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Quantitative approaches and modelling techniques have played an increasingly
significant role in archaeology over the last few decades, as can be seen both
by their prominence in published research and in university courses. Despite this
popularity, there remains only a limited number of book-length treatments in
archaeology on these subjects (with the exception perhaps being general-purpose
GIS). ‘Quantitative Archaeology and Archaeological Modelling’ is a book series
that therefore responds to this need for (a) basic, methodologically transparent,
manuals for teaching at all levels, (b) good practice guides with a series of
reproducible case studies, and (c) higher-level extended discussions of bleeding
edge problems. This series is also intended to be interdisciplinary in the analytical
theory and method it fosters, international in its scope, datasets, contributors and
audience, and open to both deliberately novel and wellestablished approaches. We
look forward to developing a series of books, which support and promote a fast
growing sub-discipline in archaeology and invite authors to join us. We are grateful
to Springer and in particular to Teresa Kraus for making this series possible and
would like to thank members of our wider editorial board for their support so far:
Caitlin Buck, Dmitry Korobov, Kenneth Kvamme, Laure Nunninger, Silvia Polla,
Luke Premo, Karim Sadr and Hai Zhang.

Oliver Nakoinz, Andrew Bevan
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Preface

For landscape archaeology, modelling spatial aspects of human behaviour became
an essential topic in the recent years. Located at the disciplinary border between
geography and archaeology, modelling human behaviour in landscapes attracts
contributions from both sides and is based on an integration of both disciplines.
Although there is many research published on this topic and both geography and
archaeology possess some textbooks, there is no textbook addressing the specific
topic of modelling human behaviour in landscapes. This book attempts to fill this
gap.

The authors suffered from this lack of a textbook during university courses and
summer and winter schools in Kiel and Berlin. This was motivation enough to turn
the course scripts into a textbook, which offers some basic techniques and concepts.

The institutions at which we held our courses are an inspiring environment to
develop our concept. The Graduate School Human Development in Landscapes
(GSHDL) at the Christian-Albrechts-University of Kiel is a multidisciplinary
graduate school, focussed on the change of societies in the context of landscape.
The GSHDL judges modelling as an important approach for interdisciplinary
communication and meta-disciplinary research. The GSHDL aims to intensify
quantitative modelling in research as well as in teaching. This concept is well
embedded in the Christian-Albrechts-University of Kiel with its extensive expertise
in modelling in many disciplines, including the prehistoric archaeology where
quantitative modelling is in focus. The expertise in modelling in Kiel is bundled in
two areas. The first modelling focus is the GSHDL. The GSHDL approaches will be
continued in the Johanna Mestorf Academy of the Christian-Albrechts-University
of Kiel. The second one is a group of specialists around Bernd Thalheim from
computer sciences which develops a specific discourse, concepts and practices of
modelling.

The Excellence Cluster Topoi investigates the transformation of space and
knowledge in ancient civilisations. Its research is based on the expertise
concentrated in Berlin: besides the two universities Freie Universität Berlin
and Humboldt-Universität zu Berlin, the institutions Berlin-Brandenburgische
Akademie der Wissenschaften, Deutsches Archäologisches Institut, Max-Planck-
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x Preface

Institut für Wissenschaftsgeschichte and Stiftung Preußischer Kulturbesitz are
taking part in the cluster. Different research areas, consisting of a broad range of
scientists from physics and geosciences to archaeology, art and philosophy, target
the central terms space and knowledge from very different perspectives. In the
course of the Excellence Cluster Topoi, the Berliner Antike Kolleg and its graduate
school the Berlin Graduate School for Ancient Studies (BerGSAS) were founded.
Thanks to the funding of Topoi, it is possible to teach students the topics covered in
this book, e.g. in the doctoral programme ‘landscape archaeology and architecture’
of the graduate school.

This volume is designed as a 12-lecture textbook which can serve as a course
companion, self-teaching guide and handbook for basic concepts. Each lecture has
around 20 pages. The main concepts of the book can be summarised as:

• Focussed on principles and methods.
• Applied: the readers are enabled to execute the case studies themselves. The code

for open source software is provided in each chapter. The web page of the book
provides a digital version of the code as well as the data for the case studies
(http://dakni.github.io/mhbil/). While some analyse produce good results, other
examples sensitise for common trap falls. This is possible in a textbook, but
cannot be provided in research.

• Minimalistic: the content is presented as concise text in short chapters focussing
on the main points, with few details but extensive illustrations. This supports
an efficient understanding. The book focuses on rather simple methodological
concepts and principles which are located between simple statistics and advanced
modelling applications. A minimal exemplary data set which the reader gets to
know and understand very quickly helps focus on the concepts.

• Sustained and efficient by focusing on principles and methods: the relations
between different concepts and methods are described to ensure deeper under-
standing. Terminology from different traditions, concepts and paradigms helps
make connections. By focusing on concepts, we enable the reader to develop
more complex models by themselves. The book provides a basic modelling
terminology and tool kit to construct coherent modelling concepts. The code is
not efficient for computing but for didactic purposes. The text does not get stuck
in technical details but tries to convey the concepts with a didactic approach.

• Interdisciplinary: the content derives from different disciplines—mainly archae-
ology, geography, mathematics and statistics—and is seamlessly integrated in a
generalised introduction into spatial modelling. We persistently try to offer an
interdisciplinary perspective.

In addition to the didactic concept, we wish to address three points prior to
reading the book.

We are dedicated to an integrative paradigm. The past decades have been domi-
nated by a discussion about basic scientific paradigms. In archaeology among other
terms, ‘processual’ and ‘post-processual’ archaeology are opposed. We believe in
the complementarity of both approaches and try to integrate them as much as
possible. Although the concepts of modelling stand in a processual tradition, the

http://dakni.github.io/mhbil/


Preface xi

introduction of post-processual ideas increases the applicability and consistency
of the content considerably. From an analytical point of view, this integration is
seamless, but not from a terminological point of view, at least until today.

Proper research has a good balance of objective, data, theory and method
(ODTM balance). This book has didactic purposes and hence is allowed to focus on
methods and concepts only. Valid case studies have to consider data, source criticism
and methodological details. Theory and method have to be justified, and methods
have to be based on theory. This is neither possible nor required in a textbook.
Otherwise, we could not deal with simple methods, but have to adapt methods to
objective, data and theory. This would result in more complicated methods, more
extensive code and much more text which does not contribute to the understanding
of concepts. Please be aware of the different requirements of didactic purposes and
research.

The choice of methods is not arbitrary and should not be based on scientific
fashions. As indicated in the last paragraph, the choice of method has to be based
on objective, data and theory. In particular, theory and method have to be tightly
connected and adapted. This involves an adjustment to objectives. Let us imagine
two methods which produce different results of the same type. Since the two
methods produce different results, they solve different problems. If you cannot
decide which method is more suitable, the objective is not precise enough. You
have to propose a question that can be answered using the appropriate method and
which allows specific interpretations. If two methods apply, the question does not
allow a specific interpretation.

To make more sense of this, we invite you to read our book and share your
thought with us.

Kiel, Schleswig-Holstein, Germany Oliver Nakoinz
Berlin, Germany Daniel Knitter
October 2015
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Chapter 1
Introduction and Mathematics

1.1 Modelling in Archaeology and Geography

This introduction focuses on spatial models and concepts from geography that can
be applied in archaeology. The term model became important in the course of the
quantitative revolution in the late 1950s and 1960s. In geography, it was during
the old days of ‘New Geography’ that modelling and quantitative techniques were
components of the leading paradigm. One of the most important protagonists of
New Geography was Peter Haggett (e.g. [29]). Haggett introduced some of his ideas
about modelling to David L. Clarke (e.g. [11]), who became the most important
protagonist of the New Archaeology, which was the corresponding paradigm in
archaeology. Both New Geography and New Archaeology were terminated by post-
modern paradigms in the 1980s, since when no new paradigms have been proposed.
However, if we explore in details, we find a creeping paradigm change towards
an integrative approach that combines concepts from New Archaeology/Geography
with the post-modern approach. At present, quantitative analysis and modelling is
a prospering sub-discipline in geography as well as archaeology. The success of
Geographical Information Systems (GIS) [15] obviously plays an important role in
this process. In recent years, many articles and books have been produced on quan-
titative analysis and modelling, including a book series ‘Quantitative Archaeology
and Archaeological Modelling’, started with the present volume [5, 23, 40–42, 76].

The history of modelling in different disciplines is visible in the occurrence of the
keyword ‘model’ in the Library of Congress (Fig. 1.1). We find that the disciplines
have a different yet interrelated history. Although, there is a difference in the starting
points of modelling, the impact of post-modern concepts and the intensity of the
current fashion of modelling in the different disciplines, there is a general pattern.

© Springer International Publishing Switzerland 2016
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Fig. 1.1 Keyword ‘model’ in the Library of Congress (LoC) (data from 2012)

1.2 Two Cultures

The different degrees of adapting modelling concepts in the disciplines and some
theoretical wars are manifestations of the dynamics in the fields between the two
cultures. Since the Middle Ages, two main types of scholarly culture have emerged.
In the late nineteenth century, Dilthey [17] developed the concept of science
(‘Naturwissenschaften’), explaining the subject of research, as well as humanities
(‘Geisteswissenschaften’), understanding the subject of research. The subject of
research of the humanities is the acting human. Snow [72] showed that the different
methods and subjects of research are embedded in two cultures, whereby people
belonging to these different cultures are hardly able to communicate to each other.

An up-to-date concept of the two cultures based upon semiotics [60] finds that
humanities are disciplines dealing with the interpretation of pre-defined meaning. It
is acknowledged that subjects such as texts and drawings have a certain meaning.
The research process is a negotiation of the existing meaning to produce a new one.
Natural sciences are disciplines that formally analyse objects without pre-defined
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meaning and construct a frame of explanation. The research process constructs
meaning for the subjects, which can be particles or velocity, trees or cells. Using
these definitions of science and humanities, it is obvious that some disciplines
are indigenous inhabitants of both science and humanities; indeed, mathematics,
geography and archaeology belong to these hydride- or bridge-disciplines. For
example, archaeology deals with finds to which no meaning is attached; rather, the
original meaning is lost and in many cases it involves mere fantasy to reconstruct
the original meaning by hermeneutic contemplation. Hence, archaeology requires
scientific methods to answer questions from humanities. Quantitative methods and
New Archaeology of the 1960s and 1970s focused on the scientific part while post-
processual archaeology is focused on the humanities part. Since both concepts are
natural parts of one discipline in the border zone of science and humanities, it is
obvious that there is no paradigm change in the sense of Kuhn [45] but rather a
mere shift of the main focus. This fact levels some of the critiques in the war of
theories concerning these two perspectives.

1.3 Data

What data shall we use for our case studies? In the literature, there are many case
studies with different data. Some of the data are available, whereas others are not.
We prefer to use one set of data for all case studies. The advantage of this approach is
that we learn about many facets of the data sets and do not have to become familiar
with many sets of data. The disadvantage is that only one data set is not optimal
to exemplify different methods. Some strange results emerge. It is up to the reader
to apply the methods to more suitable data of their own. The case studies in this
introduction are minimal examples that do not always make sense for interpretation
but are demonstrative for the modelling concept and technique. This introduction
does not aim to present useful models but rather to show modelling concepts and
components that allow constructing elaborated models. In this sense, we do not
deliver a house but rather the bricks to build one.

As the area of interest, we choose the surrounding of the first Modelling Summer
School in Noer. This landscape at the shore of the Baltic Sea between Kiel and
Eckernförde in Schleswig-Holstein is called Dänischer Wohld. This landscape was
formed by glacial sediments during the Ice Age. In the early Middle Ages, this area
was in the border zone of the Danish empire. In fact, it was a kind of no-man’s land
south of the border at the Danevirke. Later, the Dänischer Wohld was located at the
southern part of the dukedom of Schleswig at the border to the dukedom of Holstein.
In general, the dukedom of Schleswig belonged to Denmark and the dukedom of
Holstein to Germany. Defining this area as a border zone in the late Middle Ages and
Modern Times is rather difficult due to the dynamic history of Schleswig-Holstein.
For example, during some times the dukedom of Holstein belonged to the king of
Denmark, who was simultaneously the duke of Holstein in the German empire.
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Fig. 1.2 Megalithic tombs from the Funnel Beaker culture in Dänischer Wohld

The data for the case study are from a Graduate School Human Development
in Landscapes (GSHDL) project. For our first two data sets, we do not have
information of the history of this area. These data sets contain monuments from the
Stone and Bronze Age [25, 58]. First, we have megalithic tombs from the Funnel
Beaker culture, which mainly date during the period between 3500 BC and 3000
BC (Fig. 1.2). The second data set contains Bronze Age burial mounds, which date
in the period from 1800 BC to 1100 BC (Fig. 1.3). These two data sets contain
nothing but locations of the monuments and hence they are represented by a set of
points. The third data set contains the dates of settlement foundation in the Middle
Ages. While details can be found in the literature [33, 47, 62], a list can be found
in the internet (www.de.wikipedia.org/wiki/Dänischer_Wohld). Here, an additional
information is attached to the location of the villages.

1.4 Source Criticism

The first question arising after the preparation of the data is whether the data are
suitable for the intended purpose. When analysing data, we make certain implicit or
explicit assumptions. Accordingly, we have to consider whether the data meet these
assumptions [20, pp. 255–258]; [36, pp. 98–101]; [57, Fig. 2]; [63, pp. 33–41].

Since all archaeological data collections are samples of the original objects, it
is important to establish whether the data are representative for the phenomenon
that they should represent. Are the samples randomly distributed? Are there filters
working that destroy the representativeness? The question whether finds were buried

www.de.wikipedia.org/wiki/D�nischer_Wohld
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Fig. 1.3 Bronze Age burial mounds in Dänischer Wohld

and building structures decayed to soil structures addresses the first step in the
reduction process of potential archaeological information. The burial practice and
building techniques have an important influence on the creation of archaeological
structures. Does the preservation of the finds and structures produce patterns
that are problematic for the intended investigation? Organic finds are usually not
preserved at dry conditions and they accumulate on wetland sites. Erosion can
destroy settlement structures at dynamic coasts, as well as hill-slopes. Was there
an alteration of the objects and structures caused by natural forces or cultural
practice? Corrosive processes and grave-robbery may be such examples. Which
archaeological finds and structures are discovered? There is a private collector in
one area who collects stone tools and a research project about fortified settlement
in an other area. What does the distribution of stone tools and fortifications tell us?
Settlements in floodplains are covered with colluvial layers. How likely is it to find
such a settlement? The next step relates to the data. Are all data recorded? Are there
errors in the recordings and how precise are those measurements? Do abstractions
and classification cause problems? What about the localisation? How exact are the
coordinates? The authenticity is also important. Objects, structures or data can be
forged. Is the information true? Another problem is dating: did the objects exist
at the same point in time or are they simply from the same period? Is the area of
interest suitable for our purpose? Are there different conditions? Settlements may
concentrate on good soil because intense work in this area revealed them or on
bad soils because agricultural activity has already destroyed them. In both cases the
settlements may have a distribution completely unrelated to the soil or contrary to
the observations. Are there edge effects? Do the borders of the research area cut
important entities?
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1.5 Key Terms

While the term ‘model’ will be addressed in the Chap. 2, some other key terms shall
be discussed here. Space, landscape and landscape archaeology appear to bear a
certain importance for our topic.

1.5.1 Space

While the meaning of ‘space’ seems obvious, this is not the case; indeed, there are
many concepts of space in use. ‘Absolute space’ is a concept that belongs to the
western tradition of science. Space is perceived as something that is different from
substance but bodies are always related to space. Even without substance space is in
existence. Space is a reference system that allows recording the place and movement
of bodies and comparing them for different bodies. Newton [61] brings it to the
point:

II. Absolute space, in its own nature, without relation to anything external, remains always
similar and immovable.

Space is a feature shared by all bodies, forces and many other physical quantities.
In fact, together with time, space is considered one of the most basic properties of
objects. In addition to the simple usage as a system of reference, space can be used
to connect entities; for example, we can use a map of soil types and plot settlements
on this map. Perhaps we find that settlements prefer a certain soil type. In this case,
we use space to establish a connection between the soil and settlement location.
This relationship is based upon the observation that both phenomena occur together
at the same place. Space ‘in its own right’ is not of interest, although it is essential
to establish the connection between two phenomena.

The concept of absolute space is formalised in mathematics. Aleksandrov [2]
defines it as follows:

A logical conceptual form (or structure) serving as a medium in which other forms and
some structures are realized.

There is a hierarchy of spaces. A topological space is constructed by a topology
that defines continuity, connectedness and neighbourhood, for example. Distances
are not defined. Topological spaces are the most general spaces in mathematics.
Metric spaces are constructed with a metric that defines distances. The metric is
often realised with a norm, which is the length of a vector and induces a vector
space. Hence, normed spaces (= vector spaces) are a subset of metric spaces, which
themselves are a subset of topological spaces [7].

The relative or relational space emerges with the objects populating the space.
This space is not ‘similar and immovable’ since it is constructed based upon the
relationship of ‘points’ in the space. Among the protagonists of a relative space,
Leibniz and Einstein seem to be the most famous. Einstein [21, 22] proposed the
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idea that there is a time–space continuum in which fast-moving objects can cause
a curved space. Newton’s relative space is not relative in this sense, since it is
considered part of the absolute space.

Both concepts of space are useful for certain purposes. Absolute space is the
basis for many analytical applications. Relational space is important when we
are interested in the meaning of spatial aspects. Here, again the dichotomies of
the “two cultures” take effect. Although both concepts are used in both cultures,
there is a certain preference. This preference is not by chance but rather is caused
by the research objectives, the research objects and the theories used. Some
examples may illustrate the adoption of concepts of space to disciplinary needs.
In anthropology and archaeological anthropology, a concept of space focused on
humans is preferred. Leroi-Gourhan [50] states that a human space is constructed
during a domestication of space:

Le fait humain par excellence est peut-etre moins la creation de l’outil que la domestication
du temps et de espace, c’est-a-dire la creation d’un temps et d’une espace humaine.

The philosopher and sociologist Lefebvre [48] proposed three interwoven kinds
of space:

• L’espace perçu: practical space in daily use,
• L’espace conçu: space of maps and orientation and
• L’espace vécu: space of imagination and symbols.

In architecture, the movement of people is important. Hillier and Hanson [32]
stressed that the organisation of space is based upon axial lines of movement and
reflects social structures. The space syntax theory is based upon this idea.

The geographical space emerges based upon of a certain property of objects and
their location, which allows defining relationships between these objects. Hence,
space is a parameter used to connect other parameters. Although geography is
not limited to this concept of absolute space, this concept establishes the basic
assumption of geography: objects are generally not randomly dispersed in space;
rather, they have a certain location, which induces a relationship to other objects.
Geography is interested in the wide range of spatial relationships that can be
established on differences in locations on the earth and in a certain scale range.
The objects that can be connected by space stem from the human sphere as well as
the natural sphere. The geographical space develops special potentials when both
spheres come together. One of the most influencing ideas was launched by Herder
in the eighteenth century. His idea was that cultural areas are connected to certain
ethnicities and culture in this area is influenced by natural conditions. This kind of
environmental determinism was further developed by Ritter and Ratzel. Vidal de
la Blanche stresses that humans shape their environment. From the perspective of
geographical space, both concepts are based upon a strong correlation of different
parameters connected by space, whereby only the cause and effect have changed.

There is a certain relationship between spatial structures and social structures,
which influences each other. Simmel [71] describes that social structures of power
are projected to space. For example, borders with their associated territories
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represent socio-political entities that exist a priori. In recent years, the dynamic
interrelationship has dominated the discussion. Löw [51, p. 167] even states that:

. . . spatial structures are, . . . , kinds of social structures.

We can adapt ideas from systems theory to understand the relationship between
society and space. Spacing is a technique to reduce social complexity, whereby a
complicated social structure is mapped on a simple yet suggestive spatial structure.
The spatial structure serves as a model or tool to manage the social world (see
Chap. 2 for modelling theory).

In fact, it is not as simple as stating that only structures of power are mapped to
space; rather, the mapping involves overlapping spheres whose spatial representa-
tions superpose each other. In addition, the spatial representations may be used in
different spheres and hence they can be ambiguous. The social sphere is concerned
with power in the actual community. The historical sphere contains ancestors and
historical events. The practical sphere with traditions and habits is focused on
stability and the reproduction of knowledge. The ritual sphere produces meaning
and the cultural sphere is concerned with standardisations and similarities. This list
is not complete, although it shows the different interests in spatial representations.

According to mathematical theories, spaces are spanned by certain functions
defining mathematical structures that are valid for the space in question. The
definition of distances is the dominant function used for this purpose. Based upon
this idea, we can define:

Definition 1.1. Disciplinary spaces are constructed by specific disciplinary dis-
tances:

A social space is constructed by social distances.
An economic space is constructed by economic distances.
A cultural space is constructed by cultural distances.
A geographic space is constructed by geodetic distances.

The geographic space plays a special role. Geography is a discipline working
on the spatial aspect of objects that is also used in other disciplines; for example,
the construction of social spaces is an important topic in geography. After all, the
geographical map remains the connecting element. Hence, we use the geodetic
distance to define the geographical space, not to disqualify social and economic
spaces in geography, but rather to minimise confusion. For example, economical
spaces can be superimposed on geographical spaces. We will use this powerful
concept in Chap. 8.

We now have a rough idea how to construct spaces, but what is in the space?
Which elements populate the space? There are as many answers as disciplines and
sub-disciplines dealing with space. Some formal characterisations of spatial repre-
sentations stand out among the multitude of spatial representations. In cartography,
point, line and area are the main elements [53]. From a GIS perspective, a geometric
characterisation based upon absolute space in which coordinates reference locations
is vital [79]. There are vector data, which can be points, lines and polygons, as well
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as raster data, which superimpose a pre-defined grid on the area of interest, defining
the spatial units to which information is assigned. Raster data can contain binary
data such as presence/absence data. These can be used for a rough representation
of vector data. In addition, rasters can represent fields that assign an interval-
scaled number to each grid cell. Vector data can roughly represent these fields with
contour lines. Up to a certain degree albeit not perfectly vector data and raster data
can represent each other. Additionally, it is important to mention networks, which
represent mathematical graphs and comprise edges and nodes. Although edges and
nodes are simply lines and points, a network employs certain topological rules.

Mark [53] uses three categories for the spatial relations of spatial entities:

• distance,
• direction and
• reference frame.

We have already discussed that distances—defined by norms and realising a
metric—are used for spanning a space in mathematics. From a geographic per-
spective this concept is adapted to the need of a relative concept of space, which
is essential for social geography and spatial sociology. In addition, a distance is
the basic concept to describe the relationship between two objects. To compare two
objects from the perspective of a third object, direction emerges in a relational space
as an other fundamental concept. Distances and directions have to be embedded
in a certain reference frame. This includes information about the measurements
and units of the disciplinary space as well as sometimes guides that are used as
a standard for referencing objects. These categories can be perceived as a relation
between spatial elements or a relational definition of space.

1.5.2 Landscape

Landscape is a complicated term, since it is a common term in both everyday
language and science. In a scientific sense, it is used especially by geographers
of the early twentieth century as a unity concept to characterise the interrelations
of certain phenomena or facts in a certain section of space. This understanding is
equivalent to terms like ‘area’ and ‘region’. Accordingly, landscape can be defined
as [68, p. 98]

(. . . ) an area made up of a distinct association of forms, both physical and cultural.

This concept determines the work of the geographer [68, p. 98]:

The geographer may describe the individual landscape as a type or possibly as a variant
from type, but always he has in mind the generic, and proceeds by comparison.

The term ‘landscape’ has an etymology dating back to the Middle Ages. The old
German ‘lantschaft’—first mentioned in 830 AD—had the meaning of a political
territory independent from the surrounding environment [49, p. 39]. In more recent
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history, this meaning changed from the politically defined region to a more limited,
geographically defined area without political implications. The other meaning is a
technical one, etymologically related to the Dutch term ‘landschap’ as a terminus
technicus for painters [24, p. 5]. In general, the term means a portion of land that
the eye can comprehend at a glance. Due to its roots in arts, the term did not mean
the view itself but rather the picture of it, i.e. the artist’s interpretation [8, p. 154].
Throughout time, the term has changed its meaning from a picture of the view to
the view itself.

In geography, it is usual to distinguish between physical and cultural landscape.
Gray [28] defines a landscape as the interrelation of a geological, biological and
cultural layer [28, p. 267]. This is closely related to Bobek and Schmithüsen’s [6]
perspective, perceiving landscape as a logical, hierarchically organised system [6].
Such a perspective allows thinking of a physical landscape as the ground where
society/humans/culture occurs. GIS technology caused a boom in this branch of
thinking and analysis since it allowed easy correlations and causation based upon
the layer concept (see [12, 46, 54] for more information and critical discussion).
All of those concepts are etic concepts with a scientific view from outside on the
landscape, which is perceived by people. Another concept, an emic concept, states
that a landscape is the result of people’s perception [4]. Following this approach, we
find that different procedures of processing the perception influence the result and
hence landscapes are highly context sensitive and depend upon the preceptor who
supplies the landscape elements with meaning.

The term cultural landscape dates back to Friedrich Ratzel and was introduced
to the English-speaking world by Carl O. Sauer in 1925, when it became central in
the work of the Berkeley school of geography [39, p. 21]; [78]. Sauer [68, p. 100]
characterises this approach as being process-oriented and holistic:

There is a strictly geographic way of thinking of culture; namely, as the impress of the
works of man upon the area. We may think of people as associated within and with an area,
as we may think of them as groups associated in descent or tradition, in the first case we
are thinking of culture as a geographic expression, composed of forms which are a part of
geographic phenomenology. In this view there is no place for a dualism of landscape.
. . .
The works of man express themselves in the cultural landscape. There may be a succession
of these landscapes with a succession of cultures. They are derived in each case from the
natural landscape, man expressing his place in nature as a distinct agent of modification.

In contrast to the old school of cultural geography, the ‘New Cultural Geography’
[56] has a focus on sociology and politics rather than the relationship between
people and landscape.

1.5.3 Landscape Archaeology

Landscape archaeology is a fancy term and one of the main interfaces between
archaeology and geography. ‘Landscape-archaeology’ is a very ambiguous term
that covers several meanings and is superimposed on a field of research with a
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long tradition. We will discuss different facets and ultimately aim to ascertain
a definition. First, we will address the term settlement archaeology, which has
two meanings. In a first place, it is the investigation of single settlements. While
this is not the place to resume this kind of research, some milestones may be
mentioned, including the first was the recognition of small stratigraphic structures.
In 1909, Schuchhardt [69] published the observation of post-holes in Haltern. In the
1930s, an extensive exploitation of sources began with the large-scale excavations
in Maiden Castle [80] and Haithabu [38]. Other disciplines like botany and zoology
were included in the investigations. The achievements of aerial photography and
geophysical prospection methods have also enhanced settlement archaeology, while
the refinement of stratigraphic methods was another enhancement [31]. The recent
decades have brought significant changes in documentation techniques, with GIS
and structure from motion (SFM).

The other type of settlement archaeology is concerned with the investigation
of settlement patterns and dynamics. This approach had to struggle with the term
‘Siedlungsarchäologie’, which was occupied by Kossinna [44] for rather an ethno-
graphic method. Nevertheless, the investigation of settlement patterns took place
and emancipated itself from the old term after Second World War. Eggers edited
the journal Archaeologia Geographica from 1950 to 1963, which was dedicated to
geographical methods in archaeology. The focus was on cartographic methods and
the interpretation of maps [19]. Source criticism for which Eggers remains famous
played an important role. The journal was stopped because in those days the research
focus was on large-scale excavations and the editing catalogues of archaeological
evidence rather than critical interpretations. It is not by accident that the protagonists
of settlement archaeology—which investigates single settlements on a large scale—
became dominant in the investigation of settlement patterns. For example, Jankuhn
[37] combined both concepts in his book on settlement archaeology. With its tight
connections to geography and modelling approaches, the New Archaeology brought
new concepts to settlement archaeology [11]. Christaller’s [14] central place theory
and Thünen’s [75] theory were introduced into archaeology in this context. Indeed,
modelling approaches including predictive modelling still play an important role
in settlement archaeology. Geo-archaeology is also an ambiguous term. It can
be interpreted as a discipline that investigates the history of the interrelationship
between humans and the environment [34]. For this variant, the term ‘environmental
archaeology’ is increasingly used [1]. The other variant is an application of methods
from geology, soil science and physical geography [10, 66], with a focus on
landscape reconstruction. It is obvious that both variants are closely connected.

Despite in principle being a part of cultural geography, the geography of cultures
is not a usual object of it. Research on spatial aspects of culture is integrated in
archaeological and ethnological research. The aforementioned ‘Siedlungsarchäolo-
gie’ from Kossinna [44], adapted by Childe [13], and the ‘Kulturkreislehre’ [26]
are famous yet problematic examples. Both are based upon wrong assumptions,
including the equating of culture and race [59]. Strongly influenced by ideologies,
politics and different scholarly perspective, the topic of spatial organisation of cul-
tures remained a virulent topic during the twentieth century. The formalistic concept
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Fig. 1.4 Venn diagram of terms

from Clarke [11]—in which culture is nothing but a certain level of classification—
solved some problems but neglected others. In particular, the connection to cultural
studies which became a dominating discipline during the cultural turn is barely
possible with this approach. The term ‘Archaeological Cultural Geography’ was
coined in 2013 [59] and refers to the investigation of spatial aspects of culture in
prehistoric times. It is understood as research focused on investigating structures of
interaction [60]. In contrast to previous research on this topic, some assumptions
are no longer used; for instance, concepts based upon the theory of culture from
Hansen [30] which allows integrating semiotic and formal approaches (see Chap. 8
for details).

Like most of the other terms, landscape archaeology is also an ambiguous term
(Fig. 1.4). The first variant is nothing but regional settlement archaeology. In Ger-
many, this terminology was introduced by Lüning [52]. ‘Landscape archaeology’
is a fashionable term and hence replaced the term ‘settlement archaeology’, which
is reduced to investigating single settlements. This kind of landscape archaeology
mainly uses an absolute space. The second type of landscape archaeology is
focused on the cultural landscape as a meaningful object. This is a concept
based upon semiotics which understands the cultural landscape as text [27]. This
variant is closely connected to ideas of the cultural turn [67] and ‘New Cultural
Geography’ [56]. A relational space plays an important role in this concept. A Venn
diagram may visualise this rather complicated terminological field of landscape
archaeology.

Landscape archaeology covers a field with many facets. The term is fuzzy,
although we could define crisp boundaries between the fields of research denoted by
aforementioned terms. The overlapping of terms maps the strong interrelationship
between different components and encourages real interdisciplinarity. All facets
themselves are highly interdisciplinary, although bricking up new borders between
landscape archaeologists and geo-archaeologists would contradict this effect. Over-
lapping terminology encourages connecting different approaches on a conceptual
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level. In this volume, we will find some examples of different terminological frames
that can be applied to certain phenomena. Each approach is concerned with a certain
facet of the phenomenon and hence each has its strengths and weaknesses. However,
a certain degree of precision in terminology is necessary, otherwise the terms would
not be able to carry any meaning [55]. There are some ideas for more concise
terminology, that do not abandon the benefits of overlapping. For example, Ingold
[35] defines ‘landscape’ as an introspective view (=emic) and ‘environment’ as an
external view (=etic) of the world.

At this point, we propose a holistic definition of landscape archaeology, which
respects the use of this term as umbrella for a wide range of applications. In order
to find a term for the emic landscape archaeology approach, we introduce the term
‘semiotic landscape archaeology’.

Definition 1.2. Landscape archaeology investigates the interrelationship of ani-
mated, inanimated, cultural, social and economic objects on a regional level in
space.

Specialised yet overlapping sub-disciplines are geo-archaeology, environmental
archaeology, settlement archaeology and semiotic landscape archaeology.

1.6 Mathematics

This is not an introduction to mathematical basics but rather a reminder of
knowledge that you already have or can obtain from sources cited in this text.
Hence, this section contains no explanations, proofs or applications of mathematical
structures or even explanations of all variables, but rather a brief list of the most
important mathematical structures and topics. As a general reference, we provide
[9], which is used if no other reference is given. If you find something that you do
not understand, please consult a textbook on the specific topic to learn more about
it.

1.6.1 Logic and Sets

Most implicitly and sometimes explicitly used, logic is the common basis of science.
Mathematical logic is a logic formalised according to mathematical rules, which is
the case for most logical systems. Among the logical systems, the predicate logic is
most popular. Quine [64, 65] may serve as a reference.

Propositions can be connected with the operators not, and, or, then and if and
only if.

:A A _ B A ^ B A ) B A , B (1.1)
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Fig. 1.5 Truth table A B ¬A A∨B A∧B A ⇒ B A ⇔ B
0 0 1 0 0 1 1
0 1 1 1 0 1 0
1 0 0 1 0 0 0
1 1 0 1 1 1 1

Fig. 1.6 A \ B

A B

Fig. 1.7 A [ B

A B

Since the truth of the compositions of propositions only depends on the truth of
the compositions, truth tables (Fig. 1.5) for all operators can be used. In this table, 0
is used for false and 1 for true.

Quantifiers define for which objects a proposition is valid. 8 means for all
elements while 9 means that there exists at least one element for which the
proposition is valid.

Since its development in the nineteenth century, set theory has become one of the
most essential tools in mathematics. A set is a collection of different objects, which
are called elements. The operators stating whether an element belongs to a set A are

a 2 A a 62 A (1.2)

An explicit and implicit definition of members is possible:

A D fa; b; cg B D faja > 5g (1.3)

Venn diagrams (Figs. 1.6 and 1.7) can be used to visualise the intersection and
union of subsets, for example. Figure 1.4 is also a kind of Venn diagram; rather, it
is simply the shape of the set representation, which is different from the following
example.
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1.6.2 Linear Algebra

Linear algebra is used in many branches of mathematics and other disciplines.
It is concerned with vector space and objects in vector spaces. One of the most
central topics in linear algebra is a system of linear equations. A linear equation is
something like

a1x1 C a2x2 C � � � C anxn D b (1.4)

While a’s .a1; a2; : : :/ are the coefficients and x the variables. The number of
additive terms is the degree of the equation. With one equation, it is possible to
solve one variable. In general, the degree of a system of linear equations gives
the number of equations necessary to solve the system. The solution can be found
with algebraic operations, which eliminate the variables step by step: a concept that
Gauss formalised in the early nineteenth century.

Another important construct used in linear algebra is the matrix, which is a
rectangular array of numbers:

Am;n D

0
BBB@

a1;1 a1;2 � � � a1;n
a2;1 a2;2 � � � a2;n
:::

:::
: : :

:::

am;1 am;2 � � � am;n

1
CCCA (1.5)

Several types of matrices and operators for the calculation with matrices are
defined. Addition, scalar multiplication and transposition are specially defined
operations for matrices. In addition, row operations can be used. A vector is a matrix
with one column:

a D

0
BBB@

a1
a2
:::

am

1
CCCA (1.6)

With these tools, we can simplify the notation of systems of linear equation. A is
the matrix of coefficients, x the vector of variables and b the vector containing the
results of the single calculations.

Ax D b (1.7)

A vector space is a set of vectors and some operations that satisfy some axioms,
such as associativity and commutativity of addition. Vectors can be considered
as containing coordinates. Although, the geometrical interpretation of vectors and
vector space is obvious, it is not limited to geometry. In this interpretation, the norm
of a vector is the geometrical length of the vector. A norm has to satisfy the norm
axioms:
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kxk � 0I kxk D 0 if and only if x D 0 (1.8)

k�xk D j�jkxk (1.9)

kx C yk D kxk C kyk (1.10)

As mentioned above, a norm is used to define a vector space. A frequently used
norm is the Euclidean norm:

kxk D
vuut

nX
iD1

xi
2 (1.11)

Matrices can hold information, which is used for a transformation—e.g. trans-
lation and rotation—of the coordinate system. In the case of such transformations,
eigenvectors are the invariant lines of the system.

1.6.3 Graph Theory

Many problems can be reduced to structures comprising points and lines. This is
the domain of graph theory [16]. A graph is a mathematical structure comprising
vertices (points) v and edges (lines) e (Figs. 1.8, 1.9, and 1.10).

G1 D .V;E/ V D fv1; v2; v3; v4; v5; v6; v7g E D fe1; e2; e3; e4; e5; e6; e7g
(1.12)

The edges connect two vertices and hence can be described as

E D ffv1; v2g; fv1; v3g; fv2; v4g; fv5; v2g; fv3; v6g; fv3; v7gg (1.13)

A path is a sequence of edges. A path is called a circle when the starting point
and the end point of a path with at least three edges is the same point. A graph
without circles is a tree. Final vertices in a tree are leafs. A path with edges where
the direction matters is a directed graph. In the case of a weighted graph, the edges
are qualified with values.

Fig. 1.8 G1: Graph with
circle

1

2 3

6 754
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Fig. 1.9 G2: Tree 1

2 3

6 754

Fig. 1.10 G3: Weighted and
directed graph

1

2 3

6 754

A graph is sufficiently defined with an edge list. Another representative of a
graph is an adjacency matrix. Each value in the matrix characterises an edge. For
directed graphs, the matrix is asymmetric and for weighted graphs, the values are
not restricted to 0 and 1.

G1 D

0
BBBBBBBBB@

0 1 1 0 0 0 0

1 0 0 1 1 0 0

1 0 0 0 0 1 1

0 1 0 0 0 0 0

0 1 0 0 0 1 0

0 0 1 0 0 1 0

0 0 1 0 0 0 0

1
CCCCCCCCCA

(1.14)

1.6.4 Statistics and Stochastic

Statistics is interested in the structures that are inherent in data [3, 18, 43, 70, 77].
The structures are represented by the distribution of values, which can belong to
different levels of measurement [73].

Nominal-scaled variables: Attributes are only names (red, blue)
Ordinal-scaled variables: Attributes can be ordered (A, B, C)
Interval-scaled variables: Distance is meaningful (1.5, 7.3)
Ratio-scaled variables: Absolute zero (0, 4.5)
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The data are usually given as tables with variables in columns and objects
in rows. We can distinguish two basic types of using statistics: the exploration,
description and characterisation of data is a very important task; while inferences—
which apply statistical tests—are used to establish certain structures in data.
Structures are patterns of the data that represent certain relationships between
elements in the data, but do not depend on specific data. The structure can remain
when the data change or a certain structure can be observed in different sets of data.
Very basic characterisations of univariate data comprising only one variable are the
arithmetic mean Nx, which is the expected value of a set of data values

Nx D 1

n

nX
iD1

xi (1.15)

and the standard deviation � , which is the square root of the variance and a measure
for the dispersion of data values.

� D
vuut 1

n � 1
nX

iD1
.xi � x/2 (1.16)

For bivariate data the correlation is a parameter that tells us how similar the
relative values of two variables for all objects are. The correlation coefficient
according to Pearson is

�X;Y D cov.X;Y/

�X�Y
(1.17)

Note that this coefficient is valid for populations and not for samples for which an
other variant is in use. If there is a correlation between two variables, the relationship
can be described by regression (see Chap. 5).

Variables may be representations of original variables, obscured by noise and
mixed relationships. In this case, it is important to know which original variables
are inherent in the data and which variance in data is produced by which variables.
Principle component analysis, correspondence analysis and factor analysis address
this problem, where we deal with the grouping, sorting and weighting of variables.

Methods for grouping objects can be found under the label of ‘cluster analysis’.
Partitioning cluster analyses produce different sets of objects that hierarchical
cluster analyses produce hierarchies of objects which can be split into sets of objects.
Fuzzy cluster analysis gives a degree of membership for the groups.

Inference statistics is interested in the probability of a certain event; hence,
probability is a key term in this field of statistics. In particular, the probability of the
data belonging to a certain distribution is an important topic. Empirical distributions
are compared to theoretical distributions whose properties are known. Normal
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or Gaussian distribution are well-known theoretical distributions. The probability
density of the normal distribution is

'.x; �; �/ D 1

�
p
2�

e� .x��/2

2�2 (1.18)

A special type of statistics—Bayesian statistics—is build upon the foundation of
the Bayes theorem:

P.AjB/ D P.BjA/P.A/

P.B/
(1.19)

The Bayes statistic implies the notion that probability is a certain expression
of knowledge. This term of probability is different from the classical definition of
probability in statistics, which is the relative frequency of random events.

1.7 Problems

1.1. How would you characterise your work in the field between the two cultures?

1.2. Please locate the area of our case study on a global map.

1.3. Which aspects have to be considered in source critiques?

1.4. Can you find types of spaces that are not mentioned in this brief summary?
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Chapter 2
Theory of Modelling

2.1 Models Are Everywhere

Models are rather frequent tools in science and even daily life. Models are a
representative of the reality with certain purposes: in children’s games, model cars
represent real cars and thus break down the concept of street traffic to a scope that is
manageable for children. There is an obvious difference between the use of the word
‘model’ in this example and that in the term ‘climate model’. There is a confusingly
wide range of models; indeed, the same word is used for a confusingly wide range
of concepts. Clarifying what is referred to as a model in this book is thus necessary
first step in our discussion of archaeological modelling. For this purpose, we will
provide some examples from geography and archaeology.

In 1798, Malthus [6, 14, 35, 57] proposed his theory of population growth.
According to his idea, populations will double every 25 years if provided with
perfect conditions. Nonetheless, Malthus also described certain limits; for instance,
war and disease reduce the population. Moreover, the food supply is limited and
if the population increases a certain extent called carrying capacity, a part of the
population will starve. The model postulates an exponential population growth with
a threshold at the carrying capacity. Verhulst’s logistic equation represents this
model [14]:

@d

@t
D rP.1 � P

C
/ (2.1)

In this equation, C stands for carrying capacity, r is the rate of population growth
and P represents the population.

Innovations can increase the carrying capacity. Although this model has been
criticised over the last two centuries, it proves a good basis for predicting population
dynamics.
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In the carrying capacity model, the location of people is important: if the
population size exceeds the carrying capacity, the population will cease to grow
further. Trade can compensate this effect to a certain degree, with urbanization
reflecting a good example. Nonetheless, urbanisation also reveals another flaw in the
model, namely that people are mobile and attracted to certain places. This problem
is addressed by the gravity model, which was adapted from physics to geography
and finally to archaeology. In 1686, Newton [39] defined the law of gravitation
with which the mutual influence of bodies of matter in motion can be explained
and predicted. Newton discovered that two bodies attract each other and that the
force of attraction is determined by their mass and the distance between them. For
the geographical problem of migration, Ravenstein [44] developed a similar model,
formulated as a proper socio-geographical law of gravitation by Stewart [47] in
1948. The idea is that two populations attract each other according to the number of
individuals belonging to the populations (p1; p2) and the distance (d) between them,
with the attraction F.

F D p1p2
d2

(2.2)

Gravitational laws cover a wide range of applications in geography-related fields
of research. Reilly’s [45] retail gravitational law is an example for economics, while
the work from Diachenko and Menotti [13] is an example of an archaeological
application.

There are many other models dealing with location and distance; for instance,
Christaller’s [11] central place model or Thünen’s model [51] is also interested in
distances. V. Thünen’s does not investigate the attraction but rather the influence
of land use in relation to the distance of the market places (Fig. 2.1). The land
use depends on the costs of bringing the products to the markets. For each place,
the landowner decides for the land use that allows the highest land rate. The land
rate (R) is defined by the equation

R D Y.p � c/ � YTd (2.3)

where Y is the yield per unit of land, p is the market price per unit of commodity,
c is the production expenses per unit of commodity, T the freight rate and d the
distance to the market. For each product with specific yields, prices and costs within
a certain range of distances can be found, where the rents are optimal. For example,
market gardening has an optimal distance to the market that is lower than the optimal
distance for field crops. If the characteristic land use for different distances are on a
map like a graph, the famous Thünen rings emerge.

In contrast to the explicit models mentioned above, many implicit or latent
models are also used, whereby we will provide some further examples from
archaeology and geography. Latent models are used as models, although they are
rather hidden. They are very powerful and influential but explicit discussions can
seldom be found. We will mention the four main latent models in archaeology [38].
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Fig. 2.1 Land rent (R) and land (crop 1 and crop 2) use in relation to the distance of the market
place (d), based upon Thünen

Objects with similar diagnostic features are subsumed under a certain type. This
classification allows making general statements like ‘all finds of type 1 date to
phase 4’ or ‘all finds of type 2 served function b’. However, a type is more than a
class; rather, it implies a certain interpretation, such as a chronological or functional
interpretation. For all objects of a certain type we assume a certain dating, function,
provenance or meaning. This is a simple yet powerful conceptual model.

Upon first glance, it does not seem to involve quantitative aspects. However,
this model is a very general one, used to develop other models with more specific
elements. For example, the types can be defined using numerical classification. Sub-
sequently, we can reduce the range of interpretations to chronological categories,
for example. Finally, we obtain the latent typo-chronological model, which assumes
that objects of the same type date to the same time and that similar objects date to
phases close to the original one. This model implies a metric for object similarity
and time. The measurement of similarity is based upon common features and allows
constituting a scale, a typological series. The most simple temporal metric uses
relative phases and the number of phases between two points in time as a measure of
the temporal distance. The different phases are defined by the presence of different
diagnostic types. Using the diagnostic-type-based chronology, the features of the
objects condensed in types can be plotted against time. The typo-chronological
model is nothing but a regression model with ordinal numbers, which maps the
relationship of two parameters. This model, which was developed in the nineteenth
century, has subsequently proved very successful—then uses the description of finds
only. It is a very sophisticated concept of how to turn formal descriptions of material
culture into history. The resulting chronologies proved very good, although some
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modifications of the relative chronology were necessary. A formalisation of the
process of developing typo-chronologies was developed by Sir William Matthew
Flinders Petrie [41], known as seriation.

A brief excursion will bring us to a once latent model of geography made explicit
by Tobler [52]. He states in his ‘first law of geography’ that

Everything is related to everything else, but near things are more related than distant things.

Obviously, this is an analogy to the typo-chronological model: rather than
‘similar’ he uses ‘related’ and instead of ‘time’ he uses ‘space’. This model is
the implicit foundation of interpolation—for example—where related also means
similar.

Now we turn to ‘culture’ which is another important concept in archaeology.
In fact, culture is an important term for many disciplines, including geography,
ethnology, sociology and cultural studies, although, the traditional archaeological
concept of culture is different from that in cultural studies. The much criticised, yet
still pervasive, traditional archaeological concept of culture states that people living
in a certain area possess the same ideas, the same types of artefacts and the same
style of decorations. The area delimited by the cultural border is thought to be
homogeneous. The traditional archaeological concept is obviously a simplification
that does not fit to reality and is incompatible with the term ‘culture’ in some
other disciplines. Despite this problem, this model can serve certain purposes; for
example, it allows observing a pattern in a vast amount of archaeological data and
connecting it to certain research questions. One example is the concept of Kossinna
[26] and Childe [7], who perceive cultures as actors of history. If you accept
some theoretical assumptions of this approach—although we do not—the traditional
archaeological concept of culture is a useful model. Another example is Lüning’s
[32] concept, which interprets cultures as zones of validity for chronological
systems. In this concept, the very simple model of culture makes sense; thus, the
degree of simplification fits perfectly to the task.

Despite being problematic, the traditional archaeological concept of culture is
implicitly present in many archaeological works, even of those who explicitly reject
the concept. It is very tempting to structure archaeological observations using this
concept as a first step of research. Sometimes the traditional concept is modified
to serve certain purposes; for instance, Clarke [9] accepts the cultural model as a
mere classification of a set of archaeological observations, although he insists upon
heterogeneity and fuzzy borders. While the traditional archaeological concept of
culture assumes homogeneity within cultural borders and particularly in small areas
and single settlements, another latent model assumes heterogeneity.

The social rank model assumes that the social rank in a certain community
corresponds to the wealth expressed by artefacts in a grave. Likewise, as a
simplification, this model allows exploring prehistoric societies by constructing
hypothetical social structures.

The latent models mainly comprise relationships between basic categories. These
relationships are described in a very simplified way which involves unrealistic
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assumptions and does not fit reality. However, the latent models are useful and
powerful due to the simplicity of the model, allowing a preliminary structuring of
the data. The threat lies in the fact that we mostly use latent models without being
aware of it and hence we cannot be cognizant of the natural limits of these models.

Explicit models of different disciplines form a contrast to the latent and implicit
models. Physics provides very instructive examples for understanding explicit
models. There are two models used to deal with light: one model describes light
as an electromagnetic wave, thus explaining interference, for instance; whereas
the other model describes light as a particle and is able to explain reflection and
diffraction. While these models can be used for different purposes, according to
quantum mechanics both particles and waves are possible at the same time, called
the wave-particle-duality of light. Hence, a universal model of light involves two
complementary parts, each of which describes certain properties of the phenomenon
but fails to describe others. It has recently been possible to observe both effects of
light at the same time [42].

Another well-known type of model in physics is atom models; for instance, the
Dalton model expresses that the element comprises similar small particles that are
called atoms and cannot be sub-divided any further. By contrast, the Bohr model
shows that atoms comprise of electrons, protons and neutrons and that protons and
neutrons form the nucleus, while the electrons are on certain orbits surrounding the
nucleus, representing different energy levels (Fig. 2.2). A change of orbit means a
change in energy level.

This rather simple model can explain many properties of matter. Despite the
fact that models with a higher predictability exist, it remains in use owing to its
simplicity.

In chemistry, the mechanical molecule model—introduced by Hofmann [23]—
is an example of a very influential chemical model. This model connects to
the atom model yet has its focus on another scale. Molecules are visualised
using balls and sticks: the balls represent the single atoms—which are coloured
differently according to the different elements—while the sticks represent the bonds.
Structure formulae like the balls-and-sticks model and chemical formulae in the
same manner as simple empirical formulae represent certain aspects of chemical
compounds. Different graphical representations of benzene—including the balls-
and-sticks model—exemplify models of chemical compounds (Fig. 2.3).

