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Foreword to the 
Second Edition 

Feedback from my readers indicates that one reason why the first 
edition of this book met with some approval is that it was concise. I 
have tried to preserve this quality in this new edition. Nevertheless, 
despite the self-imposed constraint to keep the book short, readers 
of the first edition will find that I completely rewrote chapters 7 (on 
incomplete contracts) and chapters 8 (on empirical work). I have 
also made important changes to chapters 3 and 5. Chapter 3 now 
covers multiprincipals, collusion, and multidimensional adverse 
selection much more thoroughly. I added the limited liability model, 
career concerns, and common agency to the topics of chapter 5. 
Finally, I have made many smaller changes throughout the text. 

I am very grateful to Bernard Caillaud, Oliver Hart, Radoslova 
Nikolova, Jerome Pouyet, Patrick Rey, Francois Salanie, and Jean 
Tirole for helping me decide on the changes to the first edition. As 
always, I am solely responsible for any errors or imperfections that 
may remain in the book. 



Foreword to the 
First Edition 

This book aims at introducing Ph.D. students and professional econ­
omists to the theory of contracts. It originated in graduate-level 
courses I gave at Stanford University and at ENSAE (Ecole Na­
tional de la Statistique et de VAdministration Economique) to 
third-year students. This book has benefited from discussions with 
these students. 

The course notes were published as Theorie des contrats in France 
by Economica. The present book is a fully revised, somewhat ex­
panded, and hopefully improved translation of that book. 

I am grateful to Jerome Accardo, Jerome Philippe, Patrick Rey, 
and two anonymous reviewers, who read a first draft of the French 
version and provided very useful comments. I also thank Bruno Jul-
lien, Jean-Jacques Laffont, Tom Palfrey, Francois Salanie, Jean Tirole, 
and three anonymous reviewers who read all or part of the English 
version and greatly helped me improve it. My intellectual debt 
extends to my coauthors in this field, Pierre-Andre Chiappori and 
Patrick Rey, and to Guy Laroque, who was a very effective and crit­
ical tutor when I started doing research in economics. 

Finally, I thank Terry Vaughn and The MIT Press for their encour­
agement and support in this project. Needless to say, I am solely 
responsible for any errors or imperfections that may remain in the 
book. 



1 Introduction 

The theory of general equilibrium is one of the most impressive 
achievements in the history of economic thought. In the 1950s and 
1960s the proof of the existence of equilibrium and of the close corre­
spondences among equilibria, Pareto optima, and the core seemed to 
open the way for a reconstruction of the whole of economic theory 
around these concepts. However, it quickly appeared that the general 
equilibrium model was not a fully satisfactory descriptive tool. Strate­
gic interactions between agents are heavily constrained in that model. 
This is because agents only interact through the price system, which 
the pure competition assumption says they cannot influence. In the 
logical limit one gets the models of the Aumann-Hildenbrand school 
in which there is a continuum of nonatomic agents, none of which can 
influence equilibrium prices and allocations. Similarly the organiza­
tion of the many institutions that govern economic relationships is 
entirely absent from these models. This is particularly striking in the 
case of firms, which are modeled as a production set. This makes the 
very existence of firms difficult to justify in the context of general 
equilibrium models, since all interactions are expected to take place 
through the price system in these models. As Coase said long ago in 
one of his most influential papers (Coase 1937), "The distinguishing 
mark of the firm is the supersession of the price mechanism." 

Creating general equilibrium models that could account for infor­
mational asymmetries presented another challenge. Arrow and 
Debreu had shown that it is fairly straightforward to extend the 
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general equiUbrium model to cover uncertainty as long as informa. 
L is kepi symmetric, Unfortunately, asymmetries of information 

m pervasive in economic relationships. That is to say, customers 
know more about their tastes than firms, firms know more about 
their costs than the government, and all agents take actions that are 
a t least partly unobservable. So rational expectations equilibria were 
conceived, at least in part, to encompass asymmetric information. 
However, while they offered interesting insights on the revelation of 
information by prices, their treatment of asymmetric information 
did not prove satisfactory. A homo ceconomicus who possesses private 
information can be expected to try to manipulate that information, 
since he has in effect a monopoly over his own piece of private infor­
mation. If we want to take this into account, we must forsake general 
equilibrium models. We then need to resort to other tools and, in 
particular, to game-theoretic tools. 

The theory of contracts thus evolved from the failures of general 
equilibrium theory. In the 1970s several economists settled on a new 
way to study economic relationships. The idea was to turn away 
temporarily from general equilibrium models, whose description of 
the economy is consistent but not realistic enough, and to focus on 
necessarily partial models that take into account the full complexity 
of strategic interactions between privately informed agents in well-
defined institutional settings. It was hoped then that lessons drawn 
from these studies could later be integrated inside a better theory of 
general equilibrium. 

The theory of contracts, and more generally what was called the 
"economics of information," were the tools used l.» explore this new 
don. a u s e they are just that—tools—it is somewhat diffi. ill! 

to define their goals other than by contrasting their shared chara( 
teristicswith previoui approai hi 

' , , , l , , , , odels are parHalequiUbrium models rhey 
, " " l " , , ' , l , " m " ' , , ' K I times twog Is) from the 
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• The models describe the interactions of a small number of age 
(often just two, one of whom possesses some private informal 
and is call the "informed party"). 

• The models sum up the constraints imposed by the prevailing 
institutional setting through a contract. The contract may be explicit 
and in the form of a written agreement, or may be implicit and 
depend on a system of behavioral norms. An explicit contract will be 
guaranteed by a "third party" (e.g., a court or a mediator) or by the 
desire agents to maintain a reputation for fair trading. An implicit 
contract is sustained by an equilibrium tacitly observed in the inter­
actions between the agreeing parties. 

• The models make an intensive use of noncooperative game theorv 
with asymmetric information, although their description of the bar­
gaining process generally calls for a simplistic device known as the 
Principal-Agent model (on which more is provided later in this 
introduction). They are embedded in a Bayesian universe in which 
parties have an a priori belief on the information they do not pos­
sess, and they revise this belief as the interaction unfolds. The equi­
librium concept they use in fact belongs to the family of perfect 
Bayesian equilibria. 

The theory of contracts obviously covers a lot of ground and 
many varied situations. As a consequence early empirical studies 
were mostly case studies. Only recently has a body of literature 
emerged that tries to test the main conclusions of the the an-

tracts using standard econometric techniques, as is discussed in 

chapter 8. 

1.1 The Great Families of Models 

The models ol the theor) of contracts can be distinguished alort 
era] axes, depending on whether they are static or dynamic whether 
the) involve complete or incomplete com whether they 
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describe a bilateral or multilateral relationship, and so on. A large 
class of models, which can easily be divided into three families, is 
that where an informed party meets an uninformed party. I have cho­
sen, somewhat arbitrarily of course, to classify these models accord­
ing' to two criteria. First is to distiguish whether the private 
information bears on 

• what the agent does, the decisions he takes ("hidden action"), 

• who the agent is, what his characteristics are ("hidden informa­

tion"). 

Second, as in the form of the strategic game, is to distinguish the 
models in which the initiative belongs to the uninformed party from 
those in which it belongs to the informed party. 

This classification yields three important families1: 

• Adverse selection models. The uninformed party is imperfectly 
informed of the characteristics of the informed party; the unin­
formed party moves first. 

• Signaling models. The informational situation is the same but the 
informed party moves first. 

• Moral hazard models. The uninformed party moves first and is 
imperfectly informed of the actions of the informed party. 

In chapters 2 to 5,1 will study the basic structure of each of the three 
families. I should mention here, however, that one important class of 
models does not fit this system: models of incomplete contracting. 
This is because these models have so far only been developed in sit­
uations of symmetric information. They are studied in chapter 7. 

1. The fourth case is that where the uninformed party does not observe the actions 
of the informed party. The informed party then takes the initiative of the contract. It 
s difficult to imagine a real-world application of such a model, and I do not know of 
any paper that uses it. 
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1.2 The Principal-Agent Model 

Most of this book will use the Principal-Agent paradigm. There are 
two economic agents in this model: the informed party, whose infor­
mation is relevant for the common welfare, and the uninformed 
party. Since this is a bilateral monopoly situation, we cannot go very 
far unless we specify how the parties are going to bargain over the 
terms of exchange. Unfortunately, the study of bargaining under 
asymmetric information is very complex.2 The Principal-Agent 
model is a simplifying device that avoids these difficulties by allo­
cating all bargaining power to one of the parties. This party will pro­
pose a "take it or leave it" contract and therefore request a "yes or 
no" answer; the other party is not free to propose another contract. 

The Principal-Agent game is therefore a Stackelberg game in 
which the leader (who proposes the contract) is called the Principal 
and the follower (the party who just has to accept or reject the con­
tract) is called the Agent.3 While this modeling choice makes things 
much simpler, the reader should keep in mind that actual bargain­
ing procedures are likely to be much more complex. For instance, 
if the Agent rejects the contract, the interaction would stop in the 
Principal-Agent model, whereas in the real world it would be 
expected to continue. 

Because much of the book's discussion is informed by the Principal-
Agent model, let us explore it a bit. One way to justify the Principal-
Agent paradigm is to observe that the set of (constrained) Pareto 
optima can always be obtained by maximizing the utility of one 

2. The main difficulty is that the natural equilibrium concept, perfect Bayesian equi­
librium, leads to a large multiplicity of equilibria. See Ausubel-Cramton-Deneckere 
(2002) for a recent survey of bargaining models with asymmetric information. 
3. I have tried to use consistent notation throughout the book: thus the Agen 
will always be the follower in a Principal-Agent game, while an "agent is simply 
an economic agent, so that the Principal is also an agent. 1 hope this will create no 
confusion. 
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• u i n t n a eiven utility level. This is precisely 
^ n t while the * ^ ^ ^ s ; so if we are only interested in 
what the Pnnapd-Age ^ ^ ^ Q n e p a r t i c u l a r o p t j . 

common properties of U l e r a i i t y . On the other hand, 

m u n . t h i s . p i m ^ ^ ^ 0 ^ s h o u l d m a k e us fix the 
it m a y be that reasons o u » d e * e ^ . ^ ^ ^ 

Agent's reservation utility * * £ * a i v e e m p l o y e G / 

Principal is an employer andJteAg P J ^ 

t h e level of ^ - f ^ ^ ^ L peculiar properties of 

not be taken to imply that one of the parties works for the other or 
that the modeler is more interested in one than in the other. Each 
model has its own logic and should be interpreted accordingly. I 
should also point out that this terminology is taken by several 
authors, starring with the pioneering paper by Ross (1973), to refer 
to what they call the problem of agency, which is a moral hazard 
problem. My use of the Principal-Agent paradigm is both wider and 
more abstract; to me, it basically means that a Stackelberg game is 
being played. 

1.3 Overview of the Book 

An exhaustive look at the theory of contracts and its applications 
would make a very thick book. Such is not my ambition here. I 
merely want to present the main models of the theory of contracts, 
and particularly the basic models of the three great families 
described in section 1.1. It is not always easy to determine what 
belongs to the theory of contracts and what belongs to the wider 
field of the economics of information. I have chosen to include a 
brief description of auction models because their study relies on the 
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same tools as the theory of contracts. On the other hand, I have 
preferred not to give a central role to models of insurance markets, 
even though their historical importance in shaping the field is well-
established. As I will argue in section 3.1.3, these models have some 
peculiar features, and they deserve a fuller treatment than I can give 
them in a short book. 

I have deliberately chosen to emphasize the methods used to ana­
lyze the models of the theory of contracts rather than the many 
applications that it has generated in various fields of economics. I 
have included brief introductions to these applications, but without 
any claim to completeness; most of the applications are not elabo­
rated in the text. The reader interested in a particular application is 
urged to peruse the lists of references and to read the original 
papers. My goal in writing this book was to give the basic tools that 
allow the reader to understand the basic models and to come up 
with his own. I have tried to include recent developments, except 
where this could have led to overtechnical analyses. In most cases 
the lists of references will be sufficiently rich to allow the reader to 
find his way through this burgeoning literature. 

Chapter 2 presents the general theory of adverse selection models. 
It starts with a brief summary of mechanism design, and proceeds to 
solve a basic model of second-degree price discrimination of two 
types. It then presents the solution in a more general continuous-
type model. Several examples of applications and some more recent 
extensions are studied in chapter 3. 

Chapter 4 turns to signaling models, and considers both signals 
that are costly and that are free. The basic moral hazard model, and 
some of its extensions and its application to insurance and wage 
contracts, are studied in chapter 5. 

Chapter 6 is dedicated to the dynamic aspects of the theory of com­
plete contracts. It introduces concepts like commitment and renego­
tiation that have been at the forefront of recent research. Because this 
field is very technical, I have not tried to provide complete proofs of 
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u ter This is a clear case where interested read­
me results in tins chapter. 7 ^ ^ ^ 

The reader might ngnuy juu6t- / 
te i a fairly formal book. However, mathematical requirements 
o reading this book are low. Elementary concepts of calculus are 
ufHcient. The only exceptions occur in chapters 4 and 6, which use 

somewhat more advanced concepts of uncooperative game theory. 
An appendix presents some background information for the readers 
who might need this. Throughout the book the sections that are 
more advanced are starred and can be skipped if necessary. 

My original plan did not call for exercises. However, I found that 
in writing chapters 2 through 5 several came to mind. For this reason 
these chapters end with exercises. 
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Adverse Selection: 
General Theory 

We use the term "adverse selection" when a characteristic of the 
Agent is imperfectly observed by the Principal.1 This term comes 
from a phenomenon well known to insurers: If a company offers a 
rate tailored only to the average-risk population, this rate will attract 
only the high risk population, and the company will therefore lose 
money. This effect may even induce the insurer to deny insurance to 
some risk groups. Other terms sometimes used are "self-selection" 
and "screening." The general idea of adverse selection can be 
grasped from the following example, which will be analyzed fully in 
section 2.2. 

Suppose that the Principal is a wine seller and the Agent a buyer. 
The Agent may have cultivated tastes for good wines or have more 
modest tastes. We will say there are two "types": the sophisticated 
Agent who is ready to pay a high price for good vintage and the fru­
gal Agent whose tastes—or means—may be less developed. 

We can assume that the Principal cannot observe the type of any 
given Agent, or at least that the law (as is often the case) forbids him 
to use nonanonymous prices that discriminate between the two 
types.2 

The key to the solution of the adverse selection problem is the fol­

lowing observation: if the sophisticated Agent is willing to pay more 

1. This chapter and the next chapter develop the Principal-Agent paradigm intro­
duced in section 1.2. 
2. In Pigou's terms, first-degree price discrimination is inieasible besides being illegal. 
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than the frugal Agent for a given increase in the quality of the wine, 
Len the PrincipaLm segment the market by offenng two different 

wine bottles: 

fa wine of high quality for a high price 
1 a wine of lower quality for a lower price 

We will see in section 2.2 how these qualities and prices can be cho­

sen optimally. 

If all goes according to plan, the sophisticated type will choose the 
top high-priced wine, while the frugal type will pick a lower quality 
bottle. Thus the two types of Agent "reveal themselves" through their 
choices of wine. As we will see, this implies that the frugal type buys 
a lower quality than might be socially optimal. The whole point of 
adverse selection problems is to make the Agents reveal their type 
without incurring too high a social distortion. 

Let us briefly consider a few other relevant examples of adverse 

selection. 

• In life insurance, the insured's state of health (and therefore risk of 
dying soon) is not known to the insurer, even if the insured has had a 
medical checkup. As a result the insurer is better off offering several 
insurance packages, each tailored to a specific risk class. (This situa­
tion will be studied in section 3.1.3.) 

• In banking, the borrowers' default risk can be only imperfectly 
assessed, in particular, where entrepreneurs request financing for 
risky projects. A natural idea is to use interest rates to discriminate 
among entrepreneurs. However, this may induce credit rationing, 
unless banks also vary collateral levels.3 

• In labor markets, potential workers have an informational advan­

tage over employers in that they know their innate abilities better. 

sHgwsrvery brief summary °f a b°dy °f uterature that started with 
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Because of this firms must screen workers to select the promising 
candidate and reject all others. 

. in government-regulated firms (state-owned or not), the regulated 
firm has better information on its costs or productivity than the reg­
ulator. The obvious implication is that it can manipulate the way it 
discloses information to the regulator to maximize its profits (see 
section 3.1.1). 

*2.1 Mechanism Design 

Mechanism design is at the root of the study of adverse selection. 
Mechanism design is so important to adverse selection models that 
some authors also call these models mechanism design problems. I 
will not attempt here to give a self-contained presentation of mecha­
nism design. I will assume that the reader has already been exposed 
to this theory. My sole aim will be to remind the reader of the general 
formalistic properties and the results that will be needed later in the 
book.4 The reader who finds this section too abstract can skip it with­
out losing the thread of the chapter. 

The object of mechanism design theory is to explore the means of 
implementing a given allocation of available resources when the rel­
evant information is dispersed in the economy. Take, for instance, a 
social choice problem where each agent i = 1,..., n has some rele­
vant private information 0-v Assume that despite all the reservations 
exemplified by Arrow's theorem, society has decided that the opti­
mal allocation is 

y(0) = (yi(0i, ...,0„),....yJPv - A ) ) 

Presumably it is be easy to implement the allocation if the govern­

ment knows all the 0,'s. However, if only i knows his 0, and, say, his 

4. See Laffont (1989) or Moore (1992) for a more complete exposition. 
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ophmal allocation y,<0) increases with 9„ he is likely to overstate his 

/ s o as to obtain a larger allocation. This can make it very difficult 

for the government to implement y{6). 

The provision of public goods is another example. Everyone ben­
efits from a bridge, but no one particularly cares to contribute to its 
building costs. The optimal financing scheme presumably depends 
on each agent's potential use of the bridge: for example, commuters 
heavily using the bridge might be asked to pay more than infrequent 
commuter types. In the absence of a reliable way to differentiate 
between these individuals, the government will have to rely on vol­
untary declarations. Naturally, to avoid bearing a large portion of 
the cost, the heavy user type of Agent will understate the utility he 
derives from the bridge. As a result the bridge may not be built, as its 
cost may exceed the reported benefits. 

As a final example, consider the implementation of a Walrasian 
equilibrium in an exchange economy. We all know that this has good 
properties under the usual assumptions. However, it is not clear 
how the economy can move to a Walrasian equilibrium. If informa­
tion were publicly available, the government could just compute the 
equilibrium and give all consumers their equilibrium allocations.5 

In practice, the agents' utility functions (or their true demand func­
tions) are their private information, and they can be expected to lie 
so as to maximize their utility. As information is dispersed through­
out the economy, implementable allocations are subject to a large 
number of incentive constraints. 

In all these examples, two related questions arise: 
Can y(0) be implemented? In other words, is it incentive compati­

ble (some authors say "feasible")? What is the optimal choice among 
incentive compatible allocations? 

In more abstract terms we consider a situation where 

iginal vision of the proponents of market socialism. 
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. there are n agents i = 1,..., n characterized by parameters 0, G 0„ 
which are their private information and are often called their "types"'; 
. agents are facing a "Center" whose aim is to implement a given 
allocation of resources, and generally (which is the more interesting 
case) this allocation will depend on the agents' private characteris­
tics 0j. 

Think of the Center as government, or as some economic agent who 
has been given the responsibility of implementing an allocation, or 
even as an abstract entity such as the Walrasian auctioneer. The Cen­
ter needn't be a benevolent dictator; he may be, for instance, the 
seller of a good who wants to extract as much surplus as possible 
from agents whose valuations for the good he cannot observe. 

2.1.1 General Mechanisms 

The problem facing the Center is an incentive problem. The Center 

must try to extract information from the Agents so that he can imple­

ment the right allocation. To do this, he may resort to very compli­

cated procedures, using bribes to urge the Agents to reveal some of 

their private information. This process, however complicated, can 

be summed up by a mechanism {y(.),Mlf ...,M„). This consists of 

a message space M, for each Agent i and a function y(.) from 

MjX ... X Mn to the set of feasible allocations. The allocation rule 

y(•) = (J/i (•)/ • • •/ !/»(•)) determines the allocations of all n Agents as a 

function of the messages they send to the Center.6 Note that gener­

ally these allocations are vectors. 

Given an allocation rule y(.), the Agents play a message game in 

which the message spaces Mt are their strategy sets and the alloca­

tion rule y(.) determines their allocations and therefore their utility 

6. In general, the mechanism involves stochastic allocation rules. 
assume that they are deterministic. 
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levels. Agent i then chooses a message m, in M and sends it to the 

Center, who imposes the allocationy(mv ..., m„). 

Note that in general, the message chosen by Agent i will depend 

on his information /,, which contains his characteristic 6, The 

Agent's information may in fact be richer, as is the case where each 

Agent knows the characteristic of some of his neighbors. Equilib­

rium messages thus will be functions m* (/,) and the implemented 

allocation will be 

Assume, for instance, that the Center is the proverbial Walrasian 

auctioneer and tries to implement a Walrasian equilibrium in a con­

text where he does not know the Agents' preferences. Then one way 

for him to proceed is to ask the agents for their demand functions, to 

compute the corresponding equilibrium, and to give each agent his 

equilibrium allocation. If he is the builder of a bridge, he might 

announce a rule stating under which conditions he will decide to 

build the bridge and how it will be financed; then he would ask each 

Agent for his willingness to pay. 

2.1.2 Application to Adverse Selection Models 

The models we are concerned with in this chapter are very special 
and simple instances of mechanism design. The Principal here is the 
Center, and only one Agent is involved. Thus n=\, and the infor­
mation / of the Agent boils down to his type 0. Given a mech-
^ s m (y(.),M), the Agent chooses the message he sends so as to 
maximize his utility u(y,6): 

m*(0)e«gmjxu(y(m),0) 

and he obtains the corresponding allocation 

y*(0) = y(m*(d)) 
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The revelation principle below7 implies that one can confine atten­
tion to mechanisms that are both direct (where the Agent reports his 
information) and truthful (so that the Agent finds it optimal to 
announce the true value of his information). 

Revelation Principle. 

If the allocation y*{9) can be implemented through some mecha­
nism, then it can also be implemented through a direct truthful 
mechanism where the Agent reveals his information 9. 

The proof of this result is elementary. Let (t/(.), M) be a mechanism 
that implements the allocation \f, and let m*{0) be the equilibrium 
message, so that y* = y o m*. Now consider the direct mechanism 
(i/*(.), 0) . If it were not truthful, then an Agent would prefer to 
announce some 9' rather than his true type 9. So we would have 

u(y*(9),9)<u{y*(9'),9) 

But, by the definition of y*, this would imply that 

u(y(m*(9)),e)<u(y(m*(9')),e) 

Consequently m* cannot be an equilibrium in a game generated by 

the mechanism (y(.),M), since the Agent of type 9 prefers to 

announce m*(0') rather than m*(0). Thus the direct mechanism (y*, 0) 

must be truthful, and by construction, it implements the allocation y*. 

Note that in a direct mechanism the message space of the Agent 

coincides with his type space. Thus in the example of the bridge, the 

Agent needs only to announce his willingness to pay. 

Assume that as is often the case, the allocation y consists of an 

allocation q and a monetary transfer p. The revelation principle 

states that to implement the quantity allocation q{9) using transfers 

7. I only state this principle for the case where n = 1. It is valid more generally, but 
the shape it takes depends on the equilibrium concept used for the message-sending 
game among the n agents. These complications do not concern us here. 



18 
Chapter 2 

«<0) it is enough to offer the Agent a menu of contracts. If the Agent 

announces that his type is 0, he will receive the allocation q{6) ^ 

will pay the transfer p(0). 

Direct truthful mechanisms are very simple but rely on messages 

that are not explicit. In the example of the wine seller, one can hardly 

expect the buyer to come into the shop and declare "I am sophisti-

cated" or "I am frugal." A second result sometimes called the taxa­

tion principle comes to our aid in showing that these mechanisms are 

equivalent to a nonlinear tariff r(.) that lets the Agent choose an allo­

cation q and pay a corresponding transfer p = z(q). The proof of this 

principle again is simple. Let there be two types 6 and 0' such that 

q{0) = q(6'); if p(0) is larger than p(0r)/ then the Agent of type 6 can 

pretend to be of type 6', and the mechanism will not be truthful. 

Therefore we must have p(9) = p(0'), and the function r(.) is defined 

unambiguously by 

if q = q(0), then z(q) = p(0) 

In our earlier example the wine seller only needs to offer the buyer 

two wine bottles that are differentiated by their quality and price. 

This is, of course, more realistic; although most retailers do not post 

a nonlinear tariff on their doors, they often use a system of rebates 

that approximates a nonlinear tariff. 

2.2 A Discrete Model of Price Discrimination 

In section 2.3, we will obtain the general solution for the standard 

adverse selection model with a continuous set of types. Here we 

learn first to derive the optimum in a simple two-type model by way 

of heavily graphical techniques and very simple arguments. 

To simplify things, we will reuse the example of a wine seller who 

offers wines of different qualities (and at different prices) in order to 

segment a market in which consumers' tastes differ. This is therefore 
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a model mat exhibits both vertical differentiation and second-degree 
price discrimination.8 

2.2.1 The Consumer 

Let the Agent be a moderate drinker who plans to buy at most one 
bottle of wine within the period we study. His utility is U = 6q - t, 
where q is the quality he buys and 9 is a positive parameter that 
indexes his taste for quality. If he decides not to buy any wine, his 
utility is just 0. 

Note that with this specification, 

V0' > 9, u(q, 0') - u(q, 9) increases in q 

This is the discrete form of what I call the Spence-Mirrlees condition 
in section 2.3. For now, just note its economic significance: At any 
given quality level, the more sophisticated consumers are willing to 
pay more than the frugal consumers for the same increase in quality. 
This is what gives us the hope that we will be able to segment the 
market on quality. 

There are two possible values for 9: 9l < 92i the prior probability 
that the Agent is of type 1 (or the proportion of types 1 in the popu­
lation) is 7i. In the following, I will call "sophisticated" the con­
sumers of type 2 and "frugal" the consumers of type 1. 

2.2.2 The Seller 

The Principal is a local monopolist in the wine market. He can pro­

duce wine of any quality q E (0, <»); the production of a bottle of 

good quality q costs him C{q). I will assume that C is twice differen-

tiable and strictly convex, that C'(0) = 0 and C'(°°) = °°-

8. The classic reference for this model is Mussa-Rosen (1978), who use a continuous 

set of types. 
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The utility of the Principal is just the difference between his 

receipts and his costs, or t - C(q). 

2.2.3 The First-Best: Perfect Discrimination 

If the producer can observe the type 9, of the consumer, he will solve 

the following program: 

max ft - C{qt)) 
< ? / • ' . 

Bill ' *t* ° 

The producer will therefore offer qt = eft such that C(q)) = 0. and 

f* = Ojifito the consumer of type 6if thus extracting all his surplus; 

the consumer will be left with zero utility. 

Figure 2.1 represents the two first-best contracts in the plane (cj, t). 

The two lines shown are the indifference lines corresponding to zero 

utility for the two types of Agent. The curves tangent to them are iso-

profit curves, with equation t = C(q) + K. Their convexity is a con­

sequence of our assumptions on the function C. Note that the utility 

of the Agent increases when going southeast, while the profit of the 

Principal increases when going northwest. 

Both eft and <fa are the "efficient qualities." Since Qx < 62 and 0 

is increasing, we get <g > eft, and the sophisticated consumer buys 

a higher quality wine than the frugal consumer. This type of dis­

crimination, called first-degree price discrimination, is generally 

forbidden by the law, according to which the sale should be anony­

mous: You cannot refuse a consumer the same deal you prepared 

for another consumer.9 However, we are interested in the case 

9^As we will see shortly, the sophisticated consumer envies the frugal consumer's 
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Figure 2.1 
The first-best contracts 

where the seller cannot observe directly the consumer's type. In this 
case perfect discrimination is infeasible no matter what is its legal 
status. 

2.2.4 Imperfect Information 

Now in the second-best situation in information is asymmetric. The 
producer now only knows that the proportion of frugal consumers 
is n. If he proposes the first-best contracts (q\, t\), (q*2, t*2), the 
sophisticated consumers will not choose (q\, t*2) but (q\, t\), since 

92q\ - t\ = (d2 - 0x)q\ > 0 = B2q\ ~ t\ 

The two types cannot be treated separately any more. Both will 
choose the low quality deal (q\, t\). 

Of course, the producer can get higher profits by proposing 
(q\, t\) the point designated A in figure 2.2, since A will be chosen 
only by the sophisticates and only by them. Note that A is located on 
a higher isoprofit curve than (q\, t\), and therefore it gives a higher 
profit to the seller. 



22 Chapter 2 

Figure 2.2 
A potentially improving contract 

A number of other contracts are better than A. Our interest is in the 

best pair of contracts (the second-best optimum). This is obtained bv 

solving the following program: 

max {nit, - C(ft)] + (1 - n)[t2 - C(q2)]} 
fl'(/l'f2',72 

subject to 

fltfi - r2 > 0tf2 - t2 

92q2 - t2 > e2qx - fj 

^2^2 - *2 ^ 0 

(JQ) 
(ic2) 

(IR2) 

The constraints in this program are identified as follows: 

• The two {IC) constraints are the incentive compatibility constraints; 
they state that each consumer prefers the contract that was designed 
for him. 

•The two (IR) constraints are the individual rationality, or participa­
tion constramts; they guarantee that each type of consumer accepts 
his designated contract. 
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We will prove that at the optimum: 

1. (IRJ is active, so tx = 0Tft. 

2. {IC2) is active, whence 

f2 - h = 02(ft - ft). 

3. ft - ft-
4. (JCj) and (IR2) can be neglected. 

5. Sophisticated consumers buy the efficient quality 

ft = A 

Proofs We use (/C2) to prove property 1: 

02ft - f2 > 02ft - ^ > 0jft - fj 

since ft ^ 0 and 62 > 6V If {IRJ was inactive, so would be (/R2), and 

we could increase tx and r2 by the same amount. This would increase 

the Principal's profit without any effect on incentive compatibility. 

Property 2 is proved by assuming that (IC2) is inactive. Then 

02q2 - f2 > 02ft - ta > 0xqx - tx = 0 

We can therefore augment f2 without breaking incentive compatibil­

ity or the individual rationality constraint (ZR2). This obviously 

increases the Principal's profit, and therefore the original mecha­

nism cannot be optimal. 

To prove property 3, let us add {ICJ and {IC2). The transfers r, can­

cel out, and we get 

02(ft " ft) 2= #i(ft> - ft) 

and 

ft - ft > 0 

since 62 > 6V 



24 
Chapter 2 

By property 4, the (JQ) can be neglected, since (IC2) is active. By 

property 3, 

t2-t]=02(q2-q1)^^2-^ 

The proof of assertion 1 shows that (IR2) can be neglected. 
Finally, by property 5, we can prove that C'(q2) = 02. If C'(q2) < ^ 

for instance, let £ be a small positive number, and consider the new 

mechanism fa, f,), fe = ft + £' '2 = '2 + ^ ) - K is easily seen that 

^ 2 " *2 = *2«fe - '2 a n d ^ 2 " '2 = *i<fe - h ~ W2 ~ 0,) 

so the new mechanism satisfies all four constraints. Moreover 

t'2 - Cfe) - fe - C(fe) + e(62 - C 'W) 

This tells us that the new mechanism yields higher profits than the 
original one, which is absurd. We can prove in the same way that 
C'(q2) > 92 is impossible (just change the sign of e). 

It is an easy and useful exercise to obtain graphical proofs of these 
five points. The optimal pair of contracts appears to be located as 
shown in figure 2.3. {qv tx) is on the zero utility indifference line of 
the Agent of type 1, and {q2, t2) is the tangency point between an iso-

Figure 2.3 
The second-best optimum 
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profit curve of the seller and the indifference line of the Agent of 
type 2 that goes through {qv tx). 

To fully characterize the optimal pair of contracts, we just have to 
let fa, tx) in figure 2.3 slide on the line f, = 9xqx. Formally the opti­
mum is obtained by replacing q2 with q\ and expressing the values of 
tj and f2 as functions of qv using 

pi " 0rfi 
[f2 - fj = 6>2(̂ 2 - 9 l ) 

This gives 

We can substitute these values in the expression of the Principal's 
profit and solve 

max (w(01<?1 - Cfo)) - (1 - TT)(02 - ex)qx) 

Note that the objective of this program consists of two terms. The 
first term is proportional to the social surplus10 on type 1 and the 
second represents the effect on incentive constraints on the seller's 
objective. Dividing by n, we see that the Principal should maximize 

n 

which we can call the virtual surplus. We will see a similar formula in 
section 2.3. The difference between the social surplus and the virtual 
surplus comes from the fact that when the Principal increases qv he 
makes the type 1 package more alluring to type 2. To prevent type 2 

10. The social surplus is the sum of the objectives of the Principal and the type 1 
Agent. We do not have to worry about the social surplus derived from selling to 
Agent 2, since we know that we implement the first-best q2 = <&. 
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from choosing the contract designated for type 1, he must therefore 

reduce f2, which decreases his own profits. 

We finally get 

1 -n 

so that ft < # the quality sold to the frugal consumers is sub-

efficient.11 

The optimal mechanism has five properties that are common to all 

discrete-type models and can usually be taken for granted, thus 

making the resolution of the model much easier: 

• The highest type gets an efficient allocation. 

• Each type but the lowest is indifferent between his contract and 

that of the immediately lower type. 

• All types but the lowest type get a positive surplus: their informa­

tional rent, which increases with their type. 

• All types but the highest type get a subefficient allocation. 

• The lowest type gets zero surplus. 

Informational rent is a central concept in adverse selection models. 

The Agent of type 2 gets it because he can always pretend his type is 

1, consume quality qv pay the price tv and thus get utility 

92ql - fj 

which is positive. However, type 1 cannot gain anything by pre­

tending to be type 2, since this nets him utility 

dtf2 -12 

11. If the number of frugal consumers n is low, the formula will give a negative 
C'fo,). Then it is optimal for the seller to propose a single contract designed for the 
sophisticated consumers. A more general treatment should take this possibility into 
account from the start. Here this exclusion phenomenon can be prevented by assum­
ing that nm high enough. We will see in section 3.2.6 that this is not possible when 
the Agent s characteristic is multidimensional 
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which is negative. For n types of consumers 6l < ... < Q e a c h t e 

h °n c a n 8 e t informational rent, and this rent will increase from 
02 to d„. Only the lowest type, 0V will receive no rent. 

Remark By the taxation principle, there is a nonlinear tariff that is 
equivalent to the optimal mechanism. It is simply 

ft = tx if <? = <?i 
t = t2 if q = q2 

t = co otherwise 

So the seller needs only to propose the two qualities that will seg­
ment the market.12 

2.3 The Standard Model 

The model we study in this section sums up reasonably well the 

general features of standard adverse selection models. It introduces 

a Principal and an Agent who exchange a vector of goods q and a 

monetary transfer p. The Agent has a characteristic 9 that consti­

tutes his private information. The utilities of both parties are given 

by 

f W(q, t) for the Principal 
"[ U(q, t, 9) for the Agent of type 9 

Note that we do not make the Principal's utility function depend on 

the type 9 of the Agent. This is because the model involves "private 

values" as opposed to "common values." This distinction will be used 

again in chapter 3. When the contract is signed, the Agent knows his 

12. Such an extremely nonlinear tariff is less reasonable when the variable q is a 
quantity index, as it is in the price discrimination problem studied by Maskin-Riley 
(1984). Then it is sometimes possible to implement the optimum mechanism by using 
a menu of linear tariffs. Rogerson (1987) proves that a necessary and sufficient condi­
tion is that the optimal nonlinear schedule t = T(q) be convex. 
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type 0 13 The Principal entertains an a priori belief about the Agent<s 

type. This belief is embodied in a probability distribution/ wi th 

cumulative distribution function F on 0, which we will call the Prin. 
cipal's prior. Because the Agent has a continuous set of possible types 

to choose from, the graphical analysis we used in section 2.2 no longer 

meets our needs, so we must use differential techniques. 

From the revelation principle we already know that the Principal 

just has to offer the Agent a menu of contracts (q(.), t(.)) indexed by an 

announcement of the Agent's type 6 that must be truthful at the equi­

librium. We need to characterize the menus of contracts such that 

(IC) Agent 0 chooses the (q(9), t(0)) that the Principal designed for 

him, 

(IR) Agent 0 thus obtains a utility level at least as large as his reser­
vation utility, meaning the utility he could obtain by trading 
elsewhere (his second-best opportunity). 

The menu of contracts (q(), t(.)) maximizes the expected utility of 
the Principal among all menus that satisfy (IR) and (IC). 

Remarks 

• As in section 2.2, the acronyms (IR) and (IC) come from the terms 
individual rationality and incentive compatibility. 

• As in section 2.2.4, it may be optimal for the Principal to exclude 
some types 0 from the exchange by denying them a contract (or at 
least falling back on a prior "no trade" contract). We, however, 
neglect this possibility in the following analysis. 

• We can neglect the possibility that the optimal mechanism is ran­
dom; exercise 2.5 gives a sufficient condition for the optimal mecha­
nism to be deterministic. 

£«SS^EK£!T: ,O learn his type ° n i y at -
cuss this variant of the s t a n d i A \ e l tS P r o v i s i °ns are executed. I dis-

«ie standard model in section 3.2.5. 
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. We can assume that the Principal faces a population of Agents 
whose types are drawn from the cumulative distribution function F 
This case is isomorphic to that we study here, with a single Agent 
whose type is random in the Principal's view. Many papers vacillate 
between the two interpretations, and so will I here. 

2.3.1 Analysis of the Incentive Constraints 

Let V(0, 0) be the utility achieved by an Agent of type 0 who 
announces his type as 0 and therefore receives utility 

V(O,d) = U(q(0),t(d),0) 

The mechanism {q, t) satisfies the incentive constraints if, and only if, 
being truthful brings every type of Agent at least as much utility as 
any kind of lie: 

V(0, 0) E 0 2 , V(0, 0) > V(0, 0) (IC) 

To simplify notation, we can assume that q is one-dimensional. 
More important, we can take 0 to be a real interval14 [0, 0] and let 
the Agent's utility function take the following form: 

1% r, 0) = u{q, 0) - t 

This presumes a quasi-linearity that implies that the Agent's mar­

ginal utility for money is constant; it simplifies some technical 

points but primarily allows us to use surplus analysis. 

We can further assume that the mechanism (q, t) is differentiate 

enough. It is sometimes possible to justify this assumption rigorously 

by proving that the optimal mechanism indeed is at least piecewise 

differentiable. 

14. The problem becomes more complicated, and the solution takes a very different 
form when 0 is multidimensional; see section 3.2.6. 
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For (q, t) to be incentive compatible, it must be that the following 
first- and second-order necessary conditions hold:15 

V#E0, 
80 
d2V 
— ( 0 , 0)^0 
dd2 

The first-order condition boils down to 

dd dq ad 

As to the second-order condition, that is, 

q(e),£*«*>,ohm)2+fm,eAm (ic2) 
dd2 dq2 \M J dq dO2 

it can be simplified by differentiating (JCj), which gives 

fy d02 

whence by substituting into (IC2), 

d2u da 

The first- and second-order necessary incentive conditions thus can 
be written as 

L'Sr.r^0"8 are cleariy not suffident 'm s e n e r a i ' h ° w e v e r ' w e wj" s ° ° n see 
that they are sufficient in some circumstances. 
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V0G<=>, 

> = !>«)> (ico 
d2u t dq 

B^'V*0 ^ 
Most models used in the literature simplify the analysis by assum­

ing that the cross-derivative d2u/dqd0 has a constant sign. This is 
called the Spence-Mirrlees condition. I will assume that this deriva­
tive is positive: 

w'v"' 5 > " ) > 0 

This condition is also called the single-crossing condition; it indeed 
implies that the indifference curves of two different types can only 
cross once,16 as is shown in figure 2.4 (where, for the sake of con-
creteness, I take u to be increasing and concave in q). 

