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Abstract

Statistics is the branch of mathematics that deals with real-life problems. 

As such, it is an essential tool for economists. Unfortunately, the way 

the concept of statistics is introduced to students is not compatible with 

the way economists think and learn. Th e problem is worsened by the use 

of mathematical jargon and complex  derivations. However, as this book 

demonstrates, neither is necessary. Th is book is written in simple English 

with minimal use of symbols, mostly for the sake of brevity and to make 

reading literature more meaningful.

All the examples and exercises in this book are constructed within the 

fi eld of economics, thus eliminating the diffi  culty of learning statistics 

with examples from fi elds that have no relation to business, politics, or 

policy. Statistics is, in fact, not more diffi  cult than economics.  Anyone 

who can comprehend economics can understand and use  statistics 

 successfully within this fi eld.

In my opinion, the most important aspect of statistics is its ability 

to summarize the information embedded in numerous data into few 

 parameters and to capture the essence of data. Th e ability to capture the 

inherent core meaning of data from seemingly random and varying bits 

of information is unique to statistics. It seems that somehow statistics is 

able to fi nd order in chaos.

Th is book utilizes Microsoft Excel to obtain statistical results, as well 

as to perform additional necessary computations. Microsoft Excel is not 

the software of choice for performing sophisticated statistical analysis. 

However, it is widely available, and almost everyone has some degree of 

familiarity with it. Using Excel will eliminate the need for students and 

readers to buy and learn new software, the need that itself would prove to 

be another impediment to learning and using statistics.
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Statistics Is the Science of 
Finding Order in Chaos

I wrote this manuscript to share my aff ection for statistics and to show 

that comprehending statistics does not require mastery of mathematical 

jargon or complex formulations and derivation. I do not claim that upon 

learning the material in this book you will be considered a statistician or 

can start a career in statistics; however, I promise you will have a much 

better understanding of the subject and will be able to apply its methods 

in the areas to which they apply. I also hope you will gain the wisdom of 

knowing where the things you have learned will not work and realize that 

you have to learn new material to handle such cases.

Statistics is the science of life. It does not live outside of real life. 

Conclusions in statistics are probabilistic in nature as compared to deter-

ministic in most branches of mathematics. Every aspect of life benefi ts 

from statistics.

Learning statistics is like learning to play an instrument or learning a 

foreign language. Simply reading and comprehending the material is not 

suffi  cient; you also need to practice, and memorizing the  material is also 

important. It is not suffi  cient to know the material or where to fi nd it. 

Th e same is true about learning foreign languages. Unless you would like 

to walk around with a dictionary or a statistics book under your arm, you 

must know the material by heart.

I am indebted to my wife Donna who has helped me in more ways 

than imaginable. I do not think I can thank her enough. I would like to 

thank Michael Webb and Candice Bright for their relentless assistance 

in all aspects of this book. He has been my most reliable source and I 

could always count on him. I also want to thank my graduate assistants 

Issam Abu-Ghallous and Brian Carriere. Th ey have provided many hours 

of help with all aspects of the process. Without the help of Mike, Issam, 

and Brian, this book would not have been completed. I also would like 

to thank Madeline Gillette, Anthony Calandrillo, and Matt Orzechowski 

who read parts of the manuscript. 





Introduction

Economics is a very interesting subject. Th e scope of the economic 

domain is vast. Economics deals with market structure, consumer 

behavior, investment, growth, fi scal policy, monetary policy, the roles of 

the bank, and so forth. Th e list can go on for quite some time. It also 

predicts how economic agents behave in response to changes in economic 

and noneconomic factors such as price, income, political party, stability, 

and so on. Economic theory, however, is not specifi c. For example, the 

theory proves that when the price of a good increases, the quantity sup-

plied increases, provided all the other pertinent factors remain constant, 

which is also known as ceteris paribus. What the theory does not and 

cannot state is how much the quantity increases for a given increase in 

price. Th e answer to this question seems to be more interesting to most 

people than the fact that quantity will increase as a result of an increase 

in price. Th e truth is that the theory that explains the above relationship 

is important for economists. For the rest of the population, knowledge 

of that relationship is worthless if the magnitude is unknown. Assume 

for a 10% increase in price, the quantity increases by 1%. Th is has many 

diff erent consequences if the quantity increases by 10%, and totally dif-

ferent consequences if the quantity increases by 20%. Th e knowledge of 

the magnitude of change is as important, if not more important, than 

the knowledge of the direction of change. In other words, predictions are 

valuable when they are specifi c. 

Statistics is the science that can answer specifi c issues raised above. 

Th e science of statistics provides necessary theories that can provide 

the foundation for answering such specifi c questions. Statistics theory 

indicates the necessary conditions to set up the study and collect data. It 

provides the means to analyze and clarify the meaning of the fi ndings. 

It also provides the foundation to explain the meaning of the fi ndings 

using statistical inference. 

In order to make an economic decision, it is necessary to know 

the economic conditions. Th is is true for all economic agents, from 

the smallest to the largest. Th e smallest economic agent might be an 
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individual with little earning and disposable income, while the largest can 

be a multinational corporation with thousands of employees, or govern-

ment. Briefl y, we will discuss some of the main needs and uses of statis-

tics in economics, and then present some uses of regression analysis in 

economics.

Th e fi rst step in making any economic decision is to gain knowledge 

of the state of the economy. Economic condition is always in a state of 

fl ux. Sometimes it seems that we are not very concerned with mundane 

economic basics. For example, we may not try to forecast what the price 

of a loaf of bread is or a pound of meat. We know the average prices for 

these items; we consume them on a regular basis and will continue doing 

so as long as nothing drastic happens. However, if you were to buy a 

new car you would most likely call around and check some showrooms 

to learn about available features and prices because we tend not to have 

up to date information on big-ticket items or goods and services that we 

do not purchase regularly. Th e process described previously is a kind of 

sampling, and the information that you obtain is called sample statistics, 

which are used to make an informed decision about the average price of 

an automobile. When the process is performed according to strict and 

formal statistical methods, it is called statistical inference. Th e specifi c 

sample statistics is called sample mean. Th e mean is one of numerous 

statistical measures at the disposal of modern economists. 

Another useful measure is the median. Th e median is a value that 

divides observations into two equal halves, one with values less than the 

median and the other with values more than median. Statistics explains 

when each measure should be used and what determines which one is 

the appropriate measure. Median is the appropriate measure when deal-

ing with home prices or income. Applications of statistical analysis in 

economics are vast and sometimes reach to other disciplines that need 

economics for assistance. For example, when we need to build a bridge 

to meet economic, social, and even cultural needs of a community, it 

is important to fi nd a reliable estimate of the necessary capacity of the 

bridge. Statistics indicates the appropriate measure to be used by teaching 

us whether we should use the median or the mode. It also provides insight 

on the role that variance plays in this problem. In addition to  identifying 

the appropriate tools for the task at hand, statistics also provides the 
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methods of obtaining suitable data and procedure for performing analysis 

to deliver the necessary inference. 

One cannot imagine an economic problem that does not depend 

on statistical analysis. Every year, the Government Printing Offi  ce com-

piles the Economic Report for the President. Th e majority of the statis-

tics in the report are fact-based information about diff erent aspects of 

 economics, however, many of the statistics are based on some statistical 

analysis, albeit descriptive statistics. Descriptive statistics provide  simple, 

yet powerful insight to economic agents and enable them to make more 

informed decisions.

Another component of statistical analysis is inferential statistics. 

Inferential statistics allows the economist and political leaders to test 

hypotheses about economic conditions. For example, in the presence of 

infl ation, the Federal Reserve Board of Governors may choose to reduce 

money supply to cool down the economy and slow down the pace of 

infl ation. Th e knowledge of how much to reduce the supply of money is 

not only based on economic theory, but also depends on proper estima-

tion of the fi nal outcome. 

Another widely used application of statistical analysis is in policy deci-

sion. We hear a lot about the erosion of the middle class or that the mid-

dle class pays a larger percentage of its income in taxes than do lower 

and upper classes. How do we know who the middle class is? A set dollar 

amount of income would be inadequate because of infl ation although, 

we must admit, even a single dollar amount must also be obtained using 

statistics. However, statistical analysis has a much more meaningful and 

more elegant solution. Th e concept of interquartile range identifi es the 

middle 50% of the population or income. Interquartile range was not 

designed to identify the middle 50%, and it is not explained in these 

terms; nevertheless, the combination of economics and statistics is used 

to identify the middle 50% for economics and policy decision purposes. 

Knowledge of statistics can also help identify and comprehend daily 

news events. Recently, a report indicated that the chance of accident for 

teenage drivers increases by 40% when there are passengers in the car 

who are under 21 years of age. Th is is a meaningless report. Few teenagers 

drive alone or have passengers over 21 years of age. Total miles driven by 

teenagers when there are passengers less than 21 years of age far exceeds 
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any other types of teenage driving. Other things equal, the more you 

drive, the higher the probability of an accident. Th is example indicates 

that knowledge of statistics is helpful in understanding everyday events 

and in making sound analyses.

One of the most important aspects of statistics is the discovery of 

rules that allow the use of a sample to draw inferences about population 

parameters. Inferential statistics allows us to make decisions about the 

possibility of an outcome based on its probability, not dissimilar to what 

we do in real life anyway. Life experience is private and is based on an 

individual. A friend is usually late, and based on that, we estimate his 

approximate arrival time. In statistics the process is formal. We take ran-

dom samples, and based on statistical theories of sampling distribution 

and the probabilities of outcomes, we make inferences and predictions 

about the outcomes. In essence, statistics formalizes the human experi-

ence of estimation and makes predictions more formal and provides theo-

retical proofs for anticipated outcomes. 

Th is book focuses on a few introductory topics in statistics and 

provides examples from economics. It takes a diff erent orientation for 

covering the material than most other books. Chapters 1 and 2 cover 

descriptive statistics from tabular, graphical, and numeric points of view. 

A summary table of all the tools introduced in these chapters is provided 

in Chapter 1 to help you see the big picture of what belongs where. Th is 

grouping helps relate topics to each other. Chapter 3 provides some appli-

cations of these basic tools in diff erent areas of economics. Th e purpose of 

Chapter 3 is to demonstrate that even simple statistics, when used prop-

erly, can be very useful and benefi cial. Interestingly, some, if not most, of 

descriptive  statistics are either intuitive or commonly utilized in everyday 

life.  However, as the fi rst three chapters reveal, it is useful to demonstrate 

their power using examples from economics.

Chapter 4 introduces some commonly used distribution  functions.  

Th ese will most likely be new for you. Th ese distribution functions are 

used as yardsticks to measure diff erent statistics to determine if they 

behave as expected, or they should be considered unusual outcomes. 

Interestingly, when we sample, the resulting sample statistics such as 

 sample mean,  follow certain distribution functions. Th ese important 

properties are discussed in Chapter 5, titled Sampling Distribution of 
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Sample Statistics. Chapter 6 formally discusses estimation. Point estima-

tion uses sample statistics directly, while confi dence interval provides a 

range that covers population parameter with a desired level of confi dence. 

Finally, Chapter 7 combines materials from Chapters 4 through 6 to per-

form statistical inference. Statistical inference is a probabilistic statement 

about the expected outcome of a study.

A volume like the present work is not suffi  cient to do justice to the 

subject. Every aspect of science is touched by statistics, to some extent. 

Th erefore, specialty books about applications of statistics in diff erent 

fi elds abound. 





CHAPTER 1

Descriptive Statistics

 Introduction

A simple fact of life is that most phenomena have a random compo-

nent. Human beings have a natural height that is diff erent than the 

natural height of a dog or a tree. However, human beings are not all 

of the same height. Th e usually small range is governed by random 

error. For example, the range of adult human height is roughly 52–75 

inches. Th is does not mean that 100% of all mankind are in this range. 

Th e small portions that are outside this range are considered outliers. 

Summarizing the height of human beings is very common in statistics. 

However, in science, it is helpful to provide the associated level of con-

fi dence in a statement. For example, it is important to state that a par-

ticular percentage, say 90%, of human beings have a height between 

58 and 72 inches. One might think that it is important, or may be 

even necessary, to provide a range that covers all cases. However, such 

a range may prove to be too wide to be of actual use. For example, one 

might be able to say with 100% certainty that the annual income in 

the United States is between $0 and $100,000,000,000. Although, the 

lower end is a certainty, the upper end need not be as defi nite. Granted 

that the chance of anyone making $100,000,000,000 in a year is very 

low, nevertheless, there is no  compelling reason against it. Th erefore, 

one has to provide the probability of someone making such a huge 

income. Since this chance is low, it would be more meaningful to state 

an income range for a meaningful majority, such as income range of 

95% of people. It is more useful to know that 99% of all people in 

the United States earned less than $380,354 per individual return in 

2008,1 which is the same as saying that the top 1% made at least that 

much per individual return in the same year.  According to the same 

source, the top 10% made more than $113,799 per  individual return.  
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Th e actual percentage is not important and depends on the task at 

hand. For example, the government might want to help the middle 

class, which has been losing ground in economic terms, by granting 

them a tax break to lower their tax burden to a burden equivalent to 

that of the upper and lower classes. One way of determining the mid-

dle class income of a population is to fi nd 50% of the people whose 

incomes are in the middle. Alternatively, this means to identify the cut-

off  income level for the lower 25% of incomes, and the cutoff  income 

level for the upper 25% of incomes. Th e two cutoff  incomes mark 

the income range that contains 50% of the incomes.  Computations 

necessary to determine these and other useful values are the subject of 

descriptive statistics.

Descriptive statistics provides quick and representative information 

about a population or a sample. A typical man is 5′10″, the average tem-

perature on July 4 is 89°, Olympic runners fi nish the 100 meter dash in 

under 10 seconds, the most common shoe size for women is seven, and 

so forth. Th ese statistics are describing something of interest about the 

population and condense all the facts in a single parameter. D escriptive 

statistics is the science of summarizing and condensing information in 

few parameters.

Th ere are many ways of condensing information to create descrip-

tive statistics. Diff erent types of data require diff erent tools. Data can be 

qualitative or quantitative. Th ese naming conventions actually refer to 

the way variables are measured and not the inherent characteristic of a 

phenomenon.  In my opinion, these naming conventions are inaccurate. 

Variables are used for statistical analysis and are measured based on their 

characteristics. Sometimes, qualitative variables are called categorical 

variables. Th ere are numerous measurement scales. Th erefore, we focus 

on qualitative and quantitative variables.

In many cases, analyzing qualitative and quantitative variables 

requires diff erent tools, but in some cases the tools are similar, if not iden-

tical, for both. However, the interpretations of qualitative and quantita-

tive variables are usually diff erent. Note that a population is not defi ned 

as either qualitative or quantitative. Rather, it is the variable of interest 

in the  population that is either qualitative or quantitative. For example, 

the population can be defi ned as a person. If the age of the person is of 
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 interest, then the variable is quantitative; but if the gender of the person is 

of interest, then the variable is qualitative. If the population is a fi rm and 

the variable is pollution (the fi rm pollutes or does not pollute), then it is 

a qualitative variable. However, if the amount of pollution is of interest, 

then it is a quantitative variable. 

Defi nition 1.1 

Qualitative variables are non-numeric. Th ey represent a label for a cat-

egory of similar items. For example, the color of socks of students in a 

class is a qualitative data. 

Defi nition 1.2

Quantitative variables are numerical and countable values. Th e distance 

each student has to travel to get to school is a quantitative data.

Measurement Scales

Variables must be measured in a meaningful way. Th e following is a brief 

description of diff erent types of measurement scales. Over time, diff er-

ent vocabularies and naming conventions have evolved in naming dif-

ferent measurement scales. It is not possible to decipher an appropriate 

measurement scale by observing the measurement. Instead, the method 

of measurement and the quantities that are measured must be examined 

to determine the extent of the meaning one can assign to the numeric val-

ues, and hence, identify the measurement scale. Most of the methods in 

this text require an interval or measurement scales with stronger  relational 

requirements.

Defi nition 1.3 

Nominal or categorical data are the “count” of the number of times an 

event occurs. As an example for categorical data, countries might be 

grouped according to their policy toward trade and might be classifi ed 

as open or closed economies. Care must be taken to assure that each case 
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belongs to only one group. An ID number is an example of nominal 

data. As the relative size does not matter for nominal data, the customary 

arithmetic computations and statistical methods do not apply to these 

numbers. 

Defi nition 1.4 

When there are only two nominal types, the data is dichotomous. Dichot-

omous variables are also known as dummy variables in econometrics. 

When there is no particular order the dichotomous variable is called 

the discrete dichotomous variable. Gender is an example of a discrete 

dichotomous variable. When one can place an order on the type of 

data, as in the case of young and old, then the variable is a continuous 

 dichotomous variable.

Defi nition 1.5

An ordinal scale indicates that data is ordered in some way. Although 

orders or ranks are represented by numerical values, such values are void 

of content and cannot be used for typical computations such as averages. 

Th e distances between ranks are meaningless. Th e income of the person 

who is ranked 20th in a group of ordered income is not twice the income 

of someone who is ranked 40th. In the ordinal scale only the comparisons 

“greater,” “equal,” or “less” are meaningful. Th is is a very important scale 

in economics, as in the case of utility and indiff erence curves. It is not 

necessary to measure the amount of utility one receives from diff erent 

goods and services; it is suffi  cient to rank the utilities. Th e customary 

arithmetic computations and statistical methods do not apply to ordinal 

numbers. 

Defi nition 1.6

A Likert scale is a special kind of ordinal scale where the subjects provide 

the ranking of each variable. Customarily, the numbers of the choices 
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for ranking are odd numbers to allow the center value to represent the 

“neutral” case. 

Defi nition 1.7

In an interval scale, the relative distances between any two sequential 

values are the same. In the interval scale, size of the diff erence between 

measurements is also important. Each numerical scale is actually meas-

ured from “accepted zero.” Th is makes use of the type of scale irrelevant as 

in the case of Celsius and Fahrenheit scales for temperatures. Both scales 

have an arbitrary zero. Some arithmetic computations such as addition 

and subtraction are meaningful.

Defi nition 1.8

Th e ratio scale provides meaningful use of the ratio of measurements in 

addition to interval size and order of scales. For example, the ratio of 

sales, gross domestic product (GDP), and output are expressed as ratio 

scale.

Th ere are numerous other measurement scales, but these have lit-

tle practical use in economics. A classical work on measurement is by 

S. S. Stevens.2

Types of Available Tools

Descriptive statistics provides summaries of information about a popu-

lation or sample, both of which will be defi ned shortly.  Th e amount 

of information available is vast and comprehending their intrinsic value 

is diffi  cult. Descriptive statistics provides some means of condensing 

 massive amounts of information in as few parameters as possible. 

Defi nition 1.9

A parameter is a characteristic of a population that is of interest. Para-

meters are constant and usually unknown. 
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Examples of parameters include population mean, population vari-

ance, and regression coeffi  cients. One of the main purposes of statistics 

is to obtain information from a sample that can be used to make infer-

ences about population parameters. Th e estimated value obtained from a 

 sample is called a statistic.

Table 1.1. Descriptive Statistics 

Qualitative 
Variables

Tabular 
Methods

Frequency

Relative Frequency

Graphical 
Methods

Bar Graphs

Pie Charts

Quantitative 
Variables

Tabular 
Methods

Frequency Distribution

Relative Frequency

Cumulative Distribution

Percentiles

Quartiles 

Hinges

Graphical 
Methods

Histograms

Ogive

Stem-and-Leaf

Dot Plot

Scatter Plot

Box Plot

Numerical 
Methods

Measures of Location Mean Ungrouped Data

Grouped Data

Trimmed Mean

Median

Mode

Measures of Dispersion Range

Interquartile Range

Variance Ungrouped Data

Grouped Data

Standard Deviation

Coeffi cient of Variation

Measures of 
 Association

Covariance

Correlation Coeffi cient
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Table 1.1 summarizes the descriptive methods for quantitative and 

qualitative variables. Note that these are only the descriptive statistics and 

by no means all the methods at our disposal.

Defi nition 1.10

When data are summarized or organized to provide a better and more 

compact picture of reality, then data are grouped. Th e grouping can be in 

the form of relative frequency or summarized in cross tabulation tables 

or into classes.

Descriptive Statistics for Qualitative Variables

Th e available descriptive statistics for qualitative variables can be divided 

into graphical and tabular methods. Each one consists of several cus-

tomarily used tools. In order to be able to graph the data, it must be tabu-

lated in some fashion; therefore, we will discuss the tabular methods fi rst. 

Tabular Methods for Qualitative Variables

Th e most common tabular methods for qualitative variables are frequency 

and relative frequency.

Frequency Distribution for Qualitative Variables

A frequency distribution shows the frequency of occurrence for 

 non- overlapping classes.

Example 1.1

In a small town a small company is responsible for refi lling soda 

 dispensers of 30 businesses. Th e type of business, the average number 

of cans of soda (in 100 cans), the gender of the business owner, and the 

race of business owner are presented in Table 1.2. Find the frequencies 

of the business types where soda dispensers are located. 

(Continued )
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(Continued )

Table 1.2. Some Information About Soda Dispensers

Store type Average Gender Race
Gas Station 3.8 Male Black

Gas Station 3.5 Female Black

Gas Station 2.6 Male White

Mechanic Shop 2.1 Male Black

Mechanic Shop 1.9 Male White

Mechanic Shop 3.4 Female White

Mechanic Shop 2.7 Male White

Mechanic Shop 1.8 Female Black

Mechanic Shop 3.7 Male White

Mechanic Shop 4 Female White

Mechanic Shop 1.9 Female White

Mechanic Shop 2.6 Female White

Drug Store 2.7 Female White

Drug Store 2.4 Male Black

Drug Store 3.6 Female Black

Drug Store 3.2 Female White

Drug Store 2.7 Male White

Hardware Store 3.5 Male Black

Hardware Store 1.8 Female White

Hardware Store 3.4 Male White

Hardware Store 2.8 Male Black

Hardware Store 2.1 Female White

Hardware Store 3.1 Female White

Hardware Store 2.6 Male White

Sporting Goods 1.7 Male White

Sporting Goods 4 Female White

Sporting Goods 3.2 Male White

Sporting Goods 2.4 Female Black

School 3.7 Female White

Tire Shop 2.8 Female White

(Continued )
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Solution

A frequency distribution for the business type will clarify the  information.

Gas Stations ///

Mechanic Shop //// ////

Drug Store ////

Hardware Store //// //

Sporting Goods ////

School /

Tire Shop /

Th is certainly is an improvement, but Table 1.3 makes it even 

clearer and more condensed. 

Table 1.3. Business Types, Frequencies, and 
Relative Frequencies of Locations 

Location Frequency
Gas Stations 3

Mechanic Shop 9

Drug Store 5

Hardware Store 7

Sporting Goods 4

School 1

Tire Shop 1

Total 30

It is easier to determine the locations, how many times each is 

restocked, as well as fi nding the most frequent, and the least frequent 

locations. 

A table with 30 cells has been reduced to a two-column table with 

seven rows. If there were 20,000 locations and the types of business 

remained similar, the resulting table would not be any larger. While no 

one can really understand anything from a table with 20,000 entries, the 

resulting table would be very clear.  Th is signifi es the power of statistics to 

condense information in as few parameters as possible. Th e result can be 
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graphed for more visual presentation. One possible graph is called a bar 

graph. Other graphs, such as pie charts, are also available. 

Th e example could have been about the types of industries in a 

state, the kinds of automobiles produced at a plant, the kinds of ser-

vices provided by a fi rm, or the kinds of goods sold in a store. Th e 

method of determining the frequencies would be the same in all such 

cases. 

Relative Frequency for Qualitative Data

Th e magnitude of the frequency changes for diff erent populations and 

samples. For better comparison, the relative frequency is used. Th e rela-

tive frequency shows the percentage of each class to the total population 

or sample. It is obtained by dividing the frequency for each class by the 

total in the population or the sample (see Table 1.4).

Th e sum of the relative frequency is always 1.0. Here, however, the 

sum is not exactly 1 due to roundoff  error.

Graphical Methods for Qualitative Variables

Th e two most commonly used graphical methods for qualitative variables 

are bar graphs and pie charts. Many other graph types have been intro-

duced with the advent of spreadsheet and more are available in specialty 

software. 

Table 1.4. Business Types, Frequencies, and Relative Frequencies 
of Locations 

Location Frequency Relative frequency
Gas Stations 3 0.1

Mechanic Shop 9 0.3

Drug Store 5 0.166

Hardware Store 7 0.233

Sporting Goods 4 0.133

School 1 0.033

Tire Shop 1 0.033

Total 30 0.9998



 DESCRIPTIVE STATISTICS 11

Bar Graph

A bar graph is a graphical representation of the frequency distribution, 

or relative frequency distribution, when dealing with qualitative data. Th e 

names of the qualitative variables are placed on the x-axis and the fre-

quency is depicted on the y-axis. A histogram and a bar graph are identi-

cal except for the fact that the bar graph is used for qualitative variables, 

while the histogram is used for quantitative variables.

Example 1.2

Th e following table represents the frequency of the business type 

among 30 locations of soda dispensers. Provide a bar graph of the 

business types where soda dispensers are located.

Business type Frequency
Gas Stations 3

Mechanic Shops 9

Drug Stores 5

Hardware Stores 7

Sporting Goods 4

School 1

Tire Shop 1

Total 30

Solution

All examples involving graphs are solved using Microsoft Offi  ce 

Excel. For the graphs, the appropriate Excel commands are given 

in each section. All the other Excel commands are included in the 

Appendix. 

Bar graph in Excel is rotated 90° to the right. Th e sequence of 

commands to plot a bar graph in Excel is provided for your  reference. 

Open a new spreadsheet in Excel. In cell A1, type “Business Type” 

and then going downward list the business types as shown in the table 

above. In cell B1, type “Frequency” and then going downward list the

(Continued )
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(Continued )

frequency in cells A1 through B8. Go to “Insert,” which is the second 

tab at the top left on the spreadsheet. Click on “Column” (which looks 

like a bar graph) and then click on the fi rst chart (top left). Excel will 

populate a chart similar to the one below. 

Figure 1.1. Bar graph of business types, frequencies, and relative 
frequencies of locations.
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Th e above graph can represent the relative frequencies, too. Only the 

unit of measurement on the y-axis will diff er.  In Excel this graph is called 

a “column” graph. 

Creating a bar graph of the relative frequencies would not provide 

additional meaningful results. Th e graph will be identical to the above 

graph, except the scales on the vertical axis would be the relative frequen-

cies (percentages) and not the actual frequencies. However, the relative 

frequencies are already known so further benefi t is not gained. Often it 

is more meaningful to plot the relative frequencies instead of the actual 

frequencies because you can easily compare relative frequencies and they 

are similar to probabilities. 

Pie Chart

A pie chart is a graphical presentation of frequency distribution and 

 relative frequency. In this regard, the pie chart is similar to the bar graph 
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because one cannot diff erentiate between the graphs of actual and relative 

frequencies, except for the scale. In some cases when a quantitative vari-

able has only few outcomes you can use the pie chart to provide visual 

eff ects. 

A circle is divided into wedges representing each of the categories in 

the table. If frequencies are charted, their magnitude is placed under their 

name. When the pie chart is based on the relative frequencies instead of 

the frequencies, the scale will be diff erent but not the size of the slices on 

the pie. 

Example 1.3

Provide a pie graph for the business types of locations in Table 1.3.

Solution
Open a new spreadsheet in Excel. In cell A1, type “Business Type,” list 

the business types as shown in the Table 1.3. In cell B1, type “ Frequency” 

 followed by the frequency for each business type as shown in the Table 1.3. 

Capture data in cells A1 through B8. Go to “Insert,” which is the second 

tab at the top left hand corner of the spreadsheet. Click on “Pie.” Several 

options become available. You can select whichever Pie shape you wish. 

Excel will populate a chart similar to the one below. 

Frequency

Gas stations

Mechanic shops

Drug stores

Hardware stores

Sporting goods

School

Tire shop

Figure 1.2. Pie charts of business types for soda dispensers— 
(Continued).

(Continued )
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(Continued )

Figure 1.2. Pie charts of business types for soda dispensers.

Frequency

Tire shop

School

Sporting goods

Hardware stores
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Mechanic shops

Gas stations3% 3%

10%

30%

17%

23%

14%

Notice that due to space limitation the legend is placed on the side. 

Furthermore, the labels represent “Business Type” and have nothing to 

do with the pie colors the computer provides.

Descriptive Statistics for Quantitative Variables

As depicted in Table 1.1, there are more methods available to describe 

quantitative data. Some are very similar to the methods used in quantita-

tive methods, but their interpretations are usually broader.

Tabular Methods for Quantitative Variables

Th ere are three commonly used tabular descriptive statistics for quantita-

tive variables. Th ey are frequency distribution, relative frequency distribu-

tion, and cumulative distribution.

Frequency Distribution for Quantitative Variables

A frequency distribution shows the frequency of occurrence for 

 non- overlapping classes. Unlike the qualitative frequency distribution, 

there are no set and predefi ned classes or groups. Th e researcher will 

determine the size of each class and the number of classes.  Such data are 

called grou ped data.
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Example 1.4

An anthropologist is studying a small community of gold miners in 

a remote area. Th e community consists of nine families. Th e family 

income is reported below in thousands of dollars.

66, 58, 71, 73, 64, 70, 66, 55, 75

Solution

Th e researcher would like to summarize these data using descriptive 

statistics. We deliberately chose a small set to demonstrate the point 

better without boring calculations. In real life, data will be much 

larger, and it would make more sense to condense the data using some 

 technique, say descriptive statistics. As only one value is repeated, 

it does not make sense to build a frequency distribution; no real 

 summary will emerge. If we divide the data into classes, however, we 

can build the frequency distribution. Th e range of data is from 55 to 75. 

If the researcher wishes to have 5 classes, the size of each class would be:

Maximum Minimum 75 55

Number of Classes
Class W

5
idth 4

− −== =

Table 1.5. Classes and Their Frequencies

Classes Frequency
55–59 2

60–64 1

65–69 2

70–74 3

 ≥ 75 1

Th e number of classes is arbitrary and any reasonable number of classes 

and class widths will work. Avoid extremities and unbalanced classes. To 

avoid decimal places in classes, we added an extra class for values greater 

than or equal to 75. Other solutions would be as valid. Th e quantitative 

data can include decimal numbers; however, in this case, extra caution is 

needed to avoid overlapping in the classes. 
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Th e histogram command in Excel provides the frequency as well as 

the cumulative frequency. If the option “Chart Percentage” is selected 

from the histogram dialog box, the histogram and the Ogive will be 

graphed too.

A list of nine values has been reduced to a two-column table with six 

rows as shown in Table 1.5. Again here, the size of population is delib-

erately small to allow students to see the details easily and to be able 

to duplicate the results. Th e procedure would be the same for the fam-

ily incomes of the United States with a population around 300,000,000 

people. Th is signifi es the power of statistics to condense information in 

as few parameters as possible. Th e result can be graphed for more visual 

presentation. One such graph is called a dot plot. Other graphs such as a 

histogram are also available.

Relative Frequency Distribution for Quantitative Variables

Th e relative frequency for quantitative variables is computed in the 

same way as those of qualitative variables. Th e frequency for each class is 

divided by the total number of members in the population or sample to 

obtain the relative frequency. 

Example 1.5

Table 1.6 provides the relative and cumulative frequencies for the fam-

ily incomes indicated in the Example 1.4.

Table 1.6. Relative and Cumulative Frequencies of Family 
 Incomes

Classes Frequency Relative frequency Cumulative frequency
55–59 2 0.222222222 0.222222222

60–64 1 0.111111111 0.333333333

65–69 2 0.222222222 0.555555556

70–74 3 0.333333333 0.888888889

≥ 75 1 0.111111111 1
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Cumulative Frequency Distribution for Quantitative Variables

In the case of quantitative variables, the classes or values of interest 

are sequential and have meaningful order, usually from smallest to the 

largest. Th is allows us to obtain cumulative frequencies. Cumulative 

frequencies consist of sums of frequencies up to the value or class of 

interest. Th e last value is always 1 since it represents 100% of observa-

tions (see Table 1.6).

Percentiles 

A percentile is the demarcation value below which the stated percentage 

of the population or sample lie. For example, 17% of a population or a 

sample lies below the 17th percentile. 

To obtain a percentile, sort the data and identify which value repre-

sents the stated percentile. Th e 17th percentile of a data containing 84 

members is the 15th member of the sorted group (0.17 × 84 = 14.28). 