While the atom and the molecule models are focused on small details, climate
models deal with objects ranging between the regional and global [24, 29]. In fact,
this is a rather marginal difference. More importantly, climate models do not
comprise the description of simple relationships of some elements that allow
defining a structure very precisely. Climate models involve an enormous amount
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Fig. 2.3 Chemical benzene models

of data and some rules that define the behaviour of the climate system. Even with
this amount of data, climate models are less dependable than molecular models.
Nonetheless, this does not mean that molecular models are more precise. Simple
molecular models do not care for scales and angles, but they are suitable for
describing the chemical bonds between different types of atoms.

Differential equations define the interrelationship between different parameters
in climate models. Hence, it is possible to calculate the effect of a changing param-
eter. A set of differential equations and certain initial conditions allow calculating
the state of the climate system for any point in time. Numerical simulations are
used in climate models, whereby the result depends on the initial conditions. In
complex models like climate models, non-linear relationships, emergence from
certain patterns and butterfly effects—or more precisely, the sensitive dependence
on initial conditions—are possible. This means that the probability of the simulation
result declines with the increasing temporal distance to the starting point in time. We
know this effect from the daily weather forecast, which is not convincing for a longer
period, owing to butterfly effects. Initial conditions differing in small details can
cause completely different states of the system after a short period. One example of
climate models is atmospheric general circulation models (AGCM), which comprise
a number of differential equations.

Now we move on from the climate component of environment to a geological
component. Process-based models of coasts model the morphological change of
coastal areas [36]. These models couple different components concerned with
currents, waves and sediment transport. The models are simulations based upon
initial states and differential equations and are used similarly to the climate models.

Another example of simulations is cellular automata. The idea is to define a grid
and rules for the behaviour of the grid cells, whereby the value of a cell depends
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on the value of other cells. In an iteration, the values of all cells are calculated.
The complex interrelationship between cells can lead to a dynamic pattern, which
changes in every step of iteration. The famous ‘game of life’ is an application of
cellular automata developed by J. H. Conway in 1970 [10, 18]. Cells can be dead
or alive, whereby the state of a cell depends on the state of the surrounding cells.
During the simulation, characteristic patterns can emerge that cannot be deduced
from the rules. This is a characteristic of a complex system.

Agent-based modelling [16, 40] is related to cellular automata, though they allow
agents that preserve their identity while moving. We can think of cellular automata
as being a special kind of agent-based models where the agents are not allowed to
move but need to have different states. Agent-based models are defined by the rules
of behaviour of the individual agents and can produce emerging patterns. In case of
cellular automata as well as agent-based models, the study of complex systems is
the most interesting application. The bottom-up approach allows connecting certain
system properties and patterns to individual behaviour. In the case of simulations
that use system parameters, this is much more difficult.

The rules defined within an ABM are not a statement about the goals of the agent;
rather, they concern how the agent acts to reach a goal under specific conditions. The
homo economicus will purchase the cheapest good from a set of similar goods. This
principle is applied even if the goal is getting some rain by offering goods to certain
gods: if the gods possess the same power, the homo economicus will offer to the
god with the most moderate demands.

Despite the fact that the homo economicus is rather unrealistic as a general
concept, it remains in use for understanding economic mechanisms such as markets.
Indeed, certainly the homo economicus certainly remains a component of the
description of more realistic actors.

In biology, the development of populations is a common topic in which mod-
elling approaches are applied. In particular, the interrelationship between the
populations of two species is addressed by models and simulations. In this case, the
behaviour of coupled systems is estimated using differential equations. The most
famous example is the predator–prey model to which the Lotka–Volterra equations
[31, 55] are applied. The idea is that there is a growing population of prey, mostly
exemplified as rabbits, and a growing population of predators, such as wolves. The
growth of rabbits depends on the number of wolves, since the rabbits are the wolves’
food. On the other hand the wolves’ growth depends on the number of rabbits: the
more wolves there are, the lower the growth of the rabbit population, while the more
rabbits there are, the higher the growth of the wolf population. This interrelationship
can be modelled with two differential equations:

@x

@t
D ayx � bx (2.4)

@y

@t
D cy � dxy (2.5)
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Fig. 2.4 Typical development of the population of two species in the predator–prey model. Prey:
solid line; predator: dashed line

In the equations, x is the population of the predator and y the population of its
prey. The other parameters control the behaviour of the system. A usual system
behaviour is an alternating up and down of the populations where the predator shows
a certain delay (Fig. 2.4).

Epidemic models [50, 53] can serve as an example from medicine. The models
of animal epidemics have two main components: first, the process of the disease,
which includes—for instance—infected, infectious and diagnosed as characteristics
and second, the network of contact, which includes the paths of spread.

The final example is taken from social science and has been transferred to many
other disciplines. The concept of ideal types was proposed by Max Weber [56].
Ideal types are models of certain facts or objects that represent the extreme or pure
application of a single property or principle. Ideal types do not exist in reality but are
useful to understand the mechanisms and relationships of some phenomena. They
are based upon the one-sided accentuation of a certain point of view.

It seems that the term ‘ideal type’ is something very similar to the term ‘model’.
Ideal types appear to be a special type of model embedded in another terminological
framework.

While this brief collection of some models is naturally incomplete it offers a
notion of the range of different types of models. Obviously, there are many terms
of models in use. Is ‘model’ a fancy term without real content or a fuzzy ‘term’
covering a field of meanings rather than one actual meaning, or is there a general
term of ‘model’ that is varied in the different disciplines? The choice of successful
and traditional examples indicates that fanciness is at least not the major aspect
of the term ‘model’. After providing an overview of some models from different
disciplines, it is time to explore the meaning of the term ‘model’. Subsequently, we
will be able to apply the modelling concept in a scientific framework and discuss
basic methods used in landscape modelling.
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2.2 What Is a Model?

The term ‘modelling’ is becoming increasingly fashionable. An exploration of the
keyword ‘modelling’ in the Library of Congress reveals that modelling became pop-
ular in the 1960s. We should mention that ‘model’ was introduced into mathematics
(mathematical logic) in 1933 by the Polish logician Alfred Tarski [48]. His theory
became important in the 1950s during the course of the work on artificial languages
(for example, programming languages). Tarski’s English papers from the 1950s
certainly helped to distribute his ideas. In addition, one related process increased
the importance of the term ‘modelling’, namely the quantitative revolution that took
place in the 1950s and 1960s, which was enabled by the development of computer
systems.

In many disciplines, a peak in the 1970s marked the first hype of quantitative
modelling. In the 1980s, there was a break induced by post-modern theories. Since
the 1990s, the importance of ‘modelling’ has continuously increasing again.

We now know that the term ‘model’ is very fashionable, although we do not
know what a model is. Accordingly, we have to explore the meaning of ‘model’.
Tarski [48, pp. 11–12] defines it as:

A possible realisation in which all valid sentences of a theory T are satisfied is called a
model of T.

This is a definition from the mathematical logic and it hardly applies to all
disciplines. A very pragmatic and useful characterisation of ‘model’ comes from
Herbert Stachowiak [46], who claims that a model:

• is a mapping;
• is a reduction and
• is pragmatic.

We can use this as a first simple standard definition of model which might be
sufficient for some contexts and can be replaced by a more sophisticated definition,
if required:

Definition 2.1. A model is a simplified mapping for a special purpose.

The entire concept of Stachowiak—including his definition of ‘model’—is
embedded in system theories. Stachowiak explicit definition [46, pp. 322–323] is:

O1 and O2 are objects and O2 is a model of O1 for k in the time interval t regarding
a certain purpose Z if in t k:

1. is L-rational
2. performs a description P1 of O1

3. performs a description P2 of O2

4. performs a mapping of P1 on P2
5. performs a transcoding of P1 in P2
6. performs the substitution of O1 by O2
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7. performs certain operations on O2 in order to fulfil the purpose Z and which
transfer O2 to O2�

8. performs a description P2� of O2�
9. performs the reverse mapping of P2� on P1�

10. accepts P1� as the description of O1�
11. accepts the substitution of O1� by O2�
12. performs a recoding of P1 in P2 regarding P1� and P2�

Obviously, his characterisation seems more comprehensive than the formal
definition with the twelve conditions of determination.

Balzer [5] formulated a definition related to Tarski’s original definition from the
field of philosophy of science. Accordingly, a model:

• is a structure of a theory;
• complies with a set of hypotheses and
• is not a simple statement.

For Richard Chorley and Peter Haggett, a model is a ‘simplified and intelligible
picture of the world’ [8, p. 22]. This picture allows an overview by decomposing
the original into details and merging selected details again for a certain purpose.
Due to the selection, models have a limited range of applications. Chorley and
Haggett characterise models with some key terms. We have already mentioned
the selectiveness of models, which allows focusing on certain aspects, while they
are not valid for others. In addition, models are structured because they exploit
the connection between significant aspects of the real world. This also means that
models are an approximation of reality and an analogy of the real world. They are
suggestive because they suggest extension of the model and re-applicable because
they can be applied to other subsystems of the real world. The main function of
models can be seen in bridging between observation and theory. The validation of
models is based upon the fact that models are able to predict reality. Certain models
with a very high probability are called laws. Since models have a limited probability
and a limited range of application, validation based upon prediction becomes a key
feature.

In archaeology, David Clarke [9] was the first to deal with models explicitly. He
followed the ideas of his friend—the geographer Peter Haggett [8]—but focused
particularly on the models’ ability to predict. Clarke claims that models are best
characterised by:

• comprehensiveness;
• predictiveness;
• efficiency and
• accuracy.

It is obvious that the origin of this characterisation is the quantitative revolution of
the 1960s. In this context, models are a mapping of real-world processes, which
allows predicting system states for another moment.
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In the concept of Mahr [33, 34], the usage of models is the key to understanding
their nature. Mahr states that any object can be used as model if it is assumed that
it represents another object in terms of certain aspects. He speaks of ‘models for’
if the models are used as a template for another object and ‘models of’ if they map
or picture an other object. The virtual model is represented by one or more model
objects. In addition, this distinguishes between the perspective of producing and
applying a model. Mahr connects the viewpoint of induction with that of deduction.
The cargo of a model is the information, which is transferred from the inductive
component to the deductive component.

Frigg and Hartmann [17] distinguish between representational models of phe-
nomena and data and models of theory. Rather than providing a definition, they
describe certain types of models, among which are fictional objects, physical objects
and equations. It seems that these types of models are completely different things.
The conclusion of Frigg and Hartmann’s article [17] might serve as an example of
wide-spread opinion about the confused nature of models:

Models play an important role in science. But despite the fact that they have generated con-
siderable interest among philosophers, there remain significant lacunas in our understanding
of what models are and of how they work.

Björn Kralemann and Claas Lattmann [27, 28] adopt a semiotic approach,
claiming that models are a specific kind of sign, namely the icon. Charles Peirce
classifies signs into icons, symbols and indices: while an icon refers to its object
through similarity, an index refers through factual connection and a symbol through
a norm. This concept picks up the mapping function from Stachowiak.

According to Thalheim and Nissen [49], models are artefacts, representing a
part of the real world. These artefacts are used as tools for a certain purpose. The
relationship between the model and original is an analogy. A model is connected
to a community of practice, which developed and uses the model. This practice-
based concept of a model was developed with a bottom-up approach, using a large
number of specific modelling approaches in Kiel. The Kiel term of a model is
intended to cover a wide range of interdisciplinary applications. The process of
developing models and negotiating their use and meaning is perceived as something
like Wittgenstein’s language games. The community of practice defines the criteria
that enable the model to be accepted and used. The model as an instrument has to
be adequate, dependable and well-formed, whereby the latter term means that an
artefact serving as a model should obey some formal rules. Adequate models serve
the purpose defined by the objective. The analogy used in a model is significant
for the objective and the representation is more simple, clear, abstract, focused,
usable or intelligible than the original. For dependable models we have valid reasons
to believe that they will serve the purpose, whereby empiric evidence, coherency,
fallibility and stability are criteria for dependability.

Models can have different functions, most prominently including description,
explanation, optimisation, verification, representation, reflection and documenta-
tion. Application scenarios are distinguished from function, although they are
obviously related. Possible scenarios are explanation, designing, prediction and
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description. The background of a model is formed by paradigms, theories and
principles, which are called bases, on the one hand, as well as principles, culture and
common sense—called foundations—on the other. The science and art of modelling
is divided into three facets. A model itself—to repeat the definition—is an artefact
used as tool for a certain purpose. To model is an activity that covers the model
development, including the optimisation, merging, specialisation, generalisation and
presentation of models, as well as their usage. This facet is the practice embedded
in a certain culture. Modelling is a technique based upon certain principles and
tightly connected to the purpose. Although, this concept cannot be condensed in
one definition sentence, we will use this as the second—more elaborated—standard
concept of model.

2.3 Types of Models

There is a multitude of model classifications; accordingly, we can only discuss
a small, yet very important selection of classifications here. We will start with
a dichotomy that runs like a thread through the history of science: theory and
empiricism. It is necessary to distinguish between theoretical and empirical models
(Fig. 2.5). Theoretical models—also known as models for, ideal models, con-
structions or templates—apply principles. Observations are only used to set up
the model’s outline. The model is formed based upon theoretical considerations.
Theoretical models are related to the method of deduction. A theoretical model
allows determining what would be good, rather than what is really the case.

Empirical models map observations and they are also known as models of, real
models, reconstructions or mapping. Empirical models are related to the method of
induction and they allow us to describe what is, while we not understand why.

Fig. 2.5 Two main types of models and model comparison
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In most cases, a model is represented by a model object. This is a material
representation like a model railway, a constructional drawing or a person who sits for
a painter. Sometimes the model object simplifies the decision concerning whether
it is a theoretical or empirical model. In some cases, this is not so easy because it
depends on the degree of empirical and theoretical input, as well as the purpose of
the model. A model object can be used as a theoretical model for one purpose and
an empirical model for another. Regardless, we have to establish that our model
can be used in the intended way and thus serve the intended purpose. This is very
important because a misclassification leads to misinterpretation. A model that has
to be used as theoretical model due to the limited input of empirical data cannot be
used as an empirical model. We would misinterpret the model as a description of an
observation. A classical example is the usage of Thiessen polygons to find borders,
which is not possible since the method allows establishing where borders should be
drawn to minimise distances between related points, but not to establish the position
of real borders.

At this point, it seems that models have a very limited account of explanation.
Theoretical models are only a mapping of some ideas and empirical models
do nothing but duplicating the original with reduced characteristics. Knowledge
emerges when models are compared. If we find that a theoretical model fits to an
empirical model, then we can transfer the knowledge about principles and variables
from the theoretical model to the empirical model. We can denote the resulting
model as conclusive model or interpreted model. An interpreted model provides
us with the requirements to understand the object that we have modelled. This
step of comparison can be realised as direct comparison, calibration, verification
or validation.

We will only mention some of the other classifications. Models can be static or
dynamic, depending on time, as possible a variable. Moreover, models can be dis-
crete or continuous. Stochastic models deal with probability and contingency, while
deterministic models aim to be exact or unique. Models can aim at optimisation or
equilibrium. Models can be classified by mathematical techniques, namely linear
equations, non-linear equations or differential equations.

Kai Velten [54] developed the more elaborated three-dimensional SQM clas-
sification of models, whereby S, Q and M represent dimensions of the model
classification. We only mention the criteria of the dimensions:

S: system

• physical–conceptual
• natural–technical
• stochastic–deterministic
• continuous–discrete
• dimension
• field of application

Q: objectives

• phenomenological–mechanistic
• stationary–instationary
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• lumped–distributed
• direct–inverse
• research–management
• speculation–design
• scale

M: mathematical structure

• linear–non-linear
• analytical–numerical
• autonomous–non-autonomous
• continuous–discrete
• differential equations
• integral equations
• algebraic equations

Finally we have to deal with complexity. Models involve mapping a part of a
complex reality. Developing complexity is a research process stepping towards more
complex models. Higher complexity means:

• a better mapping of complex cases;
• sensitive measures of correspondence of empiric and theoretic models;
• an increasing amount of new knowledge and
• a pretentious demand for data and methods.

Reducing complexity is the concept of extracting relevant information from
models (Fig. 2.6). Models with reduced complexity can represent the significant
relations of a complex reality and hence have an analogical meaning as eigenvectors
for a square matrix.

We can distinguish between five types of models in a chain of developing
complexity.

1. Mapping models do nothing other than map an object. An example is archaeo-
logical documentation.

2. Emergent models allow producing new knowledge by comparing models.
3. Quantitative models introduce mathematical methods.
4. Cybernetic models allow reciprocal effects.
5. Complex models allow non-linear interdependency, memory-effects, emergent

phenomena in systems and other features.

Which degree of complexity is appropriate for a model depends on the research
question as well as the data. We have to find this optimal degree of complexity
for each application. In principle, one would develop a high degree of complexity
first and subsequently reduce the complexity until the optimal degree is reached. In
practice, the effort involved for this is often too great, whereby the researcher stops
at the assumed optimal degree of complexity.
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Fig. 2.6 Developing and
reducing complexity

2.4 Usage of Models

Modelling provides us with a specific terminological and conceptual framework that
is able to significantly reduce the complexity of the research process. Moreover,
models offer further benefits:

• increasing knowledge;
• transferring of knowledge;
• practising interdisciplinary research;
• handling complex data and problems and
• working at the cutting edge of research.

For the usage of models there are some rules of thumb that we denote as
directions of modelling. These guidelines aim to avoid pitfalls and increase the
quality of modelling, stating that one should consider:

• the purpose of models;
• the limit of model types;
• the complementarity of model types;
• the empirical verification of theoretical models and
• purposive developing and reducing complexity.

2.5 Models Between Theory and Method

Sometimes modelling is understood as the mere application of certain techniques,
although, we reject this perspective. Like all other methods—to keep this restriction
for a moment—a model is based upon a certain theory that serves to solve a problem.
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The concept of Thalheim and Nissen [49] makes clear that models include certain
theories, methods (for development and application) and objectives. In many cases,
data also has to be considered.

Theories are necessary to determine the parameters of the method and interpret
the results. The method connects objective, theory and data. The method has to be
appropriate for the specific data and the theory of the investigation and has help
answering the research question. The data has to be helpful for solving the problem
based upon theory and method. A fine-tuning of the four elements of objective,
theory, method and data is essential for the successful usage of methods, as well as
quantitative methods in general [43].

While many issues can be discussed without a reference to models and mod-
elling, the term ‘model’ provides a terminological framework that makes it more
comprehendible and efficient to discuss some points. In particular, the Kiel term of
model [49] offers a concept that can be used to develop a consistent background and
structure of an application.

2.6 Examples

We started this chapter by providing some examples to offer a potential notion of
models. Now we end this chapter with some examples to show the potential of
models in archaeology and geography. Some examples are directly linked to those
at the beginning of this chapter, although, by now the reader should have some
background knowledge on modelling and hence be able to interpret the examples in
a different way.

One of the most virulent topics in archaeology is the process known as
neolithisation. From a local to regional perspective, this is the transition from the
mesolithic to the neolithic way of life [22], which can be caused by external and
internal factors or a combination of both. From a supra-regional perspective, the
relationship between the time and location of the transition can be investigated and
modelled. The process is perceived as a diffusion. Diffusion models can describe the
movement of both people and cultural traits and they are used to describe different
phenomena. Fisher [15] developed the concept of the wave of advance for modelling
the spread of advantageous genes. Accordingly, Fisher published an equation that
has to be satisfied:

@p

@t
D k

@2p

@x2
C mp.1 � p/ (2.6)

In this equation, p is the frequency of a mutant gene, t the time, x a spatial
coordinate, m the intensity of selection and k the diffusion coefficient. A similar
equation was developed by Kolmogoroff et al. [25] and hence the equation is known
as the Fisher–Kolmogoroff–Petrovsky–Piscounoff or FKPP equation. Many other
authors have used this concept and in archaeology Ammerman and Cavalli-Sforza
[2, 3] adapted the idea to model neolithisation, proposing a similar equation:



2.6 Examples 39

@p

@t
D kp.1 � p

c
/ (2.7)

In this equation, k is the growth rate and c the maximal p-value, also known as
the carrying capacity.

The mentioned works allow an analytical solution that provides the frequency of
the new feature at a certain place and time. More recent articles employ simulations,
Bayesian inference or additional information like variable coefficients [1, 4, 30].

A similar diffusion process was developed by the geographer Torsten Häger-
strand [19, 20], who dedicated some of his work to modelling the diffusion of
innovation. Although the basic mechanism was similar to the wave-of-advance
model, Hägerstrand focused on other aspects. In particular, he does not assume a
uniform wave; rather, he also considers diffusion in networks. His work comprises
three major parts: empirical models of the diffusion of innovation, Monte Carlo
simulations and conceptual models of the process of diffusion. In contrast to the
wave-of-advance model, Hägerstrand is not interested in the arrival or dominance of
a certain innovation, but rather in the dynamics of the spread of innovation. Which
factors influence the spatial and temporal patterns of the diffusion of innovation?
Hägerstrand’s diffusion model still serves as the basis for further development [12].

The next example is based upon the predator–prey model and in fact it is an
extension of this classical model. The HANDY (human and nature dynamics)
model [37] aims to understand crises of populations and cultures. It starts with
a re-interpretation of the original predator–prey model. The human population
is interpreted as a predator while nature is interpreted as prey. In addition to
this ecological component, HANDY has an economical component, whereby the
population is divided into two parts: commons and elites. The elites are defined by
wealth and both groups have different consumption rates. In contrast to the predator–
prey model, HANDY comprises four differential equations:

@xC

@t
D ˇCxC � ˛CxC (2.8)

@xE

@t
D ˇExE � ˛ExE (2.9)

@y

@t
D �y.� � y/ � ıxCy (2.10)

@w

@t
D ıxCy � cC � cE (2.11)

In these equations, x is the human population, y the nature, w the wealth and c
the consumption. The indices E for elites and C for commons can qualify x and c.
Different scenarios can be applied to the model; for example, an egalitarian society,
equitable society and unequal society. These models—particularly when applied in
simulations—teach us about the relationships between the parameters used under
conditions of crises as well as stability.
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We return to the Thünen model to exemplify some of the details discussed above.
According to Stachowiak, a model is a reduced mapping for a certain purpose. The
purpose is obviously to discuss the main parameters that influence the land use in
relation to the distance to the market. The relationship between the land use and
distance is mapped and mainly comprises some equations concerning the rent for
different products and the maximisation of the rent. The reduction is the selection
of only a few parameters that seem to be significant for the topic. For instance,
topography which influences the transportational costs is excluded as well as other
markets.

From Haggett and Clarke’s perspective the Thünen model allows predicting land
use. Owing to the reduction, the accuracy of this model is rather low. The quality
of the Thünen model for prediction also depends on the scale employed. It might
produce a rough picture that is sufficient for some purposes, but it will definitely
not be useful for other purposes. From this perspective, the Thünen model seems
to be a weak model. However at this point we are making a mistake; namely, the
purpose of this model is not prediction but rather to ‘discuss the main parameters
which influence the land use in dependence of the distance’. We would be misusing
the model in applying it for prediction.

We can learn from Mahr [34] that it is a theoretical model. It might be based upon
empirical observations, although the model itself comprises a simple theoretical
rule concerning how to optimise land use. If we find that the theoretical model
matches the empirical observations, we learn that the theoretical rules also apply
to the empirical case; otherwise, parameters not included in the model might be
important or the optimisation is not intended, which is rather strange. In addition,
Mahr shows us that a model is represented by a model object. In the Thünen case,
the equations or the ideas that they express are the model, while the map with the
Thünen rings is the model object. It should be mentioned that using another metric
that uses another definition of distance is also possible; for instance, we could define
a distance that respects topography. The model would be the same, as would the map
of Thünen rings in the space spanned by the metric in use. However, we could also
plot the rings on a geographical map, whereby they would no longer be circles. This
example stresses the importance of the definition of space; indeed, we will connect
to this idea at several places in this volume.

From Thalheim and Nissen’s [49] perspective, the model is an artefact that
involves a set of equations. This artefact is used to represent the relationship between
land use and distance. From the above discussion, we have learned that it is an
adequate and well-formed model. Moreover, it is also dependable because the usage
in many textbooks shows that it successfully serves the aforementioned purpose.
Obviously, the Thünen model is more simple, clear, abstract, focused, usable and
intelligible than the original relationship of parameters of land use. We have already
seen that the function of a model matters, whereby the Thünen model holds limited
use for prediction. The major critique of this model can be explained by a shift in
function: while the original model was developed to explain a relationship, most
of the more recent geographical literature implicitly assumes that the model should
predict. The Thünen model is not accepted for use in prediction by the community
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of practice. At the same time the model is used for explaining a relationship, albeit
likewise not explicitly. The Thünen model is mostly described as the history of
research, serving in a hidden way to explain some basics and it is finely criticised
as being insufficient for prediction [21]. This phenomenon shows that models
are created in a kind of language game by a community of practice. Function,
paradigms, evaluation and other parameters can change, and a new version of a
model can be completely different to the original one. Sometimes it is useful to
return to the original version, given that the changing perspective may offer new
perspectives of the original model, which can help to better understand the topic.

2.7 Problems

2.1. Please discuss:

(a) Which is your preferred definition of model and why?
(b) What is the difference between an empirical and theoretical model?

2.2. Please classify some models that you already know according to the
following classes:

(a) empirical model, theoretical model
(b) SQM classification
(c) stochastic model, deterministic model, simulation
(d) five degrees of complexity

2.3. Please identify the models among the following list of objects and classify
them according to the classes from the last problem:

(a) chronological scheme with relative and absolute dates
(b) plate of types of ceramic vessels
(c) thin section of ceramic sherds
(d) gypsum reconstruction of a ceramic vessel
(e) digital 3D reconstruction of the same vessel
(f) digital 3D reconstruction of a landscape (elevation)
(g) seriation matrix of finds
(h) drawing of a profile of an excavation trench
(i) photography of the same profile
(j) soil sample from the same profile
(k) stratigraphic Harris-matrix of the layers of the same profile
(l) map of the ancient road system of a certain region

(m) agent-based model of ancient trade
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2.4. Please outline the benefits of models from the examples in this chapter from
your perspective.

2.5. Please list some properties of complex systems.

2.6. Can you find an example of the need for balancing theory, method, data and
research question based upon your own experience.
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Chapter 3
Software

3.1 Working with Command-Line Programs

Since this is an introduction to the basic ideas of modelling, we are bound to
use flexible yet simple software. Software with a scripting language offers the
most flexibility. Among several suitable software packages, R has the most simple
language and the largest repository of ready-to-use algorithms. Although there are
some graphical user interfaces, we will use the command-line approach, since this
approach allows using the full power of R and is not restricted by the interface,
which is sometimes seen as disadvantage. In fact, it has some important advantages;
for instance, we have already mentioned that it provides access to the full power
of R, allows a very efficient and flexible working process and is a perfect tool for
didactic purposes. However, for an effective usage, one has to be familiar with some
basic concepts and rules. We begin this chapter with these concepts to provide the
reader a seamless start with R.

Sometimes it is assumed that working with command-line programs involves
remembering commands, typing commands into the console and obtaining results.
While this is possible, it contradicts scientific principles. The results are not
reproducible because there is no exact documentation of the analysis. A better
concept is to use scripts, which offer many advantages:

• Scripts are an exact documentation of the work.
• Scripts allow reproducing the analysis.
• Scripts allow reusing commands, algorithms and whole analyses.
• Scripts allow sharing code because it is very easy to hand a text file to colleagues.
• Scripts allow the automation of complex analyses.
• Scripts allow the automation of report generation; for instance, in R with the

packages knitr or sweave.
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• Scripts allow rerunning and testing code snippets.
• Scripts make it easy to create complex solutions.
• Scripts allow limiting the active knowledge of the researcher to the most

important aspects.

One should obey some rules to maximise the advantages of scripts. These rules
require slightly more effort while applying them but result in much less work later.
Anyone who has experienced working with old scripts that do not apply these rules
knows how time-consuming and frustrating this can be.

• Each analysis has its own script.
• Each script has a header containing important information such as title, topic,

purpose, author, date, etc.
• For each command, you should learn the usage only once. Supplement the

command with comments so that you can re-use the command for similar
purposes without reading the manual again. Copy, paste and adapt the commands
from old scripts.

• Use standardised names and denotations to ease the re-use of code.
• Use detailed comments to understand your analysis years later.
• Use a proper structuration of the script to ease the reading of the script. Use

indentation, headers and comments according to your style guide.
• It is useful to think that you should hand over the script to a colleague with limited

knowledge to optimise comments and structure.
• Use versioning of the scripts by adding a version number to the file name

(-v01.xxx) or a version control system.
• Avoid special characters in file names, variable names, etc. Moreover, it is a good

idea to encode the file in UTF8.
• Use a convenient yet standardised folder structure for scripts, data, results and

reports.

3.2 R

3.2.1 What Is R?

At present, R [1–4, 6, 8, 10–12] is the leading statistic software package. R is the
free and open source implementation of S, which was developed by John Chambers,
Rick Becker and Allan Wilks in 1976 and aimed to be a unified statistical language.
S developed to become a very useful piece of software, prompting Ross Ihaka and
Robert Gentleman to start working on a free and open source alternative in 1992.

R comprises of three components: scripting language, core packages with basic
statistical routines and additional packages. The scripting language is very flexible.
It is a functional programming language with object-oriented additions. The fact
that vectors are the main data structure is very convenient for statistical analysis.
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Common statistical algorithms are available as ready-to-use functions in the core
packages. Many additional packages on the CRAN-server provide R-users with a
multitude of further algorithms. Most packages are implemented directly with R, C
or Fortran.

3.2.2 Using R

The bare usage of R is possible with the console. As mentioned above, using a script
is a much better way than typing commands in the console. Hence, in addition to
the R installation with console access, we need a text editor. Notepad++ or gedit
are very convenient text editors that also provide an extension connecting the text
editor with R. Specialised IDEs like RStudio (http://www.rstudio.com), ESS (http://
www.http://ess.r-project.org/) and TinnR (http://http://www.sciviews.org/Tinn-R/)
have a little better integration of R and the script editor. Graphical user interfaces
such as RKWard (http://rkward.kde.org) and Statistiklabor (http://www.http://www.
statistiklabor.de/) allow executing the analysis using graphical buttons but restrict
the analysis to only a few algorithms. We recommend RStudio.

Typically, the first steps using R involve exploring its capabilities as a calculator.
All basic operators are available. Here are some examples. Lines starting with >
are the interactive command prompt that waits for input. > or similar symbols are
displayed but not inserted by the user. Lines starting with [1] or similar contents are
output from R. Later we will see a C at the beginning of a line, which indicates
that the text is originally in one line and broken up for the book layout. A + also
occurs when a command is broken into different lines or not yet finished, e.g. due
to a missing bracket.

> 5+3
[1] 8
> 5-3
[1] 2
> 5*3
[1] 15
> 5/3
[1] 1.666667
> 5 %% 2
[1] 2
> 5^2
[1] 25
> sqrt(25)
[1] 5
> sin(3.14)
[1] 0.001592653
> 3.14 * (180 / pi)

http://www.rstudio.com
http://www.http://ess.r-project.org/
http://www.http://ess.r-project.org/
http://http://www.sciviews.org/Tinn-R/
http://rkward. kde.org
http://www.http://www.statistiklabor.de/
http://www.http://www.statistiklabor.de/
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[1] 179.9087
> log(25)
[1] 3.218876
> log10(25)
[1] 1.39794
> abs(-23.45)
[1] 23.45
> round(2.454324,2)
[1] 2.45
> ceiling(2.5)
[1] 3
> floor(2.5)
[1] 2

For all scripting languages variables are an important feature. While < � is the
traditional way of assigning variables D is also allowed nowadays.

> x <- 5
> x
[1] 5
> sqrt(x)
[1] 2.236068
> y = 7
> y
[1] 7

It also works the other way around. Think of the symbol < � as an assigning
symbol.

> 5 -> x

R provides different data structures, the most important of which are vectors.

> x <- c(3,5,2,2,5,8,5,2)
> y <- c(6,7,2,4,5,2,9,1)
> z <- seq(1:5)
> z2 <- seq(along=y)
> z3 <- rep(3,5)
> min(x)
[1] 2
> range(x)
[1] 2 8
> length(x)
[1] 8
> xs <- sort(x)
> xr <- rev(x)
> xrs <- rev(sort(x))
> xr <- sort(x, decreasing = T)
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> x[4]
[1] 2
> x[c(2,4)]
[1] 5 2
> x[3:6]
[1] 2 2 5 8
> x[x>4]
[1] 5 5 8 5

Vectors can be combined to data frames and matrices. A data frame is something
like a table with row and column names, while a matrix is a multi-dimensional
mathematical structure.

> df <- data.frame(x,y)
> df$x
[1] 3 5 2 2 5 8 5 2
> df[,1]
[1] 3 5 2 2 5 8 5 2
> df[1,]
x y

1 3 6
> which(x == 2)
[1] 3 4 8
> z <- seq(5:77)
> z <- seq(along=x)
> zx <- matrix(x,2,4)
> zy <- matrix(y,2,4)
> zx+zy

[,1] [,2] [,3] [,4]
[1,] 9 4 10 14
[2,] 12 6 10 3

Using R means applying functions in most cases. The function name is followed
by the parameters in round brackets. The result of functions can be assigned to a
variable in most cases.

> sum(x)
[1] 32
> m <- mean(x)
> m
[1] 4
> sd(x)
[1] 2.13809
> quantile(x)
0% 25% 50% 75% 100%
2 2 4 5 8
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New functions can easily be defined. Like the >-symbol, the C at the beginning
of the lines is not part of the code; rather this symbol indicates that the command
continues in the line starting with C.

> f1 <- function(x1,x2){
+ y <- (x + y) / 2
+ return(y)}
> f1(3,7)
[1] 4.5 6.0 2.0 3.0 5.0 5.0 7.0 1.5

Control structures allow more complex algorithms. The basic control struc-
tures known from programming languages are implemented in R. Here are some
examples:

> if(4==7) {z <- 27} else {z <- 3}
> z
[1] 3
> for(i in seq(1:5)){z=z+4}
> z
[1] 23

Tools to support the development process are very helpful. You should use these
functions very frequently. The function help() calls the manpage for the function,
which is passed as an argument. A shorter form that does the same is ?. While
? searches for help content of a known function from a loaded package, ?? can
be used to search for a pattern or functions in all installed packages. The content
of the workspace can be shown using ls(). The internal structure of an object
can be revealed by str(), while summary() provides the main information.
We strongly recommend the extensive usage of these functions.

> help(sin)
> ?sin
> ls()
[1] "df" "f1" "i" "m" "x" "xr" "xrs" "xs"
[10] "y" "z" "z2" "z3" "zx" "zy"
> str(x)
num [1:8] 3 5 2 2 5 8 5 2
> str(m)
num 4
> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2 2 4 4 5 8

A strong advantage of R is the very flexible graphic system. Some functions to
produce graphics are given below (Fig. 3.1). Try the following commands.

> plot(x)
> barplot(x)
> hist(x)
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Fig. 3.1 Result of the last code chunk

> hist(y)

> plot(x,y)
> abline(0,1)
> lines(c(1,5),c(1,6),lty=2,col="red")
> points(5,6, col="red", pch=16)
> text(5.5,6.5,"red point")

Graphic commands produce results on the screen. To export graphics, special
devices are available. After opening the device, the plots do not appear on the screen
but are exported to a file. Finally, the device needs to be closed. The “+” indicates
that the command continues in the next line.

> postscript("test.eps", paper="special", height=6,
+ width=6, onefile=F, horizontal=F)
> plot(x,y)
> abline(0,1)
> lines(c(1,5),c(1,6),lty=2,col="red")
> points(5,6, col="red", pch=16)
> text(5.5,6.5,"roter Punkt")
> dev.off()
pdf
2

> png("test.png", height=10, width=10, units="cm",
+ res=300, bg = "white")
> plot(x,y)
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> abline(0,1)
> lines(c(1,5),c(1,6),lty=2,col="red")
> points(5,6, col="red", pch=16)
> text(5.5,6.5,"roter Punkt")
> dev.off()
pdf
2

In Chap. 6 the ggplot packages is introduced and allows a more elaborated
plotting approach based upon the “grammar of graphics” idea [14].

3.2.3 Starting with a Script

After the brief introduction to R, we can start to write the first script. One should
remember to provide important information in the header, which is realised as a list
of comments where the comment sign is the first character in each row.

> ################################################
> ## Didactic R-Script for Modelling Summer School
> ## =============================================
> ## Project: GSHDL/TOPOI Modelling Summer School
> ## Author: Oliver Nakoinz & Daniel Knitter
> ## Version: 06
> ## Date of last changes: 03.05.2015
> ## Data: srtm, monuments
> ## Author of data: gshdl
> ## Purpose: didactic
> ## Content: 1. preparation, 2. data import, ...
> ## Description: The script include ...
> ## Licence data: -
> ## Licence Script: GPL
> ## (http://www.gnu.org/licenses/gpl-3.0.html)
> ################################################

Before we fill the script with commands we have to define a style guide. Some
style guides are available, for instance: http://google-styleguide.googlecode.com/
svn/trunk/google-r-style.html and http://stat405.had.co.nz/r-style.html or http://
www.r-bloggers.com/r-style-guide/. It does not matter which style guide one uses,
but it is important to be consistent. Here are some examples of points in a style
guide:

• Use short meaningful names
• To combine parts of the name, you can use points, hyphens or underscores. It

does not matter which symbol you use, but use the same symbol every time.
• Limit the line length to 80 characters.

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://stat405.had.co.nz/r-style.html
http://www.r-bloggers.com/r-style-guide/
http://www.r-bloggers.com/r-style-guide/
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• Use spaces before and after operators like C, D, >.
• Try to align similar parts in different rows. You can insert as many spaces as you

like.
• Curly braces never start in their own line but end in their own line.
• Use four spaces for indentation.
• Use <- for assignment.
• Use comments in a consistent way.

The first thing we have to do in the script is to define a working directory. Within
the working directory, you can use different folders. We define a variable with the
path to the working directory and subsequently set the working directory. The reader
has to adapt the path to the own system. On a Linux system, the variable could be

> wd <- "/home/xxx/qaam1/modproj"
> setwd(wd)

and alternatively for Windows:

> wd <- "D:\\xxx\\qaam1\\modproj"
> setwd(wd)

Sometimes, it is a good idea to use some sub-folders in the project folder. We are
using the following:

• 1data
• 2geodata
• 3script
• 4ws
• 5result
• 6pictures
• 7report

Content in folder “2geodata” can be accessed with “./2geodata/xxx”
Now we should define variables with the main file names. “meg. . . ” are the

megalithic tombs, “tum. . . ” the tumuli. “coast. . . ” is a shapefile with coastlines.
For the coastline, we try two versions: one with and one without file extension.
“dw_gk3_50_ag.asc” are the SRTM-data [7, 9] re-sampled to a 50 m grid and
transformed to the local coordinate system. The last file contains the foundation
of villages as Excel file.

> file_meg <- "1data/meg_dw.csv"
> file_tum <- "1data/tum_dw.csv"
> file_coast1 <- "2geodata/coast_gk3.shp"
> file_coast <- "coast_gk3"
> file_srtm <- "2geodata/dw_gk3_50_ag.asc"
> file_vil <- "1data/villages.xls"

For the work with spatial data, we should define a coordinate reference system
(crs). Geographical coordinate systems are not trivial. Latitude, Longitude and
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Cylindrical Conical Planar

Fig. 3.2 Three basic geodesic projection types

Altitude allow giving a reference to every location on earth, although there are two
problems: First, how can you define the exact position of the coordinate system?
Second, how can we map the three-dimensional information in two dimensions?
A solution for the first problem is to choose a reference ellipsoid that is defined
by origin and orientation. Subsequently, this ellipsoid has to be anchored by some
base points. This system is called geodetic datum, a well-known example of which is
WGS84. The solution for the second problem is to define a projection from 3d to 2d.
Imagine a simple sheet of paper or cones and cylinders formed from plain sheets of
paper near a globe or rather an ellipsoid (Fig. 3.2). The principle of projection can
be imagined by a beam of light, originated in the centre of the globe. The beam
connects a point on the globe to a point on the paper and hence maps a point on
a three-dimensional object on a two-dimensional sheet of paper. These solutions
usually work well for a certain area but are not useful for other areas. Hence, in
practice, geographical reference systems such as UTM use adapted projections for
different zones.

There are many different geodetic datums and projections in use. The proj4
package—which connects to the proj4 library—handles this information and uses
specific text strings to characterise coordinate reference systems. In the following
example of such a crs-string, the command is too long for the page. Accordingly,
we put the second part of the command in a second line.

> crs1 <- "+proj=tmerc +lat_0=0 +lon_0=9 +k=1
+ +x_0=3500000 +y_0=0 +ellps=bessel +towgs84=598.1,
+ 73.7,418.2,0.202,0.045,-2.455,6.7 +units=m +no_defs"
> crs2 <- "+proj=longlat +ellps=WGS84 +datum=WGS84
+ +no_defs"

Here, we have two different csr. The second one—crs2—features unprojected
lat/long coordinates with the Bessel geodetic datum. The first one is a projected one,
which also uses the WGS84 geodetic datum. Here, a transverse Mercator projection
is used. The x-coordinate is shifted by 3,500,000 m to obtain positive values in the
whole zone. The central meridian is 9 (indicated by the 3 in the x-shift) and the
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scaling factor k is 1. In addition, the map units and some transformation information
is provided. It is possible to write this string by hand, although it is usually more
convenient to query the EPSG database with the package rgdal or copy the values
from web services like http://spatialreferences.org. The EPSG database is a widely
used compilation of information concerning almost 4000 csr definitions and it offers
an id for each csr.

The next step is to define some constants and variables used in the analysis. The
idea is that one can run the whole analysis with a different set of parameters simply
by modifying this section in the script. Thus far, we have no constants and variables,
so we will skip this part for the moment.

What we have to do is load additional software components that are available via
packages. Here, we only provide a few examples because we do not know which
packages are needed before working on the concepts and the theory. The command
install. packages(’xxx’) installs a package from the internet or a local
source. library(xxx) loads an already-installed package.

> install.packages(’sp’)
> library(sp)
> library(proj4)
> library(rgdal)
> library(spatstat)
> library(RSQLite)
> library(gdata)

Please find out what we can do with these packages.
The last step in our preparation section is to load some data. Spatial data belong

to two categories: points, lines and polygons are categorised as vector data, whereas
grid or raster data are something like an image. For every point in a regular grid, a
value is provided. Among the many available formats, we will use csv tables, Excel
files, shape files and ascii raster files. The csv import is very simple.

> df_meg <- read.table(file_meg, sep=’;’, header=TRUE)
> df_tum <- read.table(file_tum, sep=’;’, header=TRUE)

If we want to conduct spatial analysis, we have to produce a SpatialPointsData
Frame [2, 3]. The system needs information about the coordinates, which is
provided by the coordinates command from the sp package. Here, x and y are
identified as the variables with coordinates.

> spdf_meg <- read.table(file_meg, sep=’;’,
+ header=TRUE)
> spdf_tum <- read.table(file_tum, sep=’;’,
+ header=TRUE)
> coordinates(spdf_meg)=~x+y
> coordinates(spdf_tum)=~x+y

The shape file import is a little difficult if you use an internal folder structure due
to the multi-file structure of a shape file. Please compare the two import commands.

http://spatialreferences.org
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The comment indicates some problems with the first variant, whereas the second
version defines a path, that is used for shape files. This path is used to open the file
with the readOGR command, which uses the OGR library to read spatial data.

> #coast <- readOGR(arbverz, p4s=NULL, file_coast1)
> avs <- paste(arbverz,"/2geodata",sep="")
> coast <- readOGR(avs, p4s=NULL, file_coast)

OGR data source with driver: ESRI Shapefile
Source: "/home/fon/daten/lehre/ss2013/mod/modproj/

2geodata", layer: "coast_gk3"
with 20 features and 5 fields
Feature type: wkbPolygon with 2 dimensions

For the import of Excel files, there are several concepts and functions
all relying on non-base libraries. In this case, we also have to produce a
SpatialPointsDataFrame to enable spatial analysis.

> df_vil_wgs84 <- read.xls(file_vil, 1)
> spdf_vil_wgs84 <- df_vil_wgs84
> coordinates(spdf_vil_wgs84)=~x+y

The digital terrain model is available as an ascii raster file. We can use a spe-
cialised function for the import, which produces a SpatialGridDataFrame.

> sgdf_srtm <- read.asciigrid(file_srtm)

Having shown the access of elements in vectors, data frames and matrices above,
now we try to access coordinates in spatial objects.

> spdf_vil_wgs84@coords[,1]
[1] 9.974427 9.855466 10.165958 10.126798
[5] 9.951253 10.054271 10.164521 9.906342
[9] 10.059958 9.995842 10.102165 10.078712
[13] 10.159854
> spdf_vil_wgs84@coords[,"x"]
[1] 9.974427 9.855466 10.165958 10.126798
[5] 9.951253 10.054271 10.164521 9.906342
[9] 10.059958 9.995842 10.102165 10.078712
[13] 10.159854
> spdf_vil_wgs84@coords[,2]
[1] 54.40829 54.40040 54.41925 54.42469 54.34823
[6] 54.47711 54.45785 54.38614 54.41003 54.36086
[11] 54.37465 54.38088 54.40968

Unfortunately, we have different crs for the imported data. Most data were given
as projected Gauss–Krueger zone 3 coordinates. The villages have unprojected
WGS84 coordinates. Now we project the coordinates, which we extract from the
spatial object. Subsequently, we produce a data frame with the new coordinates and
the attached information and generate a SpatialPointsDataFrame:
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> df_vil_coord <- project(cbind(spdf_vil_wgs84
@coords[,1]
+ , spdf_vil_wgs84@coords[,2]), crs1)
> df_vil_k <- cbind(x=df_vil_coord[,1],
+ y=df_vil_coord[,2])
> df_vil <- data.frame(id=df_vil_wgs84[,1], villa
+ ge=as.character(df_vil_wgs84[,2]),
+ AD=df_vil_wgs84[,3])
> spdf_vil <- SpatialPointsDataFrame(df_vil_k, as.
+ data.frame(df_vil),
+ proj4string=CRS(as.character(crs1)))

Another approach would be to use the spTransform command to project the
coordinate’s information from one variable to a different crs. If you look at the
structure of coast and spdf_vil, you will see that the crs is stored in the spatial
object. This information is not available in the objects spdf_meg, spdf_tum and
sgdf_srtm. We can add the crs to the objects.

> proj4string(spdf_meg) <- CRS(as.character(crs1))
> proj4string(spdf_tum) <- CRS(as.character(crs1))
> proj4string(sgdf_srtm) <- CRS(as.character(crs1))

Finally, we should produce point pattern objects that we use in later analysis.
First, the bounding box is extracted and used to define a window of the area
of interest. Subsequently, duplicates are removed and the point pattern object is
generated with the ppp command ([1] from the spatstat package).

> bb = bbox(sgdf_srtm)
> win <- owin(xrange=c(bb[1,1],bb[1,2]), yrange=c(
+ bb[2,1],bb[2,2]), unitname="m")
> spdf_meg <-remove.duplicates(spdf_meg, zero=0,
+ remove.second=TRUE)
> spdf_tum <-remove.duplicates(spdf_tum, zero=0,
+ remove.second=TRUE)
> spdf_vil <-remove.duplicates(spdf_vil, zero=0,
+ remove.second=TRUE)
> ppp_meg <- ppp(spdf_meg@coords[,1], spdf_meg@coo
+ rds[,2], window=win)
> ppp_tum <- ppp(spdf_tum@coords[,1], spdf_tum@coo
+ rds[,2], window=win)
> ppp_vil <- ppp(spdf_vil@coords[,1], spdf_vil@coo
+ rds[,2], window=win)

There are several solutions for plotting geographical maps. The package
GISTools provides some GIS functionality for R. The package ggplot (see
Chap. 5) offers a certain plotting environment, which is also applicable for spatial
data. In the sp package, there is a generic plotting and image command and a
special spplot command. The raster package—which provides functions for
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raster objects—has also a generic plotting command. We use sp and raster as an
example. The first step is to prepare the hill-shade layer and a topographical colour
ramp:

> library(raster)
> srtm_slope <- terrain(raster(sgdf_srtm), opt=’slope’)
> srtm_aspect <- terrain(raster(sgdf_srtm), opt=’aspect’)
> srtm_shade <- hillShade(srtm_slope, srtm_aspect, 40,
+ 270)
> top.colors = colorRampPalette(c("#618CB5", "#23B0EE",
+ "#81BB7C", "#E5CE98", "#B89E83", "#9E5D4C"), bias=1.2)

Subsequently, the different components of the map are plotted step by step
(Fig. 3.3). The generic plotting command uses a raster object and the prepared
colour ramp as arguments. The raster object is produced in line with the raster
command from a SpatialGridDataFrame. For the hill-shade, a semi-
transparent grey colour ramp is used. Rather than the real coast line, we use the
0.2 m contour line. Although the contemporary relief is used with modern elements
like the Kiel channel, the line is more adapted to the relief than the real coast line.
Thereafter, the tumuli, megaliths and villages are inserted as point symbols with
different colours and a legend. A scale bar and some text complete the map.

> par(mai = c(0, 0, 0, 0.2), mar = c(0, 0, 0, 0.2))
> plot(raster(sgdf_srtm), col = top.colors(25))
> plot(srtm_shade, col=grey(seq(from=0,to=1,by=0.02),
+ alpha=0.60), legend=FALSE, add=TRUE, cex=0.8)
> contour(raster(sgdf_srtm), levels=c(0.2), labcex=0.001,
+ cex=1, add=TRUE)
> points(spdf_tum,pch = 19, cex = 0.4, col = "#D0043A")
> points(spdf_meg,pch = 17, cex = 0.5, col = "#074A9D")
> points(spdf_vil,pch = 15, cex = 0.8, col = "black")
> legend("bottomright", cex=0.7, legend=c("Bronze Age
+ Barrows", "Neolithic Megaliths","Mediaeval Villages"),
+ pch=c(19,17,15), col=c("#D0043A","#074A9D","black"))
> scalebar(d = 5000, cex=0.7, divs = 2, below="m", type =
+ "bar", xy=c(3573500, 6026500), label= c("0","2.5","5"),
+ adj = c(.5,-1.3))
> text(3581600, 6025000, "Altitude (m)", cex=0.8)
> text(3565000, 6039600, "Baltic Sea", cex=0.8, font=3)
> text(3562000, 6030000, "Daenischer Wohld", cex=0.8,

font=3)

3.2.4 Helpful Functions, Techniques and Packages

We have already compiled some basic functions in general and for spatial data in
particular. These functions make R a powerful tool, although they represent a very
small subset of its abilities. Now we will discuss some additional functions provided
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Fig. 3.3 A map of the area of interest with the monuments

by the core packages and some specialised ones. The intention of this sub-section is
to offer a notion of the power of R and some concepts in R, rather than to provide a
list of useful functions.