The Spence-Mirrlees condition has an economic content; it means 
that higher types (those Agents with a higher 9) are willing to pay 
more for a given increase in q than lower types. We may thus hope 
that we will be able to separate the different types of Agents by offer­
ing larger allocations q to higher types and making them pay for the 
privilege. This explains why the Spence-Mirrlees condition is also 
called the sorting condition, as it allows us to sort through the differ­
ent types of Agent. 

Let us now prove that if q belongs to a direct truthful mechanism 

{q, t) if, and only if, q is nondecreasing.17 To see this, consider 

do dq dO dO 

16. The simplest way to see this is to note that for a given q where they cross, the 
indifference curves of different types are ordered. Higher types have steeper indif­
ference curves because the slopes du/dcj increase with 6. 
17. If we had assumed the Spence-Mirrlees condition with d2u/dqdd < 0, then q 

would be nonincreasing. 



32 Chapter; 

u(q, 02) - t = K2 

u(q,0,)-t = Ki 

Figure 2.4 
The Spence-Mirrlees condition 

By writing (IC{) in 9, we get 

whence 

But the sign of the right-hand side is that of 

for some 0- that lies between 6 and B. Given the Spence-Mirrlees 

condmon this term has the same sign as 0 - § if , is nondecreasing. 

fnat IS, the function 0 - m * > i n c r e a s e s ^ j , fl« . , a n d t h e n 

decreases. Therefore 0 = 0 i s the global maximizer of V(0,8). 
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This is a remarkable result. We started with the doubly infinite (in 
number) global incentive constraints (IC) and the Spence-Mirrlees 
condition allowed us to transform the constraints into the much 
simpler local conditions, (ICX) and (LC2), without any loss of gener­
ality. Note how the problem separates nicely: (IC2) requires that q be 
nondecreasing and (ICJ gives us the associated t. This will be very 
useful in solving the model. If the Spence-Mirrlees condition did not 
hold, the study of the incentive problem would be global and there­
fore much more complex.18 

2.3.2 Solving the Model 

Let us go on analyzing this model with a continuous set of types. We 
will neglect technicalities in the following. In particular, we assume 
that all differential equations can safely be integrated.19 We also 
assume that the Principal's utility function is quasi-separable and is 

t - C{q) 

We further assume that 

meaning that a given allocation gives the higher types a higher utility 

level. Finally, we assume that the Spence-Mirrlees condition holds: 

18 In the few papers (e.g., Moore 1988) that adopt a "nonlocal" approach that does 
not rely on the Spence-Mirrlees condition, typically assumes that only the down­
ward incentive constraints are assumed to bind. Milgrom-Shannon (1994) estabhsh 
a connection between the Spence-Mirrlees condition and the theory of supermodu-

lar functions. , r 

19. Readers interested in a more full and rigorous analysis should turn to Gues-
nerie-Laffont (1984). 
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Let v(0) denote the utility the Agent of type 0 gets at the optimUrn of 

his program. As the optimal mechanism is truthful, we get 

v(d) = V{0,0) = u{q{B). *) ~ W 

and /C, implies that 

which we have assumed is positive. The utility v{0) represents the 

informational rent of the Agent; the equation above shows that this 

rent is an increasing function of his type. Higher types thus benefit 

more from their private information. That is, if type 9 can always 

pretend his type is 0 < 6, he will obtain a utility 

u(q(0), 0) ~ t{0) = v(0) + u(q(0), 0) - u(q(0), 0) 

which is larger than v{0) since u increases in 0. The ability of higher 
types to "hide behind" lower types is responsible for their informa­
tional rent.20 This rent is the price that the Principal has to pay for 
higher types to reveal their information. 

In most applications the individual rationality constraint is taken 
to be independent of the Agent's type.21 This amounts to assuming 
that the Agent's private information is only relevant in his relation­
ship with the Principal. Under this assumption, which is not innocu­
ous,22 we can normalize the Agent's reservation utility to 0 and write 
his individual rationality constraint as 

V0, v(0)=£O (IR) 

Given that v is increasing, the individual rationality constraint (IR) 
boils down to 

20. Note, however, that lower types have no incentive to hide behind higher types. 
£ We will make an important exception in section 3.1.3. 

• bee section 3.2.8 for a general analysis of the adverse selection problem in which 
iwervat.cn uhhties are allowed to depend on types in a nonrestricted way. 

http://iwervat.cn
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V® 2 0 

which must actually be an equality, since transfers are costly for the 
principal. 

These preliminary computations allow us to eliminate the trans­
fers t(0) from the problem; so we have 

(6 d U , < X \A 

whence 

t(0) = u(q(e),e)-v(6) 

= u(q(d), 0) ~ -£(q(x), r)dT 
. e ad 

Let us now return to the Principal's objective23 

(t(9) - C(q(9)))f(0)d0 

Substituting for t, it can be rewritten as 

u{q(6), 6) - J* | ^ ( r ) , x)dx - C(q(9)))f(9)d9 

Let us define the hazard rate 

1 - F(0) 

This definition is borrowed from the statistical literature on duration 

data:24 if F{9) is the probability of dying before age 9, then h{9) rep­

resents the instantaneous probability of dying at age 9 provided that 

one has survived until then. I 

23. Recall that/ is the probability distribution function and F the cumulative distri­
bution function of the Principal's prior on 0. 
24. Some economists improperly define the hazard rate as \/h(0). 
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Now applying Fubini's theorem25 or simply integrating by parts, 

the Principal's objective becomes 

/ = [° H{q{8),8)f{6)de 

where 

du. .. 1 
H{q,e) = u{q,e)-C{q)-je{q,0) — 

The function tf ( # ) , 6) is the virtual surplus. It consists of two terms. 

The first term, 

u(q(0),0)-C(cj(O)) 

is the first-best social surplus,26 namely the sum of the utilities of the 
Principal and the type 0 Agent. The second term, -v'(9)/h(9), there­
fore measures the impact of the incentive problem on the social 
surplus. This term originates in the necessity of keeping the infor­
mational rent v{6) increasing. That is, type 6's allocation is increased, 
then so is his informational rent, and to maintain incentive compat­
ibility, the Principal must also increase the rents of all types 6' > 6 
who are in proportion 1 - F(9). 

We still need to take into account the second-order incentive 
constraint 

%) ^ 0 

The simplest way to proceed is to neglect this constraint in a first 
attempt. The (presumed) solution then is obtained by maximizing 
the integrand of / in every point, whence 

25. Fubini's theorem states that if/ is integrable on [a,b] x [c,d], then 

26. It is appropriate to speak of surplus here because the transfers have a constant 
margmal utility equal to one for both Principal and Agent. 
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dq 

Writing this equation in full, we have 

d2u 
^^cwii-m^ du 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Note that the left-hand side of this equation has the dimension of a 
price; it is in fact just the inverse demand function of Agent 0. Since 
we have assumed that the cross-derivative is positive, this equation 
tells us that price is greater than marginal cost. The difference 
between them is the source of the informational rent, and this differ­
ence represents the deviation from the first-best. 

The Separating Optimum. 

If the function q* is nondecreasing, it is an optimum. We can say that 
types are separated and that revelation is then perfect, as shown in 

figure 2.5. 
Higher types 0 have a larger allocation q, and they pay more for it. 

Note that it is often possible to make assumptions that guarantee the 

separation result. If, for instance, u{q, 9) = 9q and C is convex, then 

it is easily varified that assuming the hazard rate h to be non-

decreasing is sufficient to imply that a* is increasing. The literature 

often resorts to such an assumption because it is satisfied by many 

classic probability distributions. 

Figure 2.5 
A separating optimum 
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It is hard to say much about the shape of the tariff t(q) m g e n e r a ] 

The reader is referred to exercise 2.4 to prove that t(q) is convex if 

u{q, 0) is linear. As Rogerson (1987) has shown, such a convex ty 

can be approximated by a menu of linear tariffs. 

The Bunching Optimum. 

If the function q* happens to be decreasing on a subinterval, it can­

not be the solution. It is then necessary to take into account the con­

straint that q should be nondecreasing, which means resorting to 

optimal control theory. Since I do not expect optimal control theory 

to be a prerequisite to understanding the discussions in this book I 

give a self-contained analysis below, using only elementary con­

cepts. Readers who prefer a more direct treatment should consult 

Laffont (1989,10) and Kamien-Schwartz (1981), for example, for the 

basics of optimal control theory. 

First, note that the solution will consist of subintervals in which q 

is increasing and subintervals in which it is constant. Take a subin­

terval [#,, 62] in which q is increasing and dH/dq is positive. We then 

add a positive infinitesimal function dq{6) to q{9) in that subinterval 

so that dq{6x) = dq{62) = 0 and q + dq stays increasing. This clearly 

increases H on [6}, 02] and so improves the objective of the Principal. 

A similar argument applies when dH/dq is negative on a subinter­

val where q is increasing. Thus, whenever q is increasing, the solu­

tion must satisfy dH/dq = 0, which is just to say that it must 

coincide with q*. 

The determination of the subintervals where q is constant is trick­

ier We take such a (maximal) subinterval [0V 62]. On this subinter­

val the solution must equal a constant q such that q*{ex) = q*(92) 

q. This defines two functions Oft) and 62{q). We just have to 
determine the value of ~q. We let 

F W - | -r-{q,d)dd 
Jem dq 7 
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and assume that F{q) > 0. Then we add to the solution an infinitesi­
mal positive constant on [9V 62] (and afterward, a smaller, decreasing 
amount on [02, 02 + a], where q*(62 + e) = ~q + dq). The Principal's 
objective will be unchanged on [02, 02 + e], since dH/dq = Q there by 
assumption. However, the objective will increase by F{q)dq on 

[6lf 0J- This' a n d a s i m i l a r r e a s o n i n g when Ffi) < 0, prove that we 
must have F{q) = 0. Because dH/dq = 0 in Qx and 02, we can easily 
write the derivative of F as 

F'(q) 
- \ 

e2(q) d^H 

ex(q) dq2 
(q, 0)d0 

Thus, if we make the reasonable assumption that the virtual surplus 

is concave in q}1 d2H/dq2 will be negative and therefore F will be 

decreasing. This implies that if there is a ~q such that F{q) = 0, then it 

is unique, and this completes our characterization of the solution. 

The solution in this more complicated case is depicted in fig­

ure 2.6. In sum, we speak of bunching or pooling of types on the 

subintervals where q is constant, and there is less than perfect reve­

lation. Obviously all the types 9 G \9V 62] pay the same transfer t 

for their constant allocation. 

e e, e2 e 

Figure 2.6 
An optimum with bunching 

27. We assume, for instance 
in0. 

, that u is concave in q, C is convex and d2u/dq2 increases 
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Exercises 

Exercise 2.1 

Assume that there are n types of consumers in the wine-sell^ 

example of section 2.2 and that * , < - . . < 0n. TTieir respective prior 

probabilities are * * , vvith J ^ - 1. Show that the only 

binding constraints are the downward adjacent incentive con­

straints 

for i = 2, n and the individual rationality constraint of the lowest 

type 

0,0, " /, 2= 0 

Exercise 2.2 

In the context of section 2.3.2, assume that u(q, 9) = 0q and C is 

convex. 

1. Show that a necessary and sufficient condition for q* to be 

increasing is that 9 - \/h(0) be increasing. 

2. A function g is log-concave iff log g is concave. Show that all con­

cave functions are log-concave. Show that if (1 - F) is log-concave, 

then q* is increasing. 

3. Show that a* is increasing if 9 is uniformly distributed. 

4. A bit more tricky: Show that if/ is log-concave, then so is (1 - f). 

5. Conclude that q* is increasing if 9 is normally distributed. 

Exercise 2.3 (difficult) 

My characterization of the bunching optimum in section 2.3.2 

implies a hidden assumption: bunching does not occur "at the bot-
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( o m (on some interval [0. 9,]) nor "at the top' (or, some taten ,1 

[<ly B |). Modify the proof so th.t it covers these two casea as well' 

Exercise 2.4 

Denote t(q) the optimal tariff in the continuous type model of sec­
tion 2.3 and 9(q) the inverse function to the optimal ,j((i). 

1. Prove that f'fa) = ^(q,0(q)) 
dq 

2. Assume that ufo, 0) is linear in 9; prove that t(q) is convex, 

Exercise 2.5 

Let us study the sufficient conditions for the optimal mechanism to 

be deterministic in the continuous-type model of section 2.3. Lei the 

Agent's utility function be u{q, 0) - t and the Principal's utility func­

tion be t - C(q). We assume that u is increasing in 0 and has a posi­

tive cross-derivative, and that C is increasing and convex in a. 

Denote by {Q{0), T(0)) a stochastic mechanism that is a lottery from 

which the (q, t) pair is drawn after the Agent announces his type. 

1. Rewrite the arguments of section 2.3 to show that the Q(0) in the 

optimal stochastic mechanism maximizes 

° EH{q{0), G)f{9)d0 
JO 

1 = 

under the second-order incentive constraint that 

oqdB dO 

2. Assume that EQ'{9) > 0 everywhere. Let cf = EQ. Use Jensen's 

inequality to show that if — is concave in q, then the deterministic 
y 30 
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mechanism scheduJe cf satisfies the incentive constraint a 

improves the objective I 
3. Assume that vfe 0) - <fi- Show that the optimal mechanic 

deterministic. 
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Adverse Selection: 
Examples and Extensions 

This chapter shows how the theory presented in chapter 2 i an In-
applied to various economic problems, it also presents some ol its 
main extensions. 

3.1 Examples of Applications 

3.1.1 Regulating a Firm 

In modern economies much of production is carried out by firms that 

are natural monopolies1 in their industries. This is arguably the case 

in the energy sector and the transportation sector, for instance Hi. 

government must, however, regulate these firms so that they do not 

behave as monopolies, be they public or private. The big difficulty is 

that regulators typically do not know all the characteristics of the 

firm. A lot of literature has therefore focused, since the seminal paper 

1. For the sake of this discussion, just define a natural monopoly as a firm with sub­
additive costs: 

V"'V(<?] q„), C f g J < £ C f o ) 

so that for purely technical reasons, it is socially efficient to set up the firm as a m< mi i] >-
oly. Natural monopolies are connected with the presence of strong increasing returns 
and are often said to arise in industries with large fixed costs due to the importance of 
infrastructures, such as utilities and transportation. 
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by Baron-Myerson (1982), on the case where the firm is h ^ 

informed of its costs than the regulator. 

Let us take a firm that produces a marketed good for which 

demand is given by an inverse demand function P(q). The cost0f 

producing q units of the good is C(q, 9). The parameter 0 is private 

information of the firm; its production, however, is observable, The 

firm is regulated by a public agency that gives it transfers t condi-

tional on its production level. The objective of the regulator is to max-

imize social surplus, a weighted sum of the firm's profit 

(t + P(q)q ~ C(q, 0)) and consumer surplus (S(q) - P(q)q - t), where 

S(q) - P P(c)dc 
Jo 

The weights given to consumer surplus and profit depend on the 

regulator's redistributive objectives and are summed up in a coeffi­

cient k: one dollar of profit is socially worth as much as k dollars of 

consumer surplus. Moreover public transfers involve direct costs 

(e.g., the cost of tax collection) and economic distortions (since trans­

fers are typically not lump sum) that jointly define the opportunity 

cost of public funds. It is therefore reasonable to assume that any 

transfer / occasions a social cost /.t. The social surplus in this case is 

W = k(t + P(q)q - C(q, 6)) + S(q) - P(q)q - t - XI 

The regulator must find a direct truthful mechanism (q(6), t(0)) that 

maximizes the expectation of W (taken over all possible cost para­

meters 0) while giving each type of firm a nonnegative profit. 

Our model differs from the standard model in that W depends on 

9 through the Agent's utility function. However, our techniques to 

solve it and the qualitative results we obtain are quite similar. So we 

will not attempt to solve the model here. The interested reader 

should consult the survey by Caillaud-Guesnerie-Rey-Tirole (1988) 

or the useful perspective given by Laffont (1994). 
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It should be noted here that Uffont-Tirole (1986) introduced , 
somewhat different model to analyze regulation. 1 hink ol an indl-
visible project, such as a railway network, run In a firm tor the gov­
ernment The project has gross value S. The firm's cost ( /;' 
depend on both an efficiency parameter /,' and an efforl le\ el e boil, 
of which are unobserved by the regulator, while the costs are 
observed. Effort has a cost y/(e) for the firm; y, is assumed to be 
increasing and convex. If the government pays f to the firm, then its 
proht is (t - C - \\i(c)) and the government gets (S - (1 +• X)t) 
where /. again measures the opportunity cost of public funds I hus 
(unweighted) social welfare is 

(S - (1 + X)t) + (t-C- y/(e)) = S-C- ¥{e) - kt 

The first-best is achieved in this model when the government can 
observe both C and fl, and therefore also e = ft - C. Then the gov­
ernment leaves zero rent to the firm: t = C + t//(e), and it orders the 
firm to put on effort r* given by y/'{e*) = 1. 

In the more realistic second-best, the government only has a prior 
(/, F) on /? E [ /?, ~fi\. Since it observes C and decides to transfer t to 
the firm, it looks for the optimal direct revealing mechanism 
(t{fi), C{P)). As in chapter 2, define v(fl) to be the rent the firm of type 
ft obtains by truthfully announcing its type; then with a revealing 
mechanism we have 

y{fi) = max (t(fi) - C{ji) - y/(j] - C0))) 

as the firm of type [i must incur effort ji - C(J1) in order to reach cost 

C(fi). By the envelope theorem, we obtain 

v'ifi) = -y'tf - C(fS)) 

A first consequence of this formula is that v is a decreasing function 
of /?. Since it must be nonnegative everywhere to fulfill the individ­
ual rationality constraint, the government will fix v{fi) = 0: as 
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always, the bad type has zero rent (remember that costs increase h, 

/?). Thus we have by integrating 

v(fi) = j V ( « - C{u))du 

We can rewrite social welfare as 

s __ c _ ¥{e) -xt = S-C- y/(e) - k{v + C + y/{e)) 
= S - Xv - (1 + A)(C + «/(«?)) 

and thus the government must choose C(.) in order to maximize 

f(s - AJ* ^'(« - C(u))du - (1 + A)(CW + ^(/? - C(fi))))fWfi 

This maximization problem can be solved by exactly the same tech­
niques as in section 2.3.2. After integration by parts and pointwise 
maximization, we obtain (with effort denoted <?(/?) = fi - C(J})) 

Thus effort is suboptimal: e(f}) S e*. 
As usual, this optimal contract can be implemented by a nonlinear 

schedule f = T(C), which can be interpreted here as a cost reim­
bursement schedule. Exercise 3.6 asks you to prove that under rea­
sonable conditions, this function T is convex. Thus we can use 
Rogerson's 1987 result (quoted in footnote 12 of chapter 2); as 
Laffont-Tirole (1986) showed, the optimal incentive scheme can be 
implemented by offering the firm a menu of linear schemes 
f = a + bC, where there are as many (appropriately chosen) (a, b) 
pairs as there are efficiency parameters. The slope b of a scheme can 
be interpreted as its incentive power. The most efficient firms 
{fi = P) choose a fixed-price contract (a linear scheme with zero b) 
and provide the first-best effort e*; less efficient firms choose a linear 
scheme with a higher b and make less effort. Thus the solution pre-
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scribes price-cap contracts only for the most efficient firms; the less 
efficient a firm is, the more its contract will look like a cost-plus con­
tract. The bible in this field, the book by Laffont-Tirole (1993), is 
essentially based on this model, and uses it to study many important 
questions that are beyond the scope of this text. 

3.1.2 Optimal Taxation 

Consider an economy populated by consumers-producers indexed 

by a parameter 6 distributed according to a probability distribu­

tion function/ on [9_, 9]; all individuals have the same utility func­

tion 

C - v(L) 

where C denotes consumption, L denotes labor, and v is increasing 

and convex. An individual of parameter 9 has a constant-returns-to-

scale production function given by 

Q = 9L 

The productivity of this individual, 9, equals his hourly wage in a 

competitive labor market. 

In an autarkic economy where every agent consumes the product 

of his own labor, his labor supply is given by 

v'{L) = 9 

and utility, consumption, and labor supply increase with 9, as 

should be expected. 

The government wants to implement an allocation of consump­

tion and labor (L(0), C{9)) that maximizes social welfare. Let us 

assume this is given by the "weighted utilitarian" criterion 

9{C(9) - v(L(6)j)g{d)dO 
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Here * is a probability density that typically differs from/ in so ^ 

a s the government has ^distributive objectives. Then the 
govern­

ment puts a higher weight on lower d's, so that G > F: the cumula. 
hve distribution function of g first-order stochastically dominates 
that of/. 

The government must, of course, take into account a scarcity con­

straint that implies that the economy cannot consume more than it 

produces: 

C(9)f(6)de^ \° Q{e)f{6)d9 

Real-life governments have very little information on individual 
productivities. The only thing they can do is use taxation systems 
that rely on observable variables. Labor inputs are typically unob­
served by the government; on the other hand, gross income Q = BL 
can reasonably be taken as observable. Thus the government must 
rely on a tax on income to achieve his goals. 

Our model fits almost exactly within the standard model studied 
in chapter 2: an income tax can be assimilated to a nonlinear tariff 
C = Q- T(Q), where T is the tax schedule. We just have to find a 
direct truthful mechanism (Q(0), C(0)) that maximizes social welfare 
under the scarcity constraint. The only new feature of this model is 
that there is no individual rationality constraint, since agents cannot 
refuse taxation (barring tax evasion). On the other hand, we now 
have a scarcity constraint whose integral form differentiates this 
model from the standard model and justifies that we solve it here. 

First note that the utility of individual 6, rewritten as a func­
tion of the variables of the "contract," is 

Since v is convex, the marginal rate of substitution of Q for C is 
increasing in B, so the Spence-Mirrlees condition holds. The results 
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w e obtained in section 2.3.1 therefore apply directly (replacing q 
with Q and t with C); they show that the mechanism (Q(0), C(0)) is 
incentive compatible if, and only if, 

[cw.w(a«)2s (,c„ 
Q'(0) s 0 (IC2) 

The objective of the government's tax policy is to maximize 

under the scarcity constraint and the first- and second-order incen­
tive constraints. As in section 2.3.2 we can proceed by eliminating 
one of the two variables, here C(9). To do this, we integrate by parts 
the first-order incentive constraint and get 

m = K + v{Qm) + \\.(m)^ dt • <2 

Now we can go back to the notation L{9) = Q(6)/0. The scarcity 
constraint, which must obviously be an equality, gives us 

ei{d)f{6)de = K + £ (v(L(9)) + ^y(L{t))^dt\f{d)d9 0 mm\fm\df} = K + I I v(LW)) + I v'iUt])—ai 

Using Fubini's theorem (see footnote 25 of chapter 2), we get 

K = 
a 

(9L(9) - v(L(9))f(d) - ^v'(L(6))(l - F(0)) W 

This completes the elimination of C(6). There just remains to maxi­
mize the government's objective, which can be simplified because 

C(9) - v{L(9)) = K + ^v'^fj dt 
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The simplest approach consists in ignoring, as in section 2.3.2, ft, 
second-order constraint Qf(9) * 0 at first. Again, using Fubini's the-
orem we write the government's objective as 

Now substituting in the expression of K, we obtain 

\°{{ew) - v(L(0)))f(0) - (G<0) - m)mv]m))de 

Note that this integral shows the virtual surplus 

G(9)-F(9)L(9)v'(L(9)) 

ei{d) - v(W) - f{e) } 

So maximizing the virtual surplus at every point gives 

6 ~ V'(L<M = G{d\~*{e\v"{W))L{e) + v'(L(9))) 
UJ(U) 

This optimality condition may seem complicated, but it can be 
fairly easily interpreted. First, remember that in autarky, labor sup­
ply is given by v'(L) = 6. Its elasticity is readily computed; it is 

Lv"{L) 

Second, if the income tax paid is linked to gross income by a differ-
entiable tax schedule T(Q), then to find the labor supply, we 
maximize 0L - T(dL) - V(0L) so that v'(L) = 9(1 - T(Q)). The opti­
mality condition is consequently written as 

^-o-nfi+iW*) 
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but it is best rewritten as the product of three terms: 

Note that the left-hand side of this equation is clearly increasing in 
the marginal tax rate T". This tells us that the marginal tax rate 
depends on the elasticity of labor supply, on the shape of the distri­
bution of productivities, and on the government's redistributive 
objectives. 

Of course, the Q(0) = 0L(0) characterized here may decrease over 

some interval. Where it does, it violates the second-order incentive 

condition, and the result is a bunching phenomenon: at some inter­

val consumers will get the same allocation (Q, C). Outside this inter­

val the solution coincides with that given by the optimality 

condition. As a technical aside, it is easily seen that the solution coin­

cides with the autarkic solution at both ends (in 0 and 6); this is typ­

ical of continuous-type models with an integral constraint on a finite 

range. 

Optimal taxation is a very large field, and I cannot do it justice 

here. The reader can turn to part II of my textbook, Salanie (2003), for 

a more extensive survey of the theory. 

3.1.3 The Insurer as a Monopolist 

We will study in this subsection the problem facing an insurer who 

is a monopolist and serves a population that contains several risk 

classes.2 We can assume that all individuals in this population are 

identical, as far as observable characteristics are concerned. Let us 

take, for instance, a policy (a contract) that insures against the risk of 

2. The analysis here is adapted from Stiglitz (1977). It differs from the more fai 
studies of the insurance market whose firms are assumed to act competitively. 
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disability a population of forty-year-old males living rn Boston who 

t office work and who have not had heart trouble. The problem is 

the obvious element of heterogeneity in the target population: each 

individual knows the state of his health better than the insurer 

does3 If the insurer only designs a policy for the average risk in the 

population, he may attract mostly only high-risk individuals and 

Incur major losses. This is where the term adverse selection comes 

from. To "hedge against" this possibility, the insurer must therefore 

consider offering as many different policies as there are risk classes. 

More formally, let W denote the initial wealth of each insured 

Agent. The effect of an accident is to reduce this wealth by an 

amount d that represents the pretium doloris, the discounted loss of 

wages over the rest of the working life, and so on. An insurance pol­

icy, or contract, consists of a premium q paid by the insurees and a 

reimbursement R that they receive upon incurring a disability due 

to an accident. The final wealth therefore is 

WA = W - d- q + R 

in the event of a disabling accident and 

WN = W-q 

otherwise. The expected utility of an Agent is 

U = pu(WA) + (1 - p)u{WN) 

if he belongs to the risk class whose probability of having an acci­

dent is p; u is an increasing concave function. 

Now suppose that two risk classes coexist in the population: the 

high risks, whose probability of having an accident is pH, and the 

low risks, whose probability is pL < pH. First note that this model 

3. Alternatively, there may exist variables that are observable but that law forbids 
insurers to use in computing the terms of the contract. This is often for ethical reasons 
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differs from the standard model in that the reservation utility of an 
Agent of class i is 

Piu(W -d) + (l~ fi)u(W) 

This utility depends on the Agent's risk class, which is unknown to 
the insurer. Also the Agent's utility is not quasi-separable in pre­
mium and reimbursement. 

A Spence-Mirrlees condition nevertheless holds. The marginal 

rate of substitution between the premium and the reimbursement is 

dU/dq pu'{WA) + (1 - p)u'(WN) 

~dU/dR~ K W 

which is a decreasing function of p. It should therefore be possible to 
separate the high risks from the low risks by offering them a better 
coverage in return for a higher premium. 

The most important difference from the model of chapter 2 is that 

this is a common values model, as opposed to the private values 

model. The profit of the Principal (the insurer) depends on the risk 

class of the insuree as well as on the contract: 

n = q - pR 

We will assume that the insurance company is risk-neutral. This 

assumption is reasonable because shareholders of insurance compa­

nies generally have a diversified portfolio. The first-best consists in 

insuring completely every class of Agents so that their final wealths 

do not depend on the occurrence of an accident. 

The analytical treatment of our model is more complicated than 

that of the standard model because both reservation utilities and 

profits are type-dependent. But we can just as effectively study the 

risks graphically by tracing indifference curves on the plane 

(WN> WA), where the 45-degree line corresponds to complete insur­

ance (since wealth is the same whether or not an accident has hap­

pened), and point O, with coordinates (W, W - d), represents the no 



54 
Chapter 3 

insurance situation. Our objective is to check that the indifference 

curves of the insurees are decreasing and convex. The slope of the 

indifference curve of risk class p is 

Because the slope of the indifference curve of low risks is steeper 

than that of high risks, the Spence-Mirrlees condition is confirmed. 

Correspondingly isoprofit curves are straight lines; the isoprofit line 

for the given risk class p has the slope 

V 

and it is tangent to the indifference curve of that class on the com­

plete insurance line. As figure 3.1 shows, utilities increase in when 

going northeast and profits increase when going southwest. 

The second-best optimum is obtained by finding a pair of con­

tracts CL = (qL, RL) and CH = (qH, RH) that maximize the expected 

Figure 3.1 
The insurance model 
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profit of the Principal under the usual incentive constraints and that 
give each class at least as much utility as with no insurance. Again, 
solving this program analytically is arduous, and most properties of 
the solution can be obtained graphically. 

At least one of the two risk classes must be indifferent between the 

contract that is designed for it and no insurance; otherwise, the 

insurer could profitably increase the premia and reduce the reim­

bursements. We want to observe graphically that CL can give at least 

as much utility to the low risks as no insurance so that it can be pre­

ferred to no insurance by the high risks; the low risks must then be 

indifferent between CL and no insurance. 

Again, a little playing with graphic analysis should convince us 

that CH gives maximal profits to the insurer when it is located in a 

point where the indifference curve of the high risks is tangent to the 

corresponding isoprofit line, and we know that this can only happen 

on the complete insurance line. We get figure 3.2 where the high 

risks are completely insured, and again, CL is designed for low risks 

and CH for high risks. 

Unlike the low risks, the high risks are completely insured and 

receive an informational rent,4 so they are indifferent between CL 

and CH. As in the standard model the graphic analysis leaves one 

parameter to be determined: the location of CH on the diagonal, or 

equivalently the location of CL on the indifference curve between O 

and the complete insurance line. It is easy to see that in order to max­

imize profits, CL must be closer to O when the proportion of high 

risks in the population increases. Indeed, beyond a certain propor­

tion of high risks, as Stiglitz (1977) showed, CL will coincide with 0 

4. Note that in the standard model, one expects the "good" Agent to receive an 
informational rent. Here it seems natural to define the low risks as the good 
agents, but it is the high risks who get the rent, and so on. This apparent paradox is 
due to the peculiar features of the insurance problem: here the reservation utilities 
decrease with the type. 
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Figure 3.2 
The optimal insurance contract 

so that the low risks get no insurance: any contract that attracts low 
risks will also attract the high risks. This is actually the extreme form 
of adverse selection: Only the high risks can find insurance! Note 
further that while it is clear from figure 3.2 that the insurer always 
takes positive profits on the low risks, this is not necessarily the case 
with the high risks. When there are many low risks in the popula­
tion, they will get almost complete insurance, and the insurer will 
make losses on the high risks.5 In that case the low risks in effect 
cross-subsidize the high risks. Although CH causes losses in that 
configuration, there is nothing unstable about it. The insurer could 
withdraw CH, but the high risks could all then buy the contract CL 

and create losses on them, drastically depleting the insurer's profits. 

the case illustrated in figure 3.2, since the nH isoprofit line lies below 0. 



Adverse Selection: Examples and Extensions 

32 Extensions 

W e briefly study in this section a few main extensions of the Principal-
Agent theory introduced in chapter 2. We take a look at competition 
among Principals or among Agents, risk-averse Agents, taking into 
account multidimensional characteristics, the presence of asymmetric 
information on both sides, and type-dependent participation utilities. 
This section does not give a representative summary of the literature. 
It reflects my personal biases. Still it should give the reader an idea of 
recent advances. 

3.2.1 Perfect Competition in Contracts 

Let us go back to the discrete model of section 2.2. How much profit 

n- does the seller make on each type i of consumer? First note that he 

makes a positive profit on type 1, since 

J U 

and C'{q) < C'(ft) < 0X on [0, ft]. Next consider the difference 

n2 - nv and write it as 

n2 ~ *i = (#2 - 0i)«fe + P 2 (*2 " C'{q))dtl 
•Mi 

Again, C'(q) < 02 on [0, q2], so both terms are positive. The seller can 

make even more profit on type 2 Agents.6 Type 2 Agents are therefore 

more attractive to potential entrants in the wine market. If the Prin­

cipal's monopoly power were to disappear, an entrant could pro­

pose the contract located on B in figure 3.3, capture the sophisticated 

6. Again, these results are proved here analytically, but they can be obtained easily 

by just looking at the figures. 
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Figure 3.3 
Competitive entry 

consumers while leaving the frugal consumers to the Principal, and 

make positive profits. 

The Principal who stands to lose a good share of his profits in the 

event is unlikely to be passive. He can react, for instance, by offering 

to the sophisticated consumers contract C, which only leaves to the 

entrant the frugal consumers, but this is not the end of the story. 

What can be learned about the competitive equilibria?7 

The Rothschild-Stiglitz Equilibrium 

To define a competitive equilibrium, we reach some notion of what 

makes a competitive configuration stable. The equilibrium concept 

proposed by Rothschild-Stiglitz (1976) in the context of insurance 

markets applies generally to all adverse selection models. We will 

call a "profitable entrant" a contract that makes positive profits if the 

other existing contracts are left unmodified. A Rothschild-Stiglitz 

equilibrium is a set of contracts where none takes losses and no 

additional contract can make profits if the original contracts are left 

7. Our analysis here is only of free entry equilibria; Champsaur-Rochet (1989) study 
the duopoly case. Another important hidden assumption of the presentation here 
that an Agent cannot split his demand between competing Principals. 



Adverse Selection: Examples and Extensions 5 9 

unchanged. In this sense it is a Nash equilibrium in a game among 
Principals where the strategies of the players are contracts. 

The irrelevance Result 

It may be surprising, but adverse selection does not change the set of 

competitive equilibria in the model we studied in chapter 2. If we 

accept perfect competition as a working hypothesis, adverse selec­

tion is in fact irrelevant. To see this, first note that when the Agent's 

characteristic 0 is known to the Principals, competition will push 

their profits down to zero. The only competitive equilibrium with 

perfect information is therefore one in which the Principals offer a 

family of contracts {q*{0), t*{6)) that solves max(l? t){9q - t) subject to 

f _ C(q) > 0. The solution is that given by the first-best quantity q*{9) 

m&t*{Q) = C {q * {6)) where the whole surplus S*{6) goes to the Agent. 

Now suppose that the Principals do not know the Agent's type. I 

claim that the family of contracts {q*(9), t*{9)) is the unique Roth-

schild-Stiglitz equilibrium. Such an equilibrium is easy to prove since 

{q*{9), t*{0)) extracts all the surplus for Agent 9, this is the contract he 

will choose from the family, which makes it incentive-compatible. 

Any other contract will give him lower utility, and there is no way an 

entrant can make a profit by offering a different contract. 

It is only slightly harder to prove that no other Rothschild-Stiglitz 

equilibrium exists. Suppose, on the contrary, that one exists; 

then some Agent's type 9 must be getting less utility than S*{9). 

Take a small positive e, and let an entrant propose the contract 

( # , e), t{9, e)) that solves max{qit){9q - t) subject to t - C{q) 2= e. 

This contract makes e > 0 profit on every type that chooses it, and 

Agent 0 chooses it for small enough e. By continuity, the entrant's 

contract gets the Agent close to the maximal level of utility S*(0). 

Thus this is a profitable entrant, which destabilizes the candidate 

equilibrium. 
Tnis general result was proved by Fagart (1996). How can it be 

reconciled with the famous results of Rothschild and Stightz? They 
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started from the insurance model discussed in section 3.1.3 and 
introduced competition. Their observations were as follows: 

• There exists no pooling equilibrium in which the two types buy the 

same contract. 

• There can exist only one separating equilibrium, which gives com* 

plete insurance to the high risks. 

• This separating configuration may not be an equilibrium if the 

high-risk insurance buyers are relatively few in number. 

Their most striking conclusion was that there can exist no competi­
tive equilibrium in insurance markets. However, and as I have 
already noted in section 3.1.3, the insurance model differs from the 
standard adverse selection model in several ways. The crucial one is 
that it has common values: the type of the insuree (his risk) enters 
the insurers' profit functions. Then the competitive equilibrium 
with perfect information, which gives full insurance to every Agent 
at a fair actuarial price, is not incentive compatible and cannot be a 
Rothschild-Stiglitz equilibrium. 

The Rothschild-Stiglitz equilibrium concept has been widely crit­
icized, mainly because it assumes that incumbent firms do not react 
when an entrant arrives to take a bite out of their profits. Other equi­
librium concepts have been proposed to restore equilibrium in com­
petitive insurance markets. They differ according to how they 
assume the incumbents react to the entry (by withdrawing contracts 
that start showing losses, by designing new contracts, etc.) and how 
they describe the entrant's behavior. In our model of chapter 2 pri­
vate values, a contract makes profits or losses independently of the 
type of the Agent who buys it. Therefore the irrelevance result holds, 
no matter how we attempt to alter (within reason) the equilibrium 
effect.8 

s different in insurance markets, since there a contract may make 
bought by low risks and losses when it is bought by high risks. 
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: Multiple Principals 

There are at least two other ways to model competition among (a 
small number of) Principals. The first one is analyzed in the paper 
by Champsaur-Rochet (1989), who consider the case of a duopoly. 
Champsaur and Rochet start from the vertical differentiation model 
with continuous types studied by Mussa-Rosen (1978). In that 
model a monopoly chooses to offer a range of qualities to different 
buyer types. Champsaur and Rochet show that when two firms 
compete in prices and qualities, it is optimal for them to offer two 
distinct ranges of qualities so that one firm can specialize in the 
higher range and the other in the lower range. 

The second possible model of competition among Principals is 

that of an Agent who faces two or more Principals, each offering a 

direct truthful mechanism. The Agent must choose his announce­

ments so as to maximize his utility while the Principals play a Nash 

equilibrium: each Principal chooses the best contract given the 

choices offered by the other Principals. This model is called a com­

mon agency model, or a multiprincipals model. Its general study was 

started by Martimort (1992) and Stole (1990), and it has proved use­

ful in many areas of economics, mainly in studies of political econ­

omy and imperfect competition. 

