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PREFACE

Introduction

Preparation for, early detection of, and timely response to emerging
infectious diseases and epidemic outbreaks are a key public health priority
and are driving an emerging field of multidisciplinary research, infectious
disease informatics. As a critical component of this effort, public health
surveillance has been practiced for decades and continues to be an indis-
pensable approach for detecting emerging disease outbreaks and epidemics.
Although traditional disease surveillance often relies on time-consuming
laboratory diagnosis and the reporting of notifiable diseases is often slow
and incomplete, a new breed of public health surveillance systems has the
potential to significantly speed up detection of disease outbreaks. These new,
computer-based surveillance systems offer valuable and timely information
to hospitals as well as to state, local, and federal health officials. They are
capable of real-time or near real-time detection of serious illnesses and
potential bioterrorism agent exposures, allowing for a rapid public health
response. This public health surveillance approach is generally called
syndromic surveillance, which is defined as “an ongoing, systematic
collection, analysis, and interpretation of ‘syndrome’-specific data for early
detection of public health aberrations.”

In recent years, a number of syndromic surveillance approaches have
been proposed. According to a recent study conducted by the US Centers for
Disease Control and Prevention (CDC), roughly 100 sites throughout the
country have implemented and deployed syndromic surveillance systems.
These systems, although sharing similar objectives, vary in system architecture,
information processing and management techniques, and algorithms for
anomaly detection, and have different geographic coverage and disease focuses.

We see a critical need for an in-depth monograph that analyzes and
evaluates these existing syndromic surveillance systems and related outbreak
modeling and detection work under a unified framework. In particular, the
monograph aims to meet the following critical and timely needs.

1. As the body of the syndromic surveillance literature grows rapidly, we
see a critical need to provide an integrated and synthesized treatment of
the current state of the art, identify challenges and opportunities
for future work, and promote fruitful interdisciplinary research. In
particular, most existing books on syndromic surveillance (and more
generally, biosurveillance) focus primarily on statistical modeling and
analytical work. They largely ignore informatics-driven perspectives
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(e.g., information system design, data standards, computational aspects
of biosurveillance algorithms, information visualization, and system
evaluation). This monograph, with a strong Information Technology
orientation, will help fill in this important gap and will provide an
accessible review of the field for researchers from a wide range of
backgrounds who are working or have an interest in public health
surveillance.

Because of its practical significance, syndromic surveillance is starting
to attract students at all levels from a variety of backgrounds ranging
from public health, computer science, information systems, software
engineering, public administration and policies, and geographical
information systems, among others. These students need an approachable
textbook that introduces the key concepts behind syndromic surveillance,
the related research framework, the critical research questions and
methodologies, systems challenges and the state of the art of syndromic
surveillance implementation, and case studies, providing contexts to
discuss related technological, analytical, and policy considerations in
an integrated manner. The book will present such materials from a
multidisciplinary perspective to encourage and promote cross-area
training, and to accommodate the variety of the backgrounds of the
interested students.

The monograph will also provide a much-needed comparative study
for public health practitioners and offer concrete insights that could
help future syndromic surveillance system development and implement-
ation. Because of the recent rapid developments, it is difficult for
public health policy makers, and practitioners from both government
agencies and the private sector, to follow up with the body of syndromic
surveillance research. This book is intended to serve the purpose of
communicating to the policy makers and practitioners recent research
findings, related policy and implementation considerations, and case
studies containing discussions of concrete application scenarios.

Scope and Organization

The monograph aims to present its chapters in a manner understandable

and useful to students, researchers, and professionals. The main coverage of
the fifteen chapters is listed below:

Chapter 1 will discuss the motivation behind syndromic surveillance and
offer a high-level overview of the field from research, systems, and
implementation perspectives. It will also summarize the major challenges
hindering syndromic surveillance system development and adoption.
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Chapter 2 will present a conceptual framework used throughout the book
to analyze various kinds of syndromic surveillance systems and their
components. In addition, a comprehensive summary of all the systems
surveyed in our study will be presented in this chapter.

Chapter 3 will be primarily focused on sources of data for syndromic
surveillance and related data standards and messaging protocols. It will
present how various types of public health-related data have been used
for surveillance purposes and how effective they are. It will also survey
technical work to facilitate data collection, sharing, and transmission
from the point of view of knowledge representation and protocols.

Chapter 4 will present an introductory summary to data analysis and
exploration techniques that have been applied to public health syndromic
surveillance. The focus will be on various outbreak detection methods,
including those monitoring for unusual patterns, indicative of possible
outbreaks worth further investigation, in temporal, spatial, and spatial-
temporal domains.

Chapter 5 will discuss data visualization and information dissemination
issues in the context of syndromic surveillance. Visualization is an
important informatics tool to help public health analysts explore and
analyze typically voluminous surveillance datasets, preferably in an
interactive manner. Information dissemination also plays an important
role in syndromic surveillance as mandated and voluntary data sharing
and reporting need to take place within and across public health departments
and partnering agencies such as homeland security and public safety.

Chapter 6 will focus on system assessment and other policy issues.
These issues have been traditionally under-studied or under-appreciated.
This chapter will attempt to address such issues through a principled and
theory-grounded evaluation and assessment framework based on the
Information Systems literature.

Chapters 7—-14 will report several real-world case studies, summarizing
and comparing eight syndromic surveillance systems, including those
that have been adopted by many public health agencies (e.g., RODS and
BioSense).

Chapter 15 will conclude the monograph by discussing critical issues
and challenges to syndromic surveillance research and system develop-
ment, and future directions.
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Audience

The primary audience for the monograph includes the following:

e Upper-level undergraduates and graduate-level students from a variety
of disciplines including but not limited to public health, biostatistics,
information systems, computer science, and public administration and
policy will benefit from learning the concepts, techniques, and practices
of syndromic surveillance.

e Researchers in public health and IT are expected to find this book to be
an excellent and comprehensive source of current and comprehensible
reviews of the recent advances in the field and benefit from its multi-
disciplinary angle. It will also help promote community development
across disciplines and between academia and practitioners.

e Government public health officials (e.g., epidemiologists at all levels of
government) and private-sector practitioners (in both healthcare and IT
industries) will be interested in this book as it provides an up-to-date
review of current syndromic surveillance research and practice, critical
evaluation of current technologies and approaches, and discussion of
real-world case studies.
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Part 1

SYNDROMIC SURVEILLANCE
SYSTEMS

Chapters 1-6 are dedicated to detailed discussions of syndromic
surveillance systems from the perspectives of system and algorithmic design.
Chapter 1 summarizes the primary concepts and major objectives of
syndromic surveillance. Challenges hindering syndromic surveillance system
development and adoption are discussed. Chapter 2 presents a conceptual
framework used to survey existing syndromic surveillance systems and
analyze these systems’ components. These system components include Data
Sources and Collection Strategies, Data Analysis and Outbreak Detection,
Data Visualization, Information Dissemination and Alerting. Each component
is presented in depth in Chapters 3—5 respectively. Chapter 6 focuses on
system assessment and other policy issues attempting to address such issues
through a principled and theory-grounded evaluation and assessment frame-
work based on the Information Systems literature.



Chapter 1

INFECTIOUS DISEASE INFORMATICS:
AN INTRODUCTION AND AN ANALYSIS
FRAMEWORK

Syndromic surveillance is concerned with continuous monitoring of public
health-related information sources and early detection of adverse disease
events. In practice, syndromic surveillance systems are being increasingly
adopted to meet the critical needs of effective prevention, detection, and
management of infectious disease outbreaks, either naturally-occurring or
caused by bioterrorism attacks. From an academic standpoint, syndromic
surveillance research is by nature multidisciplinary and has been attracting
significant attention in recent years. This monograph presents a comprehensive
review of the state of the art of syndromic surveillance research and system
development efforts from the perspective of information science and
logies. On the basis of a detailed analysis of more than 50 local, state, national,
and international syndromic surveillance systems and a review of about 200
academic publications, in this monograph we discuss the technical challenges,
applicable approaches or solutions, and the current state of system imple-
mentation and adoption for key components of syndromic surveillance
systems ranging from system architecture, data collection and sharing, data
analysis, and data access and visualization. In addition, we present several
case studies to compare several state-of-the-art syndromic surveillance
systems. The purpose of these case studies is to illustrate the information
technology-driven technical discussions in an integrated, real-world context.
We also briefly touch upon critical nontechnical issues including data
sharing policies, and system evaluation and adoption.

This introductory chapter briefly discusses the importance of syndromic
surveillance and what we believe to be/is a unique niche this book intends to fill.

H. Chen et al , Infectious Disease Informatics Syndromic Surveillance for Public Health 3
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 1,
© Springer Science + Business Media, LLC 2010
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In this time of increasing concern over the deadly and costly threats of
infectious diseases caused by natural disasters or bioterrorism attacks, prepar-
ation for, early detection of, and timely response to emerging infectious
diseases and epidemic outbreaks are a key public health priority and are
driving an emerging field of multidisciplinary research. A few recent disastrous
events that threatened the public health of large populations around the
world include the Severe Acute Respiratory Syndrome epidemics (SARS)
originated in Asia (Li et al., 2004), the outbreak of Avian flu in East Asian
countries (NBII, 2006; USDA, 2006), and the ever pending threats of bio-
terrorism since the anthrax attacks in October 2001 (Buehler et al., 2003;
Cronin, 2005; Siegrist, 1999).

Public health surveillance has been practiced for decades and continues
to be an indispensable approach for detecting emerging disease outbreaks
and epidemics. Early knowledge of a disease outbreak plays an important
role in improving response effectiveness (Pinner et al., 2003). Although
traditional disease surveillance often relies on time-consuming laboratory
diagnosis and the reporting of notifiable diseases is often slow and incomplete,
a new breed of public health surveillance systems has the potential to
significantly speed up detection of disease outbreaks. These new, computer-
based surveillance systems offer valuable and timely information to hospitals as
well as to state, local, and federal health officials (Dembek et al., 2005;
Pavlin, 2003). These systems are capable of real-time or near real-time
detection of serious illnesses and potential bioterrorism agent exposures,
allowing for a rapid public health response. This public health surveillance
approach is generally called syndromic surveillance, which is defined as an
ongoing, systematic collection, analysis, and interpretation of “syndrome”-
specific data for early detection of public health aberrations.

The rationale behind syndromic surveillance lies in the fact that specific
diseases of interest can be monitored by syndromic presentations that can be
shown in a timely manner such as nurse calls, medication purchases, and
school or work absenteeism. In addition to early detection and reporting of
monitored diseases, syndromic surveillance also provides a rich data repository
and highly active communication system for situation awareness and event
characterization. Multiple participants provide interconnectivity among disparate
and geographically separated sources of information to facilitate a clear
understanding of the evolving situation. This is of significant importance for
event reporting, strategic response planning, and disaster victim tracking.
Information gained from syndromic surveillance data can also guide the
planning, implementation, and evaluation of long-term programs to prevent
and control diseases, including distribution of medication, vaccination plans,
and allocation of resources (Mostashari and Hartman, 2003).
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In recent years, a number of syndromic surveillance approaches have
been proposed. According to a study conducted by the Centers for Disease
Control and Prevention (CDC) in 2003 (Buehler et al., 2003), roughly 100
sites throughout the country have implemented and deployed syndromic
surveillance systems. These systems, although sharing similar objectives, vary
in system architecture, information processing and management techniques,
and algorithms for anomaly detection, and have different geographic coverage
and disease focuses. We see a critical need for an in-depth review that analyzes
and evaluates these existing systems and related outbreak modeling and
detection work under a unified framework. Such a study presented in an
easily accessible manner will be useful for researchers who are working or
have an interest in public health surveillance as a review of the state-of-the-
art syndromic surveillance research and practice. It will also provide a much-
needed comparative study for public health practitioners and offer concrete
insights that could help future syndromic surveillance system development
and implementation.

This monograph serves to investigate the surveillance capacity and
effectiveness of existing syndromic surveillance systems so as to present a
synthesized review of the state of the art in syndromic surveillance research
and practice and provide insights and guidelines for future research and
system implementation. In comparison with several review articles that were
published in this area (Bravata et al., 2004; Lober et al., 2002; Mandl et al.,
2004; Yan et al., 2006), this monograph, a significantly extended version of
a recent review that we completed and published in a journal article format
(Yan et al., 2008), focuses on an in-depth description of technical components
of syndromic surveillance systems and frames the related research questions
from an IT and informatics perspective.

More specifically, this monograph serves the following purposes: (1) to
provide an updated review of existing system development efforts and
emerging syndromic surveillance techniques; (2) to identify the emerging
needs and challenges; (3) to present in a synthesized manner the research
and development efforts of public health agencies, research institutions, and
the industry from an IT perspective; and (4) to serve as a tutorial for IT
researchers interested in the emerging field of syndromic surveillance and
infectious disease informatics. This survey aims to help answer the following
questions:

e [s syndromic surveillance an effective approach to the public health
surveillance problem? To what extent are existing systems already serving
the purpose of early event detection, situation awareness, and response
facilitation? How can their usability and effectiveness be validated?
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¢ What information sharing, outbreak detection and information access and
visualization techniques have been implemented and how do these
techniques perform? Are there any technical barriers to the design and
implementation of these approaches in public health?

e What is the deployment status of existing syndromic surveillance systems
in the United States and other parts of the world? Are there any legal or
administrative challenges hindering their wide adoption?

This book investigates a number of public health syndromic surveillance
systems and related outbreak modeling and detection research, with the specific
emphasis on the most promising practices in applying advanced information
technologies to public health surveillance. It is mainly focused on major
efforts from the public health agencies, research institutions, and the industry
in the United States. Some other countries with major syndromic surveillance
practices, including Canada, the UK, Australia, Japan, and Korea, are also
included in the survey.

To prepare this book, we have reviewed about 250 publications from
1997 to 2008. To identify related work, we searched archival journals
including but not limited to Journal of Biomedical Informatics, Journal of
American Medical Informatics Association, Journal of Advances in Disease
Surveillance, Journal of Urban Health, Artificial Intelligence in Medicine, and
Annual Review of Information Science and Technology. These journal articles
were mainly retrieved from online bibliographical databases including PubMed
Medline, ScienceDirect, and SpringerLink. Our literature search used both
general keywords such as “syndromic surveillance” and “biosurveillance,”
and keywords pertaining to various technical aspects of syndromic surveillance
such as “outbreak detection,” “spatial surveillance”, and “bioterrorism
preparedness.” In addition, we investigated other research outlets, including
proceedings and presentation material from various workshops (e.g., Arizona
BioSurveillance Workshops 2006, 2007, and 2008, and Rutgers DIMACS
Working Group on BioSurveillance Data Monitoring and Information Exchange).
User manuals and system brochures that are available electronically (e.g., from
state/national health department Web sites) were also studied.

Our work reported in this book aims to be comprehensive and is based on
a systematic study of over fifty syndromic surveillance systems. (Our
review does not count implementations of one system in multiple sites.) We
believe these surveyed systems represent most of the known syndromic
surveillance systems for which technical descriptions in varying degrees of
detail are available from public sources. Technical approaches or solutions
from each system are carefully catalogued and analyzed based on their
purpose, input assumed, and output produced. The similarities and differences
between these approaches are identified and their relative strengths and
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weaknesses summarized. In addition, an attempt has been made to perform a
“post analysis,” cutting across all these systems with the objective of assessing
the extent to which a particular technical approach has been used to meet a
specific functional requirement of syndromic surveillance.

