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CHAPTER

ONE
THE NATURE OF MATHEMATICAL ECONOMICS

Mathematical economics is not a distinct branch of economics in the sense that
public finance or international trade is. Rather, it is an approach to economic
analysis, in which the economist makes use of mathematical symbols in the
statement of the problem and also draws upon known mathematical theorems to
aid in reasoning. As far as the specific subject matter of analysis goes. it can be
micro- or macroeconomic theory, public finance, urban economics, or what not.

Using the term mathematical economics in the broadest possible sense, one
may very well say that every elementary textbook of economics today exemplifies
mathematical economics insofar as geometrical methods are frequently utilized to
derive theoretical results. Conventionally, however, mathematical economics is
reserved to describe cases employing mathematical techniques beyond simple
geometry, such as matrix algebra, differential and integral calculus, differential
equations, difference equations, etc. It is the purpose of this book to introduce the
reader to the most fundamental aspects of these mathematical methods— those
encountered daily in the current economic literature.

1.1 MATHEMATICAL VERSUS NONMATHEMATICAL
ECONOMICS

Since mathematical economics is merely an approach to economic analysis, it
should not and does not differ from the nonmathematical approach to economic
analysis in any fundamental way. The purpose of any theoretical analysis,
regardless of the approach, is always to derive a set of conclusions or theorems
from a given set of assumptions or postulates via a process of reasoning. The
major difference between “mathematical economics™ and “literary economics”

3



4 INTRODUCTION

lies principally in the fact that, in the former, the assumptions and conclusions are
stated in mathematical symbols rather than words and in equations rather than
sentences; moreover, in place of literary logic, use is made of mathematical
theorems—of which there exists an abundance to draw upon—in the reasoning
process. Inasmuch as symbols and words are really equivalents (witness the fact
that symbols are usually defined in words), it matters little which is chosen over
the other. But it is perhaps beyond dispute that symbols are more convenient to
use in deductive reasoning, and certainly are more conducive to conciseness and
preciseness of statement.

The choice between literary logic and mathematical logic, again, is a matter of
little import, but mathematics has the advantage of forcing analysts to make their
assumptions explicit at every stage of reasoning. This is because mathematical
theorems are usually stated in the “if-then” form, so that in order to tap the
“then” (result) part of the theorem for their use, they must first make sure that
the “if” (condition) part does conform to the explicit assumptions adopted.

Granting these points, though, one may still ask why it is necessary to go
beyond geometric methods. The answer is that while geometric analysis has the
important advantage of being visual, it also suffers from a serious dimensional
limitation. In the usual graphical discussion of indifference curves, for instance,
the standard assumption is that only rwo commodities are available to the
consumer. Such a simplifying assumption is not willingly adopted but is forced
upon us because the task of drawing a three-dimensional graph is exceedingly
difficult and the construction of a four- (or higher) dimensional graph is actually a
physical impossibility. To deal with the more general case of 3, 4, or n goods, we
must instead resort to the more flexible tool of equations. This reason alone
should provide sufficient motivation for the study of mathematical methods
beyond geometry.

In short, we see that the mathematical approach has claim to the following
advantages: (1) The “language” used is more concise and precise; (2) there exists
a wealth of mathematical theorems at our service; (3) in forcing us to state
explicitly all our assumptions as a prerequisite to the use of the mathematical
theorems, it keeps us from the pitfall of an unintentional adoption of unwanted
implicit assumptions; and (4) it allows us to treat the general n-variable case.

Against these advantages, one sometimes hears the criticism that a mathe-
matically derived theory is inevitably unrealistic. However, this criticism is not
valid. In fact, the epithet “unrealistic” cannot even be used in criticizing eco-
nomic theory in general, whether or not the approach is mathematical. Theory is
by its very nature an abstraction from the real world. It is a device for singling
out only the most essential factors and relationships so that we can study the crux
of the problem at hand, free from the many complications that do exist in the
actual world. Thus the statement “theory lacks realism” is merely a truism that
cannot be accepted as a vald criticism of theory. It then follows logically that it is
quite meaningless to pick out any one approach to theory as “unrealistic.” For
example, the theory of firm under pure competition is unrealistic, as is the theory
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of firm under imperfect competition, but whether these theories are derived
mathematically or not is irrelevant and immaterial.

In sum, we might liken the mathematical approach to a “mode of transporta-
tion” that can take us from a set of postulates (point of departure) to a set of
conclusions (destination) at a good speed. Common sense would tell us that, if
you intend to go to a place 2 miles away. you will very likely prefer driving to
walking, unless you have time to kill or want to exercise your legs. Similarly. as a
theorist who wishes to get to your conclusions more rapidly, you will find it
convenient to “drive” the vehicle of mathematical techniques appropriate for your
particular purpose. You will, of course. have to take “driving lessons™ first; but
since the skill thus acquired tends to be of service for a long, long while, the time
and effort required would normally be well spent indeed.

For a serious “driver”’—to continue with the metaphor—some solid lessons
in mathematics are imperative. It is obviously impossible to introduce all the
mathematical tools used by economists in a single volume. Instead. we shall
concentrate on only those that are mathematically the most fundamental and
economically the most relevant. Even so, if you work through this book conscien-
tiously. you should at least become proficient enough to comprehend most of the
professional articles you will come across in such periodicals as the American
Economic Review, Quarterly Journal of Economics. Journal of Political Economy,
Review of Economics and Statistics. and Economic Journal. Those of you who,
through this exposure, develop a serious interest in mathematical economics can
then proceed to a more rigorous and advanced study of mathematics.

1.2 MATHEMATICAL ECONOMICS VERSUS ECONOMETRICS

The term * mathematical economics™ is sometimes confused with a related term,
“econometrics.” As the “metric” part of the latter term implies, econometrics is
concerned mainly with the measurement of economic data. Hence it deals with
the study of empirical observations using statistical methods of estimation and
hypothesis testing. Mathematical economics, on the other hand, refers to the
application of mathematics to the purely theorerical aspects of economic analysis,
with little or no concern about such statistical problems as the errors of measure-
ment of the variables under study.

In the present volume. we shall confine ourselves to mathematical economics.
That 1s. we shall concentrate on the application of mathematics to deductive
reasoning rather than inductive study. and as a result we shall be dealing
primarily with theoretical rather than empirical material. This is, of course, solely
a matter of choice of the scope of discussion, and it is by no means implied that
econometrics is less important.

Indeed, empirical studies and theoretical analyses are often complementary
and mutually reinforcing. On the one hand. theories must be tested against
empirical data for validity before they can be applied with confidence. On the
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other, statistical work needs economic theory as a guide, in order to determine
the most relevant and fruitful direction of research. A classic illustration of the
complementary nature of theoretical and empirical studies is found in the study
of the aggregate consumption function. The theoretical work of Keynes on the
consumption function led to the statistical estimation of the propensity to
consume, but the statistical findings of Kuznets and Goldsmith regarding the
relative long-run constancy of the propensity to consume (in contradiction to
what might be expected from the Keynesian theory), in turn, stimulated the
refinement of aggregate consumption theory by Duesenberry, Friedman, and
others.*

In one sense, however, mathematical economics may be considered as the
more basic of the two: for, to have a meaningful statistical and econometric
study, a good theoretical framework—preferably in a mathematical formulation
—1is indispensable. Hence the subject matter of the present volume should be
useful not only for those interested in theoretical economics, but also for those
seeking a foundation for the pursuit of econometric studies.

* John M. Keynes, The General Theory of Employment. Interest and Money, Harcourt, Brace and
Company, Inc., New York, 1936, Book III: Simon Kuznets, National Income: A Summary of Findings.
National Bureau of Economic Research, 1946, p. 53: Raymond Goldsmith, 4 Study of Saving in the
United States, vol. 1, Princeton University Press, Princeton, N.J., 1955, chap. 3; James S. Duesenberry,
Income, Suaving, and the Theory of Consumer Behavior, Harvard University Press, Cambridge, Mass.,
1949; Milton Friedman, 4 Theory of the Consumption Function, National Bureau of Economic
Research, Princeton University Press, Princeton, N.J., 1957.



CHAPTER

'WO
ECONOMIC MODELS

As mentioned before, any economic theory is necessarily an abstraction from the
real world. For one thing, the immense complexity of the real economy makes it
impossible for us to understand all the interrelationships at once; nor, for that
matter, are all these interrelationships of equal importance for the understanding
of the particular economic phenomenon under study. The sensible procedure is,
therefore, to pick out what appeal to our reason to be the primary factors and
relationships relevant to our problem and to focus our attention on these alone.
Such a deliberately simplified analytical framework is called an economic model,
since it is only a skeletal and rough representation of the actual economy.

2.1 INGREDIENTS OF A MATHEMATICAL MODEL

An economic model is merely a theoretical framework, and there is no inherent
reason why it must be mathematical. If the model is mathematical, however, it
will usually consist of a set of equations designed to describe the structure of the
model. By relating a number of variables to one another in certain ways, these
equations give mathematical form to the set of analytical assumptions adopted.
Then, through application of the relevant mathematical operations to these
equations, we may seek to derive a set of conclusions which logically follow from
those assumptions.



8 INTRODUCTION

Variables, Constants, and Parameters

A wvariable is something whose magnitude can change, i.e., something that can
take on different values. Variables frequently used in economics include price,
profit, revenue, cost, national income, consumption, investment, imports, exports,
and so on. Since each variable can assume various values, it must be represented
by a symbol instead of a specific number. For example, we may represent price by
P, profit by 7, revenue by R, cost by C, national income by Y, and so forth.
When we write P = 3 or C = 18, however, we are “freezing” these variables at
specific values (in appropriately chosen units).

Properly constructed, an economic model can be solved to give us the solution
values of a certain set of variables, such as the market-clearing level of price, or
the profit-maximizing level of output. Such variables, whose solution values we
seek from the model, are known as endogenous variables (originating from within).
However, the model may also contain variables which are assumed to be
determined by forces external to the model, and whose magnitudes are accepted
as given data only; such variables are called exogenous variables (originating from
without). It should be noted that a variable that is endogenous to one model may
very well be exogenous to another. In an analysis of the market determination of
wheat price ( P), for instance, the variable P should definitely be endogenous; but
in the framework of a theory of consumer expenditure, P would become instead a
datum to the individual consumer, and must therefore be considered exogenous.

Variables frequently appear in combination with fixed numbers or constants,
such as in the expressions 7P or 0.5R. A constant is a magnitude that does not
change and is therefore the antithesis of a variable. When a constant is joined to a
variable, it is often referred to as the coefficient of that variable. However, a
coefficient may be symbolic rather than numerical. We can, for instance, let the
symbol a stand for a given constant and use the expression ¢P in lieu of 7P in a
model, in order to attain a higher level of generality (see Sec. 2.7). This symbol a
is a rather peculiar case—it is supposed to represent a given constant, and yet,
since we have not assigned to it a specific number, it can take virtually any value.
In short, it is a constant that 1s variable! To identify its special status, we give it
the distinctive name parametric constant (or simply parameter).

It must be duly emphasized that, although different values can be assigned to
a parameter, it is nevertheless to be regarded as a datum in the model. It is for
this reason that people sometimes simply say “constant” even when the constant
Is parametric. In this respect, parameters closely resemble exogenous variables,
for both are to be treated as “givens” in a model. This explains why many writers.
for simplicity, refer to both collectively with the single designation “parameters.”

As a matter of convention, parametric constants are normally represented by
the symbols a, b, ¢, or their counterparts in the Greek alphabet: a, 8, and y. But
other symbols naturally are also permissible. As for exogenous variables, in order
that they can be visually distinguished from their endogenous cousins, we shall
follow the practice of attaching a subscript 0 to the chosen symbol. For example,
if P symbolizes price, then P, signifies an exogenously determined price.
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Equations and ldentities

Variables may exist independently, but they do not really become interesting until
they are related to one another by equations or by inequalities. At this juncture
we shall discuss equations only.

In economic applications we may distinguish between three types of equa-
tion: definitional equations, behavioral equations, and equilibrium conditions.

A definitional equation sets up an identity between two alternate expressions
that have exactly the same meaning. For such an equation, the identical-equality
sign = (read: “is identically equal to”) is often employed in place of the regular
equals sign =, although the latter is also acceptable. As an example, total profit is
defined as the excess of total revenue over total cost; we can therefore write

7T=R-C

A behavioral equation, on the other hand, specifies the manner in which a
variable behaves in response to changes in other variables. This may involve
either human behavior (such as the aggregate consumption pattern in relation to
national income) or nonhuman behavior (such as how total cost of a firm reacts to
output changes). Broadly defined, behavioral equations can be used to describe
the general institutional setting of a model, including the technological (e.g.,
production function) and legal (e.g., tax structure) aspects. Before a behavioral
equation can be written, however, it is always necessary to adopt definite
assumptions regarding the behavior pattern of the variable in question. Consider
the two cost functions

(2.1) C=75+10Q
(22) C=110+ Q?

where O denotes the quantity of output. Since the two equations have different
forms, the production condition assumed in each is obviously different from the
other. In (2.1), the fixed cost (the value of C when Q = 0) is 75, whereas in (2.2) it
is 110. The variation in cost is also different. In (2.1), for each unit increase in Q,
there is a constant increase of 10 in C. But in (2.2), as Q increases unit after unit,
C will increase by progressively larger amounts. Clearly, it is primarily through
the specification of the form of the behavioral equations that we give mathemati-
cal expression to the assumptions adopted for a model.

The third type of equations, equilibrium conditions, have relevance only if our
model involves the notion of equilibrium. If so, the equilibrium condition is an
equation that describes the prerequisite for the attainment of equilibrium. Two of
the most familiar equilibrium conditions in economics are

Q,= 0, [quantity demanded = quantity supplied]
and S=1 [intended saving = intended investment]

which pertain, respectively, to the equilibrium of a market model and the
equilibrium of the national-income model in its simplest form. Because equations
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of this type are neither definitional nor behavioral, they constitute a class by
themselves.

2.2 THE REAL-NUMBER SYSTEM

Equations and variables are the essential ingredients of a mathematical model.
But since the values that an economic variable takes are usually numerical, a few
words should be said about the number system. Here, we shall deal only with
so-called “real numbers.”

Whole numbers such as 1.2,3. ... are called positive integers; these are the
numbers most frequently used in counting. Their negative counterparts
— 1. =2, =3.... are called negative integers: these can be employed, for example.

to indicate subzero temperatures (in degrees). The number 0 (zero), on the other
hand. is neither positive nor negative. and is in that sense unique. Let us lump all
the positive and negative integers and the number zero into a single category.
referring to them collectively as the ser of all integers.

Integers. of course, do not exhaust all the possible numbers, for we have
fractions, such as 5. ;. and ;. which—if placed on a ruler-—would fall between
the integers. Also, we have negative fractions, such as — ¥ and — i. Together.
these make up the ser of all fractions.

The common property of all fractional numbers is that each is expressible as
a ratio of two integers; thus fractions qualify for the designation rational numbers
(in this usage, rational means ratio-nal). But integers are also rational. because
any integer n can be considered as the ratio n/1. The set of all integers and the set
of all fractions together form the ser of all rational numbers.

Once the notion of rational numbers is used, however, there naturally arises
the concept of irrational numbers—numbers that cannot be expressed as ratios of
a pair of integers. One example is the number V2 = 1.4142.... which is a
nonrepeating, nonterminating decimal. Another is the special constant 7 =
3.1415. .. (representing the ratio of the circumference of any circle to its diame-
ter). which is again a nonrepeating, nonterminating decimal, as is characteristic of
all irrational numbers.

Each irrational number. if placed on a ruler, would fall between two rational
numbers. so that, just as the fractions fill in the gaps between the integers on a
ruler. the irrational numbers fill in the gaps between rational numbers. The result
of this filling-in process is a continuum of numbers. all of which are so-called
“real numbers.” This continuum constitutes the ser of all real numbers. which is
often denoted by the symbol R. When the set R is displayed on a straight line (an
extended ruler). we refer to the line as the real line.

In Fig. 2.1 are listed (in the order discussed) all the number sets, arranged in
relationship to one another. If we read from bottom to top, however, we find in
effect a classificatory scheme in which the set of real numbers is broken down into
its component and subcomponent number sets. This figure therefore is a summary
of the structure of the real-number system.
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Integers —1 l‘ Fractions

Rational {rrational
numbers numbers

Real
numbers Figure 2.1

Real numbers are all we need for the first 14 chapters of this book, but they
are not the only numbers used in mathematics. In fact, the réason for the term
“real” is that there are also “imaginary” numbers, which have to do with the
square roots of negative numbers. That concept will be discussed later, in Chap.
15.

2.3 THE CONCEPT OF SETS

We have already employed the word “set” several times. Inasmuch as the concept
of sets underlies every branch of modern mathematics, it is desirable to familiarize
ourselves at least with its more basic aspects.

Set Notation

A set 1s simply a collection of distinct objects. These objects may be a group of
(distinct) numbers, or something else. Thus, all the students enrolled in a
particular economics course can be considered a set, just as the three integers 2, 3,
and 4 can form a set. The objects in a set are called the elements of the set,

There are two alternative ways of writing a set: by enumeration and by
description. If we let S represent the set of three numbers 2, 3, and 4, we can write,
by enumeration of the elements,

S=1{2,3.4)

But if we let / denote the set of all positive integers, enumeration becomes
difficult, and we may instead simply describe the elements and write

I = {x | x a positive integer}

which is read as follows: “I is the set of all (numbers) x, such that x is a positive
integer.” Note that braces are used to enclose the set in both cases. In the
descriptive approach, a vertical bar (or a colon) is always inserted to separate the
general symbol for the elements from the description of the elements. As another
example, the set of all real numbers greater than 2 but less than 5 (call it J) can
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be expressed symbolically as
J={x]2<x<5}

Here, even the descriptive statement is symbolically expressed.

A set with a finite number of elements, exemplified by set S above, is called a
Jinite set. Set I and set J, each with an infinite number of elements, are, on the
other hand, examples of an infinite set. Finite sets are always denumerable (or
countable), 1.e., their elements can be counted one by one in the sequence
1.2,3,... . Infinite sets may, however, be either denumerable (set I above), or
nondenumerable (set J above). In the latter case, there is no way to associate the
elements of the set with the natural counting numbers 1,2,3,..., and thus the set
is not countable.

Membership in a set is indicated by the symbol € (a variant of the Greek
letter epsilon € for “element”). which is read: “is an element of.” Thus, for the
two sets § and [ defined above., we may write

2eS 3e s el 9] (etc.)

but obviously 8 &€ S (read: “8 is not an element of set S7). If we use the symbol
R to denote the set of all real numbers, then the statement “x is some real
number” can be simply expressed by

xX€E€R

Relationships between Sets

When two sets are compared with each other, several possible kinds of relation-
ship may be observed. If two sets S, and S, happen to contain identical elements,

S, ={2.7.a,f) and S, ={2.a.7. 1)

then S, and §, are said to be equal (S, = §,). Note that the order of appearance
of the elements in a set is immaterial. Whenever even one element is different,
however, two sets are not equal.

Another kind of relationship is that one set may be a subser of another set. If
we have two sets

$=(1,3579 and T={3.7)

then 7 is a subset of S. because every element of T is also an element of S. A
more formal statement of this is: T is a subset of S if and only if “x € T implies
“x € 8.7 Using the set inclusion symbols C (is contained in) and O (includes),
we may then write

Trcs or SOT
It is possible that two given sets happen to be subsets of each other. When this

oceurs. however, we can be sure that these two sets are equal. To state this
formallv: we can have S, € §, and S, C S, if and only if S, = S,.
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Note that, whereas the € symbol relates an individual element to a set. the C
symbol relates a subset to a ser. As an application of this idea. we may state on the
basis of Fig. 2.1 that the set of all integers is a subset of the set of all rational
numbers. Similarly, the set of all rational numbers is a subset of the set of all real
numbers.

How many subsets can be formed from the five elements in the set S =
{(1,3,5,7,9)? First of all, each individual element of S can count as a distinct
subset of §, such as (1}, (3}, etc. But so can any pair, triple, or quadruple of these
elements, such as {1,3}. {1,5},....{(3.7.9). etc. For that matter, the set S itself
(with all 1ts five elements) can be considered as one of its own subsets—every
element of S is an element of S, and thus the set S itself fulfills the definition of a
subset. This is, of course, a limiting case. that from which we get the “largest”
possible subset of S, namely, S itself.

At the other extreme, the “smallest” possible subset of S is a set that contains
no element at all. Such a set is called the nuil set, or empty set, denoted by the
symbol & or { }. The reason for considering the null set as a subset of S is quite
interesting: If the null set is not a subset of S (¥ & §), then & must contain at
least one element x such that x &€ S. But since by definition the null set has no
element whatsoever, we cannot say that @ ¢ S: hence the null set is a subset of
S.

Counting all the subsets of S, including the two limiting cases S and @ . we
find a total of 2° = 32 subsets. In general, if a set has n elements, a total of 2"
subsets can be formed from those elements.*

It is extremely important to distinguish the symbol @ or { } clearly from the
notation {0}; the former is devoid of elements, but the latter does contain an
element, zero. The null set is unique; there is only one such set in the whole
world, and it is considered a subset of any set that can be conceived.

As a third possible type of relationship. two sets may have no elements in
common at all. In that case, the two sets are said to be disjoint. For example, the
set of all positive integers and the set of all negative integers are disjoint sets. A
fourth type of relationship occurs when two sets have some elements in common
but some elements peculiar to each. In that event, the two sets are neither equal
nor disjoint; also, neither set is a subset of the other.

Operations on Sets

When we add, subtract, multiply, divide, or take the square root of some
numbers, we are performing mathematical operations. Sets are different from

* Given a set with n clements {a. b, ..., n) we may first classify its subsets into two categories:
one with the clement « in it. and one without. Each of these two can be further classified into two
subcategories: one with the clement 4 in it, and one without. Note that by considering the second
clement h. we double the number of categories in the classification from 2 to 4 (= 22). By the same
token, the consideration of the element ¢ will increase the total number of categories to § (= 27),
When all n elements are considered. the total number of categories will become the total number of
subsets, and that number is 27
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numbers, but one can similarly perform certain mathematical operations on them.
Three principal operations to be discussed here involve the union, intersection,
and complement of sets.

To take the union of two sets 4 and B means to form a new set containing
those elements (and only those elements) belonging to 4, or to B, or to both 4
and B. The union set is symbolized by 4 U B (read: “A union B”).

Example I 1f A = (3,5,7) and B = {2,3,4,8), then
AUB=1{2,3,4,57.28}

This example illustrates the case in which two sets A and B are neither equal nor
disjoint and in which neither is a subset of the other.

Example 2 Again referring to Fig. 2.1, we see that the union of the set of all
integers and the set of all fractions is the set of all rational numbers. Similarly, the
union of the rational-number set and the irrational-number set yields the set of all
real numbers.

The intersection of two sets A and B, on the other hand, is a new set which
contains those elements (and only those elements) belonging to both A and B. The
intersection set is symbolized by 4 N B (read: ““A4 intersection B ™).

Example 3 From the sets A and B in Example 1, we can write
ANB={3

Example 4 1f A = {-3,6,10) and B = (9,2,7,4), then A " B= &. Set A and
set B are disjoint; therefore their intersection is the empty set—no element is
common to 4 and B.

It is obvious that intersection is a more restrictive concept than union. In the
former, only the elements common to A and B are acceptable, whereas in
the latter, membership in either A or B is sufficient to establish membership in the
union set. The operator symbols N and U -—which, incidentally, have the same
kind of general status as the symbols v . +. +. etc.—therefore have the
connotations “and” and “or,” respectively. This point can be better appreciated
by comparing the following formal definitions of intersection and union:

Intersection: ANB={x|x€dandx € B)

Union: AUB={x|x€ Aorx € B}

Before explaining the complement of a set, let us first introduce the concept of
universal set. In a particular context of discussion, if the only numbers used are
the set of the first seven positive integers, we may refer to it as the universal set,
U. Then, with a given set, say, 4 = {3.6,7). we can define another set 4 (read:
“the complement of 4”) as the set that contains all the numbers in the universal
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set U which are not in the set 4. That is.
A={(x|x€Uandx & A)={1.2.4.5)

Note that. whereas the symbol U has the connotation “or” and the symbol N
means “and.” the complement symbol ~ carries the implication of “not.”

Example 5 1f U ={5,6.7.8,9) and A = (5.6). then A = {7. 8.9).

Example 6 What is the complement of U? Since every object (number) under
consideration is included in the universal set, the complement of U must be
empty. Thus U = .

The three types of set operation can be visualized in the three diagrams of
Fig. 2.2. known as Venn diagrams. In diagram a, the points in the upper circle
form a set A. and the points in the lower circle form a set B. The union of A4 and
B then consists of the shaded area covering both circles. In diagram b are shown
the same two sets (circles). Since their intersection should comprise only the
points common to both sets. only the (shaded) overlapping portion of the two
circles satisfies the definition. In diagram c. let the points in the rectangle be the
universal set and let A be the set of points in the circle: then the complement set
A will be the (shaded) area outside the circle.

Laws of Set Operations

From Fig. 2.2, it may be noted that the shaded area in diagram « represents not
only A U B but also B U 4. Analogously, in diagram b the small shaded area is
the visual representation not only of 4 N B but also of B N A. When formalized.

Union Intersection Complement
~

AUB ANB A

.

(@) (b)

Figure 2.2
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this result is known as the commutative law (of unions and intersections):

AUB=BUA ANB=BNA
These relations are very similar to the algebraic lawsa + b =b +ganda X b =
b X a.

To take the union of three sets 4, B, and C, we first take the union of any two
sets and then “union” the resulting set with the third; a similar procedure is
applicable to the intersection operation. The results of such operations are
illustrated in Fig. 2.3. It is interesting that the order in which the sets are selected
for the operation is immaterial. This fact gives rise to the associative law (of
unions and intersections):

AU(BUC)=(AUB)UC
AN(BNnC)=(AnNnB)NC
These equations are strongly reminiscent of the algebraic laws a + (b + ¢) = (a
+b)+canda X (b X c¢)=(aXb)Xec.
There is also a law of operation that applies when unions and intersections
are used in combination. This is the distributive law (of unions and intersections):
AU(BNC)=(AUB)N (AU C)
AN(BUC)=(ANnB)u(4nC)
These resemble the algebraic law ¢ X (b + ¢) = (a X b) + (a X ¢).

Example 7 Verify the distributive law, given 4 = (4,5}, B ={3,6,7), and C =
(2,3}. To verify the first part of the law, we find the left- and right-hand
expressions separately:

Left: AU(BNC)={45 U3 ={3,45
Right: (AUB)N(AUC)=(3,4567TN{23,4.5 = (3,4,5
AUuBUC AN BNnC

1

(a)

Figure 2.3
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Since the two sides yield the same result, the law is verified. Repeating the
procedure for the second part of the law, we have

Left: AN(BUC)={45Nn{2.3.67)=2
Right: (ANBYU(ANC)=BUDB =0

Thus the law is again verified.

EXERCISE 2.3

1 Write the following in set notation:
(a) The set of all real numbers greater than 27.
(b) The set of all real numbers greater than 8 but less than 73.

2 Given the sets S, = (2,4,6), S, = (7,2,6}, S, = {4,2,6), and S, = (2,4}, which of the
following statements are true?

(a) §, =5, (dy3 ¢85 (g S, DS,

(b) S, =R (e) 4 &5, (hy 2 C S,

(¢) 5€5, (f) S, R () S 2.2

3 Referring to the four sets given in the preceding problem, find:
(¢) S US, () $5,N S, (e) S, NS, NS,
(b)y S, U S, (d) S, NS, (fYS;u S uUS,

4 Which of the following statements are valid?

(a) AUA=A (e) AN QG =0

(Y ANA=A4 (fHrAn U=4

(¢) AUD = A {g) The complement of 4 is A.
(dyAvU=U

5 Given A = {4,5.6), B ={(3.4,6,7), and C = {2.3.6), verify the distributive law.

6 Verify the distributive law by means of Venn diagrams, with different orders of
successive shading.

7 Enumerate all the subsets of the set {a. b. ¢}.

8 Fnumerate all the subsets of the set S =(1,3,5.7). How many subsets arc there
altogether?

9 Example 6 shows that @ is the complement of U. But since the null set is a subset of
any set, @ must be a subset of U. Inasmuch as the term “complement of U” implies the
notion of being nor in U, whereas the term “*subset of U™ implies the notion of being in U,
it seems paradoxical for @ to be both of these. How do you resolve this paradox?

2.4 RELATIONS AND FUNCTIONS

Our discussion of sets was prompted by the usage of that term in connection with
the various kinds of numbers in our number system. However. sets can refer as
well to objects other than numbers. In particular, we can speak of sets of
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“ordered pairs”—to be defined presently—which will lead us to the important
concepts of relations and functions.

Ordered Pairs

In writing a set {a, b}, we do not care about the order in which the elements ¢ and
b appear, because by definition {a, b} = {b, a}. The pair of elements ¢ and b is in
this case an unordered pair. When the ordering of a and b does carry a
significance, however, we can write two different ordered pairs denoted by (a, b)
and (b, a), which have the property that (a, b) # (b, a) unless a = b. Similar
concepts apply to a set with more than two elements, in which case we can
distinguish between ordered and unordered triples, quadruples, quintuples, and so
forth. Ordered pairs, triples, etc., collectively can be called ordered sets.

Example 1 To show the age and weight of each student in a class, we can form
ordered pairs (a, w), in which the first element indicates the age (in years) and the
second element indicates the weight (in pounds). Then (19,127) and (127,19)
would obviously mean different things. Moreover, the latter ordered pair would
hardly fit any student anywhere.

Example 2 When we speak of the set of the five finalists in a contest, the order in
which they are listed is of no consequence and we have an unordered quintuple.
But after they are judged, respectively, as the winner, first runner-up, etc., the list
becomes an ordered quintuple.

Ordered pairs, like other objects, can be elements of a set. Consider the
rectangular (cartesian) coordinate plane in Fig. 2.4, where an x axis and a y axis
cross each other at a right angle, dividing the plane into four quadrants. This xy
plane is an infinite set of points, each of which represents an ordered pair whose
first element i1s an x value and the second element a y value. Clearly, the point
labeled (4, 2) is different from the point (2. 4); thus ordering is significant here.

With this visual understanding, we are ready to consider the process of
generation of ordered pairs. Suppose, from two given sets, x = {1,2}and y = (3,4},
we wish to form all the possible ordered pairs with the first element taken from
set x and the second element taken from set y. The result will, of course, be the set
of four ordered pairs (1, 3), (1,4), (2,3), and (2,4). This set is called the cartesian
product (named after Descartes), or direct product, of the sets x and y and is
denoted by x X y (read: “x cross y”). It is important to remember that, while x
and y are sets of numbers, the cartesian product turns out to be a set of ordered
pairs. By enumeration, or by description, we may express the cartesian product
alternatively as

x Xy ={(1,3),(1.4),(2,3),(2,4))
or xXy={(a,b)|ac xandbEy)
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The latter expression may in fact be taken as the general definition of cartesian
product for any given sets x and y.

To broaden our horizon, now let both x and y include all the real numbers.
Then the resulting cartesian product

(2.3) xXy={(a,b)|ac Rand b € R)

will represent the set of all ordered pairs with real-valued elements. Besides, each
ordered pair corresponds to a unique point in the cartesian coordinate plane of
Fig. 2.4, and, conversely, each point in the coordinate plane also corresponds to a
unique ordered pair in the set x X y. In view of this double uniqueness, a
one-to-one correspondence is said to exist between the set of ordered pairs in the
cartesian product (2.3) and the set of points in the rectangular coordinate plane.
The rationale for the notation x X y is now easy to perceive; we may associate it
with the crossing of the x axis and the y axis in Fig. 2.4. A simpler way of
expressing the set x X y in (2.3) is to write it directly as R X R; this is also
commonly denoted by R>.

Extending this idea, we may also define the cartesian product of three sets x,
v, and z as follows:

xxyxXz={(a,b,c)laex.bEy cEz)}

which is a set of ordered triples. Furthermore, if the sets x, y, and z each consist
of all the real numbers, the cartesian product will correspond to the set of all
points in a three-dimensional space. This may be denoted by R X R X R, or

e

(Quadrant I1) (Quadrant {)

(2, 4) 4,4)
[ ] [ ]

L] —4
[ -3 [ ] [ ]
(2,2) (4, 2)
[ ] —2 [ [
® —1 [ ] [ ]
| o | i ® | [ J x
-3 -2 -1 0 1 2 3 4
[ - —1 [
(Quadrant i11) (Quadrant IV}

Figure 2.4
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more simply, R*. In the following development, all the variables are taken to be
real-valued; thus the framework of our discussion will generally be R?, or R>,. ..,
or R".

Relations and Functions

Since any ordered pair associates a y value with an x value, any collection of
ordered pairs—any subset of the cartesian product (2.3)—will constitute a
relation between y and x. Given an x value, one or more y values will be specified
by that relation. For convenience, we shall now write the elements of x X p
generally as (x, y)—rather than as (a, b), as was done in (2.3)—where both x
and y are variables.

Example 3 The set {((x, y)|y = 2x} is a set of ordered pairs including, for
example, (1,2), (0,0), and (—1, —2). It constitutes a relation, and its graphical
counterpart is the set of points lying on the straight line y = 2x, as seen in Fig.
2.5.

Example 4 The set {(x, y) |y < x}, which consists of such ordered pairs as
(1,0), (1,1), and (1, —4), constitutes another relation. In Fig. 2.5, this set
corresponds to the set of all points in the shaded area which satisfy the inequality
y =X

Figure 2.5
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Figure 2.6

Observe that, when the x value is given, it may not always be possible to
determine a unique y value from a relation. In Example 4, the three exemplary
ordered pairs show that if x = 1, y can take various values, such as 0, 1, or —4.
and yet in each case satisfy the stated relation. Graphically, two or more points of
a relation may fall on a single vertical line in the x) plane. This is exemplified in
Fig. 2.5, where many points in the shaded area (representing the relation y < x)
fall on the broken vertical line labeled x = a.

As a special case, however, a relation may be such that for each x value there
exists only one corresponding y value. The relation in Example 3 is a case in
point. In that case, y is said to be a function of x, and this is denoted by y = f(x),
which is read: “y equals f of x.” [ Note: f(x) does not mean f times x.] A function is
therefore a set of ordered pairs with the property that any x value uniquely
determines a y value.* It should be clear that a function must be a relation, but a
relation may not be a function.

Although the definition of a function stipulates a unique y for each x. the
converse is not required. In other words, more than one x value may legitimately
be associated with the same y value. This possibility is illustrated in Fig. 2.6,
where the values x, and x, in the x set are both associated with the same value
(¥o) in the y set by the function y = f(x).

A function is also called a mapping. or transformation; both words connote
the action of associating one thing with another. In the statement y = f(x). the
functional notation f may thus be interpreted to mean a rule by which the set x is
“mapped” (“transformed”) into the set y. Thus we may write

fix—y

* This definition of **function” corresponds to what would be called a single-valued function in the
older terminology. What was formerly called a multicalued function is now referred to as a relation.
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Figure 2.7

where the arrow indicates mapping, and the letter f/ symbolically specifies a rule of
mapping. Since f represents a particular rule of mapping, a different functional
notation must be employed to denote another function that may appear in the
same model. The customary symbols (besides f) used for this purpose are g, F. G,
the Greek letters ¢ (phi) and ¢ (psi), and their capitals, ® and ¥. For instance,
two variables y and z may both be functions of x, but if one function is written as
¥ = f(x), the other should be written as z = g(x), or z = ¢(x). It is also
permissible. however, to write y = y(x) and z = z(x), thereby dispensing with the
symbols f and g entirely.

In the function y = f(x), x is referred to as the argument of the function, and
y is called the value of the function. We shall also alternatively refer to x as the
mdependent variable and y as the dependent variable. The set of all permissible
values that x can take in a given context is known as the domain of the function,
which may be a subset of the set of all real numbers. The y value into which an x
value is mapped is called the image of that x value. The set of all images is called
the range of the function, which is the set of all values that the y variable will
take. Thus the domain pertains to the independent variable x, and the range has
to do with the dependent variable y.

As illustrated in Fig. 2.7a, we may regard the function f as a rule for mapping
each point on some line segment (the domain) into some point on another line
segment (the range). By placing the domain on the x axis and the range on the y
axis, as in diagram b, however, we immediately obtain the familiar two-dimen-
stonal graph, in which the association between x values and y values is specified
by a set of ordered pairs such as (x,, y,) and (x5, »,).

In economic models, behavioral equations usually enter as functions. Since
most variables in economic models are by their nature restricted to being
nonnegative real numbers,* their domains are also so restricted. This is why most

* We say " nonnegative” rather than ** positive” when zero values are permissible.
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geometric representations in economics are drawn only in the first quadrant. In
general, we shall not bother to specify the domain of every function in every
economic model. When no specification is given, it is to be understood that the
domain (and the range) will only include numbers for which a function makes
€conomic sense.

Example 5 The total cost C of a firm per day is a function of its daily output Q:
C = 150 + 7Q. The firm has a capacity limit of 100 units of output per day. What
are the domain and the range of the cost function? Inasmuch as Q can vary only
between 0 and 100, the domain is the set of values 0 < Q < 100; or more
formally,

Domain = {Q | 0 < Q < 100}

As for the range, since the function plots as a straight line, with the minimum C
value at 150 (when Q = 0) and the maximum C value at 850 (when Q = 100), we
have

Range = {C | 150 < C < 850}

Beware, however, that the extreme values of the range may not always occur
where the extreme values of the domain are attained.

EXERCISE 24

1 Given S, = (3,6,9), S, = {a, b}, and S; = {(m, n), find the cartesian products:
(a) S, X S, (b) S, X S, (¢) 8 X S,

2 From the information in the preceding problem, find the cartesian product §; X S, X S;.

3 In general, is it true that §; X S, = S, X §? Under what conditions will these two
cartesian products be equal?
4 Does each of the following, drawn in a rectangular coordinate plane, represent a
function?

(a) A circle - (b) A triangle (¢) A rectangle

5 If the domain of the functiony = 5 + 3xis the set {x | | < x < 4}, find the range of the
function and express it as a set.

6 For the function y = —x?, if the domain is the set of all nonnegative real numbers,
what will its range be?

2.5 TYPES OF FUNCTION

The expression y = f(x) is a general statement to the effect that a mapping is
possible, but the actual rule of mapping is not thereby made explicit. Now let us
consider several specific types of function, each representing a different rule of

mapping.
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Constant Functions

A function whose range consists of only one element is called a constant function.
As an example, we cite the function

y=f(x)=17

which is alternatively expressible as y = 7 or f(x) = 7, whose value stays the
same regardless of the value of x. In the coordinate plane, such a function will
appear as a horizontal straight line. In national-income models, when investment
(1) 1s exogenously determined, we may have an investment function of the form
I = $100 million, or I = I, which exemplifies the constant function.

Polynomial Functions

The constant function is actually a “degenerate” case of what are known as
polynomial functions. The word “polynomial” means “multiterm,” and a poly-
nomial function of a single variable x has the general form

(24) y=a,+ax+ax*+---+ax"

in which each term contains a coefficient as well as a nonnegative-integer power
of the variable x. (As will be explained later in this section, we can write x! = x
and x® = 1 in general; thus the first two terms may be taken to be a,x° and a,x',
respectively.) Note that, instead of the symbols a, b, c,..., we have employed the
subscripted symbols a, a,,..., a, for the coefficients. This is motivated by two
considerations: (1) we can economize on symbols, since only the letter « is “used
up” in this way; and (2) the subscript helps to pinpoint the location of a
particular coefficient in the entire equation. For instance, in (2.4), a, is the
coefficient of x2, and so forth.

Depending on the value of the integer n (which specifies the highest power of
x ), we have several subclasses of polynomial function:

Case of n = O: Yy =a, [constant function]
Caseof n = 1: y=ay,+ax [/inear function]
Caseof n = 2: y=a,+ ax + a,x? [guadratic function]
Caseof n =3 y=ay,+ax+ a,x*+ a,x*  [cubic function]

and so forth. The superscript indicators of the powers of x are called exponents.
The highest power involved, i.e., the value of n, is often called the degree of the
polynomial function; a quadratic function, for instance, is a second-degree
polynomial, and a cubic function is a third-degree polynomial.* The order in
which the several terms appear to the right of the equals sign is inconsequential;

* In the several equations just cited, the last coefficient (a,) is always assumed to be nonzero:
otherwise the function would degenerate into a lower-degree polynomial.
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they may be arranged in descending order of power instead. Also, even though we
have put the symbol y on the left, it is also acceptable to write f(x) in its place.

When plotted in the coordinate plane, a linear function will appear as a
straight line, as illustrated in Fig. 2.84. When x = 0, the linear function yields
¥ = ay; thus the ordered pair (0, a,) is on the line. This gives us the so-called “y
intercept” (or vertical intercept), because it is at this point that the vertical axis
intersects the line. The other coefficient, a,, measures the slope (the steepness of
incline) of our line. This means that a unit increase in x will result in an increment
in y in the amount of a,. What Fig. 2.8a illustrates is the case of a, > 0, involving
a positive slope and thus an upward-sloping line; if @, < 0, the line will be
downward-sloping.

A quadratic function, on the other hand, plots as a parabola—roughly, a
curve with a single built-in bump or wiggle. The particular illustration in Fig. 2.85
implies a negative a,; in the case of ¢, > 0, the curve will “open” the other way,
displaying a valley rather than a hill. The graph of a cubic function will, in
general, manifest two wiggles, as illustrated in Fig. 2.8¢. These functions will be
used quite frequently in the economic models discussed below.

Rational Functions
A function such as

x—1

)_x2+2x+4

in which y is expressed as a ratio of two polynomials in the variable x, is known
as a rational function (again, meaning ratio-nal). According to this definition, any
polynomial function must itself be a rational function, because it can always be
expressed as a ratio to 1, which is a constant function.

A special rational function that has interesting applications in economics is
the function

a
y==

or Xy =a
which plots as a rectangular hyperbola, as in Fig. 2.8d. Since the product of the
two variables is always a fixed constant in this case, this function may be used to
represent that special demand curve—with price P and quantity Q on the two
axes— for which the total expenditure PQ is constant at all levels of price. (Such a
demand curve is the one with a unitary elasticity at each point on the curve.)
Another application is to the average fixed cost (AFC) curve. With AFC on one
axis and output Q on the other, the AFC curve must be rectangular-hyperbolic
because AFC X Q( = total fixed cost) is a fixed constant.

The rectangular hyperbola drawn from xy = a never meets the axes, even if
extended indefinitely upward and to the right. Rather, the curve approaches the
axes asymptotically: as y becomes very large, the curve will come ever closer to the
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y axis but never actually reach it, and similarly for the x axis. The axes constitute
the asymptotes of this function.

Nonalgebraic Functions

Any function expressed in terms of polynomials and/or roots (such as square
root) of polynomials is an algebraic function. Accordingly, the functions discussed
thus far are all algebraic. A function such as y = Vx? + 3 is not rational, yet it is
algebraic.

However, exponential functions such as y = b*, in which the independent
variable appears in the exponent, are nonalgebraic. The closely related logarithmic
functions, such as y = log, x, are also nonalgebraic. These two types of function
will be explained in detail in Chap. 10. but their general graphic shapes are
indicated in Fig. 2.8¢ and f. Other types of nonalgebraic function are the
trigonometric (or circular) functions, which we shall discuss in Chap. 15 in
connection with dynamic analysis. We should add here that nonalgebraic func-
tions are also known by the more esoteric name of transcendental functions.

A Digression on Exponents

In discussing polynomial functions, we introduced the term exponents as indica-
tors of the power to which a variable (or number) is to be raised. The expression
62 means that 6 is to be raised to the second power; that is, 6 is to be multiplied
by itself, or 62 = 6 X 6 = 36. In general. we define

x"=xXx X XX

- D
n terms

and as a special case, we note that x' = x. From the general definition, it follows
that exponents obey the following rules:

Rulel  x” X x"=x"%"  (for example, x* X x* = x7)

PRrROOF x’"><x"=(x><x><-~-><x)(x><x><---><x)

—

m terms nterms

mitn

=xXxX--- XXx=Xx
%F—_/

m + nterms

™M / /\'4
Rule 11 T =x""" (x+0) (for example, — = x

X X"

m terms

x™M XX x X XX -
ProOOF — = =xXxXxX- o Xx=x""

X XX x X+ XXx S —

e o e m — nterms

A terms
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because the n terms in the denominator cancel out n of the m terms in the
numerator. Note that the case of x = 0 is ruled out in the statement of this rule.
This is because when x = 0, the expression x” /x" would involve division by zero,
which is undefined.

What if m < n: say, m = 2 and n = 57 In that case we get, according to Rule
I, x™ "= x>, a negative power of x. What does this mean? The answer is
actually supplied by Rule II itself: When m = 2 and n = 5, we have

x? x X x 1 1

S

X XX xXxXxXx x X x X x x3

Thus x* = 1/x?, and this may be generalized into another rule:

1
Rule 111 x "= o (x #0)

h

To raise a (nonzero) number to a power of minus n is to take the reciprocal of its
nth power.

Another special case in the application of Rule II is when m = », which
ylé{ds the expression x™ " = xM M = xY. To interpret the meanin.g of raising a
number x to the zeroth power. we can write out the term x™ ™ in accordance
with Rule I1 above, with the result that x™/x™ = 1. Thus we may conclude that
any (nonzero) number raised to the zeroth power is equal to 1. (The expression 0°
is undefined.) This may be expressed as another rule:

Rule IV xY=1 (x = 0)

As long as we are concerned only with polynomial functions, only (nonnega-
tive) integer powers are required. In exponential functions, however, the exponent
is a variable that can take noninteger values as well. In order to interpret a
number such as x'/2, let us consider the fact that, by Rule I above, we have

iy )
XV XV =X =

Since x'/* multiplied by itself is x. x'/? must be the square root of x. Similarly,

x'7? can be shown to be the cube root of x. In general, therefore, we can state the
following rule:

Rule V x!/n = ’;/xi
Two other rules obeyed by exponents are:
Rule V] (Xm )11 — an

Rule VII xTX p™ = (xp)™
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EXERCISE 2.5

1 Graph the functions
(a) y =8+ 3x (by y=8—3x (¢) y=3x+ 12
(In each case, consider the domain as consisting of nonnegative real numbers only.)

2 What is the major difference between (a) and (b) above? How is this difference reflected
in the graphs? What is the major difference between (a) and (¢)? How do their graphs
reflect it?

3 Graph the functions

(a) y=—x"+5x—-2 (B y=x"+5x-2
with the set of values —5 < x < 5 as the domain. It is well known that the sign of the
coefficient of the x? term determines whether the graph of a quadratic function will have a
“hill” or a “valley.” On the basis of the present problem, which sign is associated with the
hill? Supply an intuitive explanation for this.

4 Graph the function y = 36/x, assuming that x and y can take positive values only.
Next, suppose that both variables can take negative values as well; how must the graph be
modified to reflect this change in assumption?

5 Condense the following expressions:
(a) x4 x xb (h) x4 x x" X xt () x* ><y3 X z°

6 Find: (a) x'/x* (b) (x'72 x x'7y/x*
7 Show that x”/" = ;I/F = (V;)m. Specify the rules applied in each step.
8 Prove Rule VI and Rule VIIL

2.6 FUNCTIONS OF TWO OR MORE INDEPENDENT
VARIABLES

Thus far, we have considered only functions of a single independent variable,
y = f(x). But the concept of a function can be readily extended to the case of two
or more independent variables. Given a function

z=g(x,y)

a given pair of x and y values will uniquely determine a value of the dependent
variable z. Such a function is exemplified by

z=ax + by or z=ay+ax+ax’+by+by?

Just as the function y = f(x) maps a point in the domain into a point in the
range, the function g will do precisely the same. However, the domain is in this
case no longer a set of numbers but a set of ordered pairs (x, y), because we can
determine z only when both x and y are specified. The function g is thus a
mapping from a point in a two-dimensional space into a point on a line segment
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(i.e., a point in a one-dimensional space), such as from the point (x,, y,) into the
point z, or from (x,, y,) into z, in Fig. 2.9a.

If a vertical z axis 1s erected perpendicular to the xy plane, as is done in
diagram b, however, there will result a three-dimensional space in which the
function g can be given a graphical representation as follows. The domain of
the function will be some subset of the points in the xy plane, and the value of the
function (value of z) for a given point in the domain—say, (x,, y,)—can be
indicated by the height of a vertical line planted on that point. The association
between the three variables is thus summarized by the ordered triple (x,, y,, z,),
which is a specific point in the three-dimensional space. The locus of such ordered
triples, which will take the form of a surface, then constitutes the graph of the
function g. Whereas the function v = f(x) 1s a set of ordered pairs, the function

.\32*——‘**’}"“ (x2, ¥2) Z2

0 X3 X2
(a)
z
(xb Vi Zl)
L
(x2, ¥2, 232) v
¥
—
y —
. —4
— //\4
—
e
O -
— //
X1 -~
X2

Figure 2.9
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z = g(x, y) will be a set of ordered triples. We shall have many occasions to use
functions of this type in economic models. One ready application is in the area of
production functions. Suppose that output is determined by the amounts of
capital (K ) and labor ( L) employed; then we can write a production function in
the general form Q = Q(K, L).

The possibility of further extension to the cases of three or more independent
variables is now self-evident. With the function y = h(u, v, w), for example, we
can map a point in the three-dimensional space, (u,, v,, w;), into a point in a
one-dimensional space (y,). Such a function might be used to indicate that a
consumer’s utility is a function of his consumption of three different commodities,
and the mapping is from a three-dimensional commodity space into a one-dimen-
sional utility space. But this time it will be physically impossible to graph the
function, because for that task a four-dimensional diagram is needed to picture
the ordered quadruples, but the world in which we live is only three-dimensional.
Nonetheless, in view of the intuitive appeal of geometric analogy, we can continue
to refer to an ordered quadruple (u,, v,, w, y,) as a “point” in the four-dimen-
sional space. The locus of such points will give the (nongraphable) graph of the
function y = h(u, v, w), which is called a hypersurface. These terms, viz., point
and hypersurface. are also carried over to the general case of the n-dimensional
space.

Functions of more than one variable can be classified into various types, too.
For instance, a function of the form

Yy =ax, + a,xX, +ooee Tt a,x,

is a linear function, whose characteristic is that every variable is raised to the first
power only. A quadratic function, on the other hand, involves first and second
powers of one or more independent variables, but the sum of exponents of the
variables appearing in any single term must not exceed two.

Note that instead of denoting the independent variables by x, u, v, w, etc., we
have switched to the symbols x,, x,,..., x,. The latter notation, like the system
of subscripted coefficients, has the merit of economy of alphabet, as well as of an
easier accounting of the number of variables involved in a function.

2.7 LEVELS OF GENERALITY

In discussing the various types of function, we have without explicit notice
introduced examples of functions that pertain to varying levels of generality. In
certain instances, we have written functions in the form

y=1 y=6x+4 y=xz~3x+1 (etc.)

Not only are these expressed in terms of numerical coefficients, but they also
indicate specifically whether each function is constant, linear, or quadratic. In
terms of graphs, each such function will give rise to a well-defined unique curve.
In view of the numerical nature of these functions, the solutions of the model



32 INTRODUCTION

based on them will emerge as numerical values also. The drawback is that, if we
wish to know how our analytical conclusion will change when a different set of
numerical coefficients comes into effect, we must go through the reasoning process
afresh each time. Thus, the results obtained from specific functions have very little
generality.

On a more general level of discussion and analysis, there are functions in the
form

y=a y=a+bx y=a+bx+cx* (etc.)

Since parameters are used, each function represents not a single curve but a whole
family of curves. The function y = a, for instance, encompasses not only the
specific cases y =0, y = l,and y = 2 but alsoy =1, y = —35,..., ad infinitum.
With parametric functions, the outcome of mathematical operations will also be
in terms of parameters. These results are more general in the sense that, by
assigning various values to the parameters appearing in the solution of the model,
a whole family of specific answers may be obtained without having to repeat the
reasoning process anew.

In order to attain an even higher level of generality, we may resort to the
general function statement y = f(x), or z = g(x, y). When expressed in this
form, the function is not restricted to being either linear, quadratic, exponential,
or trigonometric—all of which are subsumed under the notation. The analytical
result based on such a general formulation will therefore have the most general
applicability. As will be found below, however, in order to obtain economically
meaningful results, it 1s often necessary to impose certain qualitative restrictions
on the general functions built into a model, such as the restriction that a demand
function have a negatively sloped graph or that a consumption function have a
graph with a positive slope of less than 1.

To sum up the present chapter, the structure of a mathematical economic
model is now clear. In general, it will consist of a system of equations, which may
be definitional, behavioral, or in the nature of equilibrium conditions.* The
behavioral equations are usually in the form of functions, which may be linear or
nonlinear, numerical or parametric, and with one independent variable or many.
It is through these that the analytical assumptions adopted in the model are given
mathematical expression.

In attacking an analytical problem, therefore, the first step is to select the
appropriate variables—exogenous as well as endogenous—for inclusion in the
model. Next, we must translate into equations the set of chosen analytical
assumptions regarding the human, institutional, technological, legal, and other
behavioral aspects of the environment affecting the working of the variables. Only
then can an attempt be made to derive a set of conclusions through relevant
mathematical operations and manipulations and to give them appropriate eco-
nomic interpretations.

* Inequalities may also enter as an important ingredient of a model, but we shall not worry about
them for the time being.
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CHAPTER

THREE
EQUILIBRIUM ANALYSIS IN ECONOMICS

The analytical procedure outlined in the preceding chapter will first be applied to
what is known as static analysis. or equilibrium analysis. For this purpose. it is
imperative first to have a clear understanding of what “equilibrium™ means.

3.1 THE MEANING OF EQUILIBRIUM

Like any economic term, equilibrium can be defined in various ways. According to
one definition. an equilibrium is “a constellation of selected interrelated variables
so adjusted to one another that no inherent tendency to change prevails in the
model which they constitute.”* Several words in this definition deserve special
attention. First, the word “selected”” underscores the fact that there do exist
variables which, by the analyst’s choice, have not been included in the model.
Hence the equilibrium under discussion can have relevance only in the context of
the particular set of variables chosen, and if the model is enlarged to include
additional variables, the equilibrium state pertaining to the smaller model will no
longer apply.

Second, the word “interrelated” suggests that, in order for equilibrium to
obtain. all variables in the model must simultaneously be in a state of rest.
Moreover, the state of rest of each variable must be compatible with that of every

* Fritz Machlup, *‘Equilibrium and Disequilibrium: Misplaced Concreteness and Disguised
Politics,” Economic Journal, March 1958, p. 9. (Reprinted in F. Machlup, Essays on Economic
Semantics, Prentice-Hall, Inc., Englewood Cliffs. N.J.. 1963.)

35
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other variable; otherwise some variable(s) will be changing, thereby also causing
the others to change in a chain reaction, and no equilibrium can be said to exist.

Third, the word “inherent” implies that, in defining an equilibrium, the state
of rest involved is based only on the balancing of the internal forces of the model,
while the external factors are assumed fixed. Operationally, this means that
parameters and exogenous variables are treated as constants. When the external
factors do actually change, there may result a new equilibrium defined on the
basis of the new parameter values, but in defining the new equilibrium, the new
parameter values are again assumed to persist and stay unchanged.

In essence, an equilibrium for a specified model is a situation that is
characterized by a lack of tendency to change. It is for this reason that the
analysis of equilibrium (more specifically, the study of what the equilibrium state
is like) is referred to as statics. The fact that an equilibrium implies no tendency
to change may tempt one to conclude that an equilibrium necessarily constitutes a
desirable or ideal state of affairs, on the ground that only in the ideal state would
there be a lack of motivation for change. Such a conclusion is unwarranted. Even
though a certain equilibrium position may represent a desirable state and some-
thing to be striven for—such as a profit-maximizing situation, from the firm’s
point of view—another equilibrium position may be quite undesirable and
therefore something to be avoided, such as an underemployment equilibrium level
of national income. The only warranted interpretation is that an equilibrium is a
situation which, if attained. would tend to perpetuate itself, barring any changes
in the external forces.

The desirable variety of equilibrium, which we shall refer to as goal equi-
librium, will be treated later in Parts 4 and 6 as optimization problems. In the
present chapter, the discussion will be confined to the nongoal type of equilibrium,
resulting not from any conscious aiming at a particular objective but from an
impersonal or suprapersonal process of interaction and adjustment of economic
forces. Examples of this are the equilibrium attained by a market under given
demand and supply conditions and the equilibrium of national income under
given conditions of consumption and investment patterns.

3.2 PARTIAL MARKET EQUILIBRIUM—A LINEAR MODEL

In a static-equilibrium model, the standard problem is that of finding the set of
values of the endogenous variables which will satisfy the equilibrium condition of
the model. This is because once we have identified those values, we have in effect
identified the equilibrium state. Let us illustrate with a so-called “partial-equi-
librium market model,” i.e., a model of price determination in an isolated market.

Constructing the Model

Since only one commodity is being considered, it is necessary to include only
three variables in the model: the quantity demanded of the commodity (Q,), the
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quantity supplied of the commodity (Q,). and its price (P). The quantity is
measured, say, in pounds per week, and the price in dollars. Having chosen the
variables, our next order of business is to make certain assumptions regarding the
working of the market. First, we must specify an equilibrium condition—some-
thing indispensable in an equilibrium model. The standard assumption is that
equilibrium obtains in the market if and only if the excess demand is zero
(Q, — Q, = 0), that is, if and only if the market is cleared. But this immediately
raises the question of how Q, and Q| themselves are determined. To answer this,
we assume that Q, is a decreasing linear function of P (as P increases, Q,
decreases). On the other hand, Q, is postulated to be an increasing linear function
of P (as P increases, so does Q,), with the proviso that no quantity is supplied
unless the price exceeds a particular positive level. In all, then, the model will
contain one equilibrium condition plus two behavioral equations which govern
the demand and supply sides of the market, respectively.
Translated into mathematical statements, the model can be written as:

QdZQs
(3.1)  Q,=a-bP (a.b>0)
Q.= —c+dP (c.d>0)

Four parameters. a, b, ¢, and 4., appear in the two linear functions, and all of
them are specified to be positive. When the demand function is graphed, as in Fig.
3.1, its vertical intercept is at a and its slope is — b, which is negative, as required.
The supply function also has the required type of slope, d being positive, but its

Qa, Qs

Rq—a

(demand) Qi =-—c+dP

(supply)

|
|
|
)
P

Figure 3.1
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vertical intercept is seen to be negative, at —c¢. Why did we want to specify such a
negative vertical intercept? The answer is that, in so doing, we force the supply
curve to have a positive horizontal intercept at P,, thereby satisfying the proviso
stated earlier that supply will not be forthcoming unless the price is positive and
sufficiently high.

The reader should observe that. contrary to the usual practice, quantity rather
than price has been plotted vertically in Fig. 3.1. This, however, is in line with the
mathematical convention of placing the dependent variable on the vertical axis. In
a different context below, in which the demand curve is viewed from the
standpoint of a business firm as describing the average-revenue curve, AR = P =
F(Q,). we shall reverse the axes and plot P vertically.

With the model thus constructed, the next step is to solve it, i.e., to obtain the
solution values of the three endogenous variables, Q,. Q., and P. The solution
values, to be denoted Q,. Q. and P, are those values that satisfy the three
equations in (3.1) simultaneously; i.e., they are the values which, when substituted
into the three equations, make the latter a set of true statements. In the context of
an equilibrium model, those values may also be referred to as the equilibrium
values of the said variables. Since Q, = Q.. however, they can be replaced by a
single symbol Q. Hence, an equilibrium solution of the model may simply be
denoted by an ordered pair (P, Q). In case the solution is not unique, several
ordered pairs may each satisfy the system of simultaneous equations; there will
then be a solution set with more than one element in it. However, the multiple-
equilibrium situation cannot arise in a linear model such as the present one.

Solution by Elimination of Variables

One way of finding a solution to an equation system is by successive elimination
of variables and equations through substitution. In (3.1). the model contains three
equations in three variables. However, in view of the equating of Q, and Q, by
the equilibrium condition, we can let Q = Q, = Q_ and rewrite the model
equivalently as follows:

Q=a—-bP
(3.2)
Q=-c+dP

thereby reducing the model to two equations in two variables. Moreover, by
substituting the first equation into the second in (3.2), the model can be further
reduced to a single equation in a single variable:

a—bP = —c+dP

or, after subtracting (a + dP) from both sides of the equation and multiplying
through by —1,

(33) (b+d)P=a+c
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This result is also obtainable directly from (3.1) by substituting the second and
third equations into the first.

Since b + d # 0, it is permissible to divide both sides of (3.3) by (b + d). The
result is the solution value of P:

a—+c¢

(34) P=—

Note that P is—as all solution values should be—expressed entirely in terms of
the parameters, which represent given data for the model. Thus P is a determinate
value, as it ought to be. Also note that P is positive—as a price should
be—because all the four parameters are positive by model specification.

To find the equilibrium quantity Q (= Q, = Q,) that corresponds to the
value P, simply substitute (3.4) into either equation of (3.2), and then solve the
resulting equation. Substituting (3.4) into the demand function, for instance, we

can get

_ b(a+c¢) alb+d)—bla+c) ad- bc
(3:5)  @=a-7mg = b+d T h+d

which is again an expression in terms of parameters only. Since the denominator
(b + d) is positive, the positivity of Q requires that the numerator (ad — bc) be
positive as well. Hence, to be economically meaningful, the present model should
contain the additional restriction that ad > bc.

The meaning of this restriction can be seen in Fig. 3.1. It is well known that
the P and Q of a market model may be determined graphically at the intersection
of the demand and supply curves. To have Q > 0 is to require the intersection
point to be located above the horizontal axis in Fig. 3.1, which in turn requires
the slopes and vertical intercepts of the two curves to fulfill a certain restriction
on their relative magnitudes. That restriction, according to (3.5), is ad > bc, given
that both b and d are positive.

The intersection of the demand and supply curves in Fig. 3.1, incidentally, is
in concept no different from the intersection shown in the Venn diagram of Fig,
2.2b. There is one difference only: instead of the points lying within two circles,
the present case involves the points that lic on two lines. Let the set of points on
the demand and supply curves be denoted, respectively, by D and S. Then, by
utilizing the symbol Q (= Q, = Q,), the two sets and their intersection can be
written

D={(P.Q)|Q=a—bP)
S={(P.Q)| Q= —c+dP)
and DnNS=(P.Q)

The intersection set contains in this instance only a single element, the ordered
pair (P, Q). The market equilibrium is unique.
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EXERCISE 3.2

1 Given the market model

0,= 0,
Q,=24-2P
Q.= —-5+17P

find P and Q by () elimination of variables and (b) using formulas (3.4) and (3.5). (Use
fractions rather than decimals.)

2 Let the demand and supply functions be as follows:
(a) Q,=51-3P by Q,=30-2P
Q,=6P—10 Q.= —6+5P
find P and Q by elimination of variables. (Use fractions rather than decimals.)

3 According to (3.5), for Q to be positive, it is necessary that the expression (ad — bc)
have the same algebraic sign as (b + d). Verify that this condition is indeed satisfied in the
models of the preceding two problems.

4 If (b+d)=0 in the linear market model, can an equilibrium sclution be found by
using (3.4) and (3.5)? Why or why not?

S5 1If (b+d)=0 in the linecar market model, what can you conclude regarding the
positions of the demand and supply curves in Fig. 3.1? What can you conclude, then,
regarding the equilibrium solution?

3.3 PARTIAL MARKET EQUILIBRIUM—A NONLINEAR MODEL

Let the linear demand in the isolated market model be replaced by a quadratic
demand function, while the supply function remains linear. Then, if numerical
coefficients are employed rather than parameters, a model such as the following
may emerge:

deQ\‘
(36) Q,=4- P?
0. —4r -1

As previously, this system of three equations can be reduced to a single equation
by elimination of variables (by substitution):

4—P2=4p 1
or
(3.7) P*+4P—5=0

This is a quadratic equation because the left-hand expression is a quadratic
function of variable P. The major difference between a quadratic equation and a
linear one is that, in general, the former will yield two solution values.
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Quadratic Equation versus Quadratic Function

Before discussing the method of solution, a clear distinction should be made
between the two terms quadratic equation and guadratic function. According to the
earlier discussion, the expression P2 + 4P — 5 constitutes a quadratic function.
say, f(P). Hence we may write

(3.8) f(P)=P*+4P -5

What (3.8) does is to specify a rule of mapping from P to f(P), such as
P }~-}—6‘—5’—4’-31—2’—1} 0] 1 2 |-
syl ol sl o8 -s[ o |7

Although we have listed only nine P values in this table, actually a// the P values
in the domain of the function are eligible for listing. It is perhaps for this reason
that we rarely speak of “solving” the equation f(P) = P? + 4P — 5, because we
normally expect “solution values” to be few in number, but here all P values can
get involved. Nevertheless, one may legitimately consider each ordered pair in the
table above—such as (—6,7) and (— 3, 0)—as a solution of (3.8), since each such
ordered pair indeed satisfies that equation. Inasmuch as an infinite number of
such ordered pairs can be written, one for each P value, there is an infinite
number of solutions to (3.8). When plotted as a curve, these ordered pairs
together yield the parabola in Fig. 3.2.

F(P)

f(P)y =P?4+4P 5

Figure 3.2
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In (3.7). where we set the quadratic function f( P) equal to zero, the situation
is fundamentally changed. Since the variable f( P) now disappears (having been
assigned a zero value), the result is a quadratic equation in the single variable P.*
Now that f( P) is restricted to a zero value, only a select number of P values can
satisfy (3.7) and qualify as its solution values, namely, those P values at which the
parabola in Fig. 3.2 intersects the horizontal axis—on which f(P) is zero. Note
that this time the solution values are just P values, not ordered pairs. The solution
P values are often referred to as the roots of the quadratic equation f(P) = 0, or,
alternatively, as the zeros of the quadratic function f(P).

There are two such intersection points in Fig. 3.2, namely, (1,0) and (-5, 0).
As required, the second element of each of these ordered pairs (the ordinate of the
corresponding point) shows f(P) = 0 in both cases. The first element of each
ordered pair (the abscissa of the point), on the other hand, gives the solution value
of P. Here we get two solutions,

}7]=1 and 1?2=—5

but only the first is economically admissible, as negative prices are ruled out.

The Quadratic Formula

Equation (3.7) has been solved graphically, but an algebraic method is also
available. In general, given a quadratic equation in the form

(3.9) ax?+bx+c=0 (a+0)

its two roots can be obtained from the quadratic formula:

_ —b+ (b - 4ac)'”

(3.10) X%, 5

This widely used formula is derived by means of a process known as
“completing the square.” First, dividing each term of (3.9) by a results in the
equation

where the + part of the + sign yields X, and the — part yields X,.

b c
x?+-x+—-=0
a a

Subtracting ¢/a from, and adding b’ /44a* to, both sides of the equation, we get

. b b? b? ¢
R T
4q®  4q’ a

* The distinction between quadratic function and quadratic equation just discussed can be
extended also to cases of polynomials other than quadratic. Thus, a cubic equation results when a
cubic function is set equal to zero.



EQUILIBRIUM ANALYSIS IN ECONOMICS 43

The left side is now a “perfect square,” and thus the equation can be expressed as
( . b )2 b* — dac
X P -
( 2a 4q°
or, after taking the square root on both sides,
b (= da)”
2a 2a

Finally, by subtracting b/2a from both sides, the result in (3.10) is evolved.
Applying the formula to (3.7), wherea = 1, b = 4, ¢ = —5, and x = P, the
roots are found to be

x +

_ -4+ (164+20)° —4+6

P, B = 5 =—5—=1-5
which check with the graphical solutions in Fig. 3.2. Again, we reject_ﬁ2 = —5o0n
economic grounds and, after omitting the subscript 1. write simply P = 1.

With this information in hand. the equilibrium quantity Q can readily be

found from either the second or the third equation of (3.6) to be Q = 3.

Another Graphical Solution

One method of graphical solution of the present model has been presented in Fig.
3.2. However, since the quantity variable has been eliminated in deriving the
quadratic equation, only P can be found from that figure. If we are interested in

(t)r/s (l) N

Figure 3.3
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finding P and Q simultaneously from a graph, we must instead use a diagram
with Q on one axis and P on the other, similar in construction to Fig. 3.1. This is
llustrated in Fig. 3.3. Our problem is of course again to find the intersection of
two sets of points, namely,

D={(P.Q)jQ=4-P)
and S=((P,Q)|Q=4P~ 1}

If no restriction is placed on the domain and the range, the intersection set will
contain two elements, namely,

DN S={(1.3),(=5 -21))

The former is located in quadrant I, and the latter (not drawn) in quadrant III. If
the domain and range are restricted to being nonnegative, however, only the first
ordered pair (1, 3) can be accepted. Then the equilibrium is again unique.

Higher-Degree Polynomial Equations

If a system of simultaneous equations reduces not to a linear equation such as
(3.3)* or to a quadratic equation such as (3.7) but to a cubic (third-degree
polynomial) equation or quartic (fourth-degree polynomial) equation, the roots
will be more difficult to find. One useful method which may work is that of
factoring the function. For example, the expression x? — x* — 4x + 4 can be
written as the product of three factors (x — 1), (x + 2), and (x — 2). Thus the
cubic equation

x}—x?-4x+4=0
can be written after factoring as

(x = D(x+2)(x=2)=0
In order for the left-hand product to be zero, at least one of the three terms in the
product must be zero. Setting each term equal to zero in turn, we get

x—1=0 or x+2=0 or x—2=0
These three equations will supply the three roots of the cubic equation, namely,
X =1 X, = — and ;=2

The trick is, of course, to discover the appropriate way of factoring. Unfor-
tunately, no general rule exists, and it must therefore remain a matter of trial and
error. Generally speaking, however, given an nth-degree polynomial equation
f(x) = 0, we can expect exactly » roots, which may be found as follows. First, try

to find a constant ¢, such that f(x) is divisible by (x + ¢;). The quotient
f(x)/(x + ¢,) will be a polynomial function of a lesser—(n — 1)st—degree; let

* Equation (3.3) can be viewed as the result of setting the linear function (b + d)P — (a + ¢)
equal to zero.
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us call it g(x). It then follows that

J(x) = (x+ ¢ )glx)

Now, try to find a constant ¢, such that g(x) is divisible by (x + ¢,). The
quotient g(x)/(x + ¢,) will again be a polynomial function of a lesser—this time
(n — 2)nd—degree, say. A(x). Since g(x) = (x + ¢,)h(x), it follows that

flx) = (x +¢)glx) = (x + ¢ )(x + ;) h(x)

By repeating the process, it will be possible to reduce the original nth-degree
polynomial f(x) to a product of exactly »n terms:

flx)=(x+c)x+c) (x+¢,)

which, when set equal to zero, will yield »n roots. Setting the first factor equal to
zero, for example, one gets X, = —c,. Similarly, the other factors will yield
X, = —c¢,, X; = —cy, etc. These results can be more succinctly expressed by
employing an index subscript i:

X = —c (i=1.,2,....n)

I {

Even though only one equation is written, the fact that the subscript i can take n
different values means that in all there are n equations involved. Thus the index
subscript provides a very concise way of statement.

EXERCISE 3.3

1 Find the zeros of the following functions graphically:
(a) f(x)= x>~ Tx + 10 (b) g(x)=2x>—4x-16

2 Solve the preceding problem by the quadratic formula.

3 Solve the following polynomial equations by factoring:
(a) PP+4P-5=0 [see(3.7)] () x'=7Tx’+ 14x-8=0
(by x’ +2x> —4x-8=0 (dy x* —3x"—4x =0

4 Find a cubic function with roots 7, —2, and 5.

5 Find the equilibrium solution for each of the following models:

(@) 0,=0Q, (b)) Q,=0,
Q,=3-pP° Q,=8—P°
Q,=6P—4 Q, =P -2

6 The market equilibrium condition, Q, = Q,, is often expressed in an equivalent
alternative form, @, — @, = 0, which has the economic interpretation “excess demand is
zero.” Does (3.7) represent this latter version of the equilibrium condition? If not, supply
an appropriate economic interpretation for (3.7).
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3.4 GENERAL MARKET EQUILIBRIUM

The last two sections dealt with models of an isolated market, wherein the Q, and
Q. of a commodity are functions of the price of that commodity alone. In the
actual world, though, no commodity ever enjoys (or suffers) such a hermitic
existence; for every commodity, there would normally exist many substitutes and
complementary goods. Thus a more realistic depiction of the demand function of
a commodity should take into account the effect not only of the price of the
commodity itself but also of the prices of most, if not all, of the related
commodities. The same also holds true for the supply function. Once the prices of
other commodities are brought into the picture, however, the structure of the
model itself must be broadened so as to be able to yield the equilibrium values of
these other prices as well. As a result, the price and quantity variables of multiple
commodities must enter endogenously into the model en masse.

In an isolated-market model, the equilibrium condition consists of only one
equation, Q,= Q_, or E=Q,—~ Q, =0, where E stands for excess demand.
When several interdependent commodities are simultaneously considered, equi-
librium would require the absence of excess demand for each and every commod-
ity included in the model, for if so much as one commodity is faced with an excess
demand, the price adjustment of that commodity will necessarily affect the
quantities demanded and quantities supplied of the remaining commodities,
thereby causing price changes all around. Consequently, the equilibrium condi-
tion of an n-commodity market model will involve n equations, one for each
commodity, in the form

(3.11)  E=0,-0,=0 (i=12....n)

If a solution exists, there will be a set of prices P, and corresponding quantities Q,
such that all the »n equations in the equilibrium condition will be simultaneously
satisfied.

Two-Commodity Market Model

To illustrate the problem, let us discuss a simple model in which only two
commodities are related to each other. For simpheity, the demand and supply
functions of both commodities are assumed to be linear. In parametric terms,
such a model can be written as

On—0yw=0
Qu=ay+aP +a,P
Q,=b,+bP +bP,
Qpn~—0n=0
Opn=0o,+a, P +a,P,
Q=B+ 5P+ 5P

(3.12)
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where the ¢ and b coefficients pertain to the demand and supply functions of the
first commodity. and the a and B coefficients are assigned to those of the second.
We have not bothered to specify the signs of the coefficients, but in the course of
analysis certain restrictions will emerge as a prerequisite to economically sensible
results. Also, in a subsequent numerical example, some comments will be made
on the specific signs to be given the coefficients.

As a first step toward the solution of this model, we can again resort to
elimination of variables. By substituting the second and third equations into the
first (for the first commodity) and the fifth and sixth equations into the fourth (for
the second commodity), the model is reduced to two equations in two variables:

(ag — by) + (a; = b)) Py + (ay — by) P, =0
(ag— By) + (& = B P + (ay — B)P, =0
These represent the two-commodity version of (3.11), after the demand and
supply functions have been substituted into the two equilibrium-condition equa-
tions.

Although this is a simple system of only two equations, as many as 12
parameters are involved, and algebraic manipulations will prove unwieldy unless

some sort of shorthand is introduced. Let us therefore define the shorthand
symbols

(3.13)

Cl = al - bl

(i=0,1,2)

YI = ai - :B:
Then (3.13) becomes—after transposing the ¢, and y, terms to the right-hand side
of the equals sign:

(3.13,) P+ Py= —¢,
"l b=

which may be solved by further elimination of variables. From the first equation.

it can be found that P, = —(¢, + ¢,P,)/c,. Substituting this into the second
equation and solving, we get
— Yy~ €
(3.14) P, = ¥ T Co¥a
OY2 — 6N

Note that P, is entirely expressed, as a solution value should be, in terms of the
data (parameters) of the model. By a similar process, the equilibrium price of the
second commodity is found to be

(3.15) }72 _ SN T Y

Y2 T 6N

For these two values to make sense, however, certain restrictions shouid be
imposed on the model. First, since division by zero is undefined, we must require
the common denominator of (3.14) and (3.15) to be nonzero. that is, ¢;v, # ¢,¥;-
Second, to assure positivity, the numerator must have the same sign as the
denominator.
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The equilibrium prices having been found, the equilibrium quantities Q, and
Q_2 can readily be calculated by substituting (3.14) and (3.15) into the second (or
third) equation and the fifth (or sixth) equation of (3.12). These solution values
will naturally also be expressed in terms of the parameters. (Their actual calcula-
tion is left to you as an exercise.)

Numerical Example

Suppose that the demand and supply functions are numerically as follows:
Q= 10-2P + P,
Qsl = -2+ 3Pl

(3.16)
0,= 15+ P — P,

Q,=—1 +2P,

What will be the equilibrium solution?

Before answering the question, let us take a look at the numerical coefficients.
For each commodity, Q; is seen to depend on P, alone, but Q,, is shown as a
function of both prices. Note that while P, has a negative coefficient in Q,,, as we
would expect, the coefficient of P, is positive. The fact that a rise in P, tends to
raise Q,, suggests that the two commodities are substitutes for each other. The
role of P, in the @, function has a similar interpretation.

With these coefficients, the shorthand symbols ¢, and v, will take the following
values:

It

€y

10~(=2)=12 ¢=-2-3=-5 c¢,=1-0=1

I

Yo=15-(-1)=16 y,=1-0= y,=—-1-2= -3

By direct substitution of these into (3.14) and (3.15), we obtain

P =3=33 and P, =% =64

And the further substitution of P, and P, into (3.16) will yield
Q,=%=91 and 0, =%=124

Thus all the equilibrium values turn out posttive, as required. In order to preserve
the exact values of P, and P, to be used in the further calculation of @, and Q,, it
is advisable to express them as fractions rather than decimals.

Could we have obtained the equilibrium prices graphically? The answer is
yes. From (3.13), it 1s clear that a two-commodity model can be summarized by
two equations in two variables P, and P,. With known numerical coefficients,
both equations can be plotted in the P, P, coordinate plane, and the intersection
of the two curves will then pinpoint P, and P,.
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n-Commodity Case

The above discussion of the multicommodity market has been limited to the case
of two commodities, but it should be apparent that we are already moving from
partial-equilibrium analysis in the direction of general-equilibrium analysis. As
more commodities enter into a model, there will be more variables and more
equations, and the equations will get longer and more complicated. If all the
commodities in an economy are included in a comprehensive market model, the
result will be a Walrasian type of general-equilibrium model, in which the excess
demand for every commodity is considered to be a function of the prices of all the
commodities in the economy.

Some of the prices may, of course, carry zero coefficients when they play no
role in the determination of the excess demand of a particular commodity: e.g., in
the excess-demand function of pianos the price of popcorn may well have a zero
coefficient. In general, however, with n commodities in all, we may express the
demand and supply functions as follows (using Q,, and Q,, as function symbols
in place of fand g):

Qdi = Q(II(P|‘ PZ""’ Pn)
Q.\'l = QS((PI’ PZ""“ Pn)

In view of the index subscript, these two equations represent the totality of the 2n
functions which the model contains. (These functions are not necessarily linear.)
Moreover, the equilibrium condition is itself composed of a set of n equations,

(3.18) 0, -0.,=0 (i=12....n)

When (3.18) is added to (3.17), the model becomes complete. You should
therefore count a total of 3n equations.

Upon substitution of (3.17) into (3.18), however, the model can be reduced to
a set of n simultaneous equations only:

QdI(PI"PZ""’Pn)_Q.YI(PI‘PZ """ Pn): (i:172""’n)

Besides, inasmuch as E, = Q,, — Q,,. where E, is necessarily also a function of all
the n prices, the above set of equations may be written alternatively as

E(P.P,.....P)=0 (i=12....n)

(3.17)

Solved simultaneously, these n equations will determine the n equilibrium prices
P—if a solution does indeed exist. And then the Q, may be derived from the
demand or supply functions.

Solution of a General-Equation System

If a model comes equipped with numerical coefficients, as in (3.16), the equi-
librium values of the variables will be in numerical terms, too. On a more general
level, if a model is expressed in terms of parametric constants, as in (3.12), the
equilibrium values will also involve parameters and will hence appear as “for-
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mulas,” as exemplified by (3.14) and (3.15). If, for greater generality, even the
function forms are left unspecified in a model, however, as in (3.17), the manner
of expressing the solution values will of necessity be exceedingly general as well.

Drawing upon our experience in parametric models, we know that a solution
value is always an expression in terms of the parameters. For a general-function
model containing, say. a total of m parameters (a,. a,,. ... a,,)—where m is not
necessarily equal to n—the n equilibrium prices can therefore be expected to take
the general analytical form of

(3.19) P =P(a,.a,...., a,,) (i=1.2,....n)

This is a symbolic statement to the effect that the solution value of each variable
(here, price) is a function of the set of all parameters of the model. As this is a
very general statement, it really does not give much detailed information about
the solution. But in the general analytical treatment of some types of problem,
even this seemingly uninformative way of expressing a solution will prove of use,
as will be seen in a later chapter.

Writing such a solution is an easy task. But an important catch exists: the
expression in (3.19) can be justified if and only if a unique solution does indeed
exist, for then and only then can we map the ordered m-tuple (a,, a,..... a,,
into a determinate value for each price P. Yet, unfortunately for us, there is no a
priori reason to presume that every model will automatically yield a unique
solution. In this connection, it needs to be emphasized that the process of
“counting equations and unknowns” does not suffice as a test. Some very simple
examples should convince us that an equal number of equations and unknowns
(endogenous variables) does not necessarily guarantee the existence of a unique
solution.

Consider the three simultaneous-equation systems

(32 ¥ »=8
x+ y=9
2x+ y=12

(3.21) 4x +2y =24
2x + 3y = 58

(3.22) y=18
x+ y=20

In (3.20), despite the fact that two unknowns are linked together by exactly two
equations, there is nevertheless no solution. These two equations happen to be
inconsistent, for if the sum of x and y is 8, it cannot possibly be 9 at the same
time. In (3.21), another case of two equations in two variables, the two equations
are functionally dependent, which means that one can be derived from (and is
implied by) the other. (Here, the second equation is equal to two times the first
equation). Consequently, one equation is redundant and may be dropped from
the system, leaving in effect only one equation in two unknowns. The solution will
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then be the equation y = 12 — 2x, which yields not a unique ordered pair (X, 7)
but an infinite number of them, including (0, 12), (1, 10), (2, 8), etc., all of which
satisfy that equation. Lastly, the case of (3.22) involves more equations than
unknowns, yet the ordered pair (2, 18) does constitute the unique solution to it.
The reason is that, in view of the existence of functional dependence among the
equations (the first is equal to the second plus twice the third), we have in effect
only two independent, consistent equations in two variables.

These simple examples should suffice to convey the importance of consistency
and functional independence as the two prerequisites for application of the process
of counting equations and unknowns. In general, in order to apply that process,
make sure that (1) the satisfaction of any one equation in the model will not
preclude the satisfaction of another and (2) no equation is redundant. In (3.17),
for example, the » demand and n supply functions may safely be assumed to be
independent of one another, each being derived from a different source—each
demand from the decisions of a group of consumers, and each supply from the
decisions of a group of firms. Thus each function serves to describe one facet of
the market situation, and none is redundant. Mutual consistency may perhaps
also be assumed. In addition, the equilibrium-condition equations in (3.18) are
also independent and presumably consistent. Therefore the analytical solution as
written in (3.19) can in general be considered justifiable.*

For simultaneous-equation models, there exist systematic methods of testing
the existence of a unique (or determinate) solution. These would involve, for
linear models, an application of the concept of determinants. to be introduced in
Chap. 5. In the case of nonlinear models. such a test would also require a
knowledge of so-called “partial derivatives” and a special type of determinant
called the Jacobian determinant, which will be discussed in Chaps. 7 and 8.

EXERCISE 3.4

1 Work out the step-by-step solution of (3.13"), thereby verifying the results in (3.14) and
(3.15).

2 Rewrite (3.14) and (3.15) in terms of the original parameters of the model in (3.12).
3 The demand and supply functions of a two-commodity market model are as follows:
Q.= 18-3P + P, Qp= 12+P — 2P,
Q,=-2+14p Qo= -2 + 3P,
Find P, and Q, (i = 1,2). (Use fractions rather than decimals.)

* This is essentially the way that Leon Walras approached the problem of the existence of a
general market equilibrium. In the modern literature, there can be found a number of sophisticated
mathematical proofs of the existence of a competitive market equilibrium under certain postulated
economic conditions. But the mathematics used is advanced. The easiest one to understand is perhaps
the proof given in Robert Dorfman. Paul A. Samuelson, and Robert M. Solow, Linear Programming
and Economic Analvsis. McGraw-Hill Book Company, New York. 1958, chapter 13, which you should
read afrer having studied Part 6 of the present volume.
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3.5 EQUILIBRIUM IN NATIONAL-INCOME ANALYSIS

Even though the discussion of static analysis has hitherto been restricted to
market models in various guises—linear and nonlinear, one-commodity and
multicommodity, specific and general—it, of course, has applications in other
areas of economics also. As a simple example, we may cite the familiar Keynesian
national-income model,
Y=C+1,+ G,
C=a+bY
where Y and C stand for the endogenous variables national income and consump-
tion expenditure, respectively, and /, and G, represent the exogenously de-
termined investment and government expenditures. The first equation is an
equilibrium condition (national income = total expenditure). The second, the
consumption function, is behavioral. The two parameters in the consumption
function, @ and b, stand for the autonomous consumption expenditure and the
marginal propensity to consume, respectively.

It is quite clear that these two equations in two endogenous variables are
neither functionally dependent upon, nor inconsistent with, each other. Thus we
would be able to find the equilibrium values of income and consumption
expenditure, Y and C, in terms of the parameters @ and b and the exogenous
variables I, and G,,.

Substitution of the second equation into the first will reduce (3.23) to a single
equation in one variable, Y:

Y=a+bY+1I,+G,
or (1=-b)Y=a+1,+ G,

(3.23) (a>0, 0<b<1)

Thus the solution value of Y (equilibrium national income) is
a+1,+ G,
1-5
which, it should be noted, is expressed entirely in terms of the parameters and
exogenous variables, the given data of the model. Putting (3.24) into the second

equation of (3.23) will then yield the equilibrium level of consumption expendi-
ture:

(3.24) Y=

: = - bla+1,+G
(3.25) . C=a+bY=a+—jS%;Jﬁ
_a(l=b)+bla+ 1+ Gy) a+b(ly+ Gpy)
B =5 - 1—b

which is again expressed entirely in terms of the given data.

Both Y and C have the expression (1 — b) in the denominator; thus a
restriction b # 1 is necessary, to avoid division by zero. Since b, the marginal
propensity to consume, has been assumed to be a positive fraction, this restriction
is automatically satisfied. For Y and C to be positive, moreover, the numerators in
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(3.24) and (3.25) must be positive. Since the exogenous expenditures I, and G, are
normally positive, as is the parameter a (the vertical intercept of the consumption
function), the sign of the numerator expressions will work out, too.

As a check on our calculation, we can add the C expression in (3.25) to
(I, + G,) and see whether the sum is equal to the Y expression in (3.24). If so,
the C and Y values do satisfy the equilibrium condition, and the solution is valid.

This model is obviously one of extreme simplicity and crudity, but other
models of national-income determination, in varying degrees of complexity and
sophistication, can be constructed as well. In each case, however, the principles
involved in the construction and analysis of the model are identical with those
already discussed. For this reason, we shall not go into further illustrations here.
A more comprehensive national-income model, involving the simultaneous equi-
librium of the money market and the goods market, will be discussed in Sec. 8.6
below.

EXERCISE 3.5

1 Given the following model:
Y=C+1,+ G,
C=a+b(Y~-T) (a>0, 0<b<D [T: taxes]
T=d+1Y (d>0, 0<it< [#: income tax rate]
(a) How many endogenous variables are there?
(b) Find ¥, T, and C.

2 Let the national-income model be:

Y=C+1I,+G
C=a+ WY -Ty) (a>0, 0<h<
G=gY OD<g<l

(a) Identify the endogenous variables.

(b) Give the economic meaning of the parameter g.

(¢) Find the equilibrium national income.

(d) What restriction on the parameters is needed for a solution to exist?

3 Find Y and C from the following:
Y=C+1I,+ G,
C=25+6Y2
I, =16
G, = 14




CHAPTER

FOUR
LINEAR MODELS AND MATRIX ALGEBRA

For the one-commodity model (3.1), the solutions P and Q as expressed in (3.4)
and (3.5) are relatively simple, even though a number of parameters are involved.
As more and more commodities are incorporated into the model, such solution
formulas quickly become cumbersome and unwieldy. That was why we had to
resort to a little shorthand, even for the two-commodity case—in order that the
solutions (3.14) and (3.15) can still be written in a relatively concise fashion. We
did not attempt to tackle any three- or four-commodity models, even in the linear
version, primarily because we did not yet have at our disposal a method suitable
for handling a large system of simultaneous equations. Such a method is found in
matrix algebra, the subject of this chapter and the next.

Matrix algebra can enable us to do many things. In the first place, it provides
a compact way of writing an equation system, even an extremely large one.
Second, it leads to a way of testing the existence of a solution by evaluation of a
determinant—a concept closely related to that of a matrix. Third, it gives a
method of finding that solution (if it exists). Since equation systems are encoun-
tered not only in static analysis but also in comparative-static and dynamic
analyses and in optimization problems, you will find ample application of matrix
algebra in almost every chapter that is to follow.

However, one slight “catch” should be mentioned at the outset. Matrix
algebra is applicable only to linear-equation systems. How realistically linear
equations can describe actual economic relationships depends, of course, on the
nature of the relationships in question. In many cases, even if some sacrifice of
realism is entailed by the assumption of linearity, an assumed linear relationship
can produce a sufficiently close approximation to an actual nonlinear relationship
to warrant its use. In other cases, the closeness of approximation may also be

54
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/‘\ Nonlinear curve

Figure 4.1

improved by having a separate linear approximation for each segment of a
nonlinear relationship, as is illustrated in Fig. 4.1. If the solid curve is taken as the
actual nonlinear relationship, a single linear approximation might take the form
of the solid straight line, which shows substantial deviation from the curve at
certain points. But if the domain is divided into three regions r,, r,, and r,, we can
have a much closer linear approximation (broken straight line) in each region.

In yet other cases, while preserving the nonlinearity in the model, we can
effect a transformation of variables so as to obtain a linear relation to work with.
For example, the nonlinear function

y = ax?

can be readily transformed, by taking the logarithm on both sides, into the
function

A

log y =loga + blog x

which is linear in the two variables (log y) and (log x). (Loganthms will be
discussed in detail in Chap. 10.)

In short, the linearity assumption frequently adopted in economics may in
certain cases be quite reasonable and justified. On this note, then, let us proceed
to the study of matrix algebra.

4.1 MATRICES AND VECTORS

The two-commodity market model (3.12) can be written—after eliminating the
quantity variables—as a system of two linear equations, as in (3 137,

P+ c,Py= —¢, !

WP+ vnPh= -y
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where the parameters ¢, and y, appear to the right of the equals sign. In general, a
system of m linear equations in » variables (x,, x,,..., x,,) can also be arranged
into such a format:

anx, ta,x,+---+a,x,=d,
(4.1) AyX, *+ay x,+---+a,,x,=d,
QX+ AppXy + -+ a,,x,=d,

In (4.1), the variable x, appears only within the leftmost column, and in general
the variable x; appears only in the jth column on the left side of the equals sign.
The double-subscripted parameter symbol a;; represents the coefficient appearing
in the ith equation and attached to the jth variable. For example, a,, is the
coefficient in the second equation, attached to the variable x,. The parameter d,
which is unattached to any variable, on the other hand, represents the constant
term in the ith equation. For instance, d, is the constant term in the first
equation. All subscripts are therefore keyed to the specific locations of the
variables and parameters in (4.1).