As countable data cannot take a fractional value, the 15th member of 

the sorted data is the observation where 17% of the data are smaller 

than it. 

To obtain the percentile, after sorting the data calculate an index i:

 
100

p
i n=  (1.1)

where p is the desired percentile and n is either the population or the 

sample size. When the result is an integer, add 1 to it to get the position of 

the percentile. If the result is a decimal value, use the next higher integer 

to get the position of the percentile.

Example 1.6

A retail store has collected sales data, in thousands of dollars for 

18 weeks. Find the 18th and the 50th percentiles for weekly sales.

66, 58, 71, 73, 64, 70, 66, 55, 75, 65, 57, 71, 72, 63, 71, 65, 55, 71

(Continued)
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(Continued)

Solution

Sort the combined data.

55, 55, 57, 58, 63, 64, 65, 65, 66, 66, 70, 71, 71, 71, 71, 72, 73, 75

Th e 18th percentile is obtained by:

 
80

18 14.4
100

i = × =

Since the result is a real number, it has decimal value. Th us, use 

the next higher integer, which is 15 in this example.  Th e number in 

the 15th position is the 18th percentile. Th at value is 71.

 Th e 50th percentile is:

 
50

18 9
100

i = × =

Since the index is an integer, use the next higher integer, namely 

the 10th observation, which is 66.  

Quartiles

Quartiles divide the population into four equal portions, each equal to 

25% of the population. Like the median and percentiles, the data must 

be sorted fi rst. Th e fi rst quartile, Q
1
, is the data point such that 25% of 

the data are below it. Th e second quartile, Q
2
, is the data point such that 

50% of the data are below it. Th e third quartile, Q
3
, is the data point such 

that 75% of the data are below it. 

Th e fi rst quartile is the same as the 25th percentile. Th e second quar-

tile is the same as the 50th percentile, as well as the median. Th e third 

quartile is the same as the 75th percentile. Th e quartiles are calculated 

the same way as the 25th, 50th, and 75th percentiles using the following 

indices.

Use i = ×25

100
n for the fi rst quartile.
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Use i = ×50

100
n for the second quartile.

Use i = ×75

100
n for the third quartile.

If the result of the index is an integer, use the next higher integer to 

fi nd the location of the quartile. If the result of the index is a real value, a 

value with a decimal number, the next higher integer will determine the 

position of the quartile. 

Example 1.7

For the weekly sales data of the retail store in Example 1.5, fi nd the 

fi rst, second, and the third percentiles. Th e data are repeated for your 

convenience.  

66, 58, 71, 73, 64, 70, 66, 55, 75, 65, 57, 71, 72, 63, 71, 65, 55, 71

Solution

Th e 3 quartiles are calculated using the following indexes.

i = ×25

100
18 = 4.5 the fi rst quartile is in the 5th position.

i = ×50

100
18 = 9 the second quartile is in the 10th position.

i = ×75

100
18 = 13.5 the third quartile is in the 14th position.

Sort the combined data.

55, 55, 57, 58, 63, 64, 65, 65, 66, 66, 70, 71, 71, 71, 71, 72, 73, 75 

 Q
1
 Q

2
 Q

3

Defi  nition 1.11

Th e fi rst quartile is the 25th percentile, the second quartile is the 50th 

percentile, and the third quartile is the 75th percentile.



20 STATISTICS FOR ECONOMICS

Hinges

Th e hinges also divide the data into four equal portions. Th e hinges, 

however, use the defi nition of the median. For example, sort the data 

(as indicated below) and then fi nd the median. Find the median of the 

lower half and call it the fi rst hinge. Find the median of the second half 

and call it the upper hinge. 

Example 1.8

For the weekly sales data of the retail store in Example 1.5, fi nd the 

fi rst, second, and third percentiles. 

Solution

Sort the combined data.

55, 55, 57, 58, 63, 64, 65, 65, 66, 66, 70, 71, 71, 71, 71, 72, 73, 75

 lower hinge Median upper hinge

Graphical Methods for Quantitative Variables

Th e numbers of available graphical methods for quantitative variables far 

exceed the number of graphical methods available for qualitative  variables. 

Here, we will address histograms, Ogive, stem-and-leaf,  dot-plot, scatter 

plot, and box plot. Box plot uses some of the concepts that are introduced 

in Chapter 2.

Histogram

A histogram is a graphical representation of the frequency distribution 

or relative frequency distribution when dealing with quantitative data. 

Th e boundaries of the classes are used for the demarcation of the vertical 

bars. A histogram and a bar graph are identical except for the quantitative 

values used in the histogram on the x-axis. 
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Example 1.9

Th e following data represents the income of gold miners in a small 

community. Th e corresponding histogram follows (see Figure 1.3).

Classes Frequency
55–59 2

60–64 1

65–69 2

70–74 3

≥75 1

Open a new spreadsheet in Excel. In cell A1, type “Bin” and enter 

the Bin Range from the list below. In cell B1, type “Frequency” followed 

by the frequencies. Th e data should be captured in cells A1 through B6. 

Go to “Insert,” which is the second tab at the top left hand corner of 

the spreadsheet. Click on “Column” (which looks like a bar graph) and 

then click on the fi rst chart (top left). Excel will populate a chart similar 

to the one below.

Th e output from Excel is presented below. Th e frequency is shown 

too.

Figure 1.3. Histogram and related setup in Excel—(Continued)

55 Bin Range
58 59
64 64
66 69
66 74
70
71

73

75 Bin Frequency

59 2
64 1
69 2
74 3
More 1

(Continued )
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Figure 1.3. Histogram and related setup in Excel.
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Th e above graph can represent the relative frequencies, too. Only the 

unit of measurement on the y-axis will diff er.

Th e above graph was created in Excel. Ironically, in Excel this graph is 

called a “column” graph. Bar graph in Excel is the same thing except for 

the rotation of 90° to the right. 

Ogive

Th e graph for the cumulative frequencies is called Ogive. In carpentry, 

there is a molding bit for shaping the edge of the wood called Roman 

Ogive. Th e graphs of the cumulative frequencies usually resemble the 

 fi nished edge of the Roman Ogive molding.

Figure 1.4. Ogive superimposed on histogram.
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Example 1.10

For the below nine communities of gold miners, fi nd the graph 

 frequencies and cumulative frequencies.

66, 58, 71, 73, 64, 70, 66, 55, 75

Solution

Th e frequency, relative frequency, and cumulative frequency for these 

data are given in Table 1.7.

Table 1.7. Frequency, Relative Frequency, and Cumulative 
 Frequency

Classes Frequency
Relative 

 frequency
Cumulative 
frequency

55–59 2 0.222 0.222

60–64 1 0.111 0.333

65–69 2 0.222 0.555

70–75 4 0.444 0.999

In Excel the Ogive is obtained from the histogram dialog box by 

selecting the cumulative percentage option.

Th e Ogive gives the cumulative area under the relative frequency his-

togram. Th e derivative of the function that represents the Ogive will give 

the relative frequency histogram function (see Figure 1.4).

Stem-and-Leaf

Stem-and-leaf is another descriptive way of summarizing information 

and, hence, qualifi es as descriptive statistics. Tukey3 introduced the con-

cepts of the stem-and-leaf. Some authors, such as Anderson et al.,4 place 

stem-and-leaf under the exploratory data. 

In the stem-and-leaf, usually the last digit of a value is recorded 

as the leaf and the preceding digits on a number as the stem. 
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A  vertical line for easy visualization separates the leaves and stems. To 

 create  a   stem-and-leaf display, place the fi rst digit(s) of each data to 

the left of a vertical line. Place the last digit of each data to the right 

of the line. 

Example 1.11

Provide a stem-and-leaf graph for the gold miners’ data.

66, 58, 71, 73, 64, 70, 66, 55, 75

Solution

Th e frequency, relative frequency, and cumulative frequency for this 

data are given in Table 1.7.

Figure 1.5(a). Stem-and-leaf graph.

6  6  4  6

5  8  5

7  0  1  3  5

Note that the result resembles a rotated histogram. If the data 

for  each leaf is also sorted, a better summary is obtained, as in 

 Figure 1.5(b).

Figure 1.5(b). Sorted stem-and-leaf graph.

6  4  4  6

5  5  8

7  0 1  3  5

If the numbers are too large, the fi rst two or more digits could be 

placed on the left side. Th e idea is to select the digits in a manner that 

makes the summary useful.
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Dot Plot

Th e dot plot is useful when only one set of data is under consideration. 

Th e actual data are placed on the x-axis. For each occurrence of the value 

a dot is placed above it. All the dots are at the same height, which has no 

signifi cant meaning other than refl ecting the occurrence of the observa-

tion. In the case of multiple occurrences additional dots are placed above 

the previous ones. Th e dots are placed at equal distances for visual as well 

as representation purpose. 

Example 1.12 

Provide a dot plot for the gold miners’ data.

66, 58, 71, 73, 64, 70, 66, 55, 75

Solution

See Figure 1.6.

Figure 1.6. Dot plot.

55 58 64 66 70 71 73 75

A dot plot resembles an exaggerated histogram.

Scatter Plot

An observant reader would notice that all the previous examples have been 

based on only one variable with numerous classifi cations and categories. 

In economics and many other branches of science, it is also benefi cial to 

present graphics of two or more variables. Below, we will use a scatter plot 

to show the relationship between two variables (see Figure  1.7). More 

variables can be combined into one graph. Usually, numerous variables 

are placed on the x-axis and only one variable is placed on the y-axis to 

show the relationship between the variable in the former group and the 
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variable on the y-axis. In such cases, the variables on the x-axis are usually 

the ones that aff ect the variable on the y-axis. Sometimes they are called 

factors and response variables, respectively.

Example 1.13

Graph a scatter plot of annual income and consumption data for the 

United States for the years 1990 through 2010 which is depicted in 

Table 1.8.

Table 1.8. Annual Income (I) and Consumption (C) in the 
United States (1990–2010)

Year I C
1990 17,004 15,331

1991 17,532 15,699

1992 18,436 16,491

1993 18,909 17,226

1994 19,678 18,033

1995 20,470 18,708

1996 21,355 19,553

1997 22,255 20,408

1998 23,534 21,432

1999 24,356 22,707

2000 25,944 24,185

2001 26,805 25,054

2002 27,799 25,819

2003 28,805 26,833

2004 30,287 28,179

2005 31,318 29,719

2006 33,157 31,102

2007 34,512 32,356

2008 36,166 32,922

2009 35,088 32,087

2010 36,051 33,039

Sources: Bureau of Economic Analysis: National Income and Product Account Tables (Table 
2.3.5-Personal Consumption Expenditures by Major Type of Product). GDP and Personal 
Income (SA1-3 Personal Income Summary). 

(Continued)
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Solution

To obtain a scatter plot, type the information from Table 1.8 in an 

Excel spreadsheet.  In cell A1 type “I” for Income followed by the 

income data from the second column in Table 1.8. In cell B1, type 

“C” for Consumption followed by consumption data from the third 

column in Table 1.8. Highlight cells A1 through B22. Go to “Insert,” 

which is the second tab on the top left hand corner of the spreadsheet. 

Click on “Scatter,” which will reveal several options. Select the option 

at the top left. Excel will populate a chart similar to the one shown in 

Figure 1.7.

Figure 1.7. Scatter plot of income and consumption for the United 
States, 1990–2010.
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Th ese graphs present, by no means, the extent of possible ways to 

present data for either qualitative or quantitative variables. Many other 

imaginative ways can be used, some of which are available in popular 

software such as Microsoft Excel or dedicated software such as Stata. 

Box Plot

A box plot is a visual representation of several basic descriptive statistics 

in a concise manner. Th e descriptive statistics that are used in a box plot 

are explained in Chapter 2. Th e graph consists of one box per variable. 

Th e borders of the box represent the 25th percentile (lower hinge) and 
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the 75th percentile (upper hinge), with a line in the box representing 

the 50th percentile or the median. Lines, called whiskers, extend from the 

edges of the box to the adjacent values, capped by an adjacent line.5 Th e 

values further away from the box extending past the adjacent lines in 

either direction are called outside values.

Example 1.14 

Use the data from Table 1.2 to obtain the box plot of income by the 

type of business and by gender. 

Solution

Th e graph of box plot (Figure 1.8) is created in Stata.

Figure 1.8. Box plot of income by location and by gender.
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CHAPTER 2

Numerical Descriptive 
 Statistics for Quantitative 

Variables

Introduction

One of the purposes of descriptive statistics is to summarize the 

 information in the data for a variable into as few parameters as possible. 

Measures of central tendency provide concise meaningful summaries of 

the population. Measures of central tendency are addressed in the below 

section. However, measures of central tendency are often not enough to 

 provide the full picture. Th e addition of measures of dispersion  provides 

a more complete picture. Measures of dispersion are covered in next, 

 followed by measures of association. 

Measures of Central Tendency

Mean

Th e arithmetic mean, or simply the mean, is the most commonly used 

descriptive measure. Other names for the mean are average, mathemati-

cal expectation, and the  expected value. Th is section deals with raw or 

 ungrouped data.

Arithmetic Mean

Th e mean takes the concept of condensing information to the extreme. 

Th e mean, a single value, is the representative or typical value that 

 represents a population. Th e mean is also known as the average, and 
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more formally as the expected value. Th e mean is the sum of all the 

 elements in the population divided by the number of the elements.

 
m ==

∑
1

N

i

i

X

N
 (2.1)

where m, pronounced mu, is the symbol used to represent the mean; Σ, 

pronounced sigma, represents the sum of some random variables. When 

there is no ambiguity, we can simply write:

 

( )X

N
m

∑=  (2.2)

Th e mean is a parameter and provides information about the central 

tendency of the population. Th e mean is the representative, or expected 

value, of the population. For example, when we say that the average 

income of a country is $45,000, we are stating that if a person is selected 

at random his income is expected to be around $45,000. Th e mean is the 

expected value or the typical representative of a population when there is 

no other information. 

Th e mean, though being the most widely used and most important 

parameter of the population, has its limits. It is susceptible to extreme 

values. Since all values of the population are used in calculation of the 

mean, a single very large or very small value can have a major impact on 

it. Th is is not quite as important in the case of the population as it is with 

samples.

Sample Mean 

Th e sample mean is the sum of the sample values divided by the sample 

size.

 
m

∑= = ( )
ˆ

X
X

n
 (2.3)

Note that we used both, m̂, pronounced mu-hat, and X
–

, pronounced 

x-bar to represent the sample mean. Both are widely accepted. However,  

m̂ has several advantages over X
–

. Th e fi rst advantage is that it reduces the 
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number of symbols that one has to learn in half. Th e population  parameter 

is m and its estimate m. Th e second advantage is that it takes the guesswork 

out of which statistics you are dealing with, as long as you remember the 

population parameter. Th e third advantage is that it  provides a reasonably 

simple rule to follow. Population parameters are represented by Greek 

letters, and sample statistics are represented by Greek letters with a hat 

on them. 

Defi nition 2.1

Statistics is a numeric fact or summary obtained from a sample. It 

is always known, because it is calculated by the researcher and it is a 

 variable.  Statistics is also used to make inferences about the corresponding 

 population parameter. 

Th e sample mean is a statistic. It is used to estimate the population 

parameter m.

Example 2.1

An anthropologist is studying a small community of gold miners in 

a remote area. Th e community consists of nine families. Th e family 

income is reported below in thousands of dollars. Find the sample 

mean. Th is data is hypothetical, but plausible. We use this data to 

show computational detail.

66, 58, 71, 73, 64, 70, 66, 55, 75

Solution

A careful reader would remember that the same data and scenario was 

introduced in Example 1.4 but with a major diff erence. Th e data there 

was presented as population data. Th e idea of a small community with 

nine families is acceptable but a sample of nine is more plausible. We 

are using the same data for ease of computation and we limit the data 

size to avoid tedious computations. Nevertheless, we use actual data 

with more observations in diff erent parts of the texts as well. 

(Continued )
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Th e sample mean is:

66 58 71 73 64 70 66 55 75 598
ˆ 66.444

9 9
Xm

+ + + + + + + += = = =

Th e expected income (in thousands of dollars) of any family from this 

population is 66.444. Th is statistic is an estimate of the population 

parameter m.

We did not provide an example for the population mean because most 

populations are large and it would take a lot of space to display such a vast 

amount of data. In addition, we were concerned that you would not see the 

forest for the trees. Th e procedure is nevertheless the same. We can assume 

that the above data is actually the population and obtain the mean, which 

would be the same number. However, there is a major diff erence between 

the sample mean and population mean, as between any statistics and 

parameter. Th e former is a variable while the latter is a constant. In actual 

research we seldom, if ever, know population parameters, which necessi-

tate collecting samples and obtaining sample statistics to make inference 

about the unknown population parameters. It is possible to have a small 

population, for example, the population can consist of the two children in 

a household but usually they are of little use in economic studies. 

If one of few extreme members of the population appears in a sample, 

especially a small sample, the impact will be detrimental. Remember the 

sample mean, a statistics, is used to estimate the population mean, a param-

eter. If the sample mean is erroneous, the estimated population mean will 

be misleading. Irrespective of what values appear in the sample, the sample 

mean does provide an unbiased estimate of the population mean. 

Example 2.2

Th e stock prices for Wal-Mart and Microsoft for the period from 

March  12 to March 30, 2012 and April  2 to April 21, 2012 are 

 provided in Table 2.1. We will use these data in many of the examples 

in this book. 

(Continued )

(Continued )
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Table 2.1. Closing Prices of Wal-Mart (WMT) and Microsoft 
(MSFT) for the period from March 12 to March 30 and from 
April 2 to April 21, 2012 

Date WMT MSFT Date WMT MSFT
12 Mar. $60.68 $32.04 2 Apr. $61.36 $32.29

13 Mar. $61.00 $32.67 3 Apr. $60.65 $31.94

14 Mar. $61.08 $32.77 4 Apr. $60.26 $31.21

15 Mar. $61.23 $32.85 5 Apr. $60.67 $31.52

16 Mar. $60.84 $32.60 9 Apr. $60.13 $31.10

19 Mar. $60.74 $32.20 10 Apr. $59.93 $30.47

20 Mar. $60.60 $31.99 11 Apr. $59.80 $30.35

21 Mar. $60.56 $31.91 12 Apr. $60.14 $30.98

22 Mar. $60.65 $32.00 13 Apr. $59.77 $30.81

23 Mar. $60.75 $32.01 16 Apr. $60.58 $31.08

26 Mar. $61.20 $32.59 17 Apr. $61.87 $31.44

27 Mar. $61.09 $32.52 18 Apr. $62.06 $31.14

28 Mar. $61.19 $32.19 19 Apr. $61.75 $31.01

29 Mar. $60.82 $32.12 20 Apr. $62.45 $32.42

30 Mar. $61.20 $32.26 21 Apr. $59.54 $32.12

Find the (sample) average price for Wal-Mart for the period from 

April 2 to April 21, 2012.

Solution

( ) 910.96
ˆ $60.73

15

X
X

n
m

∑= = = =
 

Example 2.3

Suppose the researcher in Example 2.1 collected another sample: Th e 

income of these new families is reported below. Th e researcher wants 

to calculate the sample mean of their income as well.

65, 57, 71, 72, 63, 71, 65, 55, 71

Solution

590
ˆ 65.5555

9
Xm = = =
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Th e sample mean changed since it is a statistic, which is a  variable. Th is 

sample mean provides an estimate of the population mean m.  Usually, the 

parameter remains unknown and statistics provide estimates of it. Th e mean 

of combined population can be obtained from the separate  component 

population means. If the researcher considers the 18  observations (of 

Examples 2.1 and 2.3) as one sample, the sample mean would be:

1188
ˆ 66

18
Xm = = =

Th e same result can be obtained from previous information:

1 1 2 2
ˆ ˆ66.4444 and 65.5555.X Xm m= = = =

Th e mean of the combined samples is:

66.4444 65.555
ˆ 66

2
Xm

+= = =

In this case, the sample sizes are equal, so simple arithmetic average 

works fi ne. In the case of diff erent sample sizes, the weighted average is 

the appropriate tool.

Later, we will cover two other measures of central tendency called 

median and mode. Th e knowledge of the median or the mode of two 

samples or two populations do not render to such calculation. Th e median 

or the mode of combined populations or samples cannot be obtained 

from the component populations or samples.

Trimmed Mea n 

Trimmed mean is a modifi cation of the mean. Th e sample data is sorted 

and a given percentage, say 5%, of the top and the bottom of the data are 

discarded, and the regular mean is calculated for the remaining data. Th is 

trimmed mean will be less susceptible to the extrem e values.

Geometric Mean 

Th e geometric mean is calculated using the following formula.

 1 2GM ...N
NX X X=  (2.4)
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In logarithmic form

  

1 2

1

log( ) log( ) log( )1
Log(GM) log( )

N
N

i

i

X X X
X

N N=

+ + +
= =∑ �

 (2.5)

Th e advantage of the logarithmic formula is that it avoids taking the 

root of the results. Th is was more important before the advent of powerful 

calculators. Th e logarithmic formula is a linear sum of its elements. After 

taking the logarithm of the values the mean is calculated as the arithmetic 

mean.

Th e geometric mean is useful when the values change in geometric pro-

gression instead of arithmetic progression, as is the case with growth rates. 

Example 2.4

Assume that a new company grew at 28% the fi rst year, 15% the 

 second year, and 13% the third year. What is the rate of the growth of 

company?

1st year 1.00 beginning of the operation

2nd year 1.28 28% increase over the beginning

3rd year 1.472 15% increase over the 2nd year

4th year 1.66336 13% increase over the 3rd year

Th e arithmetic mean is not able to explain the geometric growth. Th e 

geometric mean will give the average.

3 3GM 1.28 1.472 1.66336 3.134036378 1.463416715= × × = =

Th e company grew at the average rate of 1.4634 or 46.34% per year.

Raise both sides to the 3rd power.

3.134036378 = (1.463416715)3 = (1 + 0.463476715)3

Th is is the formula for compound interest. To generalize, let P
0
 be the 

initial investment, P
n
 the amount after n years, and r the interest rate 

or the rate of growth.
 

(Continued)
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 P
n
 = P

0 
(1 + r)n (2.6)

In the example the ending value is known to be P
n
 = 3.134036378, the 

beginning value is P
0 
= 1.0, and n = 3. Th e (average) rate of growth is

3.134036378 = 1.0 (1 + r)3

3(1 r) 3.134036378 1.463416715+ = =

r = 1.463416715 – 1 = 0.463416715

Th erefore, the (average) rate of growth is 46.34%, as was derived from 

the geometric mean.
 

Th e geometric mean is also the proper mean when dealing with ratio 

of items. 

Example 2.5 

Th e ratio of the average income to the price of an average car is 4 in 

year 1 and 5 in year 2. What is the average ratio of income to the price 

of a car? 

Solution

Using the arithmetic mean of income to car price provides an  incorrect 

answer: 

(4 + 5)/2 = 4.5

Th e arithmetic mean of car price to income 

⎛ ⎞+⎜ ⎟⎝ ⎠ += = =

1 1

(0.25 0.2)4 5
0.225

2 2

Th e reciprocal of 0.225 is (1/0.225) = 4.444 not 4.5. Th erefore, the 

arithmetic mean is not a suitable measure when dealing with ratios. 
 

(Continued)

(Continued)
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Th e average of the ratio of income to car price should not diff er from 

the average of the ratio of the car price to income.

Th e geometric mean for the two ratios is:

Geometric mean of income to car price = 4 5 20× =
Geometric mean of car price to income = 0.25 0.2 0.05× =

Th e reciprocal of 0.05 is ( ) +1/ 0.05 20. Since the  geometric 

mean of the income to the price of car is the same as the reciprocal of 

the geometric mean of the price of car to income, the geometric mean 

is the proper average measure. 
 

Harmonic Mean 

Th e harmo nic mean is calculated using the following formula.

 
1 2

1

HM
1 1 11

N

Nii

N N

X X XX=

= =
+ + +∑ �

 (2.7)

Th e harmonic mean is, in fact, the reciprocal of the arithmetic mean of 

the reciprocal of the values.

Example 2.6

A salesman travels to another city to meet a client. To make sure that 

he does not miss the appointment, he drives at 90 miles per hour. After 

a successful meeting he returns more leisurely at 45 miles per hour. 

What was his average speed? 

Solution

Th e speed was not (90 + 45)/2 = 67.5 mile per hour. For simplicity, 

assume he traveled a distance of 90 miles (any other value will work 

as well). 
 

(Continued)
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Time while going = 
90

1
90

=

Time while returning = 
90

2
45

=

Total travel time = 1 + 2 = 3

+= = = =
+

90 90
Average speed 60 60 miles per hour

1 2

Distance

Time

Th e harmonic mean will give the correct answer where the arithmetic 

mean failed.  

×= = = =++

2 2 2 90
HM 60 miles per hour

1 1 1 2 3

90 45 90
 

Rule 2.1

When n = 2 the geometric mean is equal to the square root of the arith-

metic mean times the harmonic mean.

 GM ( )( )AM HM=  (2.8)

Mean for Data with Frequencies

Th e expanded presentation below will be revealing.

 

1 2 1 2

1 2

1 1 1

N N

N

X X X XX X

N N N N

X X X
N N N

m
+ + +

= = + + +

= + + +

�
�

�
 

(2.9)

Th e mean is the sum of 1/N times of each observation. In other 

words, each observation gets a weight equal to 1/N of the total. Some-

times, each value should receive a diff erent weight, say, f
1
, f

2
, …, f

N
 for 

each of X
1
, X

2
, …, X

N
. In that case the result is in terms of frequencies 

of each value. 

 m = f
1
X

1
 + f

2
X

2
 + … + f

N 
X

N
 = Sf X (2.10)

(Continued)
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Note that Sf  = 1 and, hence, was not written. In general, the formula for 

the frequencies would be:

 

1 1 2 2

1 2

N N

N

f X f X f X

f f f
m

+ + +
=

+ + +
�
�

 (2.11)

Weighted Mean 

Th e weighted mean is similar  to the mean using the frequencies, except 

that the sum of weights need not add up to one. 

 

1 1 2 2

1 2

N N

N

w X w X w X

w w w
m

+ + +
=

+ + +
�
�

 (2.12)

Example 2.7

Refer to Example 2.1 and Example 2.3 regarding the incomes of gold 

miners from two samples. 

66, 58, 71, 73, 64, 70, 66, 55, 75

65, 57, 71, 72, 63, 71, 65, 55, 71

List the data according to incomes and their frequencies in a table. Use 

the number of cases, which is the same as frequencies in this example, 

as weight and calculate the weighted average.

Solution

Th is example is exactly the same as Example 2.8, except in the way the 

number of times an income is named. Here, they are considered as weights 

for each observation while in Example 2.8 they are considered frequencies.

Recall that the sample mean for the 18 men is

1188
ˆ 66

18
m = =

Th e mean obtained by using the frequency distribution shown in the 

following table should be the same.
 

(Continued)
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Observation Weights
55  2

57  1

58  1

63  1

64  1

65  2

66  2

70  1

71  4

72  1

73  1

75  1

Total 18

Adding up the observations and dividing by 12 will give an  incorrect 

answer, except for coincidence. To obtain the correct mean, each 

observation must be multiplied by the number of times it occurs.

Note that the sum for the population is over the population size N, 

while the sum for the sample is for the sample size n.

55 2 57 1 58 1 63 1 64 1 65 2 66 2 70 1 71 4 72 1 73 1 75 1
ˆ

18
m

× + × + × + × + × + × + × + × + × + × + × + ×=  

1188
ˆ 66

18
m = =

 

Relation Between Arithmetic, Geometric, and Harmonic Mean 

 HM ≤ GM ≤ m (2.13)

Th e equality sign holds only if all sample values are identical.

Mean of Grouped Data

Statistics is the science of summarizing information. Th is goal is attained 

at several stages. Th e frequency distribution is a tabular summary of data. 

Th e mean is another summary statistics that is much more powerful 

(Continued)
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in representing the data. Often, the data are only available after being 

 summarized as frequency distribution. In those cases, it is desirable to be 

able to fi nd the mean and other valuable parameters.

Mean of Data Summarized as Frequencies

Th e formula for the population mean is:

 

1

1

N

i i

i

N

i

i

f X

f

m
=

=

=
∑

∑
 (2.14)

Th e formula for the sample mean is:

 

m
=

=

=
∑

∑
1

1

ˆ

n

i i

i

n

i

i

f X

f

 (2.15)

Example 2.8

Refer to Example 2.1 and Example 2.3 regarding the incomes of gold 

miners from two samples. 

66, 58, 71, 73, 64, 70, 66, 55, 75

65, 57, 71, 72, 63, 71, 65, 55, 71

List the data according to incomes and their frequencies in a table. 

Calculate the mean using the values and their frequencies.

Solution

Using the table from Example 2.7 and multiplying the observations 

with the frequencies, we have

55 2 57 1 58 1 63 1 64 1 65 2 66 2 70 1 71 4 72 1 73 1 75 1
ˆ

18
m

× + × + × + × + × + × + × + × + × + × + × + ×=  

1188
ˆ 66

18
m = =
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Th erefore, summarizing the data into a frequency distribution does 

not aff ect the mean. It does not aff ect the variance either. Th e mean of 

the grouped data, however, will most likely be diff erent than the actual 

mean. Th is is due partly to the fact that the class sizes are arbitrary, and 

mostly due to the formula.

Mean for Grouped Data

Th e formula for the mean of the population grouped data is:

 m
∑

=
∑

f M

f
 (2.16)

Th e formula for the mean of the sample grouped data is:

 m
∑

=
∑

ˆ ,
f M

f
 (2.17)

where M is the mid-point of each class. Once again the only diff erence 

between the population and sample formulas is in the number of  elements 

and where they originate. Th is is the same as the weighted mean where 

the weights are the frequencies. Each value is given a weight equal to its 

number of occurrences or frequency.

Example 2.9

Group the data from Example 2.1 into four groups, each representing 

a 5-year interval. Calculate the mean using the grouped data.

Solution

Classes Frequency M
55–59 4 57

60–64 2 62

65–69 4 67

70–75 8 72.5
 

(Continued)
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4 57 2 62 4 67 8 72.5
ˆ

18

228 124 268 580
66.6667

18

m
× + × + × + ×=

+ + += =

Th e result has changed slightly. Other groupings will result in diff erent 

calculated means. 

Quar tiles

Quartiles divide data into quarters. Th e fi rst quartile is such a number 

that 24% of data are below it. Similarly, 50% of data are below the second 

quartile and 75% are below the third quartile. To obtain quartiles, sort 

the data and fi nd 1 quarter, 2 quarters, and 3 quarters demarcations. See 

Examples 2.10 and 2.13 for numerical solutions.

Median

Th e median is such a value greater than 50% of the population. To obtain 

the median, sort the data—the one in the middle is the median. If there 

are two numbers at the middle, their average is the median. Some texts 

use M to designate the median. Th e median is the same as the 50th per-

centile, as well as the second quartile.

Example 2.10

Refer to Example 2.1 and Example 2.3 regarding the incomes of the 

gold miners in two communities. Calculate the median for each com-

munity separately. Find the median for combined data.

66, 58, 71, 73, 64, 70, 66, 55, 75

65, 57, 71, 72, 63, 71, 65, 55, 71  

(Continued)
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Solution

To obtain the median of each group, sort the values fi rst. Th e medians 

for the following two data sets are in bold letters.

55, 58, 64, 66, 66, 70, 71, 73, 75

55, 57, 63, 65, 65, 71, 71, 71, 72

Th e median of combined population cannot be obtained from the 

separate component population medians. 

55, 55, 57, 58, 63, 64, 65, 65, 66, 66, 70, 71, 71, 71, 71, 72, 73, 75

Th e median is (66 + 66)/2 = 66.

Mode

Th e mode is another measure of central tendency. Th e mode is the most 

frequently occurring value of the population. A population, or a sample, 

may have more than one mode or no mode at all. If all members of the 

population occur as frequently, either no mode is present or every  element 

is a mode. If there are two modes, the distribution is called bimodal. 

When the incomes of men and women are measured, there will be two 

modes, one for men and another for women.

Example 2.11

For data in Example 2.1 and Example 2.3, obtain the mode for the 

incomes of the two communities. Find the mode for the combined 

data as well.

Solution

66, 58, 71, 73, 64, 70, 66, 55, 75

65, 57, 71, 72, 63, 71, 65, 55, 71

Th e mode for the fi rst community is 66, and for the second community 

is 71. From the frequency distribution table provided in  Example 2.7 

the mode for the combined data is 71.
 