We will start this sub-section with loops. We have seen the for command, which
applies some commands a certain number of times. Sometimes we do not know how
many times we want to apply the commands, whereby a while() loop is useful:

> a <- 5; b <- 0; c <- 100; i=0
> while (i < c) {
+ b <- b + 1
+ i <- i + a
+ }
> b
[1] 20

This example undertakes an integer division. The number a fits b times into c.
For this particular purpose, we can certainly find code that is more simple. However
since it works, it is acceptable. Simple and efficient code is preferable but what really
matters is whether the code works. This small code fragment has some other points
that we could optimise. Writing several commands in one line—separated by;—is
bad style, because it reduces the readability of the code. In this book, we will allow
this sometimes to save space, although we use different assignment symbols in the
same line. = works as well as <-, but you should use the same symbol for the same
purpose. In R, <- is usually preferred.

Returning to the loops, we assume that we have rather complicated conditions
for ending the loop. In this case, the repeat() loop can be used, where break
ends the loop:
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> a <- 6; b <- 0; c <- 100; i <- 0
> repeat{
+ b <- b + 1
+ i <- i + a
+ if (i==c | i>(c-a)) {break}
+ }
> b
[1] 16

The foreach package provides an alternative approach for for loops:

> library(foreach)
> foreach(a=c(0.05,0.24,0.3), b=1:3) %do% (sin(a) / b)
[[1]]
[1] 0.04997917
[[2]]
[1] 0.1188513
[[3]]
[1] 0.09850674

The foreach command allows going through all instances of one, or in our
case more variables and applying certain calculations. The binary %do% operator is
followed by the calculation commands, resulting in a list. We have to use a certain
option to produce a vector:

> foreach(a=c(0.05,0.24,0.3), b=1:3,
.combine=’c’) %do%
+ (sin(a) / b)
[1] 0.04997917 0.11885131 0.09850674

Loops in R are usually not very fast. A real advantage of using the foreach
package is that parallel execution of the different steps in the loop is possible. For
this purpose, we have to load the doMC package, register the number of cores and
use %dopar% rather than %do%:

> library(doMC)
> registerDoMC(cores=4)
> foreach(a=c(0.05,0.24,0.3), .combine=’c’) %dopar%
+ (sin(a))
[1] 0.04997917 0.23770263 0.29552021

The classical R approach for repetitive computations is to use functions from the
apply family. These are vectorised functions and since R is a system optimised for
vectors, they are very fast. The arguments for the apply command an array like a
data frame or matrix, the margin and the function that has to be applied. The margin
indicates whether the function has to be applied to rows (1) or columns (2).

> a1 <- c(2,5,4,7,5,9,7)
> a2 <- c(1,2,3,4,5,6,7)
> a3 <- c(8,4,6,2,3,7,8)
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> a <- cbind(a1,a2,a3)
> apply(a,1,sum)
[1] 11 11 13 13 13 22 22

The function lapply can be used for lists, applies on rows and returns a list.
The functions sapply and vapply are variants of lapply with specific default
values. The function mapply is a multivariate version of sapply while rapply
is a recursive version of lapply. The apply family—we have not presented
all members—has many members specialised for certain purposes. We strongly
recommend using these functions extensively due to their efficiency. In this book,
we often prefer loops, since they give a better impression of the algorithm.

Now we move on to the next topic. An issue that frequently occurs is data
organisation and layout. Before we can start to analyse the data, we have to tidy
it [13]. This includes transposing, merging and transforming the data, filling gaps
and renaming vectors. Data mainly comprises

• object labels and/or identifications;
• feature labels and/or identifications and
• values.

The objects—often called “observations”—connect the different variables at cer-
tain meaningful entities. The features, attributes or variables combine observations
of the same category. The values are the actual observations or measurements.
Values can be numbers, text strings, dates or boolean values. This information
can be stored in objects or in relation, which are the most important data storing
paradigms. The object-oriented concept stores together information belonging to
the same object. An xml file is an example of this type. In statistics, relations are
dominant and hence tables are frequently used. In R, tables are data frames, but
matrices and vectors can be assumed to be a special type of tables.

R offers some packages and functions for tidying data. Let us first introduce an
example:

> id <- c(1,2,3,4,5,6)
> diameter <- c(3,6,4,4,2,9)
> lengtth <- c(23,32,12,22,16,77)
> colour <- c("red","red","blue","red","blue","green")
> finds <- rbind(id,diameter,lengtth,colour)
> finds

[,1] [,2] [,3] [,4] [,5] [,6]
id "1" "2" "3" "4" "5" "6"
diameter "3" "6" "4" "4" "2" "9"
length "23" "32" "12" "22" "16" "77"
colour "red" "red" "blue" "red" "blue" "green"

This is a rather messy table. There is a convention to place observations in rows
and variables in columns. If this is inappropriate—like in our example—we can
transpose the data.frame:
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> finds <- t(finds)
> finds

id diameter lengtth colour
[1,] "1" "3" "23" "red"
[2,] "2" "6" "32" "red"
[3,] "3" "4" "12" "blue"
[4,] "4" "4" "22" "red"
[5,] "5" "2" "16" "blue"
[6,] "6" "9" "77" "green"

Perhaps we should rename the third column:

> colnames(finds)[3] <- "length"

The next problem is that all values are text strings. We should convert the first
three columns to numbers using the as.numeric function. Using colour names
as text is fair, but numbers indicating certain strings are also useful in some cases.
R offers the data type factor that stores numbers in the data frame and displays and
uses the text in functions.

> finds <- data.frame(id=as.numeric(finds[,1]),
+ diameter=as.numeric(finds[,2]),
+ length=as.numeric(finds[,3]), colour=factor(finds

[,4]))
> str(finds)
’data.frame’: 6 obs. of 4 variables:
$ id : num 1 2 3 4 5 6
$ diameter: num 3 6 4 4 2 9
$ length : num 23 32 12 22 16 77
$ colour : Factor w/ 3 levels "blue","green",..: 3

3 1 3
+ 1 2
> finds
id diameter length colour

1 1 3 23 red
2 2 6 32 red
3 3 4 12 blue
4 4 4 22 red
5 5 2 16 blue
6 6 9 77 green

Now we have the data with the layout that is useful for most analyses, although
this layout is not optimal for storing data in databases. For databases, a set of rules
is in use, which allows optimising the data structure for storing. The application
of these rules is the normalisation of a database [5]. In a normalised database, one
would avoid many columns with the same type of values. A table with an id, the
variable name and the value would be preferred in a database. The reshape and
reshape2 packages offer a function for converting tables:
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> library(reshape)
> finds_m <- melt(finds, id.vars="id")
> finds_m

id variable value
1 1 diameter 3
2 2 diameter 6
3 3 diameter 4
4 4 diameter 4
5 5 diameter 2
6 6 diameter 9
7 1 length 23
8 2 length 32
9 3 length 12
10 4 length 22
11 5 length 16
12 6 length 77
13 1 colour red
14 2 colour red
15 3 colour blue
16 4 colour red
17 5 colour blue
18 6 colour green

In most databases, columns with different types of data are not possible. In our
case, we have to use two tables: one for numbers and one for factors:

> finds_m_f <- subset(finds_m, variable=="colour")
> finds_m_n <- subset(finds_m, variable=="diameter"
+ | variable=="length")

An inspection of the data reveals that the numerical values are stored as text
because the melt function was forced to produce text, since a factor was involved.

> str(finds_m_n)
’data.frame’: 12 obs. of 3 variables:
$ id : num 1 2 3 4 5 6 1 2 3 4 ...
$ variable: Factor w/ 3 levels "diameter",
"length",..:
+ 1 1 1 1 1 1 2 2 2 2 ...
$ value : chr "3" "6" "4" "4" ...

We already know that a conversion is rather simple:

> finds_m_n$value <- as.numeric(finds_m_n$value)

A direct export from a normalised database can produce a layout similar to the
one we have produced now. Here, we have multiple variables in one column, which
is called a long layout. Let us try to reverse the conversion. We can convert a long
layout into a wide layout with the cast function:
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> finds_w_n <-cast(finds_m_n)
> finds_w_n
id diameter length

1 1 3 23
2 2 6 32
3 3 4 12
4 4 4 22
5 5 2 16
6 6 9 77
> finds_w_f <-cast(finds_m_f)

Subsequently, we can merge the two data frames again:

> finds_w <- merge(finds_w_n, finds_w_f)
> finds_w
id diameter length colour

1 1 3 23 red
2 2 6 32 red
3 3 4 12 blue
4 4 4 22 red
5 5 2 16 blue
6 6 9 77 green

The difference between wide and long data is just one aspect of comparing
database data structures and statistical data structures. Both are optimised for a
certain purpose and specific tools exist for both. A combination of a database and
analysing framework is often useful. For instance, you can use R as a procedural
language inside PostgreSQL databases. By contrast, the RPostgreSQL package
provides access to the PostgreSQL database from R. Sometimes, it is also useful to
use a tool from one framework in the other. People who are familiar with databases
and the SQL language for querying data would prefer SQL to the R tools, which is
possible. The package sqldf provides SQL for data frames:

> library(sqldf)
> sqldf(’select diameter, length from finds_w where

colour
+ is "red"’)
diameter length

1 3 23
2 6 32
3 4 22

Even joins are possible:

> sqldf(’select id, diameter, length, colour from
finds_w_n

+ natural join finds_w_f where colour is "blue"’)
id diameter length colour

1 3 4 12 blue
2 5 2 16 blue
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The data.table packages offer an other approach for subsetting, grouping,
updating and joining data. The advantage of this packages is concise and consistent
syntax and fast execution.

Now we will save the workspace of the initial session.

> save.image("4ws/ws03.rws")

We can reload the workspace with

> load("4ws/ws03.rws")

Subsequently, all objects—including variables—are restored, although packages
usually have to be loaded manually.

3.3 Problems

3.1. Please use the help-function for some of the functions, that are used in the R
introduction.

3.2. Please calculate with R the square root of the mean number of pages of this
book’s chapters.

3.3. You certainly used a vector to solve the last problem. Please construct an other
vector with the number of figures of each chapter and one with the chapter numbers.
Combine both vectors to a data frame.

3.4. Please plot the number of pages and figures for each chapter as points and
lines.

3.5. Please develop a script in which you collect all useful commands, functions
and algorithms with simple examples. Use comments.

3.6. Please compare the structure of df_meg and spdf_meg. Are there differ-
ences in accessing elements of the data structure?

3.7. Please explore the spatial village’s objects. Can you produce a copy of the
village’s point pattern object where all points are shifted 1500 m to the East? Try a
vector-based approach and a loop.

3.8. Please explore functions for tidying data in the reshape, reshape2, plyr, dplyr
and stats packages.
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Chapter 4
Density

4.1 One-Dimensional Data

Usually, the first task in an investigation is to seek structure in the data, which
emerges from the relations of the single elements in the data set. The most simple
data set in which we may find a structure is a set of values. In R, the most basic data
type is a vector that contains the values in a certain order. We assume a random order.
This vector (Fig. 4.1a) represents a one-dimensional coordinate system in which we
record nothing but occurrences (Fig. 4.1b). Each coordinate in the data set indicates
that something is at this point. The first example does not use spatial but rather
temporal coordinates, since we use the founding dates of villages. The task is to find
a structure of the colonisation process modelled by the founding years of villages.
At present, we do not possess other data than the founding years, whereby we can
extract the years from the data frame df_vil into a vector of village foundations
vil_fd.

> vil_fd <- df_vil[,3]

However, the vector naturally includes more information. The order of values
indicated by the index of the values represents a second reference system of the data.
In this chapter, we assume that the index of the original data is arbitrary. If we sort
the values, the index becomes a meaningful parameter. At present, we ignore the
index but attach another axis to the time axis, which represents the counts of points
(Fig. 4.1c). In the next chapter, we will use a configuration with a meaningful index
for interpolation (Fig. 4.1d). This rather confusing comment highlights that the
configuration of the information in a system of coordinate systems, occurrences and
derived parameters is closely connected to the research objective and the methods.
Accordingly, a slight reconfiguration might have an effect on new perspectives for
the analysis.

© Springer International Publishing Switzerland 2016
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Fig. 4.1 Points and reference systems; t: time and i: index

Two pieces of information are required to describe a structure in the data. First,
there is a characteristic value, which (a) describes something related to the objective
of the analysis and (b) serves to discriminate different entities. It is called the
“dependent variable” in statistical terminology. “How much?” is a usual category
for this value. Second, there is a parameter that structures the space in which we
are looking for a structure and hence allows defining the entities that carry different
characteristic values. Statistically, it is called the “independent variable”. This is a
kind of coordinate system that depends on the perspective of the analysis.

In case of a single vector, there is not much choice: the vector or something
derived from the vector has to serve as both a characteristic value and coordinate
system. While this sounds strange, it is nevertheless a very common and successful
approach. We will discuss three realisations of this approach.

4.1.1 Histogram

Density values or related parameters can serve as a characteristic value or dependent
variable. Density is defined as the measure of something in a certain amount of
space. In our example, it is the number of newly established villages in a certain
time interval.

A simple timeline would be the first choice for the time axis. However, how can
densities be calculated on an interval scale: namely, how many village foundations
are there in which time interval? There are two solutions: we can transform the
interval scale into an ordinal scale of several time intervals with certain borders,
whereby we can count the village founding dates in the time intervals and assign
the sum to the id of the time intervals, the median year or the interval name.
First, we define the breaks of the intervals with the variable cb and prepare the
variable count for the results. The dates are filtered in a loop through all intervals,
whereby those above the lower border are stored in the variable higher and those
below the upper border in the variable lower. The intersection contains only
the villages found in the ith time interval. However, something is wrong with the
code (Problem 4.2).
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> cb <- c(1200,1250,1300,1350,1400)
> count <- 1:4
> for (i in 1:4) {
+ higher <- which(df_vil[,3] > cb[i])
+ lower <- which(df_vil[,3] < cb[i+1])
+ hl <- intersect(higher,lower)
+ length(hl)
+ count[i] <- length(hl)
+ }
> years <- c("1200-1250","1250-1300","1300-1350",
+ "1350-1400")
> data.frame(years,count)

years count
1 1200-1250 0
2 1250-1300 5
3 1300-1350 6
4 1350-1400 0

A histogram is a graphical representation of these values. The process of
colonisation can be described by the number of village foundations per year, decade
or century. Our code for this model is EM-Vil-1, which means an “empirical
model for villages founding dates one”. Later on, we will use “EM” for empirical
models and “TM” for theoretical models. There is a built-in function in R that
undertakes both the calculation and the visualisation (Fig. 4.2).

> hist(x = df_vil[,3], breaks = 6,
+ col = "gray", border = "white", xlab = "Time

A.D.",
+ main = "Histogram of village foundations
+ in different periods")

Histogram of village foundations in different periods
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Fig. 4.2 Histogram (EM-Vil-1)
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To obtain proper density values, we should divide the number of events in the
time interval by the length of the time interval. In case of intervals with equal length,
this holds minor importance if the label of the axis is correct. In case of intervals with
different length, this is important because otherwise the values are not comparable.

4.1.2 Density

A certain problem with the histogram approach is the decision concerning distinct
borders. The borders strongly influence the result, although we do not have any
reason to draw a border between certain values. One subjective or arbitrary choice
shapes the result. A solution is to replace the crisp classes by fuzzy classes in the
sense of fuzzy set theory [11]. In addition, two other ideas feature this concept;
namely, we might have errors and gaps in the data. In the case of errors, it can be
difficult to decide to which of two crisp classes a point belongs. A fuzzy border
maps this fact. Furthermore, densities can be used to predict additional points.
Although fuzzy memberships are not probabilities, they allow a kind of prediction
of additional points, which is more likely in high density areas than in low density
areas. This concept does not correspond to the idea of crisp classes. The concepts of
prediction usually involve the assumption of a continuous density values.

In case of the histogram approach, we have a rectangular membership function
(see Chap. 1 and Fig. 4.3) that decides whether a village belongs to a certain interval.
In the case of fuzzy classes, there is no crisp border between classes. The degree
of membership decreases with increasing distance to the centre value of the class,
which has several implications. The counting intervals are decoupled from the

Fig. 4.3 Membership functions as moving kernels
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display intervals. In Fig. 4.3a displays disjunct class ranges like in histograms,
while Fig. 4.3b, c feature overlapping class ranges. Figure 4.3b shows fuzzy set
membership functions of crisp yet overlapping classes, while Fig. 4.3c shows fuzzy
classes.

A density value is assigned to a certain value of the independent variable, which
allows us to use an interval scale and assign density values to all available years.
The classes are not separated by borders and the borders of all classes are the same,
namely the defined interval for the membership functions.

The shape of the membership function is called a kernel and the approach
described above is called “kernel smoothing” or “kernel density estimation” (KDE;
[6, 9, 10]). For this approach, we need to define a kernel that influences the result but
not as strongly as class borders. The kernel is defined by the shape and bandwidth.
A common shape type is the normal distribution density function, which is nothing
but the Gaussian function or bell curve. The bandwidth is the main parameter of
this function, which is the standard deviation. High bandwidth values produce more
smoothed results than small values. The kernel function is applied to each point in
the defined interval.

Kernel smoothing does not count the number of events but rather sums all
weights of events per sample point. The kernel function assigns the weighting,
whereby the events are weighted according to the distance to the point where the
density is estimated. For proper density values, the integral of the kernel function
has to be 1 (Fig. 4.4).

> library("KernSmooth")
> ks_vil <- bkde(df_vil[,3], kernel="normal",
+ bandwidth=5, gridsize=201, range.x =
+ c(1200,1400))
> plot(ks_vil, pch=20, col = "gray", xlim =
c(1240,1360),

+ xlab = "Time A.D.", ylab = "density of
+ village foundation",
+ panel.first = grid())
> lines(ks_vil)
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Fig. 4.4 Smoothed density of village founding dates (EM-Vil-2)
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Fig. 4.5 Empirical model of village foundings (EM-Vil-3)

4.1.3 Distance Between Events

We can denote the histogram and the density approaches as number of events
concept. Now, we come to an alternative and more straightforward concept, which
we can denote as the distance between events concept.

Given that we have very few dates, the interval between the village foundations
seems more significant than the number of events. This information is inherent
in the sorted list of dates. The value that makes the connection is obviously the
index of dates. We have one vector with indices and one with dates. Now, we
can build a model that maps the relation between these two variables. A graphical
representation of an empirical model is easy gained (Fig. 4.5).

> plot(df_vil[,3],df_vil[,1], col="gray", pch=16,
+ xlab = "Time A.D.", ylab = "id",
+ panel.first = grid())
> lines(df_vil[,3],df_vil[,1])

If the villages were founded continuously, we would obtain a straight line with a
certain gradient. We can transform the data to derive a more simple model. If we
consider at the intervals (Fig. 4.6), the straight line with a gradient becomes a
horizontal line (gradient = 0).

> interval <- c(df_vil[,3],df_vil[13,3]) -
+ c(df_vil[1,3],df_vil[,3])
> plot(interval[2:12],col="gray", pch=16,
+ xlab = "Index", ylab = "Interval",
+ panel.first = grid())
> lines(interval[2:12])
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Fig. 4.6 Empirical model of village foundations using intervals between village foundations
(EM-Vil-4)

Is it a truly useful concept to plot intervals or event values over an index? The
index is not a proper scale and changes with additional data. If we remember ideas
like the rank-size rule [12], it seems a useful concept since the index represents an
internal order of the data set. Additional data may change the values, although it can
preserve the structure inherent in the data.

Through the idea of founding dates at equal intervals, we have introduced
a theoretical model, although the comparison shows that this theoretical model
does not fit the empirical model. Other theoretical models could use the Poisson
distribution or the binomial distribution, for example. We will proceed with this
example in the next chapter on regression.

4.1.4 Time Series

Since we have events on a time scale, time series analysis [2–5, 10] may yield
additional insights that help to understand the process of colonisation. For time
series analysis, values at equal intervals are most suitable, which are exactly what
we have produced with the kernel smoothing technique. Now, we can produce a
ts-object representing the time series.

> ts_vil <- ts(ks_vil$y, start=c(1200), end=c(1400),
+ frequency = 1)
> plot(ts_vil, ylab = "density",
+ panel.first = grid())

The visualisation (Fig. 4.7) looks like the kernel smoothing and in fact it is
the same. The difference is the internal representation in R, which is optimised
for time series analysis. Among the methods of time series analysis, the analysis
of second-order properties is very important. Second-order properties describe the
interdependency of values at different points. If values are always similar to the
previous point, it is assumed that they depend on the value of the previous point,
which means they are autocorrelated. The auto-correlation is estimated by [4]:
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Fig. 4.8 Auto-correlation of TS-Vil-1 calculated with acf

rk D
PN�k

iD1 .Xi � NX/.XiCk � NX/PN
iD1.Xi � NX/2 (4.1)

In fact, this is a formula for correlation in which only one vector is used, rather
than two. The function calculates the correlation of the vector with itself, or more
precisely the correlation of different parts of the vector. X are the observations in the
vector—in our case, the years when the villages were founded—while k is the lag,
which is observed and plotted as horizontal axis in the result. The c4acf function
computes the auto-correlation in R and plots the results (Fig. 4.8).

> acf(ts_vil, lag.max = 100, main = "")

For lower lag-values, we find a strong auto-correlation. The shape of the lag/acf-
diagram shows the same shape in the left part as the Gaussian kernel that we have
used. Of course, this is not by accident; rather, we have applied this kernel to produce
the ks_vil-data. This means that we have auto-correlation in the ks_vil-data,
but not necessary in the original df_vil-data.

Time series can be decomposed into a trend, a seasonal component and noise.
A moving average is used to calculate a trend. Subtracting the trend from the time
series leaves the seasonal component and the noise, which allows isolating certain
information.
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4.2 Two-Dimensional Data

Many concepts that we have applied to one-dimensional data can also be conducted
on two- or three-dimensional data. We will concentrate on density calculation
applied to the monuments (see Chap. 1). In general, density (d) is point-count (p)
by area (a):

d D p

a
(4.2)

We can directly apply this equation to a square area as represented by the
bounding box of our points and calculate the density (EM-Meg-1). A point pattern
object is used, which was introduced in Chap. 3. The variable dx corresponds to
the East–West extension and dy corresponds to the South–North extension of the
area. The original coordinates are in metres, which would result in very small
density values. Accordingly dividing by 1000 produces a result of points per square
kilometre.

> library(spatstat)
> count <- ppp_meg$n
> dx <- (ppp_meg$window$xrange[2] -
+ ppp_meg$window$xrange[1]) / 1000
> dy <- (ppp_meg$window$yrange[2] -
+ ppp_meg$window$yrange[1]) / 1000
> density_1 <- count / (dx*dy)
> density_1

max
0.5212502

It would presumably be better to adjust the area to the spread of points
(EM-Meg-2), because the points may not cover the entire bounding box. The first
step is to calculate the area of the convex hull around the points.

> library(spatstat)
> ch <- convexhull.xy(ppp_meg$x, ppp_meg$y)
> fl <- area.owin(ch)

Again, we can apply the formula for density calculations, which gives a different
result (see density_2). The final step is to compare the two density values by
calculating the ratio. For this purpose, we have to transform density_2 to points
per kilometre by multiplying by 1,000,000.

> fl <- area.owin(ch)
> density_2 <- count / fl
> (density_2 * 1000000) / density_1

max
1.421855
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Fig. 4.9 Megaliths, density with chess board method (EM-Meg-3)

The problem is that we are interested in local variations of density rather than a
single value, in most cases. A single density value might be useful for population
estimation, but even then local variations are an important information. Single
density values do not reveal these structures. One way to overcome this is to
calculate the local density for many squares (EM-Meg-3, Fig. 4.9), similar to the
histogram approach. First, we define the grid and prepare a vector containing values
for all grid cells:

> rw <- 3000
> xmin <- ppp_meg$window$xrange[1] - rw/2
> xmax <- ppp_meg$window$xrange[2] + rw/2
> ymin <- ppp_meg$window$yrange[1] - rw/2
> ymax <- ppp_meg$window$yrange[2] + rw/2
> rows <- round((ymax-ymin)/rw, 0) + 1
> columns <- round((xmax-xmin)/rw, 0) + 1
> z <- cbind(1:(columns*rows))
> df <- data.frame(z)

We subsequently use the prepared information to generate a GridTopology-
object (gt), which is a formal grid description in the sp package.

> gt <- GridTopology(cellcentre.offset=
+ c(xmin,ymin), cellsize=c(rw,rw),
+ cells.dim=c(columns,rows))
> sgdf <- SpatialGridDataFrame(gt, df, proj4string
+ = CRS(as.character(crs1)))



4.2 Two-Dimensional Data 77

In a loop, we extract the coordinates of all grid cells and look for the points that
are inside. This is conducted separately for x and y coordinates, before we intersect
the results and count the points. The density is calculated as the number of points
by area of the grid cell.

> for (i in seq(along=coordinates(gt)[,1])){
+ x <- coordinates(gt)[i,1] - rw/2
+ y <- coordinates(gt)[i,2] - rw/2
+ xi <- which(ppp_meg$x>x & ppp_meg$x<x+rw)
+ yi <- which(ppp_meg$y>y & ppp_meg$y<y+rw)
+ pz <- length(intersect(xi,yi))
+ sgdf@data$z[i]<- pz / (rw/1000)^2
+ }

Finally, we can plot the result. The raster package is used to plot this
SpatialGridDataFrames.

> library(raster)
> plot(raster(sgdf), col = gray.colors(25, start
= 0.97,

+ end = 0.4),
+ cex.axis = .9)
> points(ppp_meg$x, ppp_meg$y, pch=20)

Now, we have a spatial density model that describes how many points are located
in a certain area and hence the probability of the occurrence of points in this
area. The first part of the last sentence describes an empirical model of the point
distribution in the data, while the second part describes a calibrated theoretical
model. The theoretical model allows predicting the location of additional points.

4.2.1 Kernel-Based Density

The quadrant count method has some flaws, for instance, if we want reliable density
values we need large squares and thus we lose spatial resolution. However, of
course, we want to have both. The first thing that we could do is separate areas
for calculation and areas for visualisation in the same way as for one dimension,
although we get overlapping calculation squares. Another drawback is that points in
the corner of a square have the same influence as those in the middle. To overcome
this, we can use the above-discussed kernel techniques, which realise the separation
of areas for calculation and areas for visualisation. The method that we use is a
two-dimensional kernel density estimation (“KDE”; [9]; Fig. 4.10).

> sgdf_kde <- sgdf
> sd <- 3000
> for (i in seq(along=coordinates(gt)[,1])){
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Fig. 4.10 Megaliths, KDE (EM-Meg-4)

+ x <- coordinates(gt)[i,1]
+ y <- coordinates(gt)[i,2]
+ g2 <- 0
+ for (j in seq(along=ppp_meg$x)){
+ distance <- sqrt((ppp_meg$x[j] - x)^2 +
+ (ppp_meg$y[j] - y)^2)
+ g1 <- dnorm(distance, mean=0, sd=sd)
+ g2 <-g2 + g1
+ }
+ sgdf_kde@data$z[i]<- g2
+ }
> plot(raster(sgdf_kde), col = gray.colors(25, start
= 0.97,

+ end = 0.4), cex.axis = .9)
> points(ppp_meg$x, ppp_meg$y, pch=20)

The last code chunk is a KDE calculation without a specialised function. It makes
the principle of KDE clear, although it is easier and faster to use a built-in KDE
function. The function density provides us with a simple-to-use KDE function.
We use a smaller bandwidth and a smaller cell size (Fig. 4.11). It is very instructive
to compare several parameter settings. Since a detailed comparison exceeds the
scope of this book, this is left to the reader.

> library(spatstat)
> rw <- 1000
> sd <- 2000
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Fig. 4.11 Megaliths, KDE (EM-Meg-5)

> dens_p <- density(ppp_meg, sd, edge=TRUE,
+ at="points")
> dens_r5 <- density(ppp_meg, sd, eps=rw,
+ edge=TRUE, at="pixels")
> plot(raster(dens_r5), col = gray.colors(25,
+ start = 0.97, end = 0.4))
> contour(dens_r5, add=T)
> points(ppp_meg$x, ppp_meg$y, pch=20)

The question remains how to determine the bandwidth. The value depends on the
research objective, and thus it must be discussed in each case. If you are interested
in the general trend, a high value is appropriate, whereas in case you are interested
in details, a small value is more suitable. There are some rules of thumb, including
that it should be about three times the mean distance to the nearest neighbours and
at least the distance to the nearest neighbours itself. This results in a rather detailed
density model (Fig. 4.12).

> sdev <- 3*mean(nndist(ppp_meg))
> dens_r6 <- density(ppp_meg, sdev, eps=rw,
+ edge=TRUE, at="pixels")
> plot(raster(dens_r6), col = gray.colors(25,
+ start = 0.97, end = 0.4))
> contour(dens_r6, add=T)
> points(ppp_meg$x, ppp_meg$y, pch=20)
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Fig. 4.12 Megaliths, KDE (EM-Meg-6)

A built-in function is based upon Silverman’s suggestion [1]. According to the
manual, “it defaults to 0.9 times the minimum of the standard deviation and the
interquartile range divided by 1.34 times the sample size to the negative one-fifth
power”. Scott [8] suggests a factor of 1.06. This method results in a coarse density
model (Fig. 4.13). It should be noted that both rules differ in definition, whereby
the structure of data has an influence. Therefore, again an individual discussion is
necessary in each case.

> dens_r <- density(ppp_meg, bw = "nrd", eps=rw,
+ edge=TRUE, at="pixels")
> plot(raster(dens_r), col = gray.colors(25,
+ start = 0.97, end = 0.4))
> contour(dens_r, add=T)
> points(ppp_meg$x, ppp_meg$y, pch=20)

We applied a Gaussian kernel, although many others are available [see help:
help(density)], each with their own advantages and disadvantages. Maximal
gradient, footing and shape of the top are relevant characteristics. The kernel has
to fit the theoretical considerations of the research project. Although the Gaussian
kernel is appropriate in most cases, it will not suffice to use a standard kernel for all
purposes.
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Fig. 4.13 Megaliths, KDE (EM-Meg-7)

4.2.2 Distance-Based Density

While KDE produces a smoothed density model, it does not allow investigating the
general trend and details at the same time. This can be achieved with the method
of the largest empty circle (“empty circle density” (ECD); [7, 13, 14]), although it
is sensitive for location errors and cannot handle multiple points at the same place.
The idea is that the radius of the largest empty circle in the point pattern is an inverse
proxy for the local density (Fig. 4.14). We start with the preparation of a grid:

> rw <- 1000
> fs <- cbind(x=spdf_meg@coords[,1],
+ y=spdf_meg@coords[,2])
> rows <- round((bbox(spdf_meg)[2,2]-
+ bbox(spdf_meg)[2,1])/rw, 0) + 2
> cols <- round((bbox(spdf_meg)[1,2]-
+ bbox(spdf_meg)[1,1])/rw, 0) + 2
> z <- cbind(1:(rows*cols))
> df <- data.frame(cbind(1:((round(
+ (bbox(spdf_meg)[2,2]-bbox(spdf_meg)[2,1])/rw, 0)
+ + 2)*(round((bbox(spdf_meg)[1,2]-
+ bbox(spdf_meg)[1,1])/rw, 0) + 2))))
> gt <- GridTopology(cellcentre.offset=
+ c(bbox(spdf_meg)[1,1] - rw/2,bbox(spdf_meg)[2,1] -
+ rw/2), cellsize=c(rw,rw), cells.dim=c(cols,rows))
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Fig. 4.14 Megaliths, empty circle as inverse proxy for density (EM-Meg-8)

> sgdf <- SpatialGridDataFrame(gt, df, proj4string =
+ CRS(as.character(crs1)))

The function voronoi.mosaic from the tripack package calculates both
the centres of the largest empty circles which are the corners of the Voronoi graph
and the diameter of the largest empty circles. These data are transformed to a
SpatialPointsDataFrame-object.

> library(tripack)
> fsv <- voronoi.mosaic(spdf_meg$x, spdf_meg$y,
+ duplicate = ’remove’)
> rad <- fsv$radius
> fsvsp <- SpatialPointsDataFrame(cbind(fsv$x, fsv$y),
+ as.data.frame(rad), proj4string=
+ CRS(as.character(crs1)))
> fspv <- ppp(fsvsp@coords[,1], fsvsp@coords[,2],
+ window=win)
> fs_vd <- cbind(fspv$x,fspv$y,nncross(fspv,ppp_meg)
$dist)

> fs_vd_spdf <- SpatialPointsDataFrame(cbind
(fs_vd[,1],

+ fs_vd[,2]), as.data.frame(fs_vd[,3]),
+ proj4string=CRS(as.character(crs1)))
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We interpolate the calculated points using a kriging method from the gstat
package (see Chap. 5). We subsequently prepare a grid that will hold the density
values. Now, we have inverse proxies for the density at the location of the edges of
the Voronoi graph.

> library(gstat)
> g <- gstat(formula=fsvsp@data$rad ~ 1, data=fsvsp,
+ nmin = 5, maxdist = 10000, nmax = 15)
> vt <- variogram(g)
> v.fit <- fit.variogram(vt, vgm(1, "Gau", 10000, 1),
+ fit.sills = TRUE, fit.ranges = TRUE,fit.method
= 1)

> g <- gstat(g, id="var1", model=v.fit )
> k <- predict(g, model=v.fit, newdata=sgdf_srtm)

Finally, we need to plot the result in the already-known way:

> image(raster(k), col = gray.colors(25, start = 0.4,
+ end = 0.97))
> contour(k, add=T)
> points(ppp_meg$x, ppp_meg$y, pch=16, cex=0.4)

The methods of density estimation can be distinguished between counting
methods and distance-based methods. Among the former, KDE is the best choice
for most applications, whereas the empty circle method is best among the distance-
based methods (Fig. 4.15).

Use KDE when:

• gaps in data or samples
• location errors
• multiple points on one position
• searching for trends

Use ECD when:

• data are complete and exact
• searching for detailed results
• needing details in low and high den-

sity areas

4.2.3 Decomposition

Finally, we try a simple decomposition of a density model. EM-Meg-5 and
EM-Meg-6 are KDEs with different bandwidth. The coarse model can be seen
as the general trend. To focus on details, we can subtract EM-Meg-5 from
EM-Meg-6.

> diff6_5 <- dens_r5
> diff6_5$v <- dens_r6$v - dens_r5$v
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Fig. 4.15 Some methods for density estimation; (a)–(c): counting approaches; (d)–(f): distance-
based approaches

It is always a good idea to save new versions of the workspace.

> save.image("4ws/ws04.rws")

4.3 Problems

4.1. Collect all words in this chapter that are related to the dependent variable
and all words related to the independent variable including “event”, “density”, etc.
Discuss the context to which these words refer. Do you have any idea why this
chapter does not use consistent terminology?

4.2. Please find the mistake in the code for counting the villages for different time
intervals and write a correct version of the code.

4.3. Why is EM-Vil-1 an empirical model?

4.4. Please change the number of classes of the histogram and ascertain how to use
intervals with a different length.

4.5. Which kernel types are available?
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4.6. Please discuss the advantage and disadvantages of different kernels.

4.7. Under what conditions do you prefer the number of events concept and the
distance between events concept?

4.8. Please explain the details in the code for manual KDE calculation.

4.9. Compare different parameters (cell size, bandwidth) for different density
methods.

4.10. Compare the density maps of megaliths and Bronze Age tumuli.

4.11. Please explore the difference between dens_p and dens_r.

4.12. Which values are printed near the contour lines in EM-Meg-8?
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Chapter 5
Regression and Interpolation

5.1 Regression

Regression is the most classical type of quantitative models. Regression models
occur in many different contexts, disciplines and applications. Due to the importance
and wide range of applications, there are many variants and methodical details
concerned with regression. In this section, we can provide no more than a very
basic idea and some simple applications. Please refer to the literature on regression
for more details [1, 5, 6, 9, 14].

In this section, we again use the data of village foundation. Anticipating some
terminology, the year of foundation is the independent variable X and the order of
founding the dependent variable E or T . In order to simplify the R-script, we will
rename the two vectors in this chapter.

> library(gdata)
> file_vil <- "1data/villages.xls"
> df_vil <- read.xls(file_vil)
> X <- df_vil[,3]
> E_vil <- df_vil[,1]

5.1.1 The Concept of Regression

Variables that depend on each other are much more exciting and instructive for
researchers than completely independent variables. The dependence of two variables
and even the degree of dependence can be established with correlation tests, the most
prominent of which is the Pearson correlation:

© Springer International Publishing Switzerland 2016
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�X;Y D cov.X;Y/

�X�Y
(5.1)

with

cov.X;Y/ D EŒ.X � �X/.Y � �Y/� (5.2)

where X and Y are vectors of two variables, � the mean, � the standard deviation, �
the correlation coefficient and E the expectation.

> cor(cbind(X,E_vil), method="pearson")
X E_vil

X 1.0000000 0.9782945
E_vil 0.9782945 1.0000000

Naturally, we find a correlation. Nonetheless, how does the dependent variable
depend on the independent variable? This is the key question, which is solved by the
method of regression based upon some data. This data are points in space, induced
by the independent and dependent variable. In other words, regression is a method
to construct a theoretical model that maps the relationship of an independent and a
dependent variable and fits it to the empirical model.

Definition 5.1. Regression is a mathematical mapping of the relationship of two
correlated variables.

The relationship between the variables is modelled by a function that assigns
a value to the dependent variable for each value of the independent variable. The
general idea is that the regression function has to be as close as possible to the data
points. The regression process comprises of two steps: first, we have to decide upon
a regression model that defines the general shape of the regression curve, such as a
kind of linear or non-linear model; and second, we have to find the coefficients of
the regression function that produce the best fit. For the second step, the least square
method was developed by Legendre and Gauss as an algorithm that minimises the
sum of the squares of the residues S. The residues r are the difference between data
points and the regression curve:

S D
nX

iD1
ri
2 (5.3)

The maximum likelihood method is a similar approach that offers some advan-
tages but requires assuming a certain distribution.

The first step is much more difficult than the second one. The choice of the
regression model depends on the theory about the data, as well as on the data itself.
Restricting the regression models based upon theory and trying some regression
models based upon experience seems to be a good approach.
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Fig. 5.1 Theoretical models of village foundations (T1_vil and T2_vil)

5.1.2 Linear Models

Now we apply regression to the village foundation data. Our first and very primitive
theoretical model (T1_vil) is a straight line between the first and last point
(Fig. 5.1). The second model is a quadratic function (T2_vil), which begins in the
first point (Fig. 5.1). Although a quadratic function is not linear fitting, a quadratic
function or a polynomial is considered a linear regression problem.

> plot(X,E_vil,col="black", pch=16)
> lines(c(df_vil[1,3],df_vil[13,3]),c(df_vil[1,1],
+ df_vil[13,1]) )
> years <- 1259:1350
> y <- 1 + 0.003* (years-1259)^2
> lines (years,y)

Our first comparison method is the autopsy. Both models are not very good but
which is the better one? It is difficult to say. In the middle part T2_vil is very good
but for all points T1_vil seems better. We have to find a measure for the quality
of the model fit. The goodness of fit can be measured with the classical Chi Square
test. T are values in the theoretical model and E values in the empirical model.

	2 D
X .E � T/2

T
(5.4)

Low values of 	2 mean a good fit of models. The test is not sufficient to decide
whether a model is good although it is sufficient to decide whether one model is
better than another one. At this point, we only aim to measure the goodness of fit to
compare models. In statistics, you can find more elaborated tests.

> E <- E_vil
> T1_vil <- 1 + (12/91)*(X - 1259)
> T2_vil <- 1 + 0.003* (X-1259)^2
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> sum(((E-T1_vil)^2)/T1_vil)
[1] 1.955191
> sum(((E-T2_vil)^2)/T2_vil)
[1] 12.12744

Obviously T1_vil is the better model. This model has the form

T1_vil D a C b.years � c/ (5.5)

It is easy to determine that c has to be �1259 and 1 perhaps seems to be the right
value for a, but is 12/91 correct for b? Now we get to the problem of estimating
the parameters. Of course, we can try several values but there has to be a better
way of doing it. Indeed, this way is nothing but the mathematical concept of
regression. In the terminology of modelling we can say that we have selected a
model and now we have to calibrate this model, or that we know the right class
of the theoretical model and need to know the precise theoretical model that fits to
the empirical model. Whether we exercise model comparison or model calibration
using regression depends on the research layout as well as available methods. In
very complicated models, the calibration may be difficult.

In a first step, we deal with c to simplify the process by transforming the data so
that c D 0.

> yr <- X - 1259
> T3_vil <- lm(E ~ yr)
> coef(T3_vil)
(Intercept) yr
0.9467163 0.1473646

> plot(X- 1259,E_vil,col="black",
+ pch=16)
> abline(T3_vil)

T3_vil is the linear regression model produced by the R-function lm (Fig. 5.2).
The R function coef will return the coefficients. The first one (a) is the intercept,
which is not 0 because the first point in the data has the coordinates .0; 1/ since the
number of the first point is 1. The second value (b) is the gradient.

The R-function fitted gives us access to the fitted values. Again, we check 	2

and find that this model is better than those with guessed parameters. This model
has the best fit.

> fT3_vil <- fitted(T3_vil)
> sum(((E-fT3_vil)^2)/fT3_vil)
[1] 1.128076

In regression analysis, another coefficient than 	2 is in use, which is similar to
	2 but not the same. This so-called coefficient of determination (R2) is defined as

R2 D
P

i.Ei � Ti/
2

P
i.Ei � NE/2 (5.6)
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Fig. 5.2 Calibrated linear model of village foundation (T3_vil)

where NE is the mean of E. This coefficient can be obtained directly from the lm-
object. The value ranges between 0 and 1. The best fit is with a value of 1.

> summary(T3_vil)$r.squared
[1] 0.9570601

Perhaps a quadratic model with calibrated parameters is significantly better than
T2_vil.

> T4_vil <- lm(E ~ I(yr^2))
> coef(T4_vil)
(Intercept) I(yr^2)
3.484030442 0.001525825
> fT4_vil <- fitted(T4_vil)
> sum(((E-fT4_vil)^2)/fT4_vil)
[1] 4.708115
> summary(T4_vil)$r.squared
[1] 0.8283887

Model T3_vil continues to have the best fit. However we will not give up. We can
try a polynomial. Let us try a polynomial of degree 4:

> T5_vil <- lm(E ~ poly(yr, 4, raw=TRUE))
> coef(T5_vil)

(Intercept) poly(yr, 4, raw = TRUE)1
9.442846e-01 2.146162e-01
poly(yr, 4, raw = TRUE)2
-6.889610e-03
poly(yr, 4, raw = TRUE)3
1.659085e-04
poly(yr, 4, raw = TRUE)4
-1.100231e-06

> fT5_vil <- fitted(T5_vil)
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Fig. 5.3 Calibrated polynomial (degree D 4) model of village foundations (T5_vil)

> sum(((E-fT5_vil)^2)/fT5_vil)
[1] 0.6261346
> summary(T5_vil)$r.squared
[1] 0.9874966

The fit is fairly good, so we should have a look at the graphic (Fig. 5.3).

> plot(X- 1259,E_vil,col="black",
+ pch=16)
> lines(yr,fT5_vil)

Multiple regression allows using more than one parameter to estimate the variable
of interest. The logit model is a linear model that has a binary variable as the variable
of interest. Logit models can be calculated with glm(), which is a function to
apply generalised linear models (see Chap. 6). Furthermore, the gam() function
for generalised additive models is useful function for regression.

Thus far, we have not considered that we are dealing with temporal data. In this
case, time series analysis with autoregressive integrated moving average (ARIMA)
models comes into focus.

5.1.3 Model Choice, Overfitting and Decomposition

Polynomial regression models of different degrees offer the opportunity to produce
a very good fit for most data. However is the degree of the polynomial appropriate
for the phenomenon mapped by the data? A first estimation has to be based upon
theoretical considerations. If the theory requires a linear relationship, a polynomial
model of degree 5 makes absolutely no sense. If the data still follow the shape of
curve, we have to search for systematic errors rather than adapting the regression
model. Subsequently, we can try to establish the optimal degree based upon the data.
The first question concerning the degree to which an increase of degree produces
a reasonable better fit. We have to try several degrees and then we can apply a
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kind of elbow criterion (Fig. 5.4). In our example, a degree of more than 8 does
not make sense. The degrees 2, 3 and 5 are poor compared with their forerunner or
fore-forerunner. Accordingly, we have to choose between degree D 1, 4, 6 and 7,
whereby the choice depends on the necessary goodness of fit for our purpose.

> chi <- 1:20
> for(i in seq(1:20)){
+ T6_vil <- lm(E ~ poly(yr, i, raw=TRUE))
+ fT6_vil <- fitted(T6_vil)
+ chi[i] <- sum(((E-fT6_vil)^2)/fT6_vil)
+ }
> chi
[1] 1.128e+00 1.443e+00 1.199e+00 6.261e-01 6.221e-01
[6] 4.427e-01 2.072e-02 8.517e-03 6.099e-03 6.099e-03
[11] 6.970e-03 6.970e-03 6.293e-07 6.293e-07 6.293e-07
[16] 6.293e-07 6.293e-07 6.293e-07 6.293e-07 0.000e+00
> plot(chi,col="black", pch=16)
> lines(chi)

Finally, we do the same with the coefficient of determination (Fig. 5.5).

> r <- 1:20
> for(i in seq(1:20)){
+ T7_vil <- lm(E ~ poly(yr, i, raw=TRUE))
+ fT7_vil <- fitted(T6_vil)
+ r[i] <- summary(T7_vil)$r.squared
+ }
>r
> plot(r,col="black", pch=16)
> lines(r)

Here, 4 and 7 seem to be the best choice.
Now we have restricted the set of possible degrees to four possible values,

although we still have not solved the problem of whether the degrees 4 and 7 map a
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Fig. 5.5 Coefficient of determination for some polynomials of different degrees

real phenomenon or rather some noise. If we could get additional points, would they
fit to the regression curve? Does the model represent a random state and change with
additional points or is it stable? Since we cannot get additional points, we have to
manage with the available data. The idea is to build the model based upon a part of
the available points. Subsequently, the other points can be used to test the stability.
This process can be repeated for different partitions and is called bootstrapping.

> data <- data.frame(x=yr, y=E)
> its <- 100
> dd <- 6
> res <-data.frame()
> for (d in 1:dd) {
+ ei <- numeric(d)
+ eo <- numeric(d)
+ for (it in 1:its) {
+ sel <- sample(x=1:13, size=8,replace=F)
+ train <- data[sel,]
+ seli <- !(1:13 %in% sel)
+ test <- data[seli,]
+ T7_vil <- lm(y~poly(x,d),data=train)
+ ei[it] <- mean(T7_vil$residuals^2)
+ pred <- predict(T7_vil,
+ newdata=data.frame(data[seli,]))
+ eo[it] <- mean((test-pred)^2)
+ }
+ eiv <- mean(ei)
+ eov <- mean(eo)
+ res <- rbind(res,data.frame(d=d,eiv=eiv,
eov=eov))
+ }
> plot(res$d,res$eiv,col="grey",log="y",ylim=c(min

(res$eiv
+ ), max(res$eov)), pch=16, type="b")
> points(res$d,res$eov, type ="b", pch=16,
col="black")
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The mean of squared residuals is used for validation (Fig. 5.6). The grey curve
shows the mean of this value for the points that were used to develop the model.
The black curve shows the same for the points that were not involved in the model
development and hence are a kind of additional points. The black curve shows that
the error of prediction increases if the degree is larger than 4. This indicates an
overfitting starting with a degree of 5. Does this correspond with the archaeological
interpretation of the points? Thirteen points in total are certainly not a sound basis
for such an analysis. Single points with a high residual can be an outlayer or a single
indicator of a real structure. The probability that unexpected details in the structure
are represented by more than one point increases with the number of points.

The final step in this section is to discuss the decomposition of models. We can
assume that there are different phenomena that contribute to the empirical model.
Accordingly, it seems a good idea to decompose the theoretical model into several
components that induce different interpretations. Three components can be found in
many models:

1. general trend
2. actual modulation of the curve
3. noise

In our example, the general trend is caused by the fact that the dependent variable
is the order of village foundations. The values have to increase. This is a trend
induced by data preparation and bears no geospatial interest. Subsequently, we
can interpret the residues to the polynomial model with the highest degree, albeit
without overfitting as noise. In between are modulations that can serve for an
interpretation. In our case, this instructive component shows the development of
the colonisation process. The instructive component can be decomposed itself. For
example, each term in the polynomial forms a component that can—under certain
circumstances—induce different levels of interpretation. Different periodicities can
be decomposed using the Fourier approach.
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We will try a decomposition in the three main parts. First, we calculate the linear
trend and remove the trend, which are the predicted values from the data.

> T3_vil <- lm(E ~ yr)
> fT3_vil <- fitted(T3_vil)
> pred3 <- predict(T3_vil)
> E3 <- E-pred3

We then calculate the model with the optimal degree, which was 4 in our case.
Again, we are removing the predicted values from the data.

> T8_vil <- lm(E3 ~ poly(yr, 4, raw=TRUE))
> fT8_vil <- fitted(T8_vil)
> pred8 <- predict(T8_vil)
> E8 <- E3-pred8

Now, an extremely detailed model with a very high degree is calculated. This
represents the noise.

> T9_vil <- lm(E8 ~ poly(yr, 12, raw=TRUE))
> fT9_vil <- fitted(T9_vil)

Finally, we plot the results (Fig. 5.7).

> plot(X- 1259,E_vil,col="white", pch=16, ylim=c
(-2,12))

> lines(yr,fT3_vil, col="grey")
> curve(coef(T8_vil)[1] + coef(T8_vil)[2]*x + coef

(T8_vil)
+ [3]*x^2 + coef(T8_vil)[4]*x^3 + coef(T8_vil)[5]*x^4,
+ add = TRUE)
> lines(yr,fT9_vil, col="grey", lty=2)

Most of the theoretical models do not fit exactly. They give a trend on which
random variations are added to get the empiric model. If this is the case, we are
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interested in two things: The magnitude of variance and the trend model. We have
seen that high degree polynomials can fit empirical models very good. But do we
want this? The theoretical model has to be as good to fit the part of the empirical
model which is not random. Estimating this threshold is no easy task. In addition it
can be useful to differentiate the trend into several components. There might be a
general trend which is superposed by a local trend. Which one is of interest depends
on our research objective.

5.2 Interpolation

Regression and interpolation are very similar approaches. Regression aims to map
the relationship between an independent and dependent variable, whereby the
specification of the relationship as a function is the main task. Interpolation aims
to predict values of the dependent variable based upon the values of the independent
variable. Regression models can be used for interpolation. In fact, we have used
a regression model for interpolation in the bootstrapping approach. We have
calculated values for the test data set based upon the regression model. Interpolation
is not restricted to models with nice functions; rather, it deals with all methods
that give hints about the values that we want to predict. In this section, we discuss
some general concepts of interpolation and proceed into further details concerning
two frequently used interpolation techniques. Having discussed regression with
one independent variable, we will now use two independent variables that we can
interpret as geographical information [2–4, 7–11]. The interpolation techniques
could be applied to elevation as a dependent variable and longitude and latitude
as independent variables. Rather than using this standard example, we return to the
density data from the previous Chap. 4.

5.2.1 The Concept of Interpolation

Interpolation is a technique to produce predictive models:

Definition 5.2. Interpolation is a regression-based method for predicting values of
points where no measures were taken.

The general idea is that the closer a point with measurement, the more similar the
value is at the point without measurement. This is nothing but Tobler’s [13] first law
of geography. While the regression objective is to derive a mathematical description
of the trend in the data, the interpolation objective is to obtain the value for points
without measurement. If we have a regression model with a good fit, we can use it
to perform an interpolation.

We have to distinguish some kinds of interpolation methods (Fig. 5.8). At the
sampling points, the interpolated value can be the same as the measured value,
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Fig. 5.8 Basic interpolation types

reflecting an exact interpolation. By contrast, an approximated interpolation gives
values that are near the measured values but are usually not the same. There are
some reasons to use an approximated interpolation, as listed below:

• the data have errors
• we are only interested in the trend
• we want to separate local variations from the trend
• we are happy with a reduced model, which might be easier to handle

A global interpolation uses all sampling points to interpolate. A local interpo-
lation only considers the points from the specified neighbourhood. If you use few
points, outliers have a major influence. If you use all points, the local characteristic
might be smoothed by distant points.

We will mention two methods before coming to the most important approaches.
One method of historic interest is Thiessen polygons. The meteorologist Alfred
Thiessen [12] describes a method to construct polygons around sample points where
the borders are in the middle of the sample points, whereby the value from the
sample point is assigned to the whole polygon. During a times when no computers
were available and in a field where quick calculations were necessary, this method
proved useful. In fact, Thiessen polygon interpolation is only appropriate for
categorical variables rather than numerical variables, although this is seldom
considered in practice (Fig. 5.9). From a mathematical perspective, one should refer
to Voronois work [15].

Spline interpolation uses regression functions that cover only a few points
(Fig. 5.10). The combination of these spline functions allows the interpolation of
all points. It is necessary that the spline functions have the same gradient and value
where they meet.
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Fig. 5.9 Thiessen polygons as a simple interpolation tool for numerical values. This is obviously
not an appropriate method

Fig. 5.10 Spline interpolation with a polynomial of degree 3

5.2.2 Inverse Distance Weighting

An important concept is inverse distance weighted interpolation (IDW), which
calculates a mean value of several sample points weighted by inverse distance to
the unknown point to correspond to Tobler’s first law of geography. We use the
empty circle density data for the megaliths as an example (see Chap. 4; Fig. 5.11).

> library(gstat)
> meg_idw <- idw(fs_vd_spdf@data$fs_vd ~ 1,
+ fs_vd_spdf, sgdf)
[inverse distance weighted interpolation]
> image(meg_idw, col = gray.colors(25, start = 0.4,
+ end = 0.97))
> contour(meg_idw, add=T)
> points(ppp_meg$x, ppp_meg$y, pch=16, cex=0.4)
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Fig. 5.11 Megaliths, empty circle with IDW interpolation (EM-Meg-9)

IDW has certain drawbacks; for instance, we do not know whether the idea that
“the closer a point with measurement, the more similar the value is at the point
without measurement” holds and in which range it is applicable. Furthermore, IDW
tends to produce the so-called bull eyes, which are marks of single points differing
from the mean value.

5.2.3 Kriging

Kriging—a method named after the geostatistician Danie Krige—solves some
problems of IDW. In fact, this method is a variant of IDW with fitted regression,
where the distance-similarity relation is empirically estimated. This is archived with
a variogram in which the spatial distance and value distance—i.e. value difference—
of all pairs of points are plotted. A regression curve is fitted to the points. A
variogram (Fig. 5.12) is typically a monotonic increasing curve, which starts with
a value called “nugget”, which is the local error. The “sill” is the range of values,
while “range” denotes the spatial range of the variogram. Points that are more distant
than the range value can no longer be weighted by distance and they can only
contribute to a global mean. The variogram is used to weight the points included
in the calculation of a mean value of surrounding points.

There are different types of kriging, which vary in the number of known
parameters that can be used in the interpolation process. For instance, information
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Fig. 5.12 Scheme of a variogram
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Fig. 5.13 Decision tree for some interpolation methods

about the trend can be used. In the literature [8, 10], some decisions help to find the
right method. We provide a very simple decision tree, which gives a first orientation
(Fig. 5.13).

Now we return to the code and have a look at the variogram (Fig. 5.14).

> library(maptools)
> library(spatstat)
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> rw <- 500
> sd <- 2000
> dens_r <- density(ppp_meg, sd, eps=rw, edge=TRUE,
+ at="pixels")
> plot(dens_r, col = gray.colors(25, start = 0.97,
+ end = 0.4))
> df_dens_r <- as.SpatialGridDataFrame.im(dens_r)
> meg_kde_samppoints <- spsample(df_dens_r, 1000,
+ type="random")
> meg_kde_samp <- overlay(x=df_dens_r, y=
+ meg_kde_samppoints)
> vt2 <- variogram(meg_kde_samp@data$v ~ 1,
+ meg_kde_samp)
> v.fit2 <- fit.variogram(vt2, vgm(1, "Gau", 5000,
+ 1), fit.sills = TRUE, fit.ranges = TRUE,
+ fit.method = 7)
Warning: singular model in variogram fit
[1] "a possible solution MIGHT be to scale
semivariances and/or distances"
> plot(vt2,v.fit2)
> k2 <- krige(meg_kde_samp@data$v ~ 1,
+ meg_kde_samp, df_dens_r, v.fit2, nmin = 3,
+ maxdist = 10000, nmax = 8)
[using ordinary kriging]
> image(k2, col = gray.colors(25, start = 0.97,
+ end = 0.4))
> contour(k2, add=T)
> points(ppp_meg$x, ppp_meg$y, pch=16, cex=0.4)

The density data produced by the empty circle method provides the opportunity
to discuss a very important issue: for kriging, the variogram allows us to establish
the relationship between spatial distance and value difference. Besides the exact
relationship the general proof of such a relationship is important. The variogram
shows that the value difference increases with the spatial distance. This statement
is Tobler’s first law of geography which is required to be fulfilled for interpolation.
This is given if the values of nearby points in the variogram tend to be similar while
those of remote points are not. In fact, it is a certain degree of redundancy that
proves this law. Points that are not absolutely necessary for a basic prediction show
that the values are not changing randomly between two points rather they change
from one value to the other when moving along the connection line. Due to the
variogram—which includes this information—it is not necessary to apply a test of
spatial auto-correlation.

In the case of density data obtained by the empty circle method we have a
minimal set of optimal placed points that do not necessarily need to show auto-
correlation. However, per definition, the function of the values between two points
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Fig. 5.14 Variogram for KDE samples points

changes in a monotone and continuous manner, whereby the required conditions
are given. In this case the variogram would not map the information required for
the kriging but rather other properties of the data. In this case it would make sense
not to use the regression curve of the variogram for kriging, but rather a manually
defined variogram curve based upon the knowledge about the relationship. The
reader should be aware that such problems can arise in the course of applying
kriging on empty circle density data. In Fig. 5.15, the black points—which are a
minimal set of optimal points—would not give the impression of auto-correlated
values and would produce a poor variogram. Indeed, the values could be random.
The redundant white points contribute rather marginally to the interpolation but
allow producing a proper variogram. The white points show that there is a trend
between the black points, which is the basis for the interpolation.

5.3 Problems

5.1. Please use the function chisq.test() rather than the explicit equation for
calculating and comparing the models.

5.2. Is 	2 or coefficient of determination the better choice to establish the optimal
degree of a polynomial?
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Fig. 5.15 Problem of a minimal set of optimal points. Profile through the landscape with two sets
of observed points

5.3. Can you imagine a useful application for Thiessen polygon interpolation?

5.4. Please discuss which type of interpolation would be ideal for the empty circle
method.

5.5. Is kriging an approximative or an exact interpolation method?

5.6. Explore different parameter settings for kriging.

5.7. Try to visualise the model decomposition for our case study of the villages and
discuss the interpretation of the components.
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Chapter 6
Location and Characterisation

6.1 Characterising Locations

Characterising a location involves recording its characteristics and interpreting them
in the light of a specific question. For instance, a city’s location can be characterised
by the population density, distance to other cities, administrative affiliations, etc.
It can also be described by environmental features such as water availability,
altitude, distance to streams, etc.

We are interested in the environmental characteristics of the megalithic graves.
Do they differ in terms of location? Are they located at specific environmental
locations? Given that we are missing environmental information for our focused
prehistoric period, we rely on the general relief characteristic that can be regarded
as comparable, derived from globally available SRTM data.

Before we are going to create these let’s check the characteristics of the graves.
First, we load the SRTM and ensure that the spatial references between the raster

and the megaliths correspond.

> sgdf_srtm <- read.asciigrid(file_srtm)
2geodata/dw_gk3_50_ag.asc has GDAL driver AAIGrid
and has 362 rows and 566 columns
> names(sgdf_srtm@data) <- "srtm"
> is.projected(sgdf_srtm)
[1] NA
> sgdf_srtm@proj4string@projargs <- crs1
> is.projected(sgdf_srtm)
[1] TRUE
> spdf_meg@proj4string@projargs == sgdf_srtm@proj4string
+ @projargs
[1] TRUE

© Springer International Publishing Switzerland 2016
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For the subsequent analyses we will use the raster package hence transform-
ing our srtm object from a SpatialGridDataFrame into a raster object
and consider at its characteristics

> srtm <- raster(sgdf_srtm)
> srtm
class : RasterLayer
dimensions : 362, 566, 204892 (nrow, ncol, ncell)
resolution : 50, 50 (x, y)
extent : 3550736, 3579036, 6022467, 6040567
+ (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=9 +k=1+x_0=3500000

+y_0=0 +ellps=WGS84 +units=m +no_defs
data source : in memory
names : srtm
values : -15.1568, 61.0053 (min, max)

> summary(srtm)
srtm

Min. -15.15680
1st Qu. 6.06045
Median 15.26705152
3rd Qu. 21.46960
Max. 61.00530
NA’s 362.00000

A plot of the raster with the different points gives a first impression of the
locational characteristics (Fig. 6.1)

> par(mar=c(2.1, 2.1, 2.1, 2.1))
> plot(srtm, col = gray.colors(n = 25, start = 0.1, end = .9),
+ legend.lab="Altitude (m)", horizontal = FALSE, legend.
+ width = 1,
+ cex.axis=.9, tcl=-.3, mgp = c(3,.2,0))
> points(spdf_tum,pch = 19, cex = .8, col = "black"
+ ,bg="black")
> points(spdf_meg,pch = 22, cex = 1.5, col = "black",
+ bg="white")
> points(spdf_vil,pch = 23, cex = 2.5, col = "black",
+ bg = "white")
> legend("bottomright",legend=c("Bronze Age Barrows",
+ "Megaliths",
+ "Villages"), pch=c(19,22,23))
> scalebar(d = 5000, divs = 2, below="Meter",type =
+ "bar",xy=
+ c(3573500,6025500),adj = c(.5,-1.3))

Visually, villages are located at different locations than Bronze Age barrows and
megaliths. However, are these locations different in terms of their characteristics? In
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Fig. 6.1 SRTM with sites

order to answer this question we extract the information about the raster at the point
locations. A t.test shows that the difference in mean is significant.

> spdf_meg@data$srtm <- extract(x = srtm, y = spdf_meg,
+ buffer = 200, fun = median)
> spdf_tum@data$srtm <- extract(x = srtm, y = spdf_tum,
+ buffer = 200, fun = median)
> spdf_vil@data$srtm <- extract(x = srtm, y = spdf_vil,
buffer = 200, fun = median)
> t.test(x=spdf_meg@data$srtm, y=spdf_tum@data$srtm)

Welch Two Sample t-test

data: spdf_meg@data$srtm and spdf_tum@data$srtm
t = -3.2234, df = 637.51, p-value = 0.001331
alternative hypothesis: true difference in means is
+ not equal to 0
95 percent confidence interval:
-4.399632 -1.068484
sample estimates:
mean of x mean of y
22.55336 25.28741

> t.test(x=spdf_tum@data$srtm, y=spdf_vil@data$srtm)
...
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t = 5.2315, df = 14.249, p-value = 0.00012
...
> t.test(x=spdf_meg@data$srtm, y=spdf_vil@data$srtm)
...
t = 3.8586, df = 14.561, p-value = 0.001626
...

We can investigate the distributions. Thanks to the kernel methods introduced
in Chap. 4 the problems of different sample sizes are avoided, with simplifying
assumptions, of course.

> library("KernSmooth")
> ks_meg <- bkde(spdf_meg@data$srtm, kernel="normal",
+ bandwidth=3, gridsize=201, range.x = c(summary(srtm)[1],
+ summary(srtm)[5]))
> ks_tum <- bkde(spdf_tum@data$srtm, kernel="normal",
+ bandwidth=3, gridsize=201, range.x = c(summary(srtm)[1],
+ summary(srtm)[5]))
> ks_vil2 <- bkde(spdf_vil@data$srtm, kernel="normal",
+ bandwidth=3, gridsize=201, range.x = c(summary(srtm)[1],
+ summary(srtm)[5]))

Now, let us plot the distributions, albeit in this case using another approach
realised using the ggplot2 library. In order to use the strengths of ggplot, we
need to reshape our data (Fig. 6.2).

> srtm_char <- data.frame(ks_meg,ks_tum$y,ks_vil2$y)
> colnames(srtm_char) <- c("altitude","meg","tum","vil")
> library(reshape)
> srtm_char2<- melt(srtm_char, id.vars = "altitude")
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Fig. 6.2 Density distribution of elevation values for the different point classes
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> head(srtm_char2,3)
altitude variable value

1 -15.15680 meg 4.172543e-07
2 -14.77599 meg 5.999285e-07
3 -14.39518 meg 8.132125e-07
> srtm_char2<- melt(srtm_char, id.vars = "altitude")
> srtm_char <- data.frame(ks_meg,ks_tum$y,ks_vil2$y)
> colnames(srtm_char) <- c("altitude","meg","tum","vil")
> library(reshape)
> srtm_char2<- melt(srtm_char, id.vars = "altitude")
> head(srtm_char2,3)

altitude variable value
1 -15.15680 meg 4.172543e-07
2 -14.77599 meg 5.999285e-07
3 -14.39518 meg 8.132125e-07
> tail(srtm_char2,3)

altitude variable value
601 60.24368 vil 3.469447e-18
602 60.62449 vil 0.000000e+00
603 61.00530 vil 0.000000e+00
> library(ggplot2)
> srtm_char_plot <- ggplot(srtm_char2, aes(x=altitude,
+ y=value)) +
+ geom_line(aes(linetype = variable)) + labs(x="Altitude
+ (m)",y="density",legend="") + theme_bw(base_size = 12)
+ + theme(legend.position="bottom", legend.title=
+ element_blank()) + scale_linetype_discrete(labels =
+ c("Megaliths","Bronze Age Barrows", "Villages"))
> srtm_char_plot

Given that a location characterisation solely based upon elevation is not very
interesting, we create some terrain parameters using functions collected in a
raster package. In a real-world example, the reader is advised to calculate terrain
attributes using GRASS GIS or SAGA GIS since these tools offer more possibilities,
methods, performance and are accessible from R via the libraries spgrass6 and
RSAGA, respectively.

For the sake of simplicity, we will use our srtm scene and derive some terrain
attributes directly from R using the raster package, as follows:

• slope, i.e. the measure of elevation difference in degree or percent;
• aspect, i.e. the direction of maximum elevation difference, hence exposure and
• topographic position index (TPI), a measure of relative terrain position [5]. The

value of the central cell within a moving window is compared to the mean of
the window’s cells. If the central cell’s value is higher, this indicates a more
ridge- or hill-like position. A valley-like position corresponds to the situation
where the value of the central cell is smaller than mean of the cells of the moving
window. A similar value between the mean of the surrounding and central cell is
indicative of a straight slope or flat position. TPI is sensitive to scale therefore, we
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calculate two different versions of it: one showing the local terrain characteristics
and another with a more regional focus.

> ter.par <- terrain(x = srtm, opt = c("slope","aspect",
+ "tpi"), neighbors = 4)
> tpi.win <- function(x, w=5) { m <- matrix(1/(w^2-1),
+ nc=w, nr=w); m[ceiling(0.5 * length(m))] <- 0; f <-
+ focal(x, m); x - f }
> tpi.large <- tpi.win(x = srtm, w=15)
> ter.par <- brick(x = c(tpi.large,ter.par))
> colnames(ter.par@data@values)[1] <- "tpi_15"
> colnames(ter.par@data@values)[2] <- "tpi_5"

Let us have a look at the characteristics of the resulting raster

> summary(ter.par)
tpi_15 tpi_5 slope aspect

Min. -24.222638 -12.6055751 0.0000000 0.0000
1st Qu. -1.335900 -0.1589120 0.3839363 90.0000
Median 0.000000 0.0000000 0.8980482 153.6286
3rd Qu. 1.090425 0.1473372 1.6616471 261.5069
Max. 20.945616 7.5615871 19.9813567 359.9925
NA’s 13144.000000 2212.0000000 2212.0000000 2212.0000

Since we are interested in the location of the different sites, TPI is most
interesting since it shows us which terrain features—i.e. ridge, valley and plain—
have the highest proportion of sites (Fig. 6.3). Before extracting the values from the
raster, we plot the sites and the different terrain parameters. To enhance the visual
appearance, we add a shading effect to the different raster.
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Fig. 6.3 Terrain parameters based on SRTM data
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> srtm.shade <- hillShade(slope = terrain(srtm,"slope"),
+ aspect = terrain(srtm,"aspect"),angle = 15,direction
+ = 200,normalize = TRUE)
> par(mfrow = c(2,2),mar = c(.5,1,1,1))
> plot(ter.par, 1, col = grey(c(8:0/8)),horizontal =
+ FALSE,legend.width = 1,cex.axis=.9,tcl=-.3,mgp =
+ c(3,.2,0),axes = FALSE, box = FALSE)
> plot(srtm.shade, col = grey(0:200/200,alpha = .3),
+ legend = FALSE,add=TRUE)
> points(spdf_tum,pch = 19, cex = .5, col = "black",
+ bg="black")
> points(spdf_meg,pch = 19, cex = .5, col = "black",
+ bg="white")
> points(spdf_vil,pch = 19, cex = .5, col = "black",
+ bg = "white")
> plot(ter.par, 2, col = grey(c(0:4/4)),horizontal =
+ FALSE,legend.width = 1,cex.axis=.9,tcl=-.3,mgp =
+ c(3,.2,0),axes = FALSE, box = FALSE)
> plot(srtm.shade, col = grey(0:200/200,alpha = .5),
+ legend = FALSE,add=TRUE)
> points(spdf_tum,pch = 19, cex = .5, col = "black",
+ bg="black")
> points(spdf_meg,pch = 19, cex = .5, col = "black",
+ bg="white")
> points(spdf_vil,pch = 19, cex = .5, col = "black",
+ bg = "white")
> plot(ter.par, 3, col = grey(c(10:0/10)),horizontal =
+ FALSE,legend.width = 1,cex.axis=.9,tcl=-.3,mgp =
+ c(3,.2,0),axes = FALSE, box = FALSE)
> plot(srtm.shade, col = grey(0:200/200,alpha = .3),
+ legend = FALSE,add=TRUE)
> points(spdf_tum,pch = 19, cex = .5, col = "black",
+ bg="black")
> points(spdf_meg,pch = 19, cex = .5, col = "black",
+ bg="white")
> points(spdf_vil,pch = 19, cex = .5, col = "black",
+ bg = "white")
> plot(ter.par, 4, col = grey(c(8:0/10)),horizontal =
+ FALSE,legend.width = 1,cex.axis=.9,tcl=-.3,mgp =
+ c(3,.2,0),axes = FALSE, box = FALSE)
> points(spdf_tum,pch = 19, cex = .5, col = "black",
+ bg="black")
> points(spdf_meg,pch = 19, cex = .5, col = "black",
+ bg="white")
> points(spdf_vil,pch = 19, cex = .5, col = "black", bg =
+ "white")
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Fig. 6.4 Density estimation for the different sites and TPI with large kernel
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Fig. 6.5 Density estimation for the different sites and slope

We extract the data, write them into different data frames and use kernel
smoothing to investigate whether there are potential differences between the sites.
Subsequently, we plot the density estimations of two parameters, namely TPI and
slope (Fig. 6.4 and 6.5).

> tp_meg <- extract(x = ter.par, y = spdf_meg, buffer = 200,
+ fun = median,df=TRUE)[,-1]
> tp_tum <- extract(x = ter.par, y = spdf_tum, buffer = 200,
+ fun = median,df=TRUE)[,-1]
> tp_vil <- extract(x = ter.par, y = spdf_vil, buffer = 200,
+ fun = median,df=TRUE)[,-1]
> library(foreach)
> ks_tp_meg <- foreach (i=1:4) %do% lapply(X = tp_meg[i],
+ FUN = function(x){bkde(x[i], kernel="normal", bandwidth=3,
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+ gridsize=201, range.x = c(summary(ter.par[[i]])[1],
+ summary(ter.par[[i]])[5]))})
> ks_tp_tum <- foreach (i=1:4) %do% lapply(X = tp_tum[i], FUN =
+ function(x){bkde(x[i], kernel="normal", bandwidth=3,
+ gridsize=201, range.x = c(summary(ter.par[[i]])[1],
+ summary(ter.par[[i]])[5]))})
> ks_tp_vil <- foreach (i=1:4) %do% lapply(X = tp_vil[i],
+ FUN = function(x){bkde(x[i], kernel="normal", bandwidth=3,
+ gridsize=201, range.x = c(summary(ter.par[[i]])[1],
+ summary(ter.par[[i]])[5]))})
> ter_char_tpi15 <- data.frame(ks_tp_meg[[1]][[1]],ks_tp_tum
+ [[1]][[1]]$y,ks_tp_vil[[1]][[1]]$y)
> colnames(ter_char_tpi15) <- c("tpi_15","meg","tum","vil")
> ter_char_tpi15_2 <- melt(ter_char_tpi15, id.vars = "tpi_15")
> ter_char_tpi15_plot <- ggplot(ter_char_tpi15_2, aes(x=tpi_15,
+ y=value)) +
+ geom_line(aes(linetype = variable, color = variable)) +
+ labs(x="TPI",y="density",legend="") + theme_bw(base_size =
+ 12) + theme(legend.position="bottom", legend.title=
+ element_blank()) + scale_linetype_manual(values=c("solid",
+ "dashed", "dotted"),
+ labels = c("Megaliths","Bronze Age Barrows", "Villages")) +
+ scale_color_manual(values=c(’#999999’,’#000000’,’#000000’),
+ labels = c("Megaliths","Bronze Age Barrows", "Villages"))
> ter_char_tpi15_plot
>
> ter_char_slope <- data.frame(ks_tp_meg[[3]][[1]],ks_tp_tum
+ [[3]][[1]]$y,ks_tp_vil[[3]][[1]]$y)
> colnames(ter_char_slope) <- c("slope","meg","tum","vil")
> ter_char_slope_2 <- melt(ter_char_slope, id.vars = "slope")
> ter_char_slope_plot <- ggplot(ter_char_slope_2, aes(x=slope,
+ y=value)) +
+ geom_line(aes(linetype = variable, color = variable)) +
+ labs(x="Slope (radians)",y="density",legend="") + theme_bw
+ (base_size = 12) + theme(legend.position="bottom", legend.
+ title=element_blank()) + scale_linetype_manual(values=
+ c("solid", "dashed", "dotted"), labels = c("Megaliths",
+ "Bronze Age Barrows", "Villages")) + scale_color_manual
+ (values=c(’#999999’,’#000000’,
+ ’#000000’), labels = c("Megaliths","Bronze Age Barrows",
+ "Villages"))
> ter_char_slope_plot

It becomes obvious that slope as a parameter is not very useful in describing
differences in the locations of our different site types. By contrast, TPI shows
a pronounced difference in location between graves, i.e. Bronze Age barrows,
megaliths and villages. Graves occur more often on hills or ridges—as seen by
the larger TPI values—while villages are most frequently found in flat situations
or gentle depressions. These observations correspond to the state of the art.



116 6 Location and Characterisation

We used the location of the megaliths with a surrounding buffer to obtain
information about their median locational characteristics. Of course, other methods
might be more suitable or appropriate, such as larger buffers, different functions to
extract parameters—like mean or modal values—or approaches that do not focus on
the locations itself but rather the catchment characteristics; thus, we encourage the
reader to experiment with the different possibilities and discover their strengths and
weaknesses.

6.2 Predictive Modelling

Archaeological predictive models—based upon either observed patterns or assump-
tions about human behaviour—are used to predict the location of archaeological
sites or materials in a region [7].

The development of settlement pattern studies has led many archaeologists to
understand that settlement locations are influenced by environmental factors, e.g.
distance from streams or arable land (see Chap. 7 for a discussion of structured and
arbitrary information). This ecological approach was based upon the application
of geographical location theory to archaeology, followed by the introduction of
site catchment theory [16]. This theory tries to capture the rules that determine
human spatial behaviour, focusing on subsistence economy. Hence, the fundamental
hypothesis for each predictive modelling is that a causal relationship exists between
the spatial behaviour of (pre)historic humans and the natural environment [10].
Archaeological predictive models were developed in the late 1960s as part of the
New Archaeology movement and the quantitative revolution [11]. This natural
determinant viewpoint is also incorporated into settlement theories based upon
concepts of geographical location like those presented by von Thünen [14], Weber
[17] and Christaller [4]. Concepts like that of Chisholm [3], who defined settlement
locations relative to local resources, were generalised and summarised by Aston
[2] or Roberts [13] to fit the archaeological context. These relations depend on the
landscape characteristics and the purposes of (pre)historic humans.

It is generally assumed that (a) human location behaviour is patterned [10] and
(b) certain parts of the landscape are more attractive for human settlement activity
than others [15].

Since the early 1990s there have been several discussions about the
logic of prediction, resulting in polarised issues concerning the use of data-
(inductive) or theory-driven (deductive) approaches and a discrepancy between
environmental-deterministic and social/cognitive models (for more information
relating to this topic, see [9, 11, 15]). Despite being useful for describing the
different approaches at a methodological level, the dichotomy between data- and
theory-driven approaches ignores two important facts: first, the formulation of site
location hypotheses is always based upon the knowledge derived from existing data
and second, the selection of data sets for inductive modelling is always theory-
driven. Therefore, elements of both approaches can be found in many predictive
modelling studies [9].
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Predictive models can be distinguished according to three categories:

1. Point density approaches: these approaches do not state empirical or theoretical
presumptions about the preference of locations; they are not environmentally
deterministic (see Chaps. 5 and 7)

2. Inductive approaches: already-known points are considered to have locational
characteristics that can be generalised for the population of points; based upon
these assumptions, these models are environmentally deterministic.

3. Deductive approaches: we pretend to know why points are located at spe-
cific locations; they are based upon prior knowledge and thus—like inductive
approaches—deterministic; they are the preferred tools in case of little or
unreliable data, where empirical analyses are hampered.

6.2.1 Inductive Models

Predictive models based upon empirical information are called inductive models.
In spatial analysis, we can think of location characterisation as a map overlay
procedure, whereby different layers are overlain and taken together they describe
a location. This location description is used in inductive models as a predictive
tool based upon the assumption that unknown places share the same characteristics
as already-known places. Accordingly, in filtering the research area for these
characteristics, it is possible to identify areas of high potential to find new sites.

Let us apply such an inductive model. Our aim is to identify areas where
the potential occurrence of megaliths is high. We will use our calculated terrain
parameters and employ two very simple overlay approaches, i.e. binary and
weighted binary addition.

Before starting, we will remove the areas covered by the Baltic Sea.

> ter.par2 <- ter.par
> srtm[srtm<=0] <- NA
> ter.par2$tpi_15[is.na(srtm)] <- NA
> ter.par2$tpi_5[is.na(srtm)] <- NA
> ter.par2$slope[is.na(srtm)] <- NA
> ter.par2$aspect[is.na(srtm)] <- NA

We divide our data into a test and a training set. In order to be reproducible, we
undertake this with a specific random seed.

> trainSize <- round(nrow(spdf_meg@data) * 0.7)
> testSize <- nrow(spdf_meg@data) - trainSize
> set.seed(333)
> training_indices <- sample(seq_len(nrow(tp_meg)),
+ size=trainSize)
> trainSet <- tp_meg[training_indices,]
> testSet <- tp_meg[-training_indices,]
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To conduct a binary addition analysis, we need to reclassify the terrain parameter
raster into two classes: 1 D characteristics that correspond to the sites and 0 D
characteristics that do not correspond to the sites. Some sites might be outliers or
their characteristics might be very different from the other sites. In order to consider
this, we will only select those characteristics that match 90 % of the sites.

> q.tpi15 <- quantile(tp_meg$tpi_15, probs = c(.1,.9))
> q.tpi5 <- quantile(tp_meg$tpi_5, probs = c(.1,.9))
> q.sl <- quantile(tp_meg$slope, probs = c(.1,.9))
> q.as <- quantile(tp_meg$aspect, probs = c(.1,.9))
> rcl.tpi15 <- c(-Inf, q.tpi15[1], 0, q.tpi15[1],q.tpi15[2],
+ 1, q.tpi15[2], +Inf, 0)
> rcl.tpi15 <- matrix(rcl.tpi15, ncol = 3, byrow = TRUE)
> ter.par2$tpi_15 <- reclassify(x = ter.par$tpi_15,rcl =
+ rcl.tpi15)
> rcl.tpi5 <- c(-Inf, q.tpi5[1], 0, q.tpi5[1],q.tpi5[2],
+ 1, q.tpi5[2],+Inf, 0)
> rcl.tpi5 <- matrix(rcl.tpi5, ncol = 3, byrow = TRUE)
> ter.par2$tpi_5 <- reclassify(x = ter.par$tpi_5,rcl =
+ rcl.tpi5)
> rcl.sl <- c(-Inf, q.sl[1], 0, q.sl[1],q.sl[2], 1,
+ q.sl[2],+Inf, 0)
> rcl.sl <- matrix(rcl.sl, ncol = 3, byrow = TRUE)
> ter.par2$slope <- reclassify(x = ter.par$slope,rcl =
+ rcl.sl)
> rcl.as <- c(-Inf, q.as[1], 0, q.as[1],q.as[2], 1,
+ q.as[2],+Inf, 0)
> rcl.as <- matrix(rcl.as, ncol = 3, byrow = TRUE)
> ter.par2$aspect <- reclassify(x = ter.par$aspect,
+ rcl = rcl.as)

Now we simply sum up the different reclassified raster. Subsequently, we check
whether the testSet created before is located on the areas of high values, hence
giving us an idea about the model’s quality (Fig. 6.6).

> ba <- overlay(ter.par2, fun=function(w,x,y,z)
+ {return(w+x+y+z)}, unstack = TRUE)
> plot(ba,col = grey(c(7:3/8)),legend.width = 1,
+ cex.axis=.9,tcl=-.3,mgp = c(3,.2,0), axes =
+ FALSE, box = FALSE)
> points(spdf_meg[rownames(testSet),],pch = 19, cex = .3)

> testSet.ba <- extract(x = ba, y = spdf_meg[rownames
+ (testSet),])
> table(testSet.ba)
testSet.ba
0 1 2 3 4
5 12 23 22 11



6.2 Predictive Modelling 119

0

1

2

3

4
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Fig. 6.7 Weighted binary addition predictive model for megaliths

However, this model does not perform well, given that only 11 sites of the
testSet are actually located on our hypothesised most probable areas. To improve
the model, we state another assumption: some parameters are more important
than others and this can be measured using standard deviation, whereby the
more important a parameter, the smaller the standard deviation in relation to the
parameter’s range. Using this weighting factor, the classified rasters are weighted
and summed up (Fig. 6.7).
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> weights <- apply(X = tp_meg, MARGIN = 2, FUN = function(x)
+ {sqrt(1/sd(x)*range(x)[2]-range(x)[1])})
> wba <- overlay(ter.par2, fun=function(w,x,y,z){return
+ ((w*weights[1])+(x*weights[2])+(y*weights[3])+(z*weights
+ [4]))}, unstack = TRUE)
> rcl.wba <- c(-Inf, quantile(wba)[1], 0, quantile(wba)[1],
+ quantile(wba)[2], 1, quantile(wba)[2], quantile(wba)[3],
+ 2, quantile(wba)[3], quantile(wba)[4], 3, quantile(wba)
+ [4], quantile(wba)[5], 4)
> rcl.wba <- matrix(rcl.wba, ncol = 3, byrow = TRUE)
> wba.rc <- reclassify(x = wba, rcl = rcl.wba)
> plot(wba.rc,col = grey(c(7:3/8)),legend.width = 1,cex.axis=
+ .9,tcl=-.3,mgp = c(3,.2,0),axes = FALSE, box = FALSE)
> points(spdf_meg[rownames(testSet),],pch = 19, cex = .3)

> testSet.wba.r <- extract(x = wba.rc, y = spdf_meg
+ [rownames(testSet),])
> table(testSet.wba.r)
testSet.wba.r
0 1 2 3 4
5 12 16 24 16

Compared to the other model, the results again are not very encouraging. This
can indicate two things: first, the terrain parameters are inappropriate to model
megalith’s distribution and second, the methodological approach is too simple.

We cannot resolve the first point so let us try to solve the second. There are
many of more advanced predictive modelling approaches. From the broad variety of
methods, we only present one example since it is based upon regression approaches
that we have already presented, namely logistic regression.

Logistic regression models are generalised linear models with a binomial random
component and a logit link function. Logistic regression models are also called
logit models [1, 123]. Logistic regression is useful because it is designed to predict
categories. The categories in our case are the presence and absence of megaliths on
different terrain parameters.

First we need to prepare some random data to represent areas where no sites
are present. Subsequently, we create a data set where our empirical and random
locations are combined.

> library(dismo)
> set.seed(123)
> rand_points <- randomPoints(mask = srtm, p = spdf_meg,
+ n = length(spdf_meg)) # requires dismo
> rand_points <- extract(x = ter.par, y = rand_points,
+ buffer = 200, fun = median,df=TRUE)[,-1]
> emp_ran <- c(rep(1, nrow(tp_meg)), rep(0, nrow
+ (rand_points)))
> geom_data <- data.frame(cbind(as.factor(emp_ran),
+ rbind(tp_meg, rand_points)))
> names(geom_data)[1] <- "emp_ran"
> geom_data <- geom_data[complete.cases(geom_data)==TRUE,]
> head(geom_data,2)
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emp_ran tpi_15 tpi_5 slope aspect
1 1 2.9349788 0.14510626 0.01422135 4.930347
2 1 -0.3939886 -0.03806847 0.02201351 2.475431
> tail(geom_data,2)

emp_ran tpi_15 tpi_5 slope aspect
533 0 -0.9040080 0.10258758 0.02634927 1.003210
534 0 -0.5467961 -0.04793739 0.02091091 4.259732

Now we can start with the models. The first one will integrate all parameters that
we have.

> glm1 <- glm(emp_ran ~ tpi_15+tpi_5+slope+aspect,
+ data=geom_data, family = binomial(link=logit))
> summary(glm1)

Call:
glm(formula = emp_ran ~ tpi_15 + tpi_5 + slope + aspect,
+ family = binomial(link = logit),

data = geom_data)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7691 -1.1647 0.7587 1.1252 1.8405

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.21341 0.29634 0.720 0.471
tpi_15 0.18775 0.09662 1.943 0.052 .
tpi_5 0.72409 1.36171 0.532 0.595
slope -18.17214 7.47427 -2.431 0.015 *
aspect 0.03206 0.06838 0.469 0.639
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 736.11 on 530 degrees of freedom
Residual deviance: 713.11 on 526 degrees of freedom
AIC: 723.11

Number of Fisher Scoring iterations: 4

What do the results tell us? Thanks to the summary function quite a lot. The
first thing to notice is the significance codes. As it becomes obvious our model is
not very significant. Only slope and tpi_15 show a significant result on the 0.05
and 0.01 level, respectively. Besides this, we can observe a strong negative relation
between points’ presence and slope, i.e. the probability of the presence of megaliths
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on the steep slopes is low. For tpi_15, there is a slight positive relationship, i.e.
the more ridge-like the terrain, the higher the probability for megaliths, at least in
the understanding of this particular model.

Aspect has no real influence and is also not significant. We could conclude
that exposition has no influence on location selection, although there is a problem
with scale of measurement, which violates the model prerequisites. Hence, aspect
cannot be used here.

What about the TPI values? We used two models based upon the idea of deriving
local and more regional terrain information. In regression analyses it is problematic
when the chosen parameters are correlated. Thus, do the TPI values really show a
different thing?

> cor(geom_data$tpi_15,geom_data$tpi_5)
[1] 0.8755714

The correlation between the TPI with small and large kernel is high; hence, they
will explain the same thing. This means that using both in our regression analysis
is not useful. Nonetheless, which parameter shall we chose? Well, the significance
values of the first model answer this question for us.

Let us create an updated model

> glm2 <- glm(emp_ran ~ slope+tpi_15, data=geom_data,
+ family = binomial(link=logit))
> summary(glm2)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.31878 0.18747 1.700 0.0890 .
slope -18.16541 7.46234 -2.434 0.0149 *
tpi_15 0.22907 0.05116 4.478 7.54e-06 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
...

This model performs better than the first one and is significant for both
parameters. The described relationships are the same as in the first model, although
as expected—they are slightly more pronounced.

It is time to evaluate the models predictive utility. We start with a visual
inspection (Figs. 6.8 and 6.9) and subsequently perform a gain calculation for all
models, including the binary and weighted binary addition (Table 6.1). Gain is
calculated as [8, 329]:

Gain D 1 �
�

%a

%s

�
; (6.1)

where %a corresponds to the model’s precision, i.e. the percentage of total study
area covered by the model, while %s comprises of the percentage of total sites within
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glm1 presence (white) and absence (gray)

Fig. 6.8 Logistic regression model for megaliths

glm2 presence (white) and absence (gray)

Fig. 6.9 Logistic regression model for megaliths

the modelled area, which represents the model’s accuracy. Notice that the equation
models precision and accuracy as being equally important.

> ge1 <- evaluate(p = tp_meg, a = rand_points, model = glm1)
> ge2 <- evaluate(p = tp_meg, a = rand_points, model = glm2)
> pg1 <- predict(ter.par, glm1)
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Table 6.1 Results of gain calculation (table created using
kable function)

BA WBA GLM1 GLM2

p_a 7.1520955 21.1777959 46.0787075 45.1743956

p_s 30.3797468 36.7088608 64.4194757 61.7977528

gain 0.7645769 0.4230876 0.2847084 0.2689961

> pg2 <- predict(ter.par, glm2)
> tr1 <- threshold(ge1, "spec_sens")
> tr2 <- threshold(ge2, "spec_sens")
> plot(pg1 > tr1, main="glm1 presence (white) and absence
+ (gray)",col = grey(c(1:2/2)),legend = FALSE,cex.axis=
+ .9,tcl=-.3,mgp = c(3,.2,0),axes = FALSE, box = FALSE)
> points(spdf_meg,pch=19,cex=.3)
> plot(pg2 > tr2, main="glm2 presence (white) and absence
+ (gray)",col = grey(c(1:2/2)),legend = FALSE,cex.axis=
+ .9,tcl=-.3,mgp = c(3,.2,0),axes = FALSE, box = FALSE)
> points(spdf_meg,pch=19,cex=.3)

## GAIN ##
> pa.ba <- prop.table(table(ba@data@values))*100
> pa.wba <- prop.table(table(wba.rc@data@values))*100
> ps.ba <- prop.table(table(testSet.ba))*100
> ps.wba <- prop.table(table(testSet.wba.r))*100
> g.ba <- 1-(pa.ba[5]/ps.ba[4])
> g.wba <- 1-(pa.wba[5]/ps.wba[5])
> pa.glm1 <- (100*length(pg1[pg1 > tr1]))/length(pg1[!is.
+ na(pg1)])
> meg.logit <- extract(x = pg1, y = spdf_meg)
> ps.glm1 <- (100*length(meg.logit[meg.logit > tr1]))/
+ length(meg.logit)
> g.glm1 <- 1-pa.glm1/ps.glm1
> pa.glm2 <- (100*length(pg2[pg2 > tr2]))/length(pg2[
+ !is.na(pg2)])
> meg.logit <- extract(x = pg2, y = spdf_meg)
> ps.glm2 <- (100*length(meg.logit[meg.logit > tr2]))
+ /length(meg.logit)
> g.glm2 <- 1-pa.glm2/ps.glm2
> gain <- data.frame(BA=c(pa.ba[5],ps.ba[4],g.ba), WBA=
+ c(pa.wba[5],ps.wba[5],g.wba), GLM1=c(pa.glm1,ps.glm1,
+ g.glm1), GLM2=c(pa.glm2,ps.glm2,g.glm2), row.names =
+ c("p_a","p_s","gain"))

Gain values larger than 0.5 have a positive predictive utility while gain values
smaller 0.5 have none [12, 215]. Using this threshold, our models do not have
predictive utility, aside from the most simple, binary addition model. Nevertheless,
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the results of the gain calculation tell us a lot about the model structure and the
underlying data, although the input data were little and their societal meaning is
very low.

6.2.2 Deductive Models

Deductive models are equivalent to our theoretical model. They start with theoretical
assumptions about the location of places and test the predictive utility of these
ideas based upon known data. An example would be the assumption that megalithic
graves prefer elevated locations. Besides, such models can be seen as heuristic tools
helping to understand more about the patterns of locations and their characteristics.
Examples of deductive predictive models can be found in the literature—such as
[6]—although they are less frequent than their inductive counterparts.

Besides its potentials, predictive modelling in general is consistently and actively
criticised. The main critiques are (summarised from [9]):

• Many archaeological sites are buried; thus, they cannot be modelled because
nothing is known about their real distributions.

• Human behaviour did not occur in discrete bounded areas but rather formed a
continuum over the landscape. Therefore, archaeological site distribution cannot
be modelled and the site is a non-meaningful concept.

• Past environments were different from present ones; therefore, it is not possible
to model the past based upon the present.

• The most interesting sites are those that do not fit the pattern.
• Environmental variables shown to be important to site locations may only be

proxies for variables that were actually important.
• Modern soil characteristics are irrelevant to past farming practices because they

have changed since the past.
• Grouping sites of many types into a single, site-present class creates too much

variability to be modelled.

Furthermore, Verhagen [15] states that predictive models are inappropriate
regarding reality owing to

• a biased selection of archaeological data and environmental parameters;
• consequently, they disregard cultural factors in the archaeological data set, as

well as;
• in the choice of environmental parameters and
• neglect the changing landscape.

However, the application of archaeological predictive models is useful because
human behaviour is patterned with respect to the natural and social environment.
It is possible to gain new knowledge by observing relationships between human
residues and environmental parameters [9].
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6.3 Problems

6.1. We extract raster location information using a buffer: why? Moreover, what
new problems arise and what problems have we solved by applying this approach?

6.2. What is the reason why the number of NAs of the terrain parameter raster
differs in the different layers, despite the input data being the same?

6.3. Please write a function that applies the reclassification procedure for the binary
and weighted binary addition method.

6.4. Why is it problematic to use the terrain parameter aspect as we used it here?
How could this issue be resolved?

6.5. Interpret Table 6.1. Why is the gain for the binary addition model so high?
Discuss which model performs best. Do you think that gain calculation where
precision and accuracy are equally important is useful?
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Chapter 7
Point Pattern

7.1 Point Processes

Spatial distributions of points are dominant among the archaeological sources,
whereby distribution maps of certain types of finds are just one example. Hence,
point distribution producing processes are important models for our topic. We can
define (compare [14]):

Definition 7.1. A point process is a stochastic model that produces a point pattern
under consideration of some parameters.

and

Definition 7.2. A point pattern is a set of points in an area interpreted as a
realisation of a point process.

Point processes are very useful models when the object location is the main
information. For example, this is the case with archaeological distribution maps.
The location of finds is not completely arbitrary but also not completely determined;
rather, the location can depend on several parameters. Point processes model the
emergence of points in a certain area in dependence of different parameters or facts.
We can distinguish different influences on the point location that belong to two
categories and add up to a determination of the point location.

• Factors of random point patterns are not influenced by spatial parameters. These
factors are not subject to formal analysis but are addressed in the tradition of
post-processual archaeology.

– Noise. Based upon the current knowledge, the location does not depend on
spatial parameters. This component seems to be completely arbitrary.
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– Individuality. Most cases have a component that is not arbitrary but rather is
based upon rational choices in which individual preferences and knowledge
are involved. Since no systematic is visible, this component seems to be
random.

– Non-spatial processes. Non-spatial relationships that connect spatial param-
eters in a non-linear way can influence the point location without producing
recognisable patterns. For example, path dependency can be a part of this
mechanism.

• Factors of structured point patterns are determined by spatial parameters. These
factors are subject to formal analysis.

– Dependence on other factors. For new points certain values of influencing
parameters are preferred. For instance, settlements can prefer certain soil
types.

– Dependence on other points. The relationship to other points is considered
when new points are located. Villages are usually located at a certain distance
to other villages.

– Dependence on structures. The location of a point is determined because it is
part of a larger structure. The whole structure is placed in the landscape and
determines the location of the parts. The distance between a settlement and
grave yard is usually smaller than a certain threshold.

In the context of point pattern analysis the factors structuring point patterns are
called first-, second- and third-order properties (Fig. 7.1):

First-order properties It is assumed that the point location does not depend on
other points. The impact of other parameters (covariates) on point location is
explored.

Second-order properties It is assumed that the point location depends on other
points. The distance to other points is regarded.

Third-order properties It is assumed that the point location depends on other
points. Point triples are regarded.

Fig. 7.1 Three classes of spatial dependencies
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Point pattern analysis is an interdisciplinary field of research dealing with the
determination of the location of points. There are many publications focusing on this
topic or including this topic in different disciplines [1–6, 8–12, 14, 17, 18, 21–23].
In archaeology, the publications as well as the applications are rather few [7, 15, 16,
19, 20].

Some terms occurring in the field of point pattern analysis shall be mentioned.
The intensity of a point process is the probability of being a point in a certain area.
The point density function is related, as a further important characterisation of a
point process. A simple point process has no coincident points. A stationary point
process has a constant point density function. In the case of isotropy, the direction
does not matter for the point process. Homogeneous point processes are stationary
and isotropic. A homogeneous Poisson point process is completely spatially random
in the sense that the point location does not depend on other points. A Poisson
point process is stationary and simple and serves as a reference process for many
purposes. The Cox process is an inhomogeneous Poisson process with a random
intensity function. A Gibbs process involves influence from other points, which is
given by an interaction function. In the case of a hard core Gibbs process, points
avoid each other up to a certain threshold and they ignore each other. The interaction
function has the shape of a step. A Strauss process has a constant influence within
a certain distance threshold. Finally, Neyman–Scott processes are clustered point
processes with random cluster centres, which function as a center of intensity
functions.

The R-package spatstat allows to simulate some of those point processes.
Please refer to Chap. 12 for an example of such simulations.

7.2 First-Order Properties

We start with the first-order properties by exploring the dependency of the location
of Bronze Age barrows on different parameters. The parameters are the elevation,
the location of the Neolithic monuments and the location of medieval villages. We
have to compare the quantities of the different parameters at a certain point. Two
considerations guide us to the right methodological approach. We cannot directly
compare points that are distributed in the same area but not at the same locations.
First, we have to transform the point incidents into a field, which can be achieved by
density calculations. Densities can be compared at any point in the area of interest.
Please refer to Chap. 4 for further details on density calculations.

> sdev <- 2*mean(nndist(ppp_meg)+mean(nndist(ppp_tum)))
> bb <- bbox(sgdf_srtm)
> win <- owin(xrange=c(bb[1,1],bb[1,2]),
+ yrange= c(bb[2,1],bb[2,2]), unitname="m")
> meg_dens <- density(ppp_meg, kernel="gaussian",
+ sigma=sdev, dimyx=c(36,56), w=win, > edge=TRUE,
+ at="pixels")
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> tum_dens <- density(ppp_tum, kernel="gaussian",
+ sigma=sdev, dimyx=c(36,56), w=win, edge=TRUE,

at="pixels")
vil_dens <- density(ppp_vil, kernel="gaussian",
+ sigma=sdev, dimyx=c(36,56), w=win, edge=TRUE,

at="pixels")

The points where we compare the values should not be the monuments or villages
locations, because this could produce a bias. Hence we use random sampling points.

> samppt <- spsample(sgdf_srtm, 500, type="random")

Now, we can sample the grid objects. The function overlay produces a
warning that overlay is depreciated and one should use the function over. As
long as overlay works, this is not a problem, although when the function is
removed from R one must switch to over, which works a slightly differently.

> library(maptools)
> sgdf_meg_dens <- as.SpatialGridDataFrame.im

(meg_dens)
> meg_dens_samp <- overlay(x=sgdf_meg_dens,

y=samppt)
> sgdf_tum_dens <- as.SpatialGridDataFrame.im

(tum_dens)
> tum_dens_samp <- overlay(x=sgdf_tum_dens,

y=samppt)
> sgdf_vil_dens <- as.SpatialGridDataFrame.im

(vil_dens)
> vil_dens_samp <- overlay(x=sgdf_vil_dens,

y=samppt)
> dens_samp <- meg_dens_samp
> names(dens_samp)[names(dens_samp) == ’v’] <- ’meg’
> dens_samp@data <- cbind(dens_samp@data, tum_dens

_samp@data$v)
> names(dens_samp)[names(dens_samp) == ’tum_dens_samp

@data$v’] <- ’tum’
> dens_samp@data <- cbind(dens_samp@data, vil_dens

_samp@data$v)
> names(dens_samp)[names(dens_samp) == ’vil_dens

_samp@data$v’] <- ’vil’
> dens_samp@data <- cbind(dens_samp@data, elev_dens

_samp@data[,1])
> names(dens_samp)[4] <- ’elev’

Now we can run the Pearson correlation test which gives us the correlation
between two samples, where x and y are the vectors of the two samples.
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rxy D
Pn

iD1.xi � Nx/.yi � Ny/pPn
iD1.xi � Nx/2pPn

iD1.yi � Ny/2 (7.1)

> cor.test(dens_samp@data$meg, dens_samp@data$tum,
+ method="p")
Pearson’s product-moment correlation
data: dens_samp@data$meg and dens_samp@data$tum
t = 9.9529, df = 498, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3314748 0.4779447
sample estimates:

cor
0.4073256
> cor.test(dens_samp@data$vil, dens_samp@data$tum,
+ method="p")
Pearson’s product-moment correlation
data: dens_samp@data$vil and dens_samp@data$tum
t = 0.1741, df = 498, p-value = 0.8618
alternative hypothesis: true correlation is not equal

to 0
95 percent confidence interval:
-0.07994224 0.09542834
sample estimates:

cor
0.007803046
> cor.test(dens_samp@data$elev, dens_samp@data$tum,
+ method="p")
Pearson’s product-moment correlation
data: dens_samp@data$elev and dens_samp@data$tum
t = 6.1569, df = 497, p-value = 1.531e-09
alternative hypothesis: true correlation is not equal

to 0
95 percent confidence interval:
0.1826994 0.3459043
sample estimates:

cor
0.2662087

Obviously, there is no correlation of megaliths and tumuli, but rather of villages
and tumuli. The elevation–tumuli correlation coefficient is small, which is certainly
unsurprising. The values for rerunning this test may differ since the sample points
are random. A principal component analysis is useful to learn more about the
relationship between the variables. The method transforms the data to obtain equally
scaled and uncorrelated dimensions.
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> prcomp(na.omit(dens_samp@data))
Standard deviations:
[1] 1.059019e+01 7.021117e-07 3.849081e-07 2.070099e-08
Rotation:

PC1 PC2 PC3 PC4
meg 8.116088e-09 -3.355311e-01 -9.418227e-01 1.972217e-02
tum 1.757409e-08 -9.420277e-01 3.354931e-01 -5.306281e-03
vil 1.709456e-10 -1.619074e-03 -2.035925e-02 -9.997914e-01
elev 1.000000e+00 1.927876e-08 1.751410e-09 1.040962e-10

The eigenvalues—‘Standard deviations’ in the console output—show how much
of the variance is explained by the new variables. The most important variable is the
first one. The principal components (‘PC’) are the new variables themselves. The
loadings—‘Rotation’ in the console output—give the coordinates of old variables
in the coordinate system of the new ones. PC1 is mainly elevation. PC2 and PC3
are different combinations of the density of megaliths and tumuli with a differing
influence on the components and PC4 is mainly villages. The values show the degree
of dependency between the different variables. In the case of rather complicated
interrelationships, this approach provides insights into the dependencies that cannot
be obtained by other methods.

In the first-order point pattern analysis, it is sometimes important to establish
whether two point patterns have the same preferences concerning certain param-
eters. Do Neolithic and Bronze Age monuments prefer the same elevation? For
this purpose, we have to ascertain whether the distribution of the elevation data
of the two point patterns is the same. The Kolmogorov–Smirnov test (KS test) is an
appropriate method for this purpose. After sampling the elevation data at the point
locations from both point patterns, we can apply the test. The test statistic is

de D sup
x

jFe.x/ � Ft.x/j (7.2)

In this equation, Fe.x/ is the empirical cumulative distribution function, while
Ft.x/ is the theoretical or the other empirical one.

> meg_elev_samp <- overlay(x=sgdf_srtm, y=spdf_meg)
> tum_elev_samp <- overlay(x=sgdf_srtm, y=spdf_tum)
> vil_elev_samp <- overlay(x=sgdf_srtm, y=spdf_vil)
> ks.test(meg_elev_samp@data[,1], tum_elev_samp@data[,1])
Two-sample Kolmogorov--Smirnov test
data: meg_elev_samp@data[, 1] and tum_elev_samp@data[, 1]
D = 0.1426, p-value = 0.002416
alternative hypothesis: two-sided
> ks.test(meg_elev_samp@data[,1], vil_elev_samp@data[,1])
Two-sample Kolmogorov--Smirnov test
data: meg_elev_samp@data[, 1] and vil_elev_samp@data[, 1]
D = 0.4774, p-value = 0.007034
alternative hypothesis: two-sided
> ks.test(tum_elev_samp@data[,1], vil_elev_samp@data[,1])
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Two-sample Kolmogorov--Smirnov test
data: tum_elev_samp@data[, 1] and vil_elev_samp@data[, 1]
D = 0.5314, p-value = 0.001605
alternative hypothesis: two-sided

We find that none of the pairs of point patterns tested show the same distribution
of elevation values and hence have the same preferences for elevation. This does
not contradict the correlation previously found. The correlation was about similar
values at the same sampling point and the KS test is about similar distributions of
values at different places. A note of caution is appropriate at this point, namely that
the use of p-values of statistical tests has been strongly criticised in recent years
[13, 24]. Accordingly, the reader should apply such methods with sensibility.

7.3 Second-Order Properties

The key question of second-order properties is whether the location of points
depends on other points. If the location of new points depends on other points, this is
called interaction between points. If not and if no other effects are present, we speak
of complete spatial randomness (CSR). Hence, CSR tests are the methodological
focus in second-order point pattern analysis. They compare an empirical model
of the data with a theoretical model, which represents a complete spatial random
Poisson process. The traditional approach is to calculate the point densities in
a coarse grid for the empirical data and a theoretical model and apply a test
statistics. In spatial statistics, distance-based approaches dominate. If the cumulative
distribution of distances between the empirical points matches that of a Poisson
process, CSR is established.

However, the usually applied CSR tests are able to produce more information
than to detect complete spatial randomness. They are able to distinguish three basic
types of point patterns (Fig. 7.2):

Fig. 7.2 Three types of point patterns



136 7 Point Pattern

Random points The point location is random and does not depend on other
points. Interaction between points is not assumed.

Regular points Regular spaced points are the result of a kind of negative
interaction. There is repulsion between the points.

Clustered points Clustered points are the result of a positive interaction. There
is attraction between the points.

There are several functions in use as CSR tests. The G-function cumulates the
frequency of nearest-neighbour distances. It calculates what fraction of all nearest-
neighbour distances dmin.si/ in the pattern is less than d.

G.d/ D #fdmin.si/ � dg
n

(7.3)

If the point pattern is clustered, it is more likely to have another point nearby than
in a random point pattern. There are more short distances to the nearest neighbour
and the cumulative curve rapidly increases at short distances.

Nonetheless, how different from the theoretical Poisson process curve does the
empirical curve have to be to establish a point process that is not completely spatially
random? We can assume that some variance around the theoretical model is allowed.
Monte Carlo simulations allow calculating an envelope for random points. We can
produce several random point patterns and calculate the G.d/-values. Subsequently,
we can draw an envelope around all values that occur in the simulations of random
point processes (grey area in Fig. 7.3). This is undertaken automatically in the
R-function envelope. In this function y is a ppp-object defined in the spatstat
package. The function is passed with the fun argument where certain keywords
replace the function that will be used. While nsim is the number of simulations
nrank refers to the data for the envelope. A value of 1 means that minimum and
maximum values are used. A value of 2 means that the minimum and maximum
values are excluded as outliers and the second smallest/highest values are used.

> library(spatstat)
> meg_env_g <- envelope(y = ppp_meg, fun = Gest,
+ nrank = 2, nsim = 99)
Generating 99 simulations of CSR ...
> plot(meg_env_g)

The G-function and some other functions are shown in a scheme, which marks
connections that are counted (Fig. 7.4).

Imagine a clustered point pattern where the points in the clusters are regularly
spaced. The G-function would tell us that we have a regular spaced point pattern. If
we step back and look at the whole picture, we become aware that there are clusters.
Mathematically, this is archived by producing some random points and calculating
the distances to the nearest point in the point pattern. The F-function (Fig. 7.5)
applies this idea and is called an ‘empty-space function’ because we now have points
in the empty space between the clusters. The F-function behaves differently than the
G-function for clustered and even patterns. In a clustered pattern F.d/ rises slow at
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Fig. 7.3 Megaliths, CSR test, G-function (ppa-Meg-g)

Fig. 7.4 Scheme of some functions for CSR-tests

first but faster at larger distances. This is because it is less likely to have another
point nearby the empty space points than in a random point pattern.

F.d/ D #fdmin.pi; s/ � dg
m

(7.4)

> meg_env_f <- envelope(ppp_meg, fun = Fest,
+ nrank = 2, nsim = 99)
Generating 99 simulations of CSR ...
> plot(meg_env_f)

Imagine a point pattern that comprises pairs of points in a small yet equal
distance. The G- and F-function would tell us that we have a regular point
pattern despite the overall point pattern, which might have clusters of point pairs.
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Ripley’s K-function (Fig. 7.6) tries to overcome this problem by looking at all
connections of points up to a certain threshold, rather than only the nearest
neighbours. This function is assumed to be more stable.

K.d/ D
Pn

iD1 #.S 2 C.si; d//

n�
(7.5)

> meg_env_k <- envelope(ppp_meg, fun = Kest,
+ nrank = 2, nsim = 99)
Generating 99 simulations of CSR ...
> plot(meg_env_k)

In order to stabilize the variance and make visual comparisons easier, it is com-
mon in spatial statistics to conduct a square root transformation of the K-function,
known as the L-function [14, 95] (Fig. 7.7).

L.d/ D
r

K.d/

�
: (7.6)
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> meg_env_l <- envelope(ppp_meg, fun = Lest,
+ nrank = 2, nsim = 99)
Generating 99 simulations of CSR ...
> plot(meg_env_l)

An other function that is usually mentioned in the field of point pattern analysis
is the J-function, which is a combination of the G- and F-function (Fig. 7.8).

J.d/ D 1 � F.d/

1 � G.d/
(7.7)

> meg_env_j <- envelope(ppp_meg, fun = Jest,
+ nrank = 2, nsim = 99)
Generating 99 simulations of CSR ...
> plot(meg_env_j)

We reject this function especially because it is a combination of the G- and
F-function. It is no longer possible to distinguish different phenomena that have
a different effect on both functions. The J-function might be useful for CSR-testing
but not for point pattern characterization.
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The CSR tests work, if we have no first-order properties. Based upon the CSR
tests, it is not possible to decide whether first- and/or second-order effects lead to
the observed point pattern.

A problem might occur with a point pattern with heterogeneous characteristics
in different zones of the area of interest. In this case, a moving window approach
might help. First, we prepare an empty spatial grid that has to store the results of our
analysis. This grid contains an area with a buffer around the points from the point
pattern.

> rw <- 1000
> xmin <- sgdf_meg_dens@bbox[1,1]
> xmax <- sgdf_meg_dens@bbox[1,2]
> ymin <- sgdf_meg_dens@bbox[2,1]
> ymax <- sgdf_meg_dens@bbox[2,2]
> dx <- xmax - xmin
> dy <- ymax - ymin
> xmin <- xmin - (dx / 5)
> xmax <- xmax + (dx / 5)
> ymin <- ymin - (dy / 5)
> ymax <- ymax + (dy / 5)
> rows <- round((ymax-ymin)/rw, 0) + 1
> columns <- round((xmax-xmin)/rw, 0) + 1
> z <- cbind(1:(columns*rows))
> df <- data.frame(z)
> gt <- GridTopology(c(xmin - rw/2,ymin - rw/2),
+ c(rw,rw), c(columns,rows))
> ras <- SpatialGridDataFrame(gt, df, proj4string =
+ CRS(as.character(crs1)))

The next step is to apply the moving window. We use a loop through all
raster cells in the prepared grid. For each cell, the calculation of the G-function
is performed with the command Gest. In this calculation, the radius of the mowing
window defines which points are included in the calculation. A problem occurs
when we try to represent the result of such a calculation by one number. The
solution is to sum the differences of the theoretical and the empirical curve. This
value cannot contain all information expressed by the G-curve, although it is a good
representative for the result.

> fs_nn <- nndist(ppp_tum)
> radius <- 10000
> r <- seq(0, radius, 250)
> win <- owin(xrange=c(xmin=xmin,xmax=xmax),
+ yrange=
+ c(ymin=ymin,ymax=ymax), unitname="m")
> for (i in seq(along=ras@data$z)) {
+ xr <- coordinates(ras)[i,1]
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+ yr <- coordinates(ras)[i,2]
+ distances <- sqrt((ppp_tum$x -xr)^2 +
+ (ppp_tum$y -yr)^2)
+ indiz <- which(distances<radius)
+ if (length(indiz) > 2 ) {
+ x <- ppp_tum$x[indiz]
+ y <- ppp_tum$y[indiz]
+ name <- ppp_tum$x[indiz]
+ fsgf <- SpatialPointsDataFrame
+ (cbind(x, y), as.data.frame(name),
+ proj4string= CRS(as.character(crs1)))
+ fspt <- ppp(fsgf@coords[,1],
+ fsgf@coords[,2], window=win)
+ gfs <- Gest(fspt, r=r,correction="km")
+ value <- mean(gfs$theo-gfs$km)
+ ras@data$z[i] <- value
+ }
+ else {ras@data$z[i] <-0}
> }

Finally, we plot and store the results (Fig. 7.9). Dark shades of grey and high
numbers indicate a regular point pattern, while light shades of grey and low numbers
indicate a clustered point pattern. The result mainly shows a clustered point pattern.
Dark grey shades can be interpreted as edge effects in this case study.

> image(ras, col = gray.colors(20))
> points(ppp_tum$x, ppp_tum$y, pch=16, cex=0.4)
> writeAsciiGrid(ras, "c7_movingWindowG.asc",
+ attr = 1, na.value = -999999, dec=".")

The moving window approach reduces the information available from the
functions and hence it is not useful as a default tool. It is a tool specialised in
detecting spatial variations in point pattern characteristics and its application is
restricted to rather simple point patterns. In case of complicated point patterns, the
shape of the whole curve is required.

Which function is best to characterize a point pattern? Why are we discussing
more than one function? Obviously, the functions give us different results. They are
sensitive for different types of clustered and regular point patterns. The three basic
categories of point patterns are not sufficient to describe point patterns. Referring
back to our example, we can ask which point pattern type is a regular grid of clusters
with random points. The answer is that this depends on the method of CSR test.
In the literature, one can sometimes find the advice to use different CSR tests. If all
produce the same result, it is clear which point pattern type it is. However, if they
differ, the interpretation is that the point pattern type is unspecified. When the task
is to test for CSR, this might be a sufficient solution, albeit not for characterizing
point patterns. We have to take into account different definitions of clustered and
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Fig. 7.9 Bronze Age barrows, G-function, moving window

Fig. 7.10 Complicated point pattern with G-, F- and K-function. Dashed line: theoretical curve
for CSR; solid line: empirical curve

regular point patterns and the different sensitivity of different functions. The three
functions form a good basis for characterizing different variants of point patterns.
In particular, complicated point patterns require at least these three functions. Four
examples of complicated point patterns will exemplify this.

Our first example is a random pattern of point pairs (Fig. 7.10). The G-function
shows a steep step at the beginning of the curve, since the regular distance between
the points of a pair indicates a regular pattern. In detail, the steepness indicates the
regular internal pattern of the clusters, indicated by the step above the theoretical
curve. However the empty space F-function, however, sees the random pattern of the
pairs. The K-function has the steep step at the beginning and then other distances,
which increasingly tend towards randomness.

The next pattern is a regular distribution of regular clusters (Fig. 7.11). The
G-function again has the steep step, which indicates the clusters with regular inner
structure. The step begins at a certain distance and hence shows the regular inner
structure of the clusters. By contrast, the F-function detects the clustered distribution
of the clusters. This aspect can be seen in the K-function in the horizontal upper part
of the curve.
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Fig. 7.11 Complicated point pattern with G-, F- and K-function. Dashed line: theoretical curve
for CSR; solid line: empirical curve

Fig. 7.12 Complicated point pattern with G-, F- and K-function. Dashed line: theoretical curve
for CSR; solid line: empirical curve

Fig. 7.13 Complicated point pattern with G-, F- and K-function. Dashed line: theoretical curve
for CSR; solid line: empirical curve

A clustered pattern of clusters is shown in the third pattern (Fig. 7.12). The
G- and F-function indicate the clustering. The G-function indicates the clustered
inner structure of the groups of points, while the F-function is concerned with the
clustered pattern of the clusters. The stepped shape of the K-function is caused by
the fact that there are two types of clusters at two levels of organization.

Finally, we have a regular pattern of clustered clusters (Fig. 7.13). The G-function
again indicates the inner clustering and the F-function seems to indicate a cluster of
clusters. However, due to the dense clusters, the empirical curve has much higher
distances than the same number of points would have for a random point pattern.
This is why the F-function cannot detect the regular pattern of clusters. The same
effect applies for the last example, where a wrong interpretation of F leads to the
right result. The K-function expresses both effects. In the left part the small clusters
are indicated and in the right part the regular pattern of clusters occurs.

A systematization of the point pattern characterization will enable us to better
understand and interpret the results and develop additional functions (Fig. 7.14).
In particular, we become aware of the missing functions. The functions used to
characterize point patterns count the fraction of certain connections between points.
Hence, the functions are controlled by two parameters.
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Fig. 7.14 Scheme of different foci and points of view with some available functions

Point of view The points from which the connection starts. This can be points of
the point pattern, random points, a regular point grid, Voronoi nodes or any other
group of points.

Focus The target points are the points from the point pattern. The focus defines
which connections to target points are allowed. Nearest neighbours, natural
neighbours, all points and all other rules are possible.

A point pattern is characterized by a combination of different functions that are
able to detect specific configurations. A regular grid of clusters with random points
is no longer an unspecific but rather a well-specified pattern.

7.4 Third-Order Properties

Finally, we turn briefly to third-order properties. The T-function is used for this test
and it allows identifying interaction between point triples (Fig. 7.15).

> meg_env_t <- envelope(ppp_meg, fun =
+ Tstat, nrank = 2, nsim = 20)
> plot(meg_env_t)
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7.5 Problems

7.1. Please take a distribution map of settlements and finds from the literature and
think about different factors that might influence the location of the points.

7.2. Can you imagine a couple of different individual factors for the location of a
settlement and a grave yard?

7.3. Please give some examples of factors of first-order properties.

7.4. Please explore the parameters of the point pattern simulation. Which point
processes are possible? What effect on the result do different values of the
parameters have?

7.5. Please apply the methods of second-order property analysis in this chap-
ter to:

(a) different simulated point patterns; and
(b) the village point pattern.

7.6. Please apply the moving window technique with the F- and G-function on the
same Bronze Age Barrow point pattern.

7.7. What would a G-, F-, and K-function look like for:

(a) a regular pattern of clusters where half of the clusters have a regular inner
pattern and the other half a clustered inner pattern;

(b) a random pattern of clusters where half of the clusters has a regular inner pattern
and the other half a clustered inner pattern.

(c) a point pattern with clusters with an internal clustered structure, whereby half
of the clusters are ordered regularly and the other half are ordered clustered and

(d) a point pattern with clusters with an internal regular structure, whereby half of
the clusters are ordered regularly and the other half are ordered clustered.

7.8. Please invent another complicated point pattern.
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7.9. Can you imagine the effect of different point patterns on functions defined by
different foci and points of view on the shape of the functions? Please concentrate
on the missing functions.

7.10. Are there other foci and points of view that might be useful but are not
included in the scheme?

7.11. Can you think of useful applications of third-order analysis in geography or
archaeology? Are they applicable with the T-function?
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Chapter 8
Boundaries

8.1 Borders and Territoriality

Borders and territories are means of constructing and structuring space. In chapter
one we discussed that spaces can be constructed by topologies that define con-
nectedness and neighbourhood. Topological spaces provide the foundations of the
metric spaces, which also define distances and serve as a basic means of orientation.
Boundaries are a very important tool for the construction of topologies. They define
something that distinguishes two entities. More specifically, borders distinguish
territories. Accordingly, we can define (compare [13])

Definition 8.1. A border is a line or zone delimiting two spatial areas.

Definition 8.2. A territory is a bounded space with crisp borders assigned to
something.

While the border implicitly defines certain spatial areas as entities that can be
filled with meaning in a next step, the territory implicitly defines a border. Hence,
borders and territories are closely coupled terms.

Despite the formal definition, territories are not simply geometrical objects;
rather, they are elements of the social space [12, 13, 29, 41, 43, 45]. They are
also a mapping of social structures and forming them. In this inter-relationship,
territories are a self-stabilising object, institutionalised with a clear extent and
boundary. Accordingly, territories tend to be persistent. The influences of territories
are manifold [29]. They delimit different entities by contributing to the construction
of the social space. Borders restrict interaction, working as friction for interaction.
Furthermore, they support the establishment of certain rules of behaviour across the
border.

The inter-relationship between territories and social space has a specific mecha-
nism, rendering territories an important object in the discourse of power. A territory
is not simply a patch of land or a tool for establishing differences between groups
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of people. When a territory is defined, a process of abstraction is set into motion,
whereby people start to think that the territory is a homogeneous space. Sibley [36]
calls this phenomenon the purification of space. On the one hand, this supports the
formation of collective identities, whereby people deliberately behave according
to the idea of a homogeneous space and they unconsciously adapt to each other
in a unified interaction space. On the other hand, people are forced to adapt,
given that singularities and the unusual behaviour of minorities are smoothed out
by different scales of suppression, force and influence. Nonetheless besides the
adaptive phenomena, a society in a certain territory can also disintegrate due to
certain inner or external social forces. The persistence of territories in such cases—
as well as the heterogeneous nature of some territories right at the beginning of the
territorial definition—leads to a consistent system. This is what Agnew [1, 2] called
the territorial trap. The behaviour is influenced by the imagination of a homogeneous
territory, which may lead to wrong decisions. If a territory is defined, people tend to
behave as if it were a homogeneous territory.

The general term of territory includes overlapping territories and animal territo-
ries [16]. The things connected with the delimited spatial area can be subsistence
areas, interaction areas, areas of social activities or identities, areas of ethnics or
power, economic areas and areas of shared ideas and cultural traits. When we speak
about territoriality [12], we refer to a much more restricted version of territories,
which are exclusively assigned to something and restricted to political territories.
Political geography is concerned with the issue of territoriality [19]. In case of
territoriality, land and space become a valuable commodity, even if the main task
of defining a territory is to obtain, legitimate or preserve power. In this sense, Elden
[7] describes territories as a political technology, although he rejects the concept of
territoriality. While the border—despite being an essential part of the definition—
appears as periphery in the case of many territories, in the case of territoriality
it seems to be the opposite: the border seems to be the most impart thing and is
strongly defended. This is a shift in esteem not concerning the entity to which the
territory is assigned but rather the territory itself. Territoriality emerges if one or
both of the following are assumed:

• the land, its resources and strategic location; and
• the territory as a unifying object that supports power.

Based upon these considerations, we can establish a ranking of different degrees
of territorialisation:

1. no organisation of spatial areas;
2. fields without borders that assign a value to each place;
3. territories with crisp borders; and
4. territoriality with exclusive political territories.

This list makes it clear that these things are different, although in practice it
is not uncommon to deduce one from the other. If we deduce a territory from
territoriality, this is a correct inference. We can even deduce fields from territories
if we accept a field with a non-continuous surface. However, a field that has spatial
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auto-correlation does not imply territories and territories do not imply territoriality.
In particular, the last inference is a serious problem. We have to consider that
territories have been used in a certain way. But simply, we cannot assume territories
and territoriality; rather, we have to prove that they have existed. Neither is an
important place is sufficient to deduce a territory nor is a border sufficient to deduce
territoriality, although both observations can be a good starting point for further
research. Theoretical modelling replaces empirical research although it can help to
understand the details. If we model borders and territories, we must be aware that the
existence of territories and territoriality in particular cases is not self-evident. The
same can be said about aspects connected with the territory. Territories need not to
be connected to political ethnic entity and not to cultural groups. In this context, we
have to consider criticism about territorial approaches [37, 43].

8.2 Boundaries of Cultural Areas

In archaeology, the analysis of cultural areas is traditionally an important issue.
The general concept is that cultural traits tend to concentrate in certain areas and
they allow to delimiting cultural areas. The question concerning how to interpret
such cultural areas is answered in many different ways. The idea that cultural
areas are connected with a certain ethnic unit and that different environments
and mental conditions lead to different cultures dates back to Herder [15]. This
concept was further developed in ethnology—for example, by Tylor [42] and
Frobenius [10]—and passed on to archaeology, where Kossinna [21] and Childe
[3] made extensive use of it. This concept perceives cultural areas as a kind of
tribal territories. However, this concept has attracted certain critiques (e.g. [17, 26]).
Other researchers such as Clarke [4] interpret cultures as a mere classification unit,
while Lüning [23] interprets cultures as an area of validity for chronologies. Nakoinz
[24, 25, 27] interprets cultural areas as interaction spaces inside which the degree
of interaction is greater than to outside locations. This leads to a cultural adaptation
of the members of a culture. The empirical work in psycholinguistics concerning
alignment in dialogue supports this concept [11, 30].

However, what is culture? Thus far, we have used the term but not defined it,
as is often the case in archaeology. Now we want to offer a definition, provided by
Hansen [14, 39]:

Definition 8.3. Culture covers standardisations that are valid in collectives.

This definition connects standardisations—which is something in common,
a shared knowledge, cultural trait or tradition—with a group of people, the
collective. This definition makes no statements about the content of culture or
ideal states of culture; rather, it is a formal definition that covers many other
existing definitions [22]. These properties of the definition allow applying it in
many disciplines, particularly in archaeology. Standardisations are indicated by
archaeological finds and building structures. We do not need to know the content
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of the standardisations. The opportunity to investigate standardisations with formal
analysis suits archaeology very well, given that we can delimit and characterise
cultures, even if we do not know what exactly the common knowledge is.

This definition is compatible—but not limited to—the interpretation of culture as
interaction space. Cultures that are not spatially bound are in existence and become
increasingly important in the archaeological discourse although they are excluded
here owing to the spatial focus of this book. The focus lies on spatially delimited
cultures that correspond formally but not in interpretation with the traditional
archaeological cultures.

An important difference from the traditional archaeological cultures is that
even a single standardisation with a corresponding collective can be a culture.
Moreover, sets of standardisations are also possible. According to the definition
from Hansen, cultures form a kind of poly-hierarchy, whereby certain sets of
standardisations can be derived from different other ones. The question is not
which cultures existed, but rather which are the most important ones for the
archaeological interpretation. Among the important ones, cultures that correspond
with the traditional archaeological concept—in the sense that they are spatially
bound and possess crisp borders—are certainly dominant ones. However, we cannot
detect such cultures with single diagnostic types; rather, we have to include the
whole material into the analysis. The distribution of the archaeological types can
allow the reconstruction of borders. If the borders for most of the types are located
at the same place, only then can we speak of an archaeological culture with a
border that was important to the people [25]. Here, we observe a distinct shift in
the concept: traditional archaeological cultures were defined by the distribution of
types in a certain area, whereas the new concept shifts the definition of cultures to a
kind of cultural space populated with indicators for standardisations such as cultural
traits. Here, we can find sets of types that commonly occur together. The test, if
those sets of types are distributed in a limited area and hence show spatial borders,
indicates spatially bound cultures and proofs that we have found a cultural unit and
not a random combination of types. If the same combination of finds occurs in many
nearby places, then it is not by chance but rather it maps a real phenomenon. If the
distribution is heterogeneous, then a real phenomenon is still possible, although we
lack the verification. For this approach, not only the presence of types but also the
relative quantity matters.

To summarise, the new concept is a generalisation that connects to other
disciplines such as cultural studies and defines cultures in a cultural space. The
mapping to the geographical space simply serves the purposes of filtering spatial
aspects and verifying the phenomenon.

Despite the extensive discussion concerning the term of culture there are three
main reasons for delimiting cultural spaces:

• identifying interaction areas for culture historic interpretation;
• delimiting areas where chronologies are valid and
• delimiting areas for future research.
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These reasons are not touched by problematic interpretations of culture, since
“interaction” is the most common component in the different approaches. Although
more in-depth interpretations may be more exciting and are indeed possible, the
interaction space concept set us on common ground and even this abstract and
general concepts lead to the emergence of important knowledge. Nonetheless, in
any case we have to be cautious: although every individual has culture and belongs
to many cultures, we cannot assume that archaeological cultures exist in a certain
case; rather, we have to prove it based upon empirical evidence. Indeed, even if
they exist, cultural territories with crisp borders also have to be proven. In some
cases, a continuous model of cultural space is more appropriate, while for some
purposes network approaches are more advisable. Based upon these considerations,
we will judge the empirical boundary models as being the most important, and thus
we continue with these models.

8.3 Empirical Boundary Models

Finding empirical boundaries is mainly a problem of archaeological evidence.
Borders can be defined and marked in different ways:

• virtual lines defined by their relationship to topographic features, such as “in
front of the forest”;

• natural lines, such as river;
• lines that are marked by natural objects and are re-interpreted as symbols, such

as certain trees;
• lines marked with symbols, such as poles or stones and
• monumental lines, such as dykes.

Some of these marks are obvious such as dykes [5, 25, 39]. They may mark areas
on very different scales, but they are mainly visible. In the case of ditches, they
can be seen as once comparable obvious. However, most ditches are longer visible
and hence the problem is finding them. A more serious problem is the symbols,
given that one has to know the code; otherwise, the markings remain meaningless.
In addition to the problem of the border marks, the border itself can have different
characterisations; for instance, borders can be lines or border zones. The marks do
not allays indicate the nature of the border.

In practice an indirect approach complements the investigation of border marks,
attempting to establish differences between the two sides of the border. To a certain
degree, this approach is based upon the homogeneity hypothesis of territories, albeit
in a weak form. The assumption is that the mean of the characteristic parameters
differs inside and outside a territory and that the variance is sufficiently small
to recognise the differences. Usually the presence of artefact types is used as a
parameter, although building structures and monuments are also valuable evidence
for this purpose. We will use our monuments and villages data sets to exemplify
some methods. It is important to bear in mind that one of the main assumptions of
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Fig. 8.1 Monuments, convex hull and buffer. Black: megalithic tombs; grey: bronze age barrows

landscape archaeological approaches is not given, namely the simultaneity of the
sites. Since the reader is already familiar with our data, it seems more advisable to
use this data than prepare a proper set of data for this purpose. The reader can obtain
an extensive data set for analysing cultural areas at: http://www.johanna-mestorf-
academy.uni-kiel.de/wordpress/data-exchange-platform/shkr/ [26].

The traditional approach is to draw a line around the find spots of a certain type,
whereas a formalised version is to produce a convex hull around the points (Fig. 8.1).
This method connects the outer points without producing “bays”.

> library(spatstat)
> ch_meg <- convexhull(ppp_meg)
> ch_tum <- convexhull(ppp_tum)
> plot(ch_tum, border="grey", main="")
> plot(ch_meg, add=TRUE)
> points(ppp_tum$x, ppp_tum$y, pch=17, cex=0.6,
+ col="grey")
> points(ppp_meg$x, ppp_meg$y, pch=16, cex=0.4)

Of course, this method has some disadvantages; for instance, outlier has a very
strong influence on the result. Moreover, concave parts and holes in the distribution
are not properly mapped. Drawing the line exactly through the points does not seem
useful, since the points mark the inner area of the territory. A buffer may solve at
least some of these problems.

> buf_tum <- dilation(ppp_tum, 1000, polygonal=TRUE,
+ tight=F)
> buf_meg <- dilation(ppp_meg, 1000, polygonal=TRUE,
+ tight=F)
> plot(buf_tum, border="grey", main="")
> plot(buf_meg, add=TRUE)
> points(ppp_tum$x, ppp_tum$y, pch=17, cex=0.6,
+ col="grey")
> points(ppp_meg$x, ppp_meg$y, pch=16, cex=0.4)

http://www.johanna-mestorf-academy.uni-kiel.de/wordpress/data-exchange-platform/shkr/
http://www.johanna-mestorf-academy.uni-kiel.de/wordpress/data-exchange-platform/shkr/
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Fig. 8.2 Monuments, natural breaks contour lines and zero contour line. Black: megalithic tombs;
grey: bronze age barrows

Using point density will produce more natural results. We have to calculate
contour-lines to find the border, but how do we find the right contour line? We can
search for natural breaks (Fig. 8.2).

> library("classInt")
> nb_meg <- classIntervals(dens_samp@data$meg, style =
+ "fisher", dataPrecision = NULL)
> nb_tum <- classIntervals(dens_samp@data$tum, style =
+ "fisher", dataPrecision = NULL)
> contour(sgdf_meg_dens, add=F, method = "edge", levels
+ = nb_meg$brks, drawlabels = F)
> contour(sgdf_tum_dens, add=T, method = "edge", levels
+ = nb_tum$brks, drawlabels = F, col="grey")
> points(ppp_tum$x, ppp_tum$y, pch=17, cex=0.6,
+ col="grey")
> points(ppp_meg$x, ppp_meg$y, pch=16, cex=0.4)

We can pick out the contour line with the highest gradient of sites. This is called
the ideal contour line and seems to be the most characteristic delimitation [46].

Now it becomes obvious that both types have different core areas of distribution:
something that we already know from the previous chapters. If we can establish
the relation between the density of the two types, a proper border between both
areas should be visible. The density values are optimal for comparing different point
distributions. We can try a very simple approach by subtracting one density from the
other, whereby the zero-value marks the border between the dominance of the two
types. In this case, the contour lines respects both of the density data sets.

> ddif <- sgdf_meg_dens
> ddif@data$v <- sgdf_meg_dens$v - sgdf_tum_dens$v

The difference contour line approach is a good method for only two variables,
although it is not applicable for more than two variables. The next approach is a
cluster analysis [8, 20, 26, 33, 38] (Fig. 8.3); referring to many different methods
with the common task grouping objects based upon their similarity. Generating four
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Fig. 8.3 Monuments and villages, dendrogram of a hierarchical cluster analysis

classes with only three variables is a little audacious but may work under special
conditions. The first step is to obtain the data. We need a data frame where the
columns are observations of different variables: in our case, the density values of
different types. The rows are objects, which have to be grouped. Here, again we use
the random sample points from chapter seven. To avoid the number of points rather
than the relation influencing the result, we can normalise the values.

> dens_samp2 <- dens_samp[,1:3]
> dens_samp2@data[,1] <- dens_samp2@data[,1]
+ / max(dens_samp2@data[,1])
> dens_samp2@data[,2] <- dens_samp2@data[,2]
+ / max(dens_samp2@data[,2])
> dens_samp2@data[,3] <- dens_samp2@data[,3]
+ / max(dens_samp2@data[,3])

The definition of the groups is based upon the distance between objects, which
has to be minimal; accordingly, we have to define a distance. The metric has to
consider the type of data and the structure of data. In our case, the Euclidean distance
is a good choice and can be applied in the feature space to the vectors of density
values.

Subsequently, we have to decide which cluster algorithm is the right one. The
cluster algorithm undertakes the clustering by grouping the objects. The idea is
that the groups have maximal dissimilarities (distances in the feature space) to
other clusters and minimal dissimilarities within the cluster. Put simply, the cluster
algorithm informs us which elements belong together. Hierarchical cluster analysis
produces a hierarchy of objects whereby step by step all objects are merged into
clusters. This method allows plotting dendrograms and provides a good insight into
the structure of the data, although it is perhaps a little confusing with large amounts
of data. No details are visible but at least we can distinguish four or five main groups.
The technique of producing a reduced dendrogram only with the most important
clusters is described elsewhere [26].
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Fig. 8.4 Monuments and villages, silhouette width, PAM cluster analysis

> distances <- dist(dens_samp2@data,
+ method = "euclidean")
> hclust(distances, method="centroid")
Call:
hclust(d = distances, method = "centroid")
Cluster method : centroid
Distance : euclidean
Number of objects: 500
> hc <- hclust(distances, method="centroid")
> plot(hc)

Partitioning methods divide the objects into a certain number of clusters
with minimal internal variance. We use the PAM algorithm (partitioning around
medoids [20]). When using partitioning methods, we have to decide about the
number of clusters. The hierarchical cluster analysis showed us that four or five
natural groups are likely. We now apply the silhouette width, which is a quality
measure for clusters [34]. Here, we find that four is a good choice (Fig. 8.4).

> library("cluster")
> widthssum <- c(
+ sum(pam(dens_samp2@data, 2, metric = "euclidean")
+ $silinfo$clus.avg.widths),
+ sum(pam(dens_samp2@data, 3, metric = "euclidean")
+ $silinfo$clus.avg.widths),
+ sum(pam(dens_samp2@data, 4, metric = "euclidean")
+ $silinfo$clus.avg.widths),
+ sum(pam(dens_samp2@data, 5, metric = "euclidean")
+ $silinfo$clus.avg.widths),
+ sum(pam(dens_samp2@data, 6, metric = "euclidean")
+ $silinfo$clus.avg.widths),
+ sum(pam(dens_samp2@data, 7, metric = "euclidean")
+ $silinfo$clus.avg.widths),
+ sum(pam(dens_samp2@data, 8, metric = "euclidean")
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Fig. 8.5 Monuments and villages, cluster analysis. The symbols indicate the cluster to which the
random sample points are assigned. Background: elevation; symbols: four clusters

+ $silinfo$clus.avg.widths),
+ sum(pam(dens_samp2@data, 9, metric = "euclidean")
+ $silinfo$clus.avg.widths))
> plot(widthssum, type ="b", pch=16)

Our final step is to apply the PAM cluster analysis to produce four clusters
and plot the result with different signatures (Fig. 8.5). We could force more spatial
closeness by including the coordinates in the cluster analysis, although this is not
advisable, since the spatial distribution is an external validation of the results.

> library("cluster")
> dens_samp_clus <- pam(dens_samp2@data, 4,
+ metric = "euclidean")
> dens_samp2@data <- cbind(dens_samp2@data,
+ dens_samp_clus$clustering)
> names(dens_samp2)[names(dens_samp2) ==
+ ’dens_samp_clus$clustering’] <- ’clus’
> image(sgdf_srtm, ccol = gray.colors(20, start =
+ 0.8, end = 0.2))
> points(dens_samp, pch=dens_samp2@data$clus)

The aim of the cluster analysis is to assign the random sample points to four
clusters. The symbols of the random points indicate the clusters and hence show
the areas of specific combinations of the quantity of some types. We could also
use regular sample points for this purpose and we could interpolate the values to
make the border more visible. Since the identification numbers of the clusters are
not real numeric values but rather simply names for the clusters, we should avoid
numerical interpolation. This would be a proper application for a Thiessen polygon
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interpolation. The Voronoi cells with the same cluster name would be filled with the
same colour, thus enhancing the visualisation without altering the content.

In our case, the interpretation of the results has to consider that the different types
are from different times. The clusters are not something visible to the prehistoric
people. In our case, the cluster maps certain patches of a cultural landscape with
specific combinations of certain sites. The groups map the dominance of single types
and include their quantities. Let us take a look at the characteristic density values of
the first two clusters, which is the mean of the values of all members of a cluster:

> clus1 <- c(mean(dens_samp@data[dens_samp_clus$
+ clustering==1, 1]),
+ mean(dens_samp@data[dens_samp_clus$
+ clustering==1, 2]),
+ mean(dens_samp@data[dens_samp_clus$
+ clustering==1, 3]))
> clus2 <- c(mean(dens_samp@data[dens_samp_clus$
+ clustering==2, 1]),
+ mean(dens_samp@data[dens_samp_clus$
+ clustering==2, 2]),
+ mean(dens_samp@data[dens_samp_clus$
+ clustering==2, 3]))
> clus1
[1] 7.456359e-07 8.228024e-07 5.354327e-08
> clus2
[1] 1.017885e-06 1.661745e-06 2.120614e-08

The vectors clust1 and clust2 comprise the mean density values of all
members of a cluster. We find specific density values for each cluster. Obviously the
quantities of the different point types matter and it is not about simply the presence
and absence of megaliths, burial mounds and villages.

We now return to one-type datasets. Another concept to analyse such data is
to calculate density clusters that assign points to other points with higher density
values. The result is nothing but a spatial dendrogram of hierarchical cluster analysis
of spatial data. In contrast to the previous cluster analysis, spatial information is now
involved. First we prepare the variables and calculate the distance matrix. The point
pattern object dpd contains the density values. We insert empty variables, which are
used to store the information about a connected point. Subsequently, we produce the
distance matrix dpd.m.

> dpd <- ppp_meg
> dpd$d <- density(ppp_meg, 1000, edge=TRUE, at="points")
> k <- 1
> s <- -20000000
> dpd$id <- seq(along=dpd$x); dpd$v_id <- 0; dpd$v_x <- 0
dpd$v_y <- 0
+ dpd$v_d <- 0; dpd$dist <- 0; dpd$e <- 0
> dpd.d <- dist(cbind(dpd$x,dpd$y),upper = T)
> dpd.m <- as.matrix(dpd.d)
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The search for the connections is undertaken in a loop. For each connection of
points, a certain score is calculated and stored in dpd.e. This score e is

e D a � kb (8.1)

where a is the density difference, k a weighting factor and b the spatial distance.
Subsequently, the point with the highest score is selected as connection, if there is a
higher score.

> maxd <- max(dpd$d)
> maxm <- max(dpd.m)
> dpd$d <- dpd$d * maxm / maxd
> dpd.e <- dpd.m
> for (i in seq(along=dpd$d)) {
+ dpd.e[i,] <- (dpd$d - dpd$d[i]) - (k * dpd.m[i,])
+ w <-max(dpd.e[i,])
+ wi <- which(dpd.e[i,] == w)
+ if (i == wi | w < s) {dpd$v_id[i] <- 0}
+ else {dpd$v_id[i] <- wi}
+ }
> dpd$v_id
[1] 163 163 10 10 18 13 13 13 13 0 0 0
...

Afterwards the variables are filled with details on the connections.

> for (i in seq(along=dpd$d)) {
+ if (dpd$v_id[i] > 0) {
+ dpd$v_x[i] <- dpd$x[dpd$v_id[i]]
+ dpd$v_y[i] <- dpd$y[dpd$v_id[i]]
+ dpd$v_d[i] <- dpd$d[dpd$v_id[i]]
+ dpd$dist[i]<- dpd.m[i,dpd$v_id[i]]
+ dpd$e[i] <- dpd.e[i,dpd$v_id[i]]
+ }
> else {
+ dpd$v_x[i] <- dpd$x[i]
+ dpd$v_y[i] <- dpd$y[i]
+ dpd$v_d[i] <- dpd$d[i]
+ }
+ }
> dpd
planar point pattern: 267 points
window: rectangle = [3550736, 3579036] x [6022467, 6040567] m

We now have to produce an object that we can plot and export to a file.
A SpatialLines object is a complex object that has to be built in several steps.

> LinesList <- list()
> for(i in seq(along=dpd$id)) {
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Fig. 8.6 Megaliths, density cluster

+ m <- matrix(data = c(dpd$x[i],dpd$v_x[i],dpd$y[i],
+ dpd$v_y[i]), nrow=2, ncol=2)
+ L <- Line(m)
+ LL <- list(L)
+ name <- paste("connection", dpd$id,"_", dpd$v_id,
+ sep="")
+ LLL <- Lines(LL, ID = name[i])
+ LinesList[length(LinesList)+1] <- LLL
+ }
> sl <- SpatialLines(LinesList, proj4string = CRS(crs1))

Finally, we plot the result where each point is connected to another point with
higher density in an acceptable distance if this is possible (Fig. 8.6). Put simply,
each point is connected to another point with the highest density and within the
shortest distance. Some clusters with density centres at data points emerge. This is a
kind of spatial clustering where simply the structure of the point pattern is used. In
addition to the distances between the points, this approach uses the density values
and hence more information on the point pattern structure. Isolated points between
two clusters—outliers—can become a centre in traditional coordinate clustering
approaches, although this is not possible with the density cluster approach.

Some additional methods of boundary analysis are described by Jacquez et al.
[18], dealing with data available as fields. Among others, they address moving split
windows, spatially constrained clustering and fuzzy set modelling.
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8.4 Theoretical Boundary Models

We now come to theoretical models. It is obvious that we can use topographic
elements, elevation, rivers, etc. as markers for possible and useful borders. Math-
ematical models have to start with data. In most cases, the data reflects the centres
of supposed cultural areas. A very common method is the aforementioned method
of Voronoi graph or Thiessen polygons [31, 35, 40, 44]. The idea is that the border
is drawn where the distance between two centres is equal. The first step is to gain
information about centres. Accordingly, we start with calculating a new density map
and preparing the variables.

> library(spatstat)
> bb <- bbox(sgdf_srtm)
> win <- owin(xrange=c(bb[1,1],bb[1,2]), yrange=
+ c(bb[2,1],bb[2,2]), unitname="m")
> tum_dens <- density(ppp_tum, kernel="gaussian",
+ sigma=1000, dimyx=c(36,56), w=win, edge=TRUE, at="pixels")
> library(maptools)
> sgdf_tum_dens <- as.SpatialGridDataFrame.im(tum_dens)
> ras <- sgdf_tum_dens
> r <- 5000
> ras@data$v[which(is.na(ras@data$v))] <- 0
> m <- max(ras@data$v)
> s <- m / 10
> indmax <- c()
> indplan <- c()

The next step is a loop over all grid cells, whereby we use a moving window
technique. In a window around each cell it is tested whether the centre is the
maximum or at least equal to the other cells.

> for (i in seq(along=ras@data$v)) {
+ x <- coordinates(ras)[i,1]
+ y <- coordinates(ras)[i,2]
+ z <- ras@data$v[i]
+ indx <- which((coordinates(ras)[,1] > x - r) &
+ (coordinates(ras)[,1] < x + r))
+ indy <- which((coordinates(ras)[,2] > y - r) &
+ (coordinates(ras)[,2] < y + r))
+ indxy <- intersect(indx,indy)
+ if (max(ras@data[indxy,1]) == z & z > s)
+ {indmax[length(indmax)+1] <- i}
+ if (sd(ras@data[indxy,1]) == 0)
+ {indplan[length(indplan)+1] <- i}
+ rm(indx)
+ rm(indy)
+ rm(indxy)
+ }
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Fig. 8.7 Tumuli, local density centres

We now determine the coordinates of the detected points.

> mn <- length(indmax)
> mx <- coordinates(ras)[indmax,1]
> my <- coordinates(ras)[indmax,2]
> mx2 <- coordinates(ras)[indplan,1]
> my2 <- coordinates(ras)[indplan,2]
> mz <- ras@data[indmax,1]
> maxima <- data.frame(cbind(mx,my,mz))

Finally, we plot the result (Fig. 8.7). For our smooth density map, we only obtain
a few local centres. A reduction of the bandwidth would produce a greater number
of centres, up to the number of points.

Having the density centres, we can calculate and plot the Voronoi graph. In
the course of the structural density calculation, we used the package “tripack” to
calculate the Voronoi graph, now we are using the package “deldir”. Indeed, the two
packages have different data structures.

> library(deldir)
> try <- deldir(maxima[,1],maxima[,2],plot=TRUE,wl=’te’)

Rather than geographical distances we can use cultural distances. The cultural
space is spanned by the cultural traits which are the archaeological types. The border
is drawn where the cultural distances to two centres is equal. We can calculate for
each raster cell which is the nearest centre in the cultural space. Since something
should be left to you, we only calculate for our random sample points. First, we
have to prepare our variables.

> cent <- data.frame(cbind(id=seq(1:length(maxima[,1])),
+ x=maxima[,1],y=maxima[,2],meg=0, tum=0))
> coordinates(cent)=~x+y
> proj4string(cent) <- CRS(as.character(crs1))
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Fig. 8.8 Tumuli, Voronoi graph and Delaunay (dashed line) graph of density centres and random
point assigned to Voronoi cells of density centres in the cultural space

> cent_meg <- overlay(x=sgdf_meg_dens, y=cent)
> cent_tum <- overlay(x=sgdf_tum_dens, y=cent)
> cent@data$meg <- cent_meg@data$v
> cent@data$tum <- cent_tum@data$v
> dens_samp@data <- cbind(dens_samp@data,cent=0)

A loop is used to determine the centre with the most likely density values, which
is archived by calculating the cultural distance. The plot shows the reference centre
for each sample point (Fig. 8.8).

> for(i in seq(along=(dens_samp@data$cent))) {
+ d1 <- sqrt((dens_samp@data$meg[i] -
+ cent@data$meg[1])^2 + (dens_samp@data$tum[i]
+ - cent@data$tum[1])^2)
+ d2 <- sqrt((dens_samp@data$meg[i] -
+ cent@data$meg[2])^2 + (dens_samp@data$tum[i]
+ - cent@data$tum[2])^2)
+ d3 <- sqrt((dens_samp@data$meg[i] -
+ cent@data$meg[3])^2 + (dens_samp@data$tum[i]
+ - cent@data$tum[3])^2)
+ d4 <- sqrt((dens_samp@data$meg[i] -
+ cent@data$meg[4])^2 + (dens_samp@data$tum[i]
+ - cent@data$tum[4])^2)
+ d5 <- sqrt((dens_samp@data$meg[i] -
+ cent@data$meg[5])^2 + (dens_samp@data$tum[i]
+ - cent@data$tum[5])^2)
+ d6 <- sqrt((dens_samp@data$meg[i] -
+ cent@data$meg[6])^2 + (dens_samp@data$tum[i]
+ - cent@data$tum[6])^2)
+ d7 <- sqrt((dens_samp@data$meg[i] -
+ cent@data$meg[7])^2 + (dens_samp@data$tum[i]
+ - cent@data$tum[7])^2)
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+ d8 <- sqrt((dens_samp@data$meg[i] -
+ cent@data$meg[8])^2 + (dens_samp@data$tum[i]
+ - cent@data$tum[8])^2)
+ d8 <- sqrt((dens_samp@data$meg[i] -
+ cent@data$meg[8])^2 + (dens_samp@data$tum[i]
+ - cent@data$tum[8])^2)
+ d <- c(d1,d2,d3,d4,d5,d6,d7,d8,d9)
+ mindist <- min(d1,d2,d3,d4,d5,d6,d7,d8,d9)
+ id <- which(d == mindist)
+ dens_samp@data$cent[i] <- id
+ }
> plot(dens_samp, pch=dens_samp@data$cent)

In principle, we could use each available space where distances are defined.
Economic spaces can be used with cost distance calculations, which represent
transportation costs. We will pick up this concept in the networks section. Here
the map is simply plotted (Fig. 8.9).

One disadvantage of Voronoi graphs is that all points have the same influence
on the result. The point in the North–East of our example may come from a much
smaller settlement than the other points; accordingly, we should weight this point
lower than the other points to obtain a smaller territory, which we will do in Chap. 9.

Weighted Voronoi graphs have been described by Fetter [9], Okabe et. al. [28]
and are known in archaeology under the term “X-tent model”, introduced by
Renfrew and Level [31, 32, 35]. A new implementation in GIS has been developed
by Ducke and Kroefges [6].

Here, we will provide a generalised formula for weighed Voronoi graphs. ˚ is
the influence of a centre on a point in the area. We have several variables to control
the result.

˚ D ˛s .t˛˛d C jta � 1j/ � �s
�
t��d C jt� � 1j� 

�q�
xz � xp

�2 C �
yz � yp

��

(8.2)

Fig. 8.9 Ordinary (left) and weighted (right) Voronoi graph of density centres in the economical
space
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˛s static additive weight
˛d dynamic additive weight, possibly different for each centre
�s static multiplicative weight
�d dynamic multiplicative weight, possibly different for each centre
t˛ index for dynamic (t D 1) or static (t D 0)
t� index for multiplicative weight (t D 1) or static (t D 0)
 function manipulating the distance between the points (can include least cost

analysis)
xz geographical East of centre
yz geographical North of centre
xp geographical East of affected point
yp geographical North of affected point

While this is a nice concept, we have to find empirical models that can be
compared to the elaborated weighted Voronoi models. The empirical models need
to be sufficient to validate the configuration of the many parameters in these models.
In any case study, one should carefully consider whether this applies.

8.5 Problems

8.1. Can you imagine examples for the territorial trap?

8.2. Please develop an algorithm for the ideal contour line approach.

8.3. Please develop a loop version of the silhouette width graph code.

8.4. Please describe the algorithm of density cluster analysis in detail.

8.5. Please try density cluster analysis with different parameters.

8.6. Re-run the cluster analysis with other numbers of classes and compare the
results.

8.7. Please compare the data structures of tripack and deldir Voronoi objects using
the str() command.

8.8. Calling each centre individually is annoying. Please write a loop and try a
vector-based solution.

8.9. Please use raster cells rather than sample points for the cluster analysis and the
cultural space Voronoi graph.
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Chapter 9
Networks

9.1 Networks and Transportation Systems

At present network analysis [6, 38] is a fashionable term. In the same way as with
the term “model”, beyond the fashionable term network analysis offers a valuable
conceptual framework and a useful toolbox for various types of analysis. Network
analysis has two main branches [1]: the most fashionable at present is social network
analysis, which dates back to the 1930s and became an important topic of social
sciences in the 1970s [18, 22, 33, 44, 53]; and while certain parts of the geographical
network analysis have a far longer tradition, this branch was developed into an
important sub-discipline of geography in the 1960s [19–21, 40, 46] and is mainly
concerned with road networks, transportation and exchange networks.

The common ground of both branches is the methodological foundation on graph
theory (Sect. 1.6.3; [13]). All relevant elements in the real world are mapped with
points/nodes and lines/edges. For this purpose, a metric space is not necessary but
a topological space is required. The space in which the object of investigation is
placed has to offer a measure of neighbourhood or connectivity. A measure of
similarity or distance is useful for characterising the edges but not essential to the
concept. For spatial graphs such as neighbourhood graphs, we can say that the graph
is a model of the network structure. In addition to the graph, the network includes
geographical locations, which can be point characteristics in the graph, but no basic
properties. The spatial network is a model of the structure of the spatial system,
which also contains traffic. In a network, traffic or the usage of the connections in
general is a mere characterisation of the connections.

In general we can say that network analysis:

• focuses on the relationship between elements;
• provides a standard model concerning how to describe systems of relationships

based upon graph theory;
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• excludes other aspects such as borders and areas; and
• provides techniques for analysing networks.

In archaeology, both branches are in use although a certain focus on social net-
work analysis at present cannot be denied [7, 8, 11, 17, 27, 28, 35, 45]. Nonetheless,
network analysis in archaeology is a fast-growing and promising approach.

The two main branches of network analysis differ in the characterisation of nodes
and edges. Nodes in social network analysis can be individuals as well as groups of
various size and definitions, while geographic network analysis uses places such
as villages, sites and regions. For example, archaeological finds can be used in
both branches. The edges represent interaction between the nodes (see Chap. 10
for interaction models). The relations can be established using different proxies for
interaction:

• direct proxies for interaction (e.g. imports or citations);
• similarities between nodes; and
• the manifestation of connections (e.g. roads).

Many proxies simply allow establishing certain probabilities of connections. Let
us take as an example a certain type of find that was produced at a certain place.
There is a connection with a certain degree of probability between the production
site and the find spot. We also imagine that the different sites where such a find
occurred belonged to a network of interacting villages, although those connections
are less probable.

Due to the focus of this book, we concentrate on geographical networks and
particularly transportation networks. This will provide us with some methods that
are also useful for social network analysis. Although we will concentrate on
transportation, social aspects are not entirely out of focus, given that there is a strong
interrelationship between transportation, society and the economy. In fact, we have
two interrelated systems: the system of interaction and the system of transportation.
The system of interaction involves the relationships between people and can be
analysed in social network analysis. The system of transportation comprises of the
roads and the traffic. It is obvious that the wish to interact is the cause of traffic and
traffic is the cause of maintaining a road system. Upon first glance, the road system
seems to hold minor importance; however, if we recognise the interrelationships
between the different systems, our estimation will change. Usually society is
assumed to be the most important research topic. In archaeology, our sources about
society and interaction between people are very limited. In our case, we have no
direct information about the interaction between people. However, if we are able
to reconstruct the road system or at least obtain some empirical information about
it, we can learn something about the system of interaction and society. Nonetheless,
there is no simple mapping of both the systems. The interactions are canalised by the
road system and cultural economic and social conditions also influence the system
of interaction. The system of interaction induces modifications of the system of
transportation, which is also influenced by natural conditions. We will benefit from
the close interrelationship of the different systems. In this chapter, we deal with the
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Fig. 9.1 Interrelationship of
the system of interaction and
the system of transportation

system of transportation, which is thought to be a proxy for the system of interaction
and the social system. In the next chapter we will deal with the system of interaction
itself. Both of the sources and concepts are complementary and have to be combined
for a full picture (Fig. 9.1).

The analysis of the transport systems can be sub-divided into three levels of
scale.

1. On the local level, the focus lies on the exact location of the pathways.
2. On the regional level, it is questioned which points are connected and which are

not
3. On the supra-regional level, the objective is to investigate the main communica-

tion axes.

The different levels represent complementary approaches with different methods
or at least a different application of methods. Each level is focused on a certain
aspect. The combination leads to a much better understanding of the transport
system than single analysis.

9.2 Supra-Regional Level

Due to the heterogeneous topic and the geographical scale, the description of the
supra-regional level is rather cursory; although some remarks might help to under-
stand the concept. This level of analysis is focused on the axes of communication,
which are an abstraction from roads and sites. Here, the preferred connections
between different areas or regions are addressed. These axes play an important role
in mental maps and the spatial understanding of the world.
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Fig. 9.2 Scheme of different types of axis of orientation

We will start with some theoretical models that are a kind of classification
of different types of axes. First, we have to mention axes of orientation, which
define the basic structure of mental maps in combination with important borders.
Their task is to connect the local or regional social, cultural and metaphysic
environment and topography to the meaningful outside world, whether imagined
or real (Fig. 9.2). Symbolic axes are directions to mythical places like Mekka or
Rom. Continental axes also belong to this category. Indicated axes are directions to
magic or meaningful topographic signs (e.g. Fujiyama). Iconic axes can be visible
roads or rivers.

While axes of orientation mainly hold mental importance and do not need to
correlate with interaction, axes of exchange and movement are concerned with the
actual interaction. These axes map where people usually move or communicate.
The connection between the Mediterranean and Central Europe in the Iron Age as
well as the Silk Road belongs to this category.

The empirical models of communication axes are a certain problem: how can
we identify magic places or symbolic directions based upon only archaeological
sources? Theoretical considerations and hermeneutic argumentations dominate this
topic. Proving axes of orientation is rather difficult, although a remarkable exception
is the analysis of continental axes of orientation [43]. Since the gene flow seems
correlated to the continental axes, the axes appear to play an important role in the
actual movement of people.

The analysis of exchange axes and movement are a rewarding object for
quantitative analysis. For example, the analysis of cultural areas (see Chap. 8) can
reveal axes of communication [37]. Furthermore, the spatial analysis of import
finds can be very useful. The quantity of imports from different directions can be
quantified and compared for different sites and regions [51].

9.3 Regional Level

The connection of sites is focussed on a regional level. The actual route does not
matter, but rather whether two sites are connected. Graph theory and in particular
neighbourhood graphs are a tool designed for exactly this purpose. Neighbourhood
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graphs allow constructing theoretical models. Two sites are connected if certain
requirements of the spatial properties of the sites are fulfilled. We can interpret
neighbourhood graphs as well as many other graphs as a kind of double structure.
The sites are points in a geographical, metric space, whereby the properties in this
space determine, whether two points are connected. If a connection is valid, an edge
between the two points in a topological space is defined. In this step, the graph
emerges, containing topological information only. The edges are defined, but not the
location of the notes. Finally, we transfer the edges back to the geographical space
and plot them on a geographical map. Alternatively, we can say that we produce a
spatial constrained plot of the graph. This interpretation is sometimes more helpful
for the understanding than the traditional one, where connections are drawn in a
metric space directly.

There are different neighbourhood graphs [2, 10, 12, 32, 47–50, 52] which differ
in the rules for valid connections. The most basic graph emerges when we connect
all nodes to each other, whereby every site is connected to every other one. This
might be an appropriate graph for mapping the quantified similarities or interactions
of the sites but not for a transportation network. A road passing a village by some
metres to reach an other village behind the first one seems ridiculous: wouldn’t we
go to the first village and proceed to the next one? A graph that realises this idea
by connecting all natural neighbours is the Delaunay graph, which reduces all point
combinations to all possible or appropriate connections. Since crossings are not
allowed, the preferred compact form of three-angles ensures that no nearly parallel
connections are made if avoidable. The rules for constructing edges (Fig. 9.3) in
the Delaunay graph are based upon three-angles. The lines of the three-angles
are valid if no other point is located inside the circle drawn through the three
points. Nonetheless, the Delaunay graph still has many connections that do not
seem very likely or suitable. Some other graphs are sub-graphs of the Delaunay
graph that optimise the system and they are constructed according to similar rules.

Fig. 9.3 Scheme of some construction rules of neighbourhood graphs
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Delaunay SOI

Gabriel Relative Neighbour

Fig. 9.4 Neighbourhood graphs for density centres

The Gabriel graph works with a circle of minimal diameter drawn through just two
points. The sphere-of-influence graph (SOI) uses two circles where the diameter is
determined by surrounding points. In this graph, the constraint is that the circles
have to intersect. The relative-neighbour graph is similar, although the diameters of
the circles are determined by the distance between the two points. These graphs tell
us which connections would be useful in an optimised system.

We can apply functions from the spdep package. For example, the function
tri2nb produces a Delaunay graph and converts it to a neighbourhood object, the
native object of spdep. The function nb2lines transforms the neighbourhood
object to a spatial lines object. Here, the transition to the geographical space takes
place. The parameter wts includes optional weights. We use the same weight for all
connections. The parameter coords defines coordinates of the points. We calculate
neighbourhood graphs for some density centres (Fig. 9.4):

> library(spdep)
> co <- coordinates(cent)
> coords <- as.matrix(coordinates(cent))
> ids <- row.names(as.data.frame(cent))
> wts <- fs[,1]; wts[] <- 1
> fs_nb_del <- tri2nb(co, row.names=ids)
> del <- nb2lines(fs_nb_del, wts=wts, coords=coords,
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+ proj4string =
+ CRS(as.character(crs1)))
> fs_nb_soi <- graph2nb(soi.graph(fs_nb_del, co),
+ row.names=ids)
> soi <- nb2lines(fs_nb_soi, wts=wts, coords=coords,
+ proj4string =
+ CRS(as.character(crs1)))
> fs_nb_gabriel <- graph2nb(gabrielneigh(co),
+ row.names=ids)
> gabriel <- nb2lines(fs_nb_gabriel, wts=wts,
+ coords=coords, proj4string =
+ CRS(as.character(crs1)))
> fs_nb_relative <- graph2nb(relativeneigh(co),
+ row.names=ids)
> relative <- nb2lines(fs_nb_relativ, wts=wts,
+ coords=coords, proj4string =
+ CRS(as.character(crs1)))
> par(mfrow=c(2,2))
> image(sgdf_srtm, col = gray.colors(25, start =
+ 0.97, end = 0.4))
> lines(del)
> image(sgdf_srtm, col = gray.colors(25, start =
+ 0.97, end = 0.4))
> lines(soi)
> image(sgdf_srtm, col = gray.colors(25, start =
+ 0.97, end = 0.4))
> lines(gabriel)
> image(sgdf_srtm, col = gray.colors(25, start =
+ 0.97, end = 0.4))
> lines(relative)
> par(mfrow=c(1,1))

Empirical based graphs on the regional level can be obtained by calculating
similarities between sites. If the similarity is higher than a certain threshold, then
a connection is drawn. The similarities can also be used to weight the edges.
Nonetheless, a threshold should be used to exclude many connections from the
all-to-all graph—i.e. a graph where all nodes are connected with each other—
with negligible similarities. Another solution would be to reconstruct the regional
connections based upon the local pathways, if these are reconstructed or observed.
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9.4 Local Level

Now we turn to the local level, which investigates the actual routes of the
connections of the regional level. On this level the straight lines from the regional
level can turn into curves. The important information is not whether but rather
how the sites are connected. On this level, the spatial information becomes more
important because the graph with topological information is sometimes used as tool
rather than being interpreted as a result.

It is useful to consider different types of routes. Unmarked tracks can be routes on
the water where one has to decide for the exact route, which is not marked by usage
but is nevertheless well defined. Pathways are marked by usage. The traveller—who
produces the marks by usage—has to decide for the route but does not need not to
care for other things. In the case of roads, the constructor and user are different,
the constructor defines the route and has to maintain the road, whereas the user
has to decide whether to use it. The three basic types of routes have decreasing
requirements of navigation competence for the user and an increasing effort of
maintaining the way. In addition, the decision for the route is based upon different
parameters. Which is the most efficient route? Is there already a route that can be
used? How much does it cost to build and maintain the road?

We start with empirical models. Here, we can apply the same neighbourhood
graphs like on the regional level. However this time we apply them as a pattern
recognition tool on the monuments. The general ideas is that the monuments occur
along the ways. In this case, monuments can be used as proxies for the pathways.

There is a discussion concerning whether monuments are located along ways or
borders ([5, 188–192]; Fig. 9.5). This question is not easy to decide. Furthermore,
it is possible that pathways and borders are partly located at the same line. The
theoretical model of Voronoi and Delaunay graph is an optimisation of the spatial
system according to certain parameters that do not need to apply to prehistoric cases.
In the area of our case study which is the Southern part of Jutland, the traditional
interpretation as pathway-indicators [34] remains still an option. Therefore we
assume that the monuments are located along pathways and do not exclude the
border interpretation at the same time. Our task is to find lines in the point pattern
of monuments, which we will interpret as pathways. Neighbourhood graphs have

Fig. 9.5 Scheme of
monuments along borders
and pathways
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Delaunay SOI

Gabriel Relative Neighbour

Fig. 9.6 Neighbourhood graphs of monuments

been developed as a pattern recognition tool and as such they will be applied here.
We apply the neighbourhood graphs to the monuments data set (Fig. 9.6).

The first graph is again the Delaunay graph, which is produced by the
tri.mesh function of the tripack package. The function neighbours
transforms the graph into a neighbourhood object. Subsequently, we create a
SpatialLinesDataFrame and export the results to a shapefile and a csv file.
Incidentally, we provide a useful code fragment that can be adapted to export
different types of graphs.

> library(rgdal)
> library(tripack)
> fsd <- tri.mesh(spdf_meg, duplicate = ’remove’)
> fsnn <- neighbours(fsd)
> LinesList <- list()
> sldf <- c(); deldf_i <- c(); deldf_x1 <- c()
> deldf_y1 <- c(); deldf_k <- c()
> deldf_x2 <- c(); deldf_y2 <- c()
> deldf_name <- c()
> for(i in seq(along=spdf_meg@coords[,1])) {
+ pid1 <- i
+ x1 <- spdf_meg@coords[i,1]; y1 <- spdf_meg@coords[i,2]
+ for(k in seq(along=(fsnn[i][[1]]))) {
+ pid2 <- fsnn[[i]][k]
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+ if (pid2 > pid1) {
+ x2 <- spdf_meg@coords[pid2,1]
+ y2 <- spdf_meg@coords[pid2,2]
+ m <- matrix(data = c(x1,x2,y1,y2),
+ nrow=2, ncol=2)
+ L <- Line(m); LL <- list(L)
+ name <- paste("edge", "_",
+ pid1,"_", pid2, sep="")
+ LLL <- Lines(LL, ID = name)
+ LinesList[length(LinesList)+1] <- LLL
+ sldf[length(sldf)+1] <- name
+ j <- length(deldf_i) + 1
+ deldf_i[j] <- i
+ deldf_x1[j] <- x1; deldf_y1[j] <- y1
+ deldf_k[j] <- pid2
+ deldf_x2[j] <- x2; deldf_y2[j] <- y2
+ deldf_name[j] <- name
+ }
+ }
+ }
> deldf <- data.frame(deldf_i,deldf_x1,deldf_y1,
+ deldf_k,deldf_x2,deldf_y2,deldf_name)
> sldf2 <- data.frame(sldf)
> sl <- SpatialLines(LinesList, proj4string =
+ CRS(as.character(crs1)))
> sdf <- SpatialLinesDataFrame(sl, sldf2,
+ match.ID = FALSE)
> writeOGR(sdf, "./5result", "delaunay_meg", driver=
+ "ESRI Shapefile", overwrite_layer=TRUE)
> write(rbind(deldf_i,deldf_x1,deldf_y1,deldf_k,
+ deldf_x2,deldf_y2,deldf_name), file
+ = "./5result/delaunay_meg.csv", ncolumns = 7, sep =
+ ";")

The Delaunay graph is obviously not useful for detecting linear structures in
point patterns because there are too many connections, whereas the SOI-graph is
not useful because there are too few connections and thus many isolated areas.
The Gabriel graph is much better. The most convincing reconstruction of linear
structures produces the relative neighbourhood graph, which is the best choice for
this type of pattern recognition.

The neighbourhood graphs already discussed define neighbourhoods based upon
the structure of the point pattern, which is useful for many purposes. However, there
is another type of neighbourhood graphs which is less useful in general but can
contribute to reveal hidden patterns in point patterns, namely metric neighbourhood
graphs (Fig. 9.7). These graphs connect neighbours based upon distances, whereby
the point with the smallest distance is the nearest neighbour. In this case, the
neighbourhood degree k is 1. In general, the neighbourhood degree is the rank
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Fig. 9.7 Metric neighbourhood graphs of degree 1–4 of density centres

of the increasing distances. Metric neighbourhood graphs are usually plotted for
neighbourhood degrees from one up to a certain number. The spdep package
provides the knn2nb function to calculate metric neighbourhood graphs.

> nb_k1 <- knn2nb(knearneigh(spdf_meg@coords, k=1),
+ row.names=ids)
> nb_k2 <- knn2nb(knearneigh(spdf_meg@coords, k=2),
+ row.names=ids)
> nb_k3 <- knn2nb(knearneigh(spdf_meg@coords, k=3),
+ row.names=ids)
> nb_k4 <- knn2nb(knearneigh(spdf_meg@coords, k=4),
+ row.names=ids)
> par(mfrow=c(2,2))
image(sgdf_srtm, col = gray.colors(25, start = 0.97,
+ end = 0.4))
> plot.nb(nb_k1, spdf_meg@coords, pch= 16, col="black",
+ points=TRUE, add=TRUE, arrows=FALSE, cex=0.4)
> title("k = 1")
image(sgdf_srtm, col = gray.colors(25, start = 0.97,
+ end = 0.4))
> plot.nb(nb_k2, spdf_meg@coords, pch= 16, col="black",
+ points=TRUE, add=TRUE, arrows=FALSE, cex=0.4)
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Fig. 9.8 Scheme of different types of way

> title("k = 2")
image(sgdf_srtm, col = gray.colors(25, start = 0.97,
+ end = 0.4))
> plot.nb(nb_k3, spdf_meg@coords, pch= 16, col="black",
+ points=TRUE, add=TRUE, arrows=FALSE, cex=0.4)
> title("k = 3")
image(sgdf_srtm, col = gray.colors(25, start = 0.97,
+ end = 0.4))
> plot.nb(nb_k4, spdf_meg@coords, pch= 16, col="black",
+ points=TRUE, add=TRUE, arrows=FALSE, cex=0.4)
> title("k = 4")
> par(mfrow=c(1,1))

The neighbourhood graph approach has one disadvantage, namely that the lines
pass through the points. The basic assumption is that the monuments are located
directly beside the pathway. Even if the monuments are indicators for the pathway,
this is a very strong assumption. Other configurations are possible, where the line
is near the points. We can have pathway bundles, fuzzy lines and pass ways to the
main road (Fig. 9.8).

An approximative approach is necessary to deal with the other configurations,
which can be based upon the density calculations. The idea is to extract lines in the
area with the highest density of monuments as the most likely location of the ways.
The ridges of the “density mountains” are those lines (Fig. 9.9).

We already calculated the density in Chap. 4. We will take the existing calcula-
tion, although the ridge detection is very sensitive to different bandwidth values
in the kernel density estimation. Now we have to calculate the ridges. For this
purpose, we employ the Peucker–Douglas algorithm [41], which is a moving
window technique. Now, we apply this approach to our data (Fig. 9.10):

> ras_ridges <- sgdf_tum_dens
> ras <- sgdf_tum_dens
> cols <- sgdf_tum_dens@grid@cells.dim[1]
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Fig. 9.9 Scheme of the density ridge method

Fig. 9.10 Density ridges of
the burial mound density

> ras_ridges@data$v <- 1
> ras@data$v[is.na(ras@data$v)] <- 10000000000
>
> for (i in 1:(length(ras@data$v)-(2*cols)-2)) {
+ ind <- c(i,i+1,i+2,i+cols,i+cols+1,i+cols
+ +2,i+(2*cols),i+(2*cols)+1,i+(2*cols)+2)
+ ind_min1 <- which(ras@data$v[ind]==
+ min(ras@data$v[ind]))
+ ind_min2 <-ind[ind_min1]
+ ras_ridges@data$v[ind_min2] <- 0}
> par( mai = c(0, 0, 0, 0))
> image(sgdf_srtm, col = gray.colors(25, start =
+ 0.97, end = 0.4))
> image(ras_ridges, col = gray.colors(2, start =
+ 0.3, end = 0.7), zlim=c(1,1), add=TRUE)

This method can be improved in three points:

• use a dynamical kernel where the bandwidth is adapted to a certain degree to the
density of points, which will produce more details in dense areas;

• run the calculation in a loop and add points on the ridge to the data after each
step, which will amplify the pattern and produce a sharper ridge structure; and

• connect the branches by using the related neighbourhood graph, which will
produce a connected pathway system.
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In the next step, we address theoretical models on the local level. We will start
with some considerations on the theoretical models of the regional level. How can
we modify the lines between the sites to be more realistic? We can add points and
alter the shape. The first idea is known as the Steiner tree problem [42], which is
similar to the minimal spanning tree. The difference is that in Steiner trees additional
nodes are allowed. Hence, a Steiner tree can have a smaller sum of the length of all
edges. The effect of a Steiner tree is to minimise the total length of the network
at the cost of the length of single connections. A Steiner tree seems to favour the
road builders. Wouldn’t a traveller prefer the direct connection? No, not necessarily,
given that empirical analyses of trail systems [23] have revealed that people prefer
to use existing trails, albeit not at all costs. The threshold for detours is at about
25 %: if the detour is longer, a new trail will emerge; otherwise, the existing one
will be used.

Nonetheless, Steiner trees are a minimisation of the total network length. Now we
turn to minimise the length of single connections. Here, we do not use the Euclidean
distance but rather the effort of using the path. Obstacles, slope, the condition of the
ground and other aspects are parameters that should be considered.

Least cost path models [24, 26, 31, 36, 54] are theoretical models on the local
level. The path is calculated that allows reaching point b from point a at minimum
effort. The main parameter is the relief, which is available as a digital elevation
model. Most GIS are able to calculate least cost path analysis but R allows the easy
integration in a broader research framework. First, we have to prepare the variables.
We use the SRTM elevation model and the density centres.

> library(raster)
> library(gdistance)
> ras <- raster(sgdf_srtm)
> nz <- 8 # neighbourhood number: 4,8,16
> projection(ras) <- crs1
> ras <- focal(ras, w=matrix(1/9,nrow=3,ncol=3),
+ NAonly=TRUE)
> plot(ras, col = gray.colors(25, start = 0.to reach97,
+ end = 0.4))
> starts <- cbind(cent@coords[,1],cent@coords[,2])

The next step is to prepare some cost functions (Fig. 9.11; [25]) that set the relief
parameters—particularly the slope—in relation to the costs. We define some cost
functions according to the literature [25]. In addition, we define an auxiliary function
for the difference in altitude.

> # Tobler1993 velocity
> tobler1993a <- function(s){6 * exp(-3.5 *
+ abs(s + 0.05))} # km/h
> tobler1993b <- function(s){0.36 * exp(-3.5 *
+ abs(s + 0.05))} # m/min
> # Minetti2002 metabolic costs J/(kg*m) walking
> minetti2002w <- function(s){(280.5 * s^5 - 58.7 *



9.4 Local Level 183

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

slope (Δh/Δd)

m
et

ab
ol

ic
 c

os
ts

 (
kg

 m
/J

)

Fig. 9.11 Inverse cost functions (solid line: herzog2012wi; broken line: minetti2002wi)

+ s^4 - 76.8 * s^3 + 51.9 * s^2 + 19.6 * s + 2.5)}
> minetti2002wi <- function(s){1/(280.5 * s^5 -
+ 58.7 * s^4 - 76.8 * s^3 + 51.9 * s^2 + 19.6 * s + 2.5)}
> # Herzog2012 metabolic costs J/(kg*m) walking
> herzog2012_w <- function(s){(1337.8 * s^6 +
+ 278.19 * s^5 - 517.39 * s^4 - 78.199 * s^3
+ + 93.419 * s^2 + 19.825 * s + 1.64)}
> herzog2012_wi <- function(s){1/(1337.8 * s^6 +
+ 278.19 * s^5 - 517.39 * s^4 - 78.199 *
+ s^3 + 93.419 * s^2 + 19.825 * s + 1.64)}
> # auxiliary function
> hdiff <- function(x){x[2]-x[1]}

The cost functions define the effort of moving a certain distance based upon the
values of a certain parameter; for instance, the slope. Usual units are speed or energy
consumption. Since gdistance works with conductivity rather than the more usual
approach using costs, we need inverse cost functions.

The next step is to compute a transitional object hd that contains the transitions
between grid cells such as differences in altitude. The geoCorrection function
divides hd by the distance and results in the slope. Applying an inverse cost
function, we derive the conductivity.

> hd <- transition(ras,hdiff,nz,symm=TRUE)
> slope <- geoCorrection(hd,scl=FALSE)
> adj <- adjacent(x=ras, cells=1:ncell(ras),
+ direction=nz)
> cost <- slope
> cost[adj] <- herzog2012_wi(slope[adj])
> conduct <- geoCorrection(cost, scl=FALSE)

Now we can compute the cost surface for each centre. The cost surface is a grid
that contains for each point the cost for moving to the centre.

> cost_surface1 <- accCost(conduct, starts[1,])
> cost_surface2 <- accCost(conduct, starts[2,])
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...
> cost_surface9 <- accCost(conduct, starts[9,])

The cost surfaces allow us to determine the point where the cost to reach two
centres is equal. The result is a division of the area of interest according to the
Voronoi concept (Sect. 8.4). Here, we apply the Voronoi approach in an economic
space (Fig. 8.9, left). Le us consider the code for this small detour. We skip some
lines, indicated by dots, that are constructed in a similar way.

> csm1 <- cost_surface1 == min(cost_surface1,cost_surface2,
+ cost_surface3,cost_surface4,cost_surface5,cost_surface6,
+ cost_surface7,cost_surface8,cost_surface9)
> csm2 <- cost_surface2 == min(cost_surface1,cost_surface2,
+ cost_surface3,cost_surface4,cost_surface5,cost_surface6,
+ cost_surface7,cost_surface8,cost_surface9)
> df <- data.frame(id=c(0,1), v=c(0,2))
> csm2 <- subs(x=csm2, y=df)
...
> csm9 <- cost_surface9 == > min(cost_surface1,cost_surface2,
+ cost_surface3,cost_surface4,cost_surface5,cost_surface6,
+ cost_surface7,cost_surface8,cost_surface9)
> df <- data.frame(id=c(0,1), v=c(0,9))
> csm9 <- subs(csm9, df)
> csm.a <- csm1 + csm2 + csm3 + csm4 + csm5 + csm6 + csm7
+ + csm8 + csm9

It is very easy to apply a weighting of centres, namely we simply have to
manipulate the cost surface grids by addition or multiplication (Fig. 8.9, right).
The important code fragment for the weighted Voronoi approach in an economic
space can be found in the first line, where the costs to reach centre one are weighted
twice:

> cost_surface1b <- cost_surface1 * 2.5
> cost_surface6b <- cost_surface6 * 0.7
> csm1 <- cost_surface1b == min(cost_surface1b,cost_surface2,
+ cost_surface3,cost_surface4,cost_surface5,cost_surface6b,
+ cost_surface7,cost_surface8,cost_surface9)
> csm2 <- cost_surface2 == min(cost_surface1b,cost_surface2,
+ cost_surface3,cost_surface4,cost_surface5,cost_surface6b,
+ cost_surface7,cost_surface8,cost_surface9)
> df <- data.frame(id=c(0,1), v=c(0,2))
> csm2 <- subs(x=csm2, y=df)
...
> csm6 <- cost_surface6b == min(cost_surface1b,cost_surface2,
+ cost_surface3,cost_surface4,cost_surface5,cost_surface6b,
+ cost_surface7,cost_surface8,cost_surface9)
> df <- data.frame(id=c(0,1), v=c(0,6))
> csm6 <- subs(csm6, df)
...
> csm9 <- cost_surface9 == min(cost_surface1b,cost_surface2,
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+ cost_surface3,cost_surface4,cost_surface5,cost_surface6b,
+ cost_surface7,cost_surface8,cost_surface9)
> df <- data.frame(id=c(0,1), v=c(0,9))
> csm9 <- subs(csm9, df)
> csm.b <- csm1 + csm2 + csm3 + csm4 + csm5 + csm6 + csm7
+ + csm8 + csm9

Now we return to the least cost path analysis itself. The analysis begins with the
definition of start- and end points. We will achieve this with the Delaunay graph,
which produces natural neighbour connections.

> library(deldir)
> try <- deldir(starts[,1], starts[,2], plot=TRUE,
+ wl=’tr’)
> LinesList <- list()
> id <- seq(along=try$delsgs[,1])
> for(i in seq(along=try$delsgs[,1])) {
+ m <- matrix(data = c(try$delsgs[i,1],
+ try$delsgs[i,3],try$delsgs[i,2],
+ try$delsgs[i,4]), nrow=2, ncol=2)
+ L <- Line(m)
+ LL <- list(L)
+ name <- paste("edge", "_", try$delsgs[i,5],"_",
+ try$delsgs[i,6], sep="")
+ LLL <- Lines(LL, ID = name)
+ LinesList[length(LinesList)+1] <- LLL
+ }
> deldf2 <- data.frame(try$delsgs[,5], try$delsgs[,1],
+ try$delsgs[,2], try$delsgs[,6],
+ try$delsgs[,3], try$delsgs[,4], paste("edge", "_",
+ try$delsgs[,5],"_"),
+ try$delsgs[,6], sep="")
> cols <- c("a","b","c","d","e","f","g","h")
> colnames(deldf2) <- cols
> sl <- SpatialLines(LinesList, proj4string =
+ CRS(as.character(crs1))
> starts2 <- SpatialLinesDataFrame(sl, deldf2,
+ match.ID = FALSE)

Now we can undertake the least cost path analysis for each connection.

> for(i in 1:length(starts2[,1])){
+ i1 <- i*2-1
+ i2 <- i*2
+ s <- SpatialPoints(cbind(starts2@data$b[i],
+ starts2@data$c[i]))
+ z <- SpatialPoints(cbind(starts2@data$e[i],
+ starts2@data$f[i]))
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+ sz <- shortestPath(conduct, s, z,
+ output="SpatialLines")
+ zs <- shortestPath(conduct, z, s,
+ output="SpatialLines")
+ sz@lines[[1]]@ID <- as.character(i1)
+ zs@lines[[1]]@ID <- as.character(i2)
+ if(i==1){sdf <-rbind(sz,zs)}
+ if(i>1){sdf <- rbind(sdf,sz,zs,
+ makeUniqueIDs = TRUE)}
+ if(i==1){df <- cbind(c(1,2), c("sz","zs"),
+ c(starts2@data$g[i]))}
+ if(i>1){df <- cbind(c(df[,1],i1,i2),
+ c(df[,2],"sz","zs"), c(df[,3],
+ starts2@data$g[i],starts2@data$g[i]))}
+ }
> lcp_df <- as.data.frame(df)
> lcp_sldf <- SpatialLinesDataFrame(sdf,lcp_df,
+ match.ID = FALSE)

The result is a network of the paths that allows moving from one node of the
network to another with the minimum effort defined by a certain set of parameters
(Fig. 9.12, left). Perhaps there is a second and third optimal path. The classical
least cost path analysis assumes that the traveller possesses perfect knowledge of
the area and always makes absolute rational decisions, although in practice this is
not realistic. A second optimal path may be in use because there are very small
differences to the optimal path and the second one seems best. A certain degree of
randomness should be taken into account and not one path but rather the likeliness of
a path for all points in the area should be the result (Fig. 9.12, right). The passage
function from the gdistance package allows this [14]. The variable theta
controls the degree of randomness.

Fig. 9.12 Left: Least cost path analysis; the line indicates the least cost path. Right: Least cost
path analysis with random walk; the grey shade indicated the number of random walks crossing a
grid cell
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> path <- ras
> path[] <- 0
> for(i in 1:length(starts2[,1])){
+ s <- SpatialPoints(cbind(starts2@data$b[i],
+ starts2@data$c[i]))
+ z <- SpatialPoints(cbind(starts2@data$e[i],
+ starts2@data$f[i]))
+ path <- max(path, passage(conduct, s, z,
+ theta=0.0001, totalNet="total"))}
> plot(path, col=gray.colors(80, start=0.9, end=0.1,
+ gamma=0.2))
> points(SpatialPoints(cbind(starts2@data$b,starts2@
+ data$c)), pch=16, cex=0.8)

We can calculate different least cost models using different parameters of
preference. Which model fits best to the observed points that are assumed to be near
the pathway? We could use the mean distance of the monuments to the pathway
network as an inverse validation parameter. A better choice is to use the least cost
model with random walk. For each cell, we know the likeliness for a pathway to
cross the cell. The mean value of those values sampled at the monument’s location
is a rather good validation parameter: the higher the value, the better the fit. Let us
assume that path2 is the result of the passage calculation, where we do not use the
topography but rather the density of megaliths as attractors.

> pathn_topo <- extract(path, spdf_meg)
> pathn_tumdens <- extract(path2, spdf_meg)
> mean(pathn_topo)
[1] 0.119158
> mean(pathn_tumdens)
[1] 0.2800619

Obviously, the megalith-attractor model is the better choice for modelling the
pathways between the tumulus density centres. This is understandable, since we
know that both types of monuments prefer high elevation values. A more detailed
analysis of the monuments in this area reveals details of the parameters that
determine the location of pathways. In fact, this area shows a preference of pathways
with good visibility in the Bronze Age [36], which is not the case in the Neolithic
Age. Accordingly, we can deduce that security and the visibility of potential enemies
mattered in the Bronze Age. Hence, least cost path analysis can tell us much about
society.
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9.5 Characterising Elements in Networks and Networks

There are several coefficients for characterising transportation networks [39]. Here,
we use centrality coefficients from social network analysis [16]. Centrality is one
of the most important characteristics of networks. In the case of transportation
networks, the most likely vital points in the system can be detected (Fig. 9.13).
These calculations are theoretical models since empirical models need evidence of
centrality. Centrality coefficients only show centrality potential because they are
based upon the structure of the network rather than the actual interaction. First, we
construct the Delaunay graph as an igraph object.

> library(igraph)
> library(spdep)
> ids <- row.names(as.data.frame(spdf_meg))
> meg_nb_del <- tri2nb(spdf_meg, row.names=ids)
> m <- nb2mat(meg_nb_del)
> g <- graph.adjacency(m, mode="lower", weighted=T)
> g <- set.vertex.attribute(g, "x", index=V(g),
+ coordinates(spdf_meg)[,1])
> g <- set.vertex.attribute(g, "y", index=V(g),
+ coordinates(spdf_meg)[,2])

Subsequently, we add the distances as edge weight.

> dpd <- deldf
> dist <- sqrt((dpd[2] - dpd[5])^2 + (dpd[3] - dpd[6])^2 )
> dist2 <- dist^2
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Fig. 9.13 Betweenness centrality of megaliths; the larger the circle, the higher its centrality
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> dimnames(dist) <- list(NULL,"dist")
> dimnames(dist2) <- list(NULL,"dist2")
> dpd$dist <- dist
> dpd$dist2 <- dist2
> g <- set.edge.attribute(g, "distance2",
+ index=E(g), dist2)
> E(g)$weight <- dist

Finally, we calculate the centrality indices [3, 4, 15, 29, 30] and produce a spatial
data frame that we can plot.

> c.degree <- degree(g, v=V(g))
> c.closness <- closeness(g, v=V(g))
> c.betweenness <- betweenness(g, v=V(g))
> c.bonacich.power <- bonpow(g, nodes=V(g))
>
> ctab <- data.frame(cbind(id = V(g)+1, x = fs[,1],
+ y = fs[,2], degree=c.degree, closness=c.closness,
+ betweenness=c.betweenness, bpower=c.bonacich.power))
> coordinates(ctab)=~x+y
> proj4string(ctab) <- CRS(as.character(crs1))
> image(sgdf_srtm, col = gray.colors(25, start =
+ 0.97, end = 0.4))
> points(ctab, pch=16, cex=sqrt(ctab$betweenness)/50)

If we find that places with a high betweenness centrality actually show indica-
tions of importance, then we can deduce that centrality in the sense of betweenness
was important to the people. Betweenness measures the number of transit inter-
actions at one point and hence the control of interaction. Degree is a measure for
the number of direct interaction partners and closeness for the mean distance to
all other members of the network. Bonacich’s power centrality attempts to reflect a
generalisation of the other measures.

9.6 Problems

9.1. Please compare area-based approaches (Chap. 8) with network-based
approaches. What advantages and disadvantages can you find for both approaches?

9.2. Do you know other examples for axes of orientation?

9.3. Do you know or can you invent other neighbourhood graphs?

9.4. What is your opinion about the border/pathway problem? Do monuments mark
borders, pathways, both or nothing and why do you think so?

9.5. Please re-run the least cost path analysis using additional parameters.

9.6. How can we validate the lcp models?
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9.7. Please develop the algorithm for the local empirical model.

9.8. Why is the relative neighbour graph for monuments an empirical model?

9.9. Re-run the analysis with density centres from a KDE with smaller bandwidth.
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Chapter 10
Interaction

10.1 Interaction

A brief introduction into the concept and term of “interaction” will serve the
purpose to understand the integration of different phenomena and high potential
of interpretation of this concept. The reader will make connections to other chapters
of this book and case studies from literature.

10.1.1 Interaction as a Key Term

Interaction is certainly one of the most important aspects of human behaviour
[24, 26], as one of the main drivers of historical, economic, social and cultural
processes. At the same time, interaction is an abstract concept used in many
disciplines. The concept covers all types of contacts between individuals and groups,
as well as human–nature interaction. The disciplinary variations considerably differ
and hence it is not easy to provide a universal definition; nonetheless, the following
definition may serve our purpose:

Definition 10.1. Interaction is the joint action of at least two interaction partners.

Interaction hence requires the actions of two partners that are related in some
aspect. The action can be to join forces to reach a common task, exchange something
to serve complementary needs or fight each other. We can distinguish between
positive and negative interaction, the exchange of material and immaterial goods
and other types of behaviour that refer to each other. While the range of different
types of interaction is obviously very wide, the abstract concept of interaction offers
a framework to deal with different types of interaction in a similar way.

© Springer International Publishing Switzerland 2016
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Communication is a very special type of interaction. Accordingly, we can define:

Definition 10.2. Communication is the exchange of information.

This is a very good example of interaction, whereby the first interaction partner
acts by sending some information and the second partner receives and interprets
the information. Without sending—deliberately or otherwise—and receiving and
interpreting, there is no interaction. Both partners need to be involved: while they
may have different intentions, different expectations and different motivations both
need to participate in the interaction process. If the second partner refuses to react
to the impetus produced by the first partner, there is no interaction but rather simply
action. However, communication is usually part of a human interaction process,
accompanying the other types. Aside from the mechanical reaction to simple
stimuli, the reaction is based upon the interpretation of certain signs. Interaction
processes usually involve many steps of interpretation, whereby the first and the
second partner change roles in an alternating way.

In this volume, we have a special interest in spatial interaction. We can define:

Definition 10.3. Spatial Interaction connects different locations by the means of
moving people, goods or knowledge between the locations.

In pre-modern times, the movement of people can be presumed for all remote
interaction processes. Whether the realisation of this movement matters depends
on the focus of the intended interaction model. For example, we can look at the
interaction between two villages and abstract from the many steps in the interaction
process, which can include down-the-line exchange as well as the visit of one
interaction partner in the other’s village. Other interaction models can be interested
in the difference between the two different modes of exchange.

10.1.2 Interaction in Different Disciplines

In order to explore the different types of interaction we will summarise some
interaction concepts. In Chap. 2, the gravity law was mentioned. In physics, the
forces that have an effect on other particles—for instance, gravity, electromagnetism
or nuclear forces—are object to interaction analysis. Fields describing forces
are called potentials; for example, magnetic potential. Potentials with parameters
that are meaningful (for instance, Paris potential) are distinguished from those
potentials with parameters simply used to calibrate the potential to the observations
(for instance, Hamada–Johnston potential). In ecology, interaction between sub-
systems of the ecosystem is addressed. Human–nature interaction is one of the
main ecological topics, usually leading to very complex interaction models. The
complexity of these models arises from the interaction of many elements, which
also holds true for climate models.

After mentioning some interaction concepts in science, we are moving to
humanities. The symbolic interactionism from Blumer—based on the work of
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Mead—describes modes of social interaction [1]. Symbols enable people to judge
situations and adjust their behaviour towards other people. Here, we have the explicit
combination of communication and action. Parsons [27] states that the interaction
of people is determined by the role of people. In psychology, the temporal and
causal processes of interaction in dyades or groups is addressed [8]. In ethnology,
exchange is subject to interaction studies, such as Malinowski’s [22] exchange of
gifts. Polanyi’s [28] concept of the market leads to an economy where the interaction
between producer and consumer bears a certain moment.

We have already described some concepts in geography in Chap. 2. In geography,
the interaction in dependence of distance is addressed. The authors addressing
interaction include Christaller [3], Daudé [5], Fetter [10], Fotheringham [11],
Haggett [15], Hägerstrand [16], Isard [19], Ravenstein [29, 30], Steward [36],
Stouffer [37], Wilson [43] and Zipf [44].

In archaeology, migration is an important topic connected to interaction, since
the movement of people is one means of interaction. Here, we only mention the
work of Burmeister [2] and Rouse [33], although various authors have addressed
exchange; indeed, some collected volumes provide an impression of this field of
research [9, 17]. The investigation of communication and transportation [34] and
of interaction networks [21, 35] is a more recent trend in archaeological interaction
analysis. The analysis of cultural areas as interaction spaces and cultural borders
as interaction obstacles [20, 25] represents a field of quantitative applications. The
research on distance dependent interaction with distance diagrams and distance
decay functions [24, 26, 31] and applying the gravity model [6, 7, 32] is also notable.

10.1.3 Parameters of Interaction

The main purpose of interaction models is to map the dependence of interaction on
different, independent parameters. These parameters are mostly distances of some
kind. First, we have to mention geographical distances, which are represented by
Euclidean distances of coordinates on projected maps (see Chap. 1). Geographical
distances are the most commonly used distance type. Furthermore, we can use
cultural distances (Chap. 8) and economic distances (Chap. 9). The distance in use
determines the interpretation of the results. From a spatial perspective economic
distances are more useful than geographical distances, since they map the effort
to move the distance between the two interaction partners. Geographical distances
are usually used as a proxy for economical distances and in some cases they prove a
good proxy in a comparative analysis of two different models [24]. Furthermore, the
comparison of empirical and theoretical models with different distances can help to
estimate which distance type is most significant.

In addition to distance—which is a property of the relation between two inter-
action partners—features of the nodes also influence the interaction. For example,
gravity models include the size or mass of the interaction partners: the larger a node
or village or the more important a person, the more attractive it is for interaction.
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Mixed models—involving different distances and features of nodes—are most
likely to fit best to reality. In this case, we use the whole cultural landscape with all
its cultural, economic, religious and social levels of meaning, as well as the natural
parameters of landscape as parameters that are attracting or frictions for movements.
Whether these complicated models are useful depends on the research question: if
we are interested in the relationship of transport and interaction or social distances
and interaction, we would certainly prefer simple models.

10.1.4 Measuring Interaction

In the previous section, we discussed the independent parameters, whereas now
we turn to the dependent parameter, which is interaction itself. Particularly in
an archaeological context, it is very difficult to quantify the interaction itself by
counting the interaction processes; instead, we use interaction proxies. We can
distinguish between two basic categories of interaction proxies. The first category
is movement indicators. These indicators do not represent the interaction itself,
but rather the means of spatial interaction, the movement of people, objects and
ideas. The movement of people—migration in general—and travelling people—
tradesmen, travelling craftsmen, people living in the transhumance system—can
be detected by associated objects or human remains. In particular, isotope analysis
can identify foreign individuals and in some cases it is able to highlight possible
areas of origin. Isotope analysis and chemical analysis can also help to determine
the provenance of objects. A more traditional yet still very important method
is to identify foreign goods and imports using typology, although this has some
limitations. In the case of rather general shapes, it is very difficult to identify non-
local types. In short distance exchange, the objects often belong to the same types
and hence are not identifiable. Typology is also used to detect the exchange of ideas.
Here, a more thorough analysis is necessary: we have to show that the type of an
object, its shape and hence its idea has a foreign origin, but not its material. If an
idea spreads over an area, the new type is locally produced according to a general
template. Local variations may help to establish the spread of ideas. Infrastructure
like a road system also indicates a certain degree of interaction, since the road is
used to move people and objects.

The interaction effect indicators is based on the idea that interaction leads to an
adaptation of the interaction partner to each other [12]. In this case, the similarity
of the interaction partners and the inverse cultural distance of the partners can be
used as interaction proxies. However, what about the endeavour to stand out and
distinguish from the others in border regions? This is a special case, since some
effects superimpose each other. First, the transboundary interaction leads to an
adaptation, which is the formation of a common symbology. Different signs of this
symbolic language are used to distinguish the different groups, whereby the groups
indicated by the different signs have a higher internal interaction than with other
groups. Put simply, a certain degree of interaction is a precondition for developing
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distinct and not simply different groups that already have or attain higher internal
interaction. It is difficult to detect the transboundary common symbology because
the signs belonging to this language occur separated. A high intensity or density of
different distinct symbols itself indicates a level of interaction that is not visible in
the other sources. These effects should be considered in the analysis, although we
will not explore this topic in further detail.

10.2 Empirical Interaction Models

10.2.1 Indicators and Characterisations

As mentioned above, borders, territories and networks indicate interaction and pro-
vide us with more specific information about the interaction processes. Chapters 2
and 9 present some methods in these fields of research. Another indicator of
interaction is the CSR tests presented in Chap. 7. In the case of second-order
properties, it is assumed that the interaction between the points influences the
location of the points. Attraction and repulsion are interactive effects that can be
shown with CSR tests if complete spatial randomness has to be rejected.

Another indicator of interaction or interaction processes is a test for auto-
correlation. Let us assume that some points are characterised by the density of
megaliths. According to the aforementioned ideas, the more similar the density
values, the more likely the interaction between the two points. With a survey of the
similarity of neighbouring points, we can explore whether the degree of interaction
in the system has to be estimated as rather high or low. This is archived by a test for
auto-correlation, like Moran’s I test [4, 23, 40]. Moran’s I coefficient is

I D NP
i

P
j wij

P
i

P
j wij.Xi � NX/.Xj � NX/P

i.Xi � NX/2 (10.1)

We apply the test to the empty circle nodes from Chap. 4. For the calculation of
I, we first determine the natural neighbours, which will be used for the comparison
of values. Subsequently, the moran.test function will do the rest.

> library(spdep)
> voro_nb_del <- tri2nb(coordinates(fs_vd_spdf), row.names=
+ row.names(as.data.frame(fs_vd_spdf)))
> moran.test(fs_vd_spdf@data$fs_vd, nb2listw(voro_nb_del,
+ style="W"))
Moran’s I test under randomisation
data: fs_vd_spdf@data$fs_vd
weights: nb2listw(voro_nb_del, style = "W")
Moran I statistic standard deviate = 24.6373, p-value <
+ 2.2e-16
alternative hypothesis: greater
sample estimates:
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Moran I statistic Expectation Variance
0.6473760460 -0.0020202020 0.0006947563

The value of 0.64 indicates a certain auto-correlation. In our case, this shows
that we can interpolate the values (see Chap. 5) rather than an actual interaction.
Applied to the presence of certain types of sites, this could indicate interaction.
The value 0 would mean no interaction and negative values would indicate negative
interaction.

10.2.2 Distance Diagrams

Distance diagrams are one of the most simple—yet very effective—tools to explore
interaction. An interaction proxy is plotted against a certain distance. As previously
mentioned, we can use geographical, economic, cultural and any other distances.
However, distance and interaction proxy are not the only aspects that control the
result and interpretation of the distance diagrams. Similar to the generalised point
pattern characterisation, we can decide for different foci and points of view (see
Chap. 7), each of which can use fixed, selected and all points. Fixed points allow a
result that is literally fixed on a map, thus making it easy to identify the influence
of different topographic features, as well as different organisational structures on
interaction. The usage of all points allows focusing on the effect of absolute
distances on the interaction to identify distance thresholds (Table 10.1).

We will discuss and apply some of the nine types of distance diagrams. We
are using the megalith density centres as viewpoints and assume that the megalith
density is a characteristic parameter that allows calculating cultural distances as
inverse interaction proxies. Although this is an idealised example, it will show
principles of the approach very clearly and can be adapted to any kind of data
which allow the determination of distances. Where we use simple differences in
our example, one has to apply a distance function such as the Euclidean distance.
The results from a research project and based on an extensive database are published
elsewhere [24, 26].

Table 10.1 Type codes, names and examples of different types of distance diagrams (dd)

Fixed focus Selected focus All focused

Fixed viewpoint dd1 dd2 dd3

fixed profile dd, fixed sector dd fixed multi-focal dd,

similarity profiles fall-off curve

Selected viewpoints dd4 dd5 dd6

selected profiles dd selected sector dd selected multi-focal dd

All viewpoints dd7 dd8 dd9

aggregated profile dd aggregated sector dd aggregated multi-focal dd,

variogram
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Fig. 10.1 Interaction model dd1

Profile distance diagrams are the type with the most distinct reference to specific
locations and their properties. Each point in the diagram corresponds to a certain
location. We start with the density maximum and look westwards (Fig. 10.1).

> spoints <- data.frame(cbind(x=(-seq(20:1)*1000)
+ + 3571203, y=rep(6036796, 20)))
> coordinates(spoints)=~x+y
> proj4string(spoints) <- CRS(as.character(crs1))
> i_kde <- extract(raster(sgdf_meg_dens), spoints)
> mdistance <- i_kde[1] - i_kde
> plot(mdistance, col="black", pch=16, xlab="spatial
+ distance (km)", ylab= "density distance")
> lines(mdistance,lty=1,col="black")

As expected, the density distances are increasing with the spatial distance which
indicates decreasing interaction.

The next distance diagram version is dd3, which uses all focal points. If the
location of production is chosen as the viewpoint, this is nothing but a classical
empirical fall-off curve. The curve looks different, since we use cultural distances
rather than finding counts that are used for fall-off curves. Here, some preparations
are helpful. We prepare a matrix for interim results, a dataframe for results
and some regular sample points that we use to sample the megalith density map.

> dist <- seq(from=0, to=33000, by=1000)
> cdist <- id <- 1:length(dist)
> dresult <- cbind(id, dist, cdist[] <- 0)
> samppt <- spsample(sgdf_srtm, 500, type="regular")
> i_kde <- extract(raster(sgdf_meg_dens), samppt)
> ref_kde <- extract(raster(sgdf_meg_dens), cbind(3571203,
+ 6036796))
> dmat <- matrix(1:length(dist)*length(sgdf_meg_dens@data$v),
+ nrow=length(dist), ncol=length(sgdf_meg_dens@data$v))
> dmat[] <- as.double(dmat[] <- NA)
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Fig. 10.2 Interaction model dd3

> mmean <- function (x) {mean(x, na.rm=TRUE)}
> edist <-function(x1,x2,y1,y2) {sqrt((x1 - x2)^2 + (y1 -
+ y2)^2)}

Now, we calculate the distances in a loop and subsequently aggregate them into
the result dataframe. The results are as expected and the decreasing part on
the right corresponds to the density centre in the South–West corner of the area
(Fig. 10.2).

> for (i in seq_along(samppt@coords[,1])) {
+ x1 <- 3571203; y1 <- 6036796
+ x2 <- samppt@coords[i,1]; y2 <- samppt@coords[i,2]
+ sdist <-edist(x1,x2,y1,y2)
+ dind <- floor(sdist/1000) + 1
+ dmat[dind,i] <- abs(i_kde[i] - ref_kde)
+ }
> dresult[,3] <- apply(dmat, 1, mmean)
> plot(x=dresult[,2], y=dresult[,3], col="black", pch=16,
+ xlab="spatial distance (m)", ylab= "density distance")
> lines(x=dresult[,2], y=dresult[,3],lty=1,col="black")

The distance diagram version dd2 (Fig. 10.3) is very similar to dd3. The only
difference is a selection of the target points. We will distinguish the target points
West and East of the viewpoint. We undertake a similar preparation and simply add
an additional column in the result dataframe.

...
dresult <- cbind(id, dist, cdist[] <- 0, cdist2[] <- 0)
...

Subsequently we insert a condition for the selection of viewpoints and calculate
the values for two conditions. Here is the code for the Eastern part of the area:

> for (i in seq_along(samppt@coords[,1])) {
+ x1 <- 3571203; y1 <- 6036796
+ x2 <- samppt@coords[i,1]; y2 <- samppt@coords[i,2]
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Fig. 10.3 Interaction model dd2. Grey: East; black: West
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Fig. 10.4 Interaction model dd7

+ if (x1 < x2) {
+ sdist <-edist(x1,x2,y1,y2)
+ dind <- floor(sdist/1000) + 1
+ dmat[dind,i] <- abs(i_kde[i] - ref_kde) }
+ }
> dresult[,4] <- apply(dmat, 1, mmean)

The result shows us differences in interacting to the West and East. In particular,
this might be useful in border zones.

For the aggregated versions, we simply have to calculate the results in a loop
across all viewpoints. Now, we use two result data frames: one for each internal
loop and one for the aggregated result. All other steps in the preparation are the
same as before. While dd2 looks from one point to all others that have coordinates
higher or lower than the one from the viewpoint, dd7 looks from all points along a
straight line (Fig. 10.4).

...
dresulta <- dresult
...
<- samppt@coords[i,1]; y2 <- samppt@coords[i,2]
+ if (x1 == x2 & y2 >= y1) {
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+ sdist <-edist(x1,x2,y1,y2)
+ dind <- floor(sdist/1000) + 1
+ dmat[dind,i] <- abs(i_kde[i] - i_kde[j])
+ }
+ }
+ dresult[,3] <- apply(dmat, 1, mmean)
+ dresulta[,3] <- dresulta[,3] + dresult[,3]
+ dresult <- cbind(id, dist, cdist[] <- 0)
+ }

Our final example is dd9 which is nothing but a variogram (see Chap. 5).
The effect of topography is minimised in dd9. Here, distance thresholds take full
effect. We are looking from all points to all other points and collect the differences
in values for each class of spatial distances. The code is very similar to the previous
model: we simply have to delete the condition (Fig. 10.5).

> for (j in seq_along(samppt@coords[,1])) {
+ for (i in seq_along(samppt@coords[,1])) {
+ x1 <- samppt@coords[j,1]; y1 <- samppt@coords[j,2]
+ x2 <- samppt@coords[i,1]; y2 <- samppt@coords[i,2]
+ sdist <-edist(x1,x2,y1,y2)
+ dind <- floor(sdist/1000) + 1
+ dmat[dind,i] <- abs(i_kde[i] - i_kde[j])
+ }
+ dresult[,3] <- apply(dmat, 1, mmean)
+ dresulta[,3] <- dresulta[,3] + dresult[,3]
+ dresult <- cbind(id, dist, cdist[] <- 0)
+ }
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Fig. 10.5 Interaction model dd9



10.3 Theoretical Interaction Models 203

10.3 Theoretical Interaction Models

There are many theoretical interaction models that can be found in the literature. We
will focus on distance decay functions and gravity models.

10.3.1 Distance Decay Functions

Tobler’s first law of geography ([41, 42]; see Chap. 2) is a good starting point for
discussing theoretical interaction models:

Everything is related to everything else, but near things are more related than distant things.

This means that the likeliness of interaction—which is a kind of being related—
decreases with distance according to a monotone function. Realisations of this
model are called distance decay functions. Although Tobler’s first law covers
many different functions, this is a valuable theoretical model, enabling us to
compare the theoretical model with the data. If we find that the empirical distance
diagrams include parts where the interaction is increasing with distance (remember:
increasing interaction intensity = decreasing cultural distance), then this model does
not apply, whereas if it is a law, it must. Accordingly the question emerges whether
Tobler’s first law is really a law.

From a traditional perspective, it seems that there is a difference between proper
scientific laws like Newton’s gravity law and Tobler’s law. Scientific laws are
supposed to be proven without doubt while it appears difficult to prove that Tobler’s
first law applies in all possible cases. However, if we remember that Newton’s
mechanics is considered to be an approximation for conditions of small velocity
in modern physics, the difference shrinks. Tobler himself [42] points out that the
famous physicist Feynman defines a scientific law as a guess about regularities
of certain observable entities where the consequences of the guess agree with
the observations. Accordingly, a law is not inherent in nature but depends on
observations; thus, a law is a tool to describe regularities in observations rather than
the nature of nature.

In our context, the usage of Tobler’s first law as a simple theoretical model that
applies in general or not does not seem an appropriate approach. We will benefit
from using the heuristic potential of Tobler’s first law as law. We do not suggest that
Tobler’s first law is always right, but we assume that this law is valid in a heuristic
application. Now, the question is not whether Tobler’s first law as a theoretical model
agrees with empirical data, but rather how we can define distance an interaction
to make the law agree with the observations. Let us explain this with an example
and assume that we have a fixed profile distance diagram dd1 with an anomaly.
In the middle part, there is a strong decrease in interaction, followed by a strong
increase. This would force us to reject the theoretical model. However, if we assume
that the theoretical model as law is right, then we have to explain the anomaly
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in a way that agrees with the law. For example, we can find topographic features
like mountains that work as friction for movements and hence hamper interaction.
Using economical distances rather than geographical ones would transform the
observations in a way that the theoretical model is more agreeable. The distance
diagram can tell us even more, whereby we can distinguish a step from a peak.
A step would mean that we have a certain friction of movement, but that people
reach the points after the obstacle by overcoming the obstacle. By contrast, a peak
would mean that people preferred another way that does not correspond to the
profile to reach the target with less effort. We could adapt the profile to the least
cost path, which would make the empirical model fit better to the theoretical model.
Using this approach, we can learn much about the conditions of interaction. One
advantage of this approach is that a detailed theoretical model is not necessary;
rather, we can use Tobler’s rather general first law of geography. This is equal to
using different sophisticated theoretical models that involve inhomogeneous space
and similar aspects but require fewer assumptions.

A general scheme of some anomalies in distance diagrams can help to find
interpretations of the curves in the diagrams. We can distinguish steps from peak,
skips, and waves (Fig. 10.6).

In particular, we have to consider different types of distances. Geographical,
economic and cultural distances can be applied. The distance can be calculated in
the plain and a network, such as a road system. The wave distance diagram can
emerge in distribution systems with relay stations, as well as in cases where the
profile cuts the road system at several points.

The interpretation of aggregated distance diagrams is different, since it is not
fixed on the map. Distances themselves dominate the interpretations. A simple
scheme will visualise possible interpretations for dd9 distance diagrams (Fig. 10.7).

In section 1, a steep slope allows two interpretations, which depend on the scale
of analysis and the data: first, the location within the distances of section one is in

Fig. 10.6 Basic forms of curves in fixed distance diagrams and possible interpretations
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Fig. 10.7 Scheme of an agglomerative distance diagram with characteristic sections

the direct sphere of influence of the centre and hence the cultural distances are rather
small; and second, the step indicates a natural variation of data. The next village—
the nearest neighbour and related to the center—shows a variation of cultural traits
due to the selectivity of data. However since the level of variation is similar in all
directions while the cultural distance between the neighbours is at the same level, a
step emerges. In this case, a curve meeting the axis not at zero but rather at a higher
value might be more appropriate. This would indicate a certain standard deviation
similar to the nugget effect in variograms.

In section 2 we find a slow yet monotonic increase of the cultural distances
according to Tobler’s first law. In section 3, the end of the usual distance range is
pronounced by a skip, which indicates that people are aware of the distance thresh-
old marked by the border between sections 3 and 4. People can try to optimise their
travels by going up to the distance threshold. Section 4 represents a distance that
is not travelled in daily life. The distance threshold is a very characteristic value
influenced by cultural practice as well as the means of transportation. Hence the
comparison of distance thresholds for different regions can be meaningful.

Distance decay functions are more specific theoretical models used for the
comparison with empirical fall-off curves [31]. The distance decay diagrams are
similar to the distance diagrams, although they simply use an interaction proxy
rather than an inverse interaction proxy. Among the functions usually used as
distance decay functions, a power function, an exponential function, a Gauss
function and a Pareto function are frequently used [13, 14, 18, 19, 38, 39]. The three
functions use two parameters that control the result. Although the symbol is similar,
the interpretation of the parameters might differ. The values of these parameters
have to be determined empirically. The power distance decay function is

I D k

dj
(10.2)

The exponential distance decay function is

I D ke�jd (10.3)
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The Pareto distance decay function is

I D k

.d C k/j
(10.4)

Finally, the Gauss distance decay function is

I D ke�jd2 (10.5)

Here, k and j are simply parameters that determine the exact shape of the curves.
For the calculation, we first define the functions as ddecay1, ddecay2 and
ddecay3, set the parameter and subsequently plot the curves with the matplot
and lines commands.

> ddecay1 <- function (d, k, j) {i <- k/d^j; return(i)}
> ddecay2 <- function (d, k, j) {i <- k*2.718282^(-j*d);
+ return(i)}
> ddecay3 <- function (d, k, j) {i <- (k/(d+k)^j);
+ return(i)}
> ddecay4 <- function (d, k, j) {i <- k*2.718282^(-j*(d^2);
+ return(i)}
> k <- 3
> j <- 3
> xval <- seq(0,1,0.01)
> matplot(xval, ddecay1(xval, k, j)*0.00005, ylim=c(0,1),
+ type="l", xlab=expression(paste("distance")),
+ ylab="interaction")
> lines(xval, ddecay2(xval, k, j)*0.3, type="l", lty=2)
> lines(xval, ddecay3(xval*10, k, j)*9, type="l", lty=3)
> lines(xval, ddecay4(xval*10, k, j)*0.2, type="l",
+ lty=4)
> legend("topright", legend =c("power", "exponential",
+ "Pareto","Gauss"), lty=c(1,2,3,4))

Renfrew [31] proposed the idea that the different distance decay functions
(Fig. 10.8) can be interpreted in a specific way. For example, he interprets empirical
fall-off curves that fit to a Gaussian distance decay function as random walk, while
exponential distance decay is interpreted as down-the-line exchange. The success
of this approach depends on the quality of the data and other influences on the
interaction intensity. The decision concerning which distance decay function fits
best to the data requires high-quality data and minor influences by topography.
The approach with less specific theoretical models seems more promising with
medium—and low-quality data and heterogeneous topography.
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Fig. 10.8 Different distance decay functions

10.3.2 Gravity Models

The distance diagrams and distance decay functions deal with distances only.
Additional information like topography and cultural aspects of the space between
the points can be included in the distances. Properties of the points like population
size are not adequately mirrored in the distances. Gravity approaches are a simple
solution to implement point properties (refer to Chap. 2 and the beginning of this
chapter). The classical gravity equation with m1 and m2 for the masses and g for the
gravity constant is

F D g
m1m2

d2
(10.6)

The processes for which we are looking can have different mechanisms than
physical gravity. A generalisation can be useful to fit the curve to the observations,
which is achieved by allowing different exponents. In addition, we apply the names
of our previous coefficients.

I D k
m1m2

dj
(10.7)

In fact, the gravity equation comprises a distance decay term and a mass term:

I D k
m1m2

dj
D ke�jdm1m2 (10.8)

Of course, we can use other distance decay terms, such as an exponential distance
decay function, as follows:

I D ke�jdm1m2 (10.9)

From a very simple equation with just a scaling factor, we have changed to
more parameters, the exponent j and an interchangeable distance decay term.
These modifications allow a better adaptation to the data, although they force
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us to determine the parameters empirically. This shows us the double nature of
some techniques as theoretical and empirical models. A gravity model used for
estimating the interaction between two villages is certainly a theoretical model.
The use of the equation is rather arbitrary, although some theoretical considerations
can be important. Nonetheless, if we determine coefficients and parts of the
equation empirically, they become a calibrated theoretical model or a tool to gain
empirical knowledge. Empirically determined coefficients can change in different
regions, which indicates different interaction systems and can help to develop social
interpretations.

Here, we give the code for a simple gravity model using Eq. (10.7). We will
calculate the theoretical interaction between the natural neighbours of the density
centres of the megalithic tombs. The density of the megaliths will be used as
characterisation of the points. The density centres represent the villages for which
we have no original data. The megalith density at these points represents the
population. Despite making some assumptions that are questionable and have to be
discussed in a real research project, we can use this as a simple example. The reader
can develop more sophisticated models using the simple techniques presented here.
First, we prepare a dataframe with the Delauny edges of the density centres.

> library(tripack)
> fsd <- tri.mesh(cent, duplicate = ’remove’)
> fsnn <- neighbours(fsd)
> LinesList <- list()
> sldf <- c();deldf_i <- c();deldf_x1 <- c();deldf_y1 <-
+ c();deldf_k <- c();deldf_x2 <- c();deldf_y2 <- c();
+ deldf_name <- c();deldf_dens1 <- c();deldf_dens2 <- c()
> for(i in seq(along=cent@coords[,1])) {
+ pid1 <- i
+ x1 <- cent@coords[i,1]
+ y1 <- cent@coords[i,2]
+ dens1 <- cent@data$meg[i]
+ for(k in seq(along=(fsnn[i][[1]]))) {
+ pid2 <- fsnn[[i]][k]
+ if (pid2 > pid1) {
+ x2 <- cent@coords[pid2,1]
+ y2 <- cent@coords[pid2,2]
+ dens2 <- cent@data$meg[pid2]
+ m <- matrix(data = c(x1,x2,y1,y2), nrow=2,
+ ncol=2)
+ L <- Line(m); LL <- list(L)
+ name <- paste("edge", "_", pid1,"_", pid2,
+ sep="")
+ LLL <- Lines(LL, ID = name)
+ LinesList[length(LinesList)+1] <- LLL
+ sldf[length(sldf)+1] <- name
+ j <- length(deldf_i) + 1
+ deldf_i[j] <- i
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+ deldf_x1[j] <- x1; deldf_y1[j] <- y1
+ deldf_k[j] <- pid2
+ deldf_x2[j] <- x2; deldf_y2[j] <- y2
+ deldf_name[j] <- name
+ deldf_dens1[j] <- dens1
+ deldf_dens2[j] <- dens2
+ }}}
> deldf_c <- data.frame(deldf_i,deldf_x1,deldf_y1,deldf_k,
+ deldf_x2,deldf_y2,deldf_name,deldf_dens1,deldf_dens2)
> dist <- sqrt((deldf_c[2] - deldf_c[5])^2 + (deldf_c[3]
+ - deldf_c[6])^2 )
> dimnames(dist) <- list(NULL,"dist")
> deldf_c$dist <- dist

Subsequently, we calculate the interaction with Eq. (10.7), where we set k D 1

and j D 3.

> inter <- deldf_c$deldf_dens1 * deldf_c$deldf_dens2 /
+ deldf_c$dist^2
> dimnames(inter) <- list(NULL, "inter")
> deldf_c$inter <- inter * 1e+22

Actually, it is done. Since interaction is an important parameter for network
analysis, we produce an igraph object, a graph weighted by interaction.

> library(igraph)
> library(spdep)
> co <- coordinates(cent)
> coords=as.matrix(coordinates(cent))
> ids <- row.names(as.data.frame(cent))
> meg_cent_nb_del <- tri2nb(coordinates(cent), row.names=ids)
> m <- nb2mat(meg_cent_nb_del)
> g <- graph.adjacency(m, mode="lower", weighted=T)
> g <- set.vertex.attribute(g, "x", index=V(g),
+ coordinates(cent)[,1])
> g <- set.vertex.attribute(g, "y", index=V(g),
+ coordinates(cent)[,2])
> g <- set.vertex.attribute(g, "dens", index=V(g),
+ cent@data$meg)
> g <- set.edge.attribute(g, "distance2", index=E(g),
+ deldf_c$dist)
> g <- set.edge.attribute(g, "inter", index=E(g),
+ deldf_c$inter)
> E(g)$weight <- deldf_c$inter
> plot(g, edge.width=sqrt(deldf_c$inter), layout =
+ coordinates(cent))

We will not print this plot, although the reader will find that the graph is not
located on a map. For geographical network analysis, a SpatialLines object
has some advantages. Both plots use the root of the interaction to scale the values in
a decent range for the line width (Fig. 10.9).



210 10 Interaction

−10
0
10
20
30
40
50
60

Fig. 10.9 Gravity model of megalith density centres

> LinesList <- list()
> for(i in seq(along=deldf_c[,1])) {
+ pid1 <- i
+ x1 <- deldf_c$deldf_x1[i]; x1 <- deldf_c$deldf_y1[i]
+ x2 <- deldf_c$deldf_x2[i]; y2 <- deldf_c$deldf_y2[i]
+ m <- matrix(data = c(x1,x2,y1,y2), nrow=2, ncol=2)
+ L <- Line(m); LL <- list(L)
+ LLL <- Lines(LL, ID = deldf_name[i])
+ LinesList[length(LinesList)+1] <- LLL
+ }
> sl <- SpatialLines(LinesList, proj4string =
+ CRS(as.character(crs1)))
> sdf_inter_meg_cent <- SpatialLinesDataFrame(sl, deldf_c,
+ match.ID = FALSE)
> plot(raster(sgdf_srtm), col = gray.colors(25, start =
+ 0.97, end = 0.4))
> for (i in 1:length(sdf_inter_meg_cent@data$inter)){
> lines(sdf_inter_meg_cent[i,], lwd=sqrt(sdf_inter_meg_cent@
+ data$inter[i]))}

10.4 Problems

10.1. Do you know additional factors which influence interaction.

10.2. Please apply several types of distance graphs to our case study.

10.3. Try to fit a theoretical curve to the empirical data (refer to Chap. 5 for
regression methods).

10.4. Do you know other interaction models than the gravity model, which can be
transferred from other disciplines to archaeology?
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Chapter 11
Landscape Perception

11.1 Changing the Point of View

Landscape is the cultural and natural environment in which we live, which we shape
with our behaviour and which sets constraints to our behaviour, although it is also a
certain piece of space that we perceive. Perception is not just part of an aesthetic
process of admiring a beautiful landscape; rather, it is the basis of furnishing
parts of the space with meaning and establishing the landscape. Landscape can be
characterised as perceived space (see Chap. 1; [2, 9, 15]).

In most parts of this book, we apply an etic, scientific, formalised term of
landscape. We assume perfect and objective knowledge, while the ancient people
who lived in the landscape that we are investigating may not have been aware
of the characterisations that we make. Certainly, we can presume that there are
significant structures that are closely connected to people’s behaviour, resulting
from unconscious and unintended actions. The meaning of elements in etic land-
scapes is constructed by the scientists’ definitions. This term of landscape has some
disadvantages, two of which are mentioned below.

1. Source filters lead to incorrect data which produce wrong models.
2. The people who live in the investigated landscape and whose perception actually

establishes the landscape that we aim to investigate are not involved in our
characterisation of the landscape.

The last problem can be solved with the emic term of landscape, understanding
landscape as a perceived space. In this type of landscape people are aware of the
landscape characterisation. They furnish the landscape with meaning by narratives
based upon perception. However, this term of landscape is subjective and also
encounters some problems:
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1. There may be imagined elements in the landscapes that do not correspond with
real elements.

2. This type of landscape is only a cognitive structure and it depends on who
is perceiving the landscape. This means that there is not only one landscape
corresponding with a certain part of the geographical space, but rather a
multitude.

The second problem can be solved with the etic term of landscape, although this
chapter is dedicated to the emic term of landscape. Since this term is subjective and
cognitive, empirical models are rather difficult. We focus on theoretical models of
landscape perception, which are nothing but a hypothesis concerning how people
might have perceived the landscape.

We will distinguish two types of perception: sensual perception and cognitive
perception. Sensual perception deals with the question what is visible? Landscape
reconstruction and viewshed analysis are applications connected to this type of
perception. Cognitive perception deals with the question what emerges in the
mind? Fuzzy classifications and cognitive maps are methods belonging to this type
of perception. Before we start with these methods connected to the two types of
perception, we will address coordinate systems as manifestations of the point of
view in landscape perception.

The crucial point in this chapter is to change the point of view from an etic
perspective to an emic perspective. We leave the distant point of view and step to
the position of prehistoric actors. This change can be expressed by a transformation
of the coordinate system, whereby we will transform the coordinates to a polar
system with the centre at the observer’s viewpoint.

> trans.pol <- function(a, b=c(0,0)){
+ x <- a[1]
+ y <- a[2]
+ xt <- b[1]
+ yt <- b[2]
+ r <- (((x-xt)^2)+((y-yt)^2))^0.5
+ if ((x-xt) >= 0 & (y-yt) >= 0) phi <- atan((y-yt)/
+ (x-xt))
+ if ((x-xt) < 0 & (y-yt) >= 0) phi <- atan((y-yt)/
+ (x-xt)) + pi
+ if ((x-xt) < 0 & (y-yt) < 0) phi <- atan((y-yt)/
+ (x-xt)) - pi
+ if ((x-xt) >= 0 & (y-yt) < 0) phi <- atan((y-yt)/
+ (x-xt)) + 2 * pi
+ return(c(r, phi))
+ }
> trans.cartes <- function(a, b=c(0,0)){
+ r <- a[1]
+ phi <- a[2]
+ xt <- b[1]
+ yt <- b[2]
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+ x <- r*cos(phi) + xt
+ y <- r*sin(phi) + yt
+ return(c(x, y))
+ }
> a <- c(3559376, 6027178)
> b <- c(3564474, 6032765)
> c <- trans.pol(a,b)
> c
[1] 7563.344036 -2.310461
> trans.cartes(c,b)
[1] 3559376 6027178

11.2 Sensual Perception

What was visible from a certain point of view? This is one of the most pressing
questions in the topic of ancient sensual perception. At the geographical scale of
landscapes, this is addressed by the viewshed approach [5, 13, 16, 18, 20]. Viewshed
analyses are usually grid-based and they calculate whether a certain grid cell is
visible from a certain point of view. It is assumed that the one thing that can prevent
visibility is an elevated part of the earth cutting the line of sight (Fig. 11.1).

For the analysis, we need to supply a digital elevation model, a point of view, the
height of the eye above the surface at the point of view, as well as the target height.
The algorithm calculates whether there is anything at the view-line between the
view-point and target-point. The algorithm should consider that the general surface
of the earth is not a plain but rather an ellipsoid. If the algorithm simply considered
the elevation values from the digital elevation model—which is referenced to the
ellipsoid surface—the result could be incorrect.

We could develop the algorithm in R since the principle is rather simple, although
we prefer to show that R can be connected to other software. The advantage
of this approach is that specialised software uses optimised algorithms in fast
implementations. In this book, we generally prefer the slower R-based versions for

Fig. 11.1 Visibility
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didactic reasons. The specialised software that we use here is the open source GIS
system GRASS (https://grass.osgeo.org/). For the currently stable version GRASS
7, we need the R-package spgrass7:

> install.packages("spgrass7", repos="http://R-Forge.
+ R-project.org")
> library(rgdal)
> library(spgrass7)

The package spgrass7 needs to set up the environment, which defines the
place, where the GRASS software can be found, and the place, where the GRASS
database should be stored:

> loc <- initGRASS("/usr/lib/grass70",home=tempdir(),
+ mapset = "PERMANENT", override = TRUE)

Subsequently, we can check the location and define it according to our data:

> execGRASS("g.proj", flags = c("p"))
XY location (unprojected)
> execGRASS("g.proj", flags = c("c"), parameters =
+ list(proj4=crs1))

Now, we can load our digital elevation model from R to GRASS, show the raster
parameter and adjust the region’s resolution:

> writeRAST(x = sgdf_srtm, vname = "dem")
> execGRASS("g.list", type = "rast")
dem
> execGRASS("g.region", flags = c("p"))
projection: 99 (Transverse Mercator)
zone: 0
datum: ** unknown (default: WGS84) **
ellipsoid: wgs84
north: 1
south: 0
west: 0
east: 1
nsres: 1
ewres: 1
rows: 1
cols: 1
cells: 1
> execGRASS("g.region", parameters = list(raster =
+ "dem",res = "50"))
> execGRASS("g.region", flags = c("p"))
projection: 99 (Transverse Mercator)
zone: 0
datum: ** unknown (default: WGS84) **

https://grass.osgeo.org/
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ellipsoid: wgs84
north: 6040566.6406
south: 6022466.6406
west: 3550736.1482
east: 3579036.1482
nsres: 50
ewres: 50
rows: 362
cols: 566
cells: 204892

After the preparation, we are ready to run the viewshed analysis. First, we explore
the parameters that are required in GRASS for a viewshed analysis. We simply call
the GRASS r.viewshed command with parseGRASS and receive some help:

> parseGRASS(’r.viewshed’)
Command: r.viewshed
Description: Computes the viewshed of a point on an
+ elevation raster map.
Keywords: Default format: NULL (invisible), vertical
+ angle wrt viewpoint (visible).
Parameters:

name: input, type: string, required: yes, multiple: no
keydesc: name, keydesc_count: 1

[Name of input elevation raster map]
name: output, type: string, required: yes, multiple: no
keydesc: name, keydesc_count: 1

[Name der Ausgabe-Rasterkarte]
name: coordinates, type: float, required: yes,
+ multiple: no
keydesc: east,north, keydesc_count: 2

[Coordinates of viewing position]
name: observer_elevation, type: float, required:
+ no, multiple: no
default: 1.75
keydesc: value, keydesc_count: 1

[Viewing elevation above the ground]
name: target_elevation, type: float, required:
+ no, multiple: no
default: 0.0
keydesc: value, keydesc_count: 1

[Offset for target elevation above the ground]
name: max_distance, type: float, required: no,
+ multiple: no
default: -1
keydesc: value, keydesc_count: 1

[Maximum visibility radius. By default infinity (-1)]
name: refraction_coeff, type: float, required: no,
+ multiple: no
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default: 0.14286
[Refraction coefficient]

name: memory, type: integer, required: no, multiple: no
default: 500
keydesc: value, keydesc_count: 1

[Verwendete SpeichergröSSe in MB]
name: directory, type: string, required: no, multiple: no

[Directory to hold temporary files (they can be large)]
Flags:

name: c [Consider the curvature of the earth (current
+ ellipsoid)] {FALSE}
name: r [Consider the effect of atmospheric refraction]
+ {FALSE}
name: b [Output format is invisible = 0, visible = 1]
+ {FALSE}
name: e [Output format is invisible = NULL, else current
+ elev - viewpoint_elev] {FALSE}
name: overwrite [Ausgabedateien dürfen bereits existierende
+ Dateien Überschreiben.] {FALSE}
name: help [Print usage summary] {FALSE}
name: verbose [Ausführlicher Ausgabemodus] {FALSE}
name: quiet [Schweigsamer Ausgabemodus] {FALSE}

We now fill in the parameters and run the r.viewshed command again with
execGRASS. Since we do not give the height of viewer and target, the default
values of 1.75 m and 0.0 m are used. One of the megaliths is used as the viewer’s
location.

> co.meg <- spdf_meg@coords
> execGRASS("r.viewshed", flags = c("overwrite","b"),
+ parameters = list(input = "dem",output = "view.meg",
+ coordinates = co.meg[160,]))
Computing events...
Computing visibility...
Writing output raster map...
> single.viewshed <- readRAST("view.meg")
Exporting raster as integer values (bytes=4)

The result is a map, indicating whether a grid cell is visible from the viewpoint
or not. We now want to produce a map showing from how many monuments and
villages a grid cell is visible:

> dem <- readRAST(vname = "dem")
> co.meg <- cbind(spdf_meg@coords[,1][spdf_meg@coords[,1]
+ >dem@bbox[1,1] & spdf_meg@coords[,1]<dem@bbox[1,2]],
+ spdf_meg@coords[,2][spdf_meg@coords[,2]>dem@bbox[2,1]
+ & spdf_meg@coords[,1]<dem@bbox[2,2]])
> co.tum <- cbind(spdf_tum@coords[,1][spdf_tum@coords[,1]
+ >dem@bbox[1,1] & spdf_tum@coords[,1]<dem@bbox[1,2]],
+ spdf_tum@coords[,2][spdf_tum@coords[,2]>dem@bbox[2,1]
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+ & spdf_tum@coords[,1]<dem@bbox[2,2]])
> co.vil <- cbind(spdf_vil@coords[,1][spdf_vil@coords[,1]
+ >dem@bbox[1,1] & spdf_vil@coords[,1]<dem@bbox[1,2]],
+ spdf_vil@coords[,2][spdf_vil@coords[,2]>dem@bbox[2,1]
+ & spdf_vil@coords[,1]<dem@bbox[2,2]])
+ cum.view.meg <- raster(dem)
+ cum.view.tum <- raster(dem)
+ cum.view.vil <- raster(dem)
+ cum.view <- raster(dem)
+ for (i in seq(1, length(co.meg[,1]))) {
+ execGRASS("r.viewshed"
+ ,flags = c("overwrite","b")
+ ,parameters = list(input = "dem",output =
+ "view.meg",coordinates = co.meg[i,])
+ )
+ viewshed <- readRAST("view.meg")
+ if (i==1) cum.view.meg <- raster(viewshed)
+ else cum.view.meg <- raster(viewshed) + cum.view.meg
+ cat("iteration ", i, " of ", length(co.meg[,1]),"\n")
+}
+ for (i in seq(1, length(co.tum[,1]))) {
+ execGRASS("r.viewshed"
+ ,flags = c("overwrite","b")
+ ,parameters = list(input = "dem",output =
+ "view.tum",coordinates = co.tum[i,])
+ )
+ viewshed <- readRAST("view.tum")
+ if (i==1) cum.view.tum <- raster(viewshed)
+ else cum.view.tum <- raster(viewshed) + cum.view.tum
+ cat("iteration ", i, " of ", length(co.tum[,1]),"\n")
+}
+ for (i in seq(1, length(co.vil[,1]))) {
+ execGRASS("r.viewshed"
+ ,flags = c("overwrite","b")
+ ,parameters = list(input = "dem",output =
+ "view.vil",coordinates = co.vil[i,])
+ )
+ viewshed <- readRAST("view.vil")
+ if (i==1) cum.view.vil <- raster(viewshed)
+ else cum.view.vil <- raster(viewshed) + cum.view.vil
+ cat("iteration ", i, " of ", length(co.vil[,1]),"\n")
+ }

Having calculated the cumulative viewshed for megaliths, tumuli and villages,
we now combine the results and plot all four maps (Fig. 11.2):

+ cum.view <- cum.view.meg+cum.view.tum+cum.view.vil
+ cum.view.b <- brick(cum.view.meg, cum.view.tum,
+ cum.view.vil, cum.view)
+ plot(cum.view.b, col = grey(20:0/30))
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Fig. 11.2 Cumulated viewsheds from megalith, burial mounds, villages and all point of views; the
grey shade indicates the number of points from which the area of a grid cell is visible

There are parameters that have not been considered; for instance, the
vegetation—such as trees—can cut the line of sight, while the size contrast of
that targets needs to be sufficient. Accordingly, the viewshed does not show what
was visible, but rather what was not visible. Grid cells that are marked as not
visible are in no cases visible, although the visibility of grid cells marked as visible
can be prevented by different effects. Although this is a serious limitation of the
interpretation, view-shed analysis helps to gain a certain impression of the ancient
visibility.

11.3 Cognitive Perception

In this section, we deal with the product of cognitive processes. We apply two
approaches, first categorising observations and construction mental maps. Since
categorising is a main cognitive technique in data processing, we can be sure that
ancient people categorised what they saw. However, we cannot be certain that
people imagined space as maps and from the bird’s eye perspective; for instance,
it is possible simply to remember the sequence of landmarks while moving in the
landscape. Hence, a cognitive map is a theoretical model of how people could
have imagined space, if they have used the concept of maps. Cognitive maps are
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very useful, when we use another formulation, reflecting the translation of a spatial
imagination into a concept with which we are familiar. Cognitive maps are very
useful for comparing emic and etic approaches of landscape research.

11.3.1 Fuzzy Categories

Categorising our observations is not only a very essential technique in science, but
also in everyday life. Categorising is a basic cognitive technique [3, 6, 10, 12].
Categorisations usually are not arbitrary but rather they are based upon similar
features. Thresholds can be used to delimit categories; for instance, we could set
a threshold between high and low altitude in our research at a value of 20 m. This
threshold might be useful for scientific purposes, although in everyday life “high”
and “low” depend on the context. In low areas, it might be necessary to distinguish
really “low” areas below 5 m from “high” areas above 5 m. We can solve this
problem with

1. a classification hierarchy; or
2. definitions that adapt to the context.

The second solution is very frequently used in everyday life and means, that there
is no fixed threshold. We can formalise this idea with the fuzzy set approach
[11, 21, 22], which is based upon the idea that linguistic variables such as “low” or
“high” are not distinguished by a certain threshold. The definition of the two classes
are membership functions, defining degrees of membership to both categories
(Fig. 11.3):

> memb.low <- function(x){
+ y <- 12.53 * dnorm(x, mean=5, sd=5)
+ return(y)}
> memb.high <- function(x){
+ y <- 12.53 * dnorm(x, mean=15, sd=5)
+ return(y)}
> seq1 <- seq(0,20,0.1)
> mlow <- memb.low(seq1)
> mhigh <- memb.high(seq1)
> matplot(seq1, mlow, type="l", lty=1, ylab="membership
+ degree", xlab="Time")
> matplot(seq1, mhigh, type="l", lty=2, ylab="membership
+ degree", xlab="Time", add=T)

Our membership functions are not perfect. Usually, all possible values should
be recognised in the same way and hence the sum of all membership functions
should be 1; otherwise, certain values are suppressed and others amplified, which
can produce serious biases. Please note that all membership degrees have to be
between 0 and 1.
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Fig. 11.3 Membership functions of low and high (dashed) altitude

Fig. 11.4 Membership degree for class “low” (left) and “high” (right). The darker the colour, the
higher the membership degree

The membership degree of certain altitude values indicates the degree to which
altitude is judged as high or low. We can apply the membership functions to the srtm
grid and obtain maps of the membership degree for each grid cell of the two classes
(Fig. 11.4):

> sgdf_srtm_low <- sgdf_srtm_high <- sgdf_srtm
> sgdf_srtm_low@data[,1] <- memb.low(sgdf_srtm@data[,1])
> sgdf_srtm_high@data[,1] <- memb.high(sgdf_srtm@data[,1])
> par(mfcol=c(1,2), mai = c(0, 0, 0, 0))
> image(sgdf_srtm_low, col = gray.colors(25,
+ start = 0.90, end = 0.2))
> image(sgdf_srtm_high, col = gray.colors(25,
+ start = 0.90, end = 0.2))
> par(mfcol=c(1,1))

The process of turning a numerical variable into a linguistic one is called
fuzzyfication. The linguistic variables can be used for inferences and combinations,
which are rather intuitive. Subsequently, a defuzzification transforms the result back
into numeric variables. Fuzzy approaches are used in archaeology for different
purposes [1, 8, 14, 17, 18].
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11.3.2 Cognitive Maps

It is possible to manipulate maps in such a way that they fit to our cognitive
maps. We simply have to define how topographic features appear in our mind
and apply some techniques to reproduce the result. However, if we try to do so,
some difficulties appear. The first problem lies in describing our cognitive maps.
Shemyakin [19] describes two types of cognitive maps.

1. Route maps are a tool to memorise spatial relationships based upon movement,
whereby a chain of landmarks defines spatial relationships.

2. Survey maps are tools to map the topological relationship of objects.

Although a dominance of route maps in young ages and survey maps in older
ages of people is assumed, the parallel usage of both is evident. We focus on
survey maps in this section. The next problem is how to proof the result. This is
difficult for our own cognitive maps and rather impossible if those, whose cognitive
maps we aim to reconstruct cannot tell us about their cognitive maps because they
lived thousands of years ago in an age without writing. Finally, the individual
cognitive maps may differ considerably. Is the reconstruction of cognitive maps
useless? No, because even if a proper validation of the cognitive maps is not
possible, there are some hints about the dominance and relationship of different
parameters. Moreover, reconstructed cognitive maps are a useful heuristic tool for
understanding the relationship of parameters and the effect of processes. If the
meaning and significance of sites change, cognitive maps can offer us an impression
concerning how this can affect the perception of landscape. Hence, we have to be
aware that cognitive maps reflect our perception of ancient landscapes rather than
the perception of ancient people. Nonetheless, they are still closer to the ancient
perception compared with etic models.

There are three important aspects of reconstructed cognitive maps, namely
maps

• take a certain point of view;
• manipulate locations by changing distances and angles and
• manipulate the significance of elements.

Again, we use a very simple example. First a point of view in the working area
is defined:

> vp <- c(3565015, 6030963)

We now have to populate our map. The megalithic tombs would be an obvious
choice, although we decide for the density centres of megaliths due to the smaller
number. In fact, it would be useful to use both. We would know all megaliths in
our vicinity but in remote areas we would remember agglomerations and necropolis
rather than single monuments. Some monuments may have a certain significance to
us, whereby they would seem to be nearer and thus dominate our cognitive map.
In the reconstructed cognitive map, density centres with high density values are
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marked with larger symbols and they are moved towards the viewpoint. In addition,
we assume that there are axes of orientation that structure the landscape. All density
centres tend to move slightly towards the axes to simplify the reference of the point’s
location with axes of orientation.

We prepare a data frame of density centres with original, relative polar and
new Cartesian coordinates. Here, the coordinate transformation functions are
used. Subsequently, we apply the manipulations of distances and angles, before
transforming the coordinates back to Cartesian ones. Finally, we produce a
SpatialPointsDataFrame with all information:

> cm_denspt <- data.frame(coordinates(cent_meg),
+ 10000000 * over(cent_meg, sgdf_meg_dens),
+ r=0, phi=0, r2=0, phi2=0, x2=0, y2=0)
> tp2 <- function(a,b) trans.pol(a,vp)
> cm_pc <- apply(cm_denspt[,1:2], 1, tp2)
> cm_denspt[,4] <- cm_pc[1,]
> cm_denspt[,5] <- cm_pc[2,]
> cm_denspt[,6] <- cm_denspt[,4] / (0.9 * cm_denspt[,3]^0.2)
> cm_denspt[which(cm_denspt[,5] < pi & cm_denspt[,5] > 0),7]
+ <- cm_denspt[which(cm_denspt[,5] < pi &
+ cm_denspt[,5] > 0),5] * 0.95
> cm_denspt[which(cm_denspt[,5] > pi),7] <- 2 * pi -
+ (2 * pi - cm_denspt[which(cm_denspt[,5] > pi),5]) * 0.95
> cm_denspt[which(cm_denspt[,5] > -pi & cm_denspt[,5] <
+ 0),7] <- cm_denspt[which(cm_denspt[,5] > -pi &
+ cm_denspt[,5] < 0),5] * 0.95
> tc2 <- function(a,b) trans.cartes (a,vp)
> cm_cc <- apply(cm_denspt[,6:7], 1, tc2)
> cm_denspt[,8] <- cm_cc[1,]
> cm_denspt[,9] <- cm_cc[2,]
> cm_despt2 <- SpatialPointsDataFrame(cbind(cm_cc[1,],
+ cm_cc[2,]), cm_denspt, proj4string =
+ CRS(as.character(crs1)))

We have now conducted all manipulations of the main topographic objects and
we can plot the result (Fig. 11.5). The result is not very convincing since we have
not considered that the manipulation of the main topographic elements might affect
the other map content. The elevation map should also be distorted according to the
applied manipulations. We will try different approaches to produce this result.

The first approach is very simple: we produce grids with the x and y coordinates
as z-variables, where we put the new coordinates of the density centres at the
original places of the density centres. Subsequently, an interpolation of the values
indicates the new position of all grid cells. The three grids for x, y, and elevation are
converted to one data frame. Here, we have to consider NA values.

> grid_x <- gstat::idw(x2~1, cm_despt2, newdata=sgdf_srtm,
+ nmax=12, maxdist=20000, idp=4.0)
[inverse distance weighted interpolation]
> grid_y <- gstat::idw(y2~1, cm_despt2, newdata=sgdf_srtm,
+ nmax=12, maxdist=20000, idp=4.0)
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Fig. 11.5 Cognitive maps. Left: modified density centres on original elevation. Right: modified
density centres on distorted elevation (interpolation approach). The star is the point of view while
the point size indicates the local density of monuments

[inverse distance weighted interpolation]
> cm_spdf <- data.frame(x=grid_x@data[,1], y=grid_y@data
+ [,1], z=sgdf_srtm@data[,1])
> cm_spdf <- cm_spdf[intersect(intersect(which(!is.na(
+ cm_spdf[,1])), which(!is.na(cm_spdf[,2]))), which(
+ !is.na(cm_spdf[,3]))),]
> coordinates(cm_spdf) = ~x+y
> proj4string(cm_spdf) <- CRS(as.character(crs1))

The data frame—which is actually a SpatialPointsDataFrame—is used
to produce a grid by interpolation.

> library(gstat)
> vt3 <- variogram(cm_spdf@data$z ~ 1, cm_spdf)
> v.fit3 <- fit.variogram(vt3, vgm(1, "Mat", 5000, 1))
> vgrid_cm <- krige(cm_spdf@data$z ~ 1, cm_spdf,
+ newdata=sgdf_srtm, v.fit3, nmin = 4, maxdist = 200,
+ nmax = 15)
[using ordinary kriging]
> vgrid_cm <- raster(grid_cm)
> vgrid_cm[is.na(grid_cm)] <- 0

The final step is to plot the results. Here, we draw lines between the original and
new point of the density centres to indicate the manipulations. The code for plotting
the first two cognitive maps side by side (Fig. 11.5) is detailed below:

> par(mfcol=c(1,2), mai = c(0, 0, 0, 0))
> image(sgdf_srtm, col = gray.colors(25, start = 0.97,
+ end = 0.1))
> for (i in 1:length(cm_despt2@data[,1])) {
+ xl <- c(cm_despt2@data[i,1], cm_despt2@data[i,8])
+ yl <- c(cm_despt2@data[i,2], cm_despt2@data[i,9])
+ lines(xl,yl, lwd=2)
+ }
> points(cm_despt2@data[,8], cm_despt2@data[,9], pch=16,
+ col=’black’, cex=sqrt(1.35 * cm_despt2@data[,3]))
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> points(vp[1], vp[2], pch=8, col=’black’)
> image(as(grid_cm, ’SpatialGridDataFrame’),
+ col = gray.colors(25, start = 0.97, end = 0.1))
> for (i in 1:length(cm_despt2@data[,1])) {
+ xl <- c(cm_despt2@data[i,1], cm_despt2@data[i,8])
+ yl <- c(cm_despt2@data[i,2], cm_despt2@data[i,9])
+ lines(xl,yl, lwd=2)
+ }
> points(cm_despt2@data[,8], cm_despt2@data[,9], pch=16,
+ col=’black’, cex=sqrt(1.35 * cm_despt2@data[,3]))
> points(vp[1], vp[2], pch=8, col=’black’)
> par(mfcol=c(1,1))

The result has rather strong distortions, suggesting that perhaps we can produce
better results. We can try a six-parameter affine transformation, which is used
in rubber sheeting [4, 212–216]. This approach uses some points where both
coordinates are known and a set of equations to calculate the new coordinates. The
new coordinates u and v are

u D ˇ0x C ˇ1y C ˇ2 (11.1)

v D ˇ3x C ˇ4y C ˇ5 (11.2)

The coefficients use p and q as fixed terms and involve n as the number of points,
xi and yi as original coordinates of certain points, Nxi and Nyi as the mean value of the
coordinates and ui and vi as new coordinates.

p D

nX
iD1
..xi � Nxi/.yi � Nyi//

nX
iD1
.yi � Nyi/

2

(11.3)

q D

nX
iD1
..xi � Nxi/.yi � Nyi//

nX
iD1
.xi � Nxi/

2

(11.4)

ˇ1 D

nX
iD1
..yi � Nyi/.ui � xi// � q

nX
iD1
..xi � Nxi/.ui � xi//

nX
iD1
.yi � Nyi/

2 � q
nX

iD1
..xi � Nxi/.yi � Nyi//

(11.5)
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ˇ3 D

nX
iD1
..xi � Nxi/.vi � yi// � p

nX
iD1
..yi � Nyi/.vi � yi//

nX
iD1
.xi � Nxi/

2 � p
nX

iD1
..yi � Nyi/.xi � Nxi//

(11.6)

ˇ4 D 1 � pˇ3

nX
iD1
..yi � Nyi/.vi � yi//

nX
iD1
.yi � Nyi/

2

(11.7)

ˇ0 D 1 � qˇ1

nX
iD1
..xi � Nxi/.ui � xi//

nX
iD1
.xi � Nxi/

2

(11.8)

ˇ2 D 1

n

nX
iD1
.ui � xi/C Nx � ˇ0 Nx C ˇ1 Ny (11.9)

ˇ5 D 1

n

nX
iD1
.vi � yi/C Ny � ˇ4 Ny C ˇ3 Nx (11.10)

To apply this, we have to prepare a dataframe with all relevant coordinates of the
density points and the elevation values and calculate the coefficients:

> srtm <- data.frame(x=coordinates(sgdf_srtm)[,1],
+ y=coordinates(sgdf_srtm)[,2], z=sgdf_srtm@data[,1], u=0,
+ v=0)
> cmdf <- cbind(x=cm_denspt[,1], y=cm_denspt[,2],
+ u=cm_denspt[,8], v=cm_denspt[,9])
> n <- length(cmdf[,1])
> p <- sum((cmdf[,1] - mean(cmdf[,1])) * (cmdf[,2] -
+ mean(cmdf[,2]))) / sum((cmdf[,2] - mean(cmdf[,2]))^2)
> q <- sum((cmdf[,1] - mean(cmdf[,1])) * (cmdf[,2] -
+ mean(cmdf[,2]))) / sum((cmdf[,1] - mean(cmdf[,1]))^2)
> b1 <- (sum((cmdf[,2] - mean(cmdf[,2])) * (cmdf[,3] -
+ cmdf[,1])) - q * sum((cmdf[,1] - mean(cmdf[,1]))
+ * (cmdf[,3] - cmdf[,1]))) / (sum((cmdf[,2] -
+ mean(cmdf[,2]))^2) - q * sum((cmdf[,1] -
+ mean(cmdf[,1])) * (cmdf[,2] - mean(cmdf[,2]))))
> b3 <- (sum((cmdf[,1] - mean(cmdf[,1])) * (cmdf[,4] -
+ cmdf[,2])) - p * sum((cmdf[,2] - mean(cmdf[,2]))
+ * (cmdf[,4] - cmdf[,2]))) / (sum((cmdf[,1] -
+ mean(cmdf[,1]))^2) - p * sum((cmdf[,2] -
+ mean(cmdf[,2])) * (cmdf[,1] - mean(cmdf[,1]))))
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> b4 <- 1 - p * b3 + sum((cmdf[,2] - mean(cmdf[,2]))
+ * (cmdf[,4] - cmdf[,2])) / sum((cmdf[,2] -
+ mean(cmdf[,2]))^2)
> b0 <- 1 - q * b1 + sum((cmdf[,1] - mean(cmdf[,1]))
+ * (cmdf[,3] - cmdf[,1])) / sum((cmdf[,1] -
+ mean(cmdf[,1]))^2)
> b2 <- (1/n) * sum(cmdf[,3]-cmdf[,1]) + mean(cmdf[,1])
+ - b0 * mean(cmdf[,1]) - b1 * mean(cmdf[,2])
> b5 <- (1/n) * sum(cmdf[,4]-cmdf[,2]) + mean(cmdf[,2])
+ - b4 * mean(cmdf[,2]) - b3 * mean(cmdf[,1])

We can now define coordinate transformation functions and apply them with
apply:

> trans.x <- function(x) u <- b0*x[1] +b1*x[2] + b2
> trans.y <- function(x) u <- b3*x[1] +b4*x[2] + b5
> srtm[,4] <- apply(srtm[,1:2], 1, trans.x)
> srtm[,5] <- apply(srtm[,1:2], 1, trans.y)

Finally, we produce a SpatialPointsDataFrame and use this to generate
a raster with the rasterise function.

> coordinates(srtm) = ~u+v
> proj4string(srtm) <- CRS(as.character(crs1))
> cm_raster <- rasterize(srtm, raster(sgdf_srtm),
+ field=’z’, update=TRUE, proj4string =
+ CRS(as.character(crs1)))

The result (Fig. 11.6) looks much more convincing, although this approach also
has some disadvantages. If we use many points to control the transformation, the
result is rather more approximative than exact, since the six-parameter transforma-
tion cannot adapt to any detail. One solution is to cut the map into several parts
and apply transformations for any part separately. A Delaunay triangulation of the
reference points is the optimal structure to achieve this [7]. Inside the Delaunay
cells, we use the same transformation algorithm.

Fig. 11.6 Cognitive maps. Left: modified density centres on distorted elevation (simple rubber
sheet approach). Right: modified density centres on distorted elevation (Delaunay rubber sheet
approach). The star is the point of view while the point size indicates the local density of
monuments
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First, we need some preparations, including the calculation of the Delaunay graph
and the definition of the transformation functions. We use the spatstat package
for the Delaunay calculation because this package—in contrast to the deldir
package, for instance—does not simply return the edges, but rather the complete
triangles.

> sgdf <- sgdf_srtm
> sgdf@data[,1] <- 0
> srtm <- data.frame(x=coordinates(sgdf_srtm)[,1],
+ y=coordinates(sgdf_srtm)[,2], z=sgdf_srtm@data[,1],
+ u=0, v=0)
> library(spatstat)
> cm_pp <- ppp(cm_denspt[,1], cm_denspt[,2],
+ window=owin(c(bb[1,1],bb[1,2]),c(bb[2,1],bb[2,2])))
> cm_del <- delaunay(cm_pp)
> cm_pp2 <- ppp(cm_denspt[,8], cm_denspt[,9],
+ window=owin(c(bb[1,1],bb[1,2]),c(bb[2,1],bb[2,2])))
Warnmeldung:
In ppp(cm_denspt[, 8], cm_denspt[, 9], window =
+ owin(c(bb[1, 1], :

1 point was rejected as lying outside the
specified window

> cm_del2 <- delaunay(cm_pp2)
> trans.x <- function(x) u <- b0*x[1] +b1*x[2] + b2
> trans.y <- function(x) u <- b3*x[1] +b4*x[2] + b5

Subsequently, we apply the transformation for all Delaunay cells in a loop:

> for (i in 1:cm_del$n) {
+ x1 <- tiles(cm_del)[[i]]$bdry[[1]][[1]][1]
+ y1 <- tiles(cm_del)[[i]]$bdry[[1]][[2]][1]
+ x2 <- tiles(cm_del)[[i]]$bdry[[1]][[1]][2]
+ y2 <- tiles(cm_del)[[i]]$bdry[[1]][[2]][2]
+ x3 <- tiles(cm_del)[[i]]$bdry[[1]][[1]][3]
+ y3 <- tiles(cm_del)[[i]]$bdry[[1]][[2]][3]
+ u1 <- cm_despt2@data[which(cm_despt2@data[,1] == x1),
+ 8][1]
+ v1 <- cm_despt2@data[which(cm_despt2@data[,2] == y1),
+ 9][1]
+ u2 <- cm_despt2@data[which(cm_despt2@data[,1] == x2),
+ 8][1]
+ v2 <- cm_despt2@data[which(cm_despt2@data[,2] == y2),
+ 9][1]
+ u3 <- cm_despt2@data[which(cm_despt2@data[,1] == x3),
+ 8][1]
+ v3 <- cm_despt2@data[which(cm_despt2@data[,2] == y3),
+ 9][1]
+ cmdf <- cbind(x=c(x1,x2,x3), y=c(y1,y2,y3),
+ u=c(u1,u2,u3), v=c(v1,v2,v3))
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+ n <- length(cmdf[,1])
+ p <- sum((cmdf[,1] - mean(cmdf[,1])) * (cmdf[,2]
+ - mean(cmdf[,2]))) / sum((cmdf[,2] -
+ mean(cmdf[,2]))^2)
+ q <- sum((cmdf[,1] - mean(cmdf[,1])) * (cmdf[,2]
+ - mean(cmdf[,2]))) / sum((cmdf[,1] - mean(cmdf[,1]))^2)
+ b1 <- (sum((cmdf[,2] - mean(cmdf[,2])) * (cmdf[,3]
+ - cmdf[,1])) - q * sum((cmdf[,1] - mean(cmdf[,1]))
+ * (cmdf[,3] - cmdf[,1]))) / (sum((cmdf[,2]
+ - mean(cmdf[,2]))^2) - q * sum((cmdf[,1]
+ - mean(cmdf[,1])) * (cmdf[,2] - mean(cmdf[,2]))))
+ b3 <- (sum((cmdf[,1] - mean(cmdf[,1])) * (cmdf[,4]
+ - cmdf[,2])) - p * sum((cmdf[,2] - mean(cmdf[,2]))
+ * (cmdf[,4] - cmdf[,2]))) / (sum((cmdf[,1]
+ - mean(cmdf[,1]))^2) - p * sum((cmdf[,2]
+ - mean(cmdf[,2])) * (cmdf[,1] - mean(cmdf[,1]))))
+ b4 <- 1 - p * b3 + sum((cmdf[,2] - mean(cmdf[,2]))
+ * (cmdf[,4] - cmdf[,2])) / sum((cmdf[,2]
+ - mean(cmdf[,2]))^2)
+ b0 <- 1 - q * b1 + sum((cmdf[,1] - mean(cmdf[,1]))
+ * (cmdf[,3] - cmdf[,1])) / sum((cmdf[,1]
+ - mean(cmdf[,1]))^2)
+ b2 <- (1/n) * sum(cmdf[,3]-cmdf[,1]) + mean(cmdf[,1])
+ - b0 * mean(cmdf[,1]) - b1 * mean(cmdf[,2])
+ b5 <- (1/n) * sum(cmdf[,4]-cmdf[,2]) + mean(cmdf[,2])
+ - b4 * mean(cmdf[,2]) - b3 * mean(cmdf[,1])
+ cm_ind <- which(inside.owin(srtm[,1], srtm[,2],
+ tiles(cm_del)[[i]]) == T)
+ srtm[cm_ind,4] <- apply(srtm[cm_ind,1:2], 1, trans.x)
+ srtm[cm_ind,5] <- apply(srtm[cm_ind,1:2], 1, trans.y)
+ }

Finally, again we produce a SpatialPointsDataFrame and rasterize
the result (Fig. 11.6). With the substitution of NA and 0 values and the focal
function—which applies a moving window calculation for missing values—we
remove some computational artefacts:

> coordinates(srtm) = ~u+v
> proj4string(srtm) <- CRS(as.character(crs1))
> cm_raster2 <- rasterize(srtm, raster(sgdf), field=’z’,
+ update=TRUE, proj4string = CRS(as.character(crs1)))
> cm_raster2[which(getValues(cm_raster2) == 0)] <- NA
> cm_raster2 <- focal(cm_raster2, w= matrix(rep(1,25),
+ nrow=5), na.rm=TRUE, mean, NAonly=TRUE)
> cm_raster2[is.na(cm_raster2)] <- 0

In our example, we used rather poor information to produce the cognitive map.
In a proper set-up of a cognitive map reconstruction we would base the space
distortion on information about cultural distances, leastcost distances, viewsheds,
borders and routes and settlement sizes. The cognitive map reconstruction is a kind
of simulation with which we will deal in the next chapter.
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11.4 Problems

11.1. Why would certain view conditions be important to ancient people?

11.2. Do you think that it is possible to include vegetation information in viewshed
analysis?

11.3. Please plot the sum of the two membership functions.

11.4. Please find some decent membership functions with the sum of 1.

11.5. How could we manage to verify a fuzzy classification?

11.6. Please describe your cognitive map of your hometown.

11.7. Why do we use polar coordinates to manipulate the density centres’ loca-
tions?

11.8. Can you explain the missing values at the margin of the cognitive maps?

11.9. What other information could we use for cognitive map reconstruction?
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14. Machálek, T., Cimler, R., Olševičová, K., & Danielisová, A. (2013). Fuzzy methods in land use
modeling for archaeology. In H. Vojackova (Ed.), Proceedings of the 31st International Con-
ference Mathematical Methods in Economics (pp. 552–557). Jihlava: College of Polytechnics
Jihlava.

15. Meier, T. (2012). ‘Landscape’, ‘environment’ and a vision of interdisciplinarity. In S. Kluiving
& E. Guttmann-Bond (Eds.), Landscape archaeology between art and science (pp. 503–514).
Amsterdam: Amsterdam University Press.

16. Nakoinz, O. (2006). Kommunikation und Kontrolle zur Wikingerzeit in der Kieler Bucht - Ein
Beitrag zur Methode der Sichtanalyse. Archéologie in Schleswig, 11, 95–103.

17. Nakoinz, O. (2012). Datierungskodierung und chronologische Inferenz - Techniken zum
Umgang mit unscharfen chronologischen Informationen. Praehistorische Zeitschrift, 87,
189–207.

18. Rášová, A. (2014). Fuzzy viewshed, probable viewshed, and their use in the analysis of
prehistoric monuments placement in Western Slovakia. In J. Huerta, S. Schade & C. Granell
(Eds.), Connecting a digital Europe through location and place (AGILE Digital Editions).
Cham: Springer. http://repositori.uji.es/xmlui/handle/10234/99490.

19. Shemyakin, F. N. (1961). Orientation in space. Psychological Science in the USSR, 1, 186–255.
20. Wheatley, D., & Gillings, M. (2002). Spatial technology and archaeology: The archaeological

applications of GIS. London: CRC Press.
21. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
22. Zadeh, L. A. (2006). Generalized theory of uncertainty (GTU)-principal concepts and ideas.

Computational Statistics and Data Analysis, 51, 15–46.

http://repositori.uji.es/xmlui/handle/10234/99490


Chapter 12
Simulations

12.1 Definitions and Random Numbers

Simulations are an important modelling approach used in many disciplines.
Examples from geography [9, 18] and archaeology [2, 3, 10, 11, 17, 20, 21] show
a wide range of approaches. In this chapter, it is hardly possible to touch upon the
topic comprehensively, although we offer some ideas about basic approaches with
a focus on stochastic techniques. Before proceeding into detail, it is necessary to
discuss the term ‘simulation’, before the second part of this section is dedicated to
random numbers.

12.1.1 Definitions

Sometimes the term simulation is used in the context of modelling. Since the term
‘simulation’ can be used as a synonym for ‘modelling’ and for a special type of
models this term is rather confusing. We can define:

Definition 12.1. A simulation is a process in which a theoretical model is used for
generating artificial data used to make a pseudo-empirical model.

Simulation in this sense is not a synonym for modelling, but rather a specific
modelling procedure. The idea is to use well-known rules, which is nothing but a
theoretical model to produce artificial data. There are two differences from simple
theoretical models. First, in a simulation, the theoretical model is used to produce
data. The generation of data that have the same characteristics as empirical data is
the main part of a simulation. After we have produced pseudo-empirical data, we
use them in an empirical model, just in the same way as we would do with real
empirical observations. This model can range between simple visualisations and
rather complicated analyses.

© Springer International Publishing Switzerland 2016
O. Nakoinz, D. Knitter, Modelling Human Behaviour in Landscapes, Quantitative
Archaeology and Archaeological Modelling, DOI 10.1007/978-3-319-29538-1_12

233



234 12 Simulations

Simulations are used to analyse and understand the outcome of well-defined
processes and they are particularly useful when it is difficult to predict the result
for certain process parameters and settings. For instance, complex processes with
features like a butterfly effect, non-linear relations and emergence are cases where
simulations are very helpful. Simulations are a common tool for studying the
influence of different parameters on the result of a theoretical model. This is
important when our theoretical models are rather general and cannot be directly
compared with empirical models. In this case, simulations show what would happen,
if parameters changed. This helps us to rule out certain theoretical models, even if a
perfect match between theoretical and empirical models is not possible.

A classification of simulations can have a focus on producing or using artificial
data.

• S1: Models with a dominant empirical modelling component

– 3D simulations
– Visualisations of the outcome of theoretical models

• S2: Models with complicated or complex theoretical models

– Non-linear interrelationships
– Differential equations
– Predator–prey models

• S3: Models where the rules of the theoretical models are partly undefined or
unknown

– Random numbers
– Monte Carlo simulations
– Point processes

The first type (S1) has a focus on using the artificial data for visualisation. A 3D
elevation model is an example of this type. The data are based upon measurements
but can be artificial in the sense that the values for most points used in the simulation
are interpolated, even with a dense net of measured points. However, the more
important component of these theoretical models is the visualisation rules, given
that the most effort in these simulations is engaged in visualisation. The next step is
to include more theoretical assumptions; for instance, we could extend our example
by including the reconstruction of buildings. In this case, many parts of the building
are guessed and not indicated by archaeological evidence. With this example, we are
approaching the border to those simulations with a focus on theoretical models. If
there are complex interrelationships, differential equations can be employed. While
we know all the rules of the theoretical model, due to the complexity a simple
prediction is not possible. The calculation of interrelated populations is an example
of this type of simulations. Finally, cases with uncertainty and random components
have to be mentioned. Here, the prediction is also not possible and random numbers
help to produce data of different scenarios.
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12.1.2 Random Numbers

Random numbers—used to introduce randomness in simulations—are numbers that
cannot be predicted—in principle. The process of taking random numbers is thought
to be something like dicing. True random number generators are based upon the
measurement of real random events or noise and they are offered by hardware-based
generators and some services (for instance, www.random.org). In practice—and in
R—pseudo-random numbers are usually used. In this case, there is a pre-calculated
list of numbers or an ad-hoc calculation using well-defined equations. Drawing a
random number means picking one number out of the list.

In R, the function runif generates random numbers. In the example, we want
11 numbers between 10 and 25:

> r1 <- runif(11, 10, 25)
> r1
[1] 10.23130 20.28426 19.97188 14.55902 16.54916 20.27554
+ 18.77722 11.26316 14.84382 16.39823 10.72193
> r2 <- runif(11, 10, 25)
> r2
[1] 17.68780 14.97107 18.07993 11.26686 23.99934 15.47418
+ 21.50804 19.60076 23.05224 12.53369 19.47359

We see that both runs produce different results, which is the result that we expect
from random number generation. Since this function uses pseudo-random numbers,
the numbers are predictable if we set a certain starting point for the random number
generator with set.seed, whereby we obtain the same result, which can be useful
for reproducible results:

> set.seed(444)
> r3 <- runif(11, 10, 25)
> r3
[1] 12.52080 12.77653 15.84529 15.48235 10.73310 18.65206
+ 18.39157 10.84036 22.73591 14.24675 14.56461
> set.seed(444)
> r4<- runif(11, 10, 25)
> r4
[1] 12.52080 12.77653 15.84529 15.48235 10.73310 18.65206
+ 18.39157 10.84036 22.73591 14.24675 14.56461

The system produces floating-point numbers. If we want integers, we can of
course use the floor function.

> set.seed(444)
> r5 <- runif(11, 10, 25)
> r5 <- floor(r5)
> r5
[1] 12 12 15 15 10 18 18 10 22 14 14

www.random.org
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Another way to obtain integers is the sample function. Here, we draw 11
integers from the sequence from 10 to 25:

> set.seed(444)
> r6 <- sample(10:25,11)
> r6
[1] 12 25 15 14 10 16 23 21 20 11 17

It is also possible to allow multiple tokens by replacing the drawn numbers:

> set.seed(444)
> r7<- sample(10:25, 11, replace=T)
> r7
[1] 12 12 16 15 10 19 18 10 23 14 14

These integer numbers can be used to obtain random samples from any vectors;
for instance, vectors with text:

> set.seed(444)
> vt <- c("a","b","c","d")
> r8<- sample(1:4, 11, replace=T)
> vt[r8]
[1] "a" "a" "b" "b" "a" "c" "c" "a" "d" "b" "b"

It is easier to apply the sample function directly to the text vector:

> set.seed(444)
> sample(vt, 11, replace=T)
[1] "a" "a" "b" "b" "a" "c" "c" "a" "d" "b" "b"

Let us return to the runif function. This function produces random numbers,
where all possible numbers have the same probability occurring in the sample. The
random numbers have a uniform distribution. A histogram of the random numbers
shows the distribution (Fig. 12.1). In case of 25 numbers, the empirical distribution
is not very helpful:

> set.seed(444)
> r9 <- runif(25, 10, 25)
> hist(r9, breaks=10:26, col="grey")

In case of 25000 numbers the result looks much more like a uniform distribution:

> set.seed(444)
> r10 <- runif(25000, 10, 25)
> hist(r10, breaks=10:26, col="grey")

In addition to the uniform distribution many more distributions are implemented;
for example, the normal distribution or Gaussian distribution:

> set.seed(444)
> r11 <- rnorm(25000, 10, 25)
> hist(r11[r11 > 10 & r11 < 25], breaks=10:25, col="grey",
+ main="Histogram of r11", xlab="r11")
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Fig. 12.1 Histogram of two sets of random numbers
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Fig. 12.2 Histogram of a set of random numbers

Here, we need to exclude some values with a restriction to the index [r11 >
10 & r11 < 25]]. The histogram does not look much like a normal distribu-
tion, although we can zoom out by removing the pre-defined breaks (Fig. 12.2):

> hist(r11, col="grey", main="Histogram of r11", xlab="r11")

Subsequently, a proper normal distribution is visible. Obviously, the parameters
of rnorm are not the same as for runif. The second parameter is the mean, while
the third one is the standard deviation.

12.2 Spatial Simulation Examples

12.2.1 Preliminary Considerations

Classical topics of spatial simulations are simulations of location and movement of
sites, people, commodities and ideas. Processes are often simulated with an iterative
approach. Before we start with some simple simulations, some points have to be
considered.
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Are multiple instances possible at the same place? In the case of ideas, this is
possible. Two physical objects cannot be at the same place, although in a simulation
it depends on the degree of generalisation. If my simulation is based upon a coarse
spatial grid, I might allow multiple instances that are on different locations on one
grid cell in the real world.

Does the process intensify or change the pattern? If I am essentially interested in
the location of points, I will avoid effects that change the patterns. In other cases,
the process of transition is prioritised.

Are there limitations to the number of items? For ideas, there are few limitations.
The number of commodities depends on the production capacity and the population
depends on the carrying capacity and biological reproducibility.

Is the process limited or unlimited? A point process producing settlements in
a certain area is limited by the maximum number of settlements and the maximal
population. Processes focused on the movement of points can proceed endlessly, in
principle.

Is the absolute or relative number of items relevant to my research question?
It is possible to ask at certain sites for the part of the population, that have certain
features, for the absolute number of people and the presence of certain commodities.

12.2.2 Point-Based Simulations

Here, we try some simulations of point processes to produce point patterns
[1, 13, 14]. The first idea is to use random numbers as coordinates. We try this in
our research area:

> x1 <- bbox(sgdf_srtm)[1,1]; x2 <- bbox(sgdf_srtm)[1,2]
> y1 <- bbox(sgdf_srtm)[2,1]; y2 <- bbox(sgdf_srtm)[2,2]
> xs1 <- runif(100, x1, x2)
> ys1 <- runif(100, y1, y2)
> spdf_rpp1 <- SpatialPointsDataFrame(cbind(xs1,ys1),
+ as.data.frame(cbind(xs1,ys1)), proj4string=CRS
+ (as.character(crs1)))

In this example, submerged points are possible since we have not restricted
the points to land. We can also imagine a point process, where points emerge
from a certain location and spread over the landscape. Some commodities could
be produced at the centre. According to the general interaction models, it is more
likely to find the commodities near the centre. If the spatial distribution is a normal
distribution, then we can use rnorm:

> xs2 <- rnorm(100, mean(c(x1, x2)), 4000)
> ys2 <- rnorm(100, mean(c(y1, y2)), 2000)
> spdf_rpp2 <- SpatialPointsDataFrame(cbind(xs2,ys2),
+ as.data.frame(cbind(xs2,ys2)), proj4string=CRS
+ (as.character(crs1)))
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Fig. 12.3 Simulated point processes with uniform and normal random coordinates

Here, we use two different values for the standard deviation, which results in an
oval-shaped distribution (Fig. 12.3).

In the next simulation points with high altitude are preferred. For this purpose, we
prepare a raster with relative altitude values with a minimum at zero and a maximum
at one. Additionally, we prepare some variables:

> xs3 <- c(); ys3 <- c()
> rel_srtm <- sgdf_srtm
> rel_srtm@data[is.na(rel_srtm@data)] <- 0
> rel_srtm@data[,1] <- rel_srtm@data[,1] /
+ max(rel_srtm@data[,1])
> rel_srtm <- raster(rel_srtm)
> i <- 0
> set.seed(555)

Subsequently, we produce points in a loop until we have 100 points. In each step,
we generate random coordinates and an additional random number rn, after which
we extract the relative altitude at the random coordinates. If the sum of the relative
altitude and random number exceeds one, then the point is transferred to the xs3
and ys3 coordinates list. All coordinates are possible, although high altitudes are
preferred.

> while (i < 101) {
+ xs <- runif(1, x1, x2)
+ ys <- runif(1, y1, y2)
+ rn <- runif(1, 0, 1)
+ rp_alt <- extract(rel_srtm,
+ SpatialPoints(cbind(xs,ys)), proj4string=CRS(
+ as.character(crs1)))
+ if ((rp_alt + rn) > 1) {
+ i <- i + 1
+ xs3[i] <- xs
+ ys3[i] <- ys
+ }
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Fig. 12.4 Weighting function for the distance of new points

Fig. 12.5 Simulated point process with the preference of high altitude and certain distances to
other points

+ }
> spdf_rpp3 <- SpatialPointsDataFrame(cbind(xs3,ys3),
+ as.data.frame(cbind(xs3,ys3)), proj4string=
+ CRS(as.character(crs1)))

We now want to consider interaction with other points. New points shall prefer a
certain distance to other points. We apply a similar technique, but instead of relative
altitude we use the weighted distance. The weighting function is based upon the
Fisher distribution (Fig. 12.4):

The algorithm calculates and weights all distances and uses these values for the
decision concerning which random points are allowed to remain in the random point
pattern (Fig. 12.5).

> set.seed(333)
> xs4 <- c( runif(1, x1, x2)); ys4 <- c(runif(1, y1, y2))
> edist <- function(a){sqrt((a[1] - a[3])^2 + (a[2] -
+ a[4])^ 2)}
> i <- 0
> set.seed(555)
> while (i < 10) {
+ xs <- runif(1, x1, x2)
+ ys <- runif(1, y1, y2)
+ rn <- runif(1, 0, 1)
+ rdf <- data.frame(xs4,ys4,xs,ys)
+ dmin <- min(edist(rdf))
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Fig. 12.6 Simulated Strauss point process

+ dval <- df(dmin/7000, 20, 20)
+ if ((dval + rn) > 1.5) {
+ i <- i + 1
+ xs4[i] <- xs
+ ys4[i] <- ys
+ }
+ }
> spdf_rpp4 <- SpatialPointsDataFrame(cbind(xs4,ys4),
+ as.data.frame(cbind(xs4,ys4)), proj4string=
+ CRS(as.character(crs1)))

The R-package spatstat allows simulating some pre-defined point processes.
Our example simulates a Strauss process (Fig. 12.6). The parameters of this process
are compiled in a list-object and forwarded to the rmh-function, which applies
the simulation. Lists are suitable objects for the storage of different types of data
and hence a good solution to store parameters for certain functions. Please refer to
Chap. 7 for further details about point pattern processes.

> library(spatstat)
> ppspec <- list(cif="strauss",par=list(beta=2,gamma=0.2,
+ r=0.7), w=c(bb[1,1],bb[1,2],bb[2,1],bb[2,2]))
> ppsim <- rmh(model=ppspec,start=list(n.start=200),
+ control=list(nrep=10,nverb=5))
> plot(ppsim)

12.2.3 Grid-Based Simulations

In grid-based models, we observe the characteristics of different grid cells. The grid
cells can represent the presence of a certain attribute, the population, the degree of
saturation of a certain property, etc. The iterative process steps through all grid cells
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Fig. 12.7 Simple grid-based spread model

that can influence each other. In the case of cellular automata [6, 7, 15], the grid
values depend on the values of surrounding grid cells. Usually the values 0 and 1
or dead and alive are used. We try to model the distribution of ideas or innovations
with a grid-based model (Fig. 12.7). We distinguish between idea present (1) and
idea absent (0). The innovation starts at a certain point. We use a simple moving
window approach and set every grid cell to the maximum of all cells from the
neighbourhood. If there is one 1 in the neighbourhood, that cell will obtain the
value 1.

> gt = GridTopology(cellcentre.offset=c(x1,y1),
+ cellsize=c(2500,2500),cells=c(100, 64))
> gt = SpatialGrid(gt, proj4string=CRS(as.character(crs1)))
> df <- data.frame(coordinates(gt))
> df[,1] <- 0
> cgrid1 <- SpatialGridDataFrame(gt, df, proj4string =
+ CRS(as.character(crs1)))
> cgrid1@data[4555,1] <- 1
> cgrid0 <- cgrid1
> cgrid2 <- cgrid1
> for (j in 1: 21){
+ for (i in (1:length(coordinates(cgrid1)[,1]))) {
+ gx1 <- coordinates(cgrid1)[i,1]
+ gy1 <- coordinates(cgrid1)[i,2]
+ rdf <- data.frame(coordinates(cgrid1)[,1],
+ coordinates(cgrid1)[,2],gx1,gy1)
+ ddist <- edist(rdf)
+ nind <- which(ddist < 3600)
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+ cgrid2@data[i,1] <- max(cgrid1@data[nind,1])
+ }
+ cgrid1 <- cgrid2
+ if (j==5) {cgrid5 <- cgrid2}
+ if (j==10) {cgrid10 <- cgrid2}
+ if (j==20) {cgrid20 <- cgrid2}
+ }

The result is not a surprise. The maps of different steps show that a continuous
spread takes place. This result does not show fancy patterns like Conway’s game of
life, although it is at least archaeologically interpretable. An improvement would be
to include obstacles (Fig. 12.8). Here, we define a short line of grid cells that cannot
change the values. Instead of an artificial line, we also could involve real topographic
features. For the visualisation, we add an obstacle layer, where the lines are marked
with 2 and the obstacle occurs in black.

> gt = GridTopology(cellcentre.offset=c(x1,y1),cellsize=
+ c(2500,2500),cells=c(100, 64))
> gt = SpatialGrid(gt, proj4string=CRS(as.character(crs1)))
> df <- data.frame(coordinates(gt))
> df[,1] <- 0
> cgrid1 <- SpatialGridDataFrame(gt, df, proj4string =
+ CRS(as.character(crs1)))
> cgridx <- cgrid1
> cgrid1@data[4555,1] <- 1

Fig. 12.8 Simple grid based spread model with an obstacle (black)
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> cgridx@data[3550:3565,1] <- 2
> image(cgrid1, col=c("grey", "black"))
> cgrid0 <- cgrid1
> for (j in 1: 21){
+ for (i in (1:length(coordinates(cgrid1)[,1]))) {
+ gx1 <- coordinates(cgrid1)[i,1]
+ gy1 <- coordinates(cgrid1)[i,2]
+ rdf <- data.frame(coordinates(cgrid1)[,1],
+ coordinates(cgrid1)[,2],gx1,gy1)
+ ddist <- edist(rdf)
+ nind <- which(ddist < 3600)
+ cgrid2@data[i,1] <- max(cgrid1@data[nind,1])
+ }
+ cgrid2@data[3550:3565,1] <- 0
+ cgrid1 <- cgrid2
+ if (j==10) {cgrid10 <- cgrid2}
+ if (j==15) {cgrid15 <- cgrid2}
+ if (j==20) {cgrid20 <- cgrid2}
+ }
> cgrid0@data[,1] <- cgrid0@data[,1] + cgridx@data[,1]
> cgrid10@data[,1] <- cgrid10@data[,1] + cgridx@data[,1]
> cgrid15@data[,1] <- cgrid15@data[,1] + cgridx@data[,1]
> cgrid20@data[,1] <- cgrid20@data[,1] + cgridx@data[,1]

The result is that an obstacle produces a certain type of shadow, which is different
from a light shadow with the present algorithm. The circumvention of mountains in
the spread of innovations can show similar patterns. Further improvements could
include least cost distances (refer to Chap. 9), gradual adaptation and random
connections to other grid cells. In fact, this example represents a very simple
diffusion simulation. Diffusion models are frequently used in different disciplines,
particularly in geography [4, 8].

12.2.4 Agent-Based Modelling (ABM)

Agent-based modelling (ABM) is focused on the individual behaviour of the acting
elements [4, 5, 20]. The iterative process steps through all agents. It is a bottom-
up approach, whereby the agent’s behaviour is defined and the overall pattern
emerges from this behaviour. The main advantages of this approach are that one can
connect the agents directly to every day experience and common sense behaviour
and that the model can map some degree of individuality. The crucial point in
spatial ABMs is that actors and points can move or jump and interact. We could
use single agent simulations—indeed, the Dijkstra algorithm used in least cost path
analysis can be called a single agent simulation—but then lack the possibility of
interaction between agents. Usually multi-agent simulations are meant with agent-
based models. The interaction of agents in an iterative process forms the basis
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for complex systems characterised by non-linear behaviour, the emergence of new
structures, path dependency and other features. Agent-based models of complex
systems are very useful, while in the case of agent-based models of simple systems
one would sometimes prefer analytical models.

There are specialised software packages available, as well as R packages that
connect to this software, or apply ABM algorithms on their own. The program
NetLogo with the connection package rnetlogo and the R package simecol
are examples. R is not optimised for simulations, but offers a flexible framework for
different applications [12, 16, 19].

We try a simple agent-based model in which three types of agents with different
behaviour search for an optimal location. In each loop, the agents are offered a new
location. Based upon some parameters, they decide whether to move to the new one
or not. The parameters are agent density, altitude, soil quality, distance to pathway
and distance to the new location.

• Type a agent

– prefers short distance moves
– prefers high altitude
– demands high soil quality
– prefers low density areas
– prefers short distances to pathways

• Type b agent

– prefers medium distance moves
– prefers low altitudes
– no soil quality preferences
– prefers rather high density areas
– prefers short distances to pathways

• Type c agent

– prefers long distance moves
– no altitude preferences
– no soil quality preferences
– prefers rather high density areas
– demands short distances to pathways

For the realisation of the model, we do not use one of the sophisticated ABM
software packages; rather, we undertake a simple model by hand. The basic principle
is an iteration in which each agent acts according to some rules. In our model, the
agents simply decide for a new location or not. Before we start the loop that conducts
the iteration, we have to prepare and set some variables. We start with the number of
iterations and some spatial grids. In principle, the agents are free to move wherever
the random numbers allow. We introduce some simple restrictions. We use grids
of the same grid topology for some parameters. The agents’ locations are just a
reference to a grid cell. A maximum of one agent is allowed for each grid cell.
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> n <- 50
> gt = GridTopology(cellcentre.offset=c(x1,y1),cellsize=
+ c(500,500),cells=c(56, 36))
> gt = SpatialGrid(gt, proj4string=CRS(as.character(crs1)))
> abmpt <- SpatialPoints(gt)
> proj4string(abmpt) <- CRS(as.character(crs1))
> cn <- length(abmpt@coords[,1])
> abm_alt <- SpatialGridDataFrame(gt, data.frame(extract
+ (rel_srtm, abmpt)), proj4string = CRS(as.character(crs1)))
> abm_path <- SpatialGridDataFrame(gt, over(abmpt, as(path,
+ ’SpatialGridDataFrame’)), proj4string =
+ CRS(as.character(crs1)))
> abm_path@data[,1] <- abm_path@data[,1] /
+ max(abm_path@data[,1])
> abm_soil <- abm_path
> abm_soil@data[,1] <- 1

The next step is to prepare a dataframe of the agents:

> abm <- data.frame(id=1:70, type=0, gc1=0, gc2=0, dist=0,
+ dens1=0, dens2=0, densa1=0, densa2=0, alt1=0, alt2=0,
+ soil1=0, soil2=0, path1=0, path2=0, eval1=0, eval2=0)
> abm[,2] <- c(rep("a",30),rep("b",30),rep("c",10))
> abm[,3] <- sample(1:cn, 70)

We need some functions for different purposes. First, we define distance,
Gaussian weighing and kernel density functions. Note that the density values of
this function are relative to fit our needs. Subsequently, we define some evaluation
functions that turn different parameter values in evaluations ranging from zero to
one. These functions control the agent’s behaviour.

> edist2 <- function(x){sqrt((x[1] - x[3])^2 + ((x[2] -
+ x[4])^2))}
> gau1 <- function(x, sd){dnorm(edist2(x), mean=0, sd=sd)}
> kde <- function(pp,grid,sd1){
> grid2 <- grid
+ for (i in seq(along=grid2@data[,1])){
+ pdist <- cbind(coordinates(grid2)[i,1],
+ coordinates(grid2)[i,2],pp[,1],pp[,2])
+ grid2@data[i,1]<- sum(apply(
+ pdist,1,gau1,sd=sd1))}
+ grid2@data[,1] <- grid2@data[,1] /
+ max(grid2@data[,1])
+ return(grid2)}
> fline <- function(x,x1,x2,y1,y2) {
+ m <- (y2-y1) / (x2-x1)
+ b <- (y2 - x2*(y2-y1) / (x2-x1))
+ y <- m*x + b
+ return(y)}
> fdist_a <- function(x){
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+ if (x<0.2) {y <- fline(x,0,0.2,0,1)}
+ else {y <- fline(x,0.2,1,1,0)}
+ return(y)}
> fdist_b <- function(x){
+ if (x<0.5) {y <- fline(x,0,0.5,0,1)}
+ else {y <- fline(x,0.5,1,1,0)}
+ return(y)}
> fdist_c <- function(x){
+ if (x<0.9) {y <- fline(x,0,0.9,0,1)}
+ else {y <- fline(x,0.9,1,1,0)}
+ return(y)}
> falt_a <- function(x){
+ if (x<0.7) {y <- fline(x,0,0.7,0.2,1)}
+ else {y <- fline(x,0.7,1,1,0.2)}
+ return(y)}
> falt_b <- function(x){
+ if (x<0.3) {y <- fline(x,0,0.3,0.2,1)}
+ else {y <- fline(x,0.3,1,1,0.2)}
+ return(y)}
> falt_c <- function(x){y=0.5
+ return(y)}
> fsoil_a <- function(x){
+ y <- fline(x,0,1,0,1)
+ return(y)}
> fsoil_b <- function(x){y=0.5
+ return(y)}
> fsoil_c <- function(x){y=0.5
+ return(y)}
> fdens_a <- function(x){
+ if (x<0.3) {y <- fline(x,0,0.3,0,1)}
+ else {y <- fline(x,0.3,1,1,0)}
+ return(y)}
> fdens <- function(x){
+ if (x<0.7) {y <- fline(x,0,0.7,0,1)}
+ else {y <- fline(x,0.7,1,1,0)}
+ return(y)}
> fpath_c <- function(x){
+ y <- fline(x,0,1,1,0)
+ return(y)}
> fpath <- function(x){
+ y <- fline(x,0,1,1,0.5)
+ return(y)}

Since we want to compare the initial distribution of agents with a result after
some iterations, we draw some maps:

> sp_a1 <- SpatialPoints(coordinates(abm_alt)
+ [abm[which(abm[,2]=="a"),3],], proj4string
+ = CRS(as.character(crs1)))
> sp_b1 <- SpatialPoints(coordinates(abm_alt)
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+ [abm[which(abm[,2]=="b"),3],], proj4string
+ = CRS(as.character(crs1)))
> sp_c1 <- SpatialPoints(coordinates(abm_alt)
+ [abm[which(abm[,2]=="c"),3],], proj4string
+ = CRS(as.character(crs1)))

We can now start the loop. First, we set the random locations, although we avoid
multiple agents on the same grid cell. The random numbers are unique and agents
are allowed to stay where they are. Therefore, the set of new locations offered to the
agents is not allowed to have an intersection with the old locations. Subsequently,
we calculate the density maps and sample the maps for the old and new locations
of the agents. The next step is to weight the parameters and aggregate the single
values to a validation value. Thereafter, type a agents reduce the soil quality at their
location. Finally, the agents move to the new locations if the new one has a better
validation score.

> for (i in 1:n) {
+ abm[,4] <- sample(1:cn, 70)
+ while (length(intersect(abm[,3],abm[,4])) > 0) {
+ abm[,4] <- sample(1:cn, 70) }
+ kde_all <- kde(coordinates(abm_alt)[abm[,3],], abm_alt,
+ 2000)
+ kde_a <- kde(coordinates(abm_alt)[abm[which(abm[,2]
+ =="a"),3],], abm_alt, 2000)
+ kde_all2 <- kde(coordinates(abm_alt)[abm[,4],],
+ abm_alt, 2000)
+ kde_a2 <- kde(coordinates(abm_alt)[abm[which(abm[,2]
+ =="a"),4],], abm_alt, 2000)
+ abm[,5] <- apply(cbind(coordinates(abm_alt)[abm[,3],],
+ coordinates(abm_alt)[abm[,4],]),1, edist2) / 34000
+ abm[,6] <- kde_all@data[abm[,3],1]
+ abm[,7] <- kde_all2@data[abm[,3],1]
+ abm[,8] <- kde_a@data[abm[,3],1]
+ abm[,9] <- kde_a2@data[abm[,3],1]
+ abm[,10] <- abm_alt@data[abm[,3],1]
+ abm[,11] <- abm_alt@data[abm[,4],1]
+ abm[,12] <- abm_soil@data[abm[,3],1]
+ abm[,13] <- abm_soil@data[abm[,4],1]
+ abm[,14] <- abm_path@data[abm[,3],1]
+ abm[,15] <- abm_path@data[abm[,4],1]
+ abm[which(abm[,2]=="a"),5] <- apply(data.frame
+ (abm[which(abm[,2]=="a"),5]), 1, fdist_a)
+ abm[which(abm[,2]=="a"),6] <- apply(data.frame
+ (abm[which(abm[,2]=="a"),6]), 1, fdens)
+ abm[which(abm[,2]=="a"),7] <- apply(data.frame
+ (abm[which(abm[,2]=="a"),7]), 1, fdens)
+ abm[which(abm[,2]=="a"),8] <- apply(data.frame
+ (abm[which(abm[,2]=="a"),8]), 1, fdens_a)
+ abm[which(abm[,2]=="a"),9] <- apply(data.frame
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+ (abm[which(abm[,2]=="a"),9]), 1, fdens_a)
+ abm[which(abm[,2]=="a"),10] <- apply(data.frame
+ (abm[which(abm[,2]=="a"),10]), 1, falt_a)
+ abm[which(abm[,2]=="a"),11] <- apply(data.frame
+ (abm[which(abm[,2]=="a"),11]), 1, falt_a)
+ abm[which(abm[,2]=="a"),12] <- apply(data.frame
+ (abm[which(abm[,2]=="a"),12]), 1, fsoil_a)
+ abm[which(abm[,2]=="a"),13] <- apply(data.frame
+ (abm[which(abm[,2]=="a"),13]), 1, fsoil_a)
+ abm[which(abm[,2]=="a"),14] <- apply(data.frame
+ (abm[which(abm[,2]=="a"),14]), 1, fpath)
+ abm[which(abm[,2]=="a"),15] <- apply(data.frame
+ (abm[which(abm[,2]=="a"),15]), 1, fpath)
+ abm[which(abm[,2]=="b"),5] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),5]), 1, fdist_b)
+ abm[which(abm[,2]=="b"),6] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),6]), 1, fdens)
+ abm[which(abm[,2]=="b"),7] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),7]), 1, fdens)
+ abm[which(abm[,2]=="b"),8] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),8]), 1, fdens)
+ abm[which(abm[,2]=="b"),9] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),9]), 1, fdens)
+ abm[which(abm[,2]=="b"),10] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),10]), 1, falt_b)
+ abm[which(abm[,2]=="b"),11] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),11]), 1, falt_b)
+ abm[which(abm[,2]=="b"),12] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),12]), 1, fsoil_b)
+ abm[which(abm[,2]=="b"),13] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),13]), 1, fsoil_b)
+ abm[which(abm[,2]=="b"),14] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),14]), 1, fpath)
+ abm[which(abm[,2]=="b"),15] <- apply(data.frame
+ (abm[which(abm[,2]=="b"),15]), 1, fpath)
+ abm[which(abm[,2]=="c"),5] <- apply(data.frame
+ (abm[which(abm[,2]=="c"),5]), 1, fdist_c)
+ abm[which(abm[,2]=="c"),6] <- apply(data.frame
+ (abm[which(abm[,2]=="c"),6]), 1, fdens)
+ abm[which(abm[,2]=="c"),7] <- apply(data.frame
+ (abm[which(abm[,2]=="c"),7]), 1, fdens)
+ abm[which(abm[,2]=="c"),8] <- apply(data.frame
+ (abm[which(abm[,2]=="c"),8]), 1, fdens)
+ abm[which(abm[,2]=="c"),9] <- apply(data.frame
+ (abm[which(abm[,2]=="c"),9]), 1, fdens)
+ abm[which(abm[,2]=="c"),10] <- apply(data.frame
+ (abm[which(abm[,2]=="c"),10]), 1, falt_c)
+ abm[which(abm[,2]=="c"),11] <- apply(data.frame
+ (abm[which(abm[,2]=="c"),11]), 1, falt_c)
+ abm[which(abm[,2]=="c"),12] <- apply(data.frame
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+ (abm[which(abm[,2]=="c"),12]), 1, fsoil_c)
+ abm[which(abm[,2]=="c"),13] <- apply(data.frame
+ (abm[which(abm[,2]=="c"),13]), 1, fsoil_c)
+ abm[which(abm[,2]=="c"),14] <- apply(data.frame
+ (abm[which(abm[,2]=="c"),14]), 1, fpath_c)
+ abm[which(abm[,2]=="c"),15] <- apply(data.frame
+ (abm[which(abm[,2]=="c"),15]), 1, fpath_c)
+ abm[,16] <- apply(data.frame(abm[,6],abm[,10],
+ abm[,12],abm[,14]), 1, sum)
+ abm[,17] <- apply(data.frame(abm[,5],abm[,7],
+ abm[,11],abm[,13],abm[,15]), 1, sum)
+ abm[which(abm[,2]=="a"),16] <- abm[which
+ (abm[,2]=="a"),16] + abm[which(abm[,2]=="a"), 8]
+ abm[which(abm[,2]=="a"),17] <- abm[which(abm[,2]
+ =="a"),16] + abm[which(abm[,2]=="a"), 9]
+ abm_soil@data[abm[,3],1] <- abm_soil@data[
+ abm[,3],1] * 0.9
+ for (j in 1:length(abm[,3])) {if(abm[j,17]
+ <abm[j,16]) {abm[j,3] <- abm[j,4]}}
+ }

Finally, we prepare a second map and plot both maps side by side:

> sp_a1 <- SpatialPoints(coordinates(abm_alt)[abm[which(
+ abm[,2]=="a"),3],], proj4string = CRS(as.character(crs1)))
> sp_b1 <- SpatialPoints(coordinates(abm_alt)[abm[which(
+ abm[,2]=="b"),3],], proj4string = CRS(as.character(crs1)))
> sp_c1 <- SpatialPoints(coordinates(abm_alt)[abm[which(
+ abm[,2]=="c"),3],], proj4string = CRS(as.character(crs1)))
> par(mfcol=c(1,2), mai = c(0, 0, 0, 0))
> image(sgdf_srtm, col = gray.colors(25, start = 0.97,
+ end = 0.4))
> points(sp_a, pch=15, col="black", cex=0.5)
> points(sp_b, pch=19, col="black", cex=0.5)
> points(sp_c, pch=17, col="black", cex=0.5)
> image(sgdf_srtm, col = gray.colors(25, start = 0.97,
+ end = 0.4))
> points(sp_a1, pch=15, col="black", cex=0.5)
> points(sp_b1, pch=19, col="black", cex=0.5)
> points(sp_c1, pch=17, col="black", cex=0.5)
> par(mfcol=c(1,1))

The maps show the initial pattern and the pattern after the simulation (Fig. 12.9).
The specific pattern helps us to understand the effect of certain set of behaviour
rules. It is possible and useful to collect some aggregated information for each
iterative step and plot the result as a curve, which allows studying the system
state during certain processes. For instance, the emergence and disappearance of
agglomerations can be studied with agglomeration indices.
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Fig. 12.9 Agent-based model: location of the agents after 50 loops

12.3 Problems

12.1. For what purpose do we need true random numbers?

12.2. Why is setting a seed for random number generation useful and when should
it be used?

12.3. Can you imagine other basic point processes? Can you implement this
process as a simulation?

12.4. Please find archaeological applications for cellular automata.

12.5. Here are some problems for our agent-based model:

(a) Please plot some weighting functions.
(b) Why is this an agent-based model given that we are using grids?
(c) How can we interpret the agents: individuals, communities, households?
(d) How can we restrict the agents to land?
(e) How can we explain the resulting pattern?
(f) Which behaviour rules are visible in the result and which are not?
(g) Are second order properties—i. e. interaction—involved in the model?
(h) How can we implement soil regeneration?
(i) How can we implement the collection of an agglomeration index?
(j) How could we implement trade between the agents?
(k) Can you find some improvements?
(l) Is this model useful? What does it explain in particular?

12.6. What drives you to conduct research? Which processes are troubling you?
Develop a simple simulation for your favourite topic and explore which aspects of
the topic are enlightened by the simulation.
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