Matrices as Arrays

There are essentially three types of ingredients in the equation system (4.1). The
first is the set of coefficients g, P the second is the set of variables x,,..., x,; and
the last is the set of constant terms d,,..., d,,. If we arrange the three sets as
three rectangular arrays and label them, respectively, as 4, x, and d (without

subscripts), then we have

x, d
ay  dp a, X dl
ay axp a, 2 2
(4.2) A= n x = d=
. aml am2 U amn . xn dm

As a simple example, given the linear-equation system
6x; +3x, + xy=22
(4.3) xp+4x, —2x;=12
4x, — x,+ 5x;=10

we can write

6 3 1 x 2
(44 4=|(1 4 -2 x =X d=|12 -
4 -1 5 X 10

Each of the three arrays in (4.2) or (4.4) constitutes a matrix.
A matrix is defined as a rectangular array of numbers, parameters, or
variables. The members of the array, referred to as the elements of the matrix, are
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usually enclosed in brackets, as in (4.2), or sometimes in parentheses or with
double vertical lines: || |. Note that in matrix A (the coefficient matrix of the
eqguation system), the elements are separated not by commas but by blank spaces
only. As a shorthand device, the array in matrix 4 can be written more simply as

A=a] i=1,2,...,m
=14y j=12,...,n

Inasmuch as the location of each element in a matrix is unequivocally fixed by the
subscript, every matrix is an ordered set.

Vectors as Special Matrices

The number of rows and the number of columns in a matrix together define the
dimension of the matrix. Since matrix A in (4.2) contains m rows and »n columns, it
is said to be of dimension m X n (read: “m by n”). It is important to remember
that the row number always precedes the column number; this is in line with the
way the two subscripts in a;; are ordered. In the special case where m = n, the
matrix is called a square matrix; thus the matrix 4 in (4.4) is a 3 X 3 square
matrix. '
Some matrices may contain only one column, such as x and 4 in (4.2) or (4.4).
Such matrices are given the special name column vectors. In (4.2), the dimension
of x is n X 1, and that of d is m X 1; in (4.4) both x and 4 are 3 X 1. If we
arranged the variables x; in a horizontal array, though, there would resulta 1 X n_

matrix, which is called a row vector. For notation purposes, a row vector is often

3

distinguished from a column vector by the use of a primed symbol:
i i Atttk
x=Ix x, 0 x,]
You may observe that a vector (whether row or column) is merely an ordered
n-tuple, and as such it may be interpreted as a point in an n#-dimensional space. In
turn, the m X n matrix A4 can be interpreted as an ordered set of m row vectors or
as an ordered set of n column vectors. These ideas will be followed up later.
An issue of more immediate interest is how the matrix notation can enable us,
as promised, to express an equation system in a compact way. With the matrices
defined in (4.4), we can express the equation system (4.3) simply as

’ Ax=d |

In fact, if A, x, and d are given the meanings in (4.2), then even the general-equa-
tion system in (4.1) can be written as Ax = d. The compaﬁness.oﬁhmnolatmnis
thus unmistakable.

However, the equation Ax = d prompts at least two questions. How do we
multiply two matrices 4 and x? What is meant by the equality of Ax and d? Since
matrices involve whole blocks of numbers, the familiar algebraic operations
defined for single numbers are not directly applicable, and there is need for a new
set of operational rules.
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EXERCISE 4.1

1 Rewrite the equation system (3.1) in the format of (4.1), and show that, if the three
variables are arranged in the order Q,, Q., and P, the coefficient matrix will be

I -1 0
1 0 b
0 I —-d $

How would you write the vector of constants?

2 Rewrite the equation system (3.12) in the format of (4.1) with the variables arranged in
the following order: Q,, Q,, Qys, Qss, P;, P,. Write out the coefficient matrix, the
variable vector, and the constant vector.

4.2 MATRIX OPERATIONS

As a preliminary, let us first deﬁne the word equality. Two matrices A = [4,;] and

= [b,;] are said to be equal if and only if they have the same dlmen51on and
have identical elements in the correspondmg locations in the array. In other
words, A = B if and only if a,, = b, ; for all values of i and j. Thus, for example,
we find

HEE M

As another example, if [ y] = [ 4], this will mean that x = 7 and y = 4.

Addition and Subtraction of Matrices

Two matrices can be added if and only if they have the same dimension. When
this dimensional requirement is met, the matrices are said to be conformable for
addition. In that case, the addition of 4 = [a;;] and B = [b;;] is defined as the
addition of each pair of corresponding elements

Example 1 .
[ 4 9] + ] 4+2 940 [6 9]
2 1 2+ 0 1+7 2 8
Example 2
[a), a, ] by by ay +by aptb, Vs
dy  ap|+|by by|=|ay+by aytby, C
| 431 a4y by by ay + by ay + by,
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In general, we may state the rule thus:

[a,] + [b,-j-] =[c;;] wherec,; = a,; + b,
Note that the sum matrix [c,;] must have the same dimension as the component
matrices [a,;] and [b,].

The subtraction operation A — B can be similarly defined if and only if 4

and B have the same dimension. The operation entails the result

[a,] - [b;] = [d;] whered, =a,; b,

Example 3

[19 3 _[6 8]=[19—6 3-8 =[13 —5]
2 0 1 3 2-1 0-3 1 -3
The subtraction operation A — B may be considered alternatively as an addition
operation involving a matrix A and another matrix (— 1) B. This, however, raises

the question of what is meant by the multiplication of a matrix by a single
number (here, — 1).

Scalar Multiplication

To multiply a matrix by a number—or in matrix-algebra terminology, by a scalar
—1s to multiply every element of that matrix by the given scalar.

Example 4
7[3 -1] _ [21 -7]
0 5 0 35
Example 5
1

1 1
Ien an}_ 290 2412

1 1
2|ay ay 2@y 24y

From these examples, the rationale of the name scalar should become clear,
for it “scales up (or down)” the matrix by a certain multiple. The scalar can, of
course, be a negative number as well.

Example 6
[a“ ay; dl] [—a” —ap —d,]
-1 =
ay ap d, —a; —a, —d,

Note that if the matrix on the left represents the coefficients and the constant
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terms in the simultaneous equations
ayx) +apx; =d,
ayx; +apx; =d,

then multiplication by the scalar —1 will amount to multiplying both sides of
both equations by — 1, thereby changing the sign of every term in the system.

Multiplication of Matrices

Whereas a scalar can be used to multiply a matrix of any dimension, the

multiplication of two matrices is contingent upon the satisfaction of a different

dimensional requirement.

Suppose that, given two matrices 4 and B, we want to find the product 4B.
The conformability condition for multiplication is that the column dimension of 4_
(the “lead” matrix in the expression 48) must be equal to the row dimension of
B (the “lag” matrix). For instance, if

o z[bn by, b13]

4.5 A =la, a,| 1 B
(4.5) (%2 [Il ,12]’ %3 by, by by

the product 4B then is defined, since 4 has two columns and B has rwo
rows—premsely the same number.* This can be checked at a glance by comparing
the second number in the dimension indicator for 4, which is (1 x 2), with the -
first number in the dimension indicator for B, (2 X 3). On the other hand, the
reverse product BA is not defined in this case, because B (now the lead matrix) has
three columns while 4 (the lag matrix) has only one row; hence the conformability
condition is violated.

In general, if 4 is of dimension m X n and B is of dimension p X ¢, the
matrix product 4B will be defined if and only if » = p. If defined, moreovVer, the
product matrix AB will have the dimension m X g—the same number of rows as
the lead matrix 4 and the same number of columns as the lag matrix B. For the
matrices given in (4.5), AB will be 1 X 3.

It remains to define the exact procedure of multiplication. For this purpose,
let us take the matrices 4 and B in (4.5) for illustration. Since the product 4B is
defined and is expected to be of dimension 1 X 3, we may write in general (using
the symbol C rather than ¢’ for the row vector) that

AB=C=[C|1 (4] C|3]

Each element in the product matrix C, denoted by c,;, is defined as a sum of
products, to be computed from the elements in the ith row of the lead matrix 4,
and those in the jth column of the lag matrix B. To find c,,, for instance, we
should take the first row in A (since i = 1) and the first column in B (since j = 1)

* The matrix 4, being a row vector, would normally be denoted by a’. We use the symbol 4 here
to stress the fact that the multiplication rule being explained applies to matrices in general, not only to
the product of one vector and one matrix.
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First pair

Second pair

First pair

For ¢y5:

Second pair

Figure 4.2

—as shown in the top panel of Fig. 4.2—and then pair the elements together
sequentially, multiply out each pair, and take the sum of the resulting products, to
get

(4-6) cn = apby + apby,

Similarly, for c,,, we take the first row in A (since i = 1) and the second column in
B (since j = 2), and calculate the indicated sum of products—in accordance with
the lower panel of Fig. 4.2—as follows:

(4.6') €1 = apbyy + apby,
By the same token, we should also have
(4.6”) €3 =apbys + apby

It is the particular pairing requirement in this process which necessitates the
matching of the column dimension of the lead matrix and the row dimension of
the lag matrix before multiplication can be performed.

The multiplication procedure illustrated in Fig. 4.2 can also be described by
using the concept of the inner product of two vectors. Given two vectors # and v
with n elements each, say, (u;, 45,..., u,) and (v,, v,,..., v,), arranged either as
two rows or as two columns or as one row and one column, their inner product,
written as u - v, is defined as ‘

urv=uv; + U, +- - +uy,

This is a sum of products of corresponding elements, and hence the inner product
of two vectors is a scalar. If, for instance, we prepare after a shopping trip a
vector of quantities purchased of n goods and a vector of their prices (listed in the
corresponding order), then their inner product will give the total purchase cost.
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Note that the inner-product concept is exempted from the conformability condi-
tion, since the arrangement of the two vectors in rows or columns is immaterial.
Using this concept, we can describe the element ¢, in the product matrix
C = AB simply as the inner product of the ith row of the lead matrix 4 and the
Jth column of the lag matrix B. By examining Fig. 4.2, we can easily verify the
“validity of this description.
The rule of multiplication outlined above applies with equal validity when the
dimenstons of A and B are other than those illustrated above; the only prere-
quisite is that the conformability condition be met.

Example 7 Given
3 5 -1 0
(2132) [4 6] an 2x2) [ 4 7]
find AB. The product AB is obviously defined, and will be 2 X 2:
3(=1)+5(4) 3(0)+5(7)] _ [17 35]

A= - +64) 40)+6(7)| |20 2

Example 8 Given

1 3 5
A =12 8 and b = [ ] ix7
(3x2) 4 0 @x1 9

find Ab. This time the product matrix should be 3 X 1, that is, a column vector:
1(5) + 3(9) 32
Ab=1[2(5)+8(9) | =182
4(5) +0(9) 20

Example 9 Given

3 -1 2 0o -1 &

A |1 0 3 and B =|-1 1 &
(3x3) (3x3)

4 0 2 0 2 -

find AB. The same rule of multiplication now yields a very special product
matrix:

0+14+0 —-3i-4i+¢ LZ-%-3 1 0 0
AB=|0+0+0 —i4+0+¢% Z+0-3|=]0 1 0
0+0+0 —-%+0+% 210-3% 0 0 1

This last matrix—a square matrix with s in its principal diagonal (the diagonal
running from northwest to southeast) and Os everywhere else—exemplifies the

important type of matrix known ag idensity garriy, This will be further discussed
below.
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Example 10 Let us now take the matrix 4 and the vector x as defined in (4.4)
and find Ax. The product matrix is a 3 X 1 column vector:

6 3 IHXI} 6x, + 3x, + x;

Ax =11 4 =2]1x2 X, + 4x, — 2x,4
4 -1 S11%3 4x, — x5 + 5x;
B3xX3 3xD 3xD

Repeat: the product on the right is a column vector, its corpulent appearance
notwithstanding! When we write Ax = d, therefore, we have

6x, + 3x, + x, 22
X, +dx, —2x; | =12
4x, — x5+ 5x,4 10

which, according to the definition of matrix equality, is equivalent to the state-
ment of the entire equation system in (4.3).

Note that, to use the matrix notation 4x = d, it is necessary, because of the
conformability condition, to arrange the variables x y into a column vector, even
though these variables are listed in a horizontal order in the original equation
system.

Example 11 The simple national-income model in two endogenous variables Y
and C, .. e e et i — e

Y=C+ I, + G,
C=a+bY
can be rearranged into the standard format of (4.1) as follows:
Y-C=1,+G, ’
—-bY+C=a

Hence the coefficient matrix 4, the vector of variables x, and the vector of
constants d are:

1 -1 ] [ Y] [1 +G ]
A = = d =] 0
2x2) [—b 1 (2):1) C @ex1 a
Let us verify that this given system can be expressed by the equation Ax = d.
- By the rule of matrix multiplication, we have

(ry+ (-] [ r-c
-b(Y)+1(C) | |-bY+cC

1 -1
-5 1

Y
C

Ax =

Thus the matrix equation Ax = 4 would give us

[ Y—C]=[IO+GO] _
—-bY + C a ) . S
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Since matrix equality means the equality between corresponding elements, it is
clear that the equation Ax = d does precisely represent the original equation
system, as expressed in the (4.1) format above.

The Question of Division

While matrices, like numbers, can undergo the operations of addition, subtrac-
tion, and multiplication—subject to the conformability conditions—it is not
possible to divide one matrix by another. That is, we cannot write 4 /B.

For two numbers a and b, the quotient a/b (with b + 0) can be written
alternatively as ab™' or b~ 'a, where b~ " represents the inverse or reciprocal of b.
Since ab~' = b~ 'a, the quotient expression a/b can be used to represent both
ab™"' and b~ 'a. The case of matrices is different. Applying the concept of inverses
to matrices, we may in certain cases (discussed below) define a matrix B~ that is
the inverse of matrix B. But from the discussion of conformability condition it
follows that, if AB~! is defined, there can be no assurance that B~'4 is also
defined. Even if AB™! and B~'4 are indeed both defined, they still may not
represent the same product. Hence the expression 4 /B cannot be used without
ambiguity, and it must be avoided. Instead, you must specify whether you are
referring to AB~ ' or B~'4A—provided that the inverse B~ does exist and that the
matrix product in question is defined. Inverse matrices will be further discussed
below.

Digression on ¥ Notation

The use of subscripted symbols not only helps in designating the locations of
parameters and variables but also lends itself to a flexible shorthand for denoting
sums of terms, such as those which arose during the process of matrix multiplica-
tion.

The summation shorthand makes use of the Greek letter ¥ (sigma, for
“sum”). To express the sum of x,, x,, and x,, for instance, we may write

3
X+ Xy + x5 = ij
=1
which is read: “the sum of x; as j ranges from 1 to 3.” The symbol j, called the
summation index, takes only integer values. The expression x; represents the
summand (that which is to be summed), and it is in effect a function of j. Aside

from the letter j, summation indices are also commonly denoted by i or k, such as

Zx,.=x3+x4+x5+x6—+~x7

n B
X =Xg+x, t-+x —

n
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The application of I notation can be readily extended to cases in which the x
term is prefixed with a coefficient or in which each term in the sum is raised to
some integer power. For instance, we may write:

3
ax; =ax, + ax, + ax; = a(x, + x, + ;) =a ). x;
1 j=1

M- Y.

ajxj: ax, + a2x2+ a3x3 F T ST P U,

“.
I

agx’ +ax' + ayx*+ -+ +a,x"

L=
o
xo..
I

ag+ ax + ayx* + -+ +a,x"

n
n

The last example, in particular, shows that the expression ). a,x’ can in fact be

i=0
used as a shorthand form of the general polynomial function of (2.4).

It may be mentioned in passing that, whenever the context of the discussion
leaves no ambiguity as to the range of summation, the symbol ¥ can be used
alone, without an index attaqllgfi (such as 2x;), or with only the index letter
underneath (such as Zx ).

Let us apply the\Z shorthand to matrix multiplication. In (4.6), (4.6"), and
(4.6”), each element of the product matrix C = AB is defined as a sum of terms,
which may now be rewritten as follows:_ R

ey = apby +apby = Y ayby,

cip=apbyy +apby = Z ayb,
k=1

2
€3 =ayb +apby = 2 apbys
k=1

In each case, the first subscript of ¢, is reflected in the first subscript of a,,, and
the second subscript of ¢, is reflected in the second subscript of &l in the X
expression. The index k, on the other hand, is a “dummy” subscript; it serves to
indicate which particular pair of elements is being multiplied, but it does not
show up in the symbol ¢, .

" Extending this to the multiplication of an m X n matrix A = [a,,] and an
n X p matrix B = [b,;], we may now write the elements of the m X p product
matrix AB = C = [¢;;] as

n n
Z ayby ‘2 = Z a1.b, ‘

k=1 k=1 /
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or more generally,

" i=1,2,...,m
Cij_kglaikbkj . (j=1,2,---,]7)

This last equation represents yet another way of stating the rule of multiplication
for the matrices defined above.

EXERCISE 4.2

. _14 -1 _10 3 |8 3 )
1G1venA—[6 9],B [3 _2],andC [6 1],ﬁnd.

(@) A+B  (byC-4 () 34 (d) 4B + 2C

2 8
2 GivenA4d = |3 0,B=[2 0],andC=[7 2]:
5 3 8 6 3

(a) Is AB defined? Calculate AB. Can you calculate BA? Why?
(b) Is BC defined? Calculate BC. Is CB defined? If so, calculate CB. Is it true that
BC = CB?

3 On the basis of the matrices given in Example 9, is the product B4 defined? If so,
calculate the product. In this case do we have AB = BA?

4 Find the product matrices in the following (in each case, append beneath every matrix a
dimension indicator):

0 1 0|8 O x
(a) [3 0 4”0 1] (©) [i 2 _g][y]
2 3 0lL3 5 z
4 -1 7 0
(b) [g : i][s 2] (d)[a b c][O 2]
0 1 1 4
5 Expansd the following summati‘?n expressions: ,
(@) L x (0) X bx, (& X (x+i)?
i=2 i=1 i=0
8 n )
() X ax (d) 2 ax"™ ;
i=5 i=1 4'2 O\O’CXL: - ‘}
6 Rewrite the following in L notation: ) ‘
(@) xi(x; = D+ 2x(x; = D+ 3x3(x3 = 1) =’

(b) ay(x3+ 2)+ az(x4 + 3) + a4(xs + 4)

1
(C)%+;12*+'-'+—x— (x+0)

hn

1 1 1
(d)l+;+;+--~+;— (X#O)

n



LINEAR MODELS AND MATRIX ALGEBRA 67

7 Show that the following are true:
n n+1
((l) (EX,)+X,,+|= in
i=0 i=0

n
(b) Z“bjyj:“zbjyl'
=1 j=1

j=

J

J

n n n
(&) L(x+py)=Lx+ Ly
j=1 =1 =1

4.3 NOTES ON VECTOR OPERATIONS

In the above, vectors are considered as special types of matrix. As such, they
qualify for the application of all the algebraic operations discussed. Owing to
their dimensional peculiarities, however, some additional comments on vector
operations are useful.

Multiplication of Vectors

An m X 1 column vector u, and a 1 X n row vector v/, yield a product matrix uv’
of dimension m X n.

Example 1 Given u = B] and v’ =[1 4 5], we can get

300 3@ 3)] [3 12 15
“ A1) 204 25| |2 8 10

Since each row in u consists of one element only, as does each column in v’, each
element of uv’ turns out to be a single product instead of a sum of products. The
product v’ is a 2 X 3 matrix, even though we started out only with two vectors.

On the other hand, given a 1 X »n row vector ¥’ and an n X 1 column vector
v, the product u'v will be of dimension 1 X 1.

Example 2 Givenu’ =[3 4] and v = [3
w'o = [3(9) + 4(7)] = [55]

As written, #’v is a matrix, despite the fact that only a single element is present.
However, 1 X 1 matrices behave exactly like scalars with respect to addition and
multiplication: [4] + [8] = [12], just as 4 + 8 = 12; and [3] [7] = [21], just as
3(7) = 21. Moreover, 1 X 1 matrices possess no major properties that scalars do
not have. In fact, there is a one-to-one correspondence between the set of all
scalars and the set of all 1 X 1 matrices whose elements are scalars. For this

reason, we may redefine u’v to be the scalar corresponding to the 1 X 1 product
[

], we have
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matrix. For the above example, we can accordingly write u’v = 55. Such a
product is called a scalar product.* Remember, however, that while a 1 X 1 matrix
can be treated as a scalar, a scalar cannot be replaced by a 1 X 1 matrix at will if
further calculation is to be carried out, unless conformability conditions are
fulfilled. -
AR\

Example 3 Given a row vector u’ =[3 6 9], find «’u. Since u is merely the
column vector with the elements of u’ arranged vertically, we have

3
wu=1[3 6 9][6] =(3)* + (6)" + (9)°
9

where we have omitted the brackets from the 1 X 1 product matrix on the right.
Note that the product u’u gives the sum of squares of the elements of u.

In general, if ' = (4, u, --- u,], then u'u will be the sum of squares (a
_scalar) of the elements u 2

u’u=u12+u22+"'+u2=zu-2

Had we calculated the inner product u - u (or «’ - u’), we would have, of course,
obtained exactly the same result. ' -

To conclude, it is important to distinguish between the meanings of uv’ (a
matrix larger than 1 X 1) and #’v (a 1 X 1 matrix, or a scalar). Observe, in
particular, that a scalar product must have a row vector as the lead matrix and a
column vector as the lag matrix; otherwise the product cannot be 1 X 1.

Geometric Interpretation of Vector Operations

It was mentioned earlier that a column or row vector with n elements (referred to
hereafter as an n-vector) can be viewed as an n-tuple, and hence as a point in an
n-dimensional space (referred to hereafter as an n-space). Let us elaborate on this
idea. In Fig. 4.3a, a point (3, 2) is plotted in a 2-space and is labeled u. This is the

S| or the vector u’ = [3 2], both of

which indicate in this context one and the same ordered pair. If an arrow (a
directed-line segment) is drawn from the point of origin (0,0) to the point u, it
will specify the unique straight route by which to reach the destination point u
from the point of origin. Since a unique arrow exists for each point, we can regard
the vector u as graphically represented either by the point (3,2), or by the

geometric counterpart of the vector u =

* The concept of scalar product is thus akin to the concept of inner product of two vectors with the
same number of elements in each, which also yields a scalar. Recall, however, that the inner product is
exempted from the conformability condition for multiplication, so that we may write it as « - v. In the
case of scalar product (denoted without a dot between the two vector symbols), on the other hand, we
can express it only as a row vector multiplied by a column vector, with the row vector in the lead.
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corresponding arrow. Such an arrow, which emanates from the origin (0, 0) like
the hand of a clock, with a definite length and a definite direction, is called a
radius vector.. '

Following this new interpretation of a vector, it becomes possible to give
geometric meanings to (a) the scalar multiplication of a vector, (b) the addition
and subtraction of vectors, and more generally, (c) the so-called “linear combina-
~tion” of vectors. '

First, if we plot the vector [2] = 2u in Fig. 4.3a, the resulting arrow will

overlap the old one but will be twice as long. In fact, the multiplication of vector
u by any scalar k will produce an overlapping arrow, but the arrowhead will be

xz , . , %
u
2u . 3,2)
4 6,4) "
3-- // |
v l X
24— " .
3.2) |
T |
0 1 2 3 4 5 6
@ o (b)
X2 . . X2 v
v+ u 4t (114)
6l 4,6)
~3
U—Uu -
(-2,2)»( 2+
\
/ 14
—4 —3 /-2 —1\
e e ot S .l
/ 0 1 2
/ —1T
—u 2+
} X (=3, —2)
5 .
.o v}vv~v--(»c) ..... X i (d)
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relocated, unless & = 1. If the scalar multiplier is k > 1, the arrow will be
extended out (scaled up); if 0 <k < 1, the arrow will be shortened (scaled
down); if k = 0, the arrow will shrink into the point of origin—which represents

g . A negative scalar multiplier will even reverse the direction of
-3

the arrow. If the vector u is multiplied by — 1, for instance, we get —u = [ 5

and this plots in Fig. 4.3b as an arrow of the same length as # but diametrically
opposite in direction.

a null vector,

1 13
4] and u = [2] The sum

Next, consider the addition of two vectors, v = [
v+u= [g] can be directly plotted as the broken arrow in Fig. 4.3¢. If we

construct a parallelogram with the two vectors u and v (solid arrows) as two of its
sides, however, the diagonal of the parallelogram will turn out exactly to be the
arrow representing the vector sum v + u. In general, a vector sum can be
obtained geometrically from a parallelogram. Moreover, this method can also give
us the vector difference v — u, since the latter is equivalent to the sum of v and
(—Du. In Fig. 4.3d, we first reproduce the vector v and the negative vector —u
from diagrams ¢ and b, respectively, and then construct a parallelogram. The
resulting diagonal represents the vector difference v — u.

It takes only a simple extension of the above results to interpret geometrically
a linear combination (i.e., a linear sum or difference) of vectors. Consider the
simple case of

so+2u=31]+2[3] - [ 2]

The scalar multiplication aspect of this operation involves the relocation of the
respective arrowheads of the two vectors v and u, and the addition aspect calls for
the construction of a parallelogram. Beyond these two basic graphical operations,
there is nothing new in a linear combination of vectors. This is true even if there
are more terms in the linear combination, as in

Y kv, =k, + ko, + - + kv

nn
i=1

where k; are a set of scalars but the subscripted symbols v, now denote a set of
vectors. To form this sum, the first two terms may be added first, and then the
resulting sum is added to the third, and so forth, till all terms are included.

Linear Dependence ‘

A set of vectors v, ..., v, is said to be linearly dependent if (and only if) any one_

of them can be expressed as a linear combination of the remaining vectors;
otherwise they are linearly independent.

3



LINEAR MODELS AND MATRIX ALGEBRA 71

Example 4 The three vectors v, = [ﬂ, v, = [ é], and v; = [g] are linearly
dependent because v, is a linear combination of v, and v,:

-] (2] 12

Note that this last equation is alternatively expressible as
30, - 20, — ;=0

where 0 = [8] represents a null vector (also called zero vector).

Example 5 The two row vectors vl [5 12] and v} = [10 24] are linearly
dependent because

200 =2[5 12]=[10 24] =,

The fact that one vector is a multiple of another vector illustrates the simplest
case of linear comblnatlon Note again that this last equation may be written
equivalently as :

20} — v =0

where 0’ represents the null row vector [0 0].

With the introduction of null vectors, linear dependence may be redefined as

follows. A set of m-vectors v,,..., v, is linearly dependent if and only if there
exists a set of scalars k,..., k, (not all zero) such that

Y ko= 0

i=1 (mX1)

If this equation can be satisfied only when k, = 0 for all i, on the other hand, these
vectors are linearly independent.

The concept of linear dependence admits of an easy geometric interpretation
also. Two vectors u and 2u—one being a multiple of the other—are obviously
dependent. Geometrically, in Fig. 4.3a, their arrows lie on a single straight line.
The same is true of the two dependent vectors u and —u in Fig. 4.3b. In contrast,
the two vectors u and v of Fig. 4.3¢ are linearly independent, because it is
impossible to express one as a multiple of the other. Geometrically, their arrows
do not lie on a single straight line.

When more than two vectors in the 2-space are considered, there emerges this
significant conclusion: once we have found two linearly independent vectors in the
2-space (say, 4 and v), all the other vectors in that space will be expressible as a
linear combination of these (u and v). In Fig. 43¢ and d, it has already been
illustrated how the two simple linear combinations v + « and v — u can be found.
Furthermore, by extending, shortening, and reversing the given vectors u and v
and then combining these into various parallelograms, we can generate an infifiite
number of new vectors, which will exhaust the set of all 2-vectors. Because of this,
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any set of three or more 2-vectors (three or more vectors in a 2-space) must be
linearly dependent. Two of them can be independent, but then the third must be a
linear combination of the first two.

Vector Space

The totality of the 2-vectors generated by the various linear combinations of two
independent vectors u and v constitutes the two-dimensional vector space. Since
we are dealing only with vectors with real-valued elements, this vector space is
none other than R?, the 2-space we have been referring to all along. The 2-space
cannot be generated by a single 2-vector, because “linear combinations” of the
latter can only give rise to the set of vectors lying on a single straight line. Nor
does the generation of the 2-space require more than two linearly independent
2-vectors—at any rate, it would be impossible to find more than two.

The two linearly independent vectors u and v are said to span the 2-space.
They are also said to constitute a basis for the 2-space. Note that we said a basis,
not the basis, because any pair of 2-vectors can serve in that capacity as long as
they are linearly independent. In particular, consider the two vectors {1 0] and
[0 1], which are called unit vectors. The first one plots as an arrow lying along
the horizontal axis, and the second, an arrow lying along the vertical axis. Because
they are linearly independent, they can serve as a basis for the 2-space, and we do .
in fact ordinarily think of the 2-space as spanned by its two axes, which are
nothing but the extended versions of the two unit vectors.

By analogy, the three-dimensional vector space is the totality of 3-vectors,
and it must be spanned by exactly three linearly independent 3-vectors. As an
illustration, consider the set of three unit vectors

1 0 0
47) e =}0 e, = 1|1 e;=10
0 0 1

where each e, is a vector with 1 as its ith element and with zeros elsewhere. These
three vectors are obviously linearly independent; in fact, their arrows lie on the
three axes of the 3-space in Fig. 4.4. Thus they span the 3-space, which implies
that the entire 3-space (R?, in our framework) can be generated from these unit
’ 1

vectors. For example, the vector | 2 | can be considered as the linear combination

e, + 2e, + 2e,. Geometrically, we:2 can first add the vectors e, and 2e, in Fig. 4.4
by the parallelogram method, in order to get the vector represented by the point
(1,2,0) in the x,x, plane, and then add the latter vector to 2e;—via the
parallelogram constructed in the shaded vertical plane—to obtain the desired
final result, at the point (1,2, 2).

The further extension to n-space should be obvious. The n-space can be
defined as the totality of n-vectors. Though nongraphable, we can still think of the
n-space as being spanned by a total of n (n-element) unit vectors that-are all
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283 I
0,0,2) ¢

e1+2ey+2e3

e (1,2,2)
0
e, // €2
.~ T
. /(llolo) //(0'2'65\ X2
1 .
e; +2e;
1,2,0)
Figure 4.4

linearly independent. Each n-vector, being an ordered n-tuple, represents a point
in the n-space, or an arrow extending from the point of origin (i.e., the n-element
null vector) to the said point. And any given set of n linearly independent
n-vectors is, in fact, capable of generating the entire n-space. Since, in our
discussion, each element of the n-vector is restricted to be a real number, this
n-space is in fact R".

The n-space referred to above is sometimes more specifically called the
euclidean n-space (named after Euclid). To explain this latter concept, we must
first comment briefly on the concept of distance between two vector points. For
any pair of vector points u and v in a given space, the distance from u to v is some
real-valued function

d=d(u,v)

with the following properties: (1) when u and v coincide, the distance is zero; (2)

when the two points are distinct, the distance from u to v and the distance from v
to u are represented by an identical positive real number; and (3) the distance
between u and v is never longer than the distance from u to w (a point distinct
from u and v) plus the distance from w to v. Expressed symbolically,

d(u,v)=0 (for u = v)
d(u,v)=d(v,u)>0 . (foru + v)
d(u,v) < d(u,w) + d(w, v) (forw # u, v)
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The last property is known as the triangular inequality, because the three points u,
v, and w together will usually define a triangle.

When a vector space has a distance function defined that fulfills the above
three properties it is called a metric space. However, note that the distance d(u, v)
has been discussed above only in general terms. Depending on the specific form
assigned to the 4 function, there may result a variety of metric spaces. The
so-called “euclidean space” is one specific type of metric space, with a distance
function defined as follows. Let point # be the n-tuple (a,, a,,..., a,) and point v
be the n-tuple (b, b,,..., b,); then the euclidean distance function is

d(u,0) = (a, = b,) + (ay = by)* + - + (a, — b,)’

where the square root is taken to be positive. As can be easily verified, this specific
distance function satisfies all three properties enumerated above. Applied to the
two-dimensional space in Fig. 4.3a, the distance between the two points (6, 4) and
(3,2) is found to be

J6-3P7+@-2=V32+22=y13

This result is seen to be consistent with Pythagoras’ theorem, which states that the
length of the hypotenuse of a right-angled triangle is equal to the (positive) square
root of the sum of the squares of the lengths of the other two sides. For if we take
(6,4) and (3,2) to be u and v, and plot a new point w at (6, 2), we shall indeed
have a right-angled triangle with the lengths of its horizontal and vertical sides
equal to 3 and 2, respectively, and the length of the hypotenuse (the distance
between u and v) equal to V32 + 22 = /13

The euclidean distance function can also be expressed in terms of the square
root of a scalar product of two vectors. Since u and v denote the two n-tuples
(a;,-..,a,)and (b,,..., b,), we can write a column vector ¥ — v, with elements
a, ~by,a,—b,,...,a,—b,. What goes under the square-root sign in the
euclidean distance function is, of course, simply the sum of squares of these n
elements, which, in view of Example 3 above, can be written as the scalar product
(u — v)(u — v). Hence we have

 d(u,0) = (u=0)(u ~0)

EXERCISE 4.3

1 Given =[5 2 3, v=[31 9,w=[7 § 8], and x" =[x, x, x3], write
out the column vectors, u, v, w, and x, and find
(a) uw’ (¢) xx’ (e) u'v (g) w'u

(b) uw’ (d)v'u (f)w'x (h) x'x
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2 Givenw = ; = x,] ___[y,] and z = Zl]'

16 X 1 Ya |’ ]
(a) Which of the following are defined: w'x, x'y’, xy’, y'y, zz', yw’, x - y?
(b) Find all the products that are defined.

3 Having bought n items of merchandise at quantities Q,,..., O, and prices P,,..., P,,

how would you express the total cost of purchase in (a¢) L notation and (b) vector
notation?

4 Given two nonzero vectors w, and w,, the angle # (0° < 6 < 180°) they form is related
to the scalar product wiw, (= wyw,) as follows:

acute >
0 is a(n) { right } angle if and only if w,’w2< = }0
obtuse <

Verify this by computing the scalar product for each of the following pair of vectors (see
Figs. 4.3 and 4.4):

@ [flm=[i]  @w|o|n- 1

0 0

i3] ]

0
oneli}me[

S Givenu = [?] andov = [(3)], find the following graphically:
(a) 2v (Yu-—v (e) 2u+ 30
D) u+vo (dy v—u (f) 4u—-20

6 Since the 3-space is spanned by the three unit vectors defined in (4.7), any other 3-vector
should be expressible as a linear combination of e, e,, and e;. Show that the following

3-vectors can be so expressed:
4 15 -1 2
(a) {7 b)) | -2 (¢) 3 (d) |0
0 1 9 8

7 In the three-dimensional euclidean space, what is the distance between the following
points?
(a) 3,2,8) and (0, — 1, 5) (b) (9,0,4) and (2,0, - 4)

8 The triangular inequality is written with the weak inequality sign <, rather than the
strict inequality sign < . Under what circumstances would the “ = ” part of the inequality
apply?

9 Express the length of a radius vector v in the euclidean n-space (i.e., the distance from
the origin to point v) in terms of:
(a) scalars (b) a scalar product (¢) an inner product
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4.4 COMMUTATIVE, ASSOCIATIVE, AND DISTRIBUTIVE LAWS

In ordinary scalar algebra, the additive and multiplicative operations obey the
commutative, associative, and distributive laws as follows:

Commutative law of addition: a+b=b+a
Commutative law of multiplication: ab = ba
Associative law of addition: » (a+b)+tc=a+(b+¢)
Associative law of multiplication: (ab)c = a(bc)
Distributive law: ‘ a(b+ ¢)=ab + ac

These have been referred to during the discussion of the similarly named laws
applicable to the union and intersection of sets. Most, but not all, of these laws
also apply to matrix operations—the significant exception being the commutative
law of muitiplication.

Matrix Addition

Matrix addition is commutative as well as associative. This follows from the fact
that matrix addition calls only for the addition of the corresponding elements of
two matrices, and that the order in which each pair of corresponding elements is
added is immaterial. In this context, incidentally, the subtraction operation
A — B can simply be regarded as the addition operation 4 + (— B), and thus no
separate discussion is necessary.

The commutative and associative laws can be stated as follows:

Commutative law A+B=B+ 4
PROOF A + B = [a,.j] + [bij] = [aij + bij] = [bij + a,-j] =B+ 4

6 2

- _13 1 _
Example 1 leenA—[O 2]and3—[3 4

], we find that

_ _19 3
A+B=B+ A [3 6]

Associative law (A+B)+C=4+(B+ ()

PrROOF (A + B)+ C= la;; + b1+ [e;;]= la,; + b;; + ¢l

l

=la;]1+[b;+c,]=A4+(B+C)

?], and vy = [g], we find that

o= (-] [3

Example 2 Given v, = [2], v, = [
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which is equal to

aetnmr= [ 211

Applied to the linear combination of vectors kv, + --- + k,v,, this law

n-n’

permits us to select any pair of terms for addition (or subtraction) first, instead of
having to follow the sequence in which the » terms are listed.

Matrix Multiplication

Matrix multiplication is not commutative, that is,
AB # BA

As explained previously, even when AB is defined, BA may not be; but even if
both products are defined, the general rule is still AB # BA.

-1

_|r 2 _10
Example 3 LetA—[3 4]andB [_6 7

];then
g | 1@ F26) 1= +2n] _[12 13
S |3(0)+4(6) 3(=1)+4(7)| |24 25

0(1) — 1(3)  0(2) — 1(4) _[—3 —4]

but  BA=160)+13) 6@+ 74| T | 27 40

Example 4 Letu’ bel X 3 (a row vector); then the corresponding column vector
u must be 3 X 1. The product «’u will be 1 X 1, but the product uu’ will be 3 X 3.
Thus, obviously, u'u + uu’. o ) ,

In view of the general rule AB # BA, the terms premultiply and postmultiply
are often used to specify the order of multiplication. In the product 4B, the
matrix B is said to be premultiplied by 4, and A to be postmultiplied by B.

There do exist interesting exceptions to the rule AB # BA, however. One such
case is when A is a square matrix and B is an identity matrix. Another is when 4
is the inverse of B, that is, when 4 = B~'. Both of these will be taken up again
later. It should also be remarked here that the scalar multiplication_of 4 matrix.
does obey the commutative law; thus

kA = Ak
if k is a scalar. .
Although it is not in general commutative, matrix multiplication is associa-

tive.

—

Associative law (AB)C = A(BC )= ABC

In forming the product ABC, the conformability condition must naturally be
satisfied by each adjacent pair of matrices. If A is m X n and if C is p X ¢, then

I e
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conformability requires that B be n X p:

A B C
(mXn) (nxp) (pXq)
Note the dual appearance of » and p in the dimension indicators. If the
conformability condition is met, the associative law states that any adjacent pair
of matrices may be multiplied out first, provided that the product is duly inserted
in the exact place of the original pair.

X, a, 0
Example 5 1f x = X, and 4 = 0 a.l then
22

1nx

X'Ax = x (Ax) =[x, x2][a22x2

_ 2 2
] =apxy + axpx;

which is a weighted” sum of squares, in contrast to the simple sum of squares
given by x’'x. Exactly the same result comes from ~

, X1 2 2
(x'4)x = [a,x, azzxz][xz] =apx; taxpx;
Matrix multiplication is also distributive.

Distributive law  A(B + C) = AB + AC [premultiplication by A]
(B+ C)A=BA+ CA  [postmultiplication by A]

In each case, the conformability conditions for addition as well as for multiplica-
tion must, of course, be observed.

EXERCISE 4.4

. _ (3 6 -1 7 _13 4 .
1 Given 4 = 5 4],8 [ 8 4],andC [l 9],venfythat

(a) (A+B)+C=4+ (B + C)
(b) (A+By—-C=A+(B-0C)
2 The subtraction of a matrix B may be considered as the addition of the fhatrix (-DB.

Does the commutative law of addition permit us to state that 4 — B = B — 47 If not, how
would you correct the statement?

3 Test the associative law of multiplication with the following matrices:

1 0
0 3

7 1

5 3 _[-8 0 7 _
A_[OS]B[132C

4 Prove that for any two scalars g and &
(a) k(A + B)=kA + kB
(b)Y (g+k)A=gAd+ kA
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§ Prove that (4 + BY(C + D)= AC + AD + BC + BD.

6 If the matrix 4 in Example 5 had all its four elements nonzero, would x’Ax still give a
weighted sum of squares? Would the associative law still apply?

4.5 IDENTITY MATRICES AND NULL MATRICES

Identity Matrices

Reference has been made earlier to the term identity matrix. Such a matrix is
defined as a square (repeat: square) matrix with 1s in its prmmpal d1agona1 and Os_
everywhere else. It is denoted by the symbol I, or I, in which the’ “subscript n
serves to indicate its row (as well as column) dlmenswn Thus,

1 0 0
wely 1] eefo ]
1

But both of these can also be denoted by 1.

The importance of this special type of matrix lies in the fact that it plays a
role similar to that of the number 1 in scalar algebra. For any number a, we have
I(a) = a(l) = a. Snmlarly, for any matrix A, we have

(48) IA=AI=4

1 2 3
) 0 3],then

IA=[<1) ?”é : 3] [; 0 3]=A

1 0 0
1 2 3
AI‘[203[81 }[203]“1

Example 1 Let A = [

0

Because A4 is 2 X 3, premultiplication and postmultiplication of 4 by I would call
for identity matrices of different dimensions, namely, /, and I, respectively. But
in case 4 is n X n, then the same identity matrix I, can be used, so that (4.8)
becomes I, 4 = AI,, thus illustrating an exception to the rule that matrix multi-
plication is not commutative.

The special nature of identity matrices makes it possible, during. gf?lﬁaﬁb
e matrix

cation process, to insert or delete_an identity matrix without affectin
product. This follows directly from (4.8). Recalling the associative law, we have,
for instance,

A I B =(AI)B= A B

(mXn) (nXn) (nXp) (mXn) (nXp)

which shows that the presence or absence of I does not affect the product.
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Observe that dimension conformability is preserved whether or not I appears in
the product. :
An interesting case of (4.8) occurs when 4 = I, for then we have

AL = (1) =1,

which states that an identity matrix squared is equal to 1tself A generalization of
this result is that

(1) =1, (k=1,2,...)

An identity matrix remains unchanged when it is multiplied by itself any number
of times. Any matrix with such a property (namely, A4 = 4) is referred to as an

zdempotent matrix. ~
e ——

Null Matrices

Just as an identity matrix I plays the role of the number 1, a null matrix—or zero
matrix—denoted by 0, plays the role of the number 0. A null matrix is simply a
matrix whose elements are all zero. Unlike I, the zero matrix is not restricted to
being square. Thus it is possible to write

0 = [ 0 0 0 = [0 0 o]
2x2) 0 0 2x3) 0 0 0
and so forth. A square null matrix is idempotent, but a nonsquare one is not.
(Why?)
As the counterpart of the number 0, null matrices obey the following rules of
operation (subject to conformability) with regard to addition and multiplication:

] and

A+ 0 = 0 + A = 4
(mXn) (mXxn) (mXxn) (mXn) (mXn)
A 0 = 0 and 0 A = 0
(mXn) (nXp) (mXp) (gXm) (mXn) (gXxn)

Note that, in multiplication, the null matrix to the left of the equals sign and the
one to the right may be of different dimensions.

Example 2
_ |9 an 0 O} - [a” ‘112] =
4+ O - [(121 azz] + [O O N a2] 022 =4
E 3 : e ———

a, 4ap ‘113]8 =[O]= 0
0 0 @x1)

4 0 = [
@x3) 3x1) a ap a4
To the left, the null matrix is a 3 X 1 null vector; to the right, it is a 2 X 1 null
vector. :
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Idiosyncracies of Matrix Algebra

Despite the apparent similarities between matrix algebra and scalar algebra, the
case of matrices does display certain idiosyncracies that serve to warn us not to
“borrow” from scalar algebra too unquestioningly. We have already seen that, in
general, 4B + BA in matrix algebra. Let us look at two more such idiosyncracies
of matrix algebra.

For one thing, in the case of scalars, the equation ab = 0 always implies that
either a or b is zero, but this is not so in matrix multiplication. Thus, we have

_ {2 41 -2 4(_(0 0] _
AB_[l 2” 1 —2]‘[0 0] 0
although neither 4 nor B is itself a zero matrix.

As another illustration, for scalars, the equation ¢d = ce (with ¢ #+ 0) implies
that d = e. The same does not hold for matrices. Thus, given

_12 3 11 1 _[-2 1
=[5 5] o-[i 3] =-[7 ]
we find that
5 8
15 24
even though D # F.
These strange results actually pertain only to the special class of matrices
known as singular matrices, of which the matrices 4, B, and C are examples.
(Roughly, these matrices contain a row which is a multiple of another row.)

Nevertheless, such examples do reveal the pitfalls of unwarranted extension of
algebraic theorems to matrix operations.

CD=CE=[

EXERCISE 4.5

GivenA=[—(1) _2 4] b~[ ]andx=[i'2]:

1 Calculate: (a) AT (b) I4 (¢) Ix (d) x'1
Indicate the dimension of the identity matrix used in each case.
2 Calculate: (a) Ab (b) AIb (¢) x'IA (d) x'A
Does the insertion of I in (b) affect the result in (a)? Does the deletion of I in (d) affect
the result in (¢)? ’

3 What is the dimension of the null matrix resulting from each of the following?
(a) Premultiply A4 by a 4 X 2 null matrix.
(b) Postmultiply 4 by a 3 X 6 null matrix.
(¢) Premultiply b by a 4 X 3 null matrix.
(d) Postmultiply x by a 1 X 5 null matrix.
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4 Show that a diagonal matrix, i.e., a matrix of the form

a, 0 0
0 ay 0
0 0 a

can be idempotent only if each diagonal element is either 1 or 0. How many different
numerical idempotent diagonal matrices of dimension n X n can be constructed altogether
from the matrix above?

4.6 TRANSPOSES AND INVERSES

When the rows and columns of a matrix 4 are interchanged—so that its first row
becomes the first column, and vice versa—we obtain the transpose of A, which is
denoted by A’ or A”. The prime symbol is by no ‘means new to us; it was used
earlier to distinguish a row vector from a column vector. In the newly introduced
terminology, a row vector x’ constitutes the transpose of the column vector x. The
superscript T in the alternative symbol is obviously shorthand for the word
transpose.

Examplel Given A = [3 8 - 9} and B = [3 4], we can inter-
2x3) 1 0 4 (2x2) 7 -
change the rows and columns and write
3 1
A4 =| 8 o] and B = [3 ! ]
(3x2) 9 4 2x2) 4 7

By definition, if a matrix 4 is m X n, then its transpose A" must be n X m. An
n X n square matrix, however, possesses a transpose with the same dimension.

1 0 4

Example 2 IfC=[9 _l]andD= 0 3 7| then
20
4 7 2
1 0 4
C’=[_? (2)] and D=0 3 7
4 7 2

Here, the dimension of each transpose is identical with that of the original matrix.

In D’, we also note the remarkable result that D’ inherits not only the
dimension of D but also the original array of elements! The fact that D’ = D is
the result of the symmetry of the elements with reference to the principal
“diagonal. Con31der1ng the principal d1agonal in D as a mirror, the elements ™
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located to its northeast are exact images of the elements to its southwest; hence
the first row reads identically with the first column, and so forth. The matrix D
exemplifies the special class of square matrices known as symmetric matrices.
Another example of such a matrix is the identity matrix I, which, as a symmetrlc
matrix, has the transpose I' = 1.

Properties of Transposes
The following properties characterize transposes:
(4.9) (&) =4
(4100 (A+B)=A4A"+PF
(411) (ABY = B'A’
The first says that the transpose of the transpose is the original matrix—a
rather self-evident conclusion.

The second property may be verbally stated thus: the transpose of a sum is
the sum of the transposes.

Example 3 1f A = [g (1)] and B = [2 O], then

7 1
o 111t
and A’+B’=[‘;r (?)] ] [6 16] ~

The third property is that the transpose of a product is the product of the
transposes in reverse order. To appreciate the necessity for the reversed order, let
us examine the dimension conformability of the two products on the two sides of
(4.11). If we let A be m X n and B be n X p, then AB will be m X p, and (AB)
will be p X m. For equality to hold, it is necessary that the right-hand expression
B’ A’ be of the identical dimension. Since B’ is p X n and A" is n X m, the product
B’A’ is indeed p X m, as required. The dimension of B’A’ thus works out. Note
that, on the other hand, the product A’B’ is not even defined unless m = p.

A
AN

_1],wehave A

. _ {1 2 _ 10
Example 4 G1venA—[3 4]andB [6

7 - XA
[ 12 13| = 12 24 : DL 38 Kf} j - P
(AB) [24 25 [13 25] A )»r A
Y VISR AN A
and B'A =[__1 ”2 4] [ 25] D'ﬂ/: R

This verifies the property.
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Inverses and Their Properties

For a given matrix A4, the transpose A" is always derivable. On the other hand, its
inverse matrix—another type of “derived” matrix—may or may not exist. The
inverse of matrix 4, denoted by A~ !, is defined only if A4 is a square matrix, in
which case the inverse is the matrix that satisfies the condition

(412) AA'=A"U=1

That is, whether A is pre- or postmultiplied by 4!, the product will be the same
identity matrix. This is another exception to the rule that matrix multiplication is
not commutative.

The following points are worth noting:

1. Not every square matrix has an inverse—squareness is a necessary condition,
but not a sufficient condition, for the existence of an inverse. If a square matrix
A has an inverse, A4 is said to be nonsingular; if A possesses no inverse, it is
called a singular matrix.

2. If A~" does exist, then the matrix A can be regarded as the inverse of 4!, just
as A~ ! is the inverse of A. In short, 4 and 4! are inverses of each other.

3. If A is n X n, then 4! must also be n X n; otherwise it cannot be conform-
able for both pre- and postmultiplication. The identity matrix produced by the
multiplication will also be n X n.

4. If an inverse exists, then it is unique. To prove its uniqueness, let us suppose
that B has been found to be an inverse for 4, so that

AB=BA =1
Now assume that there is another matrix C such that AC = C4 = 1. By
premultiplying both sides of 4B = I by C, we find that [~
CAB=CI(=C) [by(4.8)]
Since CA = I by assumption, the preceding equation is reducible to
IB=C or B=C

That is, B and C must be one and the same inverse matrix. For this reason, we
can speak of the (as against an) inverse of A.

5. The two parts of condition (4.12)—namely, A4 ™! = Tand 4A~'4 = I—actually
imply each other, so that satisfying either equation is sufficient to establish the
inverse relationship between 4 and 4 ~!. To prove this, we should show that if
AA~" = I, and if there is a matrix B such that B4 = I, then B = A~ (so that
BA = I must in effect be the equation 4~ '4 = I'). Let us postmultiply both
sides of the given equation BA = I by A~"; then

(BAYA™' = 14"
B(AA ') =14"" [associative law]
BI=14~" [AA~' = I by assumption]
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Therefore, as required,
B=A4"" [by (4.8)]

Analogously, it can be demonstrated that, if 4~'4 = I, then the only matrix C
which yields CA~! = I'is C = A.

| =13 1 _1[2 —1]_ .
Example 5 Let A = [0 2] and B = 5 [0 L then, since the scalar

multiplier () in B can be moved to the rear (commutative law), we can write
3 - _[1 0]
AB = [0 2”0 3]6 [0 6 6 [0 1]

This establishes B as the inverse of A4, and vice versa. The reverse multiplication,
as expected, also yields the same identity matrix:

BA—6[ _3”0 2] 6 0 6] (1’ (1)

The following three properties of inverse matrices are of interest. If A and B
are nonsingular matrices with dimension n X n, then:

413) (4 '=4
(4.14)  (4B) '=B 4!
(4.15) (4 '=(a"ty

The first says that the inverse of an inverse is the original matrix. The second
states that the inverse of a product is the product of the inverses in reverse order.
And the last one means that the inverse of the transpose is the transpose of the
inverse. Note that in these statements the existence of the inverses and the
satisfaction of the conformability condition are presupposed.

The validity of (4.13) is fairly obvious, but let us prove (4.14) and (4.15).
Given the product 4B, let us find its inverse—call it C. From (4.12) we know that
CAB = I; thus, postmultiplication of both sides by B~'4~! will yield
(4.16)  CABB~'A™'=IB-'A7' (=B capsa". v K

-

But the left side is reducible to C - A 0"
CA(BB ')A~ ' = CAIA™! [by (4.12)]
=CAA™'=CI=C [by(4.12) and (4.8)]

Substitution of this into (4.16) then tells us that C = B~'4 ! or, in other words,
that the inverse of AB is equal to B~'4 !, as alleged. In this proof, the equation
AA~' = A7'4 = I was utilized twice. Note that the application of this equation
is permissible if and only if a matrix and its inverse are strictly adjacent to each
other in a product. We may write A4~ 'B = IB = B, but never ABA™' =

The proof of (4.15) is as follows. Given A’, let us find its inverse—call it D.
By definition, we then have DA’ = I. But we know that

(447 =T =1
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produces the same identity matrix. Thus we may write
DA = (AA'Y
=(47'ya  [by(4.11)]
Postmultiplying both sides by (A4’)”!, we obtain
DA(AY ' = (A" YA(4) !
or D=(A"'Y by (4.12)]

Thus, the inverse of A’ is equal to (A4'Y, as alleged.

In the proofs just presented, mathematical operations were performed on
whole blocks of numbers. If those blocks of numbers had not been treated as
mathematical entities (matrices), the same operations would have been much
more lengthy and involved. The beauty of matrix algebra lies precisely in its
simplification of such operations.

Inverse Matrix and Solution of Linear-Equation System

The application of the concept of inverse matrix to the solution of a simulta-
neous-equation system is immediate and direct. Referring to the equation system
in (4.3), we pointed out earlier that it can be written in matrix notation as
(4.17) A x = d

(B3x3) 3xl)  (BX1)
where 4, x, and d are as defined in (4.4). Now if the inverse matrix 4 ~! exists, the
premultiplication of both sides of the equation (4.17) by 4! will yield

A ' Ax =AY

or

(4.18) x = A7
3x1) 3xX3) 3x1

-
The left side of (4.18) is a column vector of variables, whereas the right-hand
product is a column vector of certain known numbers. Thus, by definition of the
equality of matrices or vectors, (4.18) shows the set of values of the variables that
satisfy the equation system, i.e., the solution values. Furthermore, since A~ ' is
unique if it exists, 4~ 'd must be a unique vector of solution values. We shall
therefore write the x vector in (4.18) as X, to indicate its status as a (unique)
solution.

Methods of testing the existence of the inverse and of its calculation will be
discussed in the next chapter. It may be stated here, however, that the inverse of
the matrix 4 in (4.4) is ‘

1 18 —-16 -10
A“=5—2—13 26 13

-17 18 21
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Thus (4.18) will turn out to be

3 18 —16 - 10 22 2
% | = 5i2 13 6 3
%, 17 1

which gives the solution: X, = 2, X, = 3, and X; =

The upshot is that, as one way of finding the solutlon of a linear-equation
system Ax = d, where the coeflicient matrix A4 is nonsingular, we can first find the
inverse 47!, and then postmultiply 4 ! by the constant vector d. The product
A~'d will then give the solution values of the variables.

~N

£
EXERCISE 4.6
)P'X
. _ 2 4 13 8 _|1 0 9 ' e ' -
lleenA—[_1 3],3—[0 1],andC [6 1 l] find A’, B’, and.C".

2 Use the matrices given in the preceding problem to verify that

(a) (A+BY =A + B (b) (ACY = C'A’
3 Generalize the result (4.11) to the case of a product of three matrices by proving that,
for any conformable matrices A, B, and C, the equation (4BC) = C’B’A’ holds.

4 Given the following four matrices, test whether any one of them is the inverse of
another: :

_[1 12 _[1 1 _|r -4 | 4 -
D‘[o 3 E‘[s 8] F‘[o %] G_[_3

5 Generalize the result (4.14) by proving that, for any conformable nonsingular matrices
A, B, and C, the equation (4BC) ' = C7'B~Y4~ ",
6 Letd=1—X(X'X)'X.
(a) Must 4 be square? Must (X’ X) be square? Must X be square?
(b) Show that matrix 4 is idempotent. [Note: If X’ and X are not square, it is
inappropriate to apply (4.14).]

Nl— M=

=




CHAPTER

FIVE

LINEAR MODELS AND MATRIX ALGEBRA
(CONTINUED)

In Chap. 4, it was shown that a linear-equation system, however large, may be
written in a compact matrix notation. Furthermore, such an equation system can
be solved by finding the inverse of the coefficient matrix, provided the inverse
exists. Now we must address ourselves to the questions of how to test for the
existence of the inverse and how to find that inverse. Only after we have answered
these questions will it be possible to apply matrix algebra meaningfully to
economic models.

5.1 CONDITIONS FOR NONSINGULARITY OF A MATRIX

A given coefficient matrix 4 can have an inverse (i.€., can be *“nonsingular”) only
if it is square. As was pointed out earlier, however, the squareness condition is
necessary but not sufficient for the existence of the inverse A !. A matrix can be
square, but singular (without an inverse) nonetheless.

Necessary versus Sufficient Conditions

The concepts of “necessary condition” and “sufficient condition” are used
frequently in economics. It is important that we understand their precise mean-
ings before proceeding further.

88 o

(&
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A necessary condition is in the nature of a prerequisite: suppose that a
statement p is true only if another statement g is true; then ¢ constitutes a
necessary condition of p. Symbolically, we express this as follows:

(51) p=g

which is read: “p only if ¢,” or alternatively, “if p, then ¢.” It is also logically
correct to interpret (5.1) to mean “p implies q.” It may happen, of course, that we
also have p = w at the same time. Then both ¢ and w are necessary conditions
for p.

Example 1 1f we let p be the statement “a person is a father” and g be the
statement “a person is male,” then the logical statement p = g applies. A person
is a father only if he is male, and to be male is a necessary condition for
fatherhood. Note, however, that the converse is not true: fatherhood is not a
necessary condition for maleness.

A different type of situation is that in which a statement p is true if g is true,
but p can also be true when ¢ is not true. In this case, g is said to be a sufficient
condition for p. The truth of ¢ suffices for the establishment of the truth of p, but
it is not a necessary condition for p. This case is expressed symbolically by

(52) pe=gq N
which is read: “p if ¢” (without the word “only”)—or alternatively, “if ¢, then
p,” as if reading (5.2) backwards. It can also be interpreted to mean “g implies p.”

Example 2 1f we let p be the statement “one can get to Europe” and ¢ be the
statement “one takes a plane to Europe,” then p < ¢. Flying can serve to get one
to Europe, but since ocean transportation is also feasible, ﬂylng is not a
prerequ1s1te We can write p < ¢, but not p = q.

In a third possible situation, g is both necessary and sufficient for p. In such
an event, we write

(5.3)7”__3 ®q N

which is read: “p if and only if ¢ (also written as “p iff ¢”). The double-headed
arrow is really a combination of the two types of arrow in (5.1) and (5.2); hence
the joint use of the two terms “if” and “only if.” Note that (5.3) states not only

that Lp implies ¢ but also that ¢ 1m2hes D.

Example 3 1f we let p be the statement “there are less than 30 days in the
month” and g be the statement “it is the month of February,” then p < ¢. To
have less than 30 days in the month, it is necessary that it be February.
Conversely, the specification of February is sufficient to establish that there are
less than 30 days in the month. Thus ¢ is a necessary-and-sufficient condition
forp. .
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In order to prove p = ¢, it needs to be shown that ¢ follows logically from p.
Similarly, to prove p < g requires a demonstration that p follows logically from q.
But to prove p < g necessitates a demonstration that p and g follow from each
other.

Conditions for Nonsingularity

When the squareness condition is already met, a sufficient condition for the
nonsingularity of a matrix is that its rows be linearly mdependent (or, what
amounts to the same thing, that its columns be linearly independent). When the
dual conditions of squareness and linear independence are taken together, they
constitute the necessary-and-sufficient condition for nonsingularity (nonsingular-
1ty © squareness and linear independence)..

An n X n coefficient matrix 4 can be considered as an ordered set of row

vectors, i.e., as a column vector whose elements are themselves row vectors:

0y
ay  4ap A1y ,
02
A=|% 92 A | =
a, a4, Ayn v
where v/ =[a; a, --- a,)i=12,..., n For the rows (row vectors) to be

linearly_independent, none must be a 11near combination of the rest. More
formally, as was mentioned in Sec. 4.3, linear row independence requires that the
only set of scalars k, which can satisfy the vector equation

(54) Y kuvi= 0

i=1 (1 Xn)

be k;, = 0 for all i.

Example 4 1f the coefficient matrix is

3 4 5 v)
A=|0 1 2|=|0d ¢
6 8 10 0]

then, since [6 8 10]=2[3 4 5], we have v} = 20| = 20} + 0v}. Thus the
third row is expressible as a linear combination of the first two, and the rows are
not linearly independent. Alternatively, we may write the above equation as

207+ 00y —0v3=[6 8 10]+[0 0 0]—[6 8 10]=[0 0 0]

Inasmuch as the set of scalars that led to the zero vector of (5.4) is not k;, = 0 for
all 4, it follows that the rows are linearly dependent.

T
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Unlike the squareness condition, the linear-independence condition cannot
normally be ascertained at a glance. Thus a method of testing linear independence
among rows (or columns) needs to be developed. Before we concern ourselves
with that task, however, it would strengthen our motivation first to have an
_ intuitive understanding of why the linear-independence condition is heaped
together with the squareness condition at all. From the discussion of counting
equations and unknowns in Sec. 3. 4 we recall the general conclusmn that, for a
same number of equations as unknowns. In addmon the vequatzons mnst be
consistent with and functionally independent (meaning, in the present context of

linear systems, linearly independent) of one another. There is a fairly obvious
tie-in between the “same number of equations as unknowns” criterion and the
squareness (same number of rows and columns) of the coefficient matrix. What
the “linear independence among the rows” requirement does is to preclude the
inconsistency and the linear dependence among the equations as well. Taken
together, therefore, the dual requirement of squareness and row independence in
the coefficient matrix is tantamount to the conditions for the existence of a unique
solution enunciated in Sec. 3.4.

Let us illustrate how the linear dependence among the rows of the coefficient
matrix can cause inconsistency or linear dependence among the equations them-
selves. Let the equation system Ax = 4 take the form

10 4]]x, d,

5 2{|x,| |4,
where the coefficient matrix A contains linearly dependent rows: v} = 2v5. (Note
that its columns are also dependent, the first being 3 of the second.) We have not
specified the values of the constant terms d, and d,, but there are only two
distinct possibilities regarding their relative values: (1) d, = 2d, and (2) d, # 2d,.
Under the first—with, say, d, = 12 and d, = 6—the two equations are consistent
but linearly dependent (just as the two rows of matrix A are), for the first equation
is merely the second equation times 2. One equation is then redundant, and the
system reduces in effect to a single equation, 5x, + 2x, = 6, with an infinite
number of solutions. For the second possibility—with, say, d, = 12 but d, =
0— the two equations are inconsistent, because if the first equation (10x, + 4x, =
12) is true, then, by halving each term, we can deduce that 5x; + 2x, = 6;
consequently the second equation (5x, + 2x, = 0) cannot possibly be true also.
Thus no solution exists. )

The upshot is that no unique solution will be available (under either possibil-
ity) so long as the rows in the coefficient matrix A are linearly dependent. In fact,
the only way to have a unique solution is to have linearly independent rows (or
columns) in the coefficient matrix. In that case, matrix 4 will be nonsingular,
which means that the inverse 4 ~' does exist, and that a unique solution X = 4~'d
can be found.




92 STATIC (OR EQUILIBRIUM) ANALYSIS

Rank of a Matrix

Even though the concept of row independence has been discussed only with
regard to square matrices, it is equally applicable to any m X n rectangular
matrix. If the maximum number of linearly independent rows that can be found
in such a matrix is r, the matrix is said to be of rank r. (The rank also tells us the
maximum number of linearly independent columns in the said matrix.) The rank
of an m X »n matrix can be at most m or n, whichever is smaller.

By definition, an n X n nonsingular matrix 4 has » linearly independent rows
(or_columns); consequently it must be of rank n. Conversely, an n X n matrix
having rank # must be nonsingular. ’

EXERCISE 5.1

1 In the following paired statements, let p be the first statement and g the second. Indicate
for each case whether (5.1) or (5.2) or (5.3) applies.

(a) It is a holiday; it is Thanksgiving Day.

(b) A geometric figure has four sides; it is a rectangle.

(¢) Two ordered pairs (a, b) and (b, a) are equal; a is equal to b.

(d) A number is rational; it can be expressed as a ratio of two integers.

(e) A 4 X 4 matrix is nonsingular; the rank of the matrix is 4.

(f) The gasoline tank in my car is empty; I cannot start my car. f & ¢

(g) The letter is returned to the sender for insufficient postage: the sender forgot to put
a stamp on the envelope.

2 Let p be the statement “a geometric figure is a square,” and let g be as follows:
(a) It has four sides. »= ¥
(b) It has four equal sides. F# &
(¢) It has four equal sides each perpendicular to the adjacent one. /&> 4
Which is true for each case: p = g, p+=gqg, 0orp < g?

3 Are the rows linearly independent in each of the following?

wly 51 w53 wlsd] el

4 Check whether the columns of each matrix in the preceding problem are also linearly
independent. Do you get the same answer as for row independence?

5.2 TEST OF NONSINGULARITY BY USE OF DETERMINANT

To ascertain whether a square matrix is nonsingular, we can make use of the
concept of determinant.
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Determinants and Nonsingularity

The determinant of a square matrix 4, denoted by |A4/{, is a uniquely defined
scalar (number) associated with that matrix. Determinants are defined only for

. . ay  ap| . . .
square matrices. For a 2 X 2 matrix 4 = al al , 1ts determinant 1s defined
- 21 22 |
to be the sum of two terms as follows:
a,  ap -
(5.5) 4] = a, a,|” 9udn” ‘lealzm[= a scalar]

which is obtained by multiplying the two elements in the principal diagonal of 4
and then subtracting the product of the two remaining elements. In view of the
dimension of matrix 4, |4| as defined in (5.5) is called a second-order determinant.

Example 1 Given A = [ 10 4] and B = [3 3 ], their determinants are:

8 5 0 -1

10 4|= 10(5) — 8(4) = 18

8 5
5
-1

14| =

and |B| = =3(-1)-0(5) = -3

3
0
While a determinant (enclosed by two vertical bars rather than brackets) is by
definition a scalar, a matrix as such does not have a numerical value. In other
words, a determinant is reducible to a number, but a matrix is, in contrast, a
whole block of numbers. It should also be emphasized that a determinant is
defined only for a square matrix, whereas a matrix as such does not have to be

square. ~— T T

e Y AP
- h

Even at this early stage of discussion, it is possible to have an;inkling of the
relationship between the linear dependence of the rows in a matrix 4, on the one
hand, and its determinant |4 |, on the other. The two matrices

<

Cc;_ss dD_d;_z 6. I+ 2!
HEANEEE ] a8 24| - 27

both have linearly dependent rows, because ¢; = ¢} and d; = 4d;. Both of their
determinants also turn out to be equal to zero:

—

IC| = ~3(8) - 3(8) = 0

3 8
3 8

|D| = 2(24) - 8(6) = 0 *

2 6 I _
8§ 24

This result strongly suggests that a “vanishing” determinant (a zero-value de-
terminant) may have something to do with linear dependence. We shall see that
this is indeed the case. Furthermore, the value of a determinant {4 | can serve not
only as a criterion for testing the linear independence of the rows (hence the
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nonsingularity) of matrix 4, but also as an input in the calculation of the inverse
A~ if it exists.

First, however, we must widen our vista by a discussion of higher-order
determinants.- - - - e e e e

Evaluating a Third-Order Determinant

A determinant of order 3 is associated with a 3 X 3 matrix. Given
ay 4 4ag
A= |4y a4y a4xn
ay; 4z a4y
its determinant has the value

a, 4, ap

a a a a
2 23 21 23
(5.6) |[4] ={@n 42 dxn|=ay, g |~ a2l g a
a a a 32 33 31 33
31 32 33
+a a4z dn
Blay, ay
= Qaya3; — 4)Ayd3; T d)dpds — 410,433
130703 — 4138503 [ = ascalar]

Looking first at the lower line of (5.6), we see the value of [4] expressed as a
sum of six product terms, three of which are prefixed by minus signs and three by
plus signs. Complicated as this sum may appear, there is nonetheless a very easy
way of “catching” all these six terms from a given third-order determinant. This is
best explained diagrammatically (Fig. 5.1). In the determinant shown in Fig. 5.1,

¢

Figure 5.1
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each element in the top row has been linked with two other elements via two solid
arrows as follows: a,, = @, = @33, a4y, = dy3 = dy;, and a;3 = a3, = a,,. Each
triplet of elements so linked can be multiplied out, and their product be taken as
one of the six product terms in (5.6). The solid-arrow product terms are to be
prefixed with plus signs.

On the other hand, each top-row element has also been connected with two
other elements via two broken arrows as follows: a,, = a3, = ay, a; = ay; =
as5, and a,; > a,, — ay,. Each triplet of elements so connected can also be
multiplied out, and their product taken as one of the six terms in (5.6). Such
products are prefixed by minus signs. The sum of all the six products will then be
the value of the determinant. - /

Example 2

2 1

4;. 35; 6= (2)(5)(9) + (1)(6)(7) + (3)(8)(4) — (2)(8)(6)

—(D@O) - )BT =~
i { .- Jiv) =

Example 3

-7 3

g (13 451=(—7)(1)(5)+(0)(4)(0)+(3)(6)(9)—(—7)(6)(4)

= (0)(9)(5) = (3)(1)(0) = 295

This method of cross-diagonal multiplication provides a handy way of
evaluating a third-order determinant, but unfortunately it is not applicable to
determinants of orders higher than 3. For the latter, we must resort to the
so-called “Laplace expansion” of the determinant.

Evaluating an nth-Order Determinant by Laplace Expansnon

Let us first explain the Laplace-expansion process for a third- order determinant.
Returning to the first line of (5.6), we see that the value of |A4| can also be
regarded as asum of three terms, each of which is a | product of a first-row element
|A|_—by means of certain lower-order deternunants—lllustrates the Laplace
expansion of the determinant.

The three second-order determinants in (5.6) are not arbitrarily determined,

a a

but are specified by means of a definite rule. The first one, ‘ aii ajz , is a
subdeterminant of |A4| obtained by deleting the first row and first column of |4].
This is called the minor of the element a,, (the element at the intersection of the
deléted Tow and column) and is denoted by |M,,|. In general, the symbol |M, |

can _be used to represent the Jninor obtained by deleting the ith row and Jth
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column of a given determinant. Since a minor is itself a determinant, it has a
value. As the reader can verify, the other two second-order determinants in (5.6)
are, respectively, the minors |M,| and |M|;]|; that is,

_|4n Q82

Ay a4y
IMis| = a asxp

as; 4as

ay Q4
dsy; das

My, =

|M,| =

A concept closely related to the minor is that of the cofactor. A cofactor,
denoted by |C|, is a minor with a prescribed algebraic sign attached to it.* The
rule of sign is as follows. If the sum of the two subscripts i and j in the minor
|M;,] is even, then the cofactor takes the same sign as the minor; that is,
|C;,;| = |M,,|. If it is odd, then the cofactor takes the opp051te sign to the minor;
'that is, |C, | = —|M,,|. In short, we have

4
>|Clj| = (_ 1)’7 jl ~£j|._

where it is obvious that the expression (—1)'*/ can be positive if and only if

(i +j) is even. The fact that a cofactor has a specific sign is of extreme

importance and should always be borne in mind.

1

9 8 7|,
Example 4 In the determinant (6 5 4: the minor of the element 8 is
3 2 1
6 4
|M),| = 3 ‘ = -6

but the cofactor of the same element is
[Cial = ~[My5| =
because i + j = 1 + 2 = 3 is odd. Similarly, the cofactor of the element 4 is
|Cosl = — | My| = = 3 2l R B
Using these new concepts, we can express a third-order determinant as
(5.7) |[A| = ay | My,| — ay|Myy| + a3|M,;]

3
=ay|Cy| + ap|Cpy| + ap|Csl = Z a;|Cyjl
=1

i.e., as a sum of three terms, each of which is the product of a first-row element
and its corresponding cofactor. Note the difference in the signs of the a,,|M;|
and a;|C,,| terms in (5.7). This is because 1 + 2 gives an odd number.

The Laplace expansion of a third-order determinant serves to reduce the
evaluation problem to one of evaluating only certain second-order determinants.

* Many writers use the symbols M, and C,, (without the vertical bars) for minors and cofactors.
We add the vertical bars to give visual emphasis to the fact that minors and cofactors are in the nature
of determinants and, as such, have scalar values.
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A similar reduction is achieved in the Laplace expansion of higher-order determi-
nants. In a fourth-order determinant | B|, for instance, the top row will contain
four elements, b, ... b,,; thus, in the spirit of (5.7), we may write

4
|B| = Z byﬂculj
=t 7

where the cofactors |C,,| are of order 3. Each third-order cofactor can then be
evaluated as in (5.6). In general, the Laplace expansion of an nth-order determi-
nant will reduce the problem to one of evaluating n cofactors, each of which is of
the (n — 1)st order, and the repeated application of the process will methodically
lead to lower and lower orders of determinants, eventually culminating in the
basic second-order determinants as defined in (5.5). Then the value of the original
determinant can be easily calculated. /

Although the process of Laplace expansion has been couched in terms of the

cofactors of the first-row elements, it is also feasible to expand a determinant by

the cofactor of any row or, for that matter, of any column. For instance, if the
first column of a third-order determinant |4 | consists of the elements a,,, a,,,

and a,,, expansion by the cofactors of these elements will also yield the value of -

i S
3
|4] = a,)|Cp\| + ay|Cyl + ay |Gy = X ay|Cyl
i=1
SN 61
Example 5 Given |[A| =|2 3 0|, expansion by the first row produces
7. =3 0
the result

_ 3 0
|A|—5‘_3 0

_f2 ol 2 3| -
47 0+h _J 0+0-27=-27

But expansion by the first column yields the identical answer:

6 1

_< 3 0|_
M"#—3 d %—3 0

6 1
+7}3 0‘—0 6 —-21=-27

Insofar as numerical calculation is concerned, this fact affords us an oppor-
tunity to choose some “easy” row or column for expansion. A row or column with
the largest number of Os or 1s is always preferable for this purpose, because a 0
times its cofactor is simply 0, so that the term will drop out, and a 1 times its
cofactor is simply the cofactor itself, so that at least one multiplication step can
be saved. In Example 5, the easiest way to expand the determinant is by the third
column, which consists of the elements 1, 0, and 0. We could therefore have
evaluated it thus:

----- '“’lﬁ _g‘—0+0==-27.~-—-~~-—---w e e
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To sum up, the value of a determinant |4| of order n can be found by the
Laplace expansion of any row or any column as follows:
n
(58) |4] = X a,/C,l  [expansion by the ith row]
J=1

=Y a,/C,l [expansion by the jth column]

i=1

EXERCISE 5.2

1 Evaluate the following determinants:

8 1 3 4 0 2 a b ¢ )
(a) 14 0 1 (¢c)j6 0 3 (e) |b ¢ a

6 0 3 8 2 3 c a b

1 2 3 1 1 4 X 5 0
(b)y |4 7 5 (d)y |8 11 -2 N3 r 2

3 6 9 0 4 7 9 -1 8

2 Determine the signs to be attached to the relevant minors in order to get the following
cofactors of a determinant: |C 3|, |Cyl, |Cssls |Cal, and | Cyy|.

a b ¢
3 Given [d e f|, find the minors and cofactors of the elements a, b, and f.
g h i
4 Evaluate the following determinants:
1 2 0, /9, 2 7 0 1
2 3 4 6 5 6 4 8
@17 & o -1 @l o 9 o
0 -5 0 8 1 -3 1 4

5 In the first determinant of the preceding problem, find the value of the cofactor of the
element 9.

5.3 BASIC PROPERTIES OF DETERMINANTS

We can now discuss some properties of determinants which will enable us to
“discover” the connection between linear dependence among the rows of a square
matrix and the vanishing of the determinant of that matrix.

Five basic properties will be discussed here. These are properties common to
determinants of all orders, although we shall illustrate mostly with second-order
determinants:

Property I The interchange of rows and columns does not affect the value of a
determinant. In other words, the determinant of a matrix 4 has the same value as
that of its transpose A’, that is, |4| = |4’|.
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Example 1 l 4 5 \

}4
5 6
Example 2 “; Z‘='Z 2‘=ad—bc

Property I1 The interchange of any two rows (or any two columns) will alter the

Example 3 ‘Cl Z’ = ad — bc, but the interchange of the two rows yields
¢ d|=cb—ad== — (ad - bc)
a b - 24
: . /7 -]
, oo 1 =3l
0 1 3 -
Example 4 |2 5 7| = —26, but the interchange of the first and third col-
3 01 -
31 0 " b "
umns yields |7 5 2| = 26. /}WQ -1 b
1 0 3

Property 1l The multiplication of any one row (or one column) by a scalar k
will change the value of the determinant k-fold.

Example 5 By multiplying the top row of the determinant in Example 3 by k, we
get

a b ‘

¢ d

It is important to distinguish between the two expressions k4 and k|A4|. In
multiplying a matrix A by a scalar k, all the elements in A4 are to be multiplied by
k. But, if we read the equation in the present example from right to left, it should
be clear that, in multiplying a determinant |A| by k, only a single row (or column)
should be muitiplied by k. This equation, therefore, in effect gives us a rule for
factoring a determinant: whenever any single row or column contains a common
divisor, it may be factored out of the determinant.

ka
c

kj" — kad — kbe = k(ad — bc) = k

Example 6 Factoring the first column and the second row in turn, we have

llSa b

2¢ 24 =3

Sa Tb| _ Sa Tb
4c 2d =3(2) 2¢

o| = 6(sad — 14bc)

The direct evaluation of the original determinant will, of course, produce the same
answer.



100 STATIC (OR EQUILIBRIUM) ANALYSIS

In contrast, the factoring of a matrix requires the presence of a common
divisor for all its elements, as in

['Z‘é kd _k[ d]

Property IV The addition (subtraction) of a multiple of any row to (from)
another row will leave the value of the determinant unaltered. The same holds
true if we replace the word row by column in the above statement.

Example 7 Adding k times the top row of the determinant in Example 3 to its
second row, we end up with the original determinant:

a b

_ B _ o _la
et ka d+ kb a(d + kb) — b(c + ka) = ad — bc .

A
d

Property V  If one row (or column) is a multiple of another row (or column), the
value of the determinant will be zero. As a special case of this, when two rows (or
two columns) are identical, the determinant will vanish.

Example 8
2a 2b| _ _ _ —
7 b =2ab—2ab=0 |a’ d'—cd cd=0

Additional examples of this type of “vanishing” determinants can be found in
Exercise 5.2-1. . ’ '

This important property is, in fact, a logical consequence of Property IV. To
understand this, let us apply Property IV to the two determinants in Example 8
and watch the outcome. For the first one, try to subtract twice the second row
from the top row; for the second determinant, subtract the second column from
the first column. Since these operations do not alter the Values of the determi-
nants, we can write

2a 26| _|0 O ‘ ‘= c
a b a b d d 0 d

The new (reduced) determinants now contain, respectively, a row and a column of
zeros; thus their Laplace expansion must yield a value of zero in both cases. In
general, when one row (column) is a multiple of another row (column), the
application of Property IV can always reduce all elements of that row (column) to
zero, and Property V therefore follows. ,

The basic properties just discussed are useful in several ways. For one thing,
they can be of great help in simplifying the task of evaluating determinants. By
subtracting multiples of one row (or column) from another, for instance, the
elements of the determinant may be reduced to much smaller and simpler
numbers. Factoring, if feasible, can also accomplish the same. If we can indeed
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apply these properties to transform some row or column into a form containing
mostly Os or 1s, Laplace expansion of the determinant will become a much more
manageable task.

Determinantal Criterion for Nonsingularity

Our present concern, however, is primarily to link the linear dependence of rows
with the vanishing of a determinant. For this purpose, Property V can be invoked.
Consider an equation system Ax = d:

3 4 24lx d,
4 0 1§ x d,

This system can have a unique solution if and only if the rows in the coefficient
matrix A are linearly independent, so that 4 is nonsingular. But the second row is
five times the first; the rows are indeed dependent, and hence no unique solution
exists. The detection of this row dependence was by visual inspection, but by
virtue of Property V we could also have discovered it through the fact that
4] = 0.

The row dependence in a matrix may, of course, assume a more intricate and
secretive pattern. For instance, in the matrix

4 1 2 v
B=|5 2 1|=|uv
1 0 1 v}

there exists row dependence because 2v| — v} — 3v = 0; yet this fact defies
visual detection. Even in this case, however, Property V will give us a vanishing
determinant, |B| = 0, since by adding three times v} to v, and subtracting twice
v} from it, the second row can be reduced to a zero vector. In general, any pattern
of linear dependence among rows will be reflected in a vanishing
determinant—and herein lies the beauty of Property V! Conversely, if the rows
are linearly independent, the determinant must have a nonzero value.

We have, in the above, tied the nonsingularity of a matrix principally to the
linear independence among rows. But, on occasion, we have made the claim that,
for a square matrix A, row independence < column independence. We are now
equipped to prove that claim:

According to Property I, we know that |4] = |4’|. Since row independence
in A < |A| # 0, we may also state that row independence in 4 < |4’| # 0.
But |A4’| # 0 & row independence in the transpose A’ & column indepen-
dence in A (rows of A’ are by definition the columns of A). Therefore, row
independence in A < column independence in A.
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Our discussion of the test of nonsingularity can now be summarized. Given a
linear-equation system Ax = d, where A4 is an n X n coefficient matrix,

|A| #0 < there is row (column) independence in matrix A
< A is nonsingular
= A~ exists
< a unique solution X = A~ 'd exists

Thus the value of the determinant of the coefficient matrix, |A|, provides a
convenient criterion for testing the nonsingularity of matrix 4 and the existence
of a unique solution to the equation system Ax = d. Note, however, that the
determinantal criterion says nothing about the algebraic signs of the solution
values, i.e., even though we are assured of a unique solution when |A4| # 0, we
may sometimes get negative solution values that are economically inadmissible.

Example 9 Does the equation system
Tx; = 3xy, — 3x;=17
2x,+4x,+ x3=0

—2x,— X3=12

possess a unique solution? The determinant |4 ]| is
/9 (-6) 1T = -8

7 -3 -3 p—
2 4 1|=-8%0
0o -2 -1

Therefore a unique solution does exist.

Rank of a Matrix Redefined g

The rank of a matrix 4 was earlier defined to be the maximum number of linearly
independent rows in 4. In view of the link between row independence and the
nonvanishing of the determinant, we can redefine the rank of an m X » matrix as
the maximum order of a nonvanishing determinant that can be constructed from
the rows and columns of that matrix. The rank of any matrix is a unique number.

Obviously, the rank can at most be m or n, whichever is smaller, because a
determinant is defined only for a square matrix, and from a matrix of dimension,
say, 3 X 5, the largest possible determinants (vanishing or not) will be of order 3.
Symbolically, this fact may be expressed as follows:

r(A4) < min {m, n}

which is read: “The rank of 4 is less than or equal to the minimum of the set of
two numbers m and n.” The rank of an n X n nonsingular matrix A must be n; in

that case, we may write r(A) = n. B
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Sometimes, one may be interested in the rank of the product of two matrices.
In that case, the following rule is of use:

r(AB) < min {r(4), r(‘B))

EXERCISE 5.3

2 0 -1
1 1 7
3 3 9

2 Show that, when all the elements of an nth-order determinant |4| are multiplied by a
number k, the result will be k"|A4]. '

1. Use the determinant to verify the first four properties of determinants.

3 Which properties of determinants enable us to write the following?

9 9 27 1 3
@ |y sl=lo 2] @ ‘ - 18‘2 1|
4 Test whether the following matrices are nonsingular:
[ 4 0 1 7 -1 0
(¢) |19 1 3 (|1 1 4
L5 4 7 13 -3 -4
[ 4 -2 1 795
b) | -5 6 0 d)] 3 0 1
| 7 0 3 10 8 6

5 What can you conclude about the rank of each matrix in the preceding problem?

6 Can any set of 3-vectors below span the 3-space? Why or why not?
(a) [1 2 0] [2 3 1} 3 4 2]
b)I8 1 3] 1 2 8§ (-7 1 5]

7 Rewrite the simple national-income model (3.23) in the Ax = d format (with Y as the
first variable in the vector x), and then test whether the coefficient matrix 4 is nonsingular.

5.4 FINDING THE INVERSE MATRIX

If the matrix A in the linear-equation system Ax = d is nonsingular, then 4~
exists, and the solution of the system will be X = -4, ‘We have learned to test__‘

the nonsingularity of 4 by the criterion |A4] 3 =# 0. The next question is: How can
we find the inverse 4! if A does pass that test?

Expansion of a Determinant by Alien Cofactors

Before answering this query, let us discuss another important property of determi-
nants.

Property VI The expansion of a determinant by alien cofactors (the cofactors of
a “wrong” row or column) always yields a value of zero.
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N

4 1 2
Example 1 1f we expand the determinant |5 2 1| by using its first-row.
1 o 3
elements but the cofactors of the second-row elements
o2l 4 2[_ o 4 1
Gil=]p 3[=-3 1car=|} 30 -]t 3=

we get ay |Gy | + a1 Cyp| + a13[Cys| = 4(—3) + 1(10) + 2(1) = 0.

More generally, applying the same type of expansion by alien cofactors as
4, 4 4y

described in Example 1 to the determinant |4| =[d21 42 a3 | will yield a

zero sum of products as follows:

3

(5.9) 2 a),|Gyyl = a1 |Gyy| + a15|Cyy| + 3| C
i=

ayp  ag @y 4ap

as 4as

a, ap
az daxp

—a a —
Ulay, as 12 13

= —apapay taa;ay ta;,a,,a55 — 41,4305,
—aya3ay, + ajpa3a5, =0

The reason for this outcome lies in the fact that the sum of products in (5.9) can
be considered as the result of the regular expansion by the second row of another
Ay 4y 4
determinant [4*| =4,y 4, 43|, which differs from |4| only in its second
ay axn dy
row and whose first two rows are identical. As an exercise, write out the cofactors
of the second rows of |4*| and verify that these are precisely the cofactors which
appeared in (5.9)—and with the correct signs. Since |4*| = 0, because of its two
identical rows, the expansion by alien cofactors shown in (5.9) will of necessity
yield a value of zero also.
Property VI is valid for determinants of all orders and applies when a
determinant is expanded by the alien cofactors of any row or any column. Thus
we may state, in general, that for a determinant of order » the following holds:

> a,Cyl=0 (i#i) [expansion by ith row and
J=1

(5.10) n
Y a,1Cyl =0 (j#7) [expansion by jth column and

i=1

cofactors of i’th row]

cofactors of j’th column]

Carefully compare (5.10) with (5.8). In the latter (regular Laplace expansion), the
subscripts of a,, and of |G| must be identical in each product term in the sum.
In the expansion by alien cofactors, such as in (5.10), on the other hand, one of
the two subscripts (a chosen value of i’ or ;) is inevitably “out of place.”
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Matrix Inversion

Property VI, as summarized in (5.10), is of direct help in developing a method of
matrix inversion, i.e., of finding the inverse of a matrix.
Assume that an n X n nonsingular matrix A is given:

an 4ttt 4y,
a a ... a

(511) (nlgn) - 21 222" (|A| #0)
anl (%) o ann

Since each element of A has a cofactor |C, |, it is possible to form a matrix of
cofactors by replacing each element a,; in (5 11) with its cofactor |C,;|. Such a
cofactor matrix, denoted by C = [|C, |] must also be n X n. For our present
purposes, however, the transpose jof C is of more interest. This transpose C’'is
commonly referred to as the adjoint of A and is symbolized by adj 4. Written out,
the adjoint takes the form

1IChl 1G] - Gyl

(5.12) C' =adjd= [Cial  1Cyl |Gl
ixmy o

|C1n| ICan |Cnn|

The matrices A and C’ are conformable for multiplication, and their product
AC’ is another n X n matrix in which each element is a sum of products. By
utilizing the formula for Laplace expansion as well as Property VI of determi-
nants, the product AC’ may be expressed as follows: °

Zaljlcljl Zaljlc2j| Zalﬂ
= j=1 =
Z zllcul Zaljlc?.jl Z 2,|
AC =] j=1 Jj=1 J=1
(nXn)
Zanjlcljl Zanjlc2j| Zanjlcnjl
| =1 j=1 j=1 ]
[(4] © e 0
0o 4 --- 0
= . . . [by (5.8) and (5.10)]
| 0 0 |A4]
1 0 -+ 0
0O 1 -+ 0
= |A|| . . .| =1411, [factoring]
0 0 1
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As the determinant |4] is a nonzero scalar, it is permissible to divide both
sides of the equation AC” = |4|I by |A|. The result is

AC’ c’

— =1 or A—— =1
|4] |4]

Premultiplying both sides of the last equation by 4!, and using the result that

A7'4 =1, we can get Tl =47 or

(5.13) A'= I_fi—l adj4a  [by(5.12)]
Now, we have found a way to invert the matrix 4!

The general procedure for finding the inverse of a square matrix A thus
involves the following steps: (1) find |4 | [we need to proceed with the subsequent
steps if and only if |4| # 0, for if |4| = 0, the inverse in (5.13) will be
undefined]; (2) find the cofactors of all the elements of 4, and arrange them as a
cofactor matrix C = [[C;;|]; (3) take the transpose of C to get adj 4; and (4)
divide adj A by the determinant |4 |. The result will be the desired inverse 4~ !.

2 e

Example 2 Find the inverse of 4 = [‘:’ é] Since |[A| = —2 # 0, the inverse

A~ ! exists. The cofactor of each element is in this case a 1 X 1 determinant,
which is simply defined as the scalar element of that determinant itself (that is,

la;;| = a;;). Thus, we have [9/ 'Cv/
C=[|C.1| lc,2|]=[ 0 —1] b e
1Cul  1Cal -2 3

Observe the minus signs attached to 1 and 2, as required for cofactors. Transpos-
ing the cofactor matrix yields

S 0o -2
adj4 = [ -1 3]
so the inverse A~ ! can be written as
_ 1 . 1 0 _2] 0 1
1 - =
VTR 2[—1 3 [% -3
[ 4 1 —1
Example 3 Find the inverse of B = |0 3 2 |. Since |B| = 99 # 0, the
[ 3 0 7
inverse B! also exists. The cofactor matrix is

21 6 -9
=1-7 3l 3

5 -8 12

W= O = O W

W= O = O Ww
~1

S b Wb WO
~

S b Wb WO
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Therefore,
21 -7 6
adjB = 6 31 -8
-9 3 12
and the desired inverse matrix is
1 1 1121 =7 5
B'=—adjB= —| 6 31 -8
BT e g T,

You can check that the results in the above two examples do satisfy
AA'=A"'4 =1Iand BB™' = B"'B = I, respectively.

EXERCISE 54

1 Suppose that we expand a fourth-order determinant by its third column and the
cofactors of the second-column elements. How would you write the resulting sum of
products in X notation? What will be the sum of products in I notation if \Je expand it by
the second row and the cofactors of the fourth-row elements? <G / C ot /
(3 Fltaq

2 Find the inverse of each of the following matrices:

wa-[3 3] el ] § sl
(b)B=[; (2’] (d)p=[(7) g] ' Y

3 (a) Drawing on your answers to the preceding problem, formulate a two-step rule for
finding the adjoint of a given 2 X 2 matrix A: In the first step, indicate what should be
done to the two diagonal elements of 4 in order to get the diagonal elements of adj 4; in
the second step, indicate what should be done to the two off-diagonal elements of A.
[Warning: This rule applies only to 2 X 2 matrices.]

(b) Add a third step which, in conjunction with the previous two steps, yields the 2 X 2
inverse matrix 4~ .

4 Find the inverse of each of the following matrices:

4 -2 1 1 0 0
(a) E=]7 3 3 (o)G=10 0 1
2 0 1 01 0
1 -1 2 1 0 O
(b) F=1|1 0 3 (dH=10 1 0
4 0 2 0 0 1

5 Is it possible for a matrix to be its own inverse?

5.5 CRAMER’S RULE

The method of matrix inversion just discussed enables us to derive a convenient,
practical way of solving a linear-equation system, known as Cramer’s rule.
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Derivation of the Rule

Given an equation system Ax = d, where 4 is n X n, the solution can be written
as

=4 “'d—m(adJA)d [by (5.13)]

provided A is nonsingular. According to (5.12), this means that

X d
% (1l 1Cal -+ 1G] ’
X

2 = L |C12| |C22| ICn2| 2
Al oo .
X, |C1nl lCZnI ICnnI d

-
d1|C||| + d2|C21| +--+ dnlcnll
1 1d,|Cpy| +d,|Cpy| + -+ +4d,|Cpy|

T
| di|Cyyl + dy| Gyl + - + 4, |G
(R Z dilcxll
. i=1
1 | X dilCal
— | i=1

4]

L d,|C,|

| i=1

.

Equating the corresponding elements on the two sides of the equation, we obtain
the solution values

(5.14) x, = |A|§14|c,,| X, = |A|2d| ol (etc)

The ¥ terms in (5.14) look unfamiliar. What do they mean? From (5.8), we
see that the Laplace expansion of a determinant |A4| by its first column can be

expressed in the form Z a;|C;i|- If we replace the first column of |4 by the

column vector d but keep all the other columns intact, then a new determinant
will result, which we can call |4,|—the subscript 1 indicating that the first
column has been replaced by 4. The expansion of |A4,| by its first column (the d

column) will yield the expression Z d;|C; |, because the elements d; now take the

i=1
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place of the elements a,,. Returning to (5.14), we see therefore that

X 1 | Al IAI I .
Similarly, if we replace the second column of |A4| by the column vector d, while
retaining all the other columns, the expansion of the new determinant |4,| by its

second column (the d column) will result in the expression Z d;|C;,|. When
i=1
divided by |A4|, this latter sum will give us the solution value X,; and so on.

This procedure can now be generalized. To find the solution value of the jth
variable X;, we can merely replace the jth column of the determinant |4| by the
constant terms d, - - d, to get a new determinant |A4,| and then divide |4} by
the original determmam |4]. Thus, the solution of the system Ax = d can be
expressed as

ay ap - dy o oay,
. _ 14 _ 1 |9 9n. " dy 10y,
(515 %= A= ; . ;
a, a,; T dn Apn
(jth column replaced by d)

The result in (5.15) is the statement of Cramer’s rule. Note that, whereas the
matrix inversion method yields the solution values of a// the endogenous variables
at once (X is a vector), Cramer’s rule can give us the solution value of only a
single endogenous variable at a time (X; is a scalar).

Example 1 Find the solution of the equation system

5x, + 3x, =30
6x, — 2x,= 8§
The coefficients and the constant terms give the following determinants:
_ _ _ _130 3 _
|4| 2' 28 |4, ‘ _5 84
(5 30{_ _
|4,] —( 6 3 140
Therefore, by virtue of (5.15), we can immediately write
oAl -84 4y _ —140
X, = 4] —28_3 and x2—|A| = —28_5

Example 2 Find the solution of the equation system
Tx,— x,— x3=0
10x, = 2x,+ x;=8
6x, + 3x, — 2x3, =17
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The relevant determinants |A4| and |4 ;| are found to be

7 -1 -1 ’ 0 -1 -1
4l ={10 -2 1{= -6l 4,1 =8 -2 1|= -6l
6 3 =2 7 3 =2
7 0 —1 7 __1 0
421 =10 8 1|=-183 |4y =10 -2 8|~ -244
6 7 =2 6 3 7
thus the solution values of the variables are
c oAl _—6r 4] 183 Al 244
xl_lAI_—61_ 2714 -6l =3 xs—_l |~ el =4

Notice that in each of these examples we find [4| + 0. This is a necessary
condition for the application of Cramer’s rule, as it is for the existence of the
inverse 4~ '. Cramer’s rule is, after all, based upon the concept of the inverse
matrix, even though in practice it bypasses the process of matrix inversion.

Note on Homogeneous-Equation Systems

The equation systems Ax = d considered above can have any constants in the

vector d. If d =0, that is, if d, =d, = --- = d, =0, however, the equation
system will become
Ax =10

where 0 is a zero vector. This special case is referred to as a homogeneous-equation
system.*

If the matrix 4 is nonsingular, a homogeneous-equation system can yield only
a “trivial solution,” namely, ¥, = X, = --- = x, = 0. This follows from the fact
that the solution ¥ = 4~ 'd will in this case become

¥ =4 0 =0

(nXx1) (nXn) (nX1) (nx1)

Alternatively, this outcome can be derived from Cramer’s rule. The fact that

d = 0 implies that |4;,|, for all j, must contain a whole column of zeros, and thus
the solution will turn out to be

__|A1|_ 0

x!_m_m=0 (J=1,2,...,n)

Curiously enough, the only way to get a nontrivial solution from a homoge-
neous-equation system is to have |4| = 0, that is, to have a singular coefficient

* The word “homogeneous™ describes the property that when all the variables Xjy..uy X, are
multiplied by the same number, the equation system will remain valid, This is possible only if the
constant terms (those unattached to any x;) are all zero. ‘
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matrix A! In that event, we have -

— _IAjl _0

T4 T 0

where the 0/0 expression is not equal to zero but is, rather, something undefined.
Consequently, Cramer’s rule is not applicable. This does not mean that we cannot
obtain solutions; it means only that we cannot get a unique solution.

Consider the homogeneous-equation system

anx, +apx, =0
(5.16)

ayx, +ax,=0

It is self-evident that X, = X, = 0 is a solution, but that solution is trivial. Now,
assume that the coefficient matrix A is singular, so that |4| = 0. This implies that
the row vector [a,, a,,]is a multiple of the row vector [a,, a,,]; consequently,
one of the two equations is redundant. By deleting, say, the second equation from
(5.16), we end up with one (the first) equation in two variables, the solution of
which is x, = (—a,,/a,,)x,. This solution is nontrivial and well defined if
a;; + 0, but it really represents an infinite number of solutions because, for every
possible value of X,, there is a corresponding value X, such that the pair
constitutes a solution. Thus no unique nontrivial solution exists for this homoge-
neous-equation system. This last statement is also generally valid for the n-vari-
able case.

Solution Outcomes for a Linear-Equation System

Our discussion of the several variants of the linear-equation system Ax = d
reveals that as many as four different types of solution outcome are possible. For
a better overall view of these variants, we list them in tabular form in Table 5.1.

Table 5.1 Solution outcomes for a linear-equation system Ax = d

Vector d
Determinant |4 |

d+0
(nonhomogeneous system)

d=0
(homogeneous system)

There exists a unique, non-
trivial solution x # 0

There exists a unique, trivial
solution x = 0

There exist an infinite num-
ber of solutions (not in-
cluding the trivial one)

There exist an infinite num-
ber of solutions (inclu-
ding the trivial one)

4] +0
(matrix A nonsingular)

Equations
4] =0 dependent
(matrix A
ingular .
singular) Equations

inconsistent

No solution exists

[Not applicable}
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As a first possibility, the system may yield a unique, nontrivial solution. This
type of outcome can arise only when we have a nonhomogeneous system with a
nonsingular coefficient matrix 4. The second possible outcome is a unique, trivial
solution, and this is associated with a homogeneous system with a nonsingular
matrix A. As a third possibility, we may have an infinite number of solutions.
This eventuality is linked exclusively to a system in which the equations are
dependent (i.e., in which there are redundant equations). Depending on whether
the system is homogeneous, the trivial solution may or may not be included in the
set of infinite number of solutions. Finally, in the case of an inconsistent equation
system, there exists no solution at all. From the point of view of a model builder,
the most useful and desirable outcome is, of course, that of a unique, nontrivial
solution X # 0.

EXERCISE 5.5

1 Use Cramer’s rule to solve the following equation systems:

(a) 3x,—2x,=11 (c) 8 —Tx, = —6
2x, + x,=12 X+ x,= 3
(b) —x; +3x,= -3 (d) 6x, +9x, =15
4x, — x, =12 Tx, —3x,= 4

2 For each of the equation systems in the preceding problem, find the inverse of the
coefficient matrix, and get the solution by the formula X = 4~ 4.

3 Use Cramer’s rule to solve the following equation systems:

(a) 8x; — x, =15 (¢)4x +3y—2z=17
X, + 5%, =1 x+ y =35

2x, +3x; = 4 3x + z=4
(b) —x; +3x, +2x;=24 (d) —x+y+z=a
X, + x3= 6 x—y+z=b
5x,— x3= 8 xX+y—z=c

4 Show that Cramer’s rule can be derived alternatively by the following procedure.
Multiply both sides of the first equation in the system Ax = d by the cofactor |C, |, and
then multiply both sides of the second equation by the cofactor |C, |, etc. Add all the
newly obtained equations. Then assign the values 1,2,..., s to the index j, successively, to
get the solution values x,, X,,..., X, as shown in (5.14). ' '

5.6 APPLICATION TO MARKET AND NATIONAL-INCOME
MODELS

Simple equilibrium models such as those discussed in Chap. 3 can be solved with
ease by Cramer’s rule or by matrix inversion.
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Market Model

The two-commodity model described in (3.12) can be written (after eliminating
the quantity variables) as a system of two linear equations, as in (3.13):

P+, P=—¢
WP+ b=y
The three determinants needed— | 4|, |4, ]|, and |4,|—have the following values:

¢ G

4] = R =672 — 6Ny
—C O

|4,| = “Y Yo —CY, t Y
L T

[4,) = " —Y = —CY * 1)

Therefore the equilibrium prices must be

= Al oY~ coYs 5 |42} covi — v

' |4] Y2 — 6N 2 |4] - Y2 — &M

which are precisely those obtained in (3.14) and (3.15). The equilibrium quantities
can be found, as before, by setting P, = P, and P, = P, in the demand or supply
functions. : ‘

National-Income Model

The simple national-income model cited in (3.23) can also be solved by the use of
Cramer’s rule. As written in (3.23), the model consists of the following two
simultaneous equations:

Y=C+1,+ G,
C=a+bY (a>0, 0<b<1)
These can be rearranged into the form
Y-C=1,+G,
-bY+ C=a

so that the endogenous variables Y and C appear only on the left of the equals
signs, whereas the exogenous variables and the unattached parameter appear only

1 -1
b 1], and the

on the right. The coefficient matrix now takes the form [

I+ GO]. Note that the sum I, + G, is

column vector of constants (data), [
a
considered as a single entity, i.e., a single element in the constant vector.
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Cramer’s rule now leads immediately to the following solution:

‘(IO+G0) -1

5 a 1 _IO+G0+(1

Y= ‘1—1\ o 1-b
-b 1

‘ 1 (I, + Gp)

c- —b a =a+b(IO+G0)
1 —1‘ 1-b
-b 1

You should check that the solution values just obtained are identical with those
shown in (3.24) and (3.25).
Let us now try to solve this model by inverting the coefficient matrix. Since

1 -1 . N 1 b
_p l]’ its cofactor matrix will be [1 1],

and we therefore have adj 4 = [11) ” It follows that the inverse matrix is
1

o1 T 1]
|A|adJA‘1—b[b 1

We know that, for the equation system Ax = d, the solution is expressible as
X = A~ 'd. Applied to the present model, this means that

Y 1 [t 1JL,+ G, 1 I,+Gy+a
C1-b{b 1

C a T1-b|b(I,+ G, +a
It is easy to see that this is again the same solution as obtained before.

the coefficient matrix is 4 = [

A7l =

Matrix Algebra versus Elimination of Variables

The two economic models used for illustration here both involve two equations
only, and thus only second-order determinants need to be evaluated. For large
equation systems, higher-order determinants will appear, and their evaluation
may prove to be no simple task. Nor is the inversion of large matrices exactly
child’s play. From the computational point of view, in fact, matrix inversion and
Cramer’s rule are not necessarily more efficient than the method of successive
elimination of variables.

If so, one may ask, why use the matrix methods at all? As we have seen from
the preceding pages, matrix algebra has given us a compact notation for any
linear-equation system, and also furnishes a determinantal criterion for testing the
existence of a unique solution. These are advantages not otherwise available. In
addition to these, it may be mentioned that, unlike the elimination-of-variable
method, which affords no means of analytically expressing the solution, the
matrix-inversion method and Cramer’s rule do provide the handy solution expres-
sions X = A~'d and X; = |4,|/]4|. Such analytical expressions of the solution
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are useful not only because they are in themselves a summary statement of the
actual solution procedure, but also because they make possible the performance
of further mathematical operations on the solution as written, if called for.

Under certain circumstances, matrix methods can even claim a computational
advantage, such as when the task is to solve at the same time several equation
systems having an identical coefficient matrix 4 but different constant-term
vectors. In such cases, the elimination-of-variable method would require that the
computational procedure be repeated each time a new equation system is consid-
ered. With the matrix-inversion method, however, we are required to find the
common inverse matrix A~ only once; then the same inverse can be used to
premultiply all the constant-term vectors pertaining to the various equation
systems involved, in order to obtain their respective solutions. This particular
computational advantage will take on great practical significance when we con-
sider the solution of the Leontief input-output models in the next section.

EXERCISE 5.6

1 Solve the national-income model in Exercise 3.5-1:
(a) by matrix inversion (b) by Cramer’s rule

(List the variables in the order Y, C, T.)

2 Solve the national-income model in Exercise 3.5-2:

(a) by matrix inversion (b) by Cramer’s rule
(List the variables in the order ¥, C, G.)

5.7 LEONTIEF INPUT-OUTPUT MODELS

In its “static”” version, Professor Leontief’s input-output analysis* deals with this
particular question: “ What level of output should each of the n industries in an
economy produce, in order that it will just be sufficient to satisfy the total demand
for that product?”

The rationale for the term input-output analysis is quite plain to see. The
output of any industry (say, the steel industry) is needed as an input in many
other industries, or even for that industry itself; therefore the “correct” (i.e.,
shortage-free as well as surplus-free) level of steel output will depend on the input
requirements of all the » industries. In turn, the output of many other industries
will enter into the steel industry as inputs, and consequently the “correct” levels
of the other products will in turn depend partly upon the input requirements of
the steel industry. In view of this interindustry dependence, any set of “correct”

* Wassily W. Leontief, The Structure of American Economy 19191939, 2d ed., Oxford University
Press, Fair Lawn, N.I., 1951.
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output levels for the n industries must be one that is consistent with all the input
requirements in the economy, so that no bottlenecks will arise anywhere. In this
light, it is clear that input-output analysis should be of great use in production
planning, such as in planning for the economic development of a country or for a
program of national defense.

Strictly speaking, input-output analysis is not a form of the general equi-
librium analysis as discussed in Chap. 3. Although the interdependence of the
various industries is emphasized, the “correct” output levels envisaged are those
which satisfy technical input-output relationships rather than market equilibrium
conditions. Nevertheless, the problem posed in input-output analysis also boils
down to one of solving a system of simultaneous equations, and matrlx algebra
can again be of service. :

Structure of an Input-Output Model

Since an input-output model normally encompasses a large number of industries,
its framework is of necessity rather involved. To simplify the problem, the
following assumptions are as a rule adopted: (1) each industry produces only one
homogeneous commodity (broadly interpreted, this does permit the case of two or
more jointly produced commodities, provided they are produced in a fixed
proportion to one another); (2) each industry uses a fixed input ratio (or factor
combination) for the production of its output; and (3) production in every
industry is subject to constant returns to scale, so that a k-fold change in every
input will result in an exactly k-fold change in the output. These assumptions are,
of course, unrealistic. A saving grace is that, if an industry produces two different
commodities or uses two different possible factor combinations, then that in-
dustry may—at least conceptually—be broken down into two separate industries.

From these assumptions we see that, in order to produce each unit of the jth
commodity, the input need for the ith commodity must be a fixed amount, which
we shall denote by a,,. Specifically, the production of each unit of the jth
commodity will require @,; (amount) of the first commodity, a,; of the second
commodity,..., and a,; of the nth commodity. (The order of the subscripts in a,;
is easy to remember: the first subscript refers to the input, and the second to the
output, so that a;; indicates how much of the ith commodity is used for the
production of each unit of the jth commodity.) For our purposes, we may assume
prices to be given and, thus, adopt “a dollar’s worth” of each commodity as its
unit. Then the statement a,;, = 0.35 will mean that 35 cents’ worth of the third
commodity is required as an input for producing a dollar’s worth of the second
commodity. The a;; symbol will be referred to as an input coefficient.

For an n- mdustry economy, the input coefficients can be arranged into a
matrix A = [a, ], as in Table 5.2, in which each column specifies the input
requirements for the production of one unit of the output of a particular industry.
The second column, for example, states that to produce a unit (a dollar’s worth)
of commodity II, the inputs needed are: a,, units of commodity I, a,, units of
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Table 5.2 Input-coefficient matrix

Output
Input I nm ua - N
I a4y 4 dp Tt gy
1I dy dy dyy o Ay,
m 31 43 dy 0 Ay,
N an a2 a3 Apn

commodity II, etc. If no industry uses its own product as an input, then the
elements in the principal diagonal of matrix A4 will all be zero.

The Open Model

If, besides the n industries, the model also contains an “open” sector (say,
households) which exogenously determines a final demand (noninput demand) for
the product of each industry and which supplies a primary input (say, labor
service) not produced by the n industries themselves, the model is an open model.

In view of the presence of the open sector, the sum of the elements in each
column of the input-coefficient matrix A (or input matrix A, for short) must be
less than 1. Each column sum represents the partial input cost (not including the
cost of the primary input) incurred in producing a dollar’s worth of some
commodity; if this sum is greater than or equal to $1, therefore, production will
not be economically justifiable. Symbolically, this fact may be stated thus:

n
Ya, <1 (j=12,.,n)
i=1
where the summation is over i, that is, over the elements appearing in the various
rows of a specific column j. Carrying this line of thought a step further, it may
also be stated that, since the value of output ($1) must be fully absorbed by the
payments to all factors of production, the amount by which the column sum falls
short of $1 must represent the payment to the primary input of the open sector.
Thus the value of the prilzllary input needed in producing a unit of the jth

commodity should be 1 — ) a,.
i=1
If industry I is to p}oduce an output just sufficient to meet the input

requirements of the n industries as well as the final demand of the open sector, its
output level x; must satisfy the following equation:

X, =apx, +apx,+---+a,x,+d

or (A =ay)x, —apx, = -+ —a,x,=d,
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where d, denotes the final demand for its output and a, ;x; represents the input
demand from the jth industry.* Note that, aside from the first coefficient,
(1 — ay,), the remaining coeflicients in the last equation are transplanted directly
from the first row of Table 5.2, except that they are now all prefixed with minus
signs. Similarly, the corresponding equation for industry II will have the same
coefficients as in the second row of Table 5.1 (again with minus signs added),
except that the variable x, will have the coefficient (1 — a,,) instead of —a,,. For
the entire set of n industries, the “correct” output levels can therefore be
summarized by the following system of # linear equations:

(I —ay)x - )Xy — 00— a,x, =d,
sy | mmrOTenTom e =
_anlxl - an2x2 -t +(1 - ann)xn = dn

(1- all) —ap —aQ, X1 d
—ay (1- ‘122) —ay, X3 d,

(5.17) . . . =
—anl —an2 (1 - ann) xn dn

If the 1s in the principal diagonal of the matrix on the left are ignored, the
matrix is simply —4 = [—a,;]. As it is, on the other hand, the matrix is the sum
of the identity matrix I, (with Is in its principal diagonal and with Os everywhere
else) and the matrix —A. Thus (5.17’) can also be written as

(5177) (I-A)x=d

where x and d are, respectively, the variable vector and the final-demand
(constant-term) vector. The matrix (/ — A) is called the technology matrix, and we
may denote it by T. Thus the system can also be written as

(5177) Tx=d

As long as T is nonsingular—and there is no a priori reason why it should not be
—we shall be able to find its inverse 7~ ', and obtain the unique solution of the
system from the equation

(5.18) x=T'd=(1-4)""d

* Do not ever add up the input coefficients across a row; such a sum—say, a,; + ¢, + -+ + q,,
—is devoid of economic meaning. The sum of the products a,;x, + aj,x, + --- + a,,x,, on the
other hand, does have an economic meaning; it represents the total amount of x, needed as input for
all the n industries. ' ' '
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A Numerical Example

For purposes of illustration, suppose that there are only three industries in the
economy and that the input-coefficient matrix is as follows (let us use decimal
values this time): »

a,, a, ap 02 03 02
(5.19) A=|ay a, an|=(04 01 02

a;, 4y, das 0.1 03 02

Note that in 4 each column sum is less than 1, as it should be. Further, if we
denote by a,, the dollar amount of the primary input used in producing a dollar’s
worth of the jth commodity, we can write [by subtracting each column sum in
(5.19) from 1]:

(5200 ay,, =03 a4, =03 and gy =04

With the matrix 4 above, the open input-output system can be expressed in
the form Tx = (I — A)x = d as follows:

08 -03 —02][x, d,
(5.21) —04 09 -02||x,|=14d,
-0.1 -03 08| x d,

Here we have deliberately not given specific values to the final demands d|, d,,
and d;. In this way, by keeping the vector 4 in parametric form, our solution will
appear as a “formula” into which we can feed various specific d vectors to obtain
various corresponding specific solutions.

By inverting the 3 X 3 technology matrix T, the solution of (5.21) can be
found, approximately (because of rounding of decimal figures), to be:

X . 0.66 030 0.24(] 4,

X,|=T"'d= N 0.3¢ 062 0.24(|d,

X, 021 0.27 0.601]]d,
If the specific final-demand vector (say, the final-output target of a development
program) happens to be d = 1(5) , in billions of dollars, then the following

6
specific solution values will emerge (again in billions of dollars):

g = 1 _ 954 _

%= 57384 [0.66(10) + 0.30(5) + 0.24(6)] = 038q — 2484
and similarly,

g = 194 g.= 1O _

X2 = 0384 20.68 and X;= 0384 18.36

An important question now arises. The production of the output mix X, X,,
and X, must entail a definite required amount of the primary input. Would the
amount required be consistent with what is available in the economy? On the basis
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of (5.20), the required primary input may be calculated as follows:

3
Y ay;X; = 0.3(24.84) + 0.3(20.68) + 0.4(18.36) = $21.00 billion
j=1 .

10
Therefore, the specific final demand d = | 5| will be feasible if and only if the

available amount of the primary input is 6at least $21 billion. If the amount
available falls short, then that particular production target will, of course, have to
be revised downward accordingly.

One important feature of the above analysis is that, as long as the input
coefficients remain the same, the inverse 7' = (I — A)”' will not change;
therefore only one matrix inversion needs to be performed, even if we are to
consider a hundred or a thousand different final-demand vectors—such as a
spectrum of alternative development targets. This can mean considerable savings
in computational effort as compared with the elimination-of-variable method,
especially if large equation systems are involved. Note that this advantage is not
shared by Cramer’s rule. By the latter rule, the solution will be calculated
according to the formula x; = |T;| /| T/, but each time a different final-demand
vector d is used, we must reevaluate the determinants |7;|. This would be more
time-consuming than the multiplication of a known T~ ! by a new vector 4.

Finding the Inverse by Approximation

For large equation systems, the task of inverting a matrix can be exceedingly
lengthy and tedious. Even though computers can aid us, simpler computational
schemes would still be desirable. For the input-output models under considera-
tion, there does exist a method of finding an approximation to the inverse
T~ '=(1- A)"! to any desired degree of accuracy; thus it is possible to avoid
the process of matrix inversion entirely.

Let us first consider the following matrix multiplication (m = a positive
integer): ' '

(I-A)YI+A+4*+---+4m)

=I{I+A+A4*+ - +A4")-A(T+ A+ A%+ --- + 4™)

=(I+A4+A4%+ - +A")—(A+ 42+ + A" + 4™*1)

=] - Am+l
Had the result of the multiplication been the identity matrix / alone, we could
have taken the matrix sum (/ + 4 + A2 + --- + A™) as the inverse of (I — A).
It is the presence of the —A™"! term that spoils things! Fortunately, though,
there remains for us a second-best course, for if the matrix A”*! can be made to

approach an n X n null matrix, then I — 4™*! will approach I, and accordingly
the said sum matrix (I + A + A2 + --- + A™) will approach the desired inverse
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(I — A)~". By making A™*! approach a null matrix, therefore, we can obtain an
approximation inverse by adding the matrices I, 4, A%,..., A™.

But can we make A™*! approach a null matrix? And if so, how? The answer
to the first question is yes if—as is true of the input-output models under
consideration—the elements in each column of matrix 4 are nonnegative num-
bers adding up to less than 1, such as illustrated in (5.19). For such cases, Am!
can be made to approach a null matrix by making the power m sufficiently large,
i.e, by a long-enough process of repeated self-multiplication of matrix 4. We
shall sketch the proof for this statement presently, but if for now its validity is
granted, the procedure of computing the approximation inverse becomes very
clear: we can simply calculate the successive matrices 4%, A°,..., until there
emerges a matrix A”*! whose elements are, by a preselected standard, all of a
negligible order of magnitude (“approaching zero”). When that happens, we can
terminate the multiplication process and add up all the matrices already obtained,

to form the approximation inverse (/ + 4 + AZ + - 4 AT
Note that, when the matrix 4 is such that 4™ *! approaches the null matrix as
m is increased indefinitely, the approximation inverse (I + A + A% + --- + A™)

will also have the property that all its elements are nonnegative. The first two
terms in the sum, / and A4, obviously contain nonnegative elements only. But so
do all powers of 4, because the self-multiplication of 4 involves nothing other
than the multiplication and addition of the nonnegative elements of A itself.
Inasmuch as the final-demand vector d also contains only nonnegative elements, it
should be clear from (5.18) that the solution output levels must also be nonnega-
tive. This, of course, is precisely what we wanted them to be.

Let us now sketch the proof for the assertion that, given a nonnegative
input-coefficient matrix 4 = [a,;] whose column sums are each less than 1, the
matrix A™*' will approach a null matrix as m is increased indefinitely.} For this
purpose, we shall need the concept of the norm of a matrix 4, which is defined as
the largest column sum in A and is denoted by N(A). In the matrix of (5.19), for
instance, we have N(A) = 0.7; this is the first column sum, which happens also to
be equal to the second column sum. It is immediately clear that no element in a
matrix can ever exceed the value of the norm; that is,

a,; < N(A) (foralli, j)
In the input-output context, we have N(4) < 1, and all g;; < 1. Actually, the

* The approximation of (/ — A)~' by (I + A + A* + --- + A™) is analogous to the approxima-
tion of the infinite series

(-r)y —-]—r=l+r+r+ (O<r<l)

by the sum (1 + r + r2 + - -+ + r"). Since the subsequent terms in the series become progressively
smaller, we can approximate {1 — )~ to any desired degree of accuracy by an appropriate choice of
the number n.

+ For a more detailed discussion, see Frederick V. Waugh, “Inversion of the Leontief Matrix by
Power Series,” Econometrica, April, 1950, pp. 142-154.
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matrix 4 being nonnegative, we must have
0<N(4)<1

Regarding norms of matrices, there is a theorem stating that, given any two
(conformable) matrices 4 and B, the norm of the product matrix AB can never
exceed the product of N(A4) and N(B):

(5.22) N(AB) < N(A)N(B)
In the special case of A = B, where the matrix is square, this result means that
(523)  N(4%) < [N(4)]
When B = 42, (5.22) and (5.23) together imply that
N(4%) < N(4)N(4%) < N(4)[N(4)]* = [N(4)]
The generalized version of the last result is
(5.24)  N(A™) < [N(A)]"

It is in this light that the fact 0 < N(A) < 1 acquires significance, for as m
becomes infinite, [ N(A)]™ must approach zero if N(A4) is a positive fraction. By
(5.24), this means that N(A4™) must also approach zero, since N(A™) is at most as
large as [N(A)]™. If so, however, the elements in the matrix 4™ must approach
zero also when m is increased indefinitely, because no element in the latter matrix
can exceed the value of the norm N(A4™). Thus, by making m sufficiently large,
the matrix A™*' can be made to approach a null matrix, when the condition
0 < N(A) < 1 is satisfied.

The Closed Model

If the exogenous sector of the open input-output model is absorbed into the
system as just another industry, the model will become a closed model. In such a
model, final demand and primary input do not appear; in their place will be the
input requirements and the output of the newly conceived industry. All goods will
now be intermediate in nature, because everything that is produced is produced
only for the sake of satisfying the input requirements of the (n + 1) industries in
the model.

At first glance, the conversion of the open sector into an additional industry
would not seem to create any significant change in the analysis. Actually,
however, since the new industry is assumed to have a fixed input ratio as does any
other industry, the supply of what used to be the primary input must now bear a
fixed proportion to what used to be called the final demand. More concretely, this
may mean, for example, that households will consume each commodity in a fixed
proportion to the labor service they supply. This certainly constitutes a significant
change in the analytical framework involved.

Mathematically, the disappearance of the final demands means that we will
now have a homogeneous-equation system. Assuming four industries only (includ-
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ing the new one, designated by the subscript 0), the “correct” output levels will,
by analogy to (5.17’), be those which satisfy the equation system:

(1 - ay) —dg —dp T8p3 |1 Xo 0
—ay (1-ay) —dayp EER RSN 0
—dx —ay (1 -ay) —dx || X2 0
43 — 43 —ap (1 —ay) ]| x; 0

Because this equation system is homogeneous, it can have a nontrivial solution if

and only if the 4 X 4 technology matrix (I — 4) has a vanishing determinant.

The latter condition is indeed always satisfied: In a closed model, there is no more

primary input; hence each column sum in the input-coefficient matrix A must

Illow be exactly equal to (rather than less than) 1; thatis, a5, + a,; + a,; + a3, =
, or

ag;=1-a,;,—a,;— ay;
But this implies that, in every column of the matrix (I — A) above, the top
element is always equal to the negative of the sum of the other three elements.
Consequently, the four rows are linearly dependent, and we must find |/ — 4| = 0.
This guarantees that the system does possess nontrivial solutions; in fact, as
indicated in Table 5.1, it has an infinite number of them. This means that in a
closed model, with a homogeneous-equation system, no unique “correct” output
mix exists. We can determine the output levels ¥|,..., X, in proportion to one
another, but cannot fix their absolute levels unless additional restrictions are

imposed on the model.

EXERCISE 5.7

1 On the basis of the model in (5.21), if the final demands are d, = 30, d, = 15, and
dy = 10 (all in billions of dollars), what will be the solution output levels for the three
industries? (Round off answers to two decimal places.)

2 Using the information in (5.20), calculate the total amount of primary input required to
produce the solution output levels of the preceding problem.

3 In a two-industry economy, it is known that industry I uses 10 cents of its own product
and 60 cents of commodity II to produce a dollar’s worth of commodity I; industry II uses
none of its own product but uses 50 cents of commodity I in producing a dollar’s worth of
commodity II; and the open sector demands $1000 billion of commodity I and $2000
billion of commodity II.

(a) Write out the input matrix, the technology matrix, and the specific input-output
matrix equation for this economy.

(b) Find the solution output levels by Cramer’s rule.
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4 Given the input matrix and the final-demand vector

005 025 0.34 1800
A=1[033 010 0.12 d=1| 200
0.19 038 0 900

(a) Explain the economic meaning of the elements 0.33, 0, and 200.
(b) Explain the economic meaning (if any) of the third-column sum.
(c) Explain the economic meaning (if any) of the third-row sum.

(d) Write out the specific input-output matrix equation for this model.

5 Find the solution output levels of the three industries in the preceding problem by
Cramer’s rule. (Round off answers to two decimal places.)

5.8 LIMITATIONS OF STATIC ANALYSIS

In the discussion of static equilibrium in the market or in the national income,
our primary concern has been to find the equilibrium values of the endogenous
variables in the model. A fundamental point that was ignored in such an analysis
is the actual process of adjustments and readjustments of the variables ultimately
leading to the equilibrium state (if it is at all attainable). We asked only about
where we shall arrive but did not question when or what may happen along the
way.

The static type of analysis fails, therefore, to take into account two problems
of importance. One is that, since the adjustment process may take a long time to
complete, an equilibrium state as determined within a particular frame of static
analysis may have lost its relevance before it is even attained, if the exogenous
forces in the model have undergone some changes in the meantime. This is the
problem of shifts of the equilibrium state. The second is that, even if the
adjustment process is allowed to run its course undisturbed, the equilibrium state
envisaged in a static analysis may be altogether unattainable. This would be the
case of a so-called “unstable equilibrium,” which is characterized by the fact that
the adjustment process will drive the variables further away from, rather than
progressively closer to, that equilibrium state. To disregard the adjustment
process, therefore, is to assume away the problem of attainability of equilibrium.

The shifts of the equilibrium state (in response to exogenous changes) pertain
to a type of analysis called comparative statics, and the question of attainability
and stability of equilibrium falls within the realm of dynamic analysis. Each of
these clearly serves to fill a significant gap in the static analysis, and it is thus
imperative to inquire into those areas of analysis also. We shall leave the study of
dynamic analysis to Part 5 of the book and shall next turn our attention to the
problem of comparative statics.
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SIX

COMPARATIVE STATICS
AND THE CONCEPT OF DERIVATIVE

The present and the two following chapters will be devoted to the methods of
comparative-static analysis.

6.1 THE NATURE OF COMPARATIVE STATICS

Comparative statics, as the name suggests, is concerned with the comparison of
different equilibrium states that are associated with different sets of values of
parameters and exogenous variables. For purposes of such a comparison, we
always start by assuming a given initial equilibrium state. In the isolated-market
model, for cxample such an initial equilibrium will be represented by a de-
terminate price P and a corresponding quantity Q. Similarly, in the simple
national-income model of (3.23), the initial equilibrium will be specified by a
determinate Y and a corresponding C. Now if we let a disequilibrating change
occur in the model—in the form of a variation in the value of some parameter or
exogenous variable—the initial equilibrium will, of course, be upset. As a result,
the various endogenous variables must undergo certain adjustments. If it is
assumed that a new equilibrium state relevant to the new values of the data can
be defined and attained, the question posed in the comparative-static analysis is:
How would the new equilibrium compare with the old?

It should be noted that in comparative statics we again disregard the process
of adjustment of the variables; we merely compare the initial ( prechange)
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equilibrium state with the final ( postchange) equilibrium state. Also, we again
preclude the possibility of instability of equilibrium, for we assume the new
equilibrium to be attainable, just as we do for the old.

A comparative-static analysis can be either qualitative or quantitative in
nature. If we are interested only in the question of, say, whether an increase in
investment I, will increase or decrease the equilibrium income Y, the analysis will
be qualitative because the direction of change is the only matter considered. But if
we are concerned with the magnitude of the change in Y resulting from a given
change in [, (that is, the size of the investment multiplier), the he analysis will
obviously be quantitative. By obtaining a quantitative answer, however, we can

automatically tell the direction of change from its algebraic sign. Hence the

quantitative analysis always embraces the qualitative.

It should be clear that the problem under consideration is essentially one of
finding a rate of change: the rate of change of the equilibrium value of an
endogenous variable with respect to the change in a particular parameter or_
exogenous variable. For this reason, the mathematical concept of derivative takes
on preponderant significance in comparative statics, because that concept— the
most fundamental one in the branch of mathematics known as differential calculus
— is directly concerned with the notion of rate of change! Later on, moreover, we
shall find the concept of derivative to be of extreme importance for optimization
problems as well.

6.2 RATE OF CHANGE AND THE DERIVATIVE

Even though our present context is concerned only with the rates of change of the
equilibrium values of the variables in a model, we may carry on the discussion in
a more general manner by considering the rate of change of any variable y in
response to a change in another variable x, where the two variables are related to

y=fx) O

Applied in the comparative-static context, the variable y will represent the
equilibrium value of an endogenous variable, and x will be some parameter. Note
that, for a start, we are restricting ourselves to the simple case where there is only
a single parameter or exogenous variable in the model. Once we have mastered
this simplified case, however, the extension to the case of more parameters will
prove relatively easy.

The Difference qu@ggt

Since the notion of “change” figures prominently in the present context, a special

symbol is needed to represent it. When the variable x changes from the value X,

to a new value x,, the change is measured by the difference x, — x,,. Hence, using

the symbol A (the Greek capital delta, for “difference”) to denote the change, we
o erTe TRe, U7 e

/
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write Ax = x; — x,. Also needed is a way of denoting the value of the function
f(x) at various values of x. The standard practice is to use the notation f(x,) to
represent the value of f(x) when x = x,. Thus, for the function f(x) =5 + x?
we have f(0) = 5 + 0% = 5; and similarly, f(2) = 5 + 22 = 9, etc.

When x changes from an initial value x, to a new value (x, + Ax), the value
of the function y = f(x) changes from f(x;) to f(x, + Ax). The change in y per
unit of change in x can be represented by the difference quotient

61 Ay [Ga+A0) - (x))

) Ax Ax » /

This quotient, which measures the average rate of change of y, can be calculated if
we know the initial value of x, or x,, and the magnitude of change in x, or Ax.
That is, Ay/Ax is a function of x, and Ax.

!
Example 1 Giveny = f(x) = 3x? — 4, we can write: - /(X)t X tiax

f(x0) =3(x0) =4 flxo+ Ax)=3(x, + Ax)’ = 4
Therefore, the difference quotient is

Ay 3(x+ Ax)’ —4— (3x2 — 4) _ bxolx + 3(Ax)A X7 /w 0/7, )
Ax Ax Ax

/.Wf‘ - i T
'=6x,+ 3Ax

(6.2)

which can be evaluated if we are given x;, and Ax. Let x, = 3 and Ax = 4; then
the average rate of change of y will be 6(3) + 3(4) = 30. This means that, on the
average, as x changes from 3 to 7, the change in y is 30 units per unit change in x.

The Derivative

Frequently, we are interested in the rate of change of y when Ax is very small. In
such a case, it is possible to obtain an approximation of Ay/Ax by dropping all
the terms in the difference quotient involving the expression Ax. In (6.2), for
instance, if Ax is very small, we may simply take the term 6x, on the right as an
approximation of A y/Ax. The smaller the value of Ax, of course, the closer is the
approximation to the true value of Ay/Ax.

As Ax approaches zero (meaning that it gets closer and closer to, but never
actually reaches, zero), (6x, + 3Ax) will approach the value 6x,, and by the
same token, Ay/Ax will approach 6x, also. Symbolically, this fact is expressed
either by the statement A y/Ax - 6x0 as Ax — 0, or by the equation

7 Ay T T
6.3) [/ Im —=1 6 +3A =6
(63) tim 2L lim (6x, +38%) = 65,
where the symbol hm is read: “The limit of... as Ax approaches 0.” If, as

Ax — 0, the limit of the difference quotient A y/Ax exists, that limit is identified
as the derivative of the function y = f(x).
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Several points should be noted about the derivative. First, a derivative is a
function; in fact, in this usage the word derivative really means a derived function.
The original function y = f(x) is a primitive function, and the derivative is
another function derived from it. Whereas the difference quotient is a function of
x, and Ax, you should observe— from (6.3), for instance—that the derivative is a
function of x; only. This is because Ax is already compelled to approach zero,
and therefore it should not be regarded as another variable in the function. Let us
also add that so far we have used the subscripted symbol x, only in order to stress
the fact that a change in x must start from some specific value of x. Now that this
is understood, we may delete the subscript and simply state that the derivative,
like the primitive function, is itself a function of the independent variable x. That
is, for each value of x, there is a unique corresponding value for the derivative
function.

Second, since the derivative is merely a limit of the difference quotient, which
measures a rate of change of y, the derivative must of necessity also be a measure
of some rate of change. In view of the fact that the change in x envisaged in the
derivative concept is infinitesimal (that is, Ax — 0), however, the rate measured
by the derivative is in the nature of an instantaneous rate of change.
" Third, there is the matter of notation. Derivative functions are commonly
denoted in two ways. Given a primitive function y = f(x), one way of denoting
its derivative (if 1t exists) is to use the symbol f'(x), or simply f’; this notation is
attributed to the mathematician Lagrange. The other common notation is dy/dx,
devised by the mathematician Leibniz. [Actually there is a third notation, Dy, or
Df(x), but we shall not use it in the following discussion.] The notation f’(x),
which resembles the notation for the primitive function f(x), has the advantage of
conveying the idea that the derivative is itself a function of x. The reason for
expressing it as f’(x)—rather than, say, ¢(x)—is to emphasize that the function
f’ is derived from the primitive function f. The alternative notation, dy/dx, serves
instead to emphasize that the value of a derivative measures a rate of change. The
letter d is the counterpart of the Greek A, and dy /dx differs from Ay /Ax chiefly
subsequent discussion, we shall use both of these notations, depending on which
seems the more convenient in a particular context.

Using these two notations, we may define the derivative of a given function
y = f(x) as follows:

Example 2 Referring to the function y = 3x2 — 4 again, we have shown its
difference quotient to be (6.2), and the limit of that quotient to be (6.3). On the
basis of the latter, we may now write (replacing x, with x):
&
dx
Note that different values of x will give the derivative correspondingly different

=6x or f'(x)=6x
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values. For instance, when x = 3, we have f'(x) = 6(3) = 18; but when x = 4, we
find that f'(4) = 6(4) = 24.

EXERCISE 6.2

1 Given the function y = 4x2 + 9:
(a) Find the difference quotient as a function of x and Ax. (Use x in lieu of x;).
(b) Find the derivative dy/dx.
(¢) Find f’(3) and f'(4).

2 Given the function y = 5x2 — 4x:
(a) Find the difference quotient as a function of x and Ax.
(b) Find the derivative dy /dx.
(¢) Find f'(2) and f'(3).

3 Given the function y = 5x — 2:

(a) Find the difference quotient Ay/Ax. What type of function is it?

(b) Since the expression Ax does not appear in the function Ay/Ax above, does it
make any difference to the value of Ay/Ax whether Ax is large or small? Consequently,
what is the limit of the difference quotient as Ax approaches zero?

6.3 THE DERIVATIVE AND THE SLOPE OF A CURVE

Elementary economics t€lls us that, given a total-cost function C = f(Q), where C
denotes total cost and Q the output, the marginal cost (MC) is defined as the
change in total cost resulting from a unit increase in output; that is, MC =
AC/AQ. It is understood that AQ is an extremely small change. For the case of a
product that has discrete units (integers only), a change of one unit is the smallest
change possible; but for the case of a product whose gquantity is a continuous
variable, AQ will refer to an infinitesimal change. In this latter case, it is well
known that the marginal cost can be measured by the slope of the total-coét_
curve. But the slope of the total-cost curve is nothing but the limit of the ratio -
AC/AQ, when AQ approaches zero. Thus the concept of the slope of a curve is
merely the geometric counterpart of the concept of the derivative. Both have to do
with the “marginal” notion so extensively used in economics.

In Fig. 6.1, we have drawn a total-cost curve C, which is the graph of the
(primitive) function C = f(Q). Suppose that we consider Q, as the initial output
level from which an increase in output is measured, then the relevant point on the
cost curve will be 4. If output is to be raised to Q, + AQ = Q,, the total cost will
be increased from C, to C, + AC= Gy; thus AC/AQ = (C, — Cp)/(Q5 — Qo).
Geometncally, this is the ratio of two line segments, EB/AE, or the slope of the

line is particular ratio measures an average rate of change—the average
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C
C=1(Q

C:
oF

G
Co

H

0 Qo @9,

Figure 6.1

marginal cost for the particular AQ pictured—and represents a difference quo-
tient. As such, it is a function of the initial value Q, and the amount of change
AQ.

What happens when we vary the magnitude of AQ? If a smaller output
increment is contemplated (say, from Q, to Q, only), then the average marginal
cost will be measured by the slope of the line 4D instead. Moreover, as we reduce
the output increment further and further, flatter and flatter lines will result until,
in the limit (as AQ — 0), we obtain the line KG (which is the tangent line to the
cost curve at point 4) as the relevant line. The slope of KG(= HG/KH)
measurés the slope of the total-cost curve at point 4 and represents the limit of
AC/AQ, as AQ — 0, when initial output is at Q = Q,,. Therefore, in terms of the
derivative, the slope of the C = f(Q) curve at point 4 corresponds to the
particular derivative value f'(Q,).

What if the initial output level is changed from Q, to, say, Q,? In that case,
point B on the curve will replace point A as the relevant point, and the slope of
the curve at the new point B will give us the derivative value f'(Q,). Analogous
results are obtainable for alternative initial output levels. In general, the derlvatlve
f'(Q)—a function of Q—will vary as Q changes. )

6.4 THE CONCEPT OF LIMIT

The derivative dy/dx has been defined as the limit of the difference quotient
Ay/Ax as Ax — 0. If we adopt the shorthand symbols ¢ = Ay/Ax (q for
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quotient) and v = Ax (v for variation), we have

dy .. Ay
— lim lim
dx  ax—o Ax u—»oq

In view of the fact that the derivative concept relies heavily on the notion of limit,
it is imperative that we get a clear idea about that notion.

Left-Side Limit and Right-Side Limit

The concept of limit is concerned with the question: “What value does one
variable (say, ¢) approach as another variable (say, v) approaches a specific value
(say, zero)?” In order for this question to make sense, ¢ must, of course, be a
function of v; say, ¢ = g(v). Our immediate interest is in finding the limit of ¢ as
v — 0, but we may just as easily explore the more general case of v — N, where N
is any finite real number. Then, lim g will be merely a special case of lim ¢

where N = 0. In the course of thevdigcussion, we shall actually also consider t’\{le
limit of g as v = + oo (plus infinity) or as v = — 0o (minus infinity).

When we say v — N, the variable v can approach the number N either from
values greater than N, or from values less than N. If, as v — N from the left side
(from values less than N), g approaches a finite number L, we call L the left-side
limit of q. On the other hand, if L is the number that g tends to as v = N from
the right side (from values greater than N), we call L the right=side limit of q. The
left- and right-side limits may or may not be equal.

The left-side limit of ¢ is symbolized by lim g (the minus sign signifies from
values less than N), and the right-side hnut 1sN written as lim ¢. When—and

v=>N*
only when—the two limits have a common finite value (say, L), we consider the

limit of ¢ to exist and write it as lmzlv q = L. Note that L must be a finite number.
If we have the situation of lim qv= oo (or — o0), we shall consider g to possess no
limit, because lim g = oovmgans that ¢ — o0 as v = N, and if ¢ will assume '
ever-increasing szah);]es as v tends to N, it would be contradictory to say that g has
a limit. As a convenient way of expressing the fact that ¢ » o0 as v — N,
however, people do indeed write lim ¢ = oo and speak of ¢ as having an
“infinite limit.”. oo N
"~ In certain cases, only the limit of one side needs to be considered. In taking
the limit of g as v = + o0, for instance, only the left-side limit of ¢ is relevant,
because v can approach +oo only from the left. Similarly, for the case of
v = — o0, only the right-side limit is relevant. Whether the limit of g exists in
these cases will depend only on whether g approaches a finite value as v — + oo,
or as v — — 0.
It is important to realize that the symbol co (infinity) is not a number, and
therefore it cannot be subjected to the usual algebraic operations. We cannot have
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3+ o or 1/00; nor can we write ¢ = 0o, which is not the same as g — oo.
However, it is acceptable to express the limit of g as “ = ” (as against —) oo, for
this merely indicates that g — .

Graphical Illustrations

Let us illustrate, in Fig. 6.2, several possible situations regarding the limit of a
function g = g(v).

Figure 6.2a shows a smooth curve. As the variable v tends to the value N
from either side on the horizontal axis, the variable ¢ tends to the value L. In this
case, the left-side limit is identical with the right-side limit; therefore we can write

lim g = L.

D_)NThe curve drawn in Fig. 6.2b is not smooth; it has a sharp turning point
directly above the point N. Nevertheless, as v tends to N from either side, g again
tends to an identical value L. The limit of ¢ again exists and is equal to L.

Figure 6.2¢ shows what is known as a step function.* In this case, as v tends
to N, the left-side limit of g is L,, but the right-side limit is L,, a different
number. Hence, ¢ does not have a limit as v — N.

Lastly, in Fig. 6.2d, as v tends to N, the left-side limit of g is — oo, whereas
the right-side limit is + oo, because the two parts of the (hyperbolic) curve will
fall and rise indefinitely while approaching the broken vertical line as an asymp-

tote. Again, lim ¢ does not exist. On the other hand, if we are considering a
—N
different sort of limit in diagram d, namely, lim g, then only the left-side limit
v— +
has relevance, and we do find that limit to exist: “lim g = M. Analogously, you

can verify that lim g = M as well. ezt

It is also pogsible00 to apply the concepts of left-side and right-side limits to the
discussion of the marginal cost in Fig. 6.1. In that context, the variables g and v
will refer, respectively, to the quotient AC/AQ and to the magnitude of AQ, with
all changes being measured from point 4 on the curve. In other words, g will refer
to the slope of such lines as AB, AD, and KG, whereas v will refer to the length of
such lines as Q,Q, (= line AE) and Q,Q, (= line AF). We have already seen
that, as v approaches zero from a positive value, g will approach a value equal to
the slope of line KG. Similarly, we can establish that, if AQ approaches zero from

. * This name is easily explained by the shape of the curve. But step functions can be expressed
algebraically, too. The one illustrated in Fig. 6.2¢ can be expressed by the equation

L, (for0 < v < N)
7= L, (for N < v)

Note that, in each subset of its domain described above, the function appears as a distinct constant
function, which constitutes a “step” in the graph.

In economics, step functions can be used, for instance, to show the various prices charged for
different quantities purchased (the curve shown in Fig. 6.2 ¢ pictures quantity discount) or the various
tax rates applicable to different income brackets.
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a negative value (i.e., as the decrease in output becomes less and less), the quotient
AC/AQ, as measured by the slope of such lines as R4 (not drawn), will also
approach a value equal to the slope of line KG. Indeed, the situation here is very
much akin to that illustrated in Fig. 6.24. Thus the slope of KG in Fig. 6.1 (the
counterpart of L in Fig. 6.2) is indeed the limit of the quotient g as v tends to
zero, and as such it gives us the marginal cost at the output level Q = Q,,.
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Evaluation of a Limit

Let us now illustrate the algebraic evaluation of a limit of a given function
g = g(v).

Example 1 Given g =2 + v?, find lim g. To take the left-side limit, we sub-
v—=0

stitute the series of negative values — 1, — 7, — 1&,... (in that order) for v and
find that (2 + v?) will decrease steadily and approach 2 (because v> will gradually
approach 0). Next, for the right-side limit, we substitute the series of positive
values 1, 75, 7g5,-.. (in that order) for v and find the same limit as before.
Inasmuch as the two limits are identical, we consider the limit of g to exist and
write lim g = 2.

v—0

It is tempting to regard the answer just obtained as the outcome of setting

v =0 in the equation ¢ =2 + v?, but this temptation should in general be

resisted. In evaluating lim g, we only let v tend to N but, as a rule, do not let
N

v = N. Indeed, we can &lﬁte legitimately speak of the limit of g as v — N, even if
N is not in the domain of the function g = g(v). In this latter case, if we try to set
v = N, g will clearly be undefined.

Example 2 Given ¢ = (1 — v?)/(1 — v), find lim g. Here, N = 1 is not in the

domain of the function, and we cannot set v u=~’11 because that would involve
division by zero. Moreover, even the limit-evaluation procedure of letting v — 1,
as used in Example 1, will cause difficulty, for the denominator (1 — v) will
approach zero when v — 1, and we will still have no way of performing the
division in the limit.

One way out of this difficulty is to try to transform the given ratio to a form
in which v will not appear in the denominator. Since v — 1 implies that v + 1, so
that (1 — v) is nonzero, it is legitimate to divide the expression (1 — v?) by
(1 — v), and write*

1 —v?
q—l_v——l+v (v#1)

* The division can be performed, as in the case of numbers, in the following manner:

I+vo

1—-0|l - v?

1-v
v — v?

D—Uz

Alternatively, we may resort to factoring as follows:

1-0> (1+0v)(1-0v)
= =1
-0 1-v

+to  (v£1)
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In this new expression for ¢, there is no longer a denominator with v in it. Since
(1 + v) = 2 as v — 1 from either side, we may then conclude that lim g = 2.

v—1

Example 3 Given g = Qv + 5)/(v+ 1), find lim gq. The variable v again

appears in both the numerator and the denomina{)o—r).JrI%owe let = + o0 in both,
the result will be a ratio between two infinitely large numbers, which does not
have a clear meaning. To get out of the difficulty, we try this time to transform
the given ratio to a form in which the variable v will not appear in the
numerator.* This, again, can be accomplished by dividing out the given ratio.
Since (2v + 5) is not evenly divisible by (v + 1), however, the result will contain
a remainder term as follows:

_2v+5 _ 3

v+ 1 _2+v+1

But, at any rate, this new expression for ¢ no longer has a numerator with v in it.
Noting that the remainder 3/(v + 1) > 0 as v & + o0, we can then conclude
that lim ¢ =2.

v— + 00

There also exist several useful theorems on the evaluation of limits. These will
be discussed in Sec. 6.6.

Formal View of the Limit Concept

The above discussion should have conveyed some general ideas about the concept
of limit. Let us now give it a more precise definition. Since such a definition will
make use of the concept of neighborhood of a point on a line (in particular, a
specific number as a point on the line of real numbers), we shall first explain the
latter term.

For a given number L, there can always be found a number (L — a,) < L
and another number (L + a,) > L, where a, and a, are some arbitrary positive
numbers. The set of all numbers falling between (L — a,) and (L + a,) is called
the interval between those two numbers. If the numbers (L — a,) and (L + a,)
are included in the set, the set is a closed interval, if they are excluded, the set is
an open interval. A closed interval between (L — a,) and (L + a,) is denoted by
the bracketed expression

[L-—a,L+a,]={q|L—-—a,<q<L+a,) /
and the corresponding open interval is denoted with parentheses:
(64 (L—a,L+a,)={q|L-a, <g<L+a,)

* Note that, unlike the v — 0 case, where we want to take v out of the denominator in order to
avoid division by zero, the v — co case is better served by taking v out of the numerator. As v — oo,

an expression containing v in the numerator will become infinite but an expression with v in the
denominator will, more conveniently for us, approach zero and quietly vanish from the scene.
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Thus, [ ] relate to the weak inequality sign <, whereas ( ) relate to the strict
inequality sign < . But in both types of intervals, the smaller number (L — a,) is
always listed first. Later on, we shall also have occasion to refer to half-open and
half-closed intervals such as (3, 5] and [6, c0), which have the following meanings:

(3.5]={x13<x<5 [6,00)={(x]6<x< o)

Now we may define a neighborhood of L to be an open interval as defined in
(6.4), which is an interval “covering” the number L.* Depending on the magni-
tudes of the arbitrary numbers a, and a,, it is possible to construct various
neighborhoods for the given number L. Using the concept of neighborhood, the
limit of a function may then be defined as follows:

As v approaches a number N, the limit of ¢ = g(v) is the number L, if, for
every neighborhood of L that can be chosen, however small, there can be
found a corresponding neighborhood of N (excluding the point v = N) in the
domain of the function such that, for every value of v in that N-neighbor-
hood, its image lies in the chosen L-neighborhood.

This statement can be clarified with the help of Fig. 6.3, which resembles Fig.
6.2a. From what was learned about the latter figure, we know that lim ¢ = L in

Fig. 6.3. Let us show that L does indeed fulfill the new definition of a lir]rvlit. As the
first step, select an arbitrary small neighborhood of L, say, (L — a,, L + a,).
(This should have been made even smaller, but we are keeping it relatively large
to facilitate exposition.) Now construct a neighborhood of N, say, (N — b,
N + b,), such that the two neighborhoods (when extended into quadrant I) will
together define a rectangle (shaded in diagram) with two of its corners lying on
the given curve. It can then be verified that, for every value of v in this
neighborhood of N (not counting v = N), the corresponding value of g = g(v)
lies in the chosen neighborhood of L. In fact, no matter how small an L-neighbor-
hood we choose, a (correspondingly small) N-neighborhood can be found with the
property just cited. Thus L fulfills the definition of a limit, as was to be
demonstrated.

We can also apply the above definition to the step function of Flg. 6.2¢ in
order to show that neither L, nor L, qualifies as lim g. If we choose a very small

neighborhood of L,—say, just a hair’s width on ga_élq/ side of L,—then, no matter
what neighborhood we pick for N, the rectangle associated with the two neighbor-
hoods cannot possibly enclose the lower step of the function. Consequently, for
any value of v > N, the corresponding value of ¢ (located on the lower step) will
not be in the neighborhood of L, and thus L, fails the test for a limit. By similar
reasoning, L, must also be dismissed as a candidate for lim g. In fact, in this
case no limit exists for g as v — N. oo N

* The identification of an open interval as the neighborhood of a point is valid only when we are
considering a point on a line (one-dimensional space). In the case of a point in a plane (two-dimen-
sional space), its neighborhood must be thought of as an area, say, a circular area around the point.
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The fulfillment of the definition can also be checked algebraically rather than
by graph. For instance, con51der again the function
—p?
-0

(65) g=-

It has been found in Example 2 that lim ¢ = 2; thus, here we have N = 1 and

=1+0 (v#1)

L = 2. To verify that L = 2 is indeed l)thel limit of ¢, we must demonstrate that,
for every chosen neighborhood of L, (2 — a,, 2 + a,), there exists a neighbor-
hood of N, (1 — b, 1 + b,), such that, whenever v is in this neighborhood of N, ¢
must be in the chosen neighborhood of L. This means essentially that, for given
values of a, and a,, however small, two numbers b, and b, must be found such
that, whenever the inequality

(6.6) 1-b <v<l+b (v#1)
is satisfied, another inequality of the form
(67) 2-a,<qg<2+a,

must also be satisfied. To find such a pair of numbers b, and b,, let us first rewrite
(6.7) by substituting (6.5):

(67) 2-a,<14+v<2+a,
This, in turn, can be transformed into the inequality
(67) l1—-a, <v<l1+a,

A comparison of (6.7"")—a variant of (6.7)—with (6.6) suggests that if we choose



140 COMPARATIVE-STATIC ANALYSIS

the two numbers b, and b, to be b, = g, and b, = a,, the two inequalities (6.6)
and (6.7) will always be satisfied simultaneously. Thus the neighborhood of N,
(1 — by, 1 + b,), as required in the definition of a limit, can indeed be found for
the case of L = 2, and this establishes L = 2 as the limit.

Let us now utilize the definition of a limit in the opposite way, to show that
another value (say, 3) cannot qualify as lim g for the function in (6.5). If 3 were

that limit, it would have to be true tha[i,_’ flor every chosen neighborhood of 3,
(3 — a,, 3 + a,), there exists a neighborhood of 1, (1 — b, 1 + b,), such that,
whenever v is in the latter neighborhood, ¢ must be in the former neighborhood.
That is, whenever the inequality

l1-b,<v<1+b,
is satisfied, another inequality of the form

3—ag <l+v<3+a,

or 2-a,<v<2+a,

must also be satisfied. The only way to achieve this result is to choose b, = a; — 1
and b, = a, + 1. This would imply that the neighborhood of 1 is to be the open
interval (2 — a;, 2 + a,). According to the definition of a limit, however, a, and
a, can be made arbitrarily small, say, a, = @, = 0.1. In that case, the last-men-
tioned interval will turn out to be (1.9, 2.1) which lies entirely to the right of the
point v =1 on the horizontal axis and, hence, does not even qualify as a
neighborhood of 1. Thus the definition of a limit cannot be satisfied by the
number 3. A similar procedure can be employed to show that any number other
than 2 will contradict the definition of a limit in the present case.

In general, if one number satisfies the definition of a limit of g as v — N, then
no other number can. If a limit exists, it will be unique.

EXERCISE 6.4

1 Given the function g = (v® + v — 56)/(v — 7), (v # 7), find the left-side limit and the
right-side limit of g as v approaches 7. Can we conclude from these answers that g has a
limit as v approaches 7?7

2 Given g = [(v + 2)° — 8]/v, (v # 0), find:
(a) limgq (b) limgq (¢) limgq
o0 p—2 v—a
3 Giveng=35 - 1/v, (v + 0), find:
(a) lim g¢ (b) lim ¢
v— +o00 v — 00 )
4 Use Fig. 6.3 to show that we cannot consider the number (L + a,) as the limit of g as v
tends to N.
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6.5 DIGRESSION ON INEQUALITIES AND ABSOLUTE VALUES

We have encountered inequality signs many times before. In the discussion of the
last section, we also applied mathematical operations to inequalities. In trans-
forming (6.7") into (6.7"), for example, we subtracted 1 from each side of the
inequality. What rules of operations apply to inequalities (as opposed to equa-
tions)? ~

Rules of Inequalities

To begin with, let us state an important property of inequalities: inequalities are
transitive. This means that, if a > b and if b > ¢, then a > ¢. Since equalities
(equations) are also transitive, the transitivity property should apply to “weak” ‘
inequalities (> or <) as well as to “strict” ones (> or <). Thus we have

Ja>b,b>c = a>c\) i '

la>bb2c = axc

This property is what makes possible the writing of a continued inequality, such as
3<a<b<8or7<x <24 (In writing a continued inequality, the inequality
signs are as a rule arranged in the same direction, usually with the smallest
number on the left.) -

The most important rules of inequalities are those governing the addition
(subtraction) of a number to (from) an inequality, the multiplication or division
of an inequality by a number, and the squaring of an inequality. Specifically,
these rules are as follows.

Rule I (addition and subtraction) a>bh = axtk>btk

An inequality will continue to hold if an equal quantity is added to or subtracted
from each side. This rule may be generalized thus: If a > b > ¢, then a + k >
btk>ctk

Rule I (multiplication and division)

ka>kb  (k>0)
ka<kb  (k<0)

a>b

The multiplication of both sides by a positive number preserves the inequality, but
a negative multiplier will cause the sense (or direction) of the inequality to be
reversed. ' ‘ o

e —

Example 1 Since 6 > 5, multiplication by 3 will yield 3(6) > 3(5), or 18 > 15;
but multiplication by — 3 will result in (—3)6 < (—3)5, or —18 < —15.

Division of an inequality by a number 7 is equivalent to multiplication by the
number 1/n; _therefore the rule on division is subsumed under the rule on
multiplication. :
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Rule Il (squaring) { a > b, (b > 0) = qa?>p?)
If its two sides are both nonnegative, the inequality will ‘continue to hold when
both sides are squared.

JR—————

Example 2 Since 4 > 3 and since both sides are positive, we have 42 > 32, or
16 > 9. Similarly, since 2 > 0, it follows that 2? > 02, or 4 > 0.

The above three rules have been stated in terms of strict inequalities, but their
vahdlty is unaﬁ"ected if the > signs. are replaced by 51g_nksm

Absolute ' Values and Inequalltles

When the domain of a variable x is an open interval (a, b), the domain may be
denoted by the set {x | @ < x < b} or, more simply, by the inequality a < x < b.
Similarly, if it is a closed interval [a, b], it may be expressed by the weak
inequality @ < x < b. In the special case of an interval of the form (—a, a)—say,
(—10,10)—it may be represented either by the inequality —10 < x < 10 or,
alternatively, by the inequality -

x| < 10

where the symbol |x| denotes the absolute value (or numerical value) of X
~ For any real number n, the absolute value of » is defined as follows:*

n (if n > 0)
(6.8) n| = —n (if n < 0)
0 (ifn=0)

Note that, if n = 15, then |15| = 15; but if n = — 15, we find
| = 15| = = (—-15)=15

numencal Value after the sign 1s removed For this reason, we al‘wa_ls_._have
|n| = | — n|. The absolute value of n is also called the modulus of n.

Given the expression |x| = 10, we may conclude from (6.8) that x must be
either 10 or —10. By the same token, the expression |x| < 10 means that ) if
x >0, then x = |x| < 10, so that x must be less than 10; but also (@) if x <0,
‘then according to (6.8) we have —x = |x| < 10, or x > —10, so that x must be
greater than — 10. Hence, by combining the two parts of this result, we see that x
‘must lie within the open interval (— 10, 10). In general, we can write =~ —-- -

(6.9) x| <n & -—-n<x<n. (n>0)

* The absolute-value notation is similar to that of a first-order determinant, but these two concepts
are entirely different. The definition of a first-order determinant is |a; ;| = a;;, regardless of the sign
of a;;. In the definition of the absolute value |r/|, the sign of »n will make a difference. The context of
the discussion would normally make it clear whether an absolute value or a first-order determinant is
under consideration.
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which can also be extended to weak inequalities as follows:
(6100 (xl<n e -ns<x<n) (n20)

Because they are themselves ﬁumbers, the absolute values of two numbers m
and n can be added, subtracted, multiplied, and divided. The following properties
characterize absolute values:

|[m| + |n| = |m + n|

|m| - |n| = |m - n]
Im| _|m|
R

The first of these, interestingly, involves an inequality rather than an equation.
The reason for this is easily seen: whereas the left-hand expression |m| + |n] is-
definitely a sum of two numerical values (both taken as positive), the expression
|m + n| is the numerical value of either a sum (if m and n are, say, both positive)
or a difference (if m and n have opposite signs). Thus the left side may exceed the
right side.

Example 3 1f m=5and n=3, then |m| + |n| = |m+n| =8 Butif m=25
and n = —3, then |m| + |n| = 5 + 3 = §, whereas

Im+n|=15—-31 =2

is a smaller number.

In the other two properties, on the other hand, it makes no difference whether
m and n have identical or opposite signs, since, in taking the absolute value of the
product or quotient on the right-hand side, the sign of the latter term will be
removed in any case. ‘

Example4 1fm =7 and n = §, then |m| - |n| = |m - n| = 7(8) = 56. But even

if m = —7 and n = 8 (opposite signs), we still get the same result from
Im) - n| =1 =7|- 8] =7(8) =56
and |m-n|=|—7(8) =7(8) =56

Solution of an Inequality

Like an equation, an inequality containing a variable (say, x) may have a
solution; the solution, if it exists, is a set of values of x which make the inequality
a true statement. Such a solution will itself usually be in the form of an inequality.

Example 5 Find the solution of the inequality
Ix-3>x+1
As in solving an equation, the variable terms should first be collected on one side
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of the inequality. By adding (3 — x) to both sides, we obtain
3x-3+3-x>x+1+3-x
or 2x> 4

Multiplying both sides by 3 (which does not reverse the sense of the inequality,
because § > 0) will then yield the solution

x>2

which is itself an inequality. This solution is not a single number, but a set of
numbers. Therefore we may also express the solution as the set {x | x > 2} or as
the open interval (2, ).

Example 6 Solve the inequality |1 — x| < 3. First, let us get rid of the absolute-
value notation by utilizing (6.10). The given inequality is equivalent to the
statement that

-3<1-xx<3

or, after subtracting 1 from each side,
—-4<—-x<2

Multiplying each side by (— 1), we then get
4>x> -2

where the sense of inequality has been duly reversed. Writing the smaller number
first, we may express the solution in the form of the inequality

—-2<xx<4

or in the form of the set {x | —2 < x < 4} or the closed interval [ -2, 4].

Sometimes, a problem may call for the satisfaction of several inequalities in
several variables simultaneously; then we must solve a system of simultaneous
inequalities. This problem arises, for example, in mathematical programming,
which will be discussed in the final part of the book.

EXERCISE 6.5

1 Solve the following inequalities:
(@) 3x—-1<Tx+2 (c)Sx+1<x+3
b)) 2x+5<x-4 (d)y2x—1<6x+S5

2 If 7x — 3 < 0 and 7x > O, express these in a continued inequality and find its solution.

3 Solve the following: .
(a) |x+1] <6 (b) 14-3x| <2 (c) 2x+3| <5
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6.6 LIMIT THEOREMS

Our interest in rates of change led us to the consideration of the concept of
derivative, which, being in the nature of the limit of a difference quotient, in turn
prompted us to study questions of the existence and evaluation of a limit. The
basic process of limit evaluation, as illustrated in Sec. 6.4, involves letting the
variable v approach a particular number (say, N ) and observing the value which ¢
approaches. When actually evaluating the limit of a function, however, we may
draw upon certain established limit theorems, which can materially simplify the
task, especially for complicated functions.

Theorems Involving a Single Function

When a single function ¢ = g(v) is involved, the following theorems are applica-
ble. : o R

Theorem 1 If g = av + b, then lim g = aN + b (a and b are constants).
. v—N

Example 1 Given g = 5v + 7, we have lim2 g = 5(2) + 7 = 17. Similarly, lin}) q
. v v
=50)+7="1.

Theorem 11 If ¢ = g(v) = b, then lim g = b.

v—N

This theorem, which says that the limit of a constant function is_the constant in
that function, is merely a special case of Theorem I, with g = 0. (You have
already encountered an example of this case in Exercise 6.2-3.)

Theorem 111 If g = v, then lim ¢ = N.
v—-N

If g = o*, then lim g = N*,

v—N

Example 2 Given g = v°, we have lim g = (2)° = 8.
v—2
You may have noted that, in the above three theorems, what is done to find
the limit of ¢ as v — N is indeed to let v = N. But these are special cases, and
they do not vitiate the general rule that “v — N does not mean “v = N.”

Theorems Involving Two Functions

If we have two functions of the same independent variable v, g, = g(v) and
g, = h(v), and if both functions possess limits as follows:

limg, =L Iimg, =L
0__N‘11 1 v_w‘h# 27

where Ll";md L, are two finite numbers, the following theorems are applicable.
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Theorem IV  (sum-difference limit theorem)
lim (41 tq)=L tL,

The lumt of a sum (; (d1ﬂ‘ercnce) of two functions is the sum (difference) of their
respectlve hrmts

In particular, we note that
lim 2¢, = lim (¢, + ¢,) =L, + L, = 2L,
v—N v—oN
which is in line with Theorem 1.
Theorem V__ (product limit theorem)
lim (41‘12) =L\L,

The hnnt of a product of two functions is the product of their hmlts

Applied to the square of a function, this gives
vli_.n)lv(qlql) =L\L, =L}
which is in line with Theorem III.

Theorem VI (quotient limit theorem)

.4 L,
lim — = — L,#0
o-Ndy L, (£, )
The limit of a quotient of two functions is the quotient of their limits. Naturally,
the hmlt L, is restricted to e nonzero; otherwise the quotient is undeﬁned

Example 3 Find hm (1 + v)/(2 + v). Since we have here hm( +o)F1
=0
g lim (2 + v) =2, the desired limit is 3. S

-0—>0

Remember that L, and L, represent finite numbers; otherwise these thec rems
do not apply. In the case of Theorem VI, furthermore, L, must be nonzero as
well. If these restrictions are not satisfied, we must fall back on the method of
limit evaluation illustrated in Examples 2 and 3 in Sec. 6.4, which relate to the’
cases, respectively, of L, being zero and of L, being infinite.

Limit of a Polynomial Function

With the above limit theorems at our disposal, we can easily evaluate the limit of
any polynomial function .

(6.11) q=2g(v )—a0+au+azv+ -+ a,0"

as v tends to the number N. Since the hrmts of the separate terms are,
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respectively,
lim a, = a, lim a,v = a,N lim a,0* = a,N?  (etc.)
v N v N v N Sl
the limit of the polynomial function is (by the sum limit theorem)

————

(6.12) limg=ay+aN+a,N*+--+a,N"
v—>N

This lirrnitk,isr also, we note, actually equal to g( N), that is, equal to the value of the
function in (6.11) when v = N. This particular result will prove important in
discussing the concept of continuity of the polynomial function.

EXERCISE 6.6

1 Find the limits of the function ¢ = 8 — 9v + v*:

(a) Asv—0 (b) Asv—>3 (c) Asv— —1
2 Find the limits of ¢ = (v + 2)(v ~ 3):

(a) Asv = —1 (b) Asv—> 0 (c) Asv — 4
3 Find the limits of ¢ = 3v + 5)/(v + 2):

(a) Asv -0 (b) Asv—5 (¢) Asv— —1

,4( 67 ‘CONTINUITY AND DIFFERENTIABILITY OF A FUNCTION

The preceding discussion of the concept of limit and its evaluation can now be
used to define the continuity and differentiability of a function. These notions
bear directly on the derivative of the function, which is what interests us.

Continuity of a Function

When a function g = g(v) possesses a limit as v tends to the point N in the
domain, and when this limit is also equal to g( N )—that is, equal to the value of
the function at v = N—the function is said to be continuous at N. As stated
above, the term continuity involves no less than three requirements: (1) the point
N must be in the domain of the function; i.e., g(N) is defined; (2) the function
*  must have a limit as v > N; i.e., hm g(v) exists; and (3) that limit must be equal

m value to g(N); ie, hm g(v) = g(N)

It is important to note that while—in discussing the limit of the curve in Fig.
6.3—the point (N, L) was excluded from consideration, we are no longer
excluding it in the present context. Rather, as the third requirement specifically
states, the point (N, L) must be on the graph of the function before the function
can be considered as continuous at point N.

Let us check whether the functions shown in Fig. 6.2 are continuous. In
diagram g, all three requirements are met at point N. Point N is in the domain; g
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has the limit L as v — N; and the limit L happens also to be the value of the
function at N. Thus, the function represented by that curve is continuous at N.
The same is true of the function depicted in Fig. 6.2b, since L is the limit of the
function as v approaches the value N in the domain, and since L is also the value
of the function at N. This last graphic example should suffice to establish that the
continuity of a function at point N does not necessarily imply that the graph of
the function is “smooth” at v = N, for the point (N, L) in Fig. 6.2b is actually a
“sharp” point and yet the function is continuous at that value of v.

When a function ¢ = g(v) is continuous at all values of v in the interval
(a, b), it is said to be continuous in that interval. If the function is continuous at
all points in a subset S of the domain (where the subset S may be the union of
several disjoint intervals), it is said to be continuous in S. And, finally, if the
function is continuous at all points in its domain, we say that it is continuous in
its domain. Even in this latter case, however, the graph of the function may
nevertheless show a discontinuity (a gap) at some value of v, say, at v = 5, if that
value of v is not in its domain.

Again referring to Fig. 6.2, we see that in diagram ¢ the function is
discontinuous at N because a limit does not exist at that point, in violation of the
second requirement of continuity. Nevertheless, the function does satisfy
the requirements of continuity in the interval (0, N) of the domain, as well as in
the interval [N, c0). Diagram d obviously is also discontinuous at v = N. This
time, discontinuity emanates from the fact that N is excluded from the domain, in
violation of the first requirement of continuity.

On the basis of the graphs in Fig. 6.2, it appears that sharp points are
consistent with continuity, as in diagram b, but that gaps are taboo, as in
diagrams ¢ and d. This is indeed the case. Roughly speaking, therefore, a function
that is continuous in a particular interval is one whose graph can be drawn for the
said interval without lifting the pencil or pen from the paper—a feat which is
possible even if there are sharp points, but impossible when gaps occur.

Polynomial and Rational Functions

Let us now consider the continuity of certain frequently encountered functions.
For any polynomial function, such as g = g(v) in (6.11), we have found from
(6.12) that lim q exists and is equal to the value of the function at N. Since N is a

point (any uIg’olzlnt) in the domain of the function, we can conclude that any
polynomial function is continuous in its domain. This is a very useful piece of
information, because polynomial functions will be encountered very often.

What about rational functions? Regarding continuity, there exists an interest-
ing theorem (the continuity theorem) which states that the sum, difference,
product, and quotient of any finite number of functions that are continuous in the
domain are, respectively, also continuous in the domain. As a result, any rational
function (a quotient of two polynomial functions) must also be continuous in its
domain. :
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Example 1 The rational function
402
2+ 1
is defined for all finite real numbers; thus its domain consists of the interval

(— o0, o). For any number N in the domain, the limit of ¢ is (by the quotient
limit theorem)

g=2g(v)=

: 2
) Jim 407 _ane
imgq = — =
0N lim (v*+1) N?+1
v—>N

which is equal to g(N). Thus the three requirements of continuity are all met at
N. Moreover, we note that N can represent any point in the domain of this
function; consequently, this function is continuous in its domain.

Example 2 The rational function | ,..) ( (- T =2
3, 2 R D T . 2
_v+tvo — 40 — 'T“—};;t)(vi'l) 7, o ©
02 _ 4 r, . ) N
is not defined at v = 2 and at v = — 2. Since those two values of v are not in the
domain, the function is discontinuous at v = —2 and v = 2, despite the fact that

a limit of g exists as v = —2 or 2. Graphically, this function will display a gap at
each of these two values of v. But for other values of v (those which are in the
domain), this function is continuous.

Differentiability Qf a Function_

The previous discussion has provided us with the tools for ascertaining whether
any function has a limit as its independent variable approaches some specific
value. Thus we can try to take the limit of any function y = f(x) as x approaches
some chosen value, say, x,. However, we can also apply the “limit” concept at a
different level and take the limit of the difference quotient of that function,
Ay/Ax, as Ax approaches zero. The outcomes of limit-taking at these two
different levels relate to two different, though related, properties of the function f.

Taking the limit of the function y = f(x) itself, we can, in line with the
discussion of the preceding subsection, examine whether the function f is continu-
ous at x = x,. The conditions for continuity are (1) x = x, must be in the domain
of the function f, (2) y must have a limit as x — x, and (3) the said limit must be
equal to f(x,). When these are satisfied, we can write

(6.13) , lim f(x) = f(xo) " [continuity condition]j
(L x=xg

When the “limit” concept is applied to the difference quotient Ay/Ax as

Ax — 0, on the other hand, we deal instead with the question of whether the

function f is differentiable at x = x,, i.e., whether the derivative dy/dx exists at
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X = xg, or whether f’(x,) exists. The term “differentiable” is used here because
the process of obtaining the derivative dy/dx is known as differentiation (also
called derivation). Since f'(x,) exists if and only if the limit of Ay/Ax exists at’
X = xg as Ax — 0, the symbolic expression ¢ of the differentiability of fis ™~

(6.14)  f'(x,) = hmoi—i >

= lim f(xo + Ax) _f(xo)
Ax—0 Ax

[differentiability condition]

These two properties, continuity and differentiability, are very intimately
related to each other—the continuity of f is a necessary condition for_its
differentiability (although, as we shall see later, this condition is not sufficient).
What this means is that, to be differentiable at x = x,, the function must first
pass the test of being continuous at x = x,,. To prove this, we shall demonstrate
that, given a function y = f(x), its continuity at x = x, follows from its differen-
tiability at x = x,, i.e., condition (6.13) follows from condition (6.14). Before
doing this, however, let us simplify the notation somewhat by (1) replacing x,,
with the symbol N and (2) replacing (x, + Ax) with the symbol x. The latter is
Justifiable because the postchange value of x can be any number (depending on
the magnitude of the change) and hence is a variable denotable by x. The
equivalence of the two notation systems is shown in Fig. 6.4, where the old
notations appear (in brackets) alongside the new. Note that, with the notational
change, Ax now becomes (x — N), so that the expression “Ax — 0” becomes

Yy
y=f(x)
f(x)
[f (x0+ ax)]
Ay
FON) e —
lf (x0) ] l Ax ;
| |
| |
.« 4 .

(0] N——>«x
[x0] [xo+ ax]

Figure 6.4
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“x — N,” which is analogous to the expression v — N used before in connection
with the function ¢ = g(v). Accordingly, (6.13) and (6.14) can now be rewritten,
respectively, as

(6.13) Xh'f}vf(x) =/(N)

616) 1) = tim LEIZI0)

What we want to show is, therefore, that the continuity condition (6.13")
follows from the differentiability condition (6.14"). First, since the notation
x — N implies that x # N, so that x — N is a nonzero number, it is permissible to
write the following identity:

(615)  f(x0) -y = LNy,

Taking the limit of each side of (6.15) as x — N yields the following results:
Left side = lim f(x) — lim f(N) [difference limit theorem]
x—N x—>N

= lim f(x) —f(N) [f(N) is a constant]
x—N et
nght side = lim f) = /(N) lim (x — N)  [product limit theorem]
x—N x—N x—>N :
= f(N)( lim x - lim ) - [by (6.14’) and difference
x—>N x—>N - S

_ limit theorem]
=/(N)(N = N) =0

Note that we could not have written these results, if condition (6.14") had not
been granted, for if f/(N) did not exist, then the right-side expression (and hence
also the left-side expression) in (6.15) would not possess a limit. If f'(N) does
exist, however, the two sides will have limits as shown above. Moreover, when the
left-side result and the right-side result are equated, we get hm f (x)—f(N)=

which is identical with (6.13”). Thus we have proved that COIltlI‘IUhy, as shown in
(6.13"), follows from differentiability, as shown in (6.14'). In general, if a function
is differentiable at every point in its domain, we may conclude that it must be
continuous in its domain.

Although differentiability implies continuity, the converse is not true. That is,
continuity is a necessary, but not a sufficient, condition for differentiability. To
demonstrate this, we merely have to produce a counterexample Let us con51der
the function

(6.16) y=f(x)=|x—-2|+1
which is graphed in Fig. 6.5. As can be readily shown, this function is not

differentiable, though continuous, when x = 2. That the function is continuous at
x = 2 is easy to establish. First, x = 2 is in the domain of the function. Second,



152 COMPARATIVE-STATIC ANALYSIS

the limit of y exists as x tends to 2; to be specific, lim L y= lim y= I. Third,
x—27* x—2"

f(2) is also found to be 1. Thus all three requirements of continuity are met. To
show that the function f is not differentiable at x = 2, we must show that the hmlt
of the diff erence quotient_ : T

f)=f@Q) _ =214 1-1 _ L fx=2)
x—'l x—2 x—I>n2 x—2 —)]cl—>2x_2

_does not exist. This involves the demonstration of a disparity between the left-side
and the right-side limits. Since, in considering the right-side limit, x must exceed
2, according to the definition of absolute value in (6.8) we have [x — 2| = x — 2.
Thus the right-side limit is

im X220 o gim X222 pmi =1
x—2* X —2 x—2+ X — 2 x—27*

On the other hand, in considering the left-side limit, x must be less than 2; thus,
according to (6.8), |x — 2| = —(x ~ 2). Consequently, the left-side limit is

=21 _ o =22 o
xlinZl' x =2 —xl—1>1121_ x—2 ~x]in;_( 1)— !
which is different from the right-side limit. This shows that continuity does not
guarantee differentiability. In sum, all differentiable functions are continuous, but
not all continuous functions are differentiable.
~ In Fig. 6.5, the nondifferentiability of the function at x = 2 is manifest in the
fact that the point (2, 1) has no tangent line defined, and hence no definite slope
can be assigned to the point. Specifically, to the left of that point, the curve has a

=lx—21+1
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slope of — 1, but to the right it has a slope of + 1, and the slopes on the two sides
display no tendency to approach a common magnitude at x = 2. The point (2, 1)
is, of course, a special point; it is the only sharp point on the curve. At other
points on the curve, the derivative is defined and the function is differentiable.
More specifically, the function in (6.16) can be divided into two linear functions
as follows:

Leftpart: y= — (x —2) +1

3-x  (xx<2)
x—1 (x>2) -

Rightpart: y = (x—2)+1

The left part is differentiable in the interval (—oo,2), and the right part is
differentiable in the interval (2, 00) in the domain.

In general, differentiability is a more restrictive condition than continuity,
because it requires something beyond continuity. Continuity at a point only rules
out the presence of a gap, whereas differentiability rules out “sharpness” as well.
Therefore, differentiability calls for “smoothness” of the function (curve) as well
as its continuity. Most of the specific functions employed in economics have the
property that they are differentiable everywhere. When general functions are used,
moreover, they are often assumed to be everywhere differentiable, as we shall do.
in the subsequent discussion.

e R

EXERCISE 6.7

1 A function y = f(x) is discontinuous at x = x, when any of the three requirements for
continuity is violated at x = x,. Construct three graphs to illustrate the violation of each
of those requirements.
2 Taking the set of all finite real numbers as the domain of the function g = g(v) = vt~
Tv — 3:

(a) Find the limit of ¢ as v tends to N (a finite real number).

(b) Check whether this limit is equal to g(N).

(¢) Check whether the function is continuous at N and continuous in its domain.

v+2

2497
(a) Use the limit theorems to find lim q, N being a finite real number.

(b) Check whether this limit is equa.l to g(N).
(¢) Check the continuity of the function g(v) at N and in its domain (— 00, 00).

x2+x—20.

3 Given the function ¢ = g(v) =

4 Giveny = f(x) =

(@) Is it possible to apply the quotient limit theorem to find the limit of this function as
x— 47

(b) Is this function continuous at x = 4? Why?

(¢) Find a function which, for x # 4, is equivalent to the above function, and obtain
from the equivalent function the limit of y as x — 4.
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5 In the rational function in Example 2, the numerator is evenly divisible by the
denominator, and the quotient is v + 1. Can we for that reason replace that function
outright by ¢ = v + 1? Why or why not?

6 On the basis of the graphs of the six functions in Fig. 2.8, would you conclude that each
such function is differentiable at every point in its domain? Explain.




CHAPTER

SEVEN

RULES OF DIFFERENTIATION AND THEIR USE
IN COMPARATIVE STATICS

The central problem of comparative-static analysis, that of finding a rate of
change, can be identified with the problem of finding the derivative of some
function y = f(x), provided only a small change in x is being considered. Even
though the derivative dy/dx is defined as the limit of the difference quotient
g = g(v) as v = 0, it is by no means necessary to undertake the process of
limit-taking each time the derivative of a function is sought, for there exist various
rules of differentiation (derivation) that will enable us to obtain the desired
derivatives directly. Instead of going into comparative-static models immediately,
therefore, let us begin by learning some rules of differentiation.

7.1 RULES OF DIFFERENTIATION FOR A FUNCTION OF
ONE VARIABLE

First, let us discuss three rules that apply, respectively, to the following types of
function of a single independent variable: y = k (constant function), y = x", and
y = cx" (power functions). All these have smooth, continuous graphs and are
therefore differentiable everywhere.

Constant-Fupcjion Rule _

The derivative of a constant function y = f(x) = k is identically zero, i.e., is zero

for all values of x. Symbolically, this may be expressed variously as
dy dk

dx=0 or 3);=0 or fi(x)=0

155
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In fact, we may also write these in the form

d d d
&) TS =k =0
where the derivative symbol has been separated into two parts, d/dx on the one
hand, and y [or f(x) or k] on the other. The first part, d/dx, may be taken as an
operator symbol, which instructs us to perform a particular mathematical opera-
tion. Just as the operator symbol v instructs us to take a square root, the symbol
d/dx represents an instruction to take the derivative of, or to differentiate, (some
function) with respect to the variable x. The function to be operated on (to be
differentiated) is indicated in the second part; here it is y = f(x) = k.

The proof of the rule is as follows. Given f(x) = k, we have f(N) = k for
any value of N. Thus the value of f'(N)-—the value of the derivative at
x = N—as defined in (6.13) will be

Ny = i JCO)Zf(N) o k—k

f(N) = lim === lim ~— = lim 0 =0
Moreover, since N represents any value of x at all, the result f/(N) = 0 can be
immediately generalized to f'(x) = 0. This proves the rule.

It is important to distinguish clearly between the statement f'(x) = 0 and the
similar-looking but different statement f'(x,) = 0. By f’(x) = 0, we mean that the
derivative function f has a zero value for all values of x; in writing f'(x,) = 0, on
the other hand, we are merely associating the zero value of the derivative with a
particular value of x, namely, x = x,.

As discussed before, the derivative of a function has its geometric counterpart
in the slope of the curve. The graph of a constant function, say, a fixed-cost
function Cp = f(Q) = $1200, is a horizontal straight line with a zero slope
throughout. Correspondingly, the derivative must also be zero for all values of Q:

d d

0Cr= g2 =0 o f(Q)=0

Power-Function Rule

The derivative of a power function y = f(x) = x" is nx"~!. Symbolically, this is
expressed as . ’

d n _ n—1 ’ — n—1
(7.1) X =% or f'(x)=nx
Example 1 The derivative of y = x3 is @ _ ix3 = 3x?
. Y dx ~ dx '

Example 2 The derivative of y = x° is d_(jcxg = 9x?%,

This rule is valid for any real-valued power of x; that is, the exponent can be
any real number. But we shall prove it only for the case where n is some positive

—
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integer. In the simplest case, that of n =1, the function is f(x)= x, and
according to the rule, the derivative is

, d__ 0) =
f(x) dxx—l(x)—l
The proof of this result follows easily from the definition of f(N) in (6.14").
Given f(x) = x, the derivative value at any value of x, say, x = N, is

f(N)= L)—fgv—) = lim 1=

x—>N x—>N X — x—=N
Since N represents any value of x, it is permissible to write f'(x) = 1. This proves
the rule for the case of n = 1. As the graphical counterpart of this result, we see
that the function y = f(x) = x plots as a 45° line, and it has a slope of +1
throughout.

For the cases of larger integers, n = 2,3,..., let us first note the following
identities:
x?— N? .
TN =X + N [2 terms on the right]
x3— N3 ) ) .
SN =Xt Nx + N [3 terms on the right]
x" - N" — yn—1 n—2 2 n-‘3 n—1 ’
(7.2) vl + Nx +Nx + .-+ +N

[n terms on the right]

On the basis of (7.2), we can express the derivative of a power function f(x) = x”
at x = N as follows:

X i "—N"
13 p) = tim LI TN
= )}Er]lv(x" '+ Nx" 24 .-+ N1 [by(7.2)]
= lim x""" + lim Nx"">+ --- + lim N7l
x—>N x=N . x—N
[sum limit theorem]
=N"'+N""'4..- 4 NI [a total of n terms]
=nN""!
Again, N is any value of x; thus this last result can be generalized to
7/(x) = nxr!

which proves the rule for n, any positive integer.

As mentioned above, this rule applies even when the exponent » in the power
expression x" is not a positive integer. The following examples serve to ﬂlustrate
its application to the latter cases. ‘
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Example 3 Find the derivative of y = x°. Applying (7.1), we find

4 o0 _ (1) =
o =0(x"")=0

Example 4 Find the derivative of y = 1/x3. This involves the reciprocal of a
power, but by rewriting the function as y = x~3, we can again apply (7.1) to get
the derivative:

d 5_ _ 4 -4 _ -3
dxx = —3x [— ]

Example 5 Find the derivative of y = yx . A square root is involved in this case,
but since Vx = x'/2, the derivative can be found as follows:

d n_1 p /=_1_
dxx —2x 2\/;’

Derivatives are themselves functions of the independent variable x. In
Example 1, for instance, the derivative is dy/dx = 3x?, or f'(x) = 3x2, so that a
different value of x will result in a different value of the derivative, such as

Fy=31y=3 r@=32"=12
These specific values of the derivative can be expressed alternatively as

dy dy

d—xx=]_3 dx x=2_12
but the notations f’(1) and f’(2) are obviously preferable because of their
simplicity.

It is of the utmost importance to realize that, to find the derivative values
f (D), f'(2), etc., we must first differentiate the function f(x), in order to get the
derivative function f'(x), and then let x assume specific values in f’(x). To
substitute specific values of x into the primitive function f(x) prior to differentia-
tion is definitely not permissible. As an illustration, if we let x = 1 in the function
of Example 1 before differentiation, the function will degenerate into y = x = 1
—a constant function—which will yield a zero derivative rather than the correct
answer of f/(x) = 3x2.

Power-Function Rule Generalized

When a multiplicative constant ¢ appears in the power function, so that f(x) =
cx”", its derivative is

d _ -
;J;C)C" =cnx" ' or f'(x)=cnx""!

This result shows that, in differentiating cx”, we can simply retain the multiplica-
tive constant ¢ intact and then differentiate the term x" according to (7.1).
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Example 6 Given y = 2x, we have dy/dx = 2x% = 2.
Example 7 Given f(x) = 4x>, the derivative is f'(x) = 12x2.
Example 8 The derivative of f(x) = 3x"2is f'(x)= —6x3

For a proof of this new rule, consider the fact that for any value of x, say,
x = N, the value of the derivative of f(x) = ¢x" is

ANy = T f(X) f(N) ex” — eN" _ o (x"‘N"
)=l B IR R
x"— N7
= lim ¢ lim [product limit theorem]
x—>N xoN X— N
= ¢ lim XN [limit of a constant]

= cnN"! [from (7.3)]

In view that N is any value of x, this last result can be generalized immediately to
f(x) = cnx""", which proves the rule.

EXERCISE 7.1

1 Find the derivative of each of the following functions:
(a) y =x" (¢) y=Tx® (e) w= —4yu'/?
(b y=163 (d) w=3u""'

2 Find the following:

@ L-x (0 i9w“ (€) S aut
@) ' * du
.., 4
(b) Ix Tx (d) cx
3 Find f'(1) and f'(2) from the following functions:

(a) y=f(x)=18x (¢) f(x)= —5x7*2 (e) f(w)=6w'"3
(b) y = f(x) = ex’ (d) f(x)=ix*"

4 Graph a function f(x) that gives rise to the derivative function f’(x) = 0. Then graph a
function g(x) characterized by f'(x,) = 0.

7.2 RULES OF DIFFERENTIATION INVOLVING TWO OR MORE
FUNCTIONS OF THE SAME VARIABLE

The three rules presented in the preceding section are each concerned with a
single given function f(x). Now suppose that we have two differentiable functions
of the same variable x, say, f(x) and g(x), and we want to differentiate the sum,
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difference, product, or quotient formed with these two functions. In such circum-
stances, are there appropriate rules that apply? More concretely, given two
functions—say, f(x) = 3x? and g(x) = 9x'>—how do we get the derivative of,
say, 3x? + 9x'2, or the derivative of (3x?)(9x'%)?

Sum-Difference Rule

The derivative of a sum (difference) of two functions is the sum (difference) of the
derivatives of the two functions:

L[1(x) £ 8(0)] = 2 f(x) + g(x) = f(x) £ 8/(x)

The proof of this again involves the application of the definition of a derivative
and of the various limit theorems. We shall omit the proof and, instead, merely
verify its validity and illustrate its application.

Example 1 From the function y = 14x3, we can obtain the derivative dy/dx =
42x2%. But 14x3 = 5x3 + 9x3, so that y may be regarded as the sum of two
functions f(x) = 5x* and g(x) = 9x>. According to the sum rule, we then have

% = %(5;& +9x%) = %sﬁ + %9):3 = 15x% + 27x* = 42x°

which is identical with our earlier result.

This rule, stated above in terms of two functions, can easily be extended to
more functions. Thus, it is also valid to write

L7(x) £ 8(x) £ h(x)] = £(x) £ () £ K(x)

Example 2 The function cited in Example 1, y = 14x>, can be written as
y = 2x* + 13x® — x>. The derivative of the latter, according to the sum-difference
rule, is
& _ 4
dx  dx

which again checks with the previous answer.

(2x3 + 13x3 — x3) = 6x2 + 39x% — 3x? = 42x?

This rule is of great practical importance. With it at our disposal, it is now
possible to find the derivative of any polynomial function, since the latter is
nothing but a sum of power functions.

Example 3 d—‘i(ax2 +bx+cy=2ax+b
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Example 4

%(7x4+2x3—3x+37)=28x3+6x2—3+0=28x3+6x2—3

Note that in the last two examples the constants ¢ and 37 do not really
produce any effect on the derivative, because the derivative of a constant term is
zero. In contrast to the multiplicative constant, which is retained during differenti-
ation, the additive constant drops out. This fact provides the mathematical
explanation of the well-known economic principle that the fixed cost of a firm
does not affect its marginal cost. Given a short-run total-cost function

C=0Q°-402+10Q0 + 75

the marginal-cost function (for infinitesimal output change) is the limit of the
quotient AC/AQ, or the derivative of the C function:

ac _ . .,

0 - 30°— 80+ 10
whereas ihe fixed cost is represented by the additive constant 75. Since the latter
drops out during the process of deriving dC/dQ, the magnitude of the fixed cost
obviously cannot affect the marginal cost.

In general, if a primitive function y = f(x) represents a total function, then
the derivative function dy/dx is its marginal function. Both functions can, of
course, be plotted against the variable x graphically; and because of the corre-
spondence between the derivative of a function and the slope of its curve, for each
value of x the marginal function should show the slope of the total function at
that value of x. In Fig. 7.1a, a linear (constant-slope) total function is seen to
have a constant marginal function. On the other hand, the nonlinear (varying-
slope) total function in Fig. 7.1b gives rise to a curved marginal function, which
lies below (above) the horizontal axis when the total function is negatively
(positively) sloped. And, finally, the reader may note from Fig. 7.1¢ (cf. Fig. 6.5)
that “nonsmoothness” of a total function will result in a gap (discontinuity) in
the marginal or derivative function. This is in sharp contrast to the everywhere-
smooth total function in Fig. 7.15 which gives rise to a continuous marginal
function. For this reason, the smoothness of a primitive function can be linked to
the continuity of its derivative function. In particular, instead of saying that a
certain function is smooth (and differentiable) everywhere, we may alternatively
characterize it as a function with a continuous derivative function, and refer to it
as a continuously differentiable function.

Product Rule

The derivative of the product of two (differentiable) functions is equal to the first
function times the derivative of the second function plus the second function
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Figure 7.1

times the derivative of the first function:

d d d
(74)  Z[7()g(x)] = f(x) -a(x) + 8(x) -/ (x)

=f(x)g'(x) + g(x)f(x)
Example 5 Find the derivative of y = (2x + 3)(3x2). Let f(x)=2x + 3 and
g(x) = 3x2. Then it follows that f’(x) = 2 and g'(x) = 6x, and according to (7.4)
the desired derivative is
2 [(2x + 3)(3x)] = (2x + I)(6x) + (3)(2) = 18x + 18

This result can be checked by first multiplying out f(x)g(x) and then taking the
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derivative of the product polynomial. The product polynomial is in this case
f(x)g(x) = (2x + 3)(3x?) = 6x3 + 9x2, and direct differentiation does yield the
same derivative, 18x2 + 18x.

The important point to remember is that the derivative of a product of two
functions is not the simple product of the two separate derivatives. Since this
differs from what intuitive generalization leads one to expect, let us produce a
proof for (7.4). According to (6.13), the value of the derivative of f(x)g(x) when
x = N should be

d _ f(x)g(x) — f(N)g(N)
15)  Zl@ex) = tim [
But, by adding and subtracting f(x)g(N) in the numerator (thereby leaving the
original magnitude unchanged), we can transform the quotient on the right of
(7.5) as follows:

f(x)g(x) = f(x)g(N) + f(x)g(N) — f(N)g(N)
x—N

=f(x)g(x))c :i{(N) + g(N)f(x))c :J;\SN)

Substituting this for the quotient on the right of (7.5) and taking its limit, we then
get

05 £UeN| = tim () tim £

x—-N

+ lim g(N) hm ________f(xi :j;éN)

x—>N

The four limit expressions in (7.5") are easily evaluated. The first one is f(N), and
the third is g(N) (limit of a constant). The remaining two are, according to (6.13),
respectively, g’'(N) and f'(N). Thus (7.5’) reduces to

(157 U8 = AN)g(N) +g(N)f(N)

And, since N represents any value of x, (7.5”) remains valid if we replace every N
symbol by x. This proves the rule.
As an extension of the rule to the case of three functions, we have

(16) 2 [7()8()R()] = £(x)8(x)h(x) + 1(x) (x)h(x)
+()g () (x)

In words, the derivative of the product of three functions is equal to the product
of the second and third functions times the derivative of the first, plus the prod-
uct of the first and third functions times the derivative of the second, plus the
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product of the first and second functions times the derivative of the third. This
result can be derived by the repeated application of (7.4). First treat the product
g(x)h(x) as a single function, say, ¢(x), so that the original product of three
functions will become a product of two functions, f(x)¢(x). To this, (7.4) is
applicable. After the derivative of f(x)¢(x) is obtained, we may reapply (7.4) to
the product g(x)h(x) = ¢(x) to get ¢’(x). Then (7.6) will follow. The details are
left to you as an exercise.

The validity of a rule is one thing; its serviceability is something else. Why do
we need the product rule when we can resort to the alternative procedure of
multiplying out the two functions f(x) and g(x) and then taking the derivative of
the product directly? One answer to that question is that the alternative procedure
is applicable only to specific (numerical or parametric) functions, whereas the
product rule is applicable even when the functions are given in the general form.
Let us illustrate with an economic example.

Finding Marginal-Revenue Function from Average-Revenue Function

If we are given an average-revenue (AR) function in specific form,

‘AR =15- Q)
the marginal-revenue (MR) function can be found by first multiplying AR by Q
to get the total-revenue (R) function:

R=AR- Q—(lS—Q)Q—&Q)

and then dlﬂerentlatmg R:

i — d — —_— -
\LMR = E,,— 15 20 /

But if the AR function is given in the general form AR = f(Q), then the
total-revenue function will also be in a general form:

R=AR-0=/(0)-Q
and therefore the “multiply out” approach will be to no avail. However, because
R is a product of two functions of Q, namely, f(Q) and Q itself, the product rule

may be put to work. Thus we can differentiate R to get the MR function as
follows:

(1) MR= 25 =£(0)1+0-1(Q) = £(0) + 0/ (0)

However, can such a general result tell us anything significant about the MR?
Indeed it can. Recalling that f(Q) denotes the AR function, let us rearrange (7.7)
and write

(7.7) MR — AR = MR - f(Q) = 9f'(Q)
This glves us an important relatlonshlp between MR and AR: namely, they will
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It remains to examine the expression Qf'(Q). Its first component Q denotes
output and is always nonnegative. The other component, f(Q), represents the

slope of the AR curve plotted against Q. Since “average revenue” and “price™ are

but different names for the same thing;:

=_ PQ
AR= - = u

the AR curve can also be regarded as a curve relating price P to output Q:
P = f(Q). Viewed in this light, the AR curve is simply the inverse of the demand
curve for the product of the firm, i.e., the demand curve plotted after the P and 0
axes are reversed. Under pure competition, the AR curve is a horizontal straight
line, so that /(@) = 0 and, from (7.7’), MR — AR = 0 for all possible values of
Q Thus the MR curve and the AR curve must coincide. Under imperfect
competmon on the other hand, the AR curve is normally downward-sloping, as
in Fig. 7.2, so that f/(Q) <0 and, from (7.7"), MR — AR < 0 for all positive
levels of output. In this case, the MR curve must lie below the AR curve.

The conclusion just stated is qualitative in nature; it concerns only the relative
positions of the two curves. But (7.7’) also furnishes the guantitative information
that the MR curve will fall short of the AR curve at any output level O by
precisely the amount Qf(Q). Let us look at Fig. 7.2 again and consider the
particular output level N. For that output, the expression Qf'(Q) specifically
becomes Nf'(N); if we can find the magnitude of Nf'(N) in the diagram, we shall
know how far below the average-revenue point G the corresponding marginal-
revenue point must lie. - T

The magnitude of N is already specified. And f'(N) is simply the slope of the
AR curve at point G (where Q = N), that is, the slope of the tangent line JM
measured by the ratio of two distances OJ /OM. However, we see that OJ /OM =

AR=P={(Q)

Figure 7.2
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HJ /HG, besides, distance HG is precisely the amount of output under considera-
tion, N. Thus the distance Nf’( N), by which the MR curve must lie below the AR
curve at output N, is

(N = gL _
Nf(N) = HG3= = HJ

Accordingly, if we mark a vertical distance KG = HJ directly below point G, then
point K must be a point on the MR curve. (A simple way of accurately plotting
KG is to draw a straight line passing through point H and parallel to JG; point K
is where that line intersects the vertical line NG.)

The same procedure can be used to locate other points on the MR curve. All
we must do, for any chosen point G’ on the curve, is first to draw a tangent to the
AR curve at G’ that will meet the vertical axis at some point J'. Then draw a
horizontal line from G’ to the vertical axis, and label the intersection with the axis
as H'. If we mark a vertical distance K'G’ = H'J’ directly below point G’, then
the point K’ will be a point on the MR curve. This is the graphical way of
deriving an MR curve from a given AR curve. Strictly speaking, the accurate
drawing of a tangent line requires a knowledge of the value of the derivative at
the relevant output, that is, f(N); hence the graphical method just outlined
cannot quite exist by itself. An important exception is the case of a linear AR
curve, where the tangent to any point on the curve is simply the given line itself,
so that there is in effect no need to draw any tangent at all. Then the above
graphical method will apply in a straightforward way.

Quotient Rule

The derivative of the quotient of two functions, f(x)/g(x), is

d f(x) _ f(x)g(x) - f(x)g'(x)
dx g(x) g*(x)

In the numerator of the right-hand expression, we find two product terms, each
involving the derivative of only one of the two original functions. Note that f'(x)
appears in the positive term, and g’(x) in the negative term. The denominator
consists of the square of the function g(x); that is, g%(x) = [g(x)]%.

Example 6 i(2x —13) _2x+1) - (2x2— ) _ 5 2
dx )x + (x + 1) (x + 1)

2 - _ 2

Examp[e 7 i( 25X ) — S(X + 1) Szx(z-x) - 5(1 X 2

d
d

=

2 ~(ax2
Example 8 _(ax + b) _ 2ax(cx) — (ax? + b)(c)

cx (cx)z
c(ax? — b) _ax’-b

(cx)2 cx?
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This rule can be proved as follows. For any value of x = N, we have

(7.8) Ed’;%x:f Jﬂf(x)/g(xi—_fzsz)/g(N)

The quotient expression following the limit sign can be rewritten in the form
f(x)g(N) —f(N)g(x) 1
g(x)g(N) x=N

By adding and subtracting f(N)g(N ) in the numerator and rearranging, we can
further transform the expression to

[f(X)g(N)-f(N)g(N)+f(N)~g(N)—f(N)g(x)]
g(x)g(N) x—N
_ 1 f(x) - f(N) _ g(x) — g(N)
- g(x)g(N)[ (N)===w fIN)==—N ]
Substituting this result into (7.8) and taking the limit, we then have
4]y e [ (V)
& §(5) |, i gty Lm s im L
- lim (M) 1in;v—————g(x))c:%N)]
= 2(N)[g(N)f(N) f(N)g(N)] [by (6.13)]

which can be generalized by replacing the symbol N with x, because N represents
any value of x. This proves the quotient rule.

Relationship Between Marginal-Cost and Average-Cost Functions

As an economic application of the quotlent rule let us consider the rate of change
of average cost when output varies.

a quotient of two functlons of Q since A AC C (Q) / Q, “defined as long as Q > O

Therefore, the rate of change of AC with respect to @ can be found by
differentiating AC: __

19 LSO [c(0) - QQ—2 c()-1] _ é[c(g) ) C(QQ)]

From this it follows that, for 0> 0
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100 +

90 +
|

{ . 2
80 — MC = 3Q2 —24Q + 60

20— AC=Q2?— 12Q + 60

-
O e — o —
|
i
D

Since the derivative C’(Q) represents the marginal-cost (MC) function, and
C(Q)/Q represents the AC function, the economic meaning of (7.10) is: The
slope of the AC curve will be positive, zero, or negative if and only if the
marginal-cost curve lies above, intersects, or lies below the AC curve. This is
illustrated in Fig. 7.3, where the MC and AC functions plotted are based on the
specific total-cost function

' C = Q% - 120? +60Q/

To the left of Q = 6, AC is declining, and thus MC lies below it; to the right, the
opposite is true. At Q = 6, AC has a slope of zero, and MC and AC have the
same value.*

The qualitative conclusion in (7.10) is stated explicitly in terms of cost
funcuons However its vahdlty remams unaﬂected if we 1nterpret C(Q) as any
average and marginal functions. Thus this result gives us a general marginal-aver-
age relationship. In particular, we may point out, the fact that MR lies below £ AR
when AR is downward-sloping, as discussed in connection with Fig. 7.2,
nothlng but a spemal case of the general result in (7.10).

* Note that (7.10) does not state that, when AC is negatively sloped, MC must also be negatively
sloped: it merely says that AC must exceed MC in that circumstance. At Q = 5 in Fig. 7.3, for
instance, AC is declining but MC is rising, so that their slopes will have opposite signs.
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EXERCISE 7.2

1 Given the total-cost function C = Q* — 502 + 14Q + 75, write out a variable-cost
(VC) function. Find the derivative of the VC function, and interpret the economic
meaning of that derivative.

2 Given the average-cost function AC = 0% - 4Q + 214, find the MC function. Is the
given function more appropriate as a long-run or a short-run function? Why?

3 Differentiate the following by using the product rule:
(a) 9x?—2)3x + 1) (d) (ax — b)(ex?)
(b) Bx + 11)(6x2 —5x) (&) @ —3x)1 + x}x+2)
(¢) x*(4x + 6) (f) (x2+ 3Hx~!

/,*f (a) Given AR = 60 — 3Q, plot the average-revenue curve, and then find the MR curve
by the method used in Fig. 7.2.

(b) Find the total-revenue function and the marginal-revenue function mathematically

. from the given AR function.

(¢) Does the graphically derived MR curve in (a) check with the mathematically
derived MR function in (b)?

(d) Comparing the AR and MR functions, what can you conclude about their relative
slopes?

5 Provide a mathematical proof for the general result that, given a linear aVerage curve,
the corresponding marginal curve must have the same vertical intercept but will be twice
as steep as the average curve.

76 Prove the result in (7.6) by first treating g(x)h(x) as a single function, g(x)4(x) = ¢(x),
and then applying the product rule (7.4).
7 Find the derivatives of:
(a) (x*+3)/x (c) 4x/(x +5)
(b) (x+ T)/x (d) (ax* + b)/(cx + d)
8 Given the function f(x) = ax + b, find the derivatives of:

(@ f(x) (b) xf(x) () 1/f(%) (d) f(x)/x

7.3 RULES OF DIFFERENTIATION INVOLVING FUNCTIONS OF
DIFFERENT VARIABLES

In the preceding section, we discussed the rules of differentiation of a sum,
difference, product, or quotient of two (or more) differentiable functions of the
same variable. Now we shall consider cases where there are two or more
differentiable functions, each of which has a distinct independent variable.

Chain Rule

If we have a function z = f(y), where y is in turn a function of another variable
x, say, y = g(x), then the derivative of z with respect to x is equal to the
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derivative of z with respect to y, times the derivative of y with respect to x.
Expressed symbolically,

(7.1) == @ dx =f(y)g'(x)

This rule, known as the chain rule, appeals easily to intuition. Given a Ax, there
must result a corresponding A y via the function y = g(x), but this A \ y will 1£1Lu_rp_
bring about a Az via the function z = f(y). Thus there is a * “chaln reaction” as

follows
—
via g

Ax = Ay —>Az

The two links in this chain entail two difference quotients, Ay/Ax and Az/Ay,

but when they are multiplied, the 4 y will cancel itself out, and we end up with

a difference quotient that relates Az to Ax. If we take the limit of these difference
quotients as Ax — 0 (which implies A y — 0), each difference quotient will turn
into a derivative; ie., we shall have (dz/dyXdy/dx) = dz/dx. This is prec1se1y
_the result in (7.11).
In view of the function y = g(x), we can express the function z = f(y) as
'z = f[g(x)], where the contiguous appearance of the two function symbols f and
g indicates that this is a composite function (function of a function). It is for this
‘reason that the chain rule is also referred to as the composite-function rule or
function-of-a-function rule. 7
. The extension of the chain rule to three or more functions is straightforward.
If we have z = f( ), y = g(x), and x = h(w), then

dz _ dz dy dx , , ,
dW dy dx dW _f(y)g (X)h (W)

and similarly for cases in which more functions are involved.

Example 1 1f z = 3y?, where y = 2x + 5, then
dz _ dzdy _ -y =
o dydx 6y(2) = 12y = 12(2x + 5)
Example 2 1f z = y — 3, where y = x>, then
dz
dx

= 1(3x?) = 3x?

Example 3 The usefulness of this rule can best be appreciated when we must
differentiate a function such as z = (x? + 3x — 2)!7. Without the chain rule at
our disposal, dz/dx can be found only via the laborious route of first multiplying
out the 17th-power expression. With the chain rule, however, we can take a
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shortcut by defining a new, intermediate variable y = x* + 3x - 2, so that we get
in effect two functions linked in a chain:

z=y"7 and y=x>+3x-2

The derivative dz /dx can then be found as follows:

dz _ dz dy

16 — 2 __n)\!6
poilly = 17y"%(2x + 3) = 17(x* + 3x 2) (2x + 3)

Example 4 Given a total-revenue function of a firm R = f(Q), where output Q
is a function of labor input L, or @ = g(L find dR/dL. By the chain rule we

have e

-— dR dR dQ ) , ' R EET] \_-‘_' -
- R - 1)

Translated into_economic terms, dR/dQ is the MR function and dQ/dL is the
margmal physical-product-c of labor _(MPP,) function. Similarly, dR/dL has _

the connotation of the marginal-revenue-product-of- labor (MRP,) function. Thus
the result shown above constitutes the mathematical statement of the well-known
result in economics that MRP, = MR - MPP;.

Inverse-Function Rule o \

If the function y = f(x) represents a one-to-one mapping, i.e., if the function is
such that a different value of x will always yield a different value of y, the
function f will have an inverse function x = f~'(y) (read: “x is an inverse function
of y™). Here, the symbol /™' is a function symbol which, like the derivative-func-
tion symbol f’, signifies a function related to the function f; it does not mean the
reciprocal of the function f(x). T

What the existence of an inverse function essentially means is that, in this
case, not only will a given value of x yield a unique value of y [that is, y = f(x)],
but also a given value of y will yield a unique value of x. To take a nonnumerical
instance, we may exemplify the one-to-one mapping by the mapping from the set
of all husbands to the set of all wives in a monogamous society. Each husband
has a unique wife, and each wife has a unique husband. In contrast, the mapping
from the set of all fathers to the set of all sons is not one-to-one, because a father
may have more than one son, albeit each son has a unique father.

When x and y refer specifically to numbers, the property of one-to-one
mapping is seen to be unique to the class of functions known as monotonic
functions. Given a function f(x), if successively larger values of the 1ndependent
~ variable x always lead t0 successively larger values of f(x), that is, if

Xy > X, = f(x1)>f(x2) S

then the function f is said to be an increasing (or monotonically increasing)
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function.* If successive increases in x always lead to successive decreases in f(x),
that is, if "

x >xy, = f(x)<f(x;)

on the other hand, the function is said to be a decreasing (or monotonicql[y
‘decreasing) function. In either of these cases, an inverse function f~' exists. o

A practical way of ascertaining the monotonicity of a given function y = f(x)
is to check whether the derivative f’(x) always adheres to the same algebraic sign
(not zero) for all values of x. Geometrically, this means that its slope is either
always upward or always downward Thus a firm’s demand curve Q = f(P) that
has a negative slope throughout is monotonic. As such, it has an inverse function
P = f~!(Q), which, as mentioned previously, gives the average-revenue curve of
the firm, since P = AR. T o ‘

Example 5 The function

r): = 5x + 257
'has the derivative dy /dx = 5, which is positive regardless of the value of x; thus
the function is monotonic. (In this case it is increasing, because the derivative is
positive.) It follows that an inverse function exists, In the present case, the inverse

function is easily found by solvmg the given equation y = 5x + 25 for x. The
result is the function . R SRS S

x=1y—318 )r.-,,/‘, -5
It is interesting to note that this inverse function is also monotonic, and

increasing, because dx/dy = + > 0 for all values of y.

Generally speaking, if an inverse function exists, the original and the inverse
functions must both be monotonic. Moreover if f!is the inverse function of f,
then f must be the inverse function of ' thatis, f and ! must be inverse _
_. functions of each other.

It is easy to verify that the graph of y = f(x) and that of x = f~!(y) are one_
and the same, only with the axes reversed. If one lays the x axis of the /' graph
over the x axis of the f graph (and similarly for the y axis), the two curves will
gmwrde. On the other hand, if the x axis of the f~! graph is laid over the y axis of

* Some writers prefer to define an increasing function as a function with the property that
X >xy = f(x))=f(x) [with a weak inequality]
and then reserve the term strictly increasing function for the case where
x> x; = f(x))>f(xy) [with a strict inequality]

Under this usage, an ascending step function qualifies as an increasing (though not strictly increasing)
function, despite the fact that its graph contains horizontal segments. We shall not follow this usage in
the present book. Instead, we shall consider an ascending step function to be, not an increasing
function, but a nondecreasing one. By the same token, we shall regard a descending step function not
as a decreasing function, but as a nonincreasing one.
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the f graph (and vice versa), the two curves will become mirror images of each
other with reference to the 45° hne ¢ drawn through the origin. This mirror-image
relationship provides us with an easy way of graphing the inverse function f_!,
once the graph of the original function f is given. (You should try this with the
two functions in Example 5.)

For inverse functlons the rule of dlfferentlatlon is

& _ 1 o

dy  dysdx T o/, %

This means that the derivative of the inverse function is the reciprocal of the
derivative of the original function; as such, dx/dy must take the same sign as
dy/dx, so that if f is increasing (decreasing), then so must be f~ I T

As a verification of this rule, we can refer back to Example 5 where dy/dx
was found to be 5, and dx/dy equal to i. These two derivatives are indeed
reciprocal to each other and have the same sign.

In that simple example, the inverse function is relatively easy to obtain, so
that its derivative dx/dy can be found directly from the inverse function. As the
next example shows, however, the inverse function is sometimes difficult to
express explicitly, and thus direct differentiation may not be practicable. The
usefulness of the inverse-function rule then becomes more fully apparent.

Example 6 Giveny = x° + x, find dx/dy. First of all, since
- N

Y _ a4 B

7>
for any value of x, the given function is monotonically increasing, and an inverse
function exists. To solve the given equation for x may not be such an easy task,
but the derivative of the inverse function ¢ag gevertheless'be found quickly by use
of the i inverse- -function rule:

d _ 1 _ 1
dy_dy/dx 5x4

The inverse-function rule is, strictly speaking, applicable only when the
function involved is a one-to-one mapping. In fact, however, we do have some
leeway. For instance, when dealing with a U-shaped curve (not monotonic), we
may consider the downward- and the upward-sloping segments of the curve as
representing two separate functions, each with a restricted domain, and each
being monotonic in the restricted domain. To each of these, the inverse- -function
fule can then again be applied.

EXERCISE 7.3

1 Giveny = u® + 1, where u = 5 — x?, find dy/dx by the chain rule.
2 Given w = ay? and y = bx? + cx, find dw/dx by the chain rule.



174 COMPARATIVE-STATIC ANALYSIS

3 Use the chain rule to find dy/dx for the following:

@ y=(x?-13)° (b) y =(8x*-5)° (¢) y = (ax + b)*
4 Given y = (16x + 3) 2, use the chain rule to find dy/dx. Then rewrite the function as
y = 1/(16x + 3)? and find dy/dx by the quotient rule. Are the answers identical?

5 Giveny = 7x + 21, find its inverse function. Then find dy/dx and dx/dy, and verify the
inverse-function rule. Also verify that the graphs of the two functions bear a mirror-image
relationship to each other.

6 Are the followmg functions monotonic?
(a) y=—x*+5 (x>0 (b) y=4x>+ x° +3x
For each monotonic function, find dx/dy by the inverse-function rule.

7.4 PARTIAL DIFFERENTIATION

Hitherto, we have considered only the derivatives of functions of a single
independent variable. In comparative-static analysis, however, we are likely to
encounter the situation in which several parameters appear in a model, so that the
equilibrium value of each endogenous variable may be a function of more than
one parameter. Therefore, as a final preparation for the application of the concept
of derivative to comparative statics, we must learn how to find the derivative of a
function of more than one variable. ‘

Partial Derivatives

Let us consider a function

(7.12)  y=f(x1, x3-.., X,)

where the variables x; (i = 1,2,..., n) are all independent of one another, so that
each can vary by 1tse1f w1thout aﬁ"ectmg the others. If the variable x; undergoes a
change Ax, while x,,..., x, all remain fixed, there will be a corresponding change
in y, namely, Ay. The diﬁ”erence quotient in this case can be expressed as

Ay  f(x;+Axy, x,,..0, x,) — f(xy, X9,..05 X,)
(7.13) QA—XI= s ‘

If we take the limit of Ay /Ax, as Ax, — 0, that limit will constitute a derivative.
We call it the partial derwatwe of y with respect to x,, to indicate that all the
other independent variables in the function are held constant when taking th1s
particular derivative. Similar partial derivatives can be defined for infinitesimal
changes in the other independent variables. The process of taking partial derlva-
tives is called partial differentiation.

" Partial derivatives are assigned distinctive symbols. In lieu of the letter d (as
in dy/dx), we employ the symbol g, which is a variant of the Greek § (lower case
delta). Thus we shall now write 9 y/9x,;, which is read: “the partial derivative of y
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with respect to x,.” The partial-derivative symbol sometimes is also written as

ax, T in that case, its d/dx; part can be regarded as an operator symbolw

mstrucung us to take the partial derivative of (some function) with respect to the
variable x,. Since the function involved here is denoted in (7.12) by fritis also
pernn551ble to write df/dx,.

Is there also a part1al -derivative counterpart for the symbol f’(x) that we

used before? The answer is yes. Instead of f’, however, we now use f,, f,, etc.,
where the subscript indicates which independent variable (alone) is being allowed )

to vary. If the function in (7.12) happens to be written in terms of unsubscripted
variables, such as y = f(u, v, w), then the partial derivatives may be denoted by
f,, f,, and £, rather than f,, f,, and f;.
"~ In line with these notations, and on the basis of (7.12) and (7.13), we can now
define ~

D

9y _ Ay
fr= Ix —Alllrgo Ax,

as the first in the set of n partial derivatives of the function f.

Techniques of Partial Differentiation

Partial differentiation differs from the previously discussed differentiation pri-
marily in that we must hold (n — 1) independent variables constant while allow-
ing one variable to vary. Inasmuch as we have learned how to handle constants in
differentiation, the actual differentiation should pose little problem.

Example 1 Given y = f(x,, x,) = 3x? + x,x, + 4x3, find the partial deriva-

tives. When finding dy/dx, (or f,), we must bear in mind that x, is to be treated

as a constant during differentiation. As such, x, will drop out in the process if it is
an additive constant (such as the term 4x§) but will be retained if it is_a_
multiplicative constant (such as in the term x,x,). Thus we have

~ Y b6kt
< =f, =6x, + x%

Similarly, by treating x, as a constant, we find that

3x2 =f,=x +8x,

selves funct10ns of the vanables X ‘and X3 That is, we may wrlte them as two
derived functions _ -

fl(xl’x2) and f _fz(xnxz)

partial derivatives will take the following specific values'

\*f1(1,3)f6(1)fﬂ3;?:\ and \\'Vf_zw(1,3)=1+8(3)=72'5 3
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Example 2 Giveny = f(u,v) = (u + 4)(3u + 2v), the partial derivatives can be
found by use of the product rule. By holding v constant, we have

f,=(u+4)(3)+10Bu+20)=23u+ v+ 6)
Similarly, by holding u constant, we find that
f,=(u+4)(2)+003u+20)=2(u+4)
When u = 2 and v = 1, these derivatives will take the following values:
£,(2,1) =2(13) = 26 and  f,(2,1) =2(6) = 12
Example 3 Given y = (3u — 2v)/(u? + 3v), the partial derivatives can be
found by use of the quotient rule: —_

dy _ 3(u?+3v) —2uBu —20)  —3u’+4uv + 9

du (u? + 3v)° (u? + 3v)’
3y _ —2(u?+30) —3Bu—2v) _ —u(2u+9)
dv (u? + 30)° (u? + 3v)°

Geometric Interpretation of Partial Derivatives

As a special type of derivative, a partial derivative is a measure of the instanta-
neous rates of change of some variable, and in that capacity it again has a
geometric counterpart in the slope of a particular curve.

Let us consider a production function Q = Q(K, L), where Q, K, and L
denote output, capital input, and labor input, respectively. This function is a
particular two-variable version of (7.12), with n = 2. We can therefore define two
partial derivatives 0Q/dK (or Q) and dQ/dL (or Q,). The partial derivative
Qy relates to the rates of change in output with respect to infinitesimal changes in
capital, while labor input is held constant. Thus Q, symbolizes the marginal-
physical-product-of-capital (MPP ) function. Similarly, the partial derivative Q,
is the mathematical representation of the MPP, function.

Geometrically, the production function Q@ = Q(K, L) can be depicted by a
production surface in a 3-space, such as is shown in Fig. 7.4. The variable Q is
plotted vertically, so that for any point (K, L) in the base plane (KL plane), the
height of the surface will indicate the output Q. The domain of the function
should consist of the entire nonnegative quadrant of the base plane, but for our
purposes it is sufficient to consider a subset of it, the rectangle OK,BL,. As a
consequence, only a small portion of the production surface is shown in the
figure.

Let us now hold capital fixed at the level K, and consider only variations in
the input L. By setting K = K, all points in our (curtailed) domain- become
irrelevant except those on the line segment K,B. By the same token, only the
curve K,CDA (a cross section of the production surface) will be germane to the
present discussion. This curve represents a total-physical-product-of-labor (TPP, )
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Figure 7.4

curve for a fixed amount of capital K = K; thus we may read from its slope the
rate of change of Q with respect to changes in L while K is held constant. It is
clear, therefore, that the slope of a curve such as K,CDA represents the geometric
counterpart of the partial derivative Q,. Once again, we note that the slope of a
total (TPP, ) curve is its corresponding marginal (MPP, = Q, ) curve.

It was mentioned earlier that a partial derivative is a function of all the
independent variables of the primitive function. That @, is a function of L is
immediately obvious from the K,CDA curve itself. When L = L, the value of O
1s equal to the slope of the curve at point C; but when L = L,, the relevant slope
is the one at point D. Why is Q, also a function of K? The answer is that X can
be fixed at various levels, and for each fixed level of K, there will result a different
TPP, curve (a different cross section of the production surface), with inevitable
repercussions on the derivative ;. Hence Q, is also a function of K.

An analogous interpretation can be given to the partial derivative Q. If the
labor input is held constant instead of K (say, at the level of L), the line segment
Ly B will be the relevant subset of the domain, and the curve Ly 4 will indicate the
relevant subset of the production surface. The partial derivative Q, can then be
interpreted as the slope of the curve L,A—bearing in mind that the K axis
extends from southeast to northwest in Fig. 7.4. It should be noted that Q is
again a function of both the variables L and K.

EXERCISE 7.4

1 Find dy/dx, and dy/dx, for each of the following functions:
(a) y = 2x} = llxix, + 3x2 () y=Q2x, +3)(x, — 2)
(b) y = Tx; + 5xyx3 — 9x3 (d) y=@x, +3)/(x, -2



178 COMPARATIVE-STATIC ANALYSIS

2 Find f, an’d f, from the following:
(@) flxry)=x 4 Sy =yt (@) fxy) = B
() f(5) = (=305 =D (@) Jx,) = 2]
3 From the answers to the preceding problem, find f,(1,2)—the value of the partial
derivative f, when x = 1 and y = 2—for each function.

4 Given the production function Q = 96K °’L°%’, find the MPP, and MPP; functions. Is
MPP; a function of K alone, or of both K and L? What about MPP,;?

5 If the utility function of an individual takes the form
U=U(x,x)=(x+2)(x,+3)

where U is total utility, and x, and x, are the quantities of two commodities consumed:
(a) Find the marginal-utility function of each of the two commodities.
(b) Find the value of the marginal utility of the first commodity when 3 units of each
commodity are consumed.

7.5 APPLICATIONS TO COMPARATIVE-STATIC ANALYSIS

Equipped with the knowledge of the various rules of differentiation, we can at last
tackle the problem posed in comparative-static analysis: namely, how the equi-
librium value of an endogenous variable will change when there is a change in any
of the exogenous variables or parameters.

Market Model

First let us consider again the simple one-commodity market model of (3.1). That
model can be written in the form of two equations:

Q=a-0bP (a,b>0) [demand]
Q= —-c+dpP (c,d>0) [supply]
with solutions
= a+c¢
(7.14) P = b+ d
_ad - bc

(7.15) Q= T

These solutions will be referred to as being in the reduced form: the two
endogenous variables have been reduced to explicit expressions of the four
mutually independent parameters a, b, ¢, and d.

To find how an infinitesimal change in one of the parameters will affect the
value of P, one has only to differentiate (7.14) partially with respect to each of the
parameters. If the sign of a partial derivative, say, 3P /da, can be determined
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from the given information about the parameters, we shall know the direction in
which P will move when the parameter a changes; this constitutes a qualitative
conclusion. If the magnitude of 3P/da can be ascertained, it will constitute a
quantitative conclusion.

Similarly, we can draw qualitative or quantitative conclusions from the
partial derivatives of Q with respect to each parameter, such as 4Q /da. To avoid
misunderstanding, however, a clear distinction should be made between the two
derivatives dQ/da and 8Q/da. The latter derivative is a concept appropriate to
the demand function taken alone, and without regard to the supply function. The
derivative dQ/da pertains, on the other hand, to the equilibrium quantity in
(7.15) which, being in the nature of a solution of the model, takes into account the
interaction of demand and supply together. To emphasize this distinction, we
shall refer to the partial derivatives of P and Q with respect to the parameters as
comparative-static derivatives.

Concentrating on P for the time being, we can get the following four partial
derivatives from (7.14):

_(?_Iz__l_ [ meter a has th ffici t—l—]

7 BT d parameter a has the coefficient 5——

_ B N B ,
%_I;=O(b+(a;)+ dl)(za ) = (b(fl}-;)cz) [quotient rule]
iF_ 1 (_oF
dc b+d\ da
E_O(b+d)—1(a+c)=—(a+c)(___£[i)
9d (b+d) (b+d)* L b

Since all the parameters are restricted to being positive in the present model, we

can conclude that N
0P 0P dP 9P

(716) _8—;_—3?>0 and a—b—%—<0

For a fuller appreciation of the results in (7.16), let us look at Fig. 7.5, where
each diagram shows a change in one of the parameters. As before, we are plotting
Q (rather than P) on the vertical axis.

Figure 7.5a pictures an increase in the parameter a (to a’). This means a
higher vertical intercept for the demand curve, and inasmuch as the parameter b
(the slope parameter) is unchanged, the increase in a results in a parallel upward
shift of the demand curve from D to D’. The intersection of D’ and the supply
curve S determines an equilibrium price P’, which is greater than the old
equilibrium price P. This corroborates the result that dP/da > 0, although for
the sake of exposition we have shown in Fig. 7.5a a much larger change in the
parameter a than what the concept of derivative implies.

The situation in Fig. 7.5¢ has a similar interpretation; but since the increase
takes place in the parameter c, the result is a parallel shift of the supply curve
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instead. Note that this shift is downward because the supply curve has a vertical
intercept of —c¢; thus an increase in ¢ would mean a change in the intercept, say,
from —2 to —4. The graphical comparative-static result, that P’ exceeds P, again
conforms to what the positive sign of the derivative 3P/dc would lead us to
expect. ’ '

Figures 7.5b and 7.5d illustrate the effects of changes in the slope parameters
b and d of the two functions in the model. An increase in b means that the slope
of the demand curve will assume a larger numerical (absolute) value; i.e., it will
become steeper. In accordance with the result 3P /db < 0, we find a decrease in P
in this diagram. The increase in J that makes the supply curve steeper also results
in a decrease in the equilibrium price. This is, of course, again in line with the
negative sign of the comparative-static derivative dP/dd.

Thus far, all the results in (7.16) seem to have been obtainable graphically. If
so, why should we bother to learn differentiation at all? The answer is that the
differentiation approach has at least two major advantages. First, the graphical
technique is subject to a dimensional restriction, but differentiation is not. Even

(Increase in a) - (Increase in b)

Figure 7.5
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when the number of endogenous variables and parameters is such that the
equilibrium state cannot be shown graphically, we can nevertheless apply the
differentiation techniques to the problem. Second, the differentiation method can
yield results that are on a higher level of generality. The results in (7.16) will
remain valid, regardless of the specific values that the parameters a, b, ¢, and d
take, as long as they satisfy the sign restrictions. So the comparative-static
conclusions of this model are, in effect, applicable to an infinite number of
combinations of (linear) demand and supply functions. In contrast, the graphical
approach deals only with some specific members of the family of demand and
supply curves, and the analytical result derived therefrom is applicable, strictly
speaking, only to the specific functions depicted.

The above serves to illustrate the application of partial differentiation to
comparative-static analysis of the simple market model, but only half of the task
has actually been accomplished, for we can also find the comparative-static
derivatives pertaining to Q. This we shall leave to you as an exercise.

/ >N ational-Income Model

In place of the simple national-income model discussed in Chap. 3, let us study a
slightly enlarged model with three endogenous variables, Y (national income), C
(consumption), and T (taxes):

Y=C+1I,+G,
(717) C=a+B8(Y-T) (a>0; 0<B<1)
T=vy+8Y (y>0; 0<8<1)

The first equation in this system gives the equilibrium condition for national
income, while the second and third equations show, respectively, how C and T are
determined in the model.

The restrictions on the values of the parameters «, 8, vy, and & can be
explained thus: a is positive because consumption is positive even if disposable
income (Y — T') is zero; B is a positive fraction because it represents the marginal
propensity to consume; y is positive because even if Y is zero the government will
still have a positive tax revenue (from tax bases other than income); and finally, §
is a positive fraction because it represents an income tax rate, and as such it
cannot exceed 100 percent. The exogenous variables I, (investment) and G,
(government expenditure) are, of course, nonnegative. All the parameters and
exogenous variables are assumed to be independent of one another, so that any
one of them can be assigned a new value without affecting the others.

This model can be solved for ¥ by substituting the third equation of (7.17)
into the second and then substituting the resulting equatlon into the first. The
equilibrium income (in reduced form) is

(118) V=375
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Similar equilibrium values can also be found for the endogenous variables C and
T, but we shall concentrate on the equilibrium income.

From (7.18), there can be obtained six comparative-static derivatives. Among
these, the following three have special policy significance:

Y 1
(7.19) '(ﬁ; = m >0
F)% -
(7.20) —az;‘ = T—_,B'[i—BS <0
Y —PBla—By+1,+G -BY
(7.21) % = B(?l _l:+ Béso)2 o - 1- ,;B+ 55 < 0 [by(7.18)]

The partial derivative in (7.19) gives us the government-expenditure multiplier. 1t
has a positive sign here because 8 is less than 1, and 86 is greater than zero. If
numerical values are given for the parameters 8 and 8, we can also find the
numerical value of this multiplier from (7.19). The derivative in (7.20) may be
called the nonincome-tax multiplier, because it shows how a change in vy, the
government revenue from nonincome-tax sources, will affect the equilibrium
income. This multiplier is negative in the present model because the denominator
in (7.20) is positive and the numerator is negative. Lastly, the partial derivative in
(7.21) represents an income-tax-rate multiplier. For any positive equilibrium
income, this multiplier is also negative in the model.

Again, note the difference between the two derivatives 3Y/3G,, and Y /3G,
The former is derived from (7.18), the expression for the equilibrium income. The
latter, obtainable from the first equation in (7.17), is dY/dG, = 1, which is
altogether different in magnitude and in concept. ’

Input-Output Model

The solution of an open input-output model appears as a matrix equation
X = (I — A)™'d. 1f we denote the inverse matrix (I — A)~' by B = [b,,], then,
for instance, the solution for a three-industry economy can be written as X = Bd,
or

R

(7.22)

= =

3

What will be the rates of change of the solution values X, with respect to the
exogenous final demands d,, d,, and d,? The general answer is that

0xX; .
(7.23) E=bjk (j,k=1,2,3)
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To see this, let us multiply out Bd in (7.22) and express the solution as
1 blldl + b12d2 + bl3d3

2| = | bud, + bpd, + byd;
3 by d, + by, d, + byyd,

= X

=|

In this system of three equations, each one gives a particular solution value as a
function of the exogenous final demands. Partial differentiation of these will
produce a total of nine comparative-static derivatives:

dx,

o o,

adl =bll ad2=b12 ad3=bl3
, dx, ox, dx,
(7‘23) adl - b21 ad2 - b22 8d3 - b23
0%, 0%, 0%,
ad] - b3l (9d2 - b32 3d3 - b33

This is simply the expanded version of (7.23).
Reading (7.23’) as three distinct columns, we may combine the three deriva-
tives in each column into a matrix (vector) derivative:

P P X by P by, 9% by;

23" —=—\Xx,|=|b —=1»b —— =15
(7.237) 3d, ad, Jiz 21 ad, 22 3d, 23
X3 by, by, by

Since the three column vectors in (7.23") are merely the columns of the matrix B,
by further consolidation we can summarize the nine derivatives in a single matrix
derivative dx/dd. Given X = Bd, we can simply write

_ bn b12 b13

ax

W= b21 bzz b23 =B
b31 b32 b33

This is a compact way of denoting all the comparative-static derivatives of our
open input-output model. Obviously, this matrix derivative can easily be extended
from the present three-industry model to the general n-industry case.

Comparative-static derivatives of the input-output model are useful as tools
of economic planning, for they provide the answer to the question: If the
planning targets, as reflected in (d,, d,,..., d,), are revised, and if we wish to
take care of all direct and indirect requirements in the economy so as to be
completely free of bottlenecks, how must we change the output goals of the n
industries?
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EXERCISE 7.5

1 Examine the comparative-static properties of the equilibrium quantity in (7.15), and
check your results by graphic analysis.

2 On the basis of (7.18), find the partial derivatives dY/dI,, 3Y/da, and 3Y/38.
Interpret their meanings and determine their signs.

3 The numerical input-output model (5.21) was solved in Sec. 5.7.
(a) How many comparative-static derivatives can be derived?
(b) Write out these derivatives in the form of (7.23) and (7.23").

7.6 NOTE ON JACOBIAN DETERMINANTS

The study of partial derivatives above was motivated solely by comparative-static
considerations. But partial derivatives also provide a means of testing whether
there exists functional (linear or nonlinear) dependence among a set of n func-
tions in »n variables. This is related to the notion of Jacobian determinants (named
after Jacob).

Consider the two functions

Y1 =2x; + 3x,
(7.24)
¥y, = 4x¥ + 12x,x, + 9x2

If we get all the four partial derivatives

ay dy, dy, _ ay,

ax, = 2 ox, 3 ax, 8x, + 12x, ax, 12x, + 18x,
and arrange them into a square matrix in a prescribed order, called a Jacobian
matrix and denoted by J, and then take its determinant, the result will be what is
known as a Jacobian determinant (or a Jacobian, for short), denoted by |J/|:

9 In
ax, dx, 2 3
(7.25) 1= ¥y, —’(8x1 + 12x,)  (12x, + 18x,)
ax, dx,

For economy of space, this Jacobian is sometimes also expressed as

3(yi, »)
a(xl’xZ)

More generally, if we have n differentiable functions in »n variables, not necessarily

V1=
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linear,

N =f'(x1,x2,..., x,)

(126) Y2 =[x %2500 %)

Yn =fn(xl’ Xoseees Xy
where the symbol f” denotes the nth function (and not the function raised to the
nth power), we can derive a total of n? partial derivatives. Together, they will give
rise to the Jacobian

W In o In

dax dax Jdx

— a()’la)’z,---,)’n) - ! 2 "

(127)  |J| = e
F(Xy, Xp5ens Xy,) 3 3y 2y,

dx, 9x, dx,

A Jacobian test for the existence of functional dependence among a set of n
functions is provided by the following theorem: The Jacobian |J| defined in
(7.27) will be identically zero for all values of x,,..., x, if and only if the n
functions f',..., f" in (7.26) are functionally (linearly or nonlinearly) dependent.

As an example, for the two functions in (7.24) the Jacobian as given in (7.25)
has the value

|| = (24x, + 36x,) — (24x, + 36x,) =0

That is, the Jacobian vanishes for all values of x, and x,. Therefore, according to
the theorem, the two functions in (7.24) must be dependent. You can verify that
y, is simply y, squared; thus they are indeed functionally dependent—here
nonlinearly dependent.

Let us now consider the special case of linear functions. We have earlier
shown that the rows of the coefficient matrix 4 of a linear-equation system

ayx; +apx; + - +a,x, =d
(7.28) Ay Xy + Apx, + -+ ay,x, =d,

a,x, +a,x,++a,x,=d

an""n n

are linearly dependent if and only if the determinant |[4| = 0. This result can
now be interpreted as a special application of the Jacobian criterion of functional
dependence.

Take the left side of each equation in (7.28) as a separate function of the n
variables x,..., x,, and denote these functions by y,,..., y,. The partial deriva-
tives of these functions will turn out to be dy,/dx, = a,,, dy,/9x, = a,,, etc., 50
that we may write, in general, dy,/dx; = a;;. In view of this, the elements of the
Jacobian of these n functions will be precisely the elements of the coefficient
matrix A, already arranged in the correct order. That is, we have |J| = |4], and
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thus the Jacobian criterion of functional dependence among y,,..., y,—or, what
amounts to the same thing, functional dependence among the rows of the
coefficient matrix A—is equivalent to the criterion |4| = 0 in the present linear
case.

In the above, the Jacobian was discussed in the context of a system of n
functions in n variables. It should be pointed out, however, that the Jacobian in
(7.27) is defined even if each function in (7.26) contains more than n variables,
say, n + 2 variables:

.yi=fi(xl"""xn’xn+l’xn+2) (i=1,27~-~’n)

In such a case, if we hold any two of the variables (say, x,, , and x,,, ,) constant,
or treat them as parameters, we will again have n functions in exactly » variables
and can form a Jacobian. Moreover, by holding a different pair of the x variables
constant, we can form a different Jacobian. Such a situation will indeed be
encountered in Chap. 8 in connection with the discussion of the implicit-function
theorem.

EXERCISE 7.6

1 Use Jacobian determinants to test the existence of functional dependence between the
functions paired below: ’

(@) y) =3x} + x, (b) yi = 3xi + 2x3

V2o =9x1 + 6x7(x; + 4) + x5(x, + 8) + 12 y,=5x +1

2 Consider (7.22) as a set of three functions x, = f'(d|, d,, d3) (with i = 1,2, 3).

(a) Write out the 3 X 3 Jacobian. Does it have some relation to (7.23)? Can we write
IJ1 =1B|?

(b) Since B = (I — A)~', can we conclude that | B| # 0? What can we infer from this
about the three equations in (7.22)?




CHAPTER

| EIGHT

COMPARATIVE-STATIC ANALYSIS OF
GENERAL-FUNCTION MODELS

The study of partial derivatives has enabled us, in the preceding chapter, to
handle the simpler type of comparative-static problems, in which the equilibrium
solution of the model can be explicitly stated in the reduced form. In that case,
partial differentiation of the solution will directly yield the desired comparative-
static information. You will recall that the definition of the partial derivative
requires the absence of any functional relationship among the independent
variables (say, x,), so that x| can vary without affecting the values of x,, x,..., x,,.
As applied to comparative-static analysis, this means that the parameters and /or
exogenous variables which appear in the reduced-form solution must be mutually
independent. Since these are indeed defined as predetermined data for purposes
of the model, the possibility of their mutually affecting one another is inherently
ruled out. The procedure of partial differentiation adopted in the last chapter is
therefore fully justifiable.

However, no such expediency should be expected when, owing to the inclu-
sion of general functions in a model, no explicit reduced-form solution can be
obtained. In such cases, we will have to find the comparative-static derivatives
directly from the originally given equations in the model. Take, for instance, a
simple national-income model with two endogenous variables Y and C:

Y=C+1I,+ G, N

C=cC(Y,T,) [T,: exogenous taxes]

187
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which is reducible to a single equation (an equilibrium condition)
Y=C(Y, )+ 1, + G,

to be solved for Y. Because of the general form of the C function, however, no
explicit solution is available. We must, therefore, find the comparative-static
derivatives directly from this equation. How might we approach the problem?
What special difficulty might we encounter?

Let us suppose that an equilibrium solution ¥ does exist. Then, under certain
rather general conditions (to be discussed later), we may take Y to be a
differentiable function of the exogenous variables [, G,, and 7,. Hence we may
write the equation

Y= )7(10’ Gy, To)

even though we are unable to determine explicitly the form which this fugction

takes. Furthermore, in some neighborhood of the equlhbnum value Y, the
following identical equality will hold:

Y=C(Y,T,)+ 1, + G,

This type of identity will be referred to as an equilibrium identity because it is
nothing but the equilibrium condition with the Y variable replaced by its
equilibrium value Y. Now that Y has entered into the picture, it may seem at first
blush that simple partial differentiation of this identity will yield any desired
comparative-static derivative, say, 8}7/ dT,. This, unfortunately, is not the case.
Since Y is a function of T, the two arguments of the C function are not
independent. Specifically, T; can in this case affect C not only directly, but also
indirectly via Y. Consequently, partial differentiation is no longer appropriate for
our purposes. How, then, do we tackle this situation?

The answer is that we must resort to total differentiation (as against partial
differentiation). Based on the notion of total differentials, the process of total
differentiation can lead us to the related concept of total derivative, which
measures the rate of change of a function such as C(Y, T,) with respect to the
argument 7;, when T, also affects the other argument, Y. Thus, once we become
familiar with these concepts, we shall be able to deal with functions whose
arguments are not all independent, and that would remove the major stumbling
block we have so far encountered in our study of the comparative statics of a
general-function model. As a prelude to the discussion of these concepts, how-
ever, we should first introduce the notion of differentials.

8.1 DIFFERENTIALS

The symbol dy /dx, for the derivative of the function y = f(x), has hitherto been
regarded as a single entity. We shall now reinterpret it as a ratio of two quantities,
dy and dx.
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Differentials and Derivatives

Given a function y = f(x), a specific Ax will call forth a corresponding Ay, and
we can use the difference quotient Ay/Ax to represent the rate of change of y
w1th Tespect to x. Since it is true that

(8.1) - Ay= (—A—x)A)B

the magnitude of Ay can be found, once the rate of change Ay/Ax and the
variation in x are known.

When Ax is infinitesimal, Ay will also be infinitesimal, and the difference
quotient Ay/Ax will turn into the derivative dy/dx. Then, if we denote the
infinitesimal changes in x and y, respectively, by dx and dy (in place of Ax and
Ay), the identity (8.1) will become

(82 ( )dx) or  dy= f(x)ij

The symbols dy and dx are called the differentials of y and x, respectively.
Dividing the two identities in (8.2) throughout by dx, we have

: (dv) _ (d . @)
(8.2) m—(dx) O (d)—f()

This result shows that the derivative (dy/dx) = f'(x) may be interpreted as the
quotient of two separate differentials dy and dx.

On the basis of (8.2), once we are given the derivative of a function y = f(x),
dy can immediately be written as f'(x) dx. The derivative f’(x) may thus be
viewed as a “converter” that serves to convert an infinitesimal change dx into a
corresponding change dy.

Example 1 Given y = 3x? + Tx — 5, find dy. The derivative of the function is
dy/dx = 6x + T; thus the desired differential is

(83) dy=(6x+7)dx |

This result can be used to calculate the change in y resulting from a given
change in x. It should be remembered, however, that the differentials dy and dx
refer to infinitesimal changes only; hence, if we put an x change of substantial
magnitude (Ax) into (8.3), the resulting dy can only serve as an approximation to
the exact value of the corresponding y change (Ay). Let us calculate dy from
(8.3), assuming that x is to change from 5 to 5.01. To do this, we set x = 5 and
dx = 0.01 and substitute these into (8.3). The result is dy = 37(0.01) = 0.37. How
does this figure compare with the acrual change in y? When x = 5 (before
change), we can compute from the given function that y = 105, but when
x = 5.01 (after change), we get y = 105.3703. The true change in y is therefore
Ay = 0.3703, for which our answer dy = 0.37 constitutes an approximation with
an error of 0.0003.
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The source of error in the approximation can be illustrated in general by
means of Fig. 8.1. For the given Ax depicted in the figure (distance 4C), the true
change in y, or Ay, is the distance CB. Had we used the slope of line AB
(= Ay/Ax = CB/AC) as the relevant rate of change and applied (8 1) to find
Ay, we would have obtained the correct answer: e
Ay CB
Ay—(A )Ax EAC CB
But, in using (8.3)—a specific version of (8.2)—we actually employed the
derivative dy/dx in lieu of A y/Ax; that is, we used the slope of the tangent line
AD (= CD/AC) instead of the slope of line AB in the calculation. Thus we
obtained the answer

dy = (Zi)Ax—%AC cD
which differs from the true change CB by an error of DB. This error can, of
course, be expected to become smaller, the smaller is the Ax, that is, the closer the
point B moves toward point A.

The process of finding the differential dy is called differentiation. Recall that
we have been using this term as a synonym for derivation, without having given
an adequate explanation. In the light of our interpretation of a derivative as a
quotient of two differentials, however, the rationale of the term becomes self-evi-
dent. It is still somewhat ambiguous, though, to use the single term “differentia-
tion” to refer to the process of finding the differential dy as well as to that of
finding the derivative dy/dx. To avoid confusion, the usual practice is to qualify
the word “differentiation” with the phrase “with respect to x” when we take the
derivative dy/dx. It should be clear from (8.2) that, given a function y = f(x), we

y={(x)

Ay

0]

Figure 8.1
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can always (1) transform a known differential dy into the derivative dy/dx by
dividing it by dx and (2) transform a known derivative dy /dx into the differential
dy by multiplying it by dx.

Differentials and Point Elasticity

As an illustration of the application of differentials in economics, let us consider
the notion of the elasticity of a function. For a demand function Q = f(P), for
instance, the elasticity is defined as (AQ/Q) /(AP/P). Now, if the change in P is.
infinitesimal, the expresswns AP and AQ will reduce to the differentials dP and
dQ, and the elasticity measure will then assume the sense of the point elasticity of
demand denoted by &, (the Greek letter epsﬂon for “elasticity”):*
| . _dQ/Q _dQ/dP .’ S LT
B9) = pp = o/ © =
Observe that in the expression on the extreme right we have rearranged the
differentials dQ and dP into a ratio dQ/dP, which can be construed as the
derivative, or the marginal function, of the demand function Q = f( P). Since we
can interpret similarly the ratio Q/P in the denominator as the average function
of the demand function, the point elasticity of demand ¢, in (8.4) is seen to be the
ratio of the marginal function to the average function of the demand function.
Indeed, this last-described relationship is valid not only for the demand
function but also for any other function, because for any given total function
¥ = f(x) we can write the formula for the point elasticity of y with respect to x as

(8.5) Ld)’/ dx _ marginal function )

»x y/x average function
As a matter of convention, the absolute value of the elasticity measure is used
in deciding whether the function is elastic at a particular point. In the case of a

demand function, for instance, we stipulate:

elastic
The demand is { of unit elasticity ) at a point when |e/|
inelastic

AV

e,

Example 2 Find e, if the demand function is Q = 100 — 2P, The margmal
function and the average function of the given demand are:

%=—,2 and %=100;2P
so their ratio will give us
-P
4750 - P
* The point-elasticity measure can alternatively be interpreted as the limit of i%;g = Ag;iP

as AP — 0, which gives the same result as (8.4).
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As written, the elasticity is shown as a function of P. As soon as a specific
price is chosen, however, the point elasticity will be determinate in magnitude.
When P = 25, for instance, we have ¢, = — 1, or |¢,| = 1, so that the demand
elasticity is unitary at that point. When P = 30, in contrast, we have |e,| = 1.5;
hence, demand is elastic at that price. More generally, it may be verified that we
have |e,| > 1 for 25 < P <50 and |g;] <1 for 0 < P <25 in the present
example. (Can a price P > 50 be considered meaningful here?)

At the risk of digressing a trifle, it may also be added here that the
interpretation of the ratio of two differentials as a derivative-—and the consequent
transformation of the elasticity formula of a function into a ratio of its marginal
to its average—makes possible a quick way of determining the point elasticity
graphically. The two diagrams in Fig. 8.2 illustrate the cases, respectively, of a
negatively sloped curve and a positively sloped curve. In each case, the value of
the marginal function at point 4 on the curve, or at x = x, in the domain, is
measured by the slope of the tangent line AB. The value of the average function,
on the other hand, is in each case measured by the slope of line OA (the line
joining the point of origin with the given point 4 on the curve, like a radius
vector), because at point A we have y = x4 and x = Ox,, so that the average is
y/x = x,A/0x, = slope of OA. The elasticity at point 4 can thus be readily
ascertained by comparing the numerical values of the two slopes involved: If AB
is steeper than OA, the function is elastic at point A; in the opposite case, it is
inelastic at 4. Accordingly, the function pictured in Fig. 8.2a is inelastic at 4 (or
at x = x,), whereas the one in diagram b is elastic at 4.

Moreover, the two slopes under comparison are directly dependent on the
respective sizes of the two angles 8, and 0, (Greek letter theta; the subscripts m
and a indicate marginal and average, respectively). Thus we may, alternatively,
compare these two angles instead of the two corresponding slopes. Referring to
Fig. 8.2 again, you can see that 8, < §, at point 4 in diagram g, indicating that

(a) ‘ (b)

Figure 8.2



COMPARATIVE-STATIC ANALYSIS OF GENERAL-FUNCTION MODELS 193

Figure 83

the marginal falls short of the average in numerical value; thus the function is
inelastic at point 4. The exact opposite is true in diagram b.

Sometimes, we are interested in locating a point of unitary elasticity on a
given curve. This can now be done easily. If the curve is negatively sloped, as in
Fig. 8.3a, we should find a point C such that the line OC and the tangent BC will
make the same-sized angle with the x axis, though in the opposite direction. In the
case of a positively sloped curve, as in Fig. 8.3b, one has only to find a point C
such that the tangent line at C, when properly extended, passes through the point
of origin.

We must warn you that the graphical method just described is based on the
assumption that the function y = f(x) is plotted with the dependent variable y on
the vertical axis. In particular, in applying the method to a demand curve, we
should make sure that Q is on the vertical axis. (Suppose that Q is actually plotted
on the horizontal axis. How should our method of reading the point elasticity be
modified?) ‘ ‘

EXERCISE 8.1

1 Find the differential dy, given:
(@) y=—x(x*+3) (b)) y=(x—-8(x +3) (oy=

x2+1

2 Given the import function M = f(Y), where M is imports and Y is national income,
express the income elasticity of imports &,y in terms of the propensities to import.

3 Given the consumption function C = a + bY (witha > 0; 0 < b < I):

(a) Find its marginal function and its average function.

(b) Find the income elasticity of consumption .y, and determine its sign, assuming
Y>0 T

(¢) Show that this consumption function is inelastic at all positive income levels.
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4 Find the point elasticity of demand, given Q = k/P", where k& and n are positive
constants.

(a) Does the elasticity depend on the price in this case?

(b) In the special case where n = 1, what is the shape of the demand curve? What is the
point elasticity of demand?

8.2 TOTAL DIFFERENTIALS

The concept of differentials can easily be extended to a function of two or more
independent variables. Consider a saving function

(8.6) S=S5(v,i)

where S is savings, Y is national income, and / is interest rate. This function is
assumed—as all the functions we shall use here will be assumed—to be continu--
ous and to possess continuous (partial) derivatives, which is another way of
saying that it is smooth and differentiable everywhere. We know that the partial_
derivative dS/dY (or Sy) measures the rate of change of S with respect to an
infinitesimal change in Y or, in short, that it signifies the marginal propensity to
save. As a result, the change in S due to that change in Y may be represented by
the expression (3S/dY) dY, which is comparable to the right-hand expression in
(8.2). By the same token, the change in S resulting from an infinitesimal change in

i can be denoted as ( 8S/81) di. The’ total change in S will theg be egual to

as as
4dS —aT/dY'F'a—'dll

or, in an alternative notation,_
dS SYdY+ Sdl _}

Note that the two partial derivatives Sy and S; again play the role of “converters”
that serve to convert the 1nﬁn1te51mal changes dY and di, respectively, into a
corresponding change dS. The expression dS, being the sum of the changes from
both sources, is called the rotal differential of the saving function. And the process
of ﬁndmg such a total dlfferentlal is called 7otal dzﬁ”erentzatzon

It 1s'p0551ble of course, that Y maycTzTﬁge while / remains constant. In that
case, di = 0, and the total differential will reduce to a partial_differential:
dS = (9S/9Y) dY. Dividing both sides by dY, we get

Tas _(dsy TN

(?Y ( dY)
Thus it is clear that the partial derivative dS/dY can also be interpreted as the
ratio of two differentials dS and d7, with the proviso that i, the other independent
variable in the function, is held constant. In a wholly analogous manner, we can
form another partial differential dS = (3S/di) di when dY = 0, and can then
interpret the partial derivative dS/di as the ratio of the differential dS (with Y

i constant \
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held constant) to the differential di. Note that although dS and di can now each
stand alone as a differential, the expression dS/di remains as a single entity.
The more general case of a function of n independent variables can be
exemplified by, say, a utility function in the general form
(8.7) U= U(x,, X345 X,)
The total differential of this function can be written as
au U

dU:a—xldx' +:,);;

aU
+ 5%, dx,

dx, +

n

or  dU=Ugdx, + Updx,+ -+ Udx, =2 Udx,
= 1 7

in which each term on the right side indicates the amount of change in U resulting
from an 1nﬁn1te51ma1 change i _Q_Q_ngzof the mdependent variables. ‘Economically,
the first term, U dx,, means the marginal utility of the first commodlty times the
increment in consumptlon of that commodity, and similarly for the other terms.
The sum of these thus represents the total change in utility originating from all _

_possible sources of change. - '

Like any other function, the sav1ng function (8.6) and the utility function
(8.7) can both be expected to give_ rise to elasticity measures similar to that
defined in (8 5). But each ach elasticity measure must in these instances be defined in
terms of the change i in one of the 1ndependent variables only; there will thus be
two such h elasticity measures to the saving function, and n of them to the ut1hty
function. These are accordlngllcalled partzal ‘elasticities. For the saving function,
lEpartlal elasticities may be written as

r,,__._._—\m_

L R T |
Esr = 5/Y TS L\S/z "9 s —
For the utility function, the n partial elasticities can be concisely denoted as

follows:

EXERCISE 8.2

1 Find the total differential, given:

(a) z=3x>+ xy—2y° (b) U=2x, + 9%,x, + x3
2 Find the total differential, given:
X, 2x,%,

b)y=

X+ X, x; + x,

(a) y=

3 The supply function of a certain commodity is:
Q=a+bP>+ R/ (a<0, b>0) [R:rainfall] !
Find the price elasticity of supply e, p, and the rainfall elasticity of supply egr-
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4 How do the two partial elasticities in the last problem vary with P and R? In a
monotonic fashion (assuming positive P and R)?

5 The foreign demand for our exports X depends on the foreign income Y, and our price
level P: X =¥/ + P~2. Find the partial elasucuy of forelgn demand for our exports
with respect to our price level.

8.3 RULES OF DIFFERENTIALS

A straightforward way of finding the total differential dy, given a function

y=f(x), %)
is to find the partial derivatives f, and f, and substitute these into the equatlon
dy = fidx, + f, dx, )
But sometimes it may be more convenient to apply certain rules of differentials
which, in view of their striking resemblance to the derivative formulas studied
before, are exceedingly easy to remember.

Let k be a constant and u and v be two functions of the variables x, and x,.
Then the following rules are valid:*

Rulel dk=0 (cf. constant-function rule) ‘[7( ¥ - \/°\
Rule I d(cu™)=cnu"'du - (cf. powér-function rule) | Kﬁ X /
Rule Il d(u + v)=du + dv (cf. sum-difference rule) ’ l
Rule IV d(uv)=vdu + udv (cf. product rule) ]

1
Rule V d(%) = —(vdu — udv) (cf. quotient rule)
v : ‘

Instead of proving these rules here, we shall merely illustrate their practical
application.
Example 1 Find the total differential dy of the function

y=5x}+ 3x,

The straightfoward method calls for the evaluation of the partial derivatives
fi1 = 10x, and f, = 3, which will then enable us to write

dy = fydx, + fydx, = 10x,dx, + 3dx,

* All the rules of differentials discussed in this section are also applicable when u and o are
themselves the independent variables (rather than functions of some other variables x, and x,).
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We may, however, let u = 5x? and v = 3x, and apply the above mentloned rules
to get the identical answer as follows:
dy = d(5x}) +d(3x,)  [byRulelll]
= 10x,dx, + 3dx, [by Rule 1I]

Example 2 Find the total differential of the function
y =3x? + x,x3

Since f, = 6x, + x3 and f, = 2x,x,, the desired differential is. i
dy = (6x, + x2) dx, + 2x,x, dx,

By applying the given rules, the same result can be arrived at thus:

dy = d(3x?) + d(x,x3) [by Rule ITT] ¢
= 6x,dx, + x}dx, + x,d(x?) [by Rules II and IV]
=(6x, + x3) dx, + 2x,x, dx, [by Rule II]
Example 3 Find the total differential of the funCthIyl 5 -,/: v o ¥, ) (e, Y
y=xl+x2 /(/r/ FChe /cy/g‘w/ Q& T 2
2x} - ST X,
In view of the fact that the partial derivatives in this case are
— (% +2x,) 1
= — and = —
fl 2xi; f2 2x12

(check these as an exercise), the desired differential is

- (x, + 2x,) 1
dy = ————=dx; + —dx
g 2x} P a2 P
However, the same result may also be obtained by application of the rules as
follows: : :
-
dy = P [2x12d(x, +x,) — ()c1 + x,) d(2x? )] [by Rule V]

1
= e [2x2(dxl +dxy) — (x, + x2)4x dx,] [by Rules I1I and 1I]
1

= > 4[ 2x,(x, + 2x2) dx, + 2x1 dx, |
—(x, + 2x,) 1

= NI e+ ——dx
2x} 2x} 2
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These rules can naturally be extended to cases where more than two functions
of x, and x, are involved. In particular, we can add the following two rules to the
previous collection:

Rule VI d(ut o+t w)=du+dv+dw
Rule VII d(uvow) = owdu + uwdo + uv dw

To derive Rule VII, we can employ the familiar trick of first letting z = oW,
so that

d(uow) = d(uz) = zdu+ udz  [by Rule IV]

Then, by applying Rule IV again to dz, we get the intermediate result
dz =d(vw) =wdv + vdw

which, when substituted into the preceding equation, will yield
d(uow) = owdu + u(wdv + vdw) = owdu + uwdv + uv dw

as the desired final result. A similar procedure can be employed to derive Rule VI.

EXERCISE 83

1 Use the rules of d1ﬂ"erent1als to find (@) dz from z = 3x* + xy — 23 and (b) dU from
U= 2x, + 9x,x, + x3. Check your answers against those obtained for Exercise 8.2-1.
2 Use the rules of differentials to find dy from the following functions:
X _ 2x,x,

(@) y= x; + x, (5) y X, + x;
Check your answers against those obtained for Exercise 8.2-2.
3 Giveny = 3x,(2x, — 1)(x; + 5)

(a) Find dy by Rule VIIL

(b) Find the partial differential of y, if dx, = dx, = 0.

(¢) Derive from the above result the partial derivative dy/dx,.

4 Prove Rules II, III, IV, and V, assuming u and v to be the mdependent variables (rather
than functions of some other variables).

~84 TOTAL DERIVATIVES

With the notion of differentials at our disposal, we are now equipped to answer
the question posed at the beginning of the chapter, namely, how we find the rate
of change of the function C(Y, T,) with respect to T,, when Y and 1, are related.
As previously mentioned, the answer lies in the concept of total derlvauve Unlike
a partial derivative, a total derivative does not require the argument ¥ to remain
constant as T varies, and can thus allow for the postulated relationship between
-ll'litw_oirglments ‘
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Figure 8.4

Finding the Total Derivative

To carry on the discussion in a more general framework, let us consider any
function

(88) y=f(x,w) where x=g(w)

with the three variables y, x, and w related to one another as in Fig. 8.4. In this
figure, which we shall refer to as a channel map, it is clearly seen that w—the
ultimate source of change in this case—can affect y through two channels: (1)
indirectly, via the function g and then f (the straight arrows), and (2) directly, via
the function f (the curved arrow), Whereas the partial derivative [, is adequate for
expressing the direct effect alone, a total derlvatlve s s needed 1o ), EXpress bgm_
effects jointly.

To obtain this total derivative, we first differentiate y totally, to get the total
differential dy fodxt f dw.. When both sides of this equation are divided by
the differential dw, the result is

dy _ dx
SDde ()
T 9x dw aw dw

Since w differentials may be interpreted as a derivative, the
expressron dy/dw on_the left may be regarded as some measure of the rate of
change of y with respect to w. Moreover, if the two terms on the right side of (8.9)
can be identified, respectively, as the indirect and direct effects of w on y. then
dy /dw wrll indeed be the total derrvatlve we are seeking. Now the second term’

the curved arrow in Frg 8.4. That the ﬁrst term (% Z—x) measures the 1nd1rect

effect w11 also becgme evident when we analyze it with the help of some arrows as
follows ¥

a'x . . . . .

—— —— s reminiscent of the cham rule (composite-function rule) discussed
Ix dw S,

earlier, except that here a pama.r derivative appearsMuse f happens to be a | funcnon of more than
one variable.

/"————#—,

* The expression
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The change in w (namely, dw) is in the first instance transmitted to the variable x,
and through the resulting change in x (namely, dx) it is relayed to the variable y.
But this is precisely the indirect effect, as depicted by the sequence of straight
arrows in Fig. 8.4. Hence, the expression in (8.9) does indeed represent the desired
total derivative. The process of finding the total derivative dy/dw is referred to as
total differentiation of y with respect to w.

Example 1 Find the total derivative dy/dw, given the function
y=f(x,w)=3x—w?> where x=g(w)=2w+w+4
By virtue of (8.9), the total derivative should be 5;/] = HdO ]
j—f; =3@4w+ 1)+ (-2w)=10w + 3

As a check, we may substitute the function g into the function f, to get
y=302w?+w+4)—w?=5w?2+ 3w+ 12

which is now a function of w alone. The derivative dy/dw is then easily found to
be 10w + 3, the identical answer.

Example 2 1f we have a utility function U = U(c, s), where ¢ is the amount of
coffee consumed and s is the amount of sugar consumed, and another function
's = g(c) indicating the complementarity between these two goods, then we can
simply write . ___ '

D
[U=Ule, g(c)] |
from which it follows that

| au _ U U

ac ~ 3 T dg(c) g'(g

é Variation on the_ Theme_

The situation is only slightly more complicated when we have

x, = g(w)

(8.10) ¥ =f(x), x,,w) Where{x2=h(w)

The channel map will now appear as in Fig. 8.5. This time, the variable w can
affect y through three channels: (1) indirectly, via the function g and then f, (2)
again indirectly, via the function 4 and then f, and (3) directly via f. From our
previous experience, these three effects are expected to be expressible, respec-

ay dX| ay de (9)1 . . ..
3x, dw’ ax, dw’ and e This expectation is indeed correct, for

when we take the total differential of y, and then divide both sides by dw, we do

tively, as
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Figure 8.5

get
by _ gk A o d
@) g =haw TRy thay
_Oydq  dydg 9y
T 9x, dw dx, dw aw

which is comparable to (8.9) above.

Example 3 Let the production function be
0= Q( K,L,t )

where, aside from the two inputs K and L, there is a third argument #, denoting
time. The presence of the ¢ argument indicates that the production function can
shift over time in reflection of technological changes. Thus this is a dynamic
rather than a static production function. Since capital and labor, too, can change
over time, we may write

K=K() and L=0L(1)
Then the rate of change of output with respect to time can be expressed, in line
with the total-derivative formula (8.11), as

do _ 90dK , 9QdL _ 30

o oka Tora

or, in an alternative symbolism,

9 _ opk(1) + 0, L(1) + Q,

Another Variation on the Theme

When the ultimate source of change, w in (8.10), is replaced by two coexisting
sources, ¥ and v, the situation becomes the following:

x, = g(u,v)

(812)  y=/(x,x.uo) where) L0
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While the channel map will now contain more arrows, the principle of its
construction remains the same; we shall, therefore, leave it to you to draw. To
find the total derivative of y with respect to u (while v is held constant), we may
once again resort to taking the total differential of y, and then dividing through
by the differential du, with the result:

dy _ 9y dx, | 9y dx, | dydu  9ydo
du  9x, du dx, du dudu  dv du

dy dx, dy dx, dy [dv P .
ox, du ox, du » i 0 since v is held constant

In view of the fact that we are varying « while holding v constant (as a single
derivative cannot handle changes in u and v both), however, the above result must
be modified in two ways: (1) the derivatives dx,/du and dx,/du on the right
should be rewritten with the partial sign as dx,/du and dx,/du, which is in line
with the functions g and 4 in (8.12); and (2) the ratio dy/du on the left should
also be interpreted as a partial derivative, even though—being derived through
the process of total differentiation of y—it is actually in the nature of a rotal
derivative. For this reason, we shall refer to it by the explicit name of partial total
derivative, and denote it by §y/§u (with § rather than ), in order to distinguish
it from the simple partial derivative dy/du which, as the above result shows, is
but one of three component terms that add up to the partial total derivative.*
With these modifications, our result becomes

§y _ 9y 9x 8y dx, dy .
(8.13) Su " 9x, 9u + 9x; + F»

which is comparable to (8.11). Note the appearance of the symbol dy/du on the
right, which necessitates the adoption of the new symbol §y/§u on the left to
indicate the broader concept of a partial total derivative. In a perfectly analogous
manner, we can derive the other partial total derivative, §y/§v. Inasmuch as the
roles of u and v are symmetrical in (8.12), however, a simpler alternative is
available to us. All we have to do to obtain §y/§v is to replace the symbol u in
(8.13) by the symbol v throughout.

The use of the new symbols §y/§u and §y/§v for the partial total deriva-
tives, if unconventional, serves the good purpose of avoiding confusion with the
simple partial derivatives dy/du and dy/dv that can arise from the function f
alone in (8.12). However, in the special case where the f function takes the form of
y = f(x,, x,) without the arguments v and v, the simple partial derivatives
dy/du and dy/dv are not defined. Hence, it may not be inappropriate in such a

* An alternative way of denoting this partial total derivative is:

dy dy
—_ or -
du v constant du do=0
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case to use the latter symbols for the partial total derivatives of y with respect to u
and v, since no confusion is likely to arise. Even in that event, though, the use of a
special symbol is advisable for the sake of greater clarity.

Some General Remarks

To conclude this section, we offer three general remarks regarding total derivative
and total differentiation:

1. In the cases we have discussed, the situation involves without exception a
variable that is functionally dependent on a second variable, which is in turn
dependent functionally on a third variable. As a consequence, the notion of a
chain inevitably enters the picture, as evidenced by the appearance of
a product (or products) of two derivative expressions as the component(s) of
a total derivative. For this reason, the total-derivative formulas in (8.9),
(8.11), and (8.13) can also be regarded as expressions of the chain rule, or the
composite-function rule—a more sophisticated version of the chain rule
introduced in Sec. 7.3.

2. The chain of derivatives does not have to be limited to only two “links” (two
derivatives being multiplied); the concept of total derivative should be
extendible to cases where there are three or more links in the composite
function.

3. In all cases discussed, total derivatives—including those which have been
called partial total derivatives—measure rates of change with respect to some
ultimate variables in the chain or, in other words, with respect to certain
variables which are in a sense exogenous and which are nor expressed as
functions of some other variables. The essence of the total derivative and of
the process of total differentiation is to make due allowance for all the
channels, indirect as well as direct, through which the effects of a change in
an ultimate variable can possibly be carried to the particular dependent
variable under study. '

EXERCISE 84

1 Find the total derivative dz/dy, given:
(a) z=f(x,y)=2x+ xy — y?, where x = g(y) = 3y?
(b) z=6x*—3xy + 2y%, where x = 1/y
(&) z=(x+y)x—~2y), wherex=2—Ty

2 Find the total derivative dz/dt, given:
(a) z=x>—8xy — y*, wherex =3randy=1—1¢
(b) z=3u+vt,whereu=2t>and v =1+ 1
(¢) z=f(x,y,t),wherex=a+ brandy = c + dt
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3 Find the rate of change of output with respect to time, if the production function 1is
Q = A(1)K°LP, where A(f) is an increasing function of ¢, and K = K, + at, ané
L=1L,+ bt
4 Find the partial total derivatives §/8u and §W /§v if:

(a) W=ax?+ bxy + cu, where x = au + Bv and y = yu

(b) W= f(x,, x,), where x, = 5u® + 3v and x, = u — 40’
5 Draw a channel map appropriate to the case of (8.12).

6 Derive the expression for §y/§v formally from (8.12) by taking the total differential of »
and then dividing through by dv.

(8.5 DERIVATIVES OF IMPLICIT FUNCTIONS

The concept of total differentials can also enable us to find the derivatives of
so-called “implicit functions.”

Implicit Functions

A function given in the form of y = f(x), say,

614) (p=/() =3

is called an explicit function, because the variable y is explicitly expressed as a
function of x. If this function is written alternatively in the equivalent form

(8.14) y-3x*=0_

however, we no longer have an explicit function. Rather, the function (8.14) is
then only implicitly defined by the equation (8.14'). When we are (only) given an
equation in the form of (8.14"), therefore, the function y = f(x) which it implies,
and whose specific form may not even be known to us, is referred to as an implicit
Junction. S
An equation in the form of (8.14’) can be denoted in general by F(y, x) = 0,
because its left side is a_function of the two variables y and x. Note that we are
using the capital letter F here to distinguish it from the function f; the function F,
representing the left-side expression in (8.14’), has two arguments, y and"x,
whereas the function f, representing the implicit function, has only one argument,
x. There may, of course, be more than two arguments in the F function. For
instance, we may encounter an equation F(y, x,,..., x,,) = 0. Such an equation
may also define an implicit function y = f(x,,..., x,,).
The equivocal word “may” in the last sentence was used advisqﬂly. For,
whereas an explicit function, say, y = f(x), can always be transformed into an
equation F(y, x) = 0 by simply transposing the f(x) expression to the left side of
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the equals sign, the reverse transformation is not always possible. Indeed, in
certain cases, a given equation in the form of F(y, x) = 0 may not implicitly
define a function y = f(x). For instance, the equation x? + y? = 0 is satisfied
only at the point of origin (0,0), and hence yields no meaningful function to
speak of. As another example, the equation

(8.15) . F(ﬂy,/x')‘ =x2+y2-9=0), oo tll

implies not a function, but a relation, because (8.15) plots as a circle, as shown in
Fig. 8.6, so that no unique value of y corresponds to each value of x. Note,
however, that if we restrict y to nonnegative values, then we will have the upper
half of the circle only, and that does constitute a function, namely, y =
+ V9 — x?. Similarly, the lower half of the circle, with y values nonpositive,
constitutes another function, y = — V9 — x?. In contrast, neither the left half
nor the right half of the circle can qualify as a function.

In view of this uncertainty, it becomes of interest to ask whether there are
known general conditions under which we can be sure that a given equation in the
form of :

(8.16)  F(y,x,..., x,,) =0

(8.17) oy =f(Xyyeens X))

The answer to this lies in the so-called “implicit-function theorem,” which states

+
y = + 9—x2
(upper half)

B ry?=9
(circle)

-8l 2 -1 0 1 2 |3 ¥
\ 4 /
\ /
\\ -2+ //y— o 2
\\‘-_’/ (lower half)
-3

Figure 8.6
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that:

N
Given (8. 16) if (a) the function F has continuous partial derivatives
F, F,..., F,, and if (b) at a point (y,, X,g, ..., X,,) satisfying the equation
(8 16) F is nonzero then there exists an m-dimensional neighborhood of
(X105--+» mO) N, in which y is an implicitly defined function of the variables
Xis.-es X, in the form of (8.17). This implicit function satisfies Yo =
J(X\0s- .-, X,,0). 1t also satisfies the equation (8.16) for every m-tuple (x,,.. ..
x,,) in the neighborhood N—thereby giving (8.16) the status of an identity in
that neighborhood. Moreover, the implicit function f is continuous, and has
continuous partial derivatives f,,..., f, .

Let us apply this theorem to the equation of the circle, (8.15), which contains
only one x variable. First, we can duly verify that F, =2y and F, = 2x are
continuous, as required. Then we note that F, is nonzero except when y = 0, that
is, except at the leftmost point (— 3, 0) and the rightmost point (3,0) on the circle.
Thus, around any point on the circle except (— 3,0) and (3,0), we can construct a
neighborhood in which the equation (8.15) defines an implicit function y=f(x).
This is easily verifiable in Fig. 8.6, where it is indeed possible to draw, say, a
rectangle around any point on the circle—except (—3,0) and (3,0)—such that
the portion of the circle enclosed therein will constitute the graph of a function,
with a unique y value for each value of x in that rectangle.

Several things should be noted about the implicit-function theorem. First, the
conditions cited in the theorem are in the nature of sufficient (but not necessary)
conditions. This means that if we happen to find F, =0 at a point satisfying
(8.16), we cannot use the theorem to deny the ex1stence of an implicit function
around that point. For such a function may in fact exist (see Exercise 8.5-4).*
Second, even if an implicit function f is assured to exist, the theorem gives no clue
as to the specific form the function f takes. Nor, for that matter, does it tell us the
exact size of the neighborhood N in which the implicit function is defined.
However, despite these limitations, this theorem is one of great importance. For
whenever the conditions of the theorem are satisfied, it now becomes meaningful
to talk about and make use of a function such as (8.17), even if our model may
contain an equation (8.16) which is difficult or impossible to solve explicitly for y
in terms of the x variables. Moreover, since the theorem also guarantees the
existence of the partial derivatives f),..., f,, it is now also meaningful to talk
about these derivatives of the implicit function.

Derivatives of Implicit Functions

If the equation F(y, x,,..., x,,) = 0 can be solved for y, we can explicitly write
out the function y = f(x,,..., x,,), and find its derivatives by the methods

* On the other hand, if F = 0 in an entire neighborhood, then it can be concluded that no implicit
function is defined in that neighborhood. By the same token if F, = 0 identically, then no implicit
function exists anywhere.
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learned before. For instance, (8.15) can be solved to yield two separate functions
yr=+ \/9——? [upper half of circle]
y~== —V9 —x2  [lower half of circle]

and their derivatives can be found as follows:

(8.15)

M__d_ _ 22 2y~ /20 _
dx - dx(9 X ) —2(9 X ) ( 2X)
—Xx —x
=== (+0)
V9 — x? Y
(8.18) - J
L_____ 2N V21 Y A V2T
- I CEED e ER CEP DR CrE)
x —Xx
=— = "+ 0
e
But what if the given equation, F(y, x,,..., x,,) = 0, cannot be solved for y

explicitly? In this case, if under the terms of the implicit-function theorem an
implicit function is known to exist, we can still obtain the desired derivatives
without having to solve for y first. To do this, we make use of the so-called
*implicit-function rule” —a rule that can give us the derivatives of every implicit
function defined by the given equation. The development of this rule depends on
the following basic facts: (1) if two expressions are identically equal, their
respective total differentials must be equal;* (2) differentiation of an expression
that involves y, x,,..., x,, will yield an expression involving the differentials
dy, dx,,..., dx,; and (3) if we divide dy by dx,, and let all the other differentials
(dx,,..., dx,,) be zero, the quotient can be interpreted as the partial derivative

* Take, for example, the identity

x?=yr=(x+y)x-»)

This is an identity because the two sides are equal for any values of x and y that one may assign.
Taking the total differential of each side, we have

d(leftside) = 2xdx — 2ydy
d(rightside) = (x —p) d(x +p) + (x +y) d(x —y)
= (x —y)(dx +dy) + (x + y)(dx — dy)

=2xdx — 2ydy

The two results are indeed equal. If two expressions are nor identically equal, but are equal only for
certain specific values of the variables, however, their total differentials will not be equal. The equation

xz—_v2=x2+y2— 2
for instance, is valid only for y = + 1. The total differentials of the two sides are
d(left side) = 2xdx — 2y dy
d(right side) = 2x dx + 2ydy

which are not equal. Note, in particular, that they are not even equal aty = +1.
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dy/dx,; similar derivatives can be obtained if we divide dy by dx,, etc. Applying
these facts to the equation F(y, x,,..., x,,) = 0O—which, we recall, has the status
of an identity in the neighborhood N in which the implicit function is defined —we
can write dF = d0, or

F,dy + Fydx, + -~ + F, dx, = 0

Suppose that only y and x, are allowed to vary (only dy and dx, are not set equal
to zero). Then the above equatlon reduces to F,dy + F,dx, = 0. Upon dividing
through by dx,, and solving for dy/dx,, we then get

@ dy

_ F,
dxl other variables constant X1 F)’
By similar means, we can derive all the other partial derivatives of the implicit

function f. These may conveniently be summarized in a general rule—the

implicit-function rule—as follows: Given F(y, x,,..., x,,) =0, if an implicit
function y = f(x,,..., x,,) exists, then the partial derivatives of f are

dy F - _
(8.19) x - " F (i=12,...,m)

v
In the simple case where the given equation is F(y, x) = 0, the rule gives
y__E

dx Fy

(8.19)

What this rule states is that, even if the specific form of the implicit function
is not known to us, we can nevertheless find its derivative(s) by taking the
negative of the ratio of a pair of partial derivatives of the F function which
appears in the given equation that defines the implicit function. Observe that F,
always appears in the denominator of the ratio. This being the case, it is not
admissible to have F, = 0. Since the implicit-function theorem specifies that
F, # 0 at the point around which the implicit function is defined, the problem of
a zero denominator is automatically taken care of in the relevant neighborhood of
that point.

Example 1 Find dy/dx for the implicit function defined by (8.14"). Since F( ¥, X)
takes the form of y — 3x*, we have, by (8.19"),

@& _ ﬂl = 12x3 _ 12y i .
dx UF° 1

In this particular case, we can easily solve the given equation for y, to get
= 3x*. Thus the correctness of the above derivative is easily verified.

Example 2 Find dy/dx for the implicit functions defined by the equation of the
circle (8.15). This time we have F(y, x) = x*> + y? — 9; thus F, = 2y and F, = 2x.
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By (8.19), the desired derivative is

& _ _x_ X .
Earlier, it was asserted that the implicit-function rule gives us the derivative of
every implicit function defined by a given equation. Let us verify this with the two
functions in (8.15") and their derivatives in (8.18). If we substitute y* for y in the
implicit-function-rule result dy/dx = —x/y, we will indeed obtain the derivative
dy™ /dx as shown in (8.18); similarly, the substitution of y~ for y will yield the
other derivative in (8.18). Thus our earlier assertion is duly verified.

Example 3 Find dy/dx for any implicit function(s) that may be defined by the
equation F(y, x,w) =y*x? + w> + yxw — 3 = 0. This equation is not easily
solved for y. But since F,, F,, and F,, are all obviously continuous, and since
F,=3 y2x? + xw is 1ndeed nonzero at a point such as (1, 1, 1) which satisfies the
given equation, an implicit function y = f(x, w) assuredly exists around that
point at least. It is thus meaningful to talk about the derivative dy/dx. By (8 19),
moreover, we can immediately write
dy E 2y 3 4+ yw

ax F, 3p2x? + xw
At the point (1, 1, 1), this derivative has the value — 3.

Example 4 Assume that the equation F(Q, K, L) = 0 implicitly defines a pro-
duction function Q = f(K, L). Let us find a way of expressing the marginal
physical products MPP, and MPP; in relation to the function F. Since the
margmal’products are simply the partial derivatives dQ/dK and dQ/dL, we can
apply the implicit-function rule and write

_90 - K 90 Fy
MPP, =K F, and MPP, = 3L F,
Aside from these, we can obtain yet another partial derivative,
oK _ _F
aL ~  Fy

from the equation F(Q, K, L) = 0. What is the economic meaning of JK/ aL?
The partial sign implies that the other variable, Q, is being held constant; it
follows that the changes in K and L described by this derivative are in the nature
of “compensatory” changes designed to keep the output Q constant at a specified
level. These are therefore the type of changes pertaining to movements along a
production isoguant. As a matter of fact, the derivative dK/dL is the measure of
the slope of such an isoquant, which is negative in the normal case. The absolute

* The restriction y # 0 is of course perfectly consistent with our earlier discussion of the equation
(8.15) that follows the statement of the implicit-function theorem.
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value of dK/dL, on the other hand, is the measure of the marginal rate of
technical substitution between the two inputs.

Extension to the Simultaneous-Equation Case

The implicit-function theorem also comes in a more general and powerful version
that deals with the conditions under which a set of simultaneous equations

F'(Ppseeos Yoy Xp5eeas X,y) = 0
820) FPi i X, x,) =0

F'"(Ylseees Yo Xppenes X)) =0
will assuredly define a set of implicit functions*

n=fxn %)
(8.21) »n=r(xx,)
Yu =L (x10000, %)
The generalized version of the theorem states that:

Given the equation system (8.20), if (a) the functions F!,..., F" all have
continuous partial derivatives with respect to all the y and x variables, and if
(b) at a point (yygs..., V,05 X10s+--» X,yp) Satisfying (8.20), the following
Jacobian determinant is nonzero:

aFt 9F o
dy, Iy ay,

oy =] 2 ] oFr 9F? | OF? 20
a(yl’...,yn) ayl ayZ ayn
aF"  9F" IF™
ay, Iy 3y,

then there exists an m-dimensional neighborhood of (x,y,..., x,4), N, in
which the variables y,,..., y, are functions of the variables x,,..., x,, in the
form of (8.21). These implicit functions satisfy

Yno =fn(x10" ] me)

* To view it another way, what these conditions serve to do is to assure us that the # equations in
(8.20) can in principle be solved for the n variables—y,, ..., y,—even if we may not be able to obtain
the solution (8.21) in an explicit form.
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They also satisty (8.20) for every m-tuple (x,,..., x,,) in the neighborhood N
—thereby giving (8.20) the status of a set of identities as far as this

neighborhood is concerned. Moreover, the implicit functions f',..., /" are
continuous and have continuous partial derivatives with respect to all the x
variables. ‘

As in the single-equation case, it is possible to find the partial derivatives of
the implicit functions directly from the n equations in (8.20), without having to
solve them for the y variables. Taking advantage of the fact that, in the
neighborhood N, (8.20) has the status of identities, we can take the total
differential of each of these, and write dF/ = 0 (j = 1,2,..., n). The result is a
set of equations involving the differentials dy,,..., dy, and dx,,..., dx,,. Specifi-
cally, after transposing the dx, terms to the right of the equals signs, we have

dF" dF! aF!

—dy, + —dy, + -+ + —d
dy, 7! dy, 72 ay, “
JF! JF'
= — (a—x]dx1 + .-+ Fmdx’")
dF* dF*? dF?
o+ gy, + -+ L
ayl Y 3}'2 y2 a ] Y
(8.22) JF? aF?
= — (‘5;:(1)61 + .-+ mdxm)
daF" JdF" dF"
+ .. -
ayl d))l + ayz dyz + ay" dyn
JdF" JF" .
= —( ax, dx, +--- + axmdx'")

Since all the partial derivatives appearing in (8.22) will take specific (constant)
values when evaluated at the point ( ¥,q,- .., ¥,05 X105+ - - » Xmo)—the point around
which the implicit functions (8.21) are defined—we have here a system of n linear
equations, in which the differentials dy, (considered to be endogenous) are
expressed in terms of the differentials dx; (considered to be exogenous).
Now, suppose that we let all the differentials dx, be zero except dx, (that is, only
x, is allowed to vary); then all the terms involving dx,,..., dx,, will drop out of
the system. Suppose, further, that we divide each remaining term by dx; then
there will emerge the expressions dy, /dx,,. .., dy,/dx,. These, however, should be
interpreted as partial derivatives of (8.21) because all the x variables have been
held constant except x,. Thus, by taking the steps just described, we are led to the
desired partial derivatives of the implicit functions. Note that, in fact, we can
obtain in one fell swoop a total of n of these (here, they are dy,/9x,,..., dy,/dx,).
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What results from the above-cited steps is the following linear system:
179 1[5 1/5 1
oF (i).‘.ai(ﬁ.)_}_.{.af‘( y")=_ai

5; ax, ay, \ 0x 9y, \ 9x 9x)
dF? 3y| dF? 3y2 dF? ayn dF?
(8.23) ay, (8x1) dy, \ dx, o s dy, \ dx, |~ B dx,
IF" [0y |  OF" (0y, )\ 9F"(dy\_ _ oF"
day, |\ ax, dy, \ dx, ay, \ ox, | ax,

where, for visual clarity, we have placed parentheses around those derivatives for
which we are seeking a solution, to distinguish them from the other derivatives
that are now considered to be constants. In matrix notation, this system can be
written as

[ or' oF' oF (2] [ _or

ay, 9y, ay, 9x, dx,
e ar | (on| | o

(8.2%) iy Ay 3y, || \ox ) [=]|  Tox,
OFT 9FT o OF" 1| [ 9y, _9F”
dy ay, ayn__(a‘xl)_‘ | axlj

Since the determinant of the coefficient matrix in (8.23") is nothing but the
particular Jacobian determinant |J| which is known to be nonzero under condi-
tions of the implicit-function theorem, and since the system must be nonhomoge-
neous (why?), there should be a unique solution to (8.23’). By Cramer’s rule, this
solution may be expressed analytically as follows:

dy, J,
(8.24) (a—jfl) = llJ—jli (j=1,2,...,n)  [see(5.15)]
By a suitable adaptation of this procedure, the partial derivatives of the implicit
functions with respect to the other variables, x,,. .., x,,, can also be obtained.

Similar to the implicit-function rule (8.19) for the single-equation case, the
procedure just described calls only for the use of the partial derivatives of the F
functions—evaluated at the point (y,g,..., ¥,0; X10s- - - » Xmo)—Iin the calculation
of the partial derivatives of the implicit functions f!,..., f”. Thus the matrix
equation (8.23') and its analytical solution (8.24) are in effect a statement of the
simultaneous-equation version of the implicit-function rule.

Note that the requirement |J| # 0 rules out a zero denominator in (8.24), just
as the requirement F, # 0 did in the implicit-function rule (8.19) and (8.19").
Also, the role played by the condition |J| # 0 in guaranteeing a unique (albeit
implicit) solution (8.21) to the general (possibly nonlinear) system (8.20) is very
similar to the role of the nonsingularity condition |4| # 0 in a linear system
Ax = d. f :
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Example 5 Let the national-income model (7.17) be rewritten in the form
Y-C—-1,—-G,=0
(8.25) C-a-B(Y-T)=0

T-y—-68Y=0
If we take the endogenous variables (Y, C, T) to be (y,, »,, y3), and take the
exogenous variables and parameters (I, Gy, a, 8, v, 8) to be (x, x,,..., X¢),

then the left-side expression in each equation can be regarded as a specific F
function, in the form of F/(Y,C, T; I,, G,, a, B, v, 8). Thus (8.25) is a specific
case of (8.20), with n = 3 and m = 6. Since the functions F', F?, and F? do have
continuous partial derivatives, and since the relevant Jacobian determinant (the
one involving only the endogenous variables),

oF' 9F' 9F'
24 ac oT

1 1
2 2 2
(826) |J| = OF7  9F"  9F"1_|_p 1 Bl=1-B+pB8
8 .

aY e aT
aF* 9F* 9F°
ay acC aT

is always nonzero (both B and 8 being restricted to be positive fractions), we can
take Y, C and T to be implicit functions of (1, Gy, a, B8, v, 8) at and around any
point that satisfies (8.25). But a point that satisfies (8.25) would be an equilibrium
solution, relating to Y, C and T. Hence, what the implicit-function theorem tells
us is that we are justified in writing

)7=fl(109 Go’a’ B’ 7’8)
€=f2(10’ G(),a, B’ Y’S)
T=f3(10, G()’ a, Ba 7,6)

indicating that the equilibrium values of the endogenous variables are implicit
functions of the exogenous variables and the parameters.

The partial derivatives of the implicit functions, such as aY /31, and 8Y /9G,),
are in the nature of comparative-static derivatives. To find these, we need only the
partial derivatives of the F functions, evaluated at the equilibrium state of the
model. Moreover, since n = 3, three of these can be found in one operation.
Suppose we now hold all exogenous variables and parameters fixed except G,.
Then, by adapting the result in (8.23"), we may write the equation

1 -1 0| aY/3G, 1
-8 1 Bllac/aG,| =10
-8 0 1| 9T/9G, 0

from which three comparative-static derivatives (all with respect to G,) can be
calculated. The first one, representing the government-expenditure multiplier, will
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for instance come out to be

I -1 0
0 1 B
a o 0 1 1

This is, of course, nothing but the result obtained earlier in (7.19). Note, however.
that in the present approach we have worked only with implicit functions, and
have completely bypassed the step of solving the system (8.25) explicitly for Y. C.
and 7. It is this particular feature of the method that will now enable us to tackle
the comparative statics of general-function models which, by their very nature.
can yield no explicit solution.

EXERCISE 8.5

1 Assuming that the equation F(U, x,, x,,..., x,) = 0 implicitly defines a utility function
U=f(x), X3,..., X,)

(a) Find the expressions for JU/dx,, dU/dx,, dx5/3x,, and dx,/3x,,.

(b) Interpret their respective economic meanings.

2 Given the equatlon a Vs x) 0 shown below, is an implicit function y = f(x) defined
(a) x? - 2x y+3xy :527—0
(b) 2x2 +4xy —y* +67=0
If your answer is affirmative, find dy/dx by the implicit-function rule, and evaluate it at
the said point.

3 Given x* + 3xy + 2yz + y> + z2 — 11 = 0, is an implicit function z = f(x, y) defined
around the point (x = 1,y = 2,z = 0)? If so, find d2/9x and dz/dy by the implicit-func-
tion rule, and evaluate them at that point.

4 By considering the equation F(y, x) = (x — y)> =0 in a neighborhood around the

point of origin, prove that the conditions cited in the 1mphc1t function theorem are not 1n
the nature of necessary conditions. '

5 If the equation F(x, y, z) = 0 implicitly defines each of the three variables as a function
of the other two variables, and if all the derivatives in question exist, find the value of
oz dxdy. ‘

Ax 3y y 0¢°

6 Justify the assertion in the text that the equation system (8.23") must be nonhomoge-
neous.

7 From the national-income model (8.25), find the nonincome-tax multiplier and the
income-tax-rate multiplier by the implicit-function rule. Check your results against (7.20)
and (7.21).
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8.6 COMPARATIVE STATICS OF GENERAL-FUNCTION
MODELS

When we first considered the problem of comparative-static analysis in Chap. 7,
we dealt with the case where the equilibrium values of the endogenous variables
of the model are expressible explicitly in terms of the exogenous variables and
parameters. There, the technique of simple partial differentiation was all we
needed. When a model contains functions expressed in the general form, however,
that technique becomes inapplicable because of the unavailability of explicit
solutions. Instead, a new technique must be employed ‘that makes use of such
concepts as total differentials, total derivatives, as well as the implicit-function
theorem and the implicit-function rule. We shall illustrate this first with a market
model, and then move on to a national-income model.

Market Model

Consider a single-commodity market, where the quantity demanded Q, is a
function not only of price P but also of an exogenously determined income Y.
The quantity supplied Q,, on the other hand, is a function of price alone. If these
functions are not given in specific forms, our model may be written generally as
follows:

Qd = Qs
(827) Q,=D(P.Y,) (8D/3P <0;3D/3Y,>0)
Q.= S(P) (dS/dP > 0)

Both the D and S functions are assumed to possess continuous derivatives or,
in other words, to have smooth graphs. Moreover, in order to ensure economic
relevance, we have imposed definite restrictions on the signs of these derivatives.
By the restriction dS/dP > 0, the supply function is stipulated to be monotoni-
cally increasing, although it is permitted to be either linear or nonlinear. Simi-
larly, by the restrictions on the two partial derivatives of the demand function, we
indicate that it is a decreasing function of price but an increasing function of
income. These restrictions serve to confine our analysis to the “normal” case we
expect to encounter.

In drawing the usual type of two-dimensional demand curve, the income level
is assumed to be held fixed. When income changes, it will upset a given
equilibrium by causing a shift of the demand curve. Similarly, in (8.27), ¥, can
cause a disequilibrating change through the demand function. Here, Y, is the only
exogenous variable or parameter; thus the comparative-static analysis of this
model will be concerned exclusively with how a change in Y, will affect the
equilibrium position of the model.

The equilibrium position of the market is defined by the equilibrium condi-
tion Q, = Q,, which, upon substitution and rearrangement, can be expressed by

(828) D(P,Y,) - S(P)=0
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Even though this equation cannot be solved explicitly for the equilibrium price P.
we shall assume that there does exist a static equilibrium—for otherwise there
would be no point in even raising the question of comparative statics. From our
experience with specific-function models, we have learned to expect P to be a
function of the exogenous variable ¥j:

(829) P=P(Y)

But now we can provide a rigorous foundation for this expectation by appealing
to the implicit-function theorem. Inasmuch as (8.28) is in the form of F(P, ¥,) = 0.
the satisfaction of the conditions of the implicit-function theorem will guarantee
that every value of Y, will yield a unique value of P in the neighborhood of a
point satisfying (8.28), that is, in the neighborhood of an (initial or “old”)
equilibrium solution. In that case, we can indeed write the implicit function
P = P(Y,) and discuss its derivative, dP/dY,—the very comparative-static de-
rivative we desire—which is known to exist. Let us, therefore, check those
conditions. First, the function F(P, Y,) indeed possesses continuous derivatives;
this is because, by assumption, its two additive components D(P, ¥;) and S(P)
have continuous derivatives. Second, the partial derivative of F with respect to P.
namely, F, = dD/dP — dS/dP, is negative, and hence nonzero, no matter where
it is evaluated. Thus the implicit-function theorem applies, and (8.29) is indeed
legitimate.

According to the same theorem, the equilibrium condition (8.28) can now be
taken to be an identity in some neighborhood of the equilibrium solution.
Consequently, we may write the equilibrium identity

(830) D(P,Y,)-S(P)=0

It then requires only a straight application of the implicit-function rule to produce
the comparative-static derivative, dP/d Y,, which, for visual clarity, we shall from
here on enclose in parentheses to distinguish it from the regular derivative
expressions that merely constitute part of the model specification. The result is
dP
(8.31) ( dYO)
In this result, the expression 3D /3P refers to the derivative 0D /3P evaluated at
the initial equilibrium, i.e., at P = P; a similar interpretation attaches to dS/dP.
In fact, 3D /3Y, must be evaluated at the equilibrium point as well. By virtue of
the sign specifications in (8.27), (dP/dY,) is invariably positive. Thus our
qualitative conclusion is that an increase (decrease) in the income level will always
result in an increase (decrease) in the equilibrium price. If the values which the
derivatives of the demand and supply functions take at the initial equilibrium are
known, (8.31) will, of course, yield a quantitative conclusion also.
The above discussion is concerned with the effect of a change in ¥, on P. Is it
possible also to find out the effect on the equilibrium quantity Q (= Q, = Q,)?
The answer is yes. Since, in the equilibrium state, we have Q = S(P), and since

_ _9F/3Y, D)oy,

dF/oP dD/dP —dS/dP
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P = P(Y,), we may apply the chain rule to get the derivative

aQ | _ ds (dP oo 45
(8.32) (dYO) =P (dYO) >0 [smce T > O]

Thus the equilibrium quantity is also positively related to Y, in this model. Again,
(8.32) can supply a quantitative conclusion if the values which the various
derivatives take at the equilibrium are known.

The results in (8.31) and (8.32), which exhaust the comparative-static contents
of the model (since the latter contains only one exogenous and two endogenous
variables), are not surprising. In fact, they convey no more than the proposition
that an upward shift of the demand curve will result in a higher equilibrium price
as well as a higher equilibrium quantity. This same proposition, it may seem, -
could have been arrived at in a flash from a simple graphic analysis! This sounds
plausible, but one should not lose sight of the far, far more general character of
the analytical procedure we have used here. The graphic analysis, let us reiterate,
is by its very nature limited to a specific set of curves (the geometric counterpart
of a specific set of functions); its conclusions are therefore, strictly speaking,
relevant and applicable to only that set of curves. In sharp contrast, the formu-
lation in (8.27), simplified as it is, covers the entire set of possible combinations of
negatively sloped demand curves and positively sloped supply curves. Thus it is
vastly more general. Also, the analytical procedure used here can handle many
problems of greater complexity that would prove to be beyond the capabilities of
the graphic approach. -

Simultaneous-Equation Approach

The above analysis of model (8.27) was carried out on the basis of a single
equation, namely, (8.30). Since only one endogenous variable can fruitfully be
incorporated into one equation, the inclusion of P means the exclusion of 0.Asa
result, we were compelled to find (dP/dY,) first and then to infer (dQ/dY;) in a
subsequent step. Now we shall show how P and Q can be studied simultaneously.
As there are two endogenous variables, we shall accordingly set up a two-equation
system. First, letting Q = Q, = Q, in (8.27) and rearranging, we can express our
market model as

F'(P,Q;Y,)=D(P,Y,) - Q=0
(8.33) (P.Q:Y) = D(P.Y,) - Q
F}(P,Q;Y,) = S(P) =0 =0

which is in the form of (8.20), with n = 2 and m = 1. It becomes of interest, once
again, to check the conditions of the implicit-function theorem. First, since the
demand and supply functions are both assumed to possess continuous derivatives,
so must the functions F' and F2. Second, the endogenous-variable Jacobian (the
one involving P and Q) indeed turns out to be nonzero, regardless of where it is
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evaluated, because

IF'  9F'| 14D

-5 | == -1
apP aQ aP ds 4D
(8.34) V1= aF* gF?| | ds _1 _d_P_ﬁ>O

3P 90 | | dP

Hence, if an equilibrium solution (P, Q) exists (as we must assume in order to
make it meaningful to talk about comparative statics), the implicit-functior.
theorem tells us that we can write the implicit functions

(835) P=P(Y,) and Q=0(Y,)

even though we cannot solve for P and Q explicitly. These functions are known to
have continuous derivatives. Moreover, (8.33) will have the status of a pair of
identities in some neighborhood of the equilibrium state, so that we may also
write

D(P,Y,)-Q0=0
(8.36) _ _
S(P)-0=0
From these, (dP/dY,) and (dQ/dY,) can be found simultaneously.
These two derivatives have as their ingredients the differentials dP, dQ, and
dY,. To bring these differential expressions into the picture, we differentiate each

identity in (8.36) in turn. The result, upon rearrangement, is a linear system in dP
and dQ:

aD - aD
ﬁdP —dQ = - a_YOdYO
as - =

—dP —dQ =0

dp Q

This system is linear because dP and dQ (the variables) both appear in the first
degree, and the coefficient derivatives (all to be evaluated at the initial equi-
librium) and dY, (an arbitrary, nonzero change in the exogenous variable) all
represent specific constants. Upon dividing through by dY, and interpreting the
quotient of two differentials as a derivative, we have the matrix equation*

|| (4P _9D
aP av, 3%,
ds o\ |

L || [ 0
dP ( dy, )

* Without going through the steps of total differentiation and division by d¥Y;, the same matrix
equation can be obtained from an adaptation of the implicit-function rule (8.23").
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By Cramer’s rule, and using (8.34), we then find the solution to be

dD

3, '
P\ | 0 1] 9%
(dYO)_ /| Y

(8.37) ap 9D

9p Y,

sy 45 b
Q B dpP B dpP 9Y,
(dYo)' 1 M

where all the derivatives of the demand and supply functions (including those
appearing in the Jacobian) are to be evaluated at the initial equilibrium. You can
check that the results just obtained are identical with those obtained earlier in
(8.31) and (8.32), by means of the single-equation approach.

Use of Total Derivatives

Both the single-equation and the simultaneous-equation approaches illustrated
above have one feature in common: we take the total differentials of both sides of
an equilibrium identity and then equate the two results. Instead of taking the total
differentials, however, it is possible to take, and equate, the total derivatives of the
two sides of the equilibrium identity with respect to a particular exogenous
variable or parameter.

In the single-equation approach, for instance, the equilibrium identity is

D(P,Y,)—S(P)=0  [from (8.30)]
where P =P (Y,) [from (8.29)]

Taking the total derivative of the equilibrium identity with respect to Y;,—which
takes into account the indirect as well as the direct effects of a change in Y,—will
therefore give us the equation

op(dP\, 9D _ ds(dP)| _
P \ dY, ay, dP \ dY, B

indirect effect direct effect indirect effect
of Yoon D of Yoon D of Yoon S

When this is solved for (dP/dY,), the result is identical with the one in (8.31).
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Figure 8.7

In the simultaneous-equation approach, on the other hand, there is a pair of
equilibrium identities:
D (F ) Yo) -0=0 ‘
S(P)-Q0=0 [from (8.36)]
where P=P(Y,) Q=0(Y) [from(8.35)]

The various effects of ¥, are now harder to keep track of, but with the help of the
channel map in Fig. 8.7, the pattern should become clear. This channel map tells
us, for instance, that when differentiating the D function with respect to Y,, we
must allow for the indirect effect of Y, upon D through P, as well as the direct
effect of Y, (curved arrow). In differentiating the S function with respect to Y,, on
the other hand, there is only the indirect effect (through P) to be taken into
account. Thus the result of totally differentiating the two identities with respect to
Y, is, upon rearrangement, the following pair of equations:

aD(dF)_(Q)_ aD

ap \ dy, dy,| — a9y,
ds(dP\ _(d0)\ _,
4P \ dY, dy,

These are, of course, identical with the equations obtained by the total-differential
method, and they lead again to the comparative-static derivatives in (8.37).

National-Income Model

The procedure just illustrated will now be applied to a national-income model,
also to be formulated in terms of general functions. This time, for the sake of
variety, let us abstract from government expenditures and taxes and, instead, add
foreign trade relations into the model. Furthermore, let us include the money
market along with the market for goods.

More specifically, the goods market will be assumed to be characterized by the
following four functions:

1. Investment expenditure [ is a decreasing function of interest rate i:
I=1(i) (I'<0)

where I' = dI /di is the derivative of the investment function.
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2. Saving S is an increasing function of national income Y as well as interest
rate i, with the marginal propensity to save being a positive fraction:

S=58(v,i) (0<S,<1; S >0)

where Sy, = dS/0Y (marginal propensity to save) and S; = dS/di are the
partial derivatives.

3. The expenditure on imports M is a function of national income, with the
marginal propensity to import being another positive fraction:

M=M(Y) (0<M <1)
4. The level of exports X is exogenously determined:
X=X,

In the money market, we have two more functions as follows:

5. The quantity demanded of money M, is an increasing function of national
income (transactions demand) but a decreasing function of interest rate
(speculative demand ):

M,=L(Y,i) (Ly>0; L, <0)

The function symbol L is employed here because the money demand
function is customarily referred to as the liquidity function. The symbol M,
representing money demand, should be carefully distinguished from the
symbol M, for imports.

6. The money supply is exogenously determined, as a matter of monetary policy:

Ms = MsO

Note that I, S, M, and X, representing flow concepts, are all measured per period
of time, as is Y. On the other hand, M, and M, are stock concepts, and they
indicate quantities in existence at some specific point of time. Whether stock or
flow, all the above functions are assumed to have continuous derivatives.

The attainment of equilibrium in this model requires the simultaneous
satisfaction of the equilibrium condition of the goods market (imjections =
leakages, or I + X = S + M) as well as that of the money market (demand for
money = supply of money, or M, = M_). On the basis of the general functions
cited above, the equilibrium state may be described by the following pair of
conditions: -
(8.38) I(i) + X, = S(Y, i) + M(Y) , <

L(Y’ l) = MsO
Since the symbols I, S, M, and L can be viewed as function symbols, we have in
effect only two endogenous variables, income Y and interest rate i, plus two
exogenous variables, exports X, (based on foreign decisions) and M, (determined
by the monetary authorities). Thus (8.38) can be expressed in the form of (8.20),
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withn =m = 2:
FUY,i; Xy, Myy) =1(i) + Xy — S(Y,i)—M(Y)=0
FXY,i; Xy, M) =L(Y,i)—M,,=0

This system satisfies the conditions of the implicit-function theorem, because (1)
F! and F? have continuous derivatives (since all the component functions therein
have continuous derivatives by assumption) and (2) the endogenous-variable
Jacobian is nonzero when evaluated at the initial equilibrium (which we assume to
exist) as well as elsewhere:

dF'/9Y 9F'/di

dF*/dYy dF%/di
=—-L(Sy+M)-L,(I'-S5)>0

Hence the implicit functions

(840) Y=Y(X,,M,) and i=i(X,, M,)

can be written, even though we are unable to solve for ¥ and i explicitly.
Furthermore, we may take (8.38") to be a pair of identities in some neighborhood
of the equilibrium, so that we may also write ‘

Ii)+ X, — S(Y,i)-M(Y)=0
L(Ys i-) _MsO =

From these equilibrium identities, a total of four comparative-static derivatives
will emerge, two relating to X, and the other two relating to M,,. But we shall
derive here only the former two, leaving the other two to be derived by you as an
exercise.

Accordingly, after taking the total differential of each identity in (8.41), we
set dM_, equal to zero, so that dX, will be the sole disequilibrating factor. Next,
dividing through by dX,, and interpreting each quotient of two differentials as a
partial derivative (partial, because the other exogenous variable M, is being held
constant), we arrive at the matrix equation

(8.38)

~-Sy—-M I -~S,
L, L

1

(8.39)  |J| =

(8.41)

-Sy—-M I -S||(dY/0x, -1
(8,42) Y i ( -_/ 0) _
Ly L, (9i/ax,) 0
The solution is, by Cramer’s rule and using (8.39),
-1 -5
( o7 ) U # -1
9 X, 1 1
(8.43) -Sy-M -1
( ai ) _ Ly 0 L,

I Xo /] 1
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where all the derivatives on the right side of the equals sign (including those
appearing in the Jacobian) are to be evaluated at the initial equilibrium, that is, at
Y = Y and i = i. When the specific values of these derivatives are known, (8.43)
yields quantitative conclusions regarding the effect of a change in exports.
Without the knowledge of those values, however, we must settle for the qualitative
conclusions that both ¥ and i will increase with exports in the present model.
As in the market model, instead of using total differentials, the option is open
to us to take the total derivatives of the equilibrium identities in (8.41) with
respect to the particular exogenous variable under study, X,. In doing so, we
must, of course, bear in mind the implicit solutions (8.40). The various ways in
which X, can affect the different components of the model—as given in (8.41) and
(8.40)—are summarized in the channel map in Fig. 8.8. It should be noted, in
particular, that in differentiating the saving function or the liquidity function with
respect to X, we must allow for two indirect effects—one through i and the other
through Y. With the help of this channel map, we can differentiate the equi-
librium identities totally with respect to X, to get the following pair of equations:

[ oF o7 o7 (7

1(3X0)+1 SY(aXO) S'(‘?XO)_M(R)_O
ay ar

Aol

Since the other exogenous variable, M, is being held constant, the left side of
each of these equations represents the partial total derivative of the left-side
expression in the corresponding equilibrium identity. However, the comparative-
static derivatives (3Y/dX,) and (9i/dX,), being derivatives of the implicit
functions (8.40), are just plain partial derivatives. When properly condensed, these

nvestment
. tunction

Figure 8.8
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two equations reduce exactly to (8.42). So the total-differential method and
total-derivative method yield identical results.

You will observe that (dY/3X,) is in the nature of an export multiplic-
Since the export-induced increase in the equilibrium income will, by virtue of the
import function M = M(Y'), cause imports to rise as well, we can again apply the
chain rule to find the (auxiliary) comparative-static derivative:

oM [ oY —M'L;
(53] 5%) =i

The sign of this derivative is positive because M’ > 0. By a perfectly analogous
procedure, we can also find the other auxiliary comparative-static derivatives.
such as (d1/9X,) and (3S/3X,).

Summary of the Procedure

In the analysis of the general-function market model and national-income model.
it is not possible to obtain explicit solution values of the endogenous variables.
Instead, we rely on the implicit-function theorem to enable us to write the implicit
solutions such as

P=P(Y,)) and i=i(X,, M,)

Our subsequent search for the comparative-static derivatives such as (dP/dY,)
and (di/dX,) then rests for its meaningfulness upon the known fact—thanks
again to the implicit-function theorem—that the P and i functions do possess
continuous derivatives.

To facilitate the application of that theorem, we make it a standard practice
to write the equilibrium condition(s) of the model in the form of (8.16) or (8.20).
We then check whether (1) the F function(s) have continuous derivatives and (2)
the value of F, or the endogenous-variable Jacobian determinant (as the case may
be) is nonzero at the initial equilibrium of the model. However, as long as the
individual functions in the model have continuous derivatives—an assumption
which is often adopted as a matter of course in general-function models—the first
condition above is automatically satisfied. As a practical matter, therefore, it is
needed only to check the value of F, or the endogenous-variable Jacobian. And if
it is nonzero at the equilibrium, we may proceed at once to the task of finding the
comparative-static derivatives. ‘

To that end, the implicit-function rule is of help. For the wingle-equation case,
simply set the endogenous variables equal to its equilibrium value (e.g., set
P = P) in the equilibrium condition, and then apply the rule as stated in (8.19) to
the resulting equilibrium identity. For the simultaneous-equation case, we must
also first set all endogenous variables equal to their respective equilibrium values
in the equilibrium conditions. Then we can either apply the implicit-function rule
as illustrated in (8.24) to the resulting equilibrium identities, or carry out the
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several steps outlined below:

1. Take the total differential of each equilibrium identity in turn.

2. Select one, and only one, exogenous variable (say, X)) as the sole disequi-
librating factor, and set the differentials of all other exogenous variables equal
to zero. Then divide all remaining terms in each identity by dX,, and
interpret each quotient of two differentials as a comparative-static derivative
—a partial one if the model contains two or more exogenous variables.*

3. Solve the resulting equation system for the comparative-static derivatives
appearing therein, and interpret their economic implications. In this step, if
Cramer’s rule is used, we can take advantage of the fact that, earlier, in
checking the condition |J| # 0, we have in fact already calculated the
determinant of the coefficient matrix of the equation system now being
solved.

4. For the analysis of another disequilibrating factor (another exogenous vari-
able), if any, repeat steps 2 and 3. Although a different group of
comparative-static derivatives will emerge in the new equation system, the
coefficient matrix will be the same as before, and thus the known value of |J|
can again be put to use.

Given a model with m exogenous variables, it will take exactly m applications of
the above-described procedure to catch all the comparative-static derivatives there
are.

EXERCISE 8.6

1 Let the equilibrium condition for national income be
S(YY+T(Y)=I1(Y)+ G, (8,7, I'>0; §+T>10)

where S, Y, T, I, and G stand for saving, national income, taxes, investment, and
government expenditure, respectively. All derivatives are continuous.

(a) Interpret the economic meanings of the derivatives S’, T’, and I".

(b) Check whether the conditions of the implicit-function theorem are satisfied. If so,
write the equilibrium identity.

(¢) Find (dY/dG,) and discuss its economic implications.

2 Let the demand and supply functions for a commodity be
Q,=D(P,Y,) (D, <0; D, >0)
Q,=S(P.T) (5,>0; S,,<0)
* Instead of taking steps 1 and 2, we may equivalently resort to the total-derivative method by

differentiating (both sides of) each equilibrium identity totally with respect to the selected exogenous
variable. In so doing, a channel map will prove to be of help.
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where ¥, is income and 7, is the tax on the commodity. All derivatives are continuous.

(a) Write the equilibrium condition in a single equation.

(b) Check whether the implicit-function theorem is applicable. If so, write the equi-
librium identity.

(¢) Find (3P/3Y,) and (3P /3T,), and discuss their economic implications.

(d) Using a procedure similar to (8.32), find (3Q/3Y,) from the supply function and
(3Q/3T,) from the demand function. (Why not use the demand function for the former,
and the supply function for the latter?)

3 Solve the preceding problem by the simultaneous-equation approach.

4 Let the demand and supply functions for a commodity be

aD aD
Q,=D(P,t,) (3}7<0, 8—t0>0 and  Q,= 0y

where ¢, is consumers’ taste for the commodity, and where both partial derivatives are
continuous.

(a) Write the equilibrium condition as a single equation.

(b) Is the implicit-function theorem applicable?

(¢) How would the equilibrium price vary with consumers’ taste?

5 From the national-income model in (8.38), find (3Y/dM,;) and (di/dM,,), and
interpret their economic meanings. Use both the total-differential method and the total-
derivative method, and verify that the end results are the same.

6 Consider the following national-income model (with taxes ignored):
Y-C(Y)-I(i)—G,=0 0<C<1;I'<0)
kY + L(i)—M,,=0 (k= positive constant; L’ < 0)

(a) Is the first equation in the nature of an equilibrium condition?

(b) What is the total quantity demanded for money in this model?

(¢) Analyze the comparative statics of the model when money supply changes (mone-
tary policy) and when government expenditure changes (fiscal policy).

8.7 LIMITATIONS OF COMPARATIVE STATICS

Comparative statics is a useful area of study, because in economics we are often
interested in finding out how a disequilibrating change in a parameter will affect
the equilibrium state of a model. It is important to realize, however, that by its
very nature comparative statics ignores the process of adjustment from the old
equilibrium to the new and also neglects the time element involved in that
adjustment process. As a consequence, it must of necessity also disregard the
possibility that, because of the inherent instability of the model, the new equi-
librium may not be attainable ever. The study of the process of adjustment per se
belongs to the field of economic dynamics. When we come to that, particular
attention will be directed toward the manner in which a variable will change over
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time, and explicit consideration will be given to the question of stability of
equilibrium.

The important topic of dynamics, however, must wait its turn. Meanwhile, in
the next part of the book, we shall undertake to study the problem of optimiza-
tion, an exceedingly important special variety of equilibrium analysis with atten-
dant comparative-static implications (and complications) of its own.
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CHAPTER

NINE

OPTIMIZATION: A SPECIAL VARIETY
OF EQUILIBRIUM ANALYSIS

When we first introduced the term equilibrium in Chap. 3, we made a broad
distinction between goal and nongoal equilibrium. In the latter type, exemplified
by our study of market and national-income models, the interplay of certain
opposing forces in the model—e.g., the forces of demand and supply in the
market models and the forces of leakages and injections in the income
models—dictates an equilibrium state, if any, in which these opposing forces are
just balanced against each other, thus obviating any further tendency to change.
The attainment of this type of equilibrium is the outcome of the impersonal
balancing of these forces and does not require the conscious effort on the part of
anyone to accomplish a specified goal. True, the consuming households behind
the forces of demand and the firms behind the forces of supply are each striving
for an optimal position under the given circumstances, but as far as the market
itself is concerned, no one is aiming at any particular equilibrium price or
equilibrium quantity (unless, of course, the government happens to be trying to
peg the price). Similarly, in national-income determination, the impersonal bal-
ancing of leakages and injections is what brings about an equilibrium state, and
no conscious effort at reaching any particular goal (such as an attempt to alter an
undesirable income level by means of monetary or fiscal policies) needs to be
involved at all.

231
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In the present part of the book, however, our attention will be turned to the
study of goal equilibrium, in which the equilibrium state is defined as the optimum
position for a given economic unit (a household, a business firm, or even an entire
economy) and in which the said economic unit will be deliberately striving for
attainment of that equilibrium. As a result. in this context—but only in this
context—our earlier warning that equilibrium does not imply desirability will
become irrelevant and immaterial. In this part of the book, our primary focus will
be on the classical techniques for locating optimum positions—those using
differential calculus. More modern developments, known as mathematical pro-
gramming, will be discussed later.

9.1 OPTIMUM VALUES AND EXTREME VALUES

Economics is by and large a science of choice. When an economic project is to be
carried out, such as the production of a specified level of output, there are
normally a number of alternative ways of accomplishing it. One (or more) of
these alternatives will, however, be more desirable than others from the stand-
point of some criterion, and it is the essence of the optimization problem to
choose, on the basis of that specified criterion, the best alternative available.

The most common criterion of choice among alternatives in economics is the
goal of maximizing something (such as maximizing a firm’s profit, a consumer’s
utility, or the rate of growth of a firm or of a country’s economy) or of minimizing
something (such as minimizing the cost of producing a given output). Economi-
cally, we may categorize such maximization and minimization problems under the
general heading of optimization, meaning “ the quest for the best.” From a purely
mathematical point of view, however, the terms “maximum” and “minimum” do
not carry with them any connotation of optimality. Therefore, the collective term
for maximum and minimum, as mathematical concepts, is the more matter-of-fact
designation extremum, meaning an extreme value.

In formulating an optimization problem, the first order of business is to
delineate an objective function in which the dependent variable represents the
object of maximization or minimization and in which the set of independent
variables indicates the objects whose magnitudes the economic unit in question
can pick and choose, with a view to optimizing. We shall therefore refer to the
independent variables as choice variables.* The essence of the optimization
process is simply to find the set of values of the choice variables that will yield the
desired extremum of the objective function.

For example, a business firm may seek to maximize profit 7, that is, to
maximize the difference between total revenue R and total cost C. Since, within
the framework of a given state of technology and a given market demand for the
firm’s product, R and C are both functions of the output level Q, it follows that =

* They can also be called decision variables, or policy variables.
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is also expressible as a function of Q:

7(Q) = R(Q) — C(Q)
This equation constitutes the relevant objective function, with 7 as the object of
maximization and Q as the (only) choice variable. The optimization problem is
then that of choosing the level of Q such that 7 will be a maximum. Note that the
optimal level of 7 is by definition its maximal level, but the optimal level of the
choice variable Q is itself not required to be either a maximum or a minimum.

To cast the problem into a more general mold for further discussion (though
still confining ourselves to objective functions of one variable only), let us
consider the general function

y=/f(x)
and attempt to develop a procedure for finding the level of x that will maximize
or minimize the value of y. It will be assumed in this discussion that the function f
is continuously differentiable.

9.2 RELATIVE MAXIMUM AND MINIMUM:
FIRST-DERIVATIVE TEST

Since the objective function y = f(x) is stated in the general form, there is no
restriction as to whether it is linear or nonlinear or whether it is monotonic or
contains both increasing and decreasing parts. From among the many possible
types of function compatible with the above objective-function form, we have
selected three specific cases to be depicted in Fig. 9.1. Simple as they may be, the
graphs in Fig. 9.1 should give us valuable insight into the problem of locating the
maximum or minimum value of the function y = f(x).

Relative versus Absolute Extremum

If the objective function is a constant function, as in Fig. 9.1a, all values of the
choice variable x will result in the same value of y, and the height of each point

V v R,
E
B C
Ae ® -
D
F
0 oo Yo *

(a) (b) (¢)

Figure 9.1
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on the graph of the function (such as A4 or B or ') may be considered a maximum
or, for that matter, a minimum—or, indeed. neither. In this case, there is in effect
no significant choice to be made regarding the value of x for the maximization or
minimization of y.

In Fig. 9.1b. the function is monotonically increasing, and there is no finite
maximum if the set of nonnegative real numbers is taken to be its domain.
However, we may consider the end point D on the left (the y intercept) as
representing a minimum; in fact, it 1s in this case the absolute (or global)
minimum in the range of the function.

The points £ and F in Fig. 9.1c, on the other hand. are examples of a relative
(or local) extremum, in the sense that each of these points represents an
extremum in the immediate neighborhood of the point only. The fact that point F
is a relative minimum 1is, of course, no guarantee that it is also the global
minimum of the function, although this may happen to be the case. Similarly, a
relative maximum point such as £ may or may not be a global maximum. Note
also that a function can very well have several relative extrema, some of which
may be maxima while others are minima.

In most economic problems that we shall be dealing with, our primary, if not
exclusive, concern will be with extreme values other than end-point values, for
with most such problems the domain of the objective function is restricted to be
the set of nonnegative numbers, and thus an end point (on the left) will represent
the zero level of the choice variable, which is often of no practical interest.
Actually, the type of function most frequently encountered in economic analysis
is that shown in Fig. 9.1¢, or some variant thereof which contains ounly a single
bend in the curve. We shall therefore continue our discussion mainly with
reference to the search for relative extrema such as points £ and F. This will,
however, by no means foreclose the knowiedge of an absolute maximum if we
want it, because an absolute maximum must be either a relative maximum or one
of the end points of the function. Thus if we know all the relative maxima, it is
necessary only to select the largest of these and compare it with the end points in
order to determine the absolute maximum. The absolute minimum of a function
can be found analogously. Hereafter, the extreme values considered will be
relative or local ones, unless indicated otherwise.

First-Derivative Test

As a matter of terminology, from now on we shall refer to the derivative of a
function alternatively as its first derivative (short for firsi-order derivative). The
reason for this will become apparent shortly.

Given a function y = f(x), the first derivative f(x) plays a major role in our
search for its extreme values. This is due to the fact that, if a relative extremum of
the function occurs at x = x,, then either (1) we have f(x,) = 0, or (2) f'(x,)
does not exist. The second eventuality is illustrated in Fig. 9.2a, where both
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points 4 and B depict relative extreme values of y, and yet no derivative is
defined at either of these sharp points. Since in the present discussion we are
assuming that y = f(x) is continuous and possesses a continuous derivative,
however, we are in effect ruling out sharp points. For smooth functions, relative
extreme values can occur only where the first derivative has a zero value. This 1s
illustrated by points C and D in Fig. 9.2b, both of which represent extreme
values., and both of which are characterized by a zero slope—f'(x,}= 0 and
f'(x,) = 0. It is also easy to see that when the slope is nonzero we cannot possibly
have a relative minimum (the bottom of a valley) or a relative maximum (the peak
of a hill). For this reason, we can, in the context of smooth functions, take the
condition f(x) =0 as a necessary condition for a relative extremum (either
maximum or minimum).

We must add, however, that a zero slope, while necessary, is not sufficient 1o
establish a relative extremum. An example of the case where a zero slope is not
associated with an extremum will be presented shortly. By appending a certain
proviso to the zero-slope condition, however, we can obtain a decisive test for a
relative extremum. This may be stated as follows:

First-derivative test for relative extremum If the first derivative of a function
f(x)at x = x, is f'(x,) = 0, then the value of the function at x. f(x,), will be

a. A relative maximum if the derivative f'(x) changes its sign from positive to
negative from the immediate left of the point x,, to its immediate right.

b. A relative minimum if f’(x) changes its sign from negative to positive from the
immediate left of x,, to its immediate right.

¢. Neither a relative maximum nor a relative minimum if /’(x) has the same sign
on both the immediate left and right of point x,.

(a)

Figure 9.2
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Let us call the value x a critical value of x if f'(x,) = 0, and refer to f(x,) as
a stationary value of y (or of the function f). The point with coordinates x, and
f(x,) can, accordingly, be called a stationary point. (The rationale for the word
“stationary” should be self-evident—wherever the slope is zero, the point in
question is never situated on an upward or downward incline, but is rather at a
standstill position.) Then, graphically, the first possibility listed in this test will
establish the stationary point as the peak of a hill, such as point D in Fig. 9.2b,
whereas the second possibility will establish the stationary point as the bottom of
a valley, such as point C in the same diagram. Note, however, that in view of the
existence of a third possibility, yet to be discussed, we are unable to regard the
condition f'(x) = 0 as a sufficient condition for a relative extremum. But we now
see that, if the necessary condition f(x) = 0 is satisfied, then the change-of-
derivative-sign proviso can serve as a sufficient condition for a relative maximum
or minimum, depending on the direction of the sign change.

Let us now explain the third possibility. In Fig. 9.3a, the function f is shown
to attain a zero slope at point J (when x = j). Even though f’( j) is zero—which
makes f( /) a stationary value—the derivative does not change its sign from one
side of x = j to the other; therefore, according to the test above, point J gives
neither a maximum nor a minimum, as is duly confirmed by the graph of the
function. Rather, it exemplifies what is known as an inflection point.
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Figure 9.3
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The characteristic feature of an inflection point is that, at that point, the
derivative (as against the primitive) function reaches an extreme value. Since this
extreme value can be either a maximum or a minimum, we have two types of
inflection points. In Fig. 9.3a’, where we have plotted the derivative f'(x), we see
that its value is zero when x = j (see point J') but is positive on both sides of
point J’; this makes J’ a minimum point of the derivative function f'(x).

The other type of inflection point is portrayed in Fig 9.3b, where the slope of
the function g(x) increases till the point k is reached and decreases thereafter.
Consequently, the graph of the derivative function g'(x) will assume the shape
shown in diagram b’, where point K’ gives a maximum value of the derivative
function g'(x).*

To sum up: A relative extremum must be a stationary value, but a stationary
value may be associated with either a relative extremum or an inflection point. To
find the relative maximum or minimum of a given function, therefore, the
procedure should be first to find the stationary values of the function where
f'(x) =0 and then to apply the first-derivative test to determine whether each of
the stationary values is a relative maximum, a relative minimum, or neither.

Example 1 Find the relative extrema of the function
y=f(x)=x—12x* + 36x + 8

First, we find the derivative function to be
f(x)=3x*—24x + 36

To get the critical values, i.e., the values of x satisfying the condition f'(x) = 0,
we set the quadratic derivative function equal to zero and get the quadratic
equation

3x2 - 24x +36 =0

By factoring the polynomial or by applying the quadratic formula, we then obtain
the following pair of roots (solutions):

%, =2 [at which we have f'(2) = 0 and £(2) = 40]
%, =6 [at which we have f’(6) = 0 and f(6) = 8]

Since f'(2) = f'(6) = 0, these two values of x are the critical values we desire.

It is easy to verify that f’(x) > 0 for x < 2, and f'(x) < 0 for x > 2, in the
immediate neighborhood of x = 2; thus, the corresponding value of the function
f(2) = 40 is established as a relative maximum. Similarly, since f'(x) <0 for
x < 6, and f'(x) > 0 for x > 6, in the immediate neighborhood of x = 6, the
value of the function f(6) = 8 must be a relaive minimum.

* Note that a zero derivative value, while a necessary condition for a relative extremum, is not
required for an inflection point; for the derivative g'( x) has a positive value at x = &, and yet point K
is an inflection point.
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Figure 9.4

The graph of the function of this example is shown in Fig. 9.4. Such a graph
may be used to verify the location of extreme values obtained through use of the
first-derivative test. But, in reality, in most cases “helpfulness” flows in the
opposite direction—the mathematically derived extreme values will help in plot-
ting the graph. The accurate plotting of a graph ideally requires knowledge of the
value of the function at every point in the domain; but as a matter of actual
practice, only a few points in the domain are selected for purposes of plotting,
and the rest of the points typically are filled in by interpolation. The pitfall of this
practice is that, unless we hit upon the stationary point(s) by coincidence, we shall
miss the exact location of the turning point(s) in the curve. Now, with the
first-derivative test at our disposal, it becomes possible to determine these turning
points precisely.

Example 2 Find the relative extremum of the average-cost function

AC=7(Q)= 0"~ 50 +8

The derivative here is f'(Q) = 2Q — 5, a linear function. Setting f'(Q) equal to
zero, we get the linear equation 2Q — 5 = 0, which has the single root 0 = 2.5.
This is the only critical value in this case. To apply the first-derivative test, let us
find the values of the derivative at, say, Q = 2.4 and Q = 2.6, respectively. Since
f(24)= —02 < 0 whereas f'(2.6)= 02> 0, we can conclude that the sta-
tionary value AC = f(2.5) = 1.75 represents a relative minimum. The graph of
the function of this example is actually a U-shaped curve, so that the relative
minimum already found will also be the absolute minimum. Our knowledge of the
exact location of this point should be of great help in plotting the AC curve.
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EXERCISE 9.2

1 Find the stationary values of the following (check whether relative maxima or minima or
inflection points), assuming the domain to be the set of all real numbers:

(a) y = —2x>+4x + 9 (¢) y=x"+3

(b) v =5x"+ x (d) y =3x" - 6x +2

2 Find the stationary values of the following (check whether relative maxima or minima or
inflection points), assuming the domain to be the interval [0, o0):

(@) y=x" = 3x+5

() y=1x'—x"+x+ 10

() y=—x"+45x"—6x+6

3 Show that the function y = x + 1/x (with x # 0) has two relative extrema, one a
maximum and the other a minimum. Is the “minimum” larger or smaller than the
“maximum”™? How is this paradoxical result possible?

4 Let T = ¢(x) be a roral function (e.g., total product or total cost):

(a) Write out the expressions for the margina/ function M and the average function A.

(b) Show that, when A rcaches a relative extremum, M and A must have the same
value.

(¢) What general principle does this suggest for the drawing of a marginal curve and an
average curve in the same diagram?

(d) What can you conclude about the elasticity of the total function T at the point
where 4 rcaches an extreme value?

9.3 SECOND AND HIGHER DERIVATIVES -

Hitherto we have considered only the first derivative f'(x) of a functiony = f(x )
now let us introduce the concept of second derivative (short for second-order
derivative), and derivatives of even higher orders. These will enable us to develop
alternative criteria for locating the relative extrema of a function.

Derivative of a Derivative

Since the first derivative f'(x) 1s itself a function of x, it, too, should be
differentiable with respect to x, provided that i1t is continuous and smooth. The
result of this differentiation. known as the second derivative of the function f, 1s
denoted by

f7(x) where the double prime indicates that f(x) has been differentiated
with respect to x twice. and where the expression ( x) following the
double prime suggests that the second derivative is again a func-
tion of x
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or

d*y . . .
) where the notation stems from the consideration that the second

dx* L . d [ dy 5.
derivative means, in fact, — | — ); hence the ¢~ in the numerator

dx \ dx
and dx? in the denominator of this symbol

If the second derivative f'(x) exists for all x values in the domain, the function
f(x) is said to be wwice differentiable; if, in addition, f”(x) is continuous, the
function f(x) is said to be twice continuously differentiable.*

As a function of x the second derivative can be differentiated with respect to
x again to produce a third derivative, which in turn can be the source of a fourth
derivative, and so on ad infinitum, as long as the differentiability condition is met.
These higher-order derivatives are symbolized along the same line as the second
derivative:

£, FO). . (%) [with superscripts enclosed in ( )]
d3y d4y d”}’

or —_— ...,
dax’’ dx* dx"

n n

The last of these can also be written as il where the
X

o part serves as an
operator symbol instructing us to take the nth derivative of (some function) with
respect to x.

Almost all the specific functions we shall be working with possess continuous
derivatives up to any order we desire; i.e., they are continuously differentiable any
number of times. Whenever a general function is used, such as f(x), we always

assume that it has derivatives up to any order we need.
Example 1 Find the first through the fifth derivatives of the function
y=f(x)=4x* = x*+ 17x* + 3x — 1
The desired derivatives are as follows:
f(x)=16x" — 3x% + 34x + 3
f7(x) = 48x* — 6x + 34

f(x) = 96x — 6
[P(x) =96
FO(x) = 0
* The following notations are often used to denote continuity and differentiability of a function:
fec or fec: fis a continuous function
fec” or fec: /1s continuously differentiable
fec: /1s twice continuously differentiable

The symbol €' denotes the set of all functions that possess nth-order derivatives which are
continuous in the domain.
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In this particular (polynomial-function) example, each successive derivative
emerges as a simpler expression than the one before. until we reach a fifth
derivative, which is identically zero. This is not generally true, however, of all
types of function, as the next example will show. It should be stressed here that
the statement “ the fifth derivative is zero” is not the same as the statement * the
fifth derivative does not exist,” which describes an altogether different situation.
Note, also, that f®)(x) = 0 (zero at all values of x) is not the same as f©'(x,) = 0
(zero at x, only). g

Example 2 Find the first four derivatives of the rational function

y=glx)=7y—~ (*-1

These derivatives can be found either by use of the quotient rule, or. after
rewriting the function as y = x(1 + x)~ ', by the product rule:

g'(x)=(1+x)

g/ (x)= —2(1+x)°

g7 (x) = 6(1 +x)74
(x)=—24(1 + x) "’

-2

(x+-1)

g9 (x

In this case, repeated derivation evidently does not tend to simplify the subse-
quent derivative expressions.

Note that, like the primitive function g(x), all the successive derivatives
obtained are themselves functions of x. Given specific values of x, these derivative
functions will then take specific values. When x = 2, for instance, the second
derivative in Example 2 can be evaluated as

)= ~20) =
and similarly for other values of x. It is of the utmost importance to realize that to
evaluate this second derivative g”(x) at x = 2, as we did, we must first obtain
g"(x) from g'(x) and then substitute x = 2 into the equation for g”(x). It is
incorrect to substitute x = 2 into g(x) or g'(x) prior to the differentiation process
leading to g”(x).

Interpretation of the Second Derivative

The derivative function f'(x) measures the rate of change of the function f. By
the same token, the second-derivative function f” is the measure of the rate of
change of the first derivative f’; in other words, the second derivative measures
the rate of change of the rate of change of the original function f. To put it
differently, with a given infinitesimal increase in the independent variable x from
a point x = xg,

f(x;)>0
f'(xq) <0

} means that the value of the function tends to { increase

decrease
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whereas, with regard to the second derivative,

f7(x4) >0
f(xy) <0

Thus a positive first derivative coupled with a positive second derivative at
x = x, implies that the slope of the curve at that point is positive and
increasing— the value cof the function is increasing at an increasing rate. Likewise.
a positive first derivative with a negative second derivative indicates that the slope
of the curve is positive but decreasing— the value of the function is increasing at a
decreasing rate. The case of a negative first derivative can be interpreted analo-
gously, but a warning should accompany this case: When f’(x,) < 0 and f"(x,)
> 0, the slope of the curve is negative and increasing, but this does not mean that
the slope is changing, say, from (—10) to (—11); on the contrary, the change
should be from (—11), a smaller number, to (- 10), a larger number. In other
words, the negative slope must tend to be less steep as x increases. Lastly, when
f'(x,) <0 and f"(x,) < 0, the slope of the curve must be negative and decreas-
ing. This refers to a negative slope that tends to become steeper as x increases.

Since we have been talking about slopes, it may be useful to continue the
discussion with a graphical illustration. In Fig. 9.5 we have marked out six points
(A, B, C, D, E, and F) on the two parabolas shown; each of these points
illustrates a different combination of first- and second-derivative signs, as follows:

} means that the slope of the curve tends to { inerease

decrease

If at the derivative signs are we can illustrate it by
X=X (x>0 f(x) <0 point A4
X = X, f(x5)=0 f(x;) <0 point B
X= vy f(x3)<0 fx) <0 point C
X=X, g(xy) <0 g (x)> 0 point D
X = X; g{xs)=10 g (x5)> 0 point E
X = X¢ g'(xe)> 0 g (xg) > 0 point F

From this, we see that a negative second derivative (the first three cases) is
consistently reflected in an inverse U-shaped curve, or a portion thereof, because
the curve in question is required to have a smaller and smaller slope as x
increases. In contrast, a positive second derivative (the last three cases) con-
sistently points to a U-shaped curve, or a portion thereof, since the curve in
question must display a larger and larger slope as x increases. Viewing the two
curves in Fig. 9.5 from the standpoint of the horizontal axis, we find the one in
diagram a to be concave throughout, whereas the one in diagram b is convex
throughout. Since concavity and convexity are descriptions of how the curve
“bends,” we may now expect the second derivative of a function to inform us
about the curvature of its graph, just as the first derivative tells us about its slope.

Although the words “concave” and “convex” adequately convey the differing
curvature of the two curves in Fig. 9.5, writers today would more specifically label
them as strictly concave and strictly convex, respectively. In line with this terminol-
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(a) (b)

Figure 9.5

ogy, a function whose graph is strictly concave (strictly convex) is called a strictly
concave (strictly convex) function. The precise geometric characterization of a
strictly concave function is as follows. If we pick any pair of points M and N on
its curve and join them by a straight line, the line segment MN must lie entirely
below the curve, except at points M and N. The characterization of a strictly
convex function can be obtained by substituting the word “above” for the word
“below” in the last statement. Try this out in Fig. 9.5. If the characterizing
condition is relaxed somewhat, so that the line segment MN is allowed to lie either
below the curve, or along (coinciding with) the curve, then we will be describing
instead a concave function, without the adverb “strictly.” Similarly, if the line
segment MN either lies above, or lies along the curve, then the function is convex,
again without the adverb “strictly.” Note that, since the line segment MN may
coincide with a (nonstrictly) concave or convex curve, the latter may very well
contain a linear segment. In contrast, a strictly concave or convex curve can never
contain a linear segment anywhere. It follows that while a strictly concave
(convex) function is automatically a concave (convex) function, the converse is
not true.*

From our earlier discussion of the second derivative, we may now infer that if
the second derivative f”(x) is negative for all x, then the primitive function f(x)
must be a strictly concave function. Similarly, f(x) must be strictly convex, if
f”(x) 1s positive for all x. Despite this, it is nor valid to reverse the above
inference and say that, if f(x) is strictly concave (strictly convex), then f"”(x)
must be negative (positive) for all x. This is because, in certain exceptional cases,
the second derivative may have a zero value at a stationary point on such a curve.
An example of this can be found in the function y = f(x) = x*, which plots as a
strictly convex curve, but whose derivatives

f(x)=4x> f"(x)=12x*

* We shall discuss these concepts further in Sec. 11.5 below.
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indicate that, at the stationary point where x = 0, the value of the second
derivative is f(0) = 0. Note, however, that at any other point, with x # 0, the
second derivative of this function does have the (expected) positive sign. Aside
from the possibility of a zero value at a stationary point, therefore, the second
derivative of a strictly concave or convex function may be expected in general to
adhere to a single algebraic sign.

For other types of function, the second derivative may take both positive and
negative values, depending on the value of x. In Fig. 9.3a and b, for instance,
both f(x) and g(x) undergo a sign change in the second derivative at their
respective inflection points J and K. According to Fig. 9.3a’, the slope of
f’(x)—that s, the value of f(x)—changes from negative to positive at x = j; the
exact opposite occurs with the slope of g'(x)—that is, the value of g’’(x)—on the
basis of Fig. 9.3". Translated into curvature terms, this means that the graph of
f(x) turns from concave to convex at point J, whereas the graph of g(x) has the
reverse change at point K. Consequently, instead of characterizing an inflection
point as a point where the first derivative reaches an extreme value, we may
alternatively characterize it as a point where the function undergoes a change in
curvature or a change in the sign of its second derivative.

An Application

The two curves in Fig. 9.5 exemphfy the graphs of quadratic functions, which
may be expressed generally in the form

y=ax*+bx+c (a+0)

From our discussion of the second derivative, we can now derive a convenient
way of determining whether a given quadratic function will have a strictly convex
{U-shaped) or a strictly concave (inverse U-shaped) graph.

Since the second derivative of the quadratic function cited is d?y/dx? = 2a,
this derivative will always have the same algebraic sign as the coefficient a.
Recalling that a positive second derivative implies a strictly convex curve, we can
infer that a positive coefficient a in the above quadratic function gives rise to a
U-shaped graph. In contrast, a negative coefficient a leads to a strictly concave
curve, shaped like an inverted U.

As intimated at the end of Sec. 9.2, the relative extremum of this function will
also prove to be its absolute extremum, because in a quadratic function there can
be found only a single valley or peak, evident in a U or inverted U, respectively.

EXERCISE 9.3

1 Find the second and third derivatives of the following functions:

(a) ax* + bx + ¢ (¢) -1% (x+ 1)
(x# 1

1+ x

4 _ —
(b) 6x Ix—-4 (d) T
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2 Which of the following quadratic functions are strictly convex?
(@) y=9x>—4x +2 (¢) u=9 — x>
(by w= —3x*+ 139 (d) v =8 — 3x + x*

3 Draw (a) a concave curve which is not strictly concave, and (b) a curve which qualifies
simultaneously as a concave curve and a convex curve.

4 Given the functiony = a — (a. b, c> 0; x = 0), determine the general shape of

c+ x
its graph by examining («) its first and second derivatives, (b) its vertical intercept, and

(¢) the limit of y as x tends to infinity. If this function is to be used as a consumption
function, how should the parameters be restricted in order to make it economically
sensible?

5 Draw the graph of a function f(x) such that f'(x) = 0, and the graph of a function g(x)
such that g’(3) = 0. Summarize in one sentence the essential difference between f(x) and
g(x) in terms of the concept of stationary point.

9.4 SECOND-DERIVATIVE TEST

Returning to the pair of extreme points B and E in Fig. 9.5 and remembering the
newly established relationship between the second derivative and the curvature of
a curve, we should be able to see the validity of the following criterion for a
relative extremum:

Second-derivative test for relative extremum If the first derivative of a function f
at x = x4 18 f'(xy) = 0, then the value of the function at x,, f(x,), will be

a. A relative maximum if the second-derivative value at x is f"”(x,) < 0.
b. A relative minimum if the second-derivative value at x, is f”(x,) > 0.

This test is in general more convenient to use than the first-derivative test,
because it does not require us to check the derivative sign to both the left and the
right of x,. But it has the drawback that no unequivocal conclusion can be drawn
in the event that f”(x,) = 0. For then the stationary value f(x,) can be either a
relative maximum, or a relative minimum, or even an inflectional value.* When
the situation of f”(x,) = 0 is encountered, we must either revert to the first-
derivative test, or resort to another test, to be developed in Sec. 9.6, that involves

* To see that an inflection point is possible when f”(x;) = 0, let us refer back to Fig. 9.34 and
9.34’. Point J in the upper diagram is an inflection point, with x = ; as its critical value. Since the
f'(x) curve in the lower diagram attains a minimum at x = j, the slope of f'(x) {i.e., /”(x)] must be
zero at the critical value x = ;. Thus point J illustrates an inflection point occurring when f"(x,) = 0.

To see that a relative extremum is also consistent with f”(x,) = 0, consider the function y = x*.
This function plots as a U-shaped curve and has a minimum, y = 0, attained at the critical value
x = 0. Since the second derivative of this function is f"(x) = 12x2, we again obtain a zero value for
this derivative at the critical value x = 0. Thus this function illustrates a relative extremum occurring
when f”(xy) = 0.
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the third or even higher derivatives. For most problems in economics, however.
the second-derivative test should prove to be adequate for determining a relative
maximum or minimum.

Example 1 Find the relative extremum of the function
y=/f(x)=4x*-x

The first and second derivatives are
f(x)=8x—-1 and f(x)=28

Setting f'(x) equal to zero and solving the resulting equation, we find the (only)
critical value to be X = {, which yields the (only) stationary value f(3) = — .
Because the second derivative is positive (in this case it is indeed positive for any
value of x), the extremum is established as a minimum. Indeed, since the given
function plots as a U-shaped curve, the relative minimum is also the absolute

minimum.

Example 2 Find the relative extrema of the function
y=g(x)=x—3x*+2

The first two derivatives of this function are
g(x)=3x>—6x and g'(x)=6x—6

Setting g'( x) equal to zero and solving the resulting quadratic equation, 3x* — 6x
= 0, we obtain the critical values X, = 0 and X, = 2, which in turn yield the two
stationary values:

g(0) =2 [a maximum because g”(0) = —6 < 0]
g(2)= -2 [a minimum because g”'(2) = 6 > 0]

Necessary versus Sufficient Conditions

As was the case with the first-derivative test, the zero-slope condition f'(x) = 0
plays the role of a necessary condition in the second-derivative test. Since this
condition is based on the first-order derivative, it is often referred to as the
first-order condition. Once we find the first-order condition satisfied at x = x,, the
negative (positive) sign of f"(x,) is sufficient to establish the stationary value in
question as a relative maximum (minimum). These sufficient conditions, which are
based on the second-order derivative, are often referred to as second-order
conditions.

It bears repeating that the first-order condition is necessary, but not sufficient,
for a relative maximum or minimum. (Remember inflection points?) In sharp
contrast, while the second-order condition that f”(x) be negative (positive) at the
critical value x,, is sufficient for a relative maximum (minimum), it is not necessary.
[Remember the relative extremum that occurs when f”(x,) = 0?] For this reason,
one should carefully guard against the following line of argument: “Since the
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stationary value f(x,) is already known to be a minimum, we must have
f"”(x,) > 0.” The reasoning here is faulty because it incorrectly treats the positive
sign of f”(x,) as a necessary condition for f(x;) to be a minimum.

This is not to say that second-order derivatives can never be used in stating
necessary conditions for relative extrema. Indeed they can. But care must then be
taken to allow for the fact that a relative maximum (minimum) can occur not only
when f”(x,) is negative (positive), but also when f"'(x,) is zero. Consequently,
second-order necessary conditions must be couched in terms of weak inequalities:
[ maximum |

for a stationary value f{x,) to be a relative L ,
| minimum J

it is necessary that

ol = o

>
Conditions for Profit Maximization

We shall now present some economic examples of extreme-value problems, i.e.,
problems of optimization.

One of the first things that a student of economics learns is that, in order to
maximize profit, a firm must equate marginal cost and marginal revenue. Let us
show the mathematical derivation of this condition. To keep the analysis on a
general level. we shall work with the total-revenue function R = R(Q) and
total-cost function C = C(Q), both of which are functions of a single variable Q.
From these it follows that a profit function (the objective function) may also be
formulated in terms of Q (the choice variable):

(9.1) 7 =7(Q)=R(Q) - C(Q)

To find the profit-maximizing output level, we must satisfy the first-order
necessary condition for a maximum: d7/dQ = 0. Accordingly, let us differentiate
(9.1) with respect to @ and set the resulting derivative equal to zero. The result is
dm _
dQ

=0 iff  R(Q)= C(Q)

Thus the optimum output (equilibrium output) Q must satisfy the equation
R'(Q)= C'(Q), or MR = MC. This condition constitutes the first-order condi-
tion for profit maximization.

However, the first-order condition may lead to a minimum rather than a
maximum; thus we must check the second-order condition next. We can obtain
the second derivative by differentiating the first derivative in (9.2) with respect to
o:

d*m ;

S5 = (Q) = RY(Q) ~ C(Q)

dQ- ¢

<0 iff  RY(Q)<C"(Q)
For an output level Q such that R'(Q) = C’(Q). the satisfaction of the second-

(9.2)

|
3\
-
I
=
S
{
~
1

il
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order condition R”(Q) < C”(Q) is sufficient to establish it as a profit-maximizing
output. Economically, this would mean that, if the rate of change of MR is less
than the rate of change of MC at the output where MC = MR, then that output
will maximize profit.

These conditions are illustrated in Fig. 9.6. In diagram ¢ we have drawn a
total-revenue and a total-cost curve. which are seen to intersect twice, at output
levels of @, and Q,. In the open interval (Q,, Q,), total revenue R exceeds totai
cost C, and thus 7 is positive. But in the intervals [0, Q,) and (Q,, Qs]. where Q.
represents the upper limit of the firm’s productive capacity, 7 is negative. This
fact is reflected in diagram b, where the profit curve—obtained by plotting the
vertical distance between the R and C curves for each level of output—Ilies above
the horizontal axis only in the interval (Q,. Q,).

When we set do/dQ = 0, in line with the first-order condition, it is our
intention to locate the peak point K on the profit curve, at output Q,, where the
slope of the curve is zero. However, the relative-minimum point M (output Q)
will also offer itself as a candidate, because it, too, meets the zero-slope require-
ment. We shall later resort to the second-order condition to eliminate the
“wrong” kind of extremum.

The first-order condition dn/dQ = 0 is equivalent to the condition R(Q) =
C'(Q). In Fig. 9.64, the output level Q; satisfies this, because the R and C curves
do have the same slope at Q, (the tangent lines drawn to the two curves at H and
J are parallel to each other). The same is true for output Q,. Since the equality of
the slopes of R and C means the equality of MR and MC, outputs @, and Q,
must obviously be where the MR and MC curves intersect, as illustrated in Fig.
9.6¢.

How does the second-order condition enter into the picture? Let us first look
at Fig. 9.6b. At point K, the second derivative of the = function will (barring the
exceptional zero-value case) have a negative value, 7”(Q,) < 0, because the curve
is inverse U-shaped around K; this means that Q; will maximize profit. At point
M, on the other hand, we would expect that #''(Q,) > 0; thus Q, provides a
relative minimum for # instead. The second-order sufficient condition for a
maximum can, of course, be stated alternatively as R”(Q) < C”(Q), that is, that
the slope of the MR curve be less than the slope of the MC curve. From Fig. 9.6¢,
it is immediately apparent that output Q5 satisfies this condition, since the slope
of MR is negative while that of MC is positive at point L. But output Q, violates
this condition because both MC and MR have negative slopes, and that of MR is
numericelly smaller than that of MC at point N, which implies that R"(Q,) is
greater than C”(Q,) instead. In fact, therefore, output Q, also violates the
second-order necessary condition for a relative maximum, but satisfies the
second-order sufficient condition for a relative minimumn.

Example 3 Let the R(Q) and C(Q) functions be

R(Q) = 12000 — 20
C(Q) = Q° — 61.250% + 1528.50 + 2000
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Then the profit function is
7(Q) = —Q° + 59.250% — 328.5Q — 2000

where R. C. and 7 are all in dollar units and Q is in units of (say) tons per week.
This profit function has two critical values, Q = 3 and Q = 36.5, because

am _ 402 985 = _/3
a0 30+ 118.5Q — 3285 =10 when Q {365
But since the second derivative is
’ >0 h = 3
9T _ _ep+ngs | when Q
dQ’ | <0 when Q0 = 36.5

the profit-maximizing output is Q = 36.5 (tons per week). (The other output
minimizes profit.) By substituting Q into the profit function, we can find the
maximized profit to be 7 = 7(36.5) = 16,318.44 (dollars per week).

As an alternative approach to the above, we can first find the MR and MC
functions and then equate the two, i.e.. find their intersection. Since

R(Q) = 1200 — 40
C'(Q) = 302 — 122.50 + 1528.5

equating the two functions will result in a quadratic equation identical with
dm/dQ = 0 which has yielded the two critical values of Q cited above.

Coeflicients of a Cubic Total-Cost Function

In Example 3 above, a cubic function is used to represent the total-cost function.
The traditional total-cost curve C = C(Q), as illustrated in Fig. 9.64, is supposed
to contain two wiggles that form a concave segment (decreasing marginal cost)
and a subsequent convex segment (increasing marginal cost). Since the graph of a
cubic function always contains exactly two wiggles, as illustrated in Fig. 9.4, it
should suit that role well. However, Fig. 9.4 immediately alerts us to a problem:
the cubic function can possibly produce a downward-sloping segment in its
graph, whereas the total-cost function, to make economic sense, should be
upward-sloping everywhere (a larger output always entails a higher total cost). If
we wish to use a cubic total-cost function such as

(93) C=C(Q)=aQ* +bQ*+cQ+d \

therefore, it is essential to place appropriate restrictions on the parameters so as
to prevent the C curve from ever bending downward.

An equivalent way of stating this requirement is that the MC function should
be positive throughout, and this can be ensured only if the absolure minimum of
the MC function turns out to be positive. Differentiating (9.3) with respect to Q.
we obtain the MC function

(94)  MC=C(Q)=23a0% +2bQ + ¢
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which, because it is a quadratic, plots as a parabola as in Fig. 9.6¢. In order for
the MC curve to stay positive (above the horizontal axis) everywhere, it is
necessary that the parabola be U-shaped (otherwise, with an inverse U, the curve
1s bound to extend itself into the second quadrant). Hence the coefficient of the
Q? term in (9.4) has to be positive; i.e., we must impose the restriction ¢ > 0. This
restriction, however, is by no means sufficient, because the minimum value of a
U-shaped MC curve—call it MC,_ ., (a relative minimum which also happens to
be an absolute minimum)—may still occur below the horizontal axis. Thus we
must next find MC_,, and ascertain the parameter restrictions that would make it
positive.

According to our knowledge of relative extremum, the minimum of MC will
occur where

d
—_ = + =
) MC =6aQ +2b=0
The output level that satisfies this first-order condition is
~2b -b
* _ = 7
¢ 6a 3a

This minimizes (rather than maximizes) MC because the second derivative
d*(MC)/dQ? = 6a is assuredly positive in view of the restriction @ > 0. The
knowledge of O* now enables us to calculate MC_;,, but we may first infer the
sign of coefficient b from it. Inasmuch as negative output levels are ruled out, we
see that b can never be positive (given a > 0). Moreover, since the law of
diminishing returns is assumed to set in at a positive output level (that is, MC is
assumed to have an initial declining segment), Q* should be positive (rather than
zero). Consequently, we must impose the restriction b < 0.

It is a simple matter now to substitute the MC-minimizing output Q* into
(9.4) to find that

—b 2 . _ K2

MC,,, = 3a(§) + 2b3—: +co= %
Thus, to guarantee the positivity of MC_;,, we must impose the restriction*
b* < 3ac. This last restriction, we may add, in effect also implies the restriction
¢ > 0. (Why?)

* This restriction may also be obtained by the method of completing the square. The MC function
can be successively transformed as follows:

MC = 3aQ? + 2hQ + ¢

5 b? b*
—(3uQ +2bQ+3a)~3u+(
3\ 2
| Bag+ 22| b dac
3a 3u

Since the squared expression can possibly be zero, the positivity of MC will be ensured—on the
knowledge that ¢ > O—only if b* < 3ac.
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The above discussion has involved the three parameters a, b, and ¢. What
about the other parameter, d? The answer is that there is need for a restriction on
d also, but that has nothing to do with the problem of keeping the MC positive. If
we let Q = 0 in (9.3), we find that C(0) = d. The role of d is thus to determine
the vertical intercept of the C curve only, with no bearing on its slope. Since the
economic meaning of 4 is the fixed cost of a firm, the appropriate restriction (in
the short-run context) would be 4 > 0.

In sum. the coefficients of the total-cost function (9.3) should be restricted as
follows (assuming the short-run context):

(9.5) a.c,d>0 b<0 h* < 3ac
As you can readily verify, the C(Q) function in Example 3 does satisfy (9.5).

Upward-Sloping Marginal-Revenue Curve

The marginal-revenue curve in Fig. 9.6¢ is shown to be downward-sloping
throughout. This, of course. is how the MR curve is traditionally drawn for a firm
under imperfect competition. However, the possibility of the MR curve being
partially, or even wholly, upward-sloping can by no means be ruled out a priori.*

Given an average-revenue function AR = f(Q), the marginal-revenue func-
tion can be expressed by

MR = f(Q) + Qf'(Q)  [from (7.7)]

The slope of the MR curve can thus be ascertained from the derivative
d ’ ’ 1t ’ 77
@MR =f(Q) +/(Q)+ 0f"(Q) =2f(Q) + 0f"(Q)

As long as the AR curve is downward-sloping (as it would be under imperfect
competition), the 2 f’(Q) term is assuredly negative. But the Qf”"(Q) term can be
either negative, zero, or positive, depending on the sign of the second derivative of
the AR function, ie.. depending on whether the AR curve is strictly concave.
linear, or strictly convex. If the AR curve is strictly convex either in its entirety (as
illustrated in Fig. 7.2) or along a specific segment, the possibility will exist that the
(positive) Of ’(Q) term may dominate the (negative) 2 f'(Q) term, thereby causing
the MR curve to be wholly or partially upward-sloping.

Example 4 Let the average-revenue function be _
AR = f(Q) = 8000 — 23Q + 1.10% — 0.018Q" \

As can be verified (see Exercise 9.4-7), this function gives rise to a downward-
sloping AR curve, as is appropriate for a firm under imperfect competition. Since

MR = f(Q) + Qf'(Q) = 8000 — 46Q + 3.30% — 0.0720Q°

* This point is emphatically brought out in John P. Formby, Stephen Layson, and W. James Smith.
*“The Law of Demand, Positive Sloping Marginal Revenue, and Multiple Profit Equilibria,” Economic
Inquiry, April 1982, pp. 303-311.
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it follows that the slope of MR is

d 2

0 MR = —46 + 6.6Q — 0.216Q

Because this is a quadratic function and since the coefficient of Q7 is negative,
dMR /dQ must plot as an inverse-U-shaped curve against Q. such as shown in
Fig. 9.5a. If a segment of this curve happens to lie above the horizontal axis,
therefore, the slope of MR will take positive values.

Setting d MR /dQ = 0, and applying the quadratic formula, we find the two
zeros of the quadratic function to be Q, = 10.76 and Q, = 19.79 (approximately).
This means that, for values of Q in the open interval (Q,, Q,), the dMR/dQ
curve does lie above the horizontal axis. Thus the marginal-revenue curve indeed
is positively sloped for output levels between Q, and Q.

The presence of a positively sloped segment on the MR curve has interesting
implications. With more bends in its configuration, such an MR curve may
produce more than one intersection with the MC curve satisfying the second-order
sufficient condition for profit maximization. While all such intersections con-
stitute local optima, however, only one of them is the global optimum that the
firm is seeking.

EXERCISE 9.4

1 Find the relative maxima and minima of y by the second-derivative test:
5 1 5
(@) y = —2x" + 8x + 25 (¢) y= g.x"—3x~+5x+3

3 2 o 2x l
(by y=x"+6x" +7 (d)}—l_zx (x#z)

2 Mr. Greenthumb wishes to mark out a rectangular flower bed along the side wall of his
house. The other three sides are to be marked by wire netting. of which he has only 32 ft
available. What are the length L and width W of the rectangle that would give him the
largest possible planting area? How do you make sure that your answer gives the largest,
not the smallest area?

3 A firm has the following total-cost and demand functions:
C=10'-70° + 111Q + 50
Q=100—-P

(a) Does the total-cost function satisfy the coefficient restrictions of (9.5)?
(b) Write out the total-revenue function R in terms of Q.

(¢) Formulate the total-profit function  in terms of Q.

(d) Find the profit-maximizing level of output Q.

(e) What is the maximum profit?

4 If coefficient b in (9.3) were to take a zero value, what would happen to the marginal-cost
and total-cost curves?
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5 A quadratic profit function #(Q) = hQ* + jQ + k is to be used to reflect the followin:
assumptions:

(a) If nothing is produced, the profit will be negative (because of fixed costs).

(b) The profit function is strictly concave.

{¢) The maximum profit occurs at a positive output level Q.
What parameter restrictions are called for?

6 A purely competitive firm has a single variable input L (labor), with the wage rate H
per period. Its fixed inputs cost the firm a total of F dollars per period. The price of the
product is P,,.

(a) Write the production function, revenue function, cost function, and profit function
of the firm.

(b) What is the first-order condition for profit maximization? Interpret the condition
economically.

(¢) What economic circumstances would ensure that profit is maximized rather than
minimized?
7 Use the following procedure to verify that the AR curve in Example 4 is negatively
sloped:

(a) Denote the slope of AR by S. Write an expression for S.

(b) Find the maximum value of S, S, ,,, by using the second-derivative test.

(¢) Then deduce from the value of S, ,, that the AR curve is negatively sloped.

9.5 DIGRESSION ON MACLAURIN AND TAYLOR SERIES

The time has now come for us to develop a test for relative extrema that can
apply even when the second derivative turns out to have a zero value at the
stationary point. Before we can do that, however, it will first be necessary to
discuss the so-called “expansion” of a function y = f(x) into what are known,
respectively, as a Maclaurin series (expansion around the point x = 0) and a
Taylor series (expansion around any point x = Xx,).

To expand a function y = f(x) around a point x, means, in the present
context, to transform that function into a polynomial form, in which the coefficients
of the various terms are expressed in terms of the derivative values f'(x,), f''(xq).
etc.—all evaluated at the point of expansion x,. In the Maclaurin series, these
will be evaluated at x = 0; thus we have f'(0), f”(0), etc., in the coefficients. The
result of expansion may be referred to as a power series because, being a
polynomial, it consists of a sum of power functions.

Maclaurin Series of a Polynomial Function

Let us consider first the expansion of a polynomial function of the nth degree,

(9.6) flx)=ay+ax+a,x’+a x> +a,x*+ - +ax"
Since this involves the transformation of one polynomial into another, it may

seem a sterile and purposeless exercise, but actually it will serve to shed much
light on the whole idea of expansion.
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Since the power series after expansion will involve the derivatives of various
orders of the function f, let us first find these. By successive differentiation of
(9.6). we can get the derivatives as follows:

(x)=a, + 2a,x + 3ayx* + dax + oo+ na,xt!

2

S
f7(x) =2a,+ 3(2)a;x + 4(3)a,x* + -+ n(n—1)a,x""°
1(x) = 3(2)ay + 43)(2ayx + -+ n(n— 1)(n—2)a,x""’
F9(x) =4(3)(2)a, + 5(4)(3)2asx + -

+n(n— D{n~-2)(n—3)a,x"*

fx)=n(n = D(n=2)(n=23)---(3)(2)(1a,

Note that each successive differentiation reduces the number of terms by one—the
additive constant in front drops out—until, in the nth derivative, we are left with
a single constant term (a product term). These derivatives can be evaluated at
various values of x: here we shall evaluate them at x = 0, with the result that all
terms involving x will drop out. We are then left with the following exceptionally
neat derivative values:

(97)  f(0)=a, [7(0)=2a, [7(0)=3(2)a; [D(0)=4( 3)(2)04
0y =n(n— 10n—=2)(n—-3)--- (3)2)(1
If we now adopt a shorthand symbol n! (read: “n factorial”), defined as
nt=n(n—1)(n—2)-- (3)2N1) (n = a positive integer)

so that, for example, 2! =2 x 1 =2 and 3! =3 X2 X1 =6, etc. (with 0!
defined as equal to 1), then the result in (9.7) can be rewritten as

_ /o) _[70) _ o) _1%0)

T e s 3 4™ g
A )

an n!

Substituting these into (9.6) and utilizing the obvious fact that f(0) = a,, we can
now express the given function f( x) as a new polynomial in which the coeflicients
are expressed in terms of derivatives evaluated at x = 0:*

08 ) - fé?) . f’l(?) . f"z(!o) oy f”;(!O) . f<:$o)

This new polynomial, the Maclaurin series of the polynomial function f(x),
represents the expansion of the function f(x) around zero (x = 0).

*Since 0! = 1 and 1! = 1, the first two terms on the right of the equals sign in (9.8) can be written
more simplv as f(0), and f(0) x. respectively. We have included the denominators 0! and 1! here to
call attention to the symmetry among the various terms in the expansion.
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Example 1 Find the Maclaurin series for the function
(9.9) f(x) =2+ 4x + 3x?

This function has the derivatives

f(x)=4+ 6x

10) = 4
/(x) =6 7(0) = 6

so that {
(0

Thus the Maclaurin series is

1) = 10 + f0)x + L1 2
=2+ 4x + 3x?

This verifies that the Maclaurin series does indeed correctly represent the given
function.

Taylor Series of a Polynomial Function

More generally, the polynomial function in (9.6) can be expanded around any
point x,, not necessarily zero. In the interest of simplicity, we shall explain this by
means of the specific quadratic function in (9.9) and generalize the result later.

For the purpose of expansion around a specific point x,, we may first
interpret any given value of x as a deviarion from x,. More specifically, we shall
let x = x, + &, where 8 represents the deviation from the value x,. Upon such
interpretation, the given function (9.9) and its derivatives will now become

F(x) =2+ 4(x,+ 8) +3(x, + 8)
(9.10)  f(x)=4+6(x,+8)
[(x)=6

We know that the expression (x, + 8) = x is a variable in the function, but since

X, in the present context is a fixed number, only § can be properly regarded as a
variable in (9.10). Consequently, f(x) is in fact a function of 8, say, g(4):

g(8) =2+ 4(x,+8) +3(x, +8)  [=f(x)]
with derivatives

g(8)=4+6(x,+8)  [=/1(x)]

g"(8)=16 [=/"(x)]

We already know how to expand g(6) around zero (8 = 0). According to ™
(9.8), such an expansion will yield the following Maclaurin series:

O11)  g(5)= g(()(!)) N g’l(!O)B N g”z(!O)az
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But since we have let x = x + §. the fact that § = 0 will imply that x = x;
hence, on the basis of the identity g(6) = f(x), we can write for the case of 6 = 0:

g(0) = flxy)  g(0)=/"(x))  £7(0) = f"(x)
Upon substituting these into (9.11), we find the result to represent the expansion
of f(x) around the point x,. because the coeflicients involve the derivatives
f(xp) f7(xy). etc., all evaluated at x = x,;:

012) )= gay] =L Ll oy L)

You should compare this result—a Taylor series of f(x)—with the Maclaurin
series of g(6) in (9.11).
Since for the specific function under consideration, namely, (9.9), we have

f(x(,)=2+4x()+3x(2) f'(,\‘())=4+6x() f”(xo):()

the Taylor-series formula (9.12) will yield
Fx) =24+ 4x,+ 3x5 + (4 + 6x,)(x — x4) + S(x — ,\'0)2

=2+ 4x + 3x°

This verifies that the Taylor series does correctly represent the given function.
The expansion formula in (9.12) can be generalized to apply to the nth-degree
polynomial of (9.6). The generalized Taylor-series formula is

f”(xo)

(9.13) f(x)=ﬂg—‘!0—)+[—(l)§i)(x—xo)+ 5 (x —xo) + -
()
+1%)‘(X - x)"

This differs from the Maclaurin series of (9.8) only in the replacement of zero by
x, as the point of expansion and in the replacement of x by the expression
(x — x,). What (9.13) tells us is that. given an nth-degree polynomial f(x), if we
let x = 7 (say) in the terms on the right of (9.13), select an arbitrary number x,,
then evaluate and add these terms, we will end up exactly with f(7)—the value of
f(xyatx =7.

Example 2 Taking x, =3 as the point of expansion, we can rewrite (9.6)
equivalently as

1) =13) + )= 3+ T ey L0 gy

Expansion of an Arbitrary Function

Heretofore, we have shown how an nth-degree polynomial function can be
expressed in another nth-degree polynomial form. As it turns out, it is also
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possible to express any arbirrary function ¢(x)—one that is not even necessarily
a polynomial—in a polynomial form similar to (9.13), provided ¢(x) has finite.
continuous derivatives up to the desired order at the expansion point x,,.

According to a mathematical proposition known as Taylor’s theorem, given
an arbitrary function ¢(x). if we know the value of the function at x = x, [that is.
(x,)] and the values of its derivatives at x,, [that is. ¢'(x). ¢”(x,), etc.], then
this function can be expanded around the point x, as follows (n = a fixed
positive integer arbitrarily chosen):

o (x (xy)
(9.14)  o(x) = (O,“) +¢(l—!“(xvx0>
1 (n)yf .
* ? (2)!(0)(*' - Xo)z Tt * n(!A())(X - x))"| + R,
EPH+ Rn

where P, represents the (bracketed) nth-degree polynomial [the first (n + 1) terms
on the right], and R, denotes a remainder, to be explained below.* The presence
of R, distinguishes (9.14) from (9.13), and for this reason (9.14) is called a Tayior
series with remainder. The form of the polynomial P, and the size of the
remainder R, will depend on the value of n we choose. The larger the n. the more
terms there will be in P,; accordingly, R, will in general assume a different value
for each different n. This fact explains the need for the subscript n in these two
symbols. As a memory aid, we can identify n as the order of the highest derivative
in P (In the special case of n = 0, no derivative will appear in P, at all.)

The appearance of R, in (9.14) is due to the fact that we are here dealing with
an arbitrary function ¢ which cannot always be transformed exactly into the
polynomial form shown in (9.13). Therefore, a remainder term is included as a
supplement to the P, part, in order to represent the difference between ¢(x) and
the polynomial P,. Looked at differently, P, may be considered a polynomial

approximation to ¢(x), with the term R, as a measure of the error of approxima-
tion. If we choose n = 1. for example, we have

o(x) = [¢(X()) + 9" (xy ) (x — x())] + Ry =P + K,

where P consists of n + 1 = 2 terms and constitutes a /inear approximation to
¢(x). If we choose n = 2, a second-power term will appear, so that

"(x,)
$(x) = |o(xy) +¢'(x,)(x — x4) + ¢ g:) (x = Xo)2 +R, =P+ R,

where P,, consisting of n + 1 = 3 terms, will be a quadratic approximation to
¢(x). And so forth.

* The symbol R, (remainder) is not to be confused with the symbol R” ( n-space).
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We should mention, in passing, that the arbitrary function ¢(x) could
obviously encompass the nth-degree polynomial of (9.6) as a special case. For this
latter case, if the expansion is into another nth-degree polynomial, the result of
(9.13) will exactly apply; or in other words, we can use the result in (9.14), with
R, = 0. However, if the given nth-degree polynomial f(x) is to be expanded into
a polynomial of a lesser degree, then the latter can only be considered an
approximation to f(x), and a remainder will appear; accordingly, the result in
(9.14) can be applied with a nonzero remainder. Thus the Taylor series in the
form of (9.14) is perfectly general.

Example 3 Expand the nonpolynomial function

1
1+ x

o(x)

around the point x, = 1, with n = 4. We shall need the first four derivatives of
¢(x), which are

-1

¢(x)= —(1+x)* so that o(ly= —(2) 2= —
¢"(x) =21 + x)~* F) =207 =5
@ (x)= —6(1+ ) o() = —6(2) ==
o9(x) = 24(1 + x) SO = 2425 =

Also, we see that ¢(1) = 1. Thus. setting x, =1 in (9.14) and utilizing the
information derived above, we obtain the following Taylor series with remainder:

1o ] . s )
¢(x)~§—z(x—l)+§(x—l) 'R(X_l) +32(x—1) + R,
_3 ooty o3 s
B R TR R TRy R

It is possible, of course, to choose x, = 0 as the point of expansion here, too.
In that case. with x, set equal to zero in (9.14), the expansion will result in a
Maclaurin series with remainder.

Example 4 Expand the quadratic function
d(x)=5+2x+ x?

around x, = 1, with n = 1. This function is, like (9.9) in Example 1, a second-
degree polynomial. But since our assigned task is to expand it into a firsi-degree
polynomial (n = 1)—i.e., to find a linear approximation to the given quadratic
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function—a remainder term is bound to appear. For this reason, ¢(x) is viewed
as an “arbitrary” function for the purpose of the Taylor expansion.

To carry out this expansion, we need only the first derivative ¢'(x) = 2 + 2x.
Evaluated at x, = 1, the given function and its derivative yield

o(x)=0(1)=8  ¢'(xy)=¢(1)=14

Thus the Taylor series with remainder is

o(x) <;b(x0)+¢/(x0)(x—x0)+R,

i

8+ 4(x—1)+R, =4+4x+ R

where the (4 + 4x) term is a linear approximation and the R, term represents the
error of approximation.

In Fig. 9.7, ¢(x) plots as a parabola, and its linear approximation, a straight
line tangent to the ¢(x) curve at the point (1,8). The occurrence of the point of
tangency at x = 1 is not a matter of coincidence; rather, it is the direct
consequence of the fact that the point of expansion is set at that particular value
of x. This suggests that, when an arbitrary function ¢(x) is approximated by a
polynomial, the latter will give the exact value of ¢(x) at (but only ar) the point
of expansion, with zero error of approximation (R, = 0). Elsewhere, R, is strictly
nonzero and, in fact, shows increasingly larger errors of approximation as we try
to approximate ¢(x) for x values farther and farther away from the point of
expansion Xx.

14

dlx) =5+ 2x +x2 12

4 -3 -2 -1 © 1 2 3

Figure 9.7
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Lagrange Form of the Remainder

Now we must comment further on the remainder term. According to the
Lagrange form of the remainder, we can express R, as

(n+1)
5-13) R"__-2(71-4+1))!)(X_X())'Hl

where p is some number between x (the point where we wish to evaluate the
arbitrary function ¢) and x, (the point where we expand the function ¢). Note
that this expression closely resembles the term which should logically follow the
last term in P, in (9.14), except that the derivative involved is here to be evaluated
at a point p instead of x,. Since the point p is not otherwise specified, this formula
does not really enable us to calculate R,; nevertheless, it does have great
analytical significance. Let us therefore illustrate its meaning graphically, al-
though we shall do it only for the simple case of n = 0.

When n = 0, no derivatives whatever will appear in the polynomial part P,;
therefore (9.14) reduces to

¢(x) = P() + R() = ¢(x0) + ¢/(p)(x - XO)
or  ¢(x) = ¢(xy) =¢'(p)x — xq)

This result, a simple version of the mean-value theorem, states that the difference
between the value of the function ¢ at x, and at any other x value can be
expressed as the product of the difference (x — x) and the derivative ¢’ evaluated
at p (with p being some point between x and x,). Let us look at Fig. 9.8, where
the function ¢(x) is shown as a continuous curve with derivative values defined at
all points. Let x, be the chosen point of expansion, and let x be any point on the
horizontal axis. If we try to approximate ¢(x), or distance xB, by ¢(x,), or
distance x4, it will involve an error equal to ¢(x) — ¢(x,), or the distance CB.

Figure 9.8
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What the mean-value theorem says is that the error CB—which constitutes the
value of the remainder term R, in the expansion—can be expressed as ¢'( p)(x —
x,), where p is some point between x and x,. First we locate, on the curve
between points 4 and B, a point D such that the tangent line at D is parallel to
line AB; such a point D must exist, since the curve passes from 4 to B in a
continuous and smooth manner. Then, the remainder will be

_ CB

R,=CB = ZEAC = (slope of AB) - AC

(slope of tangent at D) - AC

= (slope of curve at x = p) - AC = ¢'(p)(x — x,)

where the point p is between x and x,, as required. This demonstrates the
rationale of the Lagrange form of the remainder for the case n = 0. We can
always express R as ¢'( p)(x — x,,) because, even though p cannot be assigned a
specific value, we can be sure that such a point exists.

Equation (9.15) provides a way of expressing the remainder term R, but it
does not eliminate R, as a source of discrepancy between ¢(x) and the poly-
nomial P,. However, if it happens that

R,—>0asn—> o sothat P, — ¢(x)asn—> o«

then it will be possible to make P, as accurate an approximation to ¢(x) as we
desire by choosing a large enough value for n, that is, by including a large enough
number of terms in the polynomial P,.* In this (convenient) event, the Taylor
series 1s said to be convergent to ¢(x) at the point of expansion. An example of
this will be discussed in Sec. 10.2 below.

EXERCISE 9.5

1 Find the value of the following factorial expressions:
4! 6! n+ 2!
(a) 5! (b) 7! (o 3y (d) 3y (e) (T)—
2 Find the first five terms of the Maclaurin series (i.e., choose n = 4 and let x, = 0) for:
1 I —x
(@) o(x) =7 (b) ¢(x)= T+«
3 Find the Taylor series, with n = 4 and x, = —2, for the two functions in the preceding

problem.

4 On the basis of the Taylor series with the Lagrange form of the remainder [sec (9.14)
and (9.15)], show that at the point of expansion (x = x,,) the Taylor series will always give
exactly the value of the function at that point, ¢(x,), not merely an approximation.

* This should be reminiscent of the method of finding the inverse matrix by approximation, as
discussed in Sec. 5.7.
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9.6 NTH-DERIVATIVE TEST FOR RELATIVE EXTREMUM OF
A FUNCTION OF ONE VARIABLE

The expansion of a function into a Taylor (or Maclaurin) series is useful as an
approximation device in the circumstance that R, — 0 as n — oo, but our present
concern is with its application in the development of a general test for a relative
extremum.

Taylor Expansion and Relative Extremum

As a preparatory step for that task, let us redefine a relative extremum as follows:

A function f(x) attains a relative maximum (minimum) value at x, if
f(x) — f(x,) is negative (positive) for values of x in the immediate neighbor-
hood of x, both to its left and to its right.

This can be made clear by reference to Fig. 9.9, where x, is a value of x to the left
of x,, and x, is a value of x to the right of x,. In diagram a, f(x,) is a relative
maximum; thus f(x,) exceeds both f(x,) and f(x,). In short, f(x) — f(x,) is
negative for any value of x in the immediate neighborhood of x,. The opposite is
true of diagram b, where f(x,) is a relative minimum, and thus f(x) — f(xq) > 0.
Assuming f(x) to have finite, continuous derivatives up to the desired order
at the point x = x,, the function f(x)—not necessarily polynomial—can be
expanded around the point x,, as a Taylor series. On the basis of (9.14) (after duly
changing ¢ to f), and using the Lagrange form of the remainder, we can write

(916) () = f(x) = £ = x0) + 1) (5
f(n)(x()) n f("H)(P) _ n+1
o )Ty ()

v="{(x)

Figure 9.9
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If we can determine the sign of the expression f(x) — f(x,) for values of x to the
immediate left and right of x,, we can readily come to a conclusion as to whether
f(x,) 1s an extremum, and if so, whether it is a maximum or a minimum. For this,
it is necessary to examine the right-hand sum of (9.16). Altogether, there are
(n + 1) terms in this sum—n terms from P,, plus the remainder—and thus the
actual number of terms is indefinite, being dependent upon the value of n we
choose. However, by properly choosing n, we can always make sure that there will
exist only a single term on the right, thereby drastically simplifying the task of
evaluating the sign of f(x)— f(x,) and ascertaining whether f(x,) is an ex-
tremum, and if so, which kind.

Some Specific Cases

This will become clearer through some specific illustrations.
Case 1 f’(xo) *0

If the first derivative at x is nonzero, let us choose n = 0; then there will be
only n + 1 =1 term on the right side, implying that only the remainder R, will
be there. That is, we have

10 = 1) = L8P () = 1) e = )
where p is some number between x, and a value of x in the immediate
neighborhood of x,. Note that p must accordingly be very, very close to x,,.

What is the sign of the expression on the right? Because of the continuity of
the derivative, f'( p) will have the same sign as f'(x,) since, as mentioned above,
p 1s very, very close to x,. In the present case, f'( p) must be nonzero; in fact, it
must be a specific positive or negative number. But what about the (x — x,) part?
When we go from the left of x, to its right, x shifts from a magnitude x, < x,toa
magnitude x, > x, (see Fig. 9.9). Consequently, the expression (x — x,) must
turn from negative to positive as we move, and f(x) — f(x,) = f/(pXx — x4)
must also change sign from the left of x,, to its right. However, this violates our
new definition of a relative extremum; accordingly, there cannot exist a relative
extremum at f(x,) when f'(x,) # 0O—a fact that is already well known to us.

Case2 f'(x5)=0;f"(x))+0

In this case, choose n = 1, so that initially there will be n + 1 = 2 terms on
the right. But one of these terms will vanish because f'(x,) = 0, and we shall
again be left with only one term to evaluate:

7)1t = £ )x — ) + L8P ()

F7(p)(x = x,) [because f'(x,) = 0]

1aj—
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As before, f”( p) will have the same sign as f”(x,). a sign that is specified and
unvarying; whereas the (x — x,)* part, being a square, is invariably positive.
Thus the expression f(x)— f(x,) must take the same sign as f”(x,) and,
according to the above definition of relative extremum, will specify

A relative maximum of f(x)if f"(x,) <O
f( ) f ( ()) [Wlthf((xo) _ O]

A relative minimum of f(x) if f"(xy) > 0

You will recognize this as the second-derivative test introduced earlier.
Case 3 f'(xy)=/f"(xy) =0, but f"(xy) 0

Here we are encountering a situation that the second-derivative test is
incapable of handling, for f”(x,) is now zero. With the help of the Taylor series,
however, a conclusive result can be established without difficulty.

Let us choose n = 2; then three terms will initially appear on the right. But
two of these will drop out because f'(x,) = f"(x,) = 0, so that we again have
only one term to evaluate:

f(x) = f(x4) = f"(xo)(x = x) + %f’/(-"o)(x - -’Co)2 + %fm(p)(x - Xo)3

=2/ (p)x = %)’

As previously, the sign of f/( p) is identical with that of f'(x,) because of the
continuity of the derivative and because p is very close to x,. But the (x — x;,)*
part has a varying sign. Specifically, since (x — x) is negative to the left of x,, so
also will be (x — x,)%; yet. to the right of x, the (x — x,,)* part will be positive.
Again there is a change in the sign of f(x) — f(x,) as we pass through x, which
violates the definition of a relative extremum. However, we know that x, is a
critical value [ f'(x,) = 0], and thus it must give an inflection point, inasmuch as
it does not give a relative extremum.

Cased ['(x,)=/f"(xg)= "' = f(Nfl)(X()) = 0, but f(N)(Xo) *0

This is a very general case, and we can therefore derive a general result from
it. Note that here all the derivative values are zero until we arrive at the Nth one.

Analogously to the preceding three cases. the Taylor series for Case 4 will
reduce to

f(x) = f(x,) = %f(’v)(p)(x - X())N

Again, fN)( p) takes the same sign as f‘*’(x,), which is unvarying. The sign of
the (x — x,)" part, on the other hand, will vary if N is odd (cf. Cases 1 and 3)
and will remain unchanged (positive) if N is even (cf. Case 2). When N is odd,
accordingly, f(x) — f(x,) will change sign as we pass through the point x,.
thereby violating the definition of a relative extremum (which means that x, must
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give us an inflection point). But when N is even, f(x) — f(x,) will not change sign
from the left of x, to its right, and this will establish the stationary value f(x,,) as
a relative maximum or minimum, depending on whether /V'(x,) is negative or
positive.

Nth-Derivative Test

At lust. then. we may state the following general test.

Nth-Derivative test for relative extremum of a function of one variable [f the first
derivative of a function f(x) at x,1s f(x,) = 0 and if the first nonzero derivative
value at x,, encountered in successive derivation is that of the Nth derivative,
£ Mi(x,) # 0. then the stationary value f(x,) will be

a. A relative maximum if N is an even number and /V'(x,) < 0.
b. A relative minimum if N is an even number but /Y (x,) > 0.
c. An inflecrion point if N is odd.

[t should be clear from the above statement that the Nth-derivative test can
work if and only if the function f(x) is capable of yielding, sooner or later, a
nonzero derivative value at the critical value x,,. While there do exist exceptional
functions that fail to satisfy this condition, most of the functions we are likely to
encounter will indeed produce nonzero f*'(x,) in successive differentiation.*
Thus the test should prove serviceable in most instances.

Example 1 Examine the function y = (7 — x)* for its relative extremum. Since
f(xy= 47 ~ x ) is zero when x = 7. we take x = 7 as the critical value for
testing, with v = 0 as the stationary value of the function. By successive deriva-
tion (continued until we encounter a nonzero derivative value at the point x = 7).

*If f(x) is a constant function. for instance. then obviously f'{x) = f"(x) = --- = 0, so that no
nonzero derivative value can ever be found. This, however, is a trivial case. since a constant function
requires no test for extremum anvwav. As a nontrivial example, consider the function

fe ' (forx #0)
l‘ 0 (for x = 0)

where the function » = ¢ ' ' s an exponential function, yet to be introduced (Chap. 10). By itself,
_

po= e " is discontinuous at x = (), because x = 0 is not in the domain (division by zero is
undefined). However. since lim v = (), we can. by appending the stipulation that v = 0 for x = 0, fill

the gap in the domain and \th;“r)eby obtain a continuous function. The graph of this function shows
that it attains a minimum at x = 0. But it turns out that. at x = 0. all the derivatives (up to any order)
have zero values. Thus we are unable to apply the Nth-derivative test to confirm the graphically
ascertainable fact that the function has a minimum at x = 0. For further discussion of this exceptional
case. see R Courant. Differential and Integral Calculus (translated by E. J. McShane), Interscience.
New York. vol. 1. 2d ed.. 1937, pp. 196, 197, and 336.
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we get
f(x) = 12(7 = x)? so that (=0
f(x)y= =247 — x) (=0
f9(x) =24 97 = 24

Since 4 is an even number and since f“(7) is positive, we conclude that the point
(7.0) represents a relative minimum.

As is easily verified, this function plots as a strictly convex curve. Inasmuch
as the second derivative at x = 7 is zero (rather than positive), this example serves
to illustrate our earlier statement regarding the second derivative and the curva-
ture of a curve (Sec. 9.3) to the effect that, while a positive f”(x) for all x does
imply a strictly convex f( x), a strictly convex f(x) does not imply a positive f”(x)
for all x. More importantly, it also serves to illustrate the fact that, given a strictly
convex (strictly concave) curve, the extremum found on that curve must be a
minimum (maximum), because such an extremum will either satisfy the second-
order sufficient condition, or, failing that, satisfy another (higher-order) sufficient
condition for a minimum (maximum).

EXERCISE 9.6

1 Find the stationary values of:

(a) y = x° (by y= —x* () y=x"+5
Determine by the Nth-derivative test whether they represent relative maxima, relative
minima, or inflection points.

2 Find the stationary values of the following functions:
(a) y =(x — D+ 16 (h) y=(x—2)4 (¢) _1'=(3—x)6+7
Use the Nth-derivative test to determine the exact nature of these stationary values.




CHAPTER

TEN
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

The Nth-derivative test developed in the preceding chapter equips us for the task
of locating the extreme values of any objective function, as long as it involves
only one choice variable, possesses derivatives to the desired order, and sooner or
later yields a nonzero derivative value at the critical value x,. In the examples
cited in Chap. 9, however, we made use only of polynomial and rational
functions, for which we know how to obtain the necessary derivatives. Suppose
that our objective function happened to be an exponential one, such as

y= 8.\7\/\’

Then we are still helpless in applying the derivative criterion, because we have yet
to learn how to differentiate such a function. This is what we shall do in the
present chapter.

Exponential functions, as well as the closely related logarithmic functions,
have important applications in economics, especially in connection with growth
problems, and in economic dynamics in general. The particular application
relevant to the present part of the book, however, involves a class of optimization
problems in which the choice variable is time. For example, a certain wine dealer
may have a stock of wine, the market value of which, owing to its vintage year, is
known to increase with time in some prescribed fashion. The problem is to
determine the best time to sell that stock on the basis of the wine-value function,
after taking into account the interest cost involved in having the money capital
tied up in that stock. Exponential functions may enter into such a problem in two

268
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ways. In the first place, the value of the wine may increase with time according to
some exponential law of growth. In that event, we would have an exponential
wine-value function. This is only a possibility, of course, and not a certainty.
When we give consideration to the interest cost, however, a sure entry is provided
for an exponential function because of the fact of interest compounding, which
will be explained presently. Thus we must study the nature of exponential
functions before we can discuss this type of optimization problem.

Since our primary purpose is to deal with time as a choice variable, let us now
switch to the symbol 1—in lieu of x—to indicate the independent variable in the
subsequent discussion. (However, this same symbol ¢ can very well represent
variables other than time also.)

10.1 THE NATURE OF EXPONENTIAL FUNCTIONS -

As introduced in connection with polynomial functions, the term exponent means
an indicator of the power to which a variable is to be raised. In power expressions
such as x* or x°, the exponents are constants; but there is no reason why we
cannot also have a variable exponent, such as in 3% or 3*, where the number 3 is to
be raised to varying powers (various values of x). A function whose independent
variable appears in the role of an exponent is called an exponential function.

Simple Exponential Function

In its simple version, the exponential function may be represented in the form

(10.1) y=f(t)="¥ (b>1)

where y and r are the dependent and independent variables, respectively, and b
denotes a fixed base of the exponent. The domain of such a function is the set of
all real numbers. Thus, unlike the exponents in a polynomial function, the
variable exponent ¢ in (10.1) is not limited to positive integers—unless we wish to
impose such a restriction.

But why the restriction of b > 1? The explanation is as follows. In view of the
fact that the domain of the function in (10.1) consists of the set of all real
numbers, it is possible for ¢ to take a value such as 3. If b is allowed to be
negative, the half power of b will involve taking the square root of a negative
number. While this is not an impossible task, we would certainly prefer to take
the casy way out by restricting b to be positive. Once we adopt the restriction
b > 0, however, we might as well go all the way to the restriction b > 1: The
restriction b > 1 differs from b > 0 only in the further exclusion of the cases of
(1)0 < b < 1and (2) b = 1; but as will be shown, the first case can be subsumed
under the restriction b > 1, whereas the second case can be dismissed outright.
Consider the first case. If » = L, then we have

N
y = 5 _5,_
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This shows that a function with a fractional base can easily be rewritten into one
with a base greater than 1. As for the second case, the fact that b = 1 will give us
the function y = 1’ = 1, so that the exponential function actually degenerates into
a constant function; it may therefore be disqualified as a member of the
exponential family.

Graphical Form

The graph of the exponential function in (10.1) takes the general shape of the
curve in Fig. 10.1. The curve drawn is based on the value b = 2; but even for
other values of b, the same general configuration will prevail.

Several salient features of this type of exponential curve may be noted. First,
it is continuous and smooth everywhere; thus the function should be everywhere
differentiable. As a matter of fact, it is continuously differentiable any number of
times. Second, it is monotonically increasing, and in fact y increases at an
increasing rate throughout. Consequently, both the first and second derivatives of
the function y = b’ should be positive—a fact we should be able to confirm after
we have developed the relevant differentiation formulas. Third, we note that, even
though the domain of the function contains negative as well as positive numbers,
the range of the function is limited to the open interval (0, o0). That is, the
dependent variable y is invariably positive, regardless of the sign of the indepen-
dent variable .

oof

| t
4 Figure 10.1
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The monotonicity of the exponential function entails at least two interesting
and significant implications. First. we may infer that the exponential function
must have an inverse function, which is itself monotonic. This inverse function.
we shall find, turns out to be a logarithmic function. Second. since monotonicity
means that there is a unique value of 7 for a given value of y and since the range
of the exponential function is the interval (0, cc), it follows that we should be able
1o express any positive number as a unique power of a base b > 1. This can be
seen from Fig. 10.1, where the curve of y = 2’ covers all the positive values of y in
its range; therefore any positive value of y must be expressible as some unique
power of the number 2. Actually. even if the base is changed to some other real
number greater than 1, the same range holds. so that it is possible to express any
positive number y as a power of any base b > 1.

Generalized Exponential Function

This last point deserves closer scrutiny. If a positive y can indeed be expressed as
powers of various alternative bases. then there must exist a general procedure of
base conversion. In the case of the function y = 9°, for instance, we can readily
transform it into y = (3?)' = 3%, thereby converting the base from 9 to 3.
provided the exponent is duly altered from 7 to 2r. This change in exponent.
necessitated by the base conversion. does not create any new type of function. for.
if we let w = 27, then y = 377 = 3" is still in the form of (10.1). From the point of
view of the base 3. however. the exponent is now 27 rather than 7. What is the
effect of adding a numerical coefficient (here. 2) to the exponent 1?

The answer is to be found in Fig. 10.2a, where two curves are drawn-—one
for the function y = f(¢) = b" and one for another function y = g(7) = h*. Since
the exponent in the latter is exactly twice that of the former. and since the
identical base is adopted for the two functions, the assignment of an arbitrary
value 1 = 1, in the function g and 7 = 21, in the function f/ must yield the same
value:

f(21)) = g(1,) = b =

Thus the distance y,J will be half of y, K. By similar reasoning. for any value of y.
the function g should be exactly halfway between the function f and the vertical
axis. It may be concluded. therefore, that the doubling of the exponent has the
effect of compressing the exponential curve halfway toward the y axis, whereas
halving the exponent will extend the curve away from the y axis to rwice the
horizontal distance.

It is of interest that both functions share the same vertical intercept

710) = g(0) = b = 1

The change of the exponent ¢ to 2/, or to any other multiple of 7. will leave the
vertical intercept unaffected. In terms of compressing. this is because compressing
a zero horizontal distance will still yield a zero distance.
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The change of exponent is one way of modifying—and generalizing— the
exponential function of (10.1); another is to attach a coefficient to b’, such as 2b".
[Warning: 2b" # (2b)".] The effect of such a coefficient is also to compress or
extend the curve, except that this time the direction is vertical. In Fig. 10.25, the
higher curve represents y = 2b'. and the lower one is y = #". For every value of ¢,
the former must obviously be twice as high, because it has a y value twice as large
as the latter. Thus we have ¢,/ = J'’K’. Note that the vertical intercept, 100, is
changed in the present case. We may conclude that doubling the coefficient (here,
from 1 to 2) serves to extend the curve away from the horizontal axis to rwice the
vertical distance, whereas halving the coefficient will compress the curve halfway
toward the 7 axis.

With the knowledge of the two modifications discussed above, the exponen-
tial function y = b’ can now be generalized to the form

(102)  y=ab*

where @ and ¢ are “compressing” or “extending” agents. When assigned various
values, they will alter the position of the exponential curve, thus generating a
whole family of exponential curves (functions). If @ and ¢ are positive, the general
configuration shown in Fig. 10.2 will prevail; if a or ¢ or both are negative,
however, then fundamental modifications will occur in the configuration of the
curve (see Exercise 10.1-5 below).

A Preferred Base

What prompted the discussion of the change of exponent from ¢ to ¢t was the
question of base conversion. But, granting the feasibility of base conversion, why

(a) (b)

Figure 10.2
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would one want to do it anyhow? One answer is that some bases are more
convenient than others as far as mathematical manipulations are concerned.

Curiously enough, in calculus, the preferred base happens to be a certain
irrational number denoted by the symbol e:

e=2.71828...

When this base e is used in an exponential function, it is referred to as a natural
exponential function, examples of which are

y = e’ y = e3’ y = Ae”
These illustrative functions can also be expressed by the alternative notations

y=exp(t) y=exp(3t) y=Aexp(r)
where the abbreviation exp (for exponential) indicates that e is to have as its
exponent the expression in parentheses.

The choice of such an outlandish number as e = 2.71828. .. as the preferred
base will no doubt seem bewildering. But there is an excellent reason for this
choice, for the function e’ possesses the remarkable property of being its own
derivative! That is,

Lol = !

dt
a fact which will reduce the work of differentiation to practically no work at all.
Moreover, armed with this differentiation rule—to be proved later in this chapter
—it will also be easy to find the derivative of a more complicated natural
exponential function such as y = Ae”. To do this, first let w = rz, so that the
function becomes

y = Ae” where w = rt, and A, r are constants

Then, by the chain rule, we can write

d.}’ _ d_)/ d_W _ w _ rt
v dl = Ae*(r) = rAe
That is,

d re re
(10.3) EAe = rde

The mathematical convenience of the base e should thus be amply clear.

EXERCISE 10.1

1 Plot in a single diagram the graphs of the exponential functions y = 3" and y = 33
(@) Do the two graphs display the same general positional relationship as shown in Fig.
10.2a?
(b) Do these two curves share the same y intercept? Why?
(¢) Sketch the graph of the function y = 3*" in the same diagram.
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2 Plot in a single diagram the graphs of the exponential functions y = 4’ and y = 3(4").
(a) Do the two graphs display the general positional relationship suggested in Fig.
10.25?
(b) Do the two curves have the same y intercept? Why?
(¢) Sketch the graph of the function y = 3(4') in the same diagram.

3 Taking for granted that e’ is its own derivative, use the chain rule to find dy/dt for the
following:
(a) y=e" (b) y =4e" (¢c) v==6e ¥

4 In view of our discussion about (10.1), do you expect the function y = ¢’ to be
monotonically increasing at an increasing rate? Verify your answer by determining the
signs of the first and second derivatives of this function. In doing so, remember that the
domain of this function is the set of all real numbers, i.¢., the interval (— oc, oc).

5 In (10.2), if negative values are assigned to « and c¢, the general shape of the curves in
Fig. 10.2 will no longer prevail. Examine the change in curve configuration by contrasting
(a) the case of ¢ = — 1 against the case of ¢ = 1, and (b) the case of ¢ = — 1 against the
case of ¢ = 1.

10.2 NATURAL EXPONENTIAL FUNCTIONS
AND THE PROBLEM OF GROWTH

The pertinent questions still unanswered are: How is the number e defined? Does
it have any economic meaning in addition to its mathematical significance as a
convenient base? And, in what ways do natural exponential functions apply to
economic analysis?

The Number ¢

Let us consider the following function:
] ”n
(104)  f(m) = (1 + ;)

If larger and larger values are assigned to m, then f(m) will also assume larger
values; specifically, we find that

f=0+1) =
f(2)=(1+1)* =225
f3)=(1+1) =2.37037...
f(4) =0+ =244141. .

Moreover, if m is increased indefinitely, then f(m) will converge to the number
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2.71828... = ¢; thus e may be defined as the limit of (10.4) as m — oo:

(105) e= lim f(m)= lim (1 + l)
m—x m-—oc m
That the approximate value of e is 2.71828 can be verified by finding the
Maclaurin series of the function ¢(x) = e*—with x used here to facilitate the
application of the expansion formula (9.14). Such a series will give us a poly-
nomial approximation to e*, and thus the value of e (= e') may be approximated
by setting x = 1 in that polynomial. If the remainder term R, approaches zero as
the number of terms in the series is increased indefinitely, i.e., if the series is
convergent to ¢(x), then we can indeed approximate the value of e to any desired
degree of accuracy by making the number of included terms sufficiently large.
To this end, we need to have derivatives of various orders for the function.
Accepting the fact that the first derivative of e* is e* itself, we can see that the
derivative of ¢(x) is simply e* and. similarly, that the second, third, or any
higher-order derivatives must be e¢* as well. Hence, when we evaluate all the
derivatives at the expansion point (x, = 0), we have the gratifyingly neat result

$'(0) = ¢"(0) = -+ = ¢ (0) =€ =1
Consequently, by setting x, = 0 in (9.14), the Maclaurin series of e* is

//O R INO
e*=¢(x)=¢(0) +¢'(0)x + ¢2(! )x~+ d 3!( )x3+

(n)
+ —-——‘1) '(O) x"+ R
n:

H

1 2 1 3 1 n
=l+x+ax +§x +~--+Fx + R,

The remainder term R, according to (9.15), can be written as

‘i)("*l)(p) n+ 1l _ ef x.n*l

Ri="Gren ™ (n+ )
[0 (x) = e 6 N (p) = 7]

Inasmuch as the factorial expression (n + 1)! will increase in value more rapidly
than the power expression x" "' (for a finite x) as n increases, it follows that
R, — 0asn — co. Thus the Maclaurin series converges, and the value of e* may,
as a result, be expressed as an infinite series—an expression involving an infinite
number (n — o) of additive terms which follow a consistent, recognizable
pattern of formation, and in which the remainder term R, disappears (R, — 0):

. 1 1 1 1
(10.6) 6"=1+X+2—!Xz+§x3+-4—!x4+§x5+---
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As a special case, for x = 1, we find that

B 111 1
€—1+1+2—!+§+E+§+"'
2+ 0.5 + 0.1666667 + 0.0416667 + 0.0083333 + 0.0013889

+0.0001984 + 0.0000248 + 0.0000028 + 0.0000003 + - - -

It

= 2.7182819

Thus, if we want a figure accurate to five decimal places, we can write e = 2.71828.
Note that we need not worry about the subsequent terms in the infinite series,
because they will be of negligible magnitude if we are concerned only with five
decimal places.

An Economic Interpretation of ¢

Mathematically, the number e is the limit expression in (10.5). But does it also
possess some economic meaning? The answer is that it can be interpreted as the
result of a special process of interest compounding.

Suppose that, starting out with a principal (or capital) of $1, we find a
hypothetical banker to offer us the unusual interest rate of 100 percent per annum
($1 interest per year). If interest is to be compounded once a year, the value of
our asset at the end of the year will be $2; we shall denote this value by V(1),
where the number in parentheses indicates the frequency of compounding within
1 year:

V(1) = initial principal (1 + interest rate)
= 1(1 + 100%) = (1 + )" =2

If interest is compounded semiannually, however, an interest amounting to 50
percent (half of 100 percent) of principal will accrue at the end of 6 months. We
shall therefore have $1.50 as the new principal during the second 6-month period,
in which interest will be calculated at 50 percent of $1.50. Thus our year-end asset
value will be 1.50(1 + 50%); that is,

V(2) = (1 + 50%)(1 + 50%) = (1 + 1)’

By analogous reasoning, we can write V(3) = (1 + )3, V(4) = (1 + 1)*, etc.; or,
in general,

(107)  V(m)= (1 +%)

where m represents the frequency of compounding in 1 year.

In the limiting case, when interest is compounded continuously during the
year, i.e., when m becomes infinite, the value of the asset will grow in a
“snowballing” fashion, becoming at the end of 1 year

lim ¥(m)= lim (1 + %)m = e(dollars) [by (10.5)]

n->x m— o0
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Thus, the number ¢ = 2.71828 can be interpreted as the year-end value to which a
principal of $1 will grow if interest at the rate of 100 percent per annum is
compounded continuously.

Note that the interest rate of 100 percent is only a nominal interest rate, for if
$1 becomes $e = $2.718 after 1 year, the effective interest rate is in this case
approximately 172 percent per annum.

Interest Compounding and the Function Ae”

The continuous interest-compounding process just discussed can be generalized in
three directions, to allow for: (1) more years of compounding, (2) a principal
other than $1, and (3) a nominal interest rate other than 100 percent.

If a principal of $1 becomes $e after 1 year of continuous compounding and
if we let $e be the new principal in the second year (during which every dollar will
again grow into $e), our asset value at the end of 2 years will obviously become
$e(e) = $ e?. By the same token, it will become $e? at the end of 3 years or, more
generally, will become $e’ after ¢ years.

Next, let us change the principal from $1 to an unspecified amount, $4. This
change is easily taken care of: if $1 will grow into 8¢’ after ¢ years of continuous
compounding at the nominal rate of 100 percent per annum, it stands to reason
that $4 will grow into $4e’.

How about a nominal interest rate of other than 100 percent, for instance,
r = 0.05 (= 5 percent)? The effect of this rate change is to alter the expression Ae’
to Ae”, as can be verified from the following. With an initial principal of $4, to
be invested for ¢ years at a nominal interest rate r, the compound-interest formula
(10.7) must be modified to the form

(108)  V(m) = A(l + é)m'

The insertion of the coefficient A reflects the change of principal from the

previous level of $1. The quotient expression r/m means that, in each of the m

compounding periods in a year, only 1/m of the nominal rate » will actually be

applicable. Finally, the exponent mt tells us that, since interest is to be com-

pounded m times a year, there should be a total of mr compoundings in ¢ years.
The formula (10.8) can be transformed into an alternative form

(10.8)  V(m) = A[(l + %)M/]

w re
=A[(l+l) ] Wherewz—r—n—
w r
As the frequency of compounding m is increased, the newly created variable w
must increase pari passu; thus, as m — oo, we have w — oo, and the bracketed
expression in (10.8'), by virtue of (10.5), tends to the number e. Consequently, we
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find the asset value in the generalized continuous-compounding process to be

(10.8”) V= lim V(m) = Ade"”
Ht— oC
as anticipated above.

Note that, in (10.8), 7 is a discrete (as against a continuous) variable: it can
only take values that are integral multiplies of 1/m. For example, if m = 4
(compounding on a quarterly basis), then ¢ can only take the values of +,1,3 1,
etc.. indicating that V(m) will assume a new value only at the end of each new
quarter. When m — oo, as in (10.8”), however, 1/m will become infinitesimal,
and accordingly the variable ¢ will become continuous. In that case, it becomes
legitimate to speak of fractions of a year and to let ¢ be, say, 1.2 or 2.35.

The upshot is that the expressions e, e’, Ae’, and 4e” can all be interpreted
economically in connection with continuous interest compounding, as sum-
marized in Table 10.1.

Instantaneous Rate of Growth

It should be pointed out, however, that interest compounding is an illustrative,
but not exclusive, interpretation of the natural exponential function Ae”. Interest
compounding merely exemplifies the general process of exponential growth (here,
the growth of a sum of money capital over time), and we can apply the function
equally well to the growth of population, wealth, or real capital.

Applied to some context other than interest compounding, the coefficient 7 in
Ae" no longer denotes the nominal interest rate. What economic meaning does it
then take? The answer is that r can be reinterpreted as the instantaneous rate of
growth of the function Ae™. (In fact, this is why we have adopted the symbol r,
for rate of growth, in the first place.) Given the function V' = Ae”, which gives
the value of V at each point of time 7, the rate of change of ¥ is to be found in the
derivative

dv

o rde” = rV [see (10.3)]

But the rate of growth of V is simply the rare of change in V expressed in relative
(percentage) terms, i.e., expressed as a ratio to the value of V itself. Thus, for any

Table 10.1 Continuous interest compounding

Yecars of
Nominal continuous Asset value, at the end of
Principal, $ interest rate compounding compounding process, $
1 100% (= 1) 1 e
1 100% ! e’
A 100% ! Ae’
A r t Ae”
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given point of time, we have

(10.9) Rate of growth of V =

dv/dt  rV
VooV
as was stated above.

Several observations should be made about this rate of growth. But, first, let
us clarify a fundamental point regarding the concept of time, namely, the
distinction between a point of time and a period of time. The variable V' (denoting
a sum of money, or the size of population, etc.) is a stock concept, which is
concerned with the question: How much of it exists at a given moment? As such,
V is related to the point concept of time; at each point of time, V' takes a unique
value. The change in V., on the other hand, represents a flow, which involves the
question: How much of it takes place during a given time span? Hence a change
in V and, by the same token, the rate of change of I must have reference to some
specified period of time, say, per year.

With this understanding, let us return to (10.9) for some comments:

1. The rate of growth defined in (10.9) is an instantaneous rate of growth. Since
the derivative dV /dr = rde’" takes a different value at a different point of ¢,
as will V' = Ae”, their ratio must also have reference to a specific point (or
instant) of t. In this sense, the rate of growth is instantaneous.

2. In the present case, however. the instantaneous rate of growth happens to be
a constant r, with the rate of growth thus remaining uniform at all points of
time. This many not, of course, be true of all growth situations actually
encountered.

3. Even though the rate of growth r is measured instantaneously, as of a
particular point of time, its magnitude nevertheless has the connotation of so
many percent per unit of time, say, per year (if ¢ is measured in year units).
Growth, by its very nature. can occur only over a time interval. This is why a
single still picture (recording the situation at one instant) could never portray.
say, the growth of a child, whereas two still pictures taken at different times
—say, a year apart—can accomplish this. To say that V' has a rate of growth
of r at the instant 1 = 1, therefore, really means that, if the rate r prevailing
at t = 1, is allowed to continue undisturbed for one whole unit of time (1
year), then V" will have grown by the amount »}" at the end of the year.

4. For the exponential function V = Ae"™, the percentage rate of growth is
constant at all points of 7, but the absolute amount of increment of V increases
as time goes on, because the percentage rate will be calculated on larger and
larger bases.

Upon interpreting r as the instantaneous rate of growth, it is clear that little
effort will henceforth be required to find the rate of growth of a natural
exponential function of the form y = 4e". provided r is a constant. Given a
function y = 75¢%%%, for instance. we can immediately read off the rate of growth
of y as 0.02 or 2 percent per period.
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Continuous versus Discrete Growth

The above discussion, though analytically interesting, is still open to question
insofar as economic relevance is concerned, because in actuality growth does not
always take place on a continuous basis—not even in interest compounding.
Fortunately, however, even for cases of discrete growth, where changes occur only
once per period rather than from instant to instant, the continuous exponential
growth function can be justifiably used.

For one thing, in cases where the frequency of compounding is relatively
high, though not infinite, the continuous pattern of growth may be regarded as an
approximation to the true growth pattern. But, more importantly, we can show
that a problem of discrete or discontinuous growth can always be transformed
into an equivalent continuous version.

Suppose that we have a geometric pattern of growth (say, the discrere
compounding of interest) as shown by the following sequence:

A AL+ 0), AL+ ) A1 + i)

where the effective interest rate per period is denoted by / and where the exponent
of the expression (1 + /) denotes the number of periods covered in the com-
pounding. If we consider (1 + /) to be the base b in an exponential expression,
then the above sequence may be summarized by the exponential function
Ab'—except that, because of the discrete nature of the problem, 7 is restricted to
integer values only. Moreover, b = | + i i1s a positive number (positive even if 7 1s
a negative interest rate, say, —0.04), so that it can always be expressed as a power
of any real number greater than 1, including e. This means that there must exist a
number r such that*

l+i=b=c¢"
Thus we can transform Ab’ into a natural exponential function:

A1 + i) = Ab" = Ae"

For any given value of r—in this context, integer values of /— the function
Ae" will, of course, yield exactly the same value as A(1 + /)’, such as A(1 + i) =
Ae" and A(1 + i)> = Ae?". Consequently, even though a discrete case A(1 + i) is
being considered, we may still work with the continuous natural exponential
function Ae”. This explains why natural exponential functions are extensively
applied in economic analysis despite the fact that not all growth patterns may
actually be continuous.

Discounting and Negative Growth

Let us now turn briefly from interest compounding to the closely related concept
of discounting. In a compound-interest problem, we seek to compute the future
value V (principal plus interest) from a given present value A (initial principal).

* The method of finding the number 7. given a specific value of &, will be discussed in Sec. 10.4.
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The problem of discounting is the opposite one of finding the present value 4 of a
given sum ¥ which is to be available ¢ years from now.

Let us take the discrete case first. If the amount of principal A4 will grow into
the future value of A(1 + /)" after ¢ years of annual compounding at the interest
rate / per annumn, i.e., if

V=d(+1i)

then, by dividing both sides of the equation by the nonzero expression (1 + i),
we can get the discounting formula:

(1010) A=—"—=v(1+1)

(1+0)
which involves a negative exponent. It should be realized that in this formula the
roles of ¥ and A have been reversed: V' is now a given, whereas 4 is the unknown,
to be computed from i (the rate of discount) and ¢ (the number of years), as well
as V.
Similarly, for the continuous case, if the principal A will grow into Ae™ after ¢
years of continuous compounding at the rate r in accordance with the formula

V= Ae"
then we can derive the corresponding continuous-discounting formula simply by
dividing both sides of the last equation by e’
Vv
(10.11) A=—=Ve "

er!

Here again, we have 4 (rather than V') as the unknown, to be computed from the
given future value V, the nominal rate of discount r, and the number of years .

Taking (10.11) as an exponential growth function. we can immediately read
—r as the instantaneous rate of growth of A. Being negative, this rate is
sometimes referred to as a rate of decay. Just as interest compounding exemplifies
the process of growth, discounting illustrates negative growth.

EXERCISE 10.2

1 Use the infinite-series form of ¢ in (10.6) to find the approximate value of:

(a) e*  (b) Ve (=e')
(Round off your calculation of each term to 3 decimal places, and continue with the series
till you get a term 0.000.)

2 Given the function ¢(x) = e**:

(a) Write the polynomial part P, of its Maclaurin series.

(b) Write the Lagrange form of the remainder R,. Determine whether R, — 0 as
n — %0, that is, whether the series is convergent to ¢(x).

(¢) If convergent, so that ¢(x) may be expressed as an infinite series, write out this
series.
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3 Write an exponential expression for the value:
(a) $10, compounded continuously at the interest rate of 5% for 3 years
(b) $690, compounded continuously at the interest rate of 4% for 2 years
(These interest rates are nominal rates per annum.)

4 What is the instantaneous rate of growth of y in each of the following?
((l) y= e()()7r (() y = Ae()l( 3
(b) y=12"""  (d) y = 0.03¢

5 Show that the two functions y, = Ae’* (interest compounding) and y, = 4e " (dis-
counting) are mirror images of each other with reference to the ) axis [cf. Exercise 10.1-5,
part (b)).

10.3 LOGARITHMS

Exponential functions are closely related to logarithmic functions (log functions,
for short). Before we can discuss log functions, we must first understand the
meaning of the term logarithm.

The Meaning of Logarithm

When we have two numbers such as 4 and 16, which can be related to each other
by the equation 4? = 16, we define the exponent 2 to be the logarithm of 16 to the
base of 4, and write

log,16 = 2

It should be clear from this example that the logarithm is nothing but the power
to which a base (4) must be raised to attain a particular number (16). In general,
we may state that

(10.12)  p =0 < 1 =log,

which indicates that the log of y to the base b (denoted by log, y) is the power to
which the base b must be raised in order to attain the value y. For this reason, it is
correct, though tautological, to write

blOgh Vo= y

In the discussion of exponential functions, we emphasized that the function
y = b' (with b > 1) is monotonically increasing. This means that, for any positive
value of y, there is a unigue exponent ¢ (not necessarily positive) such that y = b’;
moreover, the larger the value of y, the larger must be ¢, as can be seen from Fig.
10.2. Translated into logarithms, the monotonicity of the exponential function
implies that any positive number y must possess a unique logarithm ¢ to a base
b > 1 such that the larger the y, the larger its logarithm. As Figs. 10.1 and 10.2
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show, y is necessarily positive in the exponential function y = b'; consequently. a
negative number or zero cannot possess a logarithm.

Common Log and Natural Log

The base of the logarithm, b > 1, does not have to be restricted to any particular
number, but in actual log applications two numbers are widely chosen as
bases—the number 10 and the number e. When 10 is the base, the logarithm is
known as common logarithm, symbolized by log,, (or if the context is clear,
simply by log). With e as the base, on the other hand, the logarithm is referred to
as natural logarithm and is denoted either by log, or by In (for natural log). We
may also use the symbol log (without subscript e) if it is not ambiguous in the
particular context.

Common logarithms, used frequently in computational work, are exemplified
by the following:

log,, 1000 = 3 [because 10* = 1000]

log,,100 = 2 [because 10° = 100]
log,, 10 = 1 [because 10" = 10]
logo,1 = 0  [because 10" = 1]

log,,0.1 -1 [because 10 ' = 0.1]

log,,0.01 =—2  [because 1077 = 0.01]

Observe the close relation between the set of numbers immediately to the left of
the equals signs and the set of numbers immediately to the right. From these, it
should be apparent that the common logarithm of a number between 10 and 100
must be between 1 and 2 and that the common logarithm of a number between 1
and 10 must be a positive fraction, etc. The exact logarithms can easily be
obtained from a table of common logarithms or electronic calculators with log
capabilities.*

In analyrical work, however, natural logarithms prove vastly more convenient
to use than common logarithms. Since, by the definition of logarithm, we have the
relationship

(10.13)  y=c¢ = t=log,y(ort=1ny)

it is easy to see that the analytical convenience of e in exponential functions will
automatically extend into the realm of logarithms with e as the base.

* More fundamentally, the value of a logarithm, like the value of e, can be calculated (or
approximated) by resorting to a Maclaurin-series expansion of a log function, in a manner similar to
that outlined in (10.6). However, we shall not venture into this matter here.
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The following examples will serve to illustrate natural logarithms:
Ine’ = log, e* = 3
Ine? = log,e? =2
Ine' =log,e' =1

Inl =log,e’ =0

1 -1

- = =
lne log, e

The general principle emerging from these examples is that, given an expression
e”, where n 1s any real number, we can automatically read the exponent n as the
natural log of e”. In general, therefore, we have the result that Ine” = n.*

Common log and natural log are convertible into each other; i.e., the base of
a logarithm can be changed, just as the base of an exponential expression can. A
pair of conversion formulas will be developed after we have studied the basic
rules of logarithms.

Rules of Logarithms

Logarithms are in the nature of exponents; therefore, they obey certain rules
closely related to the rules of exponents introduced in Sec. 2.5. These can be of
great help in simplifying mathematical operations. The first three rules are stated
only in terms of natural log, but they are also valid when the symbol In is
replaced by log,.

Rule I (log of a product) In(uv)=Inu + Ino (u,v > 0)
Example I 1In(e®e®)=1ne® + Ine*=6+4 =10
Example 2 In(Ae’)=InA +Ine’=InA +7

PROOF By definition, In u is the power to which e must be raised to attain the
value of u; thus e™* = u.} Similarly, we have e'®® = v and ¢*®) = yp. The latter
is an exponential expression for uv. However, another expression of wv is
obtainable by direct multiplication of 4 and v:

uv = elnuelnv — elnu+lnu

Thus, by equating the two expressions for uv, we find

elne) = elnutlne o n(yo) =lnu+ Inv

* As a mnemonic device, observe that when the symbol In (or log,) is placed at the left of the
expression e, the symbol In seems to cancel out the symbol e, leaving n as the answer.

¥ Note that when e is raised to the power In u. the symbol e and the symbol In again seem to
cancel out, leaving u as the answer.
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Rule II (log of a quotient) In(u/v)y=Inu—Ino (u, v > 0)
Example 3 In(e’/c)=1Ine’—1Inc=2—Inc
Example 4 In(e’/e’)=1Ine’—lne’=2-5= -3

The proof of this rule is very similar to that of Rule I and is therefore left to you
as an exercise.

Rule III (log of a power) Inu“=alnu (u>0)

Example 5 Ine'> = 15lne = 15

Example 6 1n A> =3In A

PrROOF By definition, ™% = y; and similarly, e™*" = u“ However, another
expression for u“ can be formed as follows:

ud = (elnu)“ — ealnu

By equating the exponents in the two expressions for u“, we obtain the desired
result, In u“ = aln u.

These three rules are useful devices for simplifying the mathematical opera-
tions in certain types of problems. Rule I serves to convert, via logarithms, a
multiplicative operation (uv) into an additive one (In u + Inv); Rule II turns a
division (u/v) into a subtraction (In ¥ — In v); and Rule III enables us to reduce
a power to a multiplicative constant. Moreover, these rules can be used in
combination.

Example 7 In(uv*y=Inu+Inv* =Inu+alno

You are warned, however, that when we have additive expressions to begin
with, logarithms may be of no help at all. In particular, it should be remembered
that

In(u+v)#Inu+lno

Let us now introduce two additional rules concerned with changes in the base
of a logarithm.

Rule IV  (conversion of log base) log, u = (log, e)log, u) (u>0)
This rule, which resembles the chain rule in spirit (witness the “chain”

» 7N\, /), enables us to derive a logarithm log, u (to base e) from the
logarithm log, u (to base b), or vice versa.
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PrROOF Let u = e”, so that p = log, u. Then it follows that

log, u = log, e” = plog, e = (log, u)(log, ¢)

Rule IV can readily be generalized to
log, u = (log, ¢)(log u)

where ¢ 1s some base other than b.

Rule V (inversion of log base) log, e = @

This rule, which resembles the inverse-function rule of differentiation, enables
us to obtain the log of b to the base e immediately upon being given the log of e
to the base b, and vice versa. (This rule can also be generalized to the form

log, ¢ = 1/log.b).
PROOF As an application of Rule IV, let u = b; then we have

log, b = (log, e)(log, b)
But the left-side expression is log, b = 1; therefore log, e and log, b must be
reciprocal to each other, as Rule V asserts.

From the last two rules, it is easy to derive the following pair of conversion
formulas between common log and natural log:

log,, N = (log,, e )(log, N ) = 0.43431log, N
log, N = (log,10)(log,, N) = 2.3026 log,, N

for N a positive real number. The first equals sign in each formula is easily
justified by Rule IV. In the first formula, the value 0.4343 (the common log of
2.71828) can be found from a table of common logarithms or an electronic
calculator; in the second, the value 2.3026 (the natural log of 10) is merely the
reciprocal of 0.4343, so calculated because of Rule V.

(10.14)

Example 8 log,100 = 2.3026(log,, 100) = 2.3026(2) = 4.6052. Conversely, we
have log,, 100 = 0.4343(log, 100) = 0.4343(4.6052) = 2.

An Application

The above rules of logarithms enable us to solve with ease certain simple
exponential equations (exponential functions set equal to zero). For instance, if we
seek to find the value of x that satisfies the equation

ab* — ¢ =0 {a,b,c>0)

we can first try to transform this exponential equation, by the use of logarithms,
into a linear equation and then solve it as such. For this purpose, the ¢ term
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should first be transposed to the right side:
ab* = ¢

Whereas we do not have a simple log expression for the additive expression
(ab* — ¢), we do have convenient log expressions for the multiplicative term ab*
and for ¢ individually. Thus, after the transposition of ¢ and upon taking the log
(say. to base 10) of both sides, we have

loga + xlogh = log ¢
which is a linear equation in the variable x, with the solution

_logc—loga
B log b

EXERCISE 10.3

1 What are the values of the following logarithms?
(a) log,, 10,000 (¢) log, 81
(b) log,,0.0001 (d) logs3125

2 Evaluate the following:
(¢) Ine’ () In(1/e%) (e) (e
(bylog.e ¥ (d)log,(1/e") (f)Ine' — e

3 Evaluate the following by application of the rules of logarithms:
(a) log,,(100)" (d) In Ae*

(b) log,, o (e) In ABe *
(¢) In(3/B) (/) (log, e)log, 64)
4 Which of the following are valid?
u uv
(a)lnuf2=lnv2 (©) lnu+1nu—1nw=ln7
3
(b)3+1nt=1n% () In3 +1n5=1n8

5 Prove that In(u/v)=Inu — Inv.

10.4 LOGARITHMIC FUNCTIONS

When a variable is expressed as a function of the logarithm of another variable,
the function is referred to as a logarithmic function. We have already seen two
versions of this type of function in (10.12) and (10.13), namely,

1= log, v and t1=log,y(=1Iny)

which differ from each other only in regard to the base of the logarithm.
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Log Functions and Exponential Functions

As we stated earlier, log functions are inverse functions of certain exponential
functions. An examination of the above two log functions will confirm that they
are indeed the respective inverse functions of the exponential functions

y=b and y=ce'

because the log functions cited are the results of reversing the roles of the
dependent and independent variables of the corresponding exponential functions.
You should realize, of course, that the symbol 7 is being used here as a general
symbol, and it does not necessarily stand for time. Even when it does, its
appearance as a dependent variable does not mean that time is determined by
some variable y; it means only that a given value of y is associated with a unique
point of time.

As inverse functions of monotonically increasing (exponential) functions,
logarithmic functions must also be monotonically increasing, which is consistent
with our earlier statement that the larger a number, the larger is its logarithm to
any given base. This property may be expressed symbolically in terms of the
following two propositions: For two positive values of y (y, and W),

Iny, =1ny, hnd Y1=»0n
Iny, > 1In y, And Y=

These propositions are also valid, of course, if we replace In by log,,.

(10.15)

The Graphical Form

The monotonicity and other general properties of logarithmic functions can be
clearly observed from their graphs. Given the graph of the exponential function
y = e'. we can obtain the graph of the corresponding log function by replotting
the original graph with the two axes transposed. The result of such replotting is
illustrated in Fig. 10.3. Note that if diagram b were laid over diagram a, with y
axis on y axis and / axis on ¢ axis, the two curves should coincide exactly. As they
actually appear in Fig. 10.3—with interchanged axes—on the other hand, the two
curves are seen to be mirror images of each other (as the graphs of any pair of
inverse functions must be) with reference to the 45° line drawn through the
origin.

This mirror-image relationship has several noteworthy implications. For one,
although both are monotonically increasing, the log curve increases at a decreas-
ing rate (second derivative negative), in contradistinction to the exponential curve,
which increases at an increasing rate. Another interesting contrast is that, while
the exponential function has a positive range, the log function has a positive
domain instead. (This latter restriction on the domain of the log function is, of
course, merely another way of stating that only positive numbers possess loga-
rithms.) A third consequence of the mirror-image relationship is that, just as
y = e’ has a vertical intercept at 1, the log function ¢ = log, y must cross the
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t

(a)

Figure 10.3

horizontal axis at y = 1, indicating that log, 1 = 0. Inasmuch as this horizontal
intercept is unaffected by the base of the logarithm—{for instance, log,,1 = 0 also
—we may infer from the general shape of the log curve in Fig. 10.3b that, for any
base,

0<y<1 logy <0
(10.16) y=1 < logy =20
y>1 logy >0

For verification, we can check the two sets of examples of common and natural
logarithms given in Sec. 10.3. Furthermore, we may note that

(10.16") logy—>{ _g} asy—>{80+

The graphical comparison of the logarithmic function and the exponential
function in Fig. 10.3 is based on the simple functions y = ¢’ and ¢ = In y. The
same general result will prevail if we compare the generalized exponential
function y = Ae’" with its corresponding log function. With the (positive) con-
stants A4 and r to compress or extend the exponential curve, it will nevertheless
resemble the general shape of Fig. 10.3a, except that its vertical intercept will be
at y = A rather than at y = 1 (when ¢ = 0, we have y = 4e® = A). Its inverse
function, accordingly, must have a horizontal intercept at y = A. In general, with
reference to the 45° line, the corresponding log curve will be a mirror image of the
exponential curve.

If the specific algebraic expression of the inverse of y = Ae™ is desired, it can
be obtained by taking the natural log of both sides of this exponential function
[which, according to the first proposition in (10.15), will leave the equation
undisturbed] and then solving for ¢:

Iny=1In(4de”")=InA + rilne=1InA + rt
hence
_Iny—-1In4

(10.17) t .

(r+0)
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This result, a log function, constitutes the inverse of the exponential function
y = Ae". As claimed earlier, the function in (10.17) has a horizontal intercept at
v = A, because when y = 4, we have In y = In A4, and therefore r = 0.

Base Conversion

In Sec. 10.2, it was stated that the exponential function y = Ab" can always be
converted into a narural exponential function y = Ae’’. We are now ready to
derive a conversion formula. Instead of 4b’, however, let us consider the conver-
sion of the more general expression Ao into Ae”. Since the essence of the
problem is to find an r from given values of b and ¢ such that

e” = b
all that is necessary is to express r as a function of b and ¢. Such a task is easily
accomplished by taking the natural log of both sides of the last equation:

Ine” = In b¢
The left side can immediately be read as equal to r, so that the desired function
(conversion formula) emerges as
(10.18) r=Inb“=clnb

This indicates that the function y = 4h’ can always be rewritten in the natural-
base form, y = Aet<""?

Example 1 Convert y = 2’ to a natural exponential function. Here, we have
A=1,b=2 and c= 1. Hence r = clnb = In2, and the desired exponential
function is

y = Ae’t = e(lnl)t

If we like, we can also calculate the numerical value of (In 2) by use of (10.14) and
a table of common logarithms as follows:

(10.19)  In2 = 2.3026log,,2 = 2.3026(0.3010) = 0.6931

Then we may express the earlier result alternatively as y = ¢3!,

Example 2 Convert y = 3(5)*' to a natural exponential function. In this exam-
ple, A =3, b =5, and ¢ = 2, and formula (10.18) gives us r = 21n 5. Therefore
the desired function is

y = Aer! — 38(21n5)t
Again, if we like, we can calculate that

2In5 = 1In25 = 2.3026 log,, 25 = 2.3026(1.3979) = 3.2188

so the earlier result can be alternatively expressed as y = 3¢32!8%

It is also possible, of course. to convert log functions of the form 7 = log, y
into equivalent natural log functions. To that end, it is sufficient to apply Rule IV



EXPONENTIAL AND LOGARITHMIC FUNCTIONS 291

of logarithms, which may be expressed as

log, y = (log, e )(log, »)

The direct substitution of this result into the given log function will immediately
give us the desired natural log function:

t =log,y = (log, e)(log, v)

=~ Toab log,v  [by Rule V of logarithms]
_ny
In b
By the same procedure, we can transform the more general log function 7 =
alog,(cy) into the equivalent form
a a

t = a(log, e)(log, cy) = log ,log, (o) = = Infey)

Example 3 Convert the function 7 = log, y into the natural log form. Since in
this example we have b = 2 and a = ¢ = 1, the desired function is

=Ly
"2

By (10.19), however, we may also express it as t = (1,/0.6931)ln y.

Example 4 Convert the function 1 = 7log,, 2y into a natural logarithmic func-
tion. The values of the constants are in this case a =7, b= 10, and ¢ = 2;
consequently, the desired function is

1
~Inl10

But since In 10 = 2.3026, as (10.14) indicates, the above function can be rewritten
ast =(7/2.3026)ln2y = 3.04001n2 .

t In2y

In the above discussion, we have followed the practice of expressing ¢ as a
function of y when the function is logarithmic. The only reason for doing so is our
desire to stress the inverse-function relationship between the exponential and
logarithmic functions. When a log function is studied by itself, we shall write
y = Inr (rather than 7 = In y), as is customary. Naturally, nothing in the analyti-
cal aspect of the discussion will be affected by such an interchange of symbols.

EXERCISE 104

1 The form of the inverse function of y = Ae”" in (10.17) requires r to be nonzero. What is
the meaning of this requirement when viewed in reference to the original exponential
function y = 4e"?
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2 (a) Sketch a graph of the exponential function y = Ae’’; indicate the value of the
vertical intercept.

Iny—Ind
(b) Then sketch the graph of the log function ¢ = _nl_rl_n‘

, and indicate the value
of the horizontal intercept.
3 Find the inverse function of y = ab’.

4 Transform the following functions to their natural exponential forms:
(a) y=8" (¢) y =505

(b)y y=2AD" (d) y =215
5 Transform the following functions to their natural logarithmic forms:
(a) t =log,y (¢) t =3log,s 9y

(b) t =logy3y (d) t=2log, ¥

6 Find the continuous-compounding nominal interest rate per annum () that is equiva-
lent to a discrete-compounding interest rate (/) of

(a) 5 percent per annum, compounded annually

(b) 5 percent per annum, compounded semiannually

(¢) 6 percent per annum, compounded semiannually

(d) 6 percent per annum, compounded quarterly

10.5 DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC
FUNCTIONS

Earlier it was claimed that the function e’ is its own derivative. As it turns out, the
natural log function, In 7z, possesses a rather convenient derivative also, namely,
d(Int)/dr = 1/1. This fact reinforces our preference for the base e. Let us now
prove the validity of these two derivative formulas, and then we shall deduce the
derivative formulas for certain variants of the exponential and log expressions e’
and In ¢.

Log-Function Rule

The derivative of the log function y = In ¢ is
iln t = l
di "

To prove this, we recall that, by definition, the derivative of y = f(¢) = In 7 has
the following value at t = N
, . fl)=f(N) . Inr—InN .. In(t/N)
f(N)_,ley t—N ~,an1' r— N —,h_,n}r t—N
[by Rule I of logarithms]

. 1
Now let us introduce a shorthand symbol m = [—iV—N.Then we can write N
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t- N

1 . )
%, andalso — =1 + =1+ ;L- Thus the expression to the right of the

N
limit sign above can be converted to the form

lll 1 1

——ﬂ1(1+i)——1(1+—)m
I NONTN" m| - N m

[by Rule IIT of logarithms]

Note that, when ¢ tends to N, m will tend to infinity. Thus, to find the desired
derivative value, we may take the limit of the last expression above as m — oo:

1 m
f(N)= lim %ln(l + ;) = Llne _ 1 [by (10.5)]

Since N can be any number for which a logarithm is defined, however, we can
generalize this result, and write f'(¢) = d(Int)/dt = 1 /1. This proves the log-
function rule.

Exponential-Function Rule

The derivative of the function y = e’ is
d

el SN |

dr e e
This result follows easily from the log-function rule. We know that the inverse
function of the function y = e’ is 7 = In y, with derivative dt/dy = 1/y. Thus, by

the inverse-function rule, we may write immediately
dyo_d 11
dt dt dt/dy 1/y

t

The Rules Generalized

The above two rules can be generalized to cases where the variable ¢ in the
expression e’ and In ¢ 1s replaced by some funcrion of t, say, f(t). The generalized
versions of the two rules are

d d du

el = ¢/ o ZpU = pu %

(1020 prd fi(1)e [or e =e dt}
| Linf(r) = ) [ r Ly = 11’3]
a7 @t T v

The proofs for (10.20) involve nothing more than the straightforward applica-
tion of the chain rule. Given a function y = ¢/ we can first let u = f(r), so that

y = e* Then, by the chain rule, the derivative emerges as
ief(r)._ ieuz ieuﬂ = du =
dt dt du dr dr

Similarly, given a function y = In f(z), we can first let v = f(¢), so as to form a
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chain: y = In v, where v = f(r). Then, by the chain rule, we have

d d d dv 1 dv 1,

Elnf(t) = Elnv = %lnv;jt— =oa = f——(t)f (¢)
Note that the only real modification introduced in (10.20) beyond the simpler
rules de‘/dt = e’ and d(In t)/dt = 1/¢ is the multiplicative factor f’(z).

Example 1 Find the derivative of the function y = e™. Here, the exponent is
rt = f(t), with f'(¢) = r; thus

dy _d . _  n

i~ @t T
Example 2 Find dy/dt from the function y = e”'. In this case, f(1) = —¢, so
that f'(+) = — 1. As a result,

dy _d

a — 4t T ¢
Example 3 Find dy/dr from the function y = In ar. Since in this case f(1) = at,
with f'(¢) = a, the derivative is
1

ilnat* 4 _ 2
dt at t

which is, interestingly enough, identical with the derivative of y = In r.

This example illustrates the fact that a multiplicative constant for r within a
log expression drops out in the process of derivation. But note that, for a constant
k, we have

d d k
Eklnt—kElnt- 7

thus a multiplicative constant without the log expression is still retained in
derivation.

Example 4 Find the derivative of the function y = In¢¢. With f(r) =t and
f(¢) = ct<, the formula in (10.20) yields

ilnt‘ = =

! ¢
dt t¢ t

Example 5 Find dy/dt from y = ¢*In 1. Because this function is a product of
two terms /° and In 7?, the product rule should be used:

dy

d d
— 43 2 2
? t tlnt + In¢

a ;3

dtt

=z3(2'7[) + (In 2)(3%)
=

2t +3t*(2Int)  [Rule Il of logarithms)]
—2(1 + 3In¢)

Il
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The Case of Base b

For exponential and log functions with base b, the derivatives are

ditb’ =blnb Warning: %b’ +th'!
(10.21)
a1
i 8" T b

Note that in the special case of base e (when b = ¢), we have Inb = lne = 1, so
that these two derivatives will reduce to (d/dt)e' = ¢’ and (d/d)lnt = 1/1,
respectively.

The proofs for (10.21) are not difficult. For the case of b', the proof is based
on the identity b = e¢™?, which enables us to write

bl — e(]nh)t = ellnb

(We write r1n b, instead of In b 7, in order to emphasize that ¢ is not a part of the
log expression.) Hence

i /—i tnb _ fn b
2P = e = nb)e™?)  [by (10.20)]

=(Inb)(b')=>b'Inb

To prove the second part of (10.21), on the other hand, we rely on the basic log
property that

1
log, ¢ = (log, e)(log, ) = E_bln[

which leads us to the derivative

I ,:£<L1 ,)_J_il P l)
a BT \me ™) T mea ™ _lnb<t

The more general versions of these two formulas are

o %b-”” = f'(t)b""n b
10.21"
_ L
_d;logbf(t) - f([) In b

Again, it is seen that if 5 = ¢, then In b = 1, and these formulas will reduce to
(10.20).

Example 6 Find the derivative of the function y = 12' ‘. Here, b = 12, f(1) = |
— t.and f'(1) = —1; thus
@

il (12)' 'In12
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Higher Derivatives

Higher derivatives of exponential and log functions, like those of other types of
functions, are merely the results of repeated differentiation.

Example 7 Find the second derivative of y = b’ (with b > 1). The first derivative,
by (10.21), is p(¢) = b'In b (where Inb is, of course, a constant); thus, by
differentiating once more with respect to 7, we have

d d 2

i) = L) = (—b’)ln b= (b'Inb)inb = b'(In b)

dt dt
Note that y = b’ is always positive and In b (for b > 1) is also positive [by
(10.16)]; thus y’(¢) = b'In b must be positive. And y”(¢), being a product of b’
and a squared number, is also positive. These facts confirm our previous state-
ment that the exponential function y = ' increases monotonically at an increas-
ing rate.

Example 8 Find the second derivative of y = In 1. The first derivative is y’ = 1/1
= ¢t~ ! hence, the second derivative is
—1

/2

Inasmuch as the domain of this function consists of the open interval (0, o),
y” = 1/1 must be a positive number. On the other hand, y” is always negative.

Together, these conclusions serve to confirm our earlier allegation that the log
function y = In ¢ increases monotonically at a decreasing rate.

An Application

One of the prime virtues of the logarithm is its ability to convert a multiplication
into an addition, and a division into a subtraction. This property can be exploited
when we are differentiating a complicated product or quotient of any type of
functions (not necessarily exponential or logarithmic).

Example 9 Find dy/dx from

X2

(x +3)2x+1)

y =

Instead of applying the product and quotient rules, we may first take the natural

log of both sides of the equation to reduce the function to the form
Iny=Inx*—In(x+3)—In(2x + 1)

According to (10.20), the derivative of the left side with respect to x is

1 dy

d .
™ (left side) = Vdx
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whereas the right side gives
d . . 2x 1 2 Tx + 6
p (right side) = O Sl Py U R 1Y I

When the two results are equated and both sides are multiplied by y, we get the
desired derivative as follows:

dy Tx + 6 ,

dx  x(x+3)2x+ 1)

Tx + 6 x? _ x(7x + 6)
x(x+3)2x+ 1) (x+3)2x+ 1) (x+3)%2x+ 1)

Example 10 Find dy/dx from y = x“** < Taking the natural log of both sides,
we have

Iny=alnx+Ine* “=alnx+ kx — ¢

Differentiating both sides with respect to x, and using (10.20), we then get

ldy a
ydx  x Tk
dy a a a kx—c¢
and E=(;+k)y=(}-+k)xe
EXERCISE 10.5
1 Find the derivatives of:
(a) y= eZl+4 (e) y — eu\’2+h\'*(
(byy=e'"" (f) y = xe’
(c)y=e'*! (g) y =x%"

(a')y=3ez”2 (h) y = axe® "¢

2 (a) Verify the derivative in Example 3 by utilizing the equation Inaz = Ina + Inz.
(b) Verify the result in Example 4 by utilizing the equation In t“ = ¢ln «.

3 Find the derivatives of:

(a) y=In8¢° (e) y=Inx—In(l + x)
(b) y=Inat (f) v = In[x(1 —x)g]
(¢) y =1In(r + 9) (g)y=1n(lfx)

(d)y=5In(t + H? (k) y = 5x*In x*
4 Find the derivatives of:
(a) y=15' (d) y = log,7x*
(b) y=log,(t+ 1) (e) y = log,(8x% + 3)
(¢) y =133 (f)y=x"logyx
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5 Prove the two formulas in (10.217).

6 Show that the function V = Ae”" (with A, r > 0) and the function 4 = Ve " (with
V, r > 0) are both monotonic, but in opposite directions, and that they are both strictly
convex in shape (cf. Exercise 10.2-5).

7 Find the derivatives of the following by first taking the natural log of both sides:

3x (b)y=(,\'3+3)e‘z'1

N S )

10.6 OPTIMAL TIMING

What we have learned about exponential and log functions can now be applied to
some simple problems of optimal timing.

A Problem of Wine Storage

Suppose that a certain wine dealer 1s in possession of a particular quantity (say. a
case) of wine, which he can either sell at the present time (r = 0) for a sum of $K
or else store for a variable length of time and then sell at a higher value. The
growing value (V') of the wine is known to be the following function of time:

(1022)  V==Ke" [=Kexp(s'?)]

so that if + = 0 (sell now), then V' = K. The problem is to ascertain when he
should sell it in order to maximize profit, assuming the storage cost to be nil.*

Since the cost of wine is a “sunk” cost—the wine is already paid for by the
dealer—and since storage cost is assumed to be nonexistent, to maximize profit is
the same as maximizing the sales revenue, or the value of V. There is one catch,
however. Each value of V corresponding to a specific point of ¢ represents a dollar
sum receivable at a different date and, because of the interest element involved, is
not directly comparable with the V' value of another date. The way out of this
difficulty is to discount each V figure to its present-value equivalent (the value at
time ¢ = 0), for then all the V" values will be on a comparable footing.

Let us assume that the interest rate on the continuous-compounding basis is
at the level of r. Then, according to (10.11), the present value of V' can be
expressed as

(1022)  A(1) = Ve " = KeV'e " = KeV' ="

where 4. denoting the present value of V. is itself a function of r. Therefore our
problem amounts to finding the value of 7 that maximizes 4.

* The consideration of storage cost will entail a difficulty we are not vet equipped to handle. Later,
in Chap. 13, we shall return to this problem.
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Maximization Conditions

The first-order condition for maximizing 4 is to have dA /dt = 0. To find this
derivative, we can either differentiate (10.22") directly with respect to ¢, or do it
indirectly by first taking the natural log of both sides of (10.22") and then
differentiating with respect to . Let us illustrate the latter procedure.

First, we obtain from (10.22") the equation

In A(t)=In K + Ine' " =InK+ (¢'/2 = rr)

Upon differentiating both sides with respect to ¢, we then get

ldd 1 .\,
Aar 2 ’
aa _ (L,
or ar —A(zt r)
Since A # 0, the condition dA /dr = O can be satisfied if and only if
L IR 1 _
51 =r or o =r or 5, = Vi

This implies that the optimum length of storage time is

(-
2 4r?

If r = 0.10, for instance, then 1 = 25, and the dealer should store the case of wine
for 25 years. Note that the higher the rate of interest (rate of discount) is, the
shorter the optimum storage period will be.

The first-order condition, 1,/(2y7) = r. admits of an easy economic interpre-
tation. The left-hand expression merely represents the rate of growth of wine
value V, because from (10.22)

a _d 12y = kL exp(12

i dtKexp(t )—Kdtexp(t ) [ K constant]
= K(%t ‘/2)exp(z'/2) [by (10.20)]
= (%z ‘/2)1/ [by (10.22)]

so that the rate of growth of ¥ is indeed the left-hand expression in the first-order
condition:

_ dvydr lt -

¥

’ v 2 Wi
The right-hand expression r is, in contrast, the rate of interest or the rate of
compound-interest growth of the cash fund receivable if the wine is sold right

away—an opportunity-cost aspect of storing the wine. Thus, the equating of the
two instantaneous rates, as illustrated in Fig. 10.4, is an attempt to hold onto the
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rate

(rate of growth of wine value)

r (rate of interest on sales receipts)

Figure 104

wine until the advantage of storage is completely wiped out, i.e., to wait till
the moment when the (declining) rate of growth of wine value is just matched by
the (constant) interest rate on cash sales receipts.

The next order of business is to check whether the value of ¢ satisfies the
second-order condition for maximization of 4. The second derivative of 4 is

d*A d (1 _, d 1 1 dA
- = 2 7 = 4| =412 _ 4+ | =12 =
P th(_zt ’) Adz(:z’ ’) (2’ ’) di
But, since the final term drops out when we evaluate it at the equilibrium
(optimum) point, where d4 /dt = 0, we are left with

ﬁfzi =Adi(%[”1/2 — r) =A(_%t*3/2) = __i
at ! e

In view that 4 > 0, this second derivative is negative when evaluated at t>0,
thereby ensuring that the solution value 7 is indeed profit-maximizing.

A Problem of Timber Cutting

A similar problem, which involves a choice of the best time to take action, is that
of timber cutting.

Suppose the value of timber (already planted on some given land) is the
;following increasing function of time:

=2V
expressed in units of $1000. Assuming a discount rate of » (on the continuous

basis) and also assuming zero upkeep cost during the period of timber growth,
what is the optimal time to cut the timber for sale?
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As in the wine problem, we should first convert V into its present value:
A1) = Ve rr=2lter

thus mA=In2" +Ine " =Viln2 —rt =102 — rt

To maximize A, we must set d4 /dt = 0. The first derivative is obtainable by
differentiating In 4 with respect to ¢ and then multiplying by A4:

ldd _ 1 o 5

1 ar 2[ In2 —r

thus d—A=A(El—2—r)
dt Wt

Since A # 0, the condition d4 /dt = 0 can be met if and only if

2 _, o =D
2Vt 2r
Consequently, the optimum number of years of growth is
[ = (12_2_)2
S\ 2r

It is evident from this solution that, the higher the rate of discount, the earlier the
timber should be cut.

To make sure that ¢ is a maximizing (instead of minimizing) solution, the
second-order condition should be checked. But this will be left to you as an
exercise.

In this example, we have abstracted from planting cost by assuming that the
trees are already planted, in which case the (sunk) planting cost is legitimately
excludable from consideration in the optimization decision. If the decision is not
one of when to harvest but one of whether or not to plant at all, then the planting
cost (incurred at the present) must be duly compared with the present value of the
timber output, computed with 7 set at the optimum value 7. For instance, if
r = 0.05, then we have

- ( 0.6931
~\ 0.10
and A_= 26.93167().()5(48.0) — (122'0222)6»2.40
= 122.0222(0.0907) = $11.0674 (in thousands)

So only a planting cost lower than A4 will make the venture worthwhile—again,
provided that upkeep cost is nil.

2
) = (6.931)" = 48.0 years

~ EXERCISE 10.6

1 If the value of wine grows according to the function V' = Kez‘ﬂ, instead of as in (10.22),
how long should the dealer store the wine?
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2 Check the second-order condition for the timber-cutting problem.

3 As a generalization of the optimization problem illustrated in the present section, show
that:

(a) With any value function ¥ = f(r) and a given continuous rate of discount r, the
first-order condition for the present value 4 of V to reach a maximum is that the rate of
growth of V" be equal to r.

(b) The second-order sufficient condition for maximum really amounts to the stipula-
tion that the rate of growth of IV be decreasing with time.

10.7 FURTHER APPLICATIONS OF EXPONENTIAL AND
LOGARITHMIC DERIVATIVES

Aside from their use in optimization problems, the derivative formulas of Sec.
10.5 have further useful economic applications.

Finding the Rate of Growth

When a variable y is a function of time, y = f(¢), its instantaneous rate of growth

is defined as*
= dy/dr _ f'(t) _ marginal function

(10.23) v ¥ 7(1) total function

But, from (10.20), we see that this ratio is precisely the derivative of In f(z) = In y.
Thus, to find the instantaneous rate of growth of a function of time f(¢), we can
—instead of differentiating 1t with respect to ¢, and then dividing by f(z)—simply
take its natural log and then differentiate In f(z) with respect to time.f This
alternative method may turn out to be the simpler approach, if f(¢) is a
multiplicative or divisional expression which, upon logarithm-taking, will reduce
to a sum or difference of additive terms.

Example 1 Find the rate of growth of V' = Ae”, where ¢ denotes time. It is
already known to us that the rate of growth of V' is r, but let us check it by finding
the derivative of In V-

InV=1InAd+ rtflne=1InA4 + r  [A constant]

Therefore,

r, = %an=O+ %rt=r

as was to be demonstrated.

* If the variable 1 does nor denote time, the expression (dy/dt) /v is referred to as the proportional
rare g[/(‘/hange of 1 with respect to 1.

7 11 we plot the natural log of a function f(¢) against ¢ in a two-dimensional diagram, the slope of
the curve, accordingly, will tell us the rate of growth of f(r). This provides the rationale for the
so-called ** semilog scale™ charts.
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Example 2 Find the rate of growth of y = 4'. In this case, we have

Iny=1In4"=tIn4

d
Hence r. = Eln y=1In4

This is as it should be, because e"* =4, and consequently, y = 4’ can be
rewritten as y = ¢’ which would immediately enable us to read (In4) as the
rate of growth of y.

Rate of Growth of a Combination of Functions

To carry this discussion a step further, let us examine the instantaneous rate of
growth of a product of two functions of time:

u=f(1)
v=gl(1)
Taking the natural log of y, we obtain

Yy = uv where

Iny=Inu+Inv

Thus the desired rate of growth is
=Ly = Lyt Line
At T a T "t

But the two terms on the right side are the rates of growth of u and v,
respectively. Thus we have the rule

(10.24)

(ur)

rl

=r,tr,

Expressed in words, the instantaneous rate of growth of a product is the sum of
the instantaneous rates of growth of the components.

By a similar procedure, the rate of growth of a quotient can be shown to be
the difference between the rates of growth of the components (see Exercise
10.7-4):

(10.25) A
Example 3 1f consumption C is growing at the rate «. and if population H (for
“heads™) is growing at the rate B, what is the rate of growth of per capita
consumption? Since per capita consumption is equal to C/H, its rate of growth
should be

Reom =Te Iy =a—f
Now consider the instantaneous rate of growth of a swm of two functions of
time:
u=f(1)

I=u-+v where ¢
v=gl(1)
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This time, the natural log will be
Inz=In(u+v) [#Ilnu+Ilno]

Thus
r,= %lnz = %ln(u +v)
- - i - %(u +u) by (10.20)]
= ——=[r(0) + /()]

But from (10.23) we have r, = f'(¢)/f(¢), so that f'(¢) = f(¢t)r, = ur,. Similarly.
we have g'(¢) = vr,. As a result, we can write the rule

rL

T, X
u u+v

(10.26)  Fuoy=

which states that the rate of growth of a sum is a weighted average of the rates of
growth of the components.
By the same token, we have (see Exercise 10.7.5)

u v
ey = r, — r
u—v) u—o

(1027)

u u-—v v
Example 4 The exports of goods of a country, G = G(t), has a growth rate of
a/t, and its exports of services, S = S(r), has a growth rate of 5/¢r. What is the
growth rate of its total exports? Since total exports is X(¢) = G(¢) + S(¢), a sum,
its rate of growth should be

G
rX=X,rG+ X,rs
- G(ay. 5[ty Gatsh
X\t X\t Xt

Finding the Point Elasticity

We have seen that, given y = f(z), the derivative of In y measures the instanta-
neous rate of growth of y. Now let us see what happens when, given a function
y = f(x), we differentiate (In y) with respect to (In x), rather than to x.

To begin with, let us define ¥ = In y and v = In x. Then we can observe a
chain of relationship linking « to y, and thence to x and v as follows:

uslny y=f(x) x=et¥=e®

Accordingly, the derivative of (In y) with respect to (In x) is
d(lny)  du  dudy dx

d(lnx) dv  dvdx dv

P d v\ d ldy . 1dy dy x
-1 “r _ vt = 2 e 2 A
(dyny)(a’x)(dve) ydxe ydxx dx y

It
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But this expression is precisely that of the point elasticity of the function. Hence
we have established the general principle that, for a function y = f(x), the point
elasticity of y with respect to x is

(10.28) £, = d(in y)

" d(In x)
It should be noted that the subscript yx in this symbol is an indicator that y and x
are the two variables involved and does not imply the multiplication of y and x.
This is unlike the case of 7., where the subscript does denote a product. Again,
we now have an alternative way of finding the point elasticity of a function by use
of logarithms, which may often prove to be an easier approach, if the given
function comes in the form of a multiplicative or divisional expression.

Example 5 Find the point elasticity of demand, given that Q = k/P, where k is
a positive constant. This is the equation of a rectangular hyperbola (see Fig.
2.84); and, as is well known, a demand function of this form has a unitary point
elasticity at all points. To show this, we shall apply (10.28). Since the natural log
of the demand function is

InQ=Ink-In°P
the elasticity of demand (Q with respect to P) is indeed

sd=d(iQ—)-=—l or le,| =1

d{ln P)

The result in (10.28) was derived by use of the chain rule of derivatives. It is
of interest that a similar chain rule holds for elasticities: i.e.. given a function
y = g(w). where w = h(x), we have

(10.29) €. = &€

VY YWoTwWwY

The proof is as follows:

—_— - — — — =

LR Y

Z(Qi)(dwx): dy dw w x dy x

dw y [\ dx w ]

EXERCISE 10.7

1 Find the instantaneous rate of growth:
(a) y =31 (¢) y=ab (e) y=1/3
(b) y =ar (d) vy =2")

2 If population grows according to the function H = H,(2)"" and consumption by the

—function C = C,e*, find the rates of growth of population, of consumption, and of per
capita consumption by using natural log.

3 If y is related to x by y = x*, how will the rates of growth r, and r, be related?
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4 Prove that if y = u/v, where u = f(1) and v = g(z), then the rate of growth of y will be
r =r,— r., as shown in (10.25).

5 Prove the rate-of-growth rule (10.27).
6 Given the demand function Q, = k/P”", where k and » are positive constants, find the
point elasticity of demand ¢, by using (10.28) (cf. Exercise 8.1-5).
7 (a) Given y = wz, where w = g(x) and z = hi(x), establish that
E\\' = EH\ + E:\

(b) Given y = u/v, where u = G(1) and v = H(x), establish that

Eov T &y T &y

8 Given y = f(x), show that the derivative d(log, y)/d(log,x)—Ilog to base b rather than
e—also measures the point elasticity ¢, .

9 Show that, if the demand for money M, is a function of the national income Y = Y(¢)
and the interest rate / = i(t), the rate of growth of M, can be expressed as a weighted sum
of ryand r,,

“ar, = Eary Ty b oEar,T

where the weights are the elasticities of M, with respect to ¥ and i/, respectively.

10 Given the production function Q = F(K, L), find a general expression for the rate of
growth of Q in terms of the rates of growth of K and L.




CHAPTER

ELEVEN

THE CASE OF MORE
THAN ONE CHOICE VARIABLE

The problem of optimization was discussed in Chap. 9 within the framework of
an objective function with a single choice variable. In the last chapter, the
discussion was extended to exponential objective functions, but we still dealt with
one choice variable only. Now we must develop a way of finding the extreme
values of an objective function that involves two or more choice variables. Only
then will we be able to tackle the type of problem confronting, say, a multiprod-
uct firm, where the profit-maximizing decision consists of the choice of optimal
output levels for several commodities and the optimal combination of several
different inputs.

We shall discuss first the case of an objective function of two choice variables,
z = f(x, y), in order to take advantage of its graphability. Later the analytical
results can be generalized to the nongraphable n-variable case. Regardless of the
number of variables, however, we shall assume in general that, when written in a
general form, our objective function possesses continuous partial derivatives to
any desired order. This will ensure the smoothness and differentiability of the
objective function as well as its partial derivatives.

For functions of several variables, extreme values are again of two kinds: (1)
absolute or global and (2) relative or local. As before, our attention will be
focused heavily on relative extrema, and for this reason we shall often drop the
adjective “relative.” with the understanding that, unless otherwise specified, the
extrema referred to are relative. However, in Sec. 11.5. conditions for absolute
extrema will be given due consideration.

307
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11.1 THE DIFFERENTIAL VERSION OF OPTIMIZATION
CONDITIONS

The discussion in Chap. 9 of optimization conditions for problems with a singlc
choice variable was couched entirely in terms of derivatives, as against differen-
tials. To prepare for the discussion of problems with two or more choice variables.
it would be helpful also to know how those conditions can equivalently be
expressed in terms of differentials.

First-Order Condition

Consider the function z = f(x), as depicted in Fig. 11.1. At the maximum point A
as well as the minimum point B. the value of z must be stationary. In other words.
it is a necessary condition for an extremum of z that dz = 0 instantaneously as x
varies. This condition constitutes the differential version of the first-order condi-
tion for an extremum. While the condition dz = 0 is necessary, it is clearly nor
sufficient for either a maximum or a minimum, for the inflection point C in Fig.
11.1 also shares the property that dz = 0.

To see that the above condition is equivalent to the derivative version of the
first-order condition dz /dx = 0O or f'(x) = 0. recall that the differential of z = f(x)
is

(11.1) dz = {'(x) dx

We note that when there is no change in x (dx = 0), dz will automatically be zero.
But this, of course, is not what the first-order condition is all about. What the
first-order condition requires is that dz be zero as x is varied, that is, as arbitrary
(positive or negative, but not zero) infinitesimal changes of x occur. In such a
context, with dx # 0, dz can be zero if and only if f'(x) = 0. Thus the derivative
condition f'(x) = 0 and the differential condition “dz = 0 for arbitrary nonzero
values of dx ™ ar¢ indeed equivalent.

(dz = 0) 2= flx)

0

Figure 11.1
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Second-Order Condition

A maximum point, such as point 4 in Fig. 11.1, has the graphical property that as
we slide along the curve infinitesimally toward the left (dx < 0) and the right
(dx > 0) of A, we are descending in both directions. A sufficient condition for
achieving this is that dz < 0 on both sides of 4 in the immediate neighborhood of
that point.* The fact that dz = 0 at point 4, but dz < 0 at points on the two sides
of A, means that dz is invariably decreasing as we move away from A4 in either
direction. In other words, the condition amounts to d(dz) < 0—or, in a simpler
notation, d?z < O—for arbitrary nonzero values of dx. The symbol d?z = d(dz).
denoting the differential of a differential, is known as the second-order differential
of z. And the above condition on 4z constitutes the differential version of the
second-order sufficient condition for a maximum.

Note that the negativity of d>z is sufficient. but not necessary, for a maximum
of z. The reason is that, in certain cases. d*z may happen to be zero (rather than
negative) at a maximum of z. This possibility is, of course, strongly reminiscent of
the cases under the Nth-derivative test where a maximum may be characterized
by a zero second-derivative value. Indeed, in the case of a function of a single
variable, there exists a very close relationship between the sign of the second-order
differential d*z and that of the second-order derivative d2z /dx> or f7(x), as we
shall presently show.

Given that dz = f(x) dx, we can obtain d*z merely by further differentiation
of dz. In so doing, however, we should bear in mind that dx, representing in this
context an arbitrary or given nonzero change in x, is to be treated as a constant
during differentiation. Consequemly dz can vary only with f’'(x), but since f'(x)
is in turn a funcuong,f X, dz can in the final analysis vary only with x. In view of
this, we have

(112) %

I

d(dz) =d[f(x)dx]  [by(11.1)]
[df(x)] dx [ dx is constant]
[£7(x) dx] dx = f"(x) dx?

Note that the exponent 2 appears in (11.2) in two fundamentally different ways.
In the symbol d?z, the exponent 2 indicates the second-order differential of z; but
in the symbol dx* = (dx)?, the exponent 2 denotes the squaring of the first-order
differential dx. The result in (11.2) provides a direct link between d*z and f"'(x).
Inasmuch as we are considering nonzero values of dx only, the dx? term is always
positive; thus d?z and f”(x) must take the same algebraic sign.

This fact serves to confirm our earlier c¢laim that the differential condition
“d?z < 0 for arbitrary nonzero values of dx” is equivalent to the derivative
cpndition f"(x) < 0 as a sufficient condition for a maximum of z. But, turning to

It

* This can be clarified by referring to (11.1). Let dz < 0 on both sides of point A. Then f’(x) and
dx must be opposite in sign. This means that to the left of point A4 (letting dx < 0), f'(x) must be
positive, so_the f curve must be upward-sloping. Similarly, to the right of 4 (letting dx > 0), {'(x)
must be negative, so the f curve must be downward-sloping. Hence, point 4 is the peak of a hill.
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the case of a minimum of z, we can also see from (11.2) that the sufficient
derivative condition f”(x) > 0 can be equivalently stated as “d?z > 0 for arbi-
trary nonzero values of dx.” Finally, we may infer from (11.2) that the second-order
necessary conditions

For maximumof z: f“(x)<0 ~ - -
For minimumof z: f”(x) = 0
can be translated, respectively, into

For maximum of z: d’z < ,
for arbitrary nonzero values of dx
For minimum of z: d?%z > 0

Differential Conditions versus Derivative Conditions

Now that we have demonstrated the possibility of expressing the derivative
version of first- and second-order conditions in terms of dz and d°z, you may very
well ask why we bothered to develop a new set of differential conditions when
derivative conditions were already available. The answer is that differential
conditions—but not derivative conditions—are stated in forms that can be
directly generalized from the one-variable case to cases with two or more choice
variables. To be more specific, the first-order condition (zero value for dz) and the
second-order condition (negativity or positivity for ¢>z) are applicable with equal
validity to all cases, provided the phrase “for arbitrary nonzero values of dx” is
duly modified to reflect the change in the number of choice variables.

~ This does not mean, however, that derivative conditions will have no further
role to play. To the contrary, since derivative conditions are operationally more
convenient to apply, we shall—after the generalization process is carried out by
means of the differential conditions to cases with more choice variables—still
attempt to develop and make use of derivative conditions appropriate to those
cases.

11.2  EXTREME VALUES OF A FUNCTION OF TWO VARIABLES

For a function of one choice variable, an extreme value is represented graphically
by the peak of a hill or the bottom of a valley in a two-dimensional graph. With
two choice variables. the graph of the function—z = f(x, y)—becomes a surface
in a 3-space, and while the extreme values are still to be associated with peaks and
bottoms, these “hills” and * valleys™ themselves now take on a three-dimensional
character. They will, in this new context, be shaped like domes and bowls,
respectively. The two diagrams in Fig. 11.2 serve to illustrate. Point 4 in diagram
a, the peak of a dome. constitutes a maximum,; the value of z at this point is
larger than at any other point in its immediate neighborhood. Similarly, point B
in diagram b, the bottom of a bowl, represents a minimum; everywhere in its
immediate neighborhood the value of the function exceeds that at point B.
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(a) (b)

Figure 11.2

First-Order Condition
For the function
= =f(x.y)

the first-order necessary condition for an extremum (either maximum or mini-
mum) again involves dz = 0. But since there are two independent variables here,
dz is now a total differential; thus the first-order condition should be modified to
the form

(11.3) dz = 0 for arbitrary values of dx and dy. not both zero

The rationale behind (11.3) is similar to the explanation of the condition dz = 0
for the one-variable case: an extremum point must be a stationary point, and at a
stationary point, z must be constant for arbitrary infinitesimal changes of the two

In the present two-variable case, the total differential is
(11.4) D= fodx + [ dy
In order to satisfy condition (11.3), it is necessary-and-sufficient that the two

partial derivatives f, and f, be simultaneously equal to zero. Thus the equivalent
derivative version of the first-order condition (11.3) 1s

dz 0z

(11.5)  f.=f=0 [or x O}

There is a simple graphical interpretation of this condition. With reference to
point 4 in Fig. 11.24, to have f, = 0 at that point means that the tangent line T,
drawn through A and parallel to the xz plane (holding y constant), must have a
zero slope. By the same token, to have f, = 0 at point 4 means that the tangent
line T, drawn through 4 and parallel to the yz plane (holding x constant), must
also have a zero slope. You can readily verify that these tangent-line requirements
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(a) ()

Figure 11.3

actually also apply to the minimum point B in Fig. 11.256. This is because
condition (11.5), like condition (11.3), is a necessary condition for both a maxi-
mum and a minimum.

As in the earlier discussion, the first-order condition is necessary, but nor
sufficient. That it 1s not sufficient to establish an extremum can be seen from the
two diagrams in Fig. 11.3. At point C in diagram a, both T, and 7, have zero
slopes, but this point does not qualify as an extremum: Whereas it is a minimum
when viewed against the background of the yz plane, 1t turns out to be a
maximum when looked at against the xz plane! A point with such a “dual
personality” is referred to, for graphical reasons, as a saddle point. Similarly, point
D in Fig. 11.3b, while characterized by flat 7, and T, is no extremum. either; its
location on the twisted surface makes it an inflection point, whether viewed against
the xz or the yz plane. These counterexamples decidedly rule out the first-order
condition as a sufficient condition for an extremum.

To develop a sufficient condition, we must look to the second-order total
differential, which 1s related to second-order partial derivatives.

Second-Order Partial Derivatives

The function z = f(x, y) can give rise to rwo first-order partial derivatives,

_ 0z _ 0z
Sy ad =g

Since f, is itself a function of x (as well as of y), we can measure the rate of
change of f_with respect to x, while y remains fixed, by a particular second-order
(or second) partial derivative denoted by either f, or d%z/dx:
0 9’z 4 {0z
f\,x - 8(’((](\') or axz - ax(a,\')

The notation f,  has a double subscript signifying that the primitive function f has
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been differentiated partially with respect to x twice, whereas the notation 9%z /dx?
resembles that of d?z/dx? except for the use of the partial symbol. In a perfectly
analogous manner, we can use the second partial derivative

d N 4%z d [ d:z
Ty(f") or (3)

: FIE dy
to denote the rate of change of f, with respect to y, while x is held constant.
Recall, however, that f, is also a function of y and that f, is also a function of
x. Hence, there can be written two more second partial derivatives:

9 a ez 3%z 9 (a:z
f\\' = 8x8y = 8)(?(8}’) and f” - (9}’(9,\’ B 3}'(5;)

These are called cross (or mixed) partial derivatives because each measures the
rate of change of one first-order partial derivative with respect to the “other”
variable.

It bears repeating that the second-order partial derivatives of z = f(x, y), like
z and the first derivatives f, and f,, are also functions of the variables x and y.
When that fact requires emphasis, we can write f.. as f. (x. ), and f . as
fo,(x.y), etc. And, along the same line, we can use the notation f..(1,2) to
denote the value of f, evaluated at x = 1 and y = 2, etc.

Even though f,, and f, have been separately defined. they will-—according to
a proposition known as Young’s theorem—be identical with each other, as long as
the two cross partial derivatives are both continuous. In that case, the sequential
order in which partial differentiation is undertaken becomes immaterial, because
f., = /... For the ordinary types of specific functions with which we work, this
continuity condition is usually met; for general functions, as mentioned earlier,
we always assume the continuity condition to hold. Hence, we may in general
expect to find identical cross partial derivatives. In fact, the theorem applies also
to functions of three or more variables. Given z = g(u, v, w), for instance, the
mixed partial derivatives will be characterized by g,, = £..» 8on = 8ue» L€
provided these partial derivatives are all continuous.

fw

Example 1 Find the four second-order partial derivatives of
z=x>+ 5xy — y?

The first partial derivatives of this function are
fi=3x*+5y and [ =5x-2y

Therefore, upon further differentiation, we get
fo=6x  fo=5 fu=5 f.=-2

As expected, f, and f, . are identical.

Example 2 Find all the second partial derivatives of z = x% *. In this case, the
first partial derivatives are

T fi=2xet  and  f = —xle”
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Thus we have
f\\ =2e f‘-\ = —2xe¢ ' /\‘ = —2yxe ¥ f”‘ — Xle v

Again, we see that f, = f,

Ve

Note that the second partial derivatives are all functions of the origin..
variables x and y. This fact is clear enough in Example 2, but it is true even fu1
Example 1, although some second partial derivatives happen to be consrun:
functions in that case.

Second-Order Total Differential

Given the total differential dz in (11.4). and with the concept of second-order
partial derivatives at our command. we can derive an expression for the second-
order total differential ¢z by further differentiation of dz. In so doing, we should
remember that in the equation dz = f_ dx + f, dv. the symbols dx and dy repre-
sent arbitrary or given changes in x and y; so they must be treated as constants
during differentiation. As a result. dz depends only on f, and f,. and since f, and
/. are themselves functions of x and y. dz. like z itself, is a function of x and y.

To obtain d*z, we merely apply the definition of a differential—as shown in
(11.4)—to dz itself. Thus,

(11.6)  d*z=d(dz) = 3(0‘1\7)dx + a(a‘f)d,v [ef. (11.4)]

(9(9 (fodx + f dv)dx + %( fodx + [ dv)dy
(/.

cdx + foodv)de + (f dy+ f dv)ds
=1, »c+f dydx + f dxd\+fd1
foodx® +2f pdxdv + fodvt [ =]

Note. again, that the exponent 2 appears in (11.6) in two different ways. In the
symbol d°z, the exponent 2 indicates the second-order total differential of z; but in
the symbol dx* = (dx)’. the exponent denotes the squaring of the first-order
differential dx.

The result in (11.6) shows the magnitude of ¢z (the change in dz) in terms of
given values of dx and dv. measured from some point (x,. J,) in the domain. In
order to calculate d-z, however, we also need to know the second-order partial
derivatives f .. f . and f . all evaluated at (x,. y,)—just as we need the
first-order partial derwatlves to calculate dz from (11.4).

Example 3 Given z = x* + Sxy — v, find ¢z and d"°z. This function is the same
as “the one in Example 1. Thus. substituting the various derivatives already
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obtained there into (11.4) and (11.6). we find*
dz = (3x> + 5y)dx + (5x = 2y) dy
and
d?z = 6xdx? + 10dx dy — 2dy*
At the point x = 1 and y = 2, for instance, we have
2= 13dx +dy  and  d’z = 6dx? + 10dx dy — 2dv?

And for given dx and dy from the point x = 1 and y = 2 in the domain. the sign
of dz tells the direction of change of z, whereas the sign of d*z reveals whether dz
is increasing (d>z > 0) or decreasing (d°z < 0).

Second-Order Condition

Using the concept of dz. we can state the second-order sufficient condition for a
maximum of z = f(x, y) as follows:

(11.7) d?*z < 0 for arbitrary values of dx and dy, not both zero

The rationale behind (11.7) is very similar to that of the d?z condition for the
one-variable case, and it can be explained by means of Fig. 11.4, which depicts
the bird’s-eye view of a surface. Let point A on the surface—the point lying
directly above the point (x,. );,) in the domain—satisfy the first-order condition
(11.3). Then point A4 is a prospective candidate for a maximum. Whether it in fact
qualifies depends on the surface configuration in the neighborhood of A. If an
infinitesimal movement away from 4 in any direction along the surface (see the
arrows in Fig. 11.4) invariably results in a decrease in z—that is, if dz <0 for
arbitrary values of dx and dy, not both zero-—A is a peak of a dome. Given that
- = 0 at point A, however, the condition dz < 0 at other points in the neighbor-
hood of A4 amounts to the stipulation that dz is decreasing, that is, d*z = d(dz) <
0, for arbitrary values of dx and dy. not both zero. Thus (11.7) constitutes a
sufficient condition for identifying a stationary value as a maximum of :.
Analogous reasoning would show that a counterpart second-order sufficient
condition for identifying a stationary value as a minimum of z = f(x, y)is

(11.8) d?z > 0 for arbitrary values of dx and dy, not both zero

* An alternative way of rcaching these results is by direct differentiation of the function:
dz=d(x) +d(5v)  d(y7)
=3x7dx + Sydv t Sxdv - 2vdy
Further differentiation of ¢z (bearing in mind that dx and dy are constants) will then vield
dz = d(3x7) dx + d(5y) dy = d(5x) dv — d(2y) dv
= (6xdx) dy + (Sdv) dy +~ (Sdxydv - (2dv) dv
~ 6xdxt + 10dy dv — 2}
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The reason why (11.7) and (11.8) are only sufficient, but not necessary,
conditions is that it is again possible for 4z to take a zero value at a maximum or
a minimum. For this reason. second-order necessary conditions must be stated
with weak inequalities as follows:

5

For maximumof z: d-z < O\ for arbitrary values of dx and dy,

For minimum of z: d°z > 0 J not both zero

(11.9)

In the following. however, we shall pay more attention to the second-order
sufficient conditions.

For operational convenience, second-order differential conditions can be
translated into equivalent conditions on second-order derivatives. In the two-vari-
able case. (11.6) shows that this would entail restrictions on the signs of the
second-order partial derivatives f, .. /... and f, . The actual translation would
require a knowledge of quadratic forms, which will be discussed in the next
section. But we may first introduce the main result here: For any values of dx and
dy, not both zero,

(<0 iff £, <0: f,<0: and f [, >[]

) Xy

| >0 iff [, >0. f,>0. and [ f, > f2

Note that the sign of ¢z hinges not only on f, and f, , which have to do with the
surface configuration around point A (Fig. 11.4) in the two basic directions shown
by T (east-west) and T, (north-south), but also on the cross partial derivative f, ..
The role played by this latter partial derivative is to ensure that the surface in
question will yield (two-dimensional) cross sections with the same type of

Yo

0]

Figure 11.4
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Table 11.1 Conditions for relative extremum: - = f(x. 1)
Condition Maximum Minimum
First-order necessary condition fo=1f =190 fo=/.=0
Second-order sufficient
condition* fo.of, <0 foofi =0
and and
foh > £ fodo = 1

*Applicable only after the first-order necessary condition has been satistied.

configuration (hill or valley. as the case may be) not only in the two basic
directions (east-west and north-south). but in all other possible directions (such as
northeast-southwest) as well.

The above result, together with the first-order condition (11.5), enables us to
construct Table 11.1. It should be understood that all the second partial deriva-
tives therein are to be evaluated at the stationary point where f = f = 0. It
should also be stressed that the second-order sufficient condition is nor necessary

P

for an extremum. In particular, if a stationary value is characterized by f, . f.. = /.
in violation of that condition, that stationary value may nevertheless turn out to
be an extremum. On the other hand, in the case of another type of violation, with
a stationary point characterized by f, f,, < 7. we can identify that point as a
saddle point, because the sign of d’z will in that case be indefinite (positive for
some values of dx and dy. but negative for others).

Example 4 Find the extreme value(s) of = = 8x* + 2xy — 3x* + y* + 1. First
let us find all the first and second partial derivatives:

f.=24x*+ 2y — 6x fi=2x+2y
foo=8x -6 f . =2 [, =2
The first-order condition calls for satisfaction of the simultaneous equations
.= 0and f = 0, that s,
24x? + 2y —6x =0
2y +2x=0

The second equation implies that v = —x, and when this information is sub-
stituted into the first equation, we get 24x* — 8x = 0, which yields the pair of
solutions

(=0 [implying 7, = — %, = 0]

=

| 1

X, =3 [implyingfz = - f]
To apply the second-order condition, we note that. when

5,=7=0
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f. turns out to be —6, while f, . is 2, so that f__ /.. is negative and is necessarily
less than a squared value f.2. This fails the second-order condition. The fact that
f.. and £, have opposite signs suggests, of course, that the surface in question will
curl upward in one direction but downward in another, thereby giving rise to a
saddle point.

What about the other solution? When evaluated at ¥, = 1, we find that
fe. = 10, which, together with the fact that f = f_. = 2, meets all three parts of
the second-order sufficient condition for a minimum. Therefore, by setting x = %

and y = — £ in the given function, we can obtain as a minimum of z the value
7 = 2. In the present example, there thus exists only one relative extremum (a
minimum), which can be represented by the ordered triple
o 1 -1 23
(¥.5.2) = (3' 3 '27)

Example 5 Find the extreme value(s) of z = x + 2ey — e* — e*’. The relevant
derivatives of this function are
fi=1—¢€" f.=2e—2e*

f\:\ = —e' fl‘l': _462)‘ f\'\ =0

To satisfy the necessary condition, we must have
l—e*=20

2e — 2e% =
which has only one solution. namely, ¥ = 0 and y = §. To ascertain the status of
the value of z corresponding to this solution (the stationary value), we evaluate
the second-order derivatives at x =0 and y = |, and find that /, = —1.f =
—4e. and f,, = 0. Since £, and /., are both negative and since, in addition,
(— 1)(—4e) > 0, we may conclude that the z value in question, namely,

Fi=0+e—e"—e' = —1
is a maximum value of the function. This maximum point on the given surface
can be denoted by the ordered triple (¥, 7. Z) = (0, %, — 1).

Again, note that, to evaluate the second partial derivatives at ¥ and v,

differentiation must be undertaken first, and then the specific values of ¥ and ¥
are to be substituted into the derivatives as the final step.

EXERCISE 11.2

Use Table 11.1 to find the extreme value(s) of cach of the following four functions, and
determine whether they are maxima or minima:

lz=x"+xr+2y 43

2= x>+ xy *}'2 +2x+y



/

THE CASE OF MORE THAN ONE CHOICE VARIABLE 319

3 2z =ax?+ by’ + c: consider each of the three subcases:
(a) a>0,b>0 (b)Y a<0,b<0 (¢) a and b opposite in sign

4z=e—2x+2y*+3

5 Consider the function z = (x — 2)* + (» — 3)™.

(@) Establish by intuitive reasoning that z attains a minimum (Z =0) at X = 2 and
y =3

(b) Ts the first-order necessary condition in Table 11.1 satisfied?

(¢) Is the second-order sufficient condition in Table 11.1 satisfied?

(d) Find the value of d”z. Does it satisfy the second-order necessary condition for a
minimum in (11.9)?

11.3 QUADRATIC FORMS—AN EXCURSION

The expression for d*z on the last line of (11.6) exemplifies what are known as
quadratic forms, for which there exist established criteria for determining whether
their signs are always positive, negative. nonpositive, or nonnegative, for arbitrary
values of dx and dv. not both zero. Since the second-order condition for
extremum hinges directly on the sign of d*z. those criteria are of direct interest.

To begin with, we define a form as a polynomial expression in which each
component term has a uniform degree. Our earlier encounter with polynomials
was confined to the case of a single variable: ¢, + a,x + --- + a,x". When more
variables are involved. each term of a polynomial may contain either one variable
or several variables, each raised to a nonnegative integer power, such as 3x +
4x2y* — 2yz. In the special case where each term has a uniform degree—i.e..
where the sum of exponents in each term is uniform—the polynomial is called a
form. For example, 4x — 9y + z is a linear form in three variables, because each
of its terms is of the first degree. On the other hand. the polynomial 4x? — xy +
3y2. in which each term is of the second degree (sum of integer exponents = 2),
constitutes a quadratic form in two variables. We may also encounter quadratic
forms in three variables, such as x> + 2xy — yw + 7w’ or indeed in n variables.

Second-Order Total Differential as a Quadratic Form

If we consider the differentials dx and dy in (11.6) as variables and the partial
derivatives as coefficients, i.e.. if we let

u = dx v =dy
azf\‘\' bEf\’) hzf\)l::f\:\]
then the second-order total differential

2= f, dx+ 2f dxdy + f, d

(11.10)

can easily be identified as a quadratic form ¢ in the two variables « and v:

(11.6") g =au’ + 2hue + bv’
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Note that, in this quadratic form, dx = ¥ and dv = v are cast in the role of
variables, whereas the second partial derivatives are treated as constants— the
exact opposite of the situation when we were differentiating dz to get d?z. The
reason for this reversal lies in the changed nature of the problem we are now
dealing with. The second-order sufficient condition for extremum stipulates d?z to
be definitely positive (for a minimum) and definitely negative (for a maximum),
regardless of the values that dx and dv may take (so long as they are not both
zero). It is obvious, therefore, that in the present context dx and dy must be
considered as variables. The second partial derivatives, on the other hand, will
assume specific values at the points we are examining as possible extremum
points, and thus may be regarded as constants.

The major question becomes, then: What restrictions must be placed upon a,
b.and h in (11.6"), when « and v are allowed to take any values, in order to ensure
a definite sign for ¢?

Positive and Negative Definiteness

As a matter of terminology, let us remark that a quadratic form ¢ is said to be

positive definite positive (>0)

positive semidefinite . nonnegative (=0)
‘ . if g is invariably .

negative semidefinite nonpositive (<0)

negative definite negative (< 0)

regardless of the values of the variables in the quadratic form, not all zero. If ¢
changes signs when the variables assume different values, on the other hand, ¢ is
said to be indefinite. Clearly, the cases of positive and negative definiteness of
q = d*z are related to the second-order sufficient conditions for a minimum and a
maximum, respectively. The cases of semidefiniteness, on the other hand, relate to
second-order necessary conditions. When ¢ = d?z is indefinite, we have the
symptom of a saddle point.

Determinantal Test for Sign Definiteness

A widely used test for the sign definiteness of g calls for the examination of the
signs of certain determinants. This test happens to be more easily applicable to
positive and negative definiteness (as against semidefiniteness); that is, it applies
more easily to second-order sufficient (as against necessary) conditions. We shall
confine our discussion here to the sufficient conditions only.*

For the two-variable case. determinantal conditions for the sign definiteness
of g are relatively easy to derive. In the first place, we see that the signs of the first
and third terms in (11.6") are independent of the values of the variables u and o,

* For a discussion of determinantal test for second-order necessary conditions, see Akira Takayama,
Mathematical Economics, The Dryden Press. Hinsdale, IL, 1974, pp. 118-120,
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because these variables appear in squares. Thus it is easy to specify the condition
for the positive or negative definiteness of these terms alone, by restricting the
signs of @ and b. The trouble spot lies in the middle term. But if we can convert
the entire polynomial into an expression such that the variables u and v appear
only in some squares, the definiteness of the sign of ¢ will again become tractable.

The device that will do the trick is that of completing the square. By adding
h*v?/a to, and subtracting the same quantity from, the right side of (11.6"), we
can rewrite the quadratic form as follows:

h? . ht
o’ + bvt — —0?
a

g = au® + 2huv +

(., 2h h* ' Y s
=a(u“+—uv+—,v“ +(b——)v“
a a* \ a.,

ab — h*
a

(v?)

il

, h b
a ( u-+t —v) +
a
Now that the variables u and v appear only in squares, we can predicate the sign

of ¢ entirely on the values of the coefficients a, b, and & as follows:

. [ positive definite | .
11. . ..
(1111 a1 \ negative definite | iff la<0

f">0} and ab—h2> 0

Note that (1) ab — h* should be positive in both cases and (2) as a prerequisite for
the positivity of ab — h?, the product ab must be positive (since it must exceed the
squared term 4°); hence, the above condition automatically implies that ¢ and b
must take the identical algebraic sign.

The condition just derived may be stated more succinctly by the use of
determinants. We observe first that the quadratic form in (11.6") can be re-
arranged into the following square, symmetric format:

g=alu?) + h(uv)
+h(vu) + b(v?)

with the squared terms placed on the diagonal and with the 2/uv term split into
two equal parts and placed off the diagonal. The coefficients now form a
symmetric matrix, with ¢ and b on the principal diagonal and 4 off the diagonal.
Viewed in this light, the quadratic form is also easily seen to be the 1 X 1 matrix
(a scalar) resulting from the following matrix multiplication:

T A |

The determinant of the 2 X 2 coefficient matrix, ‘Z Zl—which is referred to as

the discriminant of the quadratic form ¢, and which we shall therefore denote by
| D|—supplies the clue to the criterion in (11.11). for the latter can be alterna-
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tively expressed as:
. [ positive definite ) fla] >0
A1 . -
(11119 a1 {negatlve definite iff \Ja] <0 d
The determinant |a| = a is a subdeterminant of |D| that consists of the first

element on the principal diagonal; thus it is called the first principal minor of |D].
h

a h
P b'>0

The determinant ‘Z can also be considered a subdeterminant of |D|: since it

involves the first and second elements on the principal diagonal, it is called the
second principal minor of |D|. In the present case, there are only two principal
minors available, and their signs will serve to determine the positive or negative
definiteness of gq.

When (11.11") is translated, via (11.10), into terms of the second-order total
differential d?z, we have

5 . {positive definite}
d<zi . .
negative definite

" (foo> 0} ond foo T — fofo =250

\f\\'<0 f\‘\" f\'\'

Recalling that the last inequality above implies that f, . and f, . are required to
take the same sign, we see that this is precisely the second-order sufficient
condition presented in Table 11.1.

In general, the discriminant of a quadratic form

q = au® + 2huv + bv?

is the symmetric determinant

Z Zl In the particular case of the quadratic form
d?z = f.dx* + 2f dxdy + [, dy*

the discriminant is a determinant with the second-order partial derivatives as its
elements. Such a determinant is called a Hessian determinant (or simply a
Hessian). In the two-variable case, the Hessian is

f\' X f,\',\‘
f\'\' f\'\'

|H| =

-

which, in view of Young’s theorem (f,, = f,,), is symmetric—as a discriminant
should be. You should carefully distinguish the Hessian determinant from the
Jacobian determinant discussed in Sec. 7.6.

Example 1 1s g = 5u® + 3uv + 20° either positive or negative definite? The
S 1.5
1.5 2
5 1.5
1.5 2

Therefore ¢ is positive definite.

discriminant of ¢ is . with principal minors

5>0 and } ):7.75>O
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Example 2 Given f = —2. f =1 and f = —1 at a certain point on a
function = = f(x, v). does d*z have a definite sign at that point regardless of the
values of dx and dy? The discriminant of the quadratic form ¢z is in this case
-2 : o .
I B 1 . with principal minors
~2<0  and !*f IR

Thus ¢°: is negative definite.

Three-Variable Quadratic Forms

Can similar conditions be obtained for a quadratic form in three variables?

A quadratic form with three variables u,. «,. and u; may be generally
represented as
(11.12) gluycuyouy) = dy(uf) +d(uuy) +dys(uu;)

tdy(uauy) + dzz(“%) +d:3(“2“3)

oy (uyuy) + dyy (uquy) + dyy(us)

where the double-Y (double-sum) notation means that both the index / and the
index j are allowed to take the values 1. 2, and 3; and thus the double-sum
expression is equivalent to the 3 X 3 array shown above. Such a square array of
the quadratic form is, incidentally. always to be considered a symmetric one, even
though we have written the pair of coeflicients (d,,. d,,) or (d,;. d5,) as if the
two members of each pair were different. For if the term in the quadratic form
involving the variables u, and u, happens to be. say, 12u,u,, we always let
d\,=d, = 6.s0thatd,uu, = d,u,u,. and a similar procedure may be applied
“to make the other off-diagonal elements symmetrical.

Actually, this three-variable quadratic form is again expressible as a product

of three matrices:

di, dyy dylly

(11.129) gluy usouy) =[uy uy usl|ldy dyy dy || uy| = u'Du
dy, dy; dy || u;

As in the two-variable case, the first matrix (a row vector) and the third matrix (a
column vector) merely list the variables, and the middle one ( D) is a symmetric
coefficient matrix from the square-array version of the quadratic form in (11.12).
This time, however, a total of three principal minors can be formed from its
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discriminant, namely,

dy dyp dy
dyy dy

(D] =d |D,| = d dss |D;| =ldy dy  dy
21 2

dyy dy dy

where | D;| denotes the ith principal minor of the discriminant | D|.* It turns out
that the conditions for positive or negative definiteness can again be stated in
terms of certain sign restrictions on these principal minors.

By the now-familiar device of completing the square, the quadratic form in
(11.12) can be converted into an expression in which the three variables appear
only as components of some squares. Specifically, recalling that a,, = a,,, etc., we
have

d d;
q=d1,(u, +j@u,+£u3)

nooody
V2
+d11d22‘d122( d11d23_d12d13
—d-—— u2+————2— 3
1 d\dy, — di,
d1,d22d33~d”d§3—d22d123~d33d122+2d12d13d23 2
+ (uy)

dydy dlzz
This sum of squares will be positive (negative) for any values of u,, u,, and u;,
not all zero, if and only if the coefficients of the three squared expressions are all
positive (negative). But the three coefficients (in the order given) can be expressed
in terms of the three principal minors as follows:
[ D, |Ds|
1D, | D, |

1D

Hence, for positive definiteness. the necessary-and-sufficient condition is threefold:
Dy >0
ID,| >0  [given that |D,| > 0 already]
|D,] >0  [given that | D,| > O already]

In~other words, the three principal minors must all be positive. For negative
definiteness, on the other hand, the necessary-and-sufficient condition becomes:

D] <0
|D,] >0  [given that |D,| < 0 already]
IDy] <0  [given that |D,] > 0 already]

That is, the three principal minors must alternate in sign in the specified manner.

* We have so far viewed the /th principal minor | D,| as a subdeterminant formed by retaining the
first i principal-diagonal elements of | D]. Since the notion of a minor implies the deletion of something
from the original determinant, however. you may prefer to view the /th principal minor alternatively
as a subdeterminant formed by deleting the last (n — i) rows and columns of | D|.
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Example 3 Determine whether ¢ = ui + 6u3 + 3u; — 2uu, — 4u,u; is either
positive or negative definite. The discriminant of g 1s

1 -1 0
-1 6 -2
0 -2 3

with principal minors as follows:

o 1 -1 0
1>0 l—l 6.:5>0 and -1 6 —-2/=11>0
0 -2 3

Therefore, the quadratic form is positive definite.

Example 4 Determine whether ¢ = 2u? + 3v° — w” + 6uv — Suw — 2ow s
either positive or negative definite. The discriminant may be written as
2 3 -4

2 3 —1/. and we find its first principal minor to be 2 > 0, but the
-4 -1 -1
second principal minor is 3 ; = —3 < 0. This violates the condition for both

positive and negative definiteness; thus ¢ is neither positive nor negative definite.

n-Variable Quadratic Forms
As an extension of the above result to the n-variable case, we shall state without

proof that, for the quadratic form

n

Z i d, uu, [where d, = d/,]

i=1 /=1

glu, uy.... u,)

Il

W D u [cf. (11.127)]

(Ixn) (nxny(axh

the necessary-and-sufficient condition for poesitive definiteness is that the principal
minors of | D], namely.

d” dIZ dln

dy d; dy d d,

\D\| = d,, |D3|E~d2] dys Dl = _122_”
dnl dnl e n

all be positive. The corresponding necessary-and-sufficient condition for negative
definiteness is that the principal minors alternate in sign as follows:

iD,| <0 |D,| >0 D] <0 (etc.)

so that all the odd-numbered principal minors are negative and all even-numbered
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ones are positive. The nth principal minor. |D,| = | D], should be positive if n is
even, but negative if »n is odd. This can be expressed succinctly by the inequality
(—H" D, >0

Characteristic-Root Test for Sign Definiteness

Aside from the above determinantal test for the sign definiteness of a quadratic
form u’Du. there is an alternative test that utilizes the concept of the so-called
“characteristic roots” of the matrix D. This concept arises in a problem of the
following nature. Given an n X n matrix D. can we find a scalar . and an n X |
vector x # 0, such that the matrix equation

(11.13) D x =r x
(nXxu){nxh (nx 1y
is satisfied? If so, the scalar r1s referred to as a characteristic roor of matrix D and

X as a characteristic vector of that matrix.*
The matrix equation Dx = rx can be rewritten as Dx — rIx = 0, or

(11.13) (D—rl)x=0 where O is n X 1

This, of course, represents a system of n homogeneous linear equations. Since we
want a nontrivial solution for x. the coeflicient matrix (D — rl)-—called the
characteristic matrix of D—is required to be singular. In other words, its determi-
nant must be made to vanish:

dyy —r di, dy,
(11.14)  |D—r1)=| 92 du—7 =0
dnl dnl e nn r

Equation (11.14) is called the characteristic equation of matrix D. Since the
determinant |D — rf| will yield. upon Laplace expansion, an nth-degree poly-
nomial in the variable r. (11.14) is in fact an nth-degree polynomial equation.
There will thus be a total of n roots, (r,.....r,). each of which qualifies as a
characteristic root. If D is symmetric, as is the case in the quadratic-form context,
the characteristic roots will always turn out to be real numbers, but they can take
either algebraic sign, or be zero.

Inasmuch as these values of r will all make the determinant | D — r/| vanish,
the substitution of any of these (say. r,) into the equation system (11.13") will
produce a corresponding vector x|,_, . More accurately, the system being homo-
geneous, it will yield an infinite number of vectors corresponding to the root r,.
We shall. however. apply a process of normalization (to be explained below) and

* Characteristic roots are also known by the alternative names of larent roots. or eigenvalues.
Characteristic vectors arc also called eigencectors.
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select a particular member of that infinite set as the characteristic vector corre-
sponding to r;: this vector will be denoted by v,. With a total of »n characteristic
roots, there should be a total of n such corresponding characteristic vectors.

Example 5 Find the characteristic roots and vectors of the matrix B _ :;'] By
substituting the given matrix for D in (11.14). we get the equation

2—-r 2 I —

1 5 -, r—6=20
with roots r, = 3 and r, = —2. When the first root is used, the matrix equation

(11.13") takes the form of

PR NI R MU R )

The two rows of the coefficient matrix being linearly dependent. as we would
expect in view of (11.14), there is an infinite number of solutions, which can be
expressed by the equation x; = 2x,. To force out a unique solution, we normalize
the solution by imposing the restriction x; + x3 = 1.* Then. since

xi 4 x3y = (2)(2)2 +xi=5x3=1

we can obtain (by taking the positive square root) x, = 1/ VS . and also x, = 2x,
= 2/Y5. Thus the first characteristic vector is

2/¢5}
1/V5

Similarly, by using the second root r, = —2 in (11.13"), we get the equation

[2_;#2) —1—2<—2>H2}:[; THHE}

which has the solution x, = — $x,. Upon normalization. we find

Uy

Dty

)
2 5 2 2 5
xi+xi=(—tx) +x3=jx3=1

©

which yields x, = 2/ V5 andx, = -1/ V5 . Thus the second characteristic vector

1S
l—l/%SJ
v, = _
. 2/V5

The set of characteristic vectors obtained in this manner possesses two

n
* More generally. for the n-variable case, we require that Z xP=1

=1
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important properties: First, the scalar product v;v, (i = 1,2...., n) must be equal
to unity, since

X,
Xq n
ve =[x, x; 0 x| =YX xi=1 [by normalization]
X’n
Second, the scalar product v]v, (where i # j) can always be taken to be zero.* In
sum, therefore, we may write that

(11.15)  v/v, =1 and  vjo,=0  (i#))

These properties will prove useful below. As a matter of terminology, when two
vectors yield a zero-valued scalar product, the vectors are said to be orthogonal
(perpendicular) to each other.T Hence each pair of characteristic vectors of matrix
D must be orthogonal. The other property, v/v, = 1, is indicative of normaliza-
tion. Together, these two properties account for the fact that the characteristic
vectors (v,,..., v,) are said to be a set of orthonormal vectors. You should try to
verify the orthonormality of the two characteristic vectors found in Example 5.
Now we are ready to explain how the characteristic roots and characteristic
vectors of matrix D can be of service in determining the sign definiteness of the
quadratic form u’Du. In essence, the idea is again to transform «'Du (which
involves not only squared terms u{,..., uZ, but also cross-product terms such as
uu, and u,uy) into a form that contains only squared terms. Thus the approach
is similar in intent to the completing-the-square process used in deriving the
determinantal test above. However, in the present case, the transformation
possesses the additional feature that each squared term has as its coefficient one
of the characteristic roots, so that the signs of the n roots will provide sufficient
information for determining the sign definiteness of the quadratic form.

* To demonstrate this, we note that, by (11.13), we may write Dt, = r,v,, and Do, = r,v,. By
premuitiplying both sides of each of these equations by an appropriate row vector, we have

t/ D, = ¢/ru, = rey, [r/ Isa scalar]

I s = plren. = Vo= S e o= ple
¢, Dv, = v/ro, = rujo, = rojy, [L,L/ lr/l/,]

Since ¢;Du, and v] Du, are both 1 X 1, and since they are transposes of cach other (recall that D’ = D
because D is symmetric), they must represent the same scalar. It follows that the extreme-right
expressions in these two equations are equal: hence, by subtracting, we have
(r, = r)ve,=0

Now if 7, # r, (distinct roots), then /v, has to be zero in order for the equation to hold, and this
establishes our claim. If r, = , (repeated roots). moreover, it will always be possible, as it turns out, to
find two linearly independent normalized vectors satisfying v/v, = 0. Thus, we may state in general
that ¢;v, = 0, whenever ; # /. l 0

T As a simple illustration of this, think of the two unit vectors of a 2-space, ¢, = 0] and e, = [ 1 ]
These vectors lie, respectively, on the two axes, and are thus perpendicular. At the same time, we do
find that eje, = eje; = 0.
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The transformation that will do the trick is as follows. Let the characteristic

vectors v,,. .., v, constitute the columns of a matrix T
T =[v, v - ]
(nXxXn)
and then apply the transformation u = T y to the quadratic form
(nx1) (nxXn)y (nx1h
u'Du:

w'Du = (Ty)YD(Ty) = y'T'DTy  [by(4.11)]
= y'Ry where R=TDT

As a result, the original quadratic form in the variables u, is now turned into
another quadratic form in the variables y,. Since the u, variables and the y,
variables take the same range of values, the transformation does not affect the
sign definiteness of the quadratic form. Thus we may now just as well consider the
sign of the quadratic form y’Ry instead. What makes this latter quadratic form
intriguing is that the matrix R will turn out to be a diagonal one, with the roots
ris..., r, of matrix D displayed along its diagonal, and with zeros everywhere else,
so that we have in fact

rh O 0|l
72

(1116) u’Du=y’Ry= [}’l Vs y”] 0 I 0
0 0 Fa L Vn

— 2 ,2 )2
=nyytnytootny,

which is an expression involving squared terms only. The transformation R =
T'DT provides us, therefore, with a procedure for diagonalizing the symmetric
matrix D into the special diagonal matrix R.

Example 6 Verify that the matrix [2 _ﬂ given in Example 5 can be

2

n 02[3 0

diagonalized into the matrix ] On the basis of the char-

0 n 0 -2
acteristic vectors found in Example 35, the transformation matrix T should be
I=[o, 0] 2/V5 =15
] 2 1/‘/§ 2/\/§
Thus we may write
2 1 2 1
— — |2 2|/ —= —-— 3 0
55 5 V5
R=TDT= ) ) ) 5 | =
-—— — {2 -1{| = — 0 -2
55 V5 V5

which duly verifies the diagonalization process.
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To prove the diagonalization result in (11.16), let us (partially) write out the
matrix R as follows:

v
[
R=T1TDT = D[v, v, v, ]
L,
We may easily verify that D{¢, ¢, - ¢,] can be rewritten as [ D, Dv,

Dv, ). Besides. by (11.13). we can further rewrite this as [r,v, v,
r,t,]. Hence. we see that

[ o " . D
&N e, e, U, U, rr,.t,
Cé rltélil rll"sl‘l e 7',117‘51771
R = [rlvl L] L .
NG PN NN R NN
L t, ,Ilnl' 1 rll‘nl 2 rnl’ul/n
-
ro 0 0
0 r, - 0
= . . , [by (11.15)]
0 0O r,

which is precisely what we intended to show.
In view of the result in (11.16). we may formally state the characteristic-root
test for the sign definiteness of a quadratic form as follows:

a g = u'Du is positive (negative) definite. if and onlv if every characteris-
tic root of D is positive (negative)

b g = u'Du is positive (negative) semidefinite. if and only if a// character-
istic roots of D are nonnegative (nonpositive)

¢ g = u'Du is indefinite. if and only if some of the characteristic roots of

D are positive and some are negative

Note that, in applying this test, all we need are the characteristic roots; the
characteristic vectors are not required unless we wish to find the transformation
matrix 7. Note, also, that this test, unlike the determinantal test outlined above.
permits us to check the second-order necessary conditions (part b above) simulta-
neously with the sufficient conditions (part ¢ ). However, it does have a drawback.
When the matrix D is of a high dimension. the polynomial equation (11.14) may
not be easily solvable for the characteristic roots needed for the test. In such
cases, the determinantal test might yet be preferable.



THE CASE OF MORE THAN ONE CHOICE VARIABLE 331

EXERCISE 11.3

1 By direct matrix multiplication, express each matrix product below as a quadratic form:

(a) [u U][z g][b] (el 'V][Z (2)][)‘5]
[ ]
dy

foo S
fio S

2 In parts b and ¢ of the preceding problem, the coefficient matrices are not symmetric

with respect to the principal diagonal. Verify that by averaging the off-diagonal elements

and thus converting them, respectively, into 7% 72 and g 0

mwel| 72 3 @ e dy][

we will get the
same quadratic forms as before.

3 On the basis of their coefficient matrices (the symmerric versions), determine by the
determinantal test whether the quadratic forms in Exercise 11.3-1a, b, and ¢ are either
positive definite or negative definite.

4 Express each quadratic form below as a matrix product involving a symmetric coefficient
matrix:

(a) g = 3us — dup + o1

(b) g =u>+ Tuv + 3v°

(¢) g=8uv — u” — 31¢°

(d) g=06xy — 5y — 2x°*

(€) ¢ =3ui — 2uyuy + duyuy + Sus + dui — 2uyu;

(f) g= —u’ +4uv — 6uw — 4p° — Tw?’
5 From the discriminants obtained from the symmetric coefficient matrices of the preced-

ing problem, ascertain by the determinantal test which of the quadratic forms are positive
definite and which are negative definite.

6 Find the characteristic roots of each of the following matrices:
_ |4 2 _ | -2 2 NE_ |5 3
(”)D'[z 3] (b £ [ 2 74] (©F [3 o]

What can you conclude about the signs of the quadratic forms u'Du, u'Fu, and u'Fu?
(Check your results against Exercise 11.3-3.)

7 Find the characteristic vectors of the matrix [; :;‘]

8 Given a quadratic form «’Du, where D is 2 X 2, the characteristic equation of D can be
written as

=0 (d|:=d2|)

Expand the determinant; express the roots of this equation by use of the quadratic
formula; and deduce the following:
(a) No imaginary number (a number involving v — 1) can occur in r; and r,.

(b) To have repeated roots, matrix D must be in the form of [(c) 0

c
(¢) To have either positive or negative semidefiniteness, the discriminant of the quadratic
form may vanish, that is, |D| = 0 is possible.
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11.4 OBJECTIVE FUNCTIONS WITH MORE THAN TWO. .-
VARIABLES

When there appear in an objective function n > 2 choice variables, it is no longer
possible to graph the function, although we can still speak of a hypersurface in an
(n + 1)-dimensional space. On such a (nongraphable) hypersurface, there again
may exist (n + 1)-dimensional analogs of peaks of domes and bottoms of bowls.
How do we identify them?

First-Order Condition for Extremum
Let us specifically consider a function of three choice variables,
z=f(x), x5, x3)

with first partial derivatives f,, f,, and f; and second partial derivatives f,,
(= azz/ax, ax,), with i, j = 1,2,3. By virtue of Young’s theorem, we have
fy =T

Our earlier discussion suggests that, to have a maximum or a minimum of z,
it is necessary that dz = 0 for arbitrary values of dx,, dx,, and dx;, not all zero.
Since the value of dz is now

(11.17)  dz = f,dx, + f,dx, + f,dx,

and since dx, dx,, and dx, are arbitrary (infinitesimal) changes in the indepen-
dent variables, not all zero, the only way to guarantee a zero dz is to have
f1 =1, = f5 = 0. Thus, again, the necessary condition for extremum is that all the
first-order partial derivatives be zero, the same as for the two-variable case.*

Second-Order Condition

The satisfaction of the first-order condition earmarks certain values of z as the
stationary values of the objective function. If at a stationary value of z we find
that d?z is positive definite, this will suffice to establish that value of z as a
minimum. Analogously, the negative definiteness of d?z is a sufficient condition
for the stationary value to be a maximum. This raises the questions of how to
express d *z when there are three variables in the function and how to determine
its positive or negative definiteness. '

* As a special case, note that if we happen to be working with a function z = f(x, x5. x3)
implicitly defined by an equation F(z, x;, x5. x3) = 0, where
az 7(’)F/<?x,
= = [ = 1.2,
=5 aF/ 9z (1 3)

then the first-order condition f, = f, = f; = 0 will amount to the condition

GF _GF _GF
dx, dx,  dxy

since the value of the denominator d F/d- # () makes no difference.
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The expression for d*z can be obtained by differentiating dz in (11.17). In
such a process, as in (11.6), we should treat the derivatives £, as variables and the
differentials dx; as constants. Thus we have

d(dz) a(dz)
ax, dx,
d

= a—xl(fldxl +f2dx2+f3dx3)dx,

a(dz)

2 =
(11.18) d’z=d(dz) o,

dx, + dx, + dx,

b dy + v+ fydx) dry

ad
+ PN (frdx, + fydx, + fydx;) dx,
3

fudxi  + frpdxpdxy + fiydxgdxg
+fodxy dx, + foy dx3 + frydx, dxy
+fydxydx, + fy dxydx, + fiydxy

which is a quadratic form similar to (11.12). Consequently, the criteria for positive
and negative definiteness we learned earlier are directly applicable here.

In determining the positive or negative definiteness of d”z, we must again, as
we did in (11.6"), regard dx, as variables that can take any values (though not all
zero), while considering the derivatives f,, as coefficients upon which to impose
certain restrictions. The coefficients in (11.18) give rise to the symmetric Hessian
determinant

fio fo s
|H| =]/ [ T
s e B
whose successive principal minors may be denoted by
fll fl7
H,| = H,| = . H,| = |H
|H\| =/fi  [H] i |H;| = |H}

Thus, on the basis of the determinantal criteria for positive and negative definite-
ness, we may state the second-order sufficient condition for an extremum of z as
follows:

(11.19)  Zisa fm?"‘.imum}
\ minimum

f|H,| <0; |H, >0; |Hy] <0 (d?znegative definite)
|[H| >0 |Hy >0; [H;| >0 (d’z positive definite)

In using this condition, we must evaluate all the principal minors at the stationary
point where f, = f, = f; = 0.
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We may, of course, also apply the characteristic-root test and associate the
positive definiteness (negative definiteness) of d?z with the positivity (negativity)

fu fio 1
of all the characteristic roots of the Hessian matrix | fo1  f» f» |. In fact
o fo fs

instead of saying that the second-order total differential 42z is positive (negative)
definite, it is also acceptable to state that the Hessian matrix H (to be dis-
tinguished from the Hessian determinant |H|) is positive (negative) definite. In
this usage, however, note that the sign definiteness of H refers to the sign of the
quadratic form d?z with which H is associated, nor to the signs of the elements of
H per se.

Example I Find the extreme value(s) of
2=2x] + x;x, + 4x3 4 x,x; + x3+2

The first-order condition for extremum involves the simultaneous satisfaction of
the following three equations:

(fi=)4x,+ x;+ x;=0

(fi=) x; + 8x, =0

(=) x +2x;=0
Because this is a homogeneous linear-equation system, in which all the three
equations are independent (the determinant of the coefficient matrix does not
vanish), there exists only the single solution X, = ¥, = ¥; = 0. This means that

there is only one stationary value, z = 2.
The Hessian determinant of this function is

o S T 4 1 1
|H| =|fi1 Jf» fu|=/1 8 0
Hhi o fa o 2

the principal minors of which are all positive:
|Hi| =4 |Hy| =31 |H| =54

Thus we can conclude, by (11.9), that Z = 2 is a minimum.

Example 2 Find the extreme value(s) of
I= —x{ +3x.x; + 2x, — x3 — 3x3
The first partial derivatives are found to be
fi = =3x{+ 3x, L=2-2x, f3=3x, — 6x,

By setting all f; equal to zero. we get three simultaneous equations, one nonlinear
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and two linear:
—3x} +3x; =0
—2x, = -2
3x, —6x,=20

Il

Since the second equation gives X, = 1 and the third equation implies x| = 2X,,
substitution of these into the first equation yields two solutions:
o (0,1,0), implying Z = 1
( Xy, Xo, X3) = 17

(3.1,4). implying 7 =

The second-order partial derivatives, properly arranged, give us the Hessian

~6x, 0 3
|H| =| 0 -2 0
3 0 -6

in which the first element (—6x,) reduces to 0 under the first solution (with
%, = 0) and to — 3 under the second (with ¥, = 7). It is immediately obvious that
the first solution does not satisfy the second-order sufficient condition, since
{H,| = 0. We may, however, resort to the characteristic-root test for further
information. For this purpose, we apply the characteristic equation (11.14). Since
the quadratic form being tested is d-z, whose discriminant is the Hessian
determinant, we should, of course. substitute the elements of the Hessian for the
d.. elements in that equation. Hence the characteristic equation is (for the first

¥
solution)

—r 0 3
0 —2-r 0 =0
3 0 —-6—r

which, upon expansion, becomes the cubic equation

PP+ 8+ 3r—18=90
By trial and error, we are able to factor the cubic function and rewrite the above
equation as

(r+2)(r*+6r—9y=0

It is clear from the (r + 2) term that one of the characteristic roots is r; = —2.
The other two roots can be found by applying the quadratic formula to the other
term; they are r, = —3 + /72 . and r, = —3 — 1y/72. Inasmuch as -, and r, are
negative but r, is positive, the quadratic form ¢z is indefinite. thereby violating
the second-order necessary conditions for both a maximum and a minimum :.
Thus the first solution (Z = 1) is not an extremum at all, but an inflection point.

As for the second solution, the situation is simpler. Since the successive
principal minors

|H/| = -3 |H,| =6 and |Hy) = —18
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duly alternate in sign, the determinantal test is conclusive. According to (11.19),
the solution z = 47 is a maximum.

n-Variable Case

When there are n choice variables, the objective function may be expressed as
z=f(x), Xy, X,

The total differential will then be
dz = fidx, + fLdx, +--- + f dx,

so that the necessary condition for extremum (dz = O for arbitrary dx,) means
that all the # first-order partial derivatives are required to be zero.

The second-order differential d2z will again be a quadratic form, derivable
analogously to (11.18) and expressible by an n X n array. The coefficients of that
array, properly arranged, will now give the (symmetric) Hessian

fn flz e fln
|H| = le fzz e on
YT S
with principal minors [H,|, |H,]|,..., |H,|, as defined before. The second-order

sufficient condition for extremum is, as before, that all the # principal minors be
positive (for a minimum in z) and that they duly alternate in sign (for a maximum
in z), the first one being negative.

In summary, then—if we concentrate on the determinantal test—we have the
criteria as listed in Table 11.2, which is valid for an objective function of any
number of choice variables. As special cases, we can have n = 1 or n = 2. When
n = 1, the objective function is z = f(x), and the conditions for maximization,
fi=0and |H,] <0, reducetof'(x)=0and f"(x) < 0, exactly as we learned in
Sec. 9.4. Similarly, when n = 2, the objective function is z = f(x,, x,), so that the
first-order condition for maximum is f, = f, = 0, whereas the second-order

Table 11.2 Determinantal test for relative extremum: z = f(x, x,,..., x,)
Condition Maximum Minimum
First-order necessary condition fi=f=--=f=0 fi=fh=-—"=/=0
Second-order sufficient condition* [Hy| <0; [Hs| >0

‘]l}‘<0'~"';(*l)”‘H”f>0 ‘Hl|"i12‘ """ ‘]In|>0

*Applicable only after the first-order necessary condition has been satisfied.



THE CASE OF MORE THAN ONE CHOICE VARIABLE 337

sufficient condition becomes

f]l fll
fZl f22

which is merely a restatement of the information presented in Table 11.1.

fi <0 and =fiufo— />0

EXERCISE 114

Find the extreme values, if any, of the following five functions. Check whether they are
maxima or minima by the determinantal test.

1 2=x{+3x3 = 3x,x,+ 4x,x; + 6x3
2 2=29— (x{+x3+ x3)

32=x,X; + X7~ x2 4 Xaxy + x5+ 3%
4:=¢' ' +e +e" 2" - (x + 1)
§5-:=¢V+e "+ e“: - (2x+ 2" =)

Then answer thé following questions regarding Hessian matrices and their characteristic
roots:

6 («) Which of the above five problems yield diagonal Hessian matrices? In each such
case, do the diagonal elements possess a uniform sign?

(b) What can you conclude about the characteristic roots of each diagonal Hessian
matrix found? About the sign definiteness of d-z?

(¢) Do the results of the characteristic-root test check with those of the determinantal
test?
7 (a) Find the characteristic roots of the Hessian matrix for problem 3.

(b) What can you conclude from your results?

(¢) Is your answer to (b) consistent with the result of the determinantal test for
problem 3 above?

11.5 SECOND-ORDER CONDITIONS IN RELATION TO
CONCAVITY AND CONVEXITY

Second-order conditions— whether stated in terms of the principal minors of the
Hessian determinant or the characteristic roots of the Hessian matrix—are always
concerned with the question of whether a stationary point is the peak of a hill or
the bottom of a valley. In other words, they relate to how a curve, surface, or
hypersurface (as the case may be) bends itself around a stationary point. In the
single-choice-variable case, with z = f(x), the hill (valley) configuration is mani-
fest in an inverse U-shaped (U-shaped) curve. For the two-variable function
z = f(x. y), the hill (valley) configuration takes the form of a dome-shaped
(bowl-shaped) surface, as illustrated in Fig. 11.2a (Fig. 11.26). When three or
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more choice variables are present, the hills and valleys are no longer graphable,
but we may nevertheless think of “hills” and “ valleys” on hypersurfaces.

A function that gives rise to a hill (valley) over the entire domain is said to be
a concave (convex) function.* For the present discussion, we shall take the
domain to be the entire R”, where n is the number of choice variables. Inasmuch
as the hill and valley characterizations refer to the entire domain, concavity and
convexity are, of course, global concepts. For a finer classification, we may also
distinguish between concavity and convexity on the one hand, and strict concavity
and strict convexity on the other hand. In the nonstrict case, the hill or valley is
allowed to contain one or more flat (as against curved) portions, such as line
segments (on a curve) or line segments and plane segments (on a surface). The
presence of the word “strict,” however, rules out such line or plane segments. The
two surfaces shown in Fig. 11.2 illustrate strictly concave and strictly convex
functions, respectively. The curve in Fig. 6.5, on the other hand, is convex (it
shows a valley) but not strictly convex (it contains line segments). A strictly
concave (strictly convex) function must be concave (convex), but the converse is
not true.

In view of the association of concavity and strict concavity with a global hill
configurafion, an extremum of a concave function must be a peak—a maximum
(as against minimum). Moreover, that maximum must be an absolute maximum
(as against relative maximum), since the hill covers the entire domain. However,
that absolute maximum may not be unique, because multiple maxima may occur
if the hill contains a flat horizontal top. The latter possibility can be dismissed
only when we specify strict concavity. For only then will the peak consist of a
single point and the absolute maximum be unigue. A unique (nonunique) absolute
maximum is also referred to as a strong (weak) absolute maximum.

By analogous reasoning, an extremum of a convex function must be an
absolute (or global) minimum, which may not be unique. But an extremum of a
strictly convex function must be a unique absolute minimum.

In the preceding paragraphs, the properties of concavity and convexity are
taken to be global in scope. If they are valid only for a portion of the curve or
surface (only in a subset S of the domain), then the associated maximum and
minimum are relative (or local) to that subset of the domain, since we cannot be
certain of the situation outside of subset S. In our earlier discussion of the sign
definiteness of d’z (or of the Hessian matrix H ), we evaluated the principal
minors of the Hessian determinant only at the stationary point. By thus limiting
the verification of the hill or valley configuration to a small neighborhood of the
stationary point, we could discuss only relative maxima and minima. But it may
happen that d?z has a definite sign everywhere, regardless of where the principal
minors are evaluated. In that event, the hill or valley would cover the entire
domain, and the maximum or minimum found would be absolute in nature. More
specifically, if d°z is everywhere negative (positive) semidefinite, the function

* If the hill (valley) pertains only to a subset S of the domain, the function is said to be concave
{convex) on §S.
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z = f(x,, X5,-.., X,,) must be concave (convex), and if d?z is everywhere negative
(positive) definite, the function f must be strictly concave (strictly convex).

The preceding discussion is summarized in Fig. 11.5 for a twice continuously
differentiable function z = f(x,, x,,..., x,). For clarity, we concentrate exclu-
sively on concavity and maximum; however, the relationships depicted will
remain valid if the words “concave,” “negative,” and “maximum” are replaced,
respectively, by “convex,” “positive,” and “minimum.” To read Fig. 11.5, recall
that the = symbol (here elongated and even bent) means ““implies.” When that
symbol extends from one enclosure (say, a rectangle) to another (say, an oval), it

z=flx,,....X,)
is a stationary point
[first-order condition]

d?z is negative d?z is negative

definite at Z semidefinite at Z
[second-order sufficient [Second-orde_r.
condition] necessary condition]
Zisa
relative maximum
i fis

/s strictly
concave coneave

\x_—;& Zisan
absolute maximum \

d?z d?z
is is
everywhere everywhere
negative Z is a unique negative
semidefinite absolute maximum definite

Figure 11.5
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means that the former implies (is sufficient for) the latter; it also means that the
latter is necessary for the former. And when the = symbol extends from one
enclosure through a second to a third, it means that the first enclosure, when
accompanied by the second, implies the third.

In this light, the middle column in Fig. 11.5, read from top to bottom, states
that the first-order condition is necessary for Z to be a relative maximum, and the
relative-maximum status of 7 is, in turn, necessary for Z to be an absolute
maximum, and so on. Alternatively, reading that column from bottom to top, we
see that the fact that 7 is a unique absolute maximum is sufficient to establish 7 as
an absolute maximum, and the absolute-maximum status of 7 is, in turn, sufficient
for Z to be a relative maximum, and so forth. The three ovals at the top have to do
with the first- and second-order conditions at the stationary point z. Hence they
relate only to a relative maximum. The diamonds and triangles in the lower part,
on the other hand, describe global properties that enable us to draw conclusions
about an absolute maximum. Note that while our earlier discussion indicated only
that the everywhere negative semidefiniteness of d?z is sufficient for the concavity
of function f, we have added in Fig. 11.5 the information that the condition is
necessary, too. In contrast, the stronger property of everywhere negative definite-
ness of d?z is sufficient, but not necessary, for the strict concavity of f—because
strict concavity of fis compatible with a zero value of d*z at a stationary point.

The most important message conveyed by Fig. 11.5, however, lies in the two
extended = symbols passing through the two diamonds. The one on the left
states that, given a concave objective function, any stationary point can im-
mediately be identified as an absolute maximum. Proceeding a step further, we
see that the one on the right indicates that if the objective function is strictly
concave, the stationary point must in fact be a unique absolute maximum. In
either case, once the first-order condition is met, concavity or strict concavity
effectively replaces the second-order condition as a sufficient condition for maxi-
mum-—nay, for an absolute maximum. The powerfulness of this new sufficient
condition becomes clear when we recall that dz can happen to be zero at a peak,
causing the second-order sufficient condition to fail. Concavity or strict concavity,
however, can take care of even such troublesome peaks, because it guarantees that
a higher-order sufficient condition is satisfied even if the second-order one is not.
It is for this reason that concavity is often assumed from the very outset when a
maximization model is to be formulated with a general objective function (and,
similarly, convexity is often assumed for a minimization model). For then all one
needs to do is to apply the first-order condition. Note, however, that if a specific
objective function is used, the property of concavity or convexity can no longer
simply be assumed. Rather, it must be checked.

Checking Concavity and Convexity

Concavity and convexity, strict or nonstrict, can be defined (and checked) in
several ways. We shall first introduce a geometric definition of concavity and
convexity for a two-variable function z = f(x,, x,), similar to the one-variable
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version discussed in Sec. 9.3:

The function z = f(x,, x,) is concave (convex) iff, for any pair of distinct
pomnts M and N on its graph—a surface—line segment MAN lies either on or
below (above) the surface. The function is strictly concave (strictly convex) iff
line segment MN lies entirely below (above) the surface, except at M and N.

The case of a strictly concave function is illustrated in Fig. 11.6, where M and N,
two arbitrary points on the surface, are joined together by a broken line segment
as well as a solid arc, with the latter consisting of points on the surface that lie
directly above the line segment. Since strict concavity requires line segment MN
to lie entirely below arc MN (except at M and N) for any pair of points M and N,
the surface must typically be dome-shaped. Analogously, the surface of a strictly
convex function must typically be bowl-shaped. As for (nonstrictly) concave and
convex functions, since line segment MN is allowed to lie on the surface itself,
some portion of the surface, or even the entire surface, may be a plane—flat,
rather than curved.

To facilitate generalization to the nongraphable n-dimensional case, the
geometric definition needs to be translated into an equivalent algebraic version.
Returning to Fig. 11.6, let u = (u,, u,) and v = (v,, v,) be any two distinct
ordered pairs (2-vectors) in the domain of z = f( x|, x,). Then the z values (height
of surface) corresponding to these will be f(u) = f(u,, u,) and f(v) = f(v,. v,),
respectively. We have assumed that the variables can take all real values, so if u
and v are in the domain, then all the points on the line segment uv are also in the

flou+ (1-6) ]

——— 5
2
X

Figure 11.6
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domain. Now each point on the said line segment is in the nature of a “weighted
average” of u and v. Thus we can denote this line segment by fu + (1 — 8)v.
where # (the Greek letter theta)—unlike u and v—is a (variable) scalar with the
range of values 0 < # < 1.* By the same token, line segment MN, representing
the set of all weighted averages of f(u) and f(v). can be expressed by 8f(u) +
(1 — 68)f(v), with 8 again varying from 0 to 1. What about arc MN along the
surface? Since that arc shows the values of the function f evaluated at the various
points on line segment uv, it can be written simply as f[fu + (1 — 6)v]. Using
these expressions, we may now state the following algebraic definition:

A function f is { ggggﬁ;’e} iff. for any pair of distinct points u and v in the

domain of f, and for 0 < 4 < 1,

(1120)  8f(u) + (1 — ) f(v) { } F[6u+ (1-8)0]

height of line segment height of arc

VA

Note that, in order to exclude the two end points M and N from the height
comparison, we have restricted 8 to the open interval (0, 1) only.

This definition is easily adaptable to strict concavity and convexity by
changing the weak inequalities < and > to the strict inequalities < and > ,
respectively. The advantage of the algebraic definition is that it can be applied to
a function of any number of variables, for the vectors ¥ and v in the definition
can very well be interpreted as n-vectors instead of 2-vectors.

From (11.20), the following three theorems on concavity and convexity can
be deduced fairly easily. These will be stated in terms of functions f(x) and g(x),
but x can be interpreted as a vector of variables; that is, the theorems are valid
for functions of any number of variables.

Theorem I (linear function) If f(x) is a linear function, then it is a concave
function as well as a convex function, but not strictly so.

Theorem II (negative of a function) If f(x) is a concave function, then
—/f(x) 1s a convex function, and vice versa. Similarly, if f(x) is a strictly concave
function, then —f(x) is a strictly convex function, and vice versa.

Theorem IIl  (sum of functions) If /(x) and g(x) are both concave (convex)
functions, then f(x) + g(x) is also a concave (convex) function. If f(x) and g(x)

* The weighted-average expression fu + (1 — 8)v, for any specific value of 8 between 0 and 1. is
technically known as a convex combination of the two vectors u and v. Leaving a more detailed
explanation of this to a later point of this section, we may note here that when 6 = 0, the given
expression reduces to vector v and similarly that when # = 1, the expression reduces to vector u. An
intermediate value of #, on the other hand, gives us an average of the two vectors u and ¢.
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are both concave (convex) and, in addition, either one or both of them are strictly
concave (strictly convex), then f(x) + g(x) is strictly concave (strictly convex).

Theorem I follows from the fact that a linear function plots as a straight line,
plane, or hyperplane, so that “line segment MN ~ always coincides with “arc
MN.” Consequently, the equality part of the two weak inequalities in (11.20) are
simultaneously satisfied, making the function qualify as both concave and convex.
However, since it fails the strict-inequality part of the definition, the linear
function is neither strictly concave nor strictly convex.

Underlying Theorem II is the fact that the definitions of concavity and
convexity differ only in the sense of inequality. Suppose that f(x) is concave; then

6f(u) + (1 —8)f(v)<f[Ou+ (1 —-6)v]

Multiplying through by — 1, and duly reversing the sense of the inequality, we get
o[-f()] + (1 =0)[—f(o)] = —f[8u+ (1 -6)0]

This, however, is precisely the condition for —f(x) to be convex. Thus the
theorem is proved for the concave f(x) case. The geometric interpretation of this
result is very simple: the mirror image of a hill with reference to the base plane or
hyperplane is a valley. The other cases can be proved similarly.

To see the reason behind Theorem III, suppose that f(x) and g(x) are both
concave. Then the following two inequalities hold:

(11.21) 0f(u)y+ (1 —8)f(v)<f[6u+ (1 -06)v]
(11.22) fg(u)+ (1 —0)g(v) < g[lu+(1-6)v]
Adding these, we obtain a new inequality
(1123)  6[7(w) +g(w)] + (1 - 6)[ f(v) + g(v)]
<f{Ou+ (1-8)v]+g[0u+(1—6)v]

But this i1s precisely the condition for [ f(x) + g{x)] to be concave. Thus the
theorem is proved for the concave case. The proof for the convex case is similar.

Moving to the second part of Theorem III, let f(x) be strictly concave. Then
(11.21) becomes a strict inequality:

(11.21)  8f(u)+ (1= 8)f(v) < f[6u+ (1 —8)v]

Adding this to (11.22), we find the sum of the left-side expressions in these two
inequalities to be strictly less than the sum of the right-side expressions, regardless
of whether the < sign or the = sign holds in (11.22). This means that (11.23) now
becomes a strict inequality, too, thereby making [ f{x) + g(x)] strictly concave.
Besides, the same conclusion emerges a fortiori, if g(x) is made strictly concave
along with f(x), that is, if (11.22) is converted into a strict inequality along with
(11.21). This proves the second part of the theorem for the concave case. The
proof for the convex case is similar.
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This theorem, which is also valid for a sum of more than two concave
(convex) functions, may prove useful sometimes because it makes possible the
compartmentalization of the task of checking concavity or convexity of a function
that consists of additive terms. If the additive terms are found to be individually
concave (convex), that would be sufficient for the sum function to be concave
(convex).

Example 1 Check z = x{ + x3 for concavity or convexity. To apply (11.20), let
u = (uy, u,) and v = (v, v,) be any two distinct points in the domain. Then we
have

flu) = fuy uy) = uf + u3
f(v) =f(v,,0,) =07 + 03
and  f[8u+ (1 —60)v] =f|0u, + (1 —8)o,,0u,+ (1~8)v,

YT
value of x, value of x,

= [6u, + (1 - 8)o,]* + [0u, + (1 - §)v,]°

Substituting these into (11.20), subtracting the right-side expression from the
left-side one, and collecting terms, we find their difference to be

0(1 — 0)(uf +u3) +6(1 — 6)(0} + v3) = 20(1 — 0)(u,v, + uv,)

=601 - 9)[(“1 - vl)2 + (u, — 02)2]

Since 8 is a positive fraction, 6(1 — §) must be positive. Moreover, since (u,, u,)
and (v,, v,) are distinct points, so that either u, # v, or u, + v, (or both), the
bracketed expression must also be positive. Thus the strict > inequality holds in
(11.20), and z = x{ + x2 is strictly convex.

Alternatively, we may check the xi and x3 terms separately. Since each of
them is individually strictly convex, their sum is also strictly convex.

Because this function is strictly convex, it possesses a unique absolute
minimum. It is easy to verify that the said minimum is 7 = 0, attained at
X, =X, =0, and that it is indeed absolute and unique because any ordered pair
(x,. x,) # (0,0) yields a z value greater than zero.

Example 2 Check z = —x] — x3 for concavity or convexity. This function is the
negative of the function in Example 1. Thus, by Theorem I, it is strictly concave.

Example 3 Check z = (x + y)? for concavity or convexity. Even though the
variables are denoted by x and y instead of x, and x,, we can still let u = (u,, u,)
and v = (v, v,) denote two distinct points in the domain, with the subscript i
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referring to the ith variable. Then we have
f) = fuuy) = (u + 1)’
f(v) = f(oy03) = (0, + 0)°
and  f[Ou+ (1—8)v]=[0u, + (1 —8)o, +0u, +(1 — 8)v,]°
= [6(u, + uy) + (1 = 8)(v, + v,)]°

Substituting these into (11.20), subtracting the right-side expression from the
left-side one, and simplifying, we find their difference to be

6(1 — 6)(u, + u2)2 —20(1 = 6)(u, + uy)(v, +v,) +6(1 = 8)(v, + 02)2

=6(1 - 0)[(“1 +uy) — (o + Uz)]2
As in Example 1, 8(1 — 6) is positive. The square of the bracketed expression is
nonnegative (zero cannot be ruled out this time). Thus the > inequality holds in
(11.20), and the function (x + y)? is convex, though not strictly so.
Accordingly, this function has an absolute minimum that may not be unique.
It is easy to verify that the absolute minimum is Z = 0, attained whenever
X + 7 = 0. That this is an absolute minimum is clear from the fact that whenever
x + y # 0, z will be greater than z = 0. That it is not unique follows from the fact
that an infinite number of (X, ) pairs can satisfy the condition X + y = 0.

Differentiable Functions

As stated in (11.20), the definition of concavity and convexity uses no derivatives
and thus does not require differentiability. If the function is differentiable,
however, concavity and convexity can also be defined in terms of its first
derivatives. In the one-variable case, the definition is:

concave

A differentiable function f(x) is { CONVeX

other point v in the domain,

} iff, for any given point 4 and any

(11.24)  f(v) {

VA

b+ 7)o )

Concavity and convexity will be stricr, if the weak inequalities in (11.24) are
replaced by the strict inequalities < and > , respectively. Interpreted geometri-
cally, this definition depicts a concave (convex) curve as one that lies on or below
(above) all its tangent lines. To qualify as a strictly concave (strictly convex)
curve, on the other hand, the curve must lie strictly below (above) all the tangent
lines, except at the points of tangency.

In Fig. 11.7, let point A be any given point on the curve, with height f(u) and
with tangent line AB. Let x increase from the value u. Then a strictly concave
curve (as drawn) must, in order to form a hill, curl progressively away from the
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Figure 11.7

tangent line 4B, so that point C, with height f(v), has to lie below point B. In
this case, the slope of line segment 4 C is less than that of tangent AB. If the curve
is nonstrictly concave, on the other hand, it may contain a line segment, so that,
for instance, arc AC may turn into a line segment and be coincident with line
segment A B, as a linear portion of the curve. In the latter case the slope of AC is
equal to that of AB. Together, these two situations imply that

DC 1\ f(o) ~ /(u)

Slope of line segment AC = =D P—

< (slope of AB =) f"(u)
When multiplied through by the positive quantity (v — ), this inequality yields
the result in (11.24) for the concave function. The same result can be obtained, if
we consider instead x values less than u.

When there are two or more independent variables, the definition needs a
slight modification:

. . . ../ concave\ . .
A differentiable function f(x) = f(x,..... x,)is { convex } iff, for any given
point u = (u,,.... u,) and any other point v = (v,,..., v,) in the domain.

ANICIE WA

=1

(11.24)  f(v) {

IV A

where f (u) = df/0dx; is evaluated at u = (u..... u,).

This definition requires the graph of a concave (convex) function f(x) to lie on or
below (above) all its tangent planes or hyperplanes. For strict concavity and
convexity, the weak inequalities in (11.24') should be changed to strict inequali-
ties, which would require the graph of a strictly concave (strictly convex) function
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to lie strictly below (above) all its tangent planes or hyperplanes, except at the
points of tangency.

Finally, consider a function z = f(x,,..., x,) which is twice continuously
differentiable. For such a function, second-order partial derivatives exist, and thus
d?z is defined. Concavity and convexity can then be checked by the sign of d 2z

(11.25)

A twice continuously differentiable function z = f(x,,..., x,) is < concave}

convex
negative

.. } semidefinite. The said function
positive

if, and only if, d°z is everywhere {

concave

negative
convex

. . 2 . -
} if (but nor only if) d°z is everywhere {positive

is strictly {
definite.

You will recall that the concave and strictly concave aspects of (11.25) have
already been incorporated into Fig. 11.5.

Example 4 Check z = —x* for concavity or convexity by the derivative condi-
tions. We first apply (11.24). The left- and right-side expressions in that inequality
are in the present case —v* and —u* — 4u’(v — u), respectively. Subtracting the
latter from the former, we find their difference to be

ot — ud

+ 4’ [factoring]

—o*+ut+ 4wt (v —u)=(v— u)(—

={v— u)[—(v3 + v?u + vu* + u’) +4u3]

[by (7.2)]

It would be nice if the bracketed expression turned out to be divisible by (v — u),
for then we could again factor out (v — u) and obtain a squared term (v — u)? to
facilitate the evaluation of sign. As it turns out, this is indeed the case. Thus the
difference cited above can be written as

— (v — u)’ o>+ 2ou + 3u*] = — (v — u)z[(v +u) + 2u2]

Given that v # u, the sign of this expression must be negative. With the strict <
inequality holding in (11.24), the function z = —x* is strictly concave. This
means that it has a unique absolute maximum. As can be easily verified, that
maximum is Z = 0, attained at X = 0.

Because this function is twice continuously differentiable, we may also apply
(11.25). Since there is only one variable, (11.25) gives us

d*z = f’(x) dx? = —12x dx’ [by (11.2)]

We know that dx? is positive (only nonzero changes in x are being considered);
but — 12x? can be either negative or zero. Thus the best we can do is to conclude
that d?z is everywhere negative semidefinite, and that z = —x* is (nonstrictly)
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concave. This conclusion from (11.25) is obviously weaker than the one obtained
earlier from (11.24); namely, z = —x* is strictly concave. What limits us to the
weaker conclusion in this case is the same culprit that causes the second-deriva-
tive test to fail on occasions—the fact that d?z may take a zero value at a
stationary point of a function known to be strictly concave, or strictly convex.
This is why, of course, the negative (positive) definiteness of d?z is presented in
(11.25) as only a sufficient, but not necessary, condition for strict concavity (strict
convexity).

Example 5 Check z = x{ + x3 for concavity or convexity by the derivative
conditions. This time we have to use (11.24) instead of (11.24). With u = (u,, u,)
and v = (v, v,) as any two points in the domain, the two sides of (11.24") are

Left side = v} + v3
Right side = u + w3 + 2u, (v, — u,) + 2uy (v, — u,)
Subtracting the latter from the former, and simplifying, we can express their
difference as
ol = 20Uy + ul + 03 — 205, + ud = (v, —u)’ + (v, - u,)

Given that (v, v,) # (u,, u,), this difference is always positive. Thus the strict >
inequality holds in (11.24"), and z = xj + x3 is strictly convex. Note that the
present result merely reaffirms what we have previously found in Example 1.

As for the use of (11.25), since f, = 2x,, and f, = 2x,, we have

2.0
fu fi _ —4>90
Lo Ja] |02

regardless of where the second-order partial derivatives are evaluated. Thus d?z is
everywhere positive definite, which duly satisfies the sufficient condition for strict
convexity. In the present example, therefore, (11.24") and (11.25) do yield the
same conclusion.

fMm=2>0 and

Convex Functions versus Convex Sets

Having clarified the meaning of the adjective “convex™ as applied to a function,
we must hasten to explain its meaning when used to describe a ser. Although
convex sets and convex functions are not unrelated, they are distinct concepts,
and it is important not to confuse them.

For easier intuitive grasp, let us begin with the geometric characterization of a
convex set. Let § be a set of points in a 2-space or 3-space. If, for any two points
in set S, the line segment connecting these two points lies entirely in S, then S is
said to be a convex set. It should be obvious that a straight line satisfies this
definition and constitutes a convex set. By convention, a set consisting of a single
point is also considered as a convex set, and so is the null set (with no point). For
additional examples, let us look at Fig. 11.8. The disk—namely, the ““solid” circle,
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a circle plus all the points within it—1is a convex set, because a line joining any
two points in the disk lies entirely in the disk, as exemplified by ab (linking two
boundary points) and cd (linking two interior points). Note, however, that a
(hollow) circle is not in itself a convex set. Similarly, a triangle, or a pentagon, is
not in itself a convex set, but its solid version is. The remaining two solid figures
in Fig. 11.8 are not convex sets. The palette-shaped figure is reentrant (indented);
thus a line segment such as gh does not lie entirely in the set. In the key-shaped
figure, moreover, we find not only the feature of reentrance, but also the presence
of a hole, which is yet another cause of nonconvexity. Generally speaking, to
qualify as a convex set, the set of points must contain no holes, and its boundary
must not be indented anywhere.

The geometric definition of convexity also applies readily to point sets in a
3-space. For instance, a solid cube is a convex set, whereas a hollow cylinder is
not. When a 4-space or a space of higher dimension is involved, however, the
geometric interpretation becomes less obvious. We then need to turn to the
algebraic definition of convex sets.

To this end, it is useful to introduce the concept of convex combination of
vectors (points), which is a special type of linear combination. A linear combina-
tion of two vectors 4 and v can be written as

kau+ kyv
where k; and k, are two scalars. When these two scalars both lie in the closed
interval {0, 1] and add up to unity, the linear combination is said to be a convex

combination, and can be expressed as

(1126) 6fu+(1-60)v (0<h<1)

310 319
view of the fact that these two scalar multipliers are positive fractions adding up

o
&

. . . 1 2 ) .
As an illustration, the combination —[ 2} + —[4] is a convex combination. In

b

Figure 11.8
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(uy. uy)
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(vq, Uy)

fq

X

Figure 11.9

to 1, such a convex combination may be interpreted as a weighted average of the
two vectors.*

The unique characteristic of the combination in (11.26) is that, for every
acceptable value of 6, the resulting sum vector lies on the line segment connecting
the points  and v. This can be demonstrated by means of Fig. 11.9, where we

u v
have plotted two vectors u = [ul ] and v = [Ul] as two points with coordinates
2 2

(uy, uy) and (v, vy), respectively. If we plot another vector ¢ such that Oguv
forms a parallelogram, then we have (by virtue of the discussion in Fig. 4.3)

u=qg+v or g=u—v

It follows that a convex combination of vectors « and v (let us call it w) can be
expressed in terms of vector g, because

w=0u+(1-60)o=0u+v—0v=0u—v)+v==0g+0v

Hence, to plot the vector w, we can simply add fq and v by the familiar
parallelogram method. If the scalar § is a positive fraction, the vector g will
merely be an abridged version of vector g; thus g must lie on the line segment
Og. Adding g and v, therefore, we must find vector w lying on the line segment
uv, for the new, smaller parallelogram is nothing but the original parallelogram
with the qu side shifted downward. The exact location of vector w will, of course,
vary according to the value of the scalar #; by varying @ from zero to unity, the
location of w will shift from v to u. Thus the set of all points on the line segment
uv, including ¥ and v themselves, corresponds to the set of all convex combina-
tions of vectors u and v.

* This interpretation has been made use of earlier in the discussion of concave and convex
functions.
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In view of the above, a convex set may now be redefined as follows: A set S is
convex if and only if, for any two points ¥ € S and v € S. and for every scalar
6 = [0.1], it is true that w = fu + (1 — §)v € S. Because this definition is
algebraic. it is applicable regardless of the dimension of the space in which the
vectors # and v are located. Comparing this definition of a convex set with that of
a convex function in (11.20), we see that even though the same adjective “convex”
is used in both. the meaning of this word changes radically from one context to
the other. In describing a function, the word “convex” specifies how a curve or
surface bends itself—it must form a valley. But in describing a set, the word
specifies how the points in the set are packed” together—they must not allow
any holes to arise, and the boundary must not be indented. Thus convex functions
and convex sets are clearly distinct mathematical entities.

Yet convex functions and convex sets are not unrelated. For one thing, in
defining a convex function, we need a convex set for the domain. This is because
the definition (11.20) requires that. for any two points « and v in the domain, all
the convex combinations of u and v—specifically, fu + (1 — 8)v, 0 <8 <
1— must also be in the domain. which is, of course, just another way of saying
that the domain must be a convex set. To satisfy this requirement, we adopted
earlier the rather strong assumption that the domain consists of the entire n-space
(where n is the number of choice variables), which is indeed a convex set.
However, with the concept of convex sets at our disposal, we can now substan-
tially weaken that assumption. For all we need to assume is that the domain is a
convex subset of R", rather than R” utself.

There is yet another way in which convex functions are related to convex sets.
If f(x) is a convex function, then for any constant k. it can give rise to a convex
set

(11.27)  S=={x|f(x) <k} [ f(x) convex]

This is illustrated in Fig. 11.10a for the one-variable case. The set $= consists of
all the x values associated with the segment of the f(x) curve lying on or below
the broken horizontal line. Hence it is the line segment on the horizontal axis
marked by the heavy dots, which is a convex set. Note that if the k value is
changed, the S= set will become a different line segment on the horizontal axis,
but it will still be a convex set.

Going a step further, we may observe that even a concave function is related
to convex sets in ways similar. First. the definition of a concave function in
(11.20) is. like the convex-function case. predicated upon a domain that is a
convex set. Moreover, even a concave function—say, g(x)—can generate an
associated convex set, given some constant k. That convex set 1s

(11.28) S = {x|glx)=k) [g(x) concave]

in which the > sign appears instead of < . Geometrically, as shown in Fig.
11.104 for the one-variable case, the set S= contains all the x values correspond-
ing to the segment of the g(x) curve lying on or above the broken horizontal line.
Thus it is again a line segment on the horizontal axis—a convex set.
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Although Fig. 11.10 specifically illustrates the one-variable case, the defini-
tions of $= and S$* in (11.27) and (11.28) are not limited to functions of a single
variable. They are equally valid if we interpret x to be a vector, ie., let
X = (xy,..., x,). In that case, however, (11.27) and (11.28) will define convex sets
in the n-space instead. It is important to remember that while a convex function
implies (11.27), and a concave function implies (11.28), the converse is not
true—for (11.27) can also be satisfied by a nonconvex function and (11.28) by a
nonconcave function. This is discussed further in Sec. 12.4.

EXERCISE 11.5

1 Use (11.20) to check whether the following functions are concave, convex, strictly
concave, strictly convex, or neither:
(a) z=x" (b)z=x,2+2x§' (¢) z=2x2—xy+y2

2 Use (11.24) or (11.24%) to check whether the following functions are concave, convex,
strictly concave, strictly convex, or neither:
(@)z=—-x>  (Bz=(x+x)  ()zr=-xp

3 In view of your answer to problem 2¢ above, could you have made use of Theorem III
of this section to compartmentalize the task of checking the function z = 2x? — xy + y?
in problem lc¢? Explain your answer.

4 Do the following constitute convex sets in the 3-space?
(a) A doughnut (b) A bowling pin (¢) A perfect marble

5 The equation x* + y* = 4 represents a circle with center at (0,0) and with a radius of 2.
(a) Interpret geometrically the set {((x, y) | x> + y? < 4).
(b) Is this set convex?
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6 Graph each of the following sets, and indicate whether it is convex:
(a) {(x. )|y =¢€") () {{x, )y <13 -x%)
(b)) {{(x,¥)|y=e") (d) {(x,y)|xy=Lix>0,y>0)

10

7G1venu=[ 6

and ¢?

w1l w2 @[

8 Given two vectors u and v in the 2-space, find and sketch:
(a) The set of all linear combinations of u and v
(b) The set of all nonnegative linear combinations of u and v
(¢) The set of all convex combinations of u and v

] and v = [g] which of the following are convex combinations of u

9 (a) Rewrite (11.27) and (11.28) specifically for the cases where the f and g functions
have » independent variables.

(b) Let n = 2, and let the function f be shaped like a (vertically held) ice-cream cone
whereas the function g is shaped like a pyramid. Describe the sets $° and S~ .

11.6 ECONOMIC APPLICATIONS

At the beginning of this chapter, the case of a multiproduct firm was cited as an
illustration of the general problem of optimization with more than one choice
variable. We are now equipped to handle that problem and others of a similar
nature.

Problem of a Multiproduct Firm

Example I Let us first postulate a two-product firm under circumstances of pure
competition. Since with pure competition the prices of both commodities must be
taken as exogenous, these will be denoted by P, and P,;. respectively. Accord-
ingly, the firm’s revenue function will be

R =P, Q) + P,,0,

where Q, represents the output level of the ith product per unit of time. The firm’s
cost function is assumed to be

C =201+ 00, +20

Note that dC/3Q, = 4Q, + Q, (the marginal cost of the first product) is a
function not only of Q, but also of Q,. Similarly, the marginal cost of the second
product also depends, in part, on the output level of the first product. Thus,
according to the assumed cost function, the two commodities are seen to be
technically related in production.

The profit function of this hypothetical firm can now be written readily as

7=R—C=P,0Q, + PyQ, — 2Q12 - 0,0, — 2Q§
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a function of two choice variables (Q, and Q,) and two price parameters. It is our
task to find the levels of Q, and @, which, in combination, will maximize =. For
this purpose, we first find the first-order partial derivatives of the profit function:

d
WI(EH—QW_I)ZPIO_“'QE -
29
(11.29) o o »
772(— BQz)_ 0 — @) 0,

Setting these both equal to zero, to satisfy the necessary condition for maximum,
we get the two simultaneous equations

40, + 0, = P},

Q) 40, = Py

which yield the unique solution
= 4P10“P20 —_4P20‘P10
Q=" and Q= =3

Thus, if P, =12 and Py, = 18, for example, we have Q, =2 and Q, = 4,
implying an optimal profit 7 = 48 per unit of time.

To be sure that this does represent a maximum profit, let us check the
second-order condition. The second partial derivatives, obtainable by partial
differentiation of (11.29), give us the following Hessian:

™ T2y -4 -1
1| = T Ty —‘ -1 —4|
Since |H,| = —4 < 0and |H,| = 15 > 0, the Hessian matrix (or d°z) is negative

definite, and the solution does maximize the profit. In fact, since the signs of the
principal minors do not depend on where they are evaluated, d?z is in this case
everywhere negative definite. Thus, according to (11.25), the objective function
must be strictly concave, and the maximum profit found above is actually a
unique absolute maximum.

Example 2 Let us now transplant the problem of Example 1 into the setting of a
monopolistic market. By virtue of this new market-structure assumption, the
revenue function must be modified to reflect the fact that the prices of the two
products will now vary with their output levels (which are assumed to be identical
with their sales levels, no inventory accumulation being contemplated in the
model). The exact manner in which prices will vary with output levels is, of
course, to be found in the demand functions for the firm’s two products.

Suppose that the demands facing the monopolist firm are as follows:
Q, =40-2P, + P
(11.30) ‘ b
Q,=15+ P -P

These equations reveal that the two commodities are related in consumption,
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specifically, they are substitute goods, because an increase in the price of one will
raise the demand for the other. As given, (11.30) expresses the quantities de-
manded @, and @, as functions of prices, but for our present purposes it will be
more convenient to have prices P, and P, expressed in terms of the sales volumes
Q, and Q,. that is, to have average-revenue functions for the two products. Since
(11.30) can be rewritten as

2P+ P,=0 —40
Pi—P=0,-15

we may (considering @, and Q, as parameters) apply Cramer’s rule to solve for P,
and P, as follows:

P =5-0Q, -
(11.30") ! 4 Q2
Py=70-0Q,-20,

These constitute the desired average-revenue functions, since P, = AR, and
P, = AR,.
Consequently, the firm’s total-revenue function can be written as

R=PQ + P00,
=(55-0,-0,)0,+ (70 -0, -20,)0,  [by (11.30')]
=550, + 700, - 20,0, - le - 2Q22
If we again assume the total-cost function to be
C=0f+ 00, + 03
then the profit function will be
(11.31) 7=R—C=550,+70Q, — 30,0, - 207 — 303

which is an objective function with two choice variables. Once the profit-maximiz-
ing output levels O, and Q, are found. however, the optimal prices P, and P, are
easy enough to find from (11.30").

The objective function yields the following first and second partial deriva-
tives:

Il

™ =55-30,-40, = =70-30Q, - 60,

™= —4 Ty =Ty = =3 Ty = —6

To satisfy the first-order condition for a maximum of #, we must have 7, = =, = 0;
that is,

40, + 3Q, = 55
30, +6Q, =10

Thus the solution output levels (per unit of time) are
(01.0,)=(8,73)

Upon substitution of this result into (11.30") and (11.31), respectively, we find
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that

P, =39} P, = 463 and 7 = 488} (per unit of time)
Inasmuch as the Hessian is :g :g , we have

|H,| = —4<0 and |[Hy = 15>0

so that the value of 7 does represent the maximum profit. Here, the signs of the
principal minors are again independent of where they are evaluated. Thus the
Hessian matrix is everywhere negative definite, implying that the objective
function is strictly concave and that it has a unique absolute maximum.

Price Discrimination

Even in a single-product firm, there can arise an optimization problem involving
two or more choice variables. Such would be the case, for instance, when a
monopolistic firm sells a single product in two or more separate markets (e.g.,
domestic and foreign) and therefore must decide upon the quantities (Q,, Q.
etc.) to be supplied to the respective markets in order to maximize profit. The
several markets will, in general, have different demand conditions, and if demand
elasticities differ in the various markets, profit maximization will entail the
practice of price discrimination. Let us derive this familiar conclusion mathemati-
cally.

Example 3 For a change of pace, this time let us use three choice variables, i.e.,
assume three separate markets. Also, let us work with general rather than
numerical functions. Accordingly, our monopolistic firm will simply be assumed
to have total-revenue and total-cost functions as follows:

R = Rl(QI) + Rz(Qz) + R3(Q3)
C=C(0) where @ = Q, + 0, + O,

Note that the symbol R, represents here the revenue function of the ith
market, rather than a derivative in the sense of f;- Each such revenue function
naturally implies a particular demand structure, which will generally be different
from those prevailing in the other two markets. On the cost side, on the other
hand, only one cost function is postulated, since a single firm is producing for all
three markets. In view of the fact that Q = Q, + Q, + Q5. total cost C is also
basically a function of Q,, Q,, and Q;, which constitute the choice variables of
the model. We can, of course, rewrite C(Q) as C(Q, + Q, + Q5). It should be
noted, however, that even though the latter version contains three independent
variables, the function should nevertheless be considered as having a single
argument only, because the sum of Q, is really a single entity. In contrast, if the
function appears in the form C(Q,. Q,. Q5), then there can be counted as many
arguments as independent variables.
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Now the profit function is

7 =R,(Q)) + Ry(Q;) + R4(Q;) - C(Q)
with first partial derivatives 7. = d=/9Q, (for i = 1,2, 3) as follows:*
|

m = Ri(Q)) - C'(Q)gg% ~Ri(Q) - C(Q) |since 5Q% —1

(11.32) = Ry(Q,) = C(Q) 55 aQ = R3(Q;) — C"(Q)  |since 3iQQ—z -1

d [ 9 ]
7 = Ry(Q3) — C'(Q)-@% — Ry(Qs) - C(Q)  |since a—Q% - 1]

Setting these equal to zero simultaneously will give us

C,(Q) = RII(QI) = R/z(Qz) = RS(Q})
That is,
MC = MR, = MR, = MR,

Thus the levels of Q,, Q,, and Q should be chosen such that the marginal
revenue in each market is equated to the marginal cost of the total output Q.

To see the implications of this condition with regard to price discrimination,
let us first find out how the MR in any market is specifically related to the price in
that market. Since the revenue in each market is R, = P,Q,, it follows that the
marginal revenue must be

M _ 4R, _ 40, dp,
R =g, ~ag, " Crag,
=P,1+5—S%)=Pl(l+%) [by (8.4)]
i i di

where ¢, the point elasticity of demand in the ith market, is normally negative.
Consequently, the relationship between MR, and P, can be expressed alternatively
by the equation

(11.33) MR=P,.(1— 1 )
eyl

Recall that |e,,| is, in general, a function of P, so that when Q, is chosen, and P,

thus specified, |e,,| will also assume a specific value, which can be either greater

than, or less than, or equal to one. But if |e,,| < 1 (demand being inelastic at a

point), then its reciprocal will exceed one, and the parenthesized expression in

(11.33) will be negative, thereby implying a negative value for MR ;. Similarly, if

* Note that, to find dC/3Q;, the chain rule is used:
aC _ dC 3Q
aQ, dQ 90,
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le;;| = 1 (unitary elasticity), then MR, will take a zero value. Inasmuch as a firm’s
MC is positive, the first-order condition MC = MR, requires the firm to operate
at a positive level of MR,. Hence the firm’s chosen sales levels Q; must be such
that the corresponding point elasticity of demand in each market is greater than
one.

The first-order condition MR, = MR, = MR, can now be translated, via
(11.33), into the following:

1 1 1
Pll—— | =PIl —-———|=P|] -2
l( leg | ) 2( €4 ) 3( €431 )

From this it can readily be inferred that the smaller the value of |g,| (at the
chosen level of output) in a particular market, the higher the price charged in that
market must be—hence, price discrimination—if profit is to be maximized.

To ensure maximization, let us examine the second-order condition. From
(11.32), the second partial derivatives are found to be

mi = RI(Q) - C(Q)35 = RI(Q)) = C"(Q)

d

me = RY(Q:) - C(0) 55~ = R3(0:) - €(Q)
d :

ms = RI(Q5) - C'(Q)32 = RY(Q,) - €(©)

and Ty =Ty = T3 = My =3 = 13, = —C(Q) [Since % = 1}

so that we have (after shortening the second-derivative notation)
Ry —C” -C” -C”
|H| =| —-C” Ry - C” -C”
-C” -C” Ry, —C”

The second-order sufficient condition will thus be duly satisfied, provided we
have:

1. |H,| = R} — C” < 0; that is, the slope of MR, is less than the slope of MC
of the entire output [cf. the situation of point L in Fig. 9.6¢]. (Since any of the
three markets can be taken as the “first” market, this in effect also implies
Ry —C”"<0and Ry — C”" <0.)

2. |H,| = (R} = C"Y(R% — C")—(C")* > 0; or, RYR; — (R} + R5)C" > 0

3. |H;| = RYR5RY — (RYRY + RYRY + R5R)C" <0

The last two parts of this condition are not as easy to interpret economically as
the first. Note that had we assumed that the general R,(Q;) functions are all
concave and the general C(Q) function is convex, so that — C(Q) is concave, then
the profit function—the sum of concave functions—could have been taken to be
concave, thereby obviating the need to check the second-order condition.
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Example 4 To make the above example more concrete, let us now give a
numerical version. Suppose that our monopolistic firm has the specific average-
revenue functions

P, =63 — 40, so that R, = P,Q, = 63Q, — 407
P, =105 - 50, R, = P,0, = 1050, — 5Q§
P, =75 - 60, Ry = P,Q, = 750, — 60}
and that the total-cost function is
C =20+ 15Q

Then the marginal functions will be
R, =63 — 8Q, R, =105 — 10Q, Ry =175 - 120, Cc' =15

When each marginal revenue R/ is set equal to the marginal cost C” of the total
output, the equilibrium quantities are found to be

0, =6 0,=9 and Q,=15

3

Thus Q=3 Q =20

i=1

Substituting these solutions into the revenue s «d cost equations, we get 7 = 679
as the total profit from the triple-market business operation.

Because this is a specific model, we do have to check the second-order
condition (or the concavity of the objective function). Since the second derivatives
are

R/=—-8 R{=-10 R{=-12 (C'=0

all three parts of the second-order sufficient conditions given in Example 3 are
duly satisfied.

It is easy to see from the average-revenue functions that the firm should
charge the discriminatory prices P, = 39, P, = 60, and P, = 45 in the three
markets. As you can readily verify, the point elasticity of demand is lowest in the
second market, in which the highest price is charged.

Input Decisions of a Firm

Instead of output levels Q,, the choice variables of a firm may also appear in the
guise of input levels.

Example 5 Let us assume the following circumstances: (1) Two inputs a and b
are used in the production of a single product Q of a hypothetical firm. (2) The
prices of both inputs, P, and P,, are beyond the control of the firm, as is the
output price P; hence we shall denote them by P, Py, and Py, respectively. (3)
The production process takes 1, years (¢, being some positive constant) to
complete; thus the revenue from sales should be duly discounted before it can be
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properly compared with the cost of production incurred at the present time. The
rate of discount, on a continuous basis, is assumed to be given at r,.

Upon assumption 1, we can write a general production function Q = Q(a, b),
with marginal physical products Q, and Q,. Assumption 2 enables us to express
the total cost as

C=aP,, + bP,,
and the total revenue as
R = P,Q(a,b)

To write the profit function, however, we must first discount the revenue by
multiplying it by the constant e "“—which, to avoid complicated superscripts
with subscripts, we shall write as e ™. Thus, the profit function is

7 =PQ(a,b)e " — aP,, — bPy,

in which a and b are the only choice variables.
To maximize profit, it is necessary that the first partial derivatives

877 —rt
Wa(E%)zpoQue _PaO

am

(11.34)
771;(5 'ég) = PyQue " — Py

both be zero. This means that
(11.35) P,Qe " =P, and P, Qe " = P,

Since P,Q, (the price of the product times the marginal product of input a)
represents the value of marginal product of input a (VMP,), the first equation
merely says that the present value of VMP, should be equated to the given price
of input a. The second equation is the same prerequisite applied to input b.

Note that, to satisfy (11.35), the marginal physical products Q, and Q, must
both be positive, because Py, P, P,,, and e " all have positive values. This has
an important interpretation in terms of an isoquant, defined as the locus of input
combinations that yield the same output level. When plotted in the ab plane,
isoquants will generally appear like those drawn in Fig. 11.11. Inasmuch as each
of them pertains to a fixed output level, along any isoquant we must have

dQ = Q da+ Q,db=0
which implies that the slope of an isoquant is expressible as

b _ Q. [_ _MPR,
da  Q, - MPP,

Thus, to have Q, and Q, both positive is to confine the firm’s input choice to
the negatively sloped segments of the isoquants only. In Fig. 11.11, the relevant
region of operation is accordingly restricted to the shaded area defined by the two
so-called “ridge lines.” Outside the shaded area, where the isoquants are char-
acterized by positive slopes, the marginal product of one input must be negative.