(Continued)



 NUMERICAL DESCRIPTIVE STATISTICS FOR QUANTITATIVE VARIABLES 45

Th e mode of combined population cannot be obtained from the sepa-

rate component population modes. When the data is grouped, the mode 

is the midpoint of the interval with the greatest frequency. In a bar graph 

or a histogram, the tallest bar represents the modal value. In this case the 

range 70–75 years is the mode. 

Empirical Relation Between Mean, Median, and Mode

 Mean – Mode = 3 (Mean – Median) (2.18)

Measures of Dispersion

Range

Th e range is a measure of dispersion. It refl ects how far the data are 

 scattered. It is calculated by subtracting the minimum value from the 

maximum value.

 R = Maximum – Minimum (2.19)

Example 2.12

For the data in Example 2.1 and Example 2.3, obtain the range for the 

combined data. 

66, 58, 71, 73, 64, 70, 66, 55, 75

65, 57, 71, 72, 63, 71, 65, 55, 71

Solution

R = 75 – 55 = 20
 

Interquartile Range

Th e interquartile range is a measure of dispersion that measures the 

 distance between the fi rst and the third quartiles. 

 IQR = Q
3
 – Q

1 
(2.20)
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Example 2.13

For the data in Example 2.1 and Example 2.3, obtain the interquartile 

range for the combined data.

66, 58, 71, 73, 64, 70, 66, 55, 75

65, 57, 71, 72, 63, 71, 65, 55, 71

Solution

Combine and sort the data.

55, 55, 57, 58, 63, 64, 65, 65, 66, 66, 70, 71, 71, 71, 71, 72, 73, 75

 Q
1
 Q

2
 Q

3

IQR = 71 – 63 = 12
 

Th e IQR can be used to fi nd the “middle class” of a population or a 

sample. It gives the lower and upper limits of the middle 50%. 

Variance

Th e variance is a measure of dispersion. It is one of the more  important 

parameters of a population. Th e concept of variance is used in many 

aspects of statistics.

Th e variance is the average error, squared. Th e need for the variance 

arises from the need to determine and calculate the error, which is an 

important statistical measure. Th e population mean is the best representa-

tive of the population. It represents the typical value or the expected value 

of any member of the population. Seldom, however, every member of the 

population has the identical value. If they did there would not be any point 

in studying and analyzing them. Each member of the population will be off  

from the expected value by some magnitude. Th e deviation may be positive 

or negative. Understanding and analyzing the individual errors would be 

diffi  cult. Instead, the average error is used. As with other subjects in statis-

tics, the goal is to reduce the phenomena to as few parameters as possible. 

Th is section deals with the raw or ungrouped data. Th e total error 

and, hence, the average error is always equal to zero. As a  mathematical 
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property S(X – m) = 0. To overcome this problem the deviations are 

squared to obtain:

S(X – m)2

Th is value cannot be zero unless every observation is identical. Since 

larger populations will have larger sum of squared deviation, their average 

is calculated to enable comparison of diff erent sized populations.

Population Variance

Th e varia nce is the sum of the squares of the deviations of values from their 

mean, divided by population size. Th erefore, the variance is the mean of 

the squared deviations, which in the case of a sample it is called the mean 

squared error (MSE) and, hence, is an average  measure. Th e variance is 

the entire variation in a population. It does not change.

 

m
s

∑ −=
2

2 ( )X

N
 (2.21)

Th e variance is also called “sigma squared” to refl ect the fact that it is 

a squared measure. Th e variance refl ects (the square of ) how much a data 

point can deviate from the expected value, that is, the mean for the data. 

Th e numerator, the sum of squares of deviations, is usually called sum of 

squared total (SST).

 Sample Variance

Th e sample variance is the sum of the squares of the deviations of  values 

from the sample mean divided by the degrees of freedom. Th e concept 

of degrees of freedom is discussed in  Chapter 3. Th e  sample variance 

represents the entire variation in a given  sample.  Sample variance does 

not change for a given sample. As sample  variance is a statistic, its value 

will change from one sample to the other.

  

� � 2
2 ( )

1
XX

n

m
s

∑ −
=

−
 (2.22)
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Example 2.14

R  efer to the gold miners income data of Example 2.1 and Example 2.3:

66, 58, 71, 73, 64, 70, 66, 55, 75

65, 57, 71, 72, 63, 71, 65, 55, 71

Calculate the sample variances of the incomes for each community.

Solution

Th e sample variance for the fi rst community is calculated as follows:

Income (X – m̂) (X – m̂)2

66 –0.44444 0.197531

58 –8.44444 71.30864

71 4.555556 20.75309

73 6.555556 42.97531

64 –2.44444 5.975309

70 3.555556 12.64198

66 –0.44444 0.197531

55 –11.4444 130.9753

75 8.555556 73.19753

� �m
s

∑ −
= = =

−

2
2 ( ) 358.2222

44.7778
1 8

XX

n

Similarly, the sample variance for the second community is calculated 

and is equal to

�
s =2 40.277778

Verify that the variance of the combined samples is neither the sum 

of the variances of the samples, nor the average of their variances. You 

can also easily verify that the sum of (X – m̂) equals zero, which will be 

useful in later discussions.
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Standard Deviation 

Th e variance, of the population or sample, is in the square of the unit of 

the measurement of the observation. To make them comparable to the 

actual observation their square roots is taken.

 

2( )X

N

m
s

∑ −=  (2.23)

Th e s is called the standard deviation. Its counterpart is called sample 

standard deviation and is denoted by ŝ, pronounced sigma hat. 

 

� 2( )
ˆ

1
XX

n

m
s

∑ −
=

−
 (2.24)

Th e standard deviation represents the average error of a population 

or sample. Th e standard deviation is a measure of risk, too. It refl ects how 

much a data point can deviate from the expected value, that is, the mean 

of the data, by chance. Th e standard deviation is the statistical “yardstick” 

that allows comparison of dissimilar entities. To measure the length of a 

room, place a yardstick at one end of the room; mark the fl oor at the end 

of the yardstick, move the yardstick to the mark, and mark the fl oor at the 

end of yardstick again, until the entire length of the room is measured. 

In other words, you divide the length of the room by the length of the 

yardstick, and the result will be a value in terms of the yard. Th e divisor 

provides the unit of measurement. Hence, the unit of measurement of 

standardized values is standard deviation.

The Standard Deviation of the Sample Mean 

When the value under consideration is the sample mean, its distribution 

is explained by the sampling distribution of the sample mean, a topic 

which is covered in detail in Chapter 5. For the time being, we will simply 

provide the relationship without the background information:

 

2
2
ˆˆVar( )

n
m

s
m s= =  (2.25)
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If the population variance is not known, replace it with the sample 

 variance:

 

� �
�2

ˆ2
ˆˆVar( )

n

m

m

s
m s= =  (2.26)

where s2 is the population variance and 
�2s  is the sample variance.

Defi nition 2.2

Th e square root of the variance of the sample mean is called the standard 

deviation of the sample mean. It is also called the standard error. 

Error

In statistics, e rror is the amount each data point misses the expected 

value or the average. To avoid using error for two diff erent things, s, 

or  the  standard deviation, is called the error and the (X − m)2 / N is 

called the variance or MSE. Th e term “MSE” is usually used in situa-

tions where part of the variation in data can be explained by trend line, 

treatment, block eff ect, and so forth, and the remaining unexplained por-

tion is called MSE. Th e term “variance” is more commonly used for the 

 population  variance, when no portion of it could be explained by other 

factors. 

Th e expected value is the parameter that represents the  population. Th e 

actual observations deviate from their mean due to random error. Th e ran-

dom error cannot be explained. In statistics, it is called the error. Th e error is 

the portion of the total variation that cannot be explained. Th e error is not 

necessarily a fi xed amount. It is the amount not explained by the given 

tool. Change the tool and the error might change.

Some Algebraic Relation s for Variance

Two important relations are used in dealing with variances and are worth 

reviewing. 
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1. Th e variance of a constant is zero.

 Var (C) = 0 (2.27)

2. Th e variance of a constant multiple of a variable is equal to the square 

of the constant times the variance.

 Var (CX  ) = C2 Var (X  ) (2.28)

Computational Formula  (Short-Cut)

Th e defi nitional formula for variance may result in lots of rounding 

off , especially for a large population or sample, and cause an erroneous 

 diff erence. If the mean is a never ending real number, the deviation 

will be a never ending real number. When this deviation is squared 

and added up, the small amount can add up and give a great bias. Th e 

computational formula(e) delay dividing the values as long as possible 

and do not introduce rounding off  into the computation until the last 

stages.

Th e computational formula for the population variance is

 
s

∑∑ −
=

2
2

2

( )X
X

N
N

 (2.29)

Th e derivation of the computational formula is relatively simple. It 

is important to point out that the letters X, N, and so on are dummy 

 notation and are used to represent a variable. Sometimes other letters, 

such as Y and M, might be used instead. Th e concept is the same, only the 

notation is diff erent. Th erefore the variance can also be written as:

 
s

∑∑ −
=

2
2

2

( )Y
Y

N
N

 (2.30)

Another computational formula delays division another step.

 
s

∑ − ∑=
2 2

2

2

( )N X X

N
 (2.31)
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Th e derivation of this formula is no more diffi  cult than the previous one. 

Th e corresponding computational formulas for the sample variance are:

 

�
s

∑∑ −
=

−

2
2

2

( )

,
1

X
X

n
n

 (2.32)

this is the more commonly used formula in most texts

or 

 

�
s

∑ − ∑=
−

2 2
2 ( )

( 1)

n X X

n n
 (2.33)

Example 2.15

Use the family income of gold miners from Example 2.1 and 

 Example 2.3 to calculate the sample variance for the incomes of gold 

miners using the computational formula. 

Income X2 
 66  4356

 58  3364

 71  5041

 73  5329

 64  4096

 70  4900

 66  4356

 55  3025

 75  5625

598 40092

Solution

�

22
2

2

598( )
40092

40092 39733.77789

1 8 8

358.2222
44.7777778

8

X
X

n
n

s

∑ −∑ − −= = =
−

= =
 

(Continued)
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Or 

�
s

∑ − ∑ × −= = =
− ×

2 2
2 ( ) 9 40092 357604

44.7777778
( 1) 9 8

n X X

n n
 

In this example the choice of the formula did not make any diff erence 

to the accuracy of the results.

Average of Several Variances

Sometimes it is important to average several variances. Suppose two or more 

samples are taken from the same population and estimated (sample) variances 

are obtained. In order to gain a better estimate of the population variance, all 

the variances should be averaged. If the sample sizes are the same, a simple 

average will provide the desired mean. If sample sizes are diff erent, however, 

the observations, which in this case are the variances, should be weighted. 

Th e logical weight is the sample size, but since we are dealing with variances 

and unbiased estimates of population variance come from sample variance, 

which uses the degrees of freedom as the divisor, the weights to obtain the 

weighted mean of several sample variances are the degrees of freedom associ-

ated with each sample variance. Th is weighted mean of variances is usually 

called “pooled” variance. Recall that the formula for weighted mean is:

 

1 1 2 2

1 2

N N

N

w X w X w X

w w w
m

+ + +
=

+ + +
�
�

 (2.34)

Since we are dealing with the variances, and the customary name for the 

weighted average of variances is called “pooled variance,” and since we use 

S 2 for sample variance we will use the commonly used symbol s2
Pooled . 

Th e weights (w
1
, w

2
, …, w

n
) are degrees of freedom, and the Xs are sample 

variances, 
� � �
s s s…1 2

2 2 2, , n . Let n
1
, n

2
,… n

n
 be sample sizes. Th e formula for 

the case of two sample (estimated) variances is:

 

� ( )� ( )�
( ) ( )

s s
s

− + −
− −

=
+

2
2

2
1 1 2 2

1 2

1 1

1 1
Pooled

n n

n n
 (2.35)

Repeat the pattern to average three or more sample variances.
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Example 2.16

Calculate the weighted variance for the variances of the Microsoft 

stock prices between March 12 and March 30, 2010, and April 2 and 

April 21, 2012. 

Solution

We already have the following results:
�
s =2

1 0.10941   
�
s =2

2 0.372182

( )� ( )�

( ) ( )

2 2
1 2 2 12

1 2

1 1

2

15 1 0.10941 15 1 0.372182

15 15 2

1.5317 5.210554

2
0.24079

8
8

Pooled

n n

n n

s s
s

− + −
=

+ −

− + −
=

+ −
+= =

 

In this and similar examples when the sample sizes are the same the 

use of weighted average and simple arithmetic average will be the same. 

Pooled variances are used in the test of hypothesis of equality of two 

means, as will be seen in Chapter 7.

Variance of Data with Frequency

Statistics is the science of summarizing information. Th is goal is achieved 

at several stages. Th e frequency distribution is a tabular summary of data. 

Often, the data are only available in frequency distribution format. In 

those cases it is desirable to be able to fi nd the variance and other valuable 

parameters. Th e formula for the population variance for the frequency 

distribution is:

 

m
s

−
=

∑
∑

2
2 ( )f X

f
 (2.36)
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Th e formula for the sample variance for the frequency distribution is:

 

� m
s

∑ −
=

∑ −

2
2 ( )

1

f X

f
 (2.37)

where f represents the frequency of each variable. Th e limits of S for 

 population is N, while that of sample is n.

Th e computational formula for the population is:

 

s

∑∑ −
∑

∑
=

2
2

2

( )f X
f X

f

f
 (2.38)

Th e computational formula for the sample is:

 

�
s

∑∑ −
=

∑
∑ −

2
2

2

( )

1

f X
f X

f

f
 (2.39)

Example 2.17

Use the family income of gold miners from Example 2.1 and  Example2.3 

that to calculate the sample variance for the fi rst  community using the 

frequency table.

66, 58, 71, 73, 64, 70, 66, 55, 75

65, 57, 71, 72, 63, 71, 65, 55, 71

Solution

Remember from Examples 2.1 and 2.7 the sample variance for these 

18 men is equal to

� � 2
2 ( )

1
XX

n

m
s

−∑
−

=  = 42.68382

Suppose the raw data is presented in the frequency distribution form.
 

(Continued)
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Observation Frequency
55  2

57  1

58  1

63  1

64  1

65  2

66  2

70  1

71  4

72  1

73  1

75  1

Total 18

Note that there are 18 observations and not 12. Th e sample variance for 

the combined data is equal to 40.23529412. Th e calculation of the sam-

ple variance for the above data using the computational formula follows.

X f xf X2 X2f
55 2 110 3025 6050

57 1 57 3249 3249

58 1 58 3364 3364

63 1 63 3969 3969

64 1 64 4096 4096

65 2 130 4225 8450

66 2 132 4356 8712

70 1 70 4900 4900

71 4 284 5041 20164

72 1 72 5184 5184

73 1 73 5329 5329

75 1 75 5625 5625

18 1188 79092

�
s

− −== = =

2

2

(1188)
79092

79092 78408 68418 40.23529
17 17 17

 

(Continued)
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Th e answer is the same as the one obtained using raw data. Th erefore, 

summarizing the data into frequency distribution does not aff ect the vari-

ance, which will be addressed shortly. It does not aff ect the mean of the 

data arranged in a frequency distribution form either. Th e variance of the 

grouped data, however, will most likely be diff erent than the actual vari-

ance. Th is is due partly to the fact that the class sizes are arbitrary, and 

mostly due to the formula.

Variance for Grouped Data

Th e formula for the variance of the grouped data for the population is:

 

2
2

2

( )f M
f M

f

f
s

∑∑ −
∑

∑
=  (2.40)

where M is the midpoint of each class. Th e formula for the variance of the 

grouped data for the sample is:

 

�
s

∑∑ −
=

∑
∑ −

2
2

2

( )

1

f M
f M

f

f
 (2.41)

where M is the midpoint of each class. Th e main diff erence between the two 

computational formulas is the denominator and the range of  summation. 

Th e sum for the population covers the members of the  population, N. 

Th e sum for the sample covers the members of the  sample, n.

Measures of Associations

Th e measures of association determine the association between two 

 variables or the degree of association between two variables.

Covariance

Population Covariance

Th e covariance is a measure of association between two variables. Let the 

variables be X and Y and their corresponding means be m
X
 and m

Y 
. Th e 

covariance is defi ned as:
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 Cov( ,
( )

)
) (X YX

X Y
Y

N

m m∑ − −
=  (2.42)

Th e covariance is the sum of the cross product of the deviations of the 

values of X and Y from their means divided by the population size. 

 Sometimes it is written as s
XY

 for the population covariance. Th is is not 

a standard deviation—it is the notation that refl ects that the covariance 

has a sum of the cross products term. Th is compares to the notation of 

s 2
X  for the variance of the population and s

X
 for the standard deviation 

of the population. 

Th e defi nitional formula for covariance suff ers from the roundoff  

error and also can become very tedious if the means have long decimal 

places. Th e computational formula for covariance is:

 
s

∑ ∑∑ −
=

( )( )

XY

X Y
XY

N
N

 (2.43)

Th e derivation of the computational formula is not diffi  cult.

Sample Covariance

In the sample covariance the population means are not known and have 

to be replaced by the sample means. Consequently the covariance loses a 

degree of freedom. Th e theoretical formula for the sample mean is:

 

�
� �) )( (

1
X Y

XY

X X

n

m m
s

∑ − −
=

−
 (2.44)

Th e computational formula for the sample covariance is:

 

�s

∑ ∑∑ −
=

−

( )

1

)(

XY

X Y

n
n

XY
 (2.45)

Th e derivation of Equation 2.45 is identical to the derivation of 

 Equation 2.43. Th e covariance shows association between two variables. 

Th e magnitude of the covariance is a function of the degree of association 

as well as the units of measurement of the values. Th e size of covariance 
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will change if the units of measurement are changed, for example from 

feet to inches or to yards. 

Correlation Coeffi cient

Th e correlation coeffi  cient r uses the measures of association and disper-

sion to provide a measure without a unit. Th e measure of association is 

the covariance and is placed on the numerator. Th e measures of disper-

sion are the standard deviation of the X and the standard deviation of the 

Y, which are placed in the denominator. All three are subject to change 

when the unit of measurement changes, but the correlation coeffi  cient is 

immune. 

 

s
r

s s
= XY

X Y

 (2.46)

where s
XY

 is the covariance, s
X
 is the standard deviation of the X values, 

and s
Y
 is the standard deviation of the Y values. 

Th e sample correlation coeffi  cient r is written as

 

�

��
s

r
s s

=ˆ XY

X Y

 (2.47)

Substituting the formulae for the population covariance and the standard 

deviations will yield:

 

2 2(

( ) (

) (

)

)

X

X Y

Y

X Y

N N

X Y

N

m

m

m

r
m

=
∑ − ∑

−

−

∑ −

, (2.48)

Th e corresponding formula for the sample correlation coeffi  cient is:

 

� �

� �
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−
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 (2.49)
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Th e corresponding computational form for the population and the 

 sample are given in Equations 2.50 and 2.51 respectively.

 

2 2
2 2( ) ( )

( )( )

X Y
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N N
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XY

Nr =
∑ ∑

∑

−

−

∑ − ∑

∑ ∑

 (2.50)
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 (2.51)

Notice that the only diff erence between the population and the sample 

correlation coeffi  cient in the computation formulas is the use of N instead 

of n. Each is the size of its corresponding data. Th e diff erence is concep-

tual and refl ects their origin. Do not overlook the fact that r is a param-

eter and a constant, while r is the statistics and a variable. Th e sample 

correlation coeffi  cient r is used to estimate and draw inference about the 

population correlation coeffi  cient r.

 



CHAPTER 3

Some Applications of 
 Descriptive Statistics

Introduction

Th e descriptive statistics that were covered in Chapters 1 and 2  provide 

summary statistics and graphical methods to present data in a more 

 concise and meaningful way. Although those measures and methods are 

useful in their own right as demonstrated in the previous chapters, they 

are also used to further create more powerful statistical  measures: some of 

which are discussed in this chapter. Later, in Chapter 7, these measures 

are utilized to provide statistical inference, which is the  foundation for 

testing hypotheses in every branch of  science. 

Coeffi cient of Variation

Th e coeffi  cient of variation is the ratio of the standard deviation to the 

mean. In other words, the coeffi  cient of variation expresses the standard 

deviation (the average error) as a percentage of the average of the popu-

lation or sample. It is a relative measure of dispersion. It measures the 

standard deviation in terms of the mean. 

 
CV

s

m
=  (3.1)

Th e coeffi  cient of variation is independent of the units of measurement 

of the variables. If two populations have the same standard deviation, the 

one with the lower coeffi  cient of variation has less variation.
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Example 3.1

Th e manager of the mortgage department in a local bank has  gathered 

the amounts for approved second mortgage loans for every 100th 

 customer. Th e amounts are in dollars.

5,672 6,578 9,700 12,000 9,000 6,350

4,495 6,900 7,835 8,750 10,000 12,000

6,500 7,200 8,000 18,000 19,000 12,000

4,560 1,500 5,900 5,450 6,500 1,800

1,900 10,500

Calculate the coeffi  cient of variation.

Solution

4257.58
CV 0.532

8003.46

s

m
= ==

Coeffi  cient of variation represents the average error as a fraction of 

the expected value. Th e coeffi  cient of variation is useful in  comparing 

data with diff erent magnitudes. Assume that two stocks are rated 

 similarly where they have the same characteristics such as objectives 

and the amount and frequency of dividends. In order to compare the 

relative variability of the average price of the two stocks, we use 

the coeffi  cient of variation. Relative to the mean price, the stock with 

the lower coeffi  cient of variation indicates lower variation and hence 

lower risk.

Th e coeffi  cient of variation is also useful in the comparison of 

 unrelated data, especially when the unit of measurement is diff erent. For 

example, if the effi  ciency of a gas-powered lawn mower is compared to the 

reliability of an electric edger, then the machine with the lower coeffi  cient 

of variation is more reliable.

Th e most eff ective use of the coeffi  cient of variation is in the 

 comparison of two diff erent experiments by fi nding the ratios of 

their  respective coeffi  cients of variation, as is seen in the following 

example.
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Example 3.2

Refer to the stock prices for Wal-Mart and Microsoft from  Example 2.2. 

Determine which one is riskier using the data for March 2012.

Table 3.1. Closing Prices of Wal-Mart (WMT) and Microsoft 
(MSFT) for the period from March 12 to March 30 and 
from April 2 to April 21, 2012 

Date WMT MSFT Date WMT MSFT
12 Mar. $60.68 $32.04 2 Apr. $61.36 $32.29

13 Mar. $61.00 $32.67 3 Apr. $60.65 $31.94

14 Mar. $61.08 $32.77 4 Apr. $60.26 $31.21

15 Mar. $61.23 $32.85 5 Apr. $60.67 $31.52

16 Mar. $60.84 $32.60 9 Apr. $60.13 $31.10

19 Mar. $60.74 $32.20 10 Apr. $59.93 $30.47

20 Mar. $60.60 $31.99 11 Apr. $59.80 $30.35

21 Mar. $60.56 $31.91 12 Apr. $60.14 $30.98

22 Mar. $60.65 $32.00 13 Apr. $59.77 $30.81

23 Mar. $60.75 $32.01 16 Apr. $60.58 $31.08

26 Mar. $61.20 $32.59 17 Apr. $61.87 $31.44

27 Mar. $61.09 $32.52 18 Apr. $62.06 $31.14

28 Mar. $61.19 $32.19 19 Apr. $61.75 $31.01

29 Mar. $60.82 $32.12 20 Apr. $62.45 $32.42

30 Mar. $61.20 $32.26 21 Apr. $59.54 $32.12

Solution

Let’s refer to Wal-Mart stock as “1” and to the Microsoft stock as 

“2.” Recall that we calculated the means and standard deviations for 

these stocks. Th e following information is available for the two stocks. 

Which one is relatively less risky and thus better?

�
1 60.91m =   �1 0.2428s =

�
2 32.31m =   �2 0.3191s =

1

0.2428
CV 0.0040

60.91
= =

(Continued )
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2

0.3191
CV 0.0099

32.31
= =

1

2

CV 0.0040
0.4

CV 0.0099
= =

Th erefore, stock 1, Wal-Mart, is less risky than stock 2, Microsoft.

Z Score

Th e Z score is a useful and intuitive concept and, as it will become 

 evident, is used often in statistics. Th e Z score uses two of the more com-

mon parameters, the mean and the standard deviation. Th e problem of 

accurate and consistent measurement has been a diffi  cult subject through-

out history. Th e yardstick diff ered from one time to another and across 

diff erent locations and cultures. Diff erent countries and rulers tried to 

unify the unit of measurement. Th e closest unit to become universally 

accepted is the meter. Even the metric system is not commonly used in 

all quarters in spite of its ease and applicability. Th e metric system has 

its limitations too. One problem is the diff erence in scale. Th e following 

example demonstrates the problem.

County fairs have farming contests and they give prizes for the “best” 

in diff erent categories. For example, the farmer with the biggest produce 

receives a prize. But by nature, even the largest apple on record is not a 

match for any pumpkin. Would it be fair to compare the amount of a 

cow’s milk with that of a goat? In economic terms, how can we compare 

the output of the most productive small manufacturer to that of a larger 

one, which is fully automated?

In statistics, everything is measured in relative terms. It makes no sense 

to compare the weight of a peach to that of a pumpkin, but  comparing 

their relative weights makes perfect sense. Let’s have a peach that weighs 

8.4 ounces and a pumpkin that weighs 274.9 ounces. Although the pump-

kin is actually heavier, that might not be the case when other factors are 

considered. One factor is the average weight of peaches and pumpkins. 

A typical peach is about 6 ounces, while a typical pumpkin is 22 pounds, 

(Continued )
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or 352 ounces. Th e peach in this example is somewhat heavier than an 

average peach while the pumpkin is actually lighter than an average pump-

kin. Th erefore, relatively speaking, the peach is heavier than the pumpkin. 

However, this is not enough. We also need to divide the distance from the 

mean for each produce by its typical or average error. Let’s assume that 

the standard deviation for peaches is 1.15 ounces. Th erefore, the amount 

that the peach exceeds its average as measured by its own yardstick is 

(8.4 − 6) / 1.15 = 2.086 standard deviation. Let’s assume that the standard 

deviation for the pumpkin is 2.57 pounds or 16 × 2.57 = 41.12 ounces. 

Th erefore, the pumpkin is (274.9 − 352) / 41.12 = −1.875 standard devia-

tions below its expected weight. Th erefore, the pumpkin is  actually sub-

par, while the peach is a prize winner. Th is is the essence of what is called a 

Z score and the procedure is known as standardization. 

Th e Z score is defi ned as follows:

 

Observed Expected

Standard Deviation of the Observed
Z

−
=  (3.2)

 

X
Z

m

s

−=  (3.3)

Th e expected value of an observation is its mean or (m), its standard 

deviation is (s). To obtain the Z score of an observed value, subtract its 

mean from its observed value and divide the result by the standard devia-

tion of the observation. 

Th e distance of an observation from its expected value is also called 

its error. Some of the diff erent aspects of error will be discussed later in 

this chapter. Th e Z score is a scaled error. Th e unit of measurement of 

Z score is the standard deviation of the population or its sample estimate. 

 Obtaining the Z score of an observation is also known as  standardizing 

the value. Th e standardization process can be applied to any data or 

observation. If the item under consideration is a single observation from 

the population, the result is called the Z score.

X
Z

m

s

−=
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Suppose two students are given the task of measuring the error of 

an observation. Th e fi rst student found that the observation is 41.6666 

feet. In fact, the decimal place is never-ending. Disliking decimal places 

and especially the never-ending ones, he measured the deviation of the 

data point from the mean in inches and was relieved to fi nd out that 

it has no decimal place. He presented his error of the observation as 

500 inches. Th e second student, using an electronic measuring “tape,” 

subtracted the observation from the mean and reported 0.007891414 

miles as the error. While the fi rst error seems large and the second 

seems small, both are the same. Note that 500 inches is 41.6666667 

feet or 0.007891414 miles. Z score provides a unique and comparable 

measure of error to avoid the confusion that may arise from changes 

in units of measurement. Every error is reported in the units of its 

own standard deviation. Since the Z score is reported in terms of the 

standard deviation, it allows comparison of unrelated data measured in 

diff erent units.

Z Score for a Sample Mean 

If the value under consideration is the sample mean, m̂, the resulting 

Z score would be:

 ˆ

ˆ
Z

m

m m

s

−=  (3.4)

where m̂ is the sample mean, m is its expected value, which is also the 

population mean, and the standard deviation of the sample is ˆ .nms s=  

Th e standard deviation of the sample mean is also known as the standard 

error. In order to calculate the Z score for a sample mean, it is necessary 

to know the population variance. Usually, we do not know the population 

variance either. When the population variance is unknown, we must use a 

t value instead. We will discuss t distribution in more detail in Chapter 4. 

For the time being, we will assume that we know the population variance. 

Th e most realistic assumption is to use the sample variance as if it were 

the population variance. 
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Theorem 3.1 Chebyshev Theorem 

Th e proportion of observations falling within k standard deviations of the 

mean is at least

 
2

1
1 .

K

⎛ ⎞−⎜ ⎟⎝ ⎠
 (3.5)

Th is is the same Z score concept. Th e theorem indicates that we need to 

fi nd the diff erence of a value from its mean, that is, (X − m). Since the 

theorem applies to all the values within k standard deviations, that is, ks 

on either side of the mean, the absolute value is desired. Th e theorem sets 

a minimum limit for the |X − m| < ks. Th erefore, the Chebyshev theorem 

states that:

 
( ) 2

1
| | 1P X k

K
m s

⎛ ⎞− < ≥ −⎜ ⎟⎝ ⎠  (3.6)

But since s is a non-negative value, dividing both sides of the inequality 

|X − m| < ks by s will not change the sign. Th erefore,

2

1
1

X
P k

K

m

s

−⎛ ⎞ ⎛ ⎞< ≥ −⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠
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| | 1P Z k

K

⎛ ⎞< ≥ −⎜ ⎟⎝ ⎠
 (3.7)

As is evident, the Z score is the core of the Chebyshev theorem.  Chebyshev 

was one of the major contributors to the Central Limit Th eorem, which 

will be discussed in Chapter 5.

Th e fi rst part of the equation {P(|Z| < k)} is the same as the confi dence 

interval of a range, which is covered in  Chapter 6. Th e concept of Z score 

is also used in statistical inference, which is  covered in Chapter 7.
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Example 3.3

Determine what percentage of the Microsoft stock prices from 

March 12 to March 30, 2012, lay within the two standard deviations 

of their mean. Verify the correctness of the result by counting the 

prices that are within two standard deviations of the mean. Assume 

the population’s mean and variance are the same as the sample mean 

and variance, respectively. See Example 3.2 for data.

Solution

Th e sample mean and sample variance are given in Example 3.2 as:

�
2 32.31m m= =   �

2 0.3191s s= =

Note that we are using the notation for population mean and popula-

tion standard deviation to make sure that the theorem applies. Th e 

theorem requires the knowledge of population mean and standard 

deviation, and we are assuming them to be the values we obtained 

from the sample.

Insert the data in Equation 3.6: 

( ) 2

1
| | 1P X k

K
m s

⎛ ⎞− < ≥ −⎜ ⎟⎝ ⎠
 

P(|X 32.31| 2 (0.3191)
1

4
) 1

⎛ ⎞−< ≥ ⎜⎝− ⎟⎠

P(|X − 32.31| < 0.6382) ≥ 0.75

Th erefore, at least 75% of the 15 observations will be within two 

standard deviations of the mean. Next we calculate the range “within 

2 standard deviations.”

32.31 − 0.6382 = $31.67

32.31 + 0.6382 = $32.95

Th e easiest way to verify that the result is valid is to sort the data. You 

will notice that the lowest price is $31.91 and the highest price is 

$32.85. Th erefore, 100% of the data are within two standard deviations 

of the mean, which exceeds the predicted minimal percentage of 75%.
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Standardization

In order to be able to compare diff erent objects with diff erent scales we 

need a tool that places everything in a unifi ed perspective. A value can be 

standardized by fi nding its distance from the population mean, that is, 

its individual error, and then scale the result or put it in perspective with 

respect to its standard deviation. 

 

Observed Expected

Standard Deviation of the Observed
Z

−
=  (3.8)

Th e unit of measurement is in standard deviation.

If a data point is 72 and its expected value and standard deviation are 

70 and 4.3, respectively, then the estimated error is ∈̂ = 72 − 70 = 2. Its 

standardized value is:

Standardized va
2

0.465
4.3

lue ==

Th e data point is said to be 0.465 standard deviations to the right of its 

mean. If an ordinary data point is selected and its standardized value is 

calculated, then that value is called a Z score.

 

X
Z

m

s

−=  (3.9)

Th erefore, the two statements “the data point is 0.465 standard devia-

tions above its mean” and “the Z score for the data point is 0.465” mean 

the same. Had the Z score been negative, then the data point would have 

been on the left side of its mean. If a random variable is from a popula-

tion with known mean and variance, then its standardized value is called 

a Z score.

Example 3.4

Calculate the Z scores for closing prices of Microsoft stock from March 

12 to March 30. Assume that the population’s mean and variance are 

equal to the sample mean and variance, respectively. 

(Continued)
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Solution

Use Equation 3.9 and the following values from Example 3.2:

�
2 32.31m m= =   �

2 0.3191s s= =

Note that we are using the notation for population mean and popula-

tion standard deviation to make sure that the theorem applies. Th e 

theorem requires the knowledge of population mean and standard 

deviation, and we are assuming that we know them to be the values we 

obtained from the sample.

Date MSFT Z Score
12 Mar. $32.04 −0.86

13 Mar. $32.67 1.11

14 Mar. $32.77 1.43

15 Mar. $32.85 1.68

16 Mar. $32.60 0.89

19 Mar. $32.20 −0.36

20 Mar. $31.99 −1.02

21 Mar. $31.91 −1.27

22 Mar. $32.00 −0.99

23 Mar. $32.01 −0.95

26 Mar. $32.59 0.86

27 Mar. $32.52 0.64

28 Mar. $32.19 −0.39

29 Mar. $32.12 −0.61

30 Mar. $32.26 −0.17

0.00

Th e sum of the Z scores is provided at the bottom, which is zero. Th is 

is a mathematical property of individual errors, which add up to zero. 

See Defi nition 3.5.

(Continued)
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Correlation Coeffi cient Is the Average 
of the  Product of Z Scores

Correlation coeffi  cient was introduced in Chapter 2. It measures the 

degree of association between two variables.

( )mmm m
s ss

r
s s s s

⎛ ⎞−−∑ − − ∑ ×⎜ ⎟⎝ ⎠
= = = =

∑
( )( )( ) YX

X Y

X YXY X Y

X Y X Y

YX Y

N N

X

ZN Z

Th e above derivation depends on the defi nition of a parameter as a 

constant. Th is allows moving parameters, such as standard deviations, 

into a summation notation. Note that anything that is added and divided 

by the number of observations is an average number. In this case, the 

product of two Z scores (Z
X 
Z

Y
) is added and divided by N. Hence, cor-

relation coeffi  cient is the average of the product of two Z scores. 

Standard Error

When data is obtained from a sample, the standard deviation of the esti-

mated sample statistics is called a standard e rror. Th is concept will be 

addressed in detail when the sampling distribution of the sample mean 

is discussed in Chapter 5. As the distributional properties of sample 

standard deviation are diff erent than that of the population standard 

deviation, we had to assume that the standard deviation obtained from 

the samples in Examples 3.2 and 3.4 were known to be the same as the 

population standard deviation.

ˆˆ
2Standard Error mms s= =

Usually, the standard deviation of the sample mean is also unknown 

and has to be estimated, which is represented with a hat. 

� �2
ˆ ˆSample Standard Error m mss= =

Th erefore, the correct representation of the t statistics from a sample is:

 
�̂

ˆ
t

m

m m

s

−=  (3.10)
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Note that Equation 3.10 is called a t and not a Z as in Equation 3.4. Th e 

reason for the diff erence in names is due to the diff erence in the denomi-

nators of the two equations. Gosset1 showed that if the population vari-

ance is unknown and has to be estimated by the sample variance, then the 

resulting standardization does not have a normal distribution and does in 

fact have a student t distribution. 

Defi nition 3.1

Th   e Degree of Freedom is the number of elements that can be chosen 

freely in a sample. Th e degree of freedom only applies to a sample. Th e 

population parameters are constant values and are estimated by sample 

statistics.

Example 3.5

Let us have a small population, say, sized fi ve. For example, consider a 

family with fi ve children of ages 3, 5, 7, 8, and 9. Let us take samples 

without replacement of size three from this population. Th ere will be 10 

diff erent possible samples. Th e population mean is 32/5 = 6.4, that is, 

the average age of the children is 6.4 years. Th e mean value governs the 

outcome of the average of the mean of the samples, as is demonstrated 

below. Th e 10 possible samples and their corresponding means are:

Sample Mean 
8, 3, 7 6

8, 3, 5 5.333

8, 3, 9 6.667

8, 7, 5 6.667

8, 7, 9 8

8, 5, 9 7.333

3, 7, 5 5

3, 7, 9 6.333

3, 5, 9 5.667

7. 5. 9 7

Total 64

(Continued)
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Even though none of the sample means equals the population 

mean, the population mean has exerted its infl uence on the  sample 

means. Find the average of the 10 possible sample means. It is 

64 / 10 = 6.4. Th erefore, the expected value or the average of all the 

possible sample means is equal to the population mean. Even if we 

do not know the population mean, every population has a mean, 

and that mean will infl uence all the sample means. It is even pos-

sible to prove, mathematically, that the average of sample means is 

equal to the population mean. In mathematical statistics the average 

is formally defi ned as the expected value and is represented by an E, 

therefore, E (m̂) = m.

In the Example 3.5, this means that any 9 of these 10 possible samples 

can be chosen freely. After 9 samples and their means are obtained, the 

10th, or the last one, is forced to have a mean value such that the average 

of all the sample means equals the population mean. Let us assume that 

the fourth possible sample in the above list is the one that is not taken 

yet, and its mean has not been calculated. Th e mean of this sample has 

to be 64 − 57.222 = 6.778. Within this sample any two numbers can be 

selected at random, but the last one must be such a number that its aver-

age equals 6.778. Two of the three numbers 8, 7, and 5 can be randomly 

selected. Say 5 and 7 are selected. Th e last number must be 8, since this is 

the only number that will make the average of this sample equal to 6.778 

and the average of all the sample means equal to m = 6.4. In general, n − 1 

sample points can be selected at random, but the value of the remaining 

one will be determined automatically by the value of the population. One 

degree of freedom is lost for every parameter that is unknown and must 

be estimated by a statistics.

Computation of variance requires the knowledge of the population 

mean. 

2
2 ( )X

N

m
s

∑ −=
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If the population mean m is not known, the value of s2 cannot be deter-

mined. If instead of m its estimate is obtained, then the sample mean, or 

m̂ is used. Th e sample variance then is:

� 2
2 ˆ( )

1

X

n

m
s

∑= −
−

and it will lose one degree of freedom. Th e result of the adjustment to 

the sample variance—that is, dividing by the degree of freedom, n − 1, 

instead of the sample size, n—is that the sample variance becomes an 

unbiased estimate of the population variance.2

Properties of Estimators

Sample statistics are used as estimators of the population parameters. 

Since sample statistics provide a single value, they are also called point 

estimates. It is desirable to be able to compare diff erent point estimates 

of the same parameters and provide useful properties. 

Let q, pronounced theta, be the population parameter of interest. Let 

its estimate be q̂, pronounced theta hat. Like any other point estimate, 

q̂ is a sample statistic and a known variable. 

Defi nition 3.2

If the expected value o f a point estimate equals the population parameter, 

then the estimate is unbiased. In symbols:

 E(q̂) = q (3.11)

It can be shown that the sample mean (m̂), variance (
�2s ), and 

 proportion (p̂) are all unbiased estimates of their corresponding popula-

tion parameters.

ˆE( )m m=

 
�2 2E( )s s=

ˆE( )p p=
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Defi nition 3.3 

Th e effi  ciency of a point estimator is said to be higher if it has a smaller 

variance. If q̂
1
 and q̂

2
 are two point estimates of q and Var (q̂

1
) < Var (q̂

2
) 

then q̂
1 
is more effi  cient than q̂

2
. For example, the sample mean is more 

effi  cient than the sample median in estimating the population mean.

Defi nition 3.4 

A point estimate is a consistent estimator if its varian ce gets smaller as the 

sample size increases. Th e variance of the sample mean 

� 2
2

n

s
s =

will decrease as the sample size increases. As the sample size increases, 

the sample mean will have a smaller and smaller variance. And as it is an 

unbiased estimate of the population mean, it will get closer and closer to 

the population mean. 

Error

Statistics deals with random phenomena. For a set of values X
1
, X

2
, ..., X

n
 

there is a representative or expected value (mean). Th e Greek letter m is 

used to represent the expected value. Th e diff erence of each value from 

the expected value, also called the deviation from the mean, represents an 

individual error. 

Defi nition 3.5

An  individual error is the diff erence between the value of an observa-

tion and its expected value. Th e expected value or the mean is the best 

estimate or representative of a population and, hence, the sample. For 

example, the average starting salary for an economics major in 2011 

was $54,400. If a recent economics graduate is selected at random his 

or her expected income is $54,000 then the error associated with this 

 observation is $400. In other words, the observation missed the expected 
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value by $400. Th e reason for calling the deviation an error is that we do 

not have any explanation for the deviation other than a random error. 

Th erefore, the error is what we cannot explain. Since observations vary 

at random, the errors vary at random as well. Furthermore, the portion 

that cannot be explained depends on the model or procedure used. Some-

times it is possible to explain part of variation of observations from their 

expected value by developing more sophisticated methods. Th e portions 

that can be explained by the new procedure are no longer “unexplained,” 

and, thus, not part of the error any more. Th e unexplainable portion is 

still called an error. Note that unless all the observations in a sample or 

population are identical, they will deviate from their expected value and, 

hence, have a random error. 

Since there are as many individual errors as there are observations, 

we need to summarize them into fewer variables. A popular and useful 

statistic is the average or the mean. However, the average of individual 

errors is always zero because the sum of all errors is zero. Recall that indi-

vidual errors are deviations from their expected values, some of which are 

negative and the others are positive. Th us, by defi nition, they cancel each 

other out and the sum of all deviations is always zero. Symmetric distribu-

tions have equal numbers of positive and negative individual errors, but 

this is not a necessary condition for their sum to add to zero. Th e sum 

of individual errors for non-symmetric distributions is also zero, in spite 

of the fact that the count of negative values is diff erent from the count of 

the positive values. Th is is due to the fact that the expected value or the 

mean is the same as the center of gravity of the data. Imagine data on a 

line where they are arranged from smallest to largest. Placing a pin at the 

point of the average will balance the line. 

Th ere are several ways to overcome individual errors canceling each 

other out. One way is to use the absolute value of the individual errors. 

Th e average of the absolute values of the individual errors is called mean 

absolute error (MAE). Th e mean absolute error is commonly used in 

time series analysis. One advantage of MAE is that it has the same unit of 

measurement as the actual observations.

Another way to prevent individual errors from canceling each other 

out is to square them before averaging them. We are already familiar with 

this concept, which is called a variance.
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Defi nition 3.6

Th e variance is the average of the sum of the squared individual errors.

One advantage of variance over the mean absolute error is that it 

squares errors, which gives more power to values that are further away 

from the expected value. Th is makes the variances disproportionately 

large as individual errors get larger. Th e variances use of the squared 

 values of the individual errors is its shortcoming as well because the 

unit of measurement for the variance is the square of the unit of 

 measurement of the observations. If the observations are about length 

in feet, then the variance will be in feet squared, which is the unit of 

measurement of an area and not length. Seldom, if ever, the squared 

values of economic phenomenon have any meaning. If the variable of 

interest is price, measured in dollars, then the unit of measurement 

of its variance is in dollars-squared, which has no economic  meaning. 

To  remedy this problem, it is necessary to take the square root of 

 variance.

Defi nition 3.7

Th e standard deviation is the square root of the variance.

Defi nition 3.8

Th e standard deviation is the average error.

How Close Is Close Enough?

If the sum of the residual is not zero, then c heck your formulas and com-

putations. If the defi nitional formulas are used or the results are rounded 

off  at early stages, the sum of individual errors may be diff erent than zero. 

Use of computational formulas and less round-off  will reduce or elimi-

nate this problem provided the sample size is suffi  ciently large. If you use 

fi ve decimal places, the fi nal result can be accurate to about four decimal 

places. If you have been using fi ve decimal places in your calculations and 

the sum of the residual is 0.00007, the property has not been violated. It 

is zero to four decimal places as expected.
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Sum of Squares

Th e sum of squares of deviation of values from their expected value 

(mean) is a prominent component of statistics. As we saw previously, 

the square of these individual errors divided by the population size is 

called population variance. Th e concept is the same for a sample, except 

that the divisor is the degree of freedom. Earlier, it was explained that 

the portion of the phenomenon that cannot be explained is called an 

error, and that the variance is one way of representing it. When alterna-

tive models are used to explain part of the error, it is more meaning-

ful to focus on the numerator alone, at least at fi rst. Th e numerator, or 

variance, is also called total sum of squares (TSS). Once a set of data is 

collected then the TSS becomes fi xed and will not change. Th e TSS will 

only change if another sample from the same population was collected at 

random. Decomposition of TSS is very common in a branch of statistics 

called experimental design. In experimental design methodology TSS is 

decomposed into diff erent components based on the design. Th ese com-

ponents include treatment SS, block SS, main eff ect SS, and so forth. 

In all cases there is always a component that remains unexplained, and 

is referred to as residual or error SS. By defi nition, dividing this unex-

plained remainder by appropriate degrees of freedom would result in the 

variance of the experiment, customarily known as mean squared error 

(MSE) or mean squares error. As one would expect, the square root of 

MSE is called root MSE, which is the same as the standard error. Just 

as a reminder:

2sum(observed expected)
MSE

n k

−
=

−

Note that the term in the parentheses is the individual error. Th e k in the 

denominator is the number of parameters in the model, and the entire 

denominator is the degrees of freedom.

Skewness

As you noticed in Chapter 2, several of the relationships between mean, 

mode, and median were described. Th e relationship between these 
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parameters can also be used to determine if the data are symmetric and 

the extent of the pointedness of the data. Of course, the data cannot be 

fl at, pointed, symmetric, or skewed. Th e fact is that we are talking about 

the shapes of data when they are plotted. 

Defi nition 3.9

Th e skewness refers to the extent that a graph of a distribution function 

deviates from symmetry. A distribution function that is not symmetric 

is either negatively skewed, as in Figure 3.1, or positively skewed, as in 

Figure 3.2.

Figure 3.1. Negatively skewed distribution.

Mean Median Mode

Figure 3.2. Positively skewed distribution.

MeanMedianMode
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Relation Between Mean, Median, and Mode

Th e mean, median, and mode of symmetrical distributions are identical. 

If the distribution is positively skewed, the order of magnitude is 

 Mode < Median < Mean (3.12)

If the distribution is negatively skewed, the order of magnitude is

 Mean < Median < Mode (3.13)

Th e importance of skewness is in its use to test if the data follows a normal 

distribution. Normal distribution function is discussed in Chapter 4.

Defi nition 3.10

Th e Pearson coeffi  cient of skewness is defi ned as:

3(mean median)
S

standard deviation

−=

Th e range of skewness is −3 < S < 3, and for a symmetric distribution 

S = 0. Th e sign of the Pearson coeffi  cient of skewness determines if it is 

positively or negatively skewed. 

Defi nition 3.11

Kurtosis is a measure of pointedness or fl atness of a symmetric distri-

bution. Th e exact defi nition of Kurtosis requires the knowledge of the 

moments, which is beyond the scope of this text. A positive Kurtosis 

indicates the distribution is more pointed than the normal distribution, 

and a negative value for Kurtosis indicates the distribution is fl atter than 

normal distribution. Kurtosis and skewness are commonly used to test 

whether a data set follows a normal distribution. 



CHAPTER 4

Distribution Functions

Defi nitions and Some Concepts

Sometimes it is possible to represent random variables as a function in a 

way that the function can determine the probability of an outcome of the 

random variable. 

Defi nition 4.1

Th e outcome of a random variable is determined by chance. Th e outcome 

of a random variable might be constant as in the case of observing a head 

when a coin is fl ipped, or it can be a variable value such as the length of time 

it takes for diff erent students to learn this chapter. Th e subject “statistics” 

is used to study the properties of random variables and how they behave. 

Defi nition 4.2

Th e probability distribution determines the probability of the outcomes 

of a random variable. In its simplest form, the probability distribution 

consists of values and probabilities. Th e probability distribution for fl ip-

ping a coin is:

Head with probability 1/2
( )

Tail with probability 1/2
f x

⎧
= ⎨

⎩

Th ere are more formal ways to defi ne probability distribution that are 

beyond the scope of this text. A distribution function can be presented in the 

form of a function, a table, or a statement. Th e subject of probability distri-

bution is vast, but we will focus on the few items needed to continue our dis-

cussion. Th ere are two types of random variables, discrete and continuous.
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Defi nition 4.3

A discrete random variable consists of integers only.

Defi nition 4.4

A continuous random variable can take any value over a range.

Defi nition 4.5

Th e probability distribution for a discrete random variable is called a 

discrete probability distribution and is represented as f (x).

Defi nition 4.6

Th e probability distribution for a continuous random variable is called 

a probability density function.

In this text we may use distribution function for both discrete and 

continuous random variable as a matter of convenience. 

Continuous Distribution Functions

Th ere are numerous distribution functions, both discrete and continuous. 

In this text, for the sake of space only, the distribution functions that are 

used to provide inference are discussed. 

Normal Distribution Function

Normal distribution functions are the most important and most widely 

used distribution function. Standardized normal distribution functions, 

called standard normal, can be applied in any area and situation, provided 

that one is assured of the normality and either knows, or can estimate, 

the mean and variance of the distribution. Standard normal values are 

the Z scores of values that have a normal distribution. Converting values 

from diff erent normal distributions with diff erent means and variances to 

standard normal allows us to compare them. Furthermore, any standard-

ized value can be compared with the theoretical standard normal table. 
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Since normal distribution is a continuous distribution function, and 

there are infi nitely many points on any continuous interval, the probability 

of any single point is always zero. For continuous distribution functions, 

such as normal distribution, the probability is calculated for an interval. 

Direct computation of such probabilities requires integral calculus. For 

simplicity, a table of standard normal values is used. Spreadsheets such 

as Microsoft Excel are capable of computing the standard normal values. 

A table of values for normal distribution is provided in the Appendix. 

Properties of Normal Distribution

A normal distribution is depicted in Figure 4.1. Th e normal distribution 

curve is unimodal and symmetric. Consequently, its mean, mode, and 

median are all the same and fall in the middle of the curve. You may notice 

that the tails of the normal curve do not touch the x-axis. Th is is another 

property of the normal distribution. Th e x-axis is actually an asymptote 

of the functions, which means the curve does not touch the axis even at 

infi nity. Th is implies that the tails are stretched to infi nity, but in practice, 

we do not stretch the tails that far. As you will soon see, the probability 

of the tail areas becomes very negligible not too far from the center, mak-

ing it unnecessary to be concerned with infi nity. A normal distribution 

has two parameters: its mean and variance. In other words, the mean and 

variance of a normal distribution determine its specifi c center and spread. 

Since distribution is commonly used and has so many applications, it has 

become known as normal distribution. Furthermore, the mean and vari-

ance of the normal distribution are represented by m and s 2, respectively.

Th e area under the normal curve is equal to 1, as is the area under 

any distribution density function. Customarily, the distance from the 

center of normal distribution is measured by its standard deviation. If two 

m + sm

Figure 4.1. Normal distribution with mean = m and variance = s 2.



84 STATISTICS FOR ECONOMICS

normal distribution functions have the same mean and variance then the 

area under the curve for two points that are the same distance from the 

center are equal. By converting any normal distribution to one with a mean 

of 0 and a standard deviation of 1, we are able to calculate the area under the 

curve between the center and any point for any normal distribution regard-

less of its mean and variance. Th e area under normal distribution represents 

the probability between any two points on the curve. We will soon see that 

the probability for a point to be within one standard deviation from the 

mean of a normal distribution function is about 68%. Since the normal 

distribution is symmetric, it is possible to calculate area from the center to a 

point on one side of the center, and the probability for a point of the same 

distance from the mean on the other side, which will be equal. 

Standardizing Values from a Normal Distribution

In Chapter 3 we discussed Z score, which can be used to compare dis-

similar things by converting them to the same basis, which is by obtain-

ing their deviations from their expected values and scaling them by their 

standard deviation. Th e process is also called standardization. Standard-

ized values are comparable. Th e same is true if we standardize the values 

of a normal distribution. Note that the mean of normal distribution is m 

and its variance is s 2. As a result of standardization of a normal distribu-

tion, one obtains a normal distribution for which the mean is 0 and the 

variance is 1. We show this as N(0, 1). Since the area under any normal 

distribution is equal to 1 regardless of the value of its mean or variance, 

the area under N(0, 1) is also equal to 1. Th is makes it possible to create 

a single table for N(0, 1) and generalize to any other normal distributions 

with diff erent means and variances. Th e graph for N(0, 1) is exactly the 

same as the graph in Figure 4.1. Th e one depicted below in Figure 4.2 has 

10

Figure 4.2. The area under the normal distribution between 0 and 1.
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the added feature that marks the point which is one standard deviation to 

the right of the center. 

Area Under a Normal Distribution with Mean Zero 
and Variance One

To calculate area under a normal distribution, we can use Table A1 

from the Appendix. Th is table is similar to most other normal tables 

except it is more accurate because it graduates at half of the custom-

ary steps of most normal tables. To read the value of 1.0, go to the left 

margin of the table and identify the row marked 1.0. Th en identify the 

column marked 0. Th e value at their intersection is 0.3413, which is 

the probability corresponding to the shaded area between 0, the mean, 

and point 1, which is one standard deviation away from the mean to 

the right. 

In the above section we stated that about 68%, or a little more than 

2/3 of all observations, are within one standard deviation of the center. 

Since the points on each side of the center are the mirror images of 

each other, the probability of being one standard deviation below the 

mean is the same as the probability of being one standard deviation 

above the mean, and hence equal to 0.3413. Th erefore, the probabil-

ity of being within one standard deviation of the mean is double the 

amount of 0.6826, or about 68%. Computations of other values are 

similar.

P (0 < Z < 1.49) = 0.4319

P (0 < Z < 2.63) = 0.4957

P (−1.52 < Z < 0) = 0.4357

For other variations, it is best to graph the area and perform simple 

algebra to obtain the results.

P (−1.52 < Z < 1.49) = P (−1.52 < Z < 0) + P (0 < Z < 1.49) 

        = 0.4357 + 0.4319 = 0.8676

See Figure 4.3 for clarifi cation.
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See Figure 4.4 for fi nding the shaded area for the last example. Make 

sure you put the point further away from the center fi rst, because of rules 

of geometry, and this will guarantee that you would not obtain a negative 

probability, which does not make any sense. 

Obtaining Probability Values for Normal Distribution with Excel

Th e above examples can be obtained by using the following command 

in Excel.

=NORMDIST(1.49,0,1,1) − 0.5 = 0.43188

Th e formula consists of:

=NORMDIST(X, mean, standard deviation, True)

where “true” represents the “cumulative” value. In this case the entire area 

under the curve consists of area to the left of the mean, which is equal to 

Figure 4.3. Area under normal distribution between −1.52 and 1.49.

0.4357 0.4319

–1.52 1.490

Figure 4.4. Area under normal distribution between −1.69 and −1.58.

–1.69 –1.58 0

P (−1.52 < Z < −1.49) = P (−1.52 < Z < 0) + P (−1.49 < Z < 0) 

    = 0.4357 − 0.4319 = 0.0038
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half the entire area or 0.5. Th at is why we are subtracting 0.5 to obtain the 

area from the mean to point 1.49.

Alternatively, point to the arrow on the side of the “Σ AutoSum” 

on Excel’s command ribbon and choose “more function.” From the 

Figure 4.5. Pull-down window for Excel functions.

Figure 4.6. Excel window for normal distribution.



88 STATISTICS FOR ECONOMICS

 drop-down menu choose “Statistical” in the window labeled “or select a 

category” and scroll down until you get to NORMDIST command.

Th en scroll down until you see NORMDIST. Upon selecting the 

option, a new window opens up as shown in Figure 4.6.

Place the appropriate values in the correct boxes and press OK. If 

you look at the resulting cell, you will see the formula shown previously, 

except for 0.5, which we added to convert the result to a value between 

zero and a Z value. When using Excel, write the problem as in the forms 

shown previously, mark the area under the curve, and then decide if you 

are subtracting 0.5, adding probabilities, or subtracting them based on 

the shaded area. 

Area Under a Normal Distribution with any Mean and Variance

Convert all normal distributions to the standard normal by standardizing 

all values.

1. Rewrite the question using probability notations.

2. Convert the values into Z scores. Do not forget the probability.

3. Draw a graph and shade the area under investigation.

4. Look up the probability or use Excel to obtain probability.

When fi nding the area between two Z values, if Z values are on two 

sides of zero, that is, one is positive and the other is negative, fi nd the area 

between 0 and each Z value and add the probabilities. If the Z values are 

on the same side of 0, that is, either both are negative or both are positive, 

fi nd the area between 0 and each Z value and subtract the smaller prob-

ability from the larger one. 

Continuous distribution functions such as normal distribution share 

two concepts: (1) length and (2) area. Th e Z score is a measure of length. 

It shows how far a point is from the center (mean) of standard normal in 

terms of standard deviations. In other words, Z score indicates the num-

ber of units a point deviates from the mean. Th e probability of a particu-

lar Z value from the mean is an area. Th e area between mean (zero) and a 

point is the value provided in the standard normal table.
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Example 4.1

Assume that the random variable X has a normal distribution with 

mean 16.9 and standard deviation of 3.01. Find

1. P (X < 22.51)

2. P (X > 11.3)

3. P (13.93 < X < 23.41)

4. P (11.43 < X < 15.61)

5. P (17.64 < X < 21.45)

Solution

Th e fi rst step is to standardize the values, both alphabetically and 

numerically.

1. 
22.51 16.9

( 22.51)

(0 1.86) 0.5 0.4689

( 1.86)
3

0.5 0.968

01

9

.

X
P ZP X P

P Z

m

s

− −⎛ ⎞> = <⎜< =

= < < + =
⎝

=

⎟⎠
+

Note that the area of interest is everything to the left of 1.86.

Alternatively, the Excel formula below will give the same answer:

 =NORMDIST(22.51, 16.9, 3.01, 1) = 0.9689

2. ( 11.3) ( 1.86)

( 1.86 0) 0.5 0.4689 0.5 0

11.3 16.9

.

3 1

9 89

.0

6

P X P P Z

P Z

X m

s
> = = > −− −⎛ ⎞>⎜ ⎟⎝ ⎠

= − < < + = + =

Alternatively, the Excel formula below will give the same answer:

 =NORMDIST(22.51, 16.9, 3.01, 1) = 0.9689

3. 
13.93 16.9 23.41 16.9

3.
(13.93

01 3.
23.41

0
)

1
P X

X
P

m

s

− − −⎛ ⎞<< = <⎜⎝< ⎟⎠
 

= P (−0.99 < Z < 2.16) 

= P (−0.99 < Z < 0) + P (0 < z < 2.16) 

= 0.3389 + 0.4846 = 0.8235

(Continued)
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4. 
11.43 16.9 15.61 16.9

3.
(11.43

01 3.
15.61

0
)

1
P X

X
P

m

s

− − −⎛ ⎞<< = <⎜⎝< ⎟⎠  

= P (−1.82 < Z < −0.43) 

= P (−1.82 < Z < 0) − P (0 < Z < −0.43) 

= 0.4656 − 0.1664 = 0.2992

5. 
17.64 16.9 21.45 16.9

3.
(17.64

01 3.
21.45

0
)

1
P X

X
P

m

s

− − −⎛ ⎞<< = <⎜⎝< ⎟⎠
 

= P (0.25 < Z < 1.51) 

= P (0 < Z < 1.51) − P (0 < Z < 0.25) 

= 0.4345 − 0.0987 = 0.5332

(Continued)

Example 4.2

Let the random variable X have a normal distribution with mean 15 

and standard deviation of 3. 

1. What is the cut off  value for the top 1% of this population?

2. Find the interquartile range.

Solution

1. In this example, the probability of the outcome is given and the 

value that determines the desired probability is the objective. 

P (Z > z) = 0.01 

where the lowercase z represents a specifi c value. Search for the 

probability that corresponds to 0.5 − 0.01 = 0.49 in the body of 

the normal table. Th e Z score that corresponds to the probability 

of 0.49 is Z = 2.325. 

Next, determine the X value by reversing the computation of 

the Z score.

(Continued)



 DISTRIBUTION FUNCTIONS 91

(Continued)

1
2.32

5
5

3

X X
Z

m

s
= =− −=

X = 21.975

Th erefore, 1% of the population has an X value greater than 

21.975. Note that 21.975 is the 99th percentile.

2. For the fi rst quartile:

P (Z < − z
1
) = 0.25

P (−z
1 
< Z < 0) = 0.5 − 0.25 = 0.25

Search the body of the table for 0.25. Th e closest number is 

0.2502 that corresponds to the Z score of z
1
 = −0.675. In the Z 

score  formula solve for the value of X.

15
0.675

3

X X
Z

m

s

− −= −= =

Th erefore X = 12.975 is the fi rst quartile.

For the third quartile:

P (Z < z
3
) = 0.75

P (0 < Z < z
3
) = 0.75 − 0.5 = 0.25

From the above z
3
 = +0.675 

15
0.675

3

X X
Z

m

s

− −= += =

and hence the third quartile is:

X = 17.025

Th e middle 50% of the population lies between 12.975 and 

17.025.

(Continued)
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Solution Using Excel

1. Note that in Excel the top 1% is entered as 0.99 for probability.

Point to the arrow on the side of the “Σ AutoSum” on Excel’s ribbon 

command and choose the “more function.” From the drop-down 

window choose “Statistical” in the window labeled “or select a 

category” and scroll down until you get to the NORMINV 

 command (see Figure 4.5). 

Figure 4.7. Excel window for inverse normal values.

Place the appropriate values in the correct boxes and press OK.

Th e result 21.97904 is displayed, which is slightly diff erent 

from the result from the table due to roundoff  error. You could 

have entered the following formula as well.

 = NORMINV(0.99,15,3) 

2. 

= NORMINV(0.25,15,3) = 12.97653

= NORMINV(0.75,15,3) = 17.02347

Again the results are slightly diff erent due to roundoff  error. 

Interestingly, both the above values and the values for the normal 

distribution table are obtained from Excel. 

(Continued)
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Nonconformity with Normal Distribution

Normality Versus Skewness

Normal distribution is the cornerstone of statistical analysis. Th e exact 

shape of the normal curve depends on the probability density function 

of the normal distribution. Any deviation from the normal  probability 

 density function results in skewness or Kurtosis. It is easy to detect 

skewness visually because skewed distributions are not symmetric. As 

a member of continuous symmetric distribution functions, the normal 

 distribution function has the property that its mean, mode, and median 

coincide. Th e relationships between these three measures were provided 

in Chapter 3 for positively and negatively skewed distributions. In the 

subsequent graph, the positive and negatively skewed functions are super-

imposed on the normal distribution for comparison.

Normality Versus Kurtosis

Kurtosis measures the degree of fl atness or pointedness of a symmetric 

curve as compared to a normal distribution. Th ere is a formal measure 

Figure 4.8. Comparison of negative skewness with normal distribution.

Mean Median Mode

Figure 4.9. Comparison of positive skewness with normal distribution.

MeanMedianMode
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of Kurtosis but involves the concept of the moment of a function which 

is beyond the scope of this text. However, it is benefi cial to depict the 

graph of a fl atter curve, called Platykurtic, which corresponds to a Kurto-

sis measure with negative value. A more peaked curve, called Leptokurtic 

corresponds to a Kurtosis measure with a positive value. Figures 4.10 and 

4.11 represent comparisons to the normal curve.

Chi-Squared Distribution Function

Theorem 4.1

Let the random variable X have a normal distribution with mean and 

positive variance:

X ∼ N (m, s 2)

Th en, the random variable

2

2

( )X
V

m

s

−=

Figure 4.11. Comparison of positive Kurtosis (Leptokurtic or pointed) 
with normal.

Figure 4.10. Comparison of negative Kurtosis (Platykurtic or fl atter) 
with normal.
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will have a chi-squared (c2) distribution with one (1) degree of freedom.

V ∼ χ2 (1)

Note that Z X m s= −  hence Z 2 is a χ2 (1). Th erefore, the normal 

 values can be squared to obtain probabilities for the chi-square distribu-

tion with 1 degree of freedom.

P (|Z| < 1.96) = 0.956

P (Z 2 < (1.96)2) = P (Z 2 = 3.842) = 0.95

Th is is identical to the chi-square value with one degree of freedom. 

Th erefore, in confi dence intervals and tests of hypotheses one can use 

either normal distribution or a chi-square distribution. Each one, how-

ever, would be benefi cial in diff erent settings.

Theorem 4.2

Let X
1
, X

2
, .  .  ., X

n
 be a random sample of size n from a distribution 

N (μ, s  2). Recall

� 2
2 ˆ( )

ˆ and
1

x x

n n

m
m s

∑ ∑ −= =
−

Th erefore

 i. 
�2ˆ andm s  are independent.

 ii. 
�2

2

( 1)n s

s

−
is distributed as a chi-squared with (n − 1) degrees of 

freedom. 
�2

2

2

( 1)
( 1)

n
n

s
c

s

− −∼

Th e chi-square distribution is a special case of a gamma distribution. 

In a gamma distribution with parameters α and θ, let α = r/2 and θ = 2 

where r is a positive integer. Th e resulting distribution function will be a 

chi-square distribution with r degrees of freedom. Th e mean will be r and 

the variance will be 2r. 
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t Distribution Function

Theorem 4.3

Let X be a random variable that is N (0, 1), and let U be a random variable 

that is χ2(r). Assume Z and U are independent. Th en 

 

X
t

U

r

=
 (4.1)

has a t distribution with r degrees of freedom. 

Theorem 4.4

Let X be a random variable that is N (m, s2). Use the customary hat- notation 

to represent sample mean and sample variance. Th en the  following rela-

tionship has a t distribution with (n − 1) degrees of  freedom.

 

� ( 1)
2

2

ˆ( )

( 1)

( 1)

n
n

t t

n

n

m m

s

s

s

−

−

=
−
−

∼

 

(4.2)

When population variance is not known, using normal distribution for 

inference is misleading. Th e problem is more acute when the sample size 

is small. 

F Distribution Function

Theore m 4.5

Let U and V  be independent chi-square variables with r
1
 and r

2
 degrees of 

freedom, respectively. Th en
 

 F = 1

2

U
r

V
r

 (4.3)

has an F distribution with r
1
, r

2
 degrees of freedom.
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2

2

1

1,

U

r
r r

r

V
F∼

Th e relation between F and Z is that 

 F = e2Z (4.4)

Th e F Statistics consists of the ratio of two variables, each with a 

chi-squared, c2,  distribution divid ed by their corresponding degrees of 

freedom.





CHAPTER 5

Sampling Distribution 
of Sample Statistics

Sampling

A sample is a subset of population that is collected in a variety of ways. Th e 

process of collecting samples is called sampling. As will become  evident 

in this chapter, random sampling is very important for establishing the 

necessary theories for statistical analysis. For example, if a fi rm has 500 

employees and 300 of them are men, then the probability of choosing a 

male worker at random is 300/500 = 0.60 or 60%. Sampling techniques 

are not limited to random sampling. Each sampling technique has its 

advantages and disadvantages. Th is text is not going to focus on various 

sampling techniques. After a brief discussion about sampling, the focus 

will be on the properties and advantages of random sampling.  Th eories 

that are necessary for performing statistical inferences and are related 

to sampling are discussed in this chapter. In Chapter 2, we explained 

 statistics and defi ned it as: 

Statistics is a numeric fact or summary obtained from a sample. It 

is always known, because it is calculated by the researcher, and it 

is a variable. Usually, statistics is used to make an inference about 

the corresponding population parameter. 

Th e only way to know the parameters of a population is to conduct 

a census. Conducting a census is expensive and, contrary to common 

belief, is not always accurate. Since a census takes time, it is possible that 

the fi ndings are already inaccurate by the time the massive information 

is obtained and verifi ed for mistakes and tabulated. On average, it takes 
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about 2 years or more to release the census results in the United States. 

During this time, all variables of collected data change; for example, new 

babies are born, some people die, and others move. Sampling, on the 

other hand, can be performed in a shorter amount of time, while occa-

sionally the census information is sampled in order to release some of the 

results quicker. 

Sometimes, taking a census is not an option. Th is is not only due to 

the time and money involved, but also because the census itself might 

be destructive. For example, in order to fi nd out the average life of light 

bulbs, they must be turned on and left until they burn out. Barring 

 mistakes, this would provide the average life of the light bulbs, but then 

there will not be any light bulbs left. Similarly, determining if oranges 

were not destroyed by frost requires cutting them up. Other examples 

abound. Conversely, there are lots of other reasons where it is  unrealistic, 

if not impossible, to conduct a census to obtain information about a 

 population and its parameters.

Collecting sample data is neither inexpensive nor eff ortless. Sampling 

textbooks devote many pages of explanation on how to obtain random 

samples from a population. One simple, but not necessarily pragmatic or 

effi  cient way, is to assign ID numbers to all members of the population. 

Th en pull the desired number of sample points by drawing lots at random 

of the ID numbers. 

In this instance, our interest in sampling is very limited. We are inter-

ested in obtaining an estimate from a relatively small portion of a popula-

tion to obtain insight about its parameter. Th e knowledge of parameters 

allows meaningful analysis of the nature of the characteristics of interest 

in the population and is vital for making decisions about the population 

of the study.

As discussed earlier, summary values obtained from a sample are 

called statistics. Since statistics are variables, diff erent samples result in 

slightly diff erent outcomes and the values of statistics diff er, which is 

the consequence of being a random variable. It is possible to have many 

 samples and thus many sample statistics, for example, a mean. It turns 

out that the sample means have certain properties that are very useful. 

Th ese p roperties allow us to conduct statistical inference.
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Defi nition 5.1

Statistical inference is the method of using sample statistics to make 

conclusions about a population parameter. 

Statistical inference requires the population of interest to be defi ned 

clearly and exclusively. Furthermore, the sample must be random in 

order to allow every member of the population an equal chance to appear 

in the sample, and to be able to take advantage of statistical theories and 

methods. Later, we will cover the theories that demonstrate why random 

sampling provides suffi  cient justifi cation for making inferences about 

population parameters. 

Th e method of using information from a sample to make inference 

about a population is called inductive statistics. In inductive statistics, 

we observe specifi cs to make an inference about the general population. 

Th is chapter introduces the necessary theories, while the remaining chap-

ters provide specifi c methods for making inferences under diff erent situa-

tions. We also use deductive methods in statistics. In deductive methods, 

we start from the general and make assertions about the specifi c. 

Statistical inference makes probabilistic statements about the 

expected outcome. It is essential to realize that since random events 

occur  probabilistically, there is no “certain” or “defi nite” statement about 

the  outcome. Th erefore, it is essential to provide the probability of the 

 outcome  associated with the expected outcome. 

Sample Size

Before we discuss the role of randomness and the usefulness or eff ective-

ness of a sample, it is important to understand how other factors infl uence 

the eff ectiveness of the sample statistics by providing reliable inference 

about a population parameter. Even if a sample is chosen at random, two 

other factors attribute to the reliability of the sample statistics. Th ey are 

the variance of the population and the sample size. For a population with 

identical members, the necessary sample size is one. For example, if the 

output of a fi rm is always the same, say 500 units per day, then  choosing 

any single given day at random would be suffi  cient to determine the fi rm’s 

output. Note that in the previous example, there was no need to sample at 
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random, although one can argue that any day that is chosen is a random 

day. However, if the output changes every day due to random factors 

such as sickness, mistakes during production, or breakdown of equip-

ment, then sample size must increase. It is important to understand the 

possible diff erence in output among the days of the week and the month, 

if applicable. For example, Mondays and Fridays might have lower out-

put. By Friday, workers might be tired and not as productive. Machinery 

might break or need to be cleaned more often towards the end of the 

week. On Mondays, workers might be sluggish and cannot perform up 

to their potential. Workers might be preoccupied towards the end of the 

month or early in the month when they are running out of money, or 

when their bills are due. Th ese are just some of the issues that might have 

to be considered when setting up sampling techniques in order to assure 

the randomness of the sampled units. Th erefore, there should be a direct 

relationship between the sample size and the variance of the population, 

and larger samples must be taken from populations with larger variance. 

Since statistical inference is probabilistic to obtain higher levels of confi -

dence, we should take larger samples. 

It can be shown that the required sample size for estimating a mean 

is given by:

 

2 2

2
2

Z
n

E

a s
=

 
(5.1)

where, 2

2
Za  is the square of the Z score for desired level of signifi cance,

  s2 is the variance of the population,

  E  2 is the square of tolerable level of error.

Example 5.1

Assume that the population’s standard deviation for the output level is 

29. Also, assume that we desire to limit our error to 5%, which makes the 

level of signifi cance 95%. Let’s allow the tolerable level of error to be 5. 

To obtain the sample size, we fi rst need to obtain the Z score. In 

Figure 5.1, the area in the middle is 95%. Th erefore, the area at the two 

tails is equal to 0.05. 

(Continued)
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Defi nition 5.2

Th e reliability of a sample mean (m̂) is equal to the probability that the 

deviation of the sample mean from the population mean is within the 

tolerable level of error (E):

 Reliability = P (−E £ m̂ − m £ E ) (5.2)

Example 5.2

A 95% reliability for the sample mean is given by the area between the 

two vertical lines in Figure 5.2.

Reliability = P (m − E (−E £ m̂ − m £ E) = 0.95

–1.96 0

0.025 0.025
95%

1.96

Figure 5.1. Graph of a normal distribution.

Furthermore, the area between zero and the right-hand cutoff  point is 

0.45, which according to the table corresponds with a Z score of 1.96. 

In Excel, you could use the following formula:

=NORMINV (0.975,0,1) 

Note that the answer from Excel is 1.959964, which is slightly off .

Th e necessary sample size is given by: 

n =
 

2 2

2

3.84 841(1.96 )(29 )

255

×
=  = 129.23

Since fractional samples are not possible, we must always use the 

next integer to assure the desired level of accuracy. Th erefore, the 

 minimum sample size should be 130.

(Continued)
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And the tolerable level of error is equal to: 

E = 1.96 
n

s

Figure 5.2. The range for 95% reliability for sample mean.

m – e m + em

95%

An astute student will notice that in order to estimate the sample size, 

it is necessary to know the variance. It is also imperative to understand 

that in order to calculate variance, one needs the mean, which apparently, 

is not available; otherwise we would not have to estimate it. Sometimes 

one might have enough evidence to believe that the variance for a popula-

tion has not changed, while its mean has shifted. For example, everybody 

in a country is heavier, but the spread of the weights is no diff erent than 

those in the past. In situations that the known variance is also believed to 

have changed, the only solution is to take a pre-sample to have a rough 

idea about the mean and variance of the population and then use sample 

estimates as a starting point to determine a more reliable sample size. 

Sampling Distribution of Statistics

As stated earlier, sample statistics are a random variable and change from 

sample to sample. Th is means that the actual observed statistics is only 

one outcome of all the possible outcomes. A sampling distribution of 

any statistics explains how the statistics diff er from one sample to another. 

Th e most commonly used statistics are sample mean and sample  variance. 

Th erefore, we will study their sampling distributions by approaching this 

subject in a systematic way. We begin with sampling distribution for one 

sample mean and distinguish between the cases when  population  variance 

is known and when it is unknown. Next, we introduce two  sample means 

(Continued)
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and address the cases of known and unknown variances, and so on. 

 However, before embarking on this mission, it is necessary to discuss the 

Law of Large Numbers and the Central Limit Th eorem, which are the 

foundations of inferential statistics. 

Theorem 5.1 Law of Large Numbers

For a sequence of independent and identically distributed random vari-

ables, each with mean (m) and variance (s2), the probability that the dif-

ference between the sample mean and population mean is greater than 

an arbitrary small number will approach zero as the number of samples 

approaches infi nity. 

Th e theorem indicates that as the number of random samples increase, 

the average of their means approaches the population’s mean. Since sam-

ple means are statistics and random, their values change and none of them 

is necessarily equal to the population mean. Th e law of large numbers is 

essential for the Central Limit Th eorem.

Theorem 5.2 Central Limit Theorem

Let q be a population parameter. Let q̂ be the estimated value of q that 

is obtained from a sample. If we repeatedly sample at random from this 

population, the variable q̂ will have the following properties:

1. Th e distribution function of q̂ can be approximated by normal 

 distribution

2. E (q̂) = q

3. �

2
2

nq

s
s =

Property number 2, above, states that the expected value of the  sample 

statistics (q̂) will be equal to the population parameter (q). In other words, 

the average of all such sample statistics will equal the actual value of the 

population parameter. Note that as the sample size increases, the  sample 

variance of the estimate ( 2
2s ) decreases. Th erefore, as the  sample  size 

increases, the sample statistics (estimate) gets closer and closer to the 

 population parameter (q). 
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Th e approximation improves when the sample size is large and 

the population variance is known. When the population variance is 

unknown and the sample size is small, then the sample statistics q̂ will 

have the following properties: 

1. Th e distribution function of q̂ can be approximated by t distribu-

tion with (n − 1) degrees of freedom

2. E(q̂) = q

3. �
� 2

2

nq

s
s =

As the sample size increases, the distinction between normal 

 distribution and t distribution vanishes. 

Th e general population parameter q can be the mean (m), the 

 proportion (π), or the variance (s2). For each of the above three param-

eters, we may be dealing with one or two populations (comparison). 

In each case, the mean and variance of the estimator will be diff erent. 

Th ere will be 10 diff erent cases, which can be viewed in a summary 

table. 

Lemma 5.1

Let Y = X
1
 + X

2
 + … + X 

n
,
 
where the Xs are random variables with a fi nite 

mean (m) and a fi nite and known positive variance (s2). Th en,

Y m

s

−

has a standard normal distribution, which indicates that it is a normal 

distribution with mean = 0 and variance = 1.

Sampling Distribution of One Sample Mean

Population Variance Is Known

Sample mean is a statistics. Assume we know the variance of a  population 

from which the sample mean is obtained. Let (m̂) be the mean of a  random 
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sample of size n from a distribution with a fi nite mean (m) and a fi nite and 

known positive variance (s2). Using the central limit  theorem, we know 

the following is true about the sample mean (m̂): 

1. Th e distribution function for (m̂) can be approximated by the  normal 

distribution (since the population variance is known)

2. E(m̂) = m

3. 
2

2
ˆ

n
m

s
s =

Th erefore, we can use the normal table values for comparison 

of the standardized values of the sample mean. Th e knowledge of 

 population variance s2 is essential for completion of the third out-

come. Th e  distribution function of sample mean for samples of size 

30 will be close to normal distribution. For random variables from a 

population that is symmetric, unimodal, and of the continuous type, 

a sample of size 4 or 5 might result in a very close approximation to 

normal  distribution. If the population is approximately normal, then 

the  sample mean would have a normal distribution when sample size 

is as little as 2 or 3.

Example 5.3

Assume that the variance for daily production of a good is 2800 

pounds. Find the sampling distribution of the sample mean (m̂) for 

a sample of size 67.

Solution

1. Th e sampling distribution of sample mean (m̂) is normal

2. E(m̂) = m

3. 2
ˆ

2800

67
ms =  = 41.79

As we see, there is very little computation involved. Nevertheless, the 

theoretical application is tremendous. 
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Example 5.4

Assume that the variance for daily production of a good is 2800 

pounds. What is the probability that in a sample of 67 randomly 

selected days the output is 15 pounds, or more, below average?

Solution

We are interested in a deviation from the population average.

2

ˆ( – ) 600 15
ˆ[( ) 15] 2800

67

P P

n

m m

m m s

⎡ ⎤−⎢ ⎥<= < − = ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

15 15

6.4741.79
ZPZP

⎡ ⎤ ⎡ ⎤< <⎢ ⎥ ⎢ ⎥⎣⎣ ⎦

− −=
⎦

=

 = P [Z < 2.32] = 0.5 − P [Z > 2.32] 

 = 0.5 − 0.4898 = 0.0102

Note that for this problem, we do not need to know the true 

 population mean since we are interested in knowing the probability of 

producing below the population mean. 

Population Variance Is Unknown

Let (m̂) be the mean of a random sample of size n from a distribution with 

a fi nite mean and a fi nite and unknown positive variance (s2). According 

to the Central Limit Th eorem:

1. Th e distribution of (m̂) can be approximated by a t distribution 

function

2. E(m̂) = m

3. 
�

�2
2
ˆ

n
m

s
s =

Th erefore, we can use the t table values, which are provided in th e Appen-

dix for comparison of the standardized values of the sample mean.
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When the population size is small, or if the sample size to  population 

size n N  is greater than 5%, you should use a correction factor with the 

variance. Th e correction factor is 1N n N− − . For fi nite populations, 

the  variance of the sample mean becomes:

2
2
ˆ

1

N n

n N
m

s
s

−=
−

  known variance

�
�2

2
ˆ

1

N n

n N
m

s
s

−=
−

  unknown variance

Summary

Distribution function for one sample mean

Distribution Mean Variance
Population Variance is known Normal m 2

n

s

Population Variance is unknown t m �2

n

s

Sampling Distribution of One Sample Proportion

Let (p̂) be a proportion from a random sample of size n from a distribu-

tion with a fi nite proportion (p) and a fi nite positive variance (s2). When 

both np ≥ 5 and n(1 − p) ≥ 5, then the following theorem is correct based 

on the Central Limit Th eorem:

1. Th e distribution of (p̂) can be approximated by a normal distribu-

tion function

2. E (p̂) = p

3. 2
ˆ

ˆ ˆ(1 )

n
p

p p
s

−=

Note that in order to obtain the variance of the sample proportion, we 

must estimate the population proportion using the sample proportion. 

Th us, 
�2 2

ˆ ˆp ps s= .
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Th erefore, we can use the normal table values for comparison of the 

standardized values of the sample mean. Note that the symbol pi (p) 

is used to represent the sample proportion and has nothing to do with 

p = 3.141593…

An added advantage of using sampling distribution of sample propor-

tion is that you can use normal approximation to estimate probability of 

outcome for binomial distribution function without direct computa-

tion or the use of binomial distribution tables. When both n p ≥ 5 and 

n(1 − p) ≥ 5 it is reasonable to approximate a binomial distribution using 

a normal distribution.

Sampling Distribution of Two Sample Means

Th e extension from the distribution function of a single sample mean to 

two or more means is simple and follows naturally. However, it is neces-

sary to introduce appropriate theories.

Theorem 5.3 The Expected Value of Sum of Random Variables

Let Y  = X
1
 + X

2
 + … + X 

n
,
 
where the Xs are random variables. Th e expected 

value of Y is equal to the sum of the expected values of Xs.

E(Y ) = E(X
1
) + E(X

2
) + … + E(X

n
)

Th eorem 5.3 does not require that Xs be independent. Th is theorem 

allows us to sum two or more random variables.

Sampling Distribution of Difference of Two Means

When conducting inferences about two population parameters, there 

are two sample statistics, one from each population. Often, in order to 

 conduct an inference the relationship between the parameters, and hence 

the corresponding statistics, has to be modifi ed and written as either the 

diff erence of the parameters or the ratio of the parameters. Th is requires 

knowledge of the distribution function for the diff erence of two sample 

 statistics or the distribution function for the ratio of two sample statistics. 
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In this section, the sampling distribution of the diff erence of two sample 

means is discussed. Choose a distribution function for the diff erence of 

two sample proportion or the distribution function for the ratio of two 

variances to access those distribution functions. Th is section will address 

the distribution function of the diff erence of two means.

The Two Sample Variances Are Known and Unequal

Let (�1m ) and (�2m ) be the means of two random samples of sizes n
1
 and n

2
 

from distributions with fi nite means m
1
 and m

2
 and fi nite positive known 

and unequal variances 2
1s  and 2

2s . Let n
1
 and n 

2
 be the respective sample 

sizes. According to the Central Limit Th eorem and Th eorem 5.3:

1. Th e distribution of (�1m  − �2m ) is normal

2. E(�1m  − �2m ) = m
1
 − m

2

3. � �
1 2

2 2
1 2

1 1

Var( ) .
n n

s s
m m +− =

Note that the variances of the two samples are added together, while 

the means are subtracted. Th erefore, we can use the normal table values 

for comparison of the standardized values of the diff erences of sample 

means.

The Two Sample Variances Are Known and Equal

Let (�1m ) and (�2m ) be the means of two random samples of sizes n
1
 and n

2
 

from distributions with fi nite means m
1
 and m

2
 and fi nite positive known 

and equal variances 2
1s  and 2

2s . Let n
1
 and n

 2
 be the respective sample 

sizes. According to the Central Limit Th eorem and Th eorem 5.3:

1. Th e distribution of (�1m  − �2m ) is normal

2. E(�1m  − �2m ) = m
1
 − m

2

3. � �
1

1 2

2
2

1 1
Var( )

n n
m m s +

⎛ ⎞
− = ⎜ ⎟⎝ ⎠

Since 2
1s  = 2

2s  = s2.
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The Two Sample Variances Are Unknown and Unequal

Let (�1m ) and (�2m ) be the means of two random samples of sizes n
1
 and n

2
 

from distributions with fi nite means m
1
 and m

2
 and fi nite positive unknown 

and unequal variances 2
1s  and 2

2s . Let n
1
 and n 

2
 be the  respective sample 

sizes. According to the Central Limit Th eorem and Th eorem 5.3:

1. Th e distribution of (�1m  − �2m ) is normal

2. E (�1m  − �2m ) = m
1
 − m

2

3. Var � �
� �2 2

1
1

2
2

2

1

( )
n n

m
s s

m− +=

The Two Sample Variances Are Unknown and Equal

Let (�1m ) and (�2m ) be the means of two random samples of sizes n
1
 

and n
2
 from distributions with fi nite means m

1
 and m

2
 and fi nite posi-

tive unknown and equal variances 2
1s  and 2

2s . Let n
1
 and n 

2
 be the 

respective sample sizes. According to the Central Limit Th eorem and 

Th eorem 5.3:

1. Th e distribution of (�1m  − �2m ) is normal

2. E (�1m  − �2m ) = m
1
 − m

2

3. Var �1m  − �2m  = 
�2

1 2

1 1
Pooled

n n
s

⎛ ⎞
+⎜⎝

= ⎟⎠

where 
( )� ( )�2 2

1 2 2 12

1 2

1 1

2
Pooled

n n

n n

s s
s

− + −
+ −

= .

Summary of Sampling Distribution of Sample Means

Do not let these seemingly diff erent and possibly diffi  cult formulae 

 confuse you. Th ey are similar. Th e most common case is case 3, which 

is listed earlier. Th e fi rst three cases can use this formula without any 

 problem. Th e last case, earlier, takes advantage of the fact that there 

are two estimates of the unknown variance instead of one. Logic dic-

tates that it would be better to average the two estimates using their 

 respective sample sizes as weights. Table 5.1 provides a summary of 
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 sample  statistics, its distribution functions, and its parameters for one 

and two sample means. 

Sampling Distribution of Difference of Two Proportions

When conducting inferences about two population parameters there 

are two sample statistics, one from each population. Often, in order to 

 conduct an inference, the relationship between the parameters, and hence 

the corresponding statistics, has to be modifi ed and written as either the 

diff erence of the parameters or the ratio of the parameters. Th is requires 

knowledge of the distribution function for the diff erence of two sample 

statistics or the distribution function of the ratio of two sample statistics. 

In this section, sampling distribution of the diff erence of two sample pro-

portions is discussed. Choose the distribution function for the diff erence 

of two means or the distribution function for the ratio of two variances 

to access distribution functions for diff erences of two means or the ratio 

of two variances. Th is section will address the distribution function of the 

diff erence of two proportions. 

Let �1p  and �2p  be the proportions of interest in two random samples 

of sizes n
1
 and n

2
 from distributions with fi nite proportions p

1
 and p

2
 

Table 5.1 Summary of Sampling Distribution for Sample Mean

Sample 
statistics

Population 
variance(s) Distribution Mean

Variance of 
 sample statistics

m̂ Known  Normal m s2

n

m̂ Unknown t m �s2

n

� �m m−1 2
Known and 
Unequal

Normal m1 − m2 s s+
2 2

1 2

1 1n n

� �m m−1 2
Known and 
Equal

Normal m1 − m2
2

1 2

1 1

n n
s

⎛ ⎞
+⎜ ⎟⎝ ⎠

� �m m−1 2
Unknown and 
Unequal

t m1 − m2
� �s s+

2 2

1 2

1 2n n

� �m m−1 2
Unknown an 
Equal

t m1 − m2 �2
1 2

1 1
Pooled

n n
s

⎛ ⎞
+⎜ ⎟⎝ ⎠
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and fi nite positive variances 2
1s  and 2

2s . According to the Central Limit 

Th eorem: 

1. Th e distribution of ( � �
1 2p p− ) is normal

2. E( � �
1 2p p− ) = p

1
 − p

2

3. Var( � �
1 2p p− ) = � � � �

1 1 2 2

1 2

(1 ) (1 )

n n

p p p p− −
+

Th erefore, we can use the normal table values for comparison of the 

standardized values of the sample mean.

In practice, p
1
 − p

2
 is not known and their estimates, �1p  and �2p  respec-

tively, are used in calculating the variance of ( � �
1 2p p− ). Th e distribution 

function, expected value, and standard deviation for one and two sample 

proportions are given in Table 5.2.

Sampling Distribution of Sample Variance

Theorem 5.4

Let the random variable X have normal distribution with mean m and 

variance s2, then random variable 

V = 
2

X m

s

−⎛ ⎞
⎜ ⎟⎝ ⎠

 = Z 2

has a chi-squared distribution with one (1) degree of freedom, which is 

shown as c2(1). Z is the same Z score as discussed in previous chapters, 

which consists of individual error divided by average error. 

Table 5.2. Summary of Sampling Distributions of Sample Proportions

Sample 
statistics

Population 
variance(s) Distribution Mean

Variance of  sample 
statistics

�p NA Normal p � �p p−

1

(1 )

n

� �p p−1 2
NA Normal p1 − p2

� � � �p p p p− −+1 1 2 2

1 2

(1 ) (1 )

n n
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Chi-squared distributions are cumulative. Th erefore, when n chi-

squared distribution functions are added up, the result is another 

 chi-squared distribution with n (sum of n distribution functions each with 

one) degree of freedom. 

Theorem 5.5

Let random variables X
1
, X

2
, …, X

n
 have normal distribution each with 

mean m and variance s2 then the sum 

2
X m

s

−⎛ ⎞∑ ⎜ ⎟⎝ ⎠  has a chi-squared dis-

tribution with n degrees of freedom. From this relation, we can build 

confi dence intervals for one and two variances, and test hypothesis for 

one and two variances. 

Sampling Distribution of Two Samples Variances

When conducting inferences about two population parameters, there 

are two sample statistics, one from each population. Often, in order 

to  conduct an inference, the relationship between the parameters, and 

hence the corresponding statistics, has to be modifi ed and written as 

either the diff erence of the parameters or the ratio of the parameters. 

Th is requires knowledge of the distribution function of the diff erence 

of two sample statistics or the distribution function of the ratio of two 

sample statistics. In this section, the sampling distribution of the ratio 

of two sample variances is discussed. Choose the distribution function 

for diff erence of two means or the distribution function for diff erence of 

two proportions to access distribution functions for diff erences of means 

or proportions. Th is section will address the distribution function of the 

ratio of two variances. 

Theorem 5.6

Let random variables X
1
, X

2
, …, X

m
 have normal distribution each with 

mean m
1
 and variance 2

1s  and the random variable Y
1
, Y

2
, …, Y

n
 have 

 normal distribution each with mean m
2
 and variance 2

2s  then random 

variable
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2 2

1 2X Y
F

m m

s s

− −⎛ ⎞ ⎛ ⎞= ∑ ∑⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

has an F distribution with m and n degrees of freedom. 

Note that in Th eorem 5.6, we could have expressed the numerator 

and denominator in terms of the corresponding chi-square  distributions 

as stated in Th eorem 5.5, which in turn is built upon Th eorem 5.4. 

In practice, when populations are not known, they are substituted by 

their respective sample variances.

F = 
2
1
2
2

s

s

It is assumed that the variance labeled 2
1s  is greater than the variance 

labeled 2
2s . Tabulated values of F are greater than or equal to 1. 

Th e most common use of F distribution at this level is for the test of 

hypothesis of equality of two variances. Th is test provides a way of deter-

mining whether or not to pool variances when testing for the equality of 

two means with unknown population variances. First, test the equality 

of variances. If the hypothesis is rejected, then the variances are diff erent 

and are not pooled. If the hypothesis is not rejected, then the variances 

are the same and must be pooled to obtain a weighted average of the two 

estimated values 

Another use of F distribution is in testing three or more means. When 

testing a hypothesis that involves more than two means, we cannot use 

the t distribution. Test of hypothesis and the use of t and F distributions 

are discussed in Chapter 6. 

Effi ciency Comparison Between Mean and Median

Let m̂ be the sample mean and M̂ be the sample median. Th e expected 

value of, both, sample mean and sample median is equal to  population 

mean. Th at is, both provide unbiased estimates of the population mean. 

However, as shown below, the sample mean is more effi  cient than the 

sample median in estimating the population mean. An estimator of a 
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parameter is said to be more effi  cient than another estimator if the former 

has smaller variance. According to Central Limit Th eorem, the variance 

of the sample mean (m̂) is

� 2
2

n

s
s =

It can be shown that the variance of the median is

Variance (Sample Median) = 
ps2

2n

where π = 3.141593…

2

2

Variance (Sample Mean) 2 2
0.64

Variance (Sample Median) 3.14159

2

n

n

s

pps
= = = =

Th erefore, m̂ is more effi  cient than median in estimating the popula-

tion mean. Th e variance of the sample median from a sample of size 100 

is about the same as the variance of the sample mean from a sample of 

size 64.

It is worthwhile to note the following discrepancy, which is caused by 

having a diff erent orientation or starting point. 

Var (M̂) = 1.57 Var (m̂)

Var (m̂) = 0.6366 Var (M̂)

Th erefore, the variance of sample mean is only 64% of the variance of 

the sample median. In estimating population mean, if we take a sample 

of size 100 and use the sample mean as the estimator, we will get a certain 

variance and hence, an error. To obtain the same level of error using the 

sample median to estimate the population mean, we need a sample of 

157, which is 1.57 times more than 100. 

Recall that when extreme observations exist, sample median is 

 preferred to sample mean because it is not infl uenced by extreme  values. 
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For example, in real estate it is of interest to know the price of a typical 

house. Th e industry reports the prices of homes listed, sold, or withdrawn 

from the market each month. Usually, only a small fraction of existing 

homes is listed, sold, or withdrawn from the market. Th is causes large 

fl uctuations in the average prices of these groups. Th e industry reports 

the median instead of the average price for the listings. Both sample 

mean and sample median are unbiased estimates of population mean, 

however, the latter is not infl uenced by the extreme high or low prices and 

thus is a  better short-run estimator. Since sample median is less effi  cient 

than  sample mean in estimating the population mean, larger samples are 

needed.



CHAPTER 6

Point and Interval 
 Estimation

Estimation Versus Inference

Th ere are two distinct ways of using statistics: Descriptive  statistics 

and inferential statistics. Descriptive statistics provide summary 

 statistics in the forms of tables, graphs, or computed values. We can 

use  descriptive  statistics to describe population data or sample data. 

 Inferential  statistics is used to draw conclusions about population 

parameters using  sample statistics. Obtaining sample statistics for infer-

ential  statistics is the same as obtaining them for descriptive statistics. 

Th e use of the sample  statistics determines whether it is descriptive or 

inferential. Th e statistics obtained from a sample for the purpose  of 

inference is called  estimation, to emphasize the fact that they are esti-

mates for their respective parameters. In the previous chapters, the 

portions of  descriptive statistics that dealt with samples are actually 

estimations. When we obtain sample mean, proportion, or variance we 

are  calculating estimates of the corresponding population parameters. 

As we have demonstrated earlier, estimation is important. When sample 

estimates are used to test population parameters and to indicate how far 

the estimates are from parameters, then we are in the domain of inferen-

tial statistics. Some statisticians believe that the primary objective of sta-

tistics is to make inferences about population parameters using sample 

statistics. Using sample statistics to make deductions about population 

parameters is called statistical inference. Statistical inference can be 

based on point estimation or confi dence interval, both of which will 

be covered shortly. Th ey are closely related, and in some cases, they are 

interchangeable. 
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Point Estimation

A point estimate is the statistic obtained from a sample. Th e reason for 

the name is because the estimate consists of a single value.  Examples of 

point estimates include sample mean (m̂), sample  proportion (p̂),  sample 

 variance (�2s ), and sample median. Th ese statistics are used to estimate 

the population mean (m), population proportion (p), and population 

variance (s2), respectively. Sample median can be used to estimate, 

both, population median and population mean. In fact, any single-

valued estimate obtained from a sample is a point estimate. Good 

estimates are close to the corresponding population parameter. Proper 

sampling provides accurate estimates of the unknown population 

parameter. Descriptive statistics addresses the procedure to obtain and 

calculate point estimates from the sample. It also explains their proper-

ties and uses. As discussed in Chapter 3, a suitable estimate is unbiased, 

 consistent, and effi  cient.

Although point estimates are useful in providing descriptive 

 information about a population, their usefulness is limited because we 

 cannot determine how far they are from the targeted parameter. In order 

to provide levels of confi dence and a probability for margin of error 

one needs to know the distribution function of sample statistics. Once a 

sampling distribution of the sample statistic is known, the probability of 

observing a certain sample statistic can be calculated with the aid of the 

corresponding table. 

Example 6.1 

Calculate point estimates of mean, median, variance, standard 

 deviation, and coeffi  cient of variation for the stock prices of Wal-Mart 

and Microsoft from March 12 to March 30, 2012.

Solution

Th e solutions are found by using Microsoft Excel. Refer to the 

 Appendix on Excel.

(Continued)
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Date WMT MSFT 
12 Mar. $60.68 $32.04

13 Mar. $61.00 $32.67

14 Mar. $61.08 $32.77

15 Mar. $61.23 $32.85

16 Mar. $60.84 $32.60

19 Mar. $60.74 $32.20

20 Mar. $60.60 $31.99

21 Mar. $60.56 $31.91

22 Mar. $60.65 $32.00

23 Mar. $60.75 $32.01

26 Mar. $61.20 $32.59

27 Mar. $61.09 $32.52

28 Mar. $61.19 $32.19

29 Mar. $60.82 $32.12

30 Mar. $61.20 $32.26

Mean $60.89 $32.32

Variance 0.056464 0.10941

Median $60.83 $32.20

St. Dev 0.237622 0.33078

CV $0.0039 $0.0102

Interval Estimation

Statistics deals with random phenomena. Nothing remains constant in 

life. Methods of production change. Processes are modifi ed. Machines 

get out of calibration. New techniques are applied. In all these cases, 

statistics is used to determine what remains constant and what changes. 

In estimation theory, sample statistics is used to estimate the population 

parameter. However, when one uses point estimation, it is not clear how 

close the estimate is to the parameter and there is no measure of confi -

dence. Th is does not mean that point estimates are useless or unreliable. 

With proper sampling the point estimates will be unbiased, consistent, 

and effi  cient. 



122 STATISTICS FOR ECONOMICS

Interval estimation augments point estimates by providing a margin 

of error for the point estimate. Th e margin of error is a range, based 

on the degree of certainty, for the estimate of the population parameter, 

which is added and subtracted from a point estimate. Confi dence inter-

vals are based on the point estimate of the parameter and the distribution 

function of the point estimate. It is aff ected by the level of certainty, the 

variance of data, and the sample size.

Calculating Confi dence Intervals

Interval estimation is a simple notion and is defi ned as:

 Point estimate ± Margin of error (6.1)

In order to explain this concept we need to recall things from 

 Chapters 2, 3, and 4. We covered point estimates in Chapter 2, although 

we did not use the same terminology. Point estimates are sample statis-

tics and are used to estimate the corresponding population parameters. 

Mean, median,  variance, and proportion are some common examples of 

point estimates. 

Th e margin of error is not totally new either. It is based on the use 

of Z score, which we covered in Chapter 3. In Chapter 4 we introduced 

the normal distribution function and demonstrated the use of Z score 

and standardization in obtaining probabilities of random variables from 

normal distribution. Also in Chapter 4, we used a Z score to obtain the 

probability under normal distribution between two points. Previously we 

pointed out that due to symmetry of the standardized normal distribu-

tion, the probability of the area from zero, that is, the center, to a point on 

the right is equal to the probability of the area from zero to the negative 

value of that number (see Figure 6.1).

Note that in Figure 6.1, the mean is 0 and the standard deviation is 1. 

Also recall that the unit of measurement of the Z score is the standard 

deviation. Conventionally, we do not write 1 but if the standard devia-

tion was diff erent from 1, we must include that in the measure, as in 

Figure  6.1. Th erefore, a point on the normal distribution curve is Zs 

away from the mean. 
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When dealing with sample statistics, the properties of sampling distri-

bution apply. Th erefore, in the case of statistics, that is, estimates obtained 

from the sample, the Central Limit Th eorem states that the standard devi-

ation is given by .ns  Replacing s with the this formula provides

 Margin of Error =
2

Z
n

a

s
 (6.2)

It is very important to realize that the margin of error formula in 

Equation 6.2 depends on the knowledge of population variance. When 

the population variance is unknown and the sample variance has to be 

used, then the formula must be adjusted by replacing the population 

standard deviation with the sample standard deviation and the Z value 

must be replaced by the t value as in Equation 6.3:

 
2

Margin of Er
ˆ

ror t
n

a

s=  (6.3)

Example 6.2 

Calculate the margin of error for Microsoft stock price for the 

period March 12–March 30, 2012, using 83% level of confi dence. 

Assume the real population variance is equal to the sample variance.

Solution 

First obtain the Z value that corresponds to half of the 0.83 level of 

confi dence so we can use the normal table provided in the Appendix 

to this book.

0.83
0.415

2
(0 )P Z X

⎛ ⎞ =⎜ ⎟⎝ ⎠< < =

Figure 6.1. Margin of error on normal distribution.

m – e m + e0

95%

(Continued )
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Searching in the body of the normal table, we fi nd the  probability 

0.415 corresponds roughly to Z = 1.375. Note that we are using the 

sample variance as if it was the actual population variance.

According to Example 2.16 the variance of the data is 0.102.

0.102
1.375 0.08239 0.1133

1
Margin of Error 1.375

5
× == =

However, since the population variance is unknown we must 

use the t value instead of Z value. Unfortunately, t values for 

alpha of (1 – 0.83)/2 = 0.085 are not readily available.  However, 

 Microsoft Excel provides the necessary number by using the 

 following  command:

= t.inv(0.085, 14) = 1.44669

Note that Excel will provide a negative sign in front of the t value 

because it refers to the left hand tail. But we do not need to worry, 

since the distribution is symmetric. 

Th erefore, Margin of Error = 1.44669 × 0.2316 = 0.33505

Th is is the correct value of margin of error because it is using the 

t value, as required when population variance is unknown.

Th e concept of margin of error applies to sample statistics but not to 

the population parameters. Population parameters are constant values and 

do not have margin of error. However, sample statistics, which are random 

variables and are estimating their respective population parameters, have a 

margin of error. As seen in Equation 6.2, margin of error is directly related 

to variance of the population and the level of confi dence, as indicated by 

the Z score, and inversely related to the square root of the sample mean. 

Recall from Chapter 5 that the sampling distribution of sample mean 

is aff ected by the knowledge of the population variance. If the popula-

tion variance is known, the distribution function of the sample mean 

is a normal distribution. However, if the population variance is not 

known the distribution function of the sample mean is a t distribution. 

(Continued )
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Th erefore, when calculating the margin of error we must use either the 

normal table or the t table, depending on whether the population vari-

ance is known or unknown, respectively. 

In Chapter 5, we learned the sampling distribution function of one 

sample statistics such as mean, proportion, and variance. When calculat-

ing margin of error for these statistics we need to use the appropriate 

distribution function. We learned the sampling distribution of the diff er-

ences of two sample means and two sample proportions, both of which 

are a normal distribution. We also learned the sampling  distribution of 

two variances, which is an F distribution. Once the margin of error is 

calculated, obtaining confi dence interval is simple by using  Equation 6.1. 

Terminology

Th e probability between –Z and +Z from a standard normal, that is, a normal 

distribution with mean zero 0 and variance 1, is shown by (1 – a)%. Th is is 

because the area outside of the above range is equal to a. In Chapter 7, we 

will provide more explanation for the naming of these areas and go into more 

detail on the meaning of the term a. 

Customarily, normal distribution tables are calculated for half of the 

area, because of symmetry. Th us, the Z value, which corresponds to one 

half of a is shown as 
2
.Za

Interval Estimation for One Population Mean

Th e correct way of writing interval estimation of Equation 6.1 when 

 estimating the population mean is

 2

ˆ Z
n

a

s
m ±

 
(6.4)

Defi nition 6.1

Based on Chapter 5, the (1 – a)% confi dence interval for the mean of 

one population ( m) when the population variance is known is given by 

Equation (6.4).
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Note that we need to calculate the following two values to obtain a 

confi dence interval.

 Lower Bond: 
2

ˆ Z
n

a

s
m −  (6.5)

 Upper Bond: 
2

ˆ Z
n

a

s
m +  (6.6)

Sometimes we refer to the lower bond and upper bond as LB and UB, 

respectively. 

Rule 6.1 Inference with Confi dence Interval

Th e confi dence interval covers the true population parameter with (1– a)% 

confi dence. 

Example 6.3

Provide an 83% confi dence interval for Microsoft stock price for the 

period of March 12 to March 30, 2012. Assume the real population 

variance is equal to the sample variance.

Solution 

From Examples 6.1 and 6.2 we have the necessary numbers.

LB = 32.32 − 0.1133 = 31.21

UB = 32.32 + 0.1133 = 32.43

An 83% confi dence interval for the mean of Microsoft stock price 

between March 12 to March 30, 2012, is given by the range $31.21 

to $32.43.

Note that we assumed the sample variance is equal to the  population 

variance in order to apply the example to this case. If the variance 

is unknown, which is true more often than it is not, we have to use 

Equation 6.7. Furthermore, when the value of population variance is not 

known, we must use a t distribution value rather than a Z  distribution 

value. 
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Defi nition 6.2 

Based on Chapter 5, the (1 – a)% confi dence interval for the mean of one 

population ( m) when the population variance is unknown, is given by 

the following equation:

 

�

2

ˆ t
n

a

s
m ±

 

(6.7)

In earlier days when t tables were only available for 1%, 5%, and 10% 

levels of signifi cance, most researchers would use a normal table instead 

of the t table when sample size was greater than 30. With wide availability 

of t values for any level of signifi cance, this practice is no longer necessary.

Example 6.4

Provide a 95% confi dence interval for Microsoft stock price for the 

period of March 12 to March 30, 2012.

Solution 

Since the population variance is unknown and the sample size is less 

than 30, we need to use the t distribution. Th e t value for 95% con-

fi dence interval is ±2.14479. To obtain this value look under 2.5% 

probability of type I error with 14 degrees of freedom in the t table or 

use the following Excel command.

= t.inv(.025,14) = −2.14479

Th e value reported by Excel is negative because it is designed to report 

the lower-end critical value.

Example 6.2 reported the appropriate standard deviation based on 

the variance calculated in Example 1.16.

LB = 32.32 – 2.14479 (0.8239) = 30.55291

UB = 32.32 + 2.14479 (0.8239) = 34.08709 

A 95% confi dence interval for the mean of Microsoft stock price is given 

by the range $30.55 to $34.09. Th is is the correct confi dence interval 

because it uses the t value since the population variance is unknown.
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Since t values are somewhat larger, to account for the fact that the 

population variance is unknown and must be estimated, the correspond-

ing confi dence interval is wider than the one calculated using a Z table 

when we assume to know the population variance. 

Defi nition 6.3 

Based on Chapter 5, the (1 – a)% confi dence interval for the  proportion 

of one population (p) is given by the following equation:

 2

ˆ ˆ(1 )
ˆ Z

n
a

p p
p

−±
 

(6.8)

Example 6.5

Calculate a 95% confi dence interval for the proportion of stock prices 

of Microsoft that are higher than $32.5. Use the sample data from 

April 2 to April 21, 2012, provided in Example 3.2.

Solution

Th e sample proportion of stocks over $32.5 is

p = =4
ˆ 0.4

15

Th e Z value corresponding to 95% confi dence is 1.96.

LB 0.4 1.96  0.4 1.96 0.1265 0.4 0.2479

0.

0.4 0.6

1

1

5

152

⎛ ⎞×
⎜ ⎟⎝

= − = − × = −

=
⎠

UB 0.4 1.96 0.4 1.96 0.1265 0.4 0.2479

0

0.4 0.

.6479

6

15
= + = +

⎛ ⎞×
⎜ ⎟⎝ ⎠

× = +

=

Th e range 0.1521 to 0.6479 covers the true population proportion of 

Microsoft stock prices that are $32.5 or higher. 

(Continued )
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Since the population variance is not known and the sample size 

is smaller than 30, we should have used the t distribution instead of 

normal distribution. In practice, the sample size is much larger when 

proportions are used. Th e results using the t values are given by:

LB 0.4 2.145 0.4 2.145 0.1265

0.4 0.2713 0

0.4 0.

.1287

6

15
= − = −

⎛ ⎞×
⎜ ⎟⎝ ⎠

×

= − =

UB 0.4 2.145 0.4 2.145 0.1265

0.4 0.2713 0.

0.4 0.6

15

6713

= + +
⎛ ⎞×
⎜ ⎟⎝ ⎠

×

= + =

Th e range 0.1287 to 0.6713 covers the true population proportion of 

Microsoft stock prices that are $32.5 or higher. Note that the range 

became wider when we used the t distribution value. Th is is the conse-

quence of not knowing the population variance. 

Defi nition 6.4

Based on Chapter 5, the (1 – a)% confi dence interval for the  diff erence 

of means of two populations ( m1 – m2) when the population variances 

are known and unequal is given by the following equation:

 

� �
2 2
1 2

1 2
2 1 1

Z
n n

a

s s
m m− ± +

 

(6.9)

Defi nition 6.5

Based on Chapter 5, the (1 – a)% confi dence interval for the  diff erence 

of means of two populations ( m1–m2) when the population variances 

are known and equal is given by the following equation:

 

� � 2
1 2

2 1 2

1
(

1
) Z

n n
am m s− ± +

⎛ ⎞
⎜ ⎟⎝ ⎠

 

(6.10)
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Defi nition 6.6

Based on Chapter 5, the (1– a)% confi dence interval for the diff erence of 

means of two populations ( m1–m2) when the population variances are 

unknown and unequal is given by the following equation:

 

� �
� �2 2

1 2
1 2

2 1 2

( ) t
n n

a

s s
m m− ± +

 

(6.11)

Example 6.6

Obtain a 95% confi dence interval for the diff erence in Microsoft 

stock prices between March 12 and March 30, 2012, and April 2 and 

April 21, 2012. Th e data is provided in Example 3.2. 

Solution

Let’s mark the data in March with the subscript “1” and those for April 

with subscript “2.” Th e required formula is given in Equation 6.11. 

According to the formula we need the means and variances from both 

periods as well as the t value corresponding to 95% confi dence.

We have the following results from previous examples. Make sure 

to verify the accuracy of the output. Remember that rounding off  the 

numbers in early stages of calculation may produce discrepancies in 

fi nal results. Here, we are using the output from Excel, which is some-

what larger than the values obtained using the computational method 

of Equation 2.35. Th e short-cut Equation 2.35 produces the least 

amount of rounding off , and thus is more accurate. 

�
1 32.32m =   

�2
1 0.10941s =

�
2 31.27m =   

�2
2 0.372182s =

= t.inv(0.025,28) = −2.0484

(Continued )
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Since we lose two degrees of freedom the correct degrees of  freedom 

for the t distribution is 15 + 15 − 2 = 28. Recall that we need to use 

both positive and negative t values.

� �
� �

a

s s
m m= −

= − −

= −
= − ×
= −

− +

+

=

+

2 2
1 2

1 2
2 1 2

LB ( )

(32.32 31.27) 2.0484

1

0.10941 0.372182

15 15

0.007294 0.024812.05 2.0484

1.05 2.0484 0.179183

1.05 0.36704 $0.68

t
n n

� �
� �

a

s s
m m= −

= − +

= +
= + ×
= +

− +

+

=

+

2 2
1 2

1 2
2 1 2

UB ( )

(32.32 31.27) 2.0484

1

0.10941 0.372182

15 15

0.007294 0.024812.05 2.0484

1.05 2.0484 0.179183

1.05 0.36704 $1.42

t
n n

Th e range $0.68 to $1.42 covers the diff erence of the means of the 

two periods of stock prices for Microsoft with 95% probability. 

Defi nition 6.7

Based on Chapter 5, the (1 – a)% confi dence interval for the  diff erence of 

means of two populations ( m1 – m2) when the population  variances are 

unknown and equal is given by the following equation:

 

� � �2
1 2

2 1 2

1 1
( ) Pooledt

n n
am m s− ± +

⎛ ⎞
⎜ ⎟⎝ ⎠

 

(6.12)

( )� ( )�2 2
1 2 2 12

1 2

1 1
.

2
where Pooled

n n

n n

s s
s

− + −
+ −

=
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Example 6.7

Obtain a 95% confi dence interval for the diff erence in Microsoft stock 

prices between March 12 and March 30, 2012, and April 2 and April 

21, 2012. Th e data is provided in Example 3.2. 

Solution

Since the data belongs to the same company and are so close in time 

period, it is reasonable to assume that there is one variance for the 

company’s stock prices and the two sample statistics are two estimates 

of the same population variance. Th erefore, it is necessary to fi nd their 

weighted averages and then use Equation 6.12. We already have the 

following results:

�
1 32.32m =   

�2
1 0.10941s =

�
2 31.27m =   

�2
2 0.372182s =

= t.inv(.025,15) = – 2.144787

( )� ( )�2 2
1 2 2 12

1 2

1 1

2
Pooled

n n

n n

s s
s

− + −
+ −

=

 

( ) ( )15 1 0.10941 15 1 0.372182

15 15 2

− + −
=

+ −

 
1.531785 5.210

0.240798
554

28

+= =

 

� � �2
2 1 2

21

1 1
B )L ( Pooledt

n n
am m s

⎛ ⎞
= − ± +⎜ ⎟⎝ ⎠

 
⎛= − ⎜⎝ ⎠− ⎞+ ⎟

1 1
0.240798  

15
(32.32 31.27)

5
4

1
2.048

 == − − ×1.05 2.0484 1.05 2.0484 00. .1032106 79183

(Continued )
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= 1.05 – 0.3685

= 0.68

� � �2
1 2

2 1 2

1 1
UB ( ) Pooledt

n n
am m s

⎛ ⎞
= − ± +⎜ ⎟⎝ ⎠

⎛ ⎞= − + +⎜ ⎟⎝ ⎠
1 1

(32.32 31.27) 2.0484 0.240798
15 15

= + = + ×1.05 2.0484 0.032106 1.05 2.144787 0.179183

= 1.05+ 0.3685

= 1.42

Th e range $0.68 to $1.42 covers the diff erence of the means of the 

two periods of stock prices for Microsoft with 95% probability. 

Th e reason these results are exactly the same as the result for the 

previous case, where we did not assume the equality of the variances, is 

that the two sample sizes are equal. When samples have diff erent sizes 

the results will be diff erent. 

Defi nition 6.8

Based on Chapter 5, the (1 – a)% confi dence interval for the diff er-

ence of two population proportions ( p1 – p2) is given by the following 

equation:

 

� �
� � � �

1 1 2 2
1 2

2 1 2

(1
(

) (1 )
) Z

n n
a

p p p p
p p

− −± +−
 

(6.13)

Example 6.8

Calculate a 95% confi dence interval for the diff erence of the propor-

tion of stock prices of Microsoft that are more than or equal to $32.00 

for the periods March 12–30, 2012, and April 2–21, 2012; the data is 

provided in Example 3.2.

(Continued )
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Solution

Let’s mark the data in March with the subscript “1” and those for 

April with subscript “2.” Th e sample proportion of stocks more than 

or equal to $32.00 for each period is given by:

�
1

13
0.867

15
p = =

  

�
2

3
0.2

15
p = =

Th e Z value corresponding to 95% confi dence is 1.96. Insert these 

values in Equation 6.13 to obtain the results.

LB = (0.867 – 0.2) – 1.96 
0.867(1 0.867) 0.2(1 0.2)

15 15

− −+

= 0.667 – 1.96 × 0.1354

= 0.402

UB = (0.867 – 0.2) + 1.96 0.867(1 0.867) 0.2(1 0.2)

15 15

− −+

= 0.667 + 1.96 × 0.1354

= 0.933

Th e range from 0.402 to 0.933 covers the diff erence of the ratios of 

stock prices for Microsoft that is greater than or equal to $32.00 in the 

two periods March 12–30 and April 2–21.

Defi nition 6.9

Based on Chapter 5, the (1– a)% confi dence interval for one population 

variance (s2) is given by the following equation:

 

( )� ( )�2 2
2

2 2
1

2 2

1 1n n

a a

s s
s

c c −

− −
≤ ≤

 

(6.14)

Note that the chi-squared distribution is not symmetric, there-

fore we cannot use the ± signs to form the confi dence interval. Also, 

(Continued )
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it is important to note that the term 
2

2
ac  refers to the right side of the 

 distribution and, hence, it is larger than 
2

1
2

ac − , which refers to the 

left side of the distribution. Dividing the same numerator by a larger 

number provides a smaller result, hence the lower bond; while dividing 

the same numerator by a smaller value gives a larger result, hence the 

upper bond.

Example 6.9

Find the 95% confi dence interval for the variance of stock prices 

for Microsoft. Use the sample data for the period April 2–21, 2012, 

 provided in Example 3.2.

Solution

Th e sample variance for April 2–21 and the chi-squared values for 

0.025 and 0.975 with 14 degrees of freedom are: 

�2 0.372182s =

14
0.025 26.119c =

14
0.925 5.629c =

Use Equation 6.14 to build the confi dence interval

( )� ( )2

2

2

1 15 1 0.372182
LB 0.1995

26.119

n

a

s

c

− −
= = =

( )� ( )2

2
1

2

1 15 1 0.372182
UB 0.9257

5.629

n

a

s

c −

− −
= = =

Th e range 0.1995 to 0.9257 covers the population variance of Micro-

soft stock prices with 95% confi dence.
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Defi nition 6.10

Based on Chapter 5, the (1– a)% confi dence interval for the ratio of two 

population variances 2 2
1 2s s  is given by the following equation:

 

�
�

�
�

2 2
1 1

2 2 2
2 1 2

2
21 2 2

F Fa a

s s

s s s

s−

≤ ≤

 

(6.15)

Note that since the F distribution is not symmetric, we cannot use the 

± signs to form the confi dence interval. Also, it is important to note that 

term 
2

 Fa  refers to the right side of the distribution and, hence, it is larger 

than 
1

2
,F a−  which refers to the left side of the distribution. Dividing the 

same numerator by a larger number provides a smaller result, hence the 

lower bond, while dividing the same numerator by a smaller value gives a 

larger result, hence the upper bond.

Example 6.10

Find the confi dence interval for the ratio of the variances for the two 

periods March 12–30, 2012, and April 2–21, 2012, for Microsoft 

stock prices.

Solution

Let’s mark the data for March with the subscript “1” and those for 

April with subscript “2.” Th e variances and the F values for 0.025 and 

0.975 with 14 degrees of freedom are: 

2
1s = 0.10941

2
2s = 0.372182

14,14
0.025F = 2.891479

14,14
0.925F = 0.339061

(Continued )
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0.372182

6.5914660.10941LB 2.28
2.891479 2.891479

= = =

0.372182

6.5914660.10941UB 19.44035
0.339061 0.339061

= = =

Th e range 2.28 to 19.44035 covers the ratio of variances for the 

two periods for Microsoft stock prices with 95% confi dence. 

Since the confi dence interval does not cover the value “1,” it is 

unreasonable to believe that the variances of the two periods are the 

same. We will address this in more detail in Chapter 7, when we dis-

cuss the test of hypothesis. In light of this fi nding, we should use Equa-

tion 6.9 when testing equality of the means for the two periods, as in 

 Example 6.6.

Determining the Sample Size

In Chapter 4 we showed the necessary sample size for estimating the sin-

gle mean of a population. Th e sample size in that case was obtained by 

algebraic manipulation of the margin of error in Equation 6.4, which is 

repeated below for your reference.

 2

ˆ Z
n

a

s
m ±

 
(6.4)

Setting the margin of error equal to a desired margin of error, E, and solv-

ing for n results in the following formula:

 

( )2
2

2

2

Z

E

as

 

(6.16)
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Example 6.11

What size sample is needed to be within $0.10 of the actual price if the 

variance is 0.372182 with 95% confi dence?

Solution
2

2

0.372182 1.96
142.98

0.1
n

×= =

Th erefore, the necessary sample size is 143. Note that the variance in 

this formula is the population variance. When the population variance 

is unknown, use the sample variance instead, but remember to use the 

t value instead of the Z value.

Similar algebraic manipulations are applied to obtain sample sizes for 

cases with unknown variances, involving, both, the one or two popula-

tion means, proportions, and variances. We will only show the results for 

one population proportions for reference. 

 

( )2

2

2

ˆ ˆ(1 ) Z

n
E

ap p−
=

 
(6.17)

Example 6.11

What size sample is needed to be within 5% of the population 

proportion with 95% confi dence when the sample proportion is 0.4? 

Solution
×= =

2

(0.4 0.6)1.96
372

0.05
.182n

Th erefore, the necessary sample size is n = 369.
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Inference with Confi dence Intervals

Th e primary objective of statistics is to make inferences about population 

parameters using sample statistics. Using sample statistics to make deduc-

tions about population parameters is called statistical inference. Statistical 

inference can be based on point estimation, confi dence interval, or test of 

hypothesis. Th ese are closely related and in some aspects they are inter-

changeable. Th e inference can be based on the estimation theory or deci-

sion theory. Test of hypothesis is a tool for decision theory. Th e estimation 

theory consists of point estimation and interval estimation. Th is section 

will deal with the confi dence interval.

Population parameters are unknown and constants. Sample sta-

tistics, which are random by nature, are used to provide estimates 

of population parameters. If sampling is random, then the sample 

statistics is a good estimate of the corresponding population param-

eter. A good sample statistics has desirable properties, as discussed 

in Chapter 3. Th ese statistics are called point estimates because they 

Table 6.1. Summary of Confi dence Interval for One Population 
Parameter

Parameter Statistics Distribution Variance Confi dence  interval

m m̂ 

Normal

Known
2

ˆ Z
n

a

s
m ±

Unknown

2

ˆ
ˆ t

n
a

s
m ±

Unknown

Known
2

ˆ
ˆ t

n
a

s
m ±

Unknown

2

ˆ
ˆ t

n
a

s
m ±

p �p Normal or 
Unknown

Always 
Known 2

ˆ ˆ(1 )
ˆ Z

n
a

p p
p

−±

s2 �2s Normal Always 
Unknown

( )� ( )�2 2

2

2 2

1
2 2

1 1n n

a a

s s
s

c c −

− −
≤ ≤
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Table 6.2. Confi dence Interval for Two Samples

Parameter Statistic
Status of 
variances Confi dence interval

m1–m2
� �

1 2m m−

Known and 
Unequal � �

2 2

1 2
1 2

2
1 1

Z
n n

a

s s
m m− ± +

Known and 
Equal � � 2

1 2
2

1 2

1 1
( ) Z

n n
am m s

⎛ ⎞
− ± +⎜ ⎟⎝ ⎠

 

Unknown and 
Unequal � �

� �2 2

1 2
1 2

2
1 2

( )    t
n n

a

s s
m m− ± +

Unknown and 
Equal � � �2

1 2
2

1 2

1 1
( ) Pooledt

n n
am m s

⎛ ⎞
− ± +⎜ ⎟⎝ ⎠

p1 – p2 � �
1 2p p− Always 

 Unknown � �
� � � �

1 1 2 2
1 2

2
1 2

(1 ) (1 )
( ) Z

n n
a

p p p p
p p

− −− ± +

2

1

2

2

s

s

�
�

2

1

2

2

s

s

Always 
 Unknown

�
�

�
�

2 2

1 1
22 2

12 2

2

21
2 2

F Fa a

s s

ss s

s
−

≤ ≤

provide a single value as the estimate of the population parameter. If 

the estimator is “good” then it should be close to the unknown true 

value of the population parameter. Th e single estimate does not indi-

cate proximity to the true parameter or probability of being close to 

the true parameter. Confi dence intervals give, both, an idea of actual 

value of population parameter and also a probability, or a level of con-

fi dence, that the interval includes the population parameter.



CHAPTER 7

Statistical Inference with 
Test of Hypothesis

Choose Evidence with High Probability

One of the methods of drawing inference about population parameters 

using sample statistics is by testing the hypothesis about the parameters. 

With proper sampling techniques, a point estimate provides the best esti-

mate of the population parameter. Interval estimation provides a desired 

level of probability of level of confi dence in the estimate. Test of hypo-

thesis is used to make assertions on whether a hypothesized parameter can 

be refuted based on evidence from a sample. 

Using sample statistics to make deductions about population param-

eters is called statistical inference. Statistical inference can be based on 

point estimation, confi dence interval, or test of hypothesis. Th ey are 

closely related and in some aspects they are interchangeable. Th is section 

will deal with test of hypothesis. Th e technical defi nition of a hypothesis 

is based on the distributional properties of random variables.

Th e purpose of test of hypothesis is to make a decision on the valid-

ity of the value of a parameter stated in the null hypothesis based on 

the observed sample statistics. Recall that parameters are constant and 

unknown while statistics are variable and known. You calculate and 

observe the statistics. If the observed statistics is reasonably close to the 

hypothesized value, then nothing unexpected has happened and the 

(minor) diff erence can be attributed to random error. If the observed 

statistics is too far away from the hypothesized value, then either the null 

hypothesis is true and something unusual with very low probability hap-

pened, or the null hypothesis is false and the sample consists of unusual 

observations. Following sampling procedures and obtaining a random 

sample reduces the chance of an unusual sample, which may still occur 
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in rare occasions. Th erefore, proper sampling assures that unusual sample 

statistics have low probabilities. On the other hand, sample statistics rep-

resenting the more common possibilities would have a high probability 

of being selected.

Statistical inference consists of accepting outcomes with high 

probability and rejecting outcomes with low probability. If the 

sample statistics does not contradict the hypothesized parameter, then 

the hypothesized parameter should not be rejected. If the probability 

of observed statistics is low we reject the null hypothesis; otherwise 

we fail to reject the null hypothesis. In order to fi nd the probability 

of an occurrence for sample statistics we need to know its sampling 

 distribution.

Hypothesis

A hypothesis is formed to make a statement about a parameter. Although 

in English language terms such as “statement” and “claim” may be used 

interchangeably, in statistics, as will be explained shortly, we use the word 

“claim” only about the alternative hypothesis. 

Defi nition 7.1

A statistical hypothesis is an assertion about the distribution of one or 

more random variables. When a hypothesis completely specifi es the dis-

tribution, it is called a simple statistical hypothesis; otherwise, it is called 

a composite statistical hypothesis.

Hypotheses are customarily expressed in terms of parameters of the 

corresponding distribution function. If the parameter is set equal to 

a specifi c value it is a simple hypothesis; otherwise it is a compos-

ite hypothesis. For example, the hypothesis that the average price of 

a  particular stock is $33.69 is written as m = 33.69. Th is is a sim-

ple hypothesis. However, the hypothesis that the average price of a 

 particular stock is less than $33.69 is written as m < 33.69. Th is is 

a composite hypothesis because it does not completely specify the 

distribution.
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Defi nition 7.2

When t he hypothesis gives an exact value for all unknown parameters 

of the assumed distribution function, it is called a simple hypothesis; 

otherwise the hypothesis is composite. 

In this text we deal with the simple hypothesis exclusively. 

Null Hypothesis

Th e null hypothesis refl ects the status quo. It is about how things have 

been or are currently. For example, the average life of a car is 7 years. 

Th e null hypothesis can be a statement about the nature of something, 

such as, “an average man is 5'10" tall.” Th e null hypothesis might be the 

deliberate setting of equipment, such as, “a soda-dispensing machine 

puts 12 ounces of liquid in a can.” A statistical hypothesis is not limited 

to the average only. We can have a hypothesis about any parameter of a 

distribution function, such as, 54% of adults are Democrats; the variance 

for weekly sales is 50. Th e symbol for a null hypothesis is H
0
, pronounced 

h-sub-zero. Th e following represent the previous examples in the cus-

tomary notation of the hypothesis. Note that the stated null hypotheses 

are simple hypotheses as we will only address tests of simple hypotheses.

Single Mean

H
0
: m = 7 

H
0
: m = 5'10"

H
0
: m = 12

Single Proportion

H
0
: p = 0.54

Single Variance

H
0
: s2 = 50

In summary, the null hypothesis is a fact of life, the way things 

have been, or a state of nature. Th is includes the setting of  machinery, or 

deliberate calibration of equipment. If the fact of life, the state of nature, 
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the setting of machinery, the calibration of equipment has not changed, 

or there is no doubt about them, then the null hypothesis is not tested. 

When you purchase a can of soda that states it contains 12 ounces of 

drink you do not check to see if it does actually contain 12 ounces; you 

have no doubt about it, so you do not test it. Many such “null hypoth-

eses” are believed to be true and, hence, not tested. It is tempting to state 

that the manufacturer is making the “claim” that the can contains 12 

ounces; however, their statement is more of an assertion or a promise 

and not a claim. As we will see shortly, the alternative hypothesis is the 

claim of the researcher, which is also known as the research question. 

Th e null hypothesis for a simple hypothesis is always equal to a constant. 

Th e format is:

 H
0
: A parameter = A constant (7.1)

In order to test a hypothesis, we either have to know the distribution 

function or the random variables. If the distribution function has more 

than one parameter, we need to know the other parameter(s); otherwise 

we will be dealing with a composite hypothesis.

In a hypothesis, testing the expected value of the outcome of an 

experiment is the hypothesized value. Th e hypothesized value refl ects the 

status quo and will prevail until rejected. In practice, the observed value is 

indeed a statistics obtained from a sample of reasonable size. Care must 

be taken. 

When testing a hypothesis about variance, note that the constant 
2
0( )s  should be a non-negative number. In practice, zero variance is not 

a reasonable choice and the value is usually positive. Th is parameter is 

diff erent than the mean or proportion, and it has a chi-squared distribu-

tion. Th erefore, its test statistics will be very diff erent from the others. 

Null  Hypothesis for Equality of Two Parameters

Th e test of hypothesis can be used to test the equality of parameters from 

two populations. Let q
1
 and q

2
 be two parameters from two populations. 

With no prior information the two parameters would be assumed to be 
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the same until proven otherwise. For example, the average productivity of 

a man and a woman would be the same until proven otherwise. Th e null 

hypothesis should not be written as:

 H
0
: q

1
 = q

2
 (7.2)

Th is hypothesis is setting one parameter equal to the other, which 

makes it a composite hypothesis. Using algebra the hypothesis can be 

modifi ed to convert it to a simple hypothesis. Th ere are two possi-

ble modifi cations. Equation (7.2) can be written in the following two 

forms. 

 H
0
: q

1
 − q

2 
= 0, or (7.3)

 

q

q
=1

0
2

 
H :  1  (7.4)

Th e only thing that remains to be established is that the diff erence 

of two parameters or the ratio of two parameters is also a parameter, and 

that we have an appropriate distribution function to use as test statistics. 

We have accomplished these in Chapter 5, but will reinforce them in this 

chapter as well. 

Null Hypothesis of Two Means

Th e representations in Equations 7.3 and 7.4 are to test the equality of 

two parameters. Depending on the parameters, we may use one or the 

other representation based on availability of a distribution function. 

In  Chapter  5, we showed appropriate distribution functions for the 

 diff erence of two means of random variables, each with a normal distri-

bution. Th e  diff erence of two means from a normally distributed function 

is a para meter, and if the two are equal, their diff erence will be zero. Th is 

will allow the use of normal distribution for testing the following hypoth-

esis, which is identical to H
0
: m

1
 = m

2
.

 H
0
: m

1
 − m

2
 = 0 (7.5)
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Null Hypothesis of Two Proportions

In Chapter 5, we showed that if a population has a normal distribution 

with proportion p
1
 and another population has a normal distribution with 

proportion p
2
, the diff erence of the two parameters will also have a normal 

distribution with the proportion p
1
 − p

2
. Th e diff erence of the two propor-

tions of two normal populations is a parameter, and if the two are equal, 

their diff erence will be zero. Th is will allow the use of normal distribution for 

testing the following hypothesis, which is identical to H
0
: p

1
 = p

2
.

 H
0
: p

1
 − p

2
 = 0 (7.6)

Null Hypothesis of Two Variances 2
1s

In Chapter 5, we showed that s2 has a chi-squared distribution. Th e 

ratio of s2
1  to s2

2, after each is divided by its degrees of freedom, has an 

F distribution (see Chapter 5). Th e F distribution will have degrees of 

freedom associated with the corresponding numerator and denominator 

chi-squared distributions. Th e ratio of two variances is a parameter with F 

distribution, and if they are equal then their ratio will be equal to 1. Th is 

will allow the use of F distribution for testing the following hypothesis, 

which is identical to s s=2 2
1 20H : .

 

2

2

0
1
2

H : 1
s

s
=  (7.7)

Alternative Hypothesis

Th e alternative hypothesi  s is the claim a researcher has against the null 

hypothesis. It is the research question or the main purpose of the research. 

Th e formation of the null and the alternative hypotheses are the main 

problem of the novice. Remember the following:

• Th e null hypothesis is always of this form: 

A parameter = A constant when we deal with simple hypothesis. 

All of the previous null hypotheses are simple hypothesis. 
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• Th e claim might be that the parameter is greater than (>), 

less than (<), or not equal to (≠) a constant, which refl ects the 

claim that the parameter has increased (>), decreased (<), or it 

simply has changed (≠).

• Null means something that nullifi es something else. 

 Th erefore, the null hypothesis is the value that nullifi es the 

alternative hypothesis. In all three cases the relationship that 

nullifi es the (>), (<), and (≠) is the (=) sign. 

Th e alternative hypothesis is designated by H
1
 and is pronounced 

h-sub-one or alternative hypothesis. Th e only time a hypothesis is formed 

and consequently tested is when there is a doubt about null hypothesis.

How to Determine the Alternative Hypothesis

Th e claim of the research, that is, the research question, determines the 

alternative hypothesis. Every alternative hypothesis is a claim that the 

null hypothesis has changed. When the claim is that the value of param-

eter in the null hypothesis has declined, then the appropriate sign is the 

“less than” sign (<). Focus on the meaning and not the wording. When 

the claim is that the value of the parameter in the null hypothesis has 

increased, then the appropriate sign is the “greater than” sign (>). Th ese 

two alternative hypotheses are known as one-tailed hypotheses. When 

the claim is not specifi c, or is indeterminate, then the appropriate sign 

is the “not equal” sign (≠). Th is is known as a two-tailed hypothesis. 

None of the three alternative cases include an equal sign (=), because the 

equal sign nullifi es all of the above signs. Furthermore, in order to draw 

inference at this introductory level, the null hypothesis must be a simple 

hypothesis, which takes the form H
0
: A parameter = A constant.

Alternative Hypothesis for a Single Mean

• A consumer advocacy group claims that car manufacturers are 

cutting corners to maintain profi tability and make inferior 

cars that do not last as long.

H
0
: m = 7

H
1
: m < 7
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• Men are getting taller because of better nutrition and more 

exercise.

H
0
: m = 5'10"

H
1
: m > 5'10"

• Th e quality manager would like to know if the calibration of 

soda dispensing machine is still correct.

H
0
: m = 12

H
1
: m ≠ 12

Alternative Hypothesis for a Single Proportion

• A political science researcher believes that due to globalization 

of the economy and political turmoil around the world, the 

percentage of Democrats has declined.

H
0
: p = 0.54

H
1
: p < 0.54

Alternative Hypothesis for a Single Variance

• Increased promotional advertising has increased the variance 

of weekly sales.

H
0
: s2 = 50

H
1
: s2 > 50

Th e alternative hypothesis is the claim someone has against the status 

quo. If there is no claim, then there is no alternative hypothesis and, 

hence, no need for a test. Th e nature of the claim determines the sign of 

the alternative. In the alternative hypothesis the parameter under consid-

eration can be less than, greater than, or not equal to the constant stated 

in the null hypothesis. Th e sign of the alternative hypothesis depends on 

the claim and nothing else.

Test Statistics

In Chapter 5 we saw that when statistics is a sample mean (m̂), a  sample 

proportion (p̂), two sample means � �m m−1 2( ),  or two sample  proportions 
� �p p−1 2( ),  the Central Limit Th eorem asserts that each of these  sample 
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 statistics have a normal distribution. Sample variance �
s2( )  has a 

 chi-squared distribution. Th e ratio of two sample variances 
� �( )2 2

1 2s s  has 

an F distribution. Cases involving two statistics test their equality. Th e 

test statistics for single mean (m), two means (m
1
 – m

2
), single proportion 

(p), and two proportions (p
1
 – p

2
) is provided by

 

Observed – Expected
Test statistics

Standard deviation of observed
=  (7.8)

Th e statistics obtained from the sample provides the observed portion 

of the formula. Th e null hypothesis provides the expected value. Th e other 

name for standard deviation of the observed value is standard error. 

Th e Central Limit Th eorem provides the distribution function and the 

standard error. Th e sampling distribution of sample statistics covered in 

Chapter 5 provides a summary of parameters, statistics, and  sampling 

Table 7.1. Summary of Null and Alternative Hypothesis

Case Null hypothesis
Alternative 
hypothesis Comments

Single Mean m = A constant m > A constant
m < A constant
m ≠ A constant

The claim  determines 
the sign of the 
 alternative hypothesis.

Single 
 Proportion

p = A constant p > A constant
p < A constant
p ≠ A constant

The claim  determines 
the sign of the 
 alternative hypothesis.

Single 
 Variance

s2 = A constant s2 > A constant
s2 < A constant
s2 ≠ A constant

The claim  determines 
the sign of the 
 alternative hypothesis.

Two Means m1 − m2 = A constant m1 − m2 > A constant
m1 − m2 < A constant
m1 − m2 ≠ A constant

Use to test the equality 
of two means.

Two 
 Proportions

p1 − p2 = A constant p1 − p2 > A constant
p1 − p2 < A constant
p1 − p2 ≠ A constant 

Use to test the equality 
of two proportions.

Two 
 Variances A constant

s

s
=

2

1

2

2  

2
1
2
2

A constant
s

s
>

Use to test the equality 
of variances. Usually, 
no other alternative is 
tested.
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variances of one and two populations. Whether the correct statistics for 

this hypothesis is Z test or t test depends on whether the population vari-

ance is known. Use the Z test when the po pulation variance is known, 

or when it is unknown and sample size is large. Note that Z statistics can  

only be used to test hypothesis about one mean, one proportion, two 

means, or two proportions. In the case of two means or two proportions, 

the hypotheses must be modifi ed to resemble a simple hypothesis. Use 

t statistics when the population variance is unknown and sample size is 

small. Note that t statistics can only be used to test hypotheses about one 

mean, one proportion, two means, or two proportions.

Th e test statistics for a single variance (s2) is given by

 

( )�s
c

s

−
=

2
2 

2
0

1n
 (7.9)

Th e test statistics for equality of two variances ( )2 2
1 2s s  is given by 

 

�

�
s

s
=

2
1

2
2

F  (7.10)

Th e actual tests are provided in Table 7.2, which is a summary of tools 

developed in Chapters 5, 6, and 7.

All the null hypotheses are set equal to a constant. In the case of 

equality of two means and two proportions, the constant is zero. In 

the case of equality of two variances, the constant is one. Subscript zero 

represents the hypothesized null value, which is a constant.

Statistical Inference

Everything in this chapter up to this point was in preparation for con-

ducting statistical inferences. Th ere are two approaches for testing a 

hypothesis. Th e fi rst one is the method of P value and the second is the 

method of critical region. Th e two approaches are similar, but fi rst we 

need to explain the concept of inferential statistics.

Any event that has a probability of occurrence will occur. Some 

events have higher probability of occurrence than others, so they will 
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Table 7.2. Test Statistics for Testing Hypotheses

Case Null hypothesis Variance Test statistics
Single Mean m Known

0
ˆ

ˆ
Z

n

m m

s

−=

Unknown
0

ˆ

ˆ
t

n

m m

s

−=

Single 
 Proportion

p Unknown
0

0 0(1

ˆ

)
Z

n

p p

p p

−=
−

Single 
 Variance

s2 Unknown ( )�2

2

0

1n s
c

s

−
=

Two Means m1 – m2 Known and 
Unequal

� �( )1 2 1 2

2 2

1 2

1 2

( )
Z

n n

m m m m

s s

− − −
=

+

Known and 
Equal

� �( )1 2 1 2

2

1 2

( )

1 1
Z

n n

m m m m

s

− − −
=

+

Unknown 
and Unequal

� �( ) ( )
� �

1 2 1 2

2 2

1 2

1 2

t

n n

m m m m

s s

− − −
=

+

Unknown 
and Equal

� �( )
�

1 2 1 2

2

1 2

( )

1 1
Pooled

t

n n

m m m m

s

− − −
=

+

Two 
 Proportions

p1 – p2 Unknown � �( )1 2 1 2

1 1 2 2

1 2

( )

(1 ) (1 )
Z

n n

p p p p

p p p p

− − −
=

− −+

Two Variances 2

1

2

2

s

s
 

Unknown �

�

2

1

2

2

F
s

s
=

occur more often. Th e essence of statistical inference is that events that 

have high probability of occurrence are assumed to occur while events 

with low probability of occurrence are assumed not to occur. To clar-

ify, take the probability of having an accident while going through an 



152 STATISTICS FOR ECONOMICS

 inter section. Th e probability of having an accident crossing an intersec-

tion when the traffi  c light is green is much lower than the probability of 

having an accident crossing the intersection when the traffi  c light is red. 

Th e statistical inference in this case would be that the chance of having 

an accident while crossing an intersection when the light is green is neg-

ligible, so we should go through an intersection when the light is green. 

On the other hand, the probability of having an accident when the light 

is red is high so we should not go through a red light. Note that there is 

still a chance that you go through a green light at an intersection and have 

an accident. It is also possible to go through a red light without having an 

accident. Th ese possibilities have low probabilities, so we “assume” they 

will not occur. Th is example has a special twist to it. Note that for every 

car involved in an accident while crossing an intersection when the light 

was green, the other party to the accident must have gone through a red 

light. Th e null and alternative hypothesis can be expressed as

H
0
: Going through green light does NOT cause an accident;

H
1
: Going through green light does cause an accident.

Note that the null hypothesis here is not a simple hypothesis because it is 

not of the form:

A Parameter = A Constant

Th erefore, this hypothesis cannot be tested by Z or t statistics, at least in 

its present form. However, it is suffi  cient to explain the concept.

Types of Error

Th e process of testing a hypothesis is similar to convicting a criminal. Th e 

null hypothesis is a conjecture to the eff ect that everybody is assumed 

to be innocent unless proven otherwise. If there is any reason to doubt 

this innocence, a claim is made against the null hypothesis, which is 

called an alternative hypothesis. Th e type of crime is decided, as indicated 

by charges of misdemeanor, felony, and so forth, which is similar to test 

statistics. Within this domain the evidence is collected, which is the same 

as taking a sample. Finally, based on the evidence a judgment is made, 

either innocent or guilty. If the prosecutor fails to provide evidence that 
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the person is guilty, it does not mean that the person is innocent. Th e 

degree or the probability that the person was innocent (but was con-

victed) is the probability of type I error, or the P value.

We start by assuming the null hypothesis that the suspect is innocent. 

We calculate a test statistics using the null hypothesis. Th is is similar to 

presenting evidence in the legal system assuming the suspect is innocent. 

Th en the test statistics is compared to the norm, provided by the appro-

priate statistical table. Th e null hypothesis of innocence is rejected if the 

probability of being innocent is low in light of evidence. Otherwise, we 

fail to reject the null hypothesis. Suppose we had a case that the prob-

ability was low enough and we actually rejected the null hypothesis. Th e 

basis for rejecting the null was low probability, but the observed statistics 

was nevertheless possible. It is possible that the null hypothesis is true, a 

sample statistics with low probability was observed, and we erroneously 

rejected the null hypothesis. Th is kind of error is known as type I error. 

Defi nition 7.3

Type I Error occurs when the null hypothesis is true but is rejected.

Defi nition 7.4

 Type II Error occurs when the null hypothesis was false but was not 

rejected. 

It is not possible to commit type I error if the null hypothesis is not 

rejected. It is not possible to commit type II error if the null hypothesis is 

rejected. Th ere is a type III error, which will be discussed shortly. 

Defi nition 7.5

Type III error is rejecting a null hypothesis in favor of an alternative 

hypothesis with the wrong sign.

Table 7.3. Summary of Types of Error in Inference

H0 Rejected H0 Not rejected
H0 is True Type I Error No Error

H1 is True No Error Type II Error
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 Statistical Inference with the Method of P value

Th e observed value of sample statistics, such as sample mean and sample 

proportion, can be converted to a standardized value such as Z or t. Under 

null hypothesis, observed statistics should be close to the corresponding 

population parameter. Th is means that the corresponding standardized value 

should be close to zero. Recall that the numerators of Z and t are the diff er-

ence between sample statistics and population parameter, which is also called 

individual error. Th e further the calculated statistics is from the param-

eter,  the larger the value of the standardized sample statistics is.  In other 

words, the test statistics become larger when the observed statistics is further 

from the hypothesized parameter. Th e area under the curve from the value of 

the test statistics refl ects the probability of observing that or a more extreme 

value if the null hypothesis is correct. Th is probability, refl ecting the area 

under the tail area of the normal or t distribution, refl ects the probability 

of observing a more extreme value than the observed statistics. Th e smaller 

this probability is, the less likely that the null hypothesis is correct. Recall 

that in statistics, as in real life, we assume that events that are not likely will 

not occur, which is the same as saying that events that occur are more likely. 

Th erefore, the statistics that is observed from a random sample must be more 

likely to occur than other events. Th e area under the tail area corresponding 

to the extreme values actually represents the likelihood of the event. 

Defi nition 7.6

Th e value representing the probability of the area under the tail-end of 

the distribution is called the p value. Th is gives rise to the following rule 

for statistical inference.

Rule 7.1

Reject the null hypothesis when the p value is small enough.

Since it is possible that the unlikely event has occurred, the above rule 

will always be wrong when the sample statistics is the result of a rare sam-

ple outcome. Th us, in such cases, rejecting the null hypothesis will result 

in type I error. Fortunately, by defi nition, this erroneous conclusion will 
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seldom happen. Th e exact probability of committing such a type I error is 

actually equal to the area under the tail-end of the distribution. 

Defi nition 7.7

Th e P value is equal to the probability of type I error. It is also called the 

Observed Signifi cant Level (OSL).

Type I error can only occur if we reject the null hypothesis. Th is might 

lead to the decision to make type I error very small, but not rejecting the 

null hypothesis unless the p value, that is, the probability of type I error, 

is very small. Th e problem with this strategy is that it increases the prob-

ability of not rejecting the null hypothesis when it is false, which means 

the probability of type II increases. Th ere is a tradeoff  between type I 

and type II errors: decreasing one increases the other. Th e tradeoff  is not 

linear, which is the same as saying that they do not add up to one. Th e 

only possible way to reduce both type I and type II error is by increasing 

the sample size. 

Signifi cance level indicates the probability or likelihood that observed 

results could have happened by chance, given that the null hypothesis 

is true. If the null hypothesis is true, observed results should have high 

probability. Consequently, when p value is high, there is no reason to 

doubt that the null hypothesis is true. However, if the observed results 

happen to have a low probability, it casts doubt about the  validity of 

the null hypothesis because we expect high  probability events to occur. 

Since the outcome has occurred by virtue of being observed, they imply 

that the null hypothesis is not likely  to be true. In other words,  p 

value is the probability of seeing what you saw, which is refl ected in the 

other common name for p value, OSL.

 Statistical Inference with Method of Critical Region

An alternative approach to the decision rule of P value is to calculate a 

critical value and compare the test statistics to it. In order to obtain a 

critical value, decide on the level of type I error you are willing and able 

to commit, for example 2.5%. Look up that probability in the body of 

the table such as a table for normal distribution. Read the corresponding 
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Z  score from the margins. Th e Z score corresponding to the chosen 

level of type I error is the critical value.

Rule 7.2

Reject the null hypothesis when the test statistics is more extreme than 

the critical value. 

As long as the same level of type I error is selected, the two methods 

result in the same conclusion. Th e method of P value is preferred because 

it gives the exact probability of type I error, while in the method of criti-

cal region the probability of type I error is never exact. If the test statistics 

is more extreme than the critical value, the probability of type I error is 

less than the selected probability. Another advantage of P value is that it 

allows the researcher to make a more informed  decision.

Steps for Test of Hypothesis

1. Determine the scope of the test

2. State the null hypothesis

3. Determine the alternative hypothesis

4. Determine a suitable test statistics

5. Calculate the test statistics

6. Provide inference

Test of Hypothesis with Confi dence Interval

We covered confi dence intervals in Chapter 6 when discussing estimation. 

Confi dence intervals can be used to test a two-tailed hypothesis. Proceed to 

calculate the confi dence interval based on the desired level of signifi cance, 

as shown in Chapter 6, and apply the following rule to draw inference.

Rule 7.3

Reject the null hypothesis when the confi dence interval does NOT cover 

the hypothesized value. Fail to reject when the confi dence interval does 

cover the hypothesized value.
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Whether the confi dence interval is for one parameter or two does 

not matter. Rule 7.3 applies to all confi dence intervals regardless of the 

parameter. So it can be used for a two tailed test of hypothesis of one or 

two parameter confi dence interval for means, percentages, or variances. 

Th e approach is based on the critical region method.

Th e coverage of the test of hypothesis completes the set of tools 

needed  for making inferences. We now provide examples for tests of 

hypotheses for one mean, one proportion, and one variance. Th en we 

give examples for tests of hypotheses for the equality of two means, two 

proportions, and two variances.

Since we will be using the stock price data, we have reproduced the 

same data for your convenience.

Date WMT MSFT Date WMT MSFT
12 Mar. $60.68 $32.04 2 Apr. $61.36 $32.29

13 Mar. $61.00 $32.67 3 Apr. $60.65 $31.94

14 Mar. $61.08 $32.77 4 Apr. $60.26 $31.21

15 Mar. $61.23 $32.85 5 Apr. $60.67 $31.52

16 Mar. $60.84 $32.60 9 Apr. $60.13 $31.10

19 Mar. $60.74 $32.20 10 Apr. $59.93 $30.47

20 Mar. $60.60 $31.99 11 Apr. $59.80 $30.35

21 Mar. $60.56 $31.91 12 Apr. $60.14 $30.98

22 Mar. $60.65 $32.00 13 Apr. $59.77 $30.81

23 Mar. $60.75 $32.01 16 Apr. $60.58 $31.08

26 Mar. $61.20 $32.59 17 Apr. $61.87 $31.44

27 Mar. $61.09 $32.52 18 Apr. $62.06 $31.14

28 Mar. $61.19 $32.19 19 Apr. $61.75 $31.01

29 Mar. $60.82 $32.12 20 Apr. $62.45 $32.42

30 Mar. $61.20 $32.26 21 Apr. $59.54 $32.12

Mean $60.89 $32.32 $60.82 $31.27

Variance 0.056464 0.109413 0.826873 0.372182

St. Dev $0.24 0.330777 0.909325 $0.61

Th e point estimates at the bottom of the table are calculated using 

Excel, some of which are off  by a small margin.
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Example 7.1

An investor would purchase Microsoft stock if the average price 

exceeded $32.00. Using the data from March 12 to March 30, would 

he buy the stock?

Solution

Based on the statement in the problem the alternative hypothesis is:

H
1
: m > 32 ⇒ H

0
: m = 32

From previous examples we have the following statistics that are 

obtained from Excel.

ˆ 32.32m =   �2 0.1094s =

Since population variance is unknown we need to use

m m

s

− −= = = =0
ˆ 32.32 32 0.32

ˆ 0.0854010.1094
3.74 2

15

70 8t

n

Using the following Excel command we obtain the exact P value.

= t.dist.rt(3.747028,14) = 0.001083

Th e probability of obtaining an average of $32.32, if the true 

population average is $32.00, is only 0.001083. Th is is a low prob-

ability. Th erefore, we reject the null hypothesis in favor of the alterna-

tive hypothesis. Alternatively, we could say that the probability of type 

I error, if we reject the null hypothesis, is only 0.001083 and hence, 

we reject the null hypothesis. If you copy the value of the “t” into 

the formula for the P value you will get the same number as shown 

above, that is 0.001083. However, if you type in the rounded number, 

which is “3.74,” you would get “0.001098.”  Th e fi rst number is more 

 accurate because it uses the precise answer for “t.”
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Example 7.2

Test the claim that more than 50% of the stock prices for Microsoft close 

higher than $32.20. Use the sample from March 12 to March 30, 2012. 

Solution

Sorting the data makes it easier to obtain the portion of sample prices 

over $32.20.

8
ˆ 0.53

15
p = =

Based on the statement in the problem the alternative hypothesis is:

H
1
: π > 0.50 ⇒ H

0
: π = 0.5

From Table 7.2 the correct formula is:

0

0 0

ˆ 0.53 0.50 0.03
0.23

0.13(1 ) 0.50 0.50

15n

Z
p p

p p
= − −= = =

− ×

Th e probability of the region more extreme than Z = 0.23 is given by

P (Z > 0.23) = 0.5 – P (0 < Z < 0.23) = 0.5 – 0.0910 = 0.4090

Since the probability of type I error, if we reject the null hypothesis, is 

too high, we fail to reject the null hypothesis. 

Example 7.3

Test the claim that the variance for the stock prices of Microsoft is 

greater than 0.9. Use the sample from March 12 to March 30, 2012.

Solution

Based on the statement in the problem the alternative hypothesis is:

H
0
: s2 > 0.90 ⇒ H

1
: s2 = 0.90

(Continued )
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From Table 7.2 the appropriate formula is:

( )� ( )2

2
0

1 15 1 (0.10941) 1.531785
1.702

0.90 0.90

n s
c

s

− −
= = = =

Using the following Excel command we obtain the P value:

= chisq.dist.rt(1.702,14) = 0.99997

Since the probability of type I error is too high, we fail to reject the 

null hypothesis.

(Continued )

Example 7.4

Are the means for Microsoft stock prices for periods March 12–30 and 

April 2–21 the same?

Solution

Th e objective is to determine if m
1
= m2

. Since this format is not of the 

form of a parameter equal to a constant, we rewrite the hypothesis as:

H
0
: m

1
− m2

 = 0  H
1
: m

1
− m2

 ≠ 0

Since no particular directional claim has been made, the test is a two-

tailed test. Th e following information is available:

 
�

1 32.32m =  
�

2 32.27m =
2
1 0.10941s =   

2
2 0.372182s =

Since we do not know whether the variances are equal, we will test their 

equality fi rst, that is, 2 2
1 2 .s s=  Since this is of the form of a parame-

ter equal to another parameter, it has to be modifi ed to  resemble a 

 para meter = a constant format. 

(Continued )
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2
1

0 2
2

H : 1
s

s
=

  

2
1

1 2
2

H : 1
s

s
>

It is customary to express this alternative hypothesis in the “greater 

than one” format. To assure that the ratio of the sample variances is 

actually greater than one, always place the sample variance that is 

larger in the numerator.

From Table 7.2, the appropriate formula to test the equality of two 

variances is

�

�
s

s
= = =

2
1

2
2

0.372182
F

0.10941
3.4017

Th e P value for this statistic is obtained from the following Excel 

command:

= f.dist.rt(3.4016,14,14) = 0.0144

Since the probability of type I error is low enough, we reject the null 

hypothesis that the two variances are equal. Th erefore, from Table 7.2, 

the following test statistics is used for testing equality of the mean 

prices for the two periods. 

� �( ) ( )
� �

( )m m m m

s s

− − − − −
= = =

++

= =

1 2 1 2

2 2
1 2

1 2

32.32 31.27 (0) 1.05

0.10941 0.372182 0.0344

14 14

1.05

0.18547
5.66

2
1232

t

n n

Using the following Excel command we obtain the exact P value.

= t.dist.rt(5.6612,28) = 0.000,002

Since the P value is low enough, we reject the null hypothesis that 

the average prices of Microsoft stock are the same for the periods of 

March 12–30 and April 2–21.





CHAPTER 8

An Introduction to 
 Regression Analysis

Until this point, with the exception of covariance and correlation 

 coeffi  cient, the focus has been on a single variable. However, there are 

few, if any, economic phenomena that can be analyzed solely using its 

own information. Even in the simplest economic issues such as quan-

tity demanded, there are at least two variables, a quantity and a price. 

 Furthermore, many economic aff airs are too complicated to be analyzed 

and explained fully by merely observing the matter by itself without any 

consideration to other economics, social, cultural, and political factors 

that usually aff ect most economic problems. For example, it does not 

suffi  ce to analyze data on income in order to determine or forecast future 

incomes. Such a study does not provide a reasonable estimate of the cur-

rent situation, let alone future forecasts. Let us explore, briefl y, what other 

factors might aff ect income. First, we have to decide whether the orien-

tation of the study is macro or microeconomics. At the microeconom-

ics level the focus on income can be personal income or family income. 

For an individual, income is zero for many years. During these years the 

individual is growing up and attending school. In other words, he or she 

is acquiring human capital, which will aff ect earned income when the 

individual secures a job. Other factors include one’s natural ability, talent, 

work ethic, exertion, years of experience, and seniority, to name a few. 

Th ere are some other factors that, at least in theory, should not have an 

eff ect on one’s income, but in reality they do, such as gender and race. At 

the macroeconomics level the determinants of income, which in this case 

should be referred to as the national income, are functions of the nation’s 

productivity, its resources, population size, education levels, economic 

cycles, seasonal cycles, and other factors. 
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Th ere are many powerful tools in statistical analysis that permit incor-

porating the factors that determine a phenomenon such as income. One 

such tool is regression analysis. Th e regression methodology acknowl-

edges that most real life occurrences are subject to random error. Take, 

for example, the income of a person. It is easy to calculate the average 

income of the nation. Let us take a single person and compare his or her 

income to the average. Chances are that the income of the person is not 

going to be the same as the national average. One can argue that it would 

be unreasonable to expect the income of a person chosen at random to be 

the same as the average income of the nation because the person is likely 

to have a diff erent level of education, years of experience, talent, ambi-

tion, health, and so forth than the average person. All of these do aff ect 

income. Th e important thing is that even if we account for all reasonable 

sources of  diff erences between two people, there still will be a diff erence 

in income due to random factors beyond our control, recognition, or 

ability to measure them. Th e presence of diff erence between observa-

tions is nothing new, and we addressed that when we discussed the con-

cept of individual error and error in general throughout this text. In the 

case of comparing a person to the average, most of the diff erence can be 

attributed to the diff erences in the infl uencing factors such as education, 

experience, and talent. In regression analysis, we try to account for these 

sources of infl uence and “explain” part of the error. Recall that a basic 

defi nition of error in statistics is “whatever that cannot be explained.” So 

the deviation of one person’s income from the average income is called 

individual error. In statistics it makes more sense to talk about averages 

because of the existence of random error. Averaging things removes the 

random error, which by defi nition has an expected value or an average 

equal to zero. In Chapter 2, we introduced variance, which gives a meas-

ure of error. In the same chapter we discussed standard deviation, which 

is the average error. In regression analysis we explain the part of the error 

that is caused by diff erences in the factors that aff ect the phenomenon 

of interest, in this case the income. After accounting for the role of all 

the infl uencing factors that determine income, there is a random com-

ponent that remains unexplainable, which by defi nition becomes the 

new “error.”1 Briefl y, the regression analysis is designed to minimize the 

squares of errors of observations from a hypothetical line that provides a 
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relationship between a dependent variable, such as income, and an inde-

pendent variable such as education. Note that errors are simply devia-

tions of observations from the expected value. In descriptive statistics the 

expected value is simply the mean. In regression analysis, the regression 

line is the expected value.

We can extend the simple regression analysis from the case of one vari-

able to as many variables as deemed necessary. As the number of explana-

tory variables increases, the regression model should be able to explain 

more of the deviations in the dependent variable, which in our example is 

the income. Th is statement is valid only if we have the correct determin-

ing factors, are also called independent variables and, all the appropriate 

independent variables are included without having irrelevant variables in 

the model. In the above example, the independent variables are education, 

years of experience, talent, ambition, and so forth. As mentioned earlier, 

there are factors that infl uence the dependent variable even though they 

should not, such as gender and race, and factors that infl uence income but 

cannot be controlled or anticipated by the model, such as a war, natural 

disaster, and so on. We include these variables in the models as control 

variables. Control variables such as war or natural disaster have good 

economic explanations. Th ey are the variables that are assumed constant 

under the ceteris paribus assumption of economic theory.

Th e simple regression model consists of one dependent variable and 

one independent variable plus an error term.

 Income = b
0
 + b

1
 Education + e (8.1)

where, income is the dependent variable,

education is the independent variable,

b
0
 is the intercept,

b
1
 is the slope, and

e is the error term.

Th is chapter is a brief introduction to a vast topic.2 Th e independent 

variable is believed to be outside of the model and is not to be explained 

in any manner. Here we are not interested in why people obtain the level 

of education they do. Instead we are observing one’s educational level and 
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use it to explain his or her income. Th e dependent variable is endogenous 

to the model, which means the model is used to estimate the value of 

the dependent variable based on the level of income. In other words, the 

model determines the income, given a specifi c value of education. Th e 

Greek letters b
0
 and b

1
 are the parameters of the model. Th ey are also 

called the intercept and the slope, respectively. Th e interpretation of b
1
 is 

that for every unit change in education, income will change by the mag-

nitude of b
1
 and in the direction of its sign. Th e intercept b

0
 provides an 

estimate of income when one has zero education. Finally, e the error term, 

accounts for everything else that aff ects income, other than education, 

plus the random error inherent in real phenomena.

Th is simplistic model explains income with one variable. Th e hypoth-

esized claim for the slope of the regression line, b
1
, is that it is expected to 

be positive. Th is claim is based on theory and common sense. One expects 

higher income with more education, since education is a kind of invest-

ment called human capital. An educated person is more knowledgeable 

and hence, more productive, and thus deserves higher income per unit 

of time than someone with less education, other things equal. Th ere are 

several advantages to using regression analysis. One of the more impor-

tant ones is the fact that not only can we measure the contribution of the 

determinants of a dependent variable such as income, but we can also 

test to see if the determinants are actually signifi cant. A typical inference 

about a regression model consists of two diff erent tests. Th e one that tests 

the overall signifi cance of the model is based on the F test. In this case, 

the amount of the variation in the dependent variable that is explained 

by the model is compared to the amount that still remains unexplained. 

Th e portion that is explained by the model is called mean squared regres-

sion (MSR). Recall that the sum of squares of the portions not explained, 

divided by appropriate degrees of freedom is the same as variance, which 

in the jargon of regression analysis is called mean squared error (MSE). In 

Chapter 4, we explained that the variance has a chi-squared distribution. 

Th e MSR also has a chi-squared distribution since it has similar distribu-

tional properties as a variance. Th eorem 4.5 from Chapter 4 states that the 

ratio of two  chi-squared  distribution functions follows an F distribution. 

Th erefore, we can use an F statistics to test the relative magnitude of the 

portion of the variation in the dependent  variable that is explained by the 
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model to the portion that is not. Th e null and alternative hypotheses for 

the model are: 

H
0
: Model is not good  H

1
: Model is good

Th e testing procedure is the same as before. If the p value is small enough, 

reject the null hypothesis; otherwise, fail to reject it. Once the above null 

hypothesis is rejected, then the individual slopes are tested for signifi -

cance. Th e customary null hypothesis is that the slope of interest is zero. 

When a slope is zero it indicates that the corresponding variable does not 

have any explanatory power, and it does not contribute to the reduction 

of the variations in the error.

H
0
: b

Education
 = 0  H

1
: b

Education
 > 0

Th e appropriate test statistics for this hypothesis is a t statistics. 

Testing procedure is the same as usual. Reject the null hypothesis if the 

corresponding p value is low enough. All software designed to perform 

statistical analysis can perform regression analysis with a relatively easy set 

of commands or procedures, or both. In fact, many of the commercially 

available software are menu-driven, similar to a typical application soft-

ware. Most have reasonably good help features that will show the neces-

sary steps or commands. Even Microsoft Excel, a spreadsheet software, 

has a menu driven procedure to perform regression analysis, to provide 

test statistics for testing the model and slopes, and to provide estimates of 

slopes and the explanatory power of the model.3 

Example 8.1

Let us test the hypothesis that education increases income. As pointed 

out earlier, there are numerous measures of income, from per capita 

personal income to the national income; the former represented a 

microeconomics aspect of income, while the latter is a macroeconom-

ics perspective.4 Care must be taken to analyze the data in light of its 

nature and not to imply or indicate more than the meaning of the 

outcome. Th e data is presented in Table 8.1.
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Table 8.1. Data on Education and Income from 1970 to 2010 for the 
United States

Year Total

Elementary High school College

IncomeUp to 4 5 to 8 <4 >=4 <4 >=4
1975 116,897 4,912 20,633 18,237 42,353 14,518 16,244 1.33E+09

1976 118,848 4,601 19,912 18,204 43,157 15,477 17,496 1.47E+09

1977 120,870 4,509 19,567 18,318 43,602 16,247 18,627 1.63E+09

1978 123,019 4,445 19,309 18,175 44,381 17,379 19,332 1.83E+09

1979 125,295 4,324 18,504 17,579 45,915 18,393 20,579 2.05E+09

1980 130,409 4,390 18,426 18,086 47,934 19,379 22,193 2.29E+09

1981 132,899 4,358 17,868 18,041 49,915 20,042 22,674 2.57E+09

1982 135,526 4,119 17,232 18,006 51,426 20,692 24,050 2.76E+09

1983 138,020 4,119 16,714 17,681 52,060 21,531 25,915 2.94E+09

1984 140,794 3,884 16,258 17,433 54,073 22,281 26,862 3.26E+09

1985 143,524 3,873 16,020 17,553 54,866 23,405 27,808 3.48E+09

1986 146,606 3,894 15,672 17,484 56,338 24,729 28,489 3.68E+09

1987 149,144 3,640 15,301 17,417 57,669 25,479 29,637 3.91E+09

1988 151,635 3,714 14,550 17,847 58,940 25,799 30,787 4.22E+09

1989 154,155 3,861 14,061 17,719 59,336 26,614 32,565 4.54E+09

1990 156,538 3,833 13,758 17,461 60,119 28,075 33,291 4.83E+09

1991 158,694 3,803 13,046 17,379 61,272 29,170 34,026 5.01E+09

1992 160,827 3,449 11,989 17,672 57,860 35,520 34,337 5.34E+09

1993 162,826 3,380 11,747 17,067 57,589 37,451 35,590 5.56E+09

1994 164,512 3,156 11,359 16,925 56,515 40,014 36,544 5.87E+09

1995 166,438 3,074 10,873 16,566 56,450 41,249 38,226 6.19E+09

1996 168,323 3,027 10,595 17,102 56,559 41,372 39,668 6.58E+09

1997 170,581 2,840 10,472 17,211 57,586 41,774 40,697 6.99E+09

1998 172,211 2,834 9,948 16,776 58,174 42,506 41,973 7.52E+09

1999 173,754 2,742 9,655 15,674 57,935 43,176 43,803 7.91E+09

2000 175,230 2,742 9,438 15,674 58,086 44,445 44,845 8.55E+09

2001 180,389 2,810 9,518 16,279 58,272 46,281 47,228 8.88E+09

2002 182,142 2,902 9,668 16,378 58,456 46,042 48,696 9.05E+09

2003 185,183 2,915 9,361 16,323 59,292 46,910 50,383 9.37E+09

2004 186,876 2,858 8,888 15,999 59,811 47,571 51,749 9.93E+09

2005 189,367 2,983 8,935 16,099 60,893 48,076 52,381 1.05E+10

2006 191,884 2,951 8,791 16,154 60,898 49,371 53,720 1.13E+10

2007 194,318 2,830 8,462 16,451 61,490 49,243 55,842 1.19E+10

2008 196,305 2,599 8,226 15,516 61,183 50,994 57,787 1.25E+10

2009 198,285 2,785 8,043 15,587 61,626 51,670 58,574 1.19E+10

2010 199,928 2,615 7,836 15,260 62,456 51,920 59,840 1.24E+10



 AN INTRODUCTION TO  REGRESSION ANALYSIS 169

First, we regress income on the total number of people in the 

United States with education, regardless of the level of education.5 See 

Table 8.2. Th e regression output is obtained from Excel. We will focus 

on the row named “Total,” which refers to the name we used for the 

independent variable representing education. Remember that the data 

for education are represented in thousands of people. Th e coeffi  cient 

for the independent variable is 127,095.6414. Th erefore, for every 

1,000 people who are educated, the income increases by $127,095. 

Th e other information in the output indicates that the model is a 

good model.

Next, let us regress the income on the number of people with four or 

more years of college (see Table 8.3). 

Th e coeffi  cient for the independent variable “4 or more years of col-

lege education” is $253,879. Th is indicates that for every 1,000  persons 

obtaining four or more years of college education, income increases by 

Table 8.2. Regression of Income on Total Education from 1970 to 2010 
in the United States

SUMMARY OUTPUT

Regression statistics
Multiple R 0.977959617

R Square 0.956405013

Adjusted R Square 0.955287192

Standard Error 779350434.8

Observations 41

ANOVA

df SS MS F Signifi cance F
Regression  1 5.19679E+20 5.2E+20 855.5983 3.81799E−28

Residual 39 2.36881E+19 6.07E+17

Total 40 5.43367E+20    

Coeffi cients
Standard 

error t stat p-value
Intercept −14108412049 680868741.5 −20.7212 1.18E−22

Total 127095.6414 4345.059321 29.25061 3.82E−28
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$253,879. Th is fi gure is twice the $127,095 we obtained for overall 

increase in education attainment. Th erefore, as expected, more education 

results in higher income for the country. 

What do you think would happen if we regressed income on 

the number of people with less than 4 years of education? Th e aver-

age number of years of education in the United States is much higher 

than 4 years of education. A person with such a low educational level 

will cause a reduction in the expected income of the country. Let us 

see if the  regression analysis can demonstrate this point. Th e result of 

regressing income on up to 4 years of elementary education is shown 

in Table 8.4.

As anticipated, the coeffi  cient of the independent variable is nega-

tive, indicating that for every 1,000 people who are over 25 years of age 

the income declines by $3,751,795. Other statistics in the table indicate 

Table 8.3. Regression of Income on Four or More Years of College 
Education from 1970 to 2010 in the United States

SUMMARY OUTPUT

Regression statistics
Multiple R 0.9925175

R Square 0.98509099

Adjusted R Square 0.9847087

Standard Error 455762886

Observations 41

ANOVA

df SS MS F Signifi cance F
Regression  1 5.35266E+20 5.35E+20 2576.867 3.08304E−37

Residual 39 8.10107E+18 2.08E+17

Total 40 5.43367E+20   

Coeffi cients
Standard 

error t stat p-value
Intercept −3120662505 183892483.1 −16.97 1.33E−19

>=4 253879.32 5001.28153 50.76285 3.08E−37
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that the model is a good model. It is important to caution the reader that 

these models are very simplistic, and there are more issues that have to be 

addressed. A comprehensive study of the impact on education is a huge 

undertaking, and this brief introduction is not suffi  cient to identify the 

true impact of education on income. One shortcoming of these examples 

is that they do not consider other factors that aff ect income, as discussed 

earlier. Th e simple regression analysis is easily extended to include all the 

variables that a researcher deems necessary. Th e main determining fac-

tor for including a variable in a regression model is the theory in the 

discipline in which the research is conducted. In our case, the governing 

theory belongs to the fi eld of economics. 

 Income = b
0
 + b

1
 Education + b

2
 Experience  (8.2)

     + b
3
 Race + b

4
 Gender + b

5
 Determination + e

Table 8.4. Regression of Income on up to 4 Years of Elementary 
 Education

SUMMARY OUTPUT

Regression statistics
Multiple R 0.901856924

R Square 0.813345911

Adjusted R Square 0.808559909

Standard Error 1612624517

Observations 41

ANOVA

df SS MS F Signifi cance F
Regression  1 4.41946E+20 4.41946E+20 169.9427 8.5373E−16

Residual 39 1.01422E+20 2.60056E+18

Total 40 5.43367E+20   

Coeffi cients
Standard 

error t stat p-value
Intercept 19434322304 1099162811 17.68102242 3.2E−20

Up to 4 −3751794.554 287798.0556 −13.03620535 8.54E−16
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Th e previous model is a typical model based on the variables we 

identifi ed earlier as important. Note that the list is not exhaustive. One 

reason is that social variables are somewhat correlated. Education is not 

really independent of race or gender. Although there is no justifi able 

reason for education to be infl uenced by race or gender, the reality in 

the United States is that it is. Similarly, there is no reason to include race 

and gender as control variables in the model explaining the determinants 

of income. However, the fact is that in the current US society these 

variables do aff ect the level of income, other things equal. Th e second 

reason for limiting the number of variables is that, usually few impor-

tant variables are suffi  cient to provide reasonable estimates or forecasts of 

the dependent variable. Generally, if two models are performing about 

the same, the one with fewer variables is preferred. One variable merits 

additional comments. Th e variable is “determination.” Th ere is no doubt 

that the amount of eff ort that a person puts into his or her job does 

aff ect the resulting income. Th us, the hypothesized value of b
5
 is posi-

tive. However, there is no acceptable way of measuring one’s resolve or 

how much eff ort one puts into his or her job. It is fairly easy to identify 

those that slack off  or those that exert themselves, but neither can be 

measured. More importantly, any arbitrary ranking or measurement of 

“determination” is inaccurate and incomplete in the sense that it cannot 

be compared because it is a not a cardinal measure. Frequently, we face 

this problem in economics. For example, there is no cardinal measure 

of utility, which is a very important economic concept. Th e discussion 

of how we deal with the inability to measure utility with cardinal meas-

ures is beyond the scope of this text. In the case of variables such as 

“determination” in regression model, we have two alternatives. Th e fi rst 

one is to accept that it is not a measurable phenomenon and not worry 

about including it in the model. Th e consequence is that the error term 

is enlarged, and there will be more of the variation in the dependent 

variable that cannot be explained as compared to the case if we could 

measure “determination” and use it in the model. Th is exclusion has seri-

ous consequences and is usually covered under misspecifi cation of the 

model. Th e second method is to use a proxy variable that could represent 

the desired variable, albeit, not precisely or accurately. Can you think of 

a good proxy for “determination”?
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A typical way of writing a model with unknown number of variables 

is of the form:

 Y = b
0
 + b

1
X

1
 + b

2
X

2
 + … + b

K
  X

K
 + e (8.3)

Each beta represents the contribution of the corresponding factor to 

an explanation of the dependent variable, keeping all the other factors 

 constant.

Regression analysis is a powerful and useful tool used in many areas of 

science but has a special place in economics. As one might expect, there 

are many issues that pertain to economic reality that need not be applica-

ble to other areas of science. We have already seen two such cases. One is 

the fact that the independent variables are somewhat related to each other 

in economics. Th is is due to the fact that many, if not all economic  factors 

are subject to the economics and social realities of the same country. Th e 

same applies to the individual fi rms and people in a country. In many 

other fi elds, it is much easier to ensure that exogenous variables are inde-

pendent from each other, which is a requirement of regression analysis.6 

Th e second issue is the role of factors that are social in nature and refl ect 

the social/cultural structure of a country. For example, the fact is that race 

and gender infl uence one’s income. Th ere is no theoretical reason for such 

a role, except racism and chauvinism. Consequently, a special branch of 

science has been created called econometrics.





CHAPTER 9

Conclusion

Th is text is a brief introduction to statistics. Th e main focus has been on 

the application, comprehension, interpretation, and a sense of apprecia-

tion for statistics. Th e hope is that the reader has become interested in 

statistics and will pursue the topic further. In fact, the main reason for 

including the regression chapter, Chapter 8, was to show additional pos-

sibilities that go beyond a single-variable analysis. It demonstrates that we 

can explore the infl uence of one or more variables on a variable of interest. 

Within the subject of regression, one can explore theoretical and empiri-

cal aspects of cross section and time series data. Regression analysis has 

been augmented to utilize data that are qualitative in nature. Th e quali-

tative data can be used as dependent variables or independent variables. 

Many economic decisions can be represented as qualitative dependent 

variables, for example, the decision to buy a good or not to buy it, obtain 

a college degree, take a vacation (i.e. consume leisure), or to save, to name 

a few. Qualitative variables can also be independent variables, such as 

race, gender, political persuasion, and nationality.

Th e domain of statistics is vast and covers numerous specialized fi elds 

such as econometrics, biostatistics, sampling, and actuary to name a few. 

However, there is not a fi eld that does not utilize statistical analysis; from 

agriculture to zoology.

Th is text groups related topics and focuses on the interrelationship 

of diff erent topics. Th e best way to see this is to refer to Table 1.1 in 

 Chapter 1. Th e table divides descriptive statistics into two major categories 

of qualitative variables and quantitative variables. Th e scope of methods for 

 quantitative variables is much broader than those for the qualitative vari-

ables because the methods used for qualitative variables are also applicable 

for the quantitative variable, but the reverse is not true necessarily. Within 

each category the analytical methods are broken down to tabular methods 
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and graphical methods. Recall that these are all descriptive methods and 

their purpose is to provide insight to the nature of data and to condense 

the massive amount of information into as few parameters as possible. 

Although graphical and tabular methods are very helpful in providing a 

visual description of data, the analytical power of statistics is more evident 

in the numerical methods that apply to quantitative variables. Within the 

last category, it is customary to distinguish among three diff erent classifi ca-

tions: measures of central tendency, measures of dispersion, and  measures 

of association. Each of these measures provides diff erent refi nements to 

analytical power and allows researchers to diff erentiate among diff erent 

types of data where certain aspects might be similar while the nature of 

data are very diff erent, for example, as in the case of two populations with 

the same means but diff erent variances. Th e knowledge about parameters 

provides an insight into the nature of data. Massive databases are like chaos 

of numbers. In spite of the fact that the human brain is extremely good 

at fi nding order in events when the order is not easy to detect, the data is 

too large, or the relationships are too complex, it needs statistics to com-

prehend what is going on. A good example to clarify the above point is 

the saying “to miss the forest for the trees.” Statistics provides a way of 

summarizing the evidence. Th e advantage of statistics is that it provides 

numerous descriptive and analytical tools that were not available prior to 

the discovery of statistics. Now it is possible to determine, with an appro-

priate level of probability, the outcome of a certain phenomenon or how to 

explain one or more variables using one or more other variables. 

In Chapter 3, we put the few descriptive tools that were introduced in 

Chapter 2 into use by showing the applications of Z score and coeffi  cient 

of determination. Th e chapter also provided additional tools to deepen the 

knowledge about life and to improve the analytical power of statistics. Th e 

concept of error is one of the major contributions of statistics to  science. 

Th is notion allows us to divide variations in a phenomenon, which is ever-

present in all real life situations, into two components: one that can be 

explained by statistical analysis and one that cannot be explained. One 

object of statistical analysis is to reduce the magnitude of the part that is 

unexplained. For example, the mean of a data explains part of the varia-

tion in it and leaves a part unexplained. In Chapter 8, we saw a glimpse of 

a regression analysis where part of the previously “ unexplainable” error is 



 CONCLUSION 177

explained by appropriate independent variables that are identifi ed by eco-

nomic theories or theories of other disciplines. Th is is just the beginning. 

Th ere are numerous modifi cations to the simple regression analysis that 

allows us to reduce the unexplained portion by use of theory, assumptions, 

facts, prior information, and mathematical manipulations.

One mathematical manipulation is the discovery of diff erent kinds 

of distribution functions. Th ese mathematical relationships have certain 

known properties that are used to conduct statistical inference. Th ey are 

also used to compare actual data to them and to apply the properties of 

these distribution functions to the actual data. Th e most important of 

such distribution functions is the normal distribution function. Although 

many natural events resemble the normal distribution function, many do 

not. Nevertheless, the use of theorems such as the Chebyshev’s  theorem 

and the Central Limit Th eorem allows us to use the properties of the 

normal distribution in dealing with some of the statistics obtained from 

real data that either have a complicated distribution function or do not 

even have a known distribution function. For example, the distribution 

function of the quantity demanded of a good is usually unknown. How-

ever, we can use the theories mentioned previously to address the average 

quantity demanded. Th e link between the above theorems and statistics is 

the main subject of sampling distribution of sample statistics. We devoted 

Chapter  5 to this topic exclusively. Th e next step after  identifying the 

 distributional properties of the sample statistics is to use them to make 

inferences about population parameters. Population parameters deter-

mine the population and the underlying laws that govern them. Th e 

knowledge of parameters is similar to the knowledge about the phenom-

enon of interest, but in a manageable way. 

Th e content of this text is a small portion of basic statistics. Th e next 

step for most economists is to learn regression analysis. Th e fi rst step would 

be to learn simple and multiple regression for cross section data followed 

by the use of the same techniques modifi ed to handle time series data. 

Almost all economic programs require at least one course in economet-

rics, which is the application of linear models such as regression  analysis 

to economic issues. More serious students that pursue  graduate work 

in economics are required to learn and sometimes prove the  applicable 

theorems used in econometrics; however, a purely  pragmatic  approach 
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of learning the methods is utilized by many programs. Th e next logical 

step is to combine the cross section and time series data, which since 1990 

has become a distinct area commonly known as panel data  analysis. In 

panel data analysis the problems that cause diffi  culty in the regressions 

using cross section or time series data are utilized to provide a better 

analysis. For example, the existence of correlation among units over time 

and the presence of correlations among independent variables are incor-

porated into the analysis rather than excluded or avoided. Probably the 

best example of this point is the analysis based on seemingly unrelated 

data. In this methodology, the fact that similar fi rms are subject to simi-

lar economic conditions and thus respond in similar manners in certain 

areas is the foundation of the methodology. Another recent development 

is spatial econometrics where the space related information is incorpo-

rated in the form of weight assigned to economic events. For example, it 

is reasonable to expect “neighboring” countries to act more similar than 

distant counties. Th ere are numerous ways of defi ning neighbors, such as 

distance, existence of border, and so forth.

Finally, the hope is that the present text has been able to answer 

some of the questions readers had and also to spark an interest in this 

 fascinating subject.



Glossary

Bar graph is a graphical representation of the frequency distribution or relative 

frequency distribution when dealing with qualitative data.

Binomial distribution function is a probability distribution representing a 

dichotomous binary variable.

Box plot is a visual representation of several basic descriptive statistics in a concise 

manner.

Categorical variable is another name for a qualitative variable.

Center of gravity of the data is the same as the expected value, or mean. 

Central Limit Th eorem states that in repeated random samples from a 

population, the sample mean will have a distribution function approximated 

by normal distribution, the expected value of the sample mean is equal to the 

true value of the population mean, and the variance of the sample mean is 

equal to population variance divided by the sample size. 

Ceteris paribus is Latin for “other things being equal.”

Chi-square represents the distribution function of a variance.

Claim is a testable hypothesis.

Coeffi  cient of variation is the ratio of the standard deviation to the mean.

Confi dence interval provides a probabilistic estimate of a population parameter 

with a desired level of confi dence. 

Consistent means the sample variance becomes smaller as sample size increases.

Continuous dichotomous variables exist when one can place an order on the 

type of data.

Continuous variable random is a variable that can assume any real value. It 

represents all the values over a range.

Correction factor with the variance is used when the sample size is small or the 

sample is more than 5% of the population.

Cross sectional analysis is a study of a snapshot of regions at a given time. 

Cumulative frequencies consist of sum of frequencies up to the value or class 

of interest.

Deductive statistics start from general information to make inferences about 

specifi cs.

Degree of freedom is the number of elements that can be chosen freely in a 

sample.

Dependent variable is the variable of interest that is explained by statistical 

analysis. Other names such as endogenous variable, Y-variable, response 

variable, or even output are often used as well. 
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Descriptive statistics provide a descriptive, instead of analytic view, of variables.

Dichotomous variables, also called dummy variables in econometrics, exist 

when there are only two nominal types of data. 

Discrete dichotomous variable is a dichotomous variable that can take integer 

values.

Discrete random variables consist of integers only.

Dot plot represents frequencies as stacked dots. It is useful when only one set of 

data is under consideration. 

Dummy variable is a qualitative variable used as an independent variable. 

Econometrics is the application of statistics to economics.

Effi  cient refers to the estimator with the smallest variance compared to the other 

estimator(s).

Error is the diff erence between an observed value and its expected value. Error is 

the portion of variation that cannot be explained. 

Errors in measurement refer to incorrectly measuring or recording the values of 

dependent or independent variables.

Expected value is the theoretical value of parameter. It is the same as the 

arithmetic mean.

Experimental design is a type of statistics where the experiment is controlled for 

diff erent variables to ensure desired levels of confi dence for the estimates of 

the variable. 

F statistics is used to test complex hypothesis. It consists of the ratios of two 

variance measures.

Frequency distribution shows the frequency of occurrence for non-overlapping 

classes.

Grouped data are summarized or organized to provide a better and more compact 

picture of reality. 

Harmonic mean is the average of rates. It is the reciprocal of the arithmetic mean 

of the reciprocal of the values.

Histogram is a graphical representation of the frequency distribution or relative 

frequency distribution when dealing with quantitative data.

Independent variable is a variable that is used to explain the response or 

dependent variable. Other names such as exogenous variable, X-variable, 

regressor, input, factor, or predictor variable are also used. 

Individual error is the diff erence between an observed value and its expected value.

Inductive statistics observes specifi cs to make inference about the general 

population.

Inferential statistics is the methodology that allows making decision based on 

the outcome of a statistics from a sample. 

An interval scale includes relative distances of any two sequential values, such as 

a Fahrenheit scale.
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Kurtosis is a measure of pointedness or fl atness of a symmetric distribution.

A Likert scale is a kind of ordinal scale, where the subjects provide the ranking 

of each variable.

Th e lower hinge is the 25th percentile of a box plot. 

Mean is the arithmetic average. It represents the center of gravity of data. 

Mean absolute error (MAE) is the average of the absolute values of individual errors. 

Mean squared error is the same as variance. 

Measurement scales are types of variables.

Measures of association determine the association between two variables or the 

degree of association between two variables. Th ey consist of covariance and 

correlation coeffi  cient.

Measures of central tendency provide concise meaningful summaries of central 

properties of a population.

Measures of dispersion refl ect how data are scattered. Th e most important 

dispersion measures are variance and standard deviation. 

Median is a value that divides observations into two equal groups. It is the 

midpoint among a group of numbers ranked in order. 

Mode is the most frequent value of a population. 

Nominal or categorical data are the “count” of the number of times an event 

occurs.

Normal distribution is a very common distribution function that refl ects many 

randomly occurring events in life.

Null hypothesis refl ects the status quo or how things have been or are currently. 

Observed signifi cant level is another name for the p value, which is the 

probability of seeing what you saw. 

Ogive is a graph for cumulative frequencies. 

Ordinal scale indicates that data is ordered in some way but the numbering has 

no value. 

P value represents the probability of type I error for inference about a coeffi  cient.

A parameter is a characteristic of a population that is of interest; it is constant 

and usually unknown.

A percentile is the demarcation value below which the stated percentage of the 

population or sample lie.

A pie chart is a graphical presentation of frequency distribution and relative 

frequency.

Point estimate is statistics that consists of a single value, such as mean or 

variance.

Probability is the likelihood that something will happen, expressed in the form 

of a ratio or a percentage. 

Probability distribution determines the probability of the outcomes of a 

random variable.
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Probability distribution for a continuous random variable is called a probability 

density function.

Probability distribution for a discrete random variable is called a discrete 

probability distribution and is represented as f (x).

Qualitative variables are non-numeric and represent a label for a category of 

similar items.

Quantitative variables are numerical and countable values. 

Quartiles divide the population into four equal portions, each equal to 25% of 

the population.

Random variables are selected in a random fashion and by chance. 

A ratio scale provides meaningful use of the ratio of measurements.

Real numbers consist of all rational and irrational numbers.

Relative frequency shows the percentage of each class to the total population or 

sample.

Relative variability is the comparison of variability using coeffi  cient of variation. 

Reliability of a sample mean (m̂) is equal to the probability that the deviation of 

the sample mean, from the population mean, is within the tolerable level of 

error (E ).

Root mean squared error is the square root of the mean square error and is the 

same as the standard error. 

Sample standard deviation is the average error of the sample. Th is is the standard 

deviation obtained from a sample and is not the same as standard error.

Sample statistics are random values obtained from a sample. Th ey estimate the 

corresponding population parameters and are used to make inferences about 

them.

Sample variance is an estimate of the population variance. It is the sum of the 

squares of the deviations of values from the sample mean divided by the 

degrees of freedom. 

Sampling is a subset of population that is collected in a variety of ways.

Sampling distribution of any statistics explains how the statistics diff er from one 

sample to another. 

Scatter plot is a graph customarily used in presenting data from a regression 

analysis model. 

Simple hypothesis gives an exact value for the unknown parameter of the 

assumed distribution function.

Skewness refers to the extent that a distribution function deviates from symmetric 

distribution. 

Standard deviation is the square root of variance and represents the average error 

of a population or sample.

Standard error is the standard deviation of the estimated sample statistics. 

Standardization is the conversion of the value of an observation into its Z score. 
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A statistic is a numerical value calculated from a sample that is variable and 

known.

Statistical hypothesis is an assertion about distribution of one or more random 

variables. 

Statistical inference is the process of drawing conclusions based on evidence 

obtained from a sample. All statistical inferences are probabilistic.

Stem-and-leaf is a graphical way of summarizing information and is a type of a 

descriptive statistics. 

Stochastic means that a model is probabilistic in nature and would result in 

varying results refl ecting the random nature of the model. 

t distribution is a distribution function that is designed to handle statistics from 

small samples correctly.

A testable hypothesis is a claim about a relationship among two or more 

variables. 

Time series analysis is the analysis of time series data.

Tolerable level of error is the amount of error that the researcher is willing to 

accept. 

Tolerance level is a measure for detecting multicollinearity. It is the reciprocal of 

Variance Infl ation Factor (VIF). A tolerance value less than 0.1 is an indicative 

of the presence of multicollinearity.

Total sum of square (TSS) represents the total variation in the dependent 

variable.

Trimmed mean is a modifi cation of the mean, where outliers are discarded.

Type I error is rejecting the null hypothesis even though it is true. 

Type II error is failure to reject a false hypothesis. 

Type III error is rejecting a null hypothesis in favor of an alternative hypothesis 

with the wrong sign. 

Typical refers to the average.

Unbiased refers to an estimate whose expected value is equal to the corresponding 

population parameter.

Th e upper hinge is the 75th percentile of a box plot. 

Validity is the lack of measurement error.

Variance is the sum of the squares of the deviations of values from their mean, 

divided by population size. It is the average of the squared individual errors. 

Weighted mean is similar to the mean except the weights for observation are not 

equal and represent their contribution to the total. Calculation of GPA is an 

example of weighted mean.

Z score is a statistics based on mean and standard deviation. It is used to 

standardize  unrelated variables for the purpose of comparing them. 





Notes

Chapter 1

1. Internal Revenue Service (2009).

2. Stevens (1946).

3. Tukey (1977).

4. Anderson et al. (2010).

5. Tukey (1977).

Chapter 3

1. Gosset (1908).

2. Gosset (1908).

Chapter 8

1. A more formal and detailed explanation of this process is available in 

Naghshpour (2012).

2. Interested readers should consult Naghshpour (2012) for more detailed 

discussion of the topic.

3. For more detail refer to Naghshpour (2012).

4. For the sake of this example, we use the national income that is obtained from 

http://www.bea.gov/histdata/Releases/Regional/2010/PI/state/preliminary

_March-23-2011/SA1-3.csv. Th e data on education, which are in 1,000s, 

are obtained from http://www.census.gov/hhes/socdemo/education/data/cps

/historical/index.html.

5. Th ere is not enough space to discuss and explain all the numbers that are 

provided in Table 8.2, interested readers should consult Naghshpour (2012).

6. Naghshpour (2012).
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Statistics for Economics
Shahdad Naghshpour

Statistics is the branch of mathematics that deals with real-life problems. 
As such, it is an essential tool for economists. Unfortunately, the way you 
and many other economists learn the concept of statistics is not compat-
ible with the way economists think and learn. The problem is worsened by 
the use of mathematical jargon and complex derivations.
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eliminating the difficulty of learning statistics with examples from fields 
that have no relation to business, politics, or policy. Statistics is, in fact, not 
more difficult than economics. Anyone who can comprehend economics 
can understand and use statistics successfully within this field, including 
you!

This book utilizes Microsoft Excel to obtain statistical results, as well as 
to perform additional necessary computations. Microsoft Excel is not the 
software of choice for performing sophisticated statistical analysis. Howev-
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