the last three

lines use the definition of the Aks.

For an application of this result, let
{
Xi

}n

i=1 be a sequence of random
variables, each with zero mean and finite variance, and let Sk = ∑k

i=1 Xi,
k = 1, . . . , n, be the sequence of their partial sums. Clearly

{
Sk

}
is a martin-

gale, and hence by Theorem 4.1, Zk = ∣∣Sk

∣∣ is a submartingale. In this case
Theorem 4.2 asserts that

P

[
max
1≤k≤n

∣∣Sk

∣∣ > α

]
= P

[
max
1≤k≤n

S2
k

> α2
]

≤ 1
α

E
[∣∣Sn

∣∣],
which is Kolmogorov’s inequality.

4.5. Optional Stopping Theorem

The optional stopping theorem is a powerful and extremely useful result
about stopping times for martingales and submartingales. (To avoid exces-
sive duplication, the results will not be stated separately for supermartin-
gales.) The theorem applies to a wide class of stochastic processes, including
discrete-time processes and diffusions, so it applies for all of the processes
considered in this book. The theorem has many forms. The one below is
presented for its simplicity, and its implications for some of the examples
are discussed. A stronger form is presented in Section 4.6.

For any two dates s and t , let s ∧ t ≡ min {s , t} denote the earlier of the
two. Then, if Z is a stochastic process and T is a stopping time, let Z (T ∧ t)

denote the “stopped” process defined by

Z (T ∧ t , ω) =
{

Z(t , ω), if t < T (ω),
Z(T (ω), ω), if t ≥ T (ω).

Along each sample path the stopped process replaces the fluctuating path
after date T with the constant value Z(T ).

The optional stopping theorem assets that if Z is a (sub)martingale
and T is a stopping time, then the stopped process Z(T ∧ t) is also a
(sub)martingale. Moreover, the expected value of the stopped process at
any date t (is bounded below by) is equal to the expectation of the initial
value Z(0) and (is bounded above by) is equal to the expected value of the
unstopped process at t . Finally, if the stopping time is bounded, then the
expected terminal value for the stopped process (is greater than) is equal
to the expected value at the initial date.
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Theorem 4.3 (optional stopping theorem). Let Z be a (sub)martingale on
the filtered space (�, F, P) and T a stopping time. Then

(i) Z(T ∧ t) is also a (sub)martingale, and it satisfies

E [Z(0)](≤) = E [Z(T ∧ t)](≤) = E [Z(t)], all t ; (4.9)

(ii) if there exists N < ∞ such that 0 ≤ T (ω) ≤ N , all ω, then

E [Z(0)](≤) = E [Z(T )](≤) = E [Z(N)]. (4.10)

See Appendix B for a proof.

The intuition for part (i) of this result is clear. For a martingale, the con-
stant value along the sample path after date T (ω) in the stopped process
is equal to the expected value of the original process at all subsequent
dates, E

[
Z(t) | Z(T )

]= Z(T ), all t ≥ T (ω). Consequently, replacing the orig-
inal (fluctuating) path with the (constant) stopped value does not change
expectations taken at earlier dates. For a submartingale, the same reason-
ing produces the stated inequalities. If the stopping time T is uniformly
bounded, then (4.10) follows immediately: set t = N in (4.9) and note that
T ∧ N = T .

To see more concretely what Theorem 4.3 states, it is useful to look again
at the examples in Section 4.1.

Example 1′ (gambler’s wealth). Recall the gambler. We saw in Example 1
that if the game has fair odds and the gambler simply plays without stopping,
the stochastic process

{
Zk

}
describing his net gain is a martingale. Hence

for any fixed k , his expected net gain after k rounds of play is zero: E
[
Zk

]=
0, k = 1, 2, . . . . Theorem 4.3 says something even stronger.

Suppose that the gambler has a “system” that involves stopping when
he is ahead. Any such system defines a stopping time T . We must now
distinguish between potential rounds and rounds actually played. Part (i)
of Theorem 4.3 says that if the gambler uses his system, then his sequence
of net gains

{
ZT ∧k

}∞
k=1 is still a martingale. Hence his expected net gain after

k potential rounds is zero, as it would have been if he had simply played all
k rounds. That is,

0 = Z0 = E
[
ZT ∧k

] = E
[
Zk

]
, k = 1, 2, . . . .

Part (ii) says that if his stopping rule puts a finite upper bound N on the
number of rounds actually played, then his expected net gain at the end of
play is also zero. That is, no stopping rule can alter the martingale property
of the net gains, and none can lead to an expected net gain (or loss).

Similarly, as shown in Exercise 4.4, if the gambler is playing at unfair
odds, the stochastic process

{
Yk

} = {−Zk

}
describing his net loss is a sub-
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martingale: his expected losses increase with each round of play. Part (i) of
Theorem 4.3 states that the same is true if he uses a stopping rule: his se-
quence of net losses

{
YT ∧k

}
is still a submartingale. Its expected value after

k rounds of potential play is bounded below by zero and bounded above by
the expected value of the net loss if all k rounds are actually played. Thus,
using a stopping rule can reduce his expected net loss but cannot produce
an expected gain. Part (ii) says that if there is a finite bound on the stopping
time, then his expected net loss at the end of play is bounded below by zero
and bounded above by the expected loss he would incur if he simply played
all N rounds.

Example 2′ (family composition). Recall the model of family composition.
Suppose parents value sons over daughters and would like to tilt their
expected family composition toward sons. Suppose that every family has
at least one child and that there is an upper bound N on family size. The
only tool parents have at their disposal is their decision about when to stop
having children. For example, they might use the rule: keep having children
until a son is born or there are N daughters, and then stop.

We saw in Example 2 that if the probability of a girl is π = 1/2 at each
birth, and if the family has N children, then the stochastic processes Xk

describing the excess of girls over boys after k births, and Yk describing the
excess of girls over k/2 after k births, are martingales. Part (i) of Theorem
4.3 implies that if the family uses a stopping rule T , with T ≤ N , then the
corresponding stopped processes are also martingales. Part (ii) implies that
the expected values for these two variables are zero for completed families
under the stopping rule, just as they are if every family has N children.

Similarly, as shown in Exercise 4.5, if the probability of a girl is π < 1/2 at
each birth and the family has N children, then Xk and Yk are supermartin-
gales. Part (i) of Theorem 4.3 then implies that if families use a stopping
rule T , the corresponding stopped sequences are also supermartingales.
Parts (i) and (ii) together imply that

E
[
XN

] ≤ E
[
XT

] ≤ E
[
X0

] = 0,

and similarly for Yk . That is, by either measure family composition is tilted
toward boys (because of the uneven birth ratio) and is more heavily tilted
for the unstopped process.

Exercise 4.8. Consider the family composition example with π = 1/2.
(a) Suppose all families have exactly N children, and let G be the

fraction of girls in completed families. What are the possible values for
the random variable G? What is the probability distribution over these
outcomes?
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(b) Suppose families use the stopping rule: continue having children
until a son is born or there are N daughters, and then stop. Let H be
the fraction of girls in completed families. What are the possible values
for the random variable H ? What is the probability distribution over these
outcomes? What is average family size in this society?

Example 3′ (Bayesian learning). Recall the example of Bayesian learning.
Suppose that an outside observer is watching the experiments, and that the
experimenter wants to manipulate the observer’s beliefs. For concreteness
suppose that he would like to convince her that the urn is likely to be of
type A. The only tool the experimenter can use to manipulate the observer’s
beliefs is a stopping rule. If the experimenter draws a ball, the outcome is
seen by the observer. But the experimenter can stop sampling at any time,
that is, he can choose a stopping rule T .

Consider first the case where the observer’s prior is p0, the (correct)
ex ante probability that the urn is type A. As the sampling progresses her se-
quence of posteriors is the stochastic process

{
pk

}
described in Example 3.

As shown in that example, this process is a martingale. Part (i) of Theo-
rem 4.3 implies that if the experimenter uses a stopping rule T, the stochas-
tic process

{
pk∧T

}
describing the observer’s posteriors is still a martingale.

Thus, even a devious experimenter cannot design a sampling rule that de-
stroys the martingale property of the posteriors. (Neither can a clumsy one.)

Part (ii) of Theorem 4.3 implies that if there is an upper bound N

on the sample size under the stopping rule, then the expected value of
the observer’s posterior after sampling has stopped is equal to her prior
before sampling begins, regardless of the stopping rule chosen by the ex-
perimenter. That is, E[pT ]= p0, for any stopping rule.

If the observer’s prior is incorrect, with 0 < p̂0 < p0, then her sequence
of posteriors as sampling proceeds is the stochastic process

{
p̂k

}
in Exercise

4.6. We saw there that this process is a submartingale. In this case part (i)
of Theorem 4.3 implies that if the experimenter uses a stopping rule T, the
process

{
p̂k∧T

}
describing the observer’s posteriors is still a submartingale,

and it satisfies the inequalities in (4.9). If the sample size is uniformly
bounded above by N , part (ii) puts bounds on the observer’s final beliefs p̂T .

Now suppose the experimenter can choose the stopping rule and is
interested in convincing the observer that the urn is likely to be of type A.
That is, he wants to choose a stopping rule T that maximizes the observer’s
final posterior E

[
p̂T

]
. Since

{
p̂k

}
is a submartingale, part (ii) of Theorem 4.3

implies that the experimenter can do no better than to set T = N , always
using the largest allowable sample. The idea behind this result is clear: since
the observer’s initial beliefs are biased downward, providing her with more
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information moves them, on average, further upward (closer to the true
value).

If the observer’s initial prior is biased in the other direction, if p0 <

p̂0 < 1, then the stochastic process
{
p̂k

}
describing her posteriors is a super-

martingale. In this case an analogous argument shows that an experimenter
who wants to maximize E

[
p̂T

]
should choose the stopping rule T = 0, giving

the observer no information.

4.6. Optional Stopping Theorem, Extended

Part (ii) of Theorem 4.3 requires that the stopping time T be uniformly
bounded. Here the result is extended to cases in which T < ∞, but there is
no uniform upper bound on the stopping time. An example is then used to
illustrate what can go wrong if a key assumption does not hold.

The main idea is as follows. Let St ⊆ � denote the set where the process
has stopped by date t:

St = {ω ∈ � : T (ω) ≤ t}.

Then the expected value of the stopped process can be written as the sum
of two parts:

E
[
Z0

] = E
[
ZT ∧t

]
=
∫

�

ZT ∧t (ω)dP (ω)

=
∫

St

ZT (ω)dP (ω) +
∫

Sc
t

Zt(ω)dP (ω), all t ,

where the first line uses part (i) of Theorem 4.3. To insure that the expres-
sion in the last line converges to E

[
ZT

]
as t → ∞, several restrictions are

needed. First, the probability accounted for by the first term must converge
to one: limt→∞ P(St) = 1. This holds if (and only if) Pr {T < ∞} = 1. In ad-
dition, to insure that the first term has a well defined limit, the positive and
negative parts of ZT must have bounded integrals, that is, ZT must be inte-
grable. Finally, the second term must converge to zero as t → ∞. The next
result states these requirements more formally.
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Theorem 4.4 (extension of optional stopping theorem). Let Z be a (sub)
martingale on the filtered space (�, F, P) and T a stopping time. If

i. Pr [T < ∞]= 1,

ii. E [|Z(T )|]< ∞,

iii. lim
t→∞ E

[∣∣Z(t)I{T >t}
∣∣] = 0,

then

E [Z(0)](≤) = E [Z(T )].

See Appendix B for a proof.

The following example illustrates why condition (iii) is needed. Con-
sider a gambler playing at fair odds in a game where the bet is $1 in the first
round and is doubled at each subsequent round. That is, at each round
k = 1, 2, . . . , the gambler wins or loses Xk = ±2k−1, and the probability
of winning is 1/2. Let Z0 = 0 and Zk = ∑k

i=1 Xi , k = 1, 2, . . . , so
{
Zk

}
is

the sequence of his net gains. Clearly
{
Zk

}
is a martingale, and E

[
Zk

] = 0,
k = 1, 2, . . . .

Suppose the gambler uses the following system to try to win: he stops
playing when his net gain is positive and continues otherwise. Under this
stopping rule T the evolution of his net wealth

{
ZT ∧k

}
is described by

0 1 2 3 4 5 6
1 1/2 3/4 7/8 15/16 31/32 63/64
0 1

−1 1/2
−3 1/4
−7 1/8

−15 1/16
−31 1/32 . . .

Each column represents a time period k = 0, 1, 2, . . . , and each row rep-
resents a possible value for ZT ∧k ∈ {

1, 0, −1, −3, −7, . . . , 1− 2k , . . .
}
. The

entries in column k constitute the probability vector for the outcomes ZT ∧k .
Notice that the stopped process

{
ZT ∧k

}
satisfies

E
[
ZT ∧k

] = 0 = Z0, k = 0, 1, 2, . . . ,

in accord with part (i) of Theorem 4.3.
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It is clear that for any ε > 0 there exists n > 1 such that Pr {T > n} < ε.
Hence Pr{T < ∞} = 1. In addition, there is no problem integrating the
constant function ZT . But clearly

E
[
ZT

] = 1 �= 0 = Z0.

To see why Theorem 4.4 does not apply, note that the gambler’s total loss
conditional on continued betting, multiplied by the probability that he is
still betting, is

E
[
ZkI{T >k}

] = 1
2k

k∑
i=1

Xi

= 2−k
[
−20 − 21 − . . . − 2k−1

]
= −

k∑
i=1

2−i → −1 as k → ∞.

(This fact can also be read directly from the table above.) Hence condi-
tion (iii) of Theorem 4.4 does not hold: the gambler’s losses increase fast
enough to offset the declining probability that he is still playing.

Exercise 4.9. Let
{
Xi

}∞
i=1 be a sequence of random variables, each taking

values ±1 with equal probability. Let Zk =∑k
i=1 Xi be the sequence of their

partial sums. Fix an integer M ≥ 1, and let T be the stopping time defined
as the first time the process reaches M . By Theorem 4.3 the stopped process
ZT ∧k satisfies

0 = Z0 = E
[
ZT ∧k

] = E
[
Zk

]
, all k ≥ 0.

In addition, Pr{T < ∞} = 1. But clearly

E
[
ZT

] = M �= 0 = E
[
Z0

]
.

Evidently Theorem 4.4 does not apply.
Show that

{
Zk

}
violates the condition

lim
k→∞ E

[∣∣ZkI{T >k}
∣∣] = 0.

The next result is a further extension of the optional stopping results
in Theorems 4.3 and 4.4. The new feature here is that the expectation is
conditioned on the information at a stopping time rather than a fixed date.
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Theorem 4.5. If
{
Zk

}n

k=1 is a (sub)martingale, and τ1, τ2 are stopping times
with 1≤ τ1 ≤ τ2 ≤ n, then

E
[
Zτ2

| Fτ1

]
(≥) = Zτ1

.

For a proof see Billingsley (1995, Theorem 35.2). Theorem 4.5 is used
to establish a preliminary result that in turn will be used to prove the
martingale convergence theorem.

4.7. Martingale Convergence Theorem

The martingale convergence theorem is one of the most famous results for
stochastic processes. It has a wide array of uses, so its fame is justified. In this
section it is stated in a general form and proved for discrete time processes.
A few of its implications are then discussed.

The proof draws on a preliminary result, a crossing property. If
{
Zk

}n

k=1
is a submartingale, then in expectation it is nondecreasing. Fix any two
numbers α < β . An upcrossing occurs whenever the sample path rises from
α to β. To count the upcrossings, define the sequence of stopping times

{
τi

}
as follows. For i = 1,

τ1 =
{

min
{
k ≥ 1 : Zk ≤ α

}
, if Zk ≤ α, some k ≥ 1,

n, otherwise.

Thereafter, if i is even,

τi =
{

min
{
k > i − 1 : Zk ≥ β

}
, if Zk ≥ β, some k > i − 1,

n, otherwise;

and if i is odd,

τi =
{

min
{
k > i − 1 : Zk ≤ α

}
, if Zk ≤ α, some k > i − 1,

n, otherwise.

Define M by τM = n, and let U be the number of upcrossings. The broken
line in Figure 4.1 depicts a sample path Zk(ω) with two upcrossings. The
small circles indicate the stopping times τi , i = 1, . . . , 6.

The following result bounds the expected number of upcrossings.

Lemma 4.6. If
{
Zk

}n

k=1 is a submartingale, then

E [U]≤ E
[∣∣Zn

∣∣] + |α|
β − α

. (4.11)
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Figure 4.1. Upcrossings, for α = −0.2 and β = 1.0.

Proof. Define Yk = max
{
α , Zk

}
. Figure 4.1 shows how Yk , the solid line,

alters the sample path for Zk . Since Yk is an increasing convex function
of Zk, by Theorem 4.1 the stochastic process

{
Yk

}
is also a submartingale.

Moreover,
{
Yk

}
and

{
Zk

}
have the same stopping times

{
τik

}
and the same

number of upcrossings, call it U , between α and β.
Note that

Yn = Yτ1
+

M∑
i=2

[
Yτi

− Yτi−1

]
.

Let �e be the sum for i even, and �o be the sum for i odd. Then take
expectations and use the fact that Yτ1

= α to find that

E
[
Yn − α

] = E
[
�e

] + E
[
�o

]
.

Since Yk is a submartingale and the τjs are stopping times, Theorem 4.5
implies that

E
[
�o

] = E

⎡⎣M or M−1∑
j=3,5, . . .

(
Yτj

− Yτj−1

)⎤⎦ ≥ 0.
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The same holds for �e , but something stronger is needed. The term �e

includes all the upcrossings plus, possibly, a remainder term. That is,

�e ≥
{

(β − a)U +
[
YτM

− YτM−1

]
, if M is even and YτM

< β,
(β − a)U , otherwise.

Since Y is a submartingale, E
[
YτM

− YτM−1
|YτM−1

]
≥ 0. Hence

E
[
�e

] ≥ (β − α) E [U],

and summing the two pieces gives

E
[∣∣Yn

∣∣] + |α| ≥ E
[
Yn − α

]
= E

[
�e

] + E
[
�o

]
≥ (β − a) E [U] .

Since �o appears to be the sum of downcrossings, the conclusion that
E
[
�o

] ≥ 0 may seem surprising. The idea is that if i is odd, having reached
Zτi−1

≥ β , there are two possibilities for τi. The process can fall back to α , or
it can stay above α , in which case τi = τM = n. Since

{
Zk

}
is a submartingale,

the expected increment, conditional on any state, is nonnegative. Hence
conditional on Zτi−1

, in expectation these two possibilities contribute a
positive increment. In the sum �o the positive contribution appears in the

remainder terms, terms of the form
[
ZτM

− ZτM−1

]
, which in expectation

outweigh the others.
The final result is the famous martingale convergence theorem. It states

that if Z is a submartingale and is bounded in a certain sense, then with
probability one it converges to a random variable Z∗. Thus, the result has
two parts. First, for a.e. ω ∈ �, the sample path Z(t , ω) converges pointwise.
That is, there exists Z∗(ω) = limt→∞ Z(t , ω). In addition, Z∗ is integrable, so

lim
t→∞ E

[∣∣Zt − Z∗∣∣] = 0.

Theorem 4.7 (Martingale convergence). Let Z be a submartingale with

sup
t≥0

E [|Z(t)|]= D < +∞.

Then Z(t) → Z∗ with probability one, where Z∗ is a random variable with
E
[∣∣Z∗∣∣] ≤ D.
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Proof. (For discrete time) Let
{
Zk

}
be a submartingale and fix any α < β .

By Lemma 4.6 the expected number of upcrossings of Z1, . . . , Zn, call it Un,
satisfies (4.11):

E
[
Un

] ≤ E
[∣∣Zn

∣∣] + |α|
β − α

.

The random variable Un is nondecreasing and is bounded above by
(D + |α|)/(β − α), so it follows from the monotone convergence theorem
that limn→∞ Un is integrable, and consequently is finite-valued a.e.

For each ω, define

Zsup(ω) = lim sup
k→∞

Zk(ω),

Zinf(ω) = lim inf
k→∞ Zk(ω).

If Zinf(ω) < α < β < Zsup(ω), then Un(ω) diverges as n → ∞. Hence

P
[
Zinf < α < β < Zsup] = 0.

But the set where Zinf < Zsup can be written as

[
Zinf < Zsup] =

⋃[
Zinf < α < β < Zsup],

where the union is over all rational pairs α < β . Since each set on the right
side has probability zero, so does their sum. Hence P

[
Zinf < Zsup]= 0. That

is, P
[
Zinf = Zsup] = 1. Call their common value Z∗. By Fatou’s lemma

E
[∣∣Z∗∣∣] ≤ lim inf

k→∞ E
[∣∣Zk

∣∣] ≤ D ,

so Z∗ is integrable. Hence Z∗ is finite with probability one.

It is essential for the result that E
[∣∣Zk

∣∣] be bounded by some finite
D. To see why, consider the following example. Let

{
Xi

}
be a sequence

of i.i.d. random variables taking values ±1 with equal probability, and let
Zk =∑k

i=1 Xi be the sequence of partial sums. Clearly
{
Zk

}
is a martingale.

For large k, the distribution of Zk is well approximated by a normal with
mean zero and a standard deviation that grows like

√
k. Hence Zk �→ Z∗,

for any Z∗. Theorem 4.7 does not apply here: for any finite D there exists k

sufficiently large so that E
[∣∣Zk

∣∣] > D.
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Exercise 4.10. For each of the following examples either show that Theo-
rem 4.7 applies and calculate Z∗, or explain why Theorem 4.7 does not
apply.

(a) Let
{
Zk

} = {
pk

}
be the sequence of posteriors for the Bayesian

learning problem in Example 3, where the prior p0 is correct.
(b) Let

{
Zk

} = {
p̂k

}
be the sequence of posteriors for the Bayesian

learning problem in Exercise 4.6, where the prior p̂0 < p0 is too
low.

(c) Let
{
Zk

}
be the sequence of net gains defined in Section 4.6, for

the gambler who stops if he wins and doubles his bet if he loses.
(d) Let Z = M(t ; ρ) be a Wald martingale of the type defined in (4.4).

Notes

Karlin and Taylor (1975, Chapters 6 and 7) provide an excellent intro-
ductory discussion of stopping times and martingales, with many helpful
examples. Breiman (1968) and Billingsley (1995) also have excellent dis-
cussions, including treatments of the martingale convergence theorem and
various forms of the optional stopping theorem.



5
Useful Formulas

for Brownian Motions

In situations where action involves a fixed cost, optimal policies have
the property that control is exercised only occasionally. Specifically, optimal
policies involve taking action when a state variable reaches an appropriately
chosen threshold value. In this chapter methods are developed for analyzing
models of this type.

To fix ideas, consider the following example. Suppose the profit flow
g(X) of a firm depends on its relative price X = p − p, where p is the firm’s
own price and p is an aggregate price index, both in log form. Assume that
p evolves as a Brownian motion. Then in the absence of action by the firm
X also evolves as a Brownian motion, with a drift of opposite sign. But at any
time the firm also has the option of changing its nominal price p, altering X

by a discrete amount. Suppose that the firm adopts a policy of doing so when
the relative price reaches either of two critical thresholds, a lower value b or
an upper value B . Assume the initial condition X(0) = x lies between the
two thresholds, and let v(x) denote the expected discounted return from
following the stated policy, discounted at a constant rate r , conditional on
the initial state.

Define the stopping time T = T (b) ∧ T (B) as the first time the stochastic
process X reaches b or B. The firm’s policy involves doing nothing before
T , and at T taking an action that may depend on whether b or B has been
reached. Hence v(x) can be written as the sum of three terms:

v(x) = expected returns over [0, T )

+ expected returns over [T , +∞) if b is reached before B

+ expected returns over [T , +∞) if B is reached before b.

Recall from Theorem 3.7 that for a function f (.) that has a Brownian
motion X as its argument, the integral of e−rtf (X) along any sample path

75
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up to a stopping time T can be written as an integral over states, where
the latter integral uses the discounted local time �̂ as a weighting function.
For the first term in v(x) above, the expectation of �̂ is needed. For the
discussion here it is useful to indicate the initial condition for the process
X. Let �̂(ξ ; x , T ; r) denote the discounted local time at level ξ , given the
initial state x . In addition the stopping times of interest here always take the
form T = T (b) ∧ T (B), so it is convenient to write E[�̂] in terms of b and B

rather than T . For any b < B let

L̂(ξ ; x , b, B; r) ≡ E
[
�̂(ξ ; x , T (b) ∧ T (B); r)

]
, ξ , x ∈ (b, B), (5.1)

denote the expected local time at ξ before either threshold b or B is reached,
given the initial state x.

Let Ex[.] and Prx[.] denote expectations and probabilities conditional
on the initial state x , and let w(x , b, B) denote the first term in v(x), the
expected returns before T . Then w can be written in terms of L̂:

w(x , b, B) ≡ Ex

[∫ T

0
e−rtg(X(t))dt

]
(5.2)

= E
[∫

R
�̂(ξ ; x, T; r) g(ξ) dξ

]

=
∫ B

b

L̂(ξ ; x, b, B; r) g(ξ) dξ .

For the second and third terms define

ψ(x , b, B) ≡ Ex[e−rT | X(T ) = b]Prx[X(T ) = b],

�(x , b, B) ≡ Ex[e−rT | X(T ) = B]Prx[X(T ) = B].
(5.3)

Thus, ψ(x , b, B) is the expected discounted value of an indicator function
for the event of reaching b before B is reached, given the initial state x.
The value �(x , b, B) has a similar interpretation, with the roles of b and B

reversed.
The functions L̂, ψ , and � in (5.1) and (5.3) can be used to describe

the expected discounted profits of the firm for arbitrary thresholds b and
B . Consequently they can also be used to characterize the optimal policy—
the thresholds and the value to which the relative price is adjusted—and the
associated value function v(x).
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Probabilities and long-run averages can be characterized as well, by
using an interest rate of zero in the expressions above. For example, setting
r = 0 in (5.3) gives

θ(x , b, B) ≡ Prx[X(T ) = b],

�(x , b, B) ≡ Prx[X(T ) = B].
(5.4)

For an interpretation, consider a firm that operates over a long period with
a fixed price adjustment policy. That is, for some S , b, B , with b < S < B ,
the firm always sets its relative price at x = S when it makes an adjustment
and always adjusts when the relative price reaches b or B . Then θ(S , b, B)

is the fraction of adjustments from b in the long run, and �(S , b, B) is the
fraction from B.

Other features of the long run can also be described. For example,
to calculate the average length of time between adjustments consider the
function

τ(x , b, B) ≡ Ex[T (b) ∧ T (B)], (5.5)

the expected time until the next adjustment conditional on the current state
x. For a firm using the adjustment policy described above, τ(S , b, B) is the
average length of time between adjustments. Then note that setting r = 0
in (5.1) gives

L(ξ ; x , b, B) ≡ E
[
�(ξ ; x , T (b) ∧ T (B)

]
, ξ , x ∈ (b, B),

the (undiscounted) expected local time at level ξ . Normalizing this function
by the expected time between adjustments gives L(.; S , b, B)/τ(S , b, B), a
density function for the time the firm’s price is at each level ξ ∈ (b, B) in the
long run.

In settings with a large number of such agents and idiosyncratic shocks,
the undiscounted functions also describe cross-sectional averages. In partic-
ular, suppose that there is a continuum of agents with total mass one and
that the shocks are i.i.d. across agents. (This assumption makes no sense for
the shock in the menu cost model, but it is reasonable in other settings.) A
setting of this type has a stationary cross-sectional distribution for the state
variable, and the system converges to that distribution in the long run. In-
dividual agents experience fluctuations as their own state rises and falls, but
aggregates—the cross-sectional distribution of the state and the arrival rates
at the two thresholds—are constant. That is, θ(S , b, B) and �(S , b, B) de-
scribe the fractions of adjustments at each threshold, L(.; S , b, B)/τ(S , b, B)

is the cross-sectional density for price, 1/τ(S , b, B) is the aggregate adjust-
ment rate, and so on.
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In this chapter closed-form solutions are derived for the functions
L̂, ψ , �, and so on, for Brownian motions and geometric Brownian motions.
For more general diffusions, sharp characterizations of these functions are
obtained. In Section 5.1 conditions are provided under which the stopping
time T is finite with probability one, and in Section 5.2 this result is used to
apply the optional stopping theorem to Wald martingales associated with
X. In Section 5.3 the resulting relationship is used to obtain solutions for
ψ , � , θ , and �, and properties of those functions are developed.

In Section 5.4 a different approach is developed for Brownian motions,
one that involves analyzing ordinary differential equations (ODEs) of a
certain form. In Section 5.5 the ODE is solved for r = 0 to obtain L, θ , �, and
τ , and in Section 5.6 it is solved for r > 0 to obtain ψ , � , and L̂. In Sections
5.7–5.9 the argument is extended to cover general diffusions, including
geometric Brownian motions and Ornstein-Uhlenbeck processes. For the
former closed-form solutions are obtained.

5.1. Stopping Times Defined by Thresholds

Let X be a Brownian motion with parameters
(
μ, σ 2) and finite initial value

X(0) = x , and let b, B be threshold values satisfying −∞ ≤ b ≤ x ≤ B ≤ +∞.
As above, let Ex and Prx denote expectations and probabilities conditional
on the initial value x . In this section conditions are described under which
the stopping time T = T (b) ∧ T (B) is finite with probability one.

The following assumption, which puts restrictions on b, B , and σ 2 for
any μ is needed for the result.

Assumption 5.1.

i. If μ > 0, then B < ∞;
ii. if μ < 0, then b > −∞;

iii. if μ = 0, then σ 2 > 0 and either B < ∞, or b > −∞, or both.

The logic behind these restrictions is as follows. Suppose the drift is
positive, μ > 0. As b → −∞ with B fixed, the probability that the lower
threshold is reached first goes to zero, but the probability that the upper
threshold is reached approaches unity. Hence T is finite with probability
one. Moreover, the argument applies even if σ 2 = 0. However, if B = +∞
with b finite, there are outcome paths for which b is never reached, so T = ∞
with positive probability. An analogous argument applies for μ < 0 with b

and B reversed.
If μ = 0, clearly the variance σ 2 must be strictly positive. Thus, limits

as σ 2 ↓ 0 are well behaved if and only if μ �= 0. With μ = 0 it suffices if one
threshold is finite.



5.2. Expected Values for Wald Martingales 79

Theorem 5.1. Let X be a
(
μ, σ 2) Brownian motion; μ, σ 2, b, B satisfy

Assumption 5.1; the initial condition x satisfy b ≤ x ≤ B; and T be the
stopping time T = T (b) ∧ T (B). Then Prx [T < ∞]= 1.

Proof. If μ > 0 then B < ∞, so

Prx[T > t]≤ Prx[X(t) < B], all t ≥ 0.

If σ = 0, the right side is zero for all t > (B − x)/μ. If σ > 0,

Prx[X(t) < B]= FN(B; x + μt , σ 2t),

where FN(.; m, s2) denotes the c.d.f. for a normal distribution with parame-
ters (m, s2). Since μ > 0, the term on the right goes to zero as t → ∞.

If μ < 0 then b > −∞, and a symmetric argument applies.
If μ = 0 then σ 2 > 0, and |b| < ∞, |B| < ∞, or both. Suppose both

thresholds are finite. Then

Prx[T > t]≤ Prx[b < X(t) < B]

= FN(B; x , σ 2t) − FN(b; x , σ 2t).

Since σ 2 > 0, the right side goes to zero as t → ∞.
Suppose |B| < ∞ and b = −∞. As will be shown in Section 5.3, for any

finite b and T = T (b) ∧ T (B),

Prx [X(T ) = B]= x − b

B − b
.

As b → −∞ this probability goes to one. Hence Prx[T < ∞]= 1for b = −∞.
A similar argument hold if |b| < ∞.

5.2. Expected Values for Wald Martingales

Recall from Chapter 4 that for any ρ �= 0 and

q(ρ) ≡ ρμ + 1
2 (ρσ)2, (5.6)

the stochastic process

M(t ; ρ) ≡ exp {ρX(t) − q(ρ)t}, all t , (5.7)

is a Wald martingale with parameter ρ . For ρ = 0 let

M(t ; 0) ≡ lim
ρ↓0

1
ρ

[M(t ; ρ) − 1]

= X(t) − μt , all t . (5.8)
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In economic applications a discount rate r ≥ 0 is typically given, and the
issue is to find values ρ for which q(ρ) = r . From (5.6), these values are roots
of the quadratic

1
2σ 2R2 + μR − r = 0. (5.9)

If σ 2 > 0, these roots are

R1 = −μ − J

σ 2
≤ 0, R2 = −μ + J

σ 2
≥ 0, (5.10)

where

J ≡
(
μ2 + 2rσ 2

)1/2 ≥ |μ|. (5.11)

The associated Wald martingale is then given by (5.7) and (5.8) as Ri �= 0
or Ri = 0. There are three cases:

i. if r > 0, the roots are of opposite sign, R1 < 0 < R2;
ii. if r = 0 and μ �= 0, the roots are Ri = −2μ/σ 2 and Rj = 0, with the

allocation depending on the sign of μ; and
iii. if r = 0 and μ = 0, then R1 = R2 = 0 is a repeated root.

If σ 2 = 0, then (5.9) has one root, R = r/μ. Corresponding to this fact,
one root in (5.10) converges to a finite limit as σ ↓ 0, and the other diverges.
Hence for σ 2 = 0,

R1 = r

μ
≤ 0, and R2 is undefined, if μ < 0,

R2 = r

μ
≥ 0, and R1 is undefined, if μ > 0.

(5.12)

(If σ 2 = μ = 0, a case excluded by Assumption 5.1, then (5.9) has no so-
lution. Correspondingly, for μ = 0 both of the roots in (5.10) diverge as
σ ↓ 0.)

Notice that the roots depend on r , μ, and σ 2 only through their ratios.
Since changing the time unit—for example, measuring time in months
rather than years—requires proportional changes in

(
μ, σ 2, r

)
, such a

change leaves the roots unaltered.

Exercise 5.1. Describe the effect on
∣∣R1

∣∣, ∣∣R2
∣∣, and R2 − R1 of changes in

r , μ, and σ 2.

The next result shows that if both b and B are finite then the optional
stopping theorem applies to M . The assumption that both thresholds are



5.2. Expected Values for Wald Martingales 81

finite is strong, but it simplifies the proof. Cases with b = −∞ or B = +∞
are treated in Sections 5.4–5.7 with a different approach.

Theorem 5.2. Let the hypotheses of Theorem 5.1 hold, and in addition
assume |b|, |B| < ∞. Then

Ex

[
M(T ; Ri)

] = M(0; Ri) (5.13)

in the following cases:

a. if σ 2 > 0, r > 0, and Ri , i = 1, 2, are as defined in (5.10);
b. if σ 2 > 0, r = 0, and Ri = −2μ/σ 2;
c. if σ 2 = 0, r ≥ 0, and Ri = r/μ.

Proof. It has been shown already that M is a martingale and T is a stopping
time, so it suffices to show that the hypotheses of Theorem 4.4 hold:

i. Pr {T < ∞} = 1,
ii. Ex

[∣∣M(T ; Ri)
∣∣] < ∞,

iii. limt→∞ Ex

[∣∣M(t ; Ri)
∣∣ I{T >t}

] = 0.

Theorem 5.1 establishes (i). For the other hypotheses there are several cases.
If σ 2 = 0 then Assumption 5.1 requires μ �= 0. X(t) is deterministic,

M(t ; Ri) = x is constant, and (ii)–(iii) follow immediately.
If σ 2 > 0 and Ri �= 0, let

Ai = max
{
eRib , eRiB

}
.

Then ∣∣M(T ; Ri)
∣∣ ≤ Aie

−rT ≤ Ai , all ω,

so (ii) holds. In addition
∣∣M(t ; Ri)

∣∣ < Ai , all t < T , so

lim
t→∞ Ex

[∣∣M(t ; Ri)
∣∣ I{T >t}

] ≤ Ai lim
t→∞ Prx [T > t]

= 0,

where the second line uses Theorem 5.1. Hence (iii) holds.
If σ 2 > 0 and Ri = 0, then μ = 0. Hence M(t ; 0) = X(t), and

|M(T ; 0)| = |X(T )| ≤ Ai = max {|b|, |B|}, all ω,

so (ii) holds. In addition |M(t ; 0)| < Ai, all t < T , and the argument for (iii)
is as before.
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5.3. The Functions ψ and �

Recall the functions ψ(x , b, B; r) and �(x , b, B; r) defined in (5.3), the
expected discounted values of indicator functions for reaching the lower
threshold before the upper one (ψ) and the reverse (�), and the functions
θ(x , b, B) and �(x , b, B), the probabilities of these events, respectively. In
this section explicit formulas are derived for these functions, and some
of their properties are established. The proofs here use Theorem 5.2, so
they require |b|, |B| < ∞. The results hold even without that assumption,
however, as will be seen later.

The following result characterizes ψ and � for r > 0.

Proposition 5.3. Let X be a
(
μ, σ 2)Brownian motion with initial condition

x ∈ [b, B], T be the stopping time T = T (b) ∧ T (B), and r > 0. If σ 2 > 0,
then

ψ(x , b, B; r) = eR1xeR2B − eR2xeR1B

eR1beR2B − eR2beR1B
,

�(x , b, B; r) = eR1beR2x − eR2beR1x

eR1beR2B − eR2beR1B
,

(5.14)

where R1 and R2 are defined in (5.10).

If σ 2 = 0 and μ �= 0, then

ψ(x , b, B; r) = 0, �(x , b, B; r) = eR2(x−B), if μ > 0,

ψ(x , b, B; r) = eR1(x−b), �(x , b, B; r) = 0, if μ < 0,

where R1 and R2 are defined in (5.12).

Proof. Suppose σ 2 > 0. Since r > 0, the roots in (5.10) are R1 < 0 < R2. Let
M(t ; Ri), i = 1, 2, be as in (5.7). Theorem 5.2 implies (5.13) holds for i =
1, 2. Break the expression on the left in (5.13) into two parts corresponding
to stops at the lower and upper thresholds, and substitute from (5.7) to
find that
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eRix = Ex

[
M(T ; Ri) | X(T ) = b

]
Prx [X(T ) = b]

+ Ex

[
M(T ; Ri) | X(T ) = B

]
Prx [X(T ) = B]

= Ex

[
exp

{
RiX(T ) − q(Ri)T

} | X(T ) = b
]

Prx [X(T ) = b]

+ Ex

[
exp

{
RiX(T ) − q(Ri)T

} | X(T ) = B
]

Prx [X(T ) = B]

= eRibEx

[
e−rT | X(T ) = b

]
Prx [X(T ) = b]

+ eRiBEx

[
e−rT | X(T ) = B

]
Prx [X(T ) = B]

= eRibψ(x , b, B) + eRiB�(x , b, B), i = 1, 2, x ∈ [b, B]. (5.15)

This pair of linear equations in ψ(x) and �(x) has the solution in (5.14).
If σ 2 = 0, let R1 or R2 be the one root in (5.12). Apply the argument

above to the one (relevant) threshold to get the solution.

Figure 5.1 displays the function ψ(x , b, B) for b = 0, B = 2, r = 0.05,
μ = 0.2, and σ = 1, and also shows the effect of changes in the parameters
r , μ, and σ . The function is in all cases decreasing, with ψ(b) = 1 and

Figure 5.1. The expected discounted indicator for T = T (b), for b = 0 and B = 2.
The baseline parameter values are r = 0.05, μ = 0.2, and σ = 1.
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ψ(B) = 0. Notice that parameter changes alter ψ(x) through three channels:
by changing the probability that b is reached before B, by changing the time
elapsed before b is reached, and by changing the discounting before b is
reached. An increase in the interest rate r bends the curve downward by
increasing the discounting. An increase in μ reduces the probability that
the lower threshold is reached first, and on paths where b is still reached
first, it increases the time. A reduction in σ has similar effects.

For r = 0, the functions ψ and � are simply the probabilities that the
lower and upper thresholds are reached first, the functions θ(x , b, B) and
�(x , b, B) defined in (5.4). An analogous argument provides closed forms
for these functions.

Proposition 5.4. Let X be a
(
μ, σ 2)Brownian motion with initial condition

x ∈ [b, B], and let T be the stopping time T = T (b) ∧ T (B). If σ 2 > 0, then

θ(x , b, B) = e−δB − e−δx

e−δB − e−δb
,

�(x , b, B) = e−δx − e−δb

e−δB − e−δb
, if μ �= 0,

(5.16)

where δ ≡ 2μ/σ 2, and

θ(x , b, B) = B − x

B − b
,

�(x , b, B) = x − b

B − b
, if μ = 0.

If σ 2 = 0 and μ �= 0, then

θ(x , b, B) = 0, �(x , b, B) = 1, if μ > 0,

θ(x , b, B) = 1, �(x , b, B) = 0, if μ < 0.

Proof. In all cases Theorem 5.1 implies

1= θ(x , b, B) + �(x , b, B). (5.17)

If σ 2 = 0, the result is immediate. If σ 2 > 0, recall that for r = 0 the roots in
(5.10) are Ri = −δ and Rj = 0. Theorem 5.2 applies to the root Ri = −δ, so

e−δx = e−δbθ(x , b, B) + e−δB�(x , b, B), if μ �= 0,

x = bθ(x , b, B) + B�(x , b, B), if μ = 0.

This equation and (5.17) are a linear pair whose solution is in (5.16).
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Figure 5.2. The probability that T = T (b), for b = −3, B = 3, and various
δ = 2μ/σ .

Figure 5.2 displays the function θ(x , b, B) for b = −3, B = +3, and
various values for δ. The function is decreasing, with θ(b) = 1 and θ(B) = 0.
For δ = 0 the function is linear. Positive values for δ bow the function ever
more strongly downward, and negative values (not shown) bow it upward.
The function �(x , b, B) = 1 − θ(x , b, B) is the complement of the one
displayed.

The functions ψ and � have several important properties. All of these
hold for r = 0, so θ and � have these properties as well. First, notice that
they can be written in terms of just the differences (x − b) and (x − B) (and
their difference, (B − b)):

ψ(x , b, B) = eR1(x−B) − eR2(x−B)

eR1(b−B) − eR2(b−B)
,

�(x , b, B) = eR1(x−b) − eR2(x−b)

eR1(B−b) − eR2(B−b)
, x ∈ [b, B].

(5.18)

Since X is a Brownian motion, its increments do not depend on its current
level, so translating x , b, and B leaves ψ and � unchanged. Thus, it is clear
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from (5.18) that

ψb + ψx + ψB = 0, �b + �x + �B = 0. (5.19)

Next, note that ψb(x) is the effect of an increase in the threshold b on
the expected discounted value of an indicator function for reaching the
threshold b before B is reached, given the initial state x. Proposition 5.5
shows that ψb(x) is equal to the effect of the change conditional on arriving
at b, ψb(b), multiplied by the conditioning factor ψ(x), which adjusts for the
probability that this event occurs and the appropriate discounting. It also
shows that conditional on x = b, increasing x and b together has no effect
on ψ . Similar conclusions hold for � and at B .

Proposition 5.5. For any r ≥ 0, the functions ψ and � satisfy

ψb(x) = ψ(x)ψb (b), �b (x) = ψ(x)�b (b),

ψB(x) = �(x)ψB(B), �B(x) = �(x)�B (B),

ψb(b) + ψx(b) = 0, �b(b) + �x(b) = 0,

ψB(B) + ψx(B) = 0, �B(B) + �x(B) = 0, x ∈ (b, B).

Proof. Suppose r > 0 and consider the claims for ψ , those in the first
column. The first follows immediately from (5.14) or (5.18). For the second
note that

ψ (x , b, B) = eR1xe(R2−R1)B − eR2x

eR1be(R2−R1)B − eR2b
,

so

ψB (x) =
(
R2 − R1

)
e(R2−R1)B

eR1be(R2−R1)B − eR2b

[
eR1x − ψ(x)eR1b

]
.

Since ψ(B) = 0, it follows that

ψB (B) =
(
R2 − R1

)
eR2B

eR1be(R2−R1)B − eR2b
.

Using the latter expression and (5.15) in the expression for ψB(x) estab-
lishes the second claim. Since ψ(b) = 1, it follows from the expression above
that ψB(b) = 0. Hence the third claim follows from (5.19). A similar argu-
ment establishes the fourth. Analogous arguments establish the claims for
� and those when r = 0.

The arguments in this section apply when the underlying process is
a Brownian motion, and similar arguments can be made for a geometric



5.4. ODEs for Brownian Motions 87

Brownian motion. But for more general diffusions a different approach is
needed, and cases with only one threshold are also treated more easily by
this second approach. This approach is developed for Brownian motions in
Sections 5.4–5.6, where it is used to derive the functions τ , L, and L̂, and is
extended to general diffusions in Sections 5.7–5.9.

5.4. ODEs for Brownian Motions

Let X be as in Section 5.3 and consider the function ψ(x). Fix an initial
state in the interior of the interval of interest, x ∈ (b, B), and consider an
increment of time h > 0 sufficiently small so that the probability of reaching
b or B is negligible. Then

ψ(x) ≈ e−rhEx

[
ψ(X(h))

]
, x ∈ (b, B),

where X(h) is the value of the state variable at date h. Use Ito’s lemma and
the approximation erh ≈ (1+ rh) to find that

(1+ rh) ψ(x) ≈ Ex

[
ψ(x) + ψ ′(x)�X + 1

2ψ ′′(x) (�X)2
]

≈ ψ(x) + ψ ′(x)μh + 1
2ψ ′′(x)σ 2h,

where �X = X(h) − x denotes the (random) increment to the state over
the time increment h. The approximation is arbitrarily good as h → 0, so

rψ(x) = μψ ′(x) + 1
2σ 2ψ ′′(x), x ∈ (b, B).

The boundary conditions are obviously ψ(b) = 1 and ψ(B) = 0. Use this ar-
gument with r = 0 for θ(x), and use a similar construction with the boundary
conditions reversed for �(x) and �(x).

For the function w(x) defined in (5.2) an analogous argument estab-
lishes that

w(x) ≈ g(x)h + 1
1+ rh

[
w(x) + w′(x)μh + 1

2w′′(x)σ 2h
]
,

so the relevant ODE is

rw(x) = g(x) + μw′(x) + 1
2σ 2w′′(x), x ∈ (b, B).

Clearly the boundary conditions are w(b) = w(B) = 0. For r = 0 and g(x) =
1, w(x) is the expected value of the stopping time, the function

τ(x , b, B) ≡ Ex [T (b) ∧ T (B)]

defined in (5.5).
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Thus, each example leads to an equation of the form

1
2σ 2f ′′(x) + μf ′(x) − rf (x) = −g(x), x ∈ (b, B), (5.20)

where the function g(x) is given. This equation, which is a second-order
linear ODE with fixed coefficients, is called a Hamilton-Jacobi-Bellman
equation. Equations of this type appear in many applications, with the
solution depending on the function g and the boundary conditions.

If σ 2 = 0 and μ �= 0, this equation is first order, with solution

f (x)e−(r/μ)x = c0 − 1
μ

∫ x

g(ξ)dξ ,

and if σ 2 = μ = 0, the solution is f (x) = g(x)/r . The arguments in the rest of
this chapter assume σ 2 > 0. It is also assumed throughout that g is piecewise
continuous, so it can be integrated.

5.5. Solutions for Brownian Motions When r = 0

If r = 0, (5.20) can be written as a first-order equation in the function φ ≡ f ′,

φ′(x) + δφ(x) = −2g(x)

σ 2
, x ∈ (b, B),

where as before δ ≡ 2μ/σ 2. Clearly solutions have the form

φ(x)eδx = c1 − 2
σ 2

∫ x

g(ξ)eδξdξ .

Integrate again to obtain f , and find that if r = 0 any solution to (5.20) has
the form

f (x) = c0 +
∫ x [

e−δzc1 − 2
σ 2

∫ z

g(ξ)eδ(ξ−z)dξ

]
dz, x ∈ [b, B]. (5.21)

As usual, the lower limits of integration in (5.21) can be chosen for conve-
nience, and the constants c0 and c1 are determined by boundary conditions.

Using b for both limits, reversing the order of integration, and using
the boundary condition at b to eliminate c0 gives
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f (x) = f (b) − 1
δ

(
e−δx − e−δb

)
c1 (5.22)

− 1
μ

∫ x

b

[
1− eδ(ξ−x)

]
g(ξ)dξ , if μ �= 0,

f (x) = f (b) + (x − b) c1 − 2
σ 2

∫ x

b

(x − ξ) g(ξ)dξ , if μ = 0,

where c1 is determined by the boundary condition at B . Reversing the roles
of b and B produces similar expressions.

For the function θ use g(.) ≡ 0 and the boundary conditions θ(b) = 1
and θ(B) = 0. For � reverse the boundary conditions.

Exercise 5.2. Verify that the solutions for θ and � obtained from (5.22)
agree with those in Proposition 5.4.

Notice that the argument here requires σ 2 > 0 but it does not
require Assumption 5.1. The results must be interpreted carefully if As-
sumption 5.1 fails, however. For example, suppose μ > 0. Then δ > 0, and
Assumption 5.1 allows b = −∞ but not B = +∞. Consider both cases. Since
limb→−∞ e−δb = +∞, (5.16) implies

lim
b→−∞ θ(x , b, B) = 0

lim
b→−∞ �(x , b, B) = 1, if μ > 0,

in agreement with Theorem 5.1. On the other hand limB→+∞ e−δB = 0, so
(5.16) implies

lim
B→+∞ θ(x , b, B) = e−δ(x−b) > 0,

lim
B→+∞ �(x , b, B) = 1− e−δ(x−b) > 0, if μ > 0.

Here �(x , b, +∞) > 0 is the probability that the lower threshold is never
reached. The situation is symmetric for μ < 0. If μ = 0 the probabilities go
to zero and one.

For the function τ defined in (5.5) use g(.) ≡ 1 and the boundary
conditions τ(b) = τ(B) = 0 to obtain

τ(x , b, B) = 1
μ

e−δx (B − b) − e−δb (B − x) − e−δB (x − b)

e−δB − e−δb
, if μ �= 0,

τ(x , b, B) = 1
σ 2

(B − x) (x − b), if μ = 0.

(5.23)
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Exercise 5.3. Use (5.21) or (5.22) to obtain (5.23).

Again, this expression holds even if one of the thresholds diverges. For
example, suppose the drift is positive. If the lower threshold diverges

lim
b→−∞ τ(x) = 1

μ
(B − x), if μ > 0,

so the expected first hitting time for B is finite. If the upper threshold
diverges

lim
B→+∞ τ(x) = lim

B→+∞
1
μ

[
1− e−δ(x−b)

]
B = +∞, if μ > 0.

Since the probability that b is never reached is positive, the expected time
is infinite. If μ = 0 then τ(x) → +∞ as either threshold diverges.

Figure 5.3 displays τ(x , b, B) for b = −3, B = +3, and various values for
δ. In each case τ is hump shaped, and higher values for δ flatten the hump.

Figure 5.3. The expected duration Ex[T ], for b = −3, B = 3, and various
δ = 2μ/σ.
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Finally, recall from Section 3.5 the function

m(A, T , ω) =
∫ T

0
1A (X (s , ω)) ds , all A ∈ B, t ≥ 0, ω ∈ �,

the undiscounted occupancy measure for the set A up to the stopping
time T . Here we are interested in the expected value of this occupancy
measure for sets of the form [b, z], for the stopping time T = T (b) ∧ T (B),
conditional on the initial state X(0) = x . Call this function

M(z; x , b, B) ≡ Ex

[∫ T (b)∧T (B)

0
1[b ,z](X(t)) dt

]

= Ex[m([b, z], T (b) ∧ T (B))].

For fixed x , M(. ; x , b, B) is like a c.d.f., with M(B; x , b, B) = τ(x , b, B).
To construct M , however, one must proceed the other way around, with

a fixed function g = 1[b ,z]. That is, fix z, b, and B and apply (5.22) with
g = 1[b ,z]and the boundary conditions M(z; b) = M(z; B) = 0. Doing so gives

M(z; x) = 1
μ

�(x)

[
(z − b) − 1

δ
e−δB

(
eδz − eδb

)]

− 1
μ

∫ min{x ,z}

b

[
1− eδ(ξ−x)

]
dξ , if μ �= 0,

M(z; x) = 1
σ 2

�(x) (z − b) [(B − z) + (B − b)]

− 2
σ 2

∫ min{x ,z}

b

(x − ξ) dξ , if μ = 0.

Note that M is continuous and is differentiable except at z = x.
The expected local time function L(.; x , b, B) is found by differentiating

M with respect to z. Hence

L(z; x , b, B) = 1
μ

{
�(x)

[
1− e−δ(B−z)

]
−
[
1− eδ min{(z−x), 0}]}, μ �= 0,

L(z; x , b, B) = 2
σ 2

[�(x) (B − z) + min {(z − x), 0}], μ = 0.

Note that L is continuous but has a kink at z = x. Figure 5.4a displays
L(.; x , b, B) for the thresholds b = −3 and B = 3 and initial conditions
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Figure 5.4. Expected local time, for b = −3, B = 3, and various x, with (a) μ = 0,
σ = 1, and (b) μ = 0.3, σ = 1.
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x = −2, 0, and 2, for the parameters μ = 0 and σ = 1. Figure 5.4b is a similar
plot for a positive drift parameter, μ = 0.3.

5.6. Solutions for Brownian Motions When r > 0

Similar constructions can be used when the discount rate is positive, when
r > 0. The main difference is that the differential equation (5.20) is second
order and requires a slightly different argument. Recall that all the solutions
of a second-order linear ODE can be written as

f (x) = fP (x) + a1h1(x) + a1h1(x),

where fP is any particular solution, h1, h2 are homogeneous solutions, and
a1, a2 are constants determined by the boundary conditions.

If r > 0 the homogeneous equation corresponding to (5.20) is

1
2σ 2f ′′(x) + μf ′(x) − rf (x) = 0.

Recall the constants R1, R2, and J defined in (5.10) and (5.11). With
r , σ 2 > 0 they satisfy R1 < 0 < R2 and J > 0. Clearly the functions

fi(x) = eRix , i = 1, 2,

are solutions of the homogeneous equation. In addition, since

1
2σ 2 (R2 − R1

) = J ,

it follows that

fP (x) = 1
J

[∫ x

eR1(x−z)g(z)dz +
∫

x

eR2(x−z)g(z)dz

]
is a particular solution of (5.20). Consequently, if σ 2 > 0 and r > 0, any
solution of (5.20) has the form

f (x) = 1
J

[∫ x

eR1(x−z)g(z)dz +
∫

x

eR2(x−z)g(z)dz

]
+ c1e

R1x + c2e
R2x . (5.24)

This equation can be solved—with different choices for g and the boundary
conditions—to obtain ψ , �, and L̂.

For the function ψ , use g(x) ≡ 0 and the boundary conditions ψ(b) = 1
and ψ(B) = 0. For �, reverse the boundary conditions.

Exercise 5.4. Verify that the solutions obtained from (5.24) for ψ and �

agree with those in Proposition 5.3.
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For the function w(x , b, B) defined in (5.2), g(.) is arbitrary and the
boundary conditions are w(b) = w(B) = 0. Use b and B for the limits of
integration in (5.24) to find that

w(x) = 1
J

[∫ B

x

eR2(x−z)g(z)dz +
∫ x

b

eR1(x−z)g(z)dz (5.25)

−�(x)

∫ B

b

eR1(B−z)g(z)dz − ψ(x)

∫ B

b

eR2(b−z)g(z)dz

]
.

Since (5.25) holds for any return function g , the expected discounted local
time function L̂(z; x , b, B; r) is

L̂(z; x , b, B; r) = 1
J

[
eRi(x−z) − �(x)eR1(B−z) − ψ(x)eR2(b−z)

]
,

where i =
{

1, if b ≤ z ≤ x,
2, if x ≤ z ≤ B.

Figure 5.5 shows the function L̂(z; x , b, B; r) for x = 0, b = −4, and
B = +4, for the baseline parameters r = 0.05, μ = 0.3, and σ = 1. It also
shows the effects of parameter changes.

Figure 5.5. Expected discounted local time, for x = 0, b = −4, and B = 4. The
baseline parameter values are r = 0.05, μ = 0.3, and σ = 1.
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The next result shows that the functions L̂ and w have the properties
established for ψ and � in Proposition 5.5. The interpretation here is also
the same. For example, the effect on w of a change in the threshold b,
conditional on the current state x , is the product of ψ(x) and the effect
of the change conditional on the state b. That is, wb(x) = ψ(x)wb(b). In
addition, conditional on x = b, increasing x and b together has no effect on
w. Similar conclusions hold for L̂(z; .), for any z, and at B .

Proposition 5.6. The functions L̂ and w satisfy

L̂b(z; x) = ψ(x)L̂b(z; b), L̂B(z; x) = �(x)L̂B(z; B),

L̂x(z; b) + L̂b(z; b) = 0, L̂x(z; B) + L̂B(z; B) = 0, z, x ∈ [b, B],

and
wb(x) = ψ(x)wb(b), wB(x) = �(x)wB(B),

wx(b) + wb(b) = 0, wx(B) + wB(B) = 0, x ∈ [b, B].

Proof. Since

L̂b(z; x) = − 1
J

[
�b(x)eR1(B−z) + ψb(x)eR2(b−z) + R2ψ(x)eR2(b−z)

]
,

the first claim follows immediately from Proposition 5.5. And for x = b < z,

L̂x(z; b) = 1
J

[
R2e

R2(b−z) − �x(b)eR1(B−z) − ψx(b)eR2(b−z)
]
,

so the second claim is also immediate from Proposition 5.5. Similar argu-
ments hold at B.

The claims for w then follow immediately from the fact that

w(x , b, B) =
∫ B

b

L̂(z; x , b, B)g(z)dz.

Next consider expected discounted returns over an infinite time hori-
zon. If r > 0 and |g| is bounded, then the integral in (5.2) is bounded as
T → ∞. Taking the limit in (5.25) as b → −∞ and B → ∞ gives

VP (x) ≡ Ex

[∫ ∞

0
e−rtg (X(t)) dt

]

= 1
J

∫ +∞

x

eR2(x−z)g(z)dz + 1
J

∫ x

−∞
eR1(x−z)g(z)dz. (5.26)

Equation (5.26) provides an interpretation for the roots R1 and R2. Given
the initial state x , states z < x in (5.26) are weighted by eR1(x−z)/J and states
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z > x by eR2(x−z)/J . Both exponential terms have negative signs, so
∣∣R1

∣∣ and∣∣R2
∣∣ measure how sharply more distant states are downweighted. Of course,

the weights satisfy

1
J

[∫ ∞

0
e−R2ζdζ +

∫ 0

−∞
e−R1ζdζ

]
= 1

J

(
1
R2

− 1
R1

)

= 1
r

,

reflecting the fact that for g(x) ≡ 1, (5.26) implies VP (x) = 1/r .
Figure 5.6 displays L̂(z; 0, −∞, +∞) = e−Riz/J for the parameters r =

0.05, μ = 0.3, and σ = 1. It also shows the effects of parameter changes. Note
that, in accord with the results in Exercise 5.1,

— an increase in the interest rate r downweights all states, and the
effect is greater for states farther from x;

— an increase in the variance σ 2 shifts weight away from states closer
to x toward states that are farther away; and

— if μ > 0, an increase in μ shifts weight away from states below x

toward states above it.

Figure 5.6. Expected discounted local time, for x = 0, b = −∞, and B = ∞. The
baseline parameter values are r = 0.05, μ = 0.3, and σ = 1.
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The assumptions r > 0 and |g| < M together insure that the integrals in
(5.26) are finite, so VP is well defined. With an infinite horizon r = 0 cannot
be allowed, for obvious reasons, but the restriction on g can be relaxed.
The next exercise shows that if VP (x) is finite for any x , then it is finite
everywhere.

Exercise 5.5. Let σ 2 > 0 and r > 0. Show that if
∣∣VP (x̂)

∣∣ < ∞, for any x̂ ,
then

∣∣VP (x)
∣∣ < ∞, all x.

In addition, it is easy to show that if g is continuous, then VP is twice
continuously differentiable. Differentiate (5.26) to find that

V ′
P
(x) = R1

J

∫ x

−∞
eR1(x−z)g(z)dz + R2

J

∫ +∞

x

eR2(x−z)g(z)dz

+ 1
J

[
lim
z↑x

g(x) − lim
z↓x

g(x)

]
.

If g is continuous at x, then the last term is zero, and

V ′′
P
(x) = R2

1

J

∫ x

−∞
eR1(x−z)g(z)dz + R2

2

J

∫ +∞

x

eR2(x−z)g(z)dz + R1 − R2

J
g(x).

The next result is useful in applications, where it is convenient to know
that VP has a unique local maximum.

Proposition 5.7. If g is continuous and single peaked and
∣∣VP (x)

∣∣ < ∞,
then VP is single peaked.

Proof. Note that VP satisfies (5.20):

g(x) = rVP (x) − μV ′
P
(x) − 1

2σ 2V ′′
P
(x), all x .

Suppose there exist values x1 < x2 < x3 such that x1 and x3 are local maxima
and x2 is a local minimum. Then

V ′
P
(xi) = 0, i = 1, 2, 3,

and

V ′′
P
(x2) ≥ 0, V ′′

P
(xi) ≤ 0, i = 1, 3,

so

g(x2) ≤ rVP (x2) ≤ rVP (xi) ≤ g(xi), i = 1, 3,

contradicting the assumption that g is single peaked.
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5.7. ODEs for Diffusions

For more general diffusions the approach in Sections 5.4–5.6 can be used to
characterize the functions ψ , � , w, and so on, rather sharply, even if closed-
form solutions are not generally available. Geometric Brownian motions and
Ornstein-Uhlenbeck processes provide useful examples. Not surprisingly,
the former deliver closed-form solutions that are closely related to those for
Brownian motions.

Assume that X(t) is a regular, stationary diffusion. That is,

i. its domain is an interval of the form (�, r), [�, r), (�, r], or [�, r],
where � = −∞ and r = +∞ are allowed if the endpoint is open;

ii. its infinitesimal parameters μ(x) and σ(x) are continuous functions,
with σ 2(x) > 0, all x; and

iii. for any points x , y in the interior of the state space,

Prx

[
T (y) < ∞]

> 0.

First note that the arguments leading to the ODE in (5.20) still apply.
The only change is that μ(x) and σ 2(x) are functions of the state. Thus, ψ ,
�, θ , �, w, and τ satisfy ODEs of the form

1
2σ 2(x)f ′′(x) + μ(x)f ′(x) − rf (x) = −g(x), x ∈ (b, B), (5.27)

where property (iii) for a diffusion insures σ 2(x) > 0, all x.

5.8. Solutions for Diffusions When r = 0

As before, if r = 0 (5.27) becomes a first-order equation:

φ′(x) + δ(x)φ(x) = −ĝ(x), x ∈ (b, B), (5.28)

where φ = f ′, and

δ(x) ≡ 2μ(x)

σ 2(x)
, ĝ(x) ≡ 2g(x)

σ 2(x)
.

For a Brownian motion δ(x) is constant and (5.28) has solutions of the form

φ(x)eδx = −
∫ x

ĝ(ξ)eδξdξ .

More generally,

s(x) = exp
{∫ x

δ(ξ)dξ

}
(5.29)
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is an integrating factor for (5.28). That is, (5.28) can be written as

d

dx

[
φ(x)s(x)

] = [
φ′(x) + δ(x)φ(x)

]
s(x)

= −ĝ(x)s(x),

where s(x) is in (5.29). Integrating and multiplying by 1/s(x) gives the
particular solution

φp(x) = −
∫ x

ĝ(ξ)
s(ξ)

s(x)
dξ .

In addition, solutions of the homogeneous equation corresponding to
(5.28) have the form

φh(x) = c1

s(x)
.

Hence any solution of (5.28) can be written as

φ(x) = c1

s(x)
−
∫ x

ĝ(ξ)
s(ξ)

s(x)
dξ , x ∈ (b, B).

Integrating again gives the function of interest. Thus, if r = 0, any solution
of (5.27) can be written as

f (x) = c0 +
∫ x [ c1

s(z)
−
∫ z

ĝ(ξ)
s(ξ)

s(z)
dξ

]
dz, x ∈ [b, B]. (5.30)

Note that (5.30) is a generalization of (5.21). As before, the lower limits of
integration can be chosen for convenience, and the constants c0 and c1 are
determined by boundary conditions.

Using b for both limits and reversing the order of integration gives∫ x

b

∫ z

b

ĝ(ξ)
s(ξ)

s(z)
dξ dz =

∫ x

b

ĝ(ξ)s(ξ) H(ξ , x)dξ ,

where

H(x , y) ≡
∫ y

x

s−1(ξ)dξ , b ≤ x ≤ y ≤ B .

Thus, if r = 0, any solution of (5.27) can be written as

f (x) = f (b) + c1H(b, x) −
∫ x

b

g(ξ)
2s(ξ)

σ 2(ξ)
H(ξ , x)dξ , (5.31)
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where g is returned to its original form and c1 is determined by the boundary
condition at B . Reversing the roles of b and B produces a similar expression.

It follows from (5.31) that

θ(x) = H(x , B)

H(b, B)
, �(x) = H(b, x)

H(b, B)
,

τ(x) = H(b, x)

H(b, B)

∫ B

b

2s(ξ)

σ 2(ξ)
H(ξ , B)dξ −

∫ x

b

2s(ξ)

σ 2(ξ)
H(ξ , x)dξ

= �(x)

∫ B

x

2s(ξ)

σ 2(ξ)
H(ξ , B)dξ + θ(x)

∫ x

b

2s(ξ)

σ 2(ξ)
H(b, ξ)dξ .

(5.32)

To determine the undiscounted expected occupancy measure and local
time, use the same procedure as in Section 5.5. Let M(z; x , b, B) denote
the expected occupancy measure for the set [b, z] up to the stopping time
T = T (b) ∧ T (B), conditional on the initial state X(0) = x . Recall that M

is calculated by fixing z, b, B , and using (5.31) with g = 1[b ,z] and the
boundary conditions M(z, b) = M(z, B) = 0. Hence

M(z; x) = H(b, x)

H(b, B)

∫ z

b

2s(ξ)

σ 2(ξ)
H(ξ , B)dξ −

∫ min{x ,z}

b

2s(ξ)

σ 2(ξ)
H(ξ , x)dξ

= θ(x)

∫ min{x ,z}

b

2s(ξ)

σ 2(ξ)
H(b, ξ)dξ + �(x)

∫ z

min{x ,z}
2s(ξ)

σ 2(ξ)
H(ξ , B)dξ .

The expected local time function is the derivative of M with respect to z:

L(z; x , b, B) = 2s(z)

σ 2(z)
×
{

θ(x)H(b, z), if z < x,
�(x)H(z, B), if z ≥ x.

Notice that L is continuous at z = x , but it has a kink at that point.

Exercise 5.6. (a) Verify that for a Brownian motion the expressions in
(5.32) for θ , �, and τ agree with those in (5.16) and (5.23).

(b) Verify that the expression above for L also agrees with the one
obtained earlier.

5.8.1. Geometric Brownian Motion

If X is a geometric Brownian motion with parameters μ̂, σ̂ 2, then δ(x) =
2μ̂/σ̂ 2x and σ 2(x) = (

σ̂ x
)2 . If μ̂ �= σ̂ 2/2, then

s(x) = x1−ω , H(x , y) = yω − xω

ω
,
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where ω ≡ 1− 2μ̂/σ̂ 2. Hence

θ(x) = Bω − xω

Bω − bω
, �(x) = xω − bω

Bω − bω
,

τ(x) = 1
μ̂ − σ̂ 2/2

[θ(x) ln b + �(x) ln B − ln x] ,

and

L(z; x , b, B) = 1
μ̂ − σ̂ 2/2

1
z

×
{

θ(x)
[
(b/z)ω − 1

]
, if z < x,

�(x)
[
1− (B/z)ω

]
, if z ≥ x.

If μ̂ = σ̂ 2/2, then δ(x) = 1/x , ω = 0, and

s(x) = x , H(x , y) = ln y − ln x .

Hence

θ(x) = ln B − ln x

ln B − ln b
, �(x) = ln x − ln b

ln B − ln b
,

τ(x) = 1
σ̂ 2

(ln B − ln x) (ln x − ln b) ,

and

L(z; x , b, B) = 1
σ̂ 2/2

1
z

×
{

θ(x) (ln z − ln b), if z < x,
�(x) (ln B − ln z), if z ≥ x.

Exercise 5.7. Let Y = ln X, where X is as above. Show that the expressions
above for θ , �, τ , and L agree with the corresponding functions for the
process Y .

5.8.2. Ornstein-Uhlenbeck Processes

For an Ornstein-Uhlenbeck process μ(x) = −αx , where α > 0, and σ 2 > 0 is
constant. Hence δ(x) = −2ηx , where η = α/σ 2 > 0. An integrating factor is

s(x) = exp
{
−
∫ x

2ηξdξ

}
= exp

{
−ηx2

}
,

so

H(x , y) =
∫ y

x

eηξ2
dξ .



102 5. Useful Formulas for Brownian Motions

Hence

θ(x) =
∫ B

x
eηξ2

dξ∫ B

b
eηξ2

dξ
, �(x) =

∫ x

b
eηξ2

dξ∫ B

b
eηξ2

dξ
, and so on.

5.9. Solutions for Diffusions When r > 0

If r > 0, solutions to (5.27) can be characterized by using the “variation of
parameters” method. Suppose that two linearly independent solutions f1, f2
of the homogeneous equation

1
2
σ 2(x)f ′′(x) + μ(x)f ′(x) − rf (x) = 0 (5.33)

have already been obtained. The ease or difficulty of this step depends on
the infinitesimal parameters μ(x) and σ(x).

If f1 and f2 are available, conjecture that (5.27) has a particular solution
of the form

fp(x) =
∑2

i=1
γi(x)fi(x),

where the γis are functions that must be determined. The key step is an
additional conjecture that γ1 and γ2 satisfy∑2

i=1
γ ′

i
(x)fi(x) = 0. (5.34)

If this conjecture is correct, then

f ′
p
(x) =

∑2

i=1
γi(x)f ′

i
(x),

f ′′
p
(x) =

∑2

i=1

[
γ ′

i
(x)f ′

i
(x) + γi(x)f ′′

i
(x)

]
.

Substitute fp and its derivatives into (5.27) and use the fact that fi , i = 1, 2,
satisfy (5.33). Most of the terms cancel, and what remains is

1
2
σ 2(x)

∑2

i=1
γ ′

i
(x)f ′

i
(x) = −g(x). (5.35)

Hence the conjecture is correct if functions γ1 and γ2 satisfying (5.34)
and (5.35) can be found. That is, γ ′

1 and γ ′
2 must satisfy(

f1(x) f2(x)

f ′
1(x) f ′

2(x)

) (
γ ′

1(x)

γ ′
2(x)

)
=
(

0
−ĝ(x)

)
, x ∈ (b, B),
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where as before ĝ(x) ≡ 2g(x)/σ 2(x). Hence

γ ′
1(x) = f2(x)ĝ(x)

W(f1, f2)(x)
, γ ′

2(x) = − f1(x)ĝ(x)

W(f1, f2)(x)
,

where

W(f1, f2)(x) ≡ f1(x)f ′
2(x) − f ′

1(x)f2(x), x ∈ (b, B),

is the Wronskian. Integrate to get

γ1(x , b) =
∫ x

b

f2(z)ĝ(z)

W(f1, f2)(z)
dz,

γ2(x , B) =
∫ B

x

f1(z)ĝ(z)

W(f1, f2)(z)
dz,

(5.36)

where the limits of integration have been chosen in a specific way. Sum the
particular and homogeneous solutions to find that if f1, f2 satisfy (5.33),
then any solution to (5.27) can be written as

f (x , b, B) = [
γ1(x , b) + c1

]
f1(x)

+ [
γ2(x , B) + c2

]
f2(x), x ∈ (b, B),

(5.37)

where γ1, γ2 are defined in (5.36), and c1, c2 incorporate the constant terms
from (5.36). Note that while f1 and f2 are functions of x only, γ1 and γ2 each
depend in addition on one threshold.

For the function ψ use ĝ(.) ≡ 0 and the boundary conditions ψ(b) = 1
and ψ(B) = 0, and for � reverse the boundary conditions. In either case
γ1 = γ2 = 0, so (5.37) implies

ψ(x , b, B) = 1
D

[
f1(x)f2(B) − f1(B)f2(x)

]
,

�(x , b, B) = 1
D

[
f1(b)f2(x) − f1(x)f2(b)

]
,

(5.38)

where

D ≡ f1(b)f2(B) − f1(B)f2(b).

For the function w(x), ĝ(.) in (5.36) is arbitrary, and the boundary
conditions are w(b) = w(B) = 0. Hence c1 and c2 satisfy(

f1(b) f2(b)

f1(B) f2(B)

) (
c1

c2

)
=
( −γ2(b, B)f2(b)

−γ1(B , b)f1(B)

)
.
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Solve for the constants and use the expressions above for ψ and � to find
that

w(x , b, B) = γ1(x , b)f1(x) + γ2(x , B)f2(x)

− �(x , b, B)γ1(B , b)f1(B) − ψ(x , b, B)γ2(b, B)f2(b).
(5.39)

The next result shows that for any regular diffusion ψ , � , L̂, and w

have the properties established in Propositions 5.5 and 5.6 for a Brownian
motion. The interpretations are as before.

Proposition 5.8. The functions f = ψ , � , L̂ (z; .), and w satisfy

fb(x) = ψ(x)fb (b), fB(x) = �(x)fB(B), x ∈ (b, B),

fb(b) + fx(b) = 0, fB(B) + fx(B) = 0.

Proof. Use (5.36) and evaluate the derivatives in (5.38) and (5.39).

Exercise 5.8. Show that

fi(x) = fi(b)ψ(x , b, B) + fi(B)�(x , b, B), i = 1, 2.

The expected value over an infinite horizon can be found by taking
limits in (5.39) as b → −∞ and B → +∞:

VP (x) ≡ Ex

[∫ ∞

0
e−rtg (X(t)) dt

]

= f1(x)

∫ x

−∞
f2(z)ĝ(z)

W(f1, f2)(z)
dz + f2(x)

∫ ∞

x

f1(z)ĝ(z)

W(f1, f2)(z)
dz.

5.9.1. Geometric Brownian Motion

For a geometric Brownian motion with parameters μ̂ and σ̂ 2 > 0, the solu-
tions of the homogenous equation (5.33) are

fi(x) = xRi, i = 1, 2,

where R1 < 0 < R2 are the roots of the quadratic

1
2
σ̂ 2R2 +

(
μ̂ − 1

2
σ̂ 2
)

R − r = 0.
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Hence

R1 = − 1
2

[(
μ̂ − σ̂ 2/2

)
+ J

]
< 0,

R2 = 1
2

[
−
(
μ̂ − σ̂ 2/2

)
+ J

]
> 0,

where

J ≡
√(

μ̂ − σ̂ 2/2
)2 − 2σ̂ 2r ,

and

ψ(x) = xR1BR2 − BR1xR2

bR1BR2 − BR1bR2
,

�(x) = bR1xR2 − xR1bR2

bR1BR2 − BR1bR2
.

The Wronskian in this case is

W(f1, f2)(x) ≡ (
R2 − R1

)
xR1+R2−1,

and ĝ(z) = 2g(z)/
(
σ̂ z

)2, so

γ1(x , b) = 1
J

∫ x

b

z−R1−1g(z)dz,

γ2(x , B) = 1
J

∫ B

x

z−R2−1g(z)dz,

where

1
J

= 1
R2 − R1

1
σ̂ 2/2

.

Hence for a geometric Brownian motion

w(x) = 1
J

[∫ x

b

(
x

z

)R1

g(z)
dz

z
+
∫ B

x

(
x

z

)R2

g(z)
dz

z

−�(x)

∫ B

b

(
B

z

)R1

g(z)
dz

z
− ψ(x)

∫ B

b

(
b

z

)R2

g(z)
dz

z

]
.
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Since this holds for any return function g , it follows that the expected
discounted local time function L̂ is

L̂(z; x , b, B; r) = 1
z

1
J

[(
x

z

)Ri

− �(x)

(
B

z

)R1

− ψ(x)

(
b

z

)R2
]

,

where i =
{

1, if b ≤ z ≤ x,
2, if x < z ≤ B.

Exercise 5.9. Let Y = ln X, where X is a geometric Brownian motion. Show
that the expressions for ψ, �, and w above agree with those in (5.18) and
(5.25). What is the relationship between the roots for the two processes?

5.9.2. Ornstein-Uhlenbeck Processes

An Ornstein-Uhlenbeck process has drift μ(x) = −αx and variance σ 2 > 0,
so (5.33) takes the form

1
2σ 2f ′′(x) − αxf ′(x) − rf (x) = 0. (5.40)

Although this equation does not have a closed-form solution, it is easy to
verify that if h satisfies

1
2σ 2h′′(x) + αxh′(x) + (α − r) h(x) = 0,

then

f (x) = h(x)eηx2
,

where η = α/σ 2, is a solution of (5.40).

Notes

The arguments in Section 5.1–5.3 follow Harrison (1985, Sections 1.5 and
3.2), where the term Wald martingale is introduced, and the arguments in
Sections 5.4–5.9 follow Karlin and Taylor (1981, Section 15.3). Borodin and
Salminen (2002) is a useful compendium of a vast number of formulas
related to Brownian motion.
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6
Exercising an Option

In the presence of a fixed cost of adjustment, optimally exercising control
has two aspects: deciding at what point(s) action should be taken and
choosing what the action(s) should be. In this chapter the simplest example
of this sort is studied, the problem of exercising a one-time option of infinite
duration. The option problem is simple because action is taken only once
and the action itself is fixed, so the only issue is timing—deciding when,
if ever, to exercise the option. Its simplicity makes this problem a useful
introduction to methods that are applicable more broadly.

Two approaches are studied. The first uses the functions L̂ and ψ

defined in Chapter 5. Recall that L̂(z; x , b, B) is the expected discounted
local time of a stochastic process at level z before the stopping time T =
T (b) ∧ T (B), given the initial state x ∈ [b, B], and ψ(x , b, B) is the expected
discounted value of an indicator function for the event T = T (b). The
option problem involves only a lower threshold, so B = +∞ and stops at
an upper threshold are not involved. The expected discounted return from
an arbitrary threshold policy can be written in terms L̂ and ψ , and finding
the optimal policy then involves a straightforward maximization over the
threshold value b.

The second approach uses the Hamilton-Jacobi-Bellman (HJB) equa-
tion for the firm’s problem. Recall from Chapter 3 that the HJB equation
is the stochastic analog to a continuous-time Bellman equation. The dif-
ference is that the variance term makes the HJB equation a second-order
ordinary differential equation (ODE), while the Bellman equation is first
order. The second approach involves determining appropriate boundary
conditions for this ODE and solving it.

While mechanically quite different from each other, the two approaches
are closely related. The connections between them are discussed after both
have been studied in detail.

109
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The rest of the chapter is organized as follows. In Section 6.1 a deter-
ministic version of the problem is studied using several approaches: as a
control problem formulated in terms of the date when action should be
taken, as a control problem formulated in terms of a threshold value for
the state where action should be taken, and in terms of a Bellman equa-
tion. The second and third approaches are analogs of those used for the
stochastic problem studied next. In Section 6.2 the stochastic problem is
analyzed using the functions L̂ and ψ , and in Section 6.3 it is studied using
the HJB equation. The connections between the two are then discussed, and
Section 6.4 concludes with an example.

6.1. The Deterministic Problem

Consider a plant that generates a profit flow as long as it is operated. Profits
depend on a state variable X(t) that can reflect demand or plant capacity
or both. The state has a stationary law of motion, which for now is assumed
to be deterministic and linear,

X(t) = x0 + μt , all t ≥ 0, (6.1)

where the initial state X(0) = x0 is given. X(t) could be interpreted as the
log of the capital stock, with depreciation at the constant rate δ = −μ > 0,
in a setting with time-invariant demand. Or X(t) could be interpreted as a
measure of demand, which falls at the rate |μ| .

Let π(x) be the net profit flow from operating the plant if the current
state is x. The function π is time invariant, and it is defined net of operating
costs for labor, materials, and other inputs. Let r > 0 be the (constant)
interest rate.

The plant can be shut down at any time, and it cannot be reopened
after it has been closed. When the plant is shut down it has a salvage value S,
which might represent the scrap value of the capital stock. For now suppose
that this value is independent of the state X(t) at the time of the closing.
The objective of the firm is to choose a shutdown policy that maximizes the
discounted value of total returns: the profits from operating the plant plus
the salvage value when it is shut down. Thus, the value from following an
optimal policy, given the initial state x0, is

V (x0) ≡ sup
T ≥0

[∫ T

0
e−rtπ(X(t))dt + e−rT S

]
, (6.2)

where X(t) is as in (6.1), and T = +∞ if the firm chooses to operate the
plant forever.
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The primitives for the problem are the constants r , μ, and S and the
function π . The following assumption will be used throughout the chapter.

Assumption 6.1. (i) r > 0, μ < 0, S > 0;
(ii) π(.) is bounded, continuous, and strictly increasing, with

lim
x→−∞ π(x) < rS < lim

x→+∞ π(x).

Part (ii) of the assumption insures that it is optimal to shut down immedi-
ately if the initial state is sufficiently low and to continue operating—at least
for a while—if it is sufficiently high.

The restriction μ < 0 is needed to avoid corner solutions of the follow-
ing sort. If μ > 0 the incentive to continue operating grows over time, so it
is never optimal to operate for a finite length of time and then shut down.
The following exercise shows that the optimal shutdown time is T ∗ = 0 or
+∞ if μ > 0.

Exercise 6.1. Let r , π , and S satisfy Assumption 6.1, and consider the
problem in (6.2). Show that if μ ≥ 0 there is a critical value xc with the
following property:

if x < xc, the unique optimal policy is to shut down immediately, T ∗ = 0;
if x > xc, the unique optimal policy is to operate the plant forever,

T ∗ = +∞;
if x = xc, then both T ∗ = 0 and T ∗ = ∞ are optimal policies, and

if μ > 0 there are no others;
if μ = 0 any choice of T is optimal.

Under Assumption 6.1 the optimal policy is unique and involves operat-
ing for a finite length of time. To see this, note that the first-order condition
for an optimum in (6.2) is

e−rT ∗ [
π(X(T ∗)) − rS

] ≤ 0, with equality if T ∗ > 0. (6.3)

The expression in brackets in (6.3) represents the effects of operating a little
longer: the additional profit flow less the foregone interest on the salvage
value. At an interior optimum the two are equal. Under Assumption 6.1
there is a unique value b∗ satisfying

π(b∗) − rS = 0, (6.4)

and since π is increasing and μ < 0, the problem is concave. Hence for any
initial state x the unique optimal shutdown date is
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T ∗ =
{

0, if x < b∗,(
b∗ − x

)
/μ, if x ≥ b∗,

and the value function V is

V (x) =
{

S , if x < b∗,∫ (b∗−x)/μ
0 e−rtπ(X(t))dt + e−(b∗−x)r/μS , if x ≥ b∗,

where for notational simplicity the subscript on the initial state x has been
dropped.

The approach above involves using the shutdown date T as the control
variable, but the form for the optimal policy suggests that it may be simpler
to formulate the problem in terms of a critical value b for the state variable.
To start, note that since π is increasing and μ < 0, the optimal policy is a
threshold policy. For the threshold b, call the interval (−∞, b]the action (or
shutdown) region and (b, +∞) the inaction (or continuation) region.

Fix the initial state x and suppose the firm uses a threshold policy with
critical value b ≤ x . Let F(x , b) denote the returns from this policy, and use
the change of variable ξ = x + μt to write the problem in (6.2) as

V (x) ≡ max
b≤x

F (x , b)

= max
b≤x

[
1

−μ

∫ x

b

e(x−ξ)r/μπ(ξ)dξ + e(x−b)r/μS

]
. (6.5)

The following result characterizes the solution.

Proposition 6.1. Let r , μ, S, and π satisfy Assumption 6.1 and let X be as
in (6.1). The solution to the problem in (6.5) is

b = min
{
x , b∗},

where b∗ is defined in (6.4). The associated value function is

V (x) =
{

S , if x < b∗,
−μ−1

∫ x

b∗ e(x−ξ)r/μπ(ξ)dξ + e(x−b∗)r/μS , if x ≥ b∗.
(6.6)

Proof. The first-order condition for an optimum in (6.5) is

∂F (x , b)

∂b
= 1

μ
e(x−b)r/μ [π(b) − rS]≥ 0, with equality if b < x . (6.7)

If x ≥ b∗, then b = b∗ and this condition holds with equality. If x < b∗, then
b = x and it holds with strict inequality.
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Thus, the optimal policy is

i. if x ≤ b∗, shut down immediately; and
ii. if x > b∗, operate until the state reaches b∗ and then shut down.

There is a third approach to this problem as well, which uses the Bellman
equation. As before, begin by noting that the policy takes the form of a
threshold. Let x be the initial state and fix a threshold b ≤ x . If b < x then
the firm continues operating for a while, so for any sufficiently small time
interval h the value from this policy, call it F(x , b), satisfies

F(x , b) =
∫ h

0
e−rtπ(X(t))dt + e−rhF (X(h), b)

≈ π(x)h + 1
1+ rh

[
F(x , b) + μhFx(x , b)

]
,

where X(t) in the first line is as in (6.1), the second line uses a first-order
Taylor series approximation to F(X(h), b), and Fx(x , b) ≡ ∂F (x , b)/∂x . Re-
arrange terms, divide by h, and let h → 0 to get the Bellman equation,

rF (x , b) = π(x) + μFx(x , b). (6.8)

Since b is fixed, (6.8) is a first-order ODE. In addition F(., b) satisfies

lim
x↓b

F (x , b) = S . (6.9)

Integrate (6.8) and use the boundary condition in (6.9) to obtain the
function F(x , b) in (6.5).

In the preceding argument b is fixed and arbitrary. An optimal policy
involves choosing b to maximize F(x , b), which as before leads to the first-
order condition in (6.7) involving ∂F/∂b. But notice from (6.5) that

−Fb(x , b) = −e(x−b)r/μ 1
μ

[π(b) − rS]

= −e(x−b)r/μFb(b, b)

= +e(x−b)r/μFx(b, b), all b ≤ x , all x . (6.10)

The interpretation is as follows. Suppose the firm uses the threshold policy
b. For the first line in (6.10), note that a small negative perturbation of the
threshold, by −ε < 0, delays the closing of the plant by ε/(−μ) > 0 units of
time. Over this interval the firm collects profits at the rate π(b) but loses
interest on the salvage value at the rate rS . If the initial state is x > b, the
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threshold b is reached at date t = (x − b)/(−μ) > 0, and these changes in
the firm’s revenue must be appropriately discounted.

For the second line in (6.10), the interpretation is the same, except
that the initial state is at the boundary, x = b. The discount factor must be
appended to equate the second line with the first.

For the third line, suppose again that the initial state is x = b. A small
positive perturbation of the state, by ε > 0, also delays the closing of the
firm by ε/(−μ) > 0 units of time, changing net revenue in the same way as
a negative perturbation to the threshold.

Thus, conditional on x = b, positive perturbations of the state and
negative perturbations of the threshold have identical effects. If x > b, a
negative perturbation of the threshold also has the same effect, except that
it is discounted.

It follows from (6.10) that the critical value b∗ in (6.4) satisfies

∂F (x , b∗)
∂x

|x=b∗ = 1
μ

[
π(b∗) − rS

] = 0. (6.11)

In contrast to (6.7), which involves a derivative with respect to the threshold
b holding the state x fixed, (6.11) involves a derivative with respect to the
state x, evaluated at x = b∗, holding the threshold fixed. Hence, among all
solutions F(., b) to the ODE in (6.8) with the boundary condition in (6.9),
the optimized value function V = F(., b∗) is the one that in addition has the
property in (6.11): Fx(b

∗, b∗) = V ′(b∗) = 0. The following result formalizes
this conclusion.

Proposition 6.2. Let r , μ, S, and π satisfy Assumption 6.1 and let X be as
in (6.1). The function V and threshold b∗ defined in (6.6) and (6.7) have
the following properties:

i. V satisfies

rV (x) = π(x) + μV ′(x), x > b∗, (6.12)

V (x) = S , x ≤ b∗;

ii. V is continuous at b∗:

lim
x↓b∗ V (x) = S; (6.13)

iii. V ′ is continuous at b∗:

lim
x↓b∗ V ′(x) = 0. (6.14)
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Proof. There is a family of solutions to (6.12) and (6.13) indexed by b, the
functions F(., b) in (6.5). The unique member of this family that in addition
satisfies (6.14) is the one with b = b∗, where b∗ is defined by (6.4).

To summarize, there are two ways to arrive at the function F(x , b)

in (6.5), which describes the expected discounted value from using the
arbitrary threshold policy b, given the initial state x . The first begins with
the integral over time in (6.2) and converts it into the integral over states
in (6.5). The second uses the fact that for any b, the function F(., b) satisfies
the Bellman equation in (6.8) on (b, +∞), with the boundary condition
in (6.9).

There are also two ways to characterize the optimal threshold b∗. The
first involves maximizing F(x , b) with respect to b, as in (6.5), to get the first-
order condition in (6.7), a condition on ∂F/∂b. The second involves using
(6.10) to replace (6.7) with (6.11), a condition on the derivative ∂F/∂x,
evaluated at x = b.

Proposition 6.1 uses the first methods and Proposition 6.2 the second.
The following exercise extends the model to allow the salvage value S(x)

to depend on the state.

Exercise 6.2. Let r , μ, and π satisfy Assumption 6.1, and assume in addition
that

i. S(x) is bounded and continuously differentiable, and
ii. the function

φ(x) ≡ π(x) + μS ′(x) − rS(x)

is strictly increasing in x, with

lim
x→−∞ φ(x) < 0 < lim

x→+∞ φ(x).

Use all three approaches to characterize the value function and optimal
policy for the shutdown problem

V (x) ≡ sup
T ≥0

[∫ T

0
e−rtπ(X(t))dt + e−rT S(X(T ))

]
,

where X(t) is as in (6.1), with X(0) = x . What is the interpretation of the
inequality restriction in (ii)?
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6.2. The Stochastic Problem: A Direct Approach

Next, suppose that r , μ, S, and π satisfy Assumption 6.1, but that the state
variable X(t) is a Brownian motion with parameters μ and σ 2 > 0. The
methods used in Propositions 6.1 and 6.2 to solve the deterministic problem
can be applied in this case as well, requiring only modest modification to
accommodate the fact that X(t) is a stochastic process.

Begin by noticing that an optimal policy for the stochastic model has two
basic properties. First, since the problem is stationary, it is clear that if an
optimal policy requires (allows) shutting down in state b, it requires (allows)
shutting down the first time the process reaches state b. Hence we can limit
our attention to threshold policies. For any b, let T (b) be the stopping time
defined as the first time X(t) takes the value b.

Second, since π is increasing and μ < 0, an optimal policy cannot
involve waiting for the state to increase and then shutting down. Thus, as
in the deterministic case, the optimal policy is characterized by a single
threshold b, a lower bound on the region in the state space where the plant
continues operating. As before this threshold divides the state space into
an action region (−∞, b] and an inaction region (b, ∞). Hence the firm’s
problem can be written as

v(x) = sup
b≤x

Ex

[∫ T (b)

0
e−rtπ(X(t))dt + e−rT (b)S

]
, (6.15)

where Ex[.]denotes an expectation conditional on the initial state.
Consider the expected return from an arbitrary policy. Let f (x , b) be

the total expected discounted return, given the initial state X(0) = x, from
a policy of operating until the first time the state reaches b ≤ x and then
shutting down,

f (x , b) ≡ Ex

[∫ T (b)

0
e−rtπ(X(t))dt + e−rT (b)S

]

=
∫ ∞

b

L̂(ξ ; x , b, ∞)π(ξ)dξ + ψ(x , b, ∞)S

= 1
J

[∫ x

b

eR1(x−ξ)π(ξ)dξ +
∫ ∞

x

eR2(x−ξ)π(ξ)dξ (6.16)

−eR1(x−b)

∫ ∞

b

eR2(b−ξ)π(ξ)dξ

]
+ eR1(x−b)S , all b ≤ x ,



6.2. The Stochastic Problem: A Direct Approach 117

where the second line uses the expected discounted local time function L̂ to
replace the expectation of the integral over time with an integral over states
and uses ψ in place of Ex

[
e−rT (b)

]
; the third line uses the expressions for

L̂ and ψ in Sections 5.3 and 5.6; and the constants J > 0 and R1 < 0 < R2,
which depend on the parameters r , μ, and σ 2, were defined in Section 5.2.
The first two terms in brackets in (6.16) represent the expected returns from
operating the plant forever, neglecting profits that accrue when the state is
below b, and the third subtracts the portion of those expected returns that
accrues after b has been reached for the first time. The last term is the salvage
value.

The firm’s problem is then

v(x) = max
b≤x

f (x , b),

so the first-order condition for a maximum at b ≤ x is

0 ≤ ∂f (x , b)

∂b

=
∫ ∞

b

L̂b(ξ ; x , b, ∞)π(ξ)dξ + ψb(x , b, ∞)S ,

= ψ(x , b, ∞)

[∫ ∞

b

L̂b(ξ ; b, b, ∞)π(ξ)dξ + ψb(b, b, ∞)S

]

= eR1(x−b)

[(
R1 − R2

) 1
J

∫ ∞

b

eR2(b−ξ)π(ξ)dξ − R1S

]
, (6.17)

with equality if b < x ,

where the second line uses the fact that L̂(b; x , b, ∞) = 0, and the third
uses Propositions 5.5 and 5.6. Note that L̂b < 0 and ψb > 0, since raising
the threshold decreases the expected discounted local time at every level
and advances the time when the threshold is reached. Correspondingly, the
first term in brackets in (6.17) is negative, representing the reduction in
expected operating profits from increasing the shutdown threshold. These
are profits that would have accrued along sample paths where the state fell
almost to b but not quite. Along these paths, the state variable can rise to
any level before falling again to b, so a small increase in the threshold strictly
reduces the expected discounted local time at every level exceeding b. The
second term, which is positive, represents the increase in the expected
salvage revenue from shutting down earlier.
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For the stochastic problem, b∗ is the value for which the term in square
brackets in (6.17) is equal to zero. To establish the existence of a solution,
note that

R1 − R2

R1

1
J

=
(

1
R2

− 1
R1

)
R2

J
= R2

r
,

and define

�(b) ≡ R2

∫ ∞

b

eR2(b−ξ)π(ξ)dξ

= R2

∫ ∞

0
e−R2ζπ(b + ζ )dζ .

Then (6.17) can be written as

−�(b) + rS ≥ 0, with equality if b < x , (6.18)

and the critical value b∗ satisfies

�(b∗) − rS = 0. (6.19)

Under Assumption 6.1, � is increasing, since π is, and in addition

lim
b→−∞ �(b) < rS < lim

b→+∞ �(b).

Hence (6.19) has a unique solution and f is concave in b at b∗. Then (6.18)
implies that if the initial state x exceeds b∗, the constraint b ≤ x is slack and
b = b∗. Otherwise the constraint binds and b = x . The following proposition
summarizes these arguments.

Proposition 6.3. Let r , μ, S, and π satisfy Assumption 6.1, and let X be a
Brownian motion with parameters μ and σ 2 > 0. Then there exists a unique
value b∗ satisfying (6.19), and the optimal policy for the problem in (6.15) is

b = min
{
x , b∗}.

The value from this policy is

v(x) = S , x ≤ b∗,

v(x) = 1
J

∫ ∞

x

eR2(x−ξ)π(ξ)dξ + 1
J

∫ x

b∗
eR1(x−ξ)π(ξ)dξ

− eR1(x−b∗) 1
J

∫ ∞

b∗
eR2(b∗−ξ)π(ξ)dξ + eR1(x−b∗)S , x > b∗.

(6.20)
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Thus, the optimal policy is

i. if x ≤ b∗, shut down immediately;
ii. if x > b∗, operate until the first time the state reaches b∗ and then

shut down.

The following exercise looks at the relationship between the stochastic
and deterministic problems.

Exercise 6.3. Show that the function f in (6.16) and the first-order con-
dition (6.17) for the stochastic problem converge to their respective deter-
ministic counterparts (6.5) and (6.7) as σ 2 → 0.

6.3. Using the Hamilton-Jacobi-Bellman Equation

The stochastic problem, like the deterministic one, can also be analyzed by
solving an appropriate ODE. As before, begin by noting that the optimal
shutdown region has the form (−∞, b]. Fix any initial state x and any
candidate threshold b ≤ x, and let f (x , b) be the return from the policy
of operating until b is reached and then shutting down. If x > b the policy
requires that operation be continued, at least for a while. In this case let h

be a time interval that is short enough so that the probability of shutting
down before h is negligible. Then

f (x , b) ≈ Ex

[∫ h

0
e−rtπ(X(t))dt + e−rhf (X(h), b)

]

≈ π(x)h + 1
1+ rh

[
f (x , b) + fx(x , b)μh + 1

2
fxx(x , b)σ 2h

]
,

where the second lines uses a second-order Taylor series approximation
to f (X(h), b) and an application of Ito’s lemma, as in Section 5.4. The
argument is like the one for the deterministic problem, except that a second-
order approximation is needed to capture the variance term in �X. Re-
arrange terms, divide by h, and let h → 0 to get

rf (x , b) = π(x) + μfx(x , b) + 1
2σ 2fxx(x , b), all x > b. (6.21)

With b fixed, this equation is a second-order linear ODE with constant
coefficients, and it has exactly the same form as those in Section 5.6.

Recall from Chapter 5 the function

vP (x) ≡ Ex

[∫ ∞

0
e−rtπ(X(t))dt

]
, all x ,



120 6. Exercising an Option

the expected discounted value if the plant is operated forever. Under As-
sumption 6.1, π is bounded and r > 0, so vP is bounded. As shown in
Chapter 5, the function vP is a particular solution of (6.21), and the func-
tions hi(x) = eRix , i = 1, 2, are homogeneous solutions. Hence any solution
has the form

f (x , b) = vP (x) + c1e
R1x + c2e

R2x, (6.22)

where c1, c2 are constants that must be determined from boundary condi-
tions. For the upper boundary, note that as x → ∞ the stopping time T (b)

diverges to +∞. Hence for any b

lim
x→∞

[
f (x , b) − vP (x)

] = 0. (6.23)

Since R2 > 0 it follows that c2 = 0. For the lower boundary, note that for
x ≤ b the policy involves stopping immediately, so

f (x , b) = S , x ≤ b. (6.24)

Use this fact at x = b to conclude that

c1 = e−R1b
[
S − vP (b)

]
.

Hence for any b,

f (x , b) =
{

S , x ≤ b,
vP (x) + eR1(x−b)

[
S − vP (b)

]
, x > b.

(6.25)

When the firm shuts down it receives the salvage value S but loses the
remaining profit stream vP (b). Hence for any fixed b the value of a firm
that uses b for its threshold can be written as the value of operating forever,
the term vP (x), plus the expected discounted net gain from shutting down.

So far the threshold b has been arbitrary. Given x, the firm’s problem
is to choose the threshold b to maximize f (x , b),

v(x) = max
b≤x

f (x , b)

= vP (x) + max
b≤x

eR1(x−b)
[
S − vP (b)

]
. (6.26)

Hence the condition for a maximum at b is

0 ≤ ∂f (x , b)

∂b

= −eR1(x−b)
{
v′
P
(b) + R1

[
S − vP (b)

]}
, with equality if b < x . (6.27)
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Substituting the expressions in Section 5.6 for vP and v′
P

in (6.27) repro-
duces (6.17). As before b∗ is the value for which (6.27) holds with equality.

Note that the maximized value of the second term in (6.26) is the value
of the option to shut down in the present context or the value of exercising
control in more general settings. Clearly for x ≥ b∗,

p(x) = eR1(x−b∗) [S − vP (b∗)
]

is the price of the option in an appropriate market setting. Note that the
term

[
S − vP (b∗)

]
is positive, reflecting the fact that the firm has the option

to remain open. That is, a necessary condition for exercising control is
that doing so raises the total return. The following exercise verifies that the
approach in (6.26) leads to the solution obtained earlier.

Exercise 6.4. (a) Verify that substituting for vP and v′
P

in (6.27) produces
(6.17).

(b) Show that
[
S − vP (b∗)

]
> 0.

Note that

eR1(x−b) = ψ(x , b, ∞) = Ex

[
e−rT (b)

]
,

so f can be written as

f (x , b) = vP (x) + ψ(x , b, ∞)
[
S − vP (b)

]
, all b ≤ x , all x . (6.28)

Recall from Proposition 5.5 that for any b, B,

−ψx(b, b, B) = ψb(b, b, B),

ψb(x , b, B) = ψ(x , b, B)ψb(b, b, B), x ∈ (b, B) .
(6.29)

Use (6.28) and the first line in (6.29) to find that, as in the deterministic
model,

−∂f (x , b)

∂b
|x=b = +∂f (x , b)

∂x
|x=b , all b. (6.30)

The interpretation of this fact is as before. Fix a threshold b, suppose that the
state is at the threshold, x = b, and consider the effect of a small increase
h in the state. The firm operates longer and receipt of the salvage value
is delayed. Alternatively, reducing the threshold by h has exactly the same
effect.



122 6. Exercising an Option

Then use (6.28) again with the second line in (6.29) to find that

∂f (x , b)

∂b
= ψb(x , b, ∞)

[
S − vP (b)

] − ψ(x , b, ∞)v′
P
(b)

= ψ(x , b, ∞)
{
ψb(b, b, ∞)

[
S − vP (b)

] − v′
P
(b)

}
= ψ(x , b, ∞)

∂f (x , b)

∂b
|x=b , all b ≤ x , all x . (6.31)

In the stochastic environment the function ψ plays the role of a discount
factor: the effect of a change in the threshold b if the current state is x is
the change it has when b is reached, adjusted for the expected discounted
time until that event occurs.

Combine (6.30) and (6.31) to conclude that

fb(x , b∗) = 0, all x ≥ b∗ ⇐⇒ fx(b
∗, b∗) = 0.

Hence the condition fx(b
∗, b∗) = 0 provides a convenient method for char-

acterizing b∗. Specifically, among all functions f (x , b) satisfying (6.23) and
(6.24), the optimized value function v = f (., b∗) is the one that has the
additional property fx(b

∗, b∗) = 0. The following result summarizes these
conclusions.

Proposition 6.4. Let r , μ, S, and π satisfy Assumption 6.1, and let X be
a Brownian motion with parameters μ and σ 2 > 0. The threshold b∗ and
function v defined in (6.19) and (6.20) have the following properties:

i. v satisfies

rv(x) = π (x) + μv′(x) + 1
2σ 2v′′(x), x > b∗, (6.32)

v(x) = S , x ≤ b∗;

ii. v has the limiting property

lim
x→∞

[
v(x) − vP (x)

] = 0; (6.33)

iii. v is continuous at b∗,

lim
x↓b∗ v(x) = S; and (6.34)

iv. the derivative of v is continuous at b∗,

lim
x↓b∗ v′(x) = 0. (6.35)
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Proof. There is a family of solutions to (6.32)–(6.34), indexed by b, and
they are as in (6.25). The only member of this family that in addition satisfies
(6.35) is the one with b = b∗, where b∗ is defined by (6.19).

Condition (6.34) is called the value matching condition and (6.35) is called
the smooth pasting condition. Call (6.33) the no bubble condition. Thus, an
alternative way to solve for the optimal value function v and threshold b∗ is
by using the HJB equation (6.32) together with the boundary conditions in
(6.33)–(6.35).

For a heuristic argument that leads to the smooth pasting condition,
suppose the threshold b has been chosen and the state is x = b, and consider
the expected returns from two strategies: (i) shutting down immediately,
and (ii) continuing to operate for a short interval of time h and then
deciding what to do. The return from the first strategy is simply �1 =
S . The return from the latter can be calculated using the random walk
approximation described in Section 3.4. The payoff π(b) is collected over
the time interval h, and then a decision is made. The increment to the state
over h is

�X = ±σ
√

h,

and the probability of an upward jump is

p = 1
2

[
1+ μ

√
h

σ

]
.

Assume that at the end of the time interval h, the firm keeps the plant open
if X has increased and shuts it down if X has decreased. Then the expected
return from the second strategy is approximately

�2 = π(b)h + (1− rh)
[
pf (b + σ

√
h, b) + (1− p)S

]
.

Use a Taylor series expansion to evaluate f and find that

pf
(
b + σ

√
h, b

)
+ (1− p)S ≈ p

[
f (b, b) + fx(b, b)σ

√
h
]

+ (1− p)S

= S + pfx(b, b)σ
√

h,
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where the second line uses the value matching condition f (b, b) = S. Hence
the difference between the two payoffs is approximately

�2 − �1 = π(b)h + (1− rh)
[
S + pfx(b, b)σ

√
h
]

− S

≈ [π(b) − rS]h + pfx(b, b)σ
√

h

≈ 1
2fx(b, b)σ

√
h,

where the second line drops terms of order higher than h and the third
drops those of order higher than

√
h. If the threshold b is optimal, the firm is

indifferent between the two strategies. This is true if and only if the threshold
satisfies

fx(b
∗, b∗) = 0,

which is exactly the smooth pasting condition (6.35).
As in the deterministic model, there are two ways to characterize the

function f. For the stochastic model the first uses the functions L̂ and ψ ,
while the second starts with the HJB equation.

There are also two methods for characterizing the optimal threshold
b∗. The first involves a derivative of f (x , b) with respect to b. The second
uses Proposition 5.5 to replace fb(x , b∗) with the smooth pasting conditions
fx(b

∗, b∗) = 0.
The next two exercises look at the effects of parameters changes in the

shutdown problem and at a start-up problem that is the mirror image of the
one studied here.

Exercise 6.5. (a) Describe the qualitative effects of small changes in the
parameters μ, σ 2, S, and r on the optimal threshold b∗ and the maximized
value function v.

(b) Describe the qualitative effect of each of these parameters on the
expected length of time until the option is exercised, conditional on a fixed
initial condition x0 > b.

Exercise 6.6. Consider an unemployed worker who continuously receives
wage offers. Suppose that the stochastic process {X(t)} describes these of-
fers. The worker can accept a job at any time. When he does accept an offer,
his wage remains constant forever afterward. The worker receives an unem-
ployment benefit s (a flow) as long as he remains unemployed. The worker
lives forever and is interested in maximizing the expected discounted value
of his lifetime income, discounted at the constant rate r > 0.
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(a) Describe his optimal strategy when X(t) is a Brownian motion with
parameters

(
μ, σ 2). What restrictions (if any) are needed to make the prob-

lem well behaved?
(b) Repeat (a) assuming that X(t) is an Ornstein-Uhlenbeck process

with parameters
(
α , σ 2).

6.4. An Example

Suppose the profit function is

π(x) = aeηx ,

with a > 0 and 0 < η < R2. Then Assumption 6.1 holds for any salvage value
S > 0. In addition

vP (x) = a

J

[∫ ∞

0
e−R2zeη(x+z)dz +

∫ 0

−∞
e−R1zeη(x+z)dz

]
= aCeηx ,

where the restriction on η insures that

C ≡ 1
J

[
1

R2 − η
− 1

R1 − η

]
> 0

is finite.
Hence for an arbitrary threshold b, the value function is

f (x , b) = vP (x) + eR1(x−b)
[
S − vP (b)

]
= aCeηx + eR1(x−b)

[
S − aCeηb

]
.

Figure 6.1 displays the function f (x , b) for x ∈ [31, 41]and b ∈ [30, 40], for
the parameter values

μ = −.001, σ = 10, r = .045,

a = .03, η = .02, S = 4.

For high values of x, f (x , b) exceeds S and is strictly concave in b over the
displayed range. For intermediate values of x it exceeds S, is strictly concave
in b for b < x, and is constant at f (x , b) = S for b > x . For low values of x

and b, with b < x, the function lies below S, rising to S at b = x .
The optimal threshold b∗ solves

0 = (
R1 − η

)
aCeηb∗ − R1S ,
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Figure 6.1. The value function f (x , b), for μ = −0.001, σ = 10, r = 0.045,
a = 0.03, η = 0.02, and S = 4.

so

b∗ = 1
η

ln
(

S

aC

R1

R1 − η

)

= 1
η

ln

(
rS

a

R2 − η

R2

)
= 34.69.

The restriction on η insures that there is a solution, and the value function is

v(x) = f (x , b∗) = aCeηx + eR1(x−b∗)
[
S − aCeηb∗]

.

Figure 6.2 displays three cross sections of f, for b1 < b∗ < b2. Notice that
f (., b∗) lies above the other two curves and is smooth at x = b∗, that f (., b1)

falls below S and has a kink at x = b1, and that f (., b2) has a kink at x = b2.
Figure 6.3 displays vP , v, and two additional functions. Note that v

approaches vP from above as x gets large. If the no bubble condition (6.33)
is ignored, then for any threshold b, the constants c1 and c2 in (6.22) can be
chosen so that the value matching and smooth pasting conditions (6.34) and
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Figure 6.2. Cross sections of f (x , b), for thresholds b1 < b∗ < b2.

Figure 6.3. Solutions to the Hamilton-Jacobi-Bellman equation for various boundary
conditions.
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(6.35) hold. Figure 6.3 displays two such “pseudo-value functions” f1 and f2,
for b1 < b∗ < b2. Both are similar to v except that neither approaches vP as
x → +∞.

Notes

The literature on option pricing in financial markets is vast. See Duffie
(1988, 1996) and the references there for an introduction. Cox and Ross
(1976) and Cox, Ross, and Rubinstein (1979) are early and highly readable
treatments based on discrete approximations to a Brownian motion.

Option theory has been employed in a wide variety of other areas as well.
For example, see MacDonald and Siegel (1985, 1986) for applications to
the timing of entry and exit—investment and shutting down; see Weisbrod
(1964), Arrow and Fisher (1974), and Henry (1974) for applications to
environmental protection; and see Brennan and Schwartz (1985) for the
role of option values in assessing natural resource projects.



7
Models with Fixed Costs

In the option problem of Chapter 6 the fact that the option can be exer-
cised only once acts like a fixed cost. In other settings action can be taken
many times, but there is an explicit fixed cost of adjustment. The methods
used to analyze the option problem can readily be extended to this class. The
problem of optimally exercising control is then more complicated in two re-
spects, however. First, the size of the adjustment must be chosen. In addition,
because action is taken repeatedly, decisions must be forward looking in a
more complex sense, anticipating future actions by the decision maker as
well as changes in the economic environment. A stochastic version of the
menu cost model studied by Sheshinski and Weiss (1977, 1983) and others
provides an example.

In the menu cost model the profit flow of a firm depends on the price
of its own product relative to a general price index. The general price index
follows a geometric Brownian motion, and the firm’s problem is to choose a
policy for changing the nominal price of its own product. Changing the price
is assumed to entail a fixed cost, interpreted as the time cost of managerial
decision making as well as the cost of printing a new menu, but no variable
costs. As will be shown below, under fairly mild restrictions the optimal
policy has the following form: there is an inaction region (b, B) and a return
point S ∈ (b, B). While the relative price remains inside the inaction region
the firm does nothing. When the relative price leaves this region the firm
immediately adjusts its nominal price so that the relative price is equal to
the return value S .

Action is taken repeatedly in the menu cost model, and long-run av-
erages under the optimal policy can also be described. For example, the
fraction of adjustments at each threshold, the average time between adjust-
ments, and the long-run density for relative price can all be calculated. In
similar settings with a large number of agents experiencing i.i.d. shocks (not

129
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a sensible assumption for the menu cost model) these averages can also be
interpreted as cross-sectional averages in the stationary distribution.

The model can also be extended to allow the occasional arrival of op-
portunities to adjust without paying the fixed cost. The method for incor-
porating such shocks, which are modeled as having Poisson arrivals, is also
described.

The rest of the chapter is organized as follows. In Section 7.1 the model
is set up, feasible policies are described, the problem is formulated in a recur-
sive way that exploits stationarity, and the optimized value function is shown
to be bounded. Section 7.2 develops two more preliminary results, providing
conditions under which the optimal policy involves exercising control and
showing that there is a single inaction region. In Section 7.3 the expected
discounted local time function L̂ and the expected discounted indicator
functions ψ and � are used to characterize the optimal policy and value
function. In Section 7.4 the Hamilton-Jacobi-Bellman equation is used to
obtain the solution, and long-run averages are described. In Section 7.5
exogenous opportunities for costless adjustment are discussed. Section
7.6 contains an example.

7.1. A Menu Cost Model

Consider a firm whose profit flow at any date t depends on the ratio of its
own nominal price to an aggregate (industrywide or economywide) price
index, where the latter is a geometric Brownian motion. It is convenient to
work with the prices in log form. Let p(t) be the log of the firm’s nominal
price and p(t) the log of the aggregate price index. The latter is a Brownian
motion with initial value p(0) = p0 on a filtered space (�, F, Q). All of
the stochastic processes for prices, profits, and so on developed below are
defined on this space.

The initial value for the firm’s (log) nominal price p0 is given. The
firm can change its nominal price at any time, but to do so it must pay a
fixed adjustment cost c > 0. This cost is constant over time and measured
in real terms. Because control entails a fixed cost, the firm adjusts the price
only occasionally and by discrete amounts. That is, it chooses an increasing
sequence of stopping times 0 ≤ T1 ≤2< . . . ≤ Ti < . . . , the (random) dates
at which it adjusts its nominal price.

Since the profit flow at any date depends only on the firm’s relative
price, the problem can be formulated in terms of that one state variable.
Doing so streamlines the notation and focuses attention on the economically
interesting aspects of the problem. Let

Z(t) ≡ p(t) − p(t), all t ≥ 0, all ω,
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with initial value z0 ≡ p0 − p0, be the log of the firm’s relative price at date t .
At each stopping time Ti when the firm adjusts its nominal price, it in effect
chooses a value zi for its relative price. Thus, in addition to the sequence
of stopping times the firm chooses a sequence of random variables

{
zi

}∞
i=1,

where zi(ω) is the (log) relative price set at Ti(ω).
Formally, γ = {(

Ti , zi

)}∞
i=1 is an impulse control policy if

i. 0 ≤ T1 ≤ T2 < . . . ≤ Ti < . . . are stopping times, and
ii. each zi is FTi

−measurable.

Note that these requirements involve the filtration F. The first states that at
any date t it must be possible for the decision maker to tell whether Ti has
occurred, and the second states that the price set at Ti(ω) can depend only
on information available at that date. Let � be the set of all impulse control
policies.

At each stopping time Ti(ω), the firm’s relative price Z(t) jumps to the
targeted level zi(ω), and during the subsequent (random) time interval
[Ti , Ti+1) the increments to Z(t) mirror—with a sign change—the incre-
ments to p(t). Thus, given the initial value Z(0) = z0 and an impulse control
policy γ = {(

Ti , zi

)}∞
i=1, the stochastic process for the firm’s relative price is

Z(t) = zi − [
p(t) − p(Ti)

]
, t ∈ [Ti , Ti+1), i = 0, 1, 2, . . . , all ω, (7.1)

where T0 ≡ 0. Requirements (i) and (ii) on γ insure that Z(t) satisfies the
measurability conditions for a stochastic process. Since p(t) is a Brownian
motion, over each interval [Ti , Ti+1) the relative price Z(t) also behaves like
a Brownian motion. Let

(−μ, σ 2) be the parameters of the process p, so that
Z has parameters

(
μ, σ 2).

The profit flow of the firm, π(z), is a stationary function of its relative
price z, and profits are discounted at a constant interest rate r . The following
restrictions on π , r , c and the parameters μ, σ 2 insure that the problem is
well behaved.

Assumption 7.1. (i) r , c, σ 2 > 0;
(ii) π is continuous and is strictly increasing on (−∞, 0) and strictly

decreasing on (0, ∞).

The assumption that π is single peaked insures that the optimal policy is
unique and involves only one inaction region. The assumption that the peak
is at z = 0 is simply a convenient normalization.
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Given an initial state z0 and an impulse control policy γ ∈ �, let H(z0; γ )

be the expected discounted value of total returns:

H(z0; γ ) ≡ Ez0

{∫ T1

T0

e−rtπ[Z(t)]dt +
∞∑
i=1

[
−e−rTic +

∫ Ti+1

Ti

e−rtπ[Z(t)]dt

]}
,

where Z(t) is as in (7.1). Under the stated assumptions on γ and r , c, π , the
integrals in this expression are well defined and the expected value exists
(although it may be −∞).

The firm’s problem is to maximize discounted returns net of adjustment
costs. Let v(z) be the maximized value for discounted returns, given the
initial state z. Then

v(z) ≡ sup
γ∈�

H(z; γ ), all z.

The following proposition establishes an important fact about v.

Proposition 7.1. Under Assumption 7.1 v is bounded.

Proof. Clearly H and v are bounded above by π(0)/r . For a bound from
below define the policy γ̂ as follows. Choose any a < s < A and let

zi(ω) = s , all i , ω,

T1 = 0,

Ti+1 = min
{
t > Ti: Z(t) �∈ (a , A)

}
, i = 1, 2, . . . .

Then

H(z; γ̂ ) = Ez

{ ∞∑
i=1

[
−e−rTic +

∫ Ti+1

Ti

e−rtπ(Z(t))dt

]}
≡ h0,

is finite and independent of z, so v ≥ h0.

With Proposition 7.1 established the firm’s problem can be stated in
a way that exploits recursivity. Since the environment is stationary, the
Principle of Optimality suggests that the value function v (and only v)
satisfies the Bellman equation

v(z) = sup
T ≥0, s

Ez

{∫ T

0
e−rtπ(Z(t))dt + e−rT [v(s) − c]

}
, all z, (7.2)

where T is a stopping time.
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Note that the recursive approach in (7.2), where v does not depend
directly on time, depends critically on the assumption that p is a Brownian
motion. Under this assumption the process

xi(s) = p(Ti + s) − p(Ti), s ∈ [0, Ti+1 − Ti),

has the same distribution for all i , ω, so the increments to Z in (7.1) have
the same distribution for any choice of stopping times. This would not be
true if p were a more general diffusion.

7.2. Preliminary Results

The optimal policy does not necessarily involve exercising control, and it is
useful to begin by describing conditions under which no control is exercised.
Let vP (z) be the expected returns over an infinite horizon if no control is
exercised,

vP (z) ≡ Ez

[∫ ∞

0
e−rtπ (Z(t)) dt

]

=
∫ ∞

−∞
L̂(ζ ; z, −∞, ∞)π(ζ )dζ

= 1
J

[∫ ∞

z

eR2(z−ζ )π(ζ )dζ +
∫ z

−∞
eR1(z−ζ )π(ζ )dζ

]
, all z,

where R1 < 0 < R2 and J > 0 are as defined in Section 5.2 and the second
line uses the results from Section 5.6. The next result provides necessary
and sufficient conditions for v = vP , for no control to be an optimal policy.

Proposition 7.2. Under Assumption 7.1, v = vP if and only if vP > −∞ and

inf
z

vP (z) ≥ sup
z

vP (z) − c. (7.3)

Proof. Suppose vP > −∞ and (7.3) holds. Then

v(z) = sup
T ≥0, s

Ez

{∫ T

0
e−rtπ(Z(t))dt + e−rT

[
vP (s) − c

]}

= vP (z) + sup
T ≥0

Ez

{
e−rT

[
sup

s

vP (s) − c − vP (Z(T ))

]}
= vP (z),
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where T is a stopping time, the second line uses the fact that since vP is
bounded, expected returns up to the stopping time T can be written as
vP (z)−Ez

[
e−rT vP (Z(T ))

]
, and the last line uses (7.3).

Conversely, suppose v = vP . Then by Proposition 7.1 vP is bounded,
and in addition vP satisfies (7.2). Since T = 0 is feasible, it follows that (7.3)
holds.

The idea behind this result is straightforward. If (7.3) holds, then the
function vP is very flat, varying by less than c between its minimum and its
maximum. Thus, the fixed cost is too large to justify even a single adjustment.
For the rest of the analysis the following assumption is used.

Assumption 7.2. Either vP = −∞ or

c < sup
z

vP (z) − inf
z

vP (z).

The next result establishes that under Assumptions 7.1 and 7.2 there
exist unique critical values b∗, B∗, with b∗ < 0 < B∗, that characterize the
optimal stopping times. Specifically, an optimal policy requires adjusting
immediately if the current state lies outside

(
b∗, B∗) and adjusting at T (b∗) ∧

T (B∗) otherwise. Notice that Assumption 7.2 rules out cases in which b∗ =
−∞ and B∗ = ∞, but it allows cases in which only one threshold is finite.

Proposition 7.3. Under Assumptions 7.1 and 7.2 there exist b∗ < 0 < B∗,
with

∣∣b∗∣∣ < ∞, B∗ < ∞, or both, with the following property: the unique
optimal stopping time in (7.2) is T = 0 for z �∈ (

b∗, B∗) and is T = T (b∗) ∧
T (B∗) for z ∈ (

b∗, B∗).
Proof. Adjusting at every point is not an optimal policy, so there is at least
one interval in R that is an inaction region. And by Proposition 7.2, T = ∞
is not an optimal policy, so there is at least one interval in R where the
firm adjusts immediately. Hence the optimal policy divides the real line into
alternating action and inaction regions. That is, there exist

. . . < bi−1 < Bi−1 < bi < Bi < bi+1 < Bi+1 < . . .

with the property that for all i,

T =
{

T (bi) ∧ T (Bi), all z ∈ (
bi , Bi

)
,

0, all z ∈ [
Bi , bi+1

]
.

Define

M ≡ sup
s

v(s) − c,
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and note that since π(z) has its maximum at z = 0,

M <
π(0)

r
− c.

Suppose the initial state is z0 = 0. Adjusting immediately would give a payoff
of M , while waiting for h > 0 units of time, for h small, gives an expected
payoff of approximately π(0)h + (1− rh) M . The difference between the
two returns is

� = h [π(0) − rM]> hrc > 0.

Hence z = 0 is inside an inaction region. Let b0 < 0 < B0 be the optimal
thresholds for z0 = 0.

Suppose there were another inaction region above B0. That is, sup-
pose the interval

(
b1, B1

)
is an inaction region, for some 0 < B0 < b1 < B1.

Consider an initial condition z ∈ (
b1, B1

)
. By using the stopping time T =

T (b1) ∧ T (B1) the firm gets the expected payoff

Ez

[∫ T

0
e−rsπ(Z(s))ds + e−rT M

]

< Ez

[
1
r

(
1− e−rT

)
π(b1) + e−rT M

]

= 1
r
π(b1) +

[
M − 1

r
π(b1)

]
Ez

[
e−rT

]
,

where the second line uses the fact that π is decreasing for z > 0. The return
from this policy exceeds the return M from adjusting immediately only if

1
r
π(b1) − M >

[
1
r
π(b1) − M

]
Ez

[
e−rT

]
.

Since Ez

[
e−rT

]
< 1, this inequality holds if and only if π

(
b1
)
> rM . But con-

sider an initial condition z ∈ (
B0, b1

)
. Since adjusting immediately delivers a

higher return than operating for a small increment of time h > 0 and then
adjusting,

hπ(z) + (1− rh) M < M , all z ∈ (
B0, b1

)
,

or π(z) < rM. Since π(z) is strictly decreasing for z > 0, these two conclusions
contradict each other.

A similar argument applies for intervals below b0. Hence there is a single
inaction region

(
b∗, B∗), and b∗ < 0 < B∗.
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Having established that there is a unique inaction region, the remain-
ing task is to characterize the critical values b∗, B∗, S∗. The next sections
examine two methods for doing so.

7.3. Optimizing: A Direct Approach

One method for characterizing the optimal policy is a direct approach like
the one used for the option problem. This method, which uses the functions
L̂, ψ , and � defined in Chapter 5, involves describing the expected value
from following an arbitrary policy b, B , S and then maximizing that value
in the usual way.

Fix any b, B , S with b < S < B, and let F(z, b, B , S) be the expected
discounted return from using the policy defined by these critical values.
Note that for z ∈ (b, B) the expected return from this policy can be written
as the sum of three parts: expected returns before the stopping time T =
T (b) ∧ T (B) and the expected continuation values after stops at b and B .
Hence F satisfies the Bellman-type equation

F(z, b, B , S) =

⎧⎪⎨⎪⎩
w(z, b, B) + [

ψ(z, b, B) + �(z, b, B)
]

× [F(S , b, B , S) − c] , if z ∈ (b, B)

F(S , b, B , S) − c, if z �∈ (b, B),

(7.4)

where

w(z, b, B) ≡ Ez

[∫ T

0
e−rsπ(Z(s))ds

]

=
∫ B

b

L̂(ζ ; z, b, B)π(ζ )dζ ,

ψ(z, b, B) ≡ Ez

[
e−rT | Z(T ) = b

]
Prz [Z(T ) = b],

�(z, b, B) ≡ Ez

[
e−rT | Z(T ) = B

]
Prz [Z(T ) = B],

are as defined in Chapter 5, and Ez [.]denotes an expectation conditional on
the initial value z. The firm’s problem is to choose b, B, and S to maximize
F, so

v(z) = max
b ,B ,S

F (z, b, B , S). (7.5)
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The optimal critical values b∗, B∗, and S∗ are characterized by first order con-
ditions obtained from (7.5). The following lemma establishes an important
fact about the first order conditions for the thresholds b∗ and B∗.

Lemma 7.4. Let Assumptions 7.1 and 7.2 hold.

i. Fix any M and b̂ < B . If

wb(z, b̂, B) +
[
ψb(z, b̂, B) + �b(z, b̂, B)

]
M = 0 (7.6)

holds for some z ∈ [b̂, B), then it holds for all z ∈ [b̂, B) and in
addition

wz(b̂, b̂, B) +
[
ψz(b̂, b̂, B) + �z(b̂, b̂, B)

]
M = 0.

ii. Fix any M and B̂ > b. If

wB(z, b, B̂) +
[
ψB(z, b, B̂) + �B(z, b, B̂)

]
M = 0 (7.7)

holds for some z ∈ (b, B̂], then it holds for all z ∈ (b, B̂] and in
addition

wz(B̂ , b, B̂) +
[
ψz(B̂ , b, B̂) + �z(B̂ , b, B̂)

]
M = 0.

Proof. i. Fix any M and b̂ < B . If (7.6) holds for ẑ ∈ [b̂, B), then

0 = wb(ẑ, b̂, B) +
[
ψb(ẑ, b̂, B) + �b(ẑ, b̂, B)

]
M

= ψ(ẑ)
{
wb(b̂, b̂, B) +

[
ψb(b̂, b̂, B) + �b(b̂, b̂, B)

]
M
}

= −ψ(ẑ)
{
wz(b̂, b̂, B) +

[
ψz(b̂, b̂, B) + �z(b̂, b̂, B)

]
M
}

,

where the second and third lines use Propositions 5.5 and 5.6. Since ψ(ẑ) > 0
for ẑ ∈ [b̂, B), the term in braces in the last line must be equal to zero.
Reversing the argument then implies (7.6) holds for all z ∈ [b̂, B).

ii. A similar argument establishes the claims here.

Lemma 7.4 implies that if the first-order condition Fb(z, b∗, B∗, S∗) = 0
holds for any z ∈ (

b∗, B∗), then it holds for all z ∈ (
b∗, B∗). That is, the

optimal threshold b∗ does not vary with z. The same is true for B∗. In
addition, the same is clearly true for the optimal return point: since S∗
maximizes the last term in (7.4), which is simply F(S), it is independent
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of the current state. The fact that the optimal critical values do not vary
with the current state is an immediate consequence of the Principle of
Optimality. Suppose that decision maker chooses b∗, B∗, and S∗ when the
state is z ∈ (

b∗, B∗). Suppose further that some time passes and neither
threshold has been reached. If the decision maker re-optimizes he should
choose the same thresholds and return point.

The next result uses Lemma 7.4 to characterize the optimal policy.

Proposition 7.5. Let Assumptions 7.1 and 7.2 hold. If b∗, B∗, S∗ attain the
maximum in (7.5), with b∗ and B∗ finite, then

wz(b
∗, b∗, B∗) + [

ψz(b
∗, b∗, B) + �z(b

∗, b∗, B∗)
]
M∗ = 0, (7.8)

wz(B
∗, b∗, B∗) + [

ψz(B
∗, b∗, B∗) + �z(B

∗, b∗, B∗)
]
M∗ = 0, (7.9)

wz(S
∗, b∗, B∗) + [

ψz(S
∗, b∗, B∗) + �z(S

∗, b∗, B∗)
]
M∗ = 0, (7.10)

where

M∗ = w(S∗, b∗, B∗) − c

1− ψ(S∗, b∗, B∗) − �(S∗, b∗, B∗)
. (7.11)

If b∗ = −∞, then

lim
z→−∞ π(z) ≥ rM∗ (7.12)

replaces (7.8). If B∗ = ∞, then

lim
z→∞ π(z) ≥ rM∗ (7.13)

replaces (7.9).

Proof. Suppose both b∗ and B∗ are finite. Then

v(z) =
{

w(z, b∗, B∗) + [
ψ(z, b∗, B∗) + �(z, b∗, B∗)

]
M∗, z ∈ (

b∗, B∗),
M∗, z �∈ (

b∗, B∗),
(7.14)

where M∗ ≡ v(S∗) − c. Then

M = w(S∗, b∗, B∗) + [
ψ(S∗, b∗, B∗) + �(S∗, b∗, B∗)

]
M∗ − c,

so (7.11) holds. Clearly v is differentiable, so a necessary condition for a
maximum at S∗ is v′(S∗) = 0. Hence (7.10) holds. A necessary condition for
the optimality of b∗ is (7.6), and by Lemma 7.4 it implies (7.8). Similarly,
(7.7) is necessary for the optimality of B∗, and it implies (7.9).
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If b∗ = −∞, then for any y > −∞,

0 > wb(z, y , B∗) + [
ψb(z, y , B∗) + �b(z, y , B∗)

]
M∗

= −ψ(z)
{
wz(y , y , B∗) + [

ψz(y , y , B∗) + �z(y , y , B∗)
]
M∗}, all z > y .

Taking the limit as y → −∞, this condition implies

0 ≤ lim
y→−∞

{
wz(y , y , B∗) + [

ψz(y , y , B∗) + �z(y , y , B∗)
]
M∗}. (7.15)

Consider the three terms in (7.15). Recall the constant J and roots R1, R2
defined in Section 5.2. Since

lim
y→−∞ wz(y , y , B∗) = R2 − R1

J
lim

y→−∞

∫ B∗

y

eR2(y−ξ)π(ξ)dξ ,

lim
y→−∞ ψz(y , y , B∗) = R1,

lim
y→−∞ �z(y , y , B∗) = 0,

it follows that (7.15) holds if and only if

0 ≤ R2 − R1

J
lim

y→−∞

∫ B∗

y

eR2(y−ξ)π(ξ)dξ + R1M
∗.

Since
(
R1 − R2

)
/R1J = R2/r , this condition holds if and only if

rM∗ ≤ lim
y→−∞

∫ B∗

y

R2e
R2(y−ξ)π(ξ)dξ ,

which in turn holds if and only if (7.12) is satisfied.
A similar argument establishes that (7.13) holds if B∗ = ∞.

Proposition 7.5 uses a direct approach to the firm’s problem, charac-
terizing the expected payoff from arbitrary policies and then optimizing.
Moreover, since the functions w, ψ , and � are known, (7.8)–(7.11) is simply
a system of four equations in the unknowns b∗, B∗, S∗, M∗. That system can
be used to study the effects of parameter changes analytically, and comput-
ing solutions numerically with it is relatively simple. There is an alternative,
however, which is examined next.
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7.4. Using the Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman (HJB) equation provides another approach
for studying value functions, both the optimized function v and the func-
tions F(., b, B , S) that describe expected returns from arbitrary policies.
Specifically, they all satisfy the HJB equation, differing only in their bound-
ary conditions. In each case the boundary conditions involve the continuity
of the value function at the thresholds b and B. The function v satisfies three
additional optimality conditions, one each for b, B, and S. Thus, the HJB
equation together with the appropriate boundary conditions provides a way
to construct any of these functions. This approach is perhaps less transpar-
ent than the one employing L̂, ψ , and �, but it has the advantage of being
more flexible. This additional flexibility is exploited in Chapter 8.

The HJB equation is derived, as usual, by looking at the value of a firm
with initial state Z(0) = z in the interior of the inaction region. Consider the
function v. For a sufficiently short interval of time h the value of the firm
can be written as

v(z) ≈ π(Z(0))h + 1
1+ rh

Ez [v(Z(0) + �Z)]

≈ π(z)h + 1
1+ rh

[
v(z) + μv′(z)h + 1

2
σ 2v′′(z)h

]
, (7.16)

where �Z denotes the (random) change in Z(t) over the time interval [0, h],
and the second line uses a second-order Taylor series approximation and
Ito’s lemma. Rearranging terms and taking the limit as h → 0 produces the
HJB equation.

The HJB equation is a second-order ODE, so two boundary conditions
are required to complete the solution. Three additional conditions are then
needed to determine b∗, B∗, and S∗. The following result describes these
boundary and optimality conditions.

Proposition 7.6. Let Assumptions 7.1 and 7.2 hold. Let v be the function
in (7.14) and let b∗, B∗, S∗ be the optimal policy. If b∗ and B∗ are finite, then

i. v satisfies

rv(z) = π(z) + μv′(z) + 1
2σ 2v′′(z), z ∈ (

b∗, B∗), (7.17)

v(z) = v(S∗) − c, z �∈ (
b∗, B∗); (7.18)

ii. v and v′ are continuous at b∗,

lim
z↓b∗ v(z) = v(S∗) − c, and lim

z↓b∗ v′(z) = 0; (7.19)
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iii. v and v′ are continuous at B∗,

lim
z↑B∗ v(z) = v(S∗) − c, and lim

z↑B∗ v′(z) = 0; (7.20)

iv. S∗ satisfies

v′(S∗) = 0. (7.21)

If b∗ = −∞, then instead of (7.19)

lim
z→−∞ v(z) = lim

z→−∞ vP (z) ≥ v(S∗) − c; (7.22)

and if B∗ = ∞, then instead of (7.20)

lim
z→∞ v(z) = lim

z→∞ vP (z) ≥ v(S∗) − c, (7.23)

where vP is as defined in Section 7.2.

Remark. Equation (7.17) is the HJB equation, which holds on the inaction
region, and (7.18) extends the value function outside that region. The
first conditions in (7.19) and (7.20), which state that v is continuous at
the thresholds b∗ and B∗, are the value matching conditions. The second
conditions in (7.19) and (7.20), which state that v′ is continuous at the
thresholds b∗ and B∗, are the smooth pasting conditions. The optimal return
condition in (7.21) characterizes the point S∗. The value matching and
smooth pasting conditions are as in the option problem of Chapter 6, except
that here there is an upper threshold as well as a lower one. The optimal
return condition is new. Since exercising the option was a one-time event,
it did not involve a return point.

Proof. Multiply (7.16) by (1+ rh), divide by h, and let h → 0 to find that v

satisfies (7.17). It is clear from (7.14) that (7.18) holds.
If both b∗ and B∗ are finite, then it is immediate from (7.14) that the

value matching conditions in (7.19) and (7.20) hold. In addition, since
(7.8)–(7.10) are satisfied, it follows that the smooth pasting conditions in
(7.19) and (7.20) and the optimal return condition in (7.10) also hold.

Suppose b∗ = −∞. Then (7.14) implies

lim
z→−∞ v(z) = lim

z→−∞{w(z, −∞, B∗)

+ [
ψ(z, −∞, B∗) + �(z, −∞, B∗)

] [
v(S∗) − c

]}
= vP (z) + (0 + 0)

[
v(S∗) − c

]
,
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so the first claim in (7.22) holds. The second follows immediately from the
hypothesis that b∗ = −∞ is the optimal policy.

A similar argument establishes the claims in (7.23).

The following corollary shows that some of these claims also hold for
the value functions F(., b, B , S) associated with arbitrary policies.

Corollary. Let b < S < B, with b and B finite, be an arbitrary policy, and
let F(., b, B , S) be the function in (7.4). Then F satisfies (7.17) and (7.18),
and it is continuous in z at b and B . If b = −∞ then the first condition in
(7.22) replaces continuity at b. If B = +∞ then the first condition in (7.23)
replaces continuity at B.

Proof. The arguments in the proof of Proposition 7.6 hold for any b <

S < B .

It is not surprising that F satisfies the HJB equation and value matching
conditions. The logic leading to the HJB equation does not involve optimiza-
tion, only inaction in a fixed region, and the value matching conditions hold
if any fixed adjustment policy is used outside that inaction.

Note, too, that the functions v and F can be constructed by reversing
the arguments. Recall from Chapter 5 that hi(z) = eRiz, i = 1, 2, are homo-
geneous solutions of (7.17). Hence all solutions have the form

v̂(z) = fP (z) + d1e
R1z + d2e

R2z,

where fP is any particular solution, and d1, d2 are arbitrary constants. For
example, recall from Chapter 5 that vP is a particular solution, and so is
w(., b, B), for any b, B. Therefore, using w as the particular solution one
finds that for any b < B, solutions to (7.17) have the form

v̂(z) = w(z, b, B) + d1e
R1z + d2e

R2z, all z ∈ (b, B). (7.24)

Fix any policy b < S < B, with b and B finite. Let v̂ be as in (7.24) on
(b, B) and as in the second line of (7.17) for z �∈ (b, B). Value matching
requires that the two expressions agree at b and B . Since w(b, b, B) =
w(B , b, B) = 0, this requires

d1e
R1b + d2e

R2b = v̂(S) − c,

d1e
R1B + d2e

R2B = v̂(S) − c.

Solving this pair of equations and substituting for d1 and d2 in (7.24) gives

v̂(z) = w(z, b, B) + [
ψ(z, b, B) + �(z, b, B)

] [
v̂(S) − c

]
, (7.25)

which is the function F(., b, B , S) in (7.4).
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For b = −∞, value matching at b is replaced with the first condition
in (7.22). Since R1 < 0, this condition requires d1 = 0. Value matching at B

then implies

d2 = e−R2B
[
v̂(S) − c

]
.

Hence for any z ≤ B,

d1e
R1z + d2e

R2z = 0 + eR2(z−B)
[
v̂(S) − c

]
= ψ(z, −∞, B) + �(z, −∞, B)

[
v̂(S) − c

]
,

so (7.25) is unaltered. A similar argument holds if B = ∞.
The argument thus far does not involve optimization. Hence for any

choice of b < S < B , the construction above produces the function v̂ =
F(., b, B , S). The optimized function v is found by choosing, among all
these solutions, the one that satisfies the smooth pasting and optimal re-
turn conditions as well, Fz(b) = Fz(B) = Fz(S) = 0, to determine the critical
values b∗, B∗, S∗. By Lemma 7.4, these three conditions are equivalent to the
first-order conditions Fb = FB = FS = 0. If b∗ = −∞, then smooth pasting
at b is replaced with

lim
z→−∞ v̂(z) ≥ v(S∗) − c,

and similarly if B∗ = ∞.
If the function vP is bounded, then it provides another convenient

choice for the particular solution. Since vP is the expected discounted value
of returns if no control is exercised, for this choice the term d1e

R1z + d2e
R2z

represents the value of exercising control.

Exercise 7.1. Suppose that vP is bounded, and consider the function

F(z, b, B , S) = vP (x) + d1(b, B , S)eR1z + d2(b, B , S)eR2z,

where b < S < B are arbitrary and the constants d1 and d2 are chosen so that
the value matching conditions hold. Show that the optimal policy b∗, B∗, S∗
maximizes the sum d1(b, B , S)eR1z + d2(b, B , S)eR2z.

If vP is not bounded, the return function π can be altered in the extreme
regions to make it so. To see this, suppose that v is the optimized value
function and b∗, B∗, S∗ is the associated policy for the return function π .
Notice that π appears in (7.17)–(7.23) only in the HJB equation, which
holds only on

(
b∗, B∗) . Consider any function π̂ ≥ π that coincides with π

on
(
b∗, B∗) and satisfies Assumption 7.1. Clearly v and b∗, B∗, S∗ are also

the solution for π̂ .
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Thus to construct the solution when vP = −∞, one can proceed the
other way around. Choose π̂ ≥ π satisfying Assumption 7.1 so that (i) it
coincides with π on an interval (a , A) that is large enough to contain the
inaction region, and (ii) it has the property that v̂P is bounded. Solve the
firm’s problem for π̂ . If the optimal inaction region

(
b∗, B∗) is contained in

(a , A), then the solution for π̂ is also the solution for π .
Since the profit function π in the menu cost model is single peaked,

it is reasonable to suppose that the value function v is also single
peaked. Proposition 7.7 shows that this conjecture is correct. (Recall that
it has already been shown, in Proposition 7.3, that the peak of the return
function lies inside the inaction region, b∗ < 0 < B∗.)

Proposition 7.7. Under Assumptions 7.1 and 7.2 the value function v is
single peaked.

Proof. Proposition 7.3 shows that there is a single inaction region
(
b∗, B∗),

and Proposition 7.6 states that the value function v satisfies (7.17) on this
interval. Hence the argument in the proof of Proposition 5.7 applies, and
it implies that v is single peaked on

(
b∗, B∗). Since v is continuous and is

constant for z �∈ (
b∗, B∗), it is single peaked on all of R.

After the optimal policy b∗, B∗, S∗ has been determined it is straight-
forward to calculate various statistics that describe long-run behavior. Since
the firm always sets a relative price of S∗ when it adjusts, long-run averages
are calculated with S∗ as the initial condition. Recall the functions θ , �, τ ,
and L defined in Section 5.5. If the firm operates over a long period, the
fraction of adjustments at the lower boundary is θ(S∗, b∗, B∗), the fraction
at the upper boundary is �(S∗, b∗, B∗), the expected time between adjust-
ments is τ(S∗, b∗, B∗), and the long-run density for the firm’s relative price
is L(.; S∗, b∗, B∗)/τ(S∗, b∗, B∗).

The exogenous shock in the menu cost model studied here is a shock
to an aggregate price index. Thus if there were a large number of firms,
they would all experience the same shocks. But the arguments above can
be adapted to study price adjustment in the presence of shocks to the
demand for the firm’s product or the costs of its inputs. In this case assuming
i.i.d. shocks across firms is sensible, and the averages described above also
represent the cross-sectional averages in the stationary distribution.

The next exercise, which involves entry and exit, looks at the long-run
stationary distribution in a setting where firms follow an arbitrary decision
rule.

Exercise 7.2. Consider an economy with a large number of firms. Each
firm i is characterized by its stochastic productivity level Xi , and the pro-
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ductivity level for each firm is a Brownian motion with parameters
(
μ, σ 2) .

These processes are independent across firms, and μ < 0.
There is entry and exit in this economy. Specifically, new firms enter

at the rate γ > 0 per unit time, and each enters with a productivity level of
x0 > 0. A firm exits when its productivity level reaches x = 0.

Describe the stationary cross-sectional distribution of productivity levels
and the total mass of firms for this economy.

7.5. Random Opportunities for Costless Adjustment

The model above can easily be extended to allow the possibility that occa-
sionally, at randomly occurring times, the firm can change its price without
paying the fixed cost. Specifically, suppose that opportunities of this sort
have Poisson arrival times, and consider a firm with current state z that is in-
side the inaction region. Consider a small increment of time h > 0. Over this
interval the firm earns returns in the usual way, and at the end of the interval
there are two possibilities. With probability λh the shock has arrived and the
firm can change its price without incurring the adjustment cost, and with
probability 1− λh it receives the usual expected continuation value. Hence
the firm’s current value v(z) can be written as

v(z) ≈ π(z)h + λh

1+ rh
max

z′ v(z′) + 1− λh

1+ rh
Ez [v(z + �Z)].

Using the optimal return point z′ = S∗ and proceeding in the usual way, one
obtains the modified HJB equation

(r + λ) v(z) ≈ π(z) + λv(S∗) +
[
μv′(z) + 1

2σ 2v′′(z)
]
. (7.26)

Note that v(S∗) − v(z) is the capital gain the firm enjoys if the shock arrives
when the state is z, so λ

[
v(S∗) − v(z)

]
is the expected (flow) return from

the arrival of the shock. The modified HJB equation in (7.26) adds this term
to the usual current return.

The next exercise shows that the possibility of costless adjustment re-
duces the firm’s incentive to pay the fixed cost, widening the inaction region
at both ends.

Exercise 7.3. Show that the optimal lower threshold b∗ is decreasing in λ

and the upper threshold B∗ is increasing in λ.

The next exercise looks at a version of a classic cash management
problem.

Exercise 7.4. Consider an individual who holds cash to carry out transac-
tions. Suppose she uses the following rule of thumb for cash management.
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When her cash holdings reach zero she pays a fixed cost c > 0, goes to the
ATM and withdraws M units of cash, where M > 0 is fixed. Between with-
drawals her cash holdings are a

(
μ, σ 2) Brownian motion with μ < 0.

Let F(z) be the expected discounted value of the total fixed costs she
pays, given current cash balances z, where the interest rate r > 0 is constant.

(a) Derive the HJB equation for this problem. What is a particular
solution to this equation? What are the boundary conditions?

(b) Suppose that in addition to the fixed cost, the individual counts
the foregone interest on her cash balances as a holding cost. Let F̂ be the
expected discounted value of the total fixed costs plus holding costs that she
pays. Repeat part (a).

(c) Suppose that the individual gets utility u(z) from holding cash bal-
ances z, where u is strictly increasing, strictly concave, continuously differ-
entiable, and satisfies the Inada conditions u′(0) > ∞ and limz→∞ u′(z) = 0.
The costs are as in part (b), so her net return from holding cash balances z

is u(z) − rz. What is her optimal cash management strategy?
(d) Suppose that the individual is sometimes near the ATM by chance

and can make withdrawals for free. These opportunities to get additional
cash without paying the fixed cost have Poisson arrivals at rate λ > 0. What
is the HJB equation for the individual, otherwise like the one in part (c),
who gets these opportunities?

7.6. An Example

Let

π(z) =
{

π0e
ηz, z ≥ 0,

π0e
δz, z < 0,

where η < 0 < δ and π0 > 0. Clearly Assumption 7.1 holds, and for fixed
η, δ , Assumption 2 holds if π0 is large enough. It is clear that the optimal
policy depends on π0 and c only through the ratio c/π0, and in addition the
parameters r , μ, σ 2 enter only as ratios. Thus, without loss of generality π0
and r can be fixed and attention limited to changes in c, μ, and σ .

For baseline values let

μ = 0, σ = 1, c = 1,

η = −0.4, δ = 2.0, π0 = 1, r = 0.05.

Figure 7.1 displays the annualized profit function π/r , the expected dis-
counted return if no adjustment is ever made vP , and the optimized value
function v , as well as the optimal thresholds b∗ and B∗ and return point
S∗. The profit function is asymmetric, falling off more sharply for negative
values than for positive ones. Hence vP is also asymmetric, with its peak at a
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Figure 7.1. The functions π/r, v, and vP for the menu cost model, for the baseline
parameter values r = 0.05, μ = 0, σ = 1, η = −0.4, δ = 2, π0 = 1, and c = 1.
The optimal policy is b∗ = −1.77, S∗ = 0.59, B∗ = 4.02.

positive value, even though the Brownian motion has zero drift. In addition
vP is much flatter than π/r and for z near zero is much lower, reflecting the
fact that over time the state drifts away from its initial value.

The optimized value function v is also asymmetric, with its peak at a
positive value, S∗ = 0.59. In addition, the upper threshold B∗ = 4.02 is looser
than the lower one, b∗ = −1.77, also a reflection of the asymmetry in π .

Figure 7.2 displays the long-run density for relative price q(z; S∗, b∗, B∗)
≡ L(.; S∗, b∗, B∗)/τ(S∗, b∗, B∗). It has a slightly asymmetric tent shape, with
a peak at S∗.

Figures 7.3–7.5 display the effects of changing the parameters c, μ, and
σ on the critical values b∗, B∗, S∗, the continuation value M , the expected
time between adjustments τ(S∗), and the share of adjustments at the lower
threshold, θ(S∗).

Figure 7.3 displays the effects as the adjustment cost c varies on [0, 6] .
Since vP takes values on [0, 6.17], by Proposition 7.2, c = 6.17 is the highest
fixed cost for which making price adjustments is worthwhile. Increasing c

changes the return point S∗ very little, but it makes the inaction region(
b∗, B∗) broader. The continuation value M falls to zero and the expected
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Figure 7.2. The stationary density for relative price under the optimal policy, for the
baseline parameter values.

time between adjustments τ(S∗) grows rather sharply, but the fraction of
adjustments at the lower threshold θ(S∗) does not change much.

Figure 7.4 displays the effects as the drift parameter μ varies on [−1, +1].
The return point S∗ decreases with μ, as one would expect. The band(
b∗, B∗) is narrowest for μ near zero and becomes broader as |μ| increases.

In particular, for μ < 0, B∗ increases sharply as the drift becomes stronger,
and for μ > 0, b∗ decreases sharply as the drift becomes stronger. This is
also as one would expect. In both regions the drift is likely to move the
state back toward the region with higher returns. The continuation value
M is hump shaped, the expected time between adjustments τ(S∗) is single-
peaked, with a maximum near μ = 0, and the fraction of adjustments at the
lower boundary θ(S∗) decreases with μ.

Figure 7.5 displays the effects as the diffusion parameter σ varies on
[0, 8] . Increasing σ has little effect on S∗, but it makes the inaction region(
b∗, B∗)broader. It reduces the continuation value M , since less time is spent

in the region of high profits. The expected time between adjustments τ(S∗)
rises as the inaction region gets broader, reflecting the fact that the firm



Figure 7.3. The effects of changing the adjustment cost c, with baseline values for the
other parameters, on (a) the optimal thresholds b∗, B∗, and return point S∗, (b) the
normalized continuation value M, (c) the expected time between adjustments τ(S∗),
and (d) the share of adjustments at the lower threshold θ(S∗).



Figure 7.4. The effects of changing the drift parameter μ, with baseline values for the
other parameters, on (a) the optimal thresholds b∗, B∗, and return point S∗, (b) the
normalized continuation value M, (c) the expected time between adjustments τ(S∗),
and (d) the share of adustments at the lower threshold θ(S∗).



Figure 7.5. The effects of changing the diffusion parameter σ , with baseline values
for the other parameters, on (a) the optimal thresholds b∗, B∗, and return point S∗,
(b) the normalized continuation value M, (c) the expected time between adjustments
τ(S∗), and (d) the share of adustments at the lower threshold θ(S∗).
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adjusts on both margins. Because of the asymmetry in the return function,
it also causes a slight decrease in θ(S∗), the share of adjustments at the lower
boundary.

Notes

Sheshinski and Weiss (1977, 1983) were among the first to study pricing
with fixed adjustment costs, and Sheshinski and Weiss (1993) draws together
much of the early work—both theoretical and empirical—on menu costs.
See Plehn-Dujowich (2005) for a discussion of sufficient conditions to insure
that the optimal policy takes the form of a control band. See Ahlin (2001)
for an example where the exogenous stochastic process is not a Brownian
motion, and the optimal policy takes a different form. See Lach and Tsiddon
(1991), Kashyap (1995), Bils and Klenow (2004), Klenow and Kryvtsov
(2008), and Nakamura and Steinsson (2007) for empirical evidence on the
size and frequency of price adjustments.

Dixit (1991b) has a simple treatment of impulse and instantaneous con-
trol based on discrete approximations, and Dumas (1991) has an approach
based on HJB equations. Dixit (1991a) develops a method for approximat-
ing the effects of fixed costs and shows why even small fixed costs can lead
to large inaction regions.



8
Models with Fixed and Variable Costs

In many contexts exercising control involves variable costs of adjustment
as well as fixed costs. The presence of a variable cost means that the decision
about how much control to exercise is slightly more complicated than in
the menu cost model, but the overall character of the solution is similar
nevertheless: an optimal policy still involves doing nothing most of the time
and exercising control only occasionally.

A standard inventory model of the type studied by Scarf (1960), Har-
rison, Selke, and Taylor (1983), and others provides an example. Suppose
there is a plant that produces output, and there are customers who place
orders. Both supply and demand are flows, both may be stochastic, and the
difference between the two is the net inflow into a buffer stock. When left
unregulated the stock behaves like a Brownian motion, with negative stocks
interpreted as back-orders. Control is exercised by a manager who can add
to the stock by purchasing the good elsewhere and can reduce it by selling
on a secondary market.

The manager’s problem involves cost minimization (as opposed to pro-
fit maximization), and there are three types of costs. Holding costs, which
depend on the size of the stock, are the analog of profits in the menu cost
model. They can be interpreted as interest, storage, and depreciation costs
on positive stocks, and as the loss of goodwill from the delays on back-orders.
The fixed cost of adjustment is also as in the menu cost model.

The variable cost of adjustment is a new feature. It is proportional to
the size of the adjustment, and it represents the unit cost of purchasing
goods from an outside source or the unit revenue from disposing of goods
on a secondary market. Thus it may be different for upward and downward
adjustments. The manager’s problem is to choose a policy for managing
the inventory that minimizes the expected discounted value of total costs:
holding costs plus fixed and variable adjustment costs.

153
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The optimal policy for the inventory model is qualitatively similar to the
one for the menu cost model. The manager chooses two critical thresholds,
b and B, where control is exercised. While the stock remains in the open
interval (b, B) the manager does nothing, so this interval is still an inaction
region. When the stock reaches either threshold an adjustment is made.
Specifically, when it reaches the lower threshold b, the manager adjusts the
stock upward to a return point q; when it reaches the upper threshold B,
he adjusts it downward to a return point Q. Thus, in contrast to the menu
cost model there are two return points q , Q, with b < q ≤ Q < B . If the
initial value for the state variable lies outside (b, B) the manager exercises
control immediately, adjusting the state variable to q or Q. Thereafter the
state remains in the interval [b, B]. In some applications one threshold may
be exogenously fixed. For example, in an inventory model where negative
stocks are not allowed, the lower threshold is fixed at b = 0.

The rest of this chapter looks at the inventory model in detail. In
Section 8.1 the model is described and the value function is shown to
be bounded above and below by functions that are piecewise linear. In
Section 8.2 a condition is developed that insures that an optimal policy
involves exercising both upward and downward control and that there is
a unique inaction region. In Section 8.3 the functions L̂, ψ , and � are
used to characterize the optimal policy and associated value function, and
in Section 8.4 the Hamilton-Jacobi-Bellman equation is used. Many of the
arguments here parallel those in Chapter 7, so the proofs are omitted or
sketched only briefly. Long-run averages are described in Section 8.5, and
several examples are discussed in Section 8.6. Throughout, the variable
adjustment cost is assumed to be linear. Section 8.7 provides a discussion
of why more general adjustment costs are difficult to incorporate.

8.1. An Inventory Model

Let X(t) be a
(
μ, σ 2) Brownian motion with initial value X(0) = x. Changes

in X represent net flows into or out of the inventory in the absence of
control. As noted above, the manager can also augment or reduce the
stock by discrete amounts, interpreted as purchases or sales on a secondary
market. Since holding costs at any date depend on the current stock, it
is convenient to formulate the problem using the stock as the single state
variable. Let Z(t) be the stochastic process for the stock.

The manager’s problem is to choose the (random) dates 0 ≤ T1 ≤ T2 <

. . . ≤ Ti < . . . at which control is exercised and, for each date Ti , the (pos-
sibly random) level zi to which the stock is adjusted. As in the menu cost
model, γ = {(

Ti , zi

)}∞
i=1 is an impulse control policy if

i. 0 ≤ T1 ≤ T2 < . . . ≤ Ti < . . . are stopping times; and
ii. zi is FTi

−measurable, all i , all ω.
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Let � be the set of all impulse control policies.
Given an impulse control policy γ , the stochastic process for the inven-

tory Z(t) is

Z(t) = zi + [
X(t) − X(Ti)

]
, t ∈ [Ti , Ti+1), i = 0, 1, 2, . . . , all ω, (8.1)

where x0 = 0 and T0 = 0. Thus, over each interval [Ti , Ti+1) the inventory
Z(t) is a Brownian motion with parameters

(
μ, σ 2) . Note that the size of

the adjustment at Ti is

yi = zi − Z(Ti), i = 1, 2, . . . .

Let h(z) denote the (flow) holding cost when the stock is z, let C(y)

denote the cost of adjusting the stock by the increment y , and let r be the
(constant) interest rate. The following assumption is used throughout.

Assumption 8.1. i. r , σ 2 > 0;
ii. h is continuous and weakly convex; it is differentiable except possibly

at z = 0; and it is strictly decreasing on R− and strictly increasing on R+, with
h(0) = 0;

iii.

C(y) =
⎧⎨⎩

C0 + Py , if y > 0,
0, if y = 0,
c0 + py , if y < 0,

where C0, c0 > 0, P ≥ 0, and P ≥ p.

Both the fixed and variable components of adjustment costs can differ
for upward and downward adjustments. The fixed costs C0 and c0, inter-
preted as the time of the manager or a transaction fee, are strictly positive
for both types of adjustment. The value P ≥ 0 is the unit cost of adding to
the stock, and if p > 0, then p is the unit revenue from reducing the stock.
In this case the restriction P ≥ p is needed so that the system is not a money
pump. If p < 0, then |p| > 0 is the unit cost of disposing of excess inventory,
and the restriction P ≥ p does not bind. The menu cost model is the special
case where the two fixed costs are the same, C0 = c0 > 0, and there are no
proportional costs, P = p = 0.

For any initial state z0 and any impulse control policy γ = {(
Ti , zi

)}∞
i=1,

let H(z0; γ ) denote the expected discounted value of total costs:

H(z0; γ ) ≡ Ez0

{∫ T1

T0

e−rth[Z(t)]dt

+
∞∑
i=1

[
e−rTiC

[
zi − Z(Ti)

] +
∫ Ti+1

Ti

e−rth[Z(t)]dt

]}
,
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where Z(t) is as in (8.1). The assumptions on γ , h, and C insure that H(z0; γ )

is well defined for all z0 and γ (although it may be equal to ∞). Define the
value function

v(z) ≡ inf
γ∈�

H(z; γ ), all z.

The following result puts bounds on v.

Proposition 8.1. Under Assumption 8.1, v is bounded above and below by
functions that are continuous and piecewise linear.

Proof. Clearly v is bounded below by

HL(z) =
{

0, if z ≤ 0,
min {0, −pz}, if z > 0.

For an upper bound choose any a < 0 < A and let γ̂0 be the policy

Ti = min
{
t > Ti: Z(t) �∈ (a , A)

}
,

zi(ω) = 0, i = 1, 2, . . . , all ω.

The expected discounted cost of the policy γ̂0 for the initial condition z = 0 is

H(0; γ̂0) = E0

{ ∞∑
i=1

[∫ Ti

Ti−1

e−rth (Z(t)) dt + e−rTiC
[
0 − Z(Ti)

]]}
,

where T0 = 0. Define

D0 ≡ max {h(a), h(A)},

D1 ≡ max
{
C0 − Pa , c0 − pA

}
,

d ≡ E0

[
e−rT1

]
< 1,

and note that

H(0; γ̂0) ≤ 1
r
D0 + d

1− d
D1

is finite. For any z �= 0 the policy of adjusting immediately to ẑ = 0 and then
using the policy γ̂0 is feasible. Call this policy γ̂ , and note that H(z; γ̂ ) ≤
HU(z), all z, where

HU(z) ≡ H(0; γ̂0) + max
{
C0, c0

} −
{

Pz, if z ≤ 0,
pz, if z > 0.

Hence HU is an upper bound on v.
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The Principle of Optimality then suggests that v (and only v) satisfies
the Bellman equation

v(z) = inf
T ≥0,z′ Ez

{∫ T

0
e−rth(Z(t))dt (8.2)

+ e−rT
[
C
(
z′ − Z(T )

) + v(z′)
]}

, all z.

As with the menu cost model, the assumption that the underlying process
X(t) for the uncontrolled stock is a Brownian motion is critical for writing
the problem in this form. If X were some other diffusion, its increments
would depend on the date t or the state X(t) of the process. Consequently,
after the first adjustment the increments to the process Z(t) would depend
on X(t). Only for a Brownian motion is the distribution of future incre-
ments independent of the past and unvarying over time. (Of course, if the
underlying process X is a geometric Brownian motion, the problem can be
formulated in terms of ln X.)

8.2. Preliminary Results

It is useful to begin by considering the conditions under which an optimal
policy involves exercising control. The argument here is more complicated
than the one for the menu cost model. In particular, the presence of a
proportional adjustment cost means that additional restrictions on h are
required.

Let vP (z) be the expected discounted value of total costs over an infinite
horizon if the initial value for the stock is z and no control is exercised. Recall
from Section 7.2 that

vP (z) ≡ Ez

[∫ ∞

0
e−rth (Z(t)) dt

]

= 1
J

[∫ ∞

0
e−R2uh(z + u)du +

∫ 0

−∞
e−R1uh(z + u)du

]
, all z, (8.3)

where R1 < 0 < R2 and J > 0 are as in Section 5.2.
The idea behind the proof that control is exercised is as follows. Purchas-

ing a unit of inventory at t = 0 has an annualized cost of rP , and it changes
the holding cost at each date t > 0 by h′(Z(t)). The expected net change in
the flow cost at any future date, Ez0

[
h′(Z(t)) + rP

]
, depends on the distri-

bution of the stock Z(t) at that date. Recall that under Assumption 8.1 h is
weakly convex and is decreasing for z < 0. Suppose limz→−∞ h′(z) + rP < 0.
If the initial stock z0 < 0 is large in absolute value, then for some ε > 0,

Ez0

[
h′(Z(t)) + rP

]
< −ε,
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at least until t is very large. Thus, for a long period of time the reduction
in holding costs, the term Ez0

[
h′(Z(t))

]
< 0, outweighs the annualized pur-

chase price, rP > 0, by at least ε. The term Ez0

[
h′(Z(t)) + rP

]
may be posi-

tive for t sufficiently large, however, so an additional restriction is needed to
insure that the integral of these terms is finite. Then, because the interest
rate is positive, they can be downweighted to an arbitrarily small value by
choosing

∣∣z0
∣∣ sufficiently large.

The following assumption insures that the optimal policy involves exer-
cising control at both thresholds.

Assumption 8.2. The holding cost h satisfies

lim
z→∞ h′(z) + rp > 0 and lim

z→−∞ h′(z) + rP < 0,

and the integrals

I1 =
∫ ∞

0
e−R2ξh′(ξ)dξ and I2 =

∫ 0

−∞
e−R1ξh′(ξ)dξ

are finite.

Proposition 8.2. If Assumption 8.1 holds, then an optimal policy involves
exercising both upward and downward control.

Proof. Suppose to the contrary that upward control is never exercised.
Then limz→−∞

[
v(z) − vP (z)

] = 0. In addition, h is convex and satisfies
Assumption 8.2. Hence there exist δ , ε > 0, and y < 0 such that∣∣v(ζ ) − vP (ζ )

∣∣ < δ ,

h′(ζ ) + rP < −ε, all ζ < y .
(8.4)

Consider an upward adjustment from z to z + a , with z < z + a < y . Since
by hypothesis control is not exercised, for any such z and a

v(z) ≤ C0 + Pa + v(z + a).

Hence the first line in (8.4) implies

0 ≤ C0 + Pa + vP (z + a) − vP (z) + 2δ

= C0 +
∫ z+a

z

[
v′
P
(ζ ) + P

]
dζ + 2δ.

Use (8.3) to write these conditions as
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0 ≤ C0 + 1
J

∫ z+a

z

∫ 0

−∞
e−R1u

[
h′(ζ + u) + rP

]
dudζ

+ 1
J

∫ z+a

z

∫ ∞

0
e−R2u

[
h′(ζ + u) + rP

]
dudζ + 2δ.

(8.5)

Consider the first integral in (8.5). Since ζ + u < z + a + 0 < y , it follows
from the second line in (8.4) that this term is

< − ε

J

∫ z+a

z

∫ 0

−∞
e−R1ududζ

= ε

J

a

R1
.

Since R1 < 0 this term is negative, and it can be made arbitrarily large in
absolute value by choosing a large. The second integral in (8.5) is

<
a

J

∫ ∞

0
e−R2u

[
h′(z + a + u) + rP

]
du

<
a

J

∫ ∞

−(z+a)

e−R2u
[
h′(z + a + u) + rP

]
du

= a

J
eR2(z+a)

∫ ∞

0
e−R2ξ

[
h′(ξ) + rP

]
dξ ,

where the first line uses the fact that h is convex, the second uses the fact that
z + a < 0 and h′(ζ ) < 0 for ζ < 0, and the third uses the change of variable
ξ = z + a + u. Under Assumption 8.2 the integral in the last line is finite, and
since R2 > 0 and z + a < 0, the whole term can be made arbitrarily small by
choosing |z| large. Hence for z < z + a < y < 0, with |z|, a > 0 sufficiently
large, (8.5) fails, contradicting the assumption no control is exercised as
z → −∞.

A similar argument applies for downward control.

The next result establishes that the optimal policy involves critical values
b∗ < 0 < B∗ describing a single inaction region

(
b∗, B∗). The optimal policy

requires adjusting immediately if the state lies outside
(
b∗, B∗).

Proposition 8.3. Under Assumptions 8.1 and 8.2 there exist critical values
b∗ < 0 < B∗, with

∣∣b∗∣∣ , B∗ < ∞, such that the unique optimal stopping time
in (8.2) is T = 0 for z �∈ (

b∗, B∗) and is T = T (b∗) ∧ T (B∗) for z ∈ (
b∗, B∗).

Proof. The argument, which uses the convexity of h, parallels the proof of
Proposition 7.3.
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8.3. Optimizing: A Direct Approach

The next goal is to characterize the optimal thresholds b∗, B∗ and return
points q∗, Q∗. As in the option and menu cost models, there are two ap-
proaches. In this section a direct approach employing the functions L̂, ψ ,
and � is used, and in Section 8.4 the Hamilton-Jacobi-Bellman equation is
used.

For any b < z < B, define the stopping time T = T (b) ∧ T (B) and recall
that

w (z, b, B) ≡ Ez

[∫ T

0
e−rsh(Z(s))ds

]

=
∫ B

b

L̂(ζ ; z, b, B)h(ζ )dζ ,

ψ (z, b, B) ≡ Ez

[
e−rT | Z(T ) = b

]
Prz [Z(T ) = b] ,

� (z, b, B) ≡ Ez

[
e−rT | Z(T ) = B

]
Prz [Z(T ) = B],

where L̂, ψ , and � are described in detail in Chapter 5, and Ez [.] denotes
an expectation conditional on the initial value z.

For any fixed policy (b, B , q , Q) , let F(z, b, B , q , Q) denote the asso-
ciated return, given the initial state z. Then F satisfies the Bellman-type
equation

F(z, b, B , q , Q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m + P (b − z), z ≤ b,
w(z, b, B) + ψ(z, b, B)m

+�(z, b, B)M , z ∈ (b, B),
M + p (B − z), z ≥ B.

(8.6)

where

m ≡ C0 + P (q − b) + F(q , b, B , q , Q),

M ≡ c0 + p (Q − B) + F(Q, b, B , q , Q).

The firm’s problem is to choose b, B , q , Q to minimize F , so

v(z) = min
b ,B ,q ,Q

F(z, b, B , q , Q). (8.7)

The optimal policy is characterized by first-order conditions. Here, as in the
menu cost model, the conditions for the thresholds b and B are equivalent
to smooth pasting.
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Lemma 8.4. Let Assumptions 8.1 and 8.2 hold.

i. Fix any m, M , P , and b̂ < B. If

wb(z, b̂, B) + ψb(z, b̂, B)m + �b(z, b̂, B)M − ψ(z, b̂, B)P = 0(8.8)

holds for any z ∈ [b̂, B), then it holds for all z ∈ [b̂, B), and in
addition

wz(b̂, b̂, B) + ψz(b̂, b̂, B)m + �z(b̂, b̂, B)M = −P .

ii. Fix any m, M , p, and b < B̂. If

wB(z, b, B̂) + ψB(z, b, B̂)m + �B(z, b, B̂)M − �(z, b, B̂)p = 0(8.9)

holds for any z ∈ (b, B̂], then it holds for all z ∈ (b, B̂], and in this
case

wz(B̂ , b, B̂) + ψz(B̂ , b, B̂)m + �z(B̂ , b, B̂)M = −p.

Proof. The argument parallels the proof of Lemma 7.4.

Lemma 8.4 implies that the optimal thresholds b∗ and B∗ are indepen-
dent of the current state. In addition, since q∗ is chosen to minimize m

and Q∗ to minimize M , the optimal return points are also independent of
the current state. As always, these facts are immediate consequences of the
Principle of Optimality.

The following result uses Lemma 8.4 to characterize the optimum.

Proposition 8.5. Let Assumptions 8.1 and 8.2 hold. If b∗, B∗, q∗, Q∗ attain
the minimum in (8.7), then

wz(b
∗) + ψz(b

∗)m∗ + �z(b
∗)M∗ + P = 0,

wz(B
∗) + ψz(B

∗)m∗ + �z(B
∗)M∗ + p = 0,

(8.10)

wz(q
∗) + ψz(q

∗)m∗ + �z(q
∗)M∗ + P = 0,

wz(Q
∗) + ψz(Q

∗)m∗ + �z(Q
∗)M∗ + p = 0,

(8.11)

where m∗, M∗ are the unique pair satisfying

m∗ = C0 + P(q∗ − b∗) + w(q∗) + ψ(q∗)m∗ + �(q∗)M∗,

M∗ = c0 + p(Q∗ − B∗) + w(Q∗) + ψ(Q∗)m∗ + �(Q∗)M∗.
(8.12)
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Proof. Suppose b∗, B∗, q∗, Q∗ describe an optimal policy. Then

v(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m∗ + P(b∗ − z), z ≤ b∗,
w(z, b∗, B∗) + ψ(z, b∗, B∗)m∗

+�(z, b∗, B∗)M∗, z ∈ (
b∗, B∗),

M∗ + p(B∗ − z), z ≥ B∗.

(8.13)

where m∗ and M∗ are as in (8.12). A necessary condition for the optimality
of b∗ is (8.8), and as shown in Lemma 8.4 that condition holds if and only if
the first equation in (8.10) holds. A similar argument for B∗ using (8.9)
establishes that the second equation in (8.10) holds. The conditions in
(8.11) are necessary for minima at q∗ and Q∗.

Proposition 8.5 characterizes the optimal policy b∗, B∗, q∗, Q∗ as the
solution to the system of four equations (8.10)–(8.11), with m∗ and M∗
defined by (8.12). This system of six equations in six unknowns provides
a straightforward characterization of the optimum, and the resulting value
function is in (8.13). As before, however, there is also another route to the
solution.

8.4. Using the Hamilton-Jacobi-Bellman Equation

The optimal policy and value function can also be characterized by using
the Hamilton-Jacobi-Bellman (HJB) equation, together with the appropri-
ate boundary and optimality conditions. Proposition 8.6 states the result
formally.

Proposition 8.6. Let Assumptions 8.1 and 8.2 hold. If b∗, B∗, q∗, Q∗ de-
scribe an optimal policy, and v is the optimized value function, then

i. v satisfies

rv(z) = h(z) + μv′(z) + 1
2σ 2v′′(z), z ∈ (

b∗, B∗),
v(z) = m∗ + P(b∗ − z), z ≤ b∗,

v(z) = M∗ + p(B∗ − z), z ≥ B∗;

(8.14)

ii. v and v′ are continuous at b∗,

lim
z↓b∗ v(z) = m∗, and lim

z↓b∗ v′(z) + P = 0; (8.15)

iii. v and v′ are continuous at B∗,

lim
z↑B∗ v(z) = M∗, and lim

z↑B∗ v′(z) + p = 0; (8.16)
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iv. q∗ and Q∗ satisfy

v′(q∗) + P = 0, and v′(Q∗) + p = 0, (8.17)

where m∗ and M∗ are as in (8.12).

Proof. The argument parallels the proof of Proposition 7.6.

Corollary. Let b < q < Q < B be an arbitrary policy, and let F(., b, B , q , Q)

be the function in (8.6). Then F satisfies (8.14), and it is continuous in z at
b and B .

As in the menu cost model the solution can be reverse engineered from
the conditions above. For an arbitrary policy b < q < Q < B the function
F(., b, B , q , Q) can be found by using (8.14), the value matching conditions
in (8.15) and (8.16), and the values m, M satisfying the linear system in
(8.12). Among all such functions, the optimized value function v in addition
satisfies the smooth pasting conditions in (8.15) and (8.16) and the optimal
return conditions in (8.17).

The following exercise deals with cases in which upward control is never
exercised. A similar result holds if downward control is never exercised.

Exercise 8.1. Suppose Assumption 8.2 fails. In particular, suppose that

lim
z→−∞ h′(z) + rP ≥ 0,

so b∗ = −∞. Show that (8.15) is replaced with

lim
z→−∞

[
v(z) − vP (z)

] = 0,

lim
z→−∞ v′(z) + P ≥ 0.

The next result shows that the optimal return points q∗ and Q∗ are
unique. The argument is similar to the one in the proof of Proposition 7.7.

Proposition 8.7. Under Assumptions 8.1 and 8.2,

min
z∈(b ,B)

[v(z) + Pz]

has a unique solution q∗, and

min
z∈(b ,B)

[
v(z) + pz

]
has a unique solution Q∗.
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Proof. Suppose to the contrary that v(z) + Pz has two local minima. Then
there is a local maximum between them: there exist q1 < q2 < q3 such that

v′(q2) + P = 0, v′′(q2) ≤ 0,

v′(qi) + P = 0, v′′(qi) ≥ 0, i = 1, 3.

Then it follows from (8.14) that

rv(q2) ≤ h(q2) − μP ,

rv(qi) ≥ h(qi) − μP , i = 1, 3.

Hence

h(q2) − h(qi) ≥ r[v(q2) − v(qi)]) ≥ rP (qi − q2), i = 1, 3,

contradicting the assumption that h is single troughed. Hence v(z) + Pz has
only one local minimum, at q∗. A similar argument applies for Q∗.

Note that on
(
b∗, B∗) the value function has a convex region flanked

by concave regions, and outside that interval it is linear. Thus there are two
points where v′′ = 0, one in the interval

(
b∗, q∗) and one in

(
Q∗, B∗), and v

can take three shapes, depending on the sign of p.
These three possibilities are displayed in Figure 8.1, which shows value

functions for the sale prices p = −0.2, 0, and 0.2. The holding cost is the
same in all three cases, h(z) = h0

(
e‖η‖z − 1

)
, with h0 = 1and η = 0.2, and the

other parameters are fixed at μ = 0, σ = 1, r = 0.05, and C0 = c0 = P = 1.
The small circles on each value function indicate the optimal policy. Recall
that if p > 0, then p is the unit revenue from reducing the stock, and if p < 0,
then |p| is the unit cost of reducing the stock. Hence the value function v ,
which represents expected discounted costs, shifts downward as p increases.
In addition, the linear portion of the value function above the threshold B∗
has slope p, so that slope changes sign with p.

8.5. Long-Run Averages

As in the model with fixed costs only, long-run averages can be described in
terms of the functions θ , τ , and L defined at the beginning of Chapter 5.
In settings with a large number of decision makers subject to i.i.d. shocks,
these averages also represent the (stationary) cross-sectional distribution.

Let ν and 1 − ν denote the long-run fraction of adjustments that are
from b∗ and from B∗, respectively. Since each adjustment from b∗ is to q∗
and each one from B∗ is to Q∗, it follows that ν and 1− ν are also the fractions
of starts from q∗ and from Q∗. Let T = T (b∗) ∧ T (B∗) and recall that
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Figure 8.1. Value functions for the inventory model for p = −0.2, p = 0, and
p = 0.2. The holding cost is h(z) = h0(e

‖η‖z − 1), with h0 = 1 and η = 0.2, and
the other parameters are μ = 0, σ = 1, r = 0.05, and C0 = c0 = P = 1.

θ(z, b∗, B∗) ≡ Prz

[
Z(T ) = b∗]

is the probability that the lower threshold is reached first, conditional on
the initial state Z(0) = z. Hence ν satisfies

νθ(q∗) + (1− ν) θ(Q∗) = ν ,

so

ν = θ(Q∗)
1− θ(q∗) + θ(Q∗)

.

Next recall that

τ(z, b∗, B∗) = Ez

[
T (b∗) ∧ T (B∗)

]
is the expected value of the stopping time T , conditional on the initial state
z. Since ν and 1 − ν are the shares of starts from q∗ and Q∗, the average
length of time between adjustments in the long run is
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τ = ντ(q∗) + (1− ν) τ(Q∗).

The expected number of adjustments per unit time is then 1/τ , and of these
the proportion ν are at the lower threshold. Hence the average control
exercised per unit time at the lower threshold is

(
q∗ − b∗) ν/τ , and the

average control exercised at the upper threshold is
(
Q∗ − B∗) (1− ν) /τ .

Finally, recall the (undiscounted) expected local time function L(. ; z,
b∗, B∗). The stationary density π(.) is the weighted average of L(.; q∗, b∗, B∗)
and L(.; Q∗, b∗, B∗), with weights ν and 1 − ν , normalized by the average
duration:

π(ζ ) = 1
τ

[
νL(ζ ; q∗, b∗, B∗) + (1− ν) L(ζ ; Q∗, b∗, B∗)

]
, ζ ∈ (

b∗, B∗).
8.6. Examples

In this section several examples are studied in more detail. The first two are
specializations of the inventory model that assume linear holding costs. The
first has a lower threshold fixed at b = 0, while the second allows negative
stocks. The third example is an investment model with two state variables,
an exogenous shock that is a geometric Brownian motion and a capital stock
that can be adjusted. The return is a homogeneous function of the two states,
so the problem can be written in terms of their ratio. The “fixed” cost in this
example is that part or all of the current capital stock must be scrapped when
new capital is purchased. The fourth example is an investment model that
involves only upward adjustment. In addition, upward control is exercised
only if the state is not too low. Below the adjustment region there is a second
inaction region.

8.6.1. An Inventory Problem with b = 0

The inventory problem studied in Harrison, Selke, and Taylor (1983) spe-
cializes the model above in two ways: the lower threshold is fixed at b = 0, and
the holding cost is linear. Thus, h(z) = Hz, where H , z > 0, and Assumption
8.2 requires H/r > −p. Hence the HJB equation takes the form

rv(z) = Hz + μv′(z) + 1
2σ 2v′′(z), z ∈ (

0, B∗).
A particular solution to this equation is

f (z) = H

r

(
z + μ

r

)
,

so the value function has the form
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v(0) = C0 + Pq∗ + v(q∗),

v(z) = H

r

(
z + μ

r

)
+ D1e

R1z + D2e
R2z, z ∈ (

0, B∗),
v(z) = c0 + p(Q∗ − z) + v(Q∗), z ≥ B∗,

where D1, D2 are constants. These constants and the policy parameters
q∗, Q∗, B∗ are determined by the value matching conditions

lim
z↓0

v(0) = C0 + Pq∗ + v(q∗),

lim
z↑B∗ v(z) = c0 + p(Q∗ − B∗) + v(Q∗);

the smooth pasting condition at B∗

lim
z↑B∗ v′(z) = −p;

and the optimal return conditions at q∗ and Q∗

v′(q∗) = −P ,

v′(Q∗) = −p.

Since the lower threshold is exogenously fixed rather than optimally chosen,
smooth pasting does not hold at that point.

Exercise 8.2. (a) Explain carefully how D1, D2, q∗, Q∗, and B∗ can be
determined from the five conditions above.

(b) Sketch the optimal policy function.
(c) How do q∗, Q∗, and B∗ vary with H , p, and P ?

8.6.2. Cash Management

The cash management problem studied in Constantinides and Richard
(1978) is similar to the preceding example, except that negative stocks
are allowed, the lower threshold is chosen optimally, and the holding cost
function is piecewise linear with a kink at z = 0. The interpretation is as
follows. Consider a firm that holds a cash reserve, as well as various interest-
bearing assets. The firm’s revenues flow into the reserve, and those funds
are used to pay operating and other costs. The state variable Z(t) is the size
of the cash reserve, and in the absence of control Z(t) is a Brownian motion
with drift μ and variance σ 2 > 0.

The cash reserve does not earn interest, so the firm has an incentive
to keep the reserve small by moving funds into and out of interest-bearing
assets. Doing so entails transaction costs, which can be thought of as brokers’
fees. These fees, which may be different for movements into and out of the



168 8. Models with Fixed and Variable Costs

cash reserve, have fixed and proportional components. Thus the adjustment
cost parameters are p < 0 and C0, c0, P > 0. The holding costs are piecewise
linear:

h(z) =
{

ηz, if z < 0,
Hz, if z > 0,

where η < 0 is the cost of holding negative balances, that is, of drawing on
a line of credit, and H > 0 is the opportunity cost of holding positive cash
balances. The interest rate is r > 0.

Clearly Assumption 8.1 holds. Assumption 8.2 requires that in addition

−η/r > P and H/r > −p.

The first inequality states that the present discounted value of drawing on
the line of credit forever, −η/r , exceeds the proportional cost of adding
to the cash reserve. The second states that the present discounted value
of holding an extra unit of reserves forever, H/r , exceeds the unit cost of
moving cash out of the reserve.

Note that there are three interest rates in this problem, −η, H , and r .
They are, respectively, the (borrowing) rate on a line of credit, the (lending)
rate earned on short-term assets, and the rate at which the firm discounts
future returns. Hence it makes sense to assume H ≤ r ≤ −η, although this
is not required.

The HJB equation for this problem is

rv(z) = h(z) + μv′(z) + 1
2σ 2v′′(z), z ∈ (

b∗, B∗),
where h is as above. It is easy to verify that

f (z) =
{

(μ/r + z) η/r , z ∈ (
b∗, 0

)
,

(μ/r + z) H/r , z ∈ (
0, B∗),

are particular solutions to the two branches. The homogenous solutions
have the usual form, so the value function is

v(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v(b) + (

b∗ − z
)
P , z ≤ b∗,

ημ/r2 + ηz/r + d1e
R1z + d2e

R2z, z ∈ (b∗, 0),
Hμ/r2 + Hz/r + D1e

R1z + D2e
R2z, z ∈ [0, B∗),

v(B) + (
B∗ − z

)
p, z ≥ B∗.

where d1, d2, D1, D2 are constants that must be determined. There are four
constants here instead of the usual two, but v and v′ must be continuous at
z = 0, which provides two additional restrictions.
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It remains to determine the four constants and the optimal policy
b∗, B∗, q∗, Q∗. The value matching, smooth pasting, and optimal return
conditions provide six equations:

v(b∗) − v(q∗) + P
(
b∗ − q∗) = C0,

v(B∗) − v(Q) + p
(
B∗ − Q∗) = c0,

lim
z↓b∗ v′(z) + P = 0,

lim
z↑B∗ v′(z) + p = 0,

v′(q∗) + P = 0,

v′(Q∗) + p = 0.

In addition, continuity of v and v′ at z = 0 requires

0 = H − η

r

μ

r
+ (

D1 − d1
) + (

D2 − d2
)
,

0 = H − η

r
+ R1

(
D1 − d1

) + R2
(
D2 − d2

)
.

These eight equations determine the eight unknowns.
Notice that since the optimal return points q∗ and Q∗ could be both

positive, both negative, or of opposite sign, there are three possibilities.

Exercise 8.3. (a) Suppose that q∗ < 0 < Q∗. Write the system of eight
equations as three subsystems: three involving b∗, q∗, d1, d2; three involving
B∗, Q∗, D1, D2; and two involving d1, d2, D1, D2. How are these conditions
altered if q > 0? If Q < 0?

(b) Describe how the solution can be calculated numerically with an
algorithm that iterates between the two sets of three equations, using the
pair involving d1, d2, D1, D2 to connect them.

(c) Describe how to calculate the long-run fraction of adjustments at
each threshold, the expected time between adjustments, the average control
exercised at each threshold, and the stationary density for the cash reserve.

Figure 8.2 displays v , v′, and the optimal policy for a case where the
holding costs and adjustment costs are symmetric and μ = 0. The value
function is single troughed with a minimum at z = 0, and the thresholds
and return points are symmetric around that point.

Figure 8.3 displays the effect of introducing a positive drift, μ > 0. The
value function is still single troughed, but the inaction region is no longer
symmetric. It gets wider at both ends, and the right side is elongated. In
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Figure 8.2. (a) The value function and (b) its derivative for the cash management
problem with the baseline parameters μ = 0, σ = 1, r = −η = H = 0.05, C0 = c0 =
10, and P = −p = 0.3. The optimal policy is B∗ = −b∗ = 21.7 and Q∗ = −q∗ =
1.1.
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Figure 8.3. (a) The value function and (b) its derivative for the cash management
problem with μ = 0.5 and the baseline values for the other parameters. The optimal
policy is b∗ = −35.4, q∗ = −10.5, Q∗ = −3.7, and B∗ = 42.8.
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addition, both return points shift downward to accommodate the positive
drift. For the indicated parameter values Q∗ < 0.

8.6.3. Replacing Computer Equipment

In this example an investment model is studied that is representative of a
large class of models with several common features: two state variables, an
exogenous shock that is a geometric Brownian motion, an endogenous stock
that can be adjusted, a return function that is homogeneous of degree one
in the two states, a “fixed” adjustment cost λK that is proportional to the
old stock, and a proportional cost P

(
K ′ − K

)
that is linear in the size of

the adjustment. The main features of the solution depend only on these
assumptions, which encompass a number of interesting special cases. The
example here has λ = P .

Consider the problem facing a firm that must decide when to replace
its computer hardware. The usefulness of the computer system depends
on the capacity of the hardware K , and the sophistication of the software
X. The (flow) return from operating the system is F(X, K), where F is
continuously differentiable, strictly increasing, strictly quasi-concave, and
displays constant returns to scale.

Hardware depreciates at a constant rate δ > 0, and software quality X

is a geometric Brownian motion with drift μ > 0 and variance σ 2 > 0. For
simplicity, ignore the costs of adopting new software.

When new hardware is purchased all of the old hardware must be
scrapped, and it has no salvage value. The unit cost of new equipment, P , is
constant. Thus, if a system of capacity K is scrapped and replaced with one of
capacity K ′, the total cost is PK ′. There is no explicit fixed cost of replacing
the system. Instead, the fact that the old hardware must be scrapped plays
the role of a fixed cost, one that increases proportionately with K . All returns
and costs are discounted at the constant interest rate r > 0.

Let V (K0, X0) be the value from following an optimal policy, given
the initial state K0, X0 > 0. The Bellman equation for the firm’s problem
involves choosing a first stopping time T and a random variable K ′, where
the latter is the hardware capacity of the new system:

V (K0, X0) = max
T ,K ′ E

[∫ T

0
e−rtF [K(t), X(t)]dt + e−rT

{
V [K ′, X(T )]− PK ′}]

s.t. dK = −δKdt ,

dX = μXdt + σXdW , 0 ≤ t < T ,

given K(0) = K0 and X(0) = X0.
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Since the return function and constraints are homogeneous of degree
one, so is the value function V . To exploit homogeneity, define x ≡ X/K ,
f (x) ≡ F(1, x), and v(x) ≡ V (1, x). Note that K(t) = e−δtK0, 0 ≤ t < T , and
x′ = X(T )/K ′. Hence

K ′ = X(T )

x′ = K(T )
x(T )

x′ = e−δT K0
x(T )

x′ .

Substituting into the above expression for V (K0, X0) gives the intensive form
of the Bellman equation:

v(x0) = max
T ,x′ Ex0

[∫ T

0
e−ηtf (x(t))dt + e−ηT x(T )

v(x′) − P

x′

]
s.t. dx = (μ + δ) xdt + σxdW , 0 ≤ t < T ,

where η ≡ r + δ.

Exercise 8.4. (a) Describe the qualitative form of the optimal policy. That
is, when is control exercised and what is the nature of the control?

(b) Can the functions L̂, ψ , and � be used to find the solution? If so,
what are the relevant first-order conditions? If not, explain why not.

(c) What is the HJB equation for the intensive form of the problem?
How does the fact that x is a geometric Brownian motion affect that equation?
What are particular and homogeneous solutions?

(d) Characterize the value function outside the inaction region. What
are the value matching conditions?

(e) What are the smooth pasting conditions, and what condition char-
acterizes the optimal return point(s)?

(f) How does the optimal policy change with an increase in μ?
(g) Suppose that when new capital is purchased, only part of the old

capital must be scrapped. Let 1− ω be the fraction that is scrapped, so ωK

is the fraction that is retained, where ω ∈ [0, 1). How does this change modify
the intensive form of the Bellman equation?

8.6.4. Product Quality

Consider a firm whose profit flow depends on how well its product is
matched to market tastes. Tastes change over time, so match quality evolves
while the product is unchanged. Let X denote match quality, and assume
that in the absence of intervention X is a Brownian motion with drift μ < 0
and variance σ 2 > 0. The profit flow π(X) is a function of match quality.
Assume π is continuously differentiable, strictly increasing, bounded below
by π = 0, and bounded above by π > 0. In addition, π has a single inflection
point xI , so π is strictly convex below xI and strictly concave above xI .
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Match quality can be improved by changing the product. Assume that
the cost of such a change has both fixed and variable components. In
particular, let

C(y) = C0 + Py , C0, P > 0,

be the cost of improving the match by y > 0.
Given the initial state x, the firm’s problem is to choose an impulse

control policy for making product improvements. The Bellman equation
for the firm’s problem is

v (x) = max
T ,x′ Ex

[∫ T

0
e−rtπ(X(t))dt + e−rT

{
C0 + P

[
x′ − x(T ) + v(x′)

]}]
,

where T is a stopping time and x′ is the quality of the match after the
improvement.

Let vP (x) denote the expected discounted returns from operating for-
ever without improving the product, given the initial state x.

Exercise 8.5. (a) Sketch π and vP . Describe precisely conditions under
which never adjusting is and is not an optimal policy.

In the rest of the problem assume that the optimal policy involves
exercising control.

(b) Describe the qualitative form of the optimal policy, the stopping
rule, and the rule governing product improvements. Is there more than
one inaction region? Explain why or why not.

(c) Write the optimal value function v as an integral over states inside
each inaction region. What is v in the region(s) where control is exercised
immediately?

(d) Write the HJB equation for this problem. What are the boundary
conditions?

(e) Characterize the optimal policy and the associated value function v

as sharply as possible.
(f) Explain briefly how an increase in the absolute value of the drift,

μ < 0, affects the optimal policy and the value function.

8.7. Strictly Convex Adjustment Costs

The assumption that the variable cost of control is linear in the size of the
adjustment is very natural for the inventory interpretation of the model, and
it is also convenient mathematically. A strictly concave function would be
awkward for the usual reasons in a minimization problem. A strictly convex
function would imply that a large adjustment might be accomplished more
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cheaply by incurring the fixed cost more than once and making the change
in two or more small increments rather than a single large one.

This possibility could be accommodated by defining a function that
describes the least-cost way of adjusting:

Ĉ(y) ≡
{

minn=1,2, . . . nC(y/n), if y �= 0,
0, if y = 0,

and then using Ĉ instead of C in the analysis. Note that Ĉ has a kink at each
point where the number of adjustments changes. But a large adjustment
could occur only at t = 0, and even then only if the initial stock were far
outside the inaction region. All later adjustments would be made at the
boundary of the inaction region, in a single step. Hence the kinked portion
of the cost function Ĉ would not come into play after the initial adjustment.

Notes

An early treatment of the inventory problem is in Scarf (1960), and many
variations have been studied subsequently. Alvarez and Lippi (2007) use a
stochastic version of a Baumol-Tobin model similar to the inventory model
in Sections 8.1–8.5 to study cash withdrawals by consumers. The first two
examples in Section 8.6 are from Harrison, Selke, and Taylor (1983) and
Constantinides and Richard (1978). The homogeneity argument in the
investment model of the third example is like those in Alvarez and Stokey
(1998).

Aggregate models of investment in settings with fixed costs at the firm
level have also been studied. For example, see Bertola and Caballero (1990),
Caballero and Engel (1999), Fisher and Hornstein (2000), and Bachmann,
Caballero, and Engel (2006). See Caballero (1999) for an excellent survey
and further references.

Investment at the plant level is very “lumpy” and hence very unlike
the smooth behavior posited for the representative firm in a standard real
business cycle model. This discrepancy has raised the question of whether
incorporating heterogeneous firms with fixed costs of investment would
change the behavior of aggregate investment in such models and thus alter
the fluctuations they produce. Thomas (2002), Khan and Thomas (2003,
2007), and Gourio and Kashyap (2007) have all explored this issue. As in
aggregate models of price adjustment, the mix of responses at the intensive
and extensive margins—the size of adjustments and the number of firms
adjusting—is important.



9
Models with Continuous

Control Variables

In the menu cost and inventory models of Chapters 7 and 8 the only actions
taken by the decision maker are discrete adjustments of the state variable.
But the methods used in those problems can be extended to allow an ad-
ditional feature as well, continuously chosen control variables that affect
the evolution of the state between adjustments and also enter the return
function directly. Because the state variable no longer evolves as a Brown-
ian motion between adjustments, the functions L̂, ψ , and � are not useful
in these settings. The optimal policy and value function can still be char-
acterized with the Hamilton-Jacobi-Bellman equation, however. Moreover,
numerical solutions of that equation can be calculated with standard ODE
packages. The model of housing consumption and portfolio choice studied
in Grossman and Laroque (1990) provides an illustration.

Consider a consumer whose only consumption is the service flow
from a durable, her house, and whose only income is the return on her
financial assets. Housing has interest and maintenance costs, where the lat-
ter is interpreted as offsetting depreciation. In addition housing affects the
set of portfolios that are allowed. Specifically, the consumer is required to
hold a minimum equity level in the house that is a fixed fraction of its value.
This constraint reflects the fact that the purchase of a house typically re-
quires a minimum down payment. The consumer may also hold additional
wealth as housing equity, and she holds a mortgage on the remaining bal-
ance, if any. Wealth that is not tied up in the house is allocated between two
financial assets, one safe and one risky. The riskless asset pays a fixed inter-
est rate, while the risky asset has a stochastic return with fixed mean and
variance. The rate of return on the riskless asset is assumed to be the same
as the mortgage interest rate, so holding the riskless bond is equivalent to
holding equity in her house.

The consumer makes two decisions, about housing consumption and
about the allocation of her portfolio between safe and risky assets. Portfolio

176
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adjustment is costless and is carried out continuously, but the consumer can
adjust her consumption flow only by selling her old house and buying a new
one. This transaction involves paying a cost that is proportional to the size of
the old house, interpreted as agents’ commissions and other moving costs.
Hence the consumer adjusts her housing consumption infrequently. Only
if her consumption flow—the value of her house—is sufficiently large or
small relative to her total wealth does she make a transaction.

Because of the adjustment cost, housing wealth and financial wealth
are not perfect substitutes. Thus, the model has two state variables. If the re-
turn function—the consumer’s utility function—has a certain homogeneity
property, however, her decision problem can be written in an intensive form
that involves only a ratio. In particular, the utility function must have the ho-
mogeneous form u(K) = K1−θ/(1− θ), where θ > 0. Under this assumption
the optimized value function is also homogeneous, and the optimal pol-
icy functions depend only on the ratio of total wealth to housing wealth.
Hence that ratio can serve as the single state variable in the reformulated
problem.

The optimal policy for housing transactions is characterized by three
critical values for that ratio, upper and lower thresholds and a return point
between them. The region between the two thresholds is an inaction re-
gion: while the ratio lies in the interior of this region the consumer keeps
her current house. When the ratio reaches either threshold, or if the initial
condition lies outside the inaction region, the consumer immediately sells
her old house and purchases a new one. When she makes a transaction,
she chooses the new house so that the ratio of her total wealth to housing
wealth, net of the transaction cost, is equal to the return value. One goal
is to determine how these three critical values vary with parameters of the
problem—the transaction cost, asset returns, and preference parameters.

In addition the consumer adjusts her portfolio of assets. This adjustment
is continuous while the state variable remains inside the inaction region, and
it is discrete when a new house is purchased. A second goal is to determine,
for fixed parameters, how the optimal portfolio changes as a function of the
state variable inside the inaction region, and a third goal is to determine
how the entire portfolio decision shifts with changes in the parameters of
the problem.

The rest of the chapter is organized as follows. In Section 9.1 the prob-
lem without transaction costs is analyzed. In this case the consumer can
continuously and costlessly adjust her housing as well as her portfolio. This
model is interesting as a baseline for comparisons and for developing param-
eter restrictions. It is also useful as a starting point for computing solutions
for the model with transaction costs. The problem with transaction costs is
set up in Section 9.2, and a normalized version formulated in terms of a
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single state variable, a ratio, is developed. In Section 9.3 the solution is char-
acterized with the Hamilton-Jacobi-Bellman equation, and an algorithm for
computing the solution is sketched. Section 9.4 looks at several extensions:
exogenous moves, nondurable consumption, logarithmic utility, and a spe-
cial case that adds several assumptions and uses a different state variable. In
the last case the solution can be characterized with L̂, ψ , and �.

9.1. Housing and Portfolio Choice with No Transaction Cost

Let Q denote the consumer’s total wealth and K the value of her house.
The price of housing is constant, and the service flow from a house is equal
to its value. For now there is no adjustment cost, so the consumer can adjust
K continuously and costlessly.

There are two assets, one safe and one risky. Assume that short sales of
the risky asset are not allowed, and let A ≥ 0 be the consumer’s holding
of the risky asset. Then Q − A is wealth in safe assets. The mortgage interest
rate is the same as the return on the bond, so holdings of the safe asset
are the sum of equity in the house and bond holdings. If Q − A ≤ K , the
entire amount can be interpreted as equity in the house. Let ε ∈ (0, 1] be
the (exogenously given) minimal equity the consumer is required to hold
in her house. Then the constraint on her portfolio is Q − A ≥ εK . That is,
her wealth in safe assets must be at least ε times the value of her house.

Let r > 0 be the riskless rate of return, let μ > r and σ 2 > 0 be the
mean and variance of the return on the risky asset, and let δ ≥ 0 be
the maintenance cost per unit of housing. Then given K and A, the law
of motion for total wealth is

dQ = [
Aμ + (Q − A − εK) r − (1− ε) rK − δK

]
dt + AσdZ

= [
rQ + (μ − r) A − (r + δ) K

]
dt + AσdZ , (9.1)

where Z is a Wiener process. The four terms in square brackets in the first
line represent returns from risky assets, returns from safe assets, mortgage
payments, and the cost of maintenance, respectively. The second line ex-
presses this sum as portfolio returns minus interest and depreciation on the
house.

The consumer’s instantaneous utility function has the constant elasticity
form U(K) = K1−θ/(1− θ), and she discounts future utility at the constant
rate ρ > 0. Given Q0 > 0, the consumer’s problem is to choose {K(t), A(t)}
to solve

max E0

[∫ ∞

0
e−ρt K(t)1−θ

1− θ
dt

]
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s.t. K(t) ∈ [
0, Q(t)/ε

]
,

A(t) ∈ [0, Q(t) − εK(t)],

and the law of motion for wealth in (9.1).
The following assumption summarizes the parameter restrictions thus

far.

Assumption 9.1.
0 < ε ≤ 1, δ ≥ 0,

0 < r < μ, σ 2 > 0,

θ > 0, θ �= 1, ρ > 0.

The case θ = 1, which represents U(K) = ln K , can be treated along similar
lines and is considered in Section 9.4.3.

Since the constraints—including the law of motion for wealth—are ho-
mogeneous of degree one in (Q, K , A) and the return function is homoge-
neous of degree 1− θ , the optimal policy has the form K = k∗Q, A = a∗Q,
where k∗ and a∗ are constants.

For any policy K = kQ and A = aQ with fixed k , a , total wealth Q(t) in
(9.1) is a geometric Brownian motion with drift and variance

m(k , a) ≡ r + (μ − r) a − (r + δ) k ,

s2(k , a) ≡ a2σ 2.

In this case

E0

[
Q(t)1−θ

]
= Q1−θ

0 e�(k ,a)t , all t ,

where

�(k , a) ≡ (1− θ)
[
m(k , a) − θ 1

2s2(k , a)
]
,

and the consumer’s problem can be written as

max
k∈[0, 1/ε]

a∈[0, 1−εk]

k1−θ

1− θ
Q1−θ

0

∫ ∞

0
e−ρte�(k ,a)tdt . (9.2)

The integral in (9.2) is finite if and only if ρ > �(k , a). If 0 < θ < 1, then
k1−θ/ (1− θ) > 0. In this case the parameters must be restricted so that
ρ > �(k , a) for all feasible k , a , thus insuring expected discounted utility
is finite along every feasible path. If θ > 1, then k1−θ/(1− θ) < 0. In this case
the parameters must be restricted so that ρ > �(k , a) for at least one feasible
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k , a, insuring that expected discounted utility is finite along at least one
feasible path.

Lemmas 9.1 and 9.2 describe the optimal portfolio when ρ > � and
restrictions insuring that this inequality holds. Note that if 0 < θ < 1 the
consumer’s goal is to maximize ρ − �(k , a), while if θ > 1 her goal is to
minimize it. In either case, then, her objective is to maximize �(k , a)/(1− θ).
Let

p = μ − r

σ 2
(9.3)

denote the inverse “price” of risk, the expected excess return μ − r on the
risky asset over the variance. Under Assumption 9.1 p is strictly positive.
Lemma 9.1 describes the optimal portfolio share in the risky asset, α(k), for
arbitrary (fixed) k.

Lemma 9.1. Under Assumption 9.1 for any 0 ≤ k ≤ 1/ε the solution to the
problem

max
a∈[0,1−εk]

�(k , a)

1− θ

is

α(k) =
{

1− εk , if p/θ > 1− εk,
p/θ , if p/θ ≤ 1− εk.

(9.4)

Proof. Note that

�a(k , a) = (1− θ)
[
(μ − r) − θaσ 2

]
= (1− θ) σ 2 (p − θa) .

If 0 < θ < 1 the objective is to maximize �(k , a). In this case �aa < 0, so
� is concave. Since �a(k , 0) > 0 there cannot be an optimum at a = 0. If
p/θ > 1− εk , then

�a(k , 1− εk) = (1− θ) σ 2 [p − θ (1− εk)
]
> 0,

so the optimum is at a corner, α(k) = 1− εk. Otherwise the optimal portfolio
is interior and satisfies �a = 0, so

α(k) = p/θ .

Hence the optimal portfolio is as in (9.4).
If θ > 1 the objective is to minimize �(k , a). In this case � is convex, and

the arguments above hold with a sign change.
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Lemma 9.1 says that unless the consumer has a house of maximal size,
k = 1/ε , and hence has no discretionary wealth to allocate, the share of
wealth in the risky asset is strictly positive. For consumers who are sufficiently
risk averse (high θ) the solution is interior, at a = p/θ . For these consumers
the share of wealth in the risky asset is increasing in μ and decreasing
in r , σ 2, and θ . For consumers who are sufficiently risk tolerant (low θ)
the constraint 1 − εk binds and the solution is at a corner. For the latter
group, housing services have an a extra cost, at the margin. In addition to
the interest and maintenance costs, r + δ , an increase in housing services
involves an incremental portfolio distortion. Notice that the constraint a ≤
1− εk comes into play even if ε = 0, reflecting the fact that sufficiently risk-
tolerant consumers would like to take a short position in the safe asset.

The next assumption insures that ρ > �(k∗, a∗).

Assumption 9.2. If 0 < θ < 1,

ρ > (1− θ) ×
{ (

μ − θσ 2/2
)

, if p/θ > 1,(
r + p2σ 2/2θ

)
, if p/θ ≤ 1.

Lemma 9.2. Under Assumptions 9.1 and 9.2,

ρ > �(k , a),
{

all feasible k , a , if 0 < θ < 1,
some feasible k , a , if θ > 1.

Proof. Suppose 0 < θ < 1. Then

d

dk
�(k , α(k)) = − (1− θ) (r + δ) + (1− θ) σ 2 [p − θα(k)

]
α′(k)

≤ − (1− θ) (r + δ)

< 0, (9.5)

where the second line uses the facts p − θα(k) ≥ 0 and α′(k) ≤ 0. Hence for
any ε ≥ 0,

ρ > �(0, α(0)) ≥ �(k , α(k)) ≥ �(k , a), all feasible (k , a),

where the first inequality uses Assumption 9.2, the second uses (9.5), and
the third uses the fact that α(k) maximizes �(k , a).

If θ > 1, then since r > 0, for a = 0 and all k sufficiently small,

ρ > 0 > (1− θ) [r − (r + δ) k]= �(k , 0).

Finally, consider the consumer’s choice of housing services. Lemma 9.2
implies that the integral in (9.2) is finite for all feasible k , a if 0 < θ < 1, and



182 9. Models with Continuous Control Variables

is finite for some feasible k , a if θ > 1. In either case the maximized value in
(9.2) is finite and has the form W(Q0) = Q1−θ

0 w∗, where

w∗ ≡ max
k∈[0,1/ε]

[
k1−θ

1− θ

1
ρ − �[k , α(k)]

]
,

and α(k) is as in (9.4).

Exercise 9.1. Let k∗(θ) and α[k∗(θ); θ] denote the optimal policy for a
consumer with risk aversion θ . Show that there is a threshold θ̂ with the
property that the portfolio constraint a ≤ 1− εk binds for this consumer at
that point if and only if θ < θ̂ .

9.2. The Model with Transaction Costs

Suppose now that the consumer must pay a transaction cost of λK when
she sells her house, where λ > 0. Because the transaction cost applies only
to K , total wealth Q is no longer a sufficient state variable to describe the
consumer’s position. Two state variables are needed, (Q, K) or some other
(equivalent) pair.

It is convenient to assume that the transaction cost λ is no greater than
the consumer’s minimal equity position ε in her house. This assumption
insures that she can always afford to sell her house. Assume in addition that
the consumer’s initial wealth is sufficient to pay the transaction cost for the
initial house.

Assumption 9.3. 0 < λ ≤ ε, and Q0 > λK0.

At dates when a housing transaction is made the consumer’s total wealth
after the purchase equals her wealth before the sale, net of the transaction
cost. At other dates wealth grows stochastically, as before, and the value of
the house is constant.

Let Q0, K0 denote the consumer’s initial total wealth and housing
wealth. The consumer chooses (i) a sequence of stopping times

{
Ti

}
when

she sells her old house and buys a new one, (ii) a sequence of random
variables {Ki}, the value of the new house when she transacts, and (iii) a
stochastic process A(t) for her portfolio at all dates. Given Q0, K0, a policy

γ =
{(

Ti , Ki ,
)∞
i=1, A(.)

}
is feasible if it satisfies

0 ≤ A(t) ≤ Q(t) − εKi−1, t ∈ [Ti−1, Ti), i = 1, 2, . . . ,

Ki ≤ Qi/ε , i = 1, 2, . . . ,

where T0 = 0 and
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dQ = [
rQ + (μ − r) A − (r + δ) Ki−1

]
dt + AσdZ ,

t ∈ (
Ti−1, Ti

)
, i = 1, 2, . . . ,

Qi = Q(Ti) − λKi−1, i = 1, 2, . . . .

Let �(Q0, K0) be the set of all policies that are feasible from Q0, K0, and
for any γ ∈ �(Q0, K0), let

H(Q0, K0; γ ) = E0

[∫ T1

T0

e−ρt K0
1−θ

1− θ
dt +

∞∑
i=1

∫ Ti+1

Ti

e−ρt
K1−θ

i

1− θ
dt

]

denote the expected discounted utility of the consumer. Define the maxi-
mized value

V (Q0, K0) ≡ sup
γ∈�(Q0,K0)

H(Q0, K0; γ ).

Notice that one feasible policy is to transact immediately, setting A(t) ≡
0, purchasing the maximum size house that can be maintained forever,
and never transacting again. Since the maintenance cost must be paid, the
maximum affordable house is

K̂ ≡ r

δ + r

(
Q0 − λK0

)
.

This policy delivers finite lifetime utility, and it places a lower bound on
what the consumer can attain. The value when there is no transaction cost
provides an upper bound.

Hence under Assumptions 9.1 and 9.2, V (Q0, K0) is finite for any initial
conditions. This fact suggests that the Principle of Optimality holds, so the
consumer’s problem can be written in the recursive form

V (Q0, K0) = max
{A(t)},T ,K ′ E0

[∫ T

0
e−ρt

K1−θ
0

1− θ
dt + e−ρT V (Q′, K ′)

]
(9.6)

s.t. 0 ≤ A(t) ≤ Q(t) − εK0,

dQ = [
rQ + (μ − r) A − (r + δ) K0

]
dt + AσdZ , t ∈ (0, T ),

K ′ ≤ Q′/ε ,

Q′ = Q(T ) − λK0,

where T is a stopping time.
As in the problem without transaction costs, homogeneity of the return

function and the constraints in (9.6) imply homogeneity of the value and
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policy functions. Hence the problem can be formulated in terms of one state
variable, a ratio. A convenient choice is q = Q/K , the ratio of total wealth
to housing wealth. Define a = A/Q as before, and note that

K ′ = Q′

q ′ = q(T ) − λ

q ′ K .

Hence the Bellman equation (9.6) can be written as

v(q0) = max
{a(t)},T ,q ′ E0

[∫ T

0

1
1− θ

e−ρtdt + e−ρT

(
q(T ) − λ

q ′

)1−θ

v(q ′)
]

(9.7)

s.t. 0 ≤ a(t) ≤ 1− ε/q(t),

dq = [
rq + (μ − r) aq − (r + δ)

]
dt + aqσdZ , t ∈ (0, T ),

q ′ ≥ ε ,

where v(q0) ≡ V
(
q0, 1

)
.

Two properties of the optimal policy follow directly from (9.7). First, it
clearly requires a transaction if the ratio of total wealth to housing wealth
q is sufficiently large. Therefore, since q cannot fall below ε , the optimal
stopping time has the form

T = T (b) ∧ T (B), for some ε ≤ b < B < ∞.

In addition, the optimal return point does not depend on the state q(T )

when the adjustment is made. Here, as in the menu cost model, the only
cost of adjustment is a fixed cost. Hence the optimal return point S, is the
same for upward and downward adjustments.

In contrast to the problems considered in Chapters 6–8, here the state
variable q is not a Brownian motion or a geometric Brownian motion.
Indeed, here a continuous decision variable a(t) appears in the law of
motion for q . Hence the functions L̂, ψ , and � are not useful for analyzing
(9.7). The Hamilton-Jacobi-Bellman equation can still be used, however,
both to characterize the solution analytically and to compute it numerically.

9.3. Using the Hamilton-Jacobi-Bellman Equation

First consider the state space. There is no upper bound on q , but the
portfolio constraint implies that ε is a lower bound. If ε > λ the appropriate
state space is [ε , ∞), and b∗ = ε is a possibility. If λ = ε the consumer
is bankrupt at q = ε , so the appropriate state space is (ε , ∞), and b∗ is
necessarily interior.

A solution consists of a value function v(q) defined on the state space,
thresholds b∗ < S∗ < B∗ defining an inaction region and a return point,
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and a portfolio policy a(q) defined on
(
b∗, B∗). The function v satisfies

the Hamilton-Jacobi-Bellman (HJB) equation for (9.7) on the inaction re-
gion and is defined by the value from immediate adjustment outside that
region. Value matching and smooth pasting hold at the two thresholds, and
an optimality condition holds at the return point. The novel feature is a
maximization inside the HJB equation, reflecting the fact that the portfolio
is adjusted continuously. It is convenient to define the function

H(q) = (q − λ)1−θ , q ≥ ε ,

for normalizing the continuation values.

Proposition 9.3. Under Assumptions 9.1–9.3 the solution has the following
properties:

i. v satisfies

ρv(q) = 1
1− θ

+ max
a∈[0,1−ε/q]

{[
rq + (μ − r) aq − (r + δ)

]
v′(q)

(9.8)

+ 1
2
σ 2 (aq)2 v′′(q)

}
, q ∈ (

b∗, B∗),
v(q) = H(q)M∗, q �∈ (

b∗, B∗), (9.9)

where

M∗ ≡ max
S

v(S)

(S)1−θ
; (9.10)

ii. v and v′ are continuous at b,

lim
q↓b∗ v(q) = H(b∗)M∗, (9.11)

lim
q↓b∗ v′(q) ≥ H ′(b∗)M∗, with equality if b∗ > ε;

iii. v and v′ are continuous at B,

lim
q↑B∗ v(q) = H(B∗)M∗, (9.12)

lim
q↑B∗ v′(q) = H ′(B∗)M∗;

iv. the return point S∗ attains the maximum in (9.10),

v(S∗) = H(S∗ + λ)M∗. (9.13)
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Note that M∗ is the continuation value for a consumer who has just sold her
house and has total wealth of unity after paying the transaction cost.

It follows from (9.8) that a(q) satisfies the first-order condition

pv′(q) + a(q)qv′′(q) ≥ 0, with equality if a(q) < 1− ε/q ,

where p = (μ − r)/σ 2 is defined in (9.3). Since v′ > 0, it follows that a(q) >

0, all q, so the nonnegativity constraint never binds. The equity constraint
may bind, however, so

a(q) = min
{

p

�(q)
, 1− ε/q

}
, (9.14)

where

�(q) ≡ −qv′′(q)

v′(q)
(9.15)

is the local coefficient of relative risk aversion for the value function. Thus
the portfolio rule in (9.14) is like the one in (9.4) except that the relevant
coefficient of risk aversion—which in both cases is the one for the value
function—is variable here.

Establishing further properties of the solution analytically is difficult,
but calculating solutions numerically is fairly easy. A method that works well
is the following procedure, which iterates on the values Mn, Sn, bn, Bn and
the functions vn, an.

Fix the parameters μ, σ 2, r , ρ , θ , δ , λ, ε. Suppose that a candidate port-
folio rule an(q) is given. Write the HJB equation as

v′′(q) = 2[
sn(q)q

]2

[
ρv(q) − mn(q)v′(q) − 1

1− θ

]
, (9.16)

where

mn(q) ≡ [
r + (μ − r) an(q)

]
q − (r + δ),

sn(q) ≡ σan(q).

To solve this second-order equation with a standard ODE package, define
the stacked function F(q) = [

v(q), v′(q)
]

, with derivatives
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dF1(q) = F2(q),

dF2(q) = 2[
sn(q)q

]2

[
ρF1(q) − mn(q)F2(q) − 1

1− θ

]
.

For notational simplicity drop the subscript n. At each step, given a(q)

and M , S , b, B , choose an interval
[
b, B

]
that contains [b, B] and grids{

Mi

}I

i=1 and
{
Sj

}J

j=1 around M and S . For each pair (Mi , Sj) solve the ODE

backward from Si to b and forward from Si to B . For both solutions use the
initial condition implied by (9.10) and (9.13),

F(Sj) = [
v(Sj), v′(Sj)

]
= [

H(Sj + λ)Mi , H ′(Sj + λ)Mi

]
.

Then select the thresholds bij and Bij that minimize a weighted sum of the
errors in the value matching and smooth pasting conditions in (9.11) and
(9.12), and check that the range [b, B] is large enough so that the choices
are not constrained. After the thresholds and errors for all pairs (Mi , Sj)
have been calculated, select the pair (ı̂ , ĵ ) with the smallest total error.

Define (Mn+1, Sn+1, bn+1, Bn+1) = (Mnı̂ , Snĵ , bnı̂ĵ , Bnı̂ĵ ) and update
[b, B]. To calculate the functions vn+1, an+1, solve the ODE once more,
with initial conditions Mnı̂ , Snĵ and range [b, B], with a fixed and rather
fine grid for q , call it the vector qv

n+1. The solution to the ODE consists of
two vectors containing the functions vn+1 and v′

n+1 evaluated at the points
in qv

n+1. Use (9.14)–(9.16) to construct vectors containing v′′
n+1, �n+1, and

an+1 evaluated at these points.
The pair of vectors (qv

n+1, an+1) describes the next approximation to the
optimal policy function. Notice that this function must be defined on the
interval [b, B], not just [bn+1, Bn+1]. Also notice that the ODE solver must
have access to (qv

n+1, an+1), perhaps by passing them as global variables.
For the initial iteration use the solution to the problem with no trans-

action cost as a starting point. That solution consists of the normalized value
w∗, the ratio k∗ of housing wealth to total wealth, and the portfolio ratio
a∗. Use the constant function a0(q) = a∗ for the portfolio policy, and use
M0 = w∗, S0 = 1/k∗ to locate the grids for M and S. There is little to guide
the initial choices for b and B except to require b0 < S0 and B0 > S0.

Note that the interval [b, B] serves only to insure that the ODE is
solved over a wide enough range, one that contains [b, B]. The interval
[b, B]should not be too wide, however, since the ODE behaves badly if it is
calculated too far outside the range where it is meaningful.
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Iterate in this fashion until the errors in the value matching and smooth
pasting conditions are small and the value and policy functions have con-
verged to the desired degree of accuracy. Since the problem with no trans-
action cost provides good initial guesses for a, S0, and M0, the procedure
converges quickly. After the final iteration, solve the ODE once more on
(b∗, B∗). Then construct the final policy function a∗ as in the earlier stages,
and use (9.9) to extend v outside (b∗, B∗).

Figures 9.1 and 9.2 display iterates of the value and policy functions for
an example with the parameter values,

μ = 0.70, σ = 0.1655, r = 0.01,
ρ = 0.04, θ = 2.0,
δ = 0.05, λ = 0.10, ε = 0.15.

The parameters μ, σ, and r describing asset returns are from Kocherlakota
(1996). The preference parameters ρ and θ are within the range that is stan-
dard in the macro literature. The maintenance cost δ = 0.05 is a little higher
than the usual depreciation rate for structures, to allow for property taxes
and other minimal operating expenses. Commissions for real estate agents
are typically around 5–6% of the transaction value, and estimates of other
costs—time spent searching, moving costs, and the like—are estimated to
be around 4–5%, so λ = 0.10 is a reasonable figure for the transaction cost.
The equity constraint of ε = 0.15 is the typical down payment required for
a single-family house.

Figure 9.1 shows the first two iterations in the approximation. Figure
9.1a shows the functions v0 and v1, return points S0 and S1, and thresholds
b1 and B1. The function v0(q) = q1−θw∗ is the value function for a consumer
who faces no transaction cost, and S0 = 1/k∗ is the optimal ratio of total
wealth to housing wealth for that consumer. Outside the inaction region
the value functions are

vn(q) = H(q)Mn, q �∈ (
bn, Bn

)
,

where Mn is the normalized continuation value from Sn. Thus, M0 = w∗.
The initial thresholds b0 and B0 (not shown) are simply guesses.

The transaction cost reduces the consumer’s welfare, so v1 < v0. In
addition, the fact that transactions are costly favors asset accumulation
over current consumption, so the consumer chooses a higher ratio of total
wealth to housing wealth when transacting, S1 > S0. Figure 9.1b shows the
derivatives v′

0 and v′
1 of the approximate value functions.



9.3. Using the Hamilton-Jacobi-Bellman Equation 189

Figure 9.1. The first two approximations of (a) the value function and (b) its
derivative for the housing model. The parameter values are μ = 0.07, σ = 0.1655,
r = 0.01, ρ = 0.04, δ = 0.05, ε = 0.15, and λ = 0.10.
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Figure 9.2. Construction of the first approximation of the portfolio policy.

Figure 9.2 shows the construction of the approximate policy function a1.
The dotted curve, which is increasing, is the equity constraint 1− ε/q. The
broken curve, which is U-shaped, is the unconstrained portfolio p/�1(q)

based on v1. The minimum of these two, the solid curve, is the function
a1(q).

Notice that the transaction cost makes the consumer more risk averse
in the middle of the inaction region and more risk tolerant as q approaches
either transaction threshold. Thus, for the parameter values in this example,
the equity constraint binds only near the thresholds.

Figure 9.3 shows three approximate policy functions. The dashed line
is the constant portfolio a0(q) = a∗ from the model with no transaction cost.
The broken line is the function a1 from Figure 9.2, and the solid line is the
function a2 from the next iteration. There is a modest difference between a0,
which is constant at about 0.90, and a1, which varies between 0.82 and 0.96.
There is very little difference between a1 and a2. The critical values b2, B2,
S2 are slightly higher than b1, B1, S1. Further iteration produces negligible
changes.
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Figure 9.3. The first three iterates of the approximate policy function.

9.4. Extensions

In this section several extensions of the housing model are studied as exer-
cises. The first exercise adds exogenous moves, the second adds nondurable
consumption, and the third treats the case θ = 1, log utility. The fourth treats
a similar model that adds three assumptions and uses a slightly different
state variable. With these changes the state variable is a geometric Brownian
motion, and the solution can be characterized using L̂, ψ , and �.

9.4.1. Exogenous Moves

Suppose there are involuntary as well as voluntary moves. Specifically, sup-
pose there is a Poisson shock with arrival rate κ . If this shock arrives the
consumer is required to move and must pay the transaction cost.

Exercise 9.2. Derive the HJB equation for the model with the exogenous
shock.
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9.4.2. Nondurable Consumption

Suppose that in addition to housing there is a composite nondurable good
C . Assume the consumer’s instantaneous preferences involve a constant
elasticity of substitution (CES) aggregator:

F(C , K) =
{ [

ωC1−ζ + (1− ω) K1−ζ
]1/(1−ζ ), ζ �= 1,

CωK1−ω , ζ = 1,

where ω ∈ [0, 1) is the relative weight on nondurables, and 1/ζ is the elasticity
of substitution. As before her intertemporal utility function is homogeneous
of degree 1− θ ,

E0

[∫ ∞

0
e−ρt {F [C(t), K(t)]}1−θ

1− θ
dt

]
.

Exercise 9.3. Write the normalized form for the consumer’s problem.
What is the associated HJB equation?

9.4.3. Log Utility

Consider the housing model with θ = 1, so that U(K) = ln K .

Exercise 9.4. (a) Write the consumer’s problem for the case with no trans-
action cost and show that the optimal policy has the form K(t) = kQ(t),
A(t) = aQ(t), all t .

(b) Show that for any k, a, ln Q(t) is a Brownian motion with parameters

m(k , a) = r + (μ − r) a − (r + δ) k − 1
2a2σ 2,

s2(a) = a2σ 2.

Show that

E0 [ln Q(t)]= ln Q0 + m(k , a)t , all t ,

and

E0

[∫ ∞

0
e−ρt ln K(t)dt

]
= 1

ρ

(
ln Q0 + ln k

) + 1
ρ2

m(k , a).

Hence the value of a consumer with initial wealth Q0 is
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W(Q0) = 1
ρ

ln Q0 + w∗,

where

w∗ ≡ max
k∈[0, 1/ε]

a∈[0, 1−εk]

[
1
ρ

ln k + 1
ρ2

m(k , a)

]
.

(c) Show that Lemma 9.1 holds for θ = 1. Find restrictions on ρ, r , μ,
σ 2, δ that insure w∗ is finite. Characterize k∗, the optimal ratio of housing
wealth to total wealth.

(d) Write the Bellman equation for the problem with a transaction cost,
using Q, K as state variables, the analog of (9.6). Write the intensive form of
that problem, the analog of (9.7). What is the state variable for that problem?

(e) Write the HJB equation corresponding to the intensive form of the
Bellman equation. What are the boundary and optimality conditions?

9.4.4. A Special Case: ε = 1, δ = 0, and Fixed â

In this section three additional assumptions are imposed: no mortgage is
allowed, ε = 1; there is no maintenance cost, δ = 0; and the share of financial
(nonhousing) wealth in the risky asset is constant. In addition, a different
state variable is used for the analysis. These changes make the law of motion
for the state variable a geometric Brownian motion, so the solution can be
found using the functions L̂, ψ , and �.

For ε = 1, financial wealth is X = Q − K . Define the ratios

x ≡ X

K
= Q − K

K
= q − 1,

â ≡ A

X
= A

Q − K
= a

q

q − 1
,

so x is the ratio of financial wealth to housing wealth, and â is the share
of financial wealth (not total wealth) held in the risky asset. The following
assumption is used in this section.

Assumption 9.4. ε = 1, δ = 0, and â ∈ [0, 1] is fixed.

Exercise 9.5. (a) Show that under Assumption 9.4 x is a geometric Brown-
ian motion with mean μ̂ = r + (μ − r) â and variance σ̂ 2 = (

âσ
)2.
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Using x as the state variable the Bellman equation (9.7) can be written as

ν(x0) = max
T ,x′≥0

E
[∫ T

0

1
1− θ

e−ρtdt (9.17)

+ e−ρT

(
x(T ) + 1− λ

x′ + 1

)1−θ

ν(x′)
]

s.t. dx = μ̂xdt + σ̂ xdZ ,

where ν(x) is the maximized value of a consumer who has housing wealth
of unity and financial wealth x . Define

h(x) ≡ (x + 1− λ)1−θ

for the scaling factor after a transaction.
The optimal stopping time in (9.17) takes the form T = T (d) ∧ T (D),

where d and D are thresholds for the new state variable. Hence (9.17) can
be written as

ν(x) = max
d ,D ,x′

{
w(x) + [

ψ(x)h(d) + �(x)h(D)
] ν(x ′)

h(x′ + λ)

}
, (9.18)

where w(x , d , D), ψ(x , d , D), and �(x , d , D) are as defined at the begin-
ning of Chapter 5 and the arguments d , D have been suppressed.

The return function here is the constant function 1/(1− θ). This fact
has two implications. First, the value of never transacting is the value of
consuming forever the services of a house of size one. That is,

w(x , 0, ∞) = νP (x) =
∫ ∞

0

1
1− θ

e−ρtdt = 1
1− θ

1
ρ

≡ �.

Under Assumption 9.4 this strategy is always feasible: there is no mainte-
nance cost, δ = 0, and the consumer owns the house, ε = 1, so there is no
interest cost. The fact that the return function is a constant also implies that
for any d , D ,

w(x) = Ex

[∫ T

0

1
1− θ

e−ρtdt

]

= [
1− ψ (x) − � (x)

]
�.

Define

m∗ ≡ max
s′

ν(s′)
h(s′ + λ)

, (9.19)
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and note that the value from transacting in state x is h(x)m∗.

Exercise. (b) Show that h(x)m∗ is strictly increasing in x for θ < 1and θ > 1.

First consider the question of whether control is necessarily exercised.
Setting d = 0 means the consumer never downsizes her house, and setting
D = ∞ means she never upgrades. The next exercise shows that the con-
sumer always upgrades her house if the ratio of her financial wealth to
housing wealth is sufficiently high.

Exercise. (c) Show that D∗ < ∞.

The optimal policy can be characterized by the first-order conditions
for (9.18) and (9.19). The condition for d∗ is an inequality, however. If the
transaction cost λ is large the lower threshold may be d∗ = 0. In this case the
consumer prefers to stay in her current house and avoid the transaction cost
when the ratio of her financial wealth to housing wealth is low. As usual, the
conditions for the thresholds can be written as smooth pasting conditions.

Exercise. (d) Show that if d∗, D∗, s∗ is an optimal policy, then

wx(d
∗) + [

ψx(d
∗)h(d∗) + �x(d

∗)h(D∗)
]
m∗ ≥ h′(d∗)m∗,

with equality if d∗ > 0,

wx(D
∗) + [

ψx(D
∗)h(d∗) + �x(D

∗)h(D∗)
]
m∗ = h′(D∗)m∗,

wx(s
∗) + [

ψx(s
∗)h(d∗) + �x(s

∗)h(D∗)
]
m∗ = h′(s∗ + λ)m∗,

where

m∗ = 1− ψ(s∗) − �(s∗)
h(s∗ + λ) − ψ(s∗)h(d∗) − �(s∗)h(D∗)

�.

The solution can also be characterized by using the HJB equation as-
sociated with (9.17). Note that since x is a geometric Brownian motion,
the terms ν′(x) and ν′′(x) in the HJB equation are multiplied by x and x2,
respectively, so

ρν(x) = 1
1− θ

+ μ̂xν ′(x) + 1
2 σ̂ 2x2ν′′(x), x ∈ (d , D). (9.20)

ν(x) = h(x)m∗, x �∈ (d , D).

Exercise. (e) What are the value matching, smooth pasting, and optimal
return conditions for (9.20)?
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9.4.5. Replacing Computer Hardware, Revisited

Consider again the model of replacing computer hardware in Section 8.6.3.
Suppose there is a proportional cost γ to adopting software improvements,
so the cost of adopting the increment dX is γ dX. In addition, suppose that
the firm has the option not to adopt software improvements as soon as they
appear.

Exercise 9.6. Explain briefly how this change can be incorporated in the
HJB equation.

Notes

The housing model studied here is from Grossman and Laroque (1990).
See Alvarez and Stokey (1998) for a discussion of recursive problems with
homogeneous value functions.

Flavin and Nakagawa (2004) and Stokey (2008) analyze versions of the
housing model that include nondurable consumption as well. Marshall and
Parekh (1999) use a model in which the adjustment cost applies to total
consumption to study the equity premium puzzle.

Smith, Rosen, and Fallis (1988) estimate the transaction cost for hous-
ing to be about 10%, and Flavin and Nakagawa (2004), Siegel (2005), and
Cocco (2005) all find empirical evidence that adjustment costs are impor-
tant for explaining the behavior of housing consumption. Both Chetty and
Szeidl (2004) and Kullmann and Siegel (2005) find empirical evidence of
state-dependent risk aversion, and Martin (2003) finds evidence that non-
durable consumption adjusts at the time of a move.

Caballero (1990) looks at the time series implications of the type of slow
or lagged adjustment generated by fixed costs for durable goods purchases.
Caballero (1993) and Caplin and Leahy (1999) study models of aggregate
durable purchases in settings in which individuals experience both idiosyn-
cratic and aggregate shocks. Eberly (1994) simulates a model with many
consumers who experience idiosyncratic shocks and compares it with evi-
dence on new car purchases.

See Chetty and Szeidl (2007) for a model with adjustment costs that lead
to a value function with convex regions.
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10
Regulated Brownian Motion

Consider the following purely mechanical description of a stock. In the
absence of any regulation, the flows into and out of the stock are exogenous
and stochastic, and the cumulative difference between the inflows and
outflows is described by a Brownian motion X. There are fixed values b, B ,
with b < B . The stock is not allowed to rise above B or to fall below b.
An automatic regulator exercises control when the stock reaches either
threshold, increasing or decreasing the stock by just enough to keep it inside
the interval [b, B].

For example, the inflow can be interpreted as production, the outflow
as sales, and the stock as an inventory held as a buffer between the two. Then
dX(t) is the excess of production over sales at date t , with dX(t) < 0 when
demand exceeds production. B is the capacity for carrying inventory, and
it is natural to take b to be zero. Control exercised at B is interpreted as the
disposal of goods on a secondary market, and control exercised at b as the
purchase of goods from a backstop supplier.

To begin, the costs and benefits from these activities can be set aside:
there is no objective function and no decisions are made. The first goal is to
describe the control exercised at each threshold and the resulting process
for the regulated stock, given arbitrary values for b, B. More precisely,
fix b < B , and suppose x0 = X(0) ∈ [b, B]. Let L(t) and U(t) denote the
cumulative control the regulator has exercised at the lower and upper
boundaries, respectively, by date t . The regulated stock at any date is then

Z(t) = X(t) + L(t) − U(t), all t . (10.1)

L(t) and U(t) are stochastic processes, and (L, U , Z) have the following
properties:

i. L and U are continuous and nondecreasing, with L0 = U0 = 0;
ii. Z(t) defined by (10.1) satisfies Z(t) ∈ [b, B], all t ;
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iii. L(t) increases only when Z(t) = b, and U(t) increases only when
Z(t) = B.

Thus, the first goal is to define L and U in terms of the exogenous process X.
With definitions of L and U in hand, decision problems can then be

studied. In the inventory problem and in other economic applications, the
values b, B are chosen to minimize the expected discounted sum of various
costs, given a (constant) interest rate r > 0. Three types of costs can be
incorporated: a unit cost for adding to the stock at the lower threshold,
a unit cost for decreasing the stock at the upper threshold, and a strictly
convex carrying cost. To describe them the following definitions are useful.
Fix r > 0, b < B, and an initial value Z(0) = z ∈ [b, B]. Define

α(z, b, B; r) ≡ Ez

[∫ ∞

0
e−rsdL

]
,

β(z, b, B; r) ≡ Ez

[∫ ∞

0
e−rsdU

]
,

�(A; z, b, B; r) ≡ Ez

[∫ ∞

0
e−rs1A(Z(s))ds

]
, A ∈ B[b ,B],

(10.2)

where Ez [.] denotes an expectation conditional on the initial condition,
1A is the indicator function for the set A, and B[b ,B] denotes the Borel
subsets of [b, B]. Then α(z, b, B; r) is the expected discounted value of
control exercised at the lower threshold, β(z, b, B; r) is an analogous expres-
sion for control at the upper threshold, and �(A; z, b, B; r) is the expected
discounted occupancy measure. Let π(., z, b, B; r) denote the expected dis-
counted local time associated with �. Then the expected costs for adjusting
the stock at the two boundaries are proportional to α and β , and the ex-
pected carrying cost is an integral involving π .

If r = 0 the integrals in (10.2) diverge. Nevertheless long-run averages
can be calculated, the expected control exercised per unit time at each
threshold and the stationary distribution. These averages are useful for
characterizing aggregate behavior. In particular, if there is a continuum of
i.i.d. agents of measure one, each described by the same regulated process,
then the stationary density π represents the (constant) cross-sectional dis-
tribution, and α and β represent the (constant) level of aggregate control
exercised at the boundaries.

Notice that this model is similar to the one studied in Chapter 8 except
that there are no fixed costs of adjustment. Thus, it can be viewed as the
limiting case as the fixed costs go to zero. As the fixed costs fall, the decision
maker chooses to make more frequent and smaller adjustments, so the
return points are closer to the thresholds. That is, the sizes of the optimal
upward and downward adjustments, |q − b| and |Q − B|, shrink to zero
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as the fixed costs go to zero. In the limit, instead of discrete jumps, the
adjustments take the form of “regulation” at the two thresholds that is just
sufficient to keep the process from exiting the inaction region.

The rest of this chapter is organized as follows. One-sided and two-
sided regulators are developed in Section 10.1. Explicit formulas for α , β ,
and π are developed in Section 10.2 for the discounted case, r > 0, and
in Section 10.3 for the undiscounted case, r = 0. Section 10.4 contains an
example, a simple inventory model, that shows how these formulas can be
used.

10.1. One- and Two-Sided Regulators

Suppose there is only a lower threshold, b, and the initial condition is
X(0) = X0 ≥ b. The regulator triggers inflows when the stock is at b. Define
the stopping time T0 as the first date when X(t) = b, and note that

L(t) =
{

0, t ≤ T0, all ω,
b − mins∈[0, t] X(s), t > T0, all ω.

(10.3)

Clearly L(t) is continuous and nondecreasing, L(0) = 0, and L is strictly
increasing at t only if t > T0 and X(t) = mins∈[0, t] X(s). The stock at any
date is

Z(t) = X(t) + L(t)

=
{

X(t), t ≤ T0, all ω,
b + [

X(t) − mins∈[0, t] X(s)
]

, t > T0, all ω,

≥ b, all t ≥ 0,

and L is strictly increasing only when Z(t) = b. Hence L in (10.3), U ≡ 0,
and Z as above satisfy conditions (i)–(iii).

Similarly, suppose there is only an upper threshold, B , and the initial
condition is X(0) = X0 ≤ B . The regulator triggers outflows when the stock
is at B . Define the stopping time T1 as the first date when X(t) = B , and note
that

U(t) =
{

0, t ≤ T1, all ω,
maxs∈[0, t] X(s) − B t > T1, all ω.

(10.4)

Clearly U(t) is continuous and nondecreasing, U(0) = 0, and U is strictly
increasing at t only if t > T1 and X(t) = maxs∈[0, t] X(s). The stock at any
date is
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Z(t) = X(t) − U(t)

=
{

X(t), t ≤ T1, all ω,
B − [maxs∈[0, t] X(s) − X(t)], t > T1, all ω,

≤ B , all t ≥ 0,

and U is strictly increasing at t only if Z(t) = B . Hence U in (10.4), L ≡ 0,
and Z as above satisfy conditions (i)–(iii).

Now suppose there are two boundaries, b < B , and X0 ∈ [b, B]. Con-
struction of the stochastic processes U(t) and L(t) proceeds by induction.

The basic idea is to define successive blocks of time so that during each
block control is exercised at only one of the boundaries, and the threshold
at which control is exercised alternates between successive blocks. Within
each block the increments to U or L—but only one of them—are defined
using (10.3) or (10.4). The end of the block, the point at which regulation
switches to the other threshold, is a stopping time. Thus the construction
defines a sequence of stopping times 0 ≤ T0 < T1 < T2 < . . . < Tn < . . . with
the property that there is an initial block of the form

[
0, T0

]
or

[
0, T1

]
during

which no control is exercised, and subsequently control is exercised only at
b over “even” blocks—those of the form (T2i , T2i+1]—and only at B over
“odd” blocks—those of the form (T2i+1, T2i+2]. Notice that T0, T1, . . . , are
not the only times when the regulated process reaches the thresholds. The
process may reach b multiple times during any even block, and it may reach
B multiple times during any odd block.

If T (b) < T (B) let

T0 = T (b),

U(t) = L(t) = 0, t ∈ [0, T0),
(10.5)

so no control is exercised during [0, T0) and Z(T0) = b. If T (B) < T (b) let

T0 = 0, T1 = T (B),

U(t) = L(t) = 0, t ∈ [0, T1),
(10.6)

so no control is exercised during [0, T1) and Z(T1) = B . In either case, the
construction of U , L, and Z is identical over all subsequent odd and even
blocks, so it suffices to look at a typical block of each type.

Consider a typical even block, starting at T2i , with Z(T2i) = b. The idea
is to construct processes X̂2i, L̂2i, and Ẑ2i , each having as its argument a
re-initialized time variable s = t − T2i . These functions are used to define
the next stopping time, T2i+1, and to construct L and Z over the interval
[T2i , T2i+1).

Define
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X̂2i(s) ≡ b + [
X(T2i + s) − X(T2i)

]
, s ≥ 0, all ω.

Notice that X̂2i(0) = b, and X̂2i has increments identical to those of X.
Define

L̂2i(s) ≡ b − min
τ∈[0, s]

X̂2i(τ ),

Ẑ2i(s) ≡ X̂2i(s) + L̂2i(s), s ≥ 0, all ω.

Define the stopping time Ŝ2i+1 as the first time Ẑ2i(s) reaches the threshold
B . Then for the original process let

T2i+1 = T2i + Ŝ2i+1,

U(t) = U(T2i),

L(t) = L(T2i) + L̂2i(t − T2i), t ∈ (T2i , T2i+1], all ω,

(10.7)

and use (10.1) to define Z(t). During an even block of time no control is
exercised at the upper threshold, so U(t) is constant. The additional con-
trol exercised at the lower threshold is described by L̂2i.

Next consider a typical odd block, starting at T2i+1 with Z(T2i+1) = B .
Define

X̂2i+1(s) ≡ B + [
X(T2i+1 + s) − X(T2i+1)

]
, s ≥ 0, all ω.

Notice that X̂2i+1(0) = B , and X̂2i+1 has increments identical to those of X.
Define

Û2i+1(s) ≡ max
τ∈[0, s]

X̂2i+1(τ ) − B ,

Ẑ2i+1(s) ≡ X̂2i+1(s) − Û2i+1(s), s ≥ 0, all ω.

Define the stopping time Ŝ2i+2 as the first time Ẑ2i+1 reaches the threshold
b. Then for the original process let

T2i+2 = T2i+1 + Ŝ2i+2,

U(t) = U(T2i+1) + Û2i+1(t − T2i+1),

L(t) = L(T2i+1), t ∈ (T2i+1, T2i+2], all ω,

(10.8)

and use (10.1) to define Z(t). During an odd block of time L(t) is constant,
and additional control at the upper threshold is described by Û2i+1.

Continue in this fashion, alternating blocks of time. Figure 10.1 displays
a sample path with a block of each type. Panel a shows the paths for X(t)
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Figure 10.1. (a) Sample path for a regulated Brownian motion, and (b) cumulative
control U(t) and L(t) exercised at the upper and lower thresholds.
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and Z(t), and panel b shows the corresponding paths for U(t) and L(t). To
summarize, the argument above establishes the following result.

Proposition 10.1. For any b < B and any Brownian motion X with X(0) =
x0 ∈ [b, B], the unique functions satisfying conditions (i)–(iii) are U(t) and
L(t) defined by (10.5)–(10.8) and Z(t) defined by (10.1).

10.2. Discounted Values

Let b, B and X, U , L, Z be as in Section 10.1, with X(0) = Z(0) = z ∈ [b, B],
and fix an interest rate r > 0. In this section expressions are developed for
the functions defined in (10.2): the expected discounted value of control
exercised at each threshold, α(z, b, B; r) and β(z, b, B; r), and the expected
discounted local time function π(.; z, b, B; r) for the regulated process.
These functions are useful for studying problems in which a decision maker
is choosing the thresholds b and B to minimize an objective function involv-
ing proportional costs of control at each threshold and holding costs that
depend on the stock Z.

The main tool for this purpose will be Ito’s lemma, Theorem 3.3. Recall
that if μ̂(Z) and σ̂ (Z) are the infinitesimal parameters of the process Z ,

then μ̂(Z)ds + σ̂ (Z)dW = dZ and σ̂ 2(Z)ds =
[
(dZ)2

]
. Hence for a constant

discount rate r ≥ 0, Ito’s lemma states that if the function f : [b, B]→ R is
twice continuously differentiable and Z(0) = z, then for any t ≥ 0,

e−rtf (Z(t)) = f (z) − r

∫ t

0
e−rsf (Z)ds +

∫ t

0
e−rsf ′(Z)dZ

+ 1
2

∫ t

0
e−rsf ′′(Z) (dZ)2, all ω.

(10.9)

The argument here involves taking the expected value of this equation, so

expressions are needed for E[dZ] and E
[
(dZ)2

]
. The resulting version of

(10.9) can then be specialized, and for judicious choices of f it delivers
closed-form solutions for α , β , and π .

Since Z = X − U + L, it is straightforward that

E [dZ] = E [dX − dU + dL]

= μds − E [dU]+ E [dL].

E
[
(dZ)2

]
can be evaluated by taking a sequence of discrete approximations,

like those in Sections 2.4 and 2.8, to the processes X, U , L, Z.
For n = 1, 2, . . . , let the nth process for Z take values on a grid with

n + 1 evenly spaced points on [b, B]. The nth process has step size hn, time
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increment �n, and probability pn defined by

hn = B − b

n
, �n =

(
hn

σ

)2

, pn = 1
2

(
1+ μ

σ 2
hn

)
.

Over each time interval �n, the increment to the unregulated process is
�X = hn with probability pn and �X = −hn with probability 1− pn, so the
mean and variance of each approximating process for X match those of the
original. In addition �U = hn if Z = B and �X = hn, and �L = hn if Z = b

and �X = −hn. Otherwise �U = �L = 0. Hence

E
[
(�Z)2

]
= E

[
(�X − �U + �L)2

]
= E

[
(�X)2 + (�U)2 + (�L)2 − 2�X�U + 2�X�L

]
= E

[
(�X)2

]
− E

[
(�U)2

]
− E

[
(�L)2

]
,

where the second line uses the fact that �U�L ≡ 0 and the third uses the
fact that �X = �U if �U > 0 and �X = −�L if �L > 0. For the nth process,

E
[
(�U)2 | Z = B

]
= pnh

2
n
.

Since Pr [Z = B] is of order 1/n or, equivalently, of order hn, it follows that

1
�n

E
[
(�U)2

]
� 1

�n

pnh
3
n
� pnhn,

where � means “has the same order as.” Hence this term goes to zero as
n → ∞. An analogous argument applies for �L, so

E
[
(dZ)2

]
= E

[
(dX)2

]
= σ 2ds .

Since f , f ′, and f ′′ are continuous, they are bounded on [b, B]. Hence
for any r > 0 the integrals in (10.9) are bounded as t → ∞. Take the limit,
take the expected value conditional on the initial condition Z(0) = z, and
note that the term on the left vanishes to obtain

Ez

[∫ ∞

0
e−rs

{
rf (Z) − μf ′(Z) − 1

2σ 2f ′′(Z)
}

ds

]

= f (z) + f ′(b)Ez

[∫ ∞

0
e−rsdL

]
− f ′(B)Ez

[∫ ∞

0
e−rsdU

]
,
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where the last two terms use the fact that dL is positive only if Z = b and dU

is positive only if Z = B .
The expected values on the right are simply α(z) and β(z) and, by

Theorem 3.7, the expected value on the left can be written as an integral
over states involving the function π . Hence for any twice differentiable
function f , ∫ B

b

[
rf (ζ ) − μf ′(ζ ) − 1

2σ 2f ′′(ζ )
]

π(ζ , z)dζ

= f (z) + f ′(b)α(z) − f ′(B)β(z).

The rest of the argument involves choosing functions f of a particular form.
Specifically, note that for functions of the form f (ζ ) = eλζ , with λ �= 0,(

r − μλ − 1
2σ 2λ2

) ∫ B

b

eλζπ(ζ , z)dζ = eλz + λeλbα(z) − λeλBβ(z). (10.10)

Propositions 10.2–10.4 use (10.10) to characterize α , β , and π .
Let R1 < 0 < R2 denote the roots of the quadratic

(
r − μλ − 1

2σ
2λ2)= 0,

and let

� = eR2BeR1b − eR1BeR2b.

Proposition 10.2. Fix
(
μ, σ 2), r > 0, and b < B. Then

α(z, b, B; r) = 1
�

(
eR1BeR2z

R2
− eR2BeR1z

R1

)
,

β(z, b, B; r) = 1
�

(
eR1beR2z

R2
− eR2beR1z

R1

)
, z ∈ [b, B].

(10.11)

Proof. For λ = R1, R2, the term on the left in (10.10) is zero. Hence(
eR1B −eR1b

eR2B −eR2b

) (
β(z)

α(z)

)
=
(

eR1z/R1

eR2z/R2

)
, z ∈ [b, B],

and α and β are as in (10.11).

Proposition 10.3. Fix
(
μ, σ 2), r > 0, and b < B . Then

π(ζ ; b, b, B; r) = eR1beR2b

r�

[
R2e

R2(B−ζ ) − R1e
R1(B−ζ )

]
,

π(ζ ; B , b, B; r) = eR1BeR2B

r�

[
R2e

R2(b−ζ ) − R1e
R1(b−ζ )

]
, ζ ∈ [b, B].

(10.12)
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Proof. For z = b the term on the right in (10.10) is

eλbeR1beR2b

�

[
eR2(B−b) − eR1(B−b) + λeR1(B−b)

R2
− λeR2(B−b)

R1

−eλ(B−b) λ

R2
+ eλ(B−b) λ

R1

]

= eλbeR1beR2b

�

[
R1 − λ

R1

[
eR2(B−b) − eλ(B−b)

]

−R2 − λ

R2

[
eR1(B−b) − eλ(B−b)

]]
.

Also note that

r − λμ − 1
2
σ 2λ2 = r

(
R1 − λ

R1

) (
R2 − λ

R2

)
.

Use these facts in (10.10) to obtain

∫ B

b

π(ζ ; b, b, B; r)eλ(ζ−b)dζ

= eR1beR2beλ(B−b)

r�

[
R2

R2 − λ

[
e(R2−λ)(B−b) − 1

]
− R1

R1 − λ

[
e(R1−λ)(B−b) − 1

]]

= eR1beR2beλ(B−b)

r�

∫ B

b

[
R2e

(R2−λ)(B−ζ ) − R1e
(R1−λ)(B−ζ )

]
dζ

= eR1beR2b

r�

∫ B

b

[
R2e

R2(B−ζ ) − R1e
R1(B−ζ )

]
eλ(ζ−b)dζ .

Since this equation holds for any λ �= 0, π(ζ ; b) is as in (10.12). An analogous
argument applies for z = B .

Let ψ , �, and J be as defined in Chapter 5. The next result then follows
immediately.

Proposition 10.4. Fix
(
μ, σ 2), r > 0, and b < B . Then for any z ∈ [b, B],
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π(ζ ; z, b, B; r) = 1
J

eRi(z−ζ ) + ψ(z)

[
π(ζ ; b) − 1

J
eR2(b−ζ )

]
(10.13)

+ �(z)

[
π(ζ ; B) − 1

J
eR1(B−ζ )

]
, i =

{
1, if b ≤ ζ ≤ z,
2, if z ≤ ζ ≤ B ,

Proof. Fix z ∈ (b, B) and define the stopping time T = T (b) ∧ T (B). The
function π(.; z) is the sum of three parts, one representing time before T

and two representing time after T , for stops at b and at B . Hence

π(ζ ; z) = L̂(ζ ; z) + ψ(z)π(ζ ; b) + �(z)π(ζ ; B), all ζ ∈ [b, B] ,

where L̂(ζ ; z, b, B; r) is expected discounted local time before T . Recall from
Section 5.6 that

L̂(ζ ; z) = 1
J

[
eRi(z−ζ ) − ψ(z)eR2(b−ζ ) − �(z)eR1(B−ζ )

]
,

i =
{

1, if b ≤ ζ ≤ z,
2, if z ≤ ζ ≤ B,

establishing the claim.

Notice from (10.13) that π(ζ ; z) is everywhere continuous, but it has a
kink at ζ = z. Hence πz(ζ ; z) has a jump at ζ = z,

lim
ζ↑z

πz(ζ ; z) − lim
ζ↓z

πz(ζ ; z) = R1 − R2

J
, all ζ , z ∈ [b, B]. (10.14)

Also note that the results in Propositions 10.2–10.4 continue to hold if one
of the thresholds grows without bound, as b → −∞ or B → ∞.

The following exercise provides an alternative way to write π .

Exercise 10.1. Show that if b > −∞, then

π(ζ ; z) = α(z)
1
J

[
R2e

R2(b−ζ ) − R1e
R1(b−ζ )

]
, ζ ∈ [b, z].

Show that if B < +∞, then

π(ζ ; z) = β(z)
1
J

[
R2e

R2(B−ζ ) − R1e
R1(B−ζ )

]
, ζ ∈ [z, B].

Note that since α(z) → 0 and eR1(b−ζ ) → +∞ as b → −∞, the first expression
must be interpreted carefully if there is no lower threshold. The same is true
for the second expression if there is no upper threshold.
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The next two results show that the derivatives of α , β , and π have certain
properties. As the inventory example in Section 10.4 shows, these properties
are useful in applications where the thresholds b and B are chosen to op-
timize an objective function.

Proposition 10.5. Fix
(
μ, σ 2), r > 0, and b < B . Then the ratios

αb(z)

π(b; z)
,

βb(z)

π(b; z)
,

πb(ζ ; z)
π(b; z)

, ζ ∈ [b, B],

αB(z)

π(B; z)
,

βB(z)

π(B; z)
,

πB(ζ ; z)
π(B; z)

, ζ ∈ [b, B],

are independent of z, for z ∈ (b, B).

Proof. Exercise 10.1 shows that

π(b; z) = α(z)
1
J

(
R2 − R1

)
.

For the first claim note that

αb(z) = −α(z)
�b

�
.

For the second note that

βb(z) = 1
�2

1
R1R2

[
�
(
R2

1e
R1beR2z − R2

2e
R2beR1z

)
−�b

(
R1e

R1beR2z − R2e
R2beR1z

)]
= 1

�2

1
R1R2

[(
eR2BeR1b − eR1BeR2b

) (
R2

1e
R1beR2z − R2

2e
R2beR1z

)
−
(
R1e

R2BeR1b − R2e
R1BeR2b

) (
R1e

R1beR2z − R2e
R2beR1z

)]
= 1

�2

(
R2 − R1

)
R1R2

eR1beR2b
[
R1e

R1BeR2z − R2e
R2BeR1z

]
= 1

�

(
R2 − R1

)
eR1beR2bα(z).

For the third use the result in Exercise 10.1. For ζ < z,

πb(ζ ; z)
π(b; z)

= αb(z)

α (z)
+ R2

2e
R2(b−ζ ) − R2

1e
R1(b−ζ )

R2e
R2(b−ζ ) − R1e

R1(b−ζ )
,
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and the claim follows from the first result. For ζ > z,

πb(ζ ; z)
π(b; z)

= βb(z)

π(b; z)
1
J

[
R2e

R2(B−ζ ) − R1e
R1(B−ζ )

]
,

and the claim follows from the second result.
Similar arguments establish the other three claims.

These results have a very natural interpretation. For example, note that
αb(z) is the effect of a change in b on the expected discounted control
exercised at b, given the current state z. The first result states that this value
is proportional to π(b; z), the expected discounted local time at b given the
current state z. That is, conditional on arriving at b, the effect of changing
b is always the same. Changing the current state z alters only the arrivals at
b. The other results have similar interpretations.

Proposition 10.6. Fix
(
μ, σ 2), r > 0, and b < B. Then the functions α, β,

and π satisfy

αb(z) = α(z)αzz(b), αB(z) = β(z)αzz(B),

βb(z) = α(z)βzz(b), βB(z) = β(z)βzz(B),

πb(ζ ; b) = α(b)πzz(ζ ; b), πB(ζ ; B) = β(B)πzz(ζ ; B), all ζ ∈ [b, B].

Proof. Use the expressions for α and β in (10.11) to get

αb(z) = −�b

�
α(z) = α(z)αzz(b),

and

βb(z) = 1
�2

[(
R1e

R2zeR1b

R2
− R2e

R1zeR2b

R1

) (
eR2BeR1b − eR1BeR2b

)

−
(

eR2zeR1b

R2
− eR1zeR2b

R1

) (
R1e

R2BeR1b − R2e
R1BeR2b

)]

= R2 − R1

�2
eR1beR2b

(
eR2zeR1B

R2
− eR1zeR2B

R1

)
= α(z)βzz(b),

establishing the first two claims. Then use the expressions for π in Exer-
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cise 10.1 to find that for z < ζ ,

πzz(ζ ; b) = βzz(b)
1
J

[
R2e

R2(B−ζ ) − R1e
R1(B−ζ )

]
,

πb(ζ ; z) = βb(z)
1
J

[
R2e

R2(B−ζ ) − R1e
R1(B−ζ )

]
.

The third claim then follows from the second. Similar arguments establish
the other three claims.

These results also have natural interpretations. The first three state that
the effects of a change in b on the expected discounted control exercised at
b and at B and on the expected discounted local time at any level, given the
current state z, are all proportional to α(z). Since α(z) measures arrivals at
b, given the current state, this interpretation makes sense: the change in b

matters only when the process arrives at b. What is slightly surprising is the
form of the second term on the right side in each expression. In the first,
for example, it is αzz(b) rather than αz(b).

Figure 10.2 displays the functions α, β, and π . Panel a shows α(.) and
β(.) as functions of the initial value z for a process with positive drift. For
the same process panel b shows π(.; z) as a function of ζ , for z = −2, 0, 2.
The positive drift in z makes all these functions asymmetric. Note that the
area under each of the three curves in panel b is equal to 1/r .

10.3. The Stationary Distribution

To characterize the stationary distribution for Z one cannot simply take
the limits in (10.2) as r → 0, since all of the integrals diverge. Instead, for
r = 0 the analogs of α, β, and π must be defined in a slightly different way.
The first step is to construct a new set of time blocks for Z , defined so that
ex ante they are similar and taken together they cover the entire history of
the process.

Fix an initial condition Z(0) = z ∈ [b, B], and consider the sequence of
stopping times 0 = τ0 < τ1 < τ2 < . . . → ∞ defined as

τn+1 = min
{
t > τn | Z(t) = z, and Z(s) = b,

Z(s ′) = B , for some τn < s , s′ ≤ t
}
.

Thus, each stopping time is defined by requiring Z(t) to reach each thresh-
old, b and B , at least once and then to return to the initial state z. Each of
these stopping times is finite with probability one, and

Z(τn(ω)) = z, all ω, all n.
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Figure 10.2. For a Brownian motion regulated at b = −4 and B = 4, (a) the
expected discounted control at each threshold α(z) and β(z), as functions of the
initial state z, and (b) the expected discounted local time π(ζ ; z) for z = −2, 0, 2.
The parameter values are μ = 0.1, σ = 1, and r = 0.05.
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If the initial value is Z(0) = b or B , these blocks are formed by aggregating
the blocks defined in Section 10.1 into pairs.

Fix z, let τ = τ1, and define

α0(z, b, B) = Ez[L(τ)]
Ez(τ )

,

β0(z, b, B) = Ez[U(τ)]
Ez(τ )

,

�0(A; z, b, B) = Ez[m(A, τ)]
Ez(τ )

, A ∈ B[b ,B],

where m(A, τ) is the (undiscounted) occupancy measure for the set A up
to τ , as discussed in Section 3.5. The value α0 is the expected control
per unit time exercised at the lower threshold over [0, τ], and β0 is an
analogous expression for control at the upper threshold. The function
�0(.; z) normalizes the occupancy measure so that �0([b, B]; z) ≡ 1. Let
π0 be the density for �0.

As with the discounted values, the undiscounted values α0, β0 and the
density π0 can be calculated by making use of (10.9) for particular func-
tions f. Recall that (10.9) holds for any t and for any twice differentiable
function f. In particular, note that t = τ implies Z(τ) = Z0 = z. Since r = 0,
(10.9) then implies

0 =
∫ τ

0
f ′(Z)dZ + 1

2

∫ τ

0
f ′′(Z) (dZ)2.

Then substitute for dZ and (dZ)2, take the expectation, and rearrange terms
to get

0 = Ez

[∫ τ

0

{
μf ′(Z) + 1

2
σ 2f ′′(Z)

}
ds

]

+ f ′(b)Ez

[∫ τ

0
dL

]
− f ′(B)Ez

[∫ τ

0
dU

]
,

where the last terms use the fact that dL is positive only if Z = b and dU is
positive only if Z = B . Writing the first integral in terms π0, and the second
and third in terms of α0 and β0, gives

0 =
∫ B

b

[
μf ′(ζ ) + 1

2σ 2f ′′(ζ )
]

π0(ζ )dζ + f ′(b)α0 − f ′(B)β0. (10.15)

Note that a0, β0, and π0 do not depend on z.
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The next result provides an important fact about α0, β0, and π0: they
describe the long-run stationary distribution.

Proposition 10.7. Let Z(t) be a regulated Brownian motion on [b, B], with
initial value z ∈ [b, B]. Then as t → ∞,

1
t

Ez [L(t)] → α0,

1
t

Ez [U(t)] → β0,

Prz{Z(t) ∈ A} → �0(A), all A ∈ B[b ,B].

For a proof see Harrison (1985, pp. 87–89).

Equation (10.15) holds for any f . As before, judicious choices for f

produce explicit solutions for α0, β0, and π0.

Proposition 10.8. If μ �= 0, then

α0 = μeδb

eδB − eδb
,

β0 = μeδB

eδB − eδb
,

π0(ζ ) = δeδζ

eδB − eδb
, all ζ ∈ [b, B],

(10.16)

where δ = 2μ/σ 2. If μ = 0, then

α0 = β0 = σ 2

2 (B − b)
,

π0(ζ ) = 1
B − b

, all ζ ∈ [b, B].

(10.17)

Remark. If μ �= 0, π0 is the density for a truncated exponential distribution
with parameter δ. If μ = 0, π0 is the uniform density.

Proof. Since π0 integrates to unity, for f (ζ ) = ζ , (10.15) implies

0 = μ + α0 − β0, (10.18)

and for f (ζ ) = eλζ , λ �= 0, it implies

0 =
(
μ + 1

2σ 2λ
) ∫ B

b

eλζπ0 (ζ ) dζ + α0e
λb − β0e

λB . (10.19)
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Suppose μ �= 0. For λ = −δ = −2μ/σ 2 the first term in (10.19) is zero, so

α0e
−δb − β0e

−δB = 0.

Combine this fact and (10.18) to obtain the expressions for α0 and β0 in
(10.16). Then use these expressions in (10.19) to find that∫ B

b

eλζπ0 (ζ ) dζ = δ

λ + δ

e(λ+δ)B − e(λ+δ)b

eδB − eδb
, all λ �= −δ ,

so π0 is as claimed.
If μ = 0, (10.18) implies α0 = β0, and for f (z) = z2/2, (10.15) implies

1
2σ 2 = α0 (B − b),

so α0 and β0 are as in (10.17). Then substitute these expressions into (10.19)
to obtain ∫ B

b

eλζπ0(ζ )dζ = 1
λ

eλB − eλb

B − b
, all λ �= 0,

so π0 is as claimed.

Figure 10.3 shows α0, β0, and π0, for fixed σ , b, and B. Panel a shows α0
and β0, plotted as functions of the drift parameter μ, for positive values of
that parameter. Since b = −B , these functions are symmetric around μ = 0.
A stronger upward drift raises β0 and reduces α0. Panel b shows the stationary
density π0(ζ ), plotted for ζ ∈ [b, B], for three values of the drift parameter,
μ = 0, 0.125, and 0.25. A stronger upward drift tilts the density toward higher
values.

Notice that if the drift is nonzero, these expressions continue to hold if
there is only one threshold, the one in the direction of the drift. Specifically,
suppose μ < 0. Then δ < 0, so for any finite b, the limits as B → ∞ are

α0 = −μ, β0 = 0, π0(ζ ) = −δeδ(ζ−b), ζ ≥ b.

Similarly, μ > 0 implies δ > 0, so for any finite B , the limits as b → −∞ are

α0 = 0, β0 = μ, π0(ζ ) = δeδ(ζ−B), ζ ≤ B .

Exercise 10.2. Suppose that a large number of warehouses carry invento-
ries of a certain product. Each warehouse has a net inflow (supply minus
demand) that is a Brownian motion with mean μ and variance σ 2 > 0. Each
warehouse has capacity B > 0. Stocks cannot be negative, so each warehouse
must buy or sell additional units of the product to keep the stock between
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Figure 10.3. For a Brownian motion regulated at b = −4 and B = 4, (a) the
expected control per unit time α0 and β0 as functions of the drift μ, and (b) the
stationary density π0(ζ ), for various drift parameters. The diffusion parameter is
σ = 2.
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b = 0 and B > 0. Each does this in a continuous way, so the stock at each
warehouse is a regulated Brownian motion, regulated at b = 0 and B > 0.

(a) Describe the stationary distribution of inventories across ware-
houses.

(b) Describe the stationary level of purchases by warehouses (a flow)
to keep stocks from going negative and of sales by warehouses (also a flow)
that have reached capacity.

10.4. An Inventory Example

The inventory model in Harrison and Taskar (1983) illustrates how these
results can be used. Consider a manager who controls an inventory and
wants to minimize the expected discounted value of holding costs plus
adjustment costs. The holding cost h(z) is a flow that depends on the size
of the stock. Assume h is continuously differentiable and (weakly) convex,
with a minimum at some finite value zm.

In addition, there are proportional costs of adjusting the stock in either
direction. Specifically, the cost of upward control is P and the cost of
downward control is p, with

P > 0 and P > p.

If p > 0, then p is interpreted as the unit revenue when the manager sells
excess inventory. If p ≤ 0, then −p is the unit cost of disposing of excess
inventory. Although p may take either sign, p < P is required to make
the problem interesting. If p > P , infinite profits can be earned by buying
inventory at the price P and selling it p. If p = P , then since there are no
fixed costs, total costs are minimized by the (trivial) policy of keeping the
stock constant at the level zm that minimizes holding costs.

Finally, assume that there exist values z1 < zm < z2 such that

h′(z1) + rP < 0 and h′(z2) − rp > 0,

where r > 0 is the interest rate. This assumption insures that it is useful to
exercise control when the stock is sufficiently high or low. The first inequality
implies that a small increase in the stock reduces holding costs net of the
annuitized purchase price if z is below z1. The second implies that a small
reduction in the stock reduces holding costs net of the annuitized disposal
price if z is above z2.

In the absence of control the unregulated inventory X(t) is a
(
μ, σ 2)

Brownian motion. Suppose the manager chooses a policy of regulating the
inventory at fixed upper and lower thresholds. Then the regulated stock
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is Z(t) = X(t) + L(t) − U(t), where L(t) and U(t) are the total control
exercised at the two thresholds by date t .

For any thresholds b, B , let F(z, b, B) denote the expected discounted
value of total costs if the inventory is regulated at those thresholds, given
the initial stock Z(0) = z. Then

F(z, b, B) = Ez

[∫ ∞

0
e−rt

[
h(Z)dt + PdL − pdU

]]
(10.20)

=
∫ B

b

π(ζ ; z)h(ζ )dζ + α(z)P − β(z)p, z ∈ [b, B] ,

where the functions π , α , and β depend on b and B. If the initial stock z is
less than b, a cost of P(b − z) is incurred immediately to bring the stock up
to b, and if the initial stock exceeds B a cost of p(B − z) is incurred to bring
it down to B . Hence

F(z, b, B) =
{

P(b − z) + F(b, b, B), if z < b,
p(B − z) + F(B , b, B), if z > B.

(10.21)

For any b, B , the function F describes the value to the decision maker of
adopting that (arbitrary) policy.

The optimal thresholds b∗, B∗ minimize total cost, given z. Hence nec-
essary conditions for the optimal policy, given z, are

0 = Fb(z, b∗, B∗) (10.22)

=
∫ B∗

b∗
πb(ζ ; z)h(ζ )dζ − π(b∗; z)h(b∗) + αb(z)P − βb(z)p

and

0 = FB(z, b∗, B∗) (10.23)

=
∫ B∗

b∗
πB(ζ ; z)h(ζ )dζ + π(B∗; z)h(B) + αB(z)P − βB(z)p.

Since all of the functions in (10.22) and (10.23) are known, this pair of
equations provides one method for characterizing the optimal policy.

The following proposition points out an important fact about these
conditions.

Proposition 10.9. If the first-order condition in (10.22) holds for any z ∈[
b∗, B∗], then it holds for all z ∈ [

b∗, B∗]. Similarly, if (10.23) holds for any
z ∈ [

b∗, B∗], then it holds for all z ∈ [
b∗, B∗].



220 10. Regulated Brownian Motion

Proof. Since π(b∗; z) > 0, (10.22) can be written as

h(b∗) =
∫ B∗

b∗
πb(ζ ; z)
π(b∗; z)

h(ζ )dζ + αb(z)

π(b∗; z)
P − βb(z)

π(b∗; z)
p.

By Proposition 10.5, the right side is independent of z, establishing the first
claim. A similar argument establishes the second.

This result is not surprising, as it simply confirms that the Principle of
Optimality holds. That is, suppose the current inventory is z and the optimal
thresholds are b∗, B∗. If the stock evolves to z′ �= z and the optimization
problem is solved again, the choice of thresholds should be unchanged: b∗
and B∗ should still be optimal.

The optimal policy can also be characterized by using the Hamilton-
Jacobi-Bellman (HJB) equation. The usual perturbation argument suggests
that F (., b, B) satisfies that equation for z ∈ (b, B), for any b, B . Proposition
10.10 verifies that fact directly. In addition, it is clear from (10.21) that F is
continuous at b and B , for any choice of thresholds. Proposition 10.10 estab-
lishes that the same is true for the derivative Fz, but that Fzz is continuous
at these points only for the optimal thresholds b∗, B∗. The proof involves
evaluating the derivatives Fz and Fzz. For this step it is crucial to keep in
mind the fact that π(ζ ; z) has a kink at ζ = z, so πz has a jump. Thus, for any
b, B, differentiating (10.20) twice gives

Fz(z, b, B) =
∫ z

b

πz(ζ ; z)h(ζ )dζ +
∫ B

z

πz(ζ ; z)h(ζ )dζ

(10.24)
+ αz(z)P − βz(z)p,

Fzz(z, b, B) =
∫ B

b

πzz(ζ ; z)h(ζ )dζ − R2 − R1

J
h(z)

(10.25)
+ αzz(z)P − βzz(z)p, all z ∈ (b, B),

where the second derivative uses the result in (10.14).

Proposition 10.10. For any b, B , the function F(., b, B) defined in (10.20)
and (10.21) satisfies the HJB equation

rf (z) = h(z) + μf ′(z) + 1
2σ 2f ′′ (z), (10.26)

on the open interval (b, B). In addition,

i. Fz is continuous at b and B , for any b, B;
ii. Fzz is continuous at b if and only if (10.22) holds;

iii. Fzz is continuous at B if and only if (10.23) holds.
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Proof. Homogeneous solutions to (10.26) have the form

H(z) = a1e
R1z + a2e

R2z,

where a1 and a2 are arbitrary constants, and R1 < 0 < R2 are the roots of
the quadratic 1

2R
2σ 2 + Rμ − r = 0. Hence α(z) and β(z) are homogeneous

solutions, as is π(ζ ; z), all ζ ∈ (b, B). Thus (10.20), (10.24), and (10.25)
together imply that for f = F(., b, B) the only nonhomogeneous terms in
(10.26) are h(z) on the right side and the term in Fzz (see (10.25)) that
involves h(z). Since

σ 2

2
R2 − R1

J
= 1,

these terms cancel, establishing the first claim.
For (i), use (10.11) and (10.12) to find that for any b, B ,

αz(b, b, B) = −1, βz(b, b, B) = 0,

αz(B , b, B) = 0, βz(B , b, B) = 1,

and

πz(ζ ; b, b, B) = 0, πz(ζ ; B , b, B) = 0, all ζ ∈ (b, B).

Evaluate (10.24) and use these facts to find that

lim
z↓b

Fz(z, b, B) = −P , lim
z↑B

Fz(z, b, B) = −p,

which agrees with the derivatives of (10.21) at b and B .
For (ii), recall from Exercise 10.1 that if b > −∞,

π(b; z) = α(z)
1
J

(
R2 − R1

)
, all z.

Evaluate (10.25) at z = b, and use this fact to find that Fzz(b, b, B) = 0 if and
only if ∫ B

b

πzz(ζ ; b)h(ζ )dζ − π(b; z)
α(z)

h(b) + αzz(b)P − βzz(b)p = 0.

By Proposition 10.6, this condition holds if and only if (10.22) holds.
For (iii) use an analogous argument at B .



222 10. Regulated Brownian Motion

Proposition 10.10 shows that the optimal thresholds b∗, B∗ and the value
function v (.) ≡ F(., b∗, B∗) are characterized by:

i. v satisfies the HJB equation

rv(z) = h(z) + μv′ (z) + 1
2σ 2v′′ (z),

on
(
b∗, B∗) , and outside that interval

v (z) =
{

P
(
b∗ − z

) + v
(
b∗), if z < b∗,

p
(
B∗ − z

) + v
(
B∗), if z > B∗;

ii. the smooth pasting conditions hold,

lim
z↓b∗ v′(z) = P , lim

z↑B∗ v′(z) = p;

iii. the super contact conditions hold,

lim
z↓b∗ v′′(z) = 0, lim

z↑B∗ v′′(z) = 0.

Figure 10.4 displays the solution for an example with the exponential
holding cost function

h(z) =
{

h0e
ηz, z ≥ 0,

h0e
δz, z < 0,

and the parameter values

r = 0.05, μ = −0.2, σ = 0.5, h0 = 1.0,
η = 0.6, δ = −0.4, P = 1.0, p = −0.2.

Thus, holding positive inventory is slightly more expensive than holding
backorders, η > |δ|; the stock tends to drift downward in the absence of
control, μ < 0; and disposing of inventory entails a modest cost, p < 0.
Panel a shows the annualized cost function h(z)/r , and panel b shows the
value function and optimal thresholds b∗, B∗. For this example expected
discounted holding costs are infinite if no control is exercised.

Exercises 10.3–10.5 look at several variations on a similar problem with
a quadratic holding cost and a lower threshold fixed at b = 0.

Exercise 10.3. Consider a manager regulating an inventory. In the absence
of control the inventory is a Brownian motion with parameters (μ, σ 2). The
inventory is not allowed to be negative, and the holding cost is h(z) = h0z

2.
Additions to the inventory can be purchased for P > 0, and excess inventory
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Figure 10.4. (a) The annualized cost function and (b) value function for the
inventory model. The parameter values are μ = −0.2, σ = 0.5, r = 0.05, η = 0.6,
δ = −0.4, h0 = 1, P = 1, and p = −0.2. The optimal thresholds are b∗ = 0.454
and B∗ = 0.58.
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can be sold for p, where 0 < p < P . The interest rate r > 0 is constant over
time. The manager’s problem is to minimize the expected discounted value
of total costs.

(a) Write the HJB equation.
(b) What are particular and homogeneous solutions for this equation?
(c) What are the boundary conditions for the HJB equation, and what

is the value function outside the inaction region?
(d) Describe the expected purchases and sales per unit time under the

optimal policy.

Exercise 10.4. Suppose that the manager has two inventories of the type
in Exercise 10.3, with identical parameters

(
μ, σ 2) and independent shocks.

If the two stocks are merged, the holding cost for the merged inventory Y

is H(Y) = 2h(Y/2), and the flows into and out of the merged inventory are
the sum of the flows for the individual inventories.

(a) Describe carefully the relationship between the HJB equations for
the single and merged inventories. Are the particular and homogeneous
solutions the same or different? What about the boundary conditions?

(b) Are expected purchases and sales per unit time for the merged
inventory twice what they are for a single inventory? Explain briefly.

Exercise 10.5. Consider a manager who looks after a large number (a
continuum) of inventories, each of the type in Exercise 10.3, and all with mu-
tually independent shocks. Assume there is unit mass of these inventories.
There is no secondary market, but the manager can transfer goods among
the various inventories. Shipping is costly, however. Assume that the cost
takes an “iceberg” form: for each unit of goods that leaves one inventory,
only 0 < λ < 1 arrives at the destination.

(a) What condition is needed to insure that total inflows into inventories
are equal to total outflows net of “iceberg” costs?

(b) Show that if λ < 1, this condition cannot hold if μ ≤ 0. Show that if
μ > 0 it can hold, and explain how the manager can make the flows match.

(c) For fixed λ, how does the expected discounted value of holding costs
change with μ?

Notes

The treatment of regulated Brownian motion in Sections 10.1–10.3 follows
Harrison (1985, Chapters 2 and 5), and the inventory model in Section 10.4
is from Harrison and Taskar (1983). The language here also follows Har-
rison. As he notes in his introduction, the term reflected Brownian motion,
while standard among mathematicians, is less descriptive. Dumas (1991),
who coined the term super contact condition, has a nice discussion of the re-
lationship between impulse and instantaneous control problems.



11
Investment: Linear and

Convex Adjustment Costs

A variety of investment problems can be analyzed using models similar
to the inventory model in Section 10.4. Several examples are studied below
to illustrate some of the features that can be incorporated and the types
of solutions that result. All of the examples have a similar structure for the
revenue function, but they make different assumptions about investment
costs.

Consider a firm whose revenue flow at any date, net of wages, materials,
and other variable costs, depends on its capital stock and a random variable
describing demand. Demand is a geometric Brownian motion or a more
general diffusion. The firm’s problem is to choose the investment policy that
maximizes the expected discounted value of net revenue minus investment
costs.

If investment is completely reversible, in the sense that the purchase
and sale prices for capital are equal, and there are no nonprice adjustment
costs, the model produces Jorgensen’s (1963) result: at each date the capital
stock is adjusted to equate the (ever-changing) marginal revenue product
of capital with the (constant) user cost of capital.

But the framework can also accommodate two types of frictions. The
first is a wedge between the purchase and sale prices for capital goods, as in
the inventory model in Section 10.4. Recall that in that model the optimal
policy consisted of two thresholds, b and B. The open interval (b, B) was
an inaction region, and outside that interval the optimal policy involved
adjusting immediately to the nearest threshold. In particular, a discrete
adjustment was required at date t = 0 if the initial condition was outside
[b, B]. After an initial discrete adjustment, if needed, the optimal policy
involved regulating the process at each threshold, so the state remained
inside the interval.

If the price of capital is the only cost and the purchase and sale prices
differ, the optimal policy in the investment model has a similar structure.

225
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The only difference is that the thresholds b(X) and B(X) are functions of
demand. But the optimal policy still involves an initial discrete adjustment if
the initial capital stock K0 is outside the interval

[
b(X0), B(X0)

]
. Thereafter

the stock is regulated at the two thresholds, and the open interval between
those thresholds is an inaction region where the firm neither invests nor
disinvests.

A second friction can also be incorporated, a strictly convex cost of
adjustment in addition to the price. This cost can be thought of as repre-
senting the time of managers or the disruption to production in the existing
plant. Recall that in the framework with lump-sum fixed costs, mathematical
tractability required that the variable cost be linear, for the reasons discussed
in Section 8.7. Here there are no fixed costs, so those arguments do not
apply.

If the purchase and sale prices for capital differ, then there are still
threshold functions b(X) and B(X) defining an inaction region, given de-
mand. But with strictly convex adjustment costs discrete investment is not an
option. Investment is necessarily a flow, and adjustment is continuous when
the capital stock is outside the interval [b(X), B(X)]. If the capital stock is
less than b(X) the firm invests at a rate that depends on the distance from
the threshold: the farther from the threshold, the faster the rate of invest-
ment. Similarly, if the capital stock exceeds B(X) the firm disinvests at a rate
that depends on the distance from the threshold.

Thus, in the presence of a convex adjustment cost the model delivers
the conclusion from Tobin’s (1969) q theory, as modified by Hayashi (1982)
and Abel (1985): investment is an increasing function of q, the marginal
value of installed capital. Specifically, the rate of investment is positive if
q is sufficiently high, zero if q is in an intermediate range, and negative
if q is sufficiently low. Of course, the state can lie in the region outside
[b(X), B(X)]only over some initial period. Once the state enters the interval
[b(X), B(X)], investment or disinvestment at the boundaries prevents it
from exiting.

The intermediate region shrinks to a single point if the cost of invest-
ment varies smoothly with the rate of investment, as happens if the purchase
and sale prices for capital are equal and the adjustment cost function is
smooth at zero. With no adjustment cost this model is the one in Jorgensen
(1963). The third region, the disinvestment region, disappears if the sale
price is zero or if the adjustment cost exceeds the sale price of capital. That
is, investment is in essence irreversible—disinvestment never occurs—if the
adjustment cost for disinvestment is sufficiently large or the sale price for
capital sufficiently small.

Since labor is subject to the same types of adjustment costs these models
can also be interpreted as descriptions of hiring and firing decisions. Indeed
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adjustment costs may be even more important for labor than for capital,
since labor is a bigger fraction of total costs.

The rest of the chapter is organized as follows. Section 11.1 sets out
a model that allows different purchase and sale prices for capital goods,
but has no other costs. Section 11.2 adds strictly convex adjustment costs,
and Section 11.3 looks at two special cases. The first, which has a profit
function that is linear in capital, equal purchase and sale prices for capital,
and a quadratic adjustment cost, produces a closed-form solution. This
model is the one in Abel and Eberly (1997). The second, which has profit
and adjustment cost functions that are homogeneous of degree one, allows
the problem to be written in terms of a single state variable, a ratio. In
Section 11.4 the homogeneous model is studied more closely under the
assumption that there is no adjustment cost and capital has no resale value.
Thus, investment is irreversible. In Section 11.5 a second shock is added to
that model, a stochastic price for investment goods. The resulting model
is the one in Bertola and Caballero (1994). In Section 11.6 a model of a
two-sector economy is sketched.

11.1. Investment with Linear Costs

In this section and the next, several versions of a basic investment model
are presented. All have the same structure for demand, but the investment
costs have different forms. None is analyzed in detail. The only goal is to see
how various components of the investment cost affect the qualitative nature
of the optimal policy.

Consider a firm choosing a path for gross investment to maximize the
expected discounted value of operating profits net of investment costs. Let
K(t) denote the firm’s capital stock and X(t) denote demand. The revenue
function �(K , X) is time invariant and subsumes the cost of labor and other
variable inputs. The following assumption will be maintained throughout
the chapter.

Assumption 11.1. � is twice continuously differentiable and strictly in-
creasing, and is weakly concave in its second argument, with �(0, X) = 0
and �XK > 0.

Thus profits are increasing and strictly concave in the capital stock, and both
total and marginal profits increase with demand.

Demand X is a diffusion,

dX = μ(X)dt + σ(X)dW , (11.1)

where W is a Wiener process. For example, X might be a geometric Brown-
ian motion or an Ornstein-Uhlenbeck process. The interest rate r > 0 is
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constant, and a joint restriction involving r and the growth rate of demand is
also needed, to insure that for any initial conditions the expected discounted
value of future profits is finite. The exact form of this restriction depends
on � and the stochastic process X, and specific cases will be discussed as
they arise.

Suppose that new investment goods can be purchased at the price P > 0,
and old capital goods can be sold at the price p ≥ 0. Assume the sale price
is less than the purchase price, p < P . The assumption that p ≥ 0 is without
loss of generality. Since capital always has a positive marginal product, the
firm would never pay to dispose of capital goods. Hence investment behavior
is identical for all p ≤ 0.

For now suppose that there are no other costs, so the adjustment costs
are linear, as in Chapter 10. There are two state variables here rather than
one, but the arguments developed in Chapter 10 can be adapted.

Let L(t) denote cumulative gross investment up to date t and U(t)

denote cumulative gross disinvestment. Then {L(t), t ≥ 0} and {U(t), t ≥ 0}
are nondecreasing stochastic processes of the type discussed in Chapter 10.
Capital depreciates at the constant rate δ ≥ 0, so the stochastic process for
the capital stock is

dK(t) = dL(t) − dU(t) − δK(t)dt . (11.2)

The firm’s objective is to maximize expected discounted revenue net of
investment costs. Hence its problem is

V (K0, X0) = max
{L(t),U(t) t≥0}

E0

[∫ ∞

0
e−rt

{
�[K(t), X(t)]dt (11.3)

− PdL(t) + pdU(t)
}]

,

where the maximization is over nondecreasing functions.
Since the return function � is increasing and concave in K , for each

X, and is increasing in X, a direct argument can be used to show that
the optimal investment policy has the following form. It is defined by two
continuous increasing functions b(X) and B(X), with b ≤ B . Given any
value X for demand, if the capital stock is below the lower threshold—
if K < b(X)—the firm immediately purchases enough capital to bring the
stock up to b(X). If the stock exceeds the upper threshold—if K > B(X)—
the firm immediately sells off enough capital to bring the stock down to
B(X). If the capital stock lies inside the interval (b(X), B(X)) the firm
neither invests nor disinvests. Hence the set

S ≡ {(K , X) : b(X) < K < B(X)} (11.4)
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is an inaction region. After an initial discrete adjustment, if necessary, the
firm invests when the state reaches the lower boundary b(X) and disinvests
when it reaches the upper boundary B(X). In both cases just enough control
is exercised so that the state does not leave the set S , the closure of S.

The goal is to characterize the optimal thresholds b and B , and the as-
sociated value function V . The arguments from Chapter 10 can be applied.

Fix any continuous thresholds b and B , define the set S as in (11.4),
and let V be the associated value function. When the state is in S there
is no investment or disinvestment, so the usual argument can be used to
approximate the right side of (11.3) as the return over a small interval �t

plus the expected discounted continuation value. For the continuation value
use a second-order Taylor series approximation to

1
1+ r�t

E
[
V (K0 + �K , X0 + �X)

]
,

using (11.1) and (11.2) to approximate �X and �K , and employing Ito’s
lemma (Theorem 3.3) after the expectation is taken. The terms VKX and
VKK in the approximation have higher order than �t and can be dropped,
so the resulting Hamilton-Jacobi-Bellman (HJB) equation is

rV (K , X) = �(K , X) − δKVK + μVX + 1
2σ 2VXX. (11.5)

Outside the set S the firm adjusts immediately to the boundary of S , so the
value function in this region is

V (K , X) =
{

V [b(X), X]− P [b(X) − K], K < b(X),
V [B(X), X]+ p [K − B(X)], K > B(X).

Hence V satisfies value matching along both thresholds.
Finally, the argument in Proposition 10.10 implies that for arbitrary

thresholds the smooth pasting conditions also hold,

lim
K↑b(X)

VK(K , X) = P ,

lim
K↓B(X)

VK(K , X) = p,
(11.6)

and that for the optimal thresholds b∗, B∗ the super contact conditions hold
as well,

lim
K↑b∗(X)

VKK(K , X) = 0,

lim
K↓B∗(X)

VKK(K , X) = 0.
(11.7)
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Thus the solution can be found by solving the HJB equation in (11.5) and
then using (11.6) and (11.7) to determine certain constants and the optimal
thresholds.

It follows from (11.6) that the set S can also be written as

S = {
(K , X) | VK(K , X) ∈ (p, P)

}
. (11.8)

Thus, investment is zero if the marginal value of capital VK lies inside the
open interval (p, P). In this case the marginal value of capital is too low to
justify further investment but too high to justify disinvestment.

The functions b∗(X) and B∗(X) divide K -X space into three regions.
Figure 11.1 displays an example in which V is homogeneous of degree one,
so b∗ and B∗ are rays, and the inaction set S is a cone. In the region above
S the marginal value of capital is less than p, and the firm disinvests. In the
region below S the marginal value of capital exceeds P and the firm invests.

Figure 11.1 is useful for thinking about what happens as the sale price
p changes. As p increases disinvesting becomes more attractive. The up-
per threshold B∗ rotates clockwise, expanding the disinvestment region and
shrinking the inaction region. The prospect of disinvesting on better terms

Figure 11.1. The inaction region for the investment model when V (X, K) is
homogeneous of degree one.
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also makes investment more attractive, so b∗ rotates counterclockwise, ex-
panding the investment region and further shrinking the inaction region.
The upper threshold converges to the lower one as p ↑ P . If investment is
costlessly reversible—if p = P —the two thresholds coincide and the inac-
tion region is a ray. This case is examined in detail below.

As p falls all these effects are reversed: the upper boundary B∗ rotates
counterclockwise, the lower boundary b∗ rotates clockwise, and the inaction
region expands on both sides. As p ↓ 0 the upper boundary converges to the
vertical axis, and the disinvestment region vanishes for p = 0. This case is
examined in detail in Sections 11.4 and 11.5.

Recall the classic version of this problem with equal sale and purchase
prices for capital, p = P . The optimal policy involves equating the marginal
product of capital �K with its user cost (r + δ)P . To relate this condition
with those in (11.6) and (11.7), note that for any paths {L(t)} and {U(t)} for
investment and disinvestment, (11.2) implies

P [dL(t) − dU(t)]= P [δK dt + dK(t)].

Substitute this expression into (11.3) to write the firm’s problem in terms
of {K(t)} only,

V (K0, X0)

= max
{K(t)}

E0

[∫ ∞

0
e−rt {�[K(t), X(t)]− δPK(t)} dt − P

∫ ∞

0
e−rtdK(t)

]

= E0

[∫ ∞

0
e−rt max

{K(t)}
{�[K(t), X(t)]− (r + δ) PK(t)} dt

]
+ PK0,

where the last line uses an integration by parts. The first-order condition for
the restated problem is

�K[K(t), X(t)]= (r + δ) P , all t ,

equating the marginal product of capital with its user cost, as in Jorgensen
(1963).

Notice that the value function in this case has the form V(K0, X0) =
v(X0) + PK0. The term v(X0), which depends only on current market
conditions, represents the value of a start-up firm—one that has no initial
capital—while the term PK0 is the market value of the initial capital stock
of an incumbent firm.
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11.2. Investment with Convex Adjustment Costs

Suppose that in addition to the price of capital, investing or disinvesting
entails a strictly convex adjustment cost. This cost can be thought of as
representing the time of managers or the disruption to current production.
Let γ (I , K) ≥ 0 denote the adjustment cost, which may depend on the
capital stock as well as on the investment flow I . The total cost of investing
at the rate I is then

C(I , K) =
⎧⎨⎩

γ (I , K) + PI , if I > 0,
0, if I = 0,
γ (I , K) + pI , if I < 0.

The following restrictions on γ are used.

Assumption 11.2. i. For any K > 0, γ (., K) is continuously differentiable
and strictly convex, with a minimum at γ (0, K) = 0, and with

lim
I→−∞ γI(I , K) + p < 0; (11.9)

ii. for any I , γ (I , .) ≥ 0 is continuous, weakly decreasing, and weakly
convex in K .

Thus, for any K , the function γ (., K) is U-shaped, with a minimum at
γ (0, K) = 0. The assumption that γ is differentiable at I = 0 is without
loss of generality. If γ has a kink at that point, p and P can be redefined
to absorb the kink, and the adjustment cost function redefined so that
it is smooth. Two functional forms for γ that satisfy Assumption 11.2 are
γ (I , K) = g(I) and γ (I , K) = Kg(I/K), where g(.) is U-shaped, smooth,
and strictly convex, with a minimum at g(0) = 0.

With convex adjustment costs, there cannot be impulses of investment.
Investment must be a flow, so the law of motion for the capital stock is

dK(t) = [I (t) − δK(t)]dt , (11.10)

where I (t) can take either sign. The firm’s objective is to choose a stochastic
process {I (t)}, given the initial conditions

(
K0, X0

)
. Hence its problem is

V (K0, X0) = max
{I (t), t≥0}

E0

[∫ ∞

0
e−rt

{
�[K(t), X(t)] (11.11)

− C[I (t), K(t)]
}
dt
]
,

where the law of motion for X is as before, in (11.1).
The right side of (11.11) can be approximated, as before, over a small

interval �t , using (11.10) for dK . The new feature here is that the cost of
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investment, a flow, is part of the current return. Hence the HJB equation
for (11.11) is

rV (K , X) = �(K , X) − δKVK + μVX + 1
2σ 2VXX (11.12)

+ max
I

[
IVK − C(I , K)

]
,

and it holds everywhere, not just inside the inaction region.
The optimal investment policy, call it I ∗(K , X), solves the maximiza-

tion problem in the final term in (11.12). Thus qualitative properties of
the optimal policy can be determined without detailed information about
V . Indeed, the only properties of V needed in what follows are that the
marginal value of capital VK is positive, strictly decreasing in K , and strictly
increasing in X. That is, VK > 0, VKK < 0, and VKX > 0. Assume that V has
these properties, inherited from �, and note that strict concavity in K is a
strengthening of Assumption 11.1.

To simplify the notation, fix K and suppress it as an argument of C , and
consider the maximization problem from (11.12),

max
I

[
IVK − C(I)

]
. (11.13)

The function C is continuous and convex, and it is smooth except possibly at
the origin. Optimization requires equating the marginal value of capital with
the marginal cost of investment, if possible, choosing I so that VK = C′(I ).
Several facts about the optimal policy follow immediately.

Since VK > 0, the optimal policy involves investing only at rates for
which the marginal cost C′ is positive. Any positive rate of investment sat-
isfies this requirement, but (11.9) implies that C′(I ) < 0 for I < 0 and |I |
sufficiently large. Hence only a finite range of negative investment rates
satisfy the requirement. In particular, there are two possibilities.

If p = 0, then C has its minimum at I = 0. In this case disinvesting
is always costly: there is no revenue from the sale of capital goods and
the adjustment cost is positive. Hence disinvestment never occurs. The
viable range for investment is I ∈ [0, +∞), and the corresponding range
for marginal cost is [P , +∞). The solution to (11.13) is then

I ∗ = 0 if VK ≤ P ,

I ∗ > 0 satisfying VK = C′(I ∗), if VK > P .

Alternatively, if p > 0, then C has its minimum at the point I < 0 de-
fined by

C′(I ) = γ ′(I ) + p = 0.
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At this point the marginal adjustment cost
∣∣γ ′(I )

∣∣ exactly offsets the revenue
p from the sale of additional capital. At any rate of disinvestment faster than
I both the net revenue from disinvesting and the remaining capital stock
could be strictly increased by disinvesting at a slower pace. Hence disinvest-
ment rates below I are never chosen. The viable range for investment is(
I , ∞)

, and the corresponding range for marginal cost is (0, ∞).
Marginal cost does not necessarily take values on the entire range

(0, ∞), however. In particular, if p < P , then marginal cost C ′ jumps at I = 0.
The resulting gap creates an inaction region, as before. Thus, if 0 < p ≤ P

the solution to (11.13) is

I ∗ ∈ (
I , 0

)
satisfying VK = C′(I ∗), if 0 < VK < p,

I ∗ = 0, if p ≤ VK ≤ P ,

I ∗ > 0 satisfying VK = C′(I ∗), if VK > P .

Since C is strictly convex, the optimal investment rate I ∗(K , X) is unique.
The interval

[
p, P

]
is an inaction region where investment is zero, and

outside this interval the rate of investment is strictly increasing in VK . If
p = P the inaction region is a single point.

The inaction region S is still defined as in (11.8), and the presence of
a convex adjustment cost does not change its qualitative shape. Thus X-K
space can still be divided into three regions, as in Figure 11.1.

What the adjustment cost does change is the behavior of investment
outside the inaction region. In the absence of adjustment costs, impulses
of investment are used to adjust the capital stock if VK �∈ [

p, P
]
. In the

presence of adjustment costs, investment is a continuous flow, with the rate
of investment or disinvestment depending on how far VK is from P or p.
Thus the model with adjustment costs delivers the type of behavior described
in modern q theory: investment is an increasing function of the marginal
value of installed capital.

Figure 11.2 displays an example with different purchase and sale prices
for investment goods, 1 = p < P = 4, and a quadratic adjustment cost,
γ (I ) = I 2/2. Panel a shows the cost function C , which is continuous and
convex with a minimum at I = −1 and a kink at I = 0. Panel b shows mar-
ginal cost C ′, which increases from 0 to ∞ as I increases from I to ∞ and
is continuous except at I = 0. At I = 0 it jumps from p to P , creating the
inaction region for VK . The regions for disinvestment and investment are
indicated.

Figure 11.2 is also useful for thinking about what happens as p changes.
As p increases, the portion of the cost function C below I = 0 shifts down-
ward, and the point I where the minimum is attained moves to the left. The
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Figure 11.2. (a) The total adjustment cost and (b) marginal adjustment cost for
the investment model. The sale and purchase prices are p = 1 and P = 4, and the
adjustment cost is γ (I ) = I 2/2.
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portion of the marginal cost function C′ below I = 0 shifts upward. The kink
in C and the jump in C ′ shrink, with both vanishing when p = P .

As p falls, all those effects are reversed. The point I where the minimum
is attained moves to the right, toward I = 0, and the range where C′ > 0
shrinks, vanishing when p = 0.

Note that marginal cost is linear in the example only because the ad-
justment cost is quadratic. In general, marginal cost C′ can be any function
that is strictly increasing and is continuous except possibly at I = 0.

This model can be used to address a variety of specific questions. As
an example, the next exercise asks whether increased uncertainty raises or
lowers investment.

Exercise 11.1. (a) Let �(K , X) = XKβ , where 0 < β < 1, and ln(X) = Z ,
where Z is an Ornstein-Uhlenbeck process with parameter α > 0. Assume
there are no adjustment costs and the purchase and sale prices for capital
are equal, so C(I , K) = IP , all I . Show that an increase in α increases the
average level of the capital stock.

(b) How does the answer in part (a) change if there are quadratic
adjustment costs, γ (I , K) = γ0I

2?

11.3. Some Special Cases

The model developed in the previous sections can be specialized in various
ways. Two cases are sketched below. The first imposes linearity to obtain a
value function that is additively separable. Further specializing, by imposing
quadratic adjustment costs and equal purchase and sale prices for capital,
then leads to an exact solution. The second case imposes homogeneity to
reduce the dimensionality of the problem. This model is further specialized
in Section 11.4—eliminating the adjustment cost, setting p = 0, and using
an isoelastic return function—to obtain another exact solution.

Suppose the return per unit of capital is independent of the firm’s size,
so the profit function is linear in capital. This assumption is sensible as
a model of a small firm that takes prices for its inputs and outputs to be
exogenous stochastic processes and always operates at full capacity.

Specifically, let

�(K , X) = XK .

Notice that assuming the return per unit of capital is simply X is without loss
of generality. If instead it were π(X) = X, one could define a new stochastic
process X̂ ≡ π(X) so the return function would be X̂K . As the next exercise
shows, linearity of the profit function in capital implies the value function
is also linear in capital.



11.3. Some Special Cases 237

Exercise 11.2. Let K̂(t) = K(t) − K0e
−δt be the difference between the

firm’s total capital stock at date t and the depreciated capital held from
date 0.

(a) Show that

dK̂(t) =
[
I (t) − δK̂(t)

]
dt ,

with K̂0 = 0.
(b) Use K̂ to show that the value function has the form

V (K , X) = w(X)K + V (0, X).

(c) Obtain an explicit expression for the function w. What is its inter-
pretation?

(d) Show that if X is a geometric Brownian motion with parameters(
μ, σ 2), then w(X) = ηX, where η ≡ 1/(r + δ − μ).

A closed-form solution can be obtained if this model is further special-
ized. Assume the price of investment goods, P > 0, is the same for purchases
and sales, and let the adjustment cost be quadratic, so the cost of investment
is

C(I) = PI + 1
2γ I 2, all I ,

where γ > 0. As shown in Exercise 11.2 the value function has the form

V (K , X) = ηXK + G(X), (11.14)

and under the assumptions here the HJB equation (11.12) specializes to

rV = XK − δKVK + μXVX + 1
2σ 2X2VXX

+ max
I

[
VKI − PI − 1

2γ I 2
]
.

(11.15)

Exercise 11.3. (a) What is the optimal investment rate I ∗ in terms of K

and X? Explain why it has the form it does. When is I ∗ = 0?
(b) Use (11.14) to write VK , VX , and VXX in terms of G and its deriva-

tives, and substitute the resulting expressions in (11.15) to get

1
2
σ 2X2G′′ + μXG′ − rG + 1

2γ
(ηX − P)2 = 0, all X.

Solutions of this ODE have the form

G(X) = Gp(X) + c1X
R1 + c2X

R2,
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where Gp is a particular solution, R1 < 0 < R2 are roots of the quadratic
r − μR − 1

2σ
2R (R − 1) = 0, and c1, c2 are constants.

(c) Show that there is a particular solution that is a quadratic,

Gp(X) = g0 + g1X + 1
2g2X

2.

Solve for the coefficients in terms of the parameters P , γ , r , μ, σ 2, η. What
parameter restriction is needed to insure g1 > 0? When is g2 > 0 and when
< 0? What is the reasoning?

(d) Use the limiting behavior of G as X → 0 and as X → ∞ to show that
c1 = c2 = 0.

At some point disinvestment is limited by the fact that the firm’s capital
stock cannot be negative, but obtaining the closed-form solution requires
ignoring the nonnegativity constraint on capital. If demand is growing,
μ > 0, and initial demand X0 exceeds the critical value at which investment
is zero, then the nonnegativity constraint will seldom be violated. The value
and policy functions here can be interpreted as describing such a firm.

Another useful special case exploits homogeneity. Suppose the profit
and adjustment cost functions are homogeneous of degree one,

�(K , X) = Xπ(K/X),

γ (I , K) = Kg(I/K);

and the demand shock X is a geometric Brownian motion,

dX

X
= μdt + σdW .

In addition, define the piecewise linear function

ρ(I) =
{

PI , I ≥ 0,
pI , I < 0.

The firm’s problem can then be written as

V
(
K0, X0

) = max
{I (t)}

E0

[∫ ∞

0
e−rt

{
Xπ(K/X) (11.16)

− K
[
ρ(I/K) + g(I/K)

]}
dt
]

dK

K
=
(

I

K
− δ

)
dt ,

dX

X
= μdt + σdW ,
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and the associated HJB equation is

rV = Xπ(K/X) − δKVK + μXVX + 1
2σ 2X2VXX

+ max
I

{
VKI − K

[
ρ(I/K) + g (I/K)

]}
,

(11.17)

where V and its derivatives are evaluated at (K/X, 1). This second-order PDE
can be written as an ODE by exploiting homogeneity.

The return function and constraints in (11.16) are homogeneous of
degree one in (K , X, I ). Hence V is homogeneous of degree one in (K , X),
and the optimal policy is homogeneous in the sense that if the stochastic
process I ∗ is optimal for the initial conditions

(
K0, X0

)
, then for any λ > 0

the process λI ∗ is optimal for the initial conditions
(
λK0, λX0

)
.

Define the ratios k ≡ K/X and i ≡ I/K , and the intensive form of the
value function v(k) ≡ V (k , 1), k ≥ 0. Then

V(K , X) = Xv(K/X), all K , X,

so

VK = v′, VX = v − kv′, VXX = k2 1
X

v′′.

Substituting for V and its derivatives in (11.17) gives the HJB equation in
the intensive form,

(r − μ) v = π(k) − (δ + μ) kv′ + 1
2σ 2k2v′′ + k max

i≥0

[
v′i − ρ(i) − g(i)

]
.

The coefficient on v in the normalized HJB equation is (r − μ). Assume that
r > μ, so that this coefficient is positive. Note that for this homogeneous
model the inaction region in K -X space is a cone, as shown in Figure 11.1.

The homogeneous model can be further specialized in various ways.
The next section looks at a special case with an isoelastic profit function,
π(k) = π0k

α; no adjustment costs, g = 0; and a zero sale price for capital,
p = 0.

11.4. Irreversible Investment

This section examines the case in which investment is irreversible in the
sense that p = 0. Capital has no resale value, so it is never worthwhile to
disinvest. The data analyzed in Ramey and Shapiro (2001) suggest that this
assumption is realistic, at least for some industries.

In addition assume that there are no adjustment costs, γ (I , K) = 0, so
the only cost of investment is the purchase price of the new capital goods,
P > 0.
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The homogeneity argument in Section 11.3 requires X to be a geometric
Brownian motion and requires the profit function � to be homogeneous
of degree one. Assume in addition that the profit function has the form
π(K , X) = KαX1−α , where 0 < α < 1.

Since there are no adjustment costs, this model is a specialization of
the one in Section 11.1, and since p = 0 the firm never disinvests. Hence
its problem is to choose a nondecreasing stochastic processes {L(t), t ≥ 0}
describing cumulative gross investment. That is, given an initial condition(
K0, X0

)
the firm’s problem is

V (K0, X0) ≡ max
{L(t)}

E0

{∫ ∞

0
e−rt

[
Kα(t)X1−α(t)dt − PdL(t)

]}
(11.18)

dK = dL − δKdt ,

dX = μXdt + σXdW .

As shown in Section 11.1, the optimal policy is defined by a threshold
function b(X). If K < b(X) the firm makes a discrete investment of size
b(X) − K , so below the threshold the value function is

V (K , X) = V [b(X), X]+ P [b(X) − K], K < b(X).

Thereafter investment is just sufficient to keep K from falling below b(X).
Hence there may be a discrete investment at t = 0 if the initial capital stock
K0 is low relative to initial demand X0. In this case L(0) > 0 represents an
initial investment that raises the capital stock immediately to b(X0). Discrete
investments are not required at later dates, however.

The region above b(X) in X-K space is the inaction region. In this region
the value function satisfies the HJB equation associated with (11.18),

rV = KαX1−α − δKVK + μXVX + 1
2σ 2X2VXX , K > b(X).

The argument in Section 11.3 can be applied to replace this PDE with an
ODE.

Note that the optimal threshold has the form b(X) = b∗X, where the
constant b∗ must be determined. Define the ratio k(t) ≡ K(t)/X(t) and the
function v(k) ≡ V (k , 1), and write the HJB equation in the intensive form,

(r − μ) v = kα − (δ + μ) kv′ + 1
2σ 2k2v′′, k > b∗. (11.19)

Assume that r > μ, so the coefficient on v is positive. The interest rate must
exceed the drift in demand to insure that the firm has finite value. In the
region where the firm makes discrete investments

v(k) = v(b∗) + P
(
b∗ − k

)
, k < b∗.
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Clearly value matching holds at k = b∗.
All solutions to (11.19) have the form

v(k) = vP (k) + a1h1(k) + a2h2(k), k > b∗,

where vP is any particular solution, and hi(k), i = 1, 2, are homogeneous
solutions. The following exercise finds an explicit solution.

Exercise 11.4. (a) Show that a particular solution is

vP (k) = 1
η
kα ,

where

η ≡ (r − μ) + α (δ + μ) − α (α − 1) 1
2σ 2,

and r > μ implies η > 0.
(b) Show that vP (k0) is the value of a firm with initial conditions K0 = k0

and X0 = 1 that never invests.
(c) Show that the homogeneous solutions are hi(k) = kRi , i = 1, 2, where

R1, R2 are the roots of the quadratic

0 = (r − μ) + (δ + μ) R − 1
2σ 2R (R − 1).

Show that the assumption r > μ insures the roots are real and of opposite
sign. Label them R1 < 0 < R2.

Therefore, all solutions to (11.19) can be written as

v(k) = 1
η
kα + a1k

R1 + a2k
R2, k > b∗,

where the constants a1 and a2 must be determined.
Since there is no upper threshold,

lim
k→∞

(
v(k) − 1

η
kα

)
= 0,

reflecting the fact that as k → ∞, the time until investment is positive
becomes arbitrarily long, with probability arbitrarily close to one. Since
R1 < 0 < R2, this condition holds if and only if a2 = 0. Let R (without a
subscript) denote the negative root, so the value function has the form

v(k) =
{

kα/η + a1k
R , k ≥ b∗,

v(b∗) − P
(
b∗ − k

)
, 0 ≤ k < b∗.

It remains to determine a1 and b∗.
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Exercise 11.5. (a) Use the smooth pasting condition, limk↓b∗ v′(k) = P , to
find that

a1 = 1
R

[
P
(
b∗)1−R − α

η

(
b∗)α−R

]
.

(b) Use the super contact condition, limk↓b∗ v′′(k) = 0, to find that

b∗ = (AP )1/(α−1), (11.20)

where

A ≡ η

α

1− R

α − R
. (11.21)

The effect of changes in the parameters μ, σ 2, and others on investment
can be determined by looking at their effect on A and hence on b∗. Consider
the effect of increasing the variability of demand. Note from (11.20) that an
increase in the variance σ 2 lowers the threshold b∗ if and only if it increases
A. Recall that

η = r + αδ − (1− α) μ + α (1− α) 1
2σ 2,

and define

R ≡ 1
σ 2

(m − D).

D ≡
[
m2 + 2σ 2 (r − μ)

]1/2
,

m ≡ δ + μ + 1
2σ 2,

Write A, η, m, D, and R as functions of σ 2 and use (11.21) to find that

A′

A
= η′

η
+ (1− α) R′

(1− R) (α − R)
.

Clearly η′ > 0, so the first term is positive. The second is also positive if R′ > 0.

Exercise 11.6. Show that

R′ = (D − m)

2Dσ 2

(
D − m

σ 2
+ 1

)
> 0.

Thus, when investment is irreversible a higher variance σ 2 leads to a lower
investment threshold b∗. That is, the optimal policy allows the ratio of the
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capital stock to demand to fall farther before triggering positive investment.
In the irreversible case greater uncertainty reduces investment.

In the perfectly flexible environment, one with p = P , increasing the
variability of demand has no effect. To see this, recall from Section 11.1
that with perfect flexibility the optimal policy requires at all times equating
the marginal product of capital with its user cost. For a homogenous return
function this requires a constant ratio k = K/X of capital to demand. Call
the optimal ratio for the flexible environment kf. For the profit function
here, kf satisfies

π ′(kf ) = α
(
kf
)α−1 = (r + δ) P .

Note that kf does not involve σ 2. Thus, in the flexible case greater uncer-
tainty has no effect on the choice of kf.

Finally, notice that the threshold for the perfectly flexible environment
is the same as the one for the irreversible environment with σ 2 = 0. To see
this, note that as σ 2 → 0,

R → − r − μ

δ + μ
, A → r + δ

α
,

so b∗ → kf . Thus, in the irreversible case b∗ = kf when σ 2 = 0. Hence in
the absence of demand shocks irreversibility has no effect on the threshold.
Consequently irreversibility has an effect on the realized path for investment
if and only if the initial ratio is too high, K0/X0 > kf . For an initial condition
of this type the firm sells capital at date 0 if p = P . If p = 0 the firm simply
waits for depreciation and growth in demand to raise the marginal product
of capital. Thereafter its investment is identical to what it would be in the
reversible case.

Thus, if σ 2 = 0 investment in the two cases is identical after an initial
period whose length depends on K0. Increasing the variance reduces invest-
ment in the irreversible environment and leaves it unchanged in the flexible
environment. Hence for a fixed variance σ 2 > 0, the investment threshold
is lower in the irreversible environment. In this sense irreversibility reduces
the incentives to invest.

Exercise 11.7. How does an increase in the drift parameter μ affect b∗?

11.5. Irreversible Investment with Two Shocks

The model in the previous section can be modified to allow a stochastic price
for investment goods as well as stochastic demand. In particular, suppose
that P is also a geometric Brownian motion. For now suppose that the
processes X and P are independent.
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In this case, as before, the value function V is homogeneous of degree
one in (K , X) and the optimal policy involves investing if K/X is below a
threshold. The new element here is that the threshold, call it κ(P ), depends
on the current price of investment goods. Thus the optimal policy has the
following form. If K/X < κ(P ), use an impulse of investment to bring the
ratio up to κ(P ). Thereafter regulate K/X at the (stochastic) threshold
κ(P ). The goal is to characterize the function κ(P ) and the value function.

The value function is now

V (K0, X0, P0) = max
{L(t)}

E0

[∫ ∞

0
e−rt

[
Kα(t)X1−α(t)dt − P(t)dL(t)

]]
dK = −δKdt + dL,

dX = μxXdt + σxXdWx ,

dP = μpPdt + σpPdWp ,

where Wx and Wp are independent Wiener processes and the maximization
is over nondecreasing functions L (t) ≥ 0. The associated HJB equation is

rV = KαX1−α − δKVK + μxXVX + 1
2σ 2

x
X2VXX

+ μpPVP + 1
2σ 2

p
P 2VPP , K/X > κ(P ),

where the independence of the shocks implies that the term involving VXP

has zero expectation. The argument that V is homogeneous of degree one
in (K , X) is as before, so

V (K , X, P) = Xv(K/X, P),

where v(k , P) ≡ V (k , 1, P).

Exercise 11.8. (a) Show that the intensive form of the HJB equation is(
r − μx

)
v = kα − (

δ + μx

)
kvk + 1

2σ 2
x
k2vkk + μpPvP + 1

2σ 2
p
P 2vPP .

(b) Show that the function vP (k) = kα/η is a particular solution of this
equation and that it has the same interpretation as before.

(c) Show that homogeneous solutions have the form

h(k , P) = c0P
ωkλ,

where (ω, λ) satisfy

0 = − (
r − μx

) − (
δ + μx

)
λ + 1

2σ 2
x
λ (λ − 1) + μpω + 1

2σ 2
p
ω (ω − 1). (11.22)
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As k → ∞ optimal investment is zero, with high probability, for a long
time. This is true for any P , so

lim
k→∞

(
v(k , P) − kα

η

)
= 0, all P ,

which implies that the homogeneous solution(s) must have λ < 0. A similar
argument applies with P and k reversed, so

lim
P→∞

(
v(k , P) − kα

η

)
= 0, all k ,

and the homogeneous solution(s) must have ω < 0 as well.
Conjecture that there is only one homogeneous term. Then the value

function has the form

v(k , P) =
{

kα/η + c0P
ωkλ, k ≥ κ(P ),

v [κ(P ), P ]− P [κ(P ) − k] , k < κ(P ),
(11.23)

and the smooth pasting and super contact conditions determine the func-
tion κ(P ) and the constants ω, λ < 0, and c0 > 0.

Smooth pasting requires vk(κ(P ), P) = P , all P , so

α

η
[κ(P )]α−1 + λc0P

ω [κ(P )]λ−1 = P , all P . (11.24)

For λc0 �= 0 this condition holds if and only if the functions of P in each
term agree and the coefficients on the two terms on the left sum to one.

Exercise 11.9. (a) Show that (11.24) implies

κ(P ) = κ0P
1/(α−1),

ω = λ − α

1− α
,

(11.25)

where κ0 is a constant that must be determined.
(b) Show that (11.22), with ω as in (11.25), implies that λ < 0 must satisfy

the quadratic

0 = 1
2s2λ2 −

(
δ + h + 1

2s2
)

λ − (
r − μp − h

)
, (11.26)
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where

s2 = σ 2
x

+ σ 2
p

(1− α)2 ,

h = μx − μp

1− α
+ σ 2

p

2
α

(1− α)2 .

Show that if r > μp + h the roots of the quadratic in (11.26) are real and of
opposite sign.

(c) Show that discounted profits are infinite if r ≤ μp + h.

It remains to determine the constants c0 and κ0 in (11.23) and (11.25).
The coefficients on the three terms in (11.24) must satisfy

α

η
κα−1

0 + λc0κ
λ−1
0 = 1,

which puts one restriction on
(
c0, κ0

)
. In addition, the super contact condi-

tion vkk = 0 implies

(α − 1)
α

η
κα−1

0 + (λ − 1) λc0κ
λ−1
0 = 0.

Combine these two equations to find that

κ0 =
(

η

α

1− λ

α − λ

)1/(α−1)

,

c0 = − 1
λ

1− α

α − λ

(
η

α

1− λ

α − λ

)(1−λ)/(α−1)

.

Note that the function κ(P ) in (11.25) has the same form as b∗ in (11.20),
with λ in place of R.

If the price of capital goods changes over time, either deterministically
or stochastically, and capital can be sold at the purchase price P , then
the user cost of capital must be adjusted for expected capital gains. Since
E[dP ]/dt = μpP , the user cost formula is

π ′(kf ) = α
(
kf
)α−1 = (

r + δ − μp

)
P ,

and the solution requires

r + δ > μp.
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The price of capital goods cannot be expected to rise so fast that it is
profitable to hoard them for later resale.

The model can also accommodate correlation in the shocks affecting X

and P . Suppose X and P are geometric Brownian motions with increments

dX

X
= μxdt + σ ′

x
dW ,

dP

P
= μpdt + σ ′

p
dW ,

where W1 and W2 are independent Wiener processes, W ′ = (
W1, W2

)
, and

σ ′
i
= (

σi1, σi2
)

, i = x , p, are vectors. Thus there are two independent shocks
and two channels through which they can operate, and both shocks can
operate through both channels.

Exercise 11.10. Show that

1
dt

E
[
dW ′ σi σ ′

j
dW

]
= σ ′

i
. σj ≡ σij , i , j = x , p.

How must the HJB equation be modified to accommodate this specification
for the shocks?

11.6. A Two-Sector Economy

Consider an economy consisting of two sectors, “widgets” and other goods.
Let C1 denote consumption of widgets and C2 consumption of other
goods. The representative consumer has preferences

E0

[∫ ∞

0
e−ρt 1

1− σ

{
U[C1(t), C2(t)

}1−σ
dt

]
,

where the function U is strictly increasing, strictly quasi-concave, and homo-
geneous of degree one, and σ > 0, σ �= 1.

Output in each sector is produced using sector-specific capital as the
only input, and each technology is linear. The technology in the widget sec-
tor is deterministic, and without loss of generality the productivity parameter
can be set to unity. Output in this sector can be used only for consumption, so

C1(t) = K1(t).

The technology in sector 2 is stochastic. Specifically, the productivity param-
eter X in this sector is a diffusion,

dX = μ(X)dt + σ(X)dW ,
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where W is a Wiener process. Output in this sector can be used for consump-
tion or for investment in either sector. Hence

C2dt + dL1 − dU1 + dL2 − dU2 = XK2dt ,

where Li and Ui denote cumulative gross investment and disinvestment in
sector i . Both capital stocks depreciate at the rate δ > 0, so

dKi = dLi − dUi − δKi dt , i = 1, 2.

Consider a social planner who makes all the consumption and invest-
ment decisions for the economy. In particular, consider two environments.

First consider an economy in which investment is costlessly and instan-
taneously reversible. That is, the existing capital stock can be allocated freely
between the two sectors at any date or turned into consumption goods.

Exercise 11.11. (a) Formulate the social planner’s problem. Show that the
value function v

(
K1, K2, X

)
for this problem depends on the capital stocks

through their sum, K = K1 + K2.
(b) Show that the value function is homogeneous of degree 1− σ in K .
(c) Characterize the optimal consumption and investment policies as

sharply as you can.
Next consider an economy in which investment in sector 1 is irre-

versible. That is, U1 ≡ 0.
(d) Formulate the social planner’s problem. In what region of the state

space does the value function v
(
K1, K2, X

)
depend on K1 and K2 only

through their sum?
(e) Show that the value function is homogeneous of degree 1 − σ in(

K1, K2
)
.

(f) Characterize the optimal consumption and investment policies as
sharply as you can.

Notes

Section 11.1 draws on Abel and Eberly (1994), Section 11.2 on Abel and
Eberly (1997), and Sections 11.3 and 11.4 on Bertola and Caballero (1994).

The literature on investment under uncertainty is vast. See Abel (1983,
1985) for early contributions connecting uncertainty and the structure of
investment costs with q theory. See Caballero (1999) for an excellent survey
of the literature and many references.

The effect of irreversibility on the investment decisions of a single
firm has been studied extensively since Arrow (1968). Among the early
contributions are MacDonald and Siegel (1985, 1986), Pindyck (1988),
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Dixit (1992, 1995), and Abel and Eberly (1999). Pindyck (1991) provides
an excellent overview and many references.

Caplin and Leahy (1993) look at learning and the incentive to delay in
a model with irreversible investment, and Leahy (1993) introduces compe-
tition in a model with irreversibility and asks which aspects of an individual
firm’s behavior are altered. Abel and Eberly (1996) and Abel et al. (1996)
look at setups in which investment is reversible but costly.

Kogan (2001, 2004) uses a general equilibrium model with multiple
sectors, idiosyncratic shocks, and irreversible investment to study aggregate
investment, aggregate output, and asset prices. Veracierto (2002) analyzes
an aggregate model with irreversibilities to assess their role in business
cycles.

Techniques similar to those studied in this chapter have been used to
study labor markets with hiring and firing costs. For example, see Bentolila
and Bertola (1990); Caballero, Engel, and Haltiwanger (1997); and Camp-
bell and Fisher (2000a,b). Moscarini (2005) uses related methods to study a
model of job matching, and Alvarez and Shimer (2008) use them to analyze
a version of the Lucas and Prescott (1974) “islands” model.
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12
An Aggregate Model

with Fixed Costs

Aggregate models in which individual agents face fixed adjustment costs
fall into two broad categories. In the first agents are subject to idiosyncratic
shocks, and the shocks can be modeled as i.i.d. across agents. The law of large
numbers then implies that once a stationary cross-sectional distribution of
shocks and endogenous states has been reached, economic aggregates are
constant over time. If the initial distribution is the stationary one aggre-
gates are constant from the outset. Thus in settings with a large number of
agents and idiosyncratic shocks, constructing tractable aggregate models is
relatively straightforward.

In the second type of model some or all of the shocks are aggregate
shocks. In this type of setting the law of large numbers is not helpful, and
analytical results are much harder to obtain. Nevertheless, they are some-
times available for special cases. The trick is to find particular assumptions
that lead to a stationary distribution, so that the entire cross-sectional dis-
tribution is not required as a state variable. (Alternatively, computational
methods that describe the evolution of the entire distribution have also been
pursued successfully.)

Two aggregate versions of the menu cost model of Chapter 7 are studied
here to illustrate possibilities of the second type. Recall that in the menu cost
model the exogenous shocks experienced by individual firms are shocks to
an economy wide price index. Thus aggregate versions of that model fall into
the second category. Nevertheless, some special cases have been identified
that are tractable analytically.

Before proceeding it is useful to recall the questions these models are
designed to address. First and foremost are questions about the real effects
of monetary policy. Specifically, the goal is to study the hypothesis that
monetary policy has real effects in the short run because nominal prices are
sticky in the short run. Money is neutral in the longer run, affecting only
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the rate of inflation, because prices are flexible in the longer run, adjusting
in a way that accommodates monetary policy.

One of the first important lessons of the menu cost literature is that it
is dangerous to ask about the effects of fixed costs by taking a frictionless
economy in equilibrium, adding frictions, and then asking about the effect
of an exogenous shock or a policy measure. The answer is quite different
from the one delivered by modeling an ongoing world with frictions. The
behavior of rational agents—and hence of economic aggregates as well—in
response to any particular sequence of exogenous shocks depends on the
stochastic process generating the shocks, not just the realizations. The effect
of a big shock in a setting where big shocks are rare may be quite different
from its effect in a setting where such shocks are commonplace. Rational
agents adapt their behavior in response to changes in their environment,
and aggregates reflect those adaptations.

In addition, the menu cost literature illustrates the importance of how
adjustment is modeled. For this issue it is useful to think of the aggregate
response to any change in the money supply in terms of two components:
the average size of adjustments among firms that change their prices—
the intensive margin—and the fraction of firms that change—the extensive
margin.

Some sticky price models have time-dependent rules describing when
firms change prices. These rules take two forms. In the first, a firm is allowed
to change its price only at exogenously specified fixed dates. Typically these
dates are assumed to be evenly spaced for any single firm and to be evenly
distributed across firms. Thus the same fraction of firms is adjusting at
each point in time. In the second, opportunities for any particular firm to
change its price have Poisson arrivals. Hence these arrivals are independent
of the firm’s own price, the aggregate price level, and other aspects of the
environment. The arrivals are independent across firms, so as before the
same fraction of firms is adjusting at any point in time.

Under a time-dependent rule of either sort a change in monetary
policy—an increase in the average growth rate, for example—can be ac-
commodated only by changes in the size of the adjustments by firms that
the timing rule selects as adjusters. Thus over any time interval a money
supply that is growing more rapidly draws responses from the same frac-
tion of firms as one that is growing more slowly. The firms that adjust make
larger changes, but over any time interval the same fraction of firms fail to
respond when money growth is faster. Hence the aggregate response is al-
tered only through changes on the intensive margin. Under time-dependent
rules there is no adjustment on the extensive margin.

In menu cost models of the type analyzed in Chapter 7, in which both the
size and timing of price adjustments are chosen by rational decision makers,
a change in the money growth rule elicits responses on both margins. In
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response to an increase in the average rate of money growth firms adjust
more frequently, in addition to making larger changes when they adjust.
Thus the aggregate price level responds to a change in monetary policy
through changes on the extensive margin as well as the intensive margin.

This reasoning makes one suspect that monetary non-neutralities will
be substantially smaller in menu cost models than in models with time-
dependent pricing rules. It also highlights the difficulty of accurately as-
sessing the effects of policy changes in time-dependent models, since one
important avenue of response is closed off.

The rest of this chapter looks at an aggregate version of the menu cost
model from Chapter 7. In particular, two economies are examined, identical
except for the monetary policy in place. In the first economy the money
supply process is monotone, and in this setting shocks to the money supply
have no effect. This model is from Caplin and Spulber (1987). In the second
the (log) money supply follows a Brownian motion with zero drift, and
here the effect of an increment in the money supply depends on the state
of the economy when the shock arrives. Specifically, a monetary expansion
may lead to an increase in output, and will do so more strongly if initial
output is low. A monetary expansion may also lead to price increases and
will do so more strongly if initial output is high. Both effects are reversed
for a monetary contraction. Thus the model delivers a positive correlation
between money and output: it displays a Phillips curve. This model is from
Caplin and Leahy (1997).

The second model also illustrates an outcome that can occur in other
settings as well, an endogenous aggregate that behaves like a regulated
Brownian motion. The behavior of individual agents allows the aggregate—
here it is aggregate real balances—to track an exogenous process—here it is
nominal balances—up to a certain threshold. After that threshold is reached
the actions of individual firms—here their price adjustments—prevent the
process from crossing the threshold.

Some of the methods described in this chapter may also prove useful
for studying other aggregates—investment demand, labor markets, housing
demand, and so on. A few such models based on sticky or lumpy adjustment
at the micro level have been studied, but these areas are as yet largely
unexplored.

The rest of this chapter is organized as follows. In Section 12.1 the basic
model is described. In Section 12.2 it is studied under the assumption that
the money supply process is monotone, and for these policies money is
neutral even in the short run. In Section 12.3 the same economy is studied
under the assumption that the log money supply is a Brownian motion with
zero drift. This economy displays a short-run Phillips curve, although money
is still neutral in the long run. In this section firms are assumed to follow
price adjustment rules of the type studied in Chapter 7, but with exogenously
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specified thresholds. In Section 12.4 the behavior of individual firms is
studied more closely. Firms are assumed to have a target price that depends
on real balances in a certain way and a loss function that is quadratic in the
deviation from this target. Under these assumptions the model is shown to
have a unique equilibrium in the sense that profit-maximizing behavior by
firms is consistent with the aggregate behavior of the price level and real
balances. Section 12.5 shows that the price target postulated in Section 12.4
can be justified with a standard model of consumer demand. The quadratic
loss function can be viewed as an approximation to the true function, which
is convex.

12.1. The Economic Environment

There is a continuum of monopolistically competitive, price-setting firms
indexed by i ∈ [0, 1], facing identical demand and cost conditions. Money
and prices are measured in (natural) logs throughout. Let

M(t) = (log) money supply,
Pi(t) = (log) nominal price of firm i,
P(t) = H(

{
Pi

}
) = (log) aggregate price index,

pi(t) = Pi(t) − P(t) =(log) relative price of firm i,
m(t) = M(t) − P(t) = (log) real money balances.

Assume throughout that the function H( . ) used to calculate the aggre-
gate price index depends only on the cumulative distribution function for
the prices of individual firms, and that it is log-linearly homogeneous in the
sense that

H(
{
Pi + a

}
) = H(

{
Pi

}
) + a. (12.1)

That is, if the distribution of (log) prices shifts by the constant a , then the
aggregate price index shifts by a. Most price indexes have this property. Note
that (12.1) implies the average of the (log) relative prices is identically zero,

H({pi}) = H({Pi − P }) ≡ 0.

At any date t the economy is completely described by the aggregate state
variables

[
M(t),

{
Pi(t)

}]
, the money supply, and the distribution of prices

across firms. In all of the models analyzed here, however, the distribution
of relative prices is contrived—for tractability—to be invariant. Hence the
pair [M(t), P(t)]or [m(t), P(t)] suffices for the aggregate state.

In this chapter firms follow price adjustment policies similar to those
analyzed in Chapter 7, except that the firm’s target price depends on real
balances m as well as the aggregate price index P . The target price is
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determined by profit maximization, with real balances entering because
they affect aggregate expenditure. The argument developing the target
price is spelled out in Section 12.5. To characterize adjustment behavior in
the presence of a fixed cost, a quadratic loss function for deviations of price
from the target is assumed. This loss function can be viewed as a second-
order approximation to the true loss function, which is convex.

The main ingredients for the model in Section 12.5 are consumers
with Dixit-Stiglitz preferences

∫
x1−θ

i di, 0 < θ < 1, over the continuum of
differentiated products; firms with production costs of the isoelastic form
c(x) = c0x

ξ/ξ , ξ > 1, where x is the firm’s output level and c(x) is total cost;
and total consumer expenditures that are proportional to money balances
at each date. As shown in Section 12.5, under these assumptions the profit-
maximizing relative price for each firm is

p∗
i
(t) = b + ηm(t), (12.2)

where b and η ∈ (0, 1) are constants that depend on the parameters θ , ξ , c0.
The corresponding nominal price is

P ∗
i
(t) = P(t) + b + η [M(t) − P(t)]

= b + (1− η) P (t) + ηM(t),

so in a frictionless world the firm adjusts (1− η)-for-one to changes in the
aggregate price level and η-for-one to changes in nominal balances. Notice
that since 0 < η < 1 the pricing game exhibits strategic complementarity:
firm i raises its nominal price when P(t) rises.

To begin the analysis, briefly consider the behavior of an economy in
which there are no menu costs. As noted above the homogeneity property
in (12.1) implies that the average of the relative prices is identically zero.
In a frictionless world all firms adjust price continuously to keep profits
at a maximum. Hence all firms set the same price, and consequently the
distribution of relative prices is a point mass at zero,

pi(t) = 0, all i , all t .

It then follows from (12.2) that the (constant) equilibrium level of real
balances in the frictionless world is

m(t) = m∗ ≡ −b/η, all t .

In the absence of adjustment costs all firms adjust their prices one-for-
one to changes in the money supply. Hence the aggregate price level also
moves one-for-one, and real balances are constant. Consequently, output
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and profits are identical across firms and constant over time, and

xi(t) = x , πi(t) = π , all i , all t ,

where x and π are also the aggregates.
For the economy with menu costs it is convenient to define ε(t) to be

the deviation of real balances from m∗,

ε(t) ≡ m(t) − m∗. (12.3)

Using (12.3) and the definition of m∗, the profit-maximizing relative price
in (12.2) is

p∗
i
(t) = ηε(t). (12.4)

Notice that if real balances exceed m∗, the target price exceeds zero: every
firm would prefer to have a relative price that exceeds the average.

To motivate adjustment behavior in a world with menu costs, note that
the deviation of the firm’s relative price from its target level is

αi(t) ≡ pi(t) − p∗(t)

= pi(t) − ηε(t).

Assume the firm’s loss, the reduction in its profits, is a quadratic function
of this deviation,

L
(
αi

) = γα2
i
= γ

(
pi − ηε

)2, γ > 0. (12.5)

The quadratic form can be viewed as an approximation to the true function,
which is convex. There is also an assumption, implicit in(12.5), that the same
loss function applies for any level of real balances ε.

Notice the relationship between the average price level and real bal-
ances. A firm charging a price Pi = P equal to the aggregate price index has
a relative price of pi = 0. If ε(t) > 0, so real balances m(t) exceed m∗, then
this “average” firm has a relative price that is below the profit-maximizing
value in (12.4). That is, its deviation from its target is negative,

αi = 0 − ηε(t) = −η
[
m(t) − m∗] < 0.

Looked at the other way around, the fact that prices are low, on average, is
what makes real balances high.

Finally, to close the model assume that the level of aggregate (real)
expenditure, call it ẽ, is proportional to the level of real balances m̃,

ẽ = v0m̃ = v0 exp(m) = v0 exp(m∗ + ε). (12.6)
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In general, firm i’s output depends on its relative price pi, aggregate real
balances m∗ + ε, and the distribution of relative prices across other firms,{
pj

}
. But if the distribution of relative prices is constant, then its output

depends only on pi and ε,

xi = ξ(pi , ε), all i .

As shown in Section 12.5, for the demand and cost structure here

ln
(
xi

) = ln
(
ẽ
) − 1

θ
pi

= ln(v0) + m∗ + ε − 1
θ
pi , all i , (12.7)

where θ ∈ (0, 1) is the elasticity parameter in preferences. It follows as an
accounting identity that aggregate output is equal to aggregate real expen-
diture.

12.2. An Economy with Monetary Neutrality

As shown in the previous section, in an economy with no menu costs all
nominal values move immediately to offset increments in the money supply,
so all relative values and real variables are constant over time and identical
across firms. This section looks at a model in which all firms use (S , s) price
adjustment rules, and the money supply is monotonically increasing. In this
setting, too, monetary injections are immediately offset by price increases
and hence have no effect on real balances or aggregate output. In contrast to
the frictionless world, however, the distribution of prices and output across
firms is nondegenerate, and individual firms experience fluctuations. This
model is the one studied in Caplin and Spulber (1987).

The argument does not require constructing equilibrium policies, and
it is left as an exercise to show that there is an equilibrium policy of the
assumed type. It is also left as an exercise to show that the equilibrium
(S , s) band becomes wider and the (constant) level of aggregate output
is lower when average money growth is faster. Money growth does have
aggregate effects in this model, but fluctuations in money growth do not
cause fluctuations in output.

Suppose that firms face a fixed cost for changing price, and that all firms
adopt the same (S , s) pricing rule. Suppose further that the money supply
is monotonically increasing, so all price adjustments are in the upward
direction. Finally, suppose that the initial distribution of prices is uniform
on the (S , s) band. The following proposition characterizes the behavior of
this economy.



260 12. An Aggregate Model with Fixed Costs

Proposition 12.1. Suppose that for some S > 0,

i. the initial distribution of relative prices across firms
{
pi(0)

}
is uni-

form on [−S , +S];
ii. each firm i uses a one-sided price adjustment policy, adjusting its

relative price pi(t) from −S to +S when pi(t) = −S; and
iii. the (log) money supply M(t) is continuous and nondecreasing.

Then real balances are constant over time:

M(t) − P(t) = M(0) − P(0), all t ;

and the distribution of relative prices
{
pi(t)

}
remains uniform on [−S , +S]

for all t .

Proof. Suppose that over a small increment of time �t the money supply
increases by

M(t + �t) − M(t) = �M .

Conjecture that the price index increases by the same amount,

P(t + �t) − P(t) = �P = �M .

This change triggers price increases by firms with relative prices near −S .
The number of adjusting firms is �M/2S , and each adjusts its price by 2S ,
so the aggregate price index rises by �M , as conjectured. The adjusting
firms make their changes continuously, so the distribution of relative prices{
pi(t)

}
remains uniform on [−S , +S]. And since �P = �M , real money

balances are unchanged.

Figure 12.1 illustrates the main idea of the proof. The adjusting firms are
the small interval �M near −S , and each increases price by 2S. Hence the
increase in the aggregate price index is �M × (1/2S) × (2S) = �M , as con-
jectured, and since the adjustment is continuous the uniform distribution
is preserved.

In this economy the deviation of real balances from their level in the
frictionless economy, ε(t) = m(t) − m∗ = ε, is constant over time. Hence the
deviation of a firm’s price from its target, αi(t) = pi(t) − ηε(t) = pi(t) − ηε,
changes only because of changes in its own relative price. A higher-than-
usual rate of money growth, if it is brief enough so that firms do not change
their price adjustment rule , feeds immediately into higher prices, with no
real consequences. Aggregate output is constant, although individual firms
experience fluctuating demand and profits as they cycle through various
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Figure 12.1. Price adjustment in the Caplin-Spulber model.

positions in the relative price distribution. In this economy short-run fluc-
tuations in money growth do not lead to fluctuations in real balances or
aggregate output.

But the mean rate of money growth (and possibly the variance as well)
does affect both the price adjustment rule and the level of real balances.
Hence it affects the cross-sectional dispersion of relative prices, the level of
aggregate output, and the total resources devoted to price adjustment.

12.3. An Economy with a Phillips Curve

Proposition 12.1 shows that if money growth is always nonnegative, then
even if the growth rate fluctuates it causes no fluctuations in aggregate
output. In this section it is shown that if the money supply can fall as well as
rise, fluctuations do occur.

The key to tractability is finding conditions under which the cross-
sectional distribution of relative prices is stationary. The previous section
suggests that a uniform distribution is an appealing candidate. But if firms
use (S , s) price adjustment policies the resulting distribution remains uni-
form if and only if that policy has a special property. In this section firms
are assumed to follow price adjustment policies of the required sort. In the
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next section it is shown that for appropriate initial conditions there exists
an equilibrium in which those policies are profit maximizing.

In this section and the next the (log) money supply is assumed to be
a Brownian motion. Proposition 12.2 then shows that if firms use the right
kind of two-sided price adjustment policy, a uniform distribution of rela-
tive prices across firms is stationary, and excess real balances are a regu-
lated Brownian motion confined within a band [−B , +B]that is symmetric
around zero. Money growth leads to changes in real balances—but no price
changes—when excess real balances lie in (−B , +B), and it can trigger infla-
tion or deflation—with no change in real balances—if excess real balances
are at +B or −B . Since aggregate expenditure is equal to real balances, this
economy has a short-run Phillips curve: faster money growth leads—at least
sometimes—to an increase in aggregate output.

As before, let ε(t) = m(t) − m∗ be excess real balances, and suppose that
each firm follows the following price adjustment policy, with αi(t) = pi(t) −
ηε(t) as its state variable. If firm i’s relative price is at its minimum, pi = −S ,
and excess real balances are at their maximum, ε = +B , so αi = −S − ηB

is at its lower bound, then the firm raises its relative price to p′
i
= +S . This

adjustment raises its state variable to α′
i
= S − ηB . Symmetrically, if firm i’s

relative price is at its maximum, pi = +S , and excess real balances are at their
minimum, ε = −B , so that αi = S + ηB , then the firm reduces its relative
price to p′

i
= −S .

Proposition 12.2 shows that if the money supply follows a Brownian
motion and firms use this adjustment rule, then real balances follow a
regulated Brownian motion with barriers ±B .

Proposition 12.2. Let M(t) be a Brownian motion with parameters
(
μ, σ 2),

and define
{
Pi

}
, P , m, ε,

{
pi

}
, and

{
αi

}
as above. Assume that for some

S , B > 0 and η ∈ (0, 1),

i. the initial level of excess real balances satisfies ε(0) ∈ [−B , +B];
ii. the initial distribution of relative prices across firms

{
pi(0)

}
is uni-

form on [−S , +S]; and
iii. each firm i uses a symmetric, two-sided price adjustment policy,

adjusting its relative price pi to +S when αi ≤ −S − ηB and to −S

when αi ≥ S + ηB .

Then

a. the distribution of relative prices
{
pi(t)

}
remains uniform on

[−S , +S] , all t ;
b. excess real balances ε(t) are a regulated Brownian motion, regu-

lated at ±B.
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Proof. Suppose ε(0) ∈ (−B , +B). As long as ε(t) remains in the open in-
terval (−B , +B), no firms adjust their prices. Hence the price index P(t)

does not change and the distribution of relative prices remains uniform on
[−S , +S]. In this region increments to the money supply lead to one-for-one
increments in real balances, so m(t) and ε(t) track M(t).

Let T = T (B) ∧ T (−B) be the first date when ε(t) reaches +B or −B.
Consider sample paths where it first reaches +B . Further increases in money
trigger price adjustments by the firms with the lowest relative prices. Con-
sider these sample paths beyond date T . For any such path choose any time
interval �T with the property that

M(T + s) − P(T ) − m∗ > −B , all s ∈ [0, �T ],

so the money supply does not fall too far before T + �T . Then ε(T + s) >

−B , all s ∈ [0, �T ], so no firms make downward price adjustments over this
time interval. Let

�max = max
0≤s≤�T

M(T + s) − M(T )

be the maximum increase in the money supply over this interval. After a net
increase of �max all firms with initial relative prices pi(0) ∈ [−S , −S + �max

]
have raised their prices by 2S . Since the money supply is continuous, these
price adjustments occur continuously. Thus the (uniform) distribution of
prices

{
Pi(t)

}
shifts to the right by �max. Hence the aggregate price index P

rises by �max, and the distribution of relative prices
{
pi

}
remains uniform

on [−S , +S]. At the end of this time interval excess real balances are

ε(T + �T ) = M(T + �T ) − P(T + �T ) − m∗

= M(T + �T ) − M(T ) + M(T ) − [
P(T ) + �max

] − m∗

= B + �M − �max

≤ B ,

so they do not exceed +B . This argument holds for any sample path that
reaches +B before −B , and for any �T such that ε(T + �T ) remains above
−B .

A similar argument applies when real balances reach −B , and for sub-
sequent time intervals, establishing conclusions (a) and (b).

Figure 12.2 displays a path for nominal balances M(t) and the associated
path for excess real balances ε(t), with both initially at zero. The former
can be any continuous function. The latter tracks changes in the former
one-for-one as long as ε(t) remains inside the interval (−B , +B). If ε(t)
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Figure 12.2. Sample paths for nominal balances M(t) and excess real balances ε(t)

in the Caplin-Leahy model.

reaches either boundary it remains at that level until changes in M(t) push
it back inside the interval. Since aggregate output is equal to aggregate real
expenditure, ε(t) also describes the log deviation of aggregate output from
its mean.

Figure 12.3 displays the behavior of the state variables ε and pi . The
distribution of pi is always uniform on [−S , +S], and excess real balances ε

lie on the interval [−B , +B].
While ε is in the interior of this interval no firms adjust their prices. That

is, while ε ∈ (−B , +B), all nominal and relative prices remain unchanged. In
this region changes in money lead to one-for-one changes in real balances,
moving ε back and forth within the interval.

When ε = +B further increases in the money supply induce the firms
with the lowest relative prices to adjust their prices upward. Specifically,
firms with relative prices at −S adjust those prices to +S, bringing them
to the other end of the uniform distribution. In Figure 12.3 these (discrete)
adjustments are indicated by the arrows along the broken curve. These
changes are the same as those described in the proof of Proposition 12.1. As
shown there, they raise the aggregate price level P by exactly the size of the
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Figure 12.3. Relative price pi and excess real balances ε in the Caplin-Leahy model.

increase in M . The increase in P reduces the relative prices
{
pi

}
of all firms

that are not adjusting, and in addition implies that ε remains constant at +B .
In Figure 12.3 these (continuous) changes in relative prices are indicated
by the arrows along the solid vertical line at ε = +B.

When ε = +B, decreases in the money supply lead to one-for-one de-
creases in ε with no price changes. These changes in ε are indicated by
arrows that point left along the boundary where ε = +B. Thus when ε = +B

increases in money cause price increases, with no change in real balances,
and decreases in money reduce real balances, with no change in prices.

A symmetric argument applies when ε = −B.
The next section shows that if the money supply has zero drift, if μ = 0,

then for an appropriate choice of S and B the two-sided price adjust-
ment policy postulated in Proposition 12.2 is an optimal policy for profit-
maximizing firms.

12.4. Optimizing Behavior and the Phillips Curve

In Proposition 12.2 the behavior of firms is mechanical. In this section
it is linked to profit maximization, so the economic environment must
be described in more detail. Let C > 0 be the real (fixed) cost of price
adjustment; r > 0 be the interest rate; η, γ be as described in Section 12.1,



266 12. An Aggregate Model with Fixed Costs

and μ = 0 and σ 2 > 0 be the parameters of the money supply process. In this
section it is shown that for any r , η, γ , σ 2, C there exists a unique pair (S , B)

with the property that if all firms except firm i adopt the price adjustment
rule in condition (iii) of Proposition 12.2, then it is optimal for firm i to
adopt that rule as well.

Suppose all firms except firm i use adjustment rule (iii). If ε(t) = +B

then increases in M(t) lead to price increases by other firms, causing one-
for-one increases in the price index P(t). Consequently ε(t) is unchanged
and firm i’s relative price pi falls. Similarly, if ε(t) = −B then decreases
in M(t) trigger price decreases by other firms, reducing P(t). Hence ε(t)

is unchanged and firm i’s relative price pi rises. Otherwise changes in
M(t) trigger no price changes by other firms. Hence P remains constant,
real balances increase one-for-one with M , and firm i’s relative prices pi is
unchanged.

Consequently, as long as firm i is not adjusting its own nominal price,
its relative price has increment

dpi = 0 − dP =
{ −dM , if some firms adjust price,

0, if no firms adjust price,
(12.8)

and real balances have increment

dε = dM − dP =
{

0, if some adjust,
+dM , if none adjust.

(12.9)

Hence as long as firm i is not adjusting its own nominal price,

dαi = dpi − ηdε =
{ −dM , if some adjust,

−ηdM , if none adjust,

where some adjust if ε = +B and dM > 0, or if ε = −B and dM < 0, and
otherwise none adjust.

Since αi does not have i.i.d. increments, the results in Chapter 7 do
not apply. Nevertheless, the Hamilton-Jacobi-Bellman (HJB) equation for
the firm’s problem can be used to establish the desired result. The key
idea is that the rule for relative price adjustments in condition (iii) of
Proposition 12.2 displays two types of symmetry.

One type is obvious: if it is optimal to adjust the relative price to +T

when real balances are +B and the relative price is −S or lower, then it is
optimal to adjust to −T when real balances are −B and the relative price is
+S or higher. This conclusion follows immediately from the symmetry of the
loss function and the fact that the money supply process has zero drift. Firm
i takes B as given, and its optimal policy displays the first type of symmetry
for any B .
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The key to establishing the desired result is a second type of symmetry:
the adjustment policy has T = S . Establishing the existence of an equilib-
rium requires showing that for some B , a price adjustment strategy with
T = S is an optimal policy for firm i . The equilibrium is unique (within this
class) if there is only one B with this property.

The argument has several steps. Lemma 12.3 characterizes the solution
to firm i’s HJB equation, given any B > 0. This step produces a value
function, given B , and Lemmas 12.4 and 12.5 establish properties of the
associated optimal policy function. Proposition 12.6 draws on these results
to show that for any parameter values r , η, γ , σ 2, C there exists a unique B

that leads to an optimal policy with the required property.
Fix r , η, γ , σ 2, C , and consider a firm in an economy where the incre-

ments to its relative price and real balances are as in (12.8) and (12.9) as
long as the firm takes no action. The firm’s problem, given its initial state(
pi0, ε0

)
, is to choose a sequence of stopping times

{
Tk

}∞
k=1 and random

variables
{
p̂k

}∞
k=1 , where p̂k is the relative price after the kth adjustment, to

minimize the expected discounted value of its losses from mispricing, plus
adjustment costs. Let v(pi , ε) denote the firm’s value function. The state
space for the problem is D ≡ R × [−B , +B], and v satisfies the Bellman
equation

v(pi , ε) = min
T , p̂

E
{∫ T

0
e−rtγ

[
pi(t) − ηε(t)

]2
dt

+ e−rT
[
v
(
p̂, ε(T )

) + C
]}

,

(12.10)

where M is a Brownian motion and

dP =
{

dM , if ε = +B and dM > 0, or ε = −B and dM < 0,
0, otherwise,

dpi = −dP ,

dε = dM − dP , 0 ≤ t ≤ T .

The HJB equation for the value function in (12.10) is

rv(pi , ε) = γ
(
pi − ηε

)2 + 1
dt

E [dv], (12.11)

where

dv = vpdpi + 1
2vpp

(
dpi

)2 + vεdε + 1
2vεε (dε)2 + vpεdpidε.
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The next lemma characterizes the solution to (12.11). Note that the value
function v satisfies (12.11) only in the inaction region. Nevertheless it is
useful to begin by constructing a function that satisfies (12.11) on all of D

and then adjusting it in the regions where (12.11) does not hold.

Lemma 12.3. Fix r , η, γ , σ 2 and B > 0. Then the solution to the HJB
equation (12.11) is

v(pi , ε) =
[
a0 + a1pi + a2e

−βpi

]
eβε +

[
a0 − a1pi + A2e

βpi

]
e−βε (12.12)

+ γ

r

(
pi − ηε

)2 + γ

(
ησ

r

)2

,

where

β = √
2r/σ ,

c0 = 2γ (η − 1)
r

,

a1 = c0/β

eβB + e−βB
,

a0 = − 1
β

(
a1 + c0ηB

eβB − e−βB

)
,

and a2, A2 are arbitrary constants.

Proof. Clearly dpidε = 0 and

dv =
{ −vpdM + 1

2vpp (dM)2 , if dP �= 0,

+vεdM + 1
2vεε (dM)2 , if dP = 0.

(12.13)

Let Do denote the interior of D. The proof involves specializing dv for Do

and the two boundaries of D where ε = ±B, and then using the specialized
versions in (12.11).

On Do, dP = 0. Since E[dM]= 0 and E
[
(dM)2

]
= σ 2dt , in this region

(12.13) implies

E [dv]= 1
2σ 2vεεdt .

Hence on Do (12.11) takes the form

rv(pi , ε) = γ
(
pi − ηε

)2 + 1
2σ 2vεε. (12.14)
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For any pi , this equation is a second-order ODE with solutions of the form

v(pi , ε) = f (pi)e
βε + F(pi)e

−βε + γ

r

(
pi − ηε

)2 + γ

(
ησ

r

)2

, (12.15)

where f and F are arbitrary functions of pi . These functions can be char-
acterized by looking at the boundaries of D where ε = ±B.

Along the boundary where ε = +B , careful attention must be paid to
the sign of dM . Let z = σ

√
dt > 0 denote the absolute size of the increment

to nominal balances. If the nominal shock is positive, dM = z, some firms
adjust their prices upward. Hence the aggregate price level rises, dP = dM =
z, and real balances are unchanged, dε = 0. In this case (12.13) implies

dv = −vpz + 1
2vppz2.

If the nominal shock is negative, dM = −z, no firms adjust their prices.
Hence the aggregate price level is unchanged, dP = 0, and real balances
fall, dε = dM = −z. In this case (12.13) implies

dv = −vεz + 1
2vεεz

2.

These two events are equally likely, so substituting into (12.11) gives

rv
(
pi , B

) = γ
(
pi − ηB

)2 + 1
dt

1
2

[
−vpz + 1

2
vppz2 − vεz + 1

2
vεεz

2
]

.

Then use (12.14) to obtain

1
2

(
vεε − vpp

)
z2 + (

vp + vε

)
z = 0,

and take the limit as z → 0 to conclude that along the boundary where
ε = +B ,

vp(pi , B) + vε

(
pi , B

) = 0. (12.16)

The same argument, with the signs reversed, applies for ε = −B , so (12.16)
also holds for ε = −B.

To characterize f and F , use (12.15) to obtain expressions for vp and
vε and evaluate (12.16) and the companion equation with ε = −B to obtain(

f ′ + βf
)
eβB + (

F ′ − βF
)
e−βB = c0

(
pi − ηB

)
,(

f ′ + βf
)
e−βB + (

F ′ − βF
)
eβB = c0

(
pi + ηB

)
.

(12.17)

Solutions of (12.17) have the form
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f (pi) = a0 + a1pi + a2e
λ2pi + a3e

λ3pi + . . . ,

F(pi) = A0 + A1pi + A2e
λ2pi + A3e

λ3pi + . . . ,

where the constants a0, A0, a1, . . . and the exponents λj must be deter-
mined. The constant and linear terms in f and F match the terms on the
right side in (12.17), and the exponential terms satisfy homogeneous equa-
tions.

The terms that are linear in pi imply

β
(
a1e

βB − A1e
−βB

)
= c0,

β
(
a1e

−βB − A1e
βB
)

= c0,

so A1 = −a1, and

a1 = 1
β

c0

eβB + e−βB
,

as claimed. The constant terms imply

β
(
a0e

βB − A0e
−βB

)
= −c0ηB − a1

(
eβB − e−βB

)
,

β
(
a0e

−βB − A0e
βB
)

= +c0ηB − a1

(
e−βB − eβB

)
,

so A0 = a0, and

a0 = − 1
β

(
a1 + c0ηB

eβB − e−βB

)
,

as claimed.
Finally, the exponential terms in f and F must satisfy the homogeneous

equations (
λj + β

)
aje

βB + (
λj − β

)
Aje

−βB = 0,(
λj + β

)
aje

−βB + (
λj − β

)
Aje

βB = 0.

Add and subtract these equations from each other to obtain(
λj + β

)
aj + (

λj − β
)
Aj = 0,(

λj + β
)
aj − (

λj − β
)
Aj = 0.
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Hence there are exactly two terms of this form, one with
(
λj , aj , Aj

) =(−β , a2, 0
)

and one with
(
λj , aj , Aj

) = (
β , 0, A2

)
, where a2 and A2 are

arbitrary constants.

The value function has the form in (12.12) only inside the inaction
region, where the HJB equation holds. For the firm’s problem, given B > 0,
it remains to determine the upper and lower boundaries of that region,
call them H(ε) and h(ε); the return locus, call it τ(ε); and the constants a2
and A2.

Lemma 12.4. The boundaries of the inaction region H(ε) and h(ε) satisfy
the value matching conditions

lim
pi↑H(ε)

v(pi , ε) = v(τ(ε), ε) + C , (12.18)

lim
pi↓h(ε)

v(pi , ε) = v(τ(ε), ε) + C , all ε ∈ [−B , +B],

and smooth pasting conditions

lim
pi↑H(ε)

vp

(
pi , ε

) = 0, (12.19)

lim
pi↓h(ε)

vp

(
pi , ε

) = 0, all ε ∈ [−B , +B].

The locus τ (ε) satisfies the optimal return condition

vp(τ(ε), ε) = 0, all ε ∈ [−B , +B]. (12.20)

Proof. Optimal repricing requires

τ(ε) = arg min
p′ v(p′, ε), all ε ∈ [−B , +B] ,

which requires (12.20).
Since the firm always has the option to reprice immediately,

v(pi , ε) ≤ v(τ(ε), ε) + C , all pi , ε,

with equality if the firm reprices. Thus, if v is convex in pi , the inaction
region is an interval around τ(ε), with boundaries defined by functions
h(ε) < τ(ε) < H(ε) satisfying (12.18).

Finally, consider the firm’s problem at (h(ε), ε). The firm must be
indifferent between adjusting its price immediately to τ(ε) or waiting for a
small increment of time �t and then deciding what to do. Suppose it waits.
Over �t , real balances rise or fall by z = σ

√
�t , with equal probability. The
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firm then strictly prefers to adjust if real balances rise and to do nothing if
they fall. Hence

(1+ r�t) v(h(ε), ε) − γ (h(ε) − ηε)2 �t

≈ 1
2 [v(h(ε), ε + z) + v(h(ε), ε − z)]

= 1
2 [v(h(ε) − x , ε + z) + v(h(ε), ε − z)],

where the last line uses the fact that the firm adjusts if real balances rise, so
it is indifferent between having a relative price of h(ε) or of h(ε) − x. Taking
an approximation on the right that is second order in z and first order in x

gives [
rv(h(ε), ε) − γ (h(ε) − ηε)2

]
�t

= 1
2

[
−vpx + vεz + 1

2vεεz
2 − vεz + 1

2vεεz
2
]

= 1
2σ 2vεε�t − 1

2vpx .

Recall that (12.14) holds on the interior of the inaction region. Hence
it holds as pi ↓ h(ε). Use this fact to conclude that vp(h(ε), ε) = 0, so the
second line in (12.19) holds. Use a similar argument at H(ε).

Next, it is useful to note that the symmetry of v implies that the constants
a2, A2 are equal and that τ , h, H are symmetric in a certain sense.

Lemma 12.5. The function v in (12.12) satisfies v(pi , ε) = v(−pi , −ε), all
pi , ε, if and only if A2 = a2. In this case

h(ε) = −H(−ε), τ(ε) = −τ(−ε), all ε ∈ [−B , +B]. (12.21)

Proof. The conclusion follows immediately from the symmetry of v.

The results thus far describe the behavior of an individual firm i, taking
B as given. To complete the argument it must be shown that for some B , in
addition to the symmetry in (12.21), the firm’s inaction region and return
threshold satisfy

h(B) = τ(−B) = −S and H(−B) = τ(B) = S , (12.22)

for some S . To determine B, S, and the constant a2, use the value matching,
smooth pasting, and optimal return conditions (12.18)–(12.20), evaluated
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at ε = B , with the equilibrium conditions in (12.22) imposed. That is,

v(−S , B) = v(+S , B) + C ,

vp(−S , B) = vp(+S , B) = 0.

Using (12.12) for v and vp , the resulting system of three equations is

−2Sa1

(
eβB − e−βB

)
+ a2

(
eβS − e−βS

) (
eβB − e−βB

)
+ 4γ

r
ηSB = C ,

a1

(
eβB − e−βB

)
− βa2

[
e−βSeβB − eβSe−βB

]
+ 2γ

r
(S − ηB) = 0,

a1

(
eβB − e−βB

)
− βa2

(
eβSeβB − e−βSe−βB

)
− 2γ

r
(S + ηB) = 0,

(12.23)

where a1 (from Lemma 12.3) is a function of B . The following proposition
establishes the main result.

Proposition 12.6. For any r , η, γ , C , σ 2 there exist unique values (Se, Be)
and a2 satisfying (12.23).

Proof. Sum and difference the last two equations in (12.23) and rearrange
the first to obtain[

a2

(
eβS − e−βS

)
− 2a1S

] (
eβB − e−βB

)
= C − 4γ

r
ηSB ,

βa2

(
e−βS − eβS

) (
eβB + e−βB

)
= 4γ

r
S ,

[
2a1 − βa2

(
eβS + e−βS

)] (
eβB − e−βB

)
= 4γ

r
ηB .

Then use the second to eliminate

a2 = 4γ

rβ

S(
e−βS − eβS

) (
eβB + e−βB

) (12.24)

to obtain

1− η

β
+ ηB

eβB + e−βB

eβB − e−βB
= S

eβS + e−βS

eβS − e−βS
,

B − 1
β

eβB − e−βB

eβB + e−βB
= rC

4γ ηS
.
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Define the function

�(z) ≡ z
ez + e−z

ez − e−z
,

and write this pair of equations as

η
[
�(βB) − 1

] = �(βS) − 1, (12.25)

B

[
1− 1

�(βB)

]
= rC

4γ ηS
. (12.26)

The function � is strictly increasing and asymptotically linear, and at z = 0
it takes the value unity and has a slope of zero. Hence (12.25) defines an
upward-sloping locus in (S-B) space, call it �1(S), that starts at the origin,
and (12.26) defines a downward-sloping locus, call it �2(S), that asymptotes
to each axis. These curves intersect exactly once, as shown in Figure 12.4,
defining the solution (Se, Be). The constant a2 is then given by (12.24).

Figure 12.4. Determination of the equilibrium (Se, Be) for the baseline parameters
r = 0.05, σ = 0.03, η = 0.5, C = 0.001, and γ = 0.5.
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Proposition 12.6 establishes that for any r , η, γ , C , σ 2 there exists a
unique (Se, Be) with the property that the behavior postulated in con-
dition (iii) of Proposition 12.2 is profit maximizing for firms. The value
function for any firm is as described in Lemma 12.3 in the firm’s inaction
region, the region where

pi ∈ (
h(ε), H(ε)

)
, ε ∈ [b, B].

Elsewhere the firm immediately adjusts its price, and its value is v(pi , ε) =
v(τ(ε), ε) + C. The threshold functions h, H and the adjustment policy τ

are as in Lemma 12.4, and these functions satisfy (12.22). The constant a2
is in (12.24).

Figures 12.4–12.6 display the equilibrium for the parameter values

r = 0.05, σ = 0.03, η = 0.5,

C = 0.001, γ = 0.5.

Figure 12.4 shows the functions �1(S) and �2(S), whose intersection deter-
mines (Se , Be), here equal to

(
0.0266, 0.0378

)
. Figure 12.5 shows the optimal

policy functions h, H , τ . They are increasing and bowed slightly toward the
ε-axis. In equilibrium discrete adjustments to pi occur at only two points,

Figure 12.5. The optimal price adjustment policy.
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Figure 12.6. The value function v(pi , ε).

from +S to −S when ε = −B, and from −S to +S when ε = +B. The other
parts of the policy functions can be interpreted as describing the optimal
first adjustment by a single “deviant” firm that starts with an arbitrary relative
price pi.

Figure 12.6 shows the value function v. Recall from (12.10) that v

measures foregone profits relative to a frictionless world. Cross sections,
which hold real balances constant, are V-shaped. The flat shoulders are
regions where adjustment is immediate, so the value is function is constant
at v(pi , ε) = v(τ(ε), ε) + C.

The model also makes predictions about the frequency of price changes.
After a price increase, a firm is at (+S , +B). At this point, the money supply
must either rise by 2S to trigger another price increase or fall by 2B to trigger
a price reduction.

Exercise 12.1. Use an argument like the one in Exercise 5.3 to show that
the average length of time between price changes for an individual firm is

E [T ]= 4SB

σ 2
.

Changes in the model’s exogenous parameters affect three features of
the equilibrium. The spread 2B in the long-run distribution of real balances
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measures the variability of output, the spread 2S in the cross-sectional price
distribution measures price dispersion, and the frequency of price changes
1/E[T ]measures price variability. An increase in σ , the variability of money
growth, should increase the band widths S and B , and it should also increase
the frequency of price adjustment 1/E[T ]. The ratio C/γ measures the
cost of price adjustment relative to the loss from mispricing. Presumably
an increase in C/γ increases S and B and hence reduces 1/E[T ]. For the
elasticity parameter η, recall that a firm’s optimal nominal price is

P ∗
i

= ηM + (1− η) P .

For smaller η the firm cares more about its relative price and less about real
balances. Presumably this fact leads to a wider band for real balances and a
narrower one for relative price, increasing B and reducing S. In this model
price changes are an investment, with costs that are immediate and returns
that arrive in the future. Hence an increase in the interest rate r should make
the firm less willing to change price, increasing B, S, and E[T ]. Establishing
these results is left as an exercise.

Exercise 12.2. (a) Show that an increase in σ increases S , B, and 1/E[T ].
(b) Show that an increase in C/γ increases S , B, and E[T ].
(c) Show that a decrease in η increases B and reduces S . What is the

effect on E[T ]?
(d) Show that an increase in r increases S , B , and E[T ].

In the model in this section prices rise only when output is at its max-
imum level, a result with a Keynesian flavor, since inflation occurs only at
full employment. Since prices fall only when output is at its minimum, it
follows that inflation and output are positively correlated. In addition, since
inflation in the recent past indicates that output is near its maximum, and
hence that the economy is susceptible to further inflation, the rate of infla-
tion displays positive serial correlation.

A key feature of the economies in Propositions 12.1 and 12.2 is the
uniform distribution of relative prices across firms. The models in Sections
12.2 and 12.3 display two very different circumstances under which the
uniform distribution arises. The first rests on one-sided price adjustment
by firms, the second on symmetric price adjustment. The first provides a
good approximation to economies in which the mean rate of money growth
is high relative to its variance. In such economies episodes during which
the money supply falls far enough so that real balances reach their lower
limit are rare. Thus price decreases are rare, and the uniform distribution
is preserved. The second provides a good approximation to economies in
which the variance of money growth is high relative to its mean.
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The model studied in this section includes no idiosyncratic shocks to
the demands or costs of individual firms. Idiosyncratic shocks of either sort
give firms an incentive to adjust price even if the aggregate price level is
constant. Thus in economies with low inflation such shocks give firms an
opportunity to react to changes in the aggregate price level without incur-
ring additional adjustment costs. Evidence on the frequency and pattern
of retail price changes, which shows large price increases and decreases
even during periods of low and stable inflation, suggests that such shocks
are important. Indeed, in an economy with low inflation they are proba-
bly the impetus for most price changes. Adding idiosyncratic shocks makes
the model analytically less tractable, but numerical solutions can be used to
study its properties.

12.5. Motivating the Loss Function

This section develops a simple model that justifies the loss function and
decision rule postulated in Section 12.1. There is a continuum of differen-
tiated goods, i ∈ [0, 1], each produced by a single firm. Suppose that the
representative consumer has preferences of the Dixit-Stiglitz form for these
goods,

u(x) =
∫ 1

0
x1−θ

i di , 0 < θ < 1.

Given prices {P̃i} and an expenditure level Ẽ , (in levels, not logs), the
consumer chooses consumption {xi} to maximize his utility subject to the
budget constraint ∫ 1

0
P̃i xi di ≤ Ẽ .

Define the aggregate price index P̃ by

P̃ ≡
[∫ 1

0
P̃

(θ−1)/θ
i di

]θ/(θ−1)

.

Notice that in log form this index satisfies the homogeneity condition in
(12.1). Use this index to define relative prices and real expenditures by

p̃i ≡ P̃i

P̃
, and ẽ ≡ Ẽ

P̃
.
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The consumer’s demand for product i depends only on its relative price p̃i

and total real expenditures ẽ. In particular,

xi

(
p̃i , ẽ

) = ẽ p̃
−1/θ
i , all i ,

so (12.7) holds.
Next consider the decision problem of a typical firm. Suppose that its

(real) cost of production depends only on the quantity of output it produces.
This assumption holds if the firm purchases an invariant mix of inputs from
a large number of suppliers whose prices change continuously with the
aggregate price level. Alternatively, it holds if labor is the only input, and
the real wage is constant. Taking the latter route, suppose in particular that
the labor required to produce xi units of output is

c(xi) = ρ0x
ξ

i

ξ
, ρ0 > 0, ξ > 1.

Note that this cost function is strictly convex: returns to scale are strictly
decreasing.

Assume the real wage w is constant. Then (real) profits are

πi

(
p̃i , ẽ

) = p̃ixi

(
p̃i , ẽ

) − wρ0

ξ

[
xi

(
p̃i , ẽ

)]ξ
= ẽp̃

1−1/θ
i − wρ0

ξ
ẽξ p̃

−ξ/θ

i .

Hence the profit-maximizing relative price is

p̃∗
i

= ρ1ẽ
η , (12.27)

where

ρ1 ≡
(

wρ0

1− θ

)θ/(θ+ξ−1)

and η ≡ θ (ξ − 1)
θ + ξ − 1

.

Since 0 < θ < 1 and ξ > 1, it follows that 0 < η < 1, so prices are strategic
complements. Notice that constant returns to scale, ξ = 1, implies η = 0, so
the profit-maximizing price is independent of aggregate real expenditures
ẽ. For the problem at hand, this case is not interesting.

So far the expenditure level of the consumer has been fixed. To close
the model suppose that real expenditures are proportional to real money
balances,

ẽ = v0m̃, (12.28)
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as in (12.6). For example, suppose that the consumer faces a cash-in-advance
constraint Ẽ ≤ v0M̃(t), where v0 > 0 represents the (constant) velocity of
money. If the cash-in-advance constraint always binds, then real expendi-
tures have the form in (12.28).

In any case, if expenditures take the form in (12.28), then the optimal
relative price in (12.27), in log form, is

p∗
i

≡ ln p̃∗
i

= b + ηm, (12.29)

where

b ≡ ln ρ1 + η ln v0.

Note that (12.29) justifies (12.2). Finally, note that aggregate output is
proportional to real balances,

x ≡
∫ 1

0
p̃ixi

(
p̃i , ẽ

)
di

=
∫ 1

0
ẽ p̃

(θ−1)/θ
i

di

= ẽ = v0m̃,

where the last line uses (12.28).

Notes

The model in Section 12.2 is from Caplin and Spulber (1987) and the one
in Sections 12.3 and 12.4 is from Caplin and Leahy (1991, 1997), although
the analysis here is quite different. I thank Vladislav Damjanovic and Charles
Nolan for pointing out an error in the analysis of the boundary conditions
in an early version of Section 12.4 and showing how to correct it. See
Damjanovic and Nolan (2007) for further results using this approach.

The literature on aggregate menu cost models is extensive. Mankiw
(1985) introduced menu costs into an aggregate model that experiences
a single unanticipated shock and showed that even a small shock can have
large effects. Subsequent work by Caplin and Spulber (1987), Cabellero and
Engel (1991, 1993), Caplin and Leahy (1991, 1997), Danziger (1999), and
Dotsey, King, and Wolman (1999) studied the robustness of that conclusion.
Three model features emerged as important for the conclusions: the nature
of the monetary shocks, whether they have high mean or high variance;
the presence or absence of idiosyncratic shocks, which provide another
motive for price adjustment; and the nature of the price adjustment process,
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whether it is state dependent as implied by menu costs or time dependent
as in Calvo (1983).

New Bureau of Labor Statistics data on the size and frequency of price
adjustments in the United States have stimulated recent work. See Bils and
Klenow (2004), Klenow and Kryvtsov (2008), and Nakamura and Steinsson
(2007) for summaries of this evidence. It suggests that idiosyncratic shocks
and other types of heterogeneity are important, and subsequent work has
incorporated these features. Midrigan (2006), Golosov and Lucas (2007),
Gertler and Leahy (2008), and Nakamura and Steinsson (2008) all develop
calibrated computational models that include idiosyncratic as well as aggre-
gate shocks but differ in other ways. Klenow and Kryvtsov (2008) compare
the ability of various models to account for both the size and frequency
of adjustments. They distinguish the intensive and extensive margins—the
size of adjustments and the number of firms adjusting—and discuss the role
of each in accommodating monetary shocks. Caballero and Engel (2007)
further explore the role of these two margins in explaining the difference
between time-dependent and state-dependent models of price adjustment.



This page intentionally left blank 



A
Continuous Stochastic Processes

This appendix contains background material on continuous stochastic
processes in general and Wiener processes in particular.

A.1. Modes of Convergence

Let (�, F, P) be a probability space and
{
Xn

}∞
n=1 a sequence of random

variables on that space. There are several distinct notions of convergence
for such a sequence. In addition there are several distinct names for each
notion.

(a) Convergence with probability one

The sequence
{
Xn

}
converges to the random variable X with probability

one if

Pr
{

lim
n→∞ Xn = X

}
= 1.

This type of convergence is also called convergence almost surely (a.s.) or
convergence almost everywhere (a.e.).

(b) Convergence in probability

The sequence
{
Xn

}
converges to the random variable X in probability if

for every ε > 0

lim
n→∞ Pr

{∣∣Xn − X
∣∣ ≤ ε

} = 1.

This type of convergence is also called convergence in measure.
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(c) Convergence in distribution

Let Fn be the cumulative distribution function (c.d.f.) for Xn, n =
1, 2, . . . . The sequence

{
Xn

}
converges to the random variable X in dis-

tribution (or the sequence
{
Fn

}
converges to the c.d.f. F in distribution) if

lim
n→∞ Fn(a) = F(a), all a for which F is continuous.

This type of convergence is also called convergence in law or weak convergence .

(d) Strong convergence

For n = 1, 2, . . . , let μn be the probability measure on R defined by
μn(A) = Pr

{
Xn ∈ A

}
, for any Borel set A. The sequence

{
μn

}
converges

strongly to μ if

lim
n→∞ μn(A) = μ(A), all A.

It can be shown that (a) ⇒ (b) ⇒ (c) and that (d) ⇒ (c). But note
that while the conclusion (a) ⇒ (b) holds for a sequence of random vari-
ables

{
Xn

}
defined on a probability space (�, F, P)—or more generally,

for a sequence of measurable functions
{
fn

}
defined on any measure space

(�, F, μ) where μ has finite total measure—it need not hold for spaces with
infinite measure.

Also note a difference in type between the concepts in (a) and (b) versus
those in (c) and (d). The definitions in (a) and (b) involve convergence of
{X(ω)} for each ω, while those in (c) and (d) involve only the sequence of
c.d.f.s (or, equivalently, of probability measures on R) that these random
variables induce. Thus, while (a) and (b) involve the underlying space
(�, F, μ), (c) and (d) do not. Indeed, the underlying space could change
along the sequence.

Also note that if (�, F) is any measurable space and
{
Xn

}∞
n=1 is a se-

quence of measurable real-valued functions on it, there are two more no-
tions of convergence.

(e) Pointwise convergence

The sequence
{
Xn

}
converges pointwise to X if

lim
n→∞ Xn(ω) = X(ω), all ω ∈ �.

That is, for every ω ∈ � and every ε > 0 there exists N(ω, ε) such that∣∣Xn(ω) − X(ω)
∣∣ < ε, all n > N(ω, ε).
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(f) Uniform convergence

The sequence
{
Xn

}
converges uniformly to X if for every ε > 0 there exists

N(ε) such that∣∣Xn(ω) − X(ω)
∣∣ < ε, all ω ∈ �, all n > N(ε).

Clearly (f) ⇒ (e) ⇒ (a).

A.2. Continuous Stochastic Processes

Let C = C[0, ∞) denote the space of continuous functions X: [0, ∞) → R. A
continuous stochastic process on [0, ∞) is one for which X(., ω) ∈ C[0, ∞), a.e.
ω ∈ �. Thus, continuous stochastic processes can be constructed by starting
with a probability space (�, F, P); defining a measurable mapping from
(�, F) to (C , C), where C is a σ -algebra of subsets of C; and then defining
an appropriate filtration.

The standard choice for the σ -algebra C is defined in terms of the
following metric on C . Let

ρ(X, Y ) ≡
∞∑
t=1

1
2t

ρt(X, Y )

1+ ρt(X, Y )
, (A.1)

where

ρt(X, Y ) ≡ sup
t−1<s≤t

|X(s) − Y (s)| , X, Y ∈ C .

The idea is to divide time into unit intervals [0, 1] , (1, 2], (2, 3], . . . , use the
sup norm ρt on each interval, scale the resulting pieces so that each lies on
[0, 1], weight the tth component by (1/2)t , and sum. The scaling ensures
that the sum in (A.1) is finite. Indeed, ρ (X, Y ) ∈ [0, 1], all X, Y . Note that
ρ is not a norm, however.

By definition, Xk → X in this metric if and only if

for every ε > 0 there exists K(ε) > 0 (A.2)

such that ρ(Xk , X) < ε, all k > K(ε).

But (A.2) implies that

for every ε > 0 and T > 0 there exists N(ε, T ) > 0 (A.3)

such that ρt(Xk , X) < ε, all t ≤ T , all k > N(ε, T ).
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To see this, fix ε > 0, choose K(ε) satisfying (A.2), and choose any T > 0.
Define ε̂ = 2−T ε/(1+ ε), and choose K̂ > 0 such that ρ(Xk , X) < ε̂, all k > K̂ .
Then

1
2t

ρt(Xk , X)

1+ ρt(Xk , X)
≤ ρ(Xk , X) < ε̂, all k > K̂ , all t ,

so

ρt(Xk , X) < ε, all k > K̂ , all t ≤ T .

The idea is that if it is possible to make the sum

∞∑
t=1

1
2t

ρt(Xk , X)

1+ ρt(Xk , X)

arbitrarily small in the tail of the sequence
{
Xk

}
, then for any T it is possible

to make the first T components of the sum uniformly small.
Conversely, suppose (A.3) holds. Note that since ρt/

(
1+ ρt

)
< 1, all t ,

it follows that

∞∑
t=T +1

1
2t

ρt(X, Y )

1+ ρt(X, Y )
<

1
2T

, all X, Y .

Thus the sum of the tail terms beyond T in (A.1) can be made arbitrarily
small, for any (X, Y ), by choosing T large. Fix ε > 0, choose T > 0 such that
1/2T < ε/2, and choose N > 0 such that

ρt(Xk , X) <
ε

2
, all k > N and t ≤ T .

Then for all k > N ,

ρ(Xk , X) =
T∑

t=1

1
2t

ρt(Xk , X)

1+ ρt(Xk , X)
+

∞∑
t=T +1

1
2t

ρt(Xk , X)

1+ ρt(Xk , X)

≤
T∑

t=1

1
2t

ε/2
1+ ε/2

+ 1
2T

≤ ε/2
1+ ε/2

+ 1
2T

≤ ε

2
+ ε

2
,
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so (A.2) holds. Hence (A.2), which defines convergence in the metric ρ , is
equivalent to (A.3), which defines convergence in the product topology on
the space [0, 1]× (1, 2]× (2, 3]× . . . . Let C denote the σ -algebra generated
by the open sets using the metric ρ.

Thus if (�, F, P) is a probability space, a continuous stochastic process
can be defined by constructing a measurable mapping from (�, F) to (C , C).
Because the mapping is measurable, the probability measure P on (�, F)

induces a probability measure Q on (C , C). This property is important for
the following reason. Let X be a stochastic process defined in this way,
and consider any measurable, real-valued function of X. For two examples,
choose any T > 0 and a ∈ R; define A to be the subset of C consisting of
sample paths with the property that X(T ) does not exceed a,

A ≡ {X ∈ C : X(T ) ≤ a};
and define B to be the set of sample paths with the property that X(t) does
not exceed a for any t ≤ T ,

B ≡ {X ∈ C : X(t) ≤ a , all 0 ≤ t ≤ T }.
Note that A and B are measurable sets: A, B ∈ C. Hence the probabilities

Q(A) = P {ω ∈ � : X(T , ω) ≤ a} = Pr {X(T ) ≤ a},

and

Q(B) = P {ω ∈ � : M(T , ω) ≤ a} = Pr {M(T ) ≤ a},

where

M(T , ω) ≡ max
s∈[0,T ]

X(s , ω),

are well defined. Since a was arbitrary, this result implies that distribution
functions can be constructed for X(T ) and M(T ). A similar argument shows
that the same is true for any measurable function of X.

A.3. Wiener Measure

To construct a stochastic process one must define a filtered space (�, F, P)

and a measurable function X. A canonical example of a continuous stochas-
tic process is defined as follows. Let � = C , and let

X(t , ω) = ω(t), all ω ∈ �, all t ≥ 0.

For each t ≥ 0, let Ft be the smallest σ -algebra such that X(t , ω) is measur-
able, all 0 ≤ s ≤ t , and let F = {

Ft , t ≥ 0
}
. It can be shown that the smallest
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σ -algebra containing all of the Fts is F∞ = C. Choose any probability mea-
sure P on (C , C). Then X is a stochastic process that is adapted to (�, F, P).
An important example is the following.

Theorem A.1 (Wiener’s theorem). Let (C , C) and X be as above. There
exists a unique probability measure P on (C , C) such that X is a Wiener
process.

For a proof see Billingsley (1968, p. 62). The idea is to show that there
exists a unique probability measure that has the required finite-dimensional
distributions. This measure is called Wiener measure .

Exercise A.1. Let W : R+ × � → R be a Wiener process on the filtered
space (�, F, P). Fix k > 0, and define W ∗: R+ × � → R by

W ∗(t , ω) = 1√
k
W(kt , ω).

Show that there exists a filtration F
∗= {

F∗
t

}
such that W ∗ is a Wiener process

on
(
�, F

∗, P
)
. Describe the relationship between the filtrations F = {

Ft

}
and

F
∗= {

F∗
t

}
.

A.4. Nondifferentiability of Sample Paths

The sample paths of a Brownian motion are continuous, but they are ‘kinky’
rather than smooth. More precisely, they are not differentiable. To under-
stand why, it is useful to recall the notions of total and quadratic variation
of a function and their relationship with differentiability.

Let f : [0, ∞) → R be a real-valued function. The total variation of f over
[0, T ] is

TV = sup

{
n∑

i=1

∣∣f (ti) − f
(
ti−1

)∣∣},

where the sup is over finite partitions 0 = t0 < t1 < . . . < tn = T . The quadratic
variation of f over [0, T ] is

QV = lim
n→∞

2n∑
j=1

[
f

(
jT

2n

)
− f

(
(j − 1) T

2n

)]2

.

Recall the following two results from real analysis.

Theorem A.2. A function f has finite total variation on [a , b] if and only
if it can be written as the difference of two increasing functions. In this case
f ′(X) exists for almost all X ∈ [a , b](Royden 1968, p. 100).
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Theorem A.3. If f is continuous and has finite total variation, then its
quadratic variation is zero.

In addition, there is the following fact about Brownian motion.

Theorem A.4. If X is a
(
μ, σ 2) Brownian motion, then over any finite

interval [S , S + T ] it has quadratic variation QV(ω) = σ 2T , for a.e. ω ∈ �.

It follows immediately from the latter two results that over any interval
[S , S + T ] a Brownian motion has total variation TV(ω) = ∞ along almost
every sample path. This property suggests that sample paths of a Brownian
motion are not differentiable with respect to time, and this assertion is
correct. See Breiman (1968, Theorem 12.25) for a proof.

Exercise A.2. Prove Theorem A.4 for the case μ = 0, σ 2 = 1, and S = 0.
That is, show that over any finite interval [0, T ], a Wiener process W has
quadratic variation QV(ω) = T , for a.e. ω ∈ �.

Hint. Fix T > 0, and for each n = 1, 2, . . . , define the random variables

�j ,n(ω) ≡ W

(
jT

2n
, ω

)
− W

(
(j − 1) T

2n
, ω

)
, j = 1, . . . , 2n.

For each n, ω, the �j ,ns are an i.i.d. sequence of random variables, each
sequence having mean zero and variance T/2n. Their sum,

Qn(ω) ≡
2n∑

j=1

[
�j ,n(ω)

]2,

is an approximation to QV(ω) over [0, T ].

Notes

See Billingsley (1968) and Chung (1974) for more detailed discussions of
various modes of convergence, the space C , and Wiener measure. Becker
and Boyd (1997) discuss continuous stochastic processes and describe some
applications. See Harrison (1985, Chapters 1.1–1.3 and Appendix A) and
Chung and Williams (1990, Chapter 4) for more detailed discussions of
quadratic variation.



B
Optional Stopping Theorem

This appendix contains proofs of the optional stopping results, Theorems
4.3 and 4.4. The proofs are for discrete time only, although the results
hold for continuous-time processes as well. Here Z denotes a stochastic
process that may have either a continuous or discrete time index (t ∈ R+
or t = 0, 1, 2, . . .), and Zk denotes a process for which k = 0, 1, 2, . . . , must
be discrete.

Continuous-time processes must have the following two properties, how-
ever: every sample path, at every date t , must be continuous from the right
and must have a limit from the left. Since Brownian motions have sample
paths that are continuous, they meet this requirement. Jump processes (for
example, processes with Poisson arrival times) also meet it, if the usual con-
vention is followed in defining the paths at the jump points. The continuous-
time processes used here are assumed to have these properties.

B.1. Stopping with a Uniform Bound, T ≤ N

One preliminary result is needed for the first proof. Lemma B.1 shows
that the basic (in)equality involving expectations in the definition of a
(sub)martingale is preserved for integrals over appropriate subsets of �.

Lemma B.1. Let Z be a (sub)martingale on the filtered probability space
(�, F, P). Then for any s ≤ t ,

E
[
Z(s)IA

]
(≤) = E

[
Z(t)IA

]
, all A ∈ Fs .
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Proof. For any s ≤ t ,

E
[
IAZ(s)

]
(≤) = E

{
IA E

[
Z(t) | Fs

]}
= E

{
E
[
IAZ(t) | Fs

]}
= E

[
IAZ(t)

]
,

where the first line uses the fact that Z is a (sub)martingale, the second uses
the fact that A is Fs-measurable, and the last uses the law of total probability.

Proof of Theorem 4.3. (Discrete time only) (i) Clearly ZT ∧k is adapted to
(�, F, P), so to establish that it is a (sub)martingale it suffices to show that
it satisfies the two properties in the definition, (4.1) and ((4.7) or) (4.2).

For each k = 1, 2, . . . , the stopped process ZT ∧k satisfies

E
[∣∣ZT ∧k

∣∣] (≤) = E

[
k∑

i=1

∣∣Zi

∣∣] < ∞,

where the second inequality follows from the fact that
{
Zk

}
is a (sub)martin-

gale. Hence ZT ∧k satisfies (4.1).
To show that

{
ZT ∧k

}
satisfies ((4.7) or) (4.2), it suffices to show that for

any k < n, ∫
A

(
ZT ∧n − ZT ∧k

)
dP (≥) = 0, all A ∈ Fk . (B.1)

Fix k < n and A ∈ Fk . For each i = k , . . . , n − 1, define the set Ai ∈ Fi by

Ai = A ∩ [T > i]= A ∩ [T ≤ i]c .

Thus Ai is the subset of A where T has not occurred by date i .
For any k < j ≤ n, if ω ∈ A and T (ω) = j , then ω ∈ Ai , i = k , . . . , j − 1,

and ω �∈ Ai , i = j , . . . , n − 1. Hence

ZT ∧n(ω) − ZT ∧k(ω) = Zj(ω) − Zk(ω)

=
j−1∑
i=k

[
Zi+1(ω) − Zi(ω)

]

=
n−1∑
i=k

[
Zi+1(ω) − Zi(ω)

]
IAi

.
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If ω ∈ A and T (ω) > n, then ω ∈ Ai , i = k , . . . , n − 1, so

ZT ∧n(ω) − ZT ∧k(ω) = Zn(ω) − Zk(ω)

=
n−1∑
i=k

[
Zi+1(ω) − Zi(ω)

]
IAi .

Finally, if ω ∈ A and T (ω) ≤ k , then ω �∈ Ai , i = k , . . . , n − 1, and

ZT ∧n(ω) − ZT ∧k(ω) = 0

=
n−1∑
i=k

[
Zi+1(ω) − Zi(ω)

]
IAi .

Hence ∫
A

(
ZT ∧n − ZT ∧k

)
dP =

n−1∑
i=k

∫
Ai

(
Zi+1 − Zi

)
dP . (B.2)

But since Ai ∈ Fi , all i , it follows from Lemma B.1 that∫
Ai

(
Zi+1 − Zi

)
dP (≥) = 0, i = k , . . . , n − 1.

Hence for a martingale each term in the sum on the right side of (B.2) is
zero and for a submartingale each is nonnegative, and it follows that (B.1)
holds. Since k and n were arbitrary, this establishes the result.

(ii) T ≤ N implies T ∧ N = T . Using this fact and setting n = N in
part (i) establishes the claim.

B.2. Stopping with Pr {T < ∞} = 1

Part (ii) of Theorem 4.3 says that if Z is a martingale and T ≤ N is a
bounded stopping time, then E[Z(T )]=E[Z(0)]. Theorem 4.4 extends this
conclusion to cases where Pr {T < ∞} = 1 but there is no upper bound on
the stopping time. The main idea is as follows.

If Z is a martingale and T is a stopping time, then by Theorem 4.3 the
stopped process satisfies

E [Z(0)]= E [Z(T ∧ t)]= E [Z(t)] , all t . (B.3)

Taking limits in (B.3), it follows that

E [Z(0)]= lim
t→∞ E [Z(T ∧ t)]= lim

t→∞ E [Z(t)]. (B.4)
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Since T < ∞ means Pr {T < ∞} = 1, in this case

lim
t→∞ Z(T ∧ t) = Z(T ), a.e.

Thus if in addition Z(T ) is integrable and exchanging the order of the limit
and the expectation in (B.4) is justified,

E [Z(0)]= lim
t→∞ E [Z(T ∧ t)]= E

[
lim
t→∞ Z(T ∧ t)

]
= E [Z(T )]. (B.5)

In the rest of this section conditions are established under which (B.5) holds.
For one easy case, note that if Z(T ∧ t) is uniformly bounded or,

more generally, if there exists a random variable X ≥ 0 with E[X]< ∞ and
|Z(T ∧ t)| ≤ X, all t , then the desired result follows from the Lebesgue dom-
inated convergence theorem. Theorem 4.4 requires a little less, however. Its
proof uses the following result, which involves a random variable X defined
on

(
�, F∞, P

)
.

Lemma B.2. Let X be a random variable with E[|X|]< ∞, and let T be a
stopping time with Pr [T < ∞]= 1. Then

lim
n→∞ E

[
XI{T >n}

] = 0.

Proof. For any n,

E [|X|] ≥ E
[|X| I{T ≤n}

]
=

n∑
k=1

E
[|X| | T = k

]
Pr {T = k}.

Since

lim
n→∞

n∑
k=1

E
[|X| | T = k

]
Pr {T = k} = E [|X|],

it follows that

lim
n→∞ E

[|X| I{T ≤n}
] = E [|X|].

Hence

lim
n→∞ E

[|X| I{T >n}
] = 0,

establishing the desired result as well.

In the proof of Theorem 4.4 Z(T ) is the random variable of interest.
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Proof of Theorem 4.4. Hypothesis (ii) implies that Z(T ) is integrable.
Hence for any t ,

E [Z(T )] = E
[
Z(T )I{T ≤t}

] + E
[
Z(T )I{T >t}

]
= E [Z(T ∧ t)]− E

[
Z(t)I{T >t}

] + E
[
Z(T )I{T >t}

]
.

Take limits as t → ∞, and note that by Theorem 4.3

lim
t→∞ E [Z(T ∧ t)](≥) = E [Z(0)],

by hypothesis (iii) the second terms vanishes, and by Lemma B.2 the third
term vanishes.

Notes

The arguments in this appendix draw on Karlin and Taylor (1975, Chapter
6.3) and Billingsley (1995, Section 35).
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