(11.36)
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0

Figure 11.11

The movement from the input combination at M to the one at N, for instance,
indicates that with input b held constant the increase in input a leads us to a lower
isoquant (a smaller output); thus, @, must be negative. Similarly, a movement
from M’ to N’ illustrates the negativity of Q,. Note that when we confine our
attention to the shaded area, each isoquant can be taken as a function of the form
b = ¢(a), because for every admissible value of a, the isoquant determines a
unique value of b.

The second-order condition revolves around the second partial derivatives of
7, obtainable from (11.34). Bearing in mind that Q, and Q,, being derivatives, are
themselves functions of the variables @ and b, we can find 7, 7, = 7, and 7,
and arrange them into a Hessian:

7 s P e P,Q e "
(1137) IH‘ _ aa ab _ 0 gu o 0= ab i
Tab Mo PyQ e PyQpe
For a stationary value of # to be a maximum, it is sufficient that

|H,| <0 [that is, m,, < O, which can obtain iff 0, < 0]
|H,| = |H| >0 [thatis, m,,m,, > =7, which can obtain iff Q,,0,, > 0]

Thus, we note, the second-order condition can be tested either with the =
derivatives or the @, derivatives, whichever are more convenient.

The symbol Q,, denotes the rate of change of Q, (= MPP,) as input a
changes while input b is fixed; similarly, Q,, denotes the rate of change of O,
(= MPP,) as input b changes alone. So the second-order sufficient condition
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stipulates, in parl that the MPP of both inputs be diminishing at the chosen input
levels @ and b. Observe, however, that diminishing MPP, and MPP, do nor
guarantee the satlsfactlon of the second-order condition, because the latter
condition also involves the magnitude of Q ,, = Q, . which measures the rate of
change of MPP of one input as the amount of the other input varies.

Upon further examination it emerges that, just as the first-order condition
specifies the isoquant to be negatively sloped at the chosen input combination (as
shown in the shaded area of Fig. 11.11), the second-order sufficient condition
serves to specify that same isoquant to be strictly convex at the chosen input
combination. The curvature of the isoquant is associated with the sign of the
second derivative d°b/da?. To obtain the latter, (11.36) must be differentiated
totally with respect to a, bearing in mind that Q, and Q, are both derivative
functions of @ and b and yet. on an isoquant, b is itself a function of «; that is.

QuzQu(a*b) Qh:Qh(a*b) and b:¢(a)
The total differentiation thus proceeds as follows:

d’» _d{ 0, dQ, do,
(1138) *__(_ah) Qh [Qh da a dal

da?® da
Since b is a function of a on the isoquant, the total-derivative formula (8.9) gives
us

do, _ aQ, db aQ, _ db
(11.39) ‘da  db daﬁL da _Q”“da+Q““
P o, w10, a

da b da+E_Qb”da+Q“b

After substituting (11.36) into (11.39) and then substituting the latter into (11.38),
we can rewrite the second derivative as

d2b 2 1
(140) == =0 [Qath Qria = QuQu Q””Q“(E)}
o é[Qw(th = 20,(0.)(Q,) + 0,(2,)’]
b

It is to be noted that the expression in brackets (last line) is a quadratic form in
the two variables Q, and Q,. If the second-order sufficient condition is satisfied,
so that

Quu - Quh
- Quh th

then. by virtue of (11.11"), the said quadratic form must be negative definite. This
will in turn make db/da® positive, because Q, has been constrained to be
positive by the first-order condition. Thus the satisfaction of the second-order
sufficient condition means that the relevant (negatively sloped) isoquant is strictly
convex at the chosen input combination, as was asserted.

0,.<0 and I >0
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The concept of strict convexity, as applied to an isoquant b = ¢(a), which is
drawn in the two-dimensional ab plane, should be carefully distinguished from
the same concept as applied to the production function Q(a, b) itself, which is
drawn in the three-dimensional abQ space. Note, in particular, that if we are to
apply the concept of strict concavity or convexity to the production function in
the present context, then, to produce the desired isoquant shape, the appropriate
stipulation is that Q(a, b) be strictly concave in the 3-space (be dome-shaped),
which is in sharp contradistinction to the stipulation that the relevant isoquant be
strictly convex in the 2-space (be U-shaped, or shaped like a part of a U).

Example 6 Next, suppose that interest is compounded quarterly instead, at a
given interest rate of i, per quarter. Also suppose that the production process
takes exactly a quarter of a year. The profit function then becomes

™= P()Q(W b)(l + "0)7l —aP,, — bPy,

a

The first-order condition is now found to be
POQa(l + "0)771 - PuO =0
. -1
PQy(1 +1iy) = Pyy=0

with an analytical interpretation entirely the same as in Example 5, except for the
different manner of discounting,.

You can readily see that the same sufficient condition derived in the preced-
ing example must apply here as well.

EXERCISE 11.6

1 If the competitive firm of Example 1 has the cost function C = 2Q? + 203 instead,
then:

(a) Will the production of the two goods still be technically related?

(b) What will be the new optimal levels of Q, and Q,?

(¢) What is the value of 7,,? What does this imply economically?

2 A two-product firm faces the demand and cost functions below:
0,=40-2P ~ P, Q,=35-P—-P, C=0Qi+20}+10

(a) Find the output levels that satisfy the first-order condition for maximum profit.
(Use fractions.)

(b) Check the second-order sufficient condition. Can you conclude that this problem
possesses a unique absolute maximum?

(¢) What is the maximal profit?

3 On the basis of the equilibrium price and quantity in Example 4, calculate the point
elasticity of demand |e ;| (for i = 1,2,3). Which market has the highest and the lowest
demand elasticities?
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4 If the cost function of Example 4 is changed to C = 20 + 15Q + Q?:
(a) Find the new marginal-cost function.
(b) Find the new equilibrium quantities. (Use fractions).
(¢) Find the new equilibrium prices.
(d) Verify that the second-order sufficient condition is met.

5 In Example 6, how would you rewrite the profit function if the following conditions
hold?

(a) Interest is compounded semiannually at an interest rate of i, per annum, and the
production process takes 1 year.

(b) Interest is compounded quarterly at an interest rate of i, per annum, and the
production process takes 9 months.

6 Given = Q(a, b), how would you express algebraically the isoquant for the output
level of, say, 260?

11.7 COMPARATIVE-STATIC ASPECTS OF OPTIMIZATION

Optimization, which is a special variety of static equilibrium analysis, is naturally
also subject to investigations of the comparative-static sort. The idea is, again, to
find out how a change in any parameter will affect the equilibrium position of the
model, which in the present context refers to the optimal values of the choice
variables (and the optimal value of the objective function). Since no new
technique is involved beyond those discussed in Part 3, we may proceed directly
with some illustrations, based on the examples introduced in the preceding
section.

Reduced-Form Solutions

Example 1 of Sec. 11.6 contains two parameters (or exogenous variables), P, and
P,; it is not surprising, therefore, that the optimal output levels of this two-prod-
uct firm are expressed strictly in terms of these parameters:

_ 4P, - P, 4P, — P,

_ A5 — M2
Ql - 15 and QZ 15

These are reduced-form solutions, and simple partial differentiation alone is
sufficient to tell us all the comparative-static properties of the model, namely,

30, 4 3Q, 1 30, 1 30, 4

P, 15 P, 15 dP,, 15 Py, 15

For maximum profit, each product of the firm should be produced in a larger
quantity if its market price rises or if the market price of the other product falls.

Of course, these conclusions follow only from the particular assumptions of
the model in question. We may point out, in particular, that the effects of a
change in P, on Q, and of P,, on Q,, are consequences of the assumed technical
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relation on the production side of these two commodities, and that in the absence
of such a relation we shall have

00, _ 40,
IPy Py

=0

Moving on to Example 2, we note that the optimal output levels are there
stated, numerically, as Q, = 8 and 0, = 72 —no parameters appear. In fact, all
the constants in the equations of the model are numerical rather than parametric,
so that by the time we reach the solution stage those constants have all lost their
respective identities through the process of arithmetic manipulation. What this
serves to underscore is the fundamental lack of generality in the use of numerical
constants and the consequent lack of comparative-static content in the equi-
librium solution.

On the other hand, the nonuse of numerical constants is no guarantee that a
problem will automatically become amenable to comparative-static analysis. The
price-discrimination problem (Example 3), for instance, was primarily set up for
the study of the equilibrium (profit-maximization) condition, and no parameter
was introduced at all. Accordingly, even though stated in terms of general
functions, a reformulation will be necessary if a comparative-static study is
contemplated.

General-Function Models

The input-decision problem of Example 5 illustrates the case where a general-
function formulation does embrace several parameters—in fact, no less than five
(Py, Py, Py, 1, and 1), where we have, as before, omitted the 0 subscripts from
the exogenous variables r, and r,. How do we derive the comparative-static
properties of this model?

The answer lies again in the application of the implicit-function theorem. But,
unlike the cases of nongoal-equilibrium models of the market or of national-
income determination, where we worked with the equilibrium conditions of the
model, the present context of goal equilibrium dictates that we work with the
first-order conditions of optimization. For Example 5, these conditions are stated
in (11.35). Collecting all terms in (11.35) to the left of the equals signs, and
making explicit that Q, and Q, are both functions of the endogenous (choice)
variables a and b, we can rewrite the first-order conditions in the format of (8.20)
as follows:

F'(a,b; Py, Py, Py r.t)=P,Q (a.b)e " —P,,=0

(11.41)
F2(a, b5 Py, Pyg, Pyo, 1o 1) = PyQy(a,b)e™ — Py =0

The functions F' and F? are assumed to possess continuous derivatives. Thus it
would be possible to apply the implicit-function theorem, provided the Jacobian
of this system with respect to the endogenous variables @ and b does not vanish at
the initial equilibrium. The said Jacobian turns out to be nothing but the Hessian
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determinant of the « function of Example 5:
IF! aF!
da b | | PoQue " PoQue "

OF*  QF? PO, PQ e
da b

(11.42) || = = |H|

[by (11.37)]

Hence, if we assume that the second-order sufficient condition for profit-maximi-
zation is satisfied, then|H| must be positive, and so must be |J]|, at the initial
equilibrium or optimum. In that event, the implicit-function theorem will enable
us to write the pair of implicit functions

a=a(P,, P, Pyy.r.t)
(11.43) ! -( 0> £a0> Lpo

b=b(Py, Py, Pyy.r,1)
as well as the pair of identities

PO, (a,b)e " —P, =0
(11.44) 0Qal _) 0

PQy(a,b)e " = Py=0

To study the comparative statics of the model, first take the total differential
of each identity in (11.44). For the time being, we shall permit all the exogenous
variables to vary, so that the result of total differentiation will involve da, db, as
well as dP,, dP,, dP,, dr, and dt. If we place on the left side of the equals sign
only those terms involving da and db, the result will be

P,Q,.e”"da+ PyQ e " db

= —Q. "dPy+ dP,, + P,Q te”"dr + P,Q re " dt
PyQ e da + PyQ, e " db

= —Q,e " dPy + dP,, + PyQ,te” " dr + PyQ,re " dt

(11.45)

where. be it noted, the first and second derivatives of Q are all to be evaluated at
the equilibrium, i.e., at @ and b. You will also note that the coefficients of dz and
db on the left are precisely the elements of the Jacobian in (11.42).

To derive the specific comparative-static derivatives-—-of which there are a
total of ten (why?)—we now shall allow only a single exogenous variable to vary
at a time. Suppose we let P, vary, alone. Then dP, # 0, but dP,, = dP,, = dr =
dt = 0, so that only the first term will remain on the right side of each equation in
(11.45). Dividing through by dP,, and interpreting the ratio da/dP, to be the
comparative-static derivative (da/dP,), and similarly for the ratio db/dP,, we
can write the matrix equation

_ Qae -rt
_ Qbe* rt

P06 " PoQahe”] (da/dr,)
PoQue " PoQpe (85/‘9})0)
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The solution, by Cramer’s rule, is found to be

(_@i) _ (Q6Qus = QuQ4s) Pre "
1

(ili) _ (QaQub - Qana)Poewzn
P, /1

If you prefer, an alternative method 15 available for obtaining these results: You
may simply differentiate the two identities in (11.44) rorally with respect to P,
(while holding the other four exogenous variables fixed), bearing in mind that P,
can affect @ and b via (11.43).

Let us now analyze the signs of the comparative-static derivatives in (11.46).
On the assumption that the second-order sufficient condition is satisfied, the
Jacobian in the denominator must be positive. The second-order condition also
implies that Q,, and Q,, are negative, just as the first-order condition implies that
Q, and Q, are positive. Moreover, the expression Pye 2" is certainly positive.
Thus, if Q,, > 0 (if increasing one input will raise the MPP of the other input),
we can conclude that both (da/dP,) and (3b/dP,) will be positive, implying that
an increase in the product price will result in increased employment of both
inputs in equilibrium. If @, < 0, on the other hand, the sign of each derivative in
(11.46) will depend on the relative strength of the negative force and the positive
force in the parenthetical expression on the right.

Next, let the exogenous variable r vary. alone. Then all the terms on the right
of (11.45) will vanish except those involving dr. Dividing through by dr #+ 0, we
now obtain the following matrix equation

P06 " POQahe”H(B(Y/(?r)}

PQe " PyQpe (85/8”)

with the solution

PyQyte” "

P()Qa te” 8 }

5

( o ) Q.0 — 0,Q.:) (P ")

Or | /]
(11.47)

3_5 10,0, — 0,0, P ")
( ar ) B |

Both of these comparative-static derivatives will be negative if Q
indeterminate in sign if Q, is negative.

By a similar procedure, we may find the effects of changes in the remaining
parameters. Actually, in view of the symmetry between r and ¢ in (11.44) it is
immediately obvious that both (da/dr) and (db/dt) must be similar in ap-
pearance to (11.47).

The effects of changes in P,, and P, are left to you to analyze. As you will
find. the sign restriction of the second-order sufficient condition will again be
useful in evaluating the comparative-static derivatives, because it can tell us the

25 18 positive, but
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signs of Q,, and Q,, as well as the Jacobian |J| at the initial equilibrium
(optimum). Thus, aside from distinguishing between maximum and minimum, the
second-order condition also has a vital role to play in the study of shifts in
equilibrium positions as well.

EXERCISE 11.7

For the following three problems, assume that Q_, > 0.

1 On the basis of the model described in (11.41) through (11.44), find the comparative-static
derivatives (da/dF,,) and (3b/3P,,). Interpret the economic meaning of the result. Then
analyze the effects on & and b of a change in P,,,.

2 For the problem of Example 6 in Sec. 11.6:

(a) How many parameters are there? Enumerate them.

(b) Following the procedure described in (11.41) through (11.46), and assuming that the
second-order sufficient condition is satisfied, find the comparative-static derivatives
(da/dP,) and (3b/3P,). Evaluate their signs and interpret their economic meanings.

(¢) Find (8a/di,) and (3b/3i,), evaluate their signs, and interpret their economic
meanings.

3 Show that the results in (11.46) can be obtained alternatively by differentiating the two

identities in (11.44) totally with respect to P, while holding the other exogenous variables
fixed. Bear in mind that P, can affect 2 and b by virtue of (11.43).

4 A Jacobian determinant, as defined in (7.27), is made up of first-order partial deriva-
tives. On the other hand, a Hessian determinant, as defined in Secs. 11.3 and 11.4, has as
its elements second-order partial derivatives. How, then, can it turn out that |J| = [H]|, as
in (11.42)?




CHAPTER

IT'WELVE
OPTIMIZATION WITH EQUALITY CONSTRAINTS

The last chapter presented a general method for finding the relative extrema of an
objective function of two or more choice variables. One important feature of that
discussion is that all the choice variables are independent of one another, in the
sense that the decision made regarding one variable does not impinge upon the
choices of the remaining variables. For instance, a two-product firm can choose
any value for Q, and any value for Q, it wishes, without the two choices limiting
each other.

If the said firm is somehow required to observe a restriction (such as a
production quota) in the form of Q, + Q, = 950, however, the independence
between the choice variables will be lost. In that event, the firm’s profit-maximiz-
ing output levels Q, and Q, will be not only simultaneous but also dependent,
because the higher Q, is, the lower 0, must correspondingly be, in order to stay
within the combined quota of 950. The new optimum satisfying the production
quota constitutes a constrained optimum, which, in general, may be expected to
differ from the free optimum discussed in the preceding chapter.

A restriction, such as the production quota mentioned above, establishes a
relationship between the two variables in their roles as choice variables, but this
should be distinguished from other types of relationships that may link the
variables together. For instance, in Example 2 of Sec. 11.6, the two products of
the firm are related in consumption (substitutes) as well as in production (as is
reflected in the cost function), but that fact does not qualify the problem as one of
constrained optimization, since the two output variables are still independent as

369
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choice variables. Only the dependence of the variables qua choice variables gives
rise to a constrained optimum.

In the present chapter, we shall consider equality constraints only, such as
Q, + @, = 950. Our primary concern will be with relative constrained extrema,
although absolute ones will also be discussed in Sec. 12.4.

12.1 EFFECTS OF A CONSTRAINT

The primary purpose of imposing a constraint is to give due cognizance to certain
limiting factors present in the optimization problem under discussion.

We have already seen the limitation on output choices that result from a
production quota. For further illustration, let us consider a consumer with the
simple utility (index) function
(12.1) U=xx,+ 2x,

Since the marginal utilities—the partial derivatives U, = 0U/dx, and U, =
dU/dx,—are positive for all positive levels of x, and x, here, to have U
maximized without any constraint, the consumer should purchase an infinite
amount of both goods, a solution that obviously has little practical relevance. To
render the optimization problem meaningful, the purchasing power of the con-
sumer must also be taken into account; i.e., a budget constraint should be
incorporated into the problem. If the consumer intends to spend a given sum, say,
$60, on the two goods and if the current prices are P\, = 4 and P,, = 2, then the
budget constraint can be expressed by the linear equation

(12.2) 4x, + 2x, = 60

Such a constraint, like the production quota referred to earlier, renders the
choices of X, and x, mutually dependent.

The problem now is to maximize (12.1). subject to the constraint stated in
(12.2). Mathematically, what the constraint (variously called restraint, side rela-
tion, or subsidiary condition) does is to narrow the domain, and hence the range of
the objective function. The domain of (12.1) would normally be the set
{(xy, x,)|x; 2 0, x, > 0}. Graphically, the domain is represented by the nonnega-
tive quadrant of the x,x, plane in Fig. 12.1a. After the budget constraint (12.2) is
added, however, we can admit only those values of the variables which satisfy this
latter equation, so that the domain is immediately reduced to the set of points
lying on the budget line. This will automatically affect the range of the objective
function, too; only that subset of the utility surface lying directly above the
budget-constraint line will now be relevant. The said subset (a cross section of the
surface) may look like the curve in Fig. 12.1b, where U is plotted on the vertical
axis, with the budget line of diagram a placed on the horizontal axis. Our interest,
then, is only in locating the maximum on the curve in diagram b.

In general, for a function z = f(x, y), the difference between a constrained
extremum and a free extremum may be illustrated in the three-dimensional graph
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X2 U
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Budget line
4x, +2x,==60

I
|
|
Budget line ‘

(a) (b)
Figure 12.1

of Fig. 12.2. The free extremum in this particular graph is the peak point of the
entire dome, but the constrained extremum is at the peak of the inverse U-shaped
curve situated on top of (i.e., lying directly above) the constraint line. In general,
a constrained maximum can be expected to have a lower value than the free
maximum, although, by coincidence, the two maxima may happen to have the
same value. But the constrained maximum can never exceed the free maximum.

It is interesting to note that, had we added another constraint intersecting the
first constraint at a single point in the xy plane, the two constraints together
would have restricted the domain to that single point. Then the locating of the

Free maximum

Constrained
maximum

2

Constraint

Figure 12.2
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extremum would become a trivial matter. In a meaningful problem, the number
and the nature of the constraints should be such as to restrict, but not eliminate,
the possibility of choice. Generally, the number of constraints should be less than
the number of choice variables.

12.2 FINDING THE STATIONARY VALUES

Even without any new technique of solution, the constrained maximum in the
simple example defined by (12.1) and (12.2) can easily be found. Since the
constraint (12.2) implies

60 — 4x,
—*2—=30—2X1

we can combine the constraint with the objective function by substituting (12.2')
into (12.1). The result is an objective function in one variable only:

U=x,(30 = 2x,) + 2x, = 32x, — 2x?

which can be handled with the method already learned. By setting dU Jdx, =
32 — 4x, equal to zero, we get the solution X, = 8, which by virtue of (12.2)
immediately leads to X, = 30 — 2(8) = 14. From (12.1), we can then find the
stationary value U = 128; and since the second derivative is d2U /dxi = —4 <0,
that stationary value constitutes a (constrained) maximum of U.*

When the constraint is itself a complicated function, or when there are several
constraints to consider, however, the technique of substitution and elimination of
variables could become a burdensome task. More importantly, when the con-
straint comes in a form such that we cannot solve it to express one variable (x,)
as an explicit function of the other (x,), the elimination method would in fact be
of no avail—even if x, were known to be an implicit function of x,, that is, even
if the conditions of the implicit-function theorem were satisfied. In such cases, we
may resort to a method known as the method of Lagrange (undetermined)
multiplier, which, as we shall see, Las distinct analytical advantages.

(122) x,=

Lagrange-Multiplier Method

The essence of the Lagrange-multiplier method is to convert a constrained-
extremum problem into a form such that the first-order condition of the free-
extremum problem can still be applied.

Given the problem of maximizing U = x,x, + 2x,, subject to the constraint
4x, + 2x, = 60 [from (12.1) and (12.2)], let us write what is referred to as the
Lagrangian function, which is a modified version of the objective function that

*You may recall that for the flower-bed problem of Exercise 9.4-2 the same technique of
substitution was applied to find the maximum area, using a constraint (the available quantity of wire
netting) to eliminate one of the two variables (the length or the width of the flower bed).
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incorporates the constraint as follows:

(12.3)  Z = x;x, + 2x, + A(60 — 4x, — 2x,)

The symbol A (the Greek letter lambda), representing some as yet undetermined
number, is called a Lagrange (undetermined) multiplier. If we can somehow be
assured that 4x, + 2x, = 60, so that the constraint will be satisfied, then the last
term in (12.3) will vanish regardless of the value of A. In that event, Z will be
identical with U. Moreover, with the constraint out of the way, we only have to
seek the free maximum of Z, in lieu of the constrained maximum of U, with
respect to the two variables x, and x,. The question is: How can we make the
parenthetical expression in (12.3) vanish?

The tactic that will accomplish this is simply to treat A as an additional
variable in (12.3), i.e., to consider Z = Z(A, x|, x,). For then the first-order
condition for free extremum will consist of the set of simultaneous equations

Z,(=0Z/0\ ) =60 — 4x, — 2x, =0
(124)  Z,(=0Z/0x,)=x,+2—4r =0
Z,(=0Z/3x,) = x, — 2A =0

and the first equation will automatically guarantee the satisfaction of the con-
straint. Thus, by incorporating the constraint into the Lagrangian function Z and
by treating the Lagrange multiplier as an extra variable, we can obtain the
constrained extremum U (two choice variables) simply by screening the stationary
values of Z, taken as a free function of three choice variables.

Solving (12.4) for the critical values of the variables, we find X, = 8, X, = 14
(and X = 4). As expected, the values of X, and X, check with the answers already
obtained by the substitution method. Furthermore, it is clear from (12.3) that
7 = 128: this is identical with the value of U found earlier. as it should be.

In general, given an objective function

(12.5)  z=f(x,y)
subject to the constraint
(12.6) g(x,y)=c

where c¢ is a constant,* we can write the Lagrangian function as

(127)  Z=f(x,y) + e~ glx. )]
For stationary values of Z, regarded as a function of the three variables A, x. and

* 1t is also possible to subsume the constant ¢ under the contraint function so that (12.6) appears
instead as G(x, y) =0, where G(x. )= g(x.y)~ ¢ In that case, (12.7) should be changed to
Z = f(x.¥) + A0 = G(x, )] =f(x.y) —AG(x.y). The version in (12.6) is chosen because it
facilitates the study of the comparative-static effect of a change in the constraint constant later see
(12.16)).
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v, the necessary condition is

Zy=c—glx.y)=0

Zy :fv - }\gl = O
Since the first equation in (12.8) is simply a restatement of (12.6), the stationary
values of the Lagrangian function Z will automatically satisfy the constraint of
the original function z. And since the expression A[¢ — g(x, )] is now assuredly
zero, the stationary values of Z in (12.7) must be identical with those of (12.5),

subject to (12.6).
Let us illustrate the method with two more examples.

Example 1 Find the extremum of
z=xy subject to x+y=6

The first step is to write the Lagrangian function
Z=xy+A6-x—y)

For a stationary value of Z, it is necessary that

Z,=6—-x—y=0 xX+y=6
Z=y—-A=0 or -A +y=0
Z,=x-A=0 A+ x =90

Thus, by Cramer’s rule or some other method, we can find
A=3 x=3 §=3

The stationary value is Z = Z = 9, which needs to be tested against a second-order
condition before we can tell whether it is a maximum or minimum (or neither).
That will be taken up later.

Example 2 Find the extremum of
z=x?+x} subjectto  x; +4x, =2
The Lagrangian function is
Z=xt+x3+A2—-x, —4x,)

for which the necessary condition for a stationary value is

Z,=2—-x, —4x,=0 X, +4dx,=2
Z|=2x1_>‘=0 or —A+ 2x, =0
Z,=2x,—4A =0 —4A +2x,=0

The stationary value of Z, defined by the solution

= 4 7 o= 7. =&
A=1 X =17 Xy =13

=
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is therefore Z = 7 = %. Again, a second-order condition should be consulted
before we can tell whether 7 is a maximum or a minimum.

Total-Differential Approach

In the discussion of the free extremum of z = f(x, y). it was learned that the
first-order necessary condition may be stated in terms of the total differential dz
as follows:

(12.9) z=fdx+ fdy=0

This statement remains valid after a constraint g(x, y) = ¢ ts added. However,
with the constraint in the picture. we can no longer take dx and dy both as
“arbitrary”” changes as before. For if g(x. v) = ¢, then dg must be equal to dc,
which is zero since ¢ is a constant. Hence.

(12.10) (dg=)g. dx +g d =0

and this relation makes dx and &y dependent on each other. The first-order
necessary condition therefore becomes dz = 0 [(12.9)]. subject to g = ¢, and hence
also subject to dg = 0 [(12.10)]. By visual inspection of (12.9) and (12.10), it
should be clear that. in order to satisfy this necessary condition, we must have

Lo_h
g\ g\

(12.11)

This result can be verified by solving (12.10) for dy and substituting the result into
(12.9). The condition (12.11), together with the constraint g(x, y)= c¢. will
provide two equations from which to find the critical values of x and y.*

Does the total-differential approach yield the same first-order condition as
the Lagrange-multiplier method? Let us compare (12.8) with the result just
obtained. The first equation in (12.8) merely repeats the constraint; the new result
requires its satisfaction also. The last two equations in (12.8) can be rewritten,
respectively, as

(12.11") = =A and —=A

and these convey precisely the same information as (12.11). Note, however, that
whereas the total-differential approach yields only the values of ¥ and j. t

Lagrange-multiplier method also gives the value of X as a direct by-product. As it
turns out, A provides a measure of the sensitivity of Z (and 7) to a shift of the
constraint, as we shall presently demonstrate. Therefore, the Lagrange- multiplier

* Note that the constraint g = ¢ is still to be considered along with (12.11), even though we have
utilized the equation dg = 0-— that is. (12.10)-—in deriving (12.11). While g = ¢ necessarily implies
dg = 0. the converse is not true: dg = 0 merely implies ¢ = a constant (not necessarily ¢). Unless the
constraint is explicitly considered. therefore. some information will be unwittingly left out of the
problem.
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method offers the advantage of containing certain built-in comparative-static
information iI} the solution.

An Interpretation of the Lagrange Multiplier

To show that X indeed measures the sensitivity of Z to changes in the constraint.
let us perform a comparative-static analysis on the first-order condition (12.8).
Since A, x, and y are endogenous, the only available exogenous variable is the
constraint parameter ¢. A change in ¢ would cause a shift of the constraint curve
in the xy plane and thereby alter the optimal solution. In particular, the effect of
an increase in ¢ (a larger budget, or a larger production quota) would indicate
how the optimal solution is affected by a relaxation of the constraint.

To do the comparative-static analysis, we again resort to the implicit-function
theorem. Taking the three equations in (12.8) to be in the form of F/(A, x, y; ¢)
= 0 (with j = 1,2, 3), and assuming them to have continuous partial derivatives.
we must first check that the following endogenous-variable Jacobian (where

fxy = fyx’ and g.xy = gyx)

oF' 9F' 9F'| | | _ -
N ax  ay 8 By
OF*  9F* 9F?

(1212) |J| = I\ F dy = T8« f,\:\' - >\g)cx fxy - }\g,\'y
gF®  9F®  9F°
8}\ 3x ay _g\' fx_v - Agx»\' fvy - }\g,\')'

does not vanish in the optimal state. At this moment, there is certainly no inkling
that this would be the case. But our previous experience with the comparative
statics of optimization problems [see the discussion of (11.42)] would suggest that
this Jacobian is closely related to the second-order sufficient condition, and that if
the sufficient condition is satisfied, then the Jacobian will be nonzero at the
equilibrium (optimum). Leaving the full demonstration of this fact to the follow-
ing section, let us proceed on the assumption that |J| # 0. If so, then we can
express A, X, and 7 all as implicit functions of the parameter c:

(12.13)  A=X(¢) x=%x(¢) and F=7(c)
all of which will have continuous derivatives. Also, we have the identities
c—-g(x.y)=0
(12.14)  f(X.7) - Ag (%, 7)=0
f(Z7) - g (%, 7)=0
Now since the optimal value of Z depends on A, X, and 7, that is,
(12.15)  Z=/(%,7) + A[c - g(x. 7)]
we may, in view of (12.13), consider Z to be a function of ¢ alone. Differentiating
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Z totally with respect to ¢, we find

dZ _ AR d5 AR o v &y
de - * de +fv dc + [C g(x’y)] de + >\(1 8x de gy de

Rg )& RV X
=(fx‘>‘gx)7i‘+(fv—>\gy)%y; [c—g(iy‘)]%c—ﬂ

where f,, f,, 8., and g, are all to be evaluated at the optimum. By (12.14),
however, the first three terms on the right will all drop out. Thus we are left with
the simple result

az

(12.16)  —==A

which validates our claim that the solution value of the Lagrange multiplier
constitutes a measure of the effect of a change in the constraint via the parameter
¢ on the optimal value of the objective function.

A word of caution, however, is perhaps in order here. For this interpretation
of X, you must express Z specifically as in (12.7). In particular, write the last term
as A[c — g(x, )], not M[g(x, y) = c].

n-Variable and Multiconstraint Cases

The generalization of the Lagrange-multiplier method to n variables can be easily
carried out if we write the choice variables in subscript notation. The objective
function will then be in the form

2= f(x), X500, X,
subject to the constraint

g(x,, xy,...,x,) =c¢

It follows that the Lagrangian function will be

Z=f(x;, x5, x,) + A —g(x, x5... ., x,)]
for which the first-order condition will consist of the following (n + 1) simulta-
neous equations:

Zy=c—g(x, x3,...,x,)=0

Zi=fi—Ag =0

Z,=f,—Ag,=0

ZH =f;7 - Ag?l = O
Again, the first of these equations will assure us that the constraint is met, even
though we are to focus our attention on the free Lagrangian function.

When there is more than one constraint, the Lagrange-multiplier method is

equally applicable, provided we introduce as many such multipliers as there are
constraints in the Lagrangian function. Let an n-variable function be subject
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simultaneously to the two constraints
glx, xy....x,)=c and  h(x, x,.....x,)=d
Then, adopting A and pu (the Greek letter mu) as the two undetermined multi-
pliers, we may construct a Lagrangian function as follows:
Z=f(x; x5 X))+ A= glx), X500 x,)]
+uld = h(x. x5, ..0x,)]

This function will have the same value as the original objective function fif both
constraints are satisfied, i.e., if the last two terms in the Lagrangian function both
vanish. Considering A and p as variables, we now count (n + 2) variables
altogether; thus the first-order condition will in this case consist of the following
(n + 2) simultaneous equations:

Zy=c¢—g{x;.x5,...,x,)=0

Z,=d—h(x),x5.....x,)=0

lefl_kg[—lihlzo (i:l,2,...,n)

These should normally enable us to solve for all the x, as well as A and u. As
before. the first two equations of the necessary condition represent essentially a
mere restatement of the two constraints.

EXERCISE 12.2

1 Use the Lagrange-multiplier method to find the stationary values of z:
(g) z = xy,subject to x + 2 =2

(b) z=x(y + 4),subject tox + p =8

(¢) z=x — 3y — xy,subject to x + y = 6

(d) z=7—y + x7, subject to x + y =0

2 In the above problem, find whether a slight relaxation of the constraint will increase or
decrease the optimal value of z. At what rate?

3 Write the Lagrangian function and the first-order condition for stationary values
(without solving the equations) for each of the following:

(a) z=x+ 2y + 3w+ xy — vw, subject to x + y + 2w = 10

(b) z=x7 4 2xy + yw”, subject to 2x + vy + w” =24 and x + w = 8

4 If, instead of g(x.y) = ¢, the constraint is written in the form of G(x, )= 0, how
should the Lagrangian function and the first-order condition be modified as a_conse-
quence?

S In discussing the total-differential approach, it was pointed out that, given the constraint
g(x, y) = ¢, we may deduce that dg = 0. By the same token, we can further deduce that
d*g = d(dg) = d(0) = 0. Yet, in our earlier discussion of the unconstrained extremum of
a function z = f(x, y), we had a situation where ¢z = 0 is accompanied by either a
positive definite or a negative definite "z, rather than 4z = 0. How would vou account
for this disparity of treatment in the two cases?
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6 If the Lagrangian function is written as Z = f(x, y) + Al g(x, ) — ¢] rather than as in
(12.7), can we still interpret the Lagrange multiplier as in (12.16)? Give the new interpreta-
tion, if any.

12.3 SECOND-ORDER CONDITIONS

The introduction of a Lagrange multiplier as an additional variable makes it
possible to apply to the constrained-extremum problem the same first-order
condition used in the free-extremum problem. It is tempting to go a step further
and borrow the second-order necessary and sufficient conditions as well. This,
however, should not be done. For even though Z is indeed a standard type of
extremum with respect to the choice variables, it 1s nor so with respect to the
Lagrange multiplier. Specifically, we can see from (12.15) that, unlike ¥ and 7, if A
is replaced by any other value of A, no effect will be produced on Z. since
{c — g(X, )] is identically zero. Thus the role played by A in the optimal solution
differs basically from that of x and y.* While it is harmless to treat A as just
another choice variable in the discussion of the first-order condition. we must be
careful not to apply blindly the second-order conditions developed for the
free-extremum problem to the present constrained case. Rather, we must derive a
set of new ones. As we shall see, the new conditions can again be stated in terms
of the second-order total differential 4°z. However, the presence of the constraint
will entail certain significant modifications of the criterion.

Second-Order Total Differential

It has been mentioned that, inasmuch as the constraint g(x, y) = ¢ means
dg = g, dx + g.dy = 0, as in (12.10), dx and dy no longer are both arbitrary. We
may, of course, still take (say) dx as an arbitrary change, but then dy must be
regarded as dependent on dx. always to be chosen so as to satisfy (12.10), i.e., to
satisfy dv = —(g./g,) dx. Viewed differently, once the value of dx is specified, dy
will depend on g, and g,, but since the latter derivatives in turn depend on the
variables x and y, dy will also depend on x and y. Obviously, then, the earlier
formula for d?z in (11.6), which is based on the arbitrariness of both dx and dy.
can no longer apply.

To find an appropriate new expression for d’z, we must treat dy as a variable
dependent on x and y during differentiation (if dx is to be considered a constant).

* In a more general framework of constrained optimization known as “ nonlinear programming,”
to be discussed in a later chapter. it will be shown that, with inequality constraints, if Z is a maximum
(minimum) with respect to x and y. then it will in fact be a minimum (maximum) with respect to A. In
other words, the point (A, . ¥) is a saddle point. The present case—where 7 is a genuine extremum
with respect to v and v. but is invariant with respect to A—may be considered as a degenerate casc of
saddle point. The saddle-point nature of the solution (A. X, ) also leads to the important concept of
“duality.” But this subject is best to be pursued later.
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Thus,

a(dz) a(dz)
I dx + 2y

=8—i(f\,dx+j§,d))dx+ (fdx+fdy)

d’z =d(dz) =

dy

_ [f“dx N (f”dy +f,-_y)] dx +| f, dx + (fndy +/ 3dy)] dy

d
=f . dx* + fodvdx + f, 9( y)d + ficdxdy + £, dy 2 +fy%)—)dy
Since the third and the sixth terms can be reduced to

Al 2] = - g

the desired expression for d?z is
(12.17) d’z=f..dx*+2f dxdy +f.‘dy2+f‘d2y

which differs from (11.6) only by the last term, 1 d?y.

It should be noted that this last term is in the Sirst degree [d?y is not the same
as (dy)?]; thus its presence in (12.17) disqualifies d?z as a quadratic form.
However, d?z can be transformed into a quadratic form by virtue of the
constraint g(x, y) = c. Since the constraint implies dg = 0 and also d’g = d(dg)
= 0, so by the procedure used in obtaining (12. 17) we can get

(d’g =)g, dx* +2g, dxdy + g, dy> +g‘dy—0

Solving this last equation for ¢y and substituting the result in (12.17), we are
able to eliminate the first-degree expression dy 2 and write d*z as the following
quadratic form:

dzz = (f\‘,\' - gg,\‘\) dxz + 2

¥

/y
=g, |
U

Because of (12.11%), the first parenthetical coefficient is reducible to (£, — Ag,.,),
and similarly for the other terms. However, by partially differentiating the
derivatives in (12.8), you will find that the following second derivatives

Zoo =L~ A8
(12.18) Zy=foy A& =2Z,,
Z,, =1, Ag,
are precisely equal to these parenthetical coefficients. Hence, by making use of the
Lagrangian function, we can finally express d2z more neatly as follows:
(12.17) d*z= Z dx® + Z, . dxdy

Z,dydx +Z, dy*



OPTIMIZATION WITH EQUALITY CONSTRAINTS 381

The coefficients of (12.17") are simply the second partial derivatives of Z with
respect to the choice variables x and y; together, therefore, they can give rise to a
Hessian determinant.

-Second-Order Conditions,

For a constrained extremum of z = f(x, y). subject to g(x, y) = ¢, the second-
order necessary and sufficient conditions still revolve around the algebraic sign of
the second-order total differential d’z, evaluated at a stationary point. However,
there is one important change. In the present context, we are concerned with the
sign definiteness or semidefiniteness of d?z. not for all possible values of dx and
dy (not both zero), but only for those dx and dy values (not both zero) satisfying
the linear constraint (12.10), g, dx + g dy = 0. Thus the second-order necessary
conditions are:

For maximum of z:  d?z negative semidefinite, subject to dg = 0

For minimum of z:  d°z positive semidefinite, subject to dg = 0

and the second-order sufficient conditions are:
For maximum of z:  d?z negative definite, subject to dg = 0
For minimum of z:  d?z positive definite, subject to dg = 0

In the following, we shall concentrate on the second-order sufficient conditions.
Inasmuch as the (dx, dy) pairs satisfying the constraint g, dx + g, dy =

constitute merely a subset of the set of all possible dx and dy, the constrained sign
definiteness is less stringent—that is, easier to satisfy— than the unconstrained
sign definiteness discussed in the preceding chapter. In other words, the second-
order sufficient condition for a constrained extremum problem is a weaker
condition than that for a free extremum problem. This is welcome news because,
unlike necessary conditions which must be stringent in order to serve as effective
screening devices, sufficient conditions should be weak to be truly serviceable.*

The Bordered Hessian

As in the case of free extremum, it is possible to express the second-order
sufficient condition in determinantal form. In place of the Hessian determinant
|H|, however, in the constrained-extremum case we shall encounter what is
known as a bordered Hessign. o

In preparation for the development of this idea, let us first analyze the
conditions for the sign definiteness of a two-variable quadratic form, subject to a

* A million-dollar bank deposit™ is clearly a sufficient condition for “being able to afford a steak
dinner.” But the extremely limited applicability of that condition renders it practically useless. A more
meaningful sufficient condition might be something like ** twenty dollars in one’s wallet,” which is a
much less stringent financial requirement.
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linear constraint, say,
=au’ + 2huv + bv*  subjectto  au + v =0

Since the constraint implies v = ~(a/)u, we can rewrite ¢ as a function of one
variable only:

o
B

It is obvious that g is positive (negative) definite if and only if the expression in
parentheses is positive (negative). Now, it so happens that the following symmet-
ric determinant

— 12 2 b“2 2 2 h b2“2
=aqu’ — 2h—u’* + Fu = (aB’ — 2haB + a)—'B—z

0 a B
a a h =2haﬁ—a,32—ba2
B h b

is exactly the negative of the said parenthetical expression. Consequently, we can
state that

itive definit .
post 1.Ve © 1.m.e subject to au + fv =0
negative definite
0 a B
it e o hf{Zg
o B h b
It is noteworthy that the determinant used in this criterion is nothing but the

a h

discriminant of the original quadratic form b ‘, with a border placed on top

and a similar border on theleft. Furthermore, the border is merely composed of
the two coefficients a and B from the constraint, plus a zero in the principal
diagonal. This bordered discriminant is symmetric.

Example 1 Determine whether ¢ = 4u? + 4uv + 3v?, subject to u — 20 = 0, is
either positive or negative definite. We first form the bordered discriminant
0 1 =2
1 4 2|, which is made symmetric by splitting the coefficient of uv into
-2 2 3
two equal parts for insertion into the determinant. Inasmuch as the determinant

has a negative value (—27), ¢ must be positive definite.

When applied to the quadratic form 4%z in (12.17’), the variables u and v

become dx and dy, respectively, and the (plain) discriminant consists of the
zZ.. Z

Hessian - Zw' Moreover, the constraint to the quadratic form being
VX vy

g.dx + g dy = 0. wehave a = g, and B = g,. Thus, for values of dx and dy that
satisfy the said constraint, we now have the following determinantal criterion for
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the sign definiteness of d?z:

> . [ positive definite | .
“ZIs ¢ . . . rsubjecttodg =0
| negative definite |

0 g g
iff gy ’_XX X \ >0
gvv 4\'.Y Z)[\‘

The determinant to the right, often referred to as a bordered Hessjan, shall be
denoted by 117_ |, where the bar on tbp symbolizes the border. On the basis of this,
we may conclude that, given a stationary value of z = f(x, y)orof Z = f(x, y)
+ A — g(x. y)]. a positive |H | is sufficient to establish it as a relative maxi-
mum of z; similarly, a negative | H | is sufficient to establish it as a minimum—all
the derivatives involved in |H | being evaluated at the critical values of x and y.
" Now that we have derived the second-order sufficient condition, it is an easy
matter to verify that, as earlier claimed. the satisfaction of this condition will
guarantee that the endogenous-variable Jacobian (12.12) does not vanish in the
optimal state. Substituting (12.18) into (12.12), and multiplying both the first
column and the first row of the Jacobian by — 1 (which will leave the value of the
determinant unaltered), we see that

0 g g \
(1219) | =& Zo Z.,|=|H|
g‘ Z)‘\ Z\\

That is. the endogenous-variable Jacobian is identical with the bordered Hessian
—a result similar to (11.42) where 1t was shown that, in the free-extremum
context, the endogenous-variable Jacobian 1s identical with the plain Hessian. 1f,
in fulfillment of the sufficient condition, we have |H | # 0 at the optimum, then
|J| must also be nonzero. Consequently, in applying the implicit-function theo-
rem to the present context. it would not be amiss to substitute the condition
|H | # 0 for the usual condition |J| # 0. This practice will be followed when we
analyze the comparative statics of constrained-optimization problems below.

Example 2 Let us now return to Example 1 of Sec. 12.2 and ascertain whether
the stationary value found there gives a maximum or a minimum. Since Z_ = y — A
and Z_ = x — A, the second-order partial derivativesare Z , = 0,7, = Z =1,
and Z, = 0. The border elements we need are g, = 1 and g = 1. Thus we find
that

o1
|[Hl =1 0 11=2>0
1 1 0

which establishes the value Z = 9 as a maximum.
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Example 3 Continuing on to Example 2 of Sec. 12.2, we see that Z, = 2x;, — A
and Z, = 2x, — 4A. These yield Z,, = 2, Z, = Z,, = 0, and Z,, = 2. From the
constraint x, + 4x, = 2, we obtain g, = 1 and g, = 4. It follows that the
bordered Hessian is

o1 4
H|=|1 2 0|=-34<0
4 0 2

and the value z = % is a minimum.

n-Variable Case
When the objective function takes the form
z=f(x,x;,...,x,) subjectto  g(x,, X,5,...,%x,)=c

the second-order condition still hinges on the sign of d2z. Since the latter is a
constrained quadratic form in the variables dx,, dx,,..., dx,, subject to the
relation

ne

(dg =)g,dx, +gdxy, + -+ g,dx, =0

the conditions for the positive or negative definiteness of d?z again involve a
bordered Hessian. But this time these conditions must be expressed in terms of
the bordered principal minors of the Hessian.

Given a bordered Hessian

0 & & - g,
g Z, Zy Z,
H| = 8 Zy Zy Z,,
gn an Zn2 Znn

its successive bordered principal minors can be defined as

0 81 82 &3
0 g1 &2
- 7 7 = _|& Zy Ly, Zy
H,| =8 1 12 |Hy| = 7 7z (etc.)
7 7 &2 21 2 23
&2 21 22

8 Zy Zy Ziy

with the last one being |H,| = |[H|. In the newly introduced symbols, the
horizontal bar above H again means bordered, and the subscript indicates
the order of the principal minor being bordered. For instance, |H,| involves the
second principal minor of the (plain) Hessian, bordered with 0, g, and g,; and
similarly for the others. The conditions for positive and negative definiteness of
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Table 12.1 Determinantal test for relative constrained extremum:
z = f(xy, X5,..., x,,), subject to g(x,, x,,..., x,) = ¢; with
Z = f(x;, X5,y X))+ Ale — g(x), x50, x,)]

Condition Maximum Minimum

First-order necessary In=70=7y= - =7,=0 Iy=24,=2L,=-=7,=0
condition

Sccond-order sufficient | H,| > 01 |H,| < 0; |H,|. | Hylso |H,| <0
condition* [ > 0.0 (- D" H,| >0

*Applicable only after the first-order necessary condition has been satisfied.

d?*z are then

itive definit
42z | {p‘m Hve delintte } subject to dg = 0

negative definite

[ ) H| <0

" \|ﬁ2| > 0; [Hy| < 0:|H,| > 0; etc.
In the former, all the bordered principal minors, starting with |H,|, must be
negative; in the latter, they must alternate in sign. As previously, a positive
definite d?z is sufficient to establish a stationary value of z as its minimum,
whereas a negative definite d*z is sufficient to establish it as a maximum.,
Drawing the threads of the discussion together, we may summarize the
conditions for a constrained relative extremum in Table 12.1. You will recognize,
however, that the -criterion stated in the table is not complete. Because the
second-order sufficient condition is not necessary, failure to satisfy the criteria
stated does not preclude the possibility that the stationary value is nonetheless a
maximum or a minimum as the case may be. In many economic applications,
however, this (relatively less stringent) second-order sufficient condition is either
satisfied, or assumed to be satisfied, so that the information in the table is
adequate. It should prove instructive for you to compare the results contained in
Table 12.1 with those in Table 11.2 for the free-extremum case.

Multiconstraint Case

When more than one constraint appears in the problem, the second-order
cordition involves a Hessian with more than one border. Suppose that there are n
choice variables and m constraints (m < n) of the form g/(x,,..., x,) = ¢;. Then
the Lagrangian function will be

Z=f(x,....x,)+ 2 AJ{C, - g'(x,..., xn)]

Jj=1
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and the bordered Hessian will appear as

1

0 0 a8 g

0 0 O &
............... T
=0 0 0 & & 5
__________ - = = - - = = — - — — =

gll gl2 gl’”' Z]] ZIZ Zln

& & gﬁ”: Zy Iy Z,,
............... o n e e e

grll gj gr’z” ‘ nl Zn7 Znn

where g/ = dg//dx, are the partial derivatives of the constraint functions, and
the double-subscripted Z symbols denote, as before, the second-order partial
derivatives of the Lagrangian function. Note that we have partitioned the
bordered Hessian into four areas for visual clarity. The upper-left area consists of
zeros only, and the lower-right area is simply the plain Hessian. The other two
areas, containing the g/ derivatives, bear a mirror-image relationship to each
other with reference to the principal diagonal, thereby resulting in a symmetric
array of elements in the entire bordered Hessian.

Various bordered principal minors can be formed from |H |. The one that
contains Z,, as the last element of its principal diagonal may be denoted by | H,|.
as before. By including one more row and one more column, so that Z; enters
into the scene, we will have | H,|. and so forth. With this symbolism, we can state
the second-order sufficient condition in terms of the signs of the following
(n — m) bordered principal minors:

|ﬁm+l|’ lﬁm+2|\7\'"’ |17n|(= |I7|)

For a maximum of z, a sufficient condition is that these bordered principal minors
alternate in sign, the sign of |H,, | being that of (—1)”"'. For a minimum of z,
a sufficient condition is that these bordered principal minors all take the same
sign, namely, that of (—1)".

Note that it makes an important difference whether we have an odd or even
number of constraints, because (—1) raised to an odd power will yield the
opposite sign to the case of an even power. Note, also, that when m = 1, the
condition just stated reduces to-that presented in Table 12.1.

EXERCISE 12.3

1 Use the bordered Hessian to determine whether the stationary value of z obtained in
each part of Exercise 12.2-1 is a maximum or a minimum.

2 In stating the second-order sufficient conditions for constrained maximum and mini-
mum, we specified the algebraic signs of | H,|, | H|, | H,/, etc., but not of | H,|. Write out
an appropriate expression for |H,|, and verify that it invariably takes the negative sign.
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3 Recalling Property II of determinants (Sec. 5.3), show that: B
(a) By appropriately interchanging two rows and/or two columns of |H,| and duly
altering the sign of the determinant after each interchange, it can be transformed into

Z, Z, g
Zy Z, g
g & 0

(b) By a similar procedure, | /| can be transformed into

VA AT VAT 4

Ly Zy 2y g4

Zy 2y 2y g

81 &> 83 0
What alternative way of “bordering” the principal minors of the Hessian do these results
suggest?

4 Write out the bordered Hessian for a constrained optimization problem with four choice
variables and two constraints. Then state specifically the second-order sufficient condition
for a maximum and for a minimum of z, respectively.

124 QUASICONCAVITY AND QUASICONVEXITY

In Sec. 11.5 it was shown that, for a problem of free extremum, a knowledge of
the concavity or convexity of the objective function obviates the need to check the
second-order condition. In the context of constrained optimization, it is again
possible to dispense with the second-order condition if the surface or hyper-
surface has the appropriate type of configuration. But this time the desired
configuration is quasiconcavity (rather than concavity) for a maximum, and
quasiconvexity (rather than convexity) for a minimum. As we shall demonstrate,
quasiconcavity (quasiconvexity) is a weaker condition than concavity (convexity).
This is only to be expected, since the second-order sufficient condition to be
dispensed with is also weaker for the constrained optimization problem (d?z
definite in sign only for those dx, satisfying dg = 0) than for the free one (d*:z
definite in sign for all dx,).

Geometric Characterization

Quasiconcavity and quasiconvexity, like concavity and convexity, can be either
strict or nonstrict. We shall first present the geometric characterization of these
concepts:

Let 4 and v be any two distinct points in the domain (a convex set) of a
function f, and let line segment uv in the domain give rise to arc MN on the
graph of the function, such that point N is higher than or equal in height to
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point M. Then function f is said to be quasiconcave (quasiconvex) if all points
on arc MN other than M and N are higher than or equal in height to point M
(lower than or equal in height to point N'). The function f is said to be strictly
quasiconcave (strictly quasiconvex) if all the points on arc MN other than M
and N are strictly higher than point M (strictly lower than point ¥).

It should be clear from this that any strictly quasiconcave (strictly quasiconvex)
function is quasiconcave (quasiconvex), but the converse is not true.

For a better grasp, let us examine the illustrations in Fig. 12.3, all drawn for
the one-variable case. In diagram a, line segment uv in the domain gives rise to
arc MN on the curve such that N is higher than M. Since all the points between M
and N on the said arc are strictly higher than M, this particular arc satisfies the
condition for strict quasiconcavity. For the curve to qualify as strictly quasicon-
cave, however, all possible (u, v) pairs must have arcs that satisfy the same
condition. This is indeed the case for the function in diagram a. Note that this
function also satisfies the condition for (nonstrict) quasiconcavity. But it fails the
condition for quasiconvexity, because some points on arc MN are higher than N,
which is forbidden for a quasiconvex function. The function in diagram b has the
opposite configuration. All the points on arc M’N’ are lower than N, the higher
of the two ends. and the same is true of all arcs that can be drawn. Thus the
function in diagram b is strictly quasiconvex. As you can verify, it also satisfies
the condition for (nonstrict) quasiconvexity, but fails the condition for quasicon-
cavity. What distinguishes diagram c is the presence of a horizontal line segment
M”N"”, where all the points have the same height. As a result, that line
segment—and hence the entire curve—can only meet the condition for quasicon-
cavity, but not strict quasiconcavity.

Generally speaking, a quasiconcave function that is not also concave has a
graph roughly shaped like a bell, or a portion thereof, and a quasiconvex function
has a graph shaped like an inverted bell, or a portion thereof. On the bell, it is
admissible (though not required) to have both concave and convex segments. This
more permissive nature of the characterization makes quasiconcavity (quasicon-

(8]
N
[N

M Nu

R YU

(a)

Figure 12.3
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Figure 12.4

vexity) a weaker condition than concavity (convexity). In Fig. 12.4, we contrast
strict concavity against strict quasiconcavity for the two-variable case. As drawn,
both surfaces depict increasing functions, as they contain only the ascending
portions of a dome and a bell, respectively. The surface in diagram a is strictly
concave, but the one in diagram b is certainly not, since it contains convex
portions near the base of the bell. Yet it is strictly quasiconcave; all the arcs on
the surface, exemplified by MN and M’N’, satisfy the condition that all the points
on each arc between the two end points are higher than the lower end point.
Returning to diagranr’a, we should note that the surface therein is also strictly
quasiconcave. Although we have not drawn any illustrative arcs MN and M'N’ in
diagram aq, it is not difficult to check that all possible arcs do indeed satisfy the
condition for strict quasiconcavity. In general, a strictly concave function must be
strictly quasiconcave, although the converse is not true. We shall demonstrate this
more formally in the paragraphs that follow.

Algebraic Definition

The geometric characterization above can be translated into an algebraic defini-
tion for easier generalization to higher-dimensional cases:

quasiconcave

A function fis { } iff, for any pair of distinct points 4 and v in

quasiconvex
the (convex) domain of f, and for 0 < § < 1,

> f(u)

(1220)  f(o) = f(u) = f[9“+(1_0)°]{3f(v)
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To adapt this definition to strict quasiconcavity and quasiconvexity, the two weak

>

< v
You may find it instructive to compare (12.20) with (11.20). /()
From this definition, the following three theorems readily follow. These will
be stated in terms of a function f(x), where x can be interpreted as a vector of
variables, x = (x,..., x,,).

inequalities on the right should be changed into strict inequalities {

Theorem I (negative of a function) If f(x) is quasiconcave (strictly quasicon-
cave), then —f(x) is quasiconvex (strictly quasiconvex).

Theorem II  (concavity versus quasiconcavity) Any concave (convex) function
is quasiconcave (quasiconvex), but the converse is not true. Similarly, any strictly
concave (strictly convex) function is strictly quasiconcave (strictly quasiconvex),
but the converse is not true.

Theorem 111  (linear function) If f(x) is a linear function, then it is quasicon-
cave as well as quasiconvex.

Theorem 1 follows from the fact that multiplying an inequality by -1
reverses the sense of inequality. Let f(x) be quasiconcave, with f(v) = f(u).
Then, by (12.20), f[8u + (1 — 6)v] > f(u). As far as the function —f(x) is
concerned, however, we have (after multiplying the two inequalities through by
—1) —f(u) = —f(v) and —f[0u + (1 = @)v] < —f(u). Interpreting —f(u) as
the height of point N, and —f(v) the height of M, we see that the function —f(x)
satisfies the condition for quasiconvexity in (12.20). This proves one of the four
cases cited in Theorém I; the proofs for the other three are similar.

For Theorem II, we shall only prove that concavity implies quasiconcavity.
Let f(x) be concave. Then, by (11.20),

fl0u+ (1 —8)o] 20f(u)+ (1 =8)f(v)

Now assume that f(v) > f(u); then any weighted average of f(v) and f(u)
cannot possibly be less than f(u), i.e.,

0f(u) + (1 = 6)f(v) = f(u)

Combining the above two results, we find that

flou+ (1 =0)o]l=f(u) forf(v)=f(u)

which satisfies the definition of quasiconcavity in (12.20). Note, however, that the
condition for quasiconcavity cannot guarantee concavity.

Once Theorem II is established, Theorem III follows immediately. We
already know that a linear function is both concave and convex, though not
strictly so. In view of Theorem II, a linear function must also be both quasicon-
cave and quasiconvex, though not strictly so.
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In the case of concave and convex functions, there is a useful theorem to the
effect that the sum of concave (convex) functions is also concave (convex).
Unfortunately, this theorem cannot be generalized to quasiconcave and quasicon-
vex functions. For instance, a sum of two quasiconcave functions is not necessarily
quasiconcave (see Exercise 12.4-3).

Sometimes it may prove easier to check quasiconcavity and quasiconvexity by
the following alternative definition:

A function f(x), where x is a vector of variables, is

{ quasiconcave
any constant k, the set

} iff, for

quasiconvex

(12.21) is a convex set

S¥={x|f(x) =k}
| s<= (x| f(x) < k)

The sets $= and S$= were introduced earlier (Fig. 11.10) to show that a convex
function (or even a concave function) can give rise to a convex set. Here we are
employing these two sets as tests for quasiconcavity and quasiconvexity. The
three functions in Fig. 12.5 all contain concave as well as convex segments and
hence are neither convex nor concave. But the function in diagram a is quasicon-
cave, because for any value of k (only one of which has been illustrated), the set

= is convex. The function in diagram b is, on the other hand, quasiconvex since
the set = is convex. The function in diagram ¢—a monotonic function—differs
from the other two in that both §* and S are convex sets. Hence that function
is quaswoncave as well as quasiconvex.

Note that while (12.21) can be used to check quasiconcavity and quasiconvex-
ity, it is incapable of distinguishing between strict and nonstrict varieties of these
properties. Note, also, that the defining properties in (12.21) are in themselves not
sufficient for concavity and convexity, respectively. In particular, given a concave
function which must perforce be quasiconcave, we can conclude that $= is a

k ggggggggggg
|
l
|
| |
©e00 0 O 00O X .QQ...".O..Q X
N O Y AN —
Set §= Set §= Set S~
(b) (¢)

Figure 12.5
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convex set; but given that S$* is a convex set, we can conclude only that the
function f is quasiconcave (but not necessarily concave).

Example 1 Check z = x* (x > 0) for quasiconcavity and quasiconvexity. This
function is easily verified geometrically to be convex, in fact strictly so. Hence it is
quasiconvex. Interestingly, it is also quasiconcave. For its graph—the right half of
a U-shaped curve, initiating from the point of origin and increasing at an
increasing rate—is, similarly to Fig. 12.5¢, capable of generating a convex S= as
well as a convex S=.

If we wish to apply (12.20) instead. we first let « and v be any two distinct
nonnegative values of x. Then

fluy=u® f(v)=v> and f[Ou+(1—-0)v]=[0u+(1-8)0]

Suppose that f(v) > f(u), that is, v > u?; then v > u, or more specifically, v > u
(since u and v are distinct). Inasmuch as the weighted average [fu + (1 — 6)v]
must lie between u and v, we may write the continuous inequality

02> [0u+ (1 -6)v]* > u? for0 < <1
or  flo)>f[0u+ (1-6)v]>f(u) for0 <6 <1

By (12.20), this result makes the function f both quasiconcave and
quasiconvex—indeed strictly so.

Example 2 Show that z = f(x, ¥) = xy (x. y = 0) is quasiconcave. We shall use
the criterion in (12.21) and establish that the set $> = {(x, y) | xy = k) is convex
for any k. For this purpose, we set xy = k to obtain an isovalue curve for each
value of k. Like x and y, k should be nonnegative. In case k > 0, the isovalue
curve is a rectangular hyperbola in the first quadrant of the xy plane. The set S= .
consisting of all the points on or above a rectangular hyperbola, is a convex set.
In the other case, with k = 0, the isovalue curve as defined by xy = 0 is L-shaped,
with the L coinciding with the nonnegative segments of the x and y axes. The set
S~ . consisting this time of the entire nonnegative quadrant, is again a convex set.
Thus, by (12.21), the function z = xy (x, y > 0) is quasiconcave.

You should be careful not to confuse the shape of the isovalue curves xy = &
(which is defined in the xy plane) with the shape of the surface z = xy (which is
defined in the xyz space). The characteristic of the z surface (quasiconcave in
3-space) is what we wish to ascertain; the shape of the isovalue curves (convex in
2-space for positive k) is of interest here only as a means to delineate the sets S~
in order to apply the criterion in (12.21).

Example 3 Show that z = f(x, y) = (x — a)* + (¥ — b)? is quasiconvex. Let us
again apply (12.21). Setting (x — a)? + (v — b)? = k, we see that k must be
nonnegative. For each k, the isovalue curve is a circle in the xy plane with its
center at (a, b) and with radius vk . Since $= = {(x. M (x=a)y+(yv—-bh)<
k} is the set of all points on or inside a circle. it constitutes a convex set. This is
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true even when k = 0—when the circle degenerates into a single point,
(a, b)—since by convention a single point is considered as a convex set. Thus the
given function is quasiconvex.

Differentiable Functions

The definitions (12.20) and (12.21) do not require differentiability of the function
f. If f is differentiable, however, quasiconcavity and quasiconvexity can alterna-
tively be defined in terms of its first derivatives:

A differentiable function of one variable, f(x), is

{ quasiconcave
pair of distinct points u and v in the domain,

. iff, for any
quasiconvex

(12.22)  f(o) = flu) = ff/(“)(v_“)}zo

Quasiconcavity and quasiconvexity will be strict, if the weak inequality on the
right is changed to the strict inequality > 0. When there are two or more
independent variables, the definition is to be modified as follows:

{ quasiconcave

A differentiable function f(x,,..., x,) is . } iff, for any two
1 quasiconvex
distinct points ¥ = (u,,.... u,) and v = (¢v,,..., v,) in the domain,
~

£t =a)]|
(1222)  f(o)=f(u) = {7 >0
\ZL(U)(U,—%,)J

j=1
where f, = df/dx,. to be evaluated at u or v as the case may be.

Again, for strict quasiconcavity and quasiconvexity, the weak inequality on the
right should be changed to the strict inequality > 0.

Finally, if a function z = f(x,...., x,) is twice continuously differentiable,
quasiconcavity and quasiconvexity can be checked by means of the first and
second partial derivatives of the function, arranged into the bordered determinant

0 fl fl fn
fi fll flz fln
(12.23) IBl=\fa fu fo - fu
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This bordered determinant resembles the bordered Hessian | H | introduced in the
preceding section. But unlike the latter, the border in | B| is composed of the first
derivatives of the function f rather than an extraneous constraint function g. It is
because | B| depends exclusively on the derivatives of function f itself that we can
use | B|. along with its successive principal minors

| O fl fl‘
0

{12.24) |B,| :lf j{l J |B.| =i [ fis |B,| = |B|
! ! ‘\fz f21 fzz

to characterize the configuration of that function.

We shall state here two conditions;, one is necessary, and the other is
sufficient. Both relate to quasiconcavity and quasiconvexity on a domain consist-
ing only of the nonnegative orthant (the n-dimensional analog of the nonnegative
quadrant), thatis, with x,...., . x, = 0.*

For z = f(x,,..., x,)) to be quasiconcave on the nonnegative orthant, it is
necessary that

- ( -
(1225)  [B1 <0, |Bl=0. ... B }Olfnls{g\c/lgn

IV IA

wherever the partial derivatives are evaluated in the nonnegative orthant. For
quasiconvexity, it is necessary that

(1225)  |B,| <0. [By <0. .... |B| <0

A sufficient condition for f to be quasiconcave on the nonnegative orthant is
that

<Vpoee d
(12.26)  |B,| <0. |By| >0. ... |B”|{>}Olfnls{gsen

wherever the partial derivatives are evaluated in the nonnegative orthant. For
quasiconvexity, the corresponding sufficient condition is that

(1226')  |B,| <0, |B,i <0. .... |B] <0

Note that the condition |B,| < 0in (12.25) and (12.25) is automatically satisfied

* Whereas concavity (convexity) of a function on a convex domain can always be extended to
concavity (convexity) over the entire space. quasiconcavity and quasiconvexity cannot. For instance.
our conclusions in Examples 1 and 2 above will not hold if the variables are allowed to take negative
vatues. The two conditions given here are based on Kenneth J. Arrow and Alain C. Enthoven,
“Quasi-Concave Programming,” Economerrica, October 1961, p. 797, (Theorem 5). Their attention is
confined to quasiconcave functions: our extension to quasiconvex functions makes use of the fact that
the negative of a quasiconcave function is quasiconvex.
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because |B,| = —f7; it is listed here only for the sake of symmetry. In contrast,
the condition |B,| < 0 in (12.26) and (12.26") is not automatically satisfied.

Example 4 The function z = f(x,, x,) = x,x, (x, x, = 0) is quasiconcave (cf.
Example 2 above). We shall now check this by (12.22). Let u = (u,, u,) and
v = (v,, v,) be any two points in the domain. Then f(u) = u,u, and f(v) = vv,.
Assume that

(1227)  f(v)=f(u) or v, 2uu, (v, 05, u,uy;=0)

Since the partial derivatives of f are f, = x, and f, = x|, (12.22") amounts to the
condition that

filu)(v, — u,) + f(u)(v, — “z) = u,(v, — u) + ul(vz —uy) =0
Or, upon rearrangement,
(12.28)  uy(v; — uy) 2 uy(uy = vy)

We need to consider four possibilities regarding the values of u, and u,. First,
if u, =u, =0, then (12.28) is trivially satisfied. Second, if u, = 0 but u, > 0,
then (12.28) reduces to the condition u,v, = 0, which is again satisfied since u,
and v, are both nonnegative. Third, if u; > 0 and u, = 0, then (12.28) reduces to
the condition 0 > —u,v,, which is still satisfied. Fourth and last, suppose that u,
and u, are both positive, so that v, and v, are also positive. Subtracting v,u; from
both sides of (12.27), we obtain

(12.29) oy (v, = uy) = uy(uy — vy)

Three subpossibilities now present themselves:

1. If u, = vy, then v, > u,. In fact, we should have v, > u, since (u,, u,) and
(v, v,) are distinct points. The fact that u, = v, and v, > u, implies that
condition (12.28) 1s satisfied.

2. If u, > v,, then we must also have v, > u by (12.29). Multiplying both sides
of (12.29) by u,/v,, we get

u
(12.30) “2(”1_“1)2;5“1(”2_02)

> uy(uy — vy) [sinceﬁ> 1]
Cz
Thus (12.28) is again satisfied.

3. The final subpossibility is that u, < v,, implying that u,/v, is a positive
fraction. In this case, the first line of (12.30) still holds. The second line also
holds, but now for a different reason: a fraction (u,/v,) of a negative number
(u, — vy) is greater than the latter number itself.

Inasmuch (12.28) is satisfied in every possible situation that can arise, the
function z = x,x, (x,, x, = 0) is quasiconcave. Therefore, the necessary condi-
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tion (12.25) should hold. Because the partial derivatives of f are
hH=x; fH=x fu=5=0 fo=F =1

the relevant principal minors turn out to be

0 x; x
x
1B =, 02 = —x3<0 |By] =|x; 0 1/=2xx;20
: x, 1 0

Thus (12.25) is indeed satisfied. Note, however, that the sufficient condition
(12.26) is satisfied only over the positive orthant.

Example 5 Show that z = f(x, y) = x“p" (x, y > 0; 0 < a, b < 1) is quasicon-
cave. The partial derivatives of this function are
f) — axaflyb fy — bxaybfl

foo=ala=Dx72%y" f o= f, =abx*"y?"1 f = b(b— Dxiy’7?

Thus the principal minors of |B| have the following signs:

0

|By| = 7 ff; = — (ax“*]y”)2 <0
0 f 4

|BZ| = f.x‘ fxx fxy = [2azb2 — (l(a — l)bZ
f)' fv,\' f‘-)-

—azb(b _ 1)]X3a—2y3/7—2 >0

This satisfies the sufficient condition for quasiconcavity in (12.26). The given
function 1s in fact strictly quasiconcave, although the criterion in (12.26) is
incapable of confirming that.

A Further Look at the Bordered Hessian

The bordered determinant |B|, as defined in (12.23), differs from the bordered
Hessian

0 81 p) &n
N g8 Zy £y 1n
H| =g, Z, 2Z, Z,,
gn an ZnZ Znn

in two ways: (1) the border elements in |B| are the first-order partial derivatives
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of function f rather than g; and (2) the remaining elements in |B| are the
second-order partial derivatives of f rather than the Lagrangian function Z.

However, in the special case of a linear constraint equation, g(x,,.... x,) = a,x,
+ -+ +a,x, = c—a case frequently encountered in economics (see Secs. 12.5
and 12.7)—Z; reduces to f,,. For then the Lagrangian function is

4 =f(xl*"” xn) + A[C oy, T T anxn]
so that

Z=f-Xa, ad Z, =f,

L

Turning to the borders, we note that the linear constraint function yields the
first derivative g, = a,. Moreover, when the first-order condition is satisfied, we
have Z, = f, — Aa, = 0, so that f, = Aa,, or f, = Ag,. Thus the border in |B| is
simply that of |H| multiplied by a positive scalar A. By factoring out A
successively from the horizontal and vertical borders of |H| (see Sec. 5.3,
Example 3), we have

|B| = N|H |

Consequently, in the linear-constraint case, the two bordered determinants always
possess the same sign at the stationary point of Z. By the same token, the
principal minors |B,| and |H,| (i = 1,..., n) must also share the same sign at
that point. It then follows that if the bordered determinant |B| satisfies the
sufficient condition for quasiconcavity in (12.26), the bordered Hessian | H | must
then satisfy the second-order sufficient condition for constrained maximization in
Table 12.1. A similar link exists between quasiconvexity and the second-order
condition for minimization subject to a linear constraint.

Absolute versus Relative Extrema

A more comprehensive picture of the relationship between quasiconcavity and
second-order conditions is presented in Fig. 12.6. (A suitable modification will
adapt the figure for quasiconvexity.) Constructed in the same spirit—and to be
read in the same manner—as Fig. 11.5, this figure relates quasiconcavity to
absolute as well as relative constrained maxima. The three ovals in the upper part
summarize the first- and second-order conditions for a relative constrained
maximum, And the rectangles in the middle column, like those in Fig. 11.5, tie the
concepts of relative maximum, absolute maximum, and unique absolute maxi-
mum to one another.

But the really interesting information can be found in the two diamonds and
the elongated = symbols passing through them. The one on the left tells us that,
once the first-order condition is satisfied, and if the two provisos listed in the
diamond are also satisfied, we have a sufficient condition for an absolute
constrained maximum. The first proviso is that the function f be explicitly
quasiconcave-—a new term which we must hasten to define.
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ARy, e X))
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A function f is explicitly quasiconcave iff

f(o)>f(u) = f[u+(1-08)v]>f(u)

This defining property means that whenever a point on the surface, f(v), is higher
than another, f(u), then all the intermediate points—the points on the surface
lying directly above line segment uv in the domain—must also be higher than
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f(u). What such a stipulation does is to rule out any horizontal plane segments on
the surface.* Note that the condition for explicit quasiconcavity is not as strong as
the condition for strict quasiconcavity. since the latter requires f[fu + (1 — 8)¢]
> f(u) even for f(v) = f(u), implying that nonhorizontal plane segments are
ruled out, too.f The other proviso in the left-side diamond is that the set
{E T X)) g(xy. ... x,) = ¢) be convex. If an equality constraint is specified.
as in our present context, however, the said set can be convex if and only if the
constraint function g is linear (e.g.. a straight line in a two-dimensional domain).
Thus, in the present context, the second proviso simply means a linear constraint
equation. When both provisos are met, we shall be dealing with that portion of a
bell-shaped, horizontal-segment-free surface (or hypersurface) lying directly above
a line (or plane or hyperplane) in the domain. A local maximum found on such a
subset of the surface must be an absolute constrained maximum.

The diamond on the right in Fig. 12.6 involves the stronger condition of sirict
quasiconcavity. A strictly quasiconcave function must be explicitly quasiconcave,
although the converse is not true. Hence, when strict quasiconcavity replaces
explicit quasiconcavity, an absolute constrained maximum is still ensured. But
this time that absolute constrained maximum must also be unique, since the
absence of any plane segment anywhere on the surface decidedly precludes the
possibility of multiple constrained maxima.

EXERCISE 12.4

1 Draw a strictly quasiconcave curve = = f{x) which is
() also quasiconvex (d) not concave
(bh) not quasiconvex () neither concave nor convex
(¢) not convex (/) both concave and convex

2 Are the following functions quasiconcave? Strictly so? First check graphically. then
algebraically by (12.20). Assume that x > 0.
(a) f{x)=ua (b) f(x)=a~+ bx(b>0 (L‘)f(x)=a+('xl(¢'<()}

3 (a) Letz = f(x) plot as a negatively sloped curve shaped like the right half of a bell in
the first quadrant, passing through the points (0. 5). (2.4). (3.2). and (5. 1). Let - = g(x}
plot as a positively sloped 43° line. Are f(x) and g(x) quasiconcave?

(b) Now plot the sum f(x) + g(x). Is the sum function quasiconcave?

4 By examining their graphs, and using (12.21). check whether the following functions are
quasiconcave, quasiconvex, both. or neither:
(a) f(x)=x"—2x (b) fix,.x,)=6x —9x, () f(x,.x5) = x>~ Inx,

* Let the surface contain a horizontal plane secgment P such that f(u) € P and f(v) & . Then
those intermediate points that are located on P will be of equal height to f(u). thereby violating the
first proviso.

4 Let the surface contain a slanted plane segment P’ such that f(u) = f(v) are both focated on P’
Then all the intermediate points will also be on P” and be of equal height to f(u). thereby violating the
cited requirement for strict quasiconcavity.
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5 (a) Verify that a cubic function z = ax’ + bx? + cx + d s in general neither quasicon-
cave nor quasiconvex.

(b) Is it possible to impose restrictions on the parameters such that the function
becomes both quasiconcave and quasiconvex for x > 0?7

6 Use (12.22) to check z = x? (x = 0) for quasiconcavity and quasiconvexity.
7 Show that z = xy (x, y > 0) is not quasiconvex.

8 Use bordered determinants to check the following functions for quasiconcavity and
quasiconvexity:
(@) z=—x'=p" (x>0  (B)z=-(x+1)’—(y+2? (x.y>0)

12.5 UTILITY MAXIMIZATION AND CONSUMER DEMAND

The maximization of a utility function was cited earlier as an example of
constrained optimization. Let us now reexamine this problem in more detail. For
simplicity, we shall still allow our hypothetical consumer the choice of only two
goods, both of which have continuous, positive marginal-utility functions. The
prices of both goods are market-determined, hence exogenous, although in this
section we shall omit the zero subscript from the price symbols. If the purchasing
power of the consumer is a given amount B (for budget), the problem posed will
be that of maximizing a smooth utility (index) function

U=U(x.y) (U0, >0)

subject to
xP.+yP, =B

First-Order Condition
The Lagrangian function of this optimization model is
Z=U(x.y) +M(B ~ xP, - yP,)
As the first-order condition, we have the following set of simultaneous equations:
Zy=B—-xP, —yP =0
(12.31) Z.=U ~AP =0
Z,=U —AP,=0
Since the last two equations are equivalent to
U U,

' _x Y _
(1231)  F=2"=A

X R

the first-order condition in effect calls for the satisfaction of (12.37"), subject
to the budget constraint—the first equation in (12.31). What (12.31") states is
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merely the familiar proposition in classical consumer theory that, in order to
maximize utility. consumers must allocate their budgets so as to equalize the ratio
of marginal utility to price for every commodity. Specifically, in the equilibrium
or optimum, these ratios should have the common value . As we learned earlier,
A measures the comparative-static effect of the constraint constant on the optimal
value of the objective function. Hence, we have in the present context A =
(8U/9B); that is, the optimal value of the Lagrange multiplier can be interpreted
as the marginal utility of money (budget money) when the consumer’s utility is
maximized.
If we restate the condition in (12.31") in the form

12.317) b _ B
(12. Uu P

) i

the first-order condition can be given an alternative interpretation, in terms of
indifference curves.

An indifference curve is defined as the locus of the combinations of x and y
that will yield a constant level of U. This means that on an indifference curve we
must find

dU = U, dx + U dy = 0

with the implication that dy/dx = — U /U. Accordingly, if we plot an
indifference curve in the xy plane, as in Fig. 12.7, its slope, dy/dx, must be equal
to the negative of the marginal-utility ratio U,/ U,. (Since we assume U,. U, > 0,
the slope of the indifference curve must be negative.) Conversely, since U,/ U, is
the negative of the indifference-curve slope, it must represent the marginal rate of
substitution between the two goods.

What about the meaning of P /P? As we shall presently see, this ratio
represents the negative of the slope of the graph of the budget constraint. The

Indifference

Indifference curves

dy U curves
-~ (s|0pe ==X
dx U,
Budget line

(slop

Budget
line

(a) {b)

Figure 12.7
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budget constraint, xP, + yP, = B, can be written alternatively as

Y= T p*

¥ vy

so that, when plotted in the xy plane as in Fig. 12.7, it emerges as a straight line
with slope — P, /P, (and vertical intercept B/P)).

In this hght the new version of the first- order condition—(12.31”) plus the
budget constraint—discloses that, to maximize utility, a consumer must allocate
the budget such that the slope of the budget line (on which the consumer must
remain) is equal to the slope of some indifference curve. This condition is met at
point E in Fig. 12.7a, where the budget line is tangent to an indifference curve.

Second-Order Condition

If the bordered Hessian in the present problem is positive, i.e., if

0o P P
(1232)  |H|=|P. U, U,|=2PPU, - P, - P, >0
P U. U

v yX vy

(with all the derivatives evaluated at the critical values ¥ and 7), then the
stationary value of U will assuredly be a maximum. The presence of the
derivatives U, U,,, and U, in (12.32) clearly suggests that meeting this
condition would entail certain restrictions on the utility function and, hence, on
the shape of the indifference curves. What are these restrictions?

Considering first the shape of the indifference curves, we can show that a
positive |H | means the strict convexity of the (downward-sloping) indifference
curve at the point of tangency E. Just as the downward slope of an indifference
curve is guaranteed by a negative dy/dx(= — U / U,). its strict convexity would
be ensured by a positive d’y/dx> To get the expression for d2y/dx2, we can
differentiate — U, /U, with respect to x; but in doing so, we should bear in mind
not only that both UX and U, (being derivatives) are functions of x and y but also
that, along a given indifference curve, y is itself a function of x. Accordingly, U,
and U, can both be considered as functions of x alone; therefore, we can get a
total derlvatlve

dy_df Uy _ 1, du 4y
dc: dxl U Y dx X dx

¥

U

(12.33)

Since x can affect U, and U, not only directly but also indirectly, via the
intermediary of y, we have

dU, _ dy 4G, dy
(1234) =2 = U+ Uy = U, + U,

where dy/dx refers to the slope of the indifference curve. Now, at the point of
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tangency E—the only point relevant to the discussion of the second-order
condition—this slope is identical with that of the budget constraint; that is,
dy/dx = — P, /P . Thus we can rewrite (12.34) as

du, P, dU,
X = UY X - U . -
dx -

=U_ -U P
"B w

(12.34) o p

Substituting (12.34") into (12.33) and utilizing the information that
U,P,
Ux - P

y

[from (12.317)]

and then factoring out U),/Pf, we can finally transform (12.33) into
dzy 2PXR\'U\')‘ - P)'ZUYX’ - PXZUH' |17|

12.33
( ) dx? U P} U P?

It is clear that when the second-order sufficient condition (12.32) is satisfied,
the second derivative in (12.33') is positive, and the relevant indifference curve is
strictly convex at the point of tangency. In the present context, it is also true that
the strict convexity of the indifference curve at the tangency implies the satisfac-
tion of the sufficient condition (12.32). This is because, given that the indifference
curves are negatively sloped, with no stationary points anywhere, the possibility
of a zero d?y/dx? value on a strictly convex curve is ruled out. Thus strict
convexity can now result only in a positive d2y/dx?, and hence a positive |H |,
by (12.33"). 4

Recall, however, that the derivatives in |H| are to be evaluated at the critical
values ¥ and y only. Thus the strict convexity of the indifference curve, as a
sufficient condition, pertains only to the point of tangency, and it is not incon-
ceivable for the curve to contain a concave segment away from point E, as
illustrated by the broken curve segment in Fig. 12.74. On the other hand, if the
utility function is known to be a smooth, increasing, strictly quasiconcave
function, then every indifference curve will be everywhere strictly convex. Such a
utility function has a surface like the one in Fig. 12.4b. When such a surface is cut
with a plane parallel to the xy plane, we obtain for each of such cuts a cross
section which, when projected onto the xy plane, becomes a strictly convex,
downward-sloping indifference curve. In that event, no matter where the point of
tangency may occur, the second-order sufficient condition will always be satisfied.
Besides, there can exist only one point of tangency, one that yields the unique
absolute maximum level of utility attainable on the given linear budget. This
result, of course, conforms perfectly to what the diamond on the right of Fig. 12.6
states.

You have been repeatedly reminded that the second-order sufficient condition
is not necessary. Let us illustrate here the maximization of utility while (12.32)
fails to hold. Suppose that, as illustrated in Fig. 12.7b, the relevant indifference
curve contains a linear segment that coincides with a portion of the budget line.
Then clearly we have muitiple maxima, since the first-order condition U, /U, =
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P_/P_is now satisfied at every point on the linear segment of the indifference
curve, including E,, E,, and E,. In fact, these are absolute constrained maxima.
But since on a line segment d?y /dx? is zero, we have |H | = 0 by (12.33"). Thus
maximization is achieved in this case even though the second-order sufficient
condition (12.32) is violated.

The fact that a linear segment appears on the indifference curve suggests the
presence of a slanted plane segment on the utility surface. This occurs when the
utility function 1s explicitly quasiconcave rather than strictly quasiconcave. As
Fig. 12.7b shows, points E|, E,, and E,, all of which are located on the same
(highest attainable) indifference curve, yield the same absolute maximum utility
under the given linear budget constraint. Referring to Fig. 12.6 again, we note
that this result is perfectly consistent with the message conveyed by the diamond
on the left.

Comparative-Static Analysis

In our consumer model, the prices P, and P, are exogenous, as is the amount of
the budget, B. If we assume the satisfaction of the second-order sufficient
condition, we can analyze the comparative-static properties of the model on the
basis of the first-order condition (12.31), viewed as a set of equations F/ = 0
(j=1,2,3), where each F’/ function has continuous partial derivatives. As
pointed out in (12.19), the endogenous-variable Jacobian of this set of equations
must have the same value as the bordered Hessian; that is, |J| = |H |. Thus,
when the second-order condition (12.32) is met, |J| must be positive and it does
not vanish at the initial optimum. Consequently, the implicit-function theorem is
applicable, and we may express the optimal values of the endogenous variables as
implicit functions of the exogenous variables:

>
ff

X(P,.P,.B)

i

(12.35)  x=x(P.P, B)

i

)7 .V(Px’ Pl"B)

These are known to possess continuous derivatives that give comparative-static
information. In particular, the derivatives of the last two functions X and 7, which
are descriptive of the consumer’s demand behavior, can tell us how the consumer
will react to changes in prices and in the budget. To find these derivatives,
however, we must first convert (12.31) into a set of equilibrium identities as
follows:

(12.36) U
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By taking the total differential of each identity in turn (allowing every variable to
change), and noting that U,, = U, , we then arrive at the linear system

—P di— P dy=xdP +ydP, - dB
(12.37) —P.dX\ + U, dx + U, dy = XdP,

=P dX\ + U, d% + U, dy = A dP,

To study the effect of a change in the budget size (also referred to as the
income of the consumer), let dP, = dP, =0, but keep dB # 0. Then, after
dividing (12.37) through by dB, and interpreting each ratio of differentials as a
partial derivative, we can write the matrix equation*

0 -p. -P |l(3x/9B) -1
(1238) _Px Ux.x Ux'y (8;/8B) = 0
-P, U, U,||(d5/B) 0

As you can verify, the array of elements in the coefficient matrix is exactly the
same as what would appear in the Jacobian |J], which has the same value as the
bordered Hessian |H | although the latter has P_and P, (rather than — P, and
—P,) in the first row and the first column. By Cramer’s rule, we can solve for all
three comparative-static derivatives, but we shall confine our attention to the
following two:

0 -1 -P ’ b
(?)? 1 . ] - X Xy
12.39 —|=-——P 0 U, |=— :
(239 (g5)=p7) 7 VT - U,
—P 0 U, -
0 -P, -1 -
8 y 1 » - - X XX
(1240) (5] =pmn Ul 0-H T
_Py l]‘\ O y X
By the second-order condition, |J| = |H | is positive, as are P_and P,. Unfor-

tunately, in the absence of additional information about the relative magnitudes
of P, P} and the U, j» We are still unable to ascertain the signs of these two
comparative-static derivatives. This means that, as the consumer’s budget (or
income) increases, his optimal purchases X and j may either increase or decrease.
In case, say, X decreases as B increases, product x is referred to as an inferior good

as against a normal good.

* The matrix equation (12.38) can also be obtained by totally differentiating (12.36) with respect to
B. while b=aring in mind the implicit solutions in (12.35).
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Next. we may analyze the effect of a change in P,. Letting dP, = dB = 0 this
time, but keeping dP_ # 0, and then dividing (12.37) through by dP_, we obtain
another matrix equation

0 -pP. -P |[(aA/3P,) X
(12.41) P, U, U,||(38x/9P) |=|X
-P, U, U, ||(d5/3P,) 0

From this, the following comparative-static derivatives emerge:

0 x -P
X 1 < ’
. )= -P. X U,
w2 (3] =7 -2
—-pP 0 U,
-Y _P\' U\l‘ X 0 _PV
|J' _Pv Uw | | bP.V UH

=T, +T, [ 7, means the ith term]

0 -P X

9y 1 -

| =—|-P U, X

(12.43) (BP\.) 7] \

—P\ Ur.x O
s|-p U, x| 0 -p
V| -P, U, WI|-P, U,

=T, + T,

How do we interpret these two results? The first one, (dx/dP,), tells how a
change in P_ affects the optimal purchase of x; it thus provides the basis for the
study of our consumer’s demand function for x. There are two component terms
in this effect. The first term, T, can be rewritten, by using (12.39), as —(dx/dB)x.
In this light, 7, seems to be a measure of the effect of a change in B (budget, or
income) upon the optimal purchase x, with X itself serving as a weighting factor.
However, since this derivative obviously is concerned with a price change, T
must be interpreted as the income effect of a price change. As P, rises, the decline
in the consumer’s real income will produce an effect on X similar to that of an
actual decrease in B; hence the use of the term —(dx/dB). Understandably, the
more prominent the place of commodity x in the total budget, the greater this
income effect will be—and hence the appearance of the weighting factor X in 7.
This interpretation can be demonstrated more formally by expressing the con-
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sumer’s effectual income loss by the differential dB = —x dP_. Then we have
__ dB
(12.44) X = ap.
dXx\_ [0dx\ dB
and T, = - (ﬁ)x N (aB,) dP,

which shows T, to be the measure of the effect of dP. on X via B, that is, the
income effect.

If we now compensate the consumer for the effectual income loss by a cash
payment numerically equal to dB, then, because of the neutralization of the
income effect, the remaining component in the comparative-static derivative
(dx/dP,). namely, T,, will measure the change in ¥ due entirely to price-induced
substitution of one commodity for another, i.e., the substitution effect of the
change in P_. To see this more clearly, let us return to (12.37), and see how the
income compensation will modify the situation. When studying the effect of dP,
only (with dP, = dB = 0), the first equation in (12.37) can be written as —P.dx
— P dy = xdP_. Since the indication of the effectual income loss to the consumer
lies in the expression X dP, (which, incidentally, appears only in the first equation),
to compensate the consumer means to set this term equal to zero. If so, the vector

X 0
of constants in (12.41) must be changed from | X | to | X |, and the income-com-
0 0
pensated version of the derivative (dx/dP,) will be
0 0 -P ' o ,
(‘9—’( LN U e Y=
8P\' compensated |‘]‘ - |‘]| - P\ U\'\
e -P, 0 U, '

Hence, we may express (12.42) in the form

N T )
(12.42) (8])‘) =T, +T,= (aB)X + (8PX )Compensmed

Y

income effect substitution effect

This result, which decomposes the comparative-static derivative (dx/dP,) into
two components, an income effect and a substitution effect, is the two-good
version of the so-called *“Slutsky equation.”

What can we say about the sign of (dx/dP,)? The substitution effect 7, is
clearly negative, because |J| > 0 and A > 0 [see (12.31")]. The income effect T,,
on the other hand, is indeterminate in sign according to (12.39). Should it be
negative, it would reinforce T,: in that event, an increase in P_ must decrease the
purchase of x, and the demand curve of the utility-maximizing consumer would
be negatively sloped. Should it be positive, but relatively small in magnitude, it
would dilute the substitution effect, though the overall result would still be a
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downward-sloping demand curve. But in case 7, is positive and dominates 7,
(such as when X is a significant item in the consumer budget, thus providing an
overwhelming weighting factor), then a rise in P will actually lead to a larger
purchase of x, a special demand situation characteristic of what are called Giffen
goods. Normally, of course, we would expect (dx/dP,) to be negative.

Finally. let us examine the comparative-static derivative in (12.43), (dy/9P,)
= T; + T,, which has to do with the cross effect of a change in the price of x on
the optimal purchase of y. The term T bears a striking resemblance to term T,
and again has the interpretation of an income effect.* Note that the weighting
factor here is again X (rather than v); this is because we are studying the effect of
a change in P, on effectual income, which depends for its magnitude upon the
relative importance of ¥ (not y) in the consumer budget. Naturally, the remaining
term, 7,, 1s again a measure of the substitution effect.

The sign of T; is, according to (12.40), dependent on such factors as U ., U,,.
etc., and is indeterminate without further restrictions on the model. However, the
substitution effect 7, will surely be positive in our model, since A, P, P, and |J|
are all positive. This means that, unless more than offset by a negative income
effect, an increase in the price of x will always increase the purchase of y in our
two-commodity model. In other words, in the context of the present model, where
the consumer can choose only between two goods, these goods must bear a
relationship to each other as substitutes.

Even though the above analysis relates to the effects of a change in P, our
results are readily adaptable to the case of a change in P,. Our model happens to
be such that the positions occupied by the variables x and y are perfectly
symmetrical. Thus, to infer the effects of a change in P,, all that it takes is to
interchange the rol