As can be expected, the outcomes of this model differ greatly 

depending on whether the activities regulated by the Principals are 

complements or substitutes in the Agent's utility function. Take the 

simple case where the Agent is a firm and two Principals, respec­

tively, control its production and its pollution level. In this case the 

two activities are complements and noncooperative behavior of the 

Principals creates distortions and reduces the Agent's rent. A polar 

case would be where two activities are substitutes, such as when 

the Agent is a multinational and the Principals are two govern­

ments that tax its production in two different countries. Then the 
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noncooperative behavior of the Principals both reduces distortions 
and increases the Agent's rent. 

While these results are intuitive, the formal analysis of the multi-

principals model is complex. Consider an Agent who trades quanti­

ties ft and q2 with two Principals, with accompanying transfers f, and 

f The Agent has utility function «(fc, fe/ *) " fi " h and Principal 

/= 1,2 has utility t, - Cfa). We assume that the cross-derivatives 

if and 42 are positive, and the Agent's type is continuously dis­

tributed over [0, 0). 

In the case where information is symmetric (6> is known to both 

Principals before the contract is signed), it is easy to see that the opti­

mal contract implements the same quantities whether or not the 

Principals collude. In the more interesting case where the Principals 

do not observe 6 but share a common prior about its value, collusion 

can be analyzed much as the general model in section 2.3. The reve­

lation principle applies to the contract (ft(0), q2(0), t(0))f where l is 

the transfer from the Agent to the colluding Principals. Exercise 3.5 

shows that the optimal quantity schedules are given by the two equa­

tions for i = 1, 2: 

W^m^eiB) = C'feW) + 1-j^1u'oqj(ql(0)fil2(9),9) (CP) 

As usual, both quantities are distorted downward. 

The noncooperative case when the two Principals play a Nash 

equilibrium in contracts is more complex, and it is probably the 

most complicated formal analysis you will find in this book. A first 

difficulty is that the revelation principle does not apply: since, in 

general, the cross-derivative li' is nonzero, the response by the 

Agent to a contract from Principal 1 depends on the contract offered 

by Principal 2. Thus the Principals can do better than employ direct 

revealing mechanisms. To see this, imagine that a general game in 

mechanisms played by the two Principals implements an equi-



Adverse Selection: Examples and Extensions 
63 

librium (<h(0), «fe(0)' W * W))- For any 0 then, it must be that 
both KtafcO'ftC*)'0) - W«) a n d «(<h(0),«fe(s),0) - t2(s) are max­
imal in s = 0. But when u ' ^ is nonzero, it does not follow that 
n(ft(s)/ ft(s')' ^ ~ ^ " f2( s ' ) i s maximal in s = s' = 0. 

Interestingly, Martimort-Stole (2002) show that it is still possible to 
restrict the game to competition in nonlinear tariffs in which Princi­
pals 1 -1 /2 simultaneously offer a schedule Tfa) and the Agent 
picks two quantities (ft, q2) that maximize his utility. Let us therefore 
take T2 as given and look at the interaction between the Agent and 
Principal 1. For simplicity, we will neglect the many technical diffi­
culties that crop up in the mathematics and concentrate on the main 
argument. Note first that since Principal 2 offered T2, the Agent's util­
ity function in his interaction with Principal 1 is 

U\qv 0; T2) = max (w(ft, ft, d) - T2(q2)) (P2) 

Let Q2(ft, 0', T2) denote the value of q2 at the optimum of this pro­
gram. One difficulty that is more than technical is that the cross-deriv­
ative of li1 in (ft, 0) may not have a constant sign, jeopardizing any 
hope of using a Spence-Mirrlees condition to simplify the analysis of 
the incentive problem between Principal 1 and the Agent. By the 
envelope theorem applied to (P2), we have 

^vq2l0) = dfe{qvQ2{qve-fT2),d) 

from which we can compute 

BlL-tf +U»Q ̂ 22 

However, the implicit function theorem shows that the derivative 

of Q2 with respect to ft has the sign of u"qi(j2, which we left unre­

stricted. When u" is negative (the case of substitutes), strange 

things can happen. We omit this first major hurdle. 
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Note that given T2, the incentive problem between Principal 1 ar,d 

the Agent with utility function U1 can be solved by the standard tech­

niques of section 2.3. It implements a quantity schedule q, that solves 

| V > * ft « - c'teW) + ̂ £ S < ^ * r2) (D) 

This is not elegant, as it relies on the derivative of the "reduced 

form" utility function U1. Already we know from the envelope the­

orem applied to (P2) that 

d-^{qvd-lT2) = u'qi{ql,Q2{ql,d-,T2)ie) 

We already computed the cross-derivative of Ul in (qv 0). Further, 

from the implicit function theorem applied to (P2), we have 

dQ2 = "U 

We just have to eliminate T"2. This is done by denoting (ft(0), <j2(0)) 
the quantity schedules in equilibrium and rewriting the first-order 
condition for (P2) as u'^q^O), q2(0), 9) = T^q2{6)). Differentiating 
this identity in 6, we get 

T" -u" = "ftfl + """^ 2 mi 

We can substitute in (D) and eventually obtain a differential equa­
tion for the two unknown functions (^(0), q2(0)): 

»'Me)>m,G) = ewe)) + izM (f a + M« ^ 2 ) 
f(0) I ^ ^ , / / + ,// a' 
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Solving the incentive problem between the Agent and Principal 2 
will give us another differential equation. 

A study of this system can reveal some interesting facts. Note for 
instance, that 1 - F{0) is zero in 0, so the differential system has a'sin-
gularity there. The form of the differential equations themselves sug­
gests some properties of their solutions. For instance, the only 
difference from the cooperative case of colluding Principals is where 
f # 0; compare equation {CP). Now take the case where ^ and q, 
are complements in the Agent's utility function {u"qm > 0); the added 
positive term serves to increase the distortion downward of qlf which 
occurs in the relationship between an Agent and a single Principal. It 
can be shown rigorously that this conclusion holds in general. 

3.2.3 The Theory of Auctions 

The previous subsection covered competition among Principals. 

The theory of auctions belongs to the dual topic of competition 

among Agents. I will not try to cover here such a vast field;91 will 

only present one of the simplest models of auctions. 

Auctions are used by sellers who want to sell one or several 

objects to agents whose valuations for the good are hidden from 

them; thus they can be seen as a device to extract information from 

the bidders. Auctions are traditionally classified into two groups: 

independent private values auctions and common value auctions. The 

sale of a durable good such as a painting or a house is the typical 

example of an independent private values auction: the value of the 

good for each potential buyer is known only to himself, and these 

values are statistically independent. The situation is quite different in 

a common values auction: the value of the good is the same for each 

9. Among the several good recent books on auctions, see Klemperer (2004), 

(2002), and Milgrom (2004). 
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potential buyer, but neither the buyer nor the seller fully knows this 

value; each buyer only observes a signal of his reservation value. The 

sale of the rights to drill in an oil tract is the most often quoted exam­

ple. Note that these two types of auctions can actually be studied 

together inside a more general setup (Milgrom-Weber 1982). 

Auctions are one of the oldest and most widely used economic 

mechanisms. They are still intensively used for traditional purposes 

such as the selling of timber, the pricing of Treasury bonds in the 

United States, and the selection of firms to operate public utilities. 

More recent, multibillion dollar examples are the spectrum auction 

organized by the Federal Communications Commission in 1994 in 

the United States and the 2000 UMTS auctions in various European 

countries. 
The most usual mechanisms are10 

• the ascending auction (English auction), where bidders raise the 

price until only one of them remains; 

• the descending auction (Dutch auction), where an auctioneer 

quotes decreasing prices until a bidder claims the good; 

• sealed bid type of auctions where bidders submit sealed bids and 
the winner is the bidder who quoted the highest bid. In the first-price 
sealed bid auction the winner pays the sum he quoted, and in the second-
price sealed bid auction the winner pays the value of the second-highest 
bid. 

We will study here only the first-price sealed bid in an indepen­

dent private values auction. We have for this auction n potential 

buyers whose valuation of the good is drawn from a continuous dis­

tribution of probability distribution function/ and of cumulative 

10. There are many other, more or less exotic auctions; for example, see Riley-
SamueIson(1981). h 
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distribution function F on 10, 0 ]. We denote by (^ 9n) the valua­

tions of the n buyers and by (0(1), ..., 0(f|)) m e corresponding order 

statistics: 0(1) is the highest of all 0,., 0(2) the second-highest, and so on. 

We are interested in symmetric equilibria with increasing bids. It 

can be shown that there exists no other equilibrium (in this very sim­

ple setting) if the bids are bounded below, for example, by 0. So we 

assume that the buyers 2, . . . , n submit bids (b2,..., bn) that are linked 

to their respective valuations through an increasing function B 

where b{ = B(0,). Buyer 1 will win the auctioned good if and only if 

he submits a higher bid, namely if and only if 

V/ = 2 n, b^BVi) 

This happens with probability 

Pr(Vz = 2,. . . , n,6l ^ B" 1 ^) ) = FfB"1^))"-1 

Buyer 1 gets a surplus (6-^ - b{). Suppose that buyers are risk-neu­

tral; then the expected utility of buyer 1 is 

iel - ^ ( B - 1 ^ ) ) " - 1 

Buyer 1 must maximize this expression in bv We let TT1(01) denote the 

value of the optimum: 

*,(*!) = max ((d, - bl)F(B-1{bl))
n~1) 

By the envelope theorem, we get 

dn-, 

dOx 
(9,) = FiB-HbJ)"-1 

To find the symmetric Nash equilibria, in which all bidders adopt 

the same increasing strategy B, we must have bx = B($}), whence 

dn . 
^ ^ ^ ^ • n - 1 (D) 



hS 
Chapter 3 

The expected utility of a buyer with the lowest possible valUaHon 

nuistbezero:11*^) - 0. Therefore, after integrating the differentia] 
equation (D), we obtain 

Note that 71,(0J is the informational rent of the buyer of valUa. 
tion 0V Thus we have again a property we obtained in the previous 
chapter: the informational rent of the buyer with the lowest possible 
valuation 0 is zero, and that of the other buyers is positive and 
increases with their type. 

Since 

*i(0i) = 0i " W W - 1 

we finally get the equilibrium strategy 

B(0l) = 0l~ 
fn

lF(0)"-ld0 

F(*i) 
n-1 

which indeed is an increasing function, as we assumed earlier. 
The equilibrium therefore is separating. In equilibrium, bidders 

submit a bid that is lower than their valuation for the good: They 
shade their bid. In order to win, it is sufficient to submit a bid that is 
just higher than the second-highest bid; therefore the best strategy is 
to guess that bid and to just slightly better it. We can confirm this 
intuition by integrating by parts 

V{0)"~ld0 = 0lF{0l)"-i - (n - l)6F(0y,-2f(0)d9 

We can write the successful bid function B as 

ion B is increasing, this buyer indeed wins with zero probability. 
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ft (n - l)0F(0)"~2f(O)dO 

I t i s eaS y to check that (n - 1)F ( V V W / F ^ ^ is the probability 
distribution function of the conditional distribution of 0(2) given that 
0 s ^ . W e then have 

B(O,) = E(0{2)\0{l) = Ol) 

This shows that every potential buyer assumes he will win and com­
putes his bid by estimating the second-highest valuation. 

Now, to get the seller's point of view, we integrate once more to 
obtain the expectation of the winning bid: 

EB{0{1)) = E0{2) 

This equality actually has two consequences. First, because 0(2) is an 

increasing function of the number of potential buyers n, the valua­

tions will spread as the bidders become more numerous. The com­

petition between buyers that comprises the auction mechanism 

allows the seller to extract an expected revenue EB(0(1)) that 

increases with the number of bidders. If that number goes to infinity, 

9,2) converges to the highest possible valuation 0, and in the limit the 

appropriates the entire surplus. 

Second, the equation that gives the seller's expected revenue hap­

pens to hold for all four independent private values auction mecha­

nisms listed earlier, the seller's expected revenue does not depend 

on the auction mechanism he uses where (as we assumed) agents 

are risk-neutral. The proof of this property, which is often called the 

revenue equivalence theorem, is due to Vickrey (1961). The equivalence 

of revenue implies that the reason a seller decides on a particular 

auction must be considered in a more general model than that pre­

sented here. The introduction of risk-averse buyers or collusive 

strategies, for instance, throws off the revenue equivalence theorem. 



70 Chapter 3 

Even in the symmetric, independent private values setting of 0Ur 

example, the choice of an optimal auction can generate some argu­
ment. There are two views on studying the optimality of an auction. 
First, there is the socially efficient auction, one that maximizes social 
surplus. Since the latter is just (0, - 0O) when the seller's valuation 
for the good is 0O and he sells to buyer i, a socially efficient auction is 
just one that sells the good to the buyer with the highest valuation.12 

Thus the first-price sealed-bid auction is socially efficient. Second, 
there is the interest of the seller himself in designing an auction that 
will give him the highest expected utility. The literature has focused 
on this more difficult topic, and by "optimal," it is meant "optimal 
for the seller," as we do so here. The optimal auction turns out to be 
socially efficient when buyers are symmetric, meaning that their val­
uations are drawn from the same probability distribution. However, 
this is not true when buyers are asymmetric13 

Finding the optimal auction is equivalent to finding the optimal 
direct truthful mechanism (*,(#), r,(#)),=i,...,„, where .r, is the proba­
bility that buyer i gets the good, t{ is his expected payment, and 6 is 
the H-uple of valuations. So we will first focus, as did Riley-Samuel-
son (1981), on the more restricted question of the optimal reserve 
price the seller must fix in the first-price sealed-bid auction. 

Assume therefore that before the auction starts, the seller 
announces that he will not award the good if all bids are lower than 
some reserve price br. From the characterization of the equilibrium 
bids above, it is easy to see that the successful bid is now written as 

Bid,) = Bx -

m) / i - i 

I Or leaves it to the seller if 0O > 9{l). 

13. The optimal auction takes into account the virtual valuations of buvers, which 
depend on the hazard rates of the probability distributions. With asymmetric buyers 
it is easy to see that comparing virtual valuations is not equivalent to comparing 
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for 0i 2 br (underbids occur if d, < br). Since B(b) = h t h i s 

implies that the good will be sold only if the highest valuation 
exceeds br Now let 90 be the seller's valuation for the good. Exer­
cise 3.4 asks you to show that the optimal reserve price is given by 

1 - F(br) _ 

*-7w7 ° 
The left-hand side of this equation is called the virtual valuation due 
to the buyer's valuation br, just as we defined a virtual surplus in 
chapter 2. If the hazard rate of F is nondecreasing, then the virtual 
valuation rises with the buyer's valuation, and there is a unique 
solution bT. Note that if the optimal br is larger than the seller's valu­
ation, there may be unrealized gains from trade: cases where the 
highest valuation of the buyers is larger than 90 and yet smaller than 
b, so the good remains unsold. 

Now let us recall our original question. What is an optimal auc­
tion if an auction can take different forms? Myerson (1981) shows 
that the answer is remarkably simple: An auction with an optimally 
set reserve price is optimal. There is no gain for the seller in choos­
ing complicated auction mechanisms. Myerson's paper is techni­
cally demanding, however, and Bulow-Roberts (1989) gives a much 
simpler introduction to optimal auctions. 

Before we leave the domain of auctions, we should include a sur­
prising result by Cremer-McLean (1988). In our discussion above the 
seller is allowed to appropriate most of the surplus when the num­
ber of bidders is large. Suppose that we change one small detail in 
the model of independent private values: we now assume that the 
valuations of the bidders are correlated. Then, as Cremer-McLean 
show, the seller can generically extract all the surplus, even when 
only two bidders are involved, and no matter how small the correla­
tion is of the private values of the bidders. 

This development in auction theory is a consequence of a general 
result of Riordan-Sappington (1985). It takes us back to our standard 
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adverse selection model with one Principal and one Agent. Recall 

that the Agent has utility function Oq - t and is one of two possible 

types, 0, < 02. Now suppose that the Principal can observe a public 

signal s correlated with 0 after production of q has occurred but 

before * is paid. Then transfers (but not production) can be made 

conditional in both 0 and s. The signal can take two values s, and s2. 

Let P be the conditional probability Pr(s21 02), and p be Pr(s21 92)- We 

assume without loss of generality that P > p. We let the Principal 

offer the following contract, where q* is the first-best quantity for 0. 

and I is a positive number: 

#i) = fi 
* (*i, h) = e,q\ - pi 
t(01,s2) = O1cj\ + (l-p)* 

# 2 ) = ^2 
^ 2 / S l ) = ^ 2 + p;. 

t{92,s2) = 92cf2-{\-P)X 
V 

By construction, this contract gives a truthful Agent exactly his 

reservation utility of zero. Now suppose that Agent 92 declares he is 

type 9V Then he should get expected utility d2q{6\) ~ Ptiflv sii ~~ 

(1 - P)t{9v sx), which equals (02 - dx)c{\ - (P - p)X. Thus, for I 

large enough, this deviation from the truth is not profitable. A simi­

lar argument applies to deviations by Agent 9V So it is easy to see 

that the Principal extracts all the surplus. 

The intuition behind this contract is simple: a deviator is likely to 

emit a "wrong" signal. So punishing Agents whose signals do not 

have the value that agrees with their announcement but rewarding 

the other Agents deters deviations. This applies directly to auctions 

in which private values are correlated, as the bids of the other buy­

ers give information to the Principal on any buyer's valuation. 

While this result is striking, its practical importance is debatable. 

The problem is that the size of the required signal-contingent trans-



A -erse Selection: Examples and Extensions 
73 

fers, A, tends to infinity as the signal gets less informative (as P - » 
becomes small). This may conflict with limited liability constraints, 
among other things. 

32.4 Collusion 

Atypical organization contains several hierarchical layers: workers 

only interact with their employers through middle managers, for 

instance. This helps employers alleviate the incentive problem by 

using the information provided to them by the people who super­

vise the workers. Daily observation suggests that this remedy is not 

perfect, however. Workers can "bribe"14 their supervisors not to 

reveal damaging information. The study of the properties of mecha­

nisms designed to prevent collusion between several members of an 

organization has become a very active area of research since the pio­

neering work of Tirole (1986). 

Let us return to our canonical model of two types, 0X < 92, where 

we know that the optimal quantities are q2 = cj*2 (the high type gets 

the first-best quantity) and 

C'(<h) = 0 i - — ( 0 2 - 0 l ) 
71 

with the low type's quantity distorted downward. Recall that the 

incentive problem lies in preventing 02 from posing as 6V This is 

achieved by leaving 02 an informational rent U2 = {62 - 0x)qv Now 

introduce a Supervisor who observes a signal s with probability p 

that the Agent is of type 02. The Agent knows that this signal was 

observed in this instance. However, the Principal only learns the sig­

nal if the Supervisor chooses to reveal it to him. We assume that the 

14. Such bribes are rarely monetary in a corporate context. Then they oftei 
in ensuring for the supervisor a quiet life in exchange for a lax supervision. 
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signal is hard information: the Principal can regard the signal as reli­
able evidence that the Agent is of type 02. 

If the Supervisor always acts in the Principal's interests, he will 
reveal the signal whenever he observes it. Therefore the Principal 
can implement a contract (ft, tv q2, h Vis* '*)/ w i t ^ a novelty in the 
contract that specifies (fe, y w h e n ^ Supervisor shows s to the 
Principal. It is fairly obvious in this case that the Principal extracts 
all the surplus: the Agent gets U^ = 0. Thus the Agent of type d2 

receives only a rent of (02 - 0x)cji with probability (1 - p) when s is 
not observed. As for the Principal's profit, it is easy to see that the 
optimal ft is now given by 

c%) = e,-(i-p)1-^L(e2-el) 

which is still distorted downward, but less than before. The Princi­
pal benefits from employing a Supervisor. 

What if the Supervisor observes s, and the Agent tries to bribe him 
to keep quiet before he can reveal the signal to the Principal. The 
bribe will increase Agent 02s utility by (02 — 6{)qi with probability, 
so any monetary equivalent smaller than {02 — #i)*7i that will do as 
a bribe. Our analysis now will take into account the possibility of 
such collusive behavior of the Agent and the Supervisor. We can 
assume that the two parties agree by way of a side-contract. This side-
contract will reduce the ability of the Principal to extract informa­
tion from the Supervisor. To avoid such collusion, the Principal can 
in turn reward the Supervisor for every report of s. 

The optimal contract is always the contract that deters collusion. If 
collusion should occur, at the optimum the Principal can always alter 
the contract by making quantity transfers independent of the Super­
visor's report—and collusion will be deterred because it is no longer 
useful to the Agent. This is known as the collusion-proofness principle. 
So, to deter collusion, the Principal must be sure to reward the Super-
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visor for reporting s, by an amount that is exactly equal to the maxi 

mal bribe that the Agent can offer the Supervisor to keep quiet- Any­
thing short of this will open the door to collusion, and anything more 
will be a waste of money. But we know that the Agent can afford to 
bribe the Supervisor with as much as (92 - Ofa. To inject some real­
ism, we can allow for the possibility that bribes, being illegal, are 
more costly to the Supervisor than to the Agent; it is one way to take 
into account the risk of exposure. So we let 0 < k < 1 be the relevant 
parameter. The Principal then gives exactly k{02 - 0^ to the 
Supervisor when he reports s. Introducing this into the Principal's 
program shows that this time c\x is given by 

c%) = ol-(i-pd-k))^(o2-el) 

Note that the distortion on ql (and thus the efficiency loss) is smaller 
than in the absence of a Supervisor (which obtains when Jfc = 1) but 
larger than when the Supervisor behaves as the Principal wishes. 

Collusion is an important issue in the study of organizational 
behavior. Many papers have applied and enriched this model. In a 
recent example Laffont-Martimort (1997) study the case of two 
firms in a regulatory duopoly that collude to hide their true costs 
from the regulator. More recently Mookherjee-Tsumagari (2004) 
study the case of a buyer who is supplied by two firms that collude 
on their costs; they study whether it is optimal for the buyer to del­
egate decisions to one of the suppliers or to a supervisor. All papers 
in this literature assume that side-contracts between the colluding 
parties are enforceable. Yet in the Principal-Supervisor-Agent 
model above, the Supervisor might accept the bribe from the Agent 
and then reveal s to the Principal for a fee. One can think of several 
ways such deviations can be prevented (repeated interactions, retal­
iation strategies); Tirole (1992) explores some of these preventive 
measures. 
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3.2.5 Risk-Averse Agents 

We have assumed so far that a contract between the Principal and 

the Agent is signed after the Agent learns his private information, h 

some situations it may be more realistic to assume that the Agent 

learns his private information after the contract is signed but before 

it is executed. Consider, for instance, a chain monopoly in which the 

unknown variable is the strength of demand. Before the sales cam­

paign starts, manufacturer and retailer sign a contract that specifies 

a nonlinear tariff to be used between them. After the contract is 

signed, the retailer gradually learns the strength of demand, but the 

manufacturer can only acquire this information by observing the 

orders the retailer places with him. The Agent here still has an infor­

mational advantage, but it comes from knowing he will soon be bet­

ter informed than the Principal. 

Salanie (1990) studies just such a model. The formal difference 

from the standard model here is that the Agent does not know his 

type when the contract is signed. So his participation constraint is 

written in an expected utility form: 

n> 
U(u(q(0),d) - t(d))f(d)dd > U(0) 

where U is the Agent's von Neumann-Morgenstern utility function. 
This makes solving the model much more difficult.15 Neverthe­

less, the solution has interesting properties. Figure 3.4 gives the 
shape of the optimal allocation q{d) as a function of the strength of 
demand 6 for several values of the Agent's absolute risk-aversion 
index a. 

For any given 9, the optimal allocation is a decreasing function of 

the risk-aversion parameter: smaller production imposes less risk 

lit S l u T ^ m i n i m u m PrinciPle should be used here, and it yields (even in 
fixedTnds SpeC,f ,Cati°n) a n0n l inear ^cond-order differential equation in , with 
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Figure 3.4 
The optimal allocation with a risk-averse agent: (1) a = 0; (2) a small; (3) a large; 
(4) a infinite 

for the Agent. Another interesting feature of the solution is that it 
involves bunching for a large but finite risk-aversion. This is in con­
trast with the two polar cases of zero or infinite risk-aversion, in 
which the optimal allocation fully separates types. The standard 
model is obtained by letting a be infinite, so the participation con­
straint then is 

V0, u(q(9), 6) - t(0) > 0 

as in chapter 2. Thus focusing on the standard model, in which 
bunching can be excluded with a monotone hazard rate condition, 
may induce us to underestimate the extent of bunching.16 

16. Laffont-Rochet (1998) study a formally analogous model in a regulator)' context. 
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*3.2.6 Multidimensional Characteristics 

So far we have studied the case where the Agent's private type 
is one-

dimensional. It is important to check that the results obtained in that 
case extend to settings in which d is multidimensional. Unfortunately, 
a multidimensional extension of the study can become fairly involved. 
The multidimensional analysis started with Laffont-Maskin-Rochet 
(1985), who showed that the optimum is then more likely to display 
bunching than in the one-dimensional case. The book by Wilson (1993) 
is another early reference. Recent papers obtained sharper results. 
Armstrong (1996) shows that for all specifications, some Agents are 
excluded at the optimum. This is in contrast with the one-dimensional 
case in which it is always possible to find conditions such that all 
Agents participate at the optimum. The intuition is fairly simple: if the 
Principal increases his tariff uniformly by a small e, he will increase his 
profits by a term of order e on all Agents who still participate, but he 
will lose all Agents whose surplus was smaller than e. In the case 
where 9 is multidimensional, the probability that an Agent has surplus 
lower than e is a higher-order term in e. Thus it pays to slightly increase 
the tariff, even if the Principal thereby excludes some Agents. 

The paper by Rochet-Chone (1998) reaches several distressing 
conclusions for the two-dimensional problem: 

• When the correlation between the one-dimensional components 

of the characteristic is strongly negative, upward or transverse 

incentive constraints may be binding at the optimum. 

• The solution may be stochastic. 

' Most strikingly, bunching appears to be a generic property in mul­
tidimensional problems; no simple condition on the primitives of 
the problem (e.g., a multidimensional generalization of the monot­
one hazard rate condition) can exclude it. 

Thus the nice properties obtained in the one-dimensional case do 

not appear to carry over to general multidimensional problems. This 
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is dearly a challenge for the theory, especially given that the analv 

s is becomes quite involved. Some particular cases, however are ea 

ie r to study and can help convey some intuition about the propertied 
of the solution. Following Armstrong-Rochet (1999), we will exam­
ine here a discrete two-dimensional case. 

Since types and quantities are two-dimensional, we generalize the 
Principal's utility function to t - Cfo) - C(q2) and that of the 
Agent, 0 = {dv 92), to 6iqi_+ 92q2. For i = 1,2, 0. m a y e i t h e r b e -Q 

(with probability n) or 9 < 6. For simplicity, we will mostly focus on 
the case where 61 and 02 are independently distributed. For further 
reference we designate q * and q * the first-best quantities. 

The revelation principle obviously holds in multidimensional as 

well as in one-dimensional settings. The Principal needs only to 

offer a contract that assigns a transfer and two quantities for every 

announcement of the two-dimensional type by the Agent. A 

moment's reflection shows that since the model is perfectly sym­

metric in the two dimensions, the contract can be written as 

(0,0)—• fu/fan, <?ii) 

(0,0)—> tu, (q12, q21) 

(0,0) —• f12, {q2v qn) 

(0 ,0 ) — • f22, {q-22, q22) 

We denote Uu, U12( = U2l), and U^ the corresponding utility 

levels for the Agent. There are seven unknowns here, twelve in­

centive constraints, and four individual rationality constraints. 

Fortunately, symmetry and intuition can help us a lot here. We know 

that in one-dimensional problems only the upward incentive con­

straints and the individual rationality constraint of the low type bind. 

So we want to focus on the relaxed program in which we only account 

for upward incentive constraints and for the individual rationality 

constraint of the lowest type (£ £). We will check later that the solu­

tion to the relaxed program satisfies all other constraints. 
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There are only five upward incentive constraints, and g iven 

symmetry, we only need to look at three of them. They a r e repre, 

sented by dashed lines in figure 3.5. These three incentive con­

straints are 

2^22 - f22 S ^ 1 2 + fcl) " f12 

ecj2l + Bj\n - hi s $ + Ofe " ' " 

2^22 ~ *22 - 2 ^ H " ' " 

Here the first constraint is the horizontal one in figure 3.5, while the 

second and third are the vertical and the diagonal constraints. The 

individual rationality constraint is just 20qn - tn > 0. The Princi­

pal's objective is n2(tn - 2C(qu)) + 2TC(1 - n){tl2-C{ql2) - C(y) 

+ (1 - 7i)2(t22 ~ 2Cfe))- l t i s ' o f c o u r s e ' increasing in transfers. But 

the four constraints can be rewritten as 

>22 - hi * 2 ^ - 6(qu + q2l) (Ml) 

hi ~ hi * 0<hi + fyn - $ + £)<hi (M2) 

*22 " hi * 2^22 ~ ftl) ( M 3 ) 

tn * 2ftn (M4) 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

e 9 

Figure 3.5 

Incentive constraints in multidimensional screening 
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To make transfers as large as possible, M4 must clearly be binding at 
the optimum, and M2 as well; moreover either Ml or M3 must b 
binding. Thus we have 

ffn = 2^ i i 

tn = 6q21 + &I12 - 9 " fi)«hi 

tn = 2^22 ' & ~ ^ m a X (ill + ft* 2qn) 

Given this, maximizing the Principal's objective immediately gives 
C'(fti) = C ' f e ) = e> or q2l = q22 = q*. Intuition, again, suggests 
that we look for the other components of the solution in the region 
where qn < <\\i>V[XQn w e h a v e t 0 maximize (dropping already max­
imized parts) 

n\2Qj\M ' 2C(qn)) + 2n(l - n)(9qn -(9- 9)qn - C(qu)) 

- (1 - n)2{0 ~ d){ciii + «h2) 

If we ignore the constraint that quantities cannot be negative, simple 
calculation yields 

r(*„)-fi--£r@-0 

c%1) = e-1-^(5-e) 

It is easy to check, using 0 < n < 1 and the convexity of C, that 

'hi < *7i217'anc* with a little work, it is easy to check that the solution 

satisfies all the constraints that we neglected in the relaxed program. 

(I leave this to the reader as an exercise.) We have effectively charac­

terized the complete solution. It does not imply any bunching 

because the optimal quantity packages all differ in one dimension at 

least (as qu # q2l). The low type (0, 9) gets no informational rent, the 

17. Since the function being maximized is strictly quasi-concave, there cannot be 
another candidate solution in the complementary region. 
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intermediate types (£^) and M get a rent (̂  - g)9 l l , and the high 

type (0, 0) gets the largest rent (0 - £)(?„ + <n2)-
Armstrong and Rochet show that when the two dimensions of the 

types are only weakly correlated, the qualitative properties of the 
solution remain the same. Larger correlations give rise to different 
phenomena. We know, for instance, that with perfect correlation, the 
only binding incentive constraint is the diagonal one. This suggests, 
and it can be proved, that for large positive correlation this incentive 
constraint will also bind. Bunching can also emerge in such cases. 

3.2.7 Bilateral Private Information 

Some economists take the theory of contracts to task because much 
of it focuses on models in which only one party possesses private 
information. They argue that in the real world, private information 
tends to be widely dispersed throughout the economy, and that in 
most two-party relationships both parties have their share of private 
information. Clearly, we should study models in which the private 
information is distributed more symmetrically than it is in the mod­
els of chapter 2. The next paragraphs include examples of two such 
models. We will first consider a mechanism design problem 
between a seller and a buyer, both of whom have private informa­
tion on their own valuation. Then we will study an extension of the 
Principal-Agent adverse selection model in which the Principal has 
some private information too. 

The Inefficiency of Trading Mechanisms 

Myerson-Satterthwaite (1983) consider a transaction on a 0-1 good 
between a seller of the valuation c and a buyer of valuation v. Effi­
ciency requires that trading occur if, and only if, v is greater than c. 
Only the seller knows c and only the buyer knows v. The valuations 
c and v are independently distributed with respective probability 
distribution functions^ on [c, c) and/2 on [y, v], both of which are 
positive on their whole domains. Let us study the most favorable 
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case, where there exists a Center that wants to implement efficient 
trade. The problem is to fmd an efficient trading mechanism that is 
incentive compatible and individually rational. Thus we look for 
nvo functions x(c, v) (the probability of trading the good) and t(c v) 
(the transfer from the buyer to the seller). 

. The mechanism should be efficient. x(c, v) = d(c, v), where d{c, v) 
_. \ jf v s c and d(c, v) = 0 otherwise. 

. The mechanism should be incentive compatible for both the seller 
and buyer. Define 

f fs 

Xs(c) = J x(c,v)f2(v)dv 

Ts(c) = V t{c, v)f2(v)dv 
J V 

Xs(v) = ^ x(crv)f1(c)dc 

Ts(v)= \ t(cfv)fl{c)dc 

Then Ts(c') - cXs{c') must be maximal in c' = canduXB(u') - T^v1) 
must be maximal in v' = v; 

• The mechanism should be individually rational for both the seller 
and the buyer. For all c and v, Us{c) and UB(v), the corresponding 
expected utilities must be nonnegative. 

Similar formulas were used in chapter 2. The difference here is that 
each party ignores the type of the other party and computes his 
expected utility by integrating over it. 

We first consider two trivial cases. First, if v < Cj it is common 
knowledge that there are no gains from trade. Then x{c, v) = t{c, v) 
= 0 solves our problem. Things are almost as simple if it is common 
knowledge that there are gains from trade: c < v. Then any mecha­
nism that prescribes x(c, v) = 1 and t{c, v) = T, with c<T<v, is 
efficient, incentive compatible, and individually rational. 



84 Chapter 3 

The interesting case comes when there is a positive probability 0f 

gains from trade lc<v) but also a positive probability of no gains 

from trade (v < c). Myerson-Satterthwaite show that there exists no 

efficient trading mechanism that is both incentive compatible and 

individually rational. 

For those who know the literature on Vickrey-Clark-Groves mech­

anisms, this can be easily proved. As usual with quasi-linear utility 

functions, the pivot mechanism is individually rational, incentive 

compatible, and efficient here. However, the pivot mechanism does 

incur a deficit. When trade occurs {v> c), the seller should receive v 

while the buyer pays c; thus it is not a feasible mechanism. We can 

invoke the payoff equivalence theorem to show that any incentive 

compatible mechanism that is individually rational and is efficient 

must have a deficit at least as large as the pivot mechanism. 

This proof is too advanced for most readers, so instead we consider 

below a self-contained proof. We let x be incentive compatible. Then, 

by the envelope theorem, we have U's(c) = ~Xs(c) and integrate: 

Us(c) = Us(c) + £ Xs(t)dt 

By symmetry, we get 

UB(v) = UB(v) + [ XB{u)du 

The sum of expected utilities cannot exceed the total surplus avail­
able, so 

U^f^dc + l UB(v)f2(v)dv 
J v 

-c Cv 

jJv-cWcvtf^f^dcdv 

c 

1, Cv 

combine the last three equations and get 
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A V (v- c)x(c, v)fl{c)f2(v)dcdv 
" JcJv 

?fx{c)dc P Xs(t)dt - \Vf2(v)dv f XB(u)du 
J c J c J 2 . j , 

Simple computations show that 

f/i(c)rfcJc Xsit)dt = J/ l (CHI j / ( * ' "VlWtdu 

= \ j x(cfv)F1{c)f2(v)dcdv 

Asimilar formula holds for the integral of XB(v). So we end up with 

Note that the right-hand side of this equation gives the virtual sur­
pluses of the buyer and the seller. This should not be a surprise at 
this stage. For the mechanism to be individually rational, the left-
hand side of (MS) must be nonnegative. We are going to prove now 
that the right-hand side is negative when evaluated for the efficient 
mechanism x = d. This is not so obvious. We first have to define 
z(0 = -f(l - F2(f)). Then z'(f) = tf2{t) - (1 - F2{t))r and it follows 
that for any c, 

(vf2(v) - (1 - F2(v)))dv 
J maxlc.v\ max(c,y) 

= max(c,y)(l - F2{c)). 
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We can rewrite the formula as 

= \cfMl'F2^max{c,-)dc 

It is easily seen that what we have is just the expectation over (c, v) of 
d(c, )̂max (c, v). A similar argument for the other term on the right-
hand side of (MS) shows that it is the expectation of d(c, v) min {v, ~c). 
Now note that max (c, v) - min (v, c) is always negative, except pos­
sibly when it equals (c - v), but in the last case its product with d(c, v) 
is zero. Thus the right hand-side of (MS) is negative when the inter­
vals [c, c] and [v, v] overlap. Clearly, the efficient mechanism must 
violate the individual rationality constraints. 

Note that we have assumed nothing whatsoever about the trading 
mechanism to be chosen (by the Principal-Agent paradigm, some 
form of bargaining between buyer and seller, a rule imposed by a 
third party, etc.). This is a very strong inefficiency result. It indicates 
that the celebrated Coase "theorem," which states that in the absence 
of transaction costs agents can always bargain away any inefficiency, 
does not extend to environments with bilateral private information. 

The Informed Principal 

We return now to a more specific Principal-Agent model. In real life 
the Principal often has some private information. We will study here 
only the case where the values are private; the reader can consult 
Maskin-Tirole (1992) for the analysis of the common values case. 
Again, we turn to the standard model of the discriminating wine 
seller. If the seller's production cost depends on a parameter /, 
which he is the only one to observe, then we are in an informed Prin­
cipal private values model, since X does not figure in the Agent's 
utility function. Let us denote utility functions as 

V{q, t, X) 
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for the Principal and 

Ufa*'® 
for the Agent. Each party has in this case private information. 

A direct truthful mechanism is a menu of contracts % t) indexed 

by parameters 0 and X such that when both parties announce their 

type simultaneously, truthtelling is their best strategy. We let 

(ci(0; X), f (0; A)) be the menu of contracts that is optimal in the unin­

formed Principal model when X is public information. The type X 

Principal can always propose this menu of contracts when his private 

information is X and thus guarantee himself the same utility as when 

/ is public information. As Maskin-Tirole (1990) show, for a generic 

subset of utility functions, the Principal can actually do better and 

obtain a higher utility than if he were to reveal his information before 

proposing the contract. To see why, let Pbe the probability distribu­

tion of the different types of Principal for the Agent. Since the Agent 

does not know the Principal's type when the contract is signed and 

only learns it after 0 and X are simultaneously revealed, the incentive 

and individual rationality constraints of the Agent in the Principal's 

program must be written as expectations over P. Now, if X were pub­

lic information, these constraints would have to hold for all values of 

/.. Thus the Principal's program is less constrained when he only 

reveals his characteristic after the contract is signed. He thus gets a 

higher utility thanks to his private information, even though the 

Agent does not particularly care for the Principal's type. 

However, in the case of quasi-linear utilities which we covered in 

chapter 2, it can be shown that the Principal gains nothing by with­

holding his private information. Our endowing the Principal with 

privileged information on his type does not modify the properties of 

the optimum in the adverse selection model when both parties have 

quasi-linear utilities. To see this, suppose that among the family of 

optimal mechanisms for all types of Principal there is one where he 

reveals his type to the Agent before signing the contract. Recall from 
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our earlier discussion that the Principal can benefit in hiding his pri­

vate information only if he can achieve a higher expected utility by 

relaxing a constraint by a small e in the contract for type X at the price 

of tightening another one by £ for another type, so as to keep the 

same constraint in expectation over Principal types. By definition, 

then the gain from relaxing a constraint (or the loss from tightening 

it) is proportional to its multiplier. If both parties have quasi-linear 

utilities V(q, X) + t and U(q, 0) - t, the first-order optimality condi­

tions on transfers imply that the multipliers for all constraints do not 

depend on the value of X. Thus, at the first order, the beneficial effect 

of relaxing a constraint is exactly canceled by the loss from tighten­

ing another. 

3.2.8 Type-Dependent Reservation Utilities 

So far the Agent's reservation utility has not depended on his type-

in fact it was normalized at zero. This is not always realistic. For 

instance, if the Agent can interact with other Principals, then his 

reservation utility will reflect this outside option, which presumably 

depends on his type. We let therefore U(0) denote Agent's 0's reser­

vation utility. We take the model of section 2.3 with continuous 

types, Agent's utility function 0q - t and Principal's utility function 

t - C{q). Clearly, nothing changes in the analysis of the incentive 

constraints: a quantity schedule q is incentive-compatible if, and 

only if, it is nondecreasing in 0, and the corresponding utility profile 

V{0) then satisfies V'{0) = q{0). The only thing new here is that the 

individual rationality constraints V(d) > 17(0) can bind for other 

types than 0. This needn't be the case, as we will see. We let Q be the 

optimal quantity schedule when the Agent's reservation utility is 

zero. If the Principal now faces Agents whose reservation utility sat­

isfies V0,£J'(0)sQ(0), then the individual rationality constraint 

will only bind in 0 and Q will still be optimal. 

Jullien (2000) studied the general case where the reservation util­

ity profile increases too fast for Q to remain optimal. He shows that 
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^ optimal quantity schedule can be distorted upward as well as 
downward, and that types interior to the interval [0,0] c a n b e 

excluded from trading with the Principal at the optimum. This is in 
contrast to the standard model where quantities are only distorted 
downward and exclusion can only occur "at the bottom." 

Although Jullien's analysis is fairly complicated, we can get the 
gist of it by a simple case where quantities are distorted upward for 
every type. So we can assume for now that U is so steep that the indi­
vidual rationality constraint only binds in 6. Then the analysis goes 
as in section 2.3, with a few differences: 

V(0) = U(d) - \o q(t)dt 

The virtual surplus becomes 

v F(<?) 
dcj~C{ci) + J(0)q' 

From this formula we obtain the optimal quantity 

F(9) 
C'(W) = & + tm 
which clearly is distorted upward. Given any reservation utility pro­
file that increases faster than q, the individual rationality constraint 
only binds in 6. 

3.2.9 Auditing the Agent 

Incentive constraints are costly for the Principal. One way for the 
Principal to relax these constraints is to invest resources in ascer­
taining the Agent's type when he suspects that the Agent is lying. In 
our canonical two-type model, the nexus of the incentive problem is 
that the high type 92 may want to pass for the low type. So suppose 
that the Principal "audits" the Agent's type when he announces it as 
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By The audit technology is imperfect: it yields no information at all 
on the Agent's type with probability (1 - p). The Principal can then 
choose the quality p of his audit by paying c(p), where c is an increas­
ing, convex function. If the Agent is observed to be lying (he 

announced Bx and the audit shows him to be 02), the Principal fines 

him P. 
The revelation principle holds here as usual: the optimal contract 

makes the Agent reveal his type. The incentive constraint for the 

high type now becomes 

e2q2 - r2 > 82q2 -t,-pP 

Clearly, a harsh penalty could relax the incentive constraint, and fre­

quent penalties require a more costly audit technology. So the Prin­

cipal should fine the Agent rarely (p very small) but severely (pP 

very large). To avoid this conclusion,18 the literature assumes that 

there are limits to the fines: for instance, they cannot exceed the 

Agent's wealth A For this reason the Principal's expected utility has 

a new term (1 - n)(pA - cip)) and the optimal audit technology is 

obtained by setting c'(p) = A. This policy involves no change in 

quantities relative to the analysis in chapter 2, but the conclusion can 

be altered if the maximal penalty A depends on qx or tv Auditing, of 

course, improves the Principal's expected utility if c'(0) < A. 

The optimal use of auditing was first studied by Townsend (1979). 

Gale-Hellwig (1985) applied it to a lender-borrower relationship 

and showed that the optimal contract is a standard debt contract 

that prescribes a fixed repayment if things go well and a file for 

bankruptcy with an audit if otherwise.19 A difficulty with this litera­

ture is that since the Agent reveals his type with probability one in 

equilibrium, it makes no sense for him to be audited ex post. Inar-

18. Which is reminiscent of the Beckerian analysis of crime. 
19. Bolton-Scharfstein (1990) used a formally analogous model to investigate preda-
tion. The lender relaxes the incentive constraint by threatening to refuse refinancing 
the loan if the borrower claims that times are bad. 
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b l y in some situations the Principal should be able to commit to 
an auditing strategy. Khalil (1997) studies the case where a commit-

ment to auditing is credible. The revelation principle fails and the 
high-type Agent randomizes between lying and revealing his type. 
Surprisingly, the optimal contract involves upward distortions of 
both the low type's quantity ql and the investment of the Principal in 
auditing quality P-

Exercises 

Exercise 3.1 

Go back to the optimal taxation model of section 3.1.2. Let T(0) = 

0(0) - C(0) be the tax paid by Agent 0. Assume that the optimum is 

fully separating. 

1. Show that the marginal tax rate T'(0) is given by 

T(d) = (9U'(C(6)) - 1)C'(0) 

2. Show that T'(0) = T'(0) = 0 and that T'(0) > 0 everywhere else. 

3. How does this compare with the tax schedules used in your 

country? 

Exercise 3.2 

Show directly that in the standard model, any Rothschild-Stiglitz 

equilibrium is efficient (use figures in your argument). 

Exercise 3.3 

Wilson (1977) argued that in a competitive equilibrium an incum­

bent firm should be able to withdraw a contract that has becoi 

unprofitable because of a profitable entry. A Wilson competitive 
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equilibrium therefore is a set of profitable contracts such that no 

entrant can propose a contract that remains profitable after all 

unprofitable contracts are withdrawn. It can be shown that a Wilson 

equilibrium always exists in the competitive insurance model, and 

that it coincides with the Rothschild-Stiglitz equilibrium when the 

latter exists. 

Show that the Wilson equilibrium coincides with the Rothschild-

Stiglitz equilibrium in the standard model. 

Exercise 3.4 

In this exercise you will derive the optimal reserve price in the sim­

ple auction of section 3.2.3. You may admit the formula for the equi­

librium bid as a function of bT. 

1. Let P(02) be the expected payment of agent 1 when 6l > br Show 

that 

P(0!) = 01F(01)""1 - I ' F(6)"-ld0 
Jbr 

2. jsJow let R be the expected revenue of the seller, which equals 
n!b

 p(0i)f(0i)d0i- Integrating by parts, show that 

re 
R = n\" (6f(0) + F(9)-l)F"-l(6)d6 

3. Show that the seller's expected utility is (60F"(br) + R), and dif­
ferentiate with respect to br so as to obtain the formula given in sec­
tion 3.2.3. 

Exercise 3.5 

We study here the multiprincipals model with asymmetric informa­
tion but colluding Principals. 
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j Denote V(0) = max (u(0, q,(s), q2(s)) - t(s)). Pr0Ve that for any 

incentive-compatible contract, V'(9) = ^ (0 , ftW)/ ^ U s e ^ 

individual rationality constraint to get an expression for V(0). 

2. Prove that if uTgqi > 0 and u'^2 > 0, the second-order incentive 
constraints state that ft and q2 must be nondecreasing. Neglect these 
constraints from now on. 

3. Prove that the expected profit of the colluding Principals is 

rV(0,<h(0M2(0)) - C^°)) ~ C{q2{0)))f{0) o - (1 - F(0))u'fl(0, qx(0), q2(0)))d0 

4. Conclude that at the optimum 

1 - F(0) 
^ ( M i W ' f e W ) = C(qt(0)) + •^-Au"0qi(0,q,(0)>q2(0)) 

for? = 1,2. 

Exercise 3.6 

We want to prove that the optimal nonlinear tariff t = T(C) is convex 

in Laffont-Tirole's 1986 model if y/'" > 0 and F is log concave (the 

logarithm of F is concave). 

1. Using the first-order incentive condition, show that T'(C) = 

1 - y/'(fi(C) - C), where (S(C) is the inverse function to C(/?). 

2. Use the equation that defines the optimal C(fi) to prove that under 

the two conditions above, e(fl) = /? - C(fi) is a nonincreasing function. 

3. Use 2 and the second-order incentive condition to deduce that 

0 < p'(C) < 1, and discuss this conclusion. 
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Signaling Models 

In adverse selection models the uninformed party takes the initia­
tive by offering to an informed party a menu of contracts among 
which the different types of informed agents can choose according 
to their private characteristics. In real life it is sometimes difficult to 
determine whether the initiative resides with the informed party or 
with the uninformed party. The institutional context matters greatly 
and considerably varies across situations. Most economic relation­
ships moreover are repeated, and this makes it difficult to observe 
the extensive form of the game. It is therefore important to also 
study games in which the informed party plays first by sending a 
signal that may reveal information relating to its type. The unin­
formed party then tries to decipher these signals by some (endoge-
neously determined) interpretative scheme. 

We will study three types of models in this chapter. The first 
model is due to Akerlof (1970); it shows that a market may function 
badly if the informed party has no way to signal the quality of the 
good it is selling. In the second model, due to Spence (1973), the sig­
nal that is sent by the informed party has a cost that depends on its 
type so that higher types are more likely to send higher signals. This 
signal may then help the uninformed party to discriminate among 
the different types. We analyze last the Crawford-Sobel (1982) 
model, which shows that even if the signal is purely extrinsic (if it 
has no cost for the informed party) and thus constitutes cheap talk, 
both parties may still coordinate on equilibria that reveal some 
information. 
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A typical featur pal ing models of the Spence and Crawford-

Sobel'type is that contrary to adverse selection models, they possess 

a large number of equilibria. While this multiplicity can be elimi­

nated by way of perfect Bayesian equilibrium refinements in the 

nee model, it is a robust feature of the Crawford-Sohel model. 

In parts of this chapter we will encounter intuitions of game the­

ory that are more advanced than in the rest of th< JTie a p p 

dix at the end of tl uiilibrium * i f0l 

the readers who may not be familiar w ith them 

4.1 The Market for Secondhand Cars 

In a classic pa] rlof (1970) show..) that uncertain , fne 

quality of a good can hinder tl ioningof the market. Supp 

that two types of OH the market foi lhand a 

mdbad xal ledl i In American slang 

car is worth g to the seller and to the buyer, while a lemon is 

worth / to the seller and / / t o the buyer; naturally, G * I and 

g > I. The proportion of good and that of lemons is (1 o). 

Note th the value of any car to the bin its value to 

the seller, with perfect information both types of cars are trad-

We will assume that the supply of cars is finite but the number of 

potential buyers is infinite. Under these conditions the price of good 

cars will settle in G and that of lemons m / if both sellers and bu\ 

can observe the quality of a given car If both are equally ignorant 

about the quality of the cars, then the equilibrium price will be 

(qG + (1 - q)L) whatever the car. In these two polar cases, all cars 

find a buyer. 

It is definitely easier for the seller to observe the quality of a car. So 

we will assume that the seller knows the quality of the cars he has in 

stock while the buyer is clueless about the quality of these cars. 

What will be the equilibrium price p on the market? 
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QQ 

First note that sellers only offer K0 

above*; otherwise, they lose money. If the^ri " ** P l t o i P 8e t t l es 

buyeiS therefore will k n o w that theca l s h i ! ' , " ffe ^ ^ , h ' m * * « 

they will buy .f, and only if, the price Is not *to v / ',,V lf,nu" 
not below j , and both types o. cars are put * **°"' " "" 'p r i c e 

ers must consider that a car is worth (oG \ u p f 0 r s a I e ' thenbuj 

I t a e are therefore only two possible equflibriaf 

. , ; = / _ g and only lemons are sold. 

• s ^ + ( 1 -^ a ^dbo th types of cars are sold. 

The second e q u i l i b r i u m coincides with t i n t of H 

^rbuyernorseUerisinfonnedof.heqtStft '" ' 
Bon of quality bi equilibrium. But this c a n onlv "V"'" 

whereby the lemons are chosen over good cars 

have another striking example of adverse selection. 4.2 Costly Signals 

The dysfimctioning in the secondhand car market analyzed by 
Akerlof come from the inability of sellers of used cars to signal the 
quality of their good. If independent laboratories could publish the 
results of tests run on used cars, the informational asymmetry that 
affects the buyers directly and sellers indirectly might be reduced 

1. Since qG + (1 - q)L < g implies that L < g, the first equilibrium exists. 
2. In a model with continuous types for some parameter values only the worst car 
will be traded, and the market essentially unravels. Mas-Colell-Whinston-Green 
(1995, ch. 13) gives also a labor market example. 
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We will not pursue this line of inquiry here. Rather, we will return to 
Akerlof's model in section 4.4. For now, we want to look at Spence's 
model, which aims at describing how employers can infer the pro­
ductivity of job searchers holding diplomas. 

Every potential employee has a private information on his pro­
ductivity 6 G {0„ 02\, where 0, < 62; if he studies for e years and is 
hired at wage w, his utility will be u{w) - C(e, 6). His productivity 
may not depend on his education,3 but obtaining the diploma is 
more costly to him if he is by nature not very productive:4 

u' > 0, u" < 0 

ac> 0 ^ > 0 , ^ > o , - ^ < o 
de ' d9 ' de2 ded0 

This last assumption on the cross-derivative above can be justified 

by common sense that the ability to pursue higher studies and pro­

ductivity are positively correlated because they both depend on a 

common factor—the general readiness to do work. It is important to 

recognize, however, that education can only serve as a signal; it does 

not enhance productivity. 

The productivity of job searchers is their private information, 

whereas their diplomas are public information.5 The condition on 

the cross-derivative of C thus is a Spence-Mirrlees condition. It has 

the same role as in chapter 2, as it allows us to entertain the thought 

that employers can discriminate among job candidates by virtue of 

their diplomas. 

Suppose that our potential employers are identical and that they 

compete, a la Bertrand, in the market for labor. Each worker is there-

3. Education is not essential here, but it makes the model results more interesting. 
4. In what follows, we do not distinguish between the number of years of schooling 
and the level of diploma awarded. 

5. We can assume that a job searcher who refuses to show his diploma will not be 
hired. 
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fore paid his expected marginal productivity. A ioh , 
enters the market with a diploma . is thus Jeted

 ]°w^™ W h o 

w(c) = li{e)By + (1 - ^(e))e2 

if employers think that the candidate is 0 with u , 
We wi.l denote by ^ the a priori of a ^ ^ * 
productivity. P y e r S 0 n l h e worker's 

This is a game of incomplete information in that when taking their 
decisions, employers do not know a worker's type We will ft 
fore look for the perfect Bayesian equilibria of auTgame 

Following the definition given in the appendix, a perfect Bayesian 
equilibrium ,n pure strategies consists of a vector of strategies <<* + 
IB*) and a system of beliefs jt as follows: ' 

• A job searcher chooses the number of years he will spend in school 
I by anticipating the wage function «• that prevails on the labor 
market, 

Vi = 1, 2, e* G arg max (u(w*(e)) - Q(e, 0,.)) 

• An employer hires job searchers with a diploma e at a wage 

w*(e) = ff(e)Ol + (1 - tf{e))02 

• The beliefs //*(<?) are consistent with e* strategies: 

For e* ± e\ 

*if e = e\, then ff(e) = l 

*if e = e\, then //*(<?) = 0 

f o r <?* = <?* 

*if * = <?} = 4 then f(e) = /jQ 

6- Strictly speaking, there is no contract in the model, but a system of norms (the 
connection between diploma and wage) and an institution (Bertrand competition) 

at ensures that these norms are respected by employers. 
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Note that this definition in no way restricts the belief f(e) that 

diploma c is not chosen in equilibrium (e * e\ and e * e|). We only 

know that the wage w*(e) must lie between 0X and 02. As we will see, 

this degree of freedom gives rise to multiple perfect Bayesian equilib-

MI; there will be both a continuum of separating equilibria and a con­

tinuum of pooling equilibria.7 

4.2.1 Separating Equilibria 

In a separating equilibrium the low-productivity agent chooses to 

study for e\ years and the high-productivity agent studies for 

e\ > e\ years. Employers can therefore infer something about the 

agent's productivity by looking for evidence of a diploma. A low-

productivity agent gets a wage equal to Bv so a costly education is 

of no use to him. He therefore does not need to pursue a diploma at 

all: e\ = 0. A high-productivity agent who studies for e\> Q years 

gets a wage 02. For this to be an equilibrium, the low-productivity 

agent must not envy the high-productivity agent his allocation; in 

other words, we must have 

w^) - c(o, 0,) > w(02) - c(?2v;,) 

which tells us that c\ should not be below a certain e. Since 92 should 

not envy 0a's allocation, symmetrically we have 

u{e2)-c{e*2,02)>u{e{)-c{o,e2) 

so e*2 should be smaller than some e. Figure 4.1 shows one of the 

many wage functions that sustain such an equilibrium.8 

7. I have focused on pure strategies equilibria here. Exercises 4.1 and 4.3 ask the 
reader to study semiseparating equilibria in which one of the two types randomizes 
between two education levels. 
8. Note that if c£ is high enough, 

"(*2) - c(%92) < utnfli + (i - fio)e2) - ao,o2) 
so the high-productivity agent will be better off if all schools close and there is no 
way to signal his productivity. Nevertheless, schools exist in this model, and refus-
ing to study will leave the high-productivity worker worse off. 
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Figure 4.1 
A separating equilibrium 

4.2.2 Pooling Equilibria 

In a pooling equilibrium, Agent types 0X and 02 choose the same 
diploma e*. Employers therefore have no reason to update their 
beliefs and offer both a wage JJO01 + (1 - ^)02. This configuration 
suggests that the low-productivity agent gets wage 0V The diploma 
held in a pooling equilibrium therefore is bounded above by e such 
that 

u(^)x + (1 - //o)02) - C(l 0,) = 1,(0,) - C(0, 9X) 

Figure 4.2 shows the case where e* > 0. All workers are better off if 
education is banned, since they get one wage HQOX + (1 - ^Q)02 and 
save themselves the cost of schooling. 

4.2.3 The Selection of an Equilibrium 

There therefore exists a continuum of separating equilibria indexed 
by e*2 6 [e, e] and a continuum of pooling equilibria index< 
e*e[0,!]. Employers make zero profits in all these equilibria 
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Figure 4.2 
A pooling equilibrium 

because they compete a la Bertrand. However, the utility of employ­
ees decreases in e, the Pareto optimum therefore is the pooling equi­
librium where e* = 0. All other equilibria are then Pareto dominated 
by it. 

Multiple equilibria stem from the fact that out-of-equilibrium 
beliefs (i.e., the beliefs of employers on the productivity of an 
employee whose diploma is unusual) are not constrained by the def­
inition of perfect Bayesian equilibria. The wage functions that 
employers offer are therefore only fixed for diplomas chosen in 
equilibrium. There are always out-of-equilibrium beliefs that sus­
tain a given equilibrium, and this translates into the freedom with 
which we can trace the graph for a function w*. This type of equilib­
rium (where expectations are perfectly rational) gives rise to what 
is known as self-fulfilling prophecies. It can even be shown that allow­
ing education to affect productivity does not affect the number of 
equilibria. 

There are two reasons why multiple equilibria are undesirable. 
The first is that multiplicity severely limits the predictive power of 
theory. The second one is that comparative statics, the favorite exer-
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cise of economists, usually rests on the continuity of a lorall 
equilibrium with respect to the primitives of the model " " ^ 

The only way to reduce the number of equilibria 
obtain more precise predictions is to restrict the beliefs^ J w 1° 
therefore the wages « , « o u t o f e q u i U b r i u m ^ ^ 

w a ge functions shown m figures 4.1 and 4 2 do not se i 

because they are lower for high diplomas. However, itwouldte 
easy to redraw the figures so that w*{e) increases in e We need * 
stronger refinement if we are to select a unique equilibrium 

The "intuitive" criterion that allows us to eliminate all but one of 
these equilibria is due to Cho-Kreps (1987).' Fortunately, it demon 
strates that no pooling equilibrium can satisfy the intuitive criterion 
To see this, let e* be a pooling perfect Bayesian equilibrium and pick 
e on the segment between A and B on figure 4.3. Then we have both 

«(KA + (1 - M0W2) - C(e* 6X) > u(02) - C(e, 0X) 

and 

u{^el + (1 - t^)62) - C(e*f 62) > U(92) - C(e, d2) 

The first inequality tells us that if employers assume that workers 
with e years of education have high productivity 02, the deviation 
from e* to e is the dominating strategy for type 0V On the other hand, 
the second inequality tells us that this is not a dominating strategy 
for type 02. The intuitive criterion therefore tells us that we must 
have ft(e) = 0 and w*(e) = 92 for such an e. But then the second 
inequality above tells us that type 02 would benefit from deviating 
to e, and the pooling in e* cannot be an intuitive equilibrium. By a 
similar argument, we find that the only separating equilibrium that 
satisfies the intuitive criterion must leave type 6^ indifferent 
between e = 0 and e = e* (see figure 4.4). 

• With three types one needs more refinements in order to select a unique equilibrium. 
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Figure 4.3 
Pooling equilibria and the intuitive criterion 

e*,=0 

Figure 4.4 
The intuitive equilibrium 

Therefore the only intuitive equilibrium is a separating equilib­
rium, which give e = 0 and w = 6l to the low-productivity agent 
and e = e and w = 02 to the high-productivity agent, with 

This separating equilibrium is called the least-cost sqjarating equi­
librium, since the high-productivity agent chooses the minimum 
diploma that allows him to signal his type without attracting the 
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^ -p roduc t iv i ty agent. It is the most efficient Bepawing , , , „ , , 
Baves.an equ. hbr.um ,n that it entails the teas! m „,, ,,,„', ,„. 
It.ilso does not depend on a prior /^. 

The least-cost separating equilibrium is like the optimum ol 
adverse selection models in two ways:10 

. Only one of the two incentive constraints is active [t is the am 
straint that prevents the low-productivity agent from posing as a 
high-productivity agent. 

. Only one of the two types (the low-productivity agent) receivei 
efficient allocation (e = 0). 

Thus the results we get are in the end similar to those we obtained 
for adverse selection models. However, we paid a price by 11 
deferring to refinements of perfect Bayesian equilibria that are not 
universally accepted. 

4.3 Costless Signals 

In Spence's model the fact that we can separate the agents (e.g., by 

the intuitive equilibrium) is due to the existence of a signal (educa­

tion) whose cost varies with the type of the worker. 

However, Crawford-Sobel (1982) show that it is possible to obtain 

semiseparating equilibria—alongside bunching equilibria—even if 

the signal has no cost for the agent who sends it. Their model 

belongs to the cheap talk family. Because sending the signal is cost­

less, it may seem a priori that meaningful communication among 

agents cannot be readily achieved. The surprising result, as we will 

see in this section, is that while there always exists a babbling equi­

librium of signals that convey no information whatsoever, there are 

equilibria that reveal some information. 

10. Note that while adverse selection models typically lead to underproduction (of 
quality in the wine market example), Spence's model exhibits overproduction (of 
education, which is a wasteful activity in this model). 
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We first will consider a simple example of how preplay communi­
cation can enhance the efficiency of an interaction. Then we will 
study the Crawford-Sobel model. 

4.3.1 A Simple Example 

Consider N villagers 1 = 1,..., N. Each villager is privately informed 
of the cost he will incur if he goes hunting with the pack.11 This cost, 
denoted c,, is a priori uniformly distributed on [0,1 + e], where e is 
some positive number; c, is independently distributed across vil­
lagers. If all agree to hunt together, upon capturing a stag they each 
will get a value 1. However, if just one villager of the groups opts to 
stay home, the others will not be able to catch the stag.12 

Clearly, the N villagers face a coordination problem. The risk for 
hunter i is that he goes hunting, incurs cost c,, and gets 0 value 
because one of his fellows has preferred to stay at home. In fact no 
one will hunt in the only Nash equilibrium of this game. To see this, 
let n be the equilibrium probability that any villager goes hunting. 
The expected value of hunting for a single villager /' is just the proba­
bility that all other villagers go hunting, which is «N _ 1 . Each villager 
will go hunting if, and only if, his private cost c, is lower than 7iN_1. A 
cutoff rule can be thus defined so that each villager will go hunting if, 
and only if, his private cost is lower than c = nN ~]. In equilibrium, n 
is just the probability that c, is lower than c. This gives 

c ?zN-' 
n = l+e 1 + £ 

11. This cost may depend on his second-best options, such as farming or educating 
children. 

12. The "stag hunt" story goes back to Jean-Jacques Rousseau, who used it in 1755 
to illustrate the conflict between individualism and the need for cooperation in 
primitive societies. 
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whose only solution is n = c = n Th 

which is very inefficient, since when n s U L n 7 ? e WiU S° hunting, 
is lower than 1 is close to 1. ' ' t h e Probability that c 

Fortunately, a little preplay communi 

considerably. Let the game have two stages'now^ ^ ** 8 3 m e 

• In the first stage each villager •, 
. 6 C n V l l l a § e r announces "y e s" or »n » . 

others. ' e s o r no" to all the 
- - — d - * ^ d K i d e s w h e t h e r o r n o l o 

We claim that this game has an equilibrium in k- u 
stage, each villager announces "ves" if *„A , ' m t h e first 

is lower than 1. Then: ° n l y ,f' ^ P"vate cost c. 

. if all villagers announced "yes," they all go hunting. 

• If at least one announces "no," one goes hunting. 

This is easily seen by reasoning backward. Moreover this equilib­

rium is almost efficient for e small because all go hunting with prob­

ability close to 1. The trick is that the villagers all know after stage 

one whether any of their companions will defect and stay home. So 

there is no risk that any villager will incur a private cost c, in going 

on the hunt and not catching the stag. Also note that the announce­

ments "yes" or "no" are purely conventional; they could be replaced 

with "yellow" or "blue" or anything else. 

In this situation a babbling equilibrium also exists, where no 
information is conveyed if, for instance, all hunters say "yes" what­
ever their costs, and play a Nash equilibrium that in the second 
stage generates the same "no hunting" outcome. 

4.3.2 The General Model 

Crawford-Sobel's model is a little more abstract and general than 
Spence's model, but it has the same basic structure. It introduces two 
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agents,13 who we will call the sender and the receiver. The sender S 
observes the state of the world, which is a parameter m 6 [0,1]; the 

,i\ er R only observes a signal n G [0, 11 sent to him by S. The sig­
nal should help him refine his prior //, a cumulative distribution 
function on the state of the world m. 

Once he receives the signal n, the receiver forms a posterior given 
by a conditional cumulative distribution function r(m\ n) on the 
state of the world. He next takes a decision y{n) that affects the utili­
ties Us{ y, m) and UR(y, m) of both agents. 

We assume the following: 

• Us is concave in y and has a maximum in y = ys(m), and ys is 

increasing. 

• UR is concave in y and has a maximum in y = yR(m) that differs 
from ys{m) for all m. 

For example, UR and IIs might be 

[Us{y,m) - - ( y - m ) 2 

\uR{y,m) = -(y-m-a)2 

where a is a constant so that ys(m) = m and yR(m) = m + a. We will 
come back to this example later in this section. 

The difference | ys - yR \ measures the divergence between the 
objectives of the two agents; it will limit the possibilities for commu­
nicating. S will only want to reveal information to R if the latter then 
takes a decision that suits S well enough. 

The "contract" here is purely implicit: the sender anticipates that 
the receiver will react to the signal n by the decision y(n) just because 
it is in the receiver's interest. 

[he perfect Bayesian equilibria of this game consist of a vector of 
strategies (y\ cf) and a system of beliefs r* such that: 

13. Ex, a hows how to build an N sender-one receiver model that nests the 
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. S believes that if he sends the signal „ R wU 

he sends n = ^(m) G arg maX„ Us{ ^ ™m cho°se y = m SQ 

. R observes n E c,*([0,ij), ^ f o r m g g ' ' 
computes by restricting the prior M t o the T T ^ ^ W h i c h h e 

that may have led S to send n. That is if J r L ° ! S ta fes °f t h e w°r\d 
' W J ("), he chooses 

y = y * ( " ) e a r g m a x ^ ^ ( y / m ) ^ N n ) 

or equivalently 

We will focus on "partition equilibria" in w h i c h t h o . , 
is divided into p subintervals (denoted fo,, w ' ! ° ' 1 ] 

with m„ = 0 and m„ = 1) and where the si^i'i J ' = 1 ' " P ' 
depends on only the subinterval state the w^ld £ £ * £ ? 

It can be shown that all other perfect Bayesian equilibria can be 
turned into a partition equilibrium by a change of v ri»h, * 
does not affect the econom.c .nterpretaL of £ £ £ £ £ 

where the sequence (n, ^ m a y not be increasing 

Crawford and Sobel show that there exists an integer N such that 
tor Blip - 1,..., A/, there is a partition equilibrium with p subinter­
valŝ  Figure 4.5 shows such an equilibrium for the case where 

To see how these equilibria are determined, we return to the 
example above in which utilities are quadrat., We assume that the 
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(P = 3) 

Figure 4.5 
A partition equilibrium 

prior /< is uniformly distributed on [0,1]. For a given sequence w(, 
the receiver who gets the signal n- maximizes over y, 

I ~(y - m - a)2 dm 
"•, 1 

The immediate result is 

W,_l + m, 
Vi = y *(",•) = : + a 

From the shape of the sender's utility function, the limit conditions 

v, = 1 p- i* us{yi+vm,) = us(yi,mt) 
will guarantee that the receiver sends n{ if m £ [m,M, w,]. These con­
ditions give 

/ , 2 , 
"Vi - m, 

whence 

mM = 2w* - m(_j -- An 

_ ['"»!-'", 
+ a 
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W e know that the solution to this difference equation must take the 
form m, = W2 + Mi + v. The difference equation gives X = - ^ a n d 

the initial and final conditions wn = 0 and mp = \ g j v e v = 0' a n d 

^ = \/p + lap. We thus get the solution 

Clearly, the sequence (nit) must be increasing for the solution to be 

valid. If, say, a is positive, we can rewrite the difference equation as 

„ / / f l -nij= m,- mi_l - Aa 

and therefore the sequence (m0, ..., mp) is increasing if, and only if, 

nh - m0 - MP ~ 1) > 0 

or 

- - lap + la > 0 
V 

Because the left-hand side of this inequality is decreasing in p and 
goes to -» in +°°, it defines an integer N such that the sequence 
increases if, and only if, p ^ N. 

In this example we have thus all the properties of the Crawford-
Sobel model. There always exists a noninformative equilibrium, 
which is the babbling equilibrium. When p = 1, the sender sends a 
message that does not depend on the state of the world and the 
receiver does not change his prior. 

The informativeness of the signal depends on the number p. In 
our example this number takes all values from 1 to an integer N, 

which increases when the absolute value of a decreases. There are 
therefore N more and more informative equilibria up to the N parti­
tion equilibria, that reveal more information. It can be show n that 
this N partition equilibrium Pareto-dorninates all others because it 
allows the agents to coordinate on a more appropriate action. The 
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closer the utilities (the smaller the | a\), the higher is N. The infor-

mativeness of the equilibrium is only limited by the divergence of 

the players'objectr 
it should be noted that the signal Is pureh extrinsic here It has no 

effect on the primitives ot the model. So it is another instance of 
u hat we call a cheap talk model. Instead of exchanging a signal in 
[0, 11, the players can perfectly well communicate by an entirely dif-

If code. What matters is that the receiver build up an interpreta­
tion scheme that reflects a preplay communication game. The 
minimum requirements are that the players share a language and 

ee on the description of the game. 

4.4 Other Examples 

I here are many products about which buyers cannot easily form an 
opinion on their reliability, litis is learned often only over time bj 
experience. A seller w ho wants to draw the attention of buyers to the 
reliability of his product can nevertheless announce that the product 
is covered by a warranty This policj brings costs due to the mainte­
nance and repair of the product, but these costs are low when the 
good is reliable. The underlying model therefore is formally analo­
gous to that of Spence,14 and the offering of warranties is a wax out 
of the Akerlof paradox studied at the beginning of this chapter. 
Recall that in the Cho-Kreps intuitive equilibrium, the sellers whose 
product is not reliable do not offer any warranty and the sellers 
whose product is reliable offer the minimum warranty that allows 
them to stand out among their competitors 

Another example of a signaling model a la Spence is due to 

Leland-Pyle (1977). They consider risk-averse entrepreneurs who 

end up financing risky projects. Each entrepreneur is privately 

informed of the expected return fi on his project. By holding equity 

14. This similarity can be seen by replacing the type 0 with the reliability of the 
product, the signal t with the characteristics of the warranty, and the wage W with 
the price of the good. 
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in the project, an entrepreneur increases his *v™» 

: ; : ; : : : ^ * . * 

Suppose that 11 journalist in the financial press has bullish insida 
information.on the profits of a firm but advises his readers**. 

^T'^ Tt^Z^ •****•!* »*£ 
Wdl drop, and he will be able to buy the shares al mUch I , , o s l 

and resell them once the firm's high profits are announced I his • ' 
nario can in fa< I be cast in the Crawford-Sobel model form I he to 
be-announ< ed profits ol the firm represent the state ol the world m 
the information published by the journalist (the sender) is the sign .1 
n. and the decision to sell y taken by the readers (the collective 

is the number of shares they sell I here are no limits u, the 
greed of the journalist; his objective is entirely contrary to what he 
tolK the readers because their losses will be Ins profits, The only 
equilibrium ol the game, as a result, will be noninfoi .native, with the 
s,n v j readers plac ing no trust at all in the journalist's recommend,. 
Hon. The only way a journalist can use his privileged information is 
bj wmetimes telling the truth so that he can establish a reputation 
for honesty. The journalist's struggle between greed and a desire to 
be credible will determine the quality of information that will be 
transmitted in equilibrium.15 

Yet another application of the cheap talk model is by Aghion-Tirole 
(1997). In this interesting variant, a manager and a worker are ini­

tially uninformed about the value of potential projects but can 
acquire information at some cost. By paying e, the manager (resp. the 

worker) is informed with probability pM(e) (resp. pw(e)). The values 
of projects differ for the two agents, as they derive different private 
benefits from them. At the beginning of the relationship, the right to 
choose which project will be implemented {tins formal authority) is 

allocated to either agent. Then they decide how much information to 

variant of this model is studied by Benabou-Laroque (1992). 
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acquire. If the agent who does not have formal authority receives 
some information, then he may communicate it to the other party. It 
may be, for instance, that the manager keeps formal authority but 
remains uninformed. Then, if there is enough congruence between 
their objective functions, the manager optimistically rubberstamps 
the recommendation of the worker, who is then said to have real 

authority. Aghion and Tirole use this model to study when formal 
authority should be delegated by the manager to the worker. 

4.5 The Informed Principal 

To conclude the discussion of signaling models, let us return to the 

informed Principal model. This model has a close connection to sig­

naling models because in both cases the party who moves first is 

informed. We saw in chapter 3 that when the private characteristic of 

the Principal does not directly concern the Agent, and the utilities are 

quasi-linear, the Principal has nothing to gain by revealing his type. 

In Spence's model, for instance, the private characteristic of the 

worker is his productivity, but it is a characteristic that influences the 

profits of the employer. An analogous model is that of the informed 

Principal with common values. The worker here acts as the Principal 

and the employer as the Agent. It is clearly important for the Princi­

pal that he can signal his type to the Agent. The game the two parties 

play is, however, not quite the same as the one we analyzed in this 

chapter because the signal (education) is chosen before the wage con­

tract is signed in Spence's model and after it is signed in the informed 

Principal model with common values. The analysis of the latter 

model can be found in Maskin-Tirole (1992). The least-cost separating 

equilibrium plays an important role in both cases: in Spence's model, 

it is the only intuitive equilibrium; in Maskin-Tirole, it is the lower 

bound (for the Pareto criterion) of the set of equilibrium allocations.16 

16. The set may be reduced to a singleton if the prior probability of the low type is 
high enough. r J 
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Exercises 

Exercise 4.1 

Show, by using figures, that the Spence model ha * 
separating equilibria: s t W o tyP6* of semi-

. Equilibria in which 0 chooses an education level e and * 
domizes between ex and a higher education level e 2 '*"" 

. Equilibria in which 02 chooses an education level ,, and B 
domizes between e2 and a lower education level ev

 l 

Exercise 4.2 

In Spence's model, show that all nerfp^ R. 

dix to exhibit appropriate supporting beliefs). 

Exercise 4.3 

Show that the "intuitive" criterion eliminates all semiseparating 
equilibria in Spence's model. 

Exercise 4.4 

Consider a variant of the Crawford-Sobel model in which there 
N senders; = 1, ..., M and one receiver, with utility functions 

are 

UR^'mi rnN) = Xuf(y/mi) 7 
/=1 

ere y is a 0-1 variable. The prior on m, is independently distrib­
uted as a uniform distribution on [0,1 + e]. 
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1. How does this fit the stag hunt example? (Hint: The receiver is the 

benevolent chief of the village, and y = 1 if and only if he has 

decided to send everybody hunting.) 

2. We saw in section 4.3.1 that it is reasonable to look for equilibria 

in which each sender i announces "yes" if, and only if, mi < m and 

"no" otherwise. Show that in any such equilibrium, there cannot be 

a switch from y = 1 to y = 0 if one villager changes his "no" to a 

"yes." 

3. Show that m must be equal to 1. 

4. {Slightly more difficult) Compute the equilibrium probability that 

all go hunting, and show that it converges to 1 as e becomes arbi­

trarily small. 
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5 Moral Hazard 

Well then, says 1, what's the use you learning to do right when it's troublesome to 
do right and ain't no trouble to do wrong, and the wages is just the same? I was 
stuck. 1 couldn 't answer that. So I reckoned I wouldn 't bother no more about it, but 
afterwards akvays do whichever come handiest at the time. 

—Mark Twain, Adi'entures of Huckleberry Finn1 

We speak of moral hazard when 

• the Agent takes a decision ("action") that affects his utility and 

that of the Principal; 

• the Principal only observes the "outcome," an imperfect signal of 

the action taken; 

• the action the Agent would choose spontaneously is not Pareto-

optimal. 

Because the action is unobservable, the Principal cannot force the 

Agent to choose an action that is Pareto-optimal. He can only influ­

ence the choice of action by the Agent by conditioning the Agent's 

utility to the only variable that is observable: the outcome. This in 

turn can only be done by giving the Agent a transfer that depends on 

the outcome. 

• Quoted by Holmstrom-Milgrom (1987). 
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Examples of moral hazard abound, and it is difficult to imagine an 
economic relationship that is not contaminated by this problem.2 If a 

perfect relationship could exist, the Principal would be able to 
observe all the decision variables of the Agent that relate to his util­
ity; this would be extremely costly in terms of supervisory measures. 

Moral hazard is present everywhere within firms, since employ­
ers rarely can control all decisions of their employees. The term effort 
is often used to designate the employee inputs that are not directly 
observable, the employer can only base wages on production or 
some other observable variable that induces employees not to shirk. 
This term effort is confusing in that it suggests that moral hazard in 
firms consists only in employees avoiding work. However, moral 
hazard exists as soon as the objectives of the parties differ. A good 
example is the relationships between shareholders and managers. 
Because the managers are autonomous agents, they will have objec­
tives that are not necessarily the same as those of the shareholders 
(who above all want the firm's value to be maximized). 

In the area of property insurance, the moral hazard is due to an 
insurer not being able to observe the precautions against theft, fire, 
and so forth, of the insured despite the positive effects of such effort 
on the insurer's profits. 

In service activities, moral hazard is present where the effort of the 
service provider bears on the outcome of a task. Simple examples 
include the relationship between a car-owner and his mechanic, or 
between a patient and his doctor. 

Last, in the economics of development, moral hazard is often 
studied to describe the relationships between landowners and their 
farmers. In sharecropping, for example, agreements stipulate that 
the harvest will be shared between both parties, thus making it 
important for the landlord to get the farmer to put in effort. 

2- The moral hazard model actually is often called the "agency problem" and iden­
tified with the Principal-Agent model. 
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The first-best situation is therefore defined by the situation where 
the Principal can observe every action of the Agent Then h 
rcommend that the Agent choose the most efficient action "and'the 
wages that provide for optimal risk sharing. It is often assumed that 
in these models the Principal is risk-neutral; for instance the Princi 
pal faces many independent risks and thus can diversify the risks 
associated to his relationship with the Agent.4 In contrast, the Agent 
normally exhibits risk-aversion (it is more difficult for him to diver­
sify his risks). Optimal risk sharing then requires that the Principal 
perfectly ensure the Agent by paying him a constant wage and by 
bearing all risks involved in their common activity. 

In the second-best situation the Principal can only observe a vari­
able correlated with the Agent's action: the outcome. If the Principal 
is risk-neutral, the first-best optimum consists in giving the Agent a 
constant wage. In second-best circumstances this will tempt the 
Agent to choose selfishly the action that is the least costly for him, 
and in general, this is not optimal.5 Solving the moral hazard prob­
lem thus implies that the Principal offers the Agent a contract with 
trade-offs between risk sharing and incentives: 

• Risk sharing so that the Agent's wage do not depend too heavily 
on the outcome. 

• Incentives so that the Principal can base the Agent's wage on the 

outcome. 

Now, when the Agent is risk-neutral, this trade-off is nonexistent. 
The Agent does not mind bearing all the risk, so the issue of risk-
sharing is irrelevant. We sometimes say in that case that the moral 
hazard problem is solved by "selling the firm to the Agent." How­
ever, this case has little practical interest. 

3- Or, equivalently, the Principal can fine the Agent if he does not choose the effi­
cient action. 
4- This is by no means always the most natural assumption, as the patient-doctor 
relationship shows. However, it is not crucial to the analysis. 
5- This is the meaning of the Huckleberry Finn quotation that opens this chapter 
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5.1 A Simple Example 

We start with the simplest framework: a two action, two outcome 
model. The Agent can choose between working, a = 1, and not 
working, a = 0. The cost of action a is normalized to a so that the 
Agent's utility, if he gets wage w and chooses action a, is u{w) ~ a, 
where u is strictly concave. The Principal can only observe whether 
the Agent succeeds or fails at his task. If the Agent works, his prob­
ability of succeeding is P and the Principal gets a payoff xs. If he does 
not work, the probability of success falls to p < P, and the Principal's 
payoff is xF < xs. 

In the more interesting case the Principal must induce the Agent 
to work. Then he has to give the Agent wages ws (in case of success) 
and wF (in case of failure) such that the Agent's effort is rewarded: 

Pu(ws) + (1 - P)u{wF) - 1 ^ pu(ws) + (1 - p)u(wF) 

so the incentive constraint is 

(P - p)(u(ws) - u(wF)) > 1 

Because the Principal must (obviously) pay a higher wage when the 
Agent works, the difference (ws - wF) increases as P gets closer to p. 
As this occurs, it becomes difficult to distinguish a worker from a 
nonworker. Then we say that the incentive to work must become 
more high powered. 

We must also take into account an individual rationality con­
straint. By this we mean that the Agent must find it worthwhile to 
work rather than to quit and get his outside option jj.. This gives 

P«K) + (1 - P)u(zvF) - 1 > U 

This inequality must clearly be an equality. Otherwise, the Princi­
pal can decrease both u(ws) and u(wF) by the same small transfer e, 
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which would not affect the incentive constraint and would increase 
h i s own utility, since (assuming he is risk-neutral) this is 

?(XS - ws) + (1 - P)(xF - ivr) 

Proving that the incentive constraint is an equality is slightly more 
involved If it were a strict inequality, we could subtract 
(1 - P)e/u{ws) from ws and add Pa/u'(wF) to ivF. The incentive con­
straint would still hold for £ small. By construction, u(ws) would 
decrease by (1 - P)e and u(wF) would increase by PE so that the indi­
vidual rationality constraint would still be satisfied. Moreover the 
wage bill Pws + (1 - P)wF of the Principal would decrease by 
P(l - P)e(l/u'(ws) - l/u'(wF)), which is positive because wF<ws 

and u is strictly concave.6 

Because both inequalities are linear equalities in (u(tUF), u{ws)) 
and we have just two unknowns, we can easily solve for u(ws) and 
u{wF). This gives 

u(wF) = U-
P-p 
1 -u(ws) = U + — £ 
p-p 

from which we can proceed to compute the Principal's expected 
utility 

W, = P(xs - ws) + (1 - P)(xF - wF) 

However, this is a very special case. We only relied on the maximiza­
tion of W1 to prove that both constraints are binding at the optimum. 

It might well be that the Principal finds it too costly to get the 
Agent to work and decides to let him shirk instead. In this case he 

6- More diagram-oriented readers can also easily see this by drawing a curve in the 
(«(K>F),U(U>S)) plane. 



124 
Chapter 5 

will give the Agent a constant wage ws = wF - w such that u{w) 

= U, and he will get an expected utility 

W0 = pxs + (1 - p)xF - w 

The difference between W0 and W, can then be rewritten as 

W1 - W0 = (P - 0(*s - XF) + w - Pws ~ <* ~ P)WF 

Since the wages do not depend on xs and xF, it appears that if success 

is much more attractive than failure for the Principal (xs - xF is high), 

he will choose to get the Agent to work. (The reader is asked in exer­

cise 5.1 to prove that then xs - ws> xF - wF at the optimum, with the 

surplus from success shared between the Agent and the Principal.) 

5.2 The Standard Model 

We consider here the standard model in a discrete version. The 
Agent can choose between n possible actions: av...,an. These 
actions produce one among m outcomes, which we denote xv ..., xm. 

The outcome a priori is a signal that brings information on the 
action the Agent chooses. To simplify matters, we identify it as sur­
plus from the Principal-Agent relationship.7 (We will return to this 
assumption in section 5.3.4.) 

The stochastic relationship between the chosen action and the out­
come is often called a "technology." The idea here is that when the 
Agent chooses action av the Principal observes outcome X; with a 
probability p,; that is positive.8 Because the only variable that is pub-

7. For instance, in an employer-employee relationship, a will be the effort and x the 
resulting production or profit. 
8. If some of the probabilities ptj were zero, the Principal could use this information to 
exclude some actions. Suppose that action a, is the first-best optimal action and that 
Pi} - 0 for some/. The Principal then can fine the Agent heavily when the outcome is 
Xf, since the fact that he observes Xj signals that the Agent did not choose the optimum 
action a,. This type of strategy will even allow the Principal to implement the first-best: 
ii moreover pkj > 0 for all k * i, then the choice of any ak other than a{ will expose the 
Agent to a large fine, thus effectively deterring him from deviating. This was noted 
early on by Mirrlees (1975, published 1999); it is the reason why I exclude this case. 
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licly observed is the outcome, contracts must take thP f 
that depends on the outcome. If the Prinrmai u °f a Wa&e 

, . he wi,. pay the Agent a wage Wj and k e ^ X T * °Uta>™ 

A general specification for the Agent's von 2 ' 

stern utility function would be u{w,a). However theT"'^™' 

would then affect the agent's preferences toward risk whin " u 

complicate the analysis.' b e f o r e we will ^ 1 ^ ^ 

utility >s separable m mcome and action. Moreover it is always L i 

ble to renormahze the actions so that their marginal cost is constant" 

Thus ,n the standard model we take the Agent's utility function tobe 

u(ic) - a 

where // is increasing and concave. We can assume that the Principal 
is risk-neutral, as done in most of the literature. The Agent's von 
Neumann-Morgenstern utility function then is 

x - w 

5.2.1 The Agent's Program 

When the Principal offers the Agent a contract wjf the Agent chooses 
his action by solving the following program: 

/ m 

If the Agent chooses au then the (n - 1) incentive constraints 

* m 

I PijU(wj) -at>X PkjU(u>j) ~ % VCk) 

must hold for k = l , . . . , n and k*i. 

. The
#

n i[ m a y be optimal for the Principal to give higher wages if it reduces the 
gent's disutility of effort, so that the individual rationality constraint may not be 

bln*ng at the optimum. 
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We can assume that the Agent will accept the contract only if j t 

gives him a utility no smaller than some U, which represents the 
utility the Agent can obtain by breaking his relationship with the 
Principal for his next-best opportunity. The participation constraint 
(the individual rationality constraint) can in this case be written 

m 

ZpMwfl-Oi*!! (IR) 
/ - i 

if the Agent's preferred action is at. 

5.2.2 The Principal's Program 

The Principal should choose the contract wv ..., wm that maximizes 

his expected utility, while taking into account the consequences of 

this contract on the Agent's decision: 

(w'l 

under 

(ICk) k = l,...,nandk±i (Ak) 
(IR) (M) I 

where a,- is the action chosen at the optimum and the numbers in 

parentheses represent the (nonnegative) multipliers associated with 

the constraints. The maximization therefore is with respect to wages 

(wj) and action av which the Principal indirectly controls. 

If we fix Of, the Lagrangian of the maximization problem is 

m n / m 

*{v>. K M) = 1 Pfy - wj) + £ A* £ PijUty) - at 
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p.fferentiating it with respect to Wj a n d r e g r o u p i n g t e r m s ^ 

At the first-best, we would get the efficient risk-sharin «, 
of marginal utilities of the Principal and the Aee 7 ^ 

stent, which implies that the wage itself is constant: ^ * C ° n " 

1 

«'(Wy) 

where /^ is chosen so that the constraint {IR) i s an equality. 

The difference between the two equations (ICk) and (IR) above 
comes from the fact that some multipliers lk are positive That is 
incentive constraints may be active, so some actions ak give the 
Agent the same expected utility as a. In equilibrium at least one of 
the Xk must be positive (otherwise, we can neglect the incentive con­
straints, and the moral hazard problem will be moot); w- then 
depends on; through the terms pJpv. 

The pkj/Pij terms play a fundamental role in the analysis of moral 
hazard. They can be interpreted by analogy with mathematical sta­
tistics. The Principal's problem likewise consists, in part, of inferring 
the action the Agent will choose given the observed outcome. In sta­
tistical terms the Principal must estimate the "parameter" a from the 
observation of "sample" x. This parameter can be obtained by way 
of the maximum likelihood estimator, which is the ak such that k 
maximizes the probability pkj. The next two statements are therefore 
equivalent: 

0, is the maximum likelihood estimator of a given xy 

and 
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u ^P n Iv quantities can be called "likelihood 
Rv analogy then the pk/Fi; 4 

« • and because of this analogy we can interpret equation (£). 
F* the optimal action a, Because all multipliers Xt are nonnegatn e 

^ the function ! /« ' is increasing, the w a g e ^ associated with out-
l e / will be higher when a greater number of likelihood ratios 
T/v L smaller than 1. This wage is therefore higher when „, l s the 
maximum likelihood estimator of a given x, Because the wage »( 

depends on a weighted sum of the likelihood rahos, this argument is, 
. ,;,+i<jlit10 Still the intuition is important and basically of course, not airngi"- ^ t u t . 

right: the Principal will give the Agent a high wage when he observes 
an outcome from which he can infer that the action taken was the 
optimal one; however, he will give the Agent a low wage if the out­
come shows it unlikely that the Agent chose the optimal action. 

Before we study the properties of the optimal contract, let us con­

sider briefly an alternative approach popularized by Grossman-

Hart (1983). They solve the Principal's maximization program in 

two stages: 

• For any action a„ they minimize the cost to implement it for the 

Principal. This amounts to minimizing the wage bill 

in 

1 PiFi 

under the incentive constraints and the participation constraint. 

• They then choose the action that maximizes the difference between 

the expected benefit from action ait or 

m 

I Pijxi 

and the cost-minimizing wage bill. 

10. The reader should check that with only two actions (» = 2), the argument holds 
as given in the text. 
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The Grossman-Hart approach is clearly equivalent to the approach 
we used above, and in some ways it may be more enlightening 

5.2.3 Properties of the Optimal Contract 

Let *! < ... < xm and ax< ... < an. We are interested here in how 
the wage Wj depends on the outcome ;. We know that when the 
action is observable and the Principal is risk-neutral, w is constant. 
If, more generally, the Principal is risk-averse with a concave von 
Neumann-Morgenstern utility function v, then the ratios of mar­
ginal utilities 

v'jXj - wj) 

are independent of/' at the first-best wage.11 We see that the first-best 
wage w. must be an increasing function of/. This property is likewise 
desirable for the second-best wage schedule. It is natural for the 
wage to be higher when the surplus to be shared is higher. Recall 
that we obtained such a result for the two-action, two-outcome 
example in section 5.1. 

It turns out that, it is only possible to show that in general (see 

Grossman-Hart 1983), 

1. Wj cannot be uniformly decreasing in /, 

2. neither can (X: — w), 

3. 3(/, /) , Wj > w, and Xj - w} > xx - V)v 

The proofs are fairly complex and will be omitted here. However, 
these results are obviously far removed from what commen sense 
tells us. For instance, they do not exclude an optimal wage schedule 
in which wages decrease in part of the range. The usefulness of these 
three results for our purpose appears when there are only two 

11. This is known in the literature as Borch's rule. 
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jible outcomes: success or failure. The optimal wage schedule 

can then be written as 

w1 = zv 
|w 2 = iv + s(x2 - *i) 

The Agent receives a basis wage w and a bonus proportional to the 
increase in the surplus if he accepts the contract. Result 3 above 
shows that the bonus rate s must satisfy 0 < s =S 1: wages increase 
with the outcome but not so fast that they exhaust the whole 
increase in the surplus. 

When there are more than two outcomes, we cannot obtain more 
positive results without adding structure to the technology that pro­
duces the outcome (the probabilities /?,y). The outcome has a dual 
role in this model: it represents the global surplus to be shared, and 
it also signals to the Principal the action taken by the Agent. The 
shape of the solution is therefore determined by the properties of 
this signal which is what we already saw in our study of likelihood 
ratios. 

Let us return to (E), the equation that defines the optimal contract: 

1 -,+ i Ji-^ 
As the left-hand side of (E) increases in wjf Wj will increase in/ if, and 
only if, the right-hand side of (E) increases in ; as well. In other 
words, we need to assume that a high action increases the probabil­
ity of getting a high outcome at least as much as it increases the 
probability of getting a low outcome: 

Vk<i,VKj, ^ > ^ 
Pu Pki 

This condition is called the monotone likelihood ratio condition (MLRC). 

It amounts to assuming that for all k < i, the likelihood ratio pr/pkj 
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increases with the outcome ;. Excercise 5 6 asks you 
MLRC implies another commonly used comparison J ^ T ** ' 
distributions, first-order stochastic taSTXJT 1 % 

n a n c e just states that as . increases, the cumulative d.slibuTon 
function of outcomes moves to the right: however one define 

good outcome, the probability of a good outcome increases in a 

Since the multipliers Xk are nonnegative, MLRC allows us to state 
that the Xk(l - Pkj/Pij) terms in (£) are increasing in; if jfc < t a n d 

decreasing otherwise. We are done if we can find a condition 
whereby the multipliers Xk are all zero when jfc is greater than i that 
is, when the only active incentive constraints are those that prevent 
the Agent from choosing actions less costly than the optimal action 

Note that if i = n, in which case the Principal wants to implement 
the most costly action, then we are indeed done. When there are two 
possible actions—when the choice is work or not work and the Prin­
cipal wants the Agent to work- the MLRC is enough to ensure that 
the wage increases in the outcome. In the general case Grossman 
and Hart proposed12 the convexity of the distribution function condition 
(CDFC),13 the cumulative distribution function of the outcome 
should be convex in a on {av ..., an). More precisely, for i <j < k and 
AG [0,1] such that 

fly = Xa{ + ( 1 - l)ak 

the CDFC says that 

V / = 1 *. fy*APfl + fl-A)PH 

One rough interpretation of this new condition is that returns to the 

action are stochastically decreasing, but this must be taken with a bit 

12. Both (MLRC) and (CDFC) appear in earlier work by Mirrlees. 
13. Some authors call this a concavity of the distribution function condition, meaning 
that the Accumulated distribution function (one minus the cumulative distribution 
function) is concave. 
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of skepticism. CDFC really has no clear economic interpretation, 
and its validity is much more doubtful than that of MLRC.14 The 
main appeal of CDFC is that it allows us to obtain the result we seek, 
as we will now show. 

Let Oj be the optimal action. It is not difficult to see that there must 
exist a / < / such that the multiplier A, is positive. If all ).k were zero 
for A: < i, then the optimal wage would be the same if the choice of 
possible actions were restricted to A = [a,, ..., an). But the optimal 
wage would then be constant, since a; is the least costly action in A 
Now a constant wage can only implement action al and not a in the 
global problem, so this conclusion makes no sense. 

Consider the problem in which the Agent is restricted to choosing 
an action in {au ..., at), and let w be the optimal wage. In this prob­
lem Oj is the costliest action and MLRC therefore implies that w 
increases in ;'. We will show that w stays optimal if we allow the 
Agent to choose from the unrestricted set of actions \a , ...,a\ 
Assume, to the contrary, that there exists a k > i such that the Agent 
prefers to choose ak: 

'" m 

lPklu(wl)-ak>Xpl,u(w,)-nl 

and let / be the index of an action less costly than at and whose asso­
ciated multiplier Ak is nonzero so that 
in m 

X Ptjuiwj) - 4 = £ pijU(wj) - a 
7-1 7 - 1 

There exists a X G [0,1] such that 

n, = Xak + (1 - X)a{ 

outcomes given by " l " H y d i f f e r e n t m ' d e l i n which there is a continuous set of 
bution function f. Th " " *' ^ ^ * 'S S ° m e r a n d o m n o i s e w i t h probability distri-
•ent here to f\Jnt, ^ J 6 * 1 ™

 t 0 t h e a c t i o n a r e constant; however, CDFC is equiva-
"eing nondecreasing, not a very appealing property. 
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We can therefore apply CDFC: 

V/ = l , . . . ,m, Pij^XPy + d -X)Ptj 

We deduce from this 

m 1 

TPijufrfl - «,• - £ Py("(^) - u(w;;.+1)) + „ (a ; j - fl. 

A/i-i 

+ (1 - A)f X?/y(M(w;;.) - M(wy+1)) + M ( W J - fl/ 

which is absurd by the definition of ak and fl,. The wage schedule w 

therefore is the optimal solution in the global problem, and this con­

cludes our proof because zu is increasing. 

The general logic that should be drawn from this analysis is that 

the structure of the simplest moral hazard problem is already very 

rich and that it is therefore dangerous to trust one's intuition too 

much. It is not necessarily true, for instance, that the second-best 

optimal action is less costly for the Agent than the first-best optimal 

action. It may not be true either that the expected profit of the Prin­

cipal increases as the Agent becomes more "productive" (in the 

sense of first-order stochastic dominance) whatever action he 

chooses.15 The literature contains many negative results of this sort. 

15. Exercise 5.3 provides a counterexample. 
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5.3 Extensions 

5.3.1 Informativeness and Second-Best Loss 

Since the Principal must provide incentives to the Agent, his 

expected profit is lower in the second-best than it is in the first-best. 

We will show here that this loss in utility is greater when the tech­

nology is less informative. 

Consider an (m, m) stochastic matrix16 R, and assume that the 

probabilities p transform into numbers p' such that 

m 

v<>h Pa = T RjkP* 
k=l 

Here the p' also are probabilities, since each column of R sums to 

one. In addition we let the outcomes x transform into x' so that the 

expected surplus stays constant for each action:17 

m m 

Vi> Tpijxj = Y.p.jxJ 

We can understand the purpose of this transformation by imagining 

the following two-step experiment: The Principal does not observe 

the outcome xk obtained according to the distribution p{j given the 

choice of an action av but only an outcome xj that is obtained by 

drawing from the outcomes x' with the probability distribution 

associated with the kth column of R. This transformation of the prob­

abilities corresponds to less information (a coarsening) in the sense of 

Blackwell. This is because, in statistical terms, inferences drawn on a 

after observing x' with probabilities p' will be less precise than those 

drawn from observing x when the probabilities are p. 

16. A stochastic matrix is a square matrix such that all of its elements are nonnega-
tive and the elements in each column sum to 1. 
17.^This can be achieved by letting x1 = Sx, where 5 is the inverse of the transpose 
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Let a{ be an action and w' a wage schedule that implements it in 
m e (;/, V) model. Now recall the (p,x) model, and consider the 
wage schedule w given by 

m 

u(wj) = X Rk}u(w'k) 

Going back to the two-step experiment invoked above, it is easy to 
see that this wage schedule implements a, in the (p, x) model. We 
have indeed 

m m m 

i=\ / - I fc-1 

m 

= X p'iku(wk) 
k=\ 

This implementation is less costly for the Principal than that 

obtained by w' in the (/?', x') model, since it imposes less risk to the 

(risk-averse) Agent. This result, which appears in both Gjesdal 

(1982) and Grossman-Hart (1983), shows that the optimal action can 

be implemented at less cost in the more informative model. The 

problem is that the relation "being more informative than" is only a 

very partial order in the set of possible technologies, so this conclu­

sion has little practical interest. It does allow us nevertheless to 

exhibit another of the many links between the moral hazard prob­

lem and the principles of statistical inference. 

5.3.2 A Continuum of Actions 

If the values of a are used in a continuous interval [a, a], the incen­

tive constraints will be too numerous to be tractable. One must then 

take the "first-order approach," which consists in neglecting all non­

local incentive constraints. 
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Let Pj(a) be the probability of x, given a; the Agent maximizes 

in a. The first-order condition then is 

X P;(«)M(W,-) = i 

The first-order approach consists in neglecting all other conditions. 

The local second-order condition 

m 
X pJ(«)«(Wy) * 0 
7=1 

is ignored along with the global conditions. 
Models with a continuous set of actions were among the first con­

sidered in the literature. The question of the validity of the first-
order approach was featured prominently from Mirrlees (1999) on, 
despite it being over only a technical point. Rogerson (1985) showed 
that this approach is valid under CDFC and MLRC, and that the 
wage then automatically increases with the outcome. Recall, how­
ever, that CDFC is not an entirely satisfactory condition; Jewitt 
(1988) proposed using weaker conditions on technology at the cost 
of requiring new conditions on the Agent's utility function. 

Nevertheless, the use of a continuous-action model with two out­
comes—success and failure, for instance—can make some compara­
tive statics easier to prove. Exercises 5.4 and 5.5 give two examples 
that extend this discussion; see also sections 5.3.3 and 5.3.8. 

5.3.3 The Limited Liability Model 

The focus of this chapter on moral hazard has been so far the model 
where the Agent is risk-averse and the Principal faces a trade-off 
between incentives and risk-sharing. A popular alternative is the 
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model where the Agent is risk-neutral, but there is a limit to the pun­
ishments the principal can inflict on the Agent when the outcom-
bad. There are many good reasons for having limits; the obvious rea­
son is that the Agent cannot face monetary fines that exceed his 
wealth.18 

The limited liability model thus brings an interesting twist to the 
continuous-action, two-outcome model. Here we denote (ws, wF) 
the wages of the Agent and (xs, xF) the gross surplus, and assume 
that the probability of success p(a) is increasing and concave. Then 
(as shown in exercise 5.4) the first-order approach applies and the 
Agent chooses the action such that 

p'{a)(ws - wF) = 1 

In addition to the individual rationality constraint 

p(a)ws + (1 - p(a))wF - a>U 

the Agent now also has a limited liability constraint of the form wF > w 
(by which we can infer zvs > w due to the incentive constraint). 

Recall that the incentive constraint is ws = wF + 1 /p'(a); substituted 
into the individual rationality constraint, it yields wF s= G(fl), where 

cw-n + . - t f * 
p'(a) 

is a decreasing function. The Principal's expected utility can thus be 

written as (F(«) - wF), where 

F(«) = p(a)xs + (1 - p(a))xF ~ * 

This expression is then maximized over (a, wF) under the individual 

rationality constraint and the incentive constraint. These two con­

straints reduce to 

ivF > max (w,G{a)) 

^ " i n n e s (1990) introduced this model to study a financial contracting problem 
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This may look complicated, but the solution is quite simple. For sim­

plicity, we take the generic case where F has a unique maximum in 

a and'(F - G) has a unique maximum in a2. Note that by defintion, 

p'faAfa - xr) = 1 and a2 is the first-best effort. There are three pos­

sible constrained maxima: 

• a = av zuF = WJ with G{ax) < w 

• wF = G(a) = w 

• a = a2,wF = G(a2), with G(a2) > w 

Because G is decreasing, it is easy to see that al < a2, and the second 

case above happens for G{a2) <w< G(a{). 

To sum up, when w is small, the limited liability constraint does 

not bind and the optimal effort is of course the first best effort a2, 

since the Agent is risk-neutral. As w increases, we enter a regime 

where the optimal effort G_1(w;) decreases, and for w large, the opti­

mal effort settles in ay In the first two regimes, the Agent has no 

rent: his expected utility is U. In the third regime, he gets a rent 

(w - G{a2)). By symmetry, the expected utility of the Principal is 

not affected by the limited liability constraint in the first regime; it 

decreases in the third regime, where it is (f (a2) - w). The reader 

can prove as an exercise that if F is increasing to the left of a2 (e.g., 

if F is quasi-concave), then the expected utility of the Principal 

(F(G~l(w)) - w) also decreases in the second regime. 

*5.3.4 An Infinity of Outcomes 

Several studies have used an infinite (usually continuous) set of out­

comes. Most do not prove the existence of an optimum, since it is a 

tricky problem to do so in this case. The contract w must be treated 

as a function. Since the Principal maximizes with respect to w, he 

must choose a function in a functional space. So the problem belongs 

o functional analysis. It only has a solution, in general, if the objec­

tive is continuous in w (which raises no particular problem) and if 
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the space in which the function w is chosen is compact. Unfortu­

nately, most natural function spaces are not compact, so one i 

impose restrictions on the shape of the contracts to keep a compact 

functional space (Page 1987). These restrictions (e.g., the equicontinu-

ity of admissible w functions), however, cannot be easily intuited. 

5.3.5 The Multisignal Case 

The Principal may not only observe the outcome x that measures the 

global surplus but also a signal y that has no intrinsic economic 

value but brings information on a. For instance, the employer may 

observe the production of his employees through reports from mid­

dle management. How should the employer use this information? 

Simple calculations show that (E) transforms into 

1 " Vv V(;,'y)' ^vrM+ £ h i—* 
l / V ) *-l,Wi Vy. , 

which characterizes the way the wage w depends on / and y (here p1 

denotes the probability of the pair (Xj, y) given at). The Principal will 

therefore condition the wage on y if and only if pj!-/pjj depends on y, 

but in statistical terms, that is exactly the definition for .r not being a 

sufficient statistic of (x, y) for rt.19 

This property underlies the sufficient statistic theorem (see Holm-

strom 1979): the Principal conditions the wage on a sufficient statis­

tic for all the signals he receives, whether extrinsic or intrinsic. Thus 

the conscientious employer will condition wages on middle man­

agement reports as well as on production if the reports convey i 

mation on the Agent's action that is not evident in his output. Kim 

(1995) generalizes both this result and the informativeness result of 

section 5.3.1 in the context of noninclusive information systems. 

I n t u i t i v e l y this just means that thTpa.r (v. y) contains more information on 
than .Y alone. 
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netimes the PrincipaJ can obtain information on a by auditing 
Vgenfs action at .1 cost. Dye (1986) studies the optimal monitor-
strategy when MLRC and CDFC both hold, so that the optimal 
, s, hedule keeps increasing. He shows that if auditing brings 
act information on a, the optimal monitoring policy consists in 

only auditing the Agent when his performance is lower than a 

threshold. 

5.3.6 Imperfect Performance Measurement 

It is often not the case that the Principal's payoff and the signal that 

he observes coincide, as was assumed thus tar. The Principal often 

observes a signal that is imperfectly correlated with the surplus 

from the relationship. Baker (1992) shows that the optimal incen­

tives then are lower-powered and implement less effort than when 

signal and surplus coincide. The reader is asked to prove this result 

in a more general model in exercise 5.5. 

5.3.7 Models with Several Agents 

In practice, there are many interactions between the Principal and 
the Agent that are difficult to isolate. For instance, the Principal may 
have a group of employees that work together as a team. In team­
work often only the team's global production can be measured, and 
the Agent's wage depends on global production. This clearly may 
induce Agents to free-ride on the effort of others, as proved by 
Holmstrom (1982). More generally, if a worker's effort additionally 
influences the production of some of his colleagues, then his wage 
should depend on their production as well as his own if individual 
production can be observed (Mookherjee 1984). This is a simple con­
sequence of the sufficient statistic theorem. 

Now consider a group of employees who accomplish similar 
tasks such that the production of each Agent depends on his effort, a 
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noise that is common to all employees, and an idiosyncratic r* 
Imagine, for instance, a group of workers who work in n 
shop on partly independent tasks and who use the same machine 
tools: sellers of the same product to different clients also fi 
ture. The sufficient statistic theorem then shows that the wagi 
each employee should depend on the productions of all, 
observing all productions allows the employer to reduce uncer­
tainty as to the common noise. As observed by Holmstrom (1982), 
competition among Agents here only has value insofar as it brings 
better information to the Principal: it would be useless if there was 
no common noise. 

One frequently observes (especially in firms that cely on internal 

promotion) various practices of relative evaluation of employees 

that condition their utility on the way they are ranked by their supe­

riors. This may be the only solution for the Principal if more specific 

measures of output are unverifiable. Green-Stokey (1983) have 

shown that in the model of the previous paragraph, these "tourna­

ments" arc almost optimal when there are many employees doing 

the same task; then the ranks of employees effectively become an 

almost sufficient statistic of their productions when employees are 

very numerous. 
A slightly different model is that where Agents have tasks that are 

affected by independent observational noises, where each Agent 
may spend some of his time helping colleagues accomplish their 
tasks. If the wage given to Agent i only depends on how he accom­
plishes his own task, then he will not be induced to help his 
leagues. However, it may be that the optimal contract consists m 
getting Agents to help each other. Itoh (1991) studies how the Prin­
cipal can create the conditions for teamwork in such a model. 

In all these results we assume that Agents adopt strategies that 

form a Nash equilibrium: Our conclusions would change drastically 

in situations where the Agents coordinate their actions, and 

adopt collusive strategies. 
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8 Models with Several Principals 

Agents' actions often affect many Principals whose preferences con­
flict. Think of firms regulated or taxed by several government bod­
ies or service workers who perform tasks for several employers. We 
study here what Bernheim-Whinston (1986) call the "common 
agency" model. The model also goes under the name "multiprinci-

pals with symmetric information."20 

For simplicity, we study here a continuous-action, two-outcome 

model with one Agent and two Principals Px and Py. When he 

expends effort a, the Agent succeeds in a project with probability p(a) 

and fails with probability 1 - p(a). Both Principals are risk-neutral; 

success (resp. failure) yields .vs (resp. xF) to Px and ys (resp. yF) to P . 

If, for instance, xs - xF > ys - yF, then Px is quicker than Py in 

extracting effort from the Agent because success has more value for 

him. 

We assume that the Principals play cooperatively, so that they 

jointly get S = xs + ys from success and F = xF + yF from failure. 

Exercise 5.4 shows that they choose to implement an effort level a* 
that is an increasing function of (S - F): 

a* = G(S - F) 

In addition exercise 5.5 shows that they jointly offer a wage schedule 

(»s (0 , K>F(**)) 

where ws (resp. wF) is an increasing (resp. decreasing) function. 

Bernheim-Whinston (1986) show that except in special cases (when 

the Agent is risk-neutral), the Nash equilibrium of the game in 

which each Principal simultaneously offers a wage schedule to the 

Agent has a different outcome. In our model we go one step further: 

the Nash equilibrium always implements a lower level of effort. 

opposed to the asymmetric information case studied in chapter 3. 
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We let Py offer the wage schedule {ws
yt w

F
y) to the Agent. In a Nash 

equilibrium, Px must offer a wage schedule (wf, zvF) that is a best 
response, given that the Agent optimally chooses his effort a. We 
then have 

+ w* = ws{a) 

|wj + w* = ivF{a) 

Since Px maximizes his expected utility 

p(a)(xs - n $ + (1 - p(a))(xF - wl) 

we rewrite this as 

p(a)(xs - ws(a) + wp + (1 - p(a))(xF - wF(a) + wF
y) 

The reader is encouraged to apply exercise 5.4 to prove that at the 
optimum the Principal Px gets ax = G(xs + Wy - xF - w¥). By simi­
lar reasoning, Py gets ay = G(ys + wx — yF - wx). At the Nash equi­
librium, we have/7x = ay = a. This has two interesting consequences: 

• Since G is increasing, its arguments in the two equations are equal. 

Rearranging gives 

(xs - xF) - {ws
x - wF

x) = (ys - yF) ~ (ws
y - wF

y) 

This means that Principal Px gets the same increase in net surplus 

from a success as Principal Py does, even if success is more or less 

valuable to him than to Py. 

• At the Nash equilibrium, ws
x - wl < xs - xF and ws

y - w
F

v 

ys - yF (otherwise, the Principals do not care for success). But this 

implies that 
xs + tf-xF-wF<xs + ys-xF-yF = S-F 

if the increasing function G is applied to both sides of the equation, 

a < a*. The Principals thus implement a lower level of effort when 

they act noncooperatively. 
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I he intuition for this second result is simple. Because the Agent 
a, tfl on the basis of the sum of the incentives provided by the two 
I>,-„„ ,, ,,|s, these incentives have the character of a public good. In a 
noncooperative equilibrium the incentives are undersupplied. 

•5.3.9 The Robustness of Contracts 

We have seen that the optimal wage schedule depends on the likeli­
hood ratios, which are relatively fine characteristics of the technol­
ogy. Moreover the sufficient statistic theorem indicates that the 
optimal wage should depend on all signals that bring information 
on the action chosen by the Agent. Theory therefore suggests that 
the optimal incentive contract in moral hazard problems should be a 
priori a complex nonlinear function of a fairly large number of vari­
ables. This prediction does not accord well with experience, how­
ever. Real-life contracts usually take a simple form. They are often 
linear and depend on only a small number of variables. 

Holmstrom-Milgrorn (1987) tried to break from this deadlock by 
suggesting that simple (linear) contracts are more robust than com­
plex contracts.21 They suggest that the complexity of the optima] 
contract in theoretical models is due to the use of highly restricted 
production technology by the Agent. If the Agent is given more free­
dom, the optimal contract is simpler. This is the essence oi the argu­
ment in this section; the rest of the discussion is mathematically 
sophisticated and can be skipped. 

To illustrate their argument, Holmstrom-Milgrorn consider a con­
tinuous-time model in which the outcome is produced by a diffu­
sion process whose trend the Agent can control 

dxt = a,dt + a dW, 

i Robustness here refers to the ability to stay (at least approximately) optimal 
when the environment changes. 
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where W is a Brownian motion22 and t 6 [0,1]. The choice space of 
the Agent is therefore rich, and his action at every time t depends on 
v,. The utilities of both parties only depend on the final outcom. 
The utility of the Agent is 

where u is the CARA23 function 

u{x) = -r b 

The Principal is risk-neutral. The authors then show that the optimal 
contract is linear in xv 

A way to understand this result is to recognize that the Brownian 
motion is the continuous-time limit of a discrete-time binomial 
process, where the outcome can increase or decrease by a fixed amount 
in each period and the Agent controls the probabilities of these two 
changes. As the utility function of the Agent is CARA and therefore 
exhibits no wealth effect, it can be shown that the optimal contract con­
sists in repeating the contract that is optimal in each period. But this 
contract gives a fixed wage to the Agent, plus a bonus if the outcome 
increased. The optimal contract for the whole period therefore must 
give the Agent a bonus that depends linearly on the number of periods 
in which the outcome increased. The result of Holmstrom-Milgrom 
clearly obtains by passing to the continuous-time limit. 

In its strongest form this result depends on rather special as­
sumptions; however, it does suggest that if the Principal only has 
imperfect knowledge of the technology, the optimal contract can 
take a fairly simple form. 

22. Recall that a Brownian motion is a set of random variables indexed by t £ [0,1] 
such that each W, follows a reduced centered normal N(0,t) and increments are 
independent: If r, < f2 < f, < f4, W,2 - W„ and W,4 - W,3 are independent. The 
Brownian motion is the statistical model for a continuous-time random walk. 

23. CARA stands for constant absolute risk aversion. 
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5.3.10 The Multitask Model 

Contrary to what we have assumed so far, all decisions taken by the 

Agent often cannot be summed up in a single variable. It is more 

realistic to consider, for instance, that an employee's work typically 

consists of many distinct tasks. Each task requires effort and will 

send a signal that is observed by the employer. When the Principal 

chooses a wage schedule, he must take into account the multiplicity 

of the performed tasks. He must take care, for instance, not to 

reward high accomplishment in one task to the point that it induces 

the Agent to forgo other tasks. Let us now look at a model that intro­

duces such new trade-offs. 

Assume that the Agent controls two effort variables a} and a2. His 

utility function is given by 

-exp {-r(w - C{av a2))) 

where r is a positive constant (the Agent's absolute risk aversion 
index) and C is a convex function. The Principal observes separately 
the profits he gets from each task: 

( 

x1 =a1+e1 

•2 = a2 + c2 

where the pair of observational noises (ev e2) follows a centered nor­
mal with variance 

I = « a? °» 
al2 a 2 

The global profit of the Principal is the sum (*, + x2). 

Since earlier we chose a CARA utility function for the Agent, we 

can use the results of Holmstrom-Milgrom (1987) presented in sec­

tion 5.3.9 to focus on the optimal linear wage contracts: 

W(xv x2) = a'x + p = aiXl + aiXi + p 
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With a linear contract, a Principal gets expected profits 

fll + a2 - e*ifli ~ Q2
fl2 _ P 

while the Agent's expected utility has a certainty equivalent24 

ajfl! + a2
a2 + P ~ c( f l i / fl2) ~ "«'So 

The parameter /? in the formulas above, only represents a trans­

fer between the Principal and the Agent. So the optimal contract 

has to be found by maximizing the expected total surplus 

r 
flj + a2- C{alfa2) - - Q ' Z O 

under the incentive constraint that states that {av a2) maximizes 

a\a\ "*" °2fl2 — C(fli' a2) 

First let us consider the consequences of the incentive constraint. It 

gives directly 

a,. = C\{av a2) (I) 

By differentiating, we obtain 

da^ _ C22 

dQ! "" D" 

Ja2 D" 

24~Recall that for an agent whose von Neumann-Morgenstern utility function is 
u, the certain equivalent of a random wealth X is the number x such that u(x) Eu(X). 
1 have used the formula that gives the expectation of an exponential function of a nor­
mal random variable X, 

Eexp (-rX) = exp (-rEX + - VX I 

applied here to the random variable a'x. | 
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where D" is the determinant of C" and is positive. This means that 

the Agenl chooses an action n, that increases with a, and that 

oases with a2 if both tasks are substitutes (C"n > 0). This simple 

insighJ is the key to the results to come. 
Let us now come back to the optimal contract. By differentiating the 

expression for the expected total surplus with respect to at, we obtain 

, _ C; - wif* = o 

whence, after differentiating (/), 

a = (I + rC"l)]r 

Next let us study some consequences of the formula above. Suppose 

that tasks are independent (C" is diagonal) and that the signals are 

independent (an — 0)- Then we get 

1 + rCfcj 

which is the same formula as if the Principal had considered the two 
tasks separately. 

Now, in the more interesting case where the matrix C" is not diago­
nal, suppose that only the first task generates an observable signal. 
This can be modeled by letting a}2 = 0 and by making o2 go to infinity 
in the formula that gives a. In the limit one easily obtains a2 = Oand 

* - L i i £ H ^ (G) 
1 + '4C" - ttcavcy] 

If we take as a benchmark the case of independent tasks, we see that 
both the numerator and the denominator of the formula have 
changed. When, for instance, the two tasks are complements 
(C'j2 < 0: an increase in 0, makes a2 less costly), n, will be higher if 
C{2 is more negative: The second task is not directly rewarded 
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because it does not generate an observable signal, but the GO 
spending incentives are carried over to the first task. 

Given the same assumption that a2 is infinite, now suppose that 
only total effort reduces the Agent's utility so that C(o,,a-)« 
c(ax + n2)- Then not only a2 = 0, but formula (G) also yields a, = 0 
since C"n = C'[2 = C"21. In this limit case where the two tasks are per-
fect substitutes and one oi them is unobservable, inducing the Agent 
to perform in one task effectively discourages him to perform in the 
other. Ilns dilemma brings the Principal to the point where he 
entirely gives up on incentives. 

Holmstroin-Milgrom (1991) take this last result to suggest that the 
multitask model may explain why real-life incentive schedules are 
less high-powered25 than they are in theoretical models. The fact that 
many tasks compete for the Agent's effort may induce the Principal 
to reduce the power of the incentives he can provide to the Agent. 

5.4 Examples of Applications 

5.4.1 Insurance 

I he archetypal conflict between risk-sharing and incentives that is 

at the basis o\ moral hazard is found in the issuing of insurance. 

Risk-sharing is the central mission of insurance companies. By pool­

ing risks, they rely on the law of large numbers and can take respon­

sibility for individual risks that (approximately) cancel out through 

aggregation. However, the magnitude of the risk depends on the 

behavior of the insurees: A cautious driver has ku er a, c Idents. This 

creates an incentive problem that limits the risk the insurer is willing 

to bear and transfers some responsibility to the insurees bv letting 

them bear some of the cost. 
We return here to the example in chapter 2 of a driver who bu) s 

insurance from an insurance company However, we assume now 

25~As mentioned in section 5.1, a schedule is high-powered when wa 
strongly on performance 
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that the driver's characteristics are completely known to the insurer. 

ng the same notation as in chapter 2 we have the initial wealth 

<>f the driver W, an accident that can cost him d, a premium q, and a 

reimbursement R. The probability of an accident is a decreasing con­

vex function p(a) of the Agent's effort a}b and a can be chosen in [a, B], 

The cost of an effort a is just a. So the expected utility of the driver is 

p(a)u(W -d + R-q) + {l~ p(a))u(W - q) - a 

The expected profit of the (risk-neutral) insurance company is 

<7" pW 

The driver chooses his effort by maximizing his objective over a; in 

this simple model in which only two outcomes are possible, it is easy 

to check that /; being decreasing implies MLRC and that its convex­

ity implies CDFC, so we can apply the first-order approach. The 

Agent's choice thus is given by 

p'(a)(u(W -d + R-q)~ u(W - a)) = ] 

If the reimbursement R was at least equal to the size of the damage 
d, the driver will choose the minimum self-protection effort a, which 
is usually suboptimal. To induce the driver to be cautious, he must 
get a reimbursement lower than the size of the damage. This prop­
erty is called coinsurance'. In case of an accident, the costs are shared 
by the insurance company (who pays R) and the driver (who suffers 
a loss (d - R)). 

To solve the problem completely, we use the participation constraint 

p(a)u(W -d + R-q) + (i- p(a))u(W ~ q) - a = U 

to obtain a second equation that allows us to write utilities as func­
tions of a: 

26^ The literature sometimes makes a distinction between self-protection efforts, 
which reduce the probability of an accident, and self-insurance efforts, which reduce 
trie size of the damage. Here we are only concerned with self-protection. 
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f„(W -d+R-q) =U + a + -—^ 
P'(a) 

u(W ~q) =U + a - ^ 
V\a) 

We can therefore write the premium and the reimbursement as func­
tions of a, as q(a) and R(a) in this instance. All that remains to do is to 
maximize the Principal's objective over a. 

(j(a) - p(a)R(n) 

5.4.2 Wage Determination 

Firms are prominent among economic organizations that worry 

about providing adequate incentives to their members. The study of 

how they do it therefore is both a natural application and an empir­

ical test of the theories presented in this chapter. Obviously other sci­

ences such as the sociology of organizations and psychology have 

much to contribute to this field, but the objective of the economist is 

still to push economic analysis as far as possible. 

Theory tells us that the best way to give incentives to employees is 

to identify one or more outcomes that constitute objective public sig­

nals of their effort and to condition their compensation on these out­

comes. A caricatural form of such wage schedules is the piece-rate 

wage whereby the employee is paid a function of the number of 

pieces he produces. This type of wage is only applicable in limited 

cases. Moreover it may be counterproductive if the employee focuses 

on the quantity he produces (which influences his wage) rather than 

on the quality of the product (which does not). It also tends to dis­

courage cooperation among employees. In general the emplo] B 

must therefore try to identify a vector of outcomes that is as complete 

as possible. If he cannot do this, he must depend on subjective eva Ill­

ations of the Agent's work. This method requires a much more 

cate touch, since it can have perverse effects by inducing employe* 

to spend much of their time lobbying their supervisors. 
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It a one-on-one evaluation is not practical, the employer may 

resort to collective evaluations. The simplest form of this is to use the 

Ann's profit as an "outcome" and to condition wages on it. As for all 

collective evaluations, it raises the free-rider problem. Also it makes 

employees bear a risk that they may find difficult to diversify. This 

solution is a popular one in part for macroeconomic or social rea­

sons. The use of franchises whereby a firm sells dealers the right to 

carry a certain brand is an extreme example. In that case the Agent 

pays for the right to keep all profits, as he should in the first-best 

contract if he is risk-neutral. 

Tournaments and the other relative performance evaluation pro­

cedures studied in section 5.3.7 can be used, in principle, to deter­

mine wages among employees, but the empirical evidence is not 

convincing on this point. Nevertheless, the formula is widely used 

(at least implicitly) to decide on promotions within the firm and for 

corresponding wage increases. Indeed, it is a well-known fact that 

the dispersion of wages within a firm is channeled toward changes 

in job levels. Employees at a certain level and with certain seniority 

in that level have comparable wages,27 but a change in job level is 

associated with a substantial wage increase. Thus promotions are 

the most important incentive in a firm. 

The crudest way of inducing employees to work is to threaten 

them with dismissal. This may be the only incentive available if out­

comes from effort are observable but, for whatever reason, are not 

verifiable and thus do not condition an Agent's wage. However, 

threatening to fire employees who do not give satisfactory perfor­

mances is useless when unemployment is low, since an employee 

who is dismissed will easily find a similar job at an equivalent wage. 

This idea is the basis of the famous Shapiro-Stiglitz (1984) model of 

involuntary unemployment. In this model employees choose to 

shirk if their utility from working does not exceed that of being 

unemployed. To induce them to put in effort, the wage has to be set 

27. This is often called "horizontal equity." 
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higher than the market-clearing wage. This efficiency-wage model 
is also at the heart of many neo-Keynesian explanations of involun­
tary unemployment.28 Lazear (1979) suggests that the reason wages 
increase with seniority is that this allows the firm to raise the cost of 
a dismissal for the employees and thus to increase their incentive to 
work. This explanation is valid if firms want to keep their reputation 
for being fair employers, so they do not fire older employees whose 
wages are higher than their marginal productivity. 

Managerial compensation raises other problems. Managers speak 

for shareholders and take in their name decisions that govern the 

strategy of the firm. Inducing managers to work is generally not 

thought to be a problem. However, some managers have their own 

agenda in running a firm (maximizing perks or firm size, launching 

unprofitable but prestigious investments, etc.). If they are to take 

decisions that increase the value of a firm, their interests should align 

with those of the shareholders. There are external measures used to 

discipline managers, notably their labor market and the threat of hos­

tile takeover. 

Let us begin here with internal incentives. The easiest way for a 

firm to provide incentives to its managers is to link their compensa­

tion to the firm's profits by paying them with shares. Neglecting 

managers' risk-aversion for the moment, this is a good strategy so 

long as the value of the shares faithfully reflects the value of the firm. 

A major problem is that unscrupulous managers are in a strategic 

position to manipulate the value of the shares for their own benefit. 

Likewise, where managerial wages are indexed on profits, managers 

may be induced to manipulate the firm's accounts or to take a short-

term view. In general however, managers are compensated by 

receiving stock options at a strike price that is set higher than the cur­

rent price of the firm's share. Such options allow the shareholders to 

reward managers who increase the value of the firm, but all incentive 

28. On a more technical side, Shapiro-Stiglitz's model is interesting in that it uses 

labor demand to endogenize the participation constraint. 
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value gets lost if a negative shock affects the value of the firm. We 

tti't dwell on these issues, since recent corporate scandals in the 

United States and in Europe suggest that some managerial compen­

sation schemes may owe more to rent-seeking behavior than to the 

incentive problems considered in this chapter. 

Fama (1980) argued that the managerial incentive problem can be 

solved by the implicit market incentives. In this view managers are 

disciplined by their concern about their reputation on the labor 

market. Holmstrom (1982, published 1999) gave a precise form to 

this argument. It is a dynamic model in which the manager and the 

market both learn imperfectly his ability over time. The manager's 

ability t]t is treated as a random walk: 

>/,+ ! =1t + St 

where St is a serially uncorrelated shock independent of fjt and the 

manager and the market have identical priors over //, 

In each period the manager expends some effort at and produces an 

observable output yt = tj, + a, + et, where et is independent from the 

manager's ability and serially uncorrelated. The manager uses effort 

as a substitute for ability in his attempt to establish a good reputation. 

We assume that the labor market for managers is perfectly com­
petitive. Because the market only observes at the beginning of 
period I the sequence of past outputs yl~x - {yv ...,yt_t)f it pays the 
manager a wage 

Wfy^) = £(y, | y*-l) 

The manager is risk-neutral but discounts the future. So his utility 
from consuming (ct) and expending effort (at) is 

1 />'-% - g(a,)) 
t=l 

The effort cost function g is increasing and convex, with g'(0) = 0 

and s'(co) > i, S i n c e t h e m a n a g e r -s r i s k _ n e u t r a l / w e d o n ' t n e e d to 

worry about his saving and borrowing, and we can let ct = wt. 
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The efficient effort is given by g'(a) = 1, since effort has marginal 
return one and marginal cost g'(a). Our aim is to study whether this 
efficient effort can be implemented as time goes to infinity. Then 
we focus on an equilibrium in which the market rationally expects that 
the manager expends effort a)(y<-1). This way it knows that in period t, 

>h + £t = yt- a* 

and we are faced with a signal-extraction problem. 
Suppose that {r\v (St, e,)) are jointly normal centered with constant 

finite variances {vv v6, ve). Then standard statistical calculations 
show that the mean posterior belief on the manager's ability, 
mt = E(t]t I y ) , obeys the adaptive recursion 

In this equation, Xt is a parameter in (0,1) that increases with the 
ratio vJvE. The mean posterior mt is very important, as it directly 
determines the manager's wages on the equilibrium path: 

Wt = m, + a* 

Now we return to the manager's effort choice problem. Suppose 
that it deviates from the equilibrium path in increasing effort by 
some small da in period t. This has no effect on the manager's in 
period t, but it changes the sequence of mean posterior beliefs start­
ing in (t + 1) according to the recursion 

dms+l - dms = -Xjims 

withdm,+1 = Â ffl. Simple calculations show that in periods > t + 1, 

the resulting wage increase is 

dws *= *, n c1 - ^da 

i=t+\ 

Thus the discounted utility benefit from increasing effort by da in 

period t is 

dU = ¥a ± f j (1 - A,-) 
s=t+\ i=t+\ 
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While the expression above looks nasty, it can be simplified by 

noting that X, converges to some limit X* as time goes to infinity. For 

/ Lugo, till converges toward 

dll* = da 
i - /?d - n 

Since we deviated from the equilibrium path, the first-order benefit 

from this deviation must equal the first-order cost, which is just 

g'(a)da. It follows that as time elapses, the equilibrium effort con­

verges towards the a* given by 

X*B 
g'V) = 1 - /?(1 - k*) 

Note that the right-hand side of this equation is positive and 

smaller than one if 0 < fi < 1. It follows that while the implicit incen­

tive of the labor market makes managers expend effort, the equilib­

rium effort a* is smaller than the efficient effort a29. Thus there is room 

for both implicit and explicit incentives provided by a performance-

contingent contract30. 

Exercises 

Exercise 5.1 

Using the two-action, two-outcome model of section 5.1., prove that 
if Wj > W0, the Principal's utility is greater when the Agent suc­
ceeds than when he fails. 

. I t is easy to see that given the properties of k*, a* is an increasing function of P 
ndv,, and a decreasing function of vE. In fact, when ability is constant over time 

= 0: as the market learns ability perfectly over time, there is no more 
mcenhve for the manager to expend effort so as to acquire a good reputation. 

introducing managerial risk-aversion reinforces this conclusion, as expending 
e«orl has random returns and thus is a risky activity. 
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1. Using the definitions of ws, wF, and w and Jensen's inequality,31 

show that pws + (1 - p)wF > w. 

2. Refer to the expression for Wj - VV0 in the text. Show that if 

Xs -ws<xF- wF, then W] < W0. 

3. State your conclusions. 

Exercise 5.2 

In the standard model, show that first-order stochastic dominance 

implies MLRC if there are only two possible outcomes. 

Exercise 5.3 

This exercise shows why the Principal's expected profit may 

decrease as the Agent becomes more productive—even in the two-

by-two model of section 5.1. Start from values of the primitives such 

that W, > VV0. 

1. Write Wj as a function of p and P, and show that 

< 0 BW1= P(l - P) I 1 1_ 

dp (P - p)2 \u'(ws) u'{wF)j ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

2. Conclude that if the Agent gets more productive so that both p 

and P increase, it may be that Wj decreases. 

Exercise 5.4 

Take the continuous-action, two-outcome (success or failure) model. 

Denote p(a) (increasing, concave) the probability of success. 

1. Prove that CDFC and MLRC hold, so that you can use the first-

order approach. 

31. Recall that Jensen's inequality states that if X is a random variable and/i 
vex function, then E/(X) s /(EX). | 
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2. Use the incentive and individual rationality constraints to prove 

that if a is the optimal action, then 

v(a) 

"^ =-+ a' m 
1 - p(«) u(ws)=u+a+y§r 

3. Denote ws(a) and wF(a) the corresponding levels of wages. Write 
the Principal's expected utility as a function of a and Sx - xs - *f. 
Show that its cross-derivative is positive and use the implicit function 
theorem to prove that the optimal a is an increasing function of Sx. 

Exercise 5.5 

Take the same model as in exercise 5.4, but change the information 
structure. With probability p(a) (increasing, concave) the Principal 
observes a signal and pays a wage wl to the Agent; otherwise, the 
Agent gets w0. This signal is positively correlated with success: the 
conditional probability of success given that the signal is observed is 
Q, while it is q < Q if the signal is not observed. Note that q = 0 and 
Q = 1 in the classical case in which the signal indicates success or 
failure. 

1. Prove that just as above, 

u(w0) = U + a - ^ 
p'(a) 

u{wx) = U + a + 1-^1 

2. Denote w^a) and w0(a) these functions. Write the Principal's 

expected utility as a function of a, xs and xF. Show that it is formally 

analogous to that in exercise 5.4, with xs and xF replaced by 
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X's = Qxs + (1 - Q ) * F a n d 4 = qxs + (1 - ^)xF. Use exercise 5.4 to 
conclude that the optimal a is an increasing function of Q - q. 
3. Prove that w,(a) is increasing and w0(fl) is decreasing. Conclude 
that the power of the incentive scheme w^a) - w0(a) is an increas­
ing function of Q - q. 

Exercise 5.6 

Take the ^-action, m-outcome model of Section 5.2. We want to com­
pare MLRC and first-order stochastic dominance (ISD). 

1. Show that ISD means that Ptj decreases in i for all /. Also prove 
that under ISD, the expected outcome ]T7=\ Vijxj increases in i: more 
costly actions generate higher expected outcomes. 

2. Take k < i. Define F0 = 0 and for; = 1,..., m, 

Fi = Pkj - Pij 

Prove that under MLRC, (F; - Fj_{) is positive for low; and nega­
tive for high /'. Use Fm = 0 to conclude that MLRC implies ISD. 

3. Prove that with only two outcomes (m = 2), MLRC and ISD are 

equivalent. 
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The Dynamics of 
Complete Contracts 

We considered so far only very elementary forms of economic rela­
tionships: a contract is signed, then all parties take decisions based 
on their preferences and on the terms of the contract, and then they 
separate. Real-life economic relationships obviously are much more 
complex, if only because the actors face each other for more or less 
extended time periods. The recognition that contracts have a time 
dimension has spawned a very abundant literature since the 1980s. 
The aim in this chapter and the next one is to present the general 
conclusions. 

A contract is properly called complete if it takes into account all 
variables that are or may become relevant over the time period it is 
to be executed. A contract that can be renegotiated is not said to be 
complete. Only contracts that bind the parties until the end of their 
relationship qualify. The literature, however, calls a contract incom­
plete if from the start the contract does not condition on all relevant 
variables. In this book we will adhere to this traditional but inade­
quate distinction: complete contracts will be studied in this chapter 
and incomplete contracts in chapter 7. 

Note that a complete contract may be contingent on a very large 

number of variables. No unforeseen contingency may arise as the 

relationship evolves: any change in the economic environment just 

activates the ad hoc provisions of the contract. 
The dynamics of complete contracts are fairly well understood 

today. So in this chapter we will cover reasonably wide theoretical 
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ground. Where the proofs of the principles are too complex, I will 

only give the underlying intuition. 

6.1 Commitment and Renegotiation 

We have seen the importance of institutions in the theory of con­
tracts. Introducing the dynamic of time gives a new weight to two 
key elements of contracts: commitment and renegotiation. 

By commitment we mean that agents pledge in advance to keep 
their activities in accord with the contract until some predetermined 
date. The duration of commitment determines how rigid the con­
tract is. The ability to commit depends on a number of factors: 

• Institutional setup, in contractual law. 

• Credibility of agents, in particular, the value they place on their 
reputation. 

• Existence of "hostages," which are assets or property titles that lose 
most of their value outside of the relationship under study. For 
instance, the computer manufacturer Apple launched the Macintosh, 
it built special factories which helped to signal to Apple's competi­
tors and customers that the firm was firmly behind its new product. 

• Penalties to discourage the parties from unilaterally breaking the 
contract. 

Breach of contract and renegotiation are the opposite of commit­
ment. Abreach of contract is a unilateral decision. One party chooses 
to disengage itself from the contract. In most cases the breach of con­
tract will incur the penalties determined by law or in the contract. 
Where penalties may not exist, the contract can be broken at any 
time. For example, employees break contracts, sometimes giving 
advance notice, and the employer is not entitled to any compensa­
tion. We speak of renegotiation, on the other hand, when all parties 
agree to replace the existing contract with a new contract. Renegoti­
ation is multilateral by definition, so no party can claim a penalty. 
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There are four types of commitment we need to distinguish here:1 

. We speak of spot commitment, or no commitment, when the contract 
only holds for the current period.2 Once the parties reach the end 
of this period, they can continue collaborating if they sign a new 
contract. 

• We speak of full commitment when the contract that is signed cov­
ers the whole duration of the relationship, and it cannot be breached 
or renegotiated. Such a contract is never reconsidered, and the 
dynamics of the contractual relationship amount to the execution of 
the contract.3 

• We speak of long-term commitment with renegotiation, or simply 
long-term commitment, if the contract covers the whole duration of 
the relationship, but it can be renegotiated multilaterally. The con­
tract can only be reconsidered if all parties agree to do so. 

• Last, we speak of short-term commitment* or limited commitment, in 
all intermediate cases between spot commitment and long-term 
commitment. These contracts do not last as long as the relationship 
and may be renegotiated. 

A fundamental result of the theory of individual choices is that no 
agent, taken in isolation, can gain by limiting his freedom of choice. 
But this result changes when several agents interact. The Prisoner's 
Dilemma is a striking example: Two players have two strategies: 
they can cooperate or defect. The only Nash equilibrium has both 
players defecting, and it is Pareto-dominated by the outcome in 
which both players cooperate. If the players can commit to cooperate 

1. The terminology is not standard in this field, so the terms used here should be 
treated with caution. 
2. The exact definition of a "period" depends on the context. 
3. As noted in the discussion at the beginning of this chapter, only contracts wit 
full commitment can be called complete. , 
4. Caveat lector. Some authors do not distinguish between spot commitment anc 
short-term commitment. However, I think this distinction is important. 
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(thus forbidding themselves to use the "defect" strategy), they both 

reach a higher utility level. 

It is easy to see that full commitment is beneficial if contracts are 
complete. Suppose that commitment is less than full and that the 
interaction ends up with some outcome A. If full commitment is 
available, the agents can then just commit to achieve outcome A. 
Thus any outcome that is feasible without full commitment can be 
achieved with full commitment. The agents cannot lose, and 
may even win, if they choose to cooperate. Therefore the study of the 
dynamics of complete contracts essentially consists in tracking 
when and why other forms of commitment involve efficiency losses. 

We will see in chapter 7 that commitment has less value when 
contracts are incomplete. In that case some variables that influence 
the parameters of the relationship under study are not integrated in 
the contract in advance. Renegotiation then allows the parties to 
improve the efficiency of the contractual relationship. 

6.2 Strategic Commitment 

Before we turn to the dynamics of complete contracts, we will sur­
vey briefly here the literature on strategic commitment. The central 
theme of this field is that signing a contract can have precommitment 
effects on a third party by convincing it that the contractants will per­
sist in their plans whatever it does. Thus it offers another illustration 
of the importance of commitment in contracting. 

The idea of strategic commitment goes back to Schelling (1960). 
Early papers that formalized his intuitions include works by Brander-
Spencer (1985), who showed that export subsidies may improve wel­
fare in the home country, and Fershtman-Judd (1987), who studied 
the strategic use of managerial incentives in a Cournot oligopoly. 

We will consider here a study by Aghion-Bolton (1987), who 
introduced a new way for a firm to prevent entry on its market. Bar­
riers to entry have long been a central theme of industrial organiza-



The Dynamics of Complete Contracts 
16S 

tion. Several contractual devices can be used for that purpose. In 
manufacturer-retailer relationships, for instance, exclusive dealing, 
forbids a retailer for one brand to also sell a competing brand. The 
legality of such practices depends on prevailing statutes, and even 
more crucially on the way they are applied. Authors belonging to 
the Chicago school5 argue that such contracts are not illegal because 
buyers will never not agree to sign contracts that are detrimental to 
their utility. We will see that although this argument is basically 
right, exclusive contracts can undermine competition and lead to 
social inefficiencies. 

Consider a seller S who can offer a good produced at cost 1/2. 
This seller presents the good to a certain buyer B, who can buy none 
or one unit of the good. The reservation price for this unit is 1. A 
potential entrant E offers the same good at cost c. Neither B nor S 
knows the exact value of c. All they have is a prior that we take to be 
the uniform distribution on [0,1], so the entrant may or may not be 
more efficient than the seller. 

If E does enter the market, he and S will compete in prices a la 

Bertrand. The equilibrium price, which is the highest of the two pro­

duction costs, is written as 

P = max ( - , c 1 

If there is no contract between S and B, E can enter if, and only if, his 

cost is smaller than l /2 , which has probability <p = l /2. The price 

will be 1 if E does not enter and l /2 if he does. The buyer has an 

expected surplus of l /4 , and so does S. 
Now suppose that B and S sign a contract (chosen and offered by 

S) before E can enter the marketplace. Further suppose that c is not 
observed by B or S ex post, so the contract cannot be contingent on 

5. The Chicago school is associated with an indulgent attitude as far as competitio. 

policy is concerned. 
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the value of c. It is easy to show that the optimal contract must be a 

pair (P, P0), where P is the price B must pay to S if he buys the good 

from him and P0 is the penalty he must pay to S if he decides to buy 

from £ instead. 
These circumstances call for B to buy £'s good only if the price is 

set lower than P - P0, and for E to choose a price equal to P - PQ 

when he enters the market.6 £ will thus enter only if his cost c is 
lower than P - P0, so the probability of entry becomes 

cp' = max (0, P - P0) (P) 

which depends on the terms of the contract. Last, the buyer will not 
sign the contract unless he gets at least as much expected surplus as 
without the contract/ that is, l /4. Because the buyer's surplus is 
(1 - P) if he buys from S, the entrant cannot optimally give him a 
higher surplus. So we must have 

1 - P > i (IR) 

Now we compute S's expected surplus. It is (P - l /2) if E does not 
enter and P0 if £ enters the market (in which case the buyer buys from 
him). The optimal contract (P, P0) therefore must maximize 

<P'Po + (1 - <P'){P - i ) 

under both constraints (P) and (IR). 

We consider two possibilities. If P < P0, we have <p' = 0, and the 
objective is (P - 1/2), which, given (IR), is maximal in P = 3/4, 
where it is 1/4. If P > PQ/ w e have <p' = P - P0. We then cancel the 

from6/3" a S S U m e t h a t 'f B 'S i n d i f f e r e n t between both sellers, he chooses to buy 

7. This is the Chicago school argument mentioned earlier. 
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derivative of the objective with respect to P0, get P0 = p - i /4 a n d 

reinject it into the objective to obtain P - 7/I6. This term, given (IR), 
is maximal in P = 3/4 again, but it equals 5/16, which is greater 
than 1/4. Thus the optimum is given by (P, P0) = (3/4,1/2). 

At the optimum, B gets the same surplus as without a contract, 
since 1 - 3/4 = l /4 . However, the contract allows S to get a higher 
surplus, which increases from 1/4 to 5/16. The probability of entry 
now is 1/4. In particular, when 1/4 < c < 1/2, E does not enter. The 
less efficient seller produces the good, and there is market foreclosure. 

Thus signing a contract with B that punishes B when he buys from 
the entrant allows S to reduce the competitive pressure on his prof­
its. Although this contract does not hurt the buyer, it draws the pro­
ducers away from the production optimum, which is when B buys 
from S at c > 1/2 and from E at c < l/2. This result suggests that 
such contractual practice should be forbidden. 

In this example, a party (the seller) tries to deter another party (the 
entrant) from taking a certain decision (here entering the market) by 
signing a contract with a third party (the buyer) and making it pub­
lic. This behavior, based on precommitment effects, is the essence of 
strategic commitment. Katz (1991) has a similar, perfect information 
model in which a seller who values a good at 1 faces a buyer who 
values it at 2. If the seller sets the price, he will appropriate all the 
surplus by pricing the good at 2. However, if the buyer signs a pub­
lic contract with an intermediary, promising to buy the good only 
from him and at price 1, then the equilibrium price will be 1 and the 
buyer will appropriate all the surplus. 

The big problem with both the Aghion-Bolton and Katz models is 
that the public contracts are not robust to renegotiation. In Katz's 
model, if the seller decides to raise the price of the good to 1.5, the 
buyer and the intermediary will want to renegotiate their contract. 
Dewatripont (1988) shows that one must introduce asymmetric 
information at the renegotiation stage if such contracts are to survive 



Chapter 6 

renegotiation. Caillaud-Jullien-Picard (1995) studies two competing 

Principal-Agent structures that can sign public contracts and then 

secretly renegotiate them; it shows that more competitive outcomes 

(which benefit customers and hurt the competing structures) may 

actually emerge as a result. 

6.3 Adverse Selection 

We consider in this section an intertemporal price discrimination 

model that possesses all features of general repeated adverse selec­

tion models.8 

The model has T periods. In each period f the Principal pro­
duces at unit cost c a perishable good in quantity q and sells it to a 
consumer for a price p. The utilities of both parties are 

T 

for the Principal and 

T 

f=i 

for the Agent who is a type 6 consumer. The consumer may be of 
type 0 or 9, with 6 > 6 > 0. The proportion of types 0 in the popula­
tion is n. The parameter 0, which is only observed by the Agent, 
therefore represents the consumer's valuation for the good; it is 
assumed to be constant over time.9 We will assume that u is increas­
ing and concave, and that 

"(0) = 0, w'(0) = °o, and M'(°°) = 0 

8. Laffont-Tirole (1993) study fully a slightly different model but reach similar 
conclusions. 

• See Baron-Besanko (1984) for a model where 6 changes over time. 
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which implies, inter alia, the Spence-Mirrlees condition. 

The first-best optimal consumptions are obtained by solving the 
program 

max {u(q)0 - cq) 
1 

whence 

du'(q) = c 

We denote these two quantities q* and q* in the following. Of course 

f <r-
In the one-period model (T = 1), we let {q, p, q, p) be the second-

best optimal direct truthful mechanism. The general results we 
established in chapter 2 apply to this model. The consumption of 
type 0 is q = q*, and the incentive constraint 

u{q)0 -p = u(q)0 ~ p 

is binding. Type 0 gets his reservation utility level 

u(q)6 -p = Q 

Therefore q is obtained by maximizing the Principal's objective 

max (n{u{q)0 - cq) + (1 - n){uff)0 ~ u(q)9 + u(q)9 - cq*)) 

whence 

u'{q){0 - (1 - n)0) = nc 

We can assume10 that 0 > (1 - n)0. The low-type consumption q 

then is positive but lower than cj*: As in chapter 2, the consumption 

of the lower type is underefficient. 

10. Otherwise, it would be optimal for the Principal to exclude the low type, as dis 

cussed in chapter 2. 
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6.3.1 Full Commitment 

The revelation principle applies when commitment is full: the two 
parties interact only once because the contract is never reconsidered. 
The proof of the revelation principle given in chapter 2 holds with­
out change, so the Principal must propose a direct mechanism 

• The mechanism must be truthful, 

( T T 

X Sl-\u{qt)d -Vt)*Y. f'Hum - Pt) 
t=\ t=l 

T T 

X &-\u%)d - pt) > X d'-Hu^e - Pt) 
t-1 t=\ 

• The mechanism must satisfy both intertemporal individual ratio­
nality constraints, 

r T 

1 $-\u{qt)Q. - p ( ) > 0 
(=1 

r 
X ^\u%)d - ft) 2= 0 
t=i 

We let M\ --= (qt/ cjt/ Vjl pt)J=1 be the optimal mechanism. Consider, in 
the one-period model, the stochastic mechanism M that consists in 
giving the Agent the following lottery: 
r 

fai' ft/ V\' V\) with probability 
1 +S+ ... +sT-i 

(ZT'lT'PTtPT) with probability ^ * 
1 +S+ ... + ^ - i 
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It can be checked that just as mechanism M[ in the T-period 
model, the stochastic mechanism M is truthful and satisfies the indi­
vidual rationality constraints in the one-period model. Thus it can­
not give the Principal more utility than the optimal mechanism in 
the one-period model, so 

- X ^{"(PJ - % ) + o- - *)(p f - <%tJ) 1 + S+ ... + ( 5 T _ 1 P i 

<n(p- cq) + (1 -it)(p-cq) 

In the T-period model we thus obtain 

T 

Zd'-^nipi-cqJ + il-nKpt-ciJtJ) 
f=i 

T 

^ ^ ^ ( n i p - cq) + {\ ~ n){p - cc\)) 

This argument proves that when commitment is full, the optimal 

mechanism consists in proposing for each period the so-called static 

optimum of the one-period model. 

This result is intuitive: with full commitment the Principal must 

propose a contract that binds the parties for the T periods. In such a 

stationary model there is no reason to give an allocation that is not 

itself stationary. 

The properties of the full commitment optimum are summed up 
in figure 6.1, which illustrates the sequence of consumptions q 
that each type of Agent gets in each period in a two-period model. 
The Agent of type 6 takes the upper branch in figure 6.1, and the 
Agent of type d takes the lower branch. The two types thus sepa­
rate in the first period. 
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Figure 6.1 
The full commitment optimum 

6.3.2 Long-Term Commitment 

Suppose that the Principal and the Agent can renegotiate the full 
commitment optimal contract (q, q, p, p)t=v Consider, for instance, 
the beginning of the second period. Since the contract is separating 
in the first period, the Principal knows the Agent's type. For the 
Agent of type 0, the full commitment optimum has him consume 
the underefficient quantity q until the end of the relationship. To 
reach the highest level of efficiency ex ante (before the relationship 
starts and in expectation over types), we have to accept that contrac­
tual allocations will be inefficient ex post (once the execution of the 
contract has started). This property is often summed up by saying 
that the parties commit ex ante to ex post inefficient allocations. 

The Principal and the type 0 Agent will be better off by signing 
at the beginning of the second period a new contract under which 
the Agent can consume the efficient quantity q* in each period t = 2, 
..., T. The full commitment optimal contract therefore cannot be an 
equilibrium in a long-term commitment situation: we say that the 
contract then is not robust to renegotiation. This property means 
that such a contract may not be a very useful descriptive tool. It is 
indeed difficult to imagine a mechanism that would allow the par­
ties to commit ex ante never to renegotiate the contract. There is 
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nothing in contractual law to prevent the parties from renegotiating 
a contract by common agreement. To ensure compliance overall, 
they could stipulate in the contract that either party would pay a 
penalty to a third party if he chooses to renegotiate. Then there is the 
possibility that the party aiming to renegotiate could gain ex post by 
bribing the third party so that it does not enact the proposed penalty. 
This can increase both the utility of this party and that of the third 
party, since the latter does not get any penalty in equilibrium any­
way. Thus full commitment is a relevant concept only if the costs of 
renegotiating are high enough or if the parties must adhere to rigid 
policy, but both circumstances are beyond the scope of our model.11 

When full commitment is not available, the Principal cannot com­
mit to the mechanism he announced at the start of the game and 
thus the proof of the usual revelation principle fails. Bester-Strausz 
(2001) in fact prove that a weaker revelation principle holds: 

• The Principal still only needs to use direct mechanisms, in which 

the Agent announces his type. 

• Announcing the truth still is an optimal strategy for the Agent 

under the optimal mechanism. 

• The Agent sometimes is indifferent between truth and lying. 

Thus, when commitment is less than full, some types of the Agent 
will randomize between announcing their true type (which they 
always do with positive probability) and lying: the Agent only grad­
ually reveals his type. We will see several examples of this below. 

The long-term commitment contract was first analyzed by Dewa-
tripont (1989). At the optimum, although renegotiation is allowed, 
there is actually no renegotiation, since any future renegotiation am 
be anticipated and built into the long-term contract. This is sometime 
called the renegotiation-proofness principle. The long-term commitmen 

l l~But see, for instance, Maskin-Tirole (1999. at an argument that while 
renegotiation indeed is pervasive, we lack a theory explaining whj >t 
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optimal contract covers periods 1 to T. At no point in time can its con­
tinuation be replaced by a renegotiation-proof contract that gives 
more utility to the Principal and at least as much utility to the Agent 
on the remaining periods. To the usual incentive and individual ratio­
nality constraints, one can therefore add nonrenegotiation constraints 
at each period. These three constraints can be considered together as 
sequential efficiency constraints, since they ensure that the contract is 
ex post efficient. However, they make the computation of the opti­
mum very difficult. Therefore we will consider only its properties 
here. The interested reader should turn to Hart-Tirole (1988) or Laf-
font-Tirole (1990) for the proofs. 

While renegotiation eliminates ex post inefficiencies due to the 
sequential efficiency constraints, it encourages ex ante inefficiencies. 
The optimal mechanism must satisfy the new constraints and pro­
vide for a more progressive revelation of information than under the 
full commitment optimum, as was discussed earlier. 

To describe the long-term commitment optimum, we will concen­
trate on the consumption paths followed by the different types of 
the Agent. In each period f, two consumption levels are possible: 
the efficient consumption for 9, which is q*, and a lower consump­
tion qt. The consumption level q* is only chosen by type 0. In fact 
an Agent who chooses q* in period t reveals that his type is 0 and so 
must consume q* until the end of the relationship. On the other 
hand, consumption qt is chosen by the 0 type and, with some prob­
ability, by the 9 type. In each period of the long-term optimum 
contract, 

• Agent 9 consumes qt; 

' Agent 0, if he has not chosen q* yet, plays a mixed strategy in 
that he consumes qt or q\ with probabilities fixed by the optimality 
conditions; 

• Agent 9, if he has already consumed q* in the past, keeps doing so. 
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Figure 6.2 
The long-term optimum 

The long-term optimum therefore has a much more complex 

structure than the full commitment optimum: Agent 0 reveals his 

type in the first period with some probability; if he does not, then 

he will reveal it in the second period, and so on. The Principal only 

learns the type of the Agent once the latter has consumed q*, which 

he can do in any period. 

Figure 6.2 shows the long-term optimum in a two-period model.12 

Agent 6 follows the two upper branches, and Agent 6 only fol­

lows the lowest branch. To compute q2, we assume that in the 

first period the honest type takes the upper branch with probability 

x. Then at the beginning of the second period, and if the Agent con­

sumed ql in the first period, the Principal can use Bayes's rule to 

revise his prior n to 

n 
2 n + (1 - 7r)(l - x) 

He then faces an Agent who is a low type with probability n2 

and a high type with probability (1 - TT2). Since this is the last period 

12. The shape of the optimal contract can vary, depending on the parameters of the 
model and especially on the prior probabilities. The configuration in figure 6.21 
most typical case. 



176 
Chapter 6 

oi the game, the solution is exactly the same as in the one-period 

problem, with the only difference that n is replaced with n2: The 

Principal will give the Agent the choice between q* and an underef-

ficient consumption level q2 designed for the low type and given 

by the by now familiar equation 

«'(<&)(£ - (1 - *2>£) = n2c 

This characterizes the solution in the second period. The determina­

tion of x and q1 is more involved. 

6.3.3 No Commitment 

In the long-term commitment optimum, the Agent of type 6 
gets a positive informational rent in each period, even after he has 
revealed his type. The Principal may be tempted, once he sees the 
Agent consuming q*, to break the contract. He then has perfect in­
formation. Because he faces an Agent whom he knows is of type 6, 
he can extract all his surplus13 by pricing the good at p = u(q*)6 in 
each remaining period. 

In the absence of commitment, any party can effectively end the 
contract in any period. In particular, the Principal can immediately 
exploit any information that is revealed by the Agent. The Agent will 
therefore be reluctant to reveal more information on his type. This is 
the well-known ratchet effect: it tells us that it is extremely costly for 
the Principal to get the Agent to reveal information on his type 
because the Agent knows that then he will allow the Principal to reap 
all the surplus. To get the Agent 6 to reveal his type in the first period, 
the Principal must bribe him by giving him all his expected dis­
counted informational rent in the first period. In doing so, he risks 
inducing Agent 6 to pretend he is 9 so as to take the bribe.14 To avoid 

13. This then leaves the Agent with zero utility. 
14. This stands in contrast to the one-period model where a binding incentive con­
straint prevents 0 from mimicking 9. 
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this dilemma, the Principal must adopt revelation schemes that are 
even more progressive than under long-term commitment 

Solving the Principal's problem with no commitment requires 
computing the perfect Bayesian equilibrium of the game with two 
possible revelation schemes: 

• In the first period the Principal proposes a nonlinear tariff pfa) 
and the Agent chooses a consumption qv 

• The Principal uses the observed consumption q1 in the first period 

to update his prior n, which becomes 7t2(<h); then he offers in the sec­

ond period a new nonlinear tariff p2(ft/ fo), and so on. 

The complete solution of this game is very complex.16 All we need to 
know here is that the ratchet effect depends on the patience of both 
parties (summed as 5) and the duration T of the relationship. If d and 
T are both small, then the Agent will face much discounting of his 
informational rent by revealing his type early; informational revela­
tion will be gradual but reasonably fast. If S and T are large, then the 
Agent chooses to reveal his type very slowly (see Laffont-Tirole 1987). 

6.3.4 Short-Term Commitment 

Categorized here as "short-term commitment" are all levels of com­
mitment that are intermediate between no commitment and long-
term commitment. Short-term contracts can be renegotiated, though 
their duration period is shorter than that of the relationship. 

Rey-Salanie (1996) study two-period contracts that are renego-
tiable in each period but cannot be broken unilaterally before they 

15. This conclusion is not so clear-cut where the types are observed with noise. In a 
related model Jeitschko-Mirman-Salgueiro (2002) show that such noise can alleviate 
the ratchet effect: if the variance is large enough, the types will separate in the first 
period under the optimal contract. 
16. Freixas-Guesnerie-Tirole (1985) solve the game under the restriction that con­
tracts are linear (the payment p is linear in q). The use of a linear contract consider­
ably simplifies the analysis, so their paper is a good place to start. 
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expire. They show that if price and quantity transfers are not lim­
ine long-term optimum is implementable. To see this, consider 

a contract C, = (p, fa), Hl\> <fc» o f f e r e d b-v t h e P r , n c i P a l a t t h e start 
of the first period; the contract specifies the transfers that the Agent 
will make to the Principal in the first two periods as functions of his 
consumptions. Because the contract can be renegotiated (and will be 
in equilibrium) at the beginning of the second period, the only part 
of the "promise" p2{q\, q2) »s set up as a condition for the second-
period renegotiation. The problem is to choose p2 so that it 
every Agent type the right continuation utility. It can be shown that 
the renegotiation brings both parties to replicate the equilibrium 
path that leads to the long-term optimum. We will eschew the 
details because they are messy. The key element of the proof is that 
for every ^ there are as many unknowns as there an devalues 

of q2, and there are as many equations as values of 6. In any reason­
able model there is at least as many possible quantities as types, and 
thus it is possible to solve the system of equations 

6.3.5 Conclusion 

To sum up, we have identified four kinds of contractual commit­
ments in this section. The mam points we need to remember about 
them are as follows: 

• Full commitment leads to the most efficient kind of contracts, and 
it brings immediate revelation of information. However, it is often 
not realistic to take this direction because the parties must commit to 
ex post allocations that inefficient may turn out to be vulnerable to 
renegotiation. 

• Long-term commitment allows a gradual revelation of informa­
tion but implies an ex ante efficiency loss. 

• Short-term commitment can, under certain conditions, permit the 
same allocations as long-term commitment. 
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. No commitment induces a ratchet effect, whereby the information 
revelation is very gradual, and the allocations that obtain are less 
efficient than under all other forms of commitment. 

6.4 Moral Hazard 

The study of intertemporal moral hazard is considerably more com­
plex than that of adverse selection models. There are two reasons for 

this: 

• The wage that the Agent receives at period t depends on his effort 

and on a shock that he does not control; it is therefore a stochastic 

income for him. Like any consumer who has a concave utility func­

tion and receives a random income stream, he will want to smooth his 

consumption by saving, borrowing, or by running down his savings. 

The study of intertemporal moral hazard therefore cannot abstract 

from the conditions under which the Agent can access credit markets. 

• With repetition, a moral hazard problem can create endogenously 

private information for the Agent. As we will see later, this is what 

happens when the technology or preferences of the Agent in any given 

period depend on his actions in earlier periods. The dynamic moral 

hazard problem further is complicated by an intertemporal adverse 

selection problem similar to that which we analyzed in section 6.3. 

Before we turn to the characteristics of the repeated moral hazard 

problem, we will study a model due to Fudenberg-Tirole (1990) that 

shows that even one-period moral hazard problems have dynamic 

aspects. 

6.4.1 Renegotiation after Effort 

Suppose that the technology in the one-period model we studied in 

chapter 5 is x = a + e, where e is an observational noise with mean 

zero. At the optimum the Principal announces a wage schedule 
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w*(x), the Agent makes an effort a*, and the Agent expects a ran­

dom wage w*(a* + e), whereby the Principal gets a surplus 

(a* + e- w*(a* + e)). As in chapter 5, the shape taken by the func­

tion w* results from a trade-off between incentives and risk-sharing. 

We now consider a point in time when the Agent has made 

effort a* but the outcome x has not yet been observed. The function 

w* has played its part in providing incentives to the Agent, so 

only risk-sharing matters at this point in time. If as usual we assume 

that the Principal is risk-neutral and the Agent is risk-averse, the 

risk-sharing properties of the function w* cannot be optimal, how­

ever. The optimum must be a constant wage (independent of e) so 

that the Principal can insure the Agent perfectly against the risk rep­

resented by the shock e. 

This argument shows that once the Agent has made effort a*, 

the parties would gain by renegotiating toward a perfect insurance 

contract that gives all risk to the Principal. The optimal contract 

therefore is not robust to renegotiation. Obviously, if the Agent 

anticipates that his wage schedule will be renegotiated to a constant 

wage after he chooses his level of effort, he will obviously choose 

the least costly action. So the contractual w* no longer serves as 

an incentive because the Agent knows that it will ultimately be 

replaced by a constant wage. 

The idea that the parties will renegotiate after the Agent has cho­

sen his action is more or less natural according to the situation under 

study. It is, of course, not unreasonable in an employer-employee 

relationship. In other situations renegotiation may carry more 

weight as the time interval between the choice of action and the 

observation of the outcome becomes longer. Think, for instance, of 

the construction of a bridge or a weapons system for the government. 

Where renegotiation is possible, it must be taken into account in 

the design of the optimal contract. Suppose that the contractual 

action can take only two values, a = 0 and a = 1. By the argument 

•ove, a = 1 cannot be implemented with probability 1. The optimal 
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contract must let the Agent choose a = 0 with some nonzero proba­

bility. As it usually is not optimal to implement a = 0 with probabil­

ity 1, the Agent has a completely mixed strategy. At the renegotiation 

date the Principal faces two possible types of Agent: one who 

chooses a = 1, and one who chooses a = 0. The Principal therefore 

must solve an adverse selection problem similar to that of the 

monopoly insurance model studied in section 3.1.3. Suppose he 

offers two different wage schedules, one for each type of Agent. By 

analogy with the insurance model, the wage schedule designed for 

the Agent who chooses action a = 0 is that which insures him 

perfectly. 

The essential lesson of this model is that if two parties can renego­

tiate after the effort level is chosen, then the Principal can no longer 

get the Agent to choose the optimal effort with probability 1. As in 

the repeated adverse selection model, the ability to renegotiate 

brings an efficiency loss. 

*6.4.2 Convergence to the First-Best 

In chapter 5 we saw how the incentive problem the Principal faces 

can be related to the classical problem of statistical inference. The 

Principal can infer an action a from observing an outcome x. It there­

fore is not surprising that the law of large numbers applies in the 

incentive problem. As the interaction between the Principal and 

the Agent is repeated indefinitely, the Principal will observe a large 

number of outcomes. From these outcomes he will be able to 

infer the Agent's action with great precision and punish the Agent 

accordingly if the action chosen is not optimal. In the limit the Prin­

cipal can then implement the first-best optimal action. 

Rubinstein-Yaari (1983) show that this intuition is right when nei­

ther the Principal nor the Agent has a preference for the present. T 

see this, suppose that the technology is given by 

* t = a + e, 
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within each period f, where the et are independent and identically 
distributed noises with mean zero and a finite variance a1. Let a* be 
the first-best optimal action. If the Agent chooses a* in each period, 
then by the law of large numbers, the average 

1 ^ 

t r=l 

will go to zero almost surely as t goes to infinitely. To induce the 
Agent to choose action a* in each period, the Principal can then pun­
ish the Agent if the absolute value of the average At is greater than 
some positive threshold, indicating that the Agent has deviated rel­
atively often. The difficult point is how to choose this threshold: it 
should go to zero as f goes to infinity in order to take advantage of 
the law of large numbers, but it should not vanish too fast. Other­
wise the Agent will be punished too often when he chooses a*, which 
is not good for risk-sharing. 

The appropriate tool for this problem is the law of the iterated log­
arithm, whereby it is possible to set boundaries to the large devia­
tions from the law of large numbers. Let X be any real number 
greater than 1, and let 

, (Q)/' 
^2A<72ln In t/t 

Then the law of the iterated logarithm states that 

Pr (lim sup St < 1) = 1 

The policy consisting in choosing a X > 1 and punishing the Agent 
at date t if 

2Ag2lnlnf 
f 

Al > 
\ 
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thus implements the first-best action if the punishment is rough 
enough and the interaction is repeated indefinitely. Note that if the 
Agent does choose a* in each period, then he will be punished with 
vanishing probability. 

The problem with this result is that it rests on two critical 
assumptions: 

• That the interaction be infinitely repeated. 

• That both agents be extremely patient. 

The rest of this section is devoted to models in which the interaction 
is repeated over a finite horizon. Then the argument developed 
above fails, and the optimum is clearly second-best. 

6.4.3 Finitely Repeated Moral Hazard 

Assume that the interaction between the Principal and the Agent 
lasts for T periods. The Principal's utility function is 

T 

X (*f ~ wl) 

while that of the Agent is 

T 

where u is increasing and concave and ct is the consumption of the 
Agent at time t. The common discount parameter is assumed to be 
zero for simplicity. (It is important to distinguish between wages 
and consumption if the Agent has access to a credit market.) 

Suppose that the outcome in period t only depends on the action 
chosen in the same period. If, for instance, the outcome in period t 
also depends on the action at_v which is only observed by the 
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Agent, then the latter will have an informational advantage over the 
Principal at the beginning of period f because he will have a bet­
ter knowledge of the period-f technology. Elements of adverse selec­
tion that we won't deal with now will then complicate the moral 

hazard problem.17 

The following discussion is adapted from Chiappori-Macho-Rey-

Salanie (1994). 

No Access to Credit 

First assume that the Agent cannot save or borrow, so his consump­
tion equals his wage within any period.18 An immediate application 
of the dynamic programming principle shows that full commitment 
coincides with long-term commitment in this model: The Agent's 
characteristics are fully known to the Principal when the contract is 
signed, and the Principal therefore can choose the optimal sequence 
of wage schedules without ever feeling the need to adapt it to the 
arrival of new information. 

Because this Agent has a concave utility function, he wants to 
smooth his consumption over time. However, the outcome xt can 
rise high as a result of a favorable shock. Suppose that such a shock 
took place in period f, and the Principal wants to spread this posi­
tive shock over several periods so as to help the Agent maintain a 
smooth consumption stream.19 He can do this by increasing the 
wage he gives to the Agent in all future periods. Thus the wage 
given in any period t will depend not only on the current outcome xt 

but also on the sequence of past outcomes. This property is called 
by Rogerson (1985) the memory effect. It is a simple consequence of 

17. Adverse selection turns up to complicate the analysis when an Agent has free 
access to credit markets. 

18. This is an extreme assumption, but the analysis is the same if the Agent is liquid­
ity constrained and this constraint is active at the optimum. 
19. Note that the Principal only cares about total discounted wages, not about their 
timing. ° 
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the need for the Principal to smooth the Agent's consumption at the 
full commitment optimum. 

In the absence of commitment the Principal cannot spread the 
effect of a shock on xt over several periods: He cannot indeed com­
mit to anything in period t + 1, and not in particular to giving 
the Agent a wage in period t + 1 that depends on xt. Therefore the 
period t wage can only depend on the current outcome v„ 
and the optimal sequence of spot contracts is memoryless. Spot con­
tracts clearly involve efficiency losses. 

Alternatively, as Rey-Salanie (1990) show, through short-term 
commitment the Principal can smooth the Agent's consumption 
optimally and also implement the full commitment optimum. 
Again, "promises" in each period must be designed so as to set up a 
reservation utility for the Agent that makes it optimal for both par­
ties to renegotiate toward the next-period component of the full 
commitment optimum. The only difficulty is to find a solution to the 
corresponding system of equations, but this has exactly as many 
equations as unknowns (the number of possible outcomes), and 
thus has a solution under some technical conditions. 

The full commitment optimum has further a counterfactual prop­
erty: it constrains the Agent to saving less than he would like. To see 
this, suppose that T = 2, and denote the following: 

• wt the first-period wage when the first-period outcome is xv 

• Wy the second-period wage when the first-period outcome is x, 

and that for the second period is Xy 

• at the action the Agent chooses in the second period when the first-

period outcome is x{. 

• Pj(a) the probability of outcome Xj in any period when the cho­

sen action in that period is a. 

The solution of the incentive problem determines the gross 

utility Utj the Agent must receive in each state of the world, 

" W + K(«ty) = U« (C,y) 
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On the other hand, the Principal must provide incentives at least 

cost, that is, by minimizing for all i the wage bill 

in 

under the m constraints (C,y)/=i m when the first-period outcome is 
*-. To solve this problem, we let Xj be the multiplier associated to C{j 

in this program. Maximizing the Lagrangian gives 

m 

1 = ] [ A;V(H>7) 
/-I 

The first-order condition20 for this problem is then 

1 = f Ppi) 
u'(Wj) fa u'ty) 

By Jensen's inequality21 applied to the convex function x —* \/x, 

M »>,>) Z - ] p.( f l,. )H.Ky) 

20. Note, in passing, that this equality proves the memory effect. Consider i and k 
such that for all/, wtj = wkj. Then it must be that a, = ak, so 

"'(«>/) /-I U'(Uty) fa u'(Wkj) ~ U'{wk) 

which implies that wt = Wjt. The second-period wages can therefore only be inde­
pendent of the first-period outcome if the first-period wages are constant. This means 
that the Principal will give up trying to get the Agent to put in effort. 

Recall that Jensen's inequality states that if X is a random variable and/ is a con­
vex function, then 

E/(X)>/(EX) 
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Therefore 

in 

which implies as announced that the Agent would want to save if he 
could.22 

This result makes it somewhat difficult to interpret the model as a 
situation where the Agent has no access to credit markets. Indeed, 
while it is clear that many economic agents cannot borrow as they 
would like, it is not easy to see what prevents them from saving to 
their heart's content. This leads us to examine the case where the 
Principal dictates his savings to the Agent so that both wages and 
consumptions are determined by the contract. This in fact links dif­
ferent periods exactly as short-term commitment does when the 
Agent cannot save or borrow. Thus we should expect that the no 
commitment optimum coincides with the full commitment opti­
mum. Malcolmson-Spinnewyn (1988) prove this result. 

Unfortunately, not many real-world situations can fit this model. 
The first to consider is sharecropping in developing countries. 
Sharecropping is an agreement between a landlord and a tenant that 
lets the tenant cultivate the landlord's fields in exchange for a share 
of the proceeds from the crops. Although this arrangement has 
nearly disappeared from the developed world, it is still very com­
mon in the third world. Since credit markets are underdeveloped in 
third world countries, the tenant can often only get credit through a 
landlord. A second case to consider is corporate shareholding 

22. Let F(s) be the utility the Agent gets by saving s. Then 

F(s) = u(w, - s) + £ p^uiWij + s) 

and the inequality on marginal utilities in the text is simply F'(0) 2 
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whereby the Agent is the firm and the Principal is the main share­
holder or banker. This relationship can, however, engender other 
features that do not make it a very convincing example. 

Free Access to Credit 

The polar case is when the Agent can save and borrow as he wishes. 
We will suppose that the Principal cannot observe the Agent's sav­
ings. We let sT_2 denote the savings of the Agent in period T -- 1 
(savings depend, of course, on the whole past history) and let the 
market interest rate be zero, again for simplicity. Then the utility 
function of the Agent in period T, expressed as a function of the 
wage he gets from the Principal, is u(wT + sT_1) which depends on 
his past savings sT_v 

Since the Principal does not observe sT_1, he faces at the begin­
ning of period T an Agent whose utility function he does not know.23 

An adverse selection problem thus emerges on top of the moral haz­
ard problem.24 This has several important consequences. The first 
one is that as in all adverse selection models, full commitment and 
long-term commitment lead to different solutions: The full commit­
ment optimum is not renegotiation proof. As argued in section 6.3, 
we should therefore concentrate on the long-term optimum. 

Unfortunately the existing results on the long-term optimum 
with free savings are disturbing. Chiappori-Macho-Rey-Salanie 
(1994) prove the following striking result: if the long-term optimum 
only involves pure strategies, it can only implement the cost-
minimizing action from the second period onward. To see this, let 
T = 2, and use the same notation as above, with in addition s{ as the 

23. The only exception is when the Agent's utility function is CARA, which ex­
cludes wealth effects and therefore the emergence of adverse selection. This case is 
dealt with by Fudenberg-Holmstrom-Milgrom (1990). 
24. Note that uncertainty as to the Agent's characteristics is created endogenously 
by his past actions, whereas it is exogenous in the standard adverse selection model. 
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savings when the first-period outcome is i and a0 the optimal action 
in the first period. Now suppose that the optimal contract imple­
ments fl,in the second period after a first-period outcome of i. If a. is 
not the cost-minimizing action, then at least one second-period 
incentive constraint must be binding. So there should exist an a' such 
that 

X Pj&i)u(wij + si) ~ ai = X Vy)u{Wij + s,) - a' 
;' i 

Let s' be the optimal savings when the Agent chooses a'; namely s' 
maximizes over s 

u{w{ ~s) + ( X Pj(aWfl>ij + s) - fl'j 

Now suppose that instead of responding to the optimal contract 
{wir iVy) with {aQ, s,v at), the Agent responds with {aQ, s\, a[), which 
coincides with (a0, sif a,) except that a\ = a' and s • = s'. We will show 
that this improves the Agent's expected utility. Indeed we have 

X P;(«o)("(Wy - Sj) ~%+ [LPk(a,)U(Wjk + Sj) - aj)j j \ \ k 

= X Pj(a'o)U<P>j - $ ~ a'o + ( X Pk^Mwik + *$ ' a'i)) 
j \ k 

< X PJMUZOJ - s;.) -a'0 + (y PM))^ + *;•) - «;•)) 
j \ k 

where the first equality follows from the definition of a' and the 

inequality holds (generically) because s' is a better choice of savings 

than Sj given a'. 
Because this inequality violates the first-period incentive con­

straint, our premise that at was not the cost-minimizing action must 
be wrong. The conclusion follows immediately. Park (2004) shows 
that the same conclusion can be made in the general case where the 
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agent may use mixed strategies, except of course when his utility 

function is CARA. 

Conclusion 

As this rapid survey of finitely repeated moral hazard models 
shows, there is still much work to be done in this area. Both polar 
assumptions of no access to credit or free access to credit lead to dis­
appointing conclusions. In the first case, the Agent is prevented 
from saving at the optimum. In the second case, the optimum must 
involve mixed strategies if it is to have good incentive properties. 

There are nevertheless two general conclusions to be drawn, and 
both result from the importance of consumption smoothing. The 
first one concerns the memory effect: consumption in any given 
period will depend on the whole history of past outcomes. The sec­
ond is that the relative efficiency of different degrees of commitment 
is determined by their ability to smooth the Agent's consumption. 

References 

Aghion, P., and P. Bolton. 1987. Contracts as a barrier to entry. American Economic 
Review 77:388-401. 

Baron, D., and D. Besanko. 1984. Regulation and information in a continuing rela­
tionship. Information Economics and Policy 1:267-302. 

Bester, H., and R. Strausz. 2001. Contracting with imperfect commitment and the 
revelation principle: the single-agent case. Econometrica 69:1077-98. 

Brander, J., and B. Spencer. 1985. Export subsidies and international market share 
rivalry. Journal of International Economics 18:83-100. 

Caillaud, B., B. Jullien, and P. Picard. 1995. Competing vertical structures: Precom-
mitment and renegotiation. Econometrica 63:621-46. 

Note that this result is not unlike that by Fudenberg-Tirole (1990) presented in 
echon 6.5.1, in which effort cannot be implemented with probability one. In both 

cases the renegotiation constraints are to blame 



The D y n a m i c s of C o m p l e t e Con t r ac t s 191 

Chiappori, P.-A., I. Macho, P. Rey, and B. Salanie. 1994. Repeated moral hazard: The 
role of memory, commitment, and the access to credit markets. European Economic 
Revieiv 38:1527-53. 

Dewatripont, M. 1988. Commitment through renegotiation-proof contracts with 
third parties. Review of Economic Studies 55:377-90. 

Dewatripont, M. 1989. Renegotiation and information revelation over time: The case 
of optimal labor contracts. Quarterly Journal of Economics 104:589-619. 

Fershtman, C , and K. Judd. 1987. Equilibrium incentives in oligopoly. American Eco­
nomic Revieiv 77:927-40. 

Freixas, X., R. Guesnerie, and J. Tirole. 1985. Planning under incomplete information 
and the ratchet effect. Review of Economic Studies 52:173-92. 

Fudenberg, D., B. Holmstrom, and P. Milgrom. 1990. Short-term contracts and long-
term agency relationships. Journal of Economic Theory 51:1-31. 

Fudenberg, D., and J. Tirole. 1990. Moral hazard and renegotiation in agency con­
tracts. Econometrica 58:1279-1320. 

Hart, O., and J. Tirole. 1988. Contract renegotiation and coasian dynamics. Review of 
Economic Studies 55:509-10. 

Jeitschko, T., L. Mirman, and E. Salgueiro. 2002. The simple analytics of information 
and experimentation in dynamic agency. Economic Tlieory 19:549-70. 

Katz, M. 1986. Game-playing agents: Unobservable contracts as precommitment. 
Rand Journal of Economics 22:307-28. 

Laffont, J.-J., and J. Tirole. 1987. Comparative statics of the optimal dynamic incen­
tives contract. European Economic Review 31:901-26. 

Laffont, J.-J., and J. Tirole. 1990. Adverse selection and renegotiation in procure­
ment. Review of Economic Studies 75:597-626. 

Laffont, J.-J., and J. Tirole. 1993. A Theory of Incentives in Procurement and Regulation. 

Cambridge: MIT Press. 

Malcolmson, J., and F. Spinnewyn. 1988. The multiperiod Principal-Agent problem. 
Review of Economic Studies 55:391-408. 

Maskin, E„ and J. Tirole. 1999. Unforeseen contingencies and incomplete contracts. 

Review of Economic Studies 66:83-114. 

Park, I.-U. 2004. Moral hazard contracting and private credit markets. Econometrica 

72:701^6. 

Rey, P., and B. Salanie\ 1990. Long-term, short-term and renegotiation: On the value 
of commitment in contracting. Econometrica 58:597-619. 



192 Chapter 6 

Rey, P., and B. Salante. 1996. On the value of commitment in contracting with asym­
metric information. Econometrica 64:1395-1414. 

Rogerson, W. 1985. Repeated moral hazard. Econometrica 53:69-76. 

Rubinstein, A., and M. Yaari. 1983. Insurance and moral hazard, journal of Economic 
Theory 14:441-52. 

Schelling, T. 1960. The Strategy of Conflict. Cambridge: Harvard University Press 



7 Incomplete Contracts 

Thus far in this book contracts were assumed to be complete, at least 
at the beginning of the relationship. This is obviously a very strong 
assumption. It implies that all contingencies that may affect the con­
tractual relationship are taken into account in the contract. In the 
real world, negotiating a contract is a costly business that mobilizes 
managers and lawyers. It must therefore be that at some point the 
cost of writing a specific clause to cover an unlikely contingency 
outweighs the benefit. The inability, or unwillingness, of courts and 
third parties to verify ex post the value of certain variables observed 
by contractants is another reason why contracts are often incom­
plete. It is useless to condition a contract on a variable if no one can 
settle its value in a dispute. Even if we abstract from the costs asso­
ciated with negotiating and writing the contract and from the con­
straints due to the legal system, bounded rationality may force the 
parties to neglect some variables whose effect on the relationship 
they find difficult to evaluate. Further it is sometimes difficult, and 
even impossible, to assign probability to relevant events and to con­
dition the clauses of the contract on these events. For our purposes, 
opening a window on to bounded rationality considerations would 
not be very productive at this stage, as also the profession has made 
very little progress in modeling these considerations. 

For all the reasons above, contracts typically take into account a 
limited number of variables that are believed to be the most relevant 
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ones, or simply those most verifiable by a court of law. If during the 
relationship some unforeseen contingencies arise that have an 
impact on the conditions of the relationship and the contract gives 
no clue as to how the parties should react, the logical remedy will be 
to renegotiate the contract. 

Renegotiation therefore has different implications when contracts 
are incomplete than when contracts are complete. We saw in chapter 
6 that when contracts are complete, the ability to renegotiate serves 
as an ex ante constraint on the Principal's program, and it will there­
fore often bring an efficiency loss. The renegotiation-proofness prin­
ciple demonstrates further that long-term contracts need never to be 
renegotiated in equilibrium. However, when contracts are incom­
plete, renegotiation allows the parties to react to unforeseen contin­
gencies. Renegotiation can therefore be socially useful, and occur in 
equilibrium. 

The theory of incomplete contracts in many ways builds on and 
formalizes the intuitions of transaction cost economics due to Coase 
and Williamson.1 Transaction cost economics accepts that agents are 
opportunistic but claims that they are boundedly rational, so con­
tracts will be incomplete. It also claims that many assets are relation­
ship specific in that they have little value outside the relationship 
under study. Since many investments (especially investments in 
human capital) in relationship-specific assets are nonverifiable, par­
ties do try to avoid being expropriated of the surplus created by these 
specific investments, and as a result they tend to underinvest. This is 
the famous holdup problem, to which we turn in section 7.1. 

As in most of the literature, we will concentrate here on examining 
some very simple cases where information is symmetric: all variables 
are observed by all parties, but some of them may not be included in 

1. The 1937 paper by Coase on The Nature of the Firm, is reprinted in Coase (1988). 
lamson (1989) gives a useful survey of transaction cost economics. 
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a contract. We will say that such variables are observable but nonverifi-
able, meaning that no court or other third party will accept to arbi­
trate a claim based on the value taken by these variables. The 
symmetric information assumption2 allows us to isolate phenomena 
that are due to contract incompleteness and greatly simplifies the 
analysis of renegotiation. As we saw in section 6.4, the analysis can 
become quite complex when information is asymmetric. 

The modern theory of incomplete contracts originated in Gross­
man-Hart (1986) and Hart-Moore (1988). It focused on the effect of 
property rights on relationship-specific investments (which we 
examine in section 7.1) and on other issues in corporate finance. The 
foundations of the theory were much debated in the 1990s. The 
"irrelevance theorem" of Maskin-Tirole (1999a) was the high point 
of this literature; we study it in section 7.2. It has split contract theo­
rists between the skeptics and the enthusiasts; we review their argu­
ments in section 7.3. 

7.1 Property Rights, Holdup, and Underinvestment 

Specific investments and holdups are often illustrated by the rela­
tionship between Fisher Body, an American maker of car parts, and 
General Motors.3 In the 1920s Fisher Body started producing car 
doors for General Motors. It invested in some rather specialized 
machine tools and organized its production so as to respond best to 
the needs of General Motors. Clearly, Fisher Body would have lost a 
considerable part of the value of its investments if it had left General 
Motors for another carmaker. Therefore a clause in the contract 
signed in 1919 gave Fisher Body a ten-year exclusive deal to protect 

2. At a theoretical level, the nonverifiability assumption often implies asymmetric 
information between two parties and a third party. This is because the third party can­
not check the value of a variable that it cannot observe. 
3. This case study comes from the classic paper by Klein-Crawford-Alchian (1978); 
see, however, Casadesus-Masanell and Spulber (2000) for a rather different account. 
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it from being held up by General Motors. To prevent Fisher Body 
from possibly raising prices outrageously, the contract also con­
tained a cost-plus clause. It turned out, however, that Fisher Body 
manipulated the price-protection clause by choosing a very low cap­
ital intensity and locating its plants far from those of General 
Motors. General Motors thus was effectively held up by Fisher Body 
and eventually bought it in 1926. 

7.1.1 The Buyer-Seller Model 

Such stories can be made more formal by an archetypical model of 
the incomplete contracts literature: the buyer-seller relationship. The 
seller S and the buyer B jointly operate a physical asset that is used to 
produce at cost c to the seller a good that has value v for the buyer. 
Either party can make a specific investment, that is, an investment that 

• increases the productivity of the relationship under study, 

• has a lower value outside of this relationship, 

• is costly for the party that makes it. 

To be more precise, the seller can reduce his production cost by 
investing is in human capital, and the buyer can increase the value 
of the good by investing iB. Thus c is a decreasing convex function 
c(is) and v is an increasing convex function v(iB). We assume that 
v = v(0) >c = c(0), so it is always efficient to produce and trade— 
and the problems that we examined in section 3.2.7 do not arise here. 
The parties are risk-neutral and do not discount the future. If trade 
occurs at price p, their utilities are p - c(is) - isandv(iB) - iB - p. If 
they don't agree, then what happens depends on who owns the right 
to control the asset. If only one of them does, then he can use it to 
trade on a competitive market where the equilibrium price oi the 
good is p . Since the specific investments have no value on this mar­
ket, the value of the good is v(0), and it is produced at cost c(0). Note 
that this implies that c(0) < f < V(Q). 
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The first-best outcome is easily described in this model: the buyer 
and the seller always trade. Since the total surplus is 

v(iB) - {B ~ c(h) ~ ls 

their investments i% and i*s are given by c'{i%) = -1 and v'(i%) = 1. 

7.1.2 The Complete Contract 

In what follows, we assume that the specific investments is and iB are 
observed by all parties. There is therefore no asymmetric information 
in this model, not even uncertainty.4 Under these conditions a simple 
contract achieves the first-best: it prescribes trade at some price 
c < p < i>. Faced with this contract, both parties choose the efficient 
investment level, and they accept the contract as by definition, 

c{i*s) + /§ <= c < p :£ 2 < v(i*B) - i*B 

Note that it is not necessary to write the values of the specific 
investments in the contract, so they needn't be verifiable by a court. 
Conceptually the fixed-price contract is enough to ensure that buyer 
and seller choose first-best investment levels. 

In a world of complete contracts, the allocation of property rights 
also has no effect on efficiency: if the good initially belongs to the 
buyer (resp. the seller), then it is likely that the price p will end up 
closer to c (resp. 2)- This changes the income streams and matters, of 
course, to the parties, but the efficiency of the fixed-price contract 
does not hinge on it. This is one of the biggest shortcomings in the 
theory of complete contracts: it has little to say on the efficient allo­
cation of property rights, and in particular, on what determines the 
boundaries of firms. 

4. The functions c and v could be made random anything in what follows provided 
that their values are observed by both parties ex post. 
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7.1.3 Incomplete Contracts and Property Rights 

The theory of incomplete contracts allows the question of property 
rights to be connected to legal tradition. Roman law defined prop-
erty rights as the combination of usus (the right to use the good), 
fructus (the right to what it produces), and abusus (the right to sell or 
give away the good). Closer to us, Grossman-Hart (1986) argue that 
property rights should be seen as residual control rights: when an 
unforeseen contingency occurs, the owner of an asset has the right 
to decide how it should be used. The owner also gets exclusive 
rights on all income streams that have not been shared in advance 
by a contractual agreement. These rights clearly have no value if 
contracts are complete because, by definition, no unforeseen con­
tingency can arise. Property rights only matter if contracts are 
incomplete.5 

In the preceding subsection we glossed over an essential diffi­
culty: in practice, every delivery contract specifies the characteristics 
of the good. If these characteristics can be described by few parame­
ters, then it is not hard to condition the price p on them, and a court 
can verify the relevant characteristics upon delivery. But both of 
these assumptions become much stronger for a complex good. 

Let us now make the polar assumption that the characteristics of 
the good, like the specific investments is and iB, cannot be verified by 
a court, though they are observable by both parties. Then ex ante 
there can be no contract even though ex post trade is always efficient. 
After the values of the specific investments are observed, the buyer 
and the seller will get together in order to decide on a price for the 
delivery of the good. This can be imagined in many ways, but most 
of the literature assumes that when renegotiating, B and S decide to 

>• For a legal perspective, especially on Anglo-Saxon law, the reader is referred to 
the interesting paper by Schwartz (1992). 
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share the increase in total surplus equally (e.g., this is the Nash bar­
gaining solution). The final price will depend on points of threat to 
both parties. Because these in turn are determined by property rights, 
the incentives to invest of buyer and seller this time will depend on 
the initial allocation of property rights, as will efficiency. 

To see this, first assume that the seller owns the asset. Then, if he 
does not agree on a price with the buyer, he can produce and sell the 
good on the competitive market. The buyer has just spent iB in vain. 
Thus, if the parties renegotiate toward a trade at price p, the seller 
registers a utility gain (p - pc) and the buyer gains (v(iB) - p). At 
the Nash solution these gains are equal, so the final price is 

p - Pfa) + PC 

y 2 

The buyer's ex post utility is 

v(iB) ~1B-P= B
 2 ~ 1B 

while the seller's ex post utility is 

v - W - is = vJ^ -c(y - i s 

These formulas show that while the seller has the incentive to 
choose the efficient level of investment i% the buyer underinvests: 

VVB) = 2 

The case of buyer-ownership is similar. As the buyer owns the 
asset, he can ask another seller to operate it for price pc; on the other 
hand, the original seller has spent is in vain. Trading increases the 
buyer's utility by pc - p and the seller's utility by p - c(is). Simple 
calculations show that the buyer invests at the efficient level and the 
seller underinvests: 

cVs) = - 2 
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Last we take the case of joint ownership. Neither party can oper­

ate the asset without the consent of the other. If the parties do not 

trade, they both lose the value of their investments. It follows that 

trade yields them utility gains of p - c(is) and v(iB) - p. As a result 

the equilibrium price is 

_ viin) + c(is) 
V 2 

and final utilities are 

«V - W-!,«**'•*-W-is 

In this case both parties underinvest, since v'{iB) = 2 and c'(is) = -2. 
In this simple model, a buyer ownership or seller ownership can 

be optimal, depending on the precise shapes of the functions c and 
v. Joint ownership presents, however, the worst of possible worlds. 
These conclusions are special: this particular model implies that the 
owner always invests efficiently. The important lesson of this sec­
tion is that when contracts are incomplete, property rights protect 
their holders against a holdup of their specific investments. The 
optimal allocation of property rights then depends on the respective 
social costs of underinvestment by the parties to the contract. More 
generally, Hart (1995) shows that the efficient allocation of property 
rights over multiple assets depends on their complementarity: for 
instance, complementary assets should be owned jointly. 

7.2 The Irrelevance Theorems 

7.2.1 Restoring Efficient Investment Incentives 

While the above story offers convincing basic results, some authors 
have shown that more complex, but feasible contracts can yield the 
first-best outcome. Maskin-Tirole (1999b) consider, for instance, an 
option-to-sell contract. The contractual arrangement is as follows: 
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• The parties start from a situation of joint ownership, in which nei­
ther can operate the asset without the consent of the other party. 

• After they invest in human capital and the realized values of c(is) 
and v(iB) are observed, a fair coin is tossed. If the seller wins the toss, 
he may sell his share to the buyer at price 

_ v{i%) - c 
Ps~ 2 

and the buyer must make some payment t to a charity. If the buyer 
wins the toss, he may sell his share to the seller at price 

P 8 = ^ ) 

and the seller must pay t to a charity. 
The contract only requires three things: investments must be 

observed by the two parties, a third party can be used to guarantee 
that the toss is fair, and the charity can observe whether a party exer­
cises his option to sell, and then claim its payment t. Thus, while this 
type of contract is unusual, it is not infeasible given our assump­
tions. We will proceed to prove that it deters both parties from 
underinvesting. The intuition is simple: if the buyer underinvests, 
then the seller will know it, and given the strike price of the option 
to sell, he will choose to sell if given the opportunity. If we make the 
payment t large enough, then the possibility (probability 0.5) that 
the buyer has to pay t will deter him from underinvesting. 

More formally, assume the buyer underinvests iB < i*B, while the 
seller chooses any is. If the seller is given the opportunity to sell, he 
must compare his utilities: 

• His utility if he does not exercise the option to sell. Then there is 
still joint ownership, and we know from section 7.1.3 that the seller's 
final utility is 

v(iF)-c(is) . 
2 
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• His utility if he does. Then he gets ps, and the buyer turns to him 
again to operate the asset, since the total surplus to be shared is 
higher than by turning to the competitive market, by (c - c(;s))/2. 
Finally the seller gets 

, c - c{is) v(&) - c(is) 
Ps + — 2 ls ~ 2 

Thus the seller always exercises his option to sell if he can when 
the buyer has underinvested. The buyer therefore has to pay t if he 
underinvests and the seller wins the toss. If t is large enough, this is 
larger than any gain he may obtain from underinvesting, whether or 
not he is lucky enough to win the toss. The option-to-sell contract 
can therefore deter the buyer from underinvesting, and a symmetric 
argument applies to the seller. So clearly the option-to-sell contract 
can achieve a first-best outcome. 

The perspicacious reader may wonder what went wrong in the 
reasoning behind the underinvestment results of section 7.1.3. Those 
arguments were indeed correct under the assumption that the own­
ership structure cannot change as the relationship evolves. The 
option-to-sell contract shows that allowing for such changes in own­
ership can induce efficient investments. 

There exist other feasible contracts that can restore the first-best 
outcome in the model of section 7.1. We can enrich the buyer-seller 
relationship a little by assuming that besides price, the parties must 
also agree on a quantity q to be delivered. Now the buyer's valua­
tion is v(q, iB) and the seller's cost is c(q, is). We will assume that for 
any iB and i's, the surplus from trade v(q, iB) - c(q, is) is maximal in 
some unique q*{iB, is). Thus the first-best outcome is given by the 
investments (/*B, i*s) that maximize 

W B , is), iB) ~ c(q*(iB, is), is) ~ iB ' is 

and the corresponding quantity is q*(iB, t§. 



Incomplete Contracts 

Consider the case of seller-ownership. Suppose that B and S sign 
a contract, according to which 

• if they don't agree at the renegotiation stage, they will trade some 
quantity q0 at some price p0; 

• the seller gets all the surplus at the renegotiation stage. 

Again, this is a feasible contract. If renegotiation breaks down, 
either party can go to a court of law with the contract and ask that % 
be traded at price p0. We must also assure that the court can check 
that the renegotiation process had the form of a take-it-or-leave-it 
offer by the seller; this may be more problematic. (See Aghion-
Dewatripont-Rey 1994 for a discussion of this assumption.) 

The threat points in the renegotiation game now are 

Po ~ c(%> «s) ~ 's f o r t n e s e u e r a n d v(%> y " *B ~ Po f o r t h e buyer. 
Since renegotiation is efficient, they will end up trading the quantity 

q*(iB, y , for a gain in total surplus6 of 

G = (Hq*(iB, is), y - W B , *'S)/ *s)) ~ Mfo 'B) ~ c(qQl is)) 

By contract, all the surplus goes to the seller, who ends up with 

final utility 

Po - c(%> y - is + G = v(ff(iB> fs)' {B) 
- c{q*(iB, is), i's) - v(qQ, iB) - is + Po 

As for the buyer, he is stuck at his threat point v(q0, iB) - iB - /'„, 
and therefore chooses to invest at a level iB(q0) given by 

v'iito iiiW) = l 

However, under reasonable conditions—for instance, if v\(0, iB) 
is continuous and satisfies the Inada conditions v\(Q, i*p) = 

6. If the quantity is fixed at one unit, as in the previous section, then G = Ooi a 
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and r\(*, $) = 0—there exists a ^ such that iB{q*0) = i*B. Then by 
specifying .1 disagreement option of trading this q*0 at any price p0, 
the buyer can invest efficiently. But for iB = i%, the seller's utility is 
clearly maximal in i*s. Thus both parties can invest efficiently and 
later renegotiate to the efficient quantity. 

Tin us choosing an appropriate disagreement option and assign­
ing all bargaining power in the renegotiation game to either party 
again is feasible and yields the first-best outcome. The same re­
sult was obtained in various guises by Chung (1991), Aghion-
Dewatripont-Rey (1994), and Noldeke-Schmidt (1995). 

7.2.2 Using Mechanism Design 

We saw in the simple model of section 7.1 that relatively straightfor­
ward (or at least feasible) contracts can achieve the first-best. Can we 
extend this conclusion to a general class of models? It turns out that 
the answer is a qualified yes. For the intuition behind the results we 
go back to the mechanism design problem briefly sketched in sec­
tion 2.1. After specific investments are made, both parties become 
completely informed about their values. Because these values are 
not verifiable ex ante, they cannot be set in a contract. On the other 
hand, a court of law or some other third party can play the role of a 
so-called Center, as in section 2.1, and try to set up a revelation 
mechanism that will implement the first-best outcome. 

As each party knows the other's type (here its investment), we 
face an implementation problem under complete information. The 
first important result for our purpose was given by Moore-Repullo 
< 1988); they proved that a very large class of allocation rules can be 
implemented if the Center can use a multiple-stage mechanism. 

;erson (1992) built on this result to show that where both parties 
neutral, and renegotiation can be prevented, the Center will 
elicil the true value Oi the investments and thus implement 

, I H I ne . 
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Maskin-Tirole (1999a) went two steps furtl | ,0wed 

that Rogerson's result extends to parties with n e prefer­

ences. Second, they studied the more realistic case where the parties 

cannot commit not to renegotiate. The relevant implementation 

result here is due to Maskin-Moore (1987, published 1999). While we 

cannot study the details of the argument here,7 Maskin and Tirole 

proved that when agents are risk-averse, the first-best outcome can 

still be implemented very generally even if renegotiation cannot be 

prevented. 

From the examples of this section and the implementation results 

above it is evident that even if parties are unable to specify com­

pletely the characteristics of the good to be traded ex ante, they can 

be made to play sophisticated revelation games after investing. The 

tension here is that all papers in this field make use of the principle 

of dynamic programming, which presumes a strong dose of ratio­

nality. Then there is no more reason to expect that incomplete con­

tracts should lead to a different outcome than complete contracts: 

the incompleteness of contracts, when it is due to the parties' unabil-

ity to specify all relevant contingencies, is simply irrelevant. 

7.3 Concluding Remarks 

While these negative results have dampened the enthusiasm for 

research on incomplete contracts, it is clear that the ideas sprung in 

the literature on incomplete contracts can shed some useful light on 

property rights, and also on political economy.8 This sugges 

eral directions for research. 

First, the results of Maskin-Tirole (1999a) are more convincing 

when renegotiation is banned. It renegotiation is allowed then an 

7. Maskin (2002) gives a nontechnical summar) or the mechanism used in Maskin-

s Politicians are given loose mandates bul are constrained by rules ol da 
making processes I hese are central issu^ in the incomplete contracts literature 



206 Chapter 7 

implementation result is only obtained when both parties are risk-
averse. To see why, let us look a little more closely at the mechanism 
used to elicit the truth when renegotiation is forbidden. In the first 
stage, both parties announce their types (truthfully or not). Then a 
party (e.g., the seller) can challenge the announcement of the other 
party; this challenge in fact is a choice of two allocations that are 
designed to prove that the buyer lied. If the challenge is successful, 
then the buyer must pay a fine to the seller. Otherwise, the seller 
must pay a fine for having raised an unsuccessful challenge. This 
fine cannot be paid to the buyer, as this would distort incentives for 
truthful revelation. Rather, it is paid to the Center, though any fine F 
paid to a third party cannot be renegotiation-proof. The parties can 
still get together and decide that the seller must pay say F/2 to the 
buyer instead. Only fines paid by one party to the other can be rene­
gotiation-proof. 

It follows that the mechanism used by Maskin-Tirole must be 
modified to include the case where the parties cannot commit not to 
renegotiate. They do this by having the proposer of an unsuccessful 
challenge (here the seller) pay a stochastic fine to the buyer. If the 
buyer is risk-averse, then this fine can be designed so that it hurts 
both the seller and the buyer.9 The suboptimal outcome that results 
is then used for the implementation. 

This construction does not work for risk-neutral parties. This is, of 
course, a nongeneric exception; still, if parties are close to risk-neu­
tral, the stochastic fine that is required needs to have a very large 
variance, which is not very credible as it will violate the wealth con­
straints. Thus the applicability of the irrelevance theorem is doubt­
ful in this case. 

Another problem with the Maskin-Tirole mechanism is that it 
only works to elicit payoff-relevant information. If, for instance, the 

»• For a risk-neutral seller, it suffices to take an F with positive expectation and a 
large enough variance, so that it also has a negative expected equivalent for the 
buyer. 
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parties have CARA preferences, then there are no wealth effects and 
income cannot be elicited. 

These objections have a rather abstract character (which does not 
mean that they should not be taken seriously). Other, more prag­
matic arguments suggest a more sanguine view of the literature.1" 

The irrelevance theorems are driven by the ability of the agents to 
reason backward and to play complicated message games. Thus a 
first avenue of progress calls for building an explicit theory of 
bounded rationality and studying its implications for contracting. 
Unfortunately, while many authors have insisted on the need for 
such an approach, little progress has been made, and we still have 
no useful criterion to decide whether a contract is "too compli­
cated." The study of environments where the optimal complete con­
tract is very simple and looks very much like what the promoters of 
incomplete contracts had in mind has shown more promise. This 
has taken three interesting directions. The intuition behind the first 
is that as the contracting environment becomes more complex, rene­
gotiation will constrain the exchange of messages so much that the 
standard incomplete contracts will be achieved in the limit (see 
Segal 1999 for a good example). A second consists in challenging the 
received wisdom that complete contracts cannot explain authority 
and property rights. Tirole (1999) indeed presents a model in which, 
with renegotiation allowed, the optimal complete contract can be 
implemented by an allocation of property rights as is typical of sim­
ple incomplete contracts. 

More recently the Maskin-Tirole assumption that the Center's can 
verify the actions taken after the message game is played was 
relaxed by Aghion-Dewatripont-Rey (2004). They consider the case 
of a banker who extends a line of credit to a borrower. The borrower 
is unknown to the banker, and his type may be good or bad. The 
credit line is worth keeping open only if the borrower is good. 

10. Tirole (1999) provides a highly readable discussion of this topic 
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With complete contracts, the banker can set up a message game, 
elicit information about the borrower's type, and decide according 
to the contract whether to close the credit line or keep it open. The 
inference is that the Center will verify that the contract has been exe­
cuted fairly. However, we see little of this in reality. What we do see 
is that bankers extend "test" credit lines in order to obtain informa­
tion on the borrowers' types. Then they can decide whether to close 
them or offer more generous loans. Aghion-Dewatripont-Rey show 
examples where this actually is the optimal contract.11 

Last we should consider a more practical approach to incomplete 
contracting that focuses on simple contracts, and disregards the 
debate on their foundations. Simple contracts, in this view, are 
robust because they allow agents to learn how to behave.12 The book 
by Hart (1995) gives many interesting insights on the theory of firms 
obtained in this way. The study of venture capital contracts by 
Kaplan-Stromberg (2003) also gives support to the view of financial 
contracting in Aghion-Bolton (1992). The difficulty remains, how­
ever, that we have no good definition of what constitutes a "simple" 
contract. The option-to-sell may not qualify because it is based on a 
public randomization device. But what of contracts that merely con­
strain the renegotiation game? In any case, proponents of this 
approach should eventually study the consequences of incomplete 
contracting when information is asymmetric13. Because renegotia­
tion then may not be efficient, this raises a host of other problems. 

11. This is close to the analysis of Aghion-Tirole (1997), which we examined in sec­
tion 4.4. Here the borrower is sometimes given real authority, though the banker 
keeps formal authority. 

:. This was already the idea behind the argument for linear contracts by Holmstrom-
Milgrom (1987); see section 5.3.9. 

13. Unforeseen contingencies and symmetric information do not go well together. 
11 events are hard to describe, it is inevitable that the parties will have different 

views 
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g Some Empirical Work 

It is a capital mistake to theorise before one has data. 

—Arthur Conan Doyle, A Scandal in Bohemia 

The reader should be aware by now of the explosive development of 
the theory of contracts since the early 1970s. The theoretical models 
have become increasingly more realistic and shed light on mam 
fields of economic activity. For a long time, however, the empirical 
validation of the models lagged despite the increasing sophistica­
tion of the theory. Many papers consisted of theoretical analyses 
with little attention to the facts. Others stated so-called stylized facts 
often based on anecdotal evidence and went on to study a model 
from which these stylized facts could be derived. A rather small 
number of authors derived qualitative predictions from the theory 
and went on to test them on actual data. But contrary to most other 
fields of economic theory, econometrics was very rarely used to 
check the predictions of the theory of contracts. 

In the 1990s, a growing number of scholars came to deplore this 
state of affairs. After all, even if the philosophy of science held by 
Sherlock Holmes is somewhat outdated, it does seem that econo­
mists can do more to draw inferences from whatever data they car. 
lay their hands on. Fortunately, a good number of empirical 
researchers have turned their attention to the theory of contracts in 
recent years. There is not the space here to give a survey of mis 
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burgeoning and exciting line of work. We will attempt to cover a few 
important themes. The reader can turn to the recent survey of 
Chiappori-Salanie (2003),1 complemented by Prendergast (1999) on 
incentives within firms and Laffont (1997) on auctions. We just note 
here that two broad conclusions that emerge from this literature. 

• There is accumulating evidence that incentives do matter: con­

tracts influence behavior in the ways predicted by theory. 

• On the other hand, it is much harder to account for the specific 

form that contracts take; much progress remains to be done in this 

direction. 

In the first section of this chapter, we will study one of the main 
difficulties of the empirical contracts literature, which is to measure 
the effect of contracts on agents' behavior when they self-select by 
choosing a particular contract. In the next two sections we will con­
sider briefly the work in two important fields: auctions in section 8.2 
and insurance in section 8.3. These presentations are kept as simple 
as possible, but the reader should be warned that this chapter pre­
supposes a little familiarity with standard econometric concepts and 
methods. 

8.1 Dealing with Unobserved Heterogeneity 

The basic objective in empirical work on contracts is to measure 
what influences behavior, or, to put it more bluntly: Do incentives 
matter? Unfortunately, empirical observation can only provide evi­
dence on correlations between contracts and human behavior. Theo­
retical predictions, on the other hand, are concerned with causality 
relationships. Assessing causality from correlations is an old prob­
lem in economics, as it is in all science, and the question of causality 
is important in the study of contracts. Typically, although different 

ol this chapter draw heavily on this 
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contracts can be associated with different behaviors, as is docu­
mented by a large literature, the interpretation of observed correla­
tions is not straightforward. One explanation is that contracts in 
the corresponding behavior through their underlying incentive 
structure; this is the so-called incentive effect of contracts. Another 
offers a priori a convincing argument that differences in behavior 
reflect an unobserved heterogeneity across agents, and that this het­
erogeneity is responsible for the variations in contract choices. 

Interestingly, this distinction is familiar to both theorists and 
econometricians, although the vocabulary differs. Econometricians 
have for a long time stressed the importance of endogenous selec­
tion. In the presence of unobserved heterogeneity, the matching of 
agents to contracts must be studied with care. If the outcome of the 
matching process is related to the unobserved heterogeneity vari­
able (as can be expected), then the choice of the contract is endoge­
nous. In effect, any empirical analysis taking contracts as given will 
be biased. 

Contract theory, on the other hand, systematically emphasizes the 
distinction between adverse selection (whereby unobserved hetero­
geneity preexists and constrains the form of contract) and moral 
hazard (whereby behavior directly responds to the incentive struc­
ture created by the contract). As an illustration, consider the litera­
ture on automobile insurance contracts. The idea here is to test a 
standard prediction of the theory: everything equal, people who 
face contracts entailing more comprehensive coverage should 
exhibit a higher accident probability. Such a pattern, if observed, can 
be given two interpretations. One is the classical adverse selection 
effect a la Rothschild-Stiglitz: high risk agents, knowing they are 
more likely to have an accident, self-select by choosing contracts 
entailing a more comprehensive coverage. Alternatively, one can 
evoke moral hazard: if some agents, for exogenous reasons (e.g., pick­
ing the insurance company located down the corner), end up facing 
a contract with only partial coverage, they will be motivated to 



214 Chapter 8 

adopt a more cautious behavior, which will result in lower accident 
rates. In practice, the distinction between adverse selection and 
moral hazard is crucial, especially from a normative viewpoint. But 
it is also very difficult to implement empirically, especially with 
cross-sectional data. 

A recent contribution by Ackerberg and Botticini (2002) gives a 
striking illustration of this selection problem. They consider the 
choice between sharecropping and fixed rent contracts in a 
tenant-landlord relationship. As we saw in chapter 5, the standard 
moral hazard models stress the trade-off between incentives and 
risk-sharing in the determination of contractual forms. Fixed rent 
contracts are efficient because the tenant is both the main decision 
maker and the residual claimant. However, fixed rent contracts can 
generate an inefficient allocation of risk, whereby all the risk is 
borne by one agent, the tenant, who is presumably more risk averse. 
When uncertainty is small, risk-sharing matters less, and fixed rent 
contracts are more likely to be adopted. In contrast, in a very uncer­
tain environment, risk-sharing is paramount, and sharecropping is 
the natural contractual form. This prediction can readily be tested 
from data on existing contracts, provided that a proxy for the level 
of risk is available. For instance, if some crops are known to be more 
risky than others, the theory predicts that these crops are more likely 
to be associated with sharecropping contracts. 

A number of papers have tested this prediction by regressing con­
tract choice on crop riskiness. The underlying argument, however, 
has an obvious weakness: it takes contracts as exogenously given, 
and disregards any possible endogeneity in the matching of agents 
to contracts. In other words, the theoretical prediction described 
above only holds for given characteristics of the landlord and the 
agents. It can be taken to the data only to the extent that this "every­
thing equal" assumption is satisfied so that agents facing different 
contracts do not differ by some otherwise relevant characteristic. To 
see this, suppose, on the contrary, that agents exhibit ex ante hetero-
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geneous degrees of risk aversion. To keep things simple, we can 
assume that a fraction of the agents arc risk neutral, while the rest 
are risk averse. Different agents will be drawn to different crops; effi­
ciency suggests that risk-neutral agents should specialize in the 
riskier crops. But note that risk-neutral agents should also be offered 
fixed rent contracts, since risk-sharing is not an issue for them. Thus 
given heterogeneous risk aversions, fixed rent contracts are associ­
ated with the riskier crops, and the standard prediction is reversed. 

Clearly, the core of the difficulty lies in the fact that although risk 
aversion has a crucial role in this example, it is not directly observ­
able. Conditional on risk aversion, the initial theoretical argument 
remains valid: more risk makes fixed rent contracts look less attrac­
tive. This prediction can in principle be tested, but it requires that 
differences in risk aversion be controlled for in the estimation or that 
the resulting endogeneity bias be corrected in some way. 

Most empirical studies relating contracts and behavior involve, at 
least implicitly, a selection problem of this kind. Various strategies 
can be adopted to address it. Some writers explicitly recognize the 
problem, and merely test for the presence of asymmetric informa­
tion without trying to be specific about its nature (see section 8.3 on 
models of insurance markets). Others, however, use available data 
to disentangle selection and incentives. Such is the case, in particu­
lar, when the allocation of agents to contracts is exogenous, either 
because it results from explicit randomization or because some "nat­
ural experiment" has modified the incentive structure without 
changing the composition of the population. The guiding example 
here is the celebrated Rand Health Insurance Experiment (HIE).2 

Families participating in the HIE were randomly assigned to one 
of 14 different insurance plans, with different coinsurance rates and 
different upper limits on annual out-of-pocket expenses. In addition 

2. See Manning et al. (1987). 
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lump-sum payments were introduced in order to guarantee that no 
family would lose by participating in the experiment. The HIE has 
provided extremely valuable information about the sensitivity of 
the demand for health services to out-of-pocket expenditures, but it 
was a very costly experiment that is not likely to be imitated often. 

Some studies rely on simultaneous estimation of selection and 
incentives effects in their modelization of the economic and/or 
econometric structure at stake. Paarsch-Shearer (1999) and Cardon-
Hendel (2001) are leading papers in labor economics and in health 
insurance respectively. Finally there is a promising direction on the 
use of panel data, the underlying intuition being that the dynamics 
of behavior exhibit specific features under moral hazard. 

8.2 Auctions 

Much empirical study has been devoted since the 1980s to the actual 
behavior of bidders in auctions. There are two strands in this litera­
ture. The first aims at testing the standard model of bidding devel­
oped in section 3.2.3 (or more elaborate extensions) by producing 
qualitative predictions of the theory and testing them using descrip­
tive statistics or reduced-form econometrics; Porter (1995) is a well-
known example. The second, which we will consider here, adopts a 
fully structural approach to recover estimates of the parameters of 
the theoretical model. 

The pioneering paper in this area is Laffont-Ossard-Vuong 
(1995). We will adopt their approach in the context of an indepen­
dent private values model using the first-price sealed-bid auction 
studied in section 3.2.3. Recall that there are n bidders in this model, 
each of whom has a valuation 0y with cumulative distribution func­
tion F on [6,6], and these valuations are independently distributed 

3. But see also Paarsch (1992). 
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across individuals. For estimation purposes, we will assume that F is 
lognormal, so that 

log 6 - ^ N(X/1, a2) 

where X is a vector of exogenous variables and /? and a are the para­
meters we want to estimate. In each auction we observe both the 
exogenous variables X and the value of the winning bid bw. 

We saw in section 3.2.3 that the equilibrium bidding strategies are 
given by 

B(0.) = 0. - - i _ 

Then the winning bid is bw = B(#(1)), where 

(«w <W 
is the vector of valuations arranged in decreasing order. In theory, 
we could use this formula and the fact that we observe bw to derive 
a maximum-likelihood estimator of the parameters of the distribu­
tion F. However, this is a very cumbersome way to proceed. A better 
idea is to rely on the expected revenue of the seller, which is 

Ebw = Ed{2) 

While it is hard to compute E9{2) analytically, it is easy to approxi­
mate it using simulations. To do this, we draw S /i-vectors (u[, ..., <) 
independently from the centered reduced normal distribution 
N{0, 1). For each of these draws s, we pick the second highest K? and 
denote it us

{2). Then exp (X/? + <TU(
S
2)) is an unbiased simulator of E0(2) 

and a more accurate one is 

£S^(X, fi, a) = \ X exp (xfi + aus
{2)) 
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Now suppose that we have data (b'w, X'),L=i on L auctions and that 
these auctions can be considered to be independent.4 The natural 
idea is, following Laroque-Salanie (1989), to minimize the squared 
distance between the observed winning bids b'w and the (simulated) 
expected theoretical bids Esbw(X, [i, a). A simulated nonlinear least-
squares estimator of fi and a thus obtains after we minimize 

I (*t - Esbw(X>,f],a))2 

1=1 

We get a consistent estimator as both L and S go to infinity. More­
over Laffont-Ossard-Vuong exhibit a simple bias correction that 
allows the estimator to be consistent and asymptotically normal 
when L goes to infinity, even when the number of simulations S is 
fixed.5 A remarkable feature of this estimation procedure is that it 
does not require the introduction of statistical errors; in fact the val­
uations 9j play that role because they are randomly drawn from the 
distribution F. 

This method has been extended in recent years to more realistic 
models of auctions and to nonparametric estimators. Its proponents 
have further uncovered fundamental nonidentification issues in the 
affiliated private values model of Milgrom-Weber (1982) that can 
only be remedied by creative use of more complete datasets. For all 
of this, the interested reader is referred to Laffont (1997). 

8.3 Tests of Asymmetric Information in Insurance Markets 

In the contracting literature a vexing problem is to find convincing 
evidence for the importance of asymmetric information in the vari­
ous fields to which the theory have been applied. Insurance was an 

4. Auctions are independent in the sense that bidders draw new private values 
before each auction. 

• The simulations entail an efficiency loss that is of order l /S , and thus the effi-
:iency loss can be made very small by increasing the number of simulated draws. 
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early application of the theory of contracts, and it also represents a 
respectable share of GDP in all developed countries. Moreover it is 
relatively easy to get plentiful and high-quality data from insurance 
companies. Therefore several papers have recently used data on 
insurance markets in order to test for the presence of asymmetric 
information. 

The starting point for this literature has already been presented in 
section 8.1: both the Rothschild-Stiglitz model of adverse selection 
and the pure moral hazard model predict that coverage and risk 
must be positively correlated across contracts. In simpler terms, con­
sider the basic 0-1 model in which insurees either file no claim or file 
a claim of a fixed size. Then these two models predict that the pro­
portion of insurees who file a claim must be larger for contracts that 
offer more generous coverage. 

This outcome was tested originally by Chiappori-Salanie (1997, 
2000) in an automobile insurance context where insurees choose 
between two types of coverage (e.g., comprehensive versus liability 
only). They then did or did not have an accident in the subsequent 
year. The simplest representation of this framework uses two probit 
equations. One describes the choice of a contract, and takes the form 

y, = I[Xtfi + 4 > 0] 

where y, = 1 when the insuree chose the comprehensive coverage 
contract at the beginning of the year, and 0 otherwise; here the X, are 
exogenous covariates that control for all the information available to 
the insurer, and /? is a vector of parameters to be estimated. The sec­
ond equation relates to the occurrence of an accident: 

zi = I[Xiy + tji>0) 

where z, = 1 when the insuree had an accident during the year, and 
0 otherwise, and y is a vector of parameters to be estimated. In this 
context asymmetric information should result in a positive correla­
tion between y, and z, conditional on X,, which is equivalent to a 
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positiveCi ^relation between e, and //,. This can be tested in a number 
of ways; for instance, Chiappori and Salanie (2000) propose two 
parametric tests and a nonparametric test." Interesting I v none of the 
tests can reject the null hypothesis of zero correlation (correspond­
ing to the absence of asymmetric information). 

These results are confirmed by most studies on automobile insur­
ance; similarly Cawley and Philipson (1999) find no evidence of 
asymmetric information in life insurance. However, evidence of 
adverse selection has been repeatedly found in annuity markets. 
Recently Finkelstein and Poterba (2004) have studied the annuity 
policies sold by a large UK insurance company. Again, the system­
atic and significant relationships they find between ex post mortal­
ity and some relevant characteristics of the policies suggest that 
adverse selection plays an important role in that market. For 
instance, individuals who buy morebackloaded annuities are found 
to be longer-lived, whereas policies involving payment to the estate 
in the event of an early death are preferred by customers with 
shorter life expectancy. 

How can the negative tests on the presence of asymmetric infor­
mation in many insurance markets be reconciled with the common 
feeling that both moral hazard and adverse selection play an impor­
tant role in this field? Chiappori-Jullien-Salanie-Salanie (2004) 
examine this question. They first prove that the theoretical predic­
tion of a positive correlation of coverage and risk holds (in a gener­
alized form) in two cases: 

• A general class of competitive models with adverse selection on 
risk and/or preferences and possibly moral hazard, and a general 
distribution of claim sizes. 

6. One parametric test is based on a computation of generalized residuals from 
independent estimations of the two probits, while the other requires a simultaneous 
estimation of the two probits using a general covariance matrix for the residuals. The 
nonparametric approach relies on the construction of "cells" of identical profiles, 
followed by a series of x2 tests. 
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• Imperfectly competit ive mode l s , provided that insurers obai 

the risk-aversion of the insurees. 

They then argue that since the data reject this prediction, theoretii al 

models must be found that al low for imperfect competition and pri 

vately known risk-aversions. Jullien-Salanie-Salanie* (2003) study 

Mich a model and show that it can generate both positive and r\e 

tive correlations of risk and coverage. Finkelstein-McGarry (2004) 

exhibit some corroborating evidence for this model. 

The recent literature on insurance markets is charai tei i :ed b) the 

rvstant interaction between theory and empirical studies that is the 

hallmark of scientific research but was largely neglected in the con 

tracting Literature until recently. It is the hope o\ this author thai we 

will see more such work in the future 
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A - D D G I l d i X Some Noncooperative 
Game Theory 

In solving a problem of this sort, the grand thing is to be able to reason backwards. 

—Arthur Conan Doyle, A Study in Scarlet 

This appendix presents some equilibrium concepts for noncoopera­
tive games that are used mostly in chapters 4 and 6. Readers inter­
ested in a more detailed study of these concepts can turn to chapter 
11 of Tirole (1988), to chapter 12 of Kreps (1990a), or to Fudenberg-
Tirole (1991). It is presumed that the reader already knows what a 
game is and how it is modeled. 

Consider an Ji-player game. Player / has strategies s, G S, and a 
utility function denoted by ut(sv ..., s„). Denote mixed strategies by 
cr,. If a = (av ..., (7„) is a vector of strategies, a.t represents the vector 
{<yv ...,o^voi+v ...,<?„)• R e c a 1 1 t h a t a m i x e d strategy at is called 
totally mixed if it has full support on the set of pure strategies S,, By a 
slight abuse of notation we can denote ufa) the expected utility of 
player i when players adopt mixed strategies a = {av ..., a„). We 
can assume that the strategy spaces are finite, and let <7,(s,) be the 
weight of pure strategy s, in the mixed strategy CT,. Then 
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A.l Games of Perfect Information 

A. 1.1 Nash Equilibrium 

A Nash equilibrium is a strategy profile (o\, ..., c*) such that each 

a* is a best response to the equilibrium strategies a* of the other 

players: 

Vz, a\ E arg max w,(o> OL*) 

A.1.2 Subgame-Perfect Equilibrium 

Dynamic games are usually described by their extensive form. The 
sequential unrolling of the game is represented through a game tree, 
as shown in figure A.l in which player 1 chooses between strategies 
T and B and player 2 then chooses between strategies t and b. The 
utilities achieved by the two players are indicated on the right ter­
minal nodes of the tree. 

The extensive form makes it easy to define subgames because 
they correspond to various branches of the game tree. Thus there are 
three subgames in the previous example: the game itself, and the 
two subgames starting with the nodes marked by a 2. Each strategy 

Figure A.l 

An extensive-form game 
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Figure A.2 
Subgame-perfect equilibria 

conceived for the whole game engenders strategies in each sub-
game. When global strategies form a Nash equilibrium, the strate­
gies induced in each subgame must form a Nash equilibrium in each 
subgame that is effectively reached at equilibrium. On the other 
hand, Nash equilibrium may prescribe strategies that are not a Nash 
equilibrium in a subgame that is not reached in equilibrium. Some 
Nash equilibria may thus rest on the fact that player 1 threatens 
player 2 with a punishment if player 2 deviates from equilibrium, 
even though this punishment may hurt player 1 himself. If player 2 
should deviate from equilibrium, then it would not be in player l's 
interest to carry out his threat: this type of threat therefore is not 
credible. 

The concept of subgame-perfect equilibrium was designed to 
eliminate such noncredible threats. It is defined as a strategy profile 
that is a Nash equilibrium in all subgames, including those that are not 
reached in equilibrium. 

Consider now the game depicted in figure A.2. There are two 
Nash equilibria in this game. In the first equilibrium, denoted by 
(T, b), player 1 plays T and player 2 plays b; in the second equilib­
rium, denoted by B, player 1 plays B and the game stops. However, 
B is a Nash equilibrium only because player 1 anticipates that 2 will 
play t if 1 plays T. Since r is a dominated strategy for 2, this cannot be 
a subgame-perfect equilibrium. The only subgame-perfect equilib­
rium of this game is (T, b). 



226 Appendix 

In finite-horizon games the search for subgame-perfect equilibria 
uses Kuhn's algorithm of backward induction.1 That is to say, we 
start by looking for Nash equilibria on the terminal branches of the 
game. Then we apply to the nodes the "reduced utilities" thus com­
puted. Last we iterate the algorithm until the whole game is solved. 
In the preceding example this procedure affects to player VsT strat­
egy the utility vector (3,1), since b is player 2's preferred strategy. 
Player 1 then chooses T, which gives him a higher utility than B. 

A.2 Games of Incomplete Information 

Some authors make a subtle distinction between games of incom­
plete information and games of imperfect information. In games of 
imperfect information, the player is not perfectly informed as to 
what other players have done before him; in games of incomplete 
information, players do not know all characteristics (or types) of 
their opponents. 

In fact every game of incomplete information can be transformed 
into a game of imperfect information by adding an (n + l)th player, 
called Nature. Nature randomly picks the types of the other n play­
ers before the game starts. This distinction therefore is not essential, 
and for that reason we only need to study here games of incomplete 
information. 

A.2.1 Bayesian Equilibrium 

Each player i now has a type 0fV which we can take in a finite set to 
simplify the exposition. The player's utility is ufa, ..., sw 0,-), and 
the strategy he chooses of course depends on his type. Types are 

1 This was indeed the modus operandi of Sherlock Holmes, as noted by the quota­
tion at the head of this appendix. 
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drawn from a joint distribution n{0v ..., ()n). We can assume that the 
prior beliefs of the players are consistent with this joint distribution:2 

the prior of player i is the conditional distribution ty(0_.| 0.), where 

O-i=(Ol,:,Oi-l,Oi+1,.:,0rd. 
The analogous concept to the Nash equilibrium in this setup is the 

Bayesian equilibrium. A type-dependent strategy profile 

is a Bayesian equilibrium if every player chooses his "expected best 
response": 

W, \fi, cr^,-) £ arg max £ n,(0^\ 0{) u^a, «j(0 j , 0t) 

We can also define a subgame-perfect Bayesian equilibrium concept 
by imposing that strategies form a Bayesian equilibrium in each sub-
game. This notion is only used in practice as a building block for per­
fect Bayesian equilibrium or its refinements, to which we now turn. 

A.2.2 Perfect Bayesian Equilibrium 

Bayesian equilibrium does not take into account the fact that players 
can learn their opponents' types by observing their play since every 
move by a player can reveal information on his type. Suppose, for 
instance, that the first player, who has two possible types, can play L 
or R. Suppose also that the first type of player 1 has a higher utility 
in branch I, while its second type has a higher utility in branch R. 
Then the first type will tend to choose L and the second type will 
tend to choose R. When the second player observes that the first 
player chose to play L, he logically will revise his prior belief on 

2. The presence of common priors is an assumption that is nearly universal 

literature. 
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player 1 and increase his prior that player 1 is of the first type. The 
concept of perfect Bayesian equilibrium aims at formalizing this 
process of updating beliefs, by modeling the mutual links between 
equilibrium strategies and beliefs. 

At each node of the game, the player whose turn it is to play has 
an information set that describes his uncertainty as to what types the 
other players are, and beliefs n that are a probability distribution on 
this information set; accordingly these beliefs evolve as the game 
unfolds. These beliefs thus specify, at each node of the game, a prob­
ability distribution on the types of each other player. 

Perfect Bayesian equilibria integrate two requirements: 

• Sequential rationality. The strategies a played at equilibrium must 
form a subgame-perfect Bayesian equilibrium, given the beliefs n at 
every node. 

• Bayesian consistency. The beliefs n at every node must obtain 
through Bayesian updating of prior beliefs, given the equilibrium 
strategies a. 

"Bayesian updating" means that players use Bayes's rule whenever 
it is possible. Suppose, for instance, that player 1 has only two pos­
sible types 0X and B2 that are a priori equiprobable and two possible 
strategies T and B. Let p{ be the probability that type 8t of player 1 
plays T in equilibrium. Then the probability that player 1 plays T in 
equilibrium is 

Pl+P2 

If Pi + p2 * 0, Bayes's rule allows us to compute the beliefs of player 
2 after player 1 has played T: Player 2 then assigns probability 
V\KV\ + Pi) to type 0,. On the other hand, if Vl = p2 = 0, that is, if T 
is never played in equilibrium, then Bayes's rule does not apply and 
player 2's beliefs are unrestricted after T. 
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strategies a 

Bayesian updating 

subgame-perfect Bayesian equilibrium 

beliefs IT 

Figure A.3 
The perfect Bayesian equilibrium 

A perfect Bayesian equilibrium thus is a n-tuple of strategies a and 
a w-tuple of beliefs n at every node such that 

• the strategies o form a subgame-perfect Bayesian equilibrium, 
given the beliefs n, 

• the beliefs n are obtained from the prior beliefs by applying 
Bayes's rule at every node that is reached with nonzero probability 
in equilibrium when players follow the strategies a. 

Figure A.3 sums up the mutual determination of beliefs and strate­
gies in a perfect Bayesian equilibrium. 

A.2.3 Refinements of Perfect Bayesian Equilibrium 

Perfect Bayesian equilibrium does not restrict out-of-equilibrium 
beliefs at all. If a node of the game is never reached in equilibrium, 
then Bayes's rule has no bite there. In many games it will therefore 
be possible to support a large number and sometimes a continuum 
of perfect Bayesian equilibria by choosing particular out-of-equilib­
rium beliefs.3 

Several more restrictive equilibrium concepts have been proposed 
to remedy this. They all aim at limiting possible beliefs when an out-
of-equilibrium move takes place. We will only consider two of these 
refinements; they are the only ones used in this book. 

3. Chapter 4 presents a good example of out-of-equilibrium 
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Sequential Equilibrium. 

Sequential equilibrium reinforces the Bayesian consistency require­

ment by imposing that out-of-equilibrium beliefs be the limit of beliefs 

that are generated by totally mixed strategies that are close to equilib­

rium strategies. This definition exploits the fact that Bayes's rule 

uniquely determines beliefs when strategies are totally mixed, since 

every node of the game then is reached with nonzero probability. 

More formally, {a, n) is a sequential equilibrium if the strategies a 

are a subgame-perfect equilibrium given the beliefs n and if there 

exists a sequence of totally mixed strategies an and a sequence of 

beliefs n" such that 

• n" is obtained from an by applying Bayes's rule in every node of 

the game, 

• lim n^Jpn, nn) = {a, n). 

Note that we do not require that the strategies an form a subgame-

perfect Bayesian equilibrium given the corresponding beliefs nn, 

only that this is true at the limit. Figure A.4 shows how a sequential 

equilibrium is computed. 

Selten (1975) introduced the idea of trembling-hand perfect equi­

librium that relies on a robustness property when equilibrium strat­

egies are slightly perturbed.4 Kreps-Wilson (1982) showed that a set 

of trembling-hand perfect equilibria coincides with that of sequen­

tial equilibria in almost all finite games. 

Intuitive Equilibrium. 

Signaling models are typical of games involving a very large num­

ber of perfect Bayesian equilibria. As chapter 4 shows, sequential 

equilibrium does not solve this difficulty. To solve these games, Cho-

Kreps (1987) proposed what they call the "intuitive criterion." The 

procedure is to give zero probability to the type 9 of any player who 

has just played an out-of-equilibrium strategy s when that strategy 

• The underlying idea is that the equilibrium should not change much when play-
re allowed to make mistakes with a small probability. 
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strategies on Bayesian updating 
beliefs 

taking limits taking limits 

strategies a 
subgame-perfect Bayesian equilibrium beliefs 7r 

Figure A.4 
The sequential equilibrium 

is dominated for type 0. By "dominated," we mean here that what­

ever beliefs the other players adopt after observing s, their best 

responses can only give type 0 a lower utility than what he gets in 

equilibrium. An intuitive equilibrium then is a perfect Bayesian 

equilibrium that passes the intuitive criterion. 

Giving a precise definition of the intuitive criterion involves a lot 

of notation, so we will only study here a rough outline. Start from a 

perfect Bayesian equilibrium. Suppose that at some stage in the 

game, type 0's equilibrium strategy is some s0 and that the other 

players' equilibrium response is SQ so that in the end 9's expected 

payoff is U(s0, SQ, 6). Now let s be a possible deviation by 9. If the 

other players revise their beliefs to // when they observe s, they will 

then play their best response s'(/i, s), and 0 will eventually obtain 

U(s, s'{/x, s), 6). The intuitive criterion rejects perfect Bayesian equi­

libria which are supported by out-of-equilibrium beliefs such that 

max U(s, s'{fi, s), 0) < U(s0, s£, 0) 

and yet [x gives some weight to type 0.5 

This equilibrium concept thus formalizes the idea according to 

which some deviations from equilibrium strategies can only be 

5. There is a slight technicality here. It might be that the inequality in the text holds 
for all types 0, in which case fi would have total weight zero. Then the intuitive cri­
terion should not be applied. 



232 Appendix 

reasonable for some types: Type 6 will only deviate if he has some 
indication that the other players will react in ways that increase his 
utility. Any other deviation by 6 will be counterproductive, and the 
intuitive criterion therefore excludes it. As chapter 4 shows, the intu-
itive criterion is successful at selecting an equilibrium in signaling 
games, at least with only two types.6 The trouble with the intuitive 
criterion is that as with all forward induction arguments,7 it relies on 
counterfactual "speeches" by deviating players that should (ide­
ally!) be modeled in a communication game. 

Much work was aimed at refining perfect Bayesian equilibrium in 
the early 1980s,8 but the activity has quieted now. The consensus 
among game theorists seems to be that more attention needs to be 
given issues of robustness and learning that do not presume the 
players to be hyperrational. (Kreps 1990b gives some good reasons 
to turn to such an approach.) 
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