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  Pref ace   

 This book had its origin in what seemed at the time to be a straightforward question: 
 Have you done a sensitivity analysis ? Posed by a geologist, this question was 
directed at an archaeological dissertation involving simulation modeling of hunter- 
gatherers in Post-Glacial landscapes, a dissertation that was scheduled for defense 
in just over a month. While not intended to create a fuss, the question was met with 
equal parts surprise (what exactly constitutes a sensitivity analysis?), trepidation 
(could a sensitivity analysis be conducted for a complex archaeological scenario?), 
and worry (could it be done in time?). All of these sentiments were borne out as the 
lead editor of the present volume began investigating what it would take to devise, 
implement, and analyze not just one but a series of sensitivity analyses! 

 Needless to say, once the primary goal of the dissertation defense was accom-
plished, much time was spent discussing how and when the ensuing sensitivity 
analysis would be conducted. After a year of research, we (Marieka, Hans, William, 
Henk Weerts, Kim Cohen, etc.) realized that no straightforward parallel existed for 
an archaeological simulation involving the combination of unique software pro-
grams, coding languages, input parameters and objectives, landscape reconstruc-
tions, and behavioral processes. Furthermore, those archaeological computational 
modelers who have conducted various types of sensitivity analyses have published 
little on how such techniques are incorporated methodologically or how results 
impact the modeling development, research design, and execution. Given the lack 
of any sort of discipline-based protocol for testing our models, or for identifying and 
isolating sources of error or uncertainty, we convened a forum at the 2014 Meetings 
of the Society for American Archaeology (SAA) in Austin, Texas, titled “ Error, 
Sensitivity Analysis, and Uncertainty in Archaeological Computational Modeling ” 
to more publicly air some of the key issues. The chapters in this volume had their 
inception as contributions to this forum. 

 A number of critical modeling issues were brought to the table at this forum, 
from the selection of scale and repetition to model equifi nality and the use of sto-
chastic rather than nonrandom parameters and processes. Perhaps the most repeated 
of these topics was that of  uncertainty , the source of most of the errors in our mod-
els and the target of sensitivity analysis. It was generally concluded that any 
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 computational model, whether statistical, empirical, random, or patterned, should 
incorporate frequent and systematized procedures for recognizing where and when 
uncertainty occurs, and how it can be minimized or incorporated. It was also 
observed that while archaeologists are for most part implicitly aware of uncertain-
ties in a variety of contexts, there have been limited attempts to overtly and system-
atically face them. The overall aim of this volume, then, is to impress on 
archaeological modelers (and simulative modelers in particular) the imperative 
nature of assessing uncertainty at all phases of modeling, from design and con-
struction to execution and post-processing. At a broader scale, all archaeologists 
can benefi t from consideration of uncertainty, especially given that the archaeo-
logical record itself is incomplete, biased, and full of unknowns. Furthermore, as 
many related disciplines (Geology, Geography, Natural Resources, Economics, 
Risk Management, etc.) regularly engage in and publish the results of sensitivity 
analyses, this is a methodological procedure we need to incorporate in order for our 
work to resonate appropriately with non-archaeological colleagues. 

 Here we present new ways of thinking about and addressing such uncertainty in 
targeted, context-specifi c examples. Different approaches to archaeological model-
ing are presented in case study format, with each chapter contributing a unique 
perspective on the meta-modeling issues of uncertainty and sensitivity analysis. The 
case studies are preceded by an introductory chapter that provides an overarching 
discussion of the theoretical literature on uncertainty and related issues of sensitiv-
ity analysis, model calibration, verifi cation, and validation (Brouwer Burg, Peeters, 
and Lovis) and a chapter that attempts to situate sensitivity analysis in the context 
of research design (Lovis). The subsequent case studies span the European (Brouwer 
Burg, Peeters and Romeijn) and North American (Carroll, Watts, White) continents, 
employ both deductive and inductive procedures, and explore various approaches to 
research design from a theoretical and methodological perspective. These case stud-
ies also engage different approaches to simulation; some involve spatial GIS-based 
simulations while others apply agent-based simulations in abstract space (also 
known as agent-based modeling or ABM), both of which operationalize theoretical 
models of human behavior and decision-making in quantitative form. Topics con-
sidered include linear versus nonlinear modeling, scale dependency, differential cri-
teria weighting, as well as parameter relationships. The penultimate chapter 
considers more overtly the theoretical issues involved with archaeological simula-
tion (Whitley). The fi nal chapter of the volume by van der Leeuw synthesizes the 
key issues of the preceding chapters with a view toward the future of archaeological 
computation modeling and the methods required to deal with uncertainty and error. 

 With the publication of this volume, the editors and other contributors hope that 
the complex issues of uncertainty and sensitivity analysis are brought to the fore-
front of archaeological computational modeling and will soon have an explicit role 
to play across the discipline. However, there is no quick fi x: for every model made 
and run, model designers should consider how and where uncertainty is introduced 
both theoretically and methodologically, and how this uncertainty impacts model 
outcome. Formal or computational modeling enables us to investigate uncertainty 
in an explicit way, but we must bear in mind that underlying ideas about how people 
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behaved in the past are often based on implicit assumptions built on ambiguous 
archaeological data and/or anthropological analogy. Hence, uncertainty does not 
stop at the limits of computational approaches, but is also of concern to “traditional” 
(analogous) models about past human behavior. For this reason, uncertainty assess-
ment should also be applied to implicit ideas and assumptions about the past as well.  

  Durham, NH, USA     Marieka     Brouwer     Burg    
 Groningen, The Netherlands              Hans Peeters    
 East Lansing, MI, USA     William     A.     Lovis     
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    Chapter 1   
 Introduction to Uncertainty and Sensitivity 
Analysis in Archaeological Computational 
Modeling                     

       Marieka     Brouwer Burg     ,     Hans     Peeters     , and     William A.     Lovis    

1.1           Introduction 

 With the rise of computer use and functionality since the late 1960s, the develop-
ment of formal computational models executable in a systematic and timely manner 
in archaeology have witnessed increasing attention within the discipline. However, 
the role and importance of computational modeling as an investigatory tool is not as 
widely recognized nor as often implemented by archaeologists as perhaps it could 
be. This situation does not necessarily pose a methodological problem, just as there 
are multiple paradigmatic approaches that exist with regard to the research and 
interpretation of the archaeological contexts we examine. Nonetheless, it is useful 
to ask ourselves why computational modeling geared at investigating archaeologi-
cal questions is still considered a “black-box” approach that does not really push the 
envelope of archaeological theory, research design and inquiry.  Making a case for 
the use of  mathematical modeling   in archaeological theory building, Read ( 1990 , 
p. 29) argued that “ the lack of application of mathematical formalism stems from an 
inadequate understanding of the way mathematics provides not only a language for 
the expression of relationships, but also a means of reasoning about their 
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consequences, hence a language for extending archaeological reasoning .”  In other 
words, computational models driven by  sound mathematical formulae   allow model-
ers to obtain insight into emerging complexities and theoretical implications of the 
studied dataset(s). Hence, the problem is not the application of mathematical tech-
niques to data analysis, which archaeologists are well versed at, but rather the con-
struction of natural, social, and behavioral constructs as approximations of a 
conceived “reality” in the past, and the assessment of model outcomes to evaluate 
and deepen archaeological theory. 

 Having introduced the concept of “ reality  ,” the next question is what “reality” 
actually means in archaeology. Is it the reality of the archaeological record as it is 
observed today, as the product of thousands of years of differential cultural and 
natural taphonomic processes? Is it the degree to which our presentist conceptions 
of how people behaved correspond to how people  actually  behaved in the past? Is it 
what we imagine about the past from our unique ontological perspectives today? 
These are questions with very different implications, but whatever the answer, if the 
ultimate aim of archaeology is to increase our understanding of human behavior in 
the past, we are also confronted with the question of how  confi dent  we are about the 
processes that led to the formation of the archaeological record and inferred pro-
cesses of pattern formation. Or, to put it another way, how do we deal with  uncer-
tainty  in conceiving systemic interrelationships, and the emergence of sociocultural 
and socionatural structures and subsequent archaeological manifestations, of past 
behavior? An unknown degree of uncertainty always underlies our interpretations 
of analytical results, whether one is hypothesizing about how humans behaved in 
the past based on material culture studies; how patterns in the archaeological record 
came about with the aid of computational models; or otherwise.  Hypotheses cast   in 
archaeological narratives (these are also models) about the behavior of our ances-
tors generally remain vague when defi ning systemic interrelationships, the inclu-
sion/role of variables, or attribution of parameter weights, whereas formalized 
narratives (or computational models) are explicit in their defi nition of these compo-
nents. Yet, how confi dent—if at all—can we be that our model, as a narrative or 
formalized construct, approximates to some degree the “target system” (which 
equals reality)? If, for the sake of simplicity, we can gain confi dence about the 
“validity” of models, the next question that arises is how we can determine the per-
formance of those models (i.e., verify that the models do what they are supposed 
to). In other words, how can we measure degrees of uncertainty implicit in a model 
in order to evaluate its power relative to the target system? 

 This question cuts to the central theme of this book: dealing with uncertainty and 
sensitivity analysis (SA) as a means of model verifi cation and validation. Here, we 
defi ne model   verifi cation    as a process that identifi es if, and how well, a model executes 
the task it was designed for (e.g., predict soil permeability; see Ngo and See’s ( 2012 ), 
Fig. 10.1, reproduced as Fig.   2.1     in Chap.   2    ). As part of this process,   calibration    aims 
at tuning and optimizing input parameter values such that they produce model out-
put that can approximate real data.  SA , which we return to later in this chapter, 
examines the effects of varying input parameters and values on model output. 

M. Brouwer Burg et al.
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  Validation    of a model involves assessing the degree to which a model produces 
robust and valid outcomes, and satisfi es the outset objectives for the model (Berger 
et al.  2001 ; Kleijnen  2005 ; Ngo and See  2012 ). For the discipline of archaeological 
computational modeling, “valid” outcomes are those that approximate reality in the 
past. Diverse genres of validation are followed in related fi elds (e.g., geography) 
and involve process-based, operational, empirical, conceptual, and statistical tech-
niques or, as defi ned by Zeigler ( 1976 ) the three primary methods of replicative, 
predictive, and structural validation. Generally speaking, the more complex the 
model, the greater the time and labor will be to undertake verifi cation and validation 
processes (for an archaeological example, see Murphy  2012 ). Nevertheless, we 
argue these steps should become standard for the science of archaeological model-
ing providing, as they do, critical insight into model strengths, weaknesses, and 
overall functionality. Our goal in such modeling should be to generate progres-
sively less uncertainty over time, in alignment with the overall goal of science, 
which is not truth but rather “to get less wrong over time” (Brian Nosek, founder of 
the Center for Open Science, quoted in Aschwanden  2015 ). This concept is funda-
mental because whatever we know now is only our best approximation of the truth, 
and we must always be vigilant against presuming to have everything right. 

 Despite the growing body of literature on archaeological modeling and, perhaps 
surprisingly, computational modeling in particular, the question of uncertainty and 
model validation is rarely addressed. This scenario stands in stark contrast to mod-
eling in other fi elds (e.g., geology, physics, biology, engineering), where model 
validation has become a critical step of the procedure, e.g., in the form of “SA.” 
“Verifi cation” and “ calibration     ,” both of which are more commonly referred to in 
the archaeological literature, are closely related to validation (see above), but repre-
sent a step that has very specifi c methodological implications in connection to the 
theoretical embedding of models upon which calibration is executed (Morrison 
 2015 ). In this chapter, we will take a closer look at the role of computational model-
ing in archaeology as compared to other disciplines and in particular, the relation-
ship between uncertainty and validation within these models. From a theoretical 
perspective, we will fi rst outline the differences and similarities in the possibilities 
of model validation. Next, and in reference to the other chapters in this volume, we 
will discuss the importance of acknowledgement of uncertainty and the role of SA 
in archaeological computational modeling, as a means by which to confi rm strengths 
and weaknesses of models.  

1.2     The Role of, and Approaches to, Computational 
Modeling 

 Referring to a model as “    an imaginary system, represented in language, mathemat-
ics, computer code, or some other symbolic medium, that has useful similarities to 
aspects of a target system in the real world ” and which “ might be viewed as an 
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abstraction, simplifi cation, idealization, or conceptual device ,” Kohler and van der 
Leeuw ( 2007 , pp. 3–4) provide an open and fl exible defi nition. But again, one might 
wonder what constitutes the “real world” (or reality)? The realities of our world, 
including the physical world, consist of theories which themselves are based on 
models and experiments (Morrison  2015 ). Hence, our observations are not neutral 
or theory independent. From this perspective then, one approach to the defi nition of 
such an imaginary system is as valid as another. Nonetheless, models—computa-
tional models in particular—are often believed to be of little use where it comes to 
the explanation of the observed phenomena. Human systems are generally believed 
too complex to be cast in simple rules (see, e.g., Clark  2000 ; Cowgill  2000 ; Shanks 
and Tilley  1987 ). This position, which we challenge (following instead work by 
Doran  2000 ; Lake  2004 ), stems from a perspective that humans are often consid-
ered to be the most complex creatures on earth, having free will, their behavior 
regulated by “independent” and conscious (though not always rational) 
decision-making. 

 In our opinion, models form the connective device between theory and the world, 
which consists of observed  phenomena/systems  . As such, models have a mediating 
role (cf. Morrison  1998 ; Morrison and Morgan  1999 ) and provide an abstraction or 
formal specifi cation of some phenomenon/system in terms of an interconnected set 
of rules that connect variables/parameters, and the behavior of which is compared 
with the observed counterpart. In order to make any such comparison possible, it is 
necessary to “activate” a model through simulations and experiments.  Simulations   
can be seen as reconstructions of a target system (model) on the basis of a (mathe-
matical) structure of functions that provides information about the behavioral struc-
ture of the target system. Closely connected, experiments can be seen as devices 
that return data/output that, to some degree, fi t/misfi t the expected outcomes of the 
target system, hence providing information about the validity of the model itself. 

 A number of formal and computational modeling approaches have been applied 
to archaeological case studies and socionatural questions of human behavior and 
interactions with other individuals, groups, and the ecological milieu. While  formal 
approaches   (including, e.g., linear programming, economic, and game-theory models) 
have had a lasting impact on archaeological interpretations, computational models 
involving cellular automata, neural networks, agent-based modeling procedures 
(ABM)    and georeferenced databases have become more popular in this subfi eld. 
Here, we focus on the latter two approaches, each of which requires a unique set of 
assumptions and developmental considerations, and is accompanied by varying 
strengths and weaknesses (for ABM, see discussion in Epstein  2006 ; Kohler and 
Gumerman  2000 ; Wurzer et al.  2015 ; and Carroll, Chap.   5    , Watts, Chap.   6    , and 
White, Chap.   7     in this volume; for  GIS-based approaches  , see discussion in 
Jankowski, et al.  2001 ; Krist  2001 ; and Brouwer Burg, Chap.   4     and Peeters and 
Romeijn, Chap.   3     in this volume).  ABM      attempts to explain macro-scale behavioral 
phenomenon through high volume iterations of socionatural dynamics (see, e.g., 
Axtell et al.  2002 ). The main advantage of this approach is its recursive nature, 
which can produce a bandwidth of human–environment interactions given a set of 
initial parameters, and the range of these processes can be cast against empirical 
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data. Such modeling focuses on varying the behavior of human agents given certain 
initial or outset conditions, and searches for large-scale patterning that may emerge 
over successive executions of the model. A primary disadvantage is that oftentimes 
ABM is carried out in simulated virtual environments that lack grounding in real- 
world environments. 

 By contrast, the fi rst and foremost concern of  GIS-based modeling   of archaeo-
logical processes, human behavior, and human–natural interactions is the reproduc-
tion of environments in the past. In general, highly detailed geographic, geologic, 
pedologic, vegetative, and faunal data are harnessed with a powerful geographic 
information system software (e.g., ArcGIS [the current industry standard], but also 
IDRISI, GRASS, and others), producing static or dynamic map reconstructions of 
paleolandscapes that can then be utilized as the foundation upon which decision- 
chain formulae can be carried out via software-specifi c functions involving grid- 
based transformations (Brouwer  2011 ; Howey  2011 ; Jankowski et al.  2001 ; Peeters 
 2007 ; Whitley  2000  to name a few). Disadvantages associated with this approach 
include lack of suffi cient or reliable environmental data; a tendency to produce 
static, “slice-of-time” map surfaces rather than dynamic, open-ended model runs; 
and the focus on behavior carried out in specifi c places in time rather than on broad- 
level behavioral trends that could be applicable in diverse spatiotemporal contexts. 

 A few mixed-methodology, or “middleware”  approaches   have also been gener-
ated in recent decades, approaches that have coupled or integrated agent-driven 
simulations of human behavior and socionatural interactions into GISs representing 
environmental reconstructions (e.g., Brown et al.  2005 ; Janssen  2009 ; Lake  2000 ; 
see Crooks and Castle  2012  for an overview). Coupling these diverse approaches is 
a diffi cult process, as different theoretical concerns, software requirements, and 
modeling languages are utilized (Gilbert  2008 ). Lake’s ( 2000 )  MAGICAL model   
ran agent-driven decision choices on georeferenced landscapes to explore Mesolithic 
subsistence systems, but this model was built for a unique spatiotemporal context, a 
common characteristic of most mixed techniques that has prevented much standard-
ization of coupling techniques for broader contexts in archaeology. It should be 
noted that this is also the case in the fi eld of geography, from which these methods 
were initially conceived (Crooks and Castle  2012 , p. 221). The two primary tech-
niques developed so far involve either the coupling of two distinct geospatial and 
agent-based systems via data transfer (Westervelt  2002 ); or the embedding and inte-
gration of the systems such that one system is subsumed under the other predomi-
nant systems (Maguire  2005 ). For example,  GIS-centric systems      would run 
agent-based scripting language on georeferenced gridded layers, such as has been 
done by Brown et al. ( 2005 ) with the ABM extension Agent Analyst in ArcGIS. 
 Simulation-centric systems      would tie iterative results of socionatural behavioral 
outputs to georeferenced surfaces using GIS functionality. A number of open source 
simulation toolkits now exist that can facilitate such demands (e.g., Swarm, 
MASON, and NetLogo; see Crooks and Castle  2012 : Tables 12.3–12.5 for indi-
vidual attributes, and Verhagen and Whitley  2012 , p. 88 for applications to archae-
ology), although far more exploration and experimentation is needed. 
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 While such coupled or integrated approaches allow modelers to tether questions 
of socionatural interactions to georeferenced natural backgrounds—ostensibly the 
overall goal of all computational archaeological modeling—the drawbacks of such 
models are similarly compounded, resulting in highly complex, multi-component 
and multi-phased projects that necessarily involve compounded uncertainties and 
associated error. However, we believe this paired or mixed-methodology linking 
GIS-based environmental reconstructions to ABM approaches is ultimately the 
manner in which archaeologists will be able to obtain the clearest views into 
human–environment interactions in the past. The current challenge, then, is to 
establish fi eld-wide “best practices” for identifying error and uncertainty in our 
models. Such best practices can be disseminated at regular forums held at yearly 
meetings and via online venues that encourage archaeological modelers to commu-
nicate, learn, and build upon the work of their peers.  Websites   such as Open ABM 
(  https://www.openabm.org    ), part of the Network for Computation Modeling for 
SocioEcological Science (CoMSES Net) is a big step in the right direction, yet one 
that must become more widely publicized and engaged in by all modelers working 
in this fi eld of research.  

1.3     Certainty About Uncertainty and Model Validation 

 When speaking about models, simulations, and experiments, one has to address 
issues of uncertainty and model validation, which leads to the question of how 
models can be compared to, and provide information about, target systems in the 
real world (Morrison  2015 , p. 20). Archaeologists fi nd themselves in a rather dif-
fi cult situation in this respect. Archaeological “reality” consists of a  record   which 
results not only from human behavior in the past, but also from a myriad of natu-
ral and anthropogenic processes that have transformed initial patterns in terms of 
composition and distribution of observable phenomena (see Lovis, Chap.   2    ), as 
well as theoretical conceptions of what is of archaeological relevance and the 
addition of methodological constraints. Hence, there are many uncertainties sur-
rounding the interpretive possibilities of the archaeological record and subsequent 
construction of narratives and formal models about human behavior. Of course, 
these problems are largely acknowledged within the fi eld and have triggered 
much of the paradigmatic discussion since the 1960s (see Evans  2012  for an inter-
esting discussion of how uncertainty and error is introduced and dealt with in the 
related fi eld of geography, and Refsgaard et al.  2007  for an overview with regard 
to environmental modeling). Indeed, this is also the context within which archae-
ological computational modeling took off, and much has been achieved. However, 
issues of uncertainty and model validation have remained in the background, 
which suggests that we take this fact for granted (and carry on), or that the issue 
is too delicate to handle (but we carry on anyway). So how have other disciplines 
dealt with this issue? 
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1.3.1      Uncertainty in  Geoscientifi c Modeling   

 As both archaeologists and geoscientists tend to collect their basic  data   from sedi-
mentary deposits—many geologists consider archaeological remains simply as 
sedimentary composites—it is perhaps useful to start our brief overview here. In 
various ways, geoscientifi c modeling aims at problems that compare well to archae-
ological ones. A lot of work is concerned with prediction and assessment of resource 
potential (what? where? how much?), or the effects of geophysical dynamics on 
landforms (what happens under changing conditions?). We will illustrate both con-
texts with an example. 

 Prediction and assessment of resource potential for commercial purposes 
typically aims at error reduction and has to deal with four sources of uncertainty 1 : 
(1) model properties; (2) boundary conditions; (3) ground-truthing; and (4) comput-
ing. In the case of reservoir (e.g., hydrocarbons, groundwater) modeling for instance, 
computing-related uncertainties are relatively easy to account for, as bandwidths of 
error can be calculated from earlier results. The other  sources   of uncertainty are 
analyzed by means of running models for a large number of slightly varying sets of 
values. In the context of  reservoir modeling  , parameters such as permeability and 
porosity need to be connected to lithological models, which express the geostatisti-
cal properties of the reservoir’s spatial characteristics.  Parameter values   are mea-
sured on core samples and/or experimentally determined. The use of geostatistical 
approaches enables the quantifi cation of model outcomes and statistical uncertainty 
information about individual grid cells. From these data an “average” model with an 
“average” uncertainty distribution can be calculated. The range of models can be 
tested against real data in order to identify the “best fi ts”; in consideration of known 
or estimated bandwidths of error, this can result in hundreds of equiprobable model 
results within a set of boundary conditions (more on equifi nality follows below in 
Sect. 1.3.4). As these  boundary conditions   are also subject to uncertainty, these set-
tings have to be varied as well within reasonable limits. When tested against real 
data, a considerable number of model results are usually classifi ed as unrealistic, 
leaving a smaller set of model results (with known uncertainties) that are more or 
less probable. Clearly,  ground-truthing   is important to gauge the model properties 
and boundary conditions. But the question remains: how much ground-truthing is 
needed (one case, two cases, etc.), and how many matches between model outcomes 
and reality must be obtained to warrant model validation? This is plainly a matter of 
cost- benefi t experience. Any set of “real data” is incomplete and may not be fully 
representative. This implies that model results that do not completely fi t with ground 
truth are not necessarily wrong. Therefore, a limit of maximal divergence from 
ground truth has to be set; the less ground truth is available, the larger the limit. 
Model runs that fall within this limit are accepted; model runs that fall outside this 
limit are rejected. 

1   We owe this example to Dr. Henk Weerts of the Cultural Heritage Agency of the Netherlands. 
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 Modeling the effects of geophysical dynamics on landforms primarily focuses on 
the alteration of earth surface characteristics under changing conditions of erosion 
and sedimentation; in short,  dynamic landscape process modeling  . In this context, 
the researcher also has to deal with multiple sources of uncertainty, which are 
largely the same as in the previous example. But instead of building a model on a 
geostatistical basis in connection to the spatial distribution of a resource, dynamic 
landscape process modeling builds on equations that describe physical terrain prop-
erties in connection to a number of variables/parameters. 2  Evans ( 2012 ) outlines the 
following sources of uncertainty that occur throughout the life cycle of any simula-
tion model: uncertainty associated with input data; model choice; model mechanics; 
and output.  Input data   can introduce uncertainty through various means, such as 
data measurement error, overlooking data, and choosing inappropriate sample sizes 
or inappropriate discretization measures. Some of these issues will become obsolete 
as data gathering and processing technologies continue to improve in accuracy. 
Others (such as sample size and sample binning) must be carefully problematized 
by model builders during model design and construction.  Model choice   can also 
introduce uncertainty in various ways: most notably in the selection of appropriate 
variables, scale, parameters, and formulae or mathematical transformations. 
Calibration and SA are especially useful in this phase to determine the necessity and 
impact of various model components. During the running of models, error is 
unavoidably generated as either “model-fi x”  errors   (related to model elements not 
present in the real world) or “process fi x” errors (related to simplifi cation of com-
plex elements in the real world; see van der Sluijs et al.  2003  for further explana-
tion). In addition, the modeling code may contain mistakes, leading to model “bugs” 
(Evans  2012 , p. 330).  Code-checking programs and forums   for modelers to view, 
edit, and revise one another’s code can help in this regard (see Galán et al.  2009  for 
advice). Finally, the  output   uncertainty of any model must be assessed to satisfy 
model verifi cation and validation. Various mathematical and statistical calculations 
can be applied to model output at this point and is usually done in the form of sen-
sitivity testing. In the discipline of geography,  Monte Carlo Sensitivity (MCS) test-
ing   is commonly applied, in which a number of model iterations are run with 
different input data, variable, and parameter combinations.  Bayesian models      are 
also commonly used to sample varying distributions of parameter weights and 
explore overall impacts on uncertainty. 

 In addition, there is random error to account for, which creeps into models due 
to “noise,” an elusive term defi ned by Evans as “variation in our variables of interest 
around the values we expect to represent their ‘true’ or ‘important’ value” (Evans 
 2012 , p. 310). Such  noise   can generally be explained via stochastic modeling that 
randomly tests the range of outcomes of a given model and uses Monte Carlo sam-
pling to identify the most probabilistic outcomes based on more frequent occur-
rences in the random sampling. Error and bias, separate concepts in traditional 

2   An example is the dynamic landscape evolution model LAPSUS developed at Wageningen 
University. 
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modeling, are often confl ated in more complex models as both concepts generally 
arise from inaccuracies of the data, the modeler, or both. 

 The above examples particularly line up with archaeological modeling in the 
context of Cultural Resource Management. As we have seen in the previous para-
graph, GIS-based predictive modeling is concerned with questions of what to expect 
where and in what quantities; hence, it is about spatial distributions of archaeologi-
cal phenomena/sites. However, the approach to uncertainty in and validation of 
predictive models in archaeology cannot be the same as in the geosciences due to 
differences in the nature and reliability of data. Typically, recent  statistics-based 
studies   on the performance of correlative and sampling-based models have shown 
that these are quite unsuccessful if validation relies on the archaeological record 
(see, e.g., Verhagen  2007 ). In contrast,  predictive models   of archaeological site 
survival which are based on dynamic landscape process modeling may prove more 
successful, as validation can, at least partly, be based on the same principles as in 
the geosciences.   

1.3.2       Uncertainty in  Ecosystem Modeling      

 As mentioned earlier, the initial formation of the archaeological record is directly 
related to human behavior in the past. How did or was the daily behavior of (groups 
of) individuals affected by the environment and vice versa, and to what extent were 
people resilient to changes in the environment? The study of the interaction between 
living species and their environment is typically the subject of behavioral ecology, 
as it is in archaeology, and is a research fi eld that has an infl uential and long tradi-
tion in (computational) modeling. Perhaps May’s (1973, 1976) work on model eco-
systems can be cited as one of the most infl uential studies in the exploration of 
self-organizing systems and complexity. 

 A lot of early research in ecosystem modeling is characterized by simple mod-
els that focus on the understanding of ecological diversity, stability, and complex-
ity in particular. Typically, these simple models tend to show nonlinear (stochastic) 
behavior with a sensitive dependence on initial conditions, which makes clear that 
one has to deal with inherent uncertainty in models where interdependence of 
dynamic system components (populations, environments) is central. Over time, 
however, models have become more complex, making it increasingly diffi cult to 
deal with the uncertainty that is compounded in these models, due to the many 
uncertainties on input distributions. Recent studies have tried to fi nd solutions to 
this problem, and have come to the conclusion that expert estimates (expert judg-
ment) of input distributions as approximations to describe model precision may 
be more useful than quantitative analysis (e.g., McElhany et al.  2010 ). SA (output 
responses to systematically varied changes in input) and error estimation (close-
ness of model output to measurement) as part of the modeling process is increas-
ingly considered to evaluate uncertainty for model selection (Snowling and 
Kramer  2001 ). 
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 In discussing animal (including humans) movement as an important topic of 
investigation, Viswanathan et al. ( 2011 , p. 12) note that data-centric approaches to 
this issue primarily focus on comparison of model outputs with empirical data in 
order to fi nd out which model fi ts the data best. However, they state that it is more 
important to bear in mind that models make assumptions, and that these lead to 
predictions that are not necessarily supported by a model’s outcome. This, then, can 
lead to theoretical considerations with regard to the underlying assumptions. An 
interesting example is provided by Raichlen et al. ( 2014 ) who explored search pat-
terns among Hadza hunter-gatherers in northern Tanzania, and found that about one 
half of foraging movement can best be described as Lévy walks, which are often 
considered to correspond to “optimal” search patterns for scarce and randomly dis-
tributed resources (Brown et al.  2007 ; Viswanathan et al.  1999 ), and refl ects envi-
ronmental complexity (de Jager et al.  2011 , but see Jansen et al.  2012 ). Raichlen 
et al. ( 2014 ), however, have found little evidence for this, as differences in resources 
brought back to each camp are not associated with major differences in the use of 
Lévy walks. Furthermore, they found that Brownian walks, which describe random 
search patterns, occur less frequently than composite Brownian walks, which share 
similarities with Lévy walks (de Jager et al.  2012 ). 

 Hence, it becomes clear that systematically occurring foraging patterns may be 
related to the underlying complexity of foraging environments, which may carry 
implications for Optimal Foraging Theory. In this context, the use of abstract math-
ematical models rooted in physics help to disentangle and clarify patterns of distri-
bution and movement. It forces us to think about the complexity of environments 
and the way animals use them. In the case of archaeology, it may reveal deeper 
insights about site distribution patterns relative to environmental factors, which are 
too often conceived of in terms of coarse-grained models and as such, do not do 
justice to issues of scale and environmental diversity.    

1.3.3       Uncertainty in  Social Modeling      

 In this last example, we will take a brief look at uncertainty in the modeling of 
social systems, where interaction among (groups of) individuals is central. How did 
interactions among (groups of) individuals impact daily behavior, and how were 
these interactions affected by changes in the socioeconomic/-political/-cultural/-
technical, and -ecological environment? 

 A basic social science fact holds that the more people interact, the more alike 
they become in their cultural features (beliefs, behaviors, attitudes, etc.; Axelrod 
 1997 , p. 203). However, this tendency toward convergence is usually halted before 
complete homogeneity is achieved between individuals and groups; a result of the 
inevitable development of a few culturally distinct and stable units. Axelrod ( 1997 ) 
has demonstrated just how these processes can occur with a numerically based 
agent-based model that can facilitate calculation of multiple dimensions of culture, 
although the model becomes more complex to execute with each cultural feature 
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added and consequently the possibility of introducing error also increases. Culture 
is conceived of as a number of shared features (e.g., language or belief systems) that 
have alternating traits representing different expressions of these features (different 
languages and different belief systems). The more frequently an individual or cul-
tural group interacts with a peer group, the more likely the two entities will become, 
until all cells in the model have converged under a few larger, “polarized” stable 
cultural regions (Axelrod  1997 , p. 220). 

 While the initial starting or outset conditions of this model are extremely simple, 
and in so being, rather elegant, there are a number of uncertainties that are also 
manifested. First, this model is based on a very abstracted notion of culture as easily 
separable components that can be described in increasingly detailed categories of 
attributes (the example of “belt color” is used in the article). Thus, uncertainty arises 
when the modeler is forced to select a few features from the array of cultural fea-
tures that make up any cultural system, thereby decreasing the diversity of the sys-
tem. While the model is successful in yielding insight into large-scale cultural 
processes, it is consequently unable to describe the nuanced relationships and com-
plexities that exist between cultural features and the entities that comprise them. 
Second, the model does not support movement between agents (sites or individuals) 
and thus we cannot learn anything about how human migration or mobility might 
impact interaction between individuals or groups, which is certainly not representa-
tive of human reality today or in the past. Third, agents can only interact with their 
adjacent neighbors, again an imposed characteristic of the model that does not 
refl ect human reality, in which people move around and engage with other individu-
als and groups in varying sized spheres from a home base or other anchoring loca-
tion. Fourth, established mechanisms affecting culture change are not incorporated, 
such as cultural drift and attractiveness, terrain and geographic variation, status, or 
technological change. All of these factors lead to uncertainty, and it is perhaps not 
surprising that when the model outcomes are cast against real-world instances of 
cultural interaction, no match is found (see discussion in Axelrod  1997 , p. 220; also, 
Bettinger  2008 ; Bettinger and Eerkens  1999 ; Eerkens and Lipo  2005 ). 

 Other models of social complexity, such as those focused on the evolution and 
dynamics of cities, have in recent decades shifted toward bottom-up, organic 
approaches to development and behavior, the driving mechanism of equilibrium or 
homeostasis traded for those of catastrophe, chaos, and bifurcation (Batty  2012 , p. 
S9). Scholars have noted that social units scale according to fractal patterning, in 
which self-similar patterns and processes are replicated, with small but regular vari-
ation, at both small and large iterations (Batty and Longley  1994 ). Spatial interac-
tion effects between individuals and groups can also be described by these fractal 
structures, defi ning the manner in which segregation, diffusion, and/or “emer-
gences” of social units occur (Batty  2008 ; Bonner  2006 ). Such models are incredi-
bly useful for understanding large-scale dynamics of supra-individual social 
interactions; however, these models are oftentimes abstracted to such a degree that 
modelers lose sight of individuals and their lived realities. While conceptualizing 
human spatial dynamics in geometric terms is elegant and seemingly parsimonious, 
it is only an approximate metaphor. Making the outset assumption that all humans 
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and human groups will act in an identical manner over time and space—multiplying 
and spreading over their territories in geometrically uniform confi gurations—sets 
up the system to fail if modeling  reality  is the overall goal, especially given the 
enormous spatial diversity present in human land-use decisions (tied in part to envi-
ronment, economics, subsistence and settlement systems, technologies, ideologies, 
etc.). While many theories of geometric growth, gravitational pulls, and rank-size 
ordering of settlements can approximate some human spatial behavior, the modeler 
must know that variations and exceptions to the patterns will manifest in any real-
time system. Additionally, these patterns are developed upon and best approximate 
spatial behaviors among fi rst-world societies; a person has only to fl y over a third- 
world country to realize that settlement expansion into virgin forests or uninhabited 
desert appears far from fractal in nature. 

 Another concern of city systems and the theories that attempt to defi ne spatial 
processes of city formation is the lack of coherence or interconnection between 
approaches (a concern for archaeological computational modelers as well; see dis-
cussion above). As discussed by Batty ( 2012 ), the concepts of gravitation, diffusion/
segregation, and rank-size relationships are not nearly as isolated as the literature 
would have you believe; rather, these processes are all “entangled” and the current 
challenge to urban geographers modeling urban systems is to weave together theo-
ries and approaches that can accommodate each of these concepts. The successful 
interweaving of these concepts will undoubtedly benefi t archaeological modeling. 
Additionally, as the science of city systems transitions toward an approach in which 
models are used to inform rather than predict human spatial behavior, or its out-
comes, archaeological modelers may fi nd corollary verifi cation and validation tech-
niques that can greatly assist in the modeling of past human systems that cannot be 
accurately ground-truthed.    

1.3.4      A Word on  Equifi nality   and Uncertainty 

 Another important auxiliary concern for all modelers working to reproduce some 
reality (whether in the past or present) is the question of  equifi nality . This issue has 
been dealt with for some time now in the literature on systems and systemic analytic 
approaches, as well as the literature on general archaeological topics and the more 
specifi c subject of archaeological modeling. This is due in large part to the clear 
contribution of equifi nality to uncertainties of interpretation, or outcome. As com-
monly confi gured in contemporary parlance, and recognizing that there are minor 
nuances in defi nition, equifi nality is a reference to the fashion in which open sys-
tems can achieve the same or similar outcome states from different starting points, 
and/or through different historical processes or trajectories [Premo  2010 , p. 31 for a 
similar defi nition; see Lyman  2004 , who attributes the initial coining of the defi ni-
tion to von Bertalanffy ( 1949 ,  1956 ), and its introduction to archaeology by Hole 
and Heizer ( 1969 )]. 

 Since as archaeologists we deal with the patterning of material remains as proxy 
for the behaviors that created them and the processes that may have altered them in 
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the period intervening between behavioral formation and archaeological observa-
tion, equifi nality inserts a strong dose of uncertainty at several points in archaeo-
logical modeling—initial or starting state characteristics, is there one or potentially 
are there several?; procedural or decision-making logics over the time durations of 
interest from initial starting states, and the information and parameters that drive 
them; and potential alterations in the material signatures of behavior (taphonomic 
processes); among others. For some equifi nality is viewed as a theoretically rooted 
phenomenon (Lyman  2004 ; Premo  2010 ; Rathje et al.  2013 ). Equifi nality looms 
large for those primarily processual archaeologists who engage with middle range 
theory (MRT) and who conceptualize the material remains of human behaviors as 
the outcome of open system interactions (i.e., networks) (Cordell et al.  1994 ; 
Cunningham  2003 ). Some suggest that the problem of equifi nality may not be uni-
formly solvable even with high level theory, but rather may well be more con-
strained and case specifi c (see M.B. Schiffer in Rathje et al.  2013 , p. 36, particularly 
the discussion of proximate and limited causation). In certain instances, actualistic 
experimentation, as MRT, has the potential to reduce input uncertainty and under-
standings of outcome variability. 

 In archaeological modeling, this forces the recognition of multiple initial states 
in, potentially, different “environments,” whether technologically, archaeologically, 
mentally, socially, etc. While often recognized at an abstract level, there are few 
directed attempts on the part of archaeological modelers to insert the uncertainty 
associated with equifi nality into their work, although there are some important 
examples from which to draw insight (e.g., Graham and Weingart  2015 ; Premo 
 2010 ; see also Hodder  1976  for an early exploration). Of particular interest is the 
notion that simple replication of archaeological signatures through computational 
modeling is not necessarily suffi cient for validation of either the starting state, or the 
historical processes that may have resulted in it, both of these in large degree being 
modeler’s choices, albeit informed ones. This has signifi cant import for models that 
only attempt to reproduce the archaeological record, leading to notions of more 
exploratory, experimental and heuristic use of approaches such as ABM (see, e.g., 
Premo  2010 , in what is characterized as a “ Postpositivist archaeology  ”), with one 
goal being to reduce “underdetermination among alternatives” (Premo  2010  citing 
Richardson  2003 ), and another being to disabuse us of emulative approaches. 
Ultimately, this altered perspective on and application of computational modeling 
should result in reduced uncertainty across multiple modeled dimensions, variables, 
and parameters.    

1.4       Sensitivity  Analysis   and Determining Model 
Strength/ Weakness   

 SA assesses how models respond to change in inputs and input values (van 
Groenendaal and Kleijnen  2002 ; Vonk Noordegraaf et al.  2003 , p. 434), but does 
not include calculation of the probability of change as risk analyses do (van 
Groenendaal and Kleijnen  1997 ). Utilized most frequently in the earth sciences 
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(Lenhart et al.  2002 ; van Griensven et al.  2006 ) and behavioral ecology (Happe 
et al.  2006 ; Vonk Noordegraaf et al.  2003 ), SAs are particularly useful for verifying 
meta-model  functionality   and for validating output  simulations   in cases where such 
simulations cannot be tested against a robust set of empirical data (Kleijnen  2005 ). 
SAs can also reveal where uncertainty is introduced into a model, and which inputs 
must be accorded special attention in modeling design and execution. One of the 
main  drawbacks   of SA involves the requirement of being able to simulate reality, 
often an impossible task in archaeological modeling but much more reasonable for 
a geologist modeling an underground reservoir of water. Furthermore, fuzzy 
assumptions are unavoidable in modeling of past landscapes and behaviors, making 
quantitative analysis through statistical means a complicated procedure. However, 
without incorporation of verifi cation techniques (described here in the form of 
SAs), archaeological modelers risk producing “just so” stories of the past, rather 
than systematically tested hypotheses about socionatural systems. 

 Various approaches to SA may be employed, including  one-way analysis   (e.g., 
the “one-at-a-time” or OAT design; Happe et al.  2006 ; Vonk Noordegraaf et al. 
 2003 , p. 434), two-way or multiway  analysis  , or probabilistic analysis (Saltelli 
 2005 ; Taylor  2009 ). One-way  analyses   are useful for simple models with few 
inputs, as only one parameter or variable is changed per model run. While straight-
forward in its implementation, one-way analysis fails to account for interactions 
that may occur between inputs on account of varying input dependencies, and risks 
development of models that are overly crude (Vonk Noordegraaf et al.  2003 , 
p. 434). Additionally, most simulation modeling involves a number of either social 
or natural inputs that are linked in hierarchical or cascading model structures. 
 Multiway   SAs are widely considered to be better suited to the task at hand (Taylor 
 2009 ; Happe et al.  2006 ), especially because they can reveal information regarding 
nuanced interactions between inputs. 

 The utility of multiway SAs for simulation modeling may appear obvious; how-
ever, implementation of multiway SAs comes with an important proviso: the more 
inputs are incorporated, the less feasible it becomes to thoroughly evaluate all input 
combinations. In fact, the majority of social and natural simulation models pub-
lished in the recent past can be characterized as  over-parameterized , with more than 
ten input parameters. In such instances, a multiway SA becomes complex and dif-
fi cult to evaluate, as the researcher will ideally want to investigate every combina-
tion of parameters, leading to, for example, 10! number of combinations (3,628,800 
unique combinations). Such uncritical over-parameterization can lead to large 
amounts of uncertainty production and should be avoided through careful selection 
of key factors (Doran  2008 ). 

 SA can be a useful tool to determine which potential factors should be retained 
and which can be removed to improve model effi ciency and accuracy.  In behav-
ioral ecology  , researchers often apply the statistical techniques of Design of 
Experiments (DOE) and meta-modeling in order to reveal signifi cant information 
about the behavior of the model as well as the programing logic, and to determine 
which inputs have the greatest impact on the model (Happe et al.  2006 ; Kleijnen 
 2005 ; see Brouwer Burg, Chap.   4     for an archaeological application). A subset of 
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inputs that are assumed to strongly infl uence the model are chosen, and a limited 
range of input, or factor, settings are chosen to defi ne the low, default, and high 
value settings for each selected input. This approach to SA is easy to generate and 
analyze using  regression statistics   and can yield important information regarding 
the effects of particular inputs as well as how inputs interact with each other. A 
similar  streamlining strategy   is referred to in the statistical literature as extreme 
SAs (Taylor  2009 ), or “corner testing” (Gilbert  2008 ), a technique that also sets 
selected inputs to their highest or lowest value (or best/worst case scenario) to 
determine the outer limits or boundaries of a parameter space in which all possible 
parameter values fall. 

  Probabilistic techniques      are also very useful for analyzing the sensitivity of 
parameters on the model output (Taylor  2009 ). In such cases, each parameter is 
assigned a probability value. With each iteration of the model, one random value 
within the distribution for that parameter is selected. Over many model iterations, 
many random values are chosen. Analysis of the outcomes of the model iterations 
reveal their statistical properties and provide an indication of the sensitivity to the 
selected parameter.    

1.5     Summary and Chapter Overviews 

 The overall goal of this volume is to problematize the issues of uncertainty, error, 
and SA, and discuss methods for identifying and dealing with these issues in archae-
ological computational modeling. Each of the contributing authors comes at this 
question from a unique spatiotemporal and methodological perspective, revealing 
just how diverse a long-awaited “solution” or best practice protocol will be. In 
Chap.   2    , Lovis explores the role of SA and other methodological concerns of 
archaeological modeling for research design and theory building. Coming at the 
subject as a relative outsider, he provides a unique perspective on the merits and 
shortcomings of SA, and weighs in on how to make this practice a worthwhile com-
ponent of archaeological computational research. From a more epistemic perspec-
tive, Peeters and Romeijn describe a priori and post hoc approaches to confronting 
uncertainty in Chap.   3    . They suggest that choosing particular families of models 
that yield highly variant or invariant outcomes are best for robust hypothesis testing. 
In Chap.   4    , Brouwer Burg examines GIS-based methods for exploring archaeologi-
cal dynamics, in comparison to ABM approaches. Brouwer Burg references a case 
study of Mesolithic hunter-gatherers in the Netherlands to illustrate the complexi-
ties of designing and executing SAs for her Hunter-Gatherer Land Use Model 
(HGLUM). In Chap.   5    , the capability of agent-based models to explore nonlinear 
behavioral patterning (such as cultural transmission) is presented by Carroll. SA is 
applied to the Intercommunity Cultural Transmission Model (ITCM) for the Late 
Prehistoric Great Lakes Period of North America. Watts tackles the question of 
scale and repetition for model validation in Chap.   6    , and investigates how scale-
dependent variables can impact model outcomes, referencing a model designed to 
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simulate Hohokam economic transactions in central Arizona. In Chap.   7    , White 
also investigates the impact of varying model parameters, this time focusing on 
demographic inputs and their effects on hunter-gatherer population stabilizing 
mechanisms. Whitley discusses current issues that have arisen with increased com-
putational power and database management systems, calling for more attention in 
the fi eld to theoretical development in Chap.   8    . Finally, in Chap.   9     van der Leeuw 
draws together the preceding chapters in this volume and discusses issues of uncer-
tainty and SA in the context of a wider perspective on how archaeological percep-
tions of the past introduce ontological uncertainty, and how the interpretative 
choices we make are infl uenced by the path-dependency of model construction pro-
cedures. He concludes that formal modeling approaches that allow us to explore 
structure- specifi c decisions and their consequences (even unintended ones) in the 
present can greatly enhance understandings of socio-natural processes in the past, a 
move away from reductionist and evolutionary schemas that van der Leeuw sees as 
critical to the advancement of the fi eld.     
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    Chapter 2   
 Is There a Research Design Role for Sensitivity 
Analysis (SA) in Archaeological Modeling?                     

       William     A.     Lovis    

2.1           Introduction 

 The 2014 Society for American Archaeology Forum devoted to sensitivity analysis 
(SA), for which this more extended essay was originally prepared, largely derived 
from observations made by several of us that the testing of predictive models and 
simulations in archaeology is largely accomplished in the absence of systematic 
evaluation of model design or structure, internal operation and decisions, and 
parameter spaces common in other disciplines both social and natural scientifi c, and 
in the latter particularly the earth and environmental sciences. This appears to be the 
case regardless of modeling goal, that is explaining or replicating a suite of archaeo-
logical observations at different scales, or exploring the degree to which theory and 
model might or might not be in accord. 

 To a degree, I come to this discussion as an impartial outside observer. While not 
an active modeler, I regularly work with modelers, bringing quantitative spatial 
analytic insights largely derived from geography to bear on problems of spatial 
decisions and mobility among archaeological hunter-gatherers. My intention here is 
not necessarily to convince the reader to undertake SA, but rather to explore the 
various roles SA might play in research design, under different modeling goals, and 
how these considerations might link with theoretical underpinnings and 
considerations. 

        W.  A.   Lovis      (*) 
  Department of Anthropology and MSU Museum ,  Michigan State University , 
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 In this light, my fi rst serious exposure to SA came via a single paragraph in a 
book review in  JASSS  by Doran ( 2008 ). To wit:

  Both these studies are sophisticated archaeologically, but perhaps less so as regards  ABSS 
method  . There seems to be an uncritical assumption that the more detail that is included, the 
better the model. There is little evidence that the authors are familiar with the attempts of 
the ABSS community to clarify such matters as validation, sensitivity analysis and param-
eter space exploration, and the critical task of choosing an appropriate level of abstraction 
(or granularity) for a model. 

   Several years later, in an important volume on  archaeological   simulation, there 
remained almost no mention of SA (Costopoulos et al.  2010 ), an event replicated 
recently in a compendium specifi cally addressing  agent-based modeling (ABM)   in 
archaeology (Kurzer et al.,  2015 ), and in stark contrast to its prevalence in a promi-
nent volume on geographic  ABM   (Heppenstall et al.  2012 ). The question at hand, 
then, is whether archaeological modelers/simulators should engage in such activi-
ties (more) regularly as a means of both refi ning theory and models, and providing 
increased confi dence in and use of our outcomes both within and, perhaps more 
importantly, among modelers in other disciplines with overlapping, parallel, or sim-
ilar goals. Here I provide an exploratory peregrination through various facets of 
archaeological research design that bears directly on this question. I synoptically 
explore where model uncertainty might lie, particularly in terms of archaeological 
data quality, as well as the compilation and evaluation of aggregated historical data 
in the effort to defi ne variables and their parameters. How SA is positioned relative 
to larger social theory and more pertinently Middle Range Theory ( MRT  )    is related 
to the examination of uncertainty, and how such uncertainty is situated and assessed 
in the larger schema of research design logic is a primary focus (see Ioannidis  2005  
for a broader discussion of this issue in research). Providing a primer in the details 
and variable approaches to how to do or apply SA is not, although various approaches 
will be found in the presentations following this essay. While ultimately I may not 
provide immediately tangible outcomes or solutions, the several arenas focused 
upon to my mind warrant more concerted analytic thought. 

 SA is often associated with predictive computational models including ABMs, 
although it is arguable that it may be most strongly tied to theory-driven models 
engaged in exploration of system dynamics (Kyle Bocinsky, personal communica-
tion), as well as being a central component of decision allocations and outcomes in 
Artifi cial Intelligence (AI). It is one component of several verifi cation processes 
situated early in most research design and which collectively result in model valida-
tion. Procedures for SA are well known and summaries are readily available (e.g., 
Hamby  1994 ). Such verifi cation and validation processes are central to contempo-
rary modeling, which renders SA’s apparent absence among archaeological model-
ers particularly curious. Predictive models in archaeology have had a long and 
bumpy disciplinary history (Clarke  1970 ; Doran  1970 ; see Costopoulos et al.  2010 ; 
Doran 2011; Lake  2014  for recent historical overviews). They are most often reality 
driven, and problem or question directed, the form of the latter framed largely by the 
theoretical umbrella under which an investigator is situated (and potentially focused 
on theory itself rather than observed “realities”). Depending on researcher goals, 
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archaeological models may range from fundamentally exploratory to explanatory, 
or even replicative, with most attempting to incorporate information held to be cur-
rent state of knowledge on the problem at hand. By their nature, and related to the 
recognition of incomplete knowledge, models are not intended to be precise repre-
sentations, but rather are abstract  simulacra  ( sensu  Renfrew  1981 ) that accommo-
date as much as feasible of the known information. 

2.1.1        Error  ,  Uncertainty  , and Sensitivity Analysis 

 Evans ( 2012 , pp. 309–346) among others provides a useful summary of potential 
sources of uncertainty and error in ABM—one that illuminates the importance of 
SA in archaeological model design. Evans arrays these potential sources in several 
sequential arenas. 1  Of particular interest, however, are: (1) input data errors includ-
ing (a) measurement and transcription error, (b) sample size issues, (c) missing data, 
and (d) classifi cation error; (2) what is termed “model choice” including (a) choice 
of variables, (b) model structure or operation, (c) model scale, and (d) model param-
eters (i.e., “fi tting”); and (3) potential fi ts to known input–output data, all of which 
results in some range of output uncertainty from multiple potential sources each 
with potentially different sensitivities. It is in this arena that the rationale for SA is 
most commonly framed. Readers are referred to Evans ( 2012 ) for useful detail. I 
will return to an illustrative archaeological exemplar of these issues in  Sect. 2.6 .     

2.2     Resolution and Scale in  Model Choice   

 While this discussion will weave across the boundaries between general computa-
tional and ABMs, there are in fact some signifi cant distinctions that should be kept 
in mind, and which at least in part refl ect changes in goals and approaches that 
have evolved across the last half century in a variety of disciplines more central 
than archaeology to the development of modeling. According to some, the distinc-
tions may be cast as contrast sets, such as that in Table  2.1  (from Bernard  1999 , 
reproduced in Crooks and Heppenstall  2012 , p. 95, Table 5.1). Regardless of 
whether or not there is individual agreement with this contrastive characterization, 
and while admittedly such itemized categorical dyads diminish detail, it is clear 
that choice of approach is goal oriented, and that in terms of archaeology such 
choice impacts several important factors; the nature of “environment” and how it 
is treated, the relative resolution of “space” as bounded units of area, and the 
potential to proliferate parameters of interest, or not. And while cast as opposi-
tional dyads, such modeling enterprises form  something  of a continuum (albeit not 

1   For my purposes, here I will ignore the various limitations of machine computing addressed by 
Evans ( 2012 ) as they might impact error and uncertainty. 
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literally) across the boundaries, that is as  ABM   dimensional grain coarsens the 
outcomes become less explanatory. On its face, the fact that much archaeological 
inquiry is by nature of its data embedded in coarser spatial scales would suggest 
that ABM might be less desirable and advantageous as an approach, although there 
are some counterintuitive outcomes of ABM spatial modeling to suggest this gen-
eralization might not necessarily hold at least as it relates to analytic cell size (see 
discussion and examples in Stanilov  2012 , p. 261). Likewise, issues of temporal 
scale may also loom large in this decision, since temporal resolution for ABMs is 
likewise central to decision-making. Both the spatial and temporal resolution and 
scale of models in disciplines such as geography are substantially more refi ned 
than most archaeological data sets allow. This in turn impacts signifi cantly on the 
utility of SA as a routinized component of research design, particularly in various 
kinds of proxy reconstructions (from my environmental focus this appears to be the 
case), perhaps less so for ABM/ABSS (Agent Based Social Simulation), and this 
latter analytic category may remain an open question.

2.3        The Context 

 As Hegmon notes, a model may be “a dynamic description of a specifi c case,” in 
contrast to a mathematically “dynamical” model with its changing variables and 
relationships (Hegmon  2003 , p. 229). To achieve Hegmon’s broader end, the other 
type of models apply the information derived from such case specifi c and pattern 
recognition exercises as either input or output parameter defi nitions for application 
in multi-iteration simulations, and as has already been noted most recently in simu-
lations acted out by fi ctive “agents” making decisions within or based upon these 
parameters. The latter avenue’s recent growing popularity has been attributed by 
some to the theoretical inroads of the  post-Processual discourse   (Verhagen and 
Whitley  2012 , p. 60), while others envision the same post-Processual debate as 
inserting an inhibiting factor into the growth of such analyses (Costopoulos et al. 
 2010 ). Those working in nonlinear systems have varying views on the role of such 

  Table 2.1      Differences in 
modeling techniques between 
ABM and traditional 
modeling  

 Traditional modeling  Agent-based modeling 

 Deterministic (one future)  Stochastic (multiple futures) 
 Allocative (top-down)  Aggregative (bottom-up) 
 Equation-based formulas  Adaptive agents 
 Do not give explanations  Explanatory power 
 Few parameters  Many parameters 
 Spatially coarse  Spatially explicit 
 Environment given  Environment created 
 You react to them  You learn from them 

  From Bernard ( 1999 ), reproduced in Crooks and Heppenstall 
( 2012 , p. 95), Table 5.1  

W.A. Lovis



25

theory on the development of practice (see contributions in Beekman and Baden 
 2005 ). The future of ABM’s widespread archaeological adoption has also been met 
by some skepticism (Doran  1999 ; Hegmon  2003 , p. 229). 

 That said,  ABM      in a variety of different forms, employing agents with different 
capabilities and modeling contexts (i.e., all agents are  not  created equal!) is often 
used both deductively and heuristically by archaeologists, and in fact such disparate 
application refl ects the primacy attributed by different schools of theoretical thought 
to different explanations and emphases on different prevailing causal variables, and 
potentially vastly different goals between theory driven and reality-driven models. 
As noted, such procedures can be applied to both the anthropological “present” (as 
in behavioral and evolutionary ecology, largely played out among hunter-gatherer 
populations), or the archaeological past of human groups of interest, however 
defi ned (see Lake (2014) for a similar perspective on evolutionary archaeology). 
Presumably, the mutual goals of these various approaches regardless of theoretical 
persuasion are to gain a better understanding of past human behaviors, particularly 
the parameters that condition what we ultimately observe as outputs in the archaeo-
logical record and the accuracy of the inferences we make about them. 

 While the foregoing summary can admittedly be accused of being somewhat 
reductionist, it is nonetheless revelatory of several facets of  modern archaeological 
research design  —research design situated in a theoretical milieu which no longer 
hews as closely to the deductive and environmentally focused line of strict early 
processualism (Hegmon  2003 ; but see Verhagen and Whitley  2012 , p. 50). As 
archaeologists, we collectively work from the premise that our empirical knowl-
edge of the past, as viewed through residues of past behavior, is both incomplete 
and may likely be biased. Early on in decisions about the structure of research 
design, there is the recognition that a problem of interest can potentially be 
approached using predictive/simulation models. The internal relationships of differ-
ent model variables, and the nature of their interaction, can generally be defi ned as 
a multivariate suite of linked hypothesized “if:then” statements. The internal model 
structure can therefore  sometimes  be couched as inferential hypotheses, but most 
often these are inductively originated exploratory devices querying the effects of 
changes in one or more characteristic (variable) of a system on another, that is 
operationalizing the exploratory model as a heuristic device. Of note is that it is 
precisely this issue that SA addresses. 

 Questions subsequently arise about what data are or might be appropriate as input 
for the simulation exercise: variable defi nitions, relationships, resolution, and param-
eters. This stage of research design formulation regularly entails a key decision: 
should or can one engage in the series of exercises that have collectively become 
known as “ data mining  ” (Andres  2010 ), that is the extraction of existing data from 
multiple sources, the synthesis of these data into a comprehensive “knowledge set” 
or “knowledge space,” and the consequent evaluation of its potential utility through 
a variety of means. Or will it be necessary to engage in either data supplementation, 
or  data collection    de nouveau  because existing data of suffi cient quality (type, quan-
tity, resolution, scale) are not available? New data collection may not, as some 
naïvely believe, necessarily result in enhanced outcomes (see case study in  Sect. 2.5 ) 
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although data collection specifi cally directed at a problem has a higher probability of 
yielding useful results, for example, in refi ning individual variable parameters.  Meta 
analyses   of existing data coupled with consequent evaluation may well result in 
startling outcomes about both the original studies, the derivative use of original data 
in subsequent studies, and may even at times result in new, different and even excit-
ing insights and outcomes (e.g., Anonymous  2013 ; Myhrvold  2013 ).  

2.4       Middle Range  Theory   

 As others (e.g., Gilbert  2008 ) have already correctly asserted most simulations, 
which I here characterize as dynamically interactive sets of probabilistic/predictive 
statements, occupy the niche of MRT  sensu  Merton ( 1949 ). Both defi nitionally and 
operationally they may not necessarily be restricted to the several internal archaeo-
logical conceptions of  MRT   well known to (early) processual archaeologists (cf. 
Binford  1978 ; Schiffer  1976 ; Raab and Goodyear  1984 ), whether implemented with 
decisions that are keyed to ecosystemic variables, or coupled with the decision- 
making behavior and consequences of either individual agents or group processes. 
There are also signifi cant evolutionary theoretic implications that derive from this 
distinction. 2  

 In contemporary practice, and with respect to MRT, computational models in 
archaeology ABM or otherwise, largely span two primary arenas (but see 
Costopoulos et al.  2010 ; and Costopoulos and Lake  2014 ). One is fundamentally 
specifi c problem or case directed empirically mining large data sets and manipulat-
ing nested sets of variables statistically to assess evident multivariate regularities 
pertinent to understanding a range of past or present human behaviors. This is fun-
damentally an inductive pattern recognition process, and can often serve as a means 
of identifying relevant or essential variables, their potential parameters, and their 
relative redundancy relationships with or to other variables. The categories of infor-
mation derived from data mining are often fundamental to SA. This issue is further 
addressed in  Sect. 2.5 . The second is more deductive and overtly theoretically 
directed and often used as a heuristic device (see Premo  2010 ). 

 Importantly, for middle range models there may be no quantitative outputs that 
are useful to the prediction, but rather may more readily gravitate towards 

2   This distinction to a degree replicates a long-standing debate in evolutionary theory between the 
primacy of individual and group selection (i.e., Darwin vs. Wynn Edwards; Borello  2005 ), as well 
as the role of information and its potentially differential distribution and access within the system 
(Whallon  2006 ,  2011 ). This distinction has also been recognized by Doran ( 1999 ) in his evalua-
tion of “Agent Based Modeling in Archaeology,” and the differences between what he terms “indi-
vidual cognition” and “group cognition,” although there are nuances of this distinction that cannot 
be afforded space here. Likewise, they may be variable in scale, being broadly applicable or nar-
rowly so; the latter keyed to the individual case rather than the broader arena of like cases (recog-
nizing that even simulation analyses keyed to individual cases may explain more than the case of 
interest). 
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 expectations of qualitative similarities or matches (Gilbert  2008 ). We archaeolo-
gists are, perhaps too concerned with attempting to identify quantitative regularities 
that exactly replicate and predict the outcomes of the social behaviors we explore 
(sometimes known as   facsimile models   ). In other words, what we think we are 
doing may not necessarily be in accord with our expectations of what we want to do 
or are actually doing. As Andres ( 2010 ) correctly observes about the origins of SA 
in environmental risk research: “Consequently, the methods of SA were developed 
to deal with deterministic computer models where experiments can be reproduced 
exactly, and both inputs and outputs are known with high precision.” One of the 
session participants (Carroll  2016 ) opined in an early review of this chapter “I've 
mostly seen SA used by our geography friends to assess deterministic environmen-
tal models that operate under much less fuzzy assumptions.” 

 Can archaeological simulations claim such precision? More often than not, the 
answer is “No.” High precision inputs, and the empirical basis against which to cast 
simulated outputs against, are diffi cult to achieve in archaeology. If I am correct in 
this observation, these disjunctions have potentially major implications for the 
archaeological application of SA, and require further discussion and exploration—
perhaps, as Kyle Bocinsky notes (personal communication), through exploration of 
“sensitivity to imprecision.” I will return to this point with some examples further 
along in this essay.    

2.5             Multicriteria Decision-Making ( MCDM     ), 
Exploratory Data Analysis ( EDA     ), 
and Knowledge Discovery in Databases ( KDD     ) 

 In part, such exploration can revolve around a couple of key observations about how 
we go about actually undertaking analysis, rather than the way in which analysis 
should ideally be done. Herein lies a healthy dose of pragmatism. While not com-
prehensive, this section presents several in an array of potential techniques increas-
ingly employed at the front end of many modeling exercises, quite specifi cally to 
engage with accumulated and compiled data that requires what is now referred to as 
“hygiene” or cleaning. It is this process that presumably results in data that is ascer-
tained to be accurate by some criterion, possesses the appropriate information for 
problem, and is suffi ciently robust to generate some modicum of confi dence. The 
uncertainty contained in this end product, which is unavoidable and inherent in any 
such data, is embedded in the input for the remainder of the modeling exercise. 

 Much of what we do archaeologically has a spatial component, at times but not 
always replicated over multiple time points, that is,  t  0,   t  1 ,  t  2 , … ,  t   n  . This being the 
case, it behooves us to look at an example in the spatial domain. In their discussion 
of map-centered exploratory approaches to multicriteria decision-making (MCDM) 
Jankowski et al. ( 2010 ) espouse exploratory use of existing data employing what 
they refer to as complex extensions of standard exploratory data analysis (EDA) 
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(see, e.g., Baxter  1994  on exploratory multivariate analysis). They make the impor-
tant case, which is certainly true for archaeology, that what they term a process of 
“reduction of the cognitive complexity…” of outcomes and understanding the rela-
tionships among criteria (variables, dimensions) is achievable with “standard statis-
tical procedures.” They go on, however, to allow that where users are not statistically 
well versed they rely strongly on the application of data mining techniques designed 
to “detect regularities, dependencies, or trends, and to draw generalized descriptions 
of data features and relationships” (Jankowski et al.  2010 , p. 106). In this endeavor, 
they rely on procedures operationalized (or perhaps more accurately characterized) 
by Fayyad et al. ( 1996 ) as knowledge discovery in databases (aka KDD). 

 As the preceding authors reveal, while to a degree KDD are designed to simplify 
interpretation of complex internal data structures, the approach nonetheless employs 
statistical techniques for categorization, prediction via regression, grouping via 
clustering, dependency analysis, etc. some of which require appropriate training to 
employ and interpret effectively. These are all pattern recognition approaches with 
underlying implicit models, for example, linearity and mutual exclusivity. In an 
archaeological world, we would like these patterns to refl ect a past reality of agent- 
derived decision outcomes as refl ected in the archaeological record. We also know 
that for various reasons the archaeological record may not be an accurate record of 
such outcomes (see for a recent exposition Bevan and Wilson  2013 , p. 2416), and 
that even this imperfect observable record may be produced via multiple and even 
disparate trajectories—the ever present issue of  equifi nality  (Premo  2010 ). 

 Among the alternative and/or tandem solutions to the problems associated with 
embedded uncertainties in model parameters, the latter including inputs and their 
ranges of variation, is the application of stochastic modeling. Here, it is acknowl-
edged a priori that our variable and parameter inputs are imprecise, that is, that they 
contain unknown uncertainties, and that we likewise might not possess suffi cient 
control over the behavioral processes involved in a decision made on such input 
information, that is, input and choice logic imprecisions may not necessarily allow 
regularity of model outputs. The use of random inputs across multiple iterations to 
a certain level of confi dence means that any variation of outputs is actually a prob-
ability statement, where any given output state has an attached probability. The use 
of such randomization approaches in archaeology has substantial time depth, and it 
would appear that in the context of current modeling endeavors and a posteriori 
evaluation via SA that their role may become increasingly important.        

2.6        The Archaeological  Record   and  Uncertainty   

 A pertinent example of this problem is what I term  The Problem of Small Scale 
Systems  (see Peeters and Romeijn  2016  this volume on a similar view). Under the 
best conditions, an archaeological modeler will have access to a robust archaeologi-
cal record through which to operationalize a problem-oriented modeling exercise—
a well preserved and representative record with suffi cient numbers of observations 
at the appropriate scale, temporal control, and resolution for accurate variable 
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identifi cation and parameter defi nition. As the adequacy to problem of any of these 
dimensions diminishes individually or collectively, there is a commensurate increase 
in relative uncertainty. Presumably, but system dependent, is the question of whether 
increased adequacy of any single dimension will reduce uncertainty. In the case of 
small-scale systems, it is the issue of sample size and relative confi dence that occu-
pies considerations of uncertainty across other dimensions. And, this does not  ipso 
facto  imply that larger scale and potentially more complex systems do not them-
selves suffer from uncertainty. While it can be readily argued that archaeological 
modeling is not suffi ciently unique to categorically eschew the routine use of SA for 
all modeling exercises, it is precisely in the context of increased uncertainty that SA 
is most warranted, since input uncertainties tend to be retained and potentially even 
enhanced (propagation processes) through various phases of the model and ulti-
mately expressed as outcomes. 

 For facsimile models attempting to replicate specifi c observed archaeological 
patterns, there is an additional danger—that of the output data driving the evalua-
tion of parameter spaces to achieve known ends. For some, this would amount to 
tautology, although such exploration can readily be defended as a heuristic exercise, 
that is, understanding which variables and parameter spaces best account for the 
observed outcomes may well result in a replicative pattern. 

 My own research engages with northern latitude hunter-gatherers, and such uncer-
tainty becomes particularly salient as one is confronted by human systems with high 
levels of mobility and shorter duration stays over large spaces by small(er) numbers 
of people, often in highly dynamic environments. Coupled with highly portable tech-
nologies, oftentimes physically expressed at behavioral loci as low- density residues, 
the resultant archaeological signal is diffi cult to accurately detect, resulting in mar-
ginal compliance with all of the desirable characteristics for model input enumerated. 
It is worth noting that several of the chapters in this volume address precisely these 
kinds of contexts in their modeling and posterior evaluations [cf. Peeters and Romeijn 
(Chap.   3    ), Brouwer Burg (Chap.   4    ), Carroll (Chap.   5    ), all this volume]. 

 Insertion of  The Problem of Dynamic Environments  poses additional, and at 
times intractable, considerations. For example, drawing from my collaborative 
paleoenvironmental research as a case study, coastal site preservation in the exten-
sively and intensively researched northern Lake Michigan basin of the Great Lakes 
(USA) is variable over both space and time—ultimately a taphonomic consequence 
of coastal dune activation cycles and the effects of isostatic rebound or isostasy (aka 
uplift) and lake level variations in the northern portions of the study region (Lovis 
et al.  2012a ,  b ), with the former possibly keyed to hemispheric effects of local cli-
mate (Monaghan et al.  2013 ). 

 An example of the impacts of such variable site preservation is the fact that 
archaeological sites in the active coastal zone are well preserved around the peak of 
the so-called Medieval Warm Period/Holocene Climatic Optimum (~AD 950–
1250), and are almost absent on either side of this period. Our potential output refer-
ence points for SA are therefore grossly fl awed, which begs the question about 
whether those output points collectively would be appropriate empirical observa-
tions with which to attempt facsimile modeling, let alone assess model performance. 
Additional fi eld research, and indeed the ability to perform ground truthing, would 
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be neither productive nor cost-effective despite the probability of “discovering” an 
anomalous case.  Apropos  of the latter is that some occupation sites are buried under 
20 m of eolian sediment (Lovis et al.  2012a ). The potential solution would be to 
focus the model on one or more rather discrete time periods where the empirical 
data might be (relatively more) complete, for example, a few centuries around the 
peak of the Medieval Warm Period/Holocene Climatic Optimum, although this 
would not solve the truthing issue, nor would the results necessarily apply to time 
segments preceding or following the modeled period. Thus, our goals would be 
substantially limited by the variable nature of the empirical record, and not address 
the more general and spatiotemporally dynamic case. 

 As we are aware, any predictive model inputs/processes are the hypothetical 
statements (aka arguments) we believe are responsible for our observations of out-
come regularities and which we manipulate in various ways to assess how closely 
our hypotheses can replicate our empirical observations at various scales and reso-
lutions. Importantly, many of our model inputs are defi ned in terms of resolution, 
scale, and parameters on the basis of incomplete data garnered from parallel data 
mining procedures as we employ for understanding the archaeological record. In the 
Lake Michigan, USA case above, for example, there are ethnohistoric documents 
that might inform model inputs (e.g., Jochim’s  1976  use of Rogers’s  1962  Round 
Lake Ojibwa ethnographic data in his modeling of Late Glacial German hunter- 
gatherers), and more broadly based information on hunter-gatherers or marginal 
horticulturalists, but which may not provide suffi cient information on the parameter 
spaces of the derived input variables, whether they be decision based, or the inputs 
that are being evaluated by agents in the process of making decisions, for example, 
resources and social variables. The limitations of uniformitarian principles on envi-
ronmental modeling are addressed by Brouwer Burg (Chap.   4    ). On a cautionary 
note, the use of ethnographic analogy can suffer in a parallel fashion. 

 This prior set of observations, however, provides a platform forcing archaeolo-
gists who are building behavioral models of any sort to systematically break down 
embedded decisions into their constituent logical units. Such precision as it relates 
to social behavioral rules can subsequently in turn be employed as bridging for the 
formation processes of the archaeological record and how that record will be mani-
fested, that is, expectations of what the archaeological record should look like with-
out background “noise.”    

2.7        Modeling Environment   and  Modeling Behavior  : 
Tandem Exercises 

 In fact,  paleoenvironmental modeling   and  (socio)behavioral modeling   can be 
viewed as two independent corollary or tandem tasks that need to coincide at an 
advanced point in a research program (see Brouwer Burg  2016  this volume for addi-
tional insights). This is particularly true in ABM where the simulated or modeled 
“landscape” under certain circumstances provides the information input for both 
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learning and decision-making by individuals or groups. Of particular interest is that 
the environmental simulation is precisely the kind of context in which SA is applied 
well and regularly. Take, for example, the process of model validation presented in 
Fig.  2.1  for an  ABM   study of land cover change (reproduced from Ngo and See 
 2012 , p. 183, Fig. 10.1), which presents a clear sequential context for SA in the 
larger process of ABM model validation within the research design. Of interest is 
the critique that accompanies this discussion, which argues that much of the valida-
tion process is normally not addressed explicitly—only the output validation (Ngo 
and See  2012 , p. 183); an observation consistent with the Semantic Conception as 

  Fig. 2.1    General validation process of an ABM (reproduced from Ngo and See ( 2012 , p. 183), 
Fig. 10.1)       
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articulated by Henrickson and McKelvey ( 2002 ) (i.e., ontological vs. analytical 
adequacy).

   Archaeologists may be confronted with a potentially unresolvable conundrum. 
First, because most of our models and simulations are complex (some would argue 
overly so), at both ends of the process it is diffi cult to tease out interactions among 
and between variables at either the input or the output stage. Second, the fact that 
the inputs may possess unacceptable levels of uncertainty limits our ability to evalu-
ate the outputs. When inputs have such characteristics, they should technically, 
albeit reluctantly, be removed from analysis. Moreover, it is essential to maintain 
independence of both inputs and expected outputs to minimize or eliminate tautolo-
gies. At its most overt, we can’t employ the same archaeological input data as we 
expect to predict as an outcome, even if we think the archaeological information is 
unbiased or representative. Bevan and Wilson ( 2013 , p. 2416), who do employ SA 
in their point pattern model evaluation, make the interesting case for strategically 
withholding segments of the available data (aka cross-validation) as a means of 
avoiding this problem and allowing appropriate cyclic assessment of model or mul-
tiple model accuracy. A luxury, however, that only accrues to large(r) archaeologi-
cal data sets, suffi cient that the investigator is confi dent of its being representative, 
is the drawing and analysis of iterative random samples and the subsequent use of a 
variety of standard manipulative techniques (see Hamby  1994 , pp. 141–146). And, 
while I very much like the systematics of their analysis of peer polity centers in 
Bronze Age Crete, I also agree with Bevan and Wilson’s self-insights into the 
effects of archaeological observational biases in the generation of simulated site 
location suites as well as the use of multiple models with different primary inputs as 
measures of fi t (Bevan and Wilson  2013 , pp. 2423–2425). Of particular interest in 
this regard is the suggestion to undertake Monte Carlo simulation as a means by 
which to engage in “a more subtle treatment of the uncertainty” associated with site 
ages, sizes, and locations, as well as directly addressing via modeling the biases in 
recovery and information resolution resulting in “patchy” data (Bevan and Wilson 
 2013 , pp. 2423–2424). This is a useful method to deploy in (primarily determinis-
tic) modeling situations with the input uncertainty we might fi nd in archaeological 
and past behavioral contexts.    

2.8     Finally—Sensitivity Analysis 

 Archaeologists who engage in high-level computational modeling of any sort do 
not suffer from the quantitative phobias that might accompany avoidance of SA in 
model evaluation. Thus, the continued lack of systematic and routine SA applica-
tion remains curious (see, e.g., Kurzer et al.  2015 ). I say this with full recognition 
that in current applications model dynamics and responses are regularly evaluated 
systematically relative to parameter values, but rarely with formal recourse to 
SA. SA is a  controlled experiment,   put into operation with systematic procedure 
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and appropriate method, normally quantitative (see White  2016 , Chap.   7     for a clear 
systematic application). SA is actually an embedded experimental design that pro-
vides a posteriori evaluation that can be employed as feedback for input variable 
and parameter space defi nition and evaluation. The question asked by SA is, on its 
face, simple: What is the infl uence of model input on model response? At the level 
of individual input variables and their  parameters   answering this question pro-
vides, among other information, insight into which model variables should be 
retained or discarded (but see below), the relative infl uence of variables on the 
output, identifi cation of those that might be imprecisely defi ned and those that 
might well be accurate output predictors. Under any conditions, this is important 
information to extract from an analysis. And while the specifi c  analytic path and 
quantitative approach   one takes might vary, it is diffi cult to argue lack of utility or 
even necessity. 

 In terms of larger issues of research  design  , it is possible to invoke notions of 
analytic concordance—that is, the clarity of relationship between theory and the 
primacy it places on specifi c dimensions and variables as causally explanatory, the 
behavioral questions that derive from and which should be in accord with the theo-
retical underpinnings, the relationship between those questions and dimensions and 
the units of observation one chooses to employ, the methodological assumptions 
that both underlie and link those observations to specifi c forms of manipulation, etc. 
(see Carr  1985a ,  b , for further clarifi cation). In fact, it is arguable whether any 
analysis, including modeling designed to replicate observed outcome states (i.e., 
reality-based models), is devoid of some theoretical underpinnings  whether they are 
explicitly stated or not . SA has the potential to cast in stark profi le ontological and 
observational inadequacies and inconsistencies. 

 It is likely that the real issue at hand here is not necessarily the overt absence of 
SA in archaeological modeling, but that we may be trying to do more with our 
models and modeling than our data most often allow. That said, the coarsest spatial 
and temporal resolutions employed by most spatial modelers are far fi ner than is 
attainable by archaeological data. We proliferate input data with numerous vari-
ables and high levels of parameter uncertainty, asking questions that beg the nature 
of the interactions among those uncertain inputs and which we may not be able to 
assess, and we have limited/incomplete or biased observable output parameters 
against which we cast our results. The latter is currently, at least, a death knell to 
facsimile models. 

 Perhaps the best lesson that may be learned from this is that if we are to employ 
SA regularly, and I believe archaeological modeling should move in that direction, 
that it must be engaged with clear ground rules. We need to simplify our expecta-
tions and our models, both. We should employ the most robust information at both 
the input (variables, parameters, and scale) and outputs even if the result is coarser 
resolution—a hard lesson but one already learned by our geography colleagues. As 
the analytic adage holds, one can’t make coarse data fi ner, but one can aggregate 
fi ne data to coarser scales and resolutions. SA may well assist in the latter process, 
whether in model development and evaluation, or in facsimile modeling.     
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Chapter 3
Epistemic Considerations About Uncertainty 
and Model Selection in Computational 
Archaeology: A Case Study on Exploratory 
Modeling

Hans Peeters and Jan-Willem Romeijn

3.1  Introduction

Uncertainty is an integral aspect of all scientific models in any field of application: 
we are mostly unsure which hypothesis is adequate as a means of predicting, repre-
senting, or reconstructing the system of interest. In quantitative research, the prob-
lem of uncertainty is often tackled by statistical means. Archaeological spatial 
modeling of human behavior is no exception to this: uncertainty is largely 
approached from a statistical perspective (e.g., Verhagen 2007). The available data 
allow us to test and choose among hypotheses, using classical statistical tools, or 
else to establish a probability assignment over a given range of hypotheses by 
Bayesian means. It is common to both classical and Bayesian methods that the 
model precedes any such treatment of uncertainties. Hence, the uncertainty that 
pertains to the model itself does not normally come into view in these statistical 
approaches. It is precisely the model uncertainty that is at stake in our paper.

In spatial models of human behavior, the sources of model uncertainty are numer-
ous and compounded. The different input components of the model each come with 
their own uncertainty (e.g., paleolandscape models, assumptions about past human 
behavior, biased datasets). Moreover, owing to the complexity of the models, the 
modeling results become critically sensitive to misspecifications, so mistakes in the 
modeling assumptions have comparatively large effects on the model output. Finally, 
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the data that are used to determine the best fit within a statistical model are often also 
used to motivate particular modeling choices. In other words, the hypotheses we 
confront with the data were constructed on the basis of those very data. Apart from 
the fact that such seemingly double use of the data is subject to methodological criti-
cism (e.g., Worrall (2010), but see Steele and Werndl (2013) for a nuanced response), 
model specifications and output thus rely heavily on the assumption that the—often 
scarce—data are somehow representative of the target system. In short, model 
uncertainty is a serious problem for computational modeling in archaeology.

In this paper, we look into the consequences of model uncertainty in this context. 
Specifically, we consider a case study of computational modeling for exploratory 
purposes, and we identify two distinct ways in which uncertainties are dealt with. 
We then generalize from the case study and provide a broader discussion on model 
evaluation and construction. In this abstract re-description of the case study we 
disentangle different notions of uncertainty that computational modelers grapple 
with, we indicate that robustness analysis is central to our dealings with uncertainty 
in exploratory use of computational models, and we sketch how such an analysis 
may lead to modeling improvements. We believe a thorough discussion of the case 
study will help the appreciation of the general discussion later on in the paper. But 
before we get to this, let us turn to a general outlook on computational modeling in 
archaeology and lay out the specifics of our case study.

3.2  Target Systems and Modeling Goals

Before we consider model uncertainty and the tools and methods that may control 
for it, we clarify some of the goals that model-building archaeologists have (see 
Kohler and van der Leeuw 2007). This will set the stage for a proper appreciation 
of the problems and sharpen the focus of our paper.

Developing a computational model of some system involves the definition of starting 
points, and making choices about which variables to include, which interactions between 
variables to define, and how to weigh parameters. The definition of starting points is 
directly connected to the purpose or goal of models: prediction, reconstruction, and 
exploration. A predictive model outputs a set of expectations that can be tested against 
the data that define the target system. A reconstructive model offers an abstract structure 
that resembles some target system on certain salient features. An explorative model, 
finally, occasions insight into the generative rules that underlie the structure or the work-
ings of the target system, thereby establishing, or at least hypothesizing, certain proper-
ties of the system, for example, the band-widths of system variability.

Within this context, a modeling approach has to be chosen. In archaeology, quite 
a number of them have been practiced (see, e.g., van Leusen and Kamermans 2005) 
and can be captured under the labels “correlative,” “generalized behavior,” and 
“system-based.” Correlative approaches primarily investigate statistical relation-
ships between variables (mostly aspects of landscape) and archaeological site 
occurrence and are frequently used in the context of cultural resource management 
(CRM). Approaches based on generalized behavior are built on “known” and 
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assumed aspects of what people have been doing within a particular socioeconomic 
setting. Both approaches are mostly using geographical information systems (GIS) 
as the modeling environment. System-based—including agent-based—approaches 
primarily focus on the emergence of patterns (of variability) through mathemati-
cally defined processes, and rules of interaction (e.g., between individuals or groups/
populations) in a more abstract modeling environment. These broad “families” of 
approaches are not exclusive to one particular purpose of modeling, although some 
prevalence may be noted (Fig. 3.1).

The choice for a particular approach has implications for the selection of model 
variables and definition of relationships between them. At this point, prior knowl-
edge and conditional factors are fed into the model system, hence introducing con-
straints (boundary settings) and varying sources and degrees of uncertainty. Clearly, 
this will be of influence on model returns, but what this actually means for the per-
formance (or quality) of the model is not easy to establish (see, e.g., Kamermans 
et al. 2009). As yet, the assessment of model uncertainty by means of sensitivity 
analysis has received limited attention, despite the availability of approaches 
(Bayesian Theory and Dempster-Shafer Theory) that explicitly incorporate uncer-
tainty as a modeling factor (but see Finke et al. 2008; van Leusen et al. 2009). 
Moreover, different modeling goals will require different approaches to the uncer-
tainties in the models: a data-oriented statistical technique that assists reliable pre-
diction might lead to models that do badly on the count of reconstruction.

Out of the three modeling goals sketched above, the present paper is focused on 
the goal of exploration, and for which the role of statistical analysis is not very promi-
nent. And this entails a particular take on the uncertainties at issue. Instead of looking 
at ways to remedy the uncertainty in the models—weighing parameters and adapting 
them on the basis of data—our goal is to gauge and control for the uncertainty in the 
starting points and modeling choices, in the hope that we can use the models for 
exploration, despite the uncertainties. In particular, we focus on exploration aimed at 
clarifying the model content and generating hypotheses. As will be seen, this has 
consequences for the kind of analysis of uncertainty that is appropriate.

Correlative
Generalized 

behavior
System-based

Prediction

Reconstruction

Exploration

Fig. 3.1 Generalized relationship between modeling approaches and purpose/goal. Black dots 
represent a certain prevalence of one approach over another
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3.3  Starting Points and Modeling Choices: A Case Study

We will approach the question of model uncertainty on the basis of an explorative 
model of postglacial hunter-gatherer landscape use (Peeters 2007). The study area—
the Flevoland Polders in the Netherlands—is characterized by a low accessibility and 
visibility of archaeological phenomena, as these are generally buried under several 
meters of sediment, and mostly consist of scatters of flint artifacts, and less fre-
quently fragments of (charred) bone and pottery. Excavations do, however, demon-
strate that the average preservation of remains is good, thus making their scientific 
value high. Despite these insights, the study area is basically a black box where it 
comes to an understanding of postglacial hunter-gatherer behavioral variability.

As indicated, we will consider the use of computational models for the develop-
ment of hypotheses and more generally for the gradual buildup of a coherent quali-
tative picture of the target system at hand. The models in Peeters’ study were 
designed to explore the potential of the study area for landscape use by hunter- 
gatherers after the last glacial, using an approach based on generalized (not agent- 
based) behavior. Central to the modeling approach was the idea that the area had 
undergone far reaching environmental changes (in terms of composition and geog-
raphy) due to structural sea-level rise between 7000 and 4000 BP, and that these 
changes affected the possibilities of landscape use in a qualitative (what?) and 
quantitative sense (to what extent?). Hence, the models had to integrate environ-
mental and behavioral parameters, which in combination resulted in a GIS-based 
assignment of values to individual grid cells.

3.3.1  Environmental Parameters

Despite the availability of a large body of geological (bore-hole) data, it was decided 
not to reconstruct landscape change from these data—for example, because of the 
lack of chronological control, and issues of spatially variable histories of sedimenta-
tion and erosion, as well as sample density—but instead to develop a computer 
model of landscape change to ascertain a consistent environmental framework. For 
this purpose, environmental variables had to be selected and parameters set (sum-
marized in Table 3.1), in order to build such a framework. These were fed into an 
iterative set of “if-then” rules to create a time-series (one century interval) of land-
scape maps with a spatial resolution of 500 × 500 m (Fig. 3.2).

3.3.2  Behavioral Parameters

Central to the approach is that “cost/benefit” rules—[Characteristic] of/by/to 
[Constraint] is/are [Qualification] for [Goal]—lead to a “perceived” value of land-
scape units for any sort of “behavior” (or activity if one likes). In this way, 
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environmental information was connected to “behavior” through a set of “if-then” 
decision statements. Based on archaeological data from the study area and general-
ized knowledge about hunter-gatherer behavior, a range of “behaviors” was defined 
in connection to the virtual environments. Although the focus was primarily on 
some aspects of food resource acquisition and dwelling (examples summarized in 
Table 3.2), any sort of “behavior”—including ritual—could potentially be defined 
and fed into a similar framework, provided a connection can be made to the dimen-
sions of our virtual world. Similarly, any defined “behavior” can be as simple or 
complex as one would like it to be. Drawing from the examples provided in 
Table 3.2, such cost/benefit rules can for instance be formulated as:

[high densities] of [large mammals] are [beneficial] for [hunting]
[proximity] of [open water] is [beneficial] for [traveling]
[presence] of [dense woodland] is [problematic] for [traveling]
[absence] of [open water within 500 m] is [unfavorable] for [dwelling]

Perception values for each grid cell in the spatial model were calculated on the basis 
of “perception weights” assigned to the parameters included.1 As such, the maps 

1 Weight values range from 0 (bad/low density/costly) to 1 (good/high density/beneficial). For more 
details on procedures, see Peeters (2007) (available from http://dare.uva.nl/document/42380).

Table 3.1 Environmental variables, parameters, and parameter settings of the landscape model

Environmental 
variable Parameter Setting

Elevation of the 
early Holocene 
surface

Top of Pleistocene surface Geostatistically interpolated (block kriging; 
500 × 500 m grid-cell setting)

(Ground)water 
level

(a) Sea-level rise (a) Reconstructed sea-level at time tx in 
100-year intervals between 7000 and 4000 BP

(b) Capillary groundwater 
rise

(b) Fixed % groundwater table increase 
(difference between water level at time tx and 
grid-cell elevation) with a maximum of 1 m

Vegetation Dominant vegetation zone Six vegetation zones relative to (ground)water 
table
One open water zone
Boolean categories

Altering surface 
elevation

Sedimentation

(a) Increase of surface 
elevation through peat 
accumulation

(a) Fixed % of the difference between surface 
elevation and (ground)water level at time tx in 
wetland vegetation zones

(b) Increase of surface 
elevation through clay 
accumulation

(b) Fixed % of the difference between surface 
elevation and water level at time tx in zones 
where water levels are above surface elevation

Erosion

(c) Decrease of surface 
elevation during two 
regionally documented 
events

(c) Fixed % in zones where water levels are 
above surface elevation
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Fig. 3.2 Time-series of paleogeographical reconstructions based on the Flevoland environmental 
model with clay accumulation set at 20 % (see Table 3.1). Grid cells measure 500 × 500 m (from 
Peeters 2005, Fig. 4, p. 156)
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produced for each time slice represent “perception surfaces” (cf. Whitley 2000) 
instead of predictions of site location (Fig. 3.3). Where and when certain types of 
behavior actually occurred cannot be predicted, as this depends on decisions that 
were made on the basis of many factors at the “ethnographic scale” (e.g., occurrence 
of game, hunter’s experience, perceived gain and needs). These factors were in con-
stant fluctuation at a temporal and spatial scale that is unattainable in the specific 
model environment outlined above (already our 100-year time slices easily include 
three generations of hunter-gatherers). Indeed, the problem of temporal resolution 
provides a major factor of uncertainty with regard to the understanding of the 
archaeological record (Bailey 2007; Holdaway and Wandschnider 2008), and one 
that can only be approached through computational modeling as a means to build a 
link between “ethnographic” and “archaeological” time.

3.4  What to do with Uncertainty?

The above broad outline of starting points and modeling choices makes clear that 
the modeling work in this case study involves a myriad of sources of uncertainty, 
each of which having their own problems. The environmental part introduces sim-
plifications of landscape dynamics, whereas the behavioral part brings in biased 
assumptions about how prehistoric hunter-gatherers may have “perceived” some 
possibilities of landscape use. On the other hand we have to bear in mind the goal 
of the modeling work at hand. In this case, the modeling primarily serves an explor-
ative purpose: a heuristic device that helps to ask questions and interrogate the 
archaeological record, and in addition—through inclusion of an erosion map—
helps to sort out at a regional scale which areas are likely to bear the best preserved 
archaeological resources. To some extent this is a predictive use of the model in 
question, but the most prominent use of the models remains that they invite hypoth-
eses about the nature of sites potentially present in some geographical space rather 
than directly supporting, for example, CRM decision making.

Table 3.2 Example “behaviors” and their model parameters

Behavior/activity Parameter

Large mammal hunting Large mammal encounter probability
Overland traveling possibility
Overwater traveling possibility
(Overland and overwater traveling determine “traveling 
weight”)

Dwelling Overland traveling possibility
Overwater traveling possibility
Soil moisture
Presence of water within 500 m
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In view of the many difficulties to evaluate or “ground-truth” the outcome of 
these models—for example, due to the very problems of detecting and assessing 
sites in the study area altogether—it seems to us that posterior analysis of model 
uncertainty may add little. The data are so sparse that they will hardly help to 
reduce overall uncertainty. Of course specific parts of the model may be improved 

Overwater travelling

Large mammal encounter Large mammal hunting perception

Overland travelling

Fig. 3.3 Example of the large mammal hunting model for the 6500 BP time slice (from Peeters 
2005, Fig. 8, p. 160). The environmental model for this time slice is shown in Fig. 3.2 (top left). 
Top left: cost/benefit surface for overwater traveling (dark = good; light = bad); top right: cost/ben-
efit surface for overland traveling (dark = good; light = bad); bottom left: large mammal encounter 
probability (dark = high; light = low); and bottom right: perception surface for large mammal hunt-
ing (dark = good; light = bad)
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by relying on data. The landscape modeling part, for instance, could be evaluated 
against bore-hole data, as the model was not based on reconstructions from these 
very data. The “virtual stratigraphy” of grid cells emerging from the modeled land-
scape dynamics appeared to fit the actual sequences recorded in bore-hole columns 
rather well, which provides at least some confidence that there exists concordance 
between the computational and the empirical model. In fact, this aspect lends itself 
for statistical calibration, an approach common to modeling in the geosciences 
(Brouwer Burg et al., Chap. 1). The behavioral part of the model is another matter 
of course, and one that does not lend itself very easily for calibration on the empiri-
cal facts. Across the board, we encounter many uncertainties that do not seem 
amenable to a standard statistical treatment.

This, then, brings us to the issues that are central here. How problematic are the 
uncertainties when it comes to the exploratory use of models? Can we control for 
uncertainties at the front end of model building, in order to safeguard the quality of 
the model output? And if so, what would be the best way to do this? Specifically, 
we are asking how the uncertainties in the computational models just described 
impact on the role of the models as catalysts of theorizing and hypothesis formation. 
The idea is that potentially adverse effects of the uncertainties can be controlled for 
by employing specific statistical tools: we can perform a sensitivity analysis, other-
wise known as a robustness analysis, of the models and hence determine the reli-
ability of the conclusions we draw from them. To flesh this out, we will first return 
to the case study and see some exploratory use of the computational model at work. 
In the light of this we identify two kinds of uncertainties, one within statistical mod-
els and one about such models. After this we will discuss the ways in which uncer-
tainty may be controlled for in the case at hand, and which may be employed more 
broadly in computational archaeology. In the final part of the paper, we will then 
suggest how these techniques, once suitably developed, lead to better models in 
computational archaeology.

3.5  Back to the Model

In our case study, the model of hunter-gatherer landscape use is further explored in 
terms of interactions between environmental and behavioral parameters. More spe-
cifically, we ask how sensitive the model outcomes are to changes in environment–
behavior interactions. In order to hold grip on the effects of parameter settings and 
model outcome, we will look at one single factor: the increase of surface elevation 
through clay accumulation.

In this model clay accumulation only affects landscape zones in which the surface 
is below groundwater level (reed-sedge, reed-rush, and open water). In the initial 
model, clay accumulation was set at 20 % relative to water depth. When varying the 
accumulation rate between 0 and 100 % in steps of 10 % (Fig. 3.4), it can be noted 
that no clear changes occur between 0 and 30 %. However, from 40 % onwards, 
major fluctuations in the relative importance of open water and the reed- rush zone 
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Fig. 3.4 Relative importance (percentage on the vertical axis) of vegetation zones for different 
rates of clay accumulation in 100-year time lags (age BP on the horizontal axis). The lower right 
graph plots all values obtained for those vegetation zones which are affected by clay accumulation, 
with a clay accumulation setting between 0 and 100 % in 10 % lags
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occur. Open water and reed-rush are in competition, and eventually reed- rush 
becomes dominant over open water. Between 80 and 90 % of clay accumulation, 
reed-rush and reed-sedge get in competition, while the relative importance of open 
water is further reduced.

In view of the deterministic definition of the landscape zones in Boolean catego-
ries, these trends are to be expected: with the decrease of water depth due to increas-
ing clay accumulation, vegetation types that favor more shallow water will gain 
importance. Nonetheless, there are some surprising patterns to note. The differences 
in the relative importance of open water and reed-rush between 30 and 40 % clay 
accumulation become quite substantial but were expected to be gradual. However, 
when increasing clay accumulation with only 1 %, it appears that a rather abrupt 
“turn-over” occurs from 37 to 38 %, initiating increasing fluctuations in the course 
of time (Fig. 3.5). A somewhat comparable, yet less marked shift occurs from 84/85 
to 86 %, when the relative importance of reed-rush starts to fluctuate strongly com-
pared to the rather stable situation at lower clay accumulation rates (Fig. 3.5). So 
apparently, even a simple deterministic linear model like this can produce unfore-
seen outcomes, suggesting some degree of nonlinear behavior.

The question here is: how do such changes to the relative importance of inun-
dated landscape zones affect modeled human behaviors that are somehow con-
nected to these zones. To explore this further, we will look at the “large mammal 
hunting” behavior summarized in Table 3.2. The calculation of perception values 
for large mammal hunting involved the following transformations:

 

TW LT WT

HP TW LM

c
avg

c c

avg

c c

c c c

= ∑ + ∑
=

… …1 9 1 9

*  

(3.1)

where TWc is the traveling possibility weight of the target grid cell; avgLT∑c1…c9 the 
average overland traveling possibility weight of the target grid cell, including neigh-
boring grid cells; avgWT∑c1…c9 the average overwater traveling possibility weight of 
the target grid cell, including neighboring grid cells; HPc the hunting perception 
weight of the target grid cell; and LMc the animal encounter possibility of the target 
grid cell.

The only parameter influenced by the effects of clay accumulation on the land-
scape is “overwater traveling possibility,” set (on a scale from 0 to 1) at 0.25 for the 
reed-sedge zone, 0.5 for the reed-rush zone, and 1 for open water (non-inundated 
zones clearly have 0 overwater traveling possibility). With the decrease of open 
water in the advantage of reed-rush and eventually reed-sedge, overall overwater 
traveling possibilities are reduced. However, as overwater (WT) and overland 
 traveling (LT) are complementary in the calculation of traveling weights in the 
original model, the overall effects are buffered by TWc and LMc, none of which are 
affected by clay accumulation. Hence, HPc is indifferent in connection to varying 
clay accumulation settings. This, then, leads us to a theoretical reconsideration of 
the front- end modeling choices.
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Fig. 3.5 Relative importance (percentage on the vertical axis) of vegetation zones that are affected 
by clay accumulation in 100-year time lags (age BP on the horizontal axis). The graphs show the 
abrupt transition from a relatively stable situation up to 37 % of clay accumulation, towards an 
unstable situation between 38 and 50 % of clay accumulation. This unstable phase is followed by 
a stable phase between 60 and 84/85 % of clay accumulation, after which new fluctuation sets in
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We have seen that the simple, deterministic landscape model composed of 
Boolean categories is sensitive to—occasionally minor—changes in an environmen-
tal parameter. In this example, clay accumulation influences the relative importance 
of open water, reed-rush vegetation, and reed-sedge vegetation. The modeled hunt-
ing perception that involves the relation between traveling possibilities and encoun-
ter possibility of large mammals is, however, not influenced by these landscape 
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Fig. 3.5 (continued)
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changes. In other words, the modeled behavior is insensitive to changes in the envi-
ronmental parameter “clay accumulation.” One cause of this indifferent model out-
come may lay in the strict Boolean definition of vegetation categories (Table 3.1) 
relative to (ground) water level, which creates hard divisions in weight values of 
behaviors connected to these zones. Using fuzzy categories with overlapping bound-
aries will certainly provide better proxies of “natural” variability (cf. Arnot and 
Fisher 2007). Another cause may lie in the applied buffering distance of neighboring 
grid cells to calculate TWc. This distance was set at one grid cell, which implies that 
TWc only changes if the average possibility values of WT and LT for the nine grid 
cells taken into account had been affected.

Here we get to the key issue for the computational model: the influence of an 
environment changing at the local level (i.e., the target and neighboring grid cells) 
on the potential behavior within the target grid cell is only felt if changes occur 
within the neighboring grid cells. Now, the modeled behavior in our example of 
large mammal hunting is particularly bound to non-inundated vegetation zones, 
which are normally bordered by a reed-sedge/rush zone as soon as (ground) water 
levels reach the land surface. The replacement of open water by reed-rush in the 
landscape model is in fact occurring at some distance (more than one grid cell) from 
non-inundated land. This implies that the average possibility values of WT are not 
affected in the context of the large mammal hunting model. Consequently, WT will 
only have a noticeable effect on HPc, if TWc is considered over larger distances 
(more than one grid cell).

If the calculation of HPc indeed should include grid-cell values over larger dis-
tances, we also have to conclude that a “remote evaluation” or grid-based evalua-
tion of target grid cells is maybe not such a good way to proceed. Our large mammal 
hunters were not flying over the landscape, nor were they parachuted onto a grid cell 
to evaluate its hunting potential: they moved through the landscape. And when trav-
eling overwater, they had to find their way through reed vegetation, which varied in 
spatial extent and density. This is probably what will have influenced decisions of 
where to go, to find routes, and see where good possibilities—not necessarily the 
best or most optimal—for a successful hunt would be. In other words, our hunters, 
and their targets, are (decision-making) agents.

This negative conclusion might lead us to believe that our case study misses the 
mark, but we don’t think so. The exercise demonstrates strengths (the landscape 
model) and weaknesses (parameter connections) in the computational model, and 
brings certain sensitivities of parameter settings, or lack thereof, into focus. We 
believe that our illustration of exploratory model use is in fact rather informative on 
how model uncertainties are often dealt with, and on what problems we run into 
when doing so. We show that exploring model outcomes under variation of front- end 
modeling choices—sensitivity analysis—offers a means to reconsider the theoretical 
basis that, in this case, defines environment–behavior interactions. Notably, the usual 
format of a sensitivity analysis is that variations over model input lead to particular, 
often qualitative patterns in the outcome variables, so that these patterns can be con-
cluded from the model despite the uncertainties over input. Our case study is unusual 
in that, for us, the lack of response in the outcome variables invites a theoretical 
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advance; we will return to this below. At this point, we simply note that this is a theo-
retical advance and hence a fruitful exploratory use of the model nonetheless.

Returning to the above case, we have to conclude that HPc in this particular 
model setup is insensitive to WT. The inclusion of WT is not “wrong” per se, but in 
this case it is ineffective in the posteriorly defined model settings. At the same time 
we feel that a leap forward can be made when a spatial modeling environment, like 
the one presented here, is combined with an agent-based approach. In doing so, the 
abstract “environment” in which digital agents usually operate in the context of 
ABM approaches (but see Danielisová et al. 2015; Janssen and Hill 2014) is replaced 
by a modeled environment that can, however, be validated (even statistically) on the 
basis of empirical data. In this way, the modeling environment and approach permit 
to build exploratory frameworks that help to increase our understanding of the 
archaeological record in dealing with issues of time perspectivism.

3.6  Statistical Uncertainty

With our case study firmly in place, we now turn to a more systematic discussion of 
the kinds of uncertainties involved, and the methods used to control for them. We 
discuss statistical uncertainty in this section and model uncertainty in the next one, 
focusing mostly on sensitivity or robustness analysis in both. We end by briefly 
considering, in the penultimate section, if uncertainties can be resolved by invoking 
theoretical criteria for models. It will be seen that the two sections following this 
one are more important for the paper as a whole but we nevertheless believe that 
some insight into ordinary statistical uncertainty is needed first: we hope that it 
reminds the reader of standard dealings with uncertainty and it introduces the idea 
of robustness analysis in a, more or less, familiar context.

As we said, the dominant response to uncertainties in scientific modeling is to 
deploy statistics. Statistical techniques can be used whenever the hypotheses that 
we entertain express expectations about empirical facts that are cast in terms of 
probabilities rather than certain facts. Rather than predicting the presence of a set-
tlement with certainty, a hypothesis might for instance determine that a settlement 
here is more probable than there or more specifically that the chances of finding a 
settlement are only 20 %, and so on. Standard statistical methods allow us to con-
front such hypotheses with data, for example, records of excavations that have or 
have not laid bare settlements, and subsequently lead to a choice among the avail-
able hypotheses.

We can illuminate an important distinction within statistics by focusing on the 
kind of choice the statistical tools allow us to make. Classical statistical methods 
offer categorical choices among available hypotheses. We test a hypothesis, possi-
bly against an alternative, and then decide to go along with it or not. Or else we 
estimate a parameter and so choose the hypothesis with the parameter value that 
makes the data come out maximally probable. By contrast, Bayesian statistics out-
puts a probability distribution over the hypotheses under consideration, as an 
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expression of our opinion about the hypotheses. The choice among hypotheses is 
not categorical but by degree, for example, we might end up assigning a probability 
of 90 % to the hypothesis that the chance of finding a settlement in a particular area 
is 20 %. Bayesian statistics thus regulates how data impact on our opinions over 
hypotheses.

In order for Bayesian statistics to output such verdicts concerning hypotheses, a 
modeler needs to input a so-called prior probability at the outset: a probability dis-
tribution over the hypothesis that expresses her initial opinions about them. This 
aspect of Bayesian statistics is often lamented, because it introduces a subjective 
starting point into the statistical analysis. It is not always clear what can motivate 
the probability over hypotheses. However, the input component might also be con-
sidered an entry point for opinions that researchers already have about the subject 
matter, for example, insights based on experience with the subject matter that may 
be brought to bear on the model. In evaluating archaeological hypotheses, the elici-
tation of expert judgments can be a welcome addition to the empirical data, which 
is often scarce and contested. Moreover the formal treatment of opinions over 
hypotheses, as offered by Bayesian statistics, may help to streamline the theoretical 
debate and evaluate arguments in it. In other words, the Bayesian methods may 
have an edge over classical ones.

We can easily make this concrete by reference to the case study. In the landscape 
model, an important role was played by the parameter that accounts for clay accu-
mulation. Of course the accumulation rate will vary over place and time, but the 
modeler will typically have an idea of what range of values will be appropriate, and 
might even be able to provide a probability distribution over rates that expresses her 
expectations. A statistical analysis of the landscape model using bore-hole data may 
benefit greatly from the prior opinions of an expert, and the Bayesian framework 
offers ways to accommodate these in the analysis.

Recall that this paper focuses on the exploratory use of models, for which the 
role of statistical analyses is not very prominent. However, it turns out that there are 
other uses of probability assignments over model parameters, uses that do not 
involve data but that fit very well with the goal of model exploration. Returning to 
the case study, we saw that the clay accumulation rate influenced what the model 
predicts about the landscape. In certain regions of the parameter the dependence of 
the vegetation on accumulation rate is critical: a small rate change might result in 
substantial changes in vegetation. In other regions, the vegetation patterns remained 
more or less stable. Assuming that this is not an artifact of the model’s use of binary 
variables, the uncertain expert opinion may thereby play a crucial role. If, according 
to the expert, the range of probable values includes such a critical region, then the 
model predictions vary wildly. But this is not the case if the expert excludes such 
critical regions from an established range of values. The probability assignment 
over parameter values, delivered by the expert, thus determines whether or not the 
model predicts unstable vegetation patterns.

The suggestion here is that the use of probability assignments over model param-
eters, as an expression of expert opinion, may provide robust qualitative conclusions, 
and thereby support the exploratory use of models. By dealing with the uncertainty 
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concerning the model parameters in a particular way, we manage to bring out what 
the model tells us about the target system, despite the statistical uncertainties that 
surround the model. To draw robust conclusions of that sort, we rely on the model as 
an adequate representation of the target system, and we assume that the uncertainty 
about model parameters is adequately captured by the expert opinions, that is, by the 
probability assignments. Accordingly, a model may be improved by reformulating it 
in such a way that experts have a better grip on the uncertainties.

To illustrate, we return to the case study. The Flevoland model introduced earlier 
seems to be rather unfit for a direct evaluation of the hypotheses in the model, by 
computing their fit with the data or the posterior probabilities. Although a statistical 
approach may suit the environmental dimension of the framework in view of the 
vast body of data available, the behavioral dimension causes problems, as the 
archaeological data interpretable to a specific level of behavior are particularly few. 
Of course, if one would accept a strong environmental dependency of hunter- 
gatherer behavior, one could argue that a reduction of uncertainty in the environ-
mental dimension implies the same in the behavioral dimension. However, despite 
the subsistence-focused examples provided, we do not support such purely deter-
ministic lines of reasoning. Not only do hunter-gatherers also take decisions on the 
basis of cosmologically inscribed factors (Descola 1999; Lavrillier 2011; Nadasdy 
2007), there is furthermore a “sociohistorical” aspect to the use of landscapes based 
on, for instance, acquired information through sharing of knowledge and movement 
along paths (Aporta 2009; Lovis and Donahue 2011; Mlekuž 2014).

The aspects of behavioral complexity may, however, offer an opening to employ 
robustness analysis. Candidate models of various context of behavior, that include 
diverse ranges of parameters—bear in mind that theoretically any factor one would 
like can be included—can be analyzed to identify invariances. As invariant features 
of modeled behavior are less sensitive to variations in the starting points, such fea-
tures can be expected to leave an archaeological echo, in contrast to features that 
return high degrees of variance. In this way it may become possible to identify pat-
terns in model outputs that can be “tested” against archaeological data that are more 
of a qualitative than a quantitative nature, as in the case of our example area. 
Robustness analysis, then, may provide insight into the sensitivity of model 
 parameters to differences in starting conditions, and—without the neglect of uncer-
tainty—give way to the definition of models that return “perception surfaces” that, 
in a way, get closer to the “active landscape” as it was used by hunter-gatherers than 
the “neutral landscapes” in Peeters (2007) exploratory playground.

3.7  Model Uncertainty and Exploratory Modeling

One presupposition is central to both classical and Bayesian statistics and is highly 
relevant to our present concerns: all statistical approaches to uncertainty require that 
we choose a set of hypotheses, or theoretical possibilities, over which the experts, 
and perhaps the data, then produce a verdict. In statistics, this range of hypotheses 
is often called a model. The basis for a model is typically a set of causal relations, 
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perhaps a mechanism, or some other structure, in which salient quantities and their 
qualitative relations are determined, without fully specifying the parameter values 
that are associated with them. The foregoing exposition on landscape use offers a 
good example. For our purpose, it is important to notice that the model serves as a 
presupposition for the statistical treatment of uncertainties: we cannot express any 
statistical uncertainty if we do not, at the outset, come up with a set of hypotheses 
or parameter values.

What to do when we are uncertain about the quantities and relations that need to 
be included in the model? The usual application of statistics is not appropriate when 
the uncertainty pertains to the very conceptual structure that is used to control for 
uncertainties, so the uncertainty that pertains to the statistical model itself. Looking 
at the case study, we see that exploration of the model led to a criticism of the way 
in which environmental and behavioral models were connected, or more precisely, 
the way in which behavioral responses to the environment were conceptualized. 
The uncertainty here is fundamental. It does not concern the value of some param-
eter or other, it rather concerns the way in which agents and their relations to the 
environment are conceived within the model. In other words, it concerns the entire 
model setup. And it is to this kind of uncertainty that we now turn. Although there 
are at least as many approaches to the issue of model uncertainty as there are uses 
of models, our present goal is quite specific: we want to control for the detrimental 
impact that model uncertainty has on the use of models for exploratory purposes. 
We consider three approaches: statistical model selection, robustness analysis, and 
in the next section the use of measures of informativeness and surprise.

A first and rather natural response is to partially remove the uncertainty by fitting 
the models to data. In other words, we convert model uncertainty into statistical 
uncertainty and repeat the statistical procedures on the level of models. We are then 
in the business of statistical model selection: the models are taken as hypotheses, 
and evaluated according to their respective fit with the data, or according to other 
data-related quality criteria. Several classical approaches to adjudicating between 
models are on offer, all based on their own formalization of model quality. And 
there are also model selection tools along Bayesian lines. For one, we may express 
our opinions concerning the candidate models by assigning probabilities to them, 
and then compute the so-called posterior model probabilities, on the basis of the 
data and the prior probabilities. The development of such model selection tools for 
the archaeological context provides an interesting avenue to explore.

It seems clear, however, that statistical model selection cannot be the only answer 
to the issue of model uncertainty, certainly not when the use of models for explor-
atory purposes is at stake. Dealing with model uncertainty in the afore-mentioned 
manner will not align with the exploratory purposes of modeling for at least three 
reasons. First, the application of such selection tools requires the availability of 
ample data, whereas exploratory modeling often happens when little data are avail-
able. Moreover, off-the-shelf model selection tools are based on idealizations that 
are typically not met in the archaeological context, while advanced tools that may 
be applicable in this context are less well established and hence prone to technical 
and interpretive problems. Finally, and most importantly, if we select a single model 
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in response to model uncertainty, or average over a number of models, we seem to 
cover up something that may in fact be highly informative, namely that the models 
have certain qualitative features in common. Some features of the models might be 
constant, despite the uncertainty over them.

We submit that, in the case at hand, we can better deal with model uncertainty by 
focusing on these commonalities among the models, rather than to opt for one of 
them to the exclusion of others, or to average over the models. The idea is, in other 
words, that we deal with model uncertainty by selecting those results and insights 
that are invariant, or robust, under a wide range of models. This is a reiteration of 
the robustness analysis explained in the preceding section. Statistical and computa-
tional methods can be employed to identify such invariances, namely by supporting 
a systematic search of the parameter spaces of several models and charting the 
range of predictions that the models then generate. Such an exercise presents a view 
of the theoretical possibilities that the models under consideration offer and con-
nects these to the potentially observable consequences of the different modeling 
assumptions. In short, an exercise like that gives the modeler a feel for the system 
she is modeling.

It may be viewed with some suspicion that the modeler does not have full com-
mand over the model she has built and so needs simulations and statistics to trace 
the role of the assumptions that have gone into it. Surely, it may be thought, the role 
of those assumptions should be in plain sight! But the practice of computational 
modeling is just not like that. Often models are highly complex, involving a multi-
tude of parameters that are densely interlinked. It is generally not visible how such 
models relate to the empirical facts that they are supposed to account for. In fact 
modelers may well be surprised by the stringency or flexibility that a model offers 
in this respect. Investigating the spread of predictions relative to variations in the 
starting points, as done in robustness analysis, is a natural way of exploring the 
nature and contents of the models under scrutiny.

Looking again at our case study, we can quickly see that the analysis does not fit 
the mold of a robustness analysis. So what approach to model uncertainty is taken 
in the case study then? Recall that the uncertainty at stake is one about the entire 
model setup, and in particular about the connections between the environmental and 
the behavioral model. How should agents be conceptualized in the first place, and 
how do we relate them to their environment? The insight obtained from the explor-
atory use of the model was that agents and environment are independent where they 
should not be; the appropriate coupling of the environmental and behavioral model 
is missing. The behavior of the modeled agents appeared to be robust under sub-
stantial environmental variation, flying in the face of widely shared ideas about the 
relations between agents and environment. In other words, in our case study a faulty 
robustness casts doubt on modeling assumptions and so invited substantial revi-
sions of the model.

From a distance, the inferential pattern that emerges is similar to the robustness 
analysis sketched before. Researchers will normally harbor intuitions about rela-
tions that should manifest between the variables that characterize their system of 
interest, in this case: a causal relation between vegetation and hunting opportunities. 
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By simulating the impact of variations in one such variable on other variables, 
researchers can check if their model adequately captures their intuitions. So where 
robustness analysis helps to find salient invariances, the analyses here help to check 
systematic covariation.

3.8  Theoretical Criteria

This last point connects to a rather speculative aspect of the view we have devel-
oped so far. Researchers check models for their robust properties but they also 
check them against numerous items of background knowledge, often tacitly. Good 
computational modeling offers researchers a grip on these background checks and 
allows them to make the checks explicit. So when it comes to the quality of models 
for the purpose of exploratory use, researchers will consider highly theoretical 
aspects of the models. They might ask what model will generate interesting hypoth-
eses, what model presents surprising theoretical possibilities, or what model will be 
most informative. In the case study at hand, the model was judged to be defective 
because it failed to show dependencies that are expected on the basis of background 
knowledge of the system under scrutiny, that is, theoretical background knowledge 
of hunting behavior.

Speaking more generally, in the face of uncertainty over models researchers 
might select their favorite model not on the basis of how well it fits with available 
data but rather on these highly theoretical aspects. A model that passes specific 
checks against background knowledge is preferable, even if there are no empirical 
data that can be used to make those checks empirical. Or, more theoretical still, a 
model might be preferred because of the checks that it occasions, the insights that it 
might deliver, because of surprising predictions it might offer, or because of the 
opportunity it gives to formulate testable hypotheses, all of this quite independently 
of the data. Such theoretical aspects of models are very hard to formalize and quan-
tify. But we are optimistic that some progress can be made in this direction,  primarily 
by adapting and refining extant model selection tools. The informativeness of a 
model is naturally related to the specificity of a model, and so is the surprisingness, 
although in a different manner. And in turn, model selection tools provide a handle 
on the specificity (cf. Romeijn et al. 2012). We believe that a conceptual clarification 
of these theoretical criteria for models will be beneficial to a wide range of sciences, 
including archaeology, and we think that a formalization and quantification will 
contribute to this clarification.

Leaving aside these speculations on formalizing the theoretical virtues of models, 
we hope that the foregoing has made clear that model uncertainty is a serious meth-
odological concern, and one that cannot be tackled by standard statistical means. We 
have shown that statistical model selection will typically not provide resolution, 
whereas robustness analysis and model comparison on the basis of theoretical crite-
ria may present fruitful, certainly in the context of the exploratory use of models.
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3.9  Conclusion

We hope to have made clear that model uncertainty needs proper attention but also 
that it is a methodologically complex problem that cannot be dealt with in a stan-
dard and straightforward fashion. The case study presented here makes very clear 
how important it is to critically (re)consider the relationships to be built in models 
from a theoretical perspective. It occurs to us that, generally speaking, models of 
human behavior and that of hunter-gatherer behavior in particular, are difficult—if 
not impossible—to calibrate through validation on empirical facts. Although 
Bayesian approaches could be very useful to explicitly deal with model uncertainty 
through assignment of prior probabilities to parameter settings and candidate mod-
els, the frequent lack of unambiguous data obstructs computation of posterior model 
probabilities. However, in an exploratory context of modeling purposes, we think it 
seems better to deal with sources of uncertainty at the front end of model building, 
and apply techniques such as robustness analysis and work on the development of 
systematic selection tools that rely on theoretical criteria, as sketched above. Such 
tools cannot aim at the selection of “a best” model but will help to identify families 
of models which return invariant or—conversely—highly variant outcomes, hence 
providing a basis to choose among those models which seem to offer the best pos-
sibilities for hypothesis testing. And it is exactly this possibility that will help to 
improve the acceptance of computational modeling as a useful tool for archaeology, 
a position that is not generally shared among archaeologists. With a critical approach 
to model uncertainty and model selection from an epistemic perspective, we believe 
that the research program of computational modeling in archaeology is engaged in 
a process of continuous self-improvement. This self-correcting character is reason 
for optimism about the viability of models in archaeology, which is much in line 
with the more general views expounded in Henrickson and McKelvey (2002) with 
regard to agent-based modeling in the social sciences.
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    Chapter 4   
 GIS-Based Modeling of Archaeological 
Dynamics (GMAD): Weaknesses, Strengths, 
and the Utility of Sensitivity Analysis                     

       Marieka     Brouwer Burg    

4.1           Introduction 

 Archaeologists are often faced with a diffi cult task: How can we reconstruct a nar-
rative about past human societies and lives, and the mechanisms driving behavioral 
change or continuity, from the incomplete and oftentimes scant empirical data we 
recover from the archaeological record? For many, the answer has been to collect 
more data with more precise instruments and interpret this data with more detailed 
and nuanced models and theories. However, the “more” solution does not necessar-
ily function as a panacea for mitigating the extreme variations present in the archae-
ological record because more data does not necessarily translate into better-informed 
inferences about the past. In fact, more data can potentially generate more and dif-
ferent questions, introduce more uncertainty and error into a model, and ultimately 
detract from constructive hypothesis testing and theory building. 

 One way around this problem is to use available data in more creative ways, 
shifting from data-centric, bottom-up, inductive approaches to theory-driven, top- 
down, deductive approaches that test hypotheses of human socionatural processes 
drawn from contemporary or semi-contemporary understandings of historic, ethno-
graphic, demographic, and environmental trends (sources of information not with-
out their own complications; see Section 4.3). Both formal and computational 
modeling approaches have gained popularity in the fi eld as important deductive 
strategies for revealing patterns that can be tested with existing albeit incomplete 
and sometimes biased data. A variety of computational modeling genres have been 
developed over the years to carry out such deductive and exploratory approaches to 
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archaeological questions and along with advances in computing power and spatial 
modeling, this newer mode of working with archaeological data is becoming an 
irreplaceable tool in the archaeologists’ tool kit.  Agent-based modeling (ABM)   is 
perhaps the most well-known variety of computational modeling applications; see 
Chaps.   1    ,   5    , and   6     for a fuller discussion. 

 Another variety of computational modeling applications has focused more 
overtly on the spatial aspects of human socionatural dynamics, which I refer to here 
as geographic information systems (GIS)-based modeling of archaeological dynam-
ics (GMAD), and which has been referred to in other disciplines as “map centered 
exploratory approaches to multi criteria decision making” (e.g., Jankowski et al. 
 2001 ). Such models are focused on displaying the geographic “decision space” of 
initial socionatural  hypotheses  , and while they do not readily facilitate recursive 
processual outcomes on the scale of  ABM  , their incorporation of empirically based 
paleoecological reconstructions can yield useful and complementary data to the for-
mer approach. In fact, the formal integration of graphical spatial analytics with 
ABM has been an ongoing exercise among geographers and has been applied by 
several archaeologists as a robust tool for understanding human socionatural 
dynamics in the past (some current examples include Barton et al.  2012 , pp. 42–53; 
Lake  2000 ; Rogers et al.  2012 , pp. 5–14; for diffi culties of merging such tools, see 
Gilbert  2008 , p. 68). This chapter explores the weaknesses and strengths of using 
non-iterative GMAD, especially with regard to the propagation of uncertainty and 
error, and examines the utility of sensitivity analysis (SA) from the perspective of a 
case study of hunter-gatherer land use.  

4.2       The Hunter-Gatherer Land-Use Model (HGLUM) 

 The Hunter-Gatherer Land-Use Model ( HGLUM     ) is a multi-tiered, multi-criteria 
decision model developed to investigate socionatural dynamics among temperate 
and boreal forest foragers (Brouwer Burg  2013 ; Fig.  4.1 ). HGLUM was applied to 
Early Holocene foraging processes in the central river valley of the Netherlands, but 
versions of the model are now also being applied to the Younger Dryas (ca. 10,950–
10,000 years BP 1 ) in the Province of Flevoland, the Netherlands (van den Biggelaar 
et al.  2014 ). The model is geared toward exploration of group processes, the 
assumed behavioral reactions of hunter-gatherer bands as a whole to external stim-
uli and internal motivations. The basal tier of the model inductively generates eco-
logical (or “total landscape”; Brouwer Burg  2013 ) models of the past landscape 
from a rich database of empirical geophysical data. The superseding tier explores 
the differential suitability of the landscape given a range of past behavioral pro-
cesses, informed by ethnographic data from boreal and temperate forest hunter- 
gatherers. Similar procedures have been developed for other parts of the Netherlands 

1   All dates from here are reported as uncalibrated radiocarbon dates. 
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LANDSCAPE
Input: reconstructed land forms, groundwater levels, DEMs

Boundary conditions for each time slice-based on most current
bore hole and 14C data available courtesy of the Faculty of

Geosciences, Utrecht University

Output: spatiotemporal distributions of 
assumed vegetation zones over time

VEGETATION ZONES
Input: floral community data, growing 

condition assumptions
Determined by querying for specific 

landscape characteristics

FAUNAL SUITABILITY DISTRIBUTIONS
Input: vegetation zones, faunal community 

data, habitat requirement assumptions
Determined by assigning relative suitability 

of specific vegetation zones for a species

Output: spatiotemporal distributions of assumed 
areas of higher or lower habitat suitability

Intermediate Input: 
landscape characteristics, 
vegetation distributions, 

faunal suitability

HUMAN DECISION-MAKING
Determined by querying various landscape, vegetative, and faunal characteristics

(see Brouwer 2011)

Module 1

Module 4

Module 2

Module 3

  Fig. 4.1    HGLUM fl owchart (from Brouwer,  2011 , p. 350)       
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(i.e., Peeters  2007 , and currently under development van den Biggelaar et al.  2014 ); 
the Czech Republic (Danielisová and Pokorný  2011 ); in Wyoming, Georgia and in 
Michigan, USA (Krist  2001 ; Whitley  2000 ,  2005 ; Whitley et al.  2009 ). HGLUM is 
a non-iterative model, meaning that no elements of ABM were incorporated; how-
ever, there are certain benefi ts of employing detailed and highly accurate paleoeco-
logical maps, striking a balance between accuracy in the ecological sphere and 
generality in the behavioral sphere.

   Ecological models of topography, hydrology, and fl oral and faunal distributions 
were generated for three 25 × 25 km study areas over a 4000-year time span, in 500- 
year intervals (for details, see Brouwer Burg  2013 ). This spatial scale falls toward 
the smaller end of the spectrum of territory size for ethnographically documented 
boreal/temperate hunter-gatherers, which ranges from approximately 320 km 2  for 
the Berens River Ojibwa (Rogers  1967 ,  1969 ) to 4870 km 2  for the Waswanipi Cree 
(Laughlin  1980 ; Rogers  1967 ,  1969 ; for further comparisons, see Kelly  1995 , 
Table  4.1 ). The time span chosen allows the model to yield information concerning 
landscape evolution and behavioral change during the entire Mesolithic (Postglacial) 
period in northwest Europe. The spatial results of the model consist of square- 
shaped raster surfaces (also known as grids). A resolution of 1:10 was chosen, 
meaning that each grid cell represents 0.1 × 0.1 km, with a total of 62,500 cells per 
raster. This modeling scale is considered to be rather coarse for the purpose of 
human land-use decision-making; however, the scope of the model is largely dic-
tated by the quality and resolution of the underlying geographic data. Further, a 
resolution that can facilitate many recursive executions of the model is an important 
consideration; for this model, raster grids consisting of 62,500 cells are chosen 
because they have the capacity to provide suffi cient granularity for data mining and 
analysis but also do not impose signifi cant time and computing power restrictions to 
the modeling process.

   Topographic and hydrological reconstructions are derived from a high-volume 
coring database housed in the Geosciences Department at Utrecht University. 
Vegetation zones and faunal suitabilities are calculated based on known habitat dis-
tribution and ethological preferences, and are used to determine potential hunter- 

    Table 4.1    Initial rankings for attainment of minimum resources within a residential resource use 
strategy (model large game)   

 Red deer  Roe deer  Wild boar  Aurochs  Beaver  STMs  PEV a  

 Red deer  1  5  3  5  7  9  0.47 
 Roe deer  1/5  1  1/2  1  2  4  0.12 
 Wild boar  1/3  2  1  2  4  6  0.20 
 Aurochs  1/5  1  1/2  1  2  5  0.12 
 Beaver  1/7  1/2  1/4  1/2  1  2  0.06 
 STMs  1/9  1/4  1/6  1/4  1/2  1  0.03 

   a PEV = Principle eigenvector value  
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gatherer encounter rates between, for example, red deer, wild boar, beaver, etc. at a 
given locations and time periods. 

 From this foundational understanding of what has been termed the “total” land-
scape (Brouwer Burg  2013 ), different hypothesized land-use strategies of hunter- 
gatherers were applied as a way to explore spatial patterning, ecosystem use, and 
cognitive perceptions of the landscape. These counterposed land-use strategies 
were situated at opposite ends of the hunter-gatherer subsistence–settlement spec-
trum (e.g., Binford  1980 ; Kelly  1995 ): from foraging to collecting strategies. These 
strategies were subdivided further to distinguish between residential and logistical 
settlement patterns, as well as between targeted resource groups: large game, gen-
eralized (broad-spectrum) foraging, and wetlands. Such partitioning allowed the 
modeler to prioritize certain parameters for each type of subsistence–settlement 
strategy and resource focus. 

 The overall goal of HGLUM was not to produce a facsimile model of past social–
natural circumstances, but rather to heuristically investigate the many different nat-
ural and cultural parameters that consciously and unconsciously affect socionatural 
behavioral processes. To achieve this goal, the impact of different parameters and 
parameter combinations on outcome simulacra was investigated (see discussion 
below and Brouwer  2011 ). A corollary goal was to analyze the degree to which 
environmental perturbations affected adaptive strategies and land-use decisions. 
Prediction of site locations was not an initial goal of the model, although some of 
the model outputs serve to reinforce “expert knowledge” about where to expect 
Mesolithic sites. This is a diffi cult task at best, as much of the assemblage of hunter-
gatherer remains are ephemeral and poorly preserved in the archaeological record; 
nevertheless, constructing theories of subsistence–settlement patterns from existing 
(albeit scant) empirical evidence can help to fi ll in explanatory gaps and inform 
future policy, planning, and land-management decisions.    

4.3     Weaknesses and Strengths of GMAD 

4.3.1      Weaknesses 

 While it may seem counterintuitive to begin by discussing the weaknesses of 
GMAD, this approach serves to underscore the importance of understanding where 
model pitfalls lie prior to investing the time to execute it. Such consideration of 
model weaknesses and strengths receives woefully little attention in the literature 
on archaeological computational modeling, prompting some nonmodelers to ques-
tion the motivations and goal feasibility of such modeling. Indeed, as discussed by 
Lovis (Chap.   2    ) and Peeters and Romeijn (Chap.   3    ), models that cannot confront 
uncertainty and error propagation run the risk of returning “just so” stories about 
behavioral processes in the past. However, if suffi cient attention and time is 
accorded to these unavoidable modeling obstacles, modelers stand to gain not only 
a more nuanced understanding of the past, but also potential information about 
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humanity that could be useful in present and future decision making. Furthermore, 
modelers are advised to incorporate the error/uncertainty identifi cation process 
(a part of model verifi cation), at the outset of model development (ideally within a 
 design of experiment [DOE]   framework) and throughout the modeling life cycle. 

  At the outset, the HGLUM model is static and additive. Any  errors   in the initial 
input data (e.g., the geophysical and environmental variables) become compounded 
with the introduction of vegetation zones and faunal distributions (i.e., error propa-
gation). Each successive step in the landscape modeling introduces new data and 
therefore uncertainty, although additional verifi cation procedures can be easily 
implemented to alleviate some of this uncertainty (e.g., quantitative DOE testing for 
parameter sensitivity as well as qualitative cross-checking simulated vegetation dis-
tributions with empirical data such as palynological and macrobotanical records). 
Given the scope and fl exibility of HGLUM, and precluding further fi eld research, 
error and uncertainty that cropped up were recognized and accepted as part of the 
process. All of the paleoecological maps must therefore be regarded as a best approx-
imation of the past landscape based on contemporary available data and techniques.  

 In addition to the above areas of uncertainty production, the job of GMAD mod-
elers is often compounded by the fact that behavioral models are built upon physical 
models of past reality; these modeling suites involve different boundary conditions, 
model properties, and possibilities for ground-truthing. For example, assumptions 
can be made about the  physical realm   that cannot be made about the human behav-
ioral realm, most specifi cally that processes in the physical world abide by constant 
rates of change that are the same today as they were in the past (Comte du Buffon’s 
 Principle of Uniformitarianism  [ 1749–1804 ]). Conversely, human behavior—the 
product of human choice—may be rational or irrational given the context of the 
choice, and can only be predicted in a generalized sense, based on known sets of 
recorded behaviors. In the fi elds of psychology and economics, human decision- 
making has traditionally been regarded numerically as the nonlinear probability of 
choosing one possible outcome over others (i.e., von Neumann and Morgenstern’s 
( 1947 ) theory of expected utility and Savage’s ( 1954 ) theory of subjective expected 
utility; cf. Camerer and Weber  1992 ). We must therefore contend with the knowl-
edge that our present day ontologies likely do not adequately approximate the 
ontologies of people living in the past and that this mismatch will also be a source 
of great uncertainty in our models. 

4.3.1.1       Boundary Conditions   

 In GMAD, paleogeographic and paleoecological simulations often serve as back-
drops for modeling resource distribution and land-use decision-making (Krist  2001 ; 
Peeters  2007 ; Whitley  2000 ,  2005 ; Whitley et al.  2009 ). These backdrops are them-
selves complex to create (see Brouwer Burg  2013 ), involving their own inherent 
uncertainties (see Lovis, Chap.   2    ). In the case of the model described here, paleo-
geographic reconstructions were based on geomorphologic–geologic surfaces and 
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 digital elevation models (DEMs)   using core profi les of the subsurface. In addition, 
groundwater levels were interpolated from the location of carbon dated peat depos-
its. Both of these sources of data contributed uncertainty related to error in fi eld 
collection, dating, expert analysis and classifi cation, and the application of interpo-
lative algorithms. Most of this uncertainty was conceptual in nature (i.e., assumed 
but not quantifi ed), although the uncertainty contributed by groundwater interpola-
tion was quantifi ed using probability distribution and found to fall within the range 
of acceptable error (e.g., 2 sigma). Paleoecological models were created as exten-
sions of the paleogeographic reconstructions, involving the overlay of vegetation 
zones (based on knowledge of established biotic communities with particular grow-
ing conditions) and faunal suitability distributions (estimated from observed habitat 
and ethological preferences). The drawback of this extrapolative procedure is that 
error and uncertainty present in the initial paleogeographic simulations are carried 
into subsequent paleoecological simulations, which also entail specifi c uncertain-
ties and error propagation.   

4.3.1.2      Model Properties   

 The structure and execution of a model can sometimes lead to uncertainty, as can 
the selection of parameters chosen to represent reality. Model verifi cation proce-
dures, which determine if the model is running as it should, are critical to execute in 
the early phases of model development and can best be examined with SA and DOE 
procedures (see Sect.  4.3.1 ). Since the model described here was tested in previous 
studies (see Eastman  1999 ; Krist  2001 ), the parameters of the model and their val-
ues were thus identifi ed as the more likely location of uncertainty production. 
Saisana et al. ( 2005 , p. 309) note that the uncertainty of a particular parameter can 
arise during the selection of parameters, the selection of data, the editing of data, the 
normalization of data, the weighting of the overall scheme, the weighting of values, 
and the running of a composite parameter (or indicator) formula. SA is perhaps the 
best way to uncover some of this uncertainty; as a method of model verifi cation, 
SAs can reveal which parameters require special attention and which can be elimi-
nated wholesale to increase modeling effi ciency and decrease overall levels of error.  

4.3.1.3      Ground-Truthing   

 The archaeological record must also be considered, as it supplies empirical data on 
past physical landscapes and material correlates of past human behaviors. This 
record is often used as comparison for simulated outcomes, a useful posttest evalu-
ation of initial modeling assumptions about the physical world and behavioral 
processes. There are many constraints on the archaeological record: it is a biased 
and partial record of past events and therefore, if some portion of archaeological 
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data is withheld for post hoc testing of simulation models, special consideration 
must be given to the representative nature of the existing record as well as the 
persistent underlying threat of tautological argumentation. Furthermore, while 
ground- truthing may be a viable option for post hoc testing in the natural and 
behavioral sciences, it is often not a feasible option for archaeologists given the 
vagaries of the archaeological record; land zoning and property ownership con-
cerns; and time, fi nance, and labor costs.   

4.3.2      Strengths   

  While the drawbacks of multi-tiered GMAD appear numerous, its utilization also 
yields important benefi ts. First, the incorporation of detailed and accurate paleoeco-
logical models, based upon the more predictable laws and behaviors displayed by 
physical and nonhuman biotic agents, can provide a fi rm foundation for modeling 
the more unpredictable and sometimes irrational behavior or human agents. This is 
one potential drawback of more abstract ABM simulations, where the goal of illus-
trating patterns based on specifi c behavioral principles may outweigh consider-
ations of environment or spatial context (e.g., Brantingham  2003 ; Premo  2006 ; 
Wobst  1974 ). In this way,  ABM   is much more a heuristic, exploratory device that 
can in some cases—when the model is verifi ed and validated—be used to predict 
other areas in the landscape where similar behavioral processes occurred. 

 Second, GMAD can also serve heuristic and exploratory purposes, although it is 
not currently suited to high-volume recursive modeling of behavioral processes 
and thus, obtaining a robust bandwidth of possible behavioral outcomes (and iden-
tifying those that are most probable) is not an easy task, as it involves coupling 
ABM and GMAD tools, both of which are detailed and nuanced research special-
ties (see Gilbert  2008 , p. 68). Nevertheless, the inclusion of detailed and accurate 
paleoecological surfaces can provide other advantages to the modeling process. 
For example, when the location of water-logged versus dry areas for the time period 
between 6500 and 6000 years BP is established with multiple lines of empirical 
evidence, then better-informed approximations of settlement placement can be 
obtained (especially residential settlements). In a sense, incorporation of detailed 
paleogeographic and ecological data can provide a fi rm and relatively accurate 
foundation upon which to model the more nuanced, nonlinear behavioral processes 
of hunter-gatherers. 

 Third, while iterative simulation modeling is not easy to implement into GMAD 
programs, there are new GIS techniques and add-on software programs that can be 
incorporated to add dynamism to such modeling. In the two-tiered architecture of 
 HGLUM  , the paleoecological base was generated from empirical data using ESRI 
Arc-GIS software. The result of this modeling produced raster-based land-cover 
maps for specifi ed time slices (from 11,000 to 6000 years BP), which were then 
exported to the open-source environmental modeling software package known as 
PCRaster (  http://pcraster.geo.uu.nl    ). The PCRaster platform can facilitate GIS- 
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produced maps and has the ability to allow multiple iterations of socionatural algo-
rithms on static landscapes. In addition, landscape evolution itself can be modeled 
with this software.    

4.4     Assessing the Utility of Sensitivity Analysis for GMAD 

 To approximate the utility of SA for GMAD, statistical procedures derived from 
corollary SA methodology described in the earth sciences (Lenhart et al.  2002 ; van 
Griensven et al.  2006 ) and behavioral ecology (Happe et al.  2006 ; Vonk Noordegraaf 
et al.  2003 ) were applied to HGLUM. For further background on SA and a descrip-
tion of types, see Sect.   1.4     in Chap.   1    . 

4.4.1     Applying SA to GMAD 

4.4.1.1        Methodology      

 To identify where uncertainty and error were introduced to  HGLUM  , SA was 
applied to (a) the weighting of parameter values and (b) the running of a composite 
parameter formula. To determine the overall impact of input factors, model outputs 
were compared both qualitatively and quantitatively. 

 HGLUM consists of a cascading set of factors or parameters considered impor-
tant to hunter-gatherers when making decisions about land use (Fig.  4.1 ; for further 
details on the model, please see Brouwer  2011 , pp. 212–268). The fi rst phase of the 
modeling uses food resource distribution surfaces as input and evaluates which 
parts of the landscape would be viable for specifi c resource extraction activities 
based on the type of subsistence/settlement strategy being practiced. The second 
phase of the modeling employs some of the spatial surfaces generated in phase one, 
as well as additional surfaces related more directly to nonfood resource landscape 
criteria (e.g., proximity to land resources, shelter, view, ground dryness). 

 For the purpose of this SA, four parameter orders are present, refl ecting the cas-
cading nature of the multi-criteria decision model (Fig.  4.2 ). First order parameters 
include the most basic model inputs affecting resource acquisition (e.g., suitability 
distributions of fauna, themselves based on the parameters of food distribution and 
cover/shelter). Second order parameters are those that draw upon fi rst order param-
eters and partially underpin fourth order parameters (i.e., decision-making criteria 
for resource acquisition choices), along with third order parameters that are based 
more concretely on the presence/absence of landscape features. Fourth order param-
eters comprise decision-making criteria for settlement choices given a selected 
strategy for resource acquisition and mobility.

   To evaluate overall confi dence in the decision model, areas of uncertainty, error 
propagation, and sensitivity are investigated using a corner-test SA and DOEs, a SA 
technique used to explore model robusticity as well as the range of variation param-
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eters have on outputs. To demonstrate the process involved, the corner-test SA is 
fi rst described for fi rst order faunal parameters (i.e., red deer, wild boar, beaver, and 
small terrestrial animals) analyzed using the design rubric of residentially oriented 
foragers who want to maximize resources (Fig.  4.2 ). Then, the DOE is applied and 
results are discussed. For this demonstration one 25 × 25 km area in the central river 
valley of the Netherlands is focused on, with SA and  DOE   applied to output dis-
plays for early and late time periods (11,000–10,000 and 7000–6500 years BP). The 
impact of parameter value variation is evaluated quantitatively through basic  explor-
atory data analysis (EDA)   and simple statistical measures ( t -tests and linear regres-
sion analysis), as well as qualitatively through visual comparison of output spatial 
displays. As will be argued below, both approaches to the data supply insightful 
information.    

4.4.1.2        Corner-Test SA      

 This phase of model verifi cation and testing departs from “initial” parameter rank-
ings that represent emically informed weighting of faunal resources derived from 
ethnographic data on boreal/temperate forest hunter-gatherer decision-making (see 
Brouwer  2011 , pp. 212–268), with a specifi c focus on residential resource provi-
sioning carried out with the objective of obtaining a minimum number of resources 
(Table  4.1 ). Two executions of the corner-test SA are run on paleo-landscape sur-
faces from the beginning and end of the Mesolithic period (e.g., 11,000–10,000 and 
7000–6000 years BP) and are referred to as Series 1 and Series 2. 

 An extreme multiway or corner-test SA is next applied to the ensemble of faunal 
parameters for this decision, in which each faunal parameter is set to the highest 
weight in the pairwise comparison matrix (9) and all other parameters are set to the 
lowest weight (1/9). Table  4.2  illustrates a single iteration of the corner-test applied 
to red deer, where red deer is set as very strongly more important than all other 
parameters (principle eigenvector value: PEV = 0.64). This same scenario was exe-
cuted for all other species, in which each succeeding species was set as strongly 
more important than the rest.

   Table 4.2    Parameter rankings for attainment of minimum resources with a residential resource 
use strategy   

 Series 1  Red deer  Wild boar  Aurochs  Beaver  STMs  PEV 

 Red deer  1  9  9  9  9  0.64 
 Roe deer  1/9  1  1  1  1  0.07 
 Wild boar  1/9  1  1  1  1  0.07 
 Aurochs  1/9  1  1  1  1  0.07 
 Beaver  1/9  1  1  1  1  0.07 
 STMs  1/9  1  1  1  1  0.07 

  *STM = small terrestrial mammal  
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   When qualitatively compared, this corner-test procedure demonstrates that 
changes in the weight of the resource parameter beaver have greatest impact on the 
suitability of the landscape for the decision of attaining minimum resources 
(Fig.  4.3 ). The beaver parameter is marked as highly sensitive, acting to skew the 
rest of the landscape to appear much less suitable for the outset decision criteria and 
therefore, extra precaution must be taken when factoring how much weight to 
accord this parameter. The sensitivity of the beaver parameter is likely due to its 
specifi c habitat preferences, which are more constrained than the other faunal habi-
tats. It is assumed that Mesolithic hunter-gatherers did not schedule their seasonal 
rounds around the presence/absence of beaver alone, although the presence of bea-
ver may have negatively impacted resource extraction decisions for hunter- gatherers 
geared toward large game, as beaver dam building can break up the landscape and 
create obstacles for tracking prey. However, it is also known that for hunter- gatherers 
following a general foraging strategy within a catchment area, the rich aquatic and 
wetland habitat created by beavers and their dams would most likely be viewed as a 
benefi cial quality.

   Summary mean statistics can be compared to quantitatively investigate the 
impact of differential resource weighting. Table  4.3  shows that, for the given study 
area and time period, the parameters beaver and STMs return model output that is 
most different from the model output generated by varying the other parameters.

   One important outcome of this phase of the SA involves the removal of unneces-
sary parameters. As seen in Table  4.3 , red deer, roe deer, and aurochs all yield the 
same mean suitability values, standard deviation, variance, and skewness, likely due 
to their assumed identical habitat requirements. Thus, roe deer and aurochs can be 
collapsed into the red deer parameter in order to improve modeling effi ciency and 
decrease the risk of error introduced through over-parameterization.    

4.4.1.3         DOE         

 Another verifi cation technique can be applied in which fi rst order parameters are 
varied systematically according to a DOE framework (using the open-source statis-
tical discovery software JMP; available at   http://www.jmp.com    ), such that more 

    Table 4.3    Means analysis of Series 1   

 Series 1: Polderweg 
11–10,000 years BP  Mean suitability value   N  

 Standard 
deviation  Variance  Skewness 

 Initial Run  46.28  62,500  18.74  351.11  0.26 
 Red Deer  46.29  62,500  18.61  346.16  0.18 
 Roe Deer  46.29  62,500  18.61  346.16  0.18 
 Wild Boar  47.24  62,500  21.28  452.94  0.01 
 Aurochs  46.29  62,500  18.61  346.16  0.18 
 Beaver  22.90  62,500  15.04  226.20  2.98 
 STMs  55.38  62,500  21.58  465.59  −1.13 
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sophisticated statistical analyses can be applied to the resulting data set. For this 
stage of the analysis, 16 model runs 2  are executed in which each faunal parameter is 
assigned a suitability value between 0 and 3 (Table  4.4 ). Each run of the DOE is 
translated into a pairwise comparison matrix to derive PEVs that sum to one for 
each run. This weighting strategy follows that outlined by Eastman ( 1999 ) and 
entails a nine-point ordinal scale for ranking parameters in order of importance 
(Fig.  4.4 ; see Brouwer  2011 , pp. 204–211; Eastman  1999  for a full description of 
this weighting procedure).

    A  t -test is used to determine which parameters have the greatest overall impact 
on the model output. Both beaver and small terrestrial mammals (STMs) returned 
statistically signifi cant  p  values (<0.05; Table  4.5 ).

   The  JMP prediction profi ler   (a useful visual tool that can reveal parameter interac-
tions) is employed to determine which combinations of parameters and weights will 

2   This number was chosen because it represents the least number of combinations that are still 
mathematically distinct for parameters scaled between four suitability values, 0–3. 

   Table 4.4    DOE for Polderweg faunal suitability from 11,000 to 10,000 years BP (Series 1)   

 Series 1 
 Red deer 
(RD) 

 Wild boar 
(WB) 

 Beaver 
(BV) 

 Small terrestrial 
mammals (STMs)  Average suitability values 

 1  1  0  0  1  50.33 
 2  1  1  2  0  28.69 
 3  2  0  3  0  26.26 
 4  2  1  1  1  44.92 
 5  0  1  0  2  53.50 
 6  3  3  0  0  47.65 
 7  1  2  3  2  30.60 
 8  1  3  1  3  52.53 
 9  0  2  1  0  40.67 
 10  3  1  3  3  40.26 
 11  2  2  0  3  54.52 
 12  3  2  2  1  41.82 
 13  3  0  1  2  47.74 
 14  0  0  2  3  45.72 
 15  0  3  3  1  33.64 
 16  2  3  2  2  45.47 

Less important More important

1/9 1/7 1/5 1/3 1 3 5 7 9

Extremely       -- Strongly -- Equally            -- Moderately -- Very strongly

  Fig. 4.4    Nine-point ranking scale (adapted from Krist,  2001 , p. 148 and Eastman,  1999 )       

 

M. Brouwer Burg



73

yield the most suitable conditions (in this case, for obtaining minimum resources 
while following a large-game foraging strategy). When desirability is set to maximum 
(0.995), the tool indicates that heavily weighting red deer, wild boar, and STMs, while 
lightly weighting beaver, will yield the outputs with the highest suitability (Fig.  4.5 ). 
The fi gure also indicates how individual parameters impact overall suitability outputs. 
For example, as beaver suitability increases, the desirability of the overall output 
decreases and thus, the heavier beaver is weighted, the greater the negative affect it 
will have on output. Conversely, as STM suitability increases, the desirability of the 
overall output increases. Red deer and wild boar have negligible impact on output, 
likely indicating that the habitat requirements of these species are met widely through-
out the area, while STMs and beaver have more restricted habitats.

   When considered more broadly, this fi nding makes sense as the landscape during 
the stipulated time period (11–10,000 years BP) was dry and understandably unfa-
vorable to beaver. What happens if the same input parameter changes are run on a 
landscape more favorable to beaver and less favorable to red deer, wild boar, and 
STMs (e.g., peaty wetlands and tidal infl uenced channels from ca. 6500 to 6000 years 
BP—Series 2)? Fig.  4.6  and Table  4.6  indicate that the situation stays the same: the 
parameter beaver remains the most important in terms of affecting model output, 
despite the change in landforms and vegetation.

    The same DOE framework described above is applied to Series 2 of the model 
(Table  4.7 ). The results indicate that the same pattern seen in the qualitative output 
obtains.

   Table 4.5    Parameter signifi cance for faunal suitabilities from 11,000 to 10,000 years BP BP   

 Term  Estimate  Standard error   t  ratio  Prob > | t | 

 Intercept  44.465135  2.038133  21.82  <0.0001* 
 RD  0.5199283  0.636606  0.82  0.4314 
 WB  0.6990823  0.636606  1.10  0.2956 
 BV  −6.246922  0.636606  −9.81   <0.0001*  
 STMs  3.8977846  0.636606  6.12   <0.0001*  

  (Bold values denote statistically signifi cant p values).  

  Fig. 4.5    Prediction profi ler for faunal suitabilities from 11,000 to 10,000 years BP       
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   Oftentimes in geospatial modeling, an index of parameter sensitivity ( I ) is calcu-
lated by approximating “the ratio between the relative change of model output and 
the relative change of a parameter” (Lenhart et al.  2002 , p. 646). Transcribed for 
this archaeological example, a sensitivity index can be derived by taking the differ-
ence of each priority run (e.g., red deer most important, all other parameters least 

   Table 4.6    Means analysis of Series 2   

 Series 2: Polderweg 
7000–6000 years BP  Mean  N 

 Standard 
deviation  Variance  Skewness 

 Initial  22.32  62,500  31.57  996.8  1.48 
 Red deer  24.13  62,500  34.27  1174.10  1.50 
 Wild boar  24.29  62,500  36.25  1314.10  1.45 
 Beaver  20.41  62,500  22.92  525.55  2.16 
 STMs  21.92  62,500  34.62  1198.78  1.62 
 Total  22.61  312,500  32.31  1043.96  1.63 

   Table 4.7    DOE for Polderweg faunal suitability from 6500 to 6000 years BP (Series 2)   

 Series 2 
 Average 
suitability values  Run 

 Average 
suitability values  Run 

 Average 
suitability values 

 Initial  14.70  7  15.00  13  14.17 
 1  14.13  8  13.57  14  13.58 
 2  15.34  9  14.75  15  15.04 
 3  15.48  10  14.21  16  14.57 
 4  14.64  11  13.14 
 5  13.27  12  14.79 
 6  14.56 

  Table 4.8    Sensitivity classes 
(adapted from Lenhart et al. 
 2002 , p. 647)  

 Class  Index  Sensitivity 

 I  0.00 < | I | > 0.05  Negligible to small 
 II  0.05 < | I | > 0.20  Medium 
 III  0.20 < | I | > 1.00  High 
 IV  | I | > 1.00  Very high 

   Table 4.9    First order parameter sensitivity classes   

 Parameter importance  Mean suitability value  Difference in means a   Sensitivity class 

 Initial run  46.28  –  – 
 Red deer  46.29  0.01  I 
 Wild boar  47.24  0.96  III 
 Beaver  22.90  23.4   IV  
 STMs  55.38  1.13   IV  

   a Taken by subtracting mean of priority runs for each parameter from the mean of the initial run
(bold values denote high sensitivity).  
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important) from the initial run. For clarity, sensitivity classes can be applied 
(Tables  4.8  and  4.9 ).

    Once again, the parameters beaver and STMs are revealed to be the most sensitive. 
It should also be noted that under this classifi cation system, the parameter “wild 
boar” also has high sensitivity. For this reason, all three of these parameters should 
be accorded special attention during the weighting process. 

 These fi rst order model iterations reveal that the parameter with the most 
restricted distribution (here beaver) will have the greatest impact on model 
 output, that is, it is the most sensitive in the collection of fi rst order parameters. 
For this reason, researchers should take extra precautions when considering how 
much weight to assign this parameter, and the degree to which it would have affected 
past resource allocation choices. 

 The combined strategy of using corner-test SA and range of variation DOE for 
exploring parameter behavior was developed specifi cally for the HGLUM model 
but could be applied to any GMAD model. This approach represents a robust 
method for calibrating and verifying models that incorporate both natural and 
social data. The above results have hopefully made clear that SAs incorporated 
throughout the modeling process are incredibly important tools for highlighting the 
nuances of parameter behavior and model functionality. Additionally, SAs encour-
age investigation of outset modeling assumptions concerning parameter selection 
and weighting.       

4.5     Discussion and Conclusion 

 The SA demonstration above reveals that uncertainty has been introduced in each 
stage of the multi-tier, multi-criteria decision model, and error is successively com-
pounded during each modeling phase. Thus, if the research goal is to recreate reality 
by developing facsimiles of past socionatural systems, the GMAD model has failed. 
However, the intended research goal is focused instead upon understanding pushes 
and pulls of socionatural dynamics in the past through the stated use of iterative 
simulacra, and in this vein the model has succeeded. While in the geosciences, SA 
implementation focuses strictly on uncertainty quantifi cation, the procedure has 
been used here to reveal  parameter utility and impact     . Thus, if the goal of GMAD is 
to learn about the archaeological record (and thus the human behavior recorded 
within it), then something of value has been learned: the intricacies of model 
assumptions, input parameters, and weighting decisions have been explored in 
greater detail, all of which are refl ective of the array of different choices and choice- 
making patterns that were available to hunter-gatherers living in the postglacial 
Netherlands. In this sense, the heuristic aim of HGLUM has been satisfi ed. 

 The SA demonstration above also helps to answer some important  meta- 
modeling      questions for GMAD. First, although the SA described above does not 
have the capacity to systematically quantify the amount of error and uncertainty 
generated in the construction and execution of the model, this verifi cation technique 
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can determine where uncertainty is introduced and the relative infl uence of this 
uncertainty on model output. The modeler then must decide if the model output falls 
within a reasonable range of error and uncertainty and can be accepted as is, or if 
the output is signifi cantly different from expected results and demands revisiting 
and reconfi guring model properties, boundary conditions, assumptions, and 
included parameters and their weights. This situation leads to a second concern 
regarding the biased and incomplete nature of the archaeological record, which will 
continue to hamper modeling output by preventing error or uncertainty-free recon-
structions of past dynamics. In fact, such models will always contain some fuzzy 
assumptions about the real world in the past. Archaeological computational model-
ers must continue to acknowledge this fact as a prima facie assumption to the entire 
modeling endeavor. Rather than render all archaeological modeling moot, such 
acknowledgment and critical evaluation of outset assumptions can serve as a silver 
lining: by actively investigating the nature of uncertainty and error in archaeologi-
cal computational models, the modeling community only stands to improve overall 
understandings of model functionality and in the long run, of socionatural dynamics 
in the past. SA has a unique role to play in this regard, as a key that can unlock the 
nuances of models by identifying the range of variation and sensitivity present. 

 A third question facing GMAD modelers specifi cally involves the use of qualita-
tive versus quantitative verifi cation  procedures  . GIS technologies readily produce 
spatially oriented graphical output in the form of maps, and it often appears easier 
to qualitatively evaluate model output via visual comparison. The question that 
arises is whether these qualitative comparisons reveal signifi cant differences when 
analyzed quantitatively. As the DOE procedure described above illustrates, there is 
indeed agreement between qualitative and quantitative evaluations of model out-
puts. Nonetheless, this chapter also strives to underscore the importance of utilizing 
multiple types of verifi cation techniques as a way of improving model robusticity 
and meta-level understandings of model intricacies. Thus, it is strongly advised that 
both qualitative and quantitative evaluations be carried out as part of this process. 

 In sum, while GMAD models are non-recursive in nature, they still stand to con-
tribute much to explorations of past socionatural dynamics. A primary  benefi t   of 
using such models involves the coupling of detailed geographic surfaces drawn from 
empirical, real-world data, with more fuzzy assumptions of human decision- making 
and behavioral processes drawn from ethnographic and ethnohistoric accounts. This 
GMAD coupling is often complicated as it draws upon disparate data sets, of varying 
quality and quantity. Additionally, the coupling of social and natural models demands 
different SAs for verifi cation and validation. Here, both corner- test SAs and DOE 
analyses are carried out to underscore the importance of such verifi cation procedures. 
It is recommended that other GMAD models as well as other spatially based models 
of human–landscape interactions (e.g., ABM) also be incorporated throughout the 
life cycle of a model, from development and execution to post hoc validation. This 
method represents a parsimonious way for archaeological computational modelers to 
systematically confront, cope, and compensate for error and uncertainty.     
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Chapter 5
Assessing Nonlinear Behaviors  
in an Agent- Based Model

Jon W. Carroll

5.1  Introduction

This chapter discusses the role of sensitivity analysis in the development of an 
Agent-Based Model (ABM) created to explore cultural transmission processes in 
small-scale social networks during the Springwells phase (ca. A.D. 1160–1420) of 
the Late Prehistoric period in the Great Lakes region of North America. ABM is a 
computational method that allows us to simulate how the interactions of individual 
components within a system produce emergent phenomena that eventually become 
hallmark characteristics of a system (Epstein 2006; Gilbert and Troitzsch 2005; 
Gilbert 2008; Kohler and Gumerman 2000; Kohler and van der Leeuw 2007; 
Railsback and Grimm 2012; Wurzer et al. 2015). ABM is noted for its ability to 
employ “anthropologically plausible” (Dean et al. 1999, p. 180) rules that set the 
conditions for how agents might interact. Moreover, simulation as a method “can be 
seen as a species of model capable of investigating complex, multifaceted systems, 
and most importantly, as a means of constructing experimental scenarios that could 
never normally be observed” (McGlade 2005, p. 558).

With ABM, “Agents” are a specific component of the computer program used 
to embody social actors (Gilbert 2008, p. 5), and they may collect information 
about their environment while making decisions about behaviors to engage in as 
dictated by specific model programming rules (Kohler 2000). One of the main 
benefits of ABM is that researchers can observe dynamic relationships manifesting 
between agents at multiple social and spatial (sociospatial) scales (Kohler 2000). 
Assuming proper model conceptualization and implementation, interaction 
between individual agents produces emergent phenomena that scale-up to the system 
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(the largest, or global) level from behaviors of individual agents (Graham 2006). 
Just a few examples of how ABM modeling has augmented traditional archaeo-
logical interpretation include studies relating to Anasazi culture change in the 
Southwest (Dean et al. 1999), Roman social interaction in Europe (Graham 2006), 
and the distribution of Late Prehistoric ceramic styles in the Great Lakes region of 
North America (Carroll 2013).

A separate but related area of interest here is the study of cultural transmission 
(CT) (O’Brien 2008; O’Brien and Shennan 2010; Stark et al. 2008), where CT 
variation has been used to explain how changes in material culture are tied to the 
social context of interactions (Bentley and Shennan 2003; Carroll 2013; Eerkens 
and Lipo 2007; Premo and Scholnick 2011; White 2013). ABM and CT studies may 
be synergistically combined to simulate the differential flow of information among 
ethnographically derived scenarios relating to group interactions. Such models can 
generate expectations relating to changes in CT and material culture, which may be 
useful to archaeologists investigating cultural processes in the past.

5.1.1  Model Overview

This investigation uses the open source ABM package NetLogo 4.1.2 (Wilensky 
1999) to explore changes in CT relative to changes in sociospatial interaction 
patterns. NetLogo is specifically designed to model complex systems and their 
emergent properties. Complex systems are self-organized, path dependent, and his-
torically contingent systems that exhibit emergent properties as agents within the 
system interact (Crawford et al. 2005; Messina 2001; O’Sullivan et al. 2006). 
Identifying the individual parts within a system is essential for establishing model 
components, but the emergent properties of that system may only be observed 
through interactions of those components (Holland 1998).

The terms “complexity” and “complex systems” refer here to a particular scien-
tific framework and not to social complexity in the traditional anthropological 
sense. Complexity does not inherently refer to degrees of integration or social orga-
nization (e.g., band, tribe, chiefdom, state) but instead refers to an alternate way to 
think about science in that it does not follow a reductive model (Wolfram 2002). 
A complex systems framework works well computationally because it allows the 
researcher to pose questions that can only be explored through simulation.

The Intercommunity Cultural Transmission Model (ICTM) (Carroll 2013) dis-
cussed here simulates the exchange of packets of information between communities 
interacting within a small-scale social network that lacks communication pathways 
in any form other than person-to-person interaction (White 2013). The primary goal 
is to explore interactional scenarios that should result in differential rates of CT 
between communities. The ICTM simulates randomized, nearest neighbor, and 
aggregated CT scenarios thus elucidating how packets of information propagate 
through social networks operating under different sociospatial conditions. In other 
words, the purpose of the ICTM is to identify how ideas spread through societies 
differently depending on the social context.
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Persons, communities, and aggregation points are the three basic entities that exist 
within the model or world. The spatial location for each community is randomly 
assigned. Each community then spawns a resident population of people using a ran-
dom normal distribution averaging five persons per community with a standard devi-
ation of three. This figure may seem low; however, everyone is potentially eligible 
for exchange depending on the value of a person’s randomly assigned potential. In an 
abstract model such as the ICTM, persons spawned might represent a single gender 
in a community, which places community population in line with many estimates of 
small-scale society demographics. Every person has a randomly assigned influence 
value that represents both the ability to influence others and an individual’s suscep-
tibility to outside influence (Mahajan and Peterson 1985; Rogers 2003).

Once a visitor from an outside community arrives at a new location, the opportu-
nity for cultural transmission begins. Residents of the target community interact with 
the new arrivals and assess newcomer levels of influence in relation to themselves. 
If a new arrival interacts with a local person who has a lower influence threshold, then 
the local person adopts the nonlocal cultural packet. This process repeats until all 
agents at the target location have interacted with the newcomers. The number of agents 
adopting new packets of information are summed and scored after each iteration.

It is important to emphasize that the intentionally abstract design of the model 
does not reflect real-world space or time. While it is possible to integrate geospatial 
data into NetLogo, this simulation does not attempt to recreate actual geographic 
space using topologically accurate spatial data. The geography influencing the 
agents occurs in default NetLogo model space. Model time is measured through 
increments referred to as “ticks” and governed by interactions between agents, not 
as calculations representing weeks, months, or years. The clock advances one tick 
when all persons exchanged have an opportunity to influence all susceptible persons 
at all destinations in the world.

Gilbert and Troitzsch (2005) note that research design and degrees of model 
abstraction greatly affect programming and what questions a model can explore. 
The fewer variables a model contains, the more abstract the model. Every time a 
variable is added to a model, there is the potential for complicating the assessment 
of relationships between input parameters and output data. The ICTM is constructed 
with a design that broadly applies to research questions relating to CT while simul-
taneously minimizing operational assumptions (Gilbert and Troitzsch 2005, p. 19). 
The formal ICTM assessment processes include verification, sensitivity analysis 
(DeVisser 2010; Santner et al. 2003), and validation and are described below.

5.2  Model Assessment: Verification, Sensitivity, and Validation

5.2.1  Code Verification

The first step in the development process was code verification. Verification is an 
assessment process where a simulation is evaluated to ensure that functions are 
working as designed (Gilbert and Troitzsch 2005, p. 19; Oreskes et al. 1994). 
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This can be a time-consuming process because each procedure in the programming 
code has to be inspected and its product observed. Many programmers regardless 
of the software platform refer to this process as “debugging.” The verification 
phase for the ICTM is represented by the creation, verification, and subsequent 
replacement of 39 versions of code before arriving at the version used for the 
experiments discussed below. Early versions of the ICTM code contained simple 
flaws like improper syntax resulting in the simulation freezing at different points 
during the first trial runs. Adjustments were made to the code as programming 
flaws were observed. Later versions of the code included refining the model’s ini-
tial setup conditions to reflect population sizes that align with demographic expec-
tations associated with small-scale societies. Once these modifications were made 
then verification focused on how agents responded as parametric adjustments 
were introduced.

5.2.2  Sensitivity Analysis

Sensitivity analysis is the process of evaluating “the extent to which the behavior of 
the simulation is sensitive to the assumptions which have been made” (Gilbert and 
Troitzsch 2005, p. 24). During this process, a modeler is concerned with assessing 
the degree to which inputs in the model affect outputs. Sensitivity analysis is crucial 
to understanding whether or not the operating assumptions of the model are reason-
able by revealing potential discrepancies in variable relationships (DeVisser 2010; 
Railsback and Grimm 2012, pp. 291–297). Arguably, sensitivity analysis is under-
utilized as a standard practice in computational archaeological modeling when com-
pared to its systematic application across other disciplines.

One way to explore a model’s sensitivity is to systematically vary parameters by 
a specified amount and then observe variations in output. Disproportionate or non-
linear relationships between these variables may indicate underlying problems 
within the model. However, the researcher must also keep in mind that nonlinear 
sensitivity may also indicate an unforeseen legitimate interaction between input and 
output values. Sensitivity analysis for the ICTM assessed the effect of varying 
exchange percentages on the total number of persons influenced through CT during 
a model run. A sensitivity index (SI) was constructed and applied to ICTM assess-
ment as outlined by Lenhart et al. (2002).
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The SI above is calculated where Y represents the dependent variable output, P 
represents the threshold of the parameter of interest, i represents the value of the 
parameter as it is adjusted above and below the default model, and D represents the 
baseline model value (DeVisser 2010, p. 3; Lenhart et al. 2002, pp. 646–647). Table 5.1 
outlines the classes of sensitivity used to interpret sensitivity analysis results.
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A baseline for these experiments consisted of 50 communities with a 50 % 
exchange rate for varying interactional scenarios discussed below. Exchange per-
centages varied at intervals ranging between 5 and 100 % to test the sensitivity 
specifically associated with exchange parameter changes. Each interval was run 100 
times and then the mean for persons influenced through cultural transmission was 
calculated. The mean for all persons influenced was selected as an appropriate mea-
sure for model sensitivity both within and across exchange scenarios because of the 
stochasticity built into NetLogo, which uses a random number generator to provide 
randomization based on the system clock. Every run of the model will differ slightly 
from other iterations. However, even in spite of the embedded randomization of the 
ABM, patterns will emerge after a model runs hundreds or thousands of times, and 
this allows us to arrive at probabilistic generalizations regarding model parameters, 
behaviors, and output.

The SI results indicate moderate or high sensitivity (Table 5.2) to adjustments in 
the exchange parameter when the destination for travelers is randomized. This sen-
sitivity manifests in a nonlinear pattern as indicated in Fig. 5.1. The random desti-
nation CT (influence) fall-off rate is not as rapid as in the nearest neighbor scenario 
discussed below, but there is still a nonlinear transmission signature associated with 
this form of sociospatial interaction.

Adjustments in exchange percentages in nearest neighbor scenarios result ini-
tially in highly sensitive (Table 5.2) nonlinear (Fig. 5.1) outcomes at low exchange 
rates, but trend toward moderate sensitivity, and ultimately become insensitive at 
higher exchange rates. This is attributed to the distributed nature of the social net-
work, where opportunities for individuals to interact with others holding lower 
influence thresholds are limited because of small-scale interactions manifesting at a 
local level. Such a scenario effectively acts as a “bottleneck” for influence threshold 
diversity, thus limiting influence propagation within the network to a localized 
 spatial scale between participants. All influential interactions take place very early 
in nearest neighbor exchange scenarios and then CT levels-off very quickly.

Sensitivity for exchanges with one aggregation point as a destination was classi-
fied as high (Table 5.2) regardless of the amount of variation implemented in the 
exchange parameter, but sensitivity manifests in a more linear manner (Fig. 5.1). As 
more people aggregate, each interpersonal interaction builds upon another and leads 
toward cultural transmission and propagation through the entire social network. 
Potential influencers arrive earlier or later depending on the distance required to travel 
from their home communities (thus resulting in a linear transmission  pattern), but any 
change in exchange rates is highly sensitive because all influencers are aggregating at 
a central point where everyone has an opportunity to interact with everyone else.

Table 5.1 Categorical 
classifications for sensitivity 
(DeVisser 2010; Lenhart 
et al. 2002)

Sensitivity index Class Sensitivity

<0.05 I Insensitive
0.05 to <0.20 II Moderate
0.20 to <1.00 III Highly
≥1.00 IV Extremely
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5.2.3  Validation

Validation consists of evaluating that the components within the model operate in a 
way that approximates a realistic target behavior (Gilbert and Troitzsch 2005, p. 19; 
Oreskes et al. 1994). It is out of necessity that this simulation is designed with a high 

Table 5.2 Sensitivity 
analysis for changes  
in CT relative to  
exchange percentages

Exchange scenario
Exchange  
percentage Sensitivity index

Random destination 5 0.433
10 0.317
20 0.251
30 0.257
40 0.257
50 0.000
60 0.441
70 0.211
80 0.227
90 0.216

100 0.162
Nearest neighbor 5 0.396

10 0.250
20 0.271
30 0.188
40 0.188
50 0.000
60 0.094
70 0.031
80 0.063
90 0.055

100 0.019
One aggregation point 5 0.494

10 0.464
20 0.451
30 0.287
40 0.344
50 0.000
60 0.619
70 0.550
80 0.627
90 0.682

100 0.555
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level of abstraction because as Oreskes et al. (1994) note, validation is difficult if not 
impossible to achieve in open systems (such as social networks) because not every 
contingency can be accounted for. Many archaeologists recognize that uncertainty 
is pervasive in archaeology. It permeates all aspects of what we do from the field to 
the lab. It is argued here that this is precisely why archaeological modelers should 
lean toward the abstract in model design. It is a best practice when modeling human 
behaviors riddled with so many unknowns (see Premo 2010 for more regarding 
levels of abstraction and ABM model design).

It is with these caveats in mind that CT rates produced by the ICTM serve to vali-
date the model because its output data conform to established theory as presented 
by the diffusion of innovations literature (Mahajan and Peterson 1985; Rogers 
2003). This research predicts accelerated diffusion patterns will generate nonlinear 
CT rates, and that standard diffusion patterns will generate linear CT rates. The 
relationship of these adoption patterns to model behaviors, model space, and ulti-
mately their relevance to archaeological modeling, is discussed below.

Fig. 5.1 Relative percentages of persons influenced by differing CT exchange scenarios
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5.3  Interpretations

The ICTM model assessment indicates that different interactional scenarios result 
in different rates of CT at different sociospatial scales within the ABM. These vari-
ances in CT are dependent on the social context of how people propagate packets of 
information through social networks. ICTM model outputs produce adoption curves 
that fit with general expectations relating to the spatial proximity of participants 
exchanging ideas in a network. That is, the closer participants are to each other, the 
faster ideas will spread between communities.

The nearest neighbor exchange scenario is analogous to what archaeologists 
might characterize as localized communication between neighboring communities. 
Nonlinear adoption curves are produced under these conditions. The model illustrates 
that opportunities for CT to occur are far more limited in this exchange scenario with 
influence propagating and diminishing quickly. Regional interaction among commu-
nities is modeled through the random destination exchange scenario. Nonlinear 
adoption curves are also produced under these conditions. The model demonstrates 
that under these conditions there is a greater potential for influence to travel through 
the network resulting in a higher (but not highest) percentage of persons influenced 
by others. A one aggregation point exchange scenario where all members interact 
and exchange ideas at a specific point within the region is the scenario that results in 
the highest percentage of persons influenced overall, even if this is achieved at a rela-
tively slower (linear) rate of transmission. This scenario is analogous to regional, 
corporate gatherings that might occur for a variety of purposes.

5.4  Conclusion

The role that sensitivity analysis played in the assessment of ABM design was crucial 
for understanding model behaviors. This phase of the ICTM assessment process 
allowed for a systematic exploration of variable parameters and their effects on 
model outputs. Sensitivity analysis also served as a bridge for model validation by 
relating model behaviors to expectations generated by the diffusion of innovations 
literature. The insights provided by the assessment process revealed that the “people” 
living in this digital world were indeed capable of engaging in multiscalar social 
interactions, just like those living in Springwells phase indigenous communities on 
the Midcontinent.

Computational methodologies provide rigorous approaches to exploring hypo-
thetical scenarios in which people might interact. These capabilities are especially 
useful in the absence of robust archaeological datasets. The need for employing 
archaeological computer modeling became apparent during pilot research intended to 
readdress what was known about Springwells phase sociopolitical interaction and 
integration. Late Prehistoric Springwells archaeological sites are relatively rare and 
some have argued that this may be attributed to the wholesale destruction of the phys-
ical environments where these sites were located throughout the Great Lakes region 
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(Fitting and Zurel 1976). This combined with fragmentary survey and excavation 
data, and a lack of synthetic research, are just a few reasons why this period of North 
American prehistory remains enigmatic.

Computational simulation provides an additional line of evidence for interpret-
ing small archaeological datasets like those associated with the Springwells phase. 
The ABM results presented here indicate that the single dominant factor determin-
ing the propagation of influence through a distributed social network is aggregation. 
These experiments indicate that both space and social contexts have pronounced 
effects on the rate at which CT propagates through small-scale social networks. 
This may seem intuitive, but in the age of Facebook and Twitter, it is easy to lose 
sight of what it once took for ideas to “trend” in small-scale, indigenous social 
networks, where participants relied primarily on direct social interaction to perpetuate 
information about themselves and the world around them.

Finally, sensitivity analysis included as part of the ICTM development process 
provided an enhanced understanding of model behaviors that might otherwise go 
unnoticed, and this has resulted in greater understanding of the explanatory capa-
bilities of computational methods such as ABM. It is advocated here that sensitivity 
analysis should be a standard component of the archaeological computer modeling 
process. In doing so, researchers may find themselves appreciating important and 
unanticipated insights that systematic model assessment can reveal.
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Chapter 6
Scale Dependency in Agent-Based Modeling: 
How Many Time Steps? How Many 
Simulations? How Many Agents?

Joshua Watts

6.1  Introduction

Depending on the degree of abstraction intended by the modeler, a valid agent- 
based model (ABM) should be structurally analogous to the real-world system of 
interest and should be able to generate patterns similar to the real system across 
multiple spatial and temporal scales. If the scale-sensitive parameters have been 
poorly calibrated or the researcher has informed the model with empirical data of 
questionable resolution or accuracy—common situations in computational archaeo-
logical ABM—even agents with phenomenal logic processes will not generate 
interesting or useful system-scale patterns.

The case argued in this chapter is that some effort should be made in archaeo-
logical ABM to pursue and formalize a process of exploring the sensitivity of mod-
els to scale dependency. While the approach advocated here is broadly consistent 
with other approaches to sensitivity analysis in ABM, I argue that model verifica-
tion and validation tests should include scale-dependent structural features and 
parameters. While increasingly common in geography, particularly land-use model-
ing, such tests have not been widely adopted by archaeological ABM researchers 
(e.g. Evans and Kelley 2004; Goodchild 2001; Jantz and Goetz 2005; Kim 2013).

My research on the organization of the Hohokam economy, particularly focused 
on the trade networks that distributed pottery from specialist producers to far-flung 
consumers in prehistoric central Arizona, has relied heavily on ABM methods 
(Watts 2013; Watts and Ossa in press). The process of implementing and testing a 
set of simple models related to that research provides an example of the systematic 
approach to testing scale-dependent features of models advocated in this chapter. 
What follows is not a cautionary tale; instead the case study is intended to illustrate 
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the potential of testing scale dependency to economize the process of validating and 
collecting data from large simulation models. Careful testing of scale-dependent 
features of my Hohokam trade models has contributed to new insights into the orga-
nization of a nascent market-based economy.

As hinted at above, these topics are discussed in the context of my background 
in computational modeling and simulation, which in recent years has focused on a 
pattern-oriented modeling approach (Grimm et al. 2005; Railsback and Grimm 
2012). In that tradition, different models and model configurations are treated as 
hypotheses about the organization of a real-world system. Patterns in simulated data 
are then compared to those in empirical data at different scales to evaluate the fit of 
the data to the various hypotheses. Those models that cannot reproduce patterns like 
those observed in the real system are discarded. While concerns for sensitivity to 
scale in some model features and parameters should be widely relevant across most 
ABM traditions, the discussion below is oriented toward economizing the testing 
and data collection of semi-realistic simulation models in the context of an eventual 
comparison to empirical archaeological data.

6.2  General Strategy

During the development and testing of a model, researchers should frequently 
revisit the real-world system they are modeling and question what they hope to 
learn by collecting data from running their simulations. Assumptions about the res-
olution and scale of temporal, spatial, and agent population features of the model 
are fundamental structural features, whether explicitly specified or implicit (Stanilov 
2011). As with other parameters typically tested in a sensitivity analysis, scale- 
sensitive features should also be systematically explored. Testing scale-dependent 
features and parameters is an important part of the calibration of a model. But 
because those are often fundamental assumptions built into the model, it is impor-
tant (and occasionally difficult) to identify, isolate, and test those features. It is 
worth reiterating that for models of complex social systems there are almost always 
ways to implement those models to run more economically, but importantly, testing 
scale dependency can encourage better decisions about which compromises are less 
likely to affect the interpretations stemming from the ABM research.

Whether focused on the numbers of agents in a simulation or length in time steps 
to run a simulation, the analysis should begin with running a relatively large number 
of simulations across a relatively wide range of parameter values. If the model is 
stochastic, then some effort should be made to identify an adequate sample size to 
run for each configuration of the model (see also Kim 2013).

Depending on the structure of the data saved from each simulation, and whether 
those data are collected at the end of a simulation or throughout the run, it is impor-
tant to identify statistical methods to compare the behavior of one model configura-
tion to another (and preferably compare the output of those simulations to empirical 
data from the real-world system). I have found that storing simulation output data in 
a matrix (often a similarity matrix comparing the agents or aggregates of agents at 
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different scales) and calculating correlations between the matrices with Mantel tests 
(Rosenberg and Anderson 2011) is a useful way to summarize similarities between 
simulations that have a large amount of output from many different agents or over 
long simulations. Also, data in these matrices can be collapsed at different spatio-
temporal scales, which is very useful in a pattern-oriented modeling approach.

Plotting what has been learned by running many simulations across different 
values for a scaled feature or parameter (such as length of the simulation) will gen-
erate a marginal returns curve. If a simulation run to 1000 time steps develops pat-
terns that are interesting and relevant to the research, it may be that those patterns 
are identifiable in a much shorter run. At 10 time steps, the simulation output prob-
ably looks nothing like 1000 time steps, but at 100 time steps the patterns may be 
indistinguishable from the longer run. In that context, so little may be learned by 
running another 900 time steps that it is preferable to recalibrate and run shorter 
simulations. As in the described case, many scale-sensitive parameters will have 
decreasing returns to scale. For those parameters with decreasing returns to scale, 
the sensitivity analysis should be oriented toward identifying the calibration point(s) 
where diminishing or even negative returns set in.

Alternately, there may be some scale-dependent parameters that have constant or 
increasing returns to scale, or where value thresholds correspond to interesting 
aggregate behaviors in the model. Some emergent patterns will only occur with a 
large enough population, or a model may not settle down, regardless of how long the 
simulation is run. It is important to identify these sensitive scale-dependent param-
eters as they should not be calibrated to a set value and forgotten, particularly if the 
modeler intends to compare the simulation output to empirical data from the real 
system. Instead, different configurations of these features or parameters should prob-
ably be considered as distinct hypotheses to be compared with archaeological data.

To summarize, identify those parameters with decreasing returns to scale and 
calibrate the model accordingly. Also, identify those parameters with constant, 
increasing, or unpredictable returns to scale and allocate resources to ensure that 
data are collected from different configurations that may function as discrete 
hypotheses. There is nothing new in the process described here; instead, I am sim-
ply reiterating that the approach should be applied to scale-dependent structural 
features and parameters of the model. The following subsections briefly outline 
approaches to the problems of how long to run a simulation, exploring how grid 
resolution and absolute size of agent population may affect the model, and finally I 
introduce the related problem of how many simulations are needed to adequately 
capture the behavior of a stochastic model.

6.2.1  How Long?

There are several aspects related to time that are important to consider when imple-
menting a computational ABM. While many approaches to ABM are abstract 
enough that time is measured in ticks that represent generations of agents, most 
archaeological uses of ABM tend to be semi-realistic in their treatment of time: they 
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rely on modeling platforms that, at least in their intention, are primarily discrete 
time with various agent and landscape processes triggered each time step. Event- 
based models or hybrids treat time differently; but for discrete time or hybrid mod-
els it is important to be explicit about what is represented by a time step. The 
resolution of that time step—whether it models a second, a season, a year, a genera-
tion, or even if it represents any real unit of time at all—is an important structural 
feature of the model and one that provides opportunities and constraints for calibra-
tion and sensitivity testing (Kim 2013).

For example, if a time step represents a year, and the archaeological phase being 
modeled lasts 200 years, then it may be worth exploring what happens when run-
ning simulations for much longer or much shorter than the target length. But gener-
ally, in that case the modeler has locked him- or herself into a particular approach 
to managing time. If, on the other hand, the modeler is interested in testing, for 
example, more general social science concepts, then the testing of different tempo-
ral resolutions and simulation durations becomes a potentially important part of the 
verification and validation of the model.

In those cases where time-related features are somewhat flexible, there is an 
opportunity to both explore the behavior of the model across a range of values and, 
importantly, economize the process of collecting data from many simulations (if 
running a stochastic model). Adjustments to the resolution of time steps or the dura-
tion of a simulation will in many cases have diminishing returns to scale. 
Documenting the payoff for running a simulation at finer or coarser time steps and 
for running longer or shorter simulations should encourage better calibration of the 
model. That calibration should also negate the need to run subsequent testing or 
data collection simulations for an excessively and unnecessarily long time, econo-
mizing CPU time (and money, depending on the machines being used).

6.2.2  Agent Populations and Landscape Resolution

Similar to the considerations of time resolution and duration, a modeler must also 
make a series of compromises related to abstracting their model implementation 
from the real-world system of interest (e.g. the spatial extent of the world occupied 
by the agents, the resolution of the landscape, and numbers of agents populating that 
landscape). In many cases, any empirical data informing the model may constrain 
some of these decisions. For example, if raster GIS data are used to define the world 
of the model, it may make sense to default to the resolution of that data when devel-
oping the rest of the model (Batty 2005; Fossett and Dietrich 2009; Liu and Yang 
2012). Importantly, though, in that case it is often worth investigating whether pat-
terns that emerge in a simulation are different if the data underlying the world are 
aggregated at larger scales (or interpolated to smaller scales). Spatial resolution has 
been shown to be an important concern in a recent ABM research on land use (Chen 
and Mynett 2003; Evans and Kelley 2004; Jantz and Goetz 2005; Kok et al. 2001; 
Menard and Marceau 2005; Veldkamp et al. 2001). In cases where the landscape 
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itself functions as a cellular automata, and each cell is potentially updated every 
time step, resolution may factor heavily on the initialization time and performance 
of a simulation.

Of particular relevance in archaeological approaches is the problem that much of 
the data informing our modeling are themselves estimates of questionable accuracy. 
Population estimates, for example, may inform the numbers of agents initialized in 
a simulation. But often our confidence in those numbers is quite low (Craig et al. 
2012; Doelle 2000; Nelson et al. 2010; Watts 2013). In the case of agent popula-
tions, it is important to know how the model responds across a range of possible 
values, and likewise it is good to know if there are diminishing returns to scale. If 
patterns generated are similar with smaller populations, then there is an opportunity 
to economize subsequent data collection runs.

Regarding both agents and grid cells, it is important to revisit the question of 
what they represent. Are the agents individuals? Households? Are there different 
kinds of agents in the model? For some systems, defining agents as individuals is 
both inefficient and unnecessary. At least in most current computational ABM plat-
forms, agents are each allocated RAM and the necessary CPU time, and large num-
bers of agents can tax even high-performance computers. A coarser resolution of 
households or village segments as agents may make sense. But there are also topics 
where the resolution of agents and grid cells is integral to the model and less flexi-
ble. Still, it is important to document the model’s sensitivity to those assumptions.

6.2.3  How Many Simulations?

While the problem of how many simulations to run of a particular stochastic model 
configuration is more about experimental design and sampling than it is strictly 
about sensitivity to scale in a model, it nonetheless is a pet peeve of mine. They are 
not totally unrelated, though. Scale-related decisions about implementing and cali-
brating the model will, more than anything else in the ABM code, contribute to the 
time required to run a simulation. If the model is implemented at such a fine resolu-
tion (or grand scale) as to prohibit an appropriate sample size from being collected, 
then in many cases revisiting the original model design and calibration would be 
warranted.

As with much archaeological research, pragmatic concerns often dominate deci-
sions regarding sample sizes in ABM; and researchers habitually strain to rational-
ize whatever sample size was available to them given their resources. There is no 
compelling reason as to why this tendency from observational archaeology should 
extend to experimental contexts, particularly in the case of ABM.

Two extremes of a sampling tradition in archaeological ABM could be summa-
rized as a “Monte Carlo” approach or a “CPU time-limited” approach. The Monte 
Carlo approach tends to be favored when models are simple and simulations fast; an 
arbitrary large number of simulations is run and generally considered a reasonable 
sample of the range of behaviors that might be generated by the model. Alternately, 
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the CPU time-limited approach comes into play for large, slow, and usually rela-
tively realistic models.

I prefer that sampling decisions be data driven, focused on identifying where 
diminishing returns sets in. If adding one more case provides effectively no new 
information, why collect, process, and analyze that data? That point may occur at 10 
simulations or 10,000, but regardless of the speed of simulations it is more respon-
sible to base that decision on model behavior rather than an arbitrary cutoff. If the 
model has already been simulated enough times to have a sense of the distribution 
of summary statistics, it may make sense to defer to sampling strategies common in 
more experimental sciences. Sokal and Rohlf (1995) provide a few options (one is 
described in detail in an example below). Given a sense of the distribution of out-
comes, a minimal adequate sample size can be calculated.

Lastly, it may be worth considering an iterative approach when determining the 
number of simulations to run. Determining a reasonable number of simulations to 
run before calibrating and testing the model is important, and revisiting that esti-
mate before running any experiments is recommended.

6.3  Sensitivity, Scale, and the Hohokam Economy

The following subsections describe part of the verification and validation of a com-
putational ABM focused on the organization of pottery trade for the prehistoric 
Hohokam culture of central Arizona. The focus is on two analyses done to better 
understand the sensitivity of the model to time (how long to run the simulations?), 
and to better estimate an adequate sample size (how many simulations?). Other 
questions of scale, such as how many agents, were considered but are not reported 
here (see Watts 2013). Briefly, though, I provide an explanation of the questions 
motivating the research, and try to describe and contextualize the ABM that was 
implemented for the project.

The objective of the research was to first identify a variety of conceptual eco-
nomic models that may explain spatial patterns of pottery distribution observed in 
the Hohokam archaeological record. Those models were abstract and theoretically 
drawn from different sources, including microeconomics, mathematics (network/
graph theory), and economic anthropology. ABM methods were adopted to refine 
expectations generated from those conceptual models for the messy, complicated, 
real-world system that was the prehistoric Hohokam economy. Those conceptual 
models were treated as competing working hypotheses about the organization of 
Hohokam pottery trade networks and implemented as relatively simple ABMs set 
in the Phoenix Basin of central Arizona. Finally, comparisons of the simulated data 
to empirical data provided an opportunity to assess whether or not any of the ABM 
configurations were consistent with Hohokam ceramic datasets. Considerable effort 
was taken to explore these ABM configurations, including systematically testing 
the code internal logic and behavior, investigating scale dependency issues (reported 
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here), exploring sensitivity to startup conditions and critical simulation setup 
assumptions, and running parameter sweeps.

The project’s pattern-oriented modeling methodology led to the discard of sev-
eral hypotheses, narrowing the range of plausible models of the organization of the 
Hohokam economy. The results suggest that for much of the Hohokam sequence, a 
market-based system, perhaps structured around workshop procurement and/or 
shopkeeper merchandise, provided the means of distributing pottery from specialist 
producers to widespread consumers. Perhaps unsurprisingly, the results of this proj-
ect were broadly consistent with earlier researchers’ interpretations that the struc-
ture of the Hohokam economy evolved through time, growing more complex 
throughout the Preclassic, and undergoing a major reorganization resulting in a less 
complex system at the transition to the Classic Period.

6.3.1  The Hohokam

Archaeologically, the Hohokam of the lower Salt River Valley and the middle Gila 
River Valley (collectively called the Phoenix Basin) are relatively well known 
thanks to over a century of field and laboratory work (Fig. 6.1). The culture history 
and settlement patterns are reasonably well documented, and recent years have seen 
a florescence of research oriented toward understanding the economy of the 
Hohokam (Abbott 2000, 2009; Abbott et al. 2007; Bayman 2001; Doyel 1991; 
Kelly 2013; Watts 2013; Woodson 2011). I briefly summarize some of that work 
here to provide a context for the ABM that was implemented for the current project. 
Fig. 6.2 outlines the Hohokam chronology for the Phoenix Basin.

The Phoenix Basin is at an elevation of around 335–365 m above sea level at the 
basin floor and encompasses some 9300 km2. The region is set in basin and range 
topography in the heart of the Sonoran Desert (nearby summits approach 1200 m), 
with annual rainfall near 18–20 cm. Rainfall varies widely every year, and often 
occurs in short, locally intense storms during the summer. Warm temperatures 
(annual averages near 21 °C), intense summer heat with 3 months of average highs 
over 38 °C, and rare frosts/freezes are typical. Vegetation is dominated by scrub 
trees, shrubs, and cacti, with narrow riparian areas adjacent to the rivers and major 
side drainages. Prehistorically, stream flow in the rivers (particularly the Salt) was 
substantial and generally reliable thanks to large catchment areas.

Though small groups of earlier peoples had settled and probably farmed in the 
Phoenix Basin much earlier, the first clearly Hohokam settlements in the Basin date 
to shortly before AD 450, sharing much in common with contemporary groups in 
northern Mexico and the southwestern United States. During the earliest phases of 
the Hohokam sequence, evidence of production (primarily based on ceramics) indi-
cates that most manufacture, exchange, and consumption was local to settlements. 
Populations were generally small, but showed slow, steady growth from very early 
on (all statements regarding Hohokam demography here and hereafter were derived 
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from Doelle 1995, 2000; Nelson et al. 2010; see also Hill et al. 2004; Craig et al. 
2012; Woodson in press).1

The Hohokam were not long settled, though, before a small number of communi-
ties began to produce pottery for trade. Specifically, by the Vahki and Estrella 
phases (ca. AD 500) there is evidence that two communities, one in the vicinity of 
South Mountain and the other along the middle Gila River (probably near Gila 
Butte), were producing a majority of the ceramics consumed around the Phoenix 
Basin (see Fig. 6.1). Specialized production in subsequent Preclassic phases has 
also been proposed for several other types of goods, including projectile points 
(Hoffman 1997), shell jewelry (Howard 1993), ground stone tools (Hoffman and 
Doyel 1985; Doyel 1991), and tabular knives (Bernard-Shaw 1983). A program of 
large-scale irrigated agriculture was initiated at this time, with communities north 

1 Estimating populations for the Hohokam, particularly during the Preclassic, is notoriously diffi-
cult and attempts have generated widely varying results. Site sizes, room counts, and the use-life 
of pit houses in the Hohokam culture area are exceedingly difficult to assess with any accuracy. In 
my opinion, the work of Doelle (1995, 2000), Craig et al. (2012), and others working from similar 
room or house count data probably underestimates the actual population of the greater Phoenix 
Basin. But regardless of the real numbers, the general trends drawn from Doelle (1995, 2000) and 
updated by Matthew Peeples and the Arizona State University Biocomplexity Project (Nelson 
et al. 2010) likely capture the general trajectory of Hohokam population growth through time.

Fig. 6.1 The Phoenix Basin in central Arizona (Watts 2013)
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of the Salt River leading the way. A variety of domesticates, including edibles and 
other crops, were farmed in these systems. Truly impressive canals (some exceeding 
32 km in length, 4–5 m depth, and 15 m across) were established well before AD 
800 (Howard 1993; Woodson 2010).

Settlements in the Phoenix Basin persisted through circa AD 1450, though evi-
dence from various artifact classes, particularly ceramics, suggests that the pattern 
of specialized production and trade may have been disrupted and perhaps reorga-
nized at different times. In particular, an important shift in Hohokam material cul-
ture began sometime around AD 1150–1175, corresponding to poorly understood 
shifts in the organization of the Hohokam economy. The model discussed here was 
implemented to better understand the organization of that economy, focused par-
ticularly on the mechanisms that moved pottery from producers to consumers.

Fig. 6.2 The Hohokam chronology (Watts 2013)
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6.3.1.1  Model Background

The following provides a brief description of the Hohokam trade and exchange 
model—and its various configurations—that was created for this research project. 
Most of the work to implement the model was completed in 2011. NetLogo, a Java- 
based software package for writing and running simulations of agent-based models, 
was used throughout the project (Wilensky 1999). Screen shots of an example simu-
lation are shown in Figs. 6.3 and 6.4. Note that the source code and full documenta-
tion for a variant of this model has been peer reviewed, certified, and is posted to 
OpenABM.org at the persistent URL https://www.openabm.org/model/4385/ver-
sion/1/view.

The purpose of the model was to understand how structural and processual 
changes in exchange systems effected patterns of pottery distribution for the prehis-
toric Hohokam of the Phoenix Basin. Fundamentally, this model was intended to 
encourage better interpretations of the archaeological record more so than it was 

Fig. 6.3 NetLogo screen shot showing agent networks. Clusters of farmers in the Phoenix Basin 
are shown as green circles, the multi-color patches are the producers, and the links show the con-
nections between the various agents. Model parameter settings are shown as sliders and switches 
to the left of the display window (Watts 2013)
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about bringing a new perspective to a particular complex social process through 
modeling and simulation. For the most part, it was a relatively simple, abstract 
model; but it was an ABM informed by (and compared to) empirical real-world 
data. It was not a highly parameterized, highly realistic model of the Hohokam 
occupation or the broader Hohokam agricultural economy. Each simulation trans-
ferred pottery from producers to consumer households through differently struc-
tured trade networks and according to different rules for exchange. The networks 
and rules were generalized from various theoretical and ethnographic sources. 
Eventually the households would discard the pottery from different producers, cre-
ating a virtual archaeological record. The resulting output from each simulation was 
a list of hundreds or thousands of “houses” with associated counts of the different 
pottery types that were discarded by that household. A sample of the simulated data 
could be compared to the empirical ceramic data from the archaeological record, 
and also be easily compared to other simulations run with the same or different 
parameter settings.

Fig. 6.4 NetLogo screen shot showing an in-progress simulation. Farmers are shown as circles 
with the color and size updated according to the size and mixture of pottery in their household 
midden (Watts 2013)
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6.3.2  Processing Raw Data and Summarizing Patterns 
from Simulations

Each of the raw data files generated by the simulations was structurally analogous 
to a list of archaeological features and related ceramic ware counts. Because hun-
dreds or thousands of features were involved in every simulation, it was necessary 
to summarize that data. Extracting a structurally comparable sample of features was 
necessary for the statistics used to assess the similarity of the simulated patterns 
versus the real data patterns. To get at patterns at different spatial scales, the sample 
simulated data were then collapsed at two higher levels: sites and canal systems.

Once the right sample was extracted, Morisita similarity matrices were generated 
at the three different spatial scales (Chao et al. 2006; Hammer 1999; Magurran 
2004; Morisita 1959; Wolda 1981). Per Hammer (1999), the Morisita similarity 
index is calculated:
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where xj and xk are the ceramic assemblages of the two features being compared. 
Once calculated, the Morisita similarity index is a value between zero and 1, with 
results closer to 1 indicating greater similarity. When comparing the pottery counts 
of many features to many other features, it was useful to bundle the many Morisita 
indices into a half-matrix. The half-matrix, for each of the feature, site, and canal 
system scales, became a highly compact summary of the output of a simulation. The 
first half-matrix shown in Table 6.1 is a 5 by 5 example of the summary described 
here.

After the raw simulation data were converted to similarity matrices, the next step 
in the analysis was to run a series of Mantel tests. Mantel tests assess the correlation 
between two similarity matrices and provide a good summary of how well a 
 particular simulated data set compares to other simulations or the actual archaeo-
logical data. Per Rosenberg and Anderson (2011), the basic Mantel statistic is 
calculated:
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where X and Y are the two similarity matrices being compared. Typically, though, a 
normalized version of the statistic is used, calculated as the correlation between 
pair-wise elements in the two matrices. As with any product-moment correlation 
coefficient, the r value ranges between −1 and 1, with higher positive values sugges-
tive of greater structural similarity of the two compared matrices. Table 6.1 pro-
vides an example of how the Mantel statistic and related correlation coefficient are 
calculated, using two 5 by 5 half-matrices populated with Morisita similarity 
indices.

For the model testing examples described below, a series of Mantel tests was 
used to compare a large set of the simulations, and the correlation coefficient pro-
vided a concise summary of just how similar or different the output of the simula-
tions were to one another.

6.3.3  Scale Dependency Tests

The scale dependency tests described here were conducted to assess how many 
simulations should be run and how long each simulation should be run in order to 
capture the range of behavior shown by a particular model configuration. As seen 
above, the term “model configuration” refers to the specific setup conditions of the 
model when initialized to run as one of the conceptual model hypotheses. Testing 
was completed on ten model configurations, which group into three broader catego-
ries: three naïve network models, two from anthropological theory, and five from 
economic theory (see Watts 2013 for the justification and full explanation of these 
model configurations).

Table 6.1 Example showing the calculation of the Mantel statistic

Item

Matrix I

Features A B C D E
A
B 0.49
C 0.80 0.93
D 0.27 0.65 0.45
E 0.09 0.32 0.83 0.34
Matrix II

Features A B C D E
A
B 0.85
C 0.22 0.30
D 0.53 0.88 0.60
E 0.13 0.75 0.25 0.11
Calculated Mantel statistic 4.71
Correlation coefficient r −0.05

6 Scale Dependency in Agent-Based Modeling: How Many Time Steps? How Many…
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6.3.3.1  Test: Simulation Duration

This test was designed to determine how long to run each simulation for subsequent 
testing and data collection phases of the project. Each model configuration was run 
24 times, and the pottery distribution data were saved at 25, 50, 100, 200, 400, and 
800 time steps. The maximum range that was tested, 800 time steps, was selected 
based on my familiarity with the model from the programming and code verifica-
tion stages of the project; 800 time steps was a very long time to run this 
ABM. Multiple simulations were run to document whether the model output varied 
significantly run-to-run, but the specific number of simulations for each configura-
tion (24 runs) was somewhat arbitrary. Subsequent tests were conducted to deter-
mine an appropriate sample size when running experiments, but those had not been 
completed when this test was conducted. Many of the behaviors in the model were 
event based rather than triggered by discrete time instructions, so even 20–40 time 
steps may represent tens of thousands of transactions. Output data were then com-
pared at the feature, site, and canal system scales (using the Morisita similarity 
index and Mantel tests defined above) at the six different duration lengths to deter-
mine if there was an inflection point where adding more time steps did not signifi-
cantly change the simulation output.

6.3.3.2  Results: Simulation Duration

The results of the test suggested that most of the model configurations settled rather 
quickly into consistent patterns. Some simulations were more variable, but in no 
cases was it necessary to run the simulation out the full 800 time steps to capture the 
distribution pattern associated with a particular configuration. As shown in the fol-
lowing analysis, 200 time steps was more than adequate in most cases to ensure that 
the simulations had every opportunity to settle into a pattern generally representa-
tive of the model configuration. These results, and a preference to overrun the simu-
lations rather than risk running them too short, led me to settle on 400 time steps as 
the duration for simulations for the rest of the testing and data collection phases of 
the project.

For each of the ten model configurations, the 24 simulations each generated six 
output data files—one saved for each pause at 25, 50, 100, 200, 400, and 800 time 
steps. A total of 1440 data files were collected for this test. Each of those data files 
was summarized at the three spatial scales important to this project (feature, site, 
and canal system scales), resulting in 4320 total processed data files contributing to 
this assessment. Morisita similarity matrices were used to summarize patterns 
within a single simulation. Mantel tests were used to measure correlations between 
the different data collection pauses in the time series for a single simulation.

Specifically, the analysis procedure was to compare the final output (800 time 
steps) from each simulation to each earlier pause in that run (25, 50, 100, 200, and 
400 time steps) using Mantel tests. The mean and standard deviation were calcu-
lated for the Mantel correlation coefficients at each pause for the 24 identically 
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configured simulations. These calculations were repeated for the three spatial scales 
and all model configurations. Finally, to establish a reasonable length to run simula-
tions, summary statistics for the set of model configurations were calculated. Those 
results are shown in Table 6.2 and Fig. 6.5, and suggest that both the site and canal 
system scales stabilize into long-run patterns relatively quickly. For those scales, no 
improvement was typically seen beyond 100 time steps. Alternately, the feature 
scale was much more erratic at the start, with very low Mantel scores comparing 
early time steps with the final output, but that scale gradually settled into relatively 
consistent patterns by the 200 or 400 time step marks. To allow the feature scale 
some opportunity to settle into more interpretable patterns, and with confidence that 
the site and canal system patterns were robust, the decision was made to run the 
remaining simulations out to 400 time steps.

Table 6.2 Average time series Mantel correlation coefficients for all configurations. Note: Std. 
Dev. = standard deviation

Time series All model configurations

Feature Site Canal system

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

25 vs. 800 0.071 0.038 0.471 0.208 0.467 0.328
50 vs. 800 0.126 0.050 0.530 0.199 0.494 0.345
100 vs. 800 0.220 0.058 0.572 0.185 0.553 0.312
200 vs. 800 0.321 0.066 0.576 0.186 0.532 0.314
400 vs. 800 0.417 0.072 0.616 0.187 0.539 0.309

Fig. 6.5 Plot of time series Mantel correlation coefficients from Table 6.2 (Watts 2013)
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6.3.3.3  Test: Sample Size (Number of Simulations)

The second test reported here was designed to determine how many simulations 
were necessary to capture the range of behaviors that may affect the output data. 
While in theory it was possible to run each model configuration thousands of times, 
due to limited time and computing power it was worth assessing when the marginal 
returns of running one more simulation added nothing (or almost nothing) to what 
was learned about the behavior of the model. The test was to run each model con-
figuration 100 times, creating a “population” set, and to determine what size of 
smaller sample (if any) would provide summary statistics representative of the 
larger set. Every simulation was run out 400 time steps, per the results of the previ-
ous test. Each model configuration had some randomized behavior during the ini-
tialization and execution of the simulation, and this test was designed to help 
understand just how much that stochasticity affected the output of the run, and how 
much one run varied from another run. The result of this test was an assessment of 
the appropriate sample size of simulations needed to represent the population of all 
possible outputs from any particular model configuration. Preliminary informal 
tests conducted during the implementation phase suggested that for some settings, a 
relatively small sample of simulations (e.g. 15–20 runs) had summary statistics very 
close to those taken from a much larger population (100 runs). If, instead, 100 simu-
lations had proved inadequate for capturing the behavior of a given model configu-
ration, more would have been added. Fortunately, given the considerable length of 
time required to run these simulations, a sample larger than 100 runs proved 
unnecessary.

6.3.3.4  Results: Sample Size (Number of Simulations)

The sample size test indicated that for most configurations relatively few simula-
tions (5–20) were adequate to summarize the range of output data from any particu-
lar model configuration. The results of this test did vary depending on the 
configuration, though. For example, the centralized redistribution configuration was 
quite consistent in its output, and very few simulations were required to capture the 
full range of behaviors. Alternately, model configurations whose distribution net-
works were widely variable every simulation, such as the shopkeeper merchandise 
hypothesis, required many more simulations to summarize the range of possible 
outputs. Still, in only a few cases was it necessary to run more than 20 simulations 
(see details below); but in an effort to be appropriately cautious, I settled on a sample 
of 40 simulations for most of the remaining tests and data collection simulations.

For each of the ten model configurations, 100 simulations were run, and each 
configuration generated a unique output data file. A total of 1000 data files were 
collected for this test. Each of those data files was summarized at the three spatial 
scales important to this project (feature, site, and canal system scales), resulting in 
3000 total data files contributing to this assessment. The analysis proceeded as 
follows:
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 1. Saved output data from a simulation (pottery counts from house features) were 
collapsed to three Morisita similarity matrices (one each for the three spatial 
scales).

 2. A series of large Mantel test matrices were generated comparing each of the 
matrices to the other 99. This effort for each of the ten model configurations was 
captured in a 100 by 100 half-matrix. Each of the ten half-matrices represented 
4900 comparisons of models initialized in the same way, creating the “popula-
tion” from which a sample or subset of comparisons should have been adequate 
for capturing the patterns of interest.

 3. A sample size test (Sokal and Rohlf 1995) was used to determine a reasonable 
number of simulations per model configuration. The set of Mantel scores from 
(2) informed a conservative estimation of an adequate sample size for a given 
margin of error and confidence. The adequate sample size (taken from the popu-
lation of 100 simulations) was calculated using the method described in Sokal 
and Rohlf (1995), defined below. Table 6.3 shows the outcome of this process 
for the tested configurations at the three spatial scales. The results vary depend-
ing on the spatial scale, but generally a total of 40 simulations per configuration 
was a good compromise across most configurations and scales. Due to relatively 
large standard deviations, the fine-grained and noisy feature scale would have 
required much larger sample sizes to reach the same confidence levels as the site 
and canal system scales. The sample size estimates were calculated as follows:
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where:

n = number of needed samples
σ = true standard deviation (use a coefficient of variation for convenience)
δ = smallest true difference to detect (a percentage of means)
v = degrees of freedom of the sample deviation
α = significance level (such as 0.05)
P = desired probability that a difference will be significant (power of test)
t
a v[ ]  and t P v2 1-( )[ ]  = values from a two-tailed t-table with v degrees of freedom, cor-

responding to probabilities of α and 2(1 − P), respectively

For example, to have 80 % certainty of detecting a 10 % difference between two 
means at the 5 % significance level (and for very high value degrees of freedom), 
given Cv coefficient of variation taken from the 100 runs of a particular model 
configuration:
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Finally, to calculate the number of simulations needed for the appropriate sample 
size N (see Table 6.3):

 
N nsimulations( ) = 2

 
(6.7)

Overall, this assessment of just how many simulations the model needs to run to 
summarize its behavior allowed me to economize CPU time for the rest of the proj-
ect—as reported in Watts (2013).

6.4  Conclusion

Understanding the response of a simulation model to scale-sensitive structural fea-
tures and parameters is an important aspect of calibrating and testing that model 
leading up to other sensitivity analyses and data collection experiments. The 
approach advocated in this chapter is to encourage researchers to identify and 
explore scale-sensitive aspects of their models (such as the resolution or absolute 
size of the models) with particular focus on the concern that in many ABM studies 
there are diminishing returns to scale. Given that it is quite difficult to design ABMs 
to be valid models of real-world processes across a very wide range of spatiotempo-
ral scales, it is important to calibrate models to perform well within a reasonable 
range of scales. Too fine a resolution or too many agents may give highly granular 
results offering no new insights into the processes operating on the real system. 
Alternately, too coarse a resolution or too few agents may limit important patterns 
from emerging during a simulation. The examples discussed in this chapter, drawn 
from my research on the organization of the Hohokam economy, illustrate how a 
modeler may approach the problem of calibrating a model and related analyses for 
more productive and efficient ABM research.

Table 6.3 Calculated sample size—all spatial scales

Model configuration Spatial scale

Canal system Site Feature

Random 34 29 4842
Complete 33 31 10,404
Scale Free 37 28 10,957
Centralized 39 31 5823
Kinship A 60 12 10
Marketplace 32 25 6984
Shopkeeper 67 23 49
Workshop 31 26 8421
Peddler 39 37 1857
Individual 38 28 5845
Mean 41.0 27.0 5519.2
Standard deviation 11.7 6.2 3719.4
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    Chapter 7   
 The Sensitivity of Demographic 
Characteristics to the Strength 
of the Population Stabilizing Mechanism 
in a Model Hunter-Gatherer System                     

       Andrew     A.     White    

7.1           Introduction 

 An understanding of the demography of prehistoric hunter-gatherer systems is relevant 
to numerous questions of anthropological and archaeological signifi cance: human 
colonization of empty landscapes; patterns of gene fl ow on evolutionary timescales; 
factors affecting intensifi cation, population growth, and the emergence of food 
producing economies; and the basic structure and organization of populations 
throughout the vast majority of human prehistory. 

 Agent-based models ( ABMs     ) have the potential to be powerful tools for under-
standing the demography of prehistoric hunter-gatherer populations for two main 
reasons (see White  2014 ). First, they allow us to dispense with some of the principal 
assumptions (e.g., infi nite populations that remain stable in size, fi xed/homogenous 
birth/death rates, and random mating) that limit the usefulness of equation-based 
models for exploring demography in populations where human-level interactions 
and stochastic processes are important factors. Second, they allow one to investigate 
model systems with demographic characteristics that are unlike those of the small 
number of ethnographic cases for which we have data. 

 In any  demographic model   where birth and death are represented, changes in 
population size are the result of the combined effects of mortality and fertility. If 
 fertility   exceeds mortality, population size will increase over time. If mortality 
exceeds fertility, population size will decrease over time. If stability of population 
size is desired in a model, the combined effects of mortality and fertility must some-
how be balanced to prevent sustained population growth or decline. In equation- 
based demographic models, the existence of a “balance point” between mortality 
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and fertility can be imposed simply by setting birth rates and death rates equal to 
one another in the equation. The situation can be quite different in an ABM, how-
ever, where the exact mortality and fertility rates experienced by a population can 
be affected both by the values of global parameters (e.g., the probability of an indi-
vidual’s death at any given step) and by the micro-level behaviors of individuals 
and families interacting within a system affected by those parameters (e.g., family- 
level decisions about reproduction based on the current size and composition of the 
family). Because mortality and fertility outcomes emerge dynamically from both 
the “top down” and “bottom up” in this kind of model, balance between the two 
cannot be simply imposed with a static equation that sets the sum of global birth and 
death rates to zero. Feedbacks between population size and behaviors or parameters 
related to birth or death are required to regulate population size. 

 This paper uses Version 3 of the  ForagerNet3_Demography model (FN3D_V3)   
to investigate how the strength of a mortality-based feedback mechanism for stabi-
lizing population size affects demographic outcomes in the model. Baseline proba-
bilities of death in the  FN3D_V3 model   are set by an age-specifi c “mortality 
schedule.” In previous work with this model (e.g., White  2014 ), these probabilities 
were adjusted (increased or decreased) each step in response to the current popula-
tion size during a model run. If the population at a given step exceeded a particular 
size threshold (set by a parameter), for example, the probability of death was raised 
proportionally by the amount the population size exceeded the threshold. If the 
population size was less than the threshold size, the probability of death was reduced 
proportionally. This feedback between population size and mortality provided a 
simple means to stabilize the size of the population. The  mortality-based feedback      
was designed as a homeostatic mechanism necessary to the operation of the model 
rather than a representation of any particular ethnographically demonstrated cause–
effect relationship between population size and morality rates. Because it adjusts 
the values of global parameters that affect the behaviors of systems of individuals 
and families in the FN3D_V3 model, however, the design and operation of the 
mortality-based feedback mechanism embedded in the model has potential effects 
on other demographic outcomes: behaviors related to household size and composi-
tion, marriage, and fertility articulate with one another and are potentially affected 
by the way in which global changes in death probabilities are instituted. 

 In this paper, I analyze the sensitivity of these nonmortality demographic out-
comes to the strength of the mortality-based feedback mechanism that is embedded 
in the model. I add a parameter ( popMortAdjustMult  which stands for “population 
mortality adjustment  multiplier  ” and is abbreviated here as  pMAM ) to the model 
that can be used to vary the “strength” of the population size-based adjustment to the 
probability of death. Holding the values of all other parameters constant, I perform 
an experiment that uses 1000 separate runs to sweep through a wide range of values 
for  pMAM . Results suggest that the strength of the  mortality-based feedback      is posi-
tively associated with the range of variability in outcomes such as mean household 
size, mean male age at marriage, mean percentage and intensity of polygynous mar-
riage, mean total fertility, and mean inter-birth interval (because polygynous mar-
riage was permitted in these experiments, mean female age at  marriage was always 
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15—the earliest age at which marriage was possible). The smaller population sizes 
produced by stronger feedbacks exhibit a greater degree of variability in behaviors 
related to marriage, reproduction, and household size. This is potentially signifi cant 
both in terms of planning and implementing experiments with the FN3D model and 
for understanding the demographic characteristics of past human systems that 
existed in the context of strong constraints on population growth.  

7.2     The Model 

 The FN3D_V3 model is a nonspatial ABM designed to serve as a platform for 
exploring hunter-gatherer demography. It is a development from the  ForagerNet2      
(White  2012 ) and FamilyNet2 (White  2013 ) models. It is a generalized model that 
is not intended to exhaustively represent all details of any given hunter-gatherer 
system. The exclusion of extraneous detail is a purposeful strategy to aid in con-
structing a model whose structure and behavior are understandable and potentially 
relevant to many cases. In the  terminology      of Gilbert ( 2008 ), FN3D_V3 is a “mid-
dle range” model that aims “to describe the characteristics of a particular social 
phenomenon, but in a suffi ciently general way that their conclusions can be applied” 
to many examples of the same phenomenon (Gilbert  2008 , p. 42). 

 The FN3D_V3 model was written in the Java programming  language      and built 
using  Repast J      (Recursive Porous Agent Simulation Toolkit, Java version), a free, 
open-source agent-based modeling and simulation toolkit that was created at the 
University of Chicago in collaboration with Argonne National Laboratory (North 
et al.  2006 ). The  raw code      for the FN3D_V3 model and detailed descriptions of its 
classes, variables, parameters, structure, and operation are provided online at   www.
openabm.org    . Documentation of Repast can be found at   www.repast.sourceforge.
net    . This section provides a brief overview of the design and operation of the model 
augmented by a short description of factors affecting fertility, mortality, and stable 
population size in the model.  

7.3     General Design, Operation, and Model Validity 

 The FN3D_V3 model has three main “ levels     ”: person, household, and system. Each 
agent in the model represents an individual person that is a discrete entity with a 
unique identity. Households are coresidential groupings of persons that form 
through marriage and change in size and composition primarily through marriage, 
reproduction, and mortality. Social links defi ne relationships between pairs of living 
persons and are used to enforce marriage prohibitions. The system of the model is 
composed of all persons and households in existence at a given point in time. 
Model-level parameters set conditions for all persons or all households in the world 
and defi ne aspects of the system: all persons become eligible to marry at the same 
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age, for example. There is no spatial component to interaction and behavior, elimi-
nating the potential effects of information fl ow, mobility, and population density on 
the analysis performed here. 

 Methods are named sections or “ chunks     ” of code that perform a sequence of 
operations when called. Methods representing marriage, reproduction, and death 
operate at the person and household levels in this model. Individual persons and 
households make probabilistic decisions about reproduction, marriage, and infanti-
cide based on the current dependency ratio of the household (the ratio of the number 
of consumers to the number of producers in the household). While the base proba-
bilities affecting reproduction and mortality are set by model-level parameters (i.e., 
they are the same across the population), the economic circumstances of individual 
households affect the behavior of individuals in those households on a case-by- case, 
step-by-step basis (see below). 

 At the start of each run, the model produces an  initial population      of a specifi ed 
number of persons of random sex and random age between 15 (the age at which the 
potential for reproduction begins) and 20. The initial households in a model run are 
created through marriages between eligible males and females in this initial popula-
tion. A model run starts with an initial population of reproductive-age adults rather 
than a “realistic” population age distribution in order to allow the characteristics of 
the living population to emerge through person- and household-level interactions 
and behaviors. 

 Following the creation of the initial population, time passes in the form of dis-
crete steps. Each step represents 1 week (5200 steps representing 100 years). At 
each step the model initiates a sequence of operations that includes the methods for 
marriage, reproduction, and death. This same sequence of operations is repeated in 
every subsequent step until the model has completed a specifi ed number of steps. 

 The  validity      of a model (how well the model represents what it is intended to 
represent) can be evaluated by comparing the behaviors of the model with the 
known behaviors of the real world systems it purports to represent (see Gilbert 
 2008 ).   A summary of  ethnographic data      on variables related to hunter-gatherer 
reproduction, marriage, and household size is presented in Table  7.1 . Data from the 
experiments discussed below ( n  = 1000 runs) demonstrate that, at the settings uti-
lized for this paper, the model produces distributions of values for most of these 

   Table 7.1    Summary of ethnographic data on hunter-gatherer fertility, mortality, and marriage age   

 Variable  Range  Approximate mean  Reference(s) 

 Total fertility rate  2.6–8.0 births  5.4 births  Hewlett ( 1991 ), Table 2; 
Pennington ( 2001 ), Table 7.2 

 Inter-birth interval  2.5–4.0 years  –  Kelly ( 1995 ), Table 6.7; 
Pennington ( 2001 ), Table 7.4 

 Intensity of polygyny  0–10 wives  –  Betzig ( 1986 ), Keen ( 2006 ) 
 Infant mortality  10–30 %  20 %  Hewlett ( 1991 ), Table 3; 

Kelly ( 1995 ), Table 6.9 
 Female age at marriage  5–22 years  14 years  Binford ( 2001 ), Table 8.07 
 Male age at marriage  12–35 years  21 years  Binford ( 2001 ), Table 8.07 
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variables that overlap the ethnographic ranges (Fig.  7.1 ). The exception is inter- 
birth interval, which is greater in the model runs than in observed ethnographic 
cases (about 6 years in the model vs. an ethnographic range of 2.5–4 years). The 
high values for inter-birth interval are probably related to the high value (age 14) set 
for the parameter  ageAtProduction , which determines when subadults become pro-
ducers (see below). At the settings utilized in this paper, the populations in the 
model have relatively low fertility, family size, and mean male age at marriage  .

    The demographic outcomes compared in Fig.  7.1  are  system-level characteristics      
that are the result of the interplay between person- and household-level interactions 
and behaviors and the model-level “rules” and constraints that infl uence marriage, 
reproduction, and mortality. The households that form within the model systems are 
verifi ably consistent with those documented among ethnographic hunter-gatherers 
in terms of their size, composition, and developmental cycles (see White  2013 , 
pp. 157–158). These points of consistency suggest that the FN3D_V3 model rea-
sonably captures many basic aspects of hunter-gatherer systems and is therefore a 
useful tool for investigating the demographic characteristics of hunter-gatherer pop-
ulations and understanding how the strength of a mortality-based feedback related 
to population size affects those demographic characteristics.  
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7.4     Fertility, Mortality, and Stability of Population Size 

 Fertility, mortality, and population size in the FN3D_V3 model are affected by: 
(1) the values of model-level parameters that apply to the entire population; (2) 
person- and household-level behaviors and interactions; and (3) feedbacks among 
various components of the model. This section describes how fertility and mortality 
are represented in the model and how population size is regulated. 

7.4.1        Fertility and Reproduction      

 Following the start of a model run, new persons in the population are created through 
reproduction. Only married females who are neither currently pregnant nor in a 
period of postpartum amenorrhea are eligible to become pregnant. The maximum 
period of postpartum amenorrhea (a period of infertility following childbirth) is set 
by the value of the parameter  maxPPA . When  maxPPA  = 72 weeks (18 months), the 
probability that a female will return to a fertile state each week following childbirth 
is calculated as 1/72 (0.0139). Females who remain infertile during this period auto-
matically regain fertility after 72 weeks. 

 A female’s  potential  fertile period occurs between the ages of 11 and 55. The 
yearly base probabilities of a married, fertile female becoming pregnant are not 
constant, but vary with age following a pattern similar to that documented for the 
!Kung (Howell  1979 ) and the Ache (Hill and Hurtado  1996 ) (Table  7.2 ). The peak 
reproductive years are between ages 21 and 40. These base probabilities in Table  7.2  
are adjusted by multiplication with the value of a model-level parameter ( fertility-
Multiplier ). For a 24-year-old female, for example, the base probability of preg-
nancy each step of her 24th year is 0.00673 if the value of  fertilityMultiplie r is set 
to 1.4 (0.25 × 1.4/52). The   fertilityMultiplier  parameter   can be used to adjust the 
model through a continuous range of global low to high fertility conditions while 
maintaining the shape of the age-specifi c curve.

   The dependency ratio of a household is the ratio of food consumers (the total 
number of persons in a household) to food producers (the number of persons who 
are actively procuring and/or preparing food). In the model, the dependency ratio of 
a household affects the reproductive behavior of the household. The probability of 
pregnancy is reduced if the addition of another child would raise the household’s 
dependency ratio above 1.75 (1.75 was chosen to represent the dependency ratio of 
a “typical” hunter-gatherer household based on ethnographic data presented by 
Binford [ 2001 :230]). This represents the existence of mechanisms for avoiding 
pregnancy based on household-level economics. The chance of avoiding pregnancy 
is determined by calculating how much above 1.75 the dependency ratio would rise 
if another child were to be added and taking this amount as a percentage of 1.75 
(e.g., the chance of avoidance is 100 % if another child would raise the dependency 
ratio of the household to 3.5). Successful reproduction results in the creation of a 
child of random sex who is then added to the household. 
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 The reproduction methods also include a mechanism for terminating the life of a 
newborn infant (i.e., committing infanticide). The chance of infanticide is calcu-
lated using the dependency ratio in the same way as avoidance of procreation: the 
difference is that the birth and subsequent death of a child fi gure into infant mortal-
ity rates where avoidance of procreation does not. The sex of a child does not affect 
the probability of infanticide in the model.    

7.4.2      Mortality      

 Each person is exposed to a risk of death at each step. The yearly base probabilities 
of death are age-specifi c and follow a pattern similar to that documented for the 
Ache (Hill and Hurtado  1996 ) and the Tsimane (Gurven and Kaplan  2007 ) (see 
Table  7.2 ). If a person reaches a certain maximum age (set by the value of the 
parameter  maxAge ), death is automatic. The base yearly probabilities of death are 
adjusted by multiplication with the value of a model-level parameter ( mortalityMul-
tiplier ) that can be used to produce a continuous range of low to high mortality 

          Table 7.2    Age-specifi c yearly base probabilities of  pregnancy and death      in the FN3D_V3 model   

 Age category (years)  Base probability of pregnancy  Base probability of death 

 0  0  0.07 
 1  0  0.07 
 2  0  0.06 
 3  0  0.05 
 4  0  0.04 
 5  0  0.03 
 6–10  0  0.02 
 11–15  0.01  0.015 
 16–20  0.15  0.015 
 21–25  0.25  0.015 
 26–30  0.28  0.015 
 31–35  0.28  0.015 
 36–40  0.25  0.015 
 41–45  0.15  0.018 
 46–50  0.08  0.02 
 51–55  0.01  0.03 
 56–60  0  0.04 
 61–65  0  0.08 
 66–70  0  0.12 
 71–75  0  0.20 
 76–80  0  0.30 
 81–85  0  0.30 
 >85  0  1.00 
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conditions while maintaining the shape of the age-specifi c curve. The value of  mor-
talityMultiplier  was held constant at one for the experiment in this paper. Infants can 
experience increased mortality rates through the economically sensitive infanticide 
mechanism that is represented in the model (see above).  

7.4.3       Stability of Population  Size      

 The model uses a feedback mechanism to stabilize the size of the population. 
A model-level parameter ( popMortAdjustPoint ) specifi es the population size above 
which probabilities of death are increased and below which probabilities of death 
are decreased. At each step, the model adjusts death probabilities by comparing 
the current size of the population to the size of the population specifi ed by  popMort-
AdjustPoint . The variable  popMortAdjustment , calculated at each step, is used to 
make a global adjustment to the age-specifi c probabilities of individual death. If the 
current population is 605, for example, and  popMortAdjustPoint  = 500, the  pop-
MortAdjustment  is 1.21 (605/500). If the current population is 400 and  popMortAd-
justPoint  = 500, the  popMortAdjustment  is 0.8 (400/500). 

 After being calculated based on population size, the value of  popMortAdjust-
ment  is affected by the value of the parameter  popMortAdjustMult  ( pMAM ). The 
parameter  pMAM , the main variable in the experiment described below, controls the 
“strength” of the mortality-based feedback to population size. It is applied by sim-
ply multiplying the set value of the parameter (which stays constant during a run 
and is applied every step, regardless of whether the population is above or below the 
 popMortAdjustPoint ) by the calculated value of  popMortAdjustment . If the value of 
 pMAM  is two, for example, the  popMortAdjustment  calculated in a given step is 
doubled. Values of  pMAM  less than one reduce the strength of the mortality adjust-
ment, while values greater than one increase it. Because  pMAM  is continuously 
variable, it can be used to sweep through mortality-based feedbacks that vary in 
strength from zero (no death) to infi nity (certainly of death). 

 The probability of death at each step for each person is calculated by multiplying 
that person’s age-specifi c probability of death by the calculated value of the  pop-
MortAdjustment . In the case of a 25-year-old (with a yearly probability of death of 
0.015) in a population of 605 persons with a  popMortAdjustmentPoint  of 500 and a 
 pMAM  of 1.8, for example, the probability of death each step is 0.000627 
((0.015/52) × (605/500 × 1.8)), 0.0326 each year. 

 Note that a  popMortAdjustPoint  of 500 does not mean that the population will 
stabilize to a size around 500: it simply means that the base probabilities of death are 
positively or negatively adjusted based on whether population size is above or below 
500. At a given value of  popMortAdjustPoint , the particular size at which a model 
population stabilizes is a product of the balance between fertility and mortality. 
Populations with relatively low rates of fertility and high mortality tend to stabilize 
at sizes signifi cantly below  popMortAdjustPoint , while populations with high fertil-
ity rates and low mortality tend to stabilize at sizes well above  popMortAdjustPoint .     
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7.5     Experiment and Results 

  Experimental data      were generated to explore the relationships between the strength 
of the mortality-based feedback mechanism (the value of  pMAM ) and a variety of 
demographic outcomes: mean population size, mean household size, mean male age 
at marriage, mean percentage and intensity of polygynous marriage, mean total fer-
tility, and mean inter-birth interval (defi ned in Table  7.3 ). A total of 1000 runs were 
performed, varying the value of  pMAM  randomly between 0.10 and 4.00 while 
holding the values of all other parameters constant (Table  7.4 ). A random rather 

   Table 7.3    Defi nition of demographic outcomes in experiment (data collected over last 500 years 
of experiment)   

 Demographic outcome  Defi nition 

 Mean population size  The mean size (number of persons) of the total population 
 Mean household size  The mean size (number of persons) of households. For purposes 

of data collection, a “household” is defi ned as a family unit 
containing an adult male and at least one other person 

 Mean male age at marriage  The mean age (years) of males at that time of their fi rst marriages 
 Mean percentage 
of polygyny 

 The mean percentage of marriages that are polygynous 
(one male, multiple females) at each step 

 Mean intensity of polygyny  The mean number of wives per married male 
 Mean total fertility  The mean number of children born per female that survives to age 45 
 Mean inter-birth interval  The mean number of years between births 

   Table 7.4    Values of key parameters in experiments   

 Parameter  Description  Value 

  popMortAdjustPoint   Population threshold for adjusting death probabilities  300 (constant) 
  popMortAdjustMult 
(pMAM)  

 Strength of mortality-based feedback mechanism for 
stabilizing population size 

 0.1–4.0 
(random) 

  ageAtMaturity   Age (in years) at which a person is eligible to marry 
(and therefore eligible to reproduce) 

 15 (constant) 

  agetAtProduction   Age (in years) at which a person is counted as a 
“producer” for purposes of calculating the dependency 
ratio of a household 

 14 (constant) 

  maxAge   Maximum age (in years) a person may attain  86 (constant) 
  popMortAdjustPoint   Population size above which base probabilities of 

mortality are increased and below which base 
probabilities of mortality are decreased 

 500 (constant) 

  maxPPA   Maximum duration (in weeks) of postpartum amenorrhea  72 (constant) 
  sustainableCP   Value of dependency ratio considered “normal”; a 

dependency ratio >  sustainableCP  has positive effect 
on probabilities of avoiding reproduction or 
committing infanticide 

 1.75 (constant) 

  fertilityMultiplier   Adjusts the base age-specifi c probabilities 
of pregnancy by a set factor 

 1 (constant) 

  mortalityMultiplier   Adjusts the base age-specifi c probabilities of death 
by a set factor 

 1 (constant) 
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than systematic sampling strategy was employed for the sake of the rapid produc-
tion of data that would allow basic patterns to be recognized. The value of  pMAP  
was arbitrarily set at 300.

    Each model run was 1000 years (52,000 steps) in duration (Fig.  7.2 ). The fi rst 
500 years of each run are a stabilization period during which the size and structure 
of the population emerge. Figure  7.3  shows change in population size during an 
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example run with a low setting of  pMAM : the population requires hundreds of years 
to stabilize in size. Figure  7.4  shows the age–structure pyramid of the population 
from that example run at step 39,001 (midway through the data collection period). 
Data required for calculating relevant demographic variables are collected over the 
course of the second 500 years of the run. Summary data are produced at the end of 
a run and appended to a data fi le for analysis.

     Results from this experiment suggest a number of relationships between the 
value of  pMAM  and the demographic outcomes. The value of  pMAM  is closely 
related to population size, with smaller populations exhibiting a greater degree of 
variability in behaviors related to marriage, reproduction, and household size. 

7.5.1      Mean Population Size      

 The value of  pMAM  is clearly related to the mean size of the population during a 
model run (Fig.  7.5 ). As shown by the reference lines in Fig.  7.5a , the point at which 
population size “balances” is maintained slightly below the set threshold (i.e., the 
value of  pMAP , in this case 300) when  pMAM  is set to one. Mean population size 
increases rapidly as the value of  pMAM  is decreased below one: the mortality “pen-
alty” is not suffi ciently strong to offset fertility and constrain the population size to 
anywhere near the set threshold of 300. Mean population sizes smaller than 300 are 
produced when the value of  pMAM  is greater than one, but the effect is weaker than 
when  pMAM  is below one. The relationship between  pMAM  and mean population 
size is linear when both axes are logarithmic (Fig.  7.5b ).
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  Fig. 7.5    Relationship between value of  pMAM  and mean population size       

 

A.A. White



125

7.5.2        Other Demographic Outcomes 

 Relationships between the value of  pMAM  and the six other demographic character-
istics defi ned in Table  7.2   are      shown in Fig.  7.6 .       In each case, higher values of 
 pMAM  are associated with greater variability of demographic outcomes. This is 
shown clearly in Fig.  7.7a , which graphs the  coeffi cient of variation (CV)      of 
each demographic outcome by the value of  pMAM  with observations grouped into 
increments of 0.25. The CV is a dimensionless measure of variation that is calcu-
lated by dividing the standard deviation by the mean of a group of observations. 
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  Fig. 7.6    Relationships between value of  pMAM  and demographic  outcomes            
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Demographic outcomes most closely related to marriage (percentage of polygynous 
marriage, intensity of polygyny, and male age at marriage) have the highest CVs 
and show the most pronounced positive relationships between CV and  pMAM . 
These three characteristics also exhibit the greatest change in the mean as  pMAM  is 
varied from 0.1 to 4.0 (Fig.  7.7b ).

7.6          Analysis and Discussion 

 The results from the experiment indicate that the strength of the  mortality-based 
feedback      to population size (the value of  pMAM ) is related to both (1) the popula-
tion size at which the model fi nds a “balance point” between mortality and fertility 
and (2) several demographic characteristics that are indirectly affected by mortality. 
In the fi rst case, the relationship is strong and nonlinear, with the value of  pMAM  
being a relatively good predictor of the mean population size. The second case is 
quite different: it is the amount of variation among runs with identical settings that 
changes signifi cantly as the value of  pMAM  is adjusted between 0.1 and 4.0. 

 It is not immediately obvious how a stronger mortality-based feedback to popu-
lation size produces more variable outcomes in the demographic characteristics of 
the model populations. Plots of the value of  pMAM  versus infant mortality (yearly 
probability of death before age 1), child mortality (yearly probability of death 
between the ages of 2 and 11), and adult mortality (yearly probability of death 
between the ages of 16 and 51) show a pattern of increasing variation in mortality 
outcomes as  pMAM  increases in value (Fig.  7.8 ), very similar to the demographic 
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outcomes already discussed. This may seem somewhat counterintuitive, as one 
might logically expect that a more severe mortality-based constraint on population 
size would result in uniformly higher rates of mortality. Remember, however, that 
the actual mortality and fertility rates experienced by a population in a model such 
as this emerge as the result of numerous factors: a higher value of  pMAM  does not 
necessarily result in higher mortality rates.

   The strongest relationship observed in the experiments was between the value of 
 pMAM  and the mean size of a  population      (see Fig.  7.5 ). In most runs where the 
value of  pMAM  was greater than two, mean population size was less than 100. In 
general, the experiments show that variability in demographic outcomes increases 
as  pMAM  increases and mean population size drops (see Figs.  7.6  and  7.7 ). These 
smaller populations do not necessarily experience higher overall rates of mortality 
and fertility—both of these metrics become progressively less variable as popula-
tion size increases (Fig.  7.9 ).
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   Overall, it appears that small populations in the model that are exposed to a 
strong negative feedback on population size can exist in a wider variety of forms 
than larger populations in terms of patterns and behaviors related to marriage and 
family size. At least some of this variability is attributable to the relatively large 
impact that demographic stochasticity can have in small populations: the smaller the 
population, the greater the proportion of the population is represented by each indi-
vidual, and the greater the potential impact of each birth and death on the character-
istics of the entire population (Moore  2001 , p. 403; Shaffer  1981 ; Wobst  1975 ). The 
outcome of a random dice roll affecting reproduction or marriage has a much greater 
potential effect in a population of 60 than in a population of 2600. 

 The summary results from the experiments do not allow extensive investigation of 
how the various demographic outcomes are related in small populations. There are 
weak/moderate correlations among mean household size, adult mortality, male age at 
marriage, and the percentage of polygynous marriage. Further work will be required 
to understand the specifi c cause–effect relationships that drive these correlations. 

 The observation of a higher degree of  variability      in demographic outcomes 
among populations constrained by a strong mortality-based feedback is noteworthy 
for two reasons. First, these results suggest care should be taken when choosing 
population settings for experiments using the FN3D_V3 model. Experiments per-
formed on smaller populations may naturally produce more variable results (in 
terms of demographic characteristics) than otherwise identical experiments per-
formed on larger populations. That “extra” variability could potentially mask inter-
esting behaviors or differences that are the subject of the experiment. 

 Second, these results suggest that we might expect signifi cant  variability      in the 
demographic characteristics of actual human populations that existed in circum-
stances similar to those in the model (numerically small populations in environ-
ments with strong negative feedbacks to population growth). The results of the 
simple experiment performed here suggest that multiple “kinds” of  marriage/repro-
ductive systems may have been viable at small population sizes. This would be a 
fruitful area for future modeling work.  

7.7     Conclusion 

 This analysis has shown that the demography of populations in the FN3D_V3 model 
is sensitive to the strength of the mortality-based feedback that constrains population 
size. In general, the smaller populations that are exposed to a strong mortality “pen-
alty” have more variable demographic characteristics than larger populations operat-
ing under weaker mortality-based feedbacks. These differences could be analytically 
signifi cant when using the FN3D_V3 model for experimentation and should be kept 
in mind when planning and implementing experiments. As shown in Fig.  7.1 , how-
ever, all of the variability produced during the experiment for this analysis (with the 
exception of inter-birth interval) fall within the range documented among ethno-
graphic hunter-gatherers. This suggests that the feedbacks within the model that 
allow the system to fi nd a balance between mortality and fertility do not, within the 
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continuum of settings explored here, produce model systems with demographic 
characteristics that are signifi cantly different from those human hunter-gatherer 
systems we have observed in the ethnographic present. Even when a harsh mortality 
penalty is used to constrain populations to one third of the “carrying capacity” of the 
model environment, the model system that emerges has demographic characteristics 
that are not unreasonable. This suggests that the model remains a valid representation 
of a hunter-gatherer system under a wide range of conditions.    
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    Chapter 8   
 Archaeological Simulation and the Testing 
Paradigm                     

       Thomas   G.     Whitley    

8.1           Introduction 

 Simulation in archaeology is not an entirely well-defi ned fi eld. Broadly speaking, 
there are many archaeological methods and techniques that could be considered, in 
some way,  simulating  aspects of the past. This is particularly true where the term 
“model” is used in the discussion, and even more so when a temporal component of 
some kind is implied; temporality being a defi ning characteristic of archaeology. 
“Model” in this sense refers to a combination of datasets (not always spatial) that 
may result in an interpretation, but it does not necessarily go beyond the static 
depiction of that data, despite the invocation of temporality. The classic example is 
the traditional approach to   archaeological predictive modeling    (e.g., Dalla Bona 
 1994 ; Deeben et al.  1997 ,  2002 ; Hudak et al.  2002 ; Judge and Sebastian  1988 ; 
Kohler and Parker  1986 ; Kvamme  1983 ,  1984 ,  1985 ; Parker  1985 ). 

 A predictive model may entail many parameters and formulas and can be applied 
in highly sophisticated ways, but the end result is almost always a dichotomous 
high/low probability map with little dynamic variability or insight into human 
behavior. This may in fact stem from the tendency to make predictions about where 
sites may be found based on where sites are already known, the so-called   inductive  
approach   (cf. Altschul et al.  2004 ; Ejstrud  2003 ; Harris  2006 ; Kamermans et al. 
 2009 ; van Leusen and Kamermans  2005 ; Verhagen  2005 ,  2007 ; Verhagen and 
Whitley  2012 ; Whitley  2004a ). In other words, we often use the archaeological 
record to predict where we might fi nd (as yet unknown) archaeological material, but 
the process has much less to say about how that material got there in the fi rst place 
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than we would like to believe; that is, the  mechanism  is often absent. This may be 
modeling, but I do not consider this simulation. 

 I would argue that formal simulations in archaeology, in contrast, are intended to 
go beyond the  static  display of information. The assumption is that  human agency   
(or cognitive decision-making) is either implicit or explicit in the simulation. Most 
frequently simulations in economics or the social sciences are distinguished from 
models by their engagement of a temporal or dynamic  process  (cf. Hartman  1996 ; 
Humphreys  2004 ; Phan and Varenne  2010 ; Winsberg  2009 ). This may be thought of 
as the iterative transformation of input data, or information, into some form of out-
put. Models are also transformations of input data into output representations. They 
may also include alternative transformations or “feedback” within them, but the 
output is far more important than understanding or explaining the process  itself 
  (Fig.  8.1 ). In contrast, simulations are not static but both dynamic and mechanistic. 
Though they need not be inherently dynamical or “self-organizing” (e.g., Axtell 
et al.  2006 ; Bonatti et al.  2005 ; Dean et al.  2006 ; Kohler and van der Leeuw  2007 ; 
Strogatz  2001 ). Put simply, a simulation is the functional interaction of a set of 
models, and it produces a typically iterative though not necessarily sequential out-
put, based on different permutations of the input data (Fig.  8.2 ).

  Fig. 8.1    Schematic representation of the structure of “models”       
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8.2         Analogue  Simulations   

 But archaeological simulations need not imply the use of autonomous computer 
agents, Geographic Information Systems (GIS), or digital data of any kind. We 
should remember that specialists in replicating primitive technology are, in essence, 
creating  analogue  forms of simulation, are acting as “agents” in that process, and 
they have been doing this for a very long time (e.g., Bordes  1950 ; Callahan  1994 ; 
Crabtree  1972 ; Crabtree and Butler  1964 ; Wescott  2011 ). By reenacting the pro-
cesses of lithic raw material reduction, for example, and creating functional tools, 
the lithic specialist is simulating past human choice, decisions, and actions; usually 
of a single individual, and all in a cause-and-effect framework. If the end result of 
that simulation is a modern version of a Clovis point, then those actions are the 
imitation of a learned cognitive process that is theoretically consistent with how the 
archaeological examples of such tools were created. 

 The simulation may imply the articulation between physical laws, as a function 
of the properties of the raw material, and the sequence of actions that produced the 
chosen outcome. But it does not test or validate those laws or actions in any explicit 
way. Rather, because the modern simulated point  looks  nearly identical to the 

  Fig. 8.2    Schematic representation of the structure of a “simulation”       
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authentic one, the reduction sequence, and hence the simulation, is accepted as 
being largely valid. This is despite the fact that we may have no direct archaeologi-
cal evidence that all steps in the process were replicated accurately. Ultimately, 
though, an absolutely identical replication is not required; only a convincing one of 
logical consistency with applicable concepts and/or highly probable behaviors. 
Because the analytical model for lithic reduction is largely qualitative, despite its 
very formal rules, we will typically accept a lower level of validation for such ana-
logue simulations than we do for digital ones. 

 This can be taken further in the realm of historical reenactments. The Battle of 
Gettysburg (American Civil War) is far more complex than a lithic reduction 
sequence, and simulations of the battle take place every year (  http://www.gettys-
burgreenactment.com/    ). No one would argue that modern reenactments of the 
battle are entirely accurate, obviously since no one dies during one. Despite this, 
the reenactors go to an enormous effort to make it seem authentic. One can, of 
course, point out numerous cases where inauthenticity in the details creeps in: 
from a plastic uniform button to the faulty placement of an entire battalion of 
soldiers. Yet, a large-scale simulation of the battle may have very real interpretive 
value for military historians or archaeologists (Agnew  2005 ,  2007 ; Clemons 
 2008 ,  2011 ; Hall  1994 ; Handler and Gable  1997 ; Handler and Saxton  1988 ; Jones 
 2007 ). It can provide insight into the interpretation of documents or material that 
might otherwise be confusing, clarify misconceptions, or just reveal the nature of 
the human experience. 

 With reenactments, it may not be the accuracy of the simulation that is enlighten-
ing, but the placing of behavior into a sequential and spatial context. Such context 
may even be seen as testing ideas that have been derived from the historic docu-
ments or the archaeological record. This is very different from an inductive 
 archaeological predictive model. Instead of using the fragmentary archaeological 
record to fi nd more of the same without explanation, the simulation is being used to 
help  explain  the archaeological record in terms of the mechanisms by which it got 
there and perhaps why. Or at least it is intended to provide a descriptive context of 
some kind. This fully engages archaeological simulations of all kinds (digital or 
analogue) within the realm of explanatory theory. It is also a separation of the  gen-
eral  processes (i.e., military strategy) from the  specifi c  details (i.e., the Gettysburg 
battle narrative itself and its remnant archaeological record). 

 My point, though, is that the digital application of simulation methods in 
archaeology, including agent-based modeling (ABM) or  multi-agent simulation 
(MAS) techniques  , is part of a long history of experimentation and should not be 
looked upon as fundamentally, or theoretically, distinct from our approaches to 
other forms of archaeology. They carry with them the same assumptions regard-
ing our acquisition, manipulation, and interpretation of archaeological or histori-
cal knowledge. This is in addition to their independent computational, statistical, 
or mathematical suppositions. Those may in turn be dependent upon a whole host 
of methodological or theoretical issues related to advanced mathematics or digital 
computation.   
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8.3     Theoretical Assumptions of Archaeological Simulation 

 It is, in fact, the archaeological assumptions themselves which are perhaps most 
problematic with respect to our ability to test, refute, or validate digital simulations 
rather than the absence of, or lack of clarity in, the proper use of the technology or 
statistical evaluative methods. Developing the techniques of digital simulation is 
perhaps “…still in its infancy, and computational social scientists are getting on as 
[if] they were craftsmen of a new method.” (Boero and Squazzoni  2005 , p. 1.12). 
But the theoretical basis and the overall approach is nothing particularly new. 
We are, in fact, applying new methods to an old concept. But the problem is still the 
same:  How do we know when a simulation actually approximates what really 
happened in the past?  To get to the heart of that question I would like to begin by 
breaking down the theoretical assumptions of such simulation. 

8.3.1      Systems, Mechanisms, and  Iteration   

 The fi rst assumption that I would make in constructing an archaeological simulation 
is accepting the notion that human decision-making is a system and not arbitrarily 
random or a series of unrelated “decision events.” By this, I do not imply that there 
is, or is not, an overarching “systems theory” that is applicable to all of human or 
social agency (e.g., von Bertalanffy  1970 ; Luhmann  1975 ; Parsons  1978 ; Warren 
et al.  1998 ), only that the process of making decisions based on the input of informa-
tion (spatial or otherwise) is “an assemblage or combination of things or parts form-
ing a complex or unitary whole” (  http://dictionary.reference.com/browse/system    ). 
In this discussion I am specifi cally referencing simulations where a choice between 
multiple outcomes is made by the agent(s). These may be spatial choices, such as 
the movements of autonomous agents across the digital manifold or things that 
affect large-scale GIS surface outputs. There may also be other kinds of agent- 
modeled output, such as tables of numerical data, charts, or graphs. 

 But this brings up the concept of whether or not we should test human behavior 
against random occurrences; that is, is “random behavior” the null hypothesis? There 
is a fair amount of literature on the study of randomness in biological systems, and 
how much it contributes to social, or other kinds of, behaviors (e.g., Bartumeus  2009 ; 
Perony et al.  2012 ; Schweitzer  2003 ). This is largely in the sense of how stochastic 
processes such as Brownian motion, or Levy fl ights for example, can contribute to 
human or animal decision-making and by how much. Invoking the effects of sto-
chastic processes on human behavior, though, does not imply that decision- making 
is at its heart unintentional or that they are distinct episodes of unrelated action. 
I would argue that we can make an assumption from the outset that some random 
processes will affect human decision-making, and that some single decisions are, in 
fact, potentially entirely random. Simulation may be used to examine the amount of 
randomness in a system, but a decision-making system (i.e., meaning it is intended 
for repetition) is intentional and thus inherently nonrandom. 
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 Being a system, or system-like, suggests that there is a decision-making  mecha-
nism  to be discovered by the archaeologist. “Mechanism” in this sense is “the 
agency or means by which an effect is produced or a purpose is accomplished” 
(  http://dictionary.reference.com/browse/mechanism    ). A somewhat consistent set of 
criteria  must  have been referenced in making the decision under analysis. If the 
target decision-making was not a system, it would have been completely  ad hoc  in 
every instance. This would be regardless of whether the decisions were made by 
individuals or groups of people in the past. No doubt there are specifi c instances of 
decision-making that are  ad hoc , but being so makes them not particularly iconic or 
representative of the kinds of things that we as social scientists are likely to study, 
and they may not be conducive to interpretation through simulation at all since they 
are not repeatable. It should not be construed that I am in any way arguing that all 
of the kinds of things that we care about as archaeologists can be digitally simu-
lated. Simulation, whether digital or analogue, is merely a technique to address 
some kinds of things, not  all  of them. 

 Another direct implication is that human decision-making is  repetitively  applied. 
This may seem to be redundant with the notion of systematics, but it also means that 
the process of decision-making is iterative. It is not just that the same, or similar, 
processes are carried out each time the decision is being made, but that it is learned 
behavior and capable of being improved upon or changed. In other words, the pro-
cess relies on information acquisition, transmission, and retention between and 
among individuals and groups. But learning specifi c behaviors may not be active or 
conscious in all cases. Nonetheless, it is a cultural marker: families, communities, 
and other spatially or culturally related groups share similar decision-making histo-
ries or contexts.   

8.3.2     Cognition, Perception, and Decision Topology 

  Inherent in the desire to understand the system is our generalization from the simu-
lation to a specifi c target group. But it also implies that there may be other approaches 
to making the same decisions. Of signifi cant importance is when we consider the 
infl uence of Western thought upon how we design those simulations (Boero and 
Squazzoni  2005 , p. 4.50; Janssen and Ostrom  2006 : 37). This has been little explored 
and deserves much more detailed treatment than can be given here. Even when a 
simulation may replicate very closely the output of a set of archaeological deci-
sions, there may have been other ways in which the same outputs could have been 
reached with very different transformations. This is the concept of “equifi nality” or 
the idea that there may be multiple causal paths that produce the same outcome 
(George and Bennett  2005 , p. 10). Behavioral systems may evolve under different 
conditions and with different inputs, yet look very similar. 

 Importantly, though, such a simulation assumes that a  cognitive process   is present. 
ABM and MAS simulations are specifi cally designed to represent the individual 
and the group as cognitive decision-makers respectively (Niazi and Hussain  2011 , 
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pp. 2–3). Other forms of simulation (large-scale GIS for example) can also imply a 
cognitive process, but the agents may be less explicit. In a large-scale GIS they may 
in fact be enacted through the processes of map algebra rather than as distinct com-
putational agents in the manifold. Yet, either situation implies that it is very much  in 
the heads  of the agents, not external or an outcome imposed upon them. Ignoring 
the mechanism of cognition, though, and treating it like a “black box” is inherent 
with inductive predictive models (Whitley  2005 , p. 124). By either explicitly apply-
ing one or more computer-generated autonomous agents to the process, or assuming 
the perspective of implicit agents, the archaeologist is making the assumption that 
the decision is cognitively contextual and has multiple potential outcomes given a 
broad range of initial and changing conditions. The decision- making process being 
modeled thus shapes the nature of the simulation. 

 Multiple variables also must be considered in this decision-making. A decision 
reliant on only one input variable could not be systematic; it would have to be uni-
lateral. That is not to say that a simulation that looks at only one variable cannot be 
useful. It may be perfectly appropriate to create a simulation that holds a number of 
variables to be constant and to manipulate only a single variable through a series of 
iterations. This can be quite illuminating as to how one variable affects the entire 
decision-making system. However, the point I make here is that complex  mechanis-
tic  simulations must consider the interaction of multiple variables as the criteria by 
which a decision is made. In this context, each input variable must have a positive 
or negative relationship to the decision being simulated. It either facilitates or hin-
ders a specifi ed outcome. This is a direct implication of causality in the process 
(cf. Pearl  2000 ; Salmon  1984 ,  1998 ). How or why the variable affects the decision 
is required in order to simulate it, and they must be distinguishable from pseudo- 
processes that lack a causal/mechanical connection.  

 Additionally, each variable’s positive or negative relationship to the decision is 
learned from others or developed through personal observation and prediction 
(e.g., indirect evidence, heuristic mechanisms, past experience, or speculation). 
This implies a  perception  to the process. It may be manifest as an “egocentric frame 
of reference” for immediately observable phenomena and a “fi xed frame of refer-
ence” for stored or predicted information (cf. Hart  1981 ; Kitchin and Blades  2002 ). 
Immersing the digital decision-maker into a spatial, or at least contextual, percep-
tion in some way is the very reason why ABM and MAS techniques are frequently 
chosen for simulations. 

 But that  perception   is also dependent upon the nature and quality of the informa-
tion being perceived. There would be very few instances, for example, where a 
global frame of reference would be applicable in cognitive agent-based simulations 
because human beings do not maintain and access spatial data the same way as 
computers. There is a “fall-off” rate both spatially and temporally to the complete-
ness, accuracy, and quality of information for human decision-makers, and the 
archaeologist must attempt to recreate this within the simulation. All spatial deci-
sions are, in effect, local and few are based on complete and consistent knowledge 
across a spatial manifold in the manner in which we often engage GIS, ABM, or 
MAS simulations (Whitley  2004b ). 
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  Therefore, digital simulations that require the concept of cognitive agency may 
be referred to as being grounded in “ decision topology  .” This relates to the process 
of making a decision based upon the “shape” or appearance of the input data at the 
time the decision is being made. It is a concept that is currently widespread in the 
realm of computational modeling for computer science and engineering applica-
tions (e.g., Barber  2007 ; Kumar and Prabhakar  2010 ; Pandey et al.  2013 ). It is 
employed as a tool to help organize decision-making and maximize information 
sharing among computerized agents and is intended to simulate the manner in which 
humans might process information. The idea is that a decision will result from an 
analysis of the “appearance” of all pertinent data as a whole, and the agent has the 
fl exibility to consider not just the quantitative value of a piece of data, but also its 
quality and completeness prior to making a decision. In more complex models, 
there is a conduit of information sharing among agents that enhances the ability to 
understand the quality of information on hand; that is, agents do not always act in 
isolation. This is a basic assumption we have to make about human agents in both 
present and past contexts: they are not isolated and make fl exible decisions based on 
the overall information on hand. But again, simulating a single agent or agents with 
varying degrees of information sharing may be a useful way to examine the nature 
of information exchange.   

8.3.3        Weighted-Additive Frameworks   and  Bayesian Probability   

 The relationship between each variable and the decision outcomes must also be 
expressed mathematically. Although the decision-makers need not consciously 
comprehend a mathematical relationship for each infl uential variable, computerized 
decision topology simulations are dependent upon defi ned mathematical  rules, 
principles, or formulas  to operate because computers are mathematical devices. 
This means that each variable has to be quantitative. Where a qualitative variable is 
important, it has to be quantifi ed, or at least ranked, in some manner to be input into 
a GIS, ABM, or MAS (i.e., categories have to be assigned a positive or negative 
relative or absolute value). Even the use of fuzzy modeling methods is still a quan-
tifi cation of the variable despite the fl exibility in the outcomes. 

 Fuzzy modeling evolved out of “fuzzy set” theory (also called “fuzzy logic”) and 
is a technique for considering uncertainty by ranking the “truth” or accuracy of 
information by a degree or percent rather than a binary (true/false) set (Hájek  1998 ; 
Halpern  2003 ; Yager and Filev  1994 ; Zadeh  1965 ). It is a form of probabilistic 
 reasoning that can lend a great deal of freedom of choice to a decision-making 
model. Yet it is still, in effect, a simulation of “qualitative-ness” applied on top of 
quantitative data (the probability values). Again, though, this may mean that quali-
tative decision criteria that are not quantifi able (i.e., we do not know or cannot 
propose a probability value) might not always be subjectable to digital simulation 
(cf. Pillatt  2012 , p. 578). 
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 The ultimate decision topology within a fully quantifi ed simulation is theoretically 
a  weighted-additive  expression of all pertinent variables in the same sense as that 
described for archaeological predictive models (Kohler and Parker  1986 , pp. 422–424) 
but with the explicit assumption of a causal process. This is because a weighted-addi-
tive framework is a covering defi nition that encompasses all other forms of probability 
by articulating the overall relationships both within and among variables and all of the 
decision outcomes. All possible relationships exist in that framework. 

 Not the only way to illustrate this, but perhaps the best, is with the Bayesian rules 
of total and conditional probability (Fig.  8.3 ; Pearl  2000 , pp. 3–4). These formulas 
present a summation of weighted-additive decision-making (i.e., all possible simu-
lation outcomes) specifi cally in a probabilistic context. A simulation does not nec-
essarily need to invoke  specifi c  probability in its outputs. However, the idea that an 
agent is making decisions that are being simulated does imply that there is a  relative  
probabilistic nature to the choices being presented. Hence, Bayesian probability and 
a weighted-additive framework are applicable.

    A weighted-additive framework, though, means that all variables have to be 
 standardized  or placed on the same quantitative scale in relation to each other in 
order to be comparable. Without comparability, the rules of conditional and total 
probability are meaningless. But this stands in contrast to saying that the data has to 
be  normalized . That would imply the quantifi cation needs to be on a normal (i.e., a 
sigmoidal probability density function) distribution scale and that may not be the 
case. Even where a GIS, ABM, or MAS, simulation can consider a variable to have 
complete neutrality, or where its weight may dramatically fl uctuate, it still fi ts 
within the framework of comparably weighted probabilities. 

 But that does not imply that some variables do not have multiplicative, exponential, 
logarithmic, or fuzzy relationships (with the decision criteria or with each other). 
It just implies that criteria are evaluated independently as to that mathematical 
relationship and make up an additive proportion of importance to the decision as a 
whole, whether they are consciously evaluated or not.    

  Fig. 8.3    The Bayesian rules of total and conditional probability (from Pearl  2000 : 3–4)       

 

8 Archaeological Simulation and the Testing Paradigm



140

8.3.4     Summary of Theoretical Assumptions 

 To reiterate the previous points, cognitive agency-based simulations in archaeology 
entail the following theoretical assumptions:

•    Decision- making   implies a systematic framework. Ad hoc decisions are not 
repeatable. Though ad hoc decisions may be simulated, and may be useful for 
very specifi c reasons, they are not mechanistic. This does not imply that all 
 criteria are  systemic , that is, the product of the entire system as a whole. The 
 decision is systemic, but individual components of it, or relationships within it, 
may not be.  

•   Arriving at a decision requires an iterative mechanism or step-wise process of 
some kind. No mechanism means no alternate outcomes are possible.  

•   Decision-making is subject to repetition, improvement, learning, and alteration. 
So there must be a direction to the temporality that is implied. A simulation 
should not function the same backwards as it does forward in time because infor-
mation is always additive.  

•   Decision  topologies   are likely to be increasingly similar among families, com-
munities, and other cultural groups as a function of spatial and kin relationships. 
So they inherently depend on the ways in which those cultural groupings are 
defi ned. But these are open systems and equifi nality demands that there could be 
multiple causal paths to the same or similar outcomes, and we must consider that 
in our interpretations.  

•   If a decision is required, then multiple outcomes must be possible. Alternate 
outputs imply a relative (not necessarily explicit) probability function, while 
cognitive agency implies choice in those outcomes and some level of control to 
those probabilities.  

•   If multiple outcomes are possible, then a systematic process will also require 
multiple inputs. Decisions are made by evaluating the available criteria. A single 
criterion alone will not be suffi cient to allow agency in a mechanistic decision.  

•    Input data   is always perceived from an agent’s perspective and will be both 
contextual and almost always incomplete or even inaccurate. Our simulations 
often inappropriately consider only complete information and “top-down” 
perspectives.  

•   To be included in a  digital simulation  , input variables have to be quantifi ed—
even when they may originally be considered qualitatively. This does not apply 
to analogue simulations.  

•   Decision-making is either explicitly or implicitly a probability function and can 
be described by the Bayesian  rules   of conditional and total probability.  

•   The weighted-additive  model   of probability functions can cover all varieties of 
decision-making for digital simulations and is inherently a covering defi nition 
for most, if not all, archaeological types of simulations.  

•   To be incorporated into weighted-additive forms of simulation, input parameters 
need to be standardized or somehow made comparable with each other. A unit of 
measure is implied.    
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 These assumptions are completely independent of the mathematical or computa-
tional ones associated with the technique or method being used itself. But what do 
they mean for testing the validity of a simulation? How do these things affect what 
it is we think we know by creating and using a digital simulation? To answer these 
questions we need to think about the purposes of why we are using digital simula-
tion in the fi rst place.   

8.4     The Goals of Archaeological Simulation 

 Why should we create a digital simulation? Or an analogue simulation, for that mat-
ter? Is the use of GIS, ABM, or MAS intended to  re-create  some aspect of the 
archaeological past? Is it to explore the data and develop new hypotheses? Or, is the 
purpose of the simulation to explain previously defi ned, or hypothesized, archaeo-
logical or behavioral spatial patterns? The knowledge that we hope to attain at the 
end of the process is perhaps the biggest factor in what the simulation will look like 
and how we will be able to judge its value and effectiveness. 

8.4.1      Simulations as  Re-creations   

 If we want to use simulation only as a means to re-create some aspect of the past, 
then we do not necessarily have any explanatory objectives (cf. Shanks and Tilley 
 1987 ). In this sense, no formal explanation is required as an outcome, only the 
depiction of spatial patterns, context, experience, or some other attribute of the 
archaeological past. The viewer interprets those patterns in her/his own way. This is 
consistent with the “immersive” approach to digital simulation (e.g., Allison  2008 ; 
Barceló et al.  2000 ; Favro  2006 ,  2012 ; Frischer  2008 ; Gill  2009 ; Goodrick and 
Gillings  2000 ; Maver  2001 ; Slator et al.  2001 ). Immersion is where the thing being 
simulated is just the ability to move around within a modifi ed and appropriately 
textured virtual environment. We fi ll in the details of those textures and digitize 
objects/contexts that we know from the archaeological or historical records, and 
everything else is informed speculation. The goals of such simulations are much 
more about education, public outreach, and an articulation of technology, preserva-
tion, and visual interpretation than they are about explaining past mechanisms or 
developing hypotheses about the past. 

 There is no expectation that the speculative parts of the re-creation will ever be 
 objectively  evaluated for their accuracy. Authenticity is an intangible product of the 
visual realism of the textures, how convincing the context is to the viewers, and the 
qualitatively assessed accuracy of the archaeological or historical elements. The 
output is purely visual, though other senses are also occasionally employed; sound 
obviously, but even smell in analogue simulations (Shanks and Tilley  1987 , p. 86). 
But these do not provide measurable data as an output. It is meant only to be 
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experienced by the audience and the goal is to achieve a  sense  of reality, not an 
objective measure of it. It is the difference between witnessing an historical event 
and watching a fi lm dramatization of it. Artistic license is to be expected. 

 The sense of reality, though, may be very powerful and convincing. But perhaps 
it is a false sense of reality despite the increased processing and rendering power 
of today’s computers and modeling software. Although we may be quickly acquir-
ing the ability to create more realistic textures and environments that can interac-
tively simulate the past, the people we are studying are long gone and will always 
remain so. Their cognitive processes no longer exist and they cannot be re-created. 
They can  only  be simulated. The Battle of Gettysburg will never occur again, no 
new actual Clovis point can ever be made, only things which look like them or that 
we think look like them. 

 This is no small matter, as simulation at its most accurate may at best be consid-
ered only a tiny fragment of the entire long-gone cognitive processes involved. Even 
the most sophisticated immersive simulation is but a small window into the past. 
This is because it will only ever be the perspective of a single agent: the viewer (or 
more properly a combination of the viewer and the programmer who constructed it 
for the viewer to experience). Can we truly argue that a tiny fragment of anything 
represents it in its entirety? Or that one re-created agent’s perception stands in for 
all the others? Every individual has a unique perspective, and you cannot simulate 
all of the perspectives of past people simultaneously, only the one you think is rep-
resentative of the others. 

 Weather-forecasting simulations operate on the scale of supercomputers and 
arguably deal with far less complex processes and much less variability in their 
guiding rules or principles (Holton  2004 ; Molteni et al.  1999 ; Stensrud  2007 ; 
Zwiefl hofer and Kreitz  2001 ). They are also without the individual and group con-
cepts of limited knowledge, perception, choice, risk, and assessing future returns. 
Such simulations tend not to use ABM, or if they do, their agents are not thought of 
as cognitive ones. They can use a global frame of reference because the agent’s 
information is not the basis of the decision topology, and they have no immersive 
perspective. You do not need to worry about whether a raindrop should or should 
not have the same knowledge as all of the other raindrops. Yet nearly imperceptible 
changes in the initial conditions will cause dramatic effects in the outcome and in 
no case could you ever re-create an exact historical weather pattern from identical 
inputs in a simulation even with a supercomputer. 

 This is even more so the case in archaeological situations. We cannot know that 
a complex simulated pattern represents the same  specifi c  behaviors as an archaeo-
logical one with any measurable level of certainty. We can only have a relative one 
based on our subjective confi dence in it, that is, how well we think it represents the 
past or how convincing we think the rendering appears to be. But ultimately, an 
immersive reality-based re-creation can only be concerned with somewhat trivial 
sorts of patterns; like the placement of buildings, objects, trees, etc., or their stylistic 
appearances. This is because no larger explanatory questions are being asked. 
So the absence of a formal explanatory objective makes any attempt at statistical 

T.G. Whitley



143

validation of re-creation or immersive reality type simulations entirely pointless. 
They are meant only to be experienced, not to explain. 

 It might also be useful to think about this using a metaphor. Imagine that we are 
faced with a series of archaeological sites found along a stretch of highway that 
consist of wrecked and discarded automobile parts scattered around from a long 
range of time and from numerous makes and models of vehicle. Naturally some 
portions of the vehicles are not there; that is, the perishable portions, or those which 
have rusted away. Some portions were also reused and deposited in sites or junk-
yards elsewhere. What engine parts we fi nd are disarticulated, do not necessarily fi t 
between different makes and models, and no longer function. We usually cannot 
rebuild any single accurate automobile from these parts. 

 But even if there were enough pieces from a site (say a junkyard) to complete a 
single automobile, it would not be an example of a vehicle that actually had a use- 
life of its own. It would be a replication (despite the original parts) of a vehicle in 
the same way that Civil War reenactors are re-creating the Battle of Gettysburg, or 
a computerized weather system is a simulation of something that looks like a hur-
ricane. They are only intended to behave like the thing being simulated, or how we 
think it should behave. Our confi dence in how accurate that simulation is would be 
entirely reliant on the availability of other examples to which we could compare it. 
If we re-created a 1932 Packard, we could only have confi dence in its accuracy if 
we had another to compare it to. But if we had others to compare it to, then what 
purposes do we have for simulating it? 

 If we do re-create it and we have confi dence in its authenticity, it still tells us very 
little about how such an automobile was used in the past, who drove it, where they 
drove it, for how long, and why. All of these are questions many processual archae-
ologists may be interested in asking. If we drove the re-created Packard around 
ourselves it might give us insight into what it feels like to drive that vehicle, but it 
doesn’t tell us how past people felt while driving it or an objective insight into their 
contextual experience (only a subjective one). Such things might be the kinds of 
questions a post-processualist would ask. Without explanatory purpose the accuracy 
of simulations cannot be objectively evaluated, nor should they be. But a re- created 
Packard might give us insight into the operating parameters of such a vehicle and 
that might be very useful for developing explanatory objectives. I would consider 
this to be an aspect of data mining.   

8.4.2      Simulations as  Data Mining   

 In some cases the purpose of the simulation may be to explore the data and to 
develop new hypotheses. Again, no specifi c explanation is sought, only the potential 
to recognize spatial or other kinds of patterns and deduce from them hypotheses 
which may be tested further down the line. If so, this is essentially a form of data 
mining and is subject to the same kinds of biases and limitations of data mining in 
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general, such as overfi tting, pattern misinterpretation and issues of scale (Chen et al. 
 1996 ; Guo and Grossman  1999 ; Hastie et al.  2001 ; Nisbet et al.  2009 ). 

 One could argue that ABM and MAS (or even predictive modeling) are merely 
forms of data exploration or ways of experimenting with the data (Axelrod  2006 ; 
Phan and Varenne  2010 ; Tesfatsion and Judd  2006 ). That by using input data and 
simple decision rules, we can observe self-organizing behavior arise “organically” 
in the simulation. Variations in the input data will cause changes in the output to be 
observed, measured, and compared. Contrasting the observed output with what 
might be expected under other conditions will give us hypotheses for how past 
humans may have reacted in the same situations. 

 I agree that there is a lot of utility to this approach, and I believe it helps us to 
design hypotheses that bear further detailed examination. However, I also believe 
that there is a theoretical danger to simulating social systems in this way that cannot 
be understated. Digital simulations are  always  tiny abstractions of cultural dynam-
ics; they have to be because we cannot digitally simulate entire systems on a 1:1 
scale, nor can we always disentangle one system from another. But simple simula-
tions are likely to lead to building simple hypotheses, and too much abstraction will 
always underestimate human complexity. Simple hypotheses may be very useful in 
understanding a system or elaborating upon it, but there is an inherent danger in 
assuming that the simple abstraction accurately represents the complex original. 

 Since  ABM   and  MAS   simulations are also typically a closed system (i.e., it can-
not account for variables not included), it is inherently theoretically deterministic 
(Salmon  1998 , pp. 145–147). This means that we should not always expect to 
recognize unusual or unpredictable phenomena with the data included in the simu-
lation. Yet those may be the very things we are interested in. Sensitivity or uncer-
tainty analysis in this context may help to determine whether or not there is too 
much variability, or fl exibility, in our simulations but it will not necessarily lead 
toward a better fi t with archaeological signatures or their explanatory relationships. 
That is a completely separate question and a by-product of the theoretical transition 
between the specifi cs of the archaeological record and the generalities of a simu-
lated mechanism. Again, archaeological data is by defi nition limited in its extent, 
quality, and representation and there is only so much it will tell us. 

 Referring back to the metaphor, if we could simulate an internal combustion 
engine from piecing together specifi c bits and pieces of archaeological engine parts, 
it becomes something altogether different to extrapolate more generalized ideas 
about what they were doing with that engine. Taking the traditional material- 
oriented archaeological perspective, we would be limited to placing the simulation 
in context only with the materials and landscape that we found alongside the high-
way. A processual approach may be interested in understanding how market forces 
caused a change in the power and torque output of the engine, or its fuel consump-
tion over time. 

 Examining and experimenting with the parameters of the engine simulation 
alone, even in the context of the highway and larger landscape, may give very little 
insight into developing hypotheses about larger economic forces though. This may 
be despite the fact that we may very well be able to reconstruct the power and torque 
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of that particular engine. Likewise, a post-processual or phenomenological perspective 
may be interested in describing the experience of the wind in your hair as you drive 
the automobile down the highway. Again, these are not easily extrapolated from a 
simulation that examines only the archaeological parameters. 

 Using the reconstructed engine parameters as constraints in ABM or MAS simu-
lations may lead to the development of explanatory questions or perhaps ways in 
which we might approach the testing of explanatory questions. But despite the 
potential for organically developing interesting patterns, data, or other outputs from 
ABM or MAS simulations, unless addressing those explanatory questions is the 
intended outcome, we cannot know that past human societies acted in the same 
ways. We can only identify those outputs as potential alternative models for human 
behavior in the past that must then be verifi ed independently. Without a full under-
standing of the mechanisms by which the simulations operate or the limitations of 
the mathematical rules, principles, or formulas, there is no link between the inputs, 
the transformations, and their outputs. 

 Furthermore,  ABM   and  MAS   simulations typically treat the agents as having 
uniformly consistent access to information and always operating in the same ways. 
These ways may be guided by the operating rules, but those rules are almost always 
simplistic and applied homogenously between agents. There is generally no inclu-
sion of different perceptions, heterogeneous information between agents, erroneous 
assessments, maladaptive and neutral behaviors, or fuzzy choices. This does not 
mean a useful simulation always has to include these things. But when you consider 
that simulation by defi nition must be a simplifi ed abstraction of a much more com-
plex system, then it is clear that ABM is, at best, only a starting point for under-
standing past human behavior.   

8.4.3     Simulations as Explanatory Tools 

 Perhaps we want to use simulations to explain previously defi ned, or hypothesized, 
archaeological, or behavioral, spatial patterns. Here, a formal explanation is the 
required outcome; in the sense that the observed patterns were either expected or 
could be surmised, given the parameters of the simulation. Some explicit or implicit 
level of confi dence must be applicable to the results. If so, then we need to consider 
the nature of explanation and its relationship to causality, particularly with respect 
to its application in archaeology. 

 But how do we use archaeological simulations to explain? It cannot be said that 
“ explanation  ” is a concept that has been resolved. There is still a great deal of con-
fl ict over what constitutes suffi cient explanatory understanding in archaeology (e.g., 
Alexandri et al.  2013 ; Gómez  2013 ; Hodder  2012 ; Kohler  2012 ; Krieger  2012 ; 
Schiffer  2013 ; Verhagen and Whitley  2012 ). The primary schools of thought follow 
the notion that an explanation either (1) predicts the phenomena under examination, 
given behavioral rules or tendencies (cf. Binford  1965 ,  1972 ,  1977 ; Flannery  1968 ; 
Hill  1977 ; Salmon  1982 ; Watson et al.  1971 ) or (2) describes it in some manner, 
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such as from a sensory, pseudo-emic (phenomenological), or biased interpretive 
perspective (cf. Bender et al.  2007 ; Hodder  1989 ,  2012 ; Ingold  2007 ; Shanks  1992 ; 
Tilley  1990 ,  1991 ,  1994 ). 

 Neither approach suffi ciently deals with causality though. The critical compo-
nent is in testing. The positivist explanation is considered  refuted  by physical evi-
dence that disproves it (it is technically never verifi ed, but only generally accepted 
until proven otherwise). But statistical correlation with archaeological signatures is 
still thought of as the only valid method of testing in archaeology.  Correlation   is, 
though, completely distinct from, and may have no relation to, causality itself (Cox 
 1992 ; Pearl  2000 ; Salmon  1998 ). The phenomenological or “interpretive” 
  explanation   is untestable in a positivist framework, because it cannot be quantifi ed 
or statistically assessed, and thus is inherently inconsistent with a demonstrated 
logical causality. It must be accepted only qualitatively, that is, subjectively. Though 
there are certainly ways in which some phenomenological attributes can be exam-
ined quantitatively (e.g., Gillings  2009 ,  2012 ; Gillings et al.  1999 ,  2008 ; Llobera 
 1996 ,  2001 ,  2012 ; McEwan and Millican  2012 ) and perhaps may at some point be 
incorporated into mechanistic simulations or causal/mechanical explanations. 

 Sticking with the positivist perspective, though, simulation inputs may be derived 
either inductively (from datasets of previously known archaeological sites) or 
deductively (from theories about human behavior), but the output is still almost 
always assessed through pattern recognition, iteration, and comparison with the 
known archaeological record (e.g., Barceló  2012 ; Barton et al.  2010 ; Campillo et al. 
 2012 ; Flores et al.  2011 ; Griffi th et al.  2010 ; Janssen and Ostrom  2006 ; Kohler et al. 
 2012 ; Murphy  2012 ). Such tests usually rely on either explicit or implicit correla-
tive  evaluations   with material from the archaeological record: site patterns, sites, 
features, and artifact distributions. 

 But this again is the basis for testing all archaeological hypotheses in a positivist 
framework:  correlation with archaeological signatures .  Generalization and reduc-
tionism   in defi ning what those archaeological signatures actually represent is inher-
ent in that process. This is particularly so if the initial inputs were derived inductively. 
It implies a normative, material culture-based perspective on all past behaviors and 
human activity  and it assumes all of the preexisting biases by which that material 
was preserved and collected . Activity that does not create archaeological signatures 
is traditionally not considered  testable  from the perspective of hypothesis validation 
(or refutation) in a positivist framework  because there is nothing to measure in the 
archaeological record . 

 The problem is, however, that this approach confl ates correlation with causation, 
emphasizing the former and relying on a biased material culture that may not 
directly equate with the outputs of the simulated mechanism in the fi rst place. The 
quantifi cation of archaeological material does not directly equate with people, their 
behavior, or its intensity despite our tendency to treat it that way. How can we test 
a simulation by comparing it to something for which we are unsure of its meaning? 
It also confounds the specifi c (the archaeological record) with the general (the 
mechanisms that might explain it). If we want to test the general hypotheses, then 
the presence, nature, or location of specifi c phenomena in the archaeological record 
may, or may not, be appropriate data to support them. 
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 Ultimately using the archaeological record to validate a simulation often fails to 
explicitly provide for the causality that is a key theoretical implication of the use of 
agents in the overall simulation. The  archaeological materials   used to test the simu-
lation  must  be representative of the  same  causal processes that are built into the 
simulation itself, and those causal processes must be made explicit. This is not a 
component of the standard deductive-nomological (D-N)    or  inductive-statistical 
(I-S) models   of explanation (Hempel  1965 ; Hempel and Oppenheim  1948 ; Salmon 
 1971 ,  1984 ,  1990 ). 

 In contrast to the  D-N and I-S models  , a causal/mechanical model of scientifi c 
explanation (Salmon  1984 ,  1990 ,  1998 ) explicitly requires the delineation of cause- 
and- effect relationships as the lynchpin to explanation. Only by defi ning causality 
in the form of logical relationships can one explain the phenomena under analysis. 
Correlation may or may not exist with physical evidence, but it is in no way required 
to refute or validate the hypothesis. Instead, the correlation of two things must be 
shown to have a common cause (Sklar  2000 , p. 146). An explanation is considered 
on the basis of its probability and the  soundness  of those individual logical cause- 
and- effect relationships. 

 The nature of  quantitative simulations   in archaeology makes them extremely 
well suited to the purpose of defi ning these very logical relationships, and therefore 
a possible gateway to developing causal explanations. But they have to be considered 
from the perspective of the agents involved and have to incorporate dynamical 
 phenomena on different levels. There will always be a level of subjectivity to such 
explanations. But this is archaeology we are talking about, subjectivity is intrinsic 
to the discipline because, as already mentioned, the past is gone and cannot be re- 
created, only simulated. 

 The goal is to present logically sound, suffi cient, and comprehensive interpreta-
tions that other archaeologists can accept until something better comes along. 
 Digital simulations   are simply ways in which those ideas may be presented and 
examined in context. The simulations themselves are  logical  tests of the hypotheti-
cal causal relationships, but they cannot be independently validated merely by the 
presence or absence of archaeological material. There must be a causal relationship 
that is specifi ed. 

 When we simulate nonhuman biological organisms in an ABM or MAS, we 
generally do not bother with the concept of perception, choice, spatially limited 
knowledge, or group-based decisions. Instead, we tend to use something known as 
“pattern-oriented”  modeling   (Grimm et al.  2005 ). That technique is intended to gen-
eralize between theories of adaptive behavior and system complexity. This is not 
because we believe nonhumans do not make perception-based decisions, but 
because we are more interested in their  general  responses to the environment, not 
their individual ones. 

 In essence, we are trying to fi nd out what makes individual nonhuman organisms 
 similar  to each other and we assume their mechanistic decisions are biological 
imperatives, not cognitive, or preferential, ones. With human social simulations we 
are often more interested in what makes individuals, or groups of people,  different  
from each other. In other words, we may be more interested in  specifi c  behavioral 
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choices, not general patterns of them. The exception, naturally, tends to be with 
simulations of early hominid behavior. Simulating differences in behavior, though, 
requires thinking about the simulation’s structure in different ways and could have 
very real consequences in how it may be interpreted. 

 To use the  internal combustion engine metaphor   one last time, if we simulate the 
internal combustion engine (so to speak) of a biological system, we often want to 
understand how that engine works for all similar species or for a species in many 
different contexts. We are looking for generalizations regardless of the context. Or 
if the context affects the operation of the engine, understanding that may be an 
objective in itself. But the destination of the “automobile” is assumed to be procre-
ation and survival—it is embedded in the Darwinian framework. It is a generality, 
and observing the specifi c “places” that species (past or present) occur is intended 
to support, or test, hypotheses about those kinds of places. The occurrence of an 
individual, or group, can be equated with behavior because it is based on direct 
observation. The archaeological record is an  indirect  reference to human behavior, 
and therefore cannot be a statistical validation of it in the absence of a causal/mech-
anistic explanation for its presence. 

 For human systems we may be specifi cally interested in not just how the 
“engine” operates but specifi cally where the “automobile” was headed, how long it 
took to get there, why that route was chosen, and what kinds of music they played 
along the way. The “destinations” we are interested in are both specifi c (a place) 
and generalized (a kind of place). In fact, one could argue that the  processual per-
spective   in archaeology is merely a focusing on the generalities of humanity (the 
kinds of places we like to drive to), while the  post-processual perspective   is keyed 
to the specifi cs (where did past people actually drive to and what did they feel like 
getting there). 

 Neither is anything without the other and digital simulations must attempt to 
reconcile the articulation between the generalities of the simulated mechanism and 
the specifi cs of the archaeological record. This cannot be done without an under-
standing of their causal interplay. All of this is but one more perspective on the 
Middle Range Theory discussion (e.g., Binford  1977 ,  1982a ,  b ; Kosso  1991 ; Raab 
and Goodyear  1984 ; Tschauner  1996 ). Thus, done properly, simulation could 
potentially be Middle Range Theory in action.   

8.5     Conclusions 

 In summary, then, the purposes for why we might want to create a digital archaeo-
logical simulation are paramount to understanding how we should examine their 
accuracy. If we are interested only in creating an immersive simulation for the pur-
pose of pedagogy, then we are typically not presenting new ideas but depicting 
existing ones in a way that the viewer can get a sense of them. No explanatory 
objectives are implied and the entire simulation is purely subjective and qualitative. 
No statistical measures of accuracy or sensitivity can, or even should, be applied. 
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 If we want to explore the data we have on hand by experimenting with variable 
inputs, transformation routines and formulas, and comparing the outputs, then 
there may be many ways in which we can create useful simulations (particularly 
ABM or MAS ones). However, we need to be aware of what mechanisms these 
simulations are proxies for and why. If they are highly simplistic we may be imply-
ing much less complexity than may be suitable. Statistically evaluating the outputs 
may be possible in some situations but are very likely to be based on misleading 
correlative measures if cause-and-effect explanatory relationships are unclear. The 
typical focus of ABM and MAS modelers has been to evaluate them in the same 
ways in which we test simulations in natural systems and that may be completely 
missing the point. 

 Simulations that engage cognitive agency and that have defi ned explanatory 
objectives inherently invoke causality in the mechanism being examined. This 
means that  in addition to  any computational coherence and soundness, the simula-
tion must be logically consistent throughout with respect to issues of cause-and- 
effect. Any correlation with archaeological components must explicitly situate them 
within the causal/mechanical model and cannot be considered a validation, or refu-
tation, of the simulation in its absence. The simulation may predict a pattern of sites 
under given input conditions, but unless it can show that those sites are functionally 
representative of the behaviors being predicted, it is not an independent validation. 
Because such mechanisms are very complex and cannot be separated from other 
mechanisms in other systems, it makes them extremely diffi cult to simulate in a 
convincing manner. 

 Archaeological simulation then really should be focused on specifi c components 
of mechanistic complex decision-making, not its entirety. This means we cannot 
necessarily expect to predict archaeological signatures, since they may be the result 
of processes not considered, and are not proportionally indicative of human activity. 
But if the simulation logically resolves specifi c hypotheses of causality or illustrates 
the inputs, transformations, and outputs of a mechanism (which is always part of a 
larger one), then an explanation can be considered to have been proposed. Refuting 
that explanation would then require proposing alternate hypotheses that are also 
logically consistent, and can be shown to be more likely, or subjectively more 
acceptable. Likewise, implementing the full range of probable or possible input 
parameters for the constituent models within a simulation builds support for the 
ultimate conclusions. In this sense no one explanation is necessarily “proven” but 
all logically consistent alternatives can be compared and perhaps statistically evalu-
ated from a probability perspective. 

 This brings us back to the testing paradigm in archaeology: the complete reliance 
on archaeological signatures for all hypothesis building or testing. Given a complex 
simulation that provides a clear, logical, and consistent causal/mechanical explana-
tion for one (or more) phenomenon within a decision-making system, how can we 
fi nd something archaeological to indicate its probability? What we consider to be 
the archaeological record is fragmentary, a palimpsest of behaviors, sometimes 
 categorical in nature, and not directly proportional to human activity. How do we 
make a simulation relevant to what we do as fi eld archaeologists? Many times these 
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simulations use different scales of spatial data, operate on separate theoretical levels, 
and deal with diverse units of measure. How they are handled, what assumptions are 
made, and how the outputs feed back into each other are illustrated in different ways 
but often incompletely and without full disclosure. 

 When a full accounting of how each specifi c aspect of the simulation was devel-
oped (i.e., every decision criterion weighting, every transformation, and all of the 
agent input assumptions) is made, it becomes prohibitively large for publication or 
even understanding by the lay audience. It is exceedingly diffi cult to publish all of 
the functional attributes and operations of an internal combustion engine for exam-
ple. Instead, the reader must usually “take it on faith” that the interpretations are 
accurate, and have been logically assessed, are consistent, and do not suffer from 
errors of scale and what not. Ironically, the more of the process that is fully described, 
the less likely the lay audience is to accept the conclusions uncritically. 

 Archaeologists, in particular, seem to be more willing to accept vague nonspe-
cifi c generalized and qualitative models of human behavior than simulations based 
on concrete numerical assumptions and scale-dependent digital datasets. This is 
because there are very often too many arguments for alternative assumptions about 
the inputs for each model in the simulation. Faced with too much detail the reader 
is either overwhelmed by the information not knowing which assumptions to accept 
or not, or they are not confi dent in tracing all of the cause-and-effect relationships. 
It may be erroneously assumed that taking a vague and qualitative approach to 
archaeological model building avoids these pitfalls. 

 We inherently want to believe the simplest explanation possible. But mechanisms 
do not operate that way. They may be very complex, while their guiding principles 
are actually not. It is the obligation of the archaeologist to clarify both the opera-
tional structure of the mechanism and its guiding principles. An internal combustion 
engine is very complex to describe in detail, and it may have many different ways 
of operating. When we use digital simulations in archaeology we need to fully dis-
close all of these working parts in as much detail as we can. That does not mean that 
the lay audience will necessarily understand them all. But they should ultimately 
understand that an internal combustion engine operates in combination with other 
systems to facilitate movement of people or goods through the landscape for some 
purpose. The guiding principles can be simplifi ed yet they still have causal relation-
ships with the complex mechanisms by which they operate.     
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    Chapter 9   
 Uncertainties                     

       Sander     van der     Leeuw    

9.1           Introduction 

 The current volume is a very welcome addition to the literature on modeling. I very 
much agree with its authors and editors that far too little attention has been given in 
archaeology to the reduction, at the greatest extent possible, of the uncertainties that 
are generated by the activity of modeling itself, and more specifi cally by Agent- 
Based Modeling (ABM) or Micro-Simulation. The book attempts to fi ll some of 
that gap by discussing, in particular,  Sensitivity Analysis (SA)   as one approach to 
reduce and assess uncertainty generated by modeling. 

 But let us put that uncertainty, and more generally the kinds of modeling that the 
book is discussing, in a somewhat wider context. I would like to begin by referring 
to the work of Henri Atlan, a neurosurgeon and philosopher on cognition. In a rela-
tively unknown paper (Atlan  1992 , p. 58), he poses the question of the relationship 
between theories and observations in terms of the following example:

  Imagine fi ve traffi c lights, which individually can assume three states (red, orange, green). 
As a group, these traffi c lights can assume 3 5  = 243 states (combinations of colors). But the 
number of potential connections between these traffi c lights that could potentially explain 
the states that they can assume is in the order of 3 25 , that is, about a thousand billion. 

   Atlan draws an interesting conclusion from this, that—no matter what— any 
theory we might have  (in this case a schema or blueprint of connections between the 
lights)  is actually underdetermined by our observations , simply because we can 
never hope to make the thousand billion observations necessary to be able to 
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 systematically eliminate all confi gurations except one. Of course, the (huge) 
 uncertainty of any proposed theory can be reduced by having sequential observa-
tions, and by increasing the observation density, but we will never be able, Atlan 
argues, to have enough observations to analytically come up with the “correct” 
theory about the confi guration of connections. 

 The traffi c lights example constitutes a very simple and mechanical system. How 
much more valid is Atlan’s conclusion for the kind of very complex socio-natural 
systems we are actually studying in archaeology! All of us are aware of the fact that 
our ideas about the past are based on relatively scant data and therefore refl ect major 
uncertainties, but this example, to my mind, does something more: it gives a sense of 
the width of the gap involved—one of many hundreds of orders of magnitude. This 
raises some doubts about whether we can analytically reconstruct the past at all. 

 Yet, even with this limitation to our cognitive system, we are able as human beings 
to function relatively well in the environments we have chosen or created for our-
selves. Why? On the one hand because we do not, every time, try and create an 
appropriate theory to determine our actions. That has an important implication:  our 
theories are to a high degree determined by our prior experiences, applied without 
analytical thought . On the other hand, we learn in a feedback cycle that often begins 
with a “rough” or approximate response that is subsequently refi ned by experience. 
One could compare that to learning in a “fuzzy set”  approach   (e.g., Zadeh  1975 ). And 
that, in turn, points to an important justifi cation for modeling, the fact that it allows 
one to refi ne a theory by testing some of its implications “in silico,” which can then 
be compared with real-life observations, leading to the refi nement of the theory. 

 But there is another limitation to our capacity to know the “world out there”—the 
fact that our Short Term Working Memory, the part of our brain that processes infor-
mation to act, cannot deal with the interactions between more than a limited number 
of dimensions or sources of information (generally estimated at somewhere between 
six and eight; Read and van der Leeuw  2009 ,  2015 ). As a result, as individuals,  we 
always act upon a very heavily reduced perception of the dynamics we are involved 
in . But as our actions affect a much larger number of dimensions of those dynamics, 
they create many “unintended,” “unconsidered’ or “unanticipated” consequences. 
Over time, in the process of gaining knowledge about socio- environmental dynam-
ics, the result is that we extensively modify these dynamics so that our knowledge 
is in effect more and more inadequate. 

 Why am I pointing all this out? First of all, because I think that a general issue in 
dealing with uncertainty in archaeological modeling is that there are different kinds 
of uncertainty and that these are all too often lumped together, or at least not suffi -
ciently distinguished. Moreover, I would argue that in dealing with the uncertainties 
involved in our model building, we also need to consider (a) the ontological uncer-
tainties of our perception of the past, (b) the path-dependency of our model construc-
tion procedures that infl uences the interpretative choices that we make, and (c) the 
interaction between these two  factors  . The answers to these issues have relevance for 
the role and value of our ways of reducing uncertainty in our models. Fundamentally, 
the underlying dilemma could be framed as: “When we explain archaeological 
observations, are we explaining the past or the present?” That is a question that most 

S. van der Leeuw



159

archaeologists do not consider, probably because it leads one into uncharted territory 
that is more the domain of philosophers and historians, a terrain that is brilliantly 
mapped by Olivier ( 2011 ). In what follows, I have avoided the complexities of this 
body of literature by referring to the work of several historians who have exposed 
some of the issues with greater clarity than I could possibly have done. 

 And that brings me to an interesting aspect of the role of modeling in archaeol-
ogy in general, which is also observable in this book and has important implications 
for the way we do things as modelers. Traditionally,  prehistoric archaeology   is 
driven by our interest in discovering our  origins , whether as human beings, or as 
farmers, or as members of a particular group, society, or nation. In essence, there-
fore, the discipline  looks back  into the past; it takes an “ex post” approach to the 
relationship between past and present. But when designing and using models, 
archaeologists use an “ex ante”  approach        ,  looking forward  to try and understand 
how certain effects result from assumptions about initial conditions, structures, and 
dynamics of socio-natural processes. 

 This distinction has its echoes in the contrast between our traditional, reduction-
ist science and the relatively novel “Complex Systems” science of the last quarter 
of the last century (Mitchell  2011 ). This contrast has its roots in the beginnings of 
the natural sciences, under the auspices of the Royal Society in eighteenth century 
Britain. Its fundamental tenet was that every step of a scientifi c argument had to be 
proven. Now, as one can only prove things about the past and/or the present, but not 
about the future, this led to a science that fundamentally focused on the relationship 
between past and present, with an emphasis on explaining the present either in 
terms of a causal narrative or in terms of mathematical relationships.  Complex 
Systems science      does the opposite. It adopts an “ex ante” perspective, focusing on 
the emergence of novelty. As a discipline that focuses entirely on the (mostly dis-
tant) past, this approach has not received much attention from archaeology (but see 
van der Leeuw and McGlade  1997 ) and that is one of the reasons, in my opinion, for 
some of the issues encountered about uncertainty in modeling. 

 Contrary to what we were taught in the 1970s by certain philosophers of science 
(“explanation = prediction”; see Watson et al.  1971 ), the “ex  post     ” and the “ex ante” 
approaches are fundamentally different in their logic and assumptions. Whereas the 
former generally results in causal narratives that  reduce  the dimensionality of the 
phenomena studied beyond the reduction that is inherent in the limitations of our 
cognitive capacity, the latter aims to investigate multiple possibilities, probabilities, 
and trajectories in terms of uncertainties, in fact  enhancing  the number of dimen-
sions that are considered. It is as if while the discipline as a whole traditionally 
looks  against  the arrow of time, the modeler looks  along  that arrow. And that, in 
my mind, causes all kinds of confusions that we'd be better off knowing about and 
making explicit. 

 Each of these two approaches has its own way of dealing with uncertainties. In 
the former case (ex post), there are (a)  ontological   uncertainties (uncertainties about 
how the past will evolve that are inherent in the fact that any socio-environmental 
system is a complex, and therefore unpredictable, system) and (b) uncertainties that 
derive from the fact that our information about that  past   is fragmentary. Both kinds 
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of uncertainties are commingled and downplayed (or even ignored) in the “explana-
tory” causal narratives that link past and present. The fact that they are implicit is 
one of the important reasons that these uncertainties, in such a narrative, are not 
quantifi ed (or indeed quantifi able). The resulting narrative leans heavily on the 
path-dependency of our experience in interpreting the past. 

 In the case of the “ex ante” (modeling)  approach     , both the above uncertainties 
exist, of course, just like in the “ex post” case. The uncertainties deriving from the 
fragmentary nature of our data are not explicitly dealt with any differently than in 
the “ex post” case. But the models do attempt to explicate the ontological uncertain-
ties because they dynamically model the relationship between initial conditions and 
outcomes. And that adds data points and/or information that enable us in some cases 
to better match theory (the model) and the archaeological data and thus reduce, 
indirectly, the uncertainties due to the fragmentary archaeological record. But in the 
process, the modeling adds a third category of uncertainties—those that derive from 
the way in which the model was constructed. And those are the uncertainties that 
much of this book constructively tries to assess and reduce by applying SA and 
other techniques. 

 To conclude my argument thus far, I would argue that the uncertainties inherent 
in the fragmentary nature of our information about the past are such that we have no 
other way to reduce them than to collect more archaeological data, but these uncer-
tainties can never be reduced to the point that we can be confi dent about our vision 
of the past. In the historian Barraclough's words ( 1955 ) (cited in Carr  1967 , p. 8): 
“History, though based on facts, is, strictly speaking, not factual at all, but a series 
of accepted judgments.” Archaeology is, in my opinion, no different. 

 This fundamentally limits the accuracy of archaeological theories or models, 
and to my mind makes it in most instances relatively useless to try and create 
 dynamical models   that are thought to refl ect “past realities.” I do therefore side 
with those who see the use of modeling more in extrapolating the consequences of 
(dynamical) theories about the past, in order to clarify our thinking. Once dynami-
cal models (whether differential equation models or agent-based models) have 
served to clarify our thinking, we should then throw them away, keeping what we 
learned in order to make a new, better model. In archaeology, modeling helps us 
develop “tools for thought” (Collingwood  2014 ) rather than (decision-support 
style) models of reality. 

 In choosing this approach, a major  advantage   is that we can usually keep the 
models simple, and thus relatively easy to understand, so that we can limit the intro-
duction of technical uncertainties in the models. But such models generally only 
represent a (small) part of the dynamics involved, and one needs to juxtapose a number 
of models to gain a more encompassing perspective on the dynamics at hand. 
In effect, one assembles what I call a “bee's eye view,” referring to the fact that many 
insects have facetted eyes that simultaneously project slightly different perspectives 
on the retina, which are then assembled into a complete picture in the brain. 

 But let me be crystal clear, that does not in any way reduce the value of modeling 
in archaeology, on the contrary! Modeling is an essential tool in developing frag-
ments of “ex ante” understanding of past processes, helping us to deal with “the 
tension between a view of history having the centre of gravity in the past and a view 
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having the centre of gravity in the present” (Carr  1967 , p. 23). This tension has often 
been overlooked in archaeology. To incorporate  it      into our thinking, we should 
begin by according modeling its correct role, as a tool to further “ex ante” thinking, 
rather than perpetuate the confusion between “ex post” and “ex ante” approaches to 
understanding the past (van der Leeuw  2014 ). In a number of disciplines, this dif-
ference between “ex post” and “ex ante” thinking has by now penetrated much of 
the work being done, mainly under the impact of Complex Systems science. It is 
thus in my opinion an important advance, stimulated by the archaeological model-
ing community, that some archaeologists now explicitly focus on emergence, equi-
fi nality, and holistic approaches to our understanding of socio-environmental 
dynamics. But in this respect, archaeology still has some catching up to do. 

 Next, I want to briefl y highlight some points from the individual chapters of this 
volume, without pretense of completeness, and taking as a given that the general 
remarks made thus far are relevant to the issues raised in those chapters, but need no 
further attention here.  

9.2     Chapter Synthesis 

 One of the important technical issues raised by Brouwer Burg et al. in Chap.   1     is the 
need to strike a balance between, on the one hand, the important advantage of cou-
pling agent-based models with suffi ciently detailed geo-referenced models of the 
environmental conditions in which human decision-making plays, so that the agent- 
based models of behavior are constrained by reality; and on the other hand, the 
diffi culty—whether by coupling the two models via data transfer, or by subsuming 
one model into the other—of doing so in current modeling practice. Such models 
tend to become overly complex and diffi cult to assess. This point is a general one: 
we should keep our models simple and move away from constructing them ad hoc. 

 Brouwer Burg et al.’s chapter rightly draws attention to the need to develop a 
 modular modeling approach   such as is being done by the OpenABM site that is part 
of the CoMSES network. This has several advantages. For one, such modules, if 
applied in different circumstances as part of different models, are subjected to more 
rigorous testing than can be achieved by applying them to single situations. As 
importantly, this brings the modeling community closer together around a limited 
set of modeling routines, and will therefore favor discussions and collaborations. 

 Another important point made here is that most of the geographical approaches 
widely use ground truthing and various kinds of stratifi ed sampling methods to 
ground their (exploratory) models in the relevant environmental parameters. 
The best way to implement this in archaeology is to integrate repeated surveys of 
the environment with modeling so that an iterative learning process is set in motion 
that reduces, step by step, some of the uncertainties inherent in the landscape and 
other environmental circumstances. Stratifi cation of the sampling strategies on the 
basis of geography, environmental characteristics, and frequency of occurrence of 
archaeological remains then helps close the gap between models and reality, 
 especially if the sampling strategy is based on the accrual of novel information. 
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 A last point of this chapter that I would like to draw attention to is the importance 
of expert opinion, which is found to be more effective than quantitative analysis in 
ecological modeling, especially when models are relatively complex. This is clearly 
a consequence of the human capacity to deal with complex situations that cannot 
analytically be comprehended, and refers to prior experience as outlined at the 
beginning of this chapter. Due attention should be given to such expert opinion in 
our efforts to reduce uncertainties and noise. 

 One of the points emphasized by Lovis (Chap.   2    ) is the fact that ABMs are used 
both deductively and heuristically by archaeologists. Again—I cannot insist on this 
enough—both these uses are in themselves legitimate provided they are made 
explicit in the research design. All too often, there is a degree of confusion between 
inductive versus deductive strategies, ex-ante versus ex-post strategies or top-down 
(allocative) versus bottom-up (aggregative) strategies. All combinations of these 
approaches occur, but should explicitly be distinguished. The  structure   of ABMs (in 
terms of parameters of behavior that can be drawn from “real life”) makes them 
particularly suitable as bridges between theory and data (van der Leeuw  2004 ). 

 As a result, “The internal relationships of different model variables, and the 
nature of their interaction, can generally be defi ned as a multivariate suite of linked 
hypothesized ‘if: then’ statements. The internal model structure can therefore  some-
times  be couched as inferential hypotheses, but most often these are inductively 
originated exploratory devices querying the effects of changes in one or more char-
acteristic [variables] of a system on another, that is, operationalizing the exploratory 
model as a heuristic device.” (Lovis, Chap.   2    : 25). 

 Lovis continues: “Sensitivity Analysis is often associated with predictive compu-
tational models including ABMs, although it is arguable that it may be most strongly 
tied to theory-driven models engaged in exploration of system dynamics (Kyle 
Bocinsky, personal communication), as well as being a central component of deci-
sion allocations and outcomes in Artifi cial Intelligence (AI). It is one component of 
several verifi cation processes situated early in most research design and which col-
lectively result in model validation” (Lovis, Chap.   2    : 22). These processes are 
directed at assessing the scope of the following  uncertainties   inherent in the model 
construction (and not in the archaeological information or the dynamics of the sys-
tem): (1) input data errors, (2) “model choice,” and (3) potential fi ts to known input–
output data. They also relate directly to the choice of the model's resolution—which 
should on the one hand relate to the spatio- temporal scale of the data, and on the 
other to the scale of the phenomena questioned. 

 A last point to highlight from Lovis' chapter is the fact that many ABMs do not 
result in quantitative elements of prediction.  Qualitative conclusions  , however, can 
be as useful in making decisions about potential consequences of the modeled 
dynamics! But that does have consequences for SA, which is aimed at exact, quan-
titative replication between deterministic models and observed information. Lovis 
discusses these consequences in terms of Multi-Criteria Decision-Making, 
Exploratory Data Analysis, and Knowledge Discovery in Databases. All these tech-
niques are employed prior to the construction of the models to help select the appro-
priate information to be included in them. In that selection, archaeologists need to 
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be aware that not all environmental information can be captured based on uniformi-
tarian principles. It is important for both the environmental and the behavioral parts 
of the dynamic to “… systematically break down embedded decisions into their 
constituent logical units. Such precision as it relates to social behavioral rules can 
subsequently in turn be employed as bridging information for the formation pro-
cesses of the archaeological record and how that record will be manifested, that is, 
expectations of what the archaeological record should look like without background 
‘noise’ (Lovis, Chap.   2    , 30).” 

 Peeters and Romeijn (Chap.   3    ) make an interesting distinction between statisti-
cal uncertainties and model uncertainties. Model uncertainties are fundamental, 
concerning the conceptualization of agents' relationships to the environment. How 
do we assess and control the model uncertainties involved? The authors explore 
three approaches: (1) statistical model selection, (2) robustness analysis, and (3) the 
use of measures of informativeness and  surprise  . I want to go into their approach at 
some length because “… the uncertainty that pertains to the model itself does not 
normally come into view in […] statistical approaches” (Peeters and Romeijn, 
Chap.   3    , 37). Moreover, “… mistakes in the modeling assumptions have compara-
tively large effects on the model output (Peeters and Romeijn, Chap.   3    : 37).” Lastly, 
there is a potentially vicious circle involved, as the model that is confronted with the 
data is to a possibly large extent derived from the same data! Hence, a very different 
approach is needed. 

 In the fi rst approach,  statistical model selection     , one tries to fi t models to data, 
converting model uncertainty into statistical uncertainty, taking models as hypoth-
eses, and evaluating them according to their respective fi t with the data, or accord-
ing to other data-related quality criteria. However, the under-determination of our 
theories by our observations implies that there may be models that are completely 
different from the ones we have chosen as alternatives, which nevertheless might fi t 
the data, but are so far outside our conception of reality that they are not likely to be 
tested. Hence statistical testing is not enough. 

 Next, the authors try  robustness analysis  .    They conclude that “Most importantly, 
if we select a single model in response to model uncertainty, or average over a num-
ber of models, we seem to cover up something that may in fact be highly informa-
tive, namely that the models have certain qualitative features in common (Peeters & 
Romeijn Chap.   3    : 55).” True, but this focus on commonalities (and neglect of differ-
ences) reinforces the path-dependent nature of model selection. Rather than evaluat-
ing the nature and role of the models chosen and their  uncertainties against 
completely different models, it tests for the internal consistency of a set of related 
models and their sensitivity to changes in environmental conditions, but not for the 
ontological uncertainties of the models’ representation of reality. 

 What  robustness analysis      usefully does do is point to the fundamental mis-
match between the environmental and behavioral parts of the model, casting doubt 
on the modeling assumptions and inviting substantial revisions of the model. 
These revisions, however, have to come from the fi eld of theory, and there we are 
back to the minefi eld that I began this paper with: the inadequacy of our observa-
tions if we want to challenge prior experience in interpreting the data involved. 
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The suggestion of Peeters and Romeijn is interesting, though not very well 
 developed—to select for measures of informativeness and surprise, asking: “What 
do we learn from the model that adds new information to our knowledge?” which 
brings us back to the notion that models serve best as tools for learning rather than 
as representation of reality. 

 Brouwer Burg (Chap.   4    ) deals with  GIS-based modeling of archaeological 
dynamics   that incorporates empirically based paleo-ecological reconstructions. She 
explores the weaknesses and strengths of these techniques with regard to the propa-
gation of uncertainty and error and examines the utility of SA. Her model is a two- 
tiered, multi-criteria decision model, in which one tier inductively generates 
ecological models of past landscapes from empirical data, and the other explores the 
differential suitability of the landscape given a range of past behavioral processes, 
informed by ethnographic data from boreal and temperate forest hunter-gatherers. 
Thus, she hopes “to heuristically investigate the many different natural and cultural 
parameters that consciously and unconsciously affect socio-natural behavioral pro-
cesses.” (Brouwer Burg, Chap.   4    : 63). 

 The main weaknesses of the model are fi rst its static and additive nature so that 
initial errors in geographical model defi nition are propagated and compounded by 
layers concerning the vegetation, animal life, etc. As a result, there is important 
error propagation when moving from the static to the dynamic version of the model. 
Other uncertainties are introduced in the assumptions and choices detailing model 
construction. In this case, these were identifi ed as the more likely location of uncer-
tainty production. Thirdly, the scarcity and survival bias of archaeological data 
introduces further uncertainties in ground truthing. 

 On the other hand, this approach allows for more precise detailing of the envi-
ronmental data than  ABM   does, and thus for improved testing of particular models 
of socio-environmental interactions. Potentially, this approach can provide a fi rm 
and relatively accurate foundation upon which to model nuanced nonlinear behav-
ioral processes of hunter-gatherers, as well as serve heuristic purposes. 

 Interestingly, the model’s hierarchical,  multi-criteria approach   elaborates four 
orders of parameters, including (1) the most basic model inputs such as suitability 
distributions of fauna, themselves based on the parameters of food distribution and 
cover/shelter, (2) the parameters derived from the above that partially underpin 
decision-making criteria for resource acquisition choices, (3) parameters based 
more concretely on the presence/absence of landscape features, and (4) 
 decision- making criteria for settlement choices given a selected strategy for resource 
acquisition and mobility. 

 My main regret on this paper is that it does not consider the uncertainties involved 
in creating decision trees modeling the populations’ criteria determining their 
behavior. That is the elephant in the room—the major challenge that we are now 
facing.  We need to fi nd ways to shift from an environmentally constrained perspec-
tive to a human-constrained one because, in the end, humans defi ne their environ-
ments, the challenges they observe in them as well as the opportunities they afford 
them, and the ways they interact with them . That involves thinking about a 
 completely different set of uncertainties! 
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 To some extent, this issue is approached in the next chapter (Chap.   5    ) by Jon 
Carroll, who looks at uncertainties in building ABM models and thus adopts an “ex 
ante”  perspective   focusing on the emergence of behavior rather than the “ex post” 
perspectives on the past that underpinned the chapters so far that focused on explain-
ing observed behavior. It will not surprise those that know me a little better that I favor 
such an approach as it enables us not only to learn from the past about the present 
(= explaining the present) but also to learn from both past and present  for the future . 

 The role of modeling is thus different—it encourages the researcher to pose 
questions that can only be explored through simulation. In this case, that concerns 
different ideas about communication and information transfer that might explain 
different rates of cultural transmission. The author does this by exploring links 
between individuals, geography, and aggregation. In the description of the model, 
one immediately notices a major advantage of this approach: it can assign to each 
individual rules drawn from real life that can be understood without either statistics 
or complex reasoning. Moreover, the fact that the model is driven bottom-up by 
interaction between individuals enables it to generate unexpected patterns rather 
than focus on the explanation of imputed patterns. 

 The way in which the author approaches uncertainties and  verifi cation      is also very 
different—it moves from code verifi cation to ensure that the model would do what it 
was intended, to a form of SA aiming to see if the performance of the model is sensi-
tive to the assumptions made in building it. That stage serves to identify nonlineari-
ties in the model that could be caused by unintended interactions between different 
feedback loops, but could also be part of the intended behavior of the model. The 
fi nal phase of this process is validation, evaluating whether the model approximates 
a realistic target behavior. This is where the degree of abstraction in the model 
becomes important; if the model is too complex (with too much detail to approximate 
“reality”), validation is almost impossible due to the large number of uncertainties. 

 Carroll concludes “… sensitivity analysis is included as part of the development 
process, providing an enhanced understanding of model behaviors that might other-
wise go unnoticed, and this has resulted in greater understanding of the explanatory 
capabilities of computational methods such as ABM.” (Chap.   5    : 89). 

 Watts (Chap.   6    ) focuses on the quantitative aspect of dealing with uncertainties 
in ABMs: How many time steps? How many simulations? How many agents? Often 
these topics are dealt with on the basis of expediency, but that invalidates the fact 
that there may be aspects of the dynamics themselves (and thus of the results) that 
are impacted by choices in these domains. In particular, such scale questions should 
be included in the  verifi cation and validation phases   of ABMs because they are 
fundamental structural features of all models. Moreover, they have the potential of 
economizing the collection of data from large simulation models. 

 Watts argues that “… storing simulation output data in a matrix (often a similarity 
matrix comparing the agents or aggregates of agents at different scales), and calcu-
lating correlations between the matrices with Mantel tests […] is a useful way to 
summarize similarities between simulations that have a large amount of output from 
many different agents or over long simulations” (Watts Chap.   6    : 93). This will give 
a sense of how long a simulation has to run, or how many simulations are necessary 
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before the amount of information acquired by each new time step or run levels off, 
an indication that longer or more is not always helpful. Thus it enables one to make 
data-driven decisions about sampling strategies, including about how many agents 
should fi gure into the model, for example. 

 In Chap.   7    , White moves in a similar direction, but focuses on one, more specifi c, 
relationship, that between “demographic characteristics and the strength of the pop-
ulation stabilizing mechanism in a model  hunter-gatherer system   (White Chap.   7    : 
113).” This is achieved by using an ABM model so that the outcome is an emergent 
feature of the parameters of the model, in this case individual interactions and deci-
sions, combined with stochastic processes such as the probability of death or the 
fertility rate. In the model, “… experimental data were generated to explore the 
relationships between the strength of the mortality-based feedback mechanism and 
a variety of demographic outcomes” (White Chap.   7    : 121). 

 A SA was then done that related the  mortality-based feedback mechanism   to the 
demographic characteristics of the population, showing in particular that a stronger 
feedback causes higher variability in small-scale populations. But “… the summary 
results from the experiments do not allow extensive investigation of how the vari-
ous demographic outcomes are related in small populations. There are weak/moder-
ate correlations among mean household size, adult mortality, male age at marriage, 
and the percentage of polygynous marriage but further work will be required to 
understand the specifi c cause-effect relationships that drive these correlations 
(White Chap.   7    : 129).” The lesson from the project is that initially unexpected but 
apparently realistic results can emerge from the SA of models. 

 As behooves a concluding chapter (Chap.   8    ), Whitley looks more in general at the 
relationship between archaeological simulation, reality, and testing. He carefully 
establishes the fact that archaeological simulations involve a cognitive dimension 
that refl ects on the modeler’s attempt to recreate ancient decision- makin  g. From this 
follow a number of assumptions. These derive directly from Atlan’s (1992) idea that 
our perception and decision-making are underdetermined by our observations and 
overdetermined by prior experience, asserting that decision-making is never ad hoc, 
but implies a systematic framework, within which decisions are made by an iterative 
process or mechanism that involves learning and improvement. 

 The chapter then introduces the interesting concept of “ decision topology  ,” refer-
ring to the search space within which individual decisions are made. Such decision 
topologies are impacted by communication and information processing between 
individuals and thus by their proximity (both spatial and non-spatial), and by the 
ways in which social (rather than cultural!) groupings are defi ned. But even within 
such groupings, there is place for equifi nality, as people may arrive at the same 
conclusions by following different paths. Making decisions involves choosing 
between different alternatives within the topology, based on relative probabilities, 
and thus on multiple inputs. In evaluating those alternatives, the perspective of the 
decision-maker (agent) is the one to be modeled. This perspective will be contex-
tual, often incomplete or even inaccurate. To model decisions in a computer simula-
tion, they have to be quantifi ed, even when they are originally analog. 
Decision-making is best described by Bayesian functions, according to the 
weighted-additive defi nition. 
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 The author next asks: “What is the purpose of our simulations?” Is it recreation 
of some aspect of the past, immersing the modeler in that past so that she can explore 
it? Or is the purpose to explore the data to develop new hypotheses or explain previ-
ously defi ned, or hypothesized, archaeological or behavioral spatial patterns? In that 
case, the modeling serves as a kind of data-mining, generating new data from among 
the inputs of the model. 

 From my point of view, the most interesting use of simulations is, however, to 
explain previously defi ned or hypothesized archaeological or behavioral  patterns  . 
Here, a formal explanation is the required outcome in the sense that the observed 
patterns were either expected, or could be surmised, given the parameters of the 
simulation. Some explicit or implicit level of confi dence must be applicable to the 
results. If so, then we need to consider the nature of explanation and its relationship 
to causality, particularly with respect to its application in archaeology. 

 I have argued earlier that I do not follow either of the two dominant schools of 
thought on explanation. Explanation does not in itself predict, nor is it suffi cient to 
describe, the phenomena concerned in a way that appeals to one’s sensory, phenom-
enological, or personally biased perspective. Whitley agrees, but adduces very 
 different, interesting arguments:

  The critical component is in testing. The  positivist explanation   is considered  refuted  by 
physical evidence that disproves it (it is technically never verifi ed, but only generally 
accepted until proven otherwise). But statistical correlation with archaeological signatures 
is still thought of as the only valid method of testing in archaeology.  Correlation   is, though, 
completely distinct from, and may have no relation to, causality itself […]. The phenome-
nological or “interpretive”  explanation   is untestable in a positivist framework, because it 
cannot be quantifi ed or statistically assessed, and thus is inherently inconsistent with a 
demonstrated logical causality. It must be accepted only qualitatively, that is, subjectively 
(Whitley Chap.   8    : 146). 

   The problem here is that correlation is not the same as causation. As we saw in 
our example of traffi c lights, simulating the 243 states of the system in a correct 
manner does not at all provide us with an understanding of the actual causation of 
the simulated dynamic among the potential billions. 

 To be used in an explanatory manner, a  correlation   is considered on the basis of 
its probability and the soundness of its logical cause-and-effect relationships. This 
explicitly requires the delineation of cause-and-effect relationships as the lynchpin 
to explanation. Only by defi ning causality in the form of logical relationships can 
one explain the phenomena under analysis. But that causality must be seen to be 
that of the individual agents looking at the information available—it cannot be  our  
sense of causality. 

 How to achieve this? It seems to me that to move in that direction, we need to 
introduce the concept of “risk” and distinguish it from “uncertainty” and “variability.” 
In the economics literature, which deals with the society–environment interface, the 
three concepts are distinguished in the following manner.  Variability  is the natural 
state of a complex system, which has unpredictable dynamics that set the context 
within which any society must function. Whereas  uncertainty  deals with the percep-
tion of possible, but unknown, outcomes of this social–environmental dynamic, and 
 risk  explicitly relates uncertainty to loss, and therefore to human values whether 
material or social. 
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 Introducing risk and risk perception might shift the balance in  Whitley’s dilemma   
because it creates a new, nonrandom link among the cause-and-effect relationships 
perceived by the agents looking at the decision. It directly links their perception of the 
future to their perception of the past. That relationship can to some extent be quanti-
fi ed by relating the probabilities of uncertain outcomes to the damage that can be done 
to the investment in a society’s values. Moreover, in a more general sense, distinguish-
ing between these three terms, and using each in its appropriate context, would also 
help clarify the arguments in several of the other chapters in this volume.  

9.3     Conclusion 

 To conclude this long paper, I want to leave the reader with one of the biggest and 
most challenging questions facing us as archaeologists: understanding the transi-
tions between major kinds of social structures in ways that are more realistic than 
the simple evolutionary “progress” schemas that have been the staple of our educa-
tion as anthropologists and archaeologists. 

 That requires thinking in terms of “tipping points.” I have argued in an earlier 
paper ( 2012 ) directed at a sustainability audience, rather than archaeologists, that 
one could consider such tipping points as temporary incapacities of a society’s 
information-processing system to deal with the dynamics it is involved in. These 
incapacities occur when there is an accumulation of unintended consequences of 
that society’s earlier actions. The basic idea behind this is that over the long term, 
every solution that a society implements to deal with a challenge will trigger future 
challenges, which then need to be dealt with in turn. Due to the over-determination 
by past experience of the society’s ideas, over time the society thus builds an ever-
denser scaffolding structure of related and interacting institutions. In the process, it 
deals with the most frequent of the challenges fi rst, and in doing so, shifts its risk 
spectrum from frequent and known challenges to unknown challenges more distant 
in time. Ultimately, these unknown challenges will collide and create a situation in 
which the society does not know how to deal with all of the unintended conse-
quences simultaneously. It will experience that as a “crisis,” and try to overcome it 
by fundamentally changing its structures. From an external perspective, this crisis 
can be considered a “tipping point.” 

 How could modeling contribute to our understanding of this process? Once one 
sees models as tools to explicate the consequences of certain decisions, in principle 
they allow comparison between alternative decisions and their consequences, 
including so-called  unintended  ones. That would allow the comparison, from the 
perspective of the potential consequences of decisions, between options chosen and 
potentially available options that were not chosen. I realize that this may sound far-
fetched, especially after what I have said about the diffi culties of relating our visions 
of the past to the information that is available about it. But I would expect the intro-
duction of risk perception and the evaluation of it by comparing options chosen to 
those available but not chosen in terms of the consequences of these options to be 
an interesting challenge for the next generation of models.    

S. van der Leeuw
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