Our discussion of public health syndromic surveillance systems is based
on a conceptual framework (Figure 1-1) that views syndromic surveillance
as composed of three main functional areas: data sources and collection
strategies; data analysis and outbreak detection; and data visualization,
information dissemination, and reporting. Most modern syndromic surveillance
systems can be conceptualized following this framework.

The first area is primarily concerned with where and how to collect data.
The related issues include data entry approaches, data sharing protocols, and
transmission techniques. The second area involves modeling, analysis, and
data mining approaches to monitor for data anomalies and to discover whether
the aberrant data condition is caused by a real change in disease occurrence.
The syndrome classification process, a critical step that occurs between data
collection and anomaly detection, focuses on classifying the raw, observational
data into syndrome groups to provide a meaningful representation with the
appropriate level of abstraction and granularity to detect aberrations in any
monitored illness. The third area involves data visualization, user interface,
and information dissemination functionalities. Public health officials, epidemio-
logists, and when appropriate, emergency response and homeland security
personnel, interact with the syndromic surveillance systems through these
components to access detailed information for further investigation, gain
situational awareness, make decisions about alert generation and dissemination,
and collect information needed for response planning and event management.

Data collection

| - dala sources |1 - syndrome classification (data - visualizalion
identification cleaning and data mapping) - user interface
- data entry - modeling, analytical, and data interaction
approaches mining approaches - information
- data sharing - detect temporal anomalies dissemination
protocols - detect spatial anomalies
- transmission
techniques

Figure 1-1. Conceptual syndromic surveillance system architecture.
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This monograph consists of two main groups of chapters. The first group,
Chapters 2—6, follows the above framework, discussing various components
of syndromic surveillance systems and approaches. The second group,
Chapters 7-14, presents integrative case studies based on representative
systems and typical application scenarios.

We conclude this introductory chapter by summarizing the key features
of each ensuing chapter. In Chapter 2, a summary of syndromic surveillance
systems surveyed in our study, most of which have been adopted in real-
world applications, is presented. Chapters 3—5 discuss technical material
related to data collection, data analysis and outbreak detection, and data
visualization and information dissemination, respectively. System assessment
and other policy considerations are reviewed in Chapter 6.

From Chapter 7 to Chapter 14, in each chapter, we report a case study
with a particular syndromic surveillance system, covering BioSense,
RODS, BioPortal, ESSENCE, NYC SS, EARS, Argus, and HealthMap.
Chapter 15 concludes this book by discussing critical issues and challenges to
syndromic surveillance research and system development, and proposing
some future directions.



Chapter 2

PUBLIC HEALTH SYNDROMIC
SURVEILLANCE SYSTEMS

In this chapter, we summarize the key local, state, national, and international
syndromic surveillance systems and related ongoing research programs of
interest covered in our study. This summary provides the needed background
information and application contexts. It also offers a current snapshot of
syndromic surveillance practice in general. Note that as our primary focus is
on public health surveillance, closely-related issues such as response
planning and resource allocations strategies after an event is confirmed (e.g.,
Carley et al., 2003) are beyond the scope of this study.

For each system surveyed, we list its main contributors and stakeholders.
We also include an overall system/project description, relevant data sources,
syndromes monitored, data analysis and outbreak detection methods imple-
mented, frequency of data collection and analysis, whether a GIS component
is used, and its deployment strategy and status.

Although our review is intended to be detailed and comprehensive, our
effort has been hampered by the unavailability of the technical details of
many syndromic surveillance systems from either the published literature or
the publicly available sources such as project Web sites. Furthermore, despite
our best effort, our literature review is unlikely to be exhaustive. As such, we
may have missed some interesting and emerging local and/or international
syndromic surveillance system implementations. Nonetheless, our review
should provide the readers with a fairly detailed and up-to-date snapshot of
the state-of-the-art research and successful implementations of syndromic
surveillance systems for public health and biodefense.

H. Chen et al , Infectious Disease Informatics Syndromic Surveillance for Public Health 9
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 2,
© Springer Science + Business Media, LLC 2010
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1. SUMMARY OF NATIONWIDE SYNDROMIC
SURVEILLANCE SYSTEMS

Thirteen nationwide syndromic surveillance systems plus two open source
global public health status monitoring systems have been identified in our study.
Table 2-1 presents a summary of these systems. Below we provide additional
information for each of these systems.

CDC’s BioSense system is a national initiative to support early outbreak
detection by providing technologies for timely data acquisition, near real-
time reporting, automated outbreak identification, and related analytics (Bradley
et al., 2005; Ma et al., 2005; Sokolow et al., 2005). BioSense collects ambulatory
care data, emergency room diagnostic and procedural information from
military and veteran medical facilities, and clinical laboratory test orders and
results from LabCorp. BioSense also monitors over-the-counter (OTC) drug
sales, and laboratory test results for environmental samples collected through
the BioWatch effort. In its most recent implementation, BioSense aims to
monitor 11 syndrome categories including fever, respiratory, gastrointestinal
illness (GI), hemorrhagic illness, localized cutaneous lesion, lymphadenitis,
neurologic, rash, severe illness and death, specific infection, and botulism-
like/botulism.

The Real-time Outbreak Detection System (RODS) is grounded in public
health practice and focuses on collecting surveillance data for algorithm
validation and investigating different types of novel data for outbreak detection
(Espino et al., 2004; Tsui et al., 2003). It has been connected to 500+
hospitals’ emergency departments nationwide for syndromic surveillance pur-
poses. RODS collects chief complaints from emergency rooms, admission
records from hospitals, and OTC drug sales data in real-time. Syndrome
categories including respiratory, GI, botulinic, constitutional, neurologic, rash,
hemorrhagic, and others are monitored with a collection of data analysis
methods.

In 1999, the Walter Reed Army Institute of Research (WRAIR) created
the Electronic Surveillance System for the Early Notification of Community-
based Epidemics (ESSENCE) (Lombardo et al., 2004). ESSENCE has been
used to monitor the health status of military healthcare beneficiaries worldwide,
relying on outpatient ICD-9 diagnostic codes for outbreak detection (Burkom
et al., 2004; Lombardo et al., 2003, 2004). Military and civilian ambulatory
visits, civilian emergency department chief-complaint records, school-
absenteeism data, OTC and prescription medication sales, veterinary health
records, and requests for influenza testing are used by ESSENCE to evaluate
health status with a focus on cases of death, GI, neurological, rash, respiratory,
sepsis, unspecified infection, and others. ESSENCE has been deployed in the
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National Capital Area, and 300 military clinics worldwide by 2003 (Lombardo
et al., 2003).

The Rapid Syndrome Validation Project (RSVP) is an Internet-based
population health surveillance tool designed to facilitate rapid communications
between epidemiologists and healthcare providers (Zelicoff, 2002; Zelicoff
et al., 2001). Through RSVP, patient encounters labeled with syndrome
categories (including flu-like illness, fever with skin findings, fever with
altered mental status, acute bloody diarrhea, acute hepatitis, and acute
respiratory distress) and clinicians’ judgment regarding the severity of illness
are reported to facilitate timely geographic and temporal analysis (Zelicoff,
2002).

The Early Aberration Reporting System (EARS) is used to monitor
bioterrorism activities during large-scale events. Its evolution to a standard
surveillance tool began in the New York City and the national capitol region
following the terrorist attacks of September 11, 2001 (CDC, 2006a; Hutwagner
et al.,, 2003). Emergent department visits, 911 calls, physician office data,
school and work absenteeism, and OTC drug sales are monitored for 42
syndrome categories (Hutwagner et al., 2003). EARS has been implemented
in emergency departments in the state of New Mexico. It was also used for
syndromic surveillance purposes at the 2000 Democratic National Convention,
the 2001 Super Bowl, and the 2001 World Series.

The National Bioterrorism Syndromic Surveillance Demonstration Program
covers a population of more than 20 million people. This program monitors
and analyzes disease cases for neurologic, upper/lower GI, upper/lower
respiratory, dermatologic, sepsis/fever, bioterrorism category A agents (anthrax,
botulism, plague, smallpox, tularemia, and hemorrhagic fever), and influenza-
like illness (ILI). These data utilized are derived from electronic patient-encounter
records from participating healthcare organizations including ambulatory-
care encounters and urgent-care encounters (Lazarus et al., 2001, 2002; Platt
et al., 2003; Yih et al., 2004). This project provides a testbed for analyzing
various outbreak detection algorithms and implements a model-adjusted
SaTScan approach and the SMART algorithm (Kleinman et al., 2004).

The Bio-event Advanced Leading Indicator Recognition Technology
(BioALIRT) program examines the use of spatial and other covariate inform-
ation from disparate sources to improve the timeliness of outbreak detection
in reaction to possible bioterrorism attacks (Buckeridge et al., 2005a; Siegrist
et al., 2004). In a number of regions including Norfolk, Virginia; Pensacola,
Florida; Charleston, South Carolina; Seattle, Washington; and Louisville,
Kentucky, the BioALIRT system monitors military and civilian outpatient-
visit records with ICD-9 codes, and military outpatient prescription records
for unusual ILI and GI occurrences.
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BioDefend is another program that aims to develop an effective and practical
approach for rapid detection of outbreaks (2006b; Uhde et al., 2005). Patient
encounter information is collected automatically or manually from clinics,
emergency departments, and first aid stations at the first point of patient
contact. Syndrome categories monitored include respiratory tract infection
with fever, botulism-like, ILI, death with fever, GI, encephalitis/meningitis-
like illness, febrile, rash with fever, fever of unknown origin, sepsis, contact
dermatitis, and nontraumatic shock.

Biological Spatio-Temporal Outbreak Reasoning Module (BioStorm) aims
to integrate disparate data sources and deploys various analytic problem solvers
to support public health surveillance. The framework is ontology-based and
consists of a data broker, a data mapper, a control structure and a library
of statistical and spatial problem solvers (Buckeridge et al., 2002; Crubézy
et al., 2005). It monitors and analyzes data such as 911 emergency calls
collected from San Francisco, emergency department dispatch data from the
Palo Alto Veterans Administration Medical Center, and emergency department
respiratory records from hospitals in Norfolk, Virginia. On the basis of a
customized knowledge base, BioStorm has implemented a library of statistical
methods analyzing data as single or multiple time series and knowledge-based
methods that relate detected abnormalities to knowledge about reportable
diseases.

BioPortal is another biosurveillance system that provides a flexible and
scalable infectious disease information sharing (across species and jurisdictions),
alerting, analysis, and visualization platform (Chen and Xu, 2006; Zeng
et al., 2005b). The system supports interactive, dynamic spatial-temporal
analysis of epidemiological, textual and sequence data (Chen and Xu, 2006;
Thurmond, 2006; Zeng et al., 2005a). BioPortal makes available a sophisticated
spatial-temporal visualization environment to help visualize public health
case reports and analysis results. Similar to EARS, BioPortal uses customized
syndrome categories, which were developed by the State of Arizona Depart-
ment of Health Services and hospitals in Taiwan (Lu et al., 2008). A number
of retrospective and prospective spatial-temporal clustering (hotspot analysis)
approaches are developed and implemented in BioPortal for outbreak detection
purposes. They are Risk-adjusted Support Vector Clustering (RSVC) (Zeng
et al., 2004a), Prospective Support Vector Clustering (Chang et al., 2005, 2008),
and space-time correlation analysis (Ma et al., 2006).

Bio-Surveillance Analysis, Feedback, Evaluation and Response (B-SAFER)
is a Web-based infectious disease monitoring system that is part of the open
source OpenEMed project (http://openemed.org/) for use in urgent care settings
(Umland et al., 2003). It collects chief complaints, discharge diagnoses and
disposition data for detection analysis concerning a group of syndromes
including respiratory, GI, undifferentiated infection, lymphatic, skin, neurological,
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and other. The collected data are analyzed daily by a first-order model that uses
regression to fit trends, seasonal effects, and day-of-week effects (Brillman
et al., 2005).

INtegrated Forecasts and EaRly eNteric Outbreak (INFERNO) incorpo-
rates infectious disease epidemiology into adaptive forecasting and uses the
concept of an outbreak signature as a composite of disease epidemic curves
(Naumova et al., 2005). The system has been tested with a dataset of
emergency department records associated with a substantial waterborne
outbreak of cryptosporidiosis that occurred in Milwaukee, Wisconsin,
in 1993.

== RSV == influenza A == influenza B 4.0
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Date (week and year) 10

Figure 2-1. Surface-plot of scaled ED visits by age, with predominant RSV and influenza A
and B periods indicated (Olson et al. 2007).

The DiSTRIBuUTE project is a proof-of-concept, distributed, influenza
surveillance system. DiSTRIBuUTE uses aggregate, influenza-like illness
(ILI), emergency department data from existing syndromic surveillance
systems developed by state and local public health departments. Data are
aggregated by age group and three-digit zip code. The DiSTRIBuTE project
complements traditional influenza morbidity surveillance by providing a
consistent, timely, year-round, high volume, regional, age-group-specific
indication of febrile illness in the community (Figure 2-1).

Two other global scale real-time disease event detection and tracking
systems are taking a different approach from the systems discussed above.
The Argus and HealthMap projects monitor online media from global sources,
instead of disease cases reported by hospitals, clinics, and other health
facilities. The two systems are built on top of open sources, exemplifying an
idea of open development for public health informatics applications. Argus,
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developed at Georgetown University, relies on Internet technologies as
“harvesting engines” to capture information relevant to the definitional
criteria for biological-outbreak severity metrics. The system automatically
collects official disease reports from WHO or unofficial international health
status reports from ProMED as indicators of possible biological events, and
relies on its team of multilingual analysts to evaluate the associations between
the online media and existence of adverse health events.

HealthMap brings together disparate data sources to achieve a unified
and comprehensive view of the current global state of infectious diseases
and their effect on human and animal health. This freely available Web site
integrates outbreak data of varying reliability, ranging from news sources
(such as Google News) to curated personal accounts (such as ProMED) to
validated official alerts (such as World Health Organization). Through an
automated text processing system, these data are aggregated by disease and
displayed by location for user friendly access to the original alert. HealthMap
provides a jumping-off point for real-time information on emerging infectious
diseases and has particular interest for public health officials and international
travelers.
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2. SUMMARY OF SYNDROMIC SURVEILLANCE
SYSTEMS AT THE LOCAL, COUNTY,
AND STATE LEVELS

Twenty syndromic surveillance systems implemented at the local, county,
and state levels have been identified in our study. Table 2-2 presents a
summary of these systems. Note that technical information about these
systems is often much more difficult to locate (in many cases unavailable
publicly) when compared with nationwide systems.

The syndromic surveillance system implemented in New York City uses
ETL (extract, transform, and load) middleware technology from iWay Soft-
ware over secure, Web-based reporting channels to receive and process a
high volume of daily reports at a central data repository. A custom analytical
application based on spatial data analysis software SaTScan and ArcView
desktop GIS and mapping software from ESRI is used to perform statistical
analysis and related visualization functions (Heffernan et al., 2004a, 2004b).

Syndromic Surveillance Information Collection (SSIC) is a complex,
heterogeneous database system intended to facilitate the early detection of
possible bioterrorism attacks (with such agents as anthrax, brucellosis, plague,
Q-fever, tularemia, smallpox, viralencephalitides, hemorrhagic fever, botulism
toxins, staphylococcal enterotoxin-B, among others) as well as naturally
occurring disease outbreaks including large foodborne disease outbreaks,
emerging infections, and pandemic influenza (Karras, 2005).

The Automated Epidemiological Geotemporal Integrated Surveillance
(AEGIS) system is a surveillance effort initiated by the Children’s Hospital
Informatics Program at the Harvard-MIT Division of Health Sciences and
Technology since 2000 at the state of Massachusetts. The system adopted a
modular design to address the challenges of scalability, robustness, and data
security issues due to an emerging demand of integrating real-time public
health surveillance systems into regional and national surveillance initiatives
(Reis et al., 2007) (Figure 2-2). The system consists of modeling modules,
detection modules, and client modules.
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Modeling Modules

Detection Modules

21

Client Modules

Administrative Client

Trimmed - Mean . “
Seasonal Model CUSUM Web Interface Client
Seasonal Model . _
with Trend EWMA Email Alerts Client
Seasonal Trend ™ . _
with ARIMA Errors SatScan Data Quality Client ||

Figure 2-2. Modeling, detection, and client modules implemented in the current AEGIS
system (Reis et al., 2007).

The Syndromal Surveillance Tally Sheet program is based on the triage
nurses’ counts of the numbers of patients presenting the syndromes of interest
collected from emergency departments of Santa Clara County, California
(Bravata et al., 2002). (This manual system was proved to be staff and res-
ource intensive and was replaced by an ESSENCE implementation in 2005).

The system used in the greater Boston area is for rapid identification of
illness syndromes using automated records from 1996 through 1999 of
approximately 250,000 health plan members in the area (Lazarus et al., 2001).

New Hampshire Syndromic Surveillance System collects information
from multiple sites in New Hampshire including emergency departments, 23
city schools, 5 workplaces, participating pharmacies, as well as military and
veteran medical facilities, and LabCorp through the BioSense program. Data
are either key punched or electronically transferred into the Syndromic
Tracking Encounter Management System (STEMS) for analysis and geo-
coding (Miller et al., 2003).

In the state of Connecticut, a Hospital Admissions Syndromic Surveillance
system is implemented by the Connecticut Department of Public Health. This
system monitors hospital admissions from the previous day rather than out-
patient visits as most other syndromic systems do (Dembek et al., 2004, 2005).

Catalis Health System for syndromic surveillance in Texas interfaces
with available clinic practice management systems to produce a standardized
dataset via a point-of-care electronic medical record (EMR). This system
supports data flows directly from clinic providers to the health department
for syndromic surveillance. Rural counties with limited epidemiological
resources have benefited from this approach (Nekomoto et al., 2003).
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North Carolina Disease Event Tracking and Epidemiologic Collection
Tool (NC Detect), formerly known as the North Carolina Bioterrorism and
Emerging Infection Prevention System, analyzes a variety of data sources
including the North Carolina Emergency Department Database (NCEDD)
and the Carolinas Poison Center with the EARS software tool (2006d).

The Georgia Division of Public Health takes a centralized approach by
comparing local data to those from other districts and state totals. The clinical
and nonclinical data are collected, and the analysis results are displayed
through a Web-based program called the State Electronic Notifiable Disease
Surveillance System (SendSS) (2006k). The major functionalities of the
Web-based application are shown in Figure 2-3.

The syndromic surveillance system in Miami-Dade County, Florida, is a
Web-based system where syndromic data are transferred from emergency
departments to an ESSENCE server for data analysis and anomaly detection
(2006m). On a daily basis, 14 county hospitals automatically transmit
deidentified chief complaint data to the surveillance system. Each chief
complaint is then placed into one of 10 syndrome categories including
respiratory, gastrointestinal, hemorrhagic, influenza-like, shock/coma, neurologic,
fever, febrile, rash, botulism-like, and other. ESSENCE performs automatic
data analysis, establishing a baseline with a 28-day average. Daily case data
are then analyzed against this baseline to identify statistically significant
increases. An MDCHD analyst evaluates all alerts and develops a summary
report on each day (Zhang et al., 2007).

S e n d s s i» % —® Pilot System ‘Uid: Pmmoran @ 1001502004 9.25.53
——s Cortact Us: Re:Fourth Test Ci

itate Electronic Notifinble Disease Surveillance System Help  CortactUs My Accourt

Logout

Home Admin

Case Reporting

Analysis Developer

ReportiUpdste Caze

SendSS Home

@[ Messages
@[ welcome to 5

D[ Example Sect

Figure 2-3. Homepage and menu navigation of SendSS Web application (2006k).
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The Early Event Detection system in San Diego constantly monitors
emergency room visits, paramedic transports, 911 calls, school absenteeism
data, and OTC sales for early event detection. It supports interoperability
with local SAS/Minitab installations, ESSENCE, and BioSense (Johnson,
2006).

The New Jersey syndromic system includes four components: emergency
department-based surveillance using visit and admission data from participating
hospitals statewide and a modified CUSUM method to detect aberrations,
OTC pharmacy sales surveillance from RODS, an ILI surveillance module,
and a Web-based Communicable Disease Reporting System (CDRS) for real
time data transmission and reporting (Hamby, 2006).

The Early Event Detection (EED) system in South Carolina provides
syndromic surveillance capabilities at the state/local level, using data from
BioSense, OTC sales, and Palmetto Poison Center (Drociuk et al., 2004). The
EED system is among a number of disease surveillance systems in South
Carolina, including ESSENCE, BioSense, and sentinel providers network
with ILI reporting. As of February 2006, there were 536 distinct sources
providing OTC drug sales data.

Indiana’s pilot program for syndromic surveillance is currently taking in
data from 17 hospitals, most of them in Indianapolis. Indiana’s system is
expected to include a variety of sources: coroners’ reports, calls to the Indiana
Poison Control Center, school absenteeism counts, lab test orders, veterinary
lab results, and reports from day care centers (Lober et al., 2002).

National Capitol Region’s Emergency Department syndromic surveillance
system is a cooperative effort between Maryland, the District of Columbia,
and Virginia that uses chief complaints for syndromic assignment. Using a
syndrome assignment matrix (Begier et al., 2003), the emergency department
visits are coded into one of eight mutually exclusive syndromes: “death,”
“sepsis,” “rash,” “respiratory” illness, “gastrointestinal” illness, “unspecified
infection,” “neurologic” illness, and “other.”

The Michigan Syndromic Surveillance Project tracks emergent care
registrations per day (primarily ED, some urgent care) and Poison Control
Call Center data using RODS. MDCH and participants exchange data in
real-time using virtual private networks (VPNs) to secure the data and HL-7
as the messaging format. Detection algorithms run every hour and send
email alerts to public health officials when deviations are found. State and
regional epidemiologists are provided with Web access to the charts and
maps of the data analytical results (2006g).
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The Hospital Electronic Syndromic Surveillance (HESS) and hospital
admission syndromic surveillance (HASS) systems, implemented in the
State of Missouri, are designed to provide an early warning system of public
health emergencies including bioterrorism events, and offer outbreak detection
and epidemiologic monitoring functions. HESS collects data electronically
from existing electronic systems and requires all hospitals to participate,
whereas HASS receives data on a paper form from selected sentinel hospitals
(2006f). They use ESSENCE and BioSense to analyze, visualize, and report
electronically ED data collected through HESS Reporting Rule. By 2007,
electronic feeds were being collected automatically from 85 hospitals across
the state. Figure 2-4 shows statewide syndromic surveillance coverage in
Missouri.

Figure 2-4. Missouri syndromic surveillance coverage; lighter dots are HASS, and darker are
HESS hospitals (Resch et al., 2007).

The North Dakota Department of Health Syndromic Surveillance Program
is based on chief complaint data received electronically from seven large
hospital emergency departments located in North Dakota’s four largest
cities. In addition, data from a call center in North Dakota’s largest city are
received and reviewed daily. They use the natural language translation tool
SympTran® to translate free text chief complaints into symptoms and then
group those into six syndrome groups (Goplin et al., 2007). Data analysis
functions are provided by the commercial software called RedBat. The RedBat
system will be briefly introduced in the next section. Over 50% of the state’s
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population is currently involved in this program (2006h). They have also
developed the North Dakota Electronic Animal Health Surveillance System

for animal disease surveillance. The data analysis capability is provided by
the CDC EARS.

SYRIS
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Figure 2-5. Screenshot of SYRIS system.

Syndrome Reporting Information System (SYRIS) is a Web-based, real-
time, clinician-driven syndromic surveillance system implemented in Lubbock,
Texas (Figure 2-5). It provides two-way communication between clinicians
and public health officials for high specificity, high signal-to-noise ratio
outbreak detection in both human and wildlife species diseases.

3. SUMMARY OF INDUSTRIAL SOLUTIONS
FOR SYNDROMIC SURVEILLANCE

We now discuss seven representative industrial solutions for syndromic
surveillance, as summarized in Table 2-3.

The Lightweight Epidemiology Advanced Detection and Emergency
Response System (LEADERS) is an Internet-based integrated medical
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Table 2-3. Seven industrial solutions for syndromic surveillance.

System Company

LEADERS Idaho Technology, Inc., Salt Lake City,
Utah

FirstWatch Real-Time Early Stout Solutions, LLC., Encinitas,

Warning System California

STC syndromic surveillance product  Scientific Technologies’ Corporation
(STC), Tucson, Arizona

RedBat (Multi-use syndromic ICPA, Inc., Austin, Texas

surveillance system for hospitals

and public health agencies)

EDIS (Emergisoft’s Emergency Emergisoft Corporate, Arlington, Texas
Department Information System)

Spatiotemporal Epidemiological IBM Corporation, Almaden Research
Modeler (STEM) tool Center, California

Emergint Data Collection and Emergint, Inc., Louisville, Kentucky

Transformation System (DCTS)

surveillance system for collecting, storing, analyzing, and viewing critical
medical incidents. LEADERS was deployed at the 1999 World Trade Organi-
zation Summit, the 2000 Republican and Democratic National Conventions,
the Presidential Inaugural Activities, and the Super Bowl. Portions of
LEADERS have been deployed by US military forces worldwide since 1998
(Ritter, 2002).

FirstWatch integrates data from 911 calling systems, emergency depart-
ments, lab tests, pharmacies, poison controls and paramedic practices, all of
which are monitored in real-time. Real-time alerting and reporting are also
supported (2006¢).

The Web-based STC syndromic surveillance product is compatible with
the CDC NEDSS Logical Data Module (LDM). Its current clients include
public health departments in Connecticut, Louisiana, New York City, and
Washington, DC. The analysis and alerting algorithms implemented in the
system such as CUSUM, 3rd Sigma, and STC’s Zhang Methodology are
applied to a variety of data sources that include OTC sales, school nurse
visits, and emergency rooms (20061).

RedBat automatically imports existing data from hospitals and public
health agencies. Besides outbreak detection, it is also capable of tracking
injuries, reportable diseases, asthma, and disaster victims (20061).

Emergisoft is a software solution for syndromic surveillance that has
been employed in the 1996 Olympics in Atlanta and in the metropolitan
areas of New York City and Los Angeles (Emergisoft, 2006).
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A Spatiotemporal Epidemiological Modeler (STEM) tool, developed at
the IBM Almaden Research Center, can be used to develop spatial and temporal
models of emerging infectious diseases. These models can involve multiple
populations/species and interactions between diseases. GIS data for every
county in US have been integrated into the STEM application (Ford et al.,
2005).

Emergint provides a syndromic surveillance system for data collection
and processing. It can interface with care providers, laboratories, research
organizations, and federal and state health departments. Emergint also pro-
vides data aggregation analysis as well as visualization functions (2004a).

4. SUMMARY OF INTERNATIONAL SYNDROMIC
SURVEILLANCE PROJECTS

The National Health Service (NHS) in the UK operates a NHS Direct
Syndromic Surveillance system that monitors the nurse-led telephone helpline
data collected electronically by the Health Protection Agency from all 23
NHS Direct sites in England and Wales (Doroshenko et al., 2005). Syndromes
monitored include cold/influenza, cough, diarrhea, difficulty breathing, double
vision, eye problems, lumps, fever, rash, and vomiting. Data streams are
analyzed every 2 hours by statistical methods such as confidence intervals and
control chart methods (Cooper et al., 2004).

In Southeast Asia, the Association of Southeast Asian Nations (ASEAN)
has developed the Early Warning Outbreak Recognition System (EWORS)
for disease surveillance. EWORS collects data from a network of hospitals
and provides technical approaches to distinguish epidemic from endemic
diseases (EWORS, 2006). Free-text or ICD-9 coded symptom reports can be
collected through EWORS to monitor a number of infectious diseases,
including malaria and hemorrhagic fever due to Hantaan virus infection.
Statistical analysis methods are used for daily data analysis and visualization.
The system is currently implemented by public health departments of
Indonesia, Cambodia, Vietnam, and Laos.

In some high-income countries, syndromic surveillance has been a very
effective approach to supporting real-time public health monitoring. However,
in developing countries, where public health is more in hazard, while the infor-
mation communication infrastructure is more fragile, syndromic surveillance
systems are more critically needed but difficult to implement. Chretien
identified such difficulties, and discussed some of the successful syndromic
surveillance implementation cases in a recent work. Availability of techno-
logies for health data capture and transmission in these underdeveloped
areas and countries are investigated. Operational experiences of systems
such as EWORS are presented (Chretien et al., 2008).
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Table 2-4. Ten international syndromic surveillance systems.

System Agency

National Health Service (NHS) Direct Operated by the National Health
Syndromic Surveillance Service of UK

Early Warning Outbreak Recognition Association of South East Asian
System (EWORS) Nations

Alternative Surveillance Alert Program  Health Canada

(ASAP)

Military syndromic surveillance for French Guiana in South America
dengue fever outbreak

Emergency Department Information Korea

System in Korea

Experimental Three Syndromic National Institute of Infectious
Surveillances in Japan Diseases, Japan

Australian Sentinel Practice Research The Royal Australian College of
Network (ASPREN) General Practitioners; the Dept. of

General Practice, U. of Adelaide;
Australian Dept. of Health and Ageing
New South Wales ED surveillance system New South Wales, Australia
ILI surveillance in France France

UMR S 707 (“Epidemiology, Information France
Systems, Modeling” project)

The Alternative Surveillance Alert Program (ASAP), initiated by Health
Canada, currently monitors gastrointestinal disease trends by analyzing OTC
antidiarrheal and anti-nausea sales data, and calls to Telehealth lines (Edge
et al., 2003). The system is planned to be deployed at the community,
provincial, and national levels.

A syndromic surveillance system called 2SE FAG system (Surveillance
Spatiale des Epidémies au sein des Forces Armées en Guyane) was established
to serve the military forces in French Guiana, a French overseas department
in South America in 2004. The statistical analysis of military syndromic
surveillance data with 2SE FAG is performed with Current Past Experienced
Graph (CPEG) and the Exponential Weighted Moving Average (EWMA)
method (Meynard et al., 2008). They showed that the system detected the
dengue fever outbreak, which occurred in 2006 several weeks before traditional
clinical surveillance, allowing quick and effective outbreak surveillance
within the armed forces (Meynard et al., 2008).

In Korea, 120 emergency departments from 16 provinces and cities are now
connected to the Korea Emergency Department Information System for daily
analysis of acute respiratory syndrome. The system was initially developed for
the 2002 Korea-Japan FIFA World Cup Games (Cho et al., 2003).

Japan’s National Institute of Infectious Diseases (NIID) has developed a
syndromic surveillance system based on EARS syndrome categories and
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EARS software to analyze OTC sales data, outpatient visits, and ambulance
transfer data in Tokyo (Ohkusa et al., 2005a, b). Approximately 5,000 sites
nationwide in Japan are now connected to this system. The system was used
for the 2000 G8 Summit and 2002 FIFA World Cup Games.

The Australian Sentinel Practice Research Network (ASPREN) is a national
network of general practitioners who collect and report data on selected
conditions such as ILI for weekly statistical analysis (Clothier et al., 2006). It
is now being used by about 50 general practitioners nationwide in Australia.

The New South Wales ED surveillance system routinely collects
computerized ED patient information from 30 EDs in New South Wales
(Hope et al., 2008). The ED provisional diagnoses are classified into 37 syn-
dromes, including gastrointestinal, influenza, pneumonia, other/unspecified
respiratory infections, all injury and mental health presentations. Statistical
control charts are used to automatically detect increases in syndrome
activity, using Poisson z-scores of observed vs. expected day-of-week.
Surveillance reports are updated four times per day (Muscatello et al., 2005).

Influenza-Like illness (ILI) surveillance is practiced in 11,000 pharmacies
throughout France (about 50% of all pharmacies in France) in 21 regions.
This ILI surveillance system is a Web-based system that collects medication
sales and weekly office visit data to provide forecasts of influenza outbreaks
using a Poisson regression model (Vergu et al., 2006).

The French “Epidemiology, Information Systems, Modeling,” group
headed by Guy Thomas has been developing a Web-based application for
online epidemiological time series analysis. The application allows estimating
the periodic baseline level and associated upper forecast limit. The latter
defines a threshold for epidemic detection. The burden of an epidemic is
defined as the cumulated signal in excess of the baseline estimate (Pelat
et al., 2007).

S. SYNDROMIC SURVEILLANCE FOR SPECIAL
EVENTS

During natural or human-made disasters, real-time and comprehensive
knowledge of public health conditions is critical to inform response and
recovery activities. Priority health conditions include infectious disease
cases, injuries, and mental health disorders.

In recent years, the world has been through a number of global scale
deathly disasters. Some examples that have affected millions of lives include
Hurricane Katrina in 2005, causing the most severe loss of life and pro-
perty damage occurring in New Orleans, Louisiana; the outbreak of the
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SARS pandemic in 2002. In addition to large scale disasters, special events
such as the Olympic Games, FIFA World Cup, or G8 Summit often involve
participation of large populations. The temporary and sudden surge of
population density in the event location brings potential health hazards to the
participants, such as intensified infectious disease transmission and surging
healthcare utilization. For instance, the 2008 Olympics in Beijing brought a
large influx of people into the metropolitan area for 2 weeks. Population
surge caused by the influx of a large number of tourists would significantly
alter healthcare utilization patterns. It is critical to quickly identify any
localized infectious disease outbreaks and prevent them from taking place.

Therefore, in this section, we discuss the category of syndromic surveillance
practice that is concerned with syndromic surveillance for special and large-
scale events. Teams of public health officials often need to work together to
monitor public health status for such events (e.g., the 2002 World Series in
Phoenix (Das et al., 2003), the wildfire outbreak in San Diego, 2003 (Johnson
et al., 2005)). During Korea-Japan FIFA World Cup 2002 in Japan (Suzuki
et al., 2003) and Korea (Cho et al., 2003), syndromic surveillance systems
also played a role in public health status monitoring. Another two examples
are syndromic surveillance systems implemented for the 2002 Kentucky
Derby (Goss et al., 2003) and the G8 Summit in Gleneagles, Auchterarder,
Scotland in 2005 (2005a). Typically, during the events data from regional
emergency departments will be collected. Information concerning a predefined
list of symptoms and probable diagnoses will also b e collected manually
using special-purpose forms or via a Web-based interface. Table 2-5
summarizes six representative efforts in this category.

Table 2-5. Six representative syndromic surveillance efforts for special events.

Syndromic surveillance systems for Stakeholders/location

special events

Syndromic surveillance for Korea- National Institute of Infectious

Japan FIFA World Cup 2002 in Japan Diseases, Japan

Communitywide syndromic University of Louisville Hospital and
surveillance for 2002 Kentucky Derby Jefferson County Health Dept.
Syndromic surveillance for Korea- Korea

Japan FIFA World Cup 2002 in Korea

Drop-in bioterrorism surveillance Phoenix, Arizona

system for World Series 2002 in

Phoenix, Arizona

Syndromic surveillance during the San Diego County
wildfires outbreak in San Diego, 2003

Syndromic surveillance for G8 Summit Scotland, UK

in Gleneagles, Auchterarder, Scotland,

July 2005
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In addition to the surveillance efforts of varying scopes as summarized
above, there has been an increasing need for the development of syndromic
surveillance systems and efforts at the global scale. World Health Organization
(WHO)’s Epidemic and Pandemic Alert and Response program represents
one such effort toward global syndromic surveillance. Note that the challenge
of implementing a global surveillance system is more of a policy and
administration nature as opposed to technical.
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SYNDROMIC SURVEILLANCE DATA SOURCES
AND COLLECTION STRATEGIES

In this and the ensuing two chapters, we will focus on three key technical
aspects of modern syndromic surveillance systems: data sources and collection
strategies; data analysis and outbreak detection; and data visualization,
information dissemination, and reporting.

This chapter discusses syndromic data collection strategies and related
data sources. Data collection is a critical early step when developing a synd-
romic surveillance system. It involves the selection of data sources, choices
over vocabulary to be used, data entry approaches, and data transmission
strategies and protocols. We will go through the related technical issues in the
following sections. Towards the end of this chapter, we briefly summarize
additional policy-related considerations that may impact data collection.

1. DATA SOURCES FOR PUBLIC HEALTH
SYNDROMIC SURVEILLANCE

Syndromic surveillance is a largely data-driven public health surveillance
approach. Data sources used in syndromic surveillance systems are expected
to provide timely, prediagnosis health indicators and are typically electronically
stored and transmitted. Note that most syndromic surveillance data were
originally collected and used for other purposes and such data now serve
dual purposes. Figure 3-1 depicts the conceptual timeline of prediagnosis
data types and sources for syndromic surveillance.

H. Chen et al., Infectious Disease Informatics: Syndromic Surveillance for Public Health 33
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 3,
© Springer Science + Business Media, LLC 2010
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According to an empirical study conducted by Platt et al. (2003), most
data collected for syndromic surveillance purposes include similar data
elements: demographic data such as gender, age, area of residence; and data
relevant to patient visits such as hospital name, the date of the visit, and the
symptom set (chief complaints or admission status).

In this monograph, we identify the range of syndromic data sources and
briefly summarize how they are used. Healthcare providers, schools, phar-
macies, laboratories, and military medical facilities are all data contributors
for syndromic surveillance. Specifically, data used for syndromic surveillance
include emergency department (ED) visit chief complaints, ambulatory visit
records, hospital admissions, OTC drug sales from pharmacy stores, triage
nurse calls, 911 calls, work or school absenteeism data, veterinary health
records, laboratory test orders, and health department requests for influenza
testing (Ma et al., 2005).

Chief complaints record patient-reported signs and symptoms of their
illness (e.g., coughing, headache, etc.) for ED or ambulatory visits. Chief
complaints are among one of the most widely-used syndromic data sources
in many syndromic surveillance systems. Figure 3-2 shows some sample
chief complaint records collected from a hospital.

Chief complaints as a syndromic data source present many advantages as
well as challenges for public health monitoring. Chief complaint records are
routinely generated and become available typically on the same day the
patient is seen. As a comparison, diagnostic data typically take a much longer
time to be coded and transmitted due to various logistical and infrastructural
issues and the lack of IT personnel at smaller hospitals (Travers et al., 2006).
Chief complaint records are typically accessible in an electronic format. The
wide availability and timeliness make chief complaints an ideal syndromic
data source. However, as each chief complaint entry is a concise statement
often in short free-text phrases that often contain misspellings and abbrevi-
ations, cleaning chief complaint data and mapping them into more meaningful
representations are typically necessary before the analytical processes take
place. In Chapter4 we will further elaborate this problem as to processing
chief complaints for syndromic surveillance.

date | MEDREC | AGE |SEX|RACE| ETHNIC | chief_complaint
09/01/2004 MAT16315 78F H 1 OTH PULMON EMBOLISM
09/01/2004 MA216315 2M B 2 WHEEZING
09/01/2004 MA316315 1M W 2 S0B
09/01/2004 MA416315 MW 2 DYSPNEA

Figure 3-2. Sample chief complaint records sheet.
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OTC medication sales and prescription data are indicative of certain
illness (e.g., influenza), which could be timelier than patient visits, as people
may visit a drug store before considering seeing a physician. However,
getting additional information about the purchasers such as demographical
information is often not possible. ESSENCE and EARS are among the
systems that utilize OTC sales data for surveillance purpose. The RODS
laboratory has built the National Retail Data Monitor (NRDM) to monitor
the sales of OTC medications as a public health surveillance tool. Thousands
of retail pharmacies, groceries, and mass merchandise operations have
participated in the program, where the data and analytical results are made
accessible to public health officials across the nation.

School or work absenteeism reported by schools and workplaces can also
be used as an indicator of public health status. As no disease characterization
available with the absenteeism report, school or work absenteeism data have
relatively limited use in syndromic surveillance. Systems (such as EARS,
ESSENCE) monitor the school or work absenteeism data as a rough-cut
early indication to generate alarms that “something might be wrong” instead
of telling “what is going wrong.”

Highly reliable disease diagnostic data are available as part of hospital
admission record when hospitalization takes place. However, there could be
1-3 days between a patient’s first healthcare visit and his or her possible
hospitalization, making such data less timely than many other data types.
The Hospital Admission Syndromic Surveillance (HASS) system implemented
at Connecticut Department of Public Health utilizes hospital admission data
for syndromic surveillance.

Triage nurse calls, 911 calls, and ambulance dispatch calls also have the
potential of signaling possible events and changes in the public health status.
Although the phone call data are relatively timely, information concerning
symptoms or signs recorded during patient calls when the patient consults
healthcare providers needs to be cleaned and extracted for the use of disease
characterization. NHS Direct in the UK has been used for spatiotemporal
analyses to initiate prospective geographical surveillance of influenza in
England (Meynard et al., 2008), based on calls about fever and vomiting
placed to a national telehealth system.

International Classification of Diseases 9th edition (ICD-9) codes and
International Classification of Diseases, 9th edition, Clinical Modification
(ICD-9-CM) codes assigned for diagnoses and procedures are often available in
today’s healthcare information systems used for billing or third-party insurance
reimbursement purposes. ICD-9/ICD-9-CM codes are used as a syndromic
data source in many systems because of their wide availability in an electronic
format. Other data sources such as laboratory test orders and results, or even
news reports, are also studied by researchers as feasible early public health
indicators. For instance, researchers have studied how the mass media
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covered disease outbreaks and the media activity affected antiviral sales as
monitored by syndromic surveillance techniques (Racer, 2007). Web-accessible
information sources regarding infectious diseases such as discussion forums,
mailing lists, and government Web sites, and news outlets have been found
valuable in early public health event detection. As the rapid growth of
Internet use and wide adoption of real-time online communication continues,
more and more current, highly local information about outbreaks is available
and accessible by Web crawling to support situational awareness (Brownstein
et al., 2008a). Researchers also propose to monitor blogs, discussion sites,
and listservs to complement news coverage and the use of click-stream data
and individual search queries is also a promising new surveillance source
(Eysenbach, 2006). However, because of the distributed and unstructured
nature of these sources of information, monitoring public health related
events through them becomes a challenge. Recently two global systems,
HealthMap and Argus, were developed to provide real-time global information
integration and public health status monitoring (Brownstein et al., 2008a).
The systems have been discussed in previous sections, and dedicated chapters
describing them can be found in Part II.

There are very few studies connecting environmental factors with public
health status. Serious investigation is called for to determine whether
monitoring environmental indicators can assist public health surveillance. In
one such study (Babin et al., 2007), air quality measurements from the
Environmental Public Health Tracking Program (EPHTP) are passed to the
CDC, and the relationship between air quality and pediatric emergency
department (ED) visits for asthma among DC residents are quantified over a
3-year period. Studying environmental factors could help understand back-
ground disease patterns so that unexpected fluctuations could be better
detected (Zeng et al., 2008).

1.1 Comparison of Data Sources

A quantitative compilation of our research results shows that most of the
syndromic surveillance systems monitor a combination of data sources from
multiple sites instead of relying on a single data indicator. Out of the 56
systems numerated in Tables 2-1 through 2-5, wherein the details are known,
80% use ED chief complaints (both free text and ICD-9 coded chief
complaints) as a timely public health indicator. Fifty percent of the systems
monitor OTC drug sales. Thirty percent of the systems use hospital admission
data as one of the inputs. Thirty of the systems also collect school/work
absenteeism data. However, absenteeism or drugs sales are never used alone.
Fourteen systems also connect to poison centers or laboratories for test
orders, or monitor 911 calls. Additionally, most ED visits chief complaints
are in free text (90%), which suggests the importance of free text processing
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or natural language processing techniques for medical information processing
in this area.

ISDS (International Society for Disease Surveillance) also conducted a
survey of state syndromic surveillance use including 46 respondents in 2008.
The following figure (Figure 3-3) shows the distribution of use of data sources
by the surveyed syndromic surveillance system (Mostashari et al., 2008).
The numbers largely align with our quantitative findings above.

A major concern regarding the data used in the surveillance activities is
about the effectiveness and validity of their usage for illness pattern detection.
To be valid in the context of syndromic surveillance, evidence is needed that
a data source may have value in identifying an outbreak or biological attack.
A number of studies have examined to some degree whether and how
effective the data sources are, as well as a possible time lead compared with
diagnosis. Magruder’s study (Magruder, 2003) about using OTC data/sales
as a possible early warning indicator of human diseases revealed about a
90% correlation between flu-remedy sales and physician diagnoses of acute
respiratory conditions together with a 3-day lead time reported. Another
study (Doroshenko et al., 2005) shows that nurse-led helpline calls can also
be used for early event detection. SSIC (Syndromic Surveillance Information

ED visits

Qutpt visits

OTC med sales

Poison Control Center calls
Bchool Absentesism

Other

911/ EMS calls

Medical Hotline Calls

HIE / RHIO

Rxmed sales

Work Absentesism

T T T T T T T T T 1
0% 10% 20% 80% 40% 50% ©60% 70% B0% 90%
Percentage of Health Departments

Figure 3-3. Syndromic surveillance data sources use survey by ISDS.
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Collection) program tested the use of visit-level discharge diagnoses from
several clinical information systems as a syndromic data source (Duchin et al.,
2001; Lober et al., 2003). One limitation of using chief complaints as
syndromic data is that they provide different predictive values from discharge
diagnoses, as reported by (Begier et al., 2003). Generally, chief complaints
best capture illnesses mainly characterized by nonspecific symptoms like
fever, while discharge diagnoses appear better at tracking illnesses requiring
brief ED clinical evaluation and testing, such as sepsis and possibly meningitis
(Begier et al., 2003).

Although most of the syndromic surveillance systems use multiple data
sources, further examination about whether the different data are telling the
same story, i.e., flagging the possible outbreaks for certain illness with
consistency, is necessary. Edge et al. (2004) reported correlations between
OTC antinausea and antidiarrhea medication sales and ED admissions.
However, in a study conducted by the Infectious Disease Surveillance
Center, Japan (Ohkusa et al., 2005a), they found no evidence that sales of
OTC medications used to treat the common cold correlated with influenza
activities. It has been observed that as individuals may seek care in a variety
of settings resulting in multiple reports for the same individual case in
different data sources, combining these data sources properly presents major
technical challenges due to dependencies existing among these data sources
(Costa et al., 2007).

Preliminary investigations have evaluated the effectiveness of different
data sources in syndromic surveillance and studied the differences among
them in terms of information timeliness and characterization ability for
outbreak detection, as they represent various aspects of patient healthcare-
seeking behavior (Ma et al., 2005). For example, school/work absenteeism
comes to notice relatively earlier as individuals take leave before seeking
healthcare in hospitals or clinics, but specific disease evidence provided by
the absenteeism type of data is limited. Table 3-1 provides a classification of
different data sources used for syndromic surveillance organized by their
timeliness and capability to characterize epidemic events.
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2. STANDARDIZED VOCABULARIES

Data standard development, or more generally interoperability, is a key
to successful, cross-jurisdictional syndromic surveillance. A standardized
syndromic data representation would have a number of implications. First, a
specialized vocabulary enables accurate representation for communicating
information and events. Data formats and coding conventions that are in-
consistent among different sites (e.g., laboratory tests and results can be
reported in multiple ways) could be an obstacle in capturing illness cases.

More importantly, streamlining the delivery of electronic data across
multiple sites saves time and eventually enables real-time reporting and
alerting. Real-time data transmission and event reporting with a universal
data format standard and messaging protocol is a primary motivator in the
development of syndromic surveillance systems. Because of the varying
internal data structures and database schema among various healthcare
information systems, it takes a significant amount of time and processing
resources for data conversion and normalization. According to an estimation
in 2004, the use of data exchange standards in healthcare could save up to
$78 billion annually (Pan, 2004).

In addition, syndromic surveillance systems that are more complex and
geographically distributed need to be interoperable to enhance jurisdictional
collaboration for timely event detection and response. Therefore, developing
and imposing standards from programmatic, constructive, architectural, and
managerial perspectives is especially addressed by the CDC-led syndromic
surveillance initiatives. These initiatives are a collaborative effort involving
the Public Health Information Network (PHIN) framework (CDC, 2006c), the
National Electronic Disease Surveillance System (NEDSS) (CDC, 2004), the
National Center for Vital Health Statistics, Department of Defense, Depart-
ment of Veteran Affairs, and all National Institutes of Health.

This section discusses the development, adoption, and implementation of
standard vocabularies for electronic emergency room records, laboratory
testing, clinical observations, and prescriptions, along with the messaging
standard to transport these records. Many available code standards currently
used in syndromic surveillance have been borrowed from public health
systems (Wurtz, 2004). Current efforts to standardize vocabulary are based
on Logical Observation Identifiers Names and Codes (LOINC®), Systematized
Nomenclature of Medicine (SNOMED®), International Classification of
Diseases, Ninth Revision (ICD-9), and Current Procedural Terminology
(CPT®) as core vocabularies. In addition, Unified Medical Language System
(UMLS) has been used as cross reference ontology among the above coding
systems. Health Level Seven (HL7) is used as a messaging standard in public
health.
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2.1 Existing Data Standards Used in Syndromic
Surveillance

Here we provide a brief summary of each coding system to illustrate their
scope and target medical domain.

UMLS: The Unified Medical Language System (UMLS) (Fung et al.,
2006) provides a cross reference ontology among a number of different
biomedical coding systems and standards, and a semantic structure defining
relationships among different clinical entities. Its Semantic Network and
Metathesaurus help facilitate system developers in building or enhancing
electronic information systems that integrate and/or aggregate biomedical
and health data and knowledge.

LOINC: LOINC codes are universal identifiers for laboratory and other
clinical observations. Distinct LOINC codes are assigned based on specimen
types (e.g., “ser” = serum) and methods of the test (e.g., immune fluorescence),
with specific description for different conditions. As LOINC codes were
originally developed for billing purposes, they do not convey information
about the purpose or results of the test (Wurtz, 2004). The CDC has developed
“Nationally Notifiable Conditions Mapping Tables” (http://www.cdc.gov/PHIN/
data models), which provide mappings from LOINC codes to nationally-
notifiable (and some state notifiable) diseases or conditions.

SNOMED: SNOMED is a nomenclature classification scheme for indexing
medical vocabulary, including signs, symptoms, diagnoses, and procedures.
It defines code standards in a variety of clinical areas called coding axes. It
can identify procedures and possible answers to clinical questions that are
coded through LOINC.

ICD-9-CM: ICD-9-CM was developed to allow assignment of codes to
diagnoses and procedures associated with hospital utilization in the United
States and are often used for third-party insurance reimbursement purposes.
Table 3-2 shows a partial code set used by ESSENCE for fever.

Table 3-2. ICD-9-CM coding examples.

ICD9CM ICD9DESCR

020.2 PLAGUE, SEPTICEMIC
020.8 OTHER TYPES OF PLAGUE
020.9 PLAGUE NOS

021.8 TULAREMIA NEC

021.9 TULAREMIA NOS
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An updated release of ICD-10-CM was made available in 2007 for public
viewing. The codes of ICD-10-CM are now under testing and not currently
valid for any purpose or use. A research study has been conducted to examine
the usefulness of the ICD-10-CM system in capturing public health diseases,
when compared with ICD-9-CM. The study also examined agreement levels
of coders when coding public health diseases in both ICD-10-CM and ICD-
9-CM. Overall results demonstrate that ICD-10-CM is more specific and
captures more of the public health diseases examined than ICD-9-CM
(Watzlaf et al., 2007).

HL7: HL7 (HL7, 2006; Hooda et al., 2004; Thomas and Mead, 2005)
is the ANSI-accredited healthcare standard messaging format, used for
transmitting information across a variety of clinical and administrative
healthcare information systems. It specifies the syntax that describes where a
computer algorithm can find various data elements in a transmitted message,
enabling it to parse the message and reliably extract the data elements
contained therein. HL7 Version 2.3 provides a protocol that enables the flow
of data between systems. HL7 Version 3.0 (Beeler, 1998) is being developed
through the use of a formalized methodology involving the creation of a
Reference Information Model to encompass the ability not only to move
data, but also to use it once it has been moved.

Development and adaptation of coding standards and standardized messaging
formats are essential for information exchange and sharing, a prerequisite for
public health surveillance. However, different standards and implementations
exist for operational clinical, laboratory, and hospital information systems,
which causes significant obstacles for information sharing. Nonetheless,
standards are being developed, improved, and adopted increasingly widely.
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In addition to leveraging existing healthcare standards, some groups have
proposed additional coding and messaging standards tailored specifically for
syndromic surveillance. For example, the Frontlines group (Barthell et al.,
2002, 2004) is focusing on the development of standard reporting and coding
structures specific to syndromic data. They defined the data elements in
triage surveillance reports and a set of codified values for chief complaints.
They also proposed a system to facilitate continuous flow of XML-based
triage report data among hospital EDs, and state and local health agencies.
The ongoing effort motivated to develop an electronic health record is
largely relevant as well to public health surveillance from the point of view
of coding and messaging standards. For instance, the Veterans Administration
(VA) has been standardizing its clinical terminology to comply with industry-
wide standards. In the National VA Health Data Repository (HDR), “Unique
enterprise identifiers are assigned to each standard term, and a rich network
of semantic relationships makes the resulting data not only recognizable, but
also highly computable and reusable in a variety of applications, including
decision support and data sharing with partners such as the Department of
Defense (DoD)” (Bouhaddou, Lincoln et al., 2006).

In addition to technical considerations, regulatory and compliance issues
also need to be examined carefully to address data standardization challenges.
For instance, the US has implemented laws, such as HIPAA’s Administrative
Simplification, to enforce standardization in healthcare information by mandating,
for example, health plans, healthcare clearinghouses, and providers that conduct
certain transactions electronically comply with the HIPAA transaction
standards.

Despite the availability of standard vocabularies discussed above, healthcare
providers and public health researchers and practitioners often use natural
language when describing biomedical concepts and constructs, even in the
context of highly structured case report forms. Hunscher et al. (2006)
described work in progress and lessons learned in translating complex natural-
language concepts on case report forms into machine-readable format using
the HL7 CDA, LOINC, and SNOMED-CT standards.

3. DATA ENTRY AND DATA TRANSMISSION

Syndromic data are being collected through various kinds of healthcare
and public health information systems. Such data collection efforts often have
to cross organizational boundaries and jurisdictions. This section discusses
related data entry and transmission techniques.
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3.1 Data Entry Approaches

Data entry approaches for syndromic surveillance fall into four categories:
paper-based forms, Web-based interface, local data input software application,
and hand-held devices (Zelicoff et al., 2001). Many systems support multiple
data entry approaches as they involve multiple sites with possibly different
IT infrastructure support (Espino et al., 2004; Lombardo et al., 2003). In
general, the manual approach using paper-based forms can lead to unwanted
delays as the records have to be converted later to an electronic format.

3.2 Secure Data Transmission

Secure data transmission is critical to data integrity and confidentiality.
The specific challenges are as follows. How can a syndromic surveillance
system retrieve syndromic data from data providers (e.g., hospitals and
pharmacies)? How can data transfers be done securely over the communication
channels such as the Internet?

The existing transmission approaches are either automated or manual.
Automated transmission refers to transferring of data over a communication
media where human intervention (e.g., to initiate each transmission transaction)
is not required. Manual transmission entails significant human intervention.
About 33% of the 50 systems surveyed rely primarily on automated data
transmission, whereas the remaining 67% rely on human intervention in both
data requesting and receiving. Email messages with text reports or data files
as attachments, despite the security and data exposure risks, are still widely
used to transfer syndromic data from clinical systems to syndromic surveillance
systems.

The XML-based HL7 messaging standards play an important role in
automated data transmission, since a significant portion of health systems
support HL7. Among the systems surveyed, those capable of automated data
transmission all use HL7 one way or another. For example, the RODS
system and the BioPortal system use HL7 messaging protocols for automatic
syndromic data transmission. In RODS, an HL7 listener implemented as
Enterprise JavaBean (EJB) beans is used to receive HL7 messages from each
underlying health system. The messages transmitted are first parsed by an
HL7 parser bean before being loaded into the database. A configuration file
written in XML is used to specify the hierarchical structure of the data
elements in each HL7 message (Tsui et al., 2003). BioPortal also relies on
an HL7-based approach to transmit data as HL7-compliant XML messages.
This approach allows for dynamic changes in the message structure (Hu
et al., 2005; Zeng et al., 2004b).
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Compared with other approaches that mainly support file-based trans-
missions in a batch mode, HL7-based approaches are more efficient and
effective. According to a RODS study (Tsui et al., 2005), they could reduce
reporting latency by 20 hours. Secure networking techniques such as VPNs
(Virtual Private Networks), SSL (secure socket layer), HTTPS, and SFTP
(secure file transfer protocol) are now being increasingly utilized (Rhodes
and Kailar, 2005).

Is there a best approach to transmit data from data providers to syndromic
surveillance systems and the involved public health agencies? There is no
simple answer to this question. Typically the IT infrastructure of the data
providers (e.g., hospitals) needs to be upgraded to enable timely, reliable,
and secure data collection.

Many practical challenges hindering the data collection effort also need
to be addressed, including: (1) providing and transmitting data either requires
staff intervention or dedicated network infrastructure, which often require
extra costs; (2) data sharing and transmission must comply with HIPAA and
other privacy regulations; (3) reducing data acquisition latency has important
implications to syndromic surveillance yet is difficult and can be costly; (4) data
quality concerns (e.g., incompleteness and duplications) often pose additional
challenges. In particular, data ownership, confidentiality, security, and other
legal and policy-related issues need to be closely examined. When infectious
disease datasets are shared across jurisdictions, important access control and
security issues should be resolved in advance between the involved data
providers and users (Hu et al., 2005).
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DATA ANALYSIS AND OUTBREAK
DETECTION

The analysis components of a syndromic surveillance system focus on
detecting the changes in public health status, which may be indicative of
disease outbreaks. At the core of these analysis components is the automated
process of detecting aberration or data anomalies in the public health
surveillance data, which often have prominent temporal and spatial data
elements, by statistical analysis or data mining techniques. These methods
are also capable of dealing with various common problems in epidemiological
data such as bias, delay, lack of accuracy, and seasonality. These techniques
are the focus of this chapter.

When processing public health surveillance data streams, it is often
necessary to map the collected syndromic data into a small set of syndrome
categories to facilitate follow-up analysis and outbreak detection. Section 4.1
discusses related syndrome classification approaches. In Section 4.2, we pro-
vide a taxonomy of anomaly analysis and outbreak detection methods used
for biosurveillance. Sections 4.3—4.6 summarize various specific detection
methods spanning from classic statistical methods to data mining approaches,
which quantify the possibility of an outbreak conditioned on surveillance data.

1. SYNDROME CLASSIFICATION

The onset of a number of syndromes can indicate certain diseases thre-
atening public health. For example, the influenza-like syndrome could be due
to an anthrax attack, which is of particular interest to biodefense. Syndrome

H. Chen et al , Infectious Disease Informatics Syndromic Surveillance for Public Health 49
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 4,
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classification thus is one of the first and important steps in syndromic data
processing and analysis.

A substantial amount of research effort has been expended to classifying
free-text chief complaints into syndromes. This classification task is difficult
because different expressions, acronyms, abbreviations, and truncations are
often found in free-text chief complaints (Sniegoski, 2004). For example,
“chst pn,” “CP,” “c/p,” “chest pai,” “chert pain,” “chest/abd pain,” and
“chest discomfort” can all mean “chest pain.” On the basis of our summary
findings reported in Section 3.1, a majority of syndromic surveillance systems
use chief complaints as a major source of data. Therefore, the problem of
mapping each chief complaint record to a syndrome category, referred to as
syndrome classification, is an important practical challenge needing a
solution. Another syndromic data type often used for syndromic surveillance
purposes, i.e., ICD-9 or ICD-9-CM codes, also needs to be grouped into
syndrome categories. Processing such information is somewhat easier as the
data records are structured.

A syndrome category is defined as a set of symptoms, which is an indicator
of some specific diseases. For example, a short-phrase chief complaint
“coughing with high fever” can be classified as the “upper respiratory”
syndrome. Table 4-1 summarizes some of the most commonly-monitored
syndrome categories. Note that different syndromic surveillance systems
may monitor different categories. For example, in the RODS system there
are seven syndrome groups of interest for biosurveillance purposes, whereas
EARS defines a more detailed list of 43 syndromes. Some syndromes are of
common interest across different systems, such as respiratory or gastrointestinal
syndromes.

LRI

Table 4-1. Diseases and syndrome categories commonly monitored.

Influenza-like Respiratory Dermatological
Fever Neurologic Cold
Gastrointestinal Rash Diarrhea
Hemorrhagic illness Severe illness and Asthma
death
Localized cutaneous lesion  Specific infection Vomit
Lymphadenitis Sepsis Other/none of the above
Constitutional
Bioterrorism agent-related diseases
Anthrax Botulism- Plague
like/botulism
Tularemia Smallpox SARS (severe acute

respiratory syndrome)
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1.1 Syndrome Classification Approaches

The syndrome classification process can be either manual or implemented
through an automated system. The BioSense system, developed by CDC
(Ma et al., 2005), for instance, relies on a working group that develops
syndrome mapping using CDC definitions. However, automated, computerized
syndrome classification is essential to real-time syndromic surveillance. A
software application that analyzes chief complaint records or ICD-9 codes
and then determines appropriate syndrome categories is often known as a
syndrome classifier.

Manual Grouping The BioSense system (Bradley et al., 2005; Sokolow
et al., 2005) and the Syndromal Surveillance Tally Sheet program used in
EDs of Santa Clara County, California, use a manual approach to classify the
symptoms. They ask the medical experts in syndromic surveillance, infectious
diseases, and medical informatics to perform the mapping of laboratory test
orders into 11 syndromes categories defined by a multi-agency working
group (Ma et al., 2005).

Automated Classification Existing automated classification methods
can be roughly categorized into three groups: supervised learning, rule-based
classification, and ontology-enhanced classification. The supervised learning
methods require as input a set of CC records labeled with syndromes as
learning samples before they can proceed to classify unlabelled CC records
by syndromes. Naive Bayesian and Bayesian network-based methods are
two examples of the supervised learning methods (Ivanov et al., 2002;
Sniegoski, 2004). For instance, the CoCo chief complaints classifier
developed as part of the RODS system is a Bayesian classifier (Chapman
et al., 2003). Often, a learning approach has a natural language processing
(NLP) component, which classifies free-text CCs with simplified grammar
containing rules for nouns, adjectives, prepositional phrases, and conjunctions.
As part of RODS, Chapman et al. adapted the MPLUS, a Bayesian network-
based NLP system, to classify the free-text chief complaints (Wagner et al.,
2004a; Chapman et al., 2005). Implementing learning algorithms is straight-
forward; however, collecting training records is usually costly and time-
consuming. Another major disadvantage of supervised learning methods is
the lack of flexibility and generalizability. Recoding for different syndromic
definitions or implementing the CC classification system in an environment
that is different from the one where the original labeled training data were
collected could be costly and difficult.
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In contrast, rule-based classification does not require labeled training
data. A text string searching process for syndrome category classification is
a typical rule-based approach. In general, the CC records are first cleansed
and then mapped to the syndrome categories according to a set of rules often
predefined by medical experts following the definitions of syndromes of
interest. For instance, an example rule could be “fever, if NOT animal
and NOT environmental and fever.” Many applications, for example, EARS
(Hutwagner et al., 2003), ESSENCE (CDC, 2003), and the National Bioterrorism
Syndromic Surveillance Demonstration Program (Yih, Abrams et al., 2005),
make use of such rules. Rule-based methods are relatively flexible, as the
inference rules can be easily modified and updated. A major problem with
rule-based classification methods is that they cannot handle symptoms not
covered in the set of predefined rules.

The third category of automated approaches, ontology-based classification,
utilizes relations between medical concepts (Leroy and Chen, 2001). Two
representative methods are the BioPortal CC Classifier, which relies on
Unified Medical Language System (UMLS) vocabularies and semantics (Lu
et al., 2006, 2008), and the BioStorm approach, which uses a vocabulary
abstraction method (Crubézy et al., 2005). BioPortal CC Classifier uses
UMLS’s Meta-thesaurus and SPECIALIST Lexicon to suggest a symptom
grouping (as an intermediary representation) for a given CC record and then
classify it using rules. It is able to provide a flexible architecture that supports
easy adaptation to new syndromic categories. The BioStorm approach
creates a series of intermediate abstractions up to a syndrome category from
the primitive data (e.g., signs, lab tests) for syndromes indicative of illness
due to an agent of bioterrorism.

We summarize representative syndrome classification methods in Table 4-2.
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An interesting complementary method using both manual and natural-
language processing techniques to create CC classifiers is presented by Halasz
et al. (2006). They apply an n-gram text processing program to build an ICD9
classifier to a training set of ED visits for which both the CC and ICD9 code
are known. A collection of CC substrings with associated probabilities was
constructed and used to generate a CC classifier program. This approach
allows the rapid automated creation and updating of CC classifiers based on
ICD9 groupings.

Researchers have also started working on a CC classifier for non-English
CCs. It is noted that there is a critical need for the development CC
classification systems capable of processing non-English CCs as syndromic
surveillance is being increasingly practiced around the world. One design
first maps non-English CCs to English CCs and then use well-tested English
CC classification systems to process translated CCs (Lu et al., 2007a).

1.2 Performance of Syndrome Classification Approaches

On the basis of our survey, about 40% of syndromic surveillance systems
use automated syndrome classification, while the other 40% rely on a manual
approach (details are unknown for the remaining 20%). There is clearly room
for improvement and adoption of automated methods.

Evaluation studies have been conducted to compare various classifiers’
performance for selected syndrome types (Travers and Haas, 2004). For
instance, experiments comparing two Bayesian classifiers for the acute
gastrointestinal syndrome showed a 68% mapping success against expert
classification of ED reports (Ivanov et al., 2002). In general, however, it is
difficult to paint a general picture of how well syndromic classifiers perform
and how they fare against each other as many systems have not been evaluated
on classification accuracy. In addition, the performance of these classifiers
varies with different syndrome categories, further complicating the evaluation
task.

Many prior studies show that a considerable portion (30-40%) of the
chief complaints data is not classifiable because they are too noisy. However,
combining chief complaints with the diagnostic codes (such as ICD-9) during
the same visit can achieve a better classification accuracy (Reis and Mandl,
2004).

Another challenge facing syndrome classification is that there are no
universally-accepted, standardized syndrome definitions. As a result, significant
rewriting/fine-tuning efforts are needed when applying a classification approach
in particular application contexts. One possible approach to deal with these
difficulties is to create intermediary representations (such as symptom groups)
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and create explicit rules that map these intermediary representations into
customized syndrome categories (Lu et al., 2006).

2. A TAXONOMY OF OUTBREAK DETECTION
METHODS

Syndromic surveillance systems typically make available multiple outbreak
detection algorithms, as no single method can deliver superior performance
across a wide range of scenarios or meet different surveillance objectives
(Buckeridge et al., 2003).

Many statistical and data mining techniques for syndromic surveillance
have been proposed in the literature. These methods can be generally divided
into retrospective and prospective approaches. If instead we consider the
characteristics of the surveillance data analyzed, another orthogonal classific-
ation scheme is possible, dividing the outbreak detection methods into
temporal analysis, spatial analysis, and spatial-temporal analysis approaches.
This subsection focuses on both schemes.

Interested readers are referred to http://statpages.org/, which provides
tutorials for various kinds of parametric and nonparametric statistical tests
that form the statistical foundation of outbreak detection, and http://www.
autonlab.org/tutorials/, which includes statistical data mining and machine
learning tutorials. The review articles on data mining and its application in
health and medical information (Bath, 2004; Benoit, 2002) are also good
references to provide in-depth background for the material presented in this
section.

2.1 Retrospective vs. Prospective Syndromic
Surveillance

A number of surveillance approaches fall under the general umbrella of
retrospective models, which aim at testing statistically whether events are
randomly distributed over space and time for a predefined geographical region
during a predetermined time period (Kulldorff, 2001). Some examples of
retrospective methods include space scan statistic (Kulldorff, 1997), Nearest
Neighbor Hierarchical Clustering (NNH) (Levine, 2002), and Risk-adjusted
Support Vector Clustering (RSVC) (Zeng et al., 2004a). When applying
retrospective methods, there is usually a clear distinction between the baseline
data points and the observations of interest, where the baseline data correspond
to known “normal” health status and the observations of interest are case
reports to be examined for surveillance purposes. In applications where the
separation between the baseline data and observations of interest can be
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cleanly and meaningfully done, retrospective methods can be effectively
applied.

One major limitation of retrospective methods is that they are slow in
detecting emerging clusters when the separation between the baseline data
and observations of interest is not obvious. The resulting manual trial-and-
error interventions severely limit the applicability of retrospective methods.

Prospective surveillance often entails repeated analyses performed
periodically on incoming surveillance data streams to identify statistically
significant changes in an online context (Chang et al., 2005). Using such a
method, the separation of the baseline data and observations of interest is no
longer needed as the system automatically tries various combinations of
having some time windows as the baseline and some periods after them as
the time of interest.

Prospective analysis has long been used in disease surveillance applications.
The CUSUM method is one of the most established methods. Other examples
include Rogerson’s approaches (Rogerson, 1997), Kulldorff’s prospective
version of time-space scan statistics (Kulldorff, 2001), and the Prospective
Support Vector Clustering (PSVC) method (Chang et al., 2005).

2.2 Temporal, Spatial, and Spatial-Temporal Outbreak
Detection Methods

Table 4-3 summarizes a wide range of outbreak detection methods, all of
them implemented in one or more syndromic surveillance systems surveyed.
They are divided into three groups: temporal, spatial, and spatial-temporal
(Buckeridge et al., 2005b; Mandl et al., 2004). Note that this table does not
attempt to exhaustively list every detection algorithm proposed in the
literature. Interested readers can refer to (Brookmeyer and Stroup, 2004;
Lawson and Kleinman, 2005) for recent in-depth reviews of a more
comprehensive set of algorithms. The methods listed in Table 4-3 are chosen
because of their connection with the syndromic surveillance systems surveyed.
Although not exhaustive, it covers most of the detection method types and
provides a useful snapshot of the state of the art. Sections 3-5 provide
additional analysis of these three groups of detection methods, respectively.
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Because of the importance of outbreak detection algorithms for syndromic
surveillance, we review some of the critical methods adopted in more detail
below. The readers should note that the models we are about to discuss can
be written in a number of mathematically equivalent ways, while the ones
presented in the text are one of the representations.

3. TEMPORAL DATA ANALYSIS

This section discusses representative temporal anomaly detection methods.
Temporal anomaly detection belongs to the vast domain of time series analysis.
It monitors public health events or incidences as a sequence of data points,
measured typically at evenly-distributed successive times. Temporal anomaly
detection methods attempt to identify unusual patterns, smooth out naturally-
occurring (or known) variations, and distinguish the variations caused by a
possible outbreak from natural variations. Such methods either study the
event frequency or the intensity of adverse event occurrences (time intervals
between occurrences) to detect changes. These changes could follow different
trends (e.g., linear, exponential).

3.1 Statistical Process Control (SPC)-Based Anomaly
Detection

A majority of the systems surveyed employ statistical process control
(SPC)-based algorithms. These algorithms were originally developed to monitor
a process and its mean in industrial settings. The ability to differentiate the
“out-of-control” mean from the “in-control” mean makes these methods
readily applicable for anomaly detection.

The basic idea behind SPC-based algorithms is as follows. A small random
sample x=(x,,...X,,...) is drawn repeatedly at certain time intervals. The
sample mean is compared against given thresholds; alarms are triggered at
t, = mjn{s;sample_rnean(xs) > G(s)}, if the sample mean exceeds the
control limit G(s). The alerting threshold is either theoretically defined, or
dynamically estimated through historical data. The later one is proved to be
more robust than the former (Buckeridge et al., 2005a). The single time-
series analyzed often exhibits substantial day-of-week or seasonal patterns.
As such, it is a common practice to estimate the incidence rate using a linear
or Poisson regression model, and then to apply a SPC-based method to the
regression residuals (Buckeridge et al., 2005a).

The Control Statistical Cumulative Sums (CUSUM) and Exponentially
Weighted Moving Average (EWMA) methods are two standard SPC-based
methods that have been widely applied for outbreak detection. CUSUM
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keeps track of the accumulated deviation between observed and expected
values.  Formally, the accumulated deviation is defined as

S, =max(0,S,_, +z, —k), where £ is a control parameter and z, models the

distribution of the variable of interest (e.g., z, :L’u’, if the variable is

t

normally distributed) (Rogerson, 2005). Different forms of CUSUM have
been developed, which assume that the underlying distribution could be
Poisson or exponential (Rogerson, 2005). Nonparametric models have also
been developed, removing the need for knowledge of the underlying
distribution. A deployed SPC method often incorporates a short guard band
(e.g., 2 days) between the baseline period and the day to be monitored. The
guard band may lift the sensitivity by avoiding a gradually increasing
outbreak contaminating the baseline with the outbreak signal. CUSUM
methods have been specifically designed to deal with limited availability of
historical data. Three CUSUM algorithms used in the EARS system require
less than 10 days as the baseline period. They differ from each other by the
different settings of the baseline period and the threshold levels, resulting in
different levels of sensitivity (Hutwagner et al., 2003).

The Shewhart method is another simple form of SPC-based methods. It
can be viewed as performing repeated significance tests on deviations of an
observation from a target constant. The Shewhart method performs poorly
for small and moderate shifts, but for large shifts, CUSUM actually converges
to the Shewhart method (Lawson and Kleinman, 2005). One study used a
Shewhart control chart to detect epidemics of Influenza A (Quenel et al., 1994).

Instead of considering only the last observation in the Shewhart method,
the exponentially weighted moving average (EWMA) method monitors all
the previous observations, summing up the multiple deviations in a weighted
scheme, giving the most recent observation the greatest weight, and all the
previous observations geometrically decreasing weights (Neubauer, 1997).

SPC-based methods are widely used in surveillance due to their simplicity.
Their performances have been tested in many real settings. BioSense, EARS,
and ESSENCE syndromic surveillance systems among others implemented
either CUSUM or EWMA or both, and reported their early aberration detection
capacity for influenza-like illness and other diseases (Hutwagner et al., 2005a;
Zhu et al., 2005). The details of the performance evaluation can be found in
Chapter 6.

3.2 Serfling Statistic
Serfling’s method uses cyclic regression to model the normal pattern of

the numbers of patients susceptible to death for pneumonia and influenza
when there is not an epidemic with the objective of determining an epidemic
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threshold. Its use requires a clear definition of the disease, the selection of
data to identify a normal pattern of susceptible patients, and the assumption
that the normal pattern is periodical.

The Serfling statistic was originally proposed by Serfling for statistical
analysis of weekly pneumonia and influenza deaths in 108 US cities in 1963
(Serfling, 1963). Serfling’s method uses cyclic regression to establish an
expected threshold for daily statistic based on history data excluding the
epidemic weeks, accounting for seasonal variations. It requires a clear definition
of the disease and the assumption that the normal pattern is periodical (Mandl
et al., 2004). A theoretical form of this method is formulated as:

. t t
H)=c, +cot +cysin(2r—)+c, cos(2x—
() 1 TC6 3 ( 52) 4 ( 52)

Serfling’s method is regarded as a traditional modeling technique applied
to a number of disease surveillance practices such as the French influenza-like
syndrome data (Costagliola et al., 1981). Serfling’s method has also been
used by RODS system to model hospital visitation data for influenza
(Tsui et al., 2003).

33 Autoregressive Model-Based Anomaly Detection

The autoregressive integrated moving average (ARIMA) method is a
class of time-series analysis models that are typically specified by three
parameters: the order of autocorrelation (AR), the order of integration (I),
and the order of moving average (MA) (Box et al., 1994). These parameters
determine two things: how much of the past should be used to predict the
next observation and how much do the past observations weigh in predicting
the next observation. The higher-order models are more complex and can
usually achieve a better fit of the training data set, while the simpler low-
order models are usually less likely to over-fit to training dataset (Reis and
Mandl, 2003). Description of the class of ARIMA methods in full details can
be found in (Box et al., 1994). We here give an example ARIMA (1, 1, 1)
model to simply show the notations. In the following equation, x4 is a
constant term, (Y(#—1)—Y(¢—2)) represents a first-order “autoregressive”
term, and the forecast error — first-order moving average at period -1 is
e(t—1). ¢ and @ are coefficients.

V()= u+Y(t—-)+gX(t-1)-Y(t —2))— et —1)
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ARIMA models have been applied to pneumonia and influenza deaths
for detection of outbreaks (Reis and Mandl, 2003). In the Automated
Epidemiologic Geotemporal Integrated Surveillance (AEGIS) program at
Children’s Hospital Boston and Harvard Medical School, a hybrid of
ARIMA with cyclic regression was found to have excellent predictive ability
(Mandl et al., 2004). These models are available in many common statistical
software packages (e.g., SAS Time Series Forecasting module). One
drawback of the ARIMA models is that there is no systematic way to update
model parameters when new data points arrive.

The Recursive Least Square (RLS) algorithm is another method based on
autoregressive linear models and is implemented as part of RODS (Wong
et al., 2002, 2003). It learns from the time series but does not need a large
learning sample. Also it is more sensitive to recent historical data to predict
outcomes, so it is well suited to surveillance for short-term events. Unlike
ARIMA or the Serfling method, RLS continuously updates its parameters.
RLS operates by converging on a set of coefficients (for a weighted linear
equation) that best predicts historical values. The algorithm uses these
coefficients to predict the current value. It calculates the prediction errors
between the predicted values and the time series values. Using the prediction
errors and algorithm threshold (expressed in number of standard deviations),
RLS computes a threshold value. This algorithm is ideal for detecting spikes
of cases when there is little historical data. Using these models implies that
transformation of the data leads to a stationary time series, for which a single
underlying probability distribution is assumed. These two hypotheses are not
necessarily true, however; the data may present abrupt and wide changes of
magnitude as well as irregular periodicity, in situations such as epidemics,
modifications of the case-definition, screening, or vaccination (Le and
Carrat, 1999).

34 Hidden Markov Model (HMM)-Based Models

The SPC-based models and the cyclic regression methods need nonepidemic
data to model the baseline distribution, which is not always available without
data preprocessing. This makes it an obstacle for automated surveillance.
Researchers, therefore, have proposed to use Hidden Markov Models
(HMM) to segment the time series of influenza indicators into epidemic and
nonepidemic phases. Hidden Markov models have found major success in
temporal pattern recognition such as speech and handwriting recognition,
and bioinformatics. The basic idea behind HMM-based models is to add
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another layer of random signal generation process conditioned on the state of
a hidden Markov process to determine the conditional distribution of each
observed data point.

The sequence of state transitions in HMM is reconstructed using statistical
methods to calculate the most likely trends of the surveillance data. HMM-
based models are flexible enough to be easily adapted automatically to trends,
seasonality, covariates (e.g., gender and age), and different distributions
(normal, Poisson, Gaussian, Gamma, etc.). HMM-based models have been
applied in a number of surveillance data time series analysis studies. For
example, Le Strat and Carrat applied a univariate HMM to ILI time series
surveillance in France (Le and Carrat, 1999). More technical details of
HMM in disease surveillance can be found in (Madign, 2005). The author
further discussed the proper number of hidden states, multivariate extensions
to the above univariate HMM, as well as HMMs with random observation
times. Madigan also pointed out that a key extension to the existing research
on HMM-based surveillance would be to incorporate a spatial component in
the hidden layer of the models.

4. SPATIAL DATA ANALYSIS

Spatial analysis techniques are used to find the extent of “clustering” of
cases across a map and have long been an important component of the
surveillance analysis toolset. More specifically, spatial clustering analysis
aims to detect and locate the anomalies in disease occurrences or outbreaks
by examining the surveillance data’s spatial distribution, as clusters might be
of insufficient size to be detected in analyses that consider only an entire
region. This would also allow for the possibility that some areas contained
populations more likely to become sick, such as older people, or more likely
to seek healthcare, as might be the case for certain cultural groups. It thus
provides the capability of tracking the progression of disease outbreaks and
identifying the population at risk for proper treatment and prevention.

The rationale behind spatial surveillance is that natural disease outbreaks
or biological attacks are typically localized at some spatial scale. Spatial
analysis in syndromic surveillance uses spatial information residing in the
data, such as the patient’s home residence, sometimes the work place, and
the location of the hospital where the illness is reported. Temporal analyses
we discussed in the earlier section are capable of detecting elevated rates
across an entire region, but would be less sensitive to a smaller number of
spatially focused cases. Furthermore, spatially correlated random effects are
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often ignored by pure time series methods, thus it is assumed that all tests
are independent.

Investigations of clusters in space often associate the varying population
density with the null hypothesis. Denote the intensity of the disease cases
(the number of expected events per unit area) by 4,(s), where s represents a
location in the study area. Also denote by A4,(s) the intensity function of the
population at risk. The null hypothesis of normal spatial distribution is in
fact a proportional intensity function, H, :4,(s)= pA (s),where p is the
expected number of cases divided by the expected number at risk.

One widely-used spatial analysis algorithm is SMART, made available
through the BioSense system and the National Bioterrorism Syndromic
Surveillance Demonstration Program. Other popular methods include the
GLMM algorithm (Kleinman et al., 2004); spatial scan statistics (Kulldorff,
1999) and a number of its variations such as Modified spatial scan statistics
(Duczmal and Buckeridge, 2005); and the Risk-adjusted Support Vector
Clustering (RSVC) method (Zeng et al., 2004a).

Temporal analysis methods such as CUSUM can also be adapted to
analyze spatial information by maintaining CUSUM charts for the surrounding
neighborhood of each individual region as local spatial statistics or by
maintaining multivariate CUSUM charts for all regions in a global setting
(Lawson and Kleinman, 2005). Vice versa, spatial clustering techniques
could be adapted to temporal surveillance, if considering time as one-
dimensional space.

4.1 Generalized Linear Mixed Models and SMART
Algorithm

Kleinman et al. (2005a) proposed the use of Generalized Linear Mixed
Model (GLMM) statistics based on a logistic regression model to estimate
the probability that each subject under surveillance is a case, in each area, on
a given day. The simple logistic regression model introduces ‘“shrinkage”
estimators showing the density of population in each area, as the size of the
population under surveillance in each area often varies. The proposed
method treats each small area as if it was an individual, and the relative
locations of the small areas are not taken into account by the model. This
method in essence ignores much spatial information and cannot detect
elevated counts over several contiguous areas.

SMART is an adaptation of the GLMM method, taking additional para-
meters into account to adjust for seasonal, weekly, social trends, and holiday
status (Bradley et al., 2005). In such an approach, generalized linear models
are used to establish the expected count per ZIP code per day based on
regressing historical series of counts in each small area. The established
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distribution of case counts are then refined to account for multiple ZIP codes
through multiple testing. One experimental study suggested that SMART
delivered slightly inferior results to the spatial scan statistic method. However,
both methods achieved good performances (Kleinman et al., 2005a).

4.2 Spatial Scan Statistic and Its Variations

Most syndromic surveillance systems make use of spatial scan statistic and
its variations. Using such methods for spatial analysis, a large set of circular
windows with varying sizes is imposed on the map in different locations to
search for clusters over the entire region. As the cluster size is unknown a
priori, the scan statistic method uses a likelihood ratio test where the
alternative hypothesis is that there is an elevated rate within the scanning
window when compared with outside. The most likely clusters can then be
identified based on the likelihood-ratio test if the null hypothesis is rejected.
For each distinct window, the likelihood ratio is proportional
to: Ly (e

U N-p
total number of cases, and u is the expected number of cases inside the circle
(Kulldorff, 1997). Other probability models, i.e., distribution from which the
case incidence are generated, have also been used for scan statistics. Poisson
model is commonly seen. Bernoulli model can be used for on-off case-
control type data, and exponential model is for survival data.

There are several advantages with scan statistic methods. First, they
avoid preselection bias regarding the size or location of clusters. Second,
they can be easily adjusted for nonuniform population density as well as
other factors such as age.

The spatial-temporal version of the scan statistic uses cylinders instead of
circles, where the height of the cylinder represents time. Still, the circular
base defines a geographic area with a varying radius. The size of the area
that is circled could be from zero to hundreds of kilometers or everything in
between. The height of the cylinder can represent a time of day or years. The
rest of the process is largely unchanged. A moving cylindrical window with
variable sizes in both space and time visits all spatial-temporal locations to
identify a significant excess of cases within it, until it reaches a predetermined
size limit (Kulldorff, 1999, 2001). On the basis of the flexible purely spatial
scan statistic, Takahashi et al. proposed a flexibly shaped space-time
scan statistic for detecting irregularly-shaped clusters, which may not be
detected by the circular spatial scan statistic (Takahashi et al., 2008). The
performance of the flexibly-shaped space-time scan statistic is compared
with the cylindrical scan statistic with a space-time power distribution

)¥™", where n is the number of cases inside the circle, N is the
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developed by extending the purely spatial bivariate power distribution
(Takahashi et al., 2008).

SaTScan is a freely-available software package that implements various
types of spatial and space-time scan statistics (2006j). It has been used in
more than 10 syndromic surveillance systems, according to our survey. Two
commercial products, WpiAnalyst extension for ArcView GIS from the
Public Health Research Laboratories (2003d) and ClusterSeer developed by
TerraSeer (2006¢) contain both spatial and spatial-temporal scan statistics
together with many other statistical clustering methods. The SaTScan Macro
Accessory for Cartography (SMAC) package consists of four SAS macros
and was designed as an easier way to run SaTScan multiple times and add
graphical output. The package contains individual macros, which allow the
user to make the necessary input files for SaTScan, run SaTScan, and create
graphical output all from within SAS software. The macros can also be
combined to do this all in one step (Abrams and Kleinman, 2007).

A modified spatial scan statistic proposed by Duczmal and Buckeridge
considers work-related factors. A factor reflecting the number of “contamin-
ations” from workers at the nearest neighbors is added to the observed cases
in the residential zones (Duczmal and Buckeridge, 2005). Their simulation
shows that their approach can achieve greater detection power than the scan
statistics that do not consider people movements. To apply their approach,
workplace location information is required, which unfortunately is not
commonly available in surveillance data sources.

There are a few known problems with spatial scan methods. First, they
can only identify clusters in simple regular shapes. Second, it is difficult to
incorporate prior knowledge, such as the size or shape of the outbreaks or
the impact on disease infection rate. Third, exhaustive searches over a large
region to perform statistical tests could be computationally expensive.

The method summarized in the next subsection deals with the first pro-
blem. To address the second and third problems, Neill et al. (2005) proposed
a Bayesian spatial scan statistic that is computationally more efficient and
capable of combining the a priori knowledge of the investigated outbreak.
A conjugate Gamma-Poisson model, as opposed to the Poisson model in
Kulldorff’s original spatial scan statistic, is used to produce a spatially
smoothed map of disease rates, with a focus on computing the posterior pro-
babilities to determine the outbreak likelihood and to estimate the location and
size of potential outbreaks.



4. Data Analysis and Outbreak Detection 69

4.3 Risk-Adjusted Support Vector Clustering (RSVC)
Algorithm

Zeng et al. developed an approach called RSVC that combined the risk
adjustment idea with a robust Support Vector Clustering (SVC) method to
improve the quality of retrospective spatial-temporal analysis. Specifically,
for regions with prior dense baseline data distribution, data points are less
likely to be grouped to form anomaly clusters. Several steps are involved in
the clustering process. First, the input data are implicitly mapped to a high-
dimensional feature space defined by a kernel function (typically the Gaussian
kernel). Second, the algorithm finds a hypersphere in the feature space with
a minimal radius to contain most of the data. The problem of finding this
hypersphere can be formulated as a quadratic or linear programming problem
depending on the distance function used. Third, the function estimating the
support of the underlying data distribution is then constructed using the
kernel function and the parameters learned in the second step. The width
parameter in the Gaussian kernel function is dynamically adjusted based on
kernel density computed using background data. When mapped back to
original space, the hypersphere splits into several clusters, which indicated
high risk outbreak areas (Zeng et al., 2004b).

S. SPATIAL-TEMPORAL DATA ANALYSIS

5.1 Rule-Based Anomaly Detection with Bayesian
Network Modeling

The “What’s Strange About Recent Events” (WSARE) algorithm performs
a heuristic search over combinations of temporal and spatial features to detect
irregularities in space and time. The case features analyzed by WSARE include
syndrome category, age, gender, and geographical information. For example, a
two-term case feature could be “Gender = Male AND Home Location = NW.”
The number of the cases satisfying and those not satisfying the case feature are
computed to be used to determine whether there is significant discrepancy
between the observed statistic of the current day and the baseline.

Historic data (e.g., recent weeks before the day of analysis) is fed to a
Bayesian network to create a baseline distribution. The network is constructed
using an algorithm called optimal reinsertion (Moore et al., 2003) based on
ADTrees (Moore and Lee, 1998). The benefit of the approach relies on
Bayesian network’s generalization capability that is able to predict the pro-
bability of a situation that may not have been encountered in the past. The
network structure is rebuilt every month, while the parameters are updated
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daily. Environmental attributes such as season and day of week can be
incorporated in the model as conditional probability.

All feature-value combinations are then searched and scored exhaustively.
The scores are generated by conducting hypothesis testing for each feature-
value combination against the baseline distribution. Instead of exhaustively
searching for i-term feature-value combinations with an exponential complexity
(i=1,2, ..., n, suppose that there are n features in total), a greedy search
approach is designed by searching the best 1-term case feature first and then
adding another term to it to compose a 2-term case feature, and so forth.
Compared with several other algorithms that do not examine covariate
information, WSARE performed better as measured by timeliness at the
expense of slightly higher false-positive rate (Wong et al., 2002).

5.2 Population-Wide Anomaly Detection and
Assessment (PANDA)

Population-Wide Anomaly Detection And Assessment (PANDA) is a
causal Bayesian network-based model constructing and inferring the spatial-
temporal probability distribution of disease in a population as a whole. The
causal Bayesian network consists of a large set of inter-linked patient-
specific probabilistic causal models, each of them including variables that
represent risk factors (e.g., infectious disease exposures of various types),
disease states, and patient symptoms (Cooper et al., 2004). Simulation con-
ducted by the RODS team showed that the model can handle a population
size of 1.4 million (Cooper et al., 2004).

6. MONITORING MULTIPLE DATA STREAMS

In Sections 6 and 7, we discuss two specific sets of issues concerning
outbreak detection that are worth separate treatments.

In disease surveillance, multiple data sets (data are collected simultaneously
from pharmacies, hospitals, nurse help telephone calls, and clinics) are
usually available for surveillance. However, the majority of implemented
detection algorithms monitor individual data sources and do not cross reference
between them. The problem is that no single data source captures all the
individuals in the outbreak (Kulldorff et al., 2005). One potentially fruitful
detection approach is a data-fusion approach using multiple sources of data
(e.g., ED visits and OTC sales data) to perform outbreak detection. For
example, MCUSUM and MEWMA (Yeh et al., 2003, 2004) were developed
to increase detection sensitivity while limiting the number of false alarms.
Multiple univariate statistical techniques and multivariate methods have also
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been used in prior studies based on different independence assumptions
among the data streams. Multiple univariate methods assume independence
among the data; while multivariate methods establish the covariance matrix
typically estimated from a baseline period (Buckeridge et al., 2005a). In the
ESSENCE II project, chief complaints data and sales of OTC medications
are treated as covariates (Lombardo et al., 2004). However, to model the
multiple univariate signals from different data streams, an in-depth investing-
ation and characterization of health-care-seeking behavior is necessary.

Another approach is to monitor stratified data (e.g., based on syndrome
type or age group, counties, or treatment facilities) in parallel. The WSARE
(What is Strange About Recent Events) system proposed by Wong et al.
(2003) is one example, which searches for outbreaks in various groupings of
age, gender, or census tracts. Kulldorff et al. (2003) developed a tree-based
scan statistic to do surveillance on groupings that can be preclassified into a
hierarchical tree structure.

In addition, during major public events, unpredictable shifts in the healthcare
data may occur due to changes in healthcare utilization patterns. This problem is
addressed by Reis et al. Instead of monitoring different healthcare data streams
individually, they proposed a class of epidemiological network models that
monitor the interrelationships among these data streams. The integrated
network-based modeling of the interrelationships among the epidemiological
data streams allows more robust performance in the face of shifts in healthcare
utilization during epidemics and major public events (Reis et al., 2007).

Simultaneous wavelets analysis over multiple time series are practiced by
Dillard and Shmueli (Shmueli and Fienberg, 2006). Rigorous comparative
evaluations to quantify the gain of using covariates from multiple data sources
in surveillance are needed.

7. SPECIAL EVENTS SURVEILLANCE

Another challenging issue for real-time outbreak detection is that the
surveillance algorithms often rely on historic datasets that span a considerable
length of time. Few methods demonstrate reliable detection capability with
short-term baseline data. This is a particular concern for surveillance systems
for special events (also referred to as drop-in models), which are implemented
against bioterrorism attacks or natural disease outbreaks in settings such as
international and national sports events or meetings that involve many
participants in a short time window.

EARS was used for syndromic surveillance at several large public events
in the United States, including the Democratic National Convention of 2000,
the 2001 Super Bowl, and the 2001 World Series (Hutwagner et al., 2003).
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The RODS system was used during the 2002 Winter Olympic Games
(Gesteland et al., 2002). The LEADERS system often serves as a drop-in
surveillance system intended to facilitate communication and coordination
within and between public health facilities (Ritter, 2002).

8. SUMMARY OF DATA ANALYSIS PROCESS FOR
SYNDROMIC SURVEILLANCE

In this chapter, we first introduce syndrome classification as the first step
of syndromic data analysis. We then summarize a large number of disease
surveillance algorithms. These algorithms are organized in two dimensions.
In the first dimension, a surveillance method is either retrospective surveillance
or prospective. Retrospective analysis focuses on analyzing historical data,
whereas prospective analysis is more useful for processing online data streams.
In the second dimension, a surveillance method can be seen as either a
temporal, spatial, or spatial-temporal analysis method. Methods designed for
special events are discussed separately due to their unique characteristics.
We also examine methods that monitor multiple data streams, which warrant
further exploration due to their importance and applicability. We conclude
this chapter by pointing out some technical issues to watch for while
applying these surveillance methods.

First, the outbreak detection methods make a number of assumptions
about the analyzed data. The distribution of the disease events are in many
cases assumed, so before the application of any surveillance methods to the
disease data, there should be analysis regarding disease behaviors such as the
outbreak patterns and events distribution. Second, an algorithm’s performance
is related to a number of settings: (1) the availability of historic data; data
collection process as discussed in Chapter 2 is thus closely related to a
surveillance algorithm performance; (2) the type of outbreak signals (e.g.,
slow-building or surge outbreak); (3) the spatial granularity of the data in
spatial analysis.

All the complications due to the dynamics of different diseases need to
be considered and well investigated before applying a detection algorithm.
In (Burkom and Murphy, 2007), the authors propose a data-adaptive method
selection scheme to “suit the remedy to the case,” by first evaluating a
number of data discriminates such as mean, variance, and skewness before
selecting a detection algorithm for analysis. The BioStorm research group
developed an ontology-based method to incorporate the a priori knowledge
so that different analytical methods are assigned to different types of
surveillance data in different settings (Crubézy et al., 2005).



Chapter 5

DATA VISUALIZATION, INFORMATION
DISSEMINATION, AND ALERTING

Syndromic surveillance systems are critical for public health surveillance
because they often provide epidemiologists and public health officials the
visual analytics tools and techniques to synthesize information and detect the
data anomalies (possible outbreaks) from massive, dynamic, and often
ambiguous surveillance data. Represented visually, the assessments of public
health status are better understood and also more effectively communicated
for action. The geographic or spatial components of the surveillance data
enable the natural application of visualization techniques for computerized
assistance for decision making in spatial (and often spatial-temporal) analytics
(e.g., clustering detection and resource logistics). In addition, the interplay
between simulation and visualization provides a powerful combination.
Visualization techniques can be used to analyze simulation output and analysis
results, and can drastically improve the understandability and accessibility of
the model to both technical and nontechnical audiences. Virtually all simulation
software packages have some level of visualization, ranging from basic
diagrams to full animation.

This chapter provides a systematic summarization of data visualization
techniques that are employed in the surveyed syndromic surveillance systems.
Taxonomy of the visualization techniques procedes the discussion of the two
classes of visualization technologies: visual information display and interactive
visual data exploration. A number of example screenshots from the surveyed
syndromic surveillance systems visualizations are shown along with the text.

H. Chen et al , Infectious Disease Informatics Syndromic Surveillance for Public Health 73
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_5,
© Springer Science + Business Media, LLC 2010
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1. SCOPE AND TAXONOMY

Visualization technology and user interface design involve a vast literature
in HCI, computing graphics, psychology, database organization, dynamic
query, and display algorithms, as well as screen management algorithms. But we
are not targeting a complete scientific discussion of visualization technologies,
but instead, we identify the different visual representations of the syndromic
surveillance data in the public health context and examine how to advance
the relevant applications of user interface design methods.

Shneiderman (1996) identified two aspects of visualization technology
that can be directly applied to a given structure. One focuses on mapping
abstract information to a visual representation and the other provides user-
interface interactions for effective navigation over displays on a screen. Our
focus of the discussion accordingly includes two pieces of visualization
techniques: visual information display and interactive visual data exploration.
By and large, the visual information display includes temporal, spatial, and
temporal-spatial information display exploring different dimensions of the
information.

The readers should also be reminded that data analysis technologies serve
as back-end support for visualization functions. As noted by Chen (1999),
data analysis technology as a “third-dimension” of the information visualization
technology serves to create structures that characterize the data set, abstract
the unstructured or high-dimensional information. The data analysis technologies
as discussed in the previous chapter are important back-end methods that
drive many of the visualization approaches discussed in this chapter.

2. VISUAL INFORMATION DISPLAY

Visual information display techniques aim to present visually either raw
surveillance data or analysis results (e.g., from the data anomaly detection
algorithms) (Zhu and Chen, 2005). Visual representation techniques are
applied to either time-series data or spatial/geographical data. The traditional
methods of information display are multidimensional tables (line listing), and
various static statistical graphics, such as line graphs, scatter plots, bar
charts, and pie charts. Color-coded maps are often used to represent disease
cases and clusters with case locations. Geographical Information Systems
(GIS) are now being widely used for spatial information representation and
cluster detection. Graphs with nodes and links, such as trees and networks,
are not seen in the surveillance information display, but they might be
viewed as promising tools for disease modeling based on spreading patterns.
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2.1 Visualization of Time-Series Data

Line chart is a popular method to visualize time-series data as it can help
identify temporal patterns such as spikes or clusters. Usually one curve
represents the observed data, and the other curve is the normal pattern
plotted by the temporal analysis algorithms. Line charts and other plotting
methods for time-series analysis are supported by most statistical analysis
packages (e.g., SAS and SPSS). The example view of the interface of
BioSense application shown in Figure 5-1 is a line chart and a line listing of
the fictional time-series syndromic data in a metropolitan area. Figure 5-2
shows a screenshot from the EARS system (Hutwagner et al., 2003),
visualizing daily data feed from a hospital and the results of applying the
CUSUM algorithm.

Other types of plots such as candlestick plot and density ratio map are
also seen in syndromic surveillance applications. Figure 5-3 shows a density
ratio map visualizing data aggregated by patient age in several influenza
seasons (DIMACS, 2006).
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Figure 5-1. Example views available in the BioSense application (source: Biosence Website).
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Figure 5-2. Line charts plotting temporal patterns of disease cases (EARS system).

Relative Excess M <0.8 m10-12 ®m1416 ®W15820 W2224 ME2628 ME3032
1og10 w1214 mW1618 MW2022 MW2426 MW2630 MW =32

65+
40-64
18-39
1317
5-12 > =
24 &

5
i)

<2
4041424344454647 4849505152 1 2 3 4 5 6 7 8 9 10111213 141516 17 18

2001-02

101112131415 16 17 1

Age group (years)

13-17
5412
2-4

G 1011 12 13 14 16 16 1

=i

7 18

Influenza season (by CDC week number)
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Figure 5-4. Selected Taipei hospitals CC spatial temporal patterns (2006a).
2.2 Visualization of Spatial Information

Visualizing disease cases or surveillance-related events on a map can help
identify case clusters (typically indicative of outbreaks), investigate possible
causes of a disease or an outbreak, and study an outbreak’s dissemination
and evolutionary patterns. One major objective of visualization is to identify
geographical areas with unusually high numbers of cases or events to serve
surveillance purposes and inform outbreak response decisions. Another
objective is to determine high-risk areas for a disease under investigation
and help analyze correlations between disease occurrences, various types of
environmental factors, and social-demographic variables.

There are several techniques for displaying spatial information contained in
syndromic data. Printed maps are often used to identify geographic clusters or
hotspots (Figure 5-4). CDC and the National Center for Health Statistics sup-
port research to investigate the design and display for disease atlases (Lawson
and Kleinman, 2005). Geographical display of disease statistics in real time is
also widely used for situation awareness and incident response (Kulldorff,
2001).
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Techniques also exist to smooth the borders of identified regions of
interest and display overlapping clusters. Boscoe et al. (2003) proposed an
approach for visualizing spatial scan statistic analysis results using nested
circles, which displays both the relative risk and statistical significance of
identified hotspots. They show that the mapped clusters typically do not
have precise boundaries. Rather they consist of relatively well-defined cores
and fuzzy boundaries.

Another study presents the health statistics on a map with both geographical
information and the reliability of the displayed data indicated by a texture
overlay (MacEachren et al., 1998). A screenshot from their work is shown in
Figure 5-5.

Color is an effective visual display property, and it can be an important
aid for fast and accurate decision making. Color encoding is a traditional
visualization technique to display indirectly standard deviations by which
the observed data (e.g., the number of cases of a particular syndrome
category in a zip code) deviate from the expected counts. The idea is to use
different colors or shadings to illustrate clusters of high or low rates of
disease incidence. The screenshot in Figure 5-5 employs such a color
encoding technique.
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Figure 5-5. A screenshot from (MacEachren et al., 1998) showing both geographical
information and data reliability.
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2.3 GIS for Disease Event Visualization

Geographic Information System (GIS) is a powerful spatial information
visualization tool and has found important applications in public health
surveillance (2003c; Hurt-Mullen and Coberly, 2005; Lombardo et al.,
2003). Most of the individual records registered into syndromic surveillance
systems can often be georeferenced to a range of geographic areas such as
blocks, tracts, county subdivisions, and other geographic units. Many syndromic
surveillance systems (e.g., BioSense, RODS, ESSENCE, BioPortal, and RSVP)
in the survey interface with GIS for disease visualization and spatial analytics.

The strength of GIS lies in its ability to integrate different types of data
onto a common spatial platform. The integration of the environmental factors
(e.g., groundwater contamination), demographical data and remote sensing
data (e.g., satellite data) such as vegetation, land-use patterns and soil types,
climatic changes, and so on, helps to identify and track the environmental
characteristics and risks for epidemiological studies. First, GIS is a powerful
tool for disease mapping and spatial visualization of environmental factors.
In addition to visualization, disease outbreak detection and prediction based
on the GIS analytical tools has been studied widely.

Geostatistical functions are provided in many statistical software packages.
To date, the GIS softwares are capable of disease mapping, geographical
correlation studies, disease clustering, spatial-temporal analysis, disease data
visualization. S+SpatialStats, available from Mathsoft, implements lattice
model estimators. Matlab has a Mapping Toolbox (Matlab), a collection of
Matlab functions, user interfaces, sample data sets, and demos that read,
write, display, and manipulate geospatial data, that contains Kriging functions
and SpaceStat (TerraSeer) provides tools for exploratory spatial data analysis
such as Moran’s I, Geary’s C and spatial regression methods including trend
surface regression, spatial analysis of variance among others. The SAS Bridge
from SAS bridges SAS and ESRI’s ArcGIS9 by linking spatial, numeric,
and textual data through a single interface, saving the efforts of customizing
data transformation and transfer. In addition, GSLIB and GEOEAS among
others are also serving the market. GEOEAS is a collection of interactive
software tools for geostatistical analysis. The principal functions of the package
are the production of grids and contour maps of interpolated (Kriged) estimates
from sample data. GEOEAS can produce data maps, univariate statistics,
scatter plots/linear regression, and variogram computation and model fitting.
GSLIB (Geostatistical Software Library and related software) maintains a
collection of geostatistical programs developed at Stanford University over
the years. GSLIB provides variogram analysis and Kriging techniques. It also
analyzes three-dimensional data sets.
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ESRI is a leading GIS modeling and mapping software and technology
provider. The Spatial Analyst, 3D analyst with ArcGIS, Geostatistical Analyst
and Tracking Analyst tools have found their applications in disease monitoring,
tracking and outbreak detection for various types of disease data [e.g.,
West Nile Virus (WNV)] (ESRI). Geostatistical Analyst provides ESDA
(Exploratory Spatial Data Analysis), Deterministic interpolation methods
and Kriging interpolation methods. Tracking Analyst of ArcGIS can map
objects that move or change status through time. Figure 5-6 shows the
screenshot when executing spatial-temporal Analysis using tracking analyst
in ArcGIS, illustrating the evolvement of Hepatitis B in China during 1999—
2001 (Zhong et al., 2005). In another application, the Missouri Department
of Health and Senior Services employs ArcGIS for disease and bioterrorism
surveillance by tracking syndromic information.

GeoMedStat is another GIS application developed at ESRI. Using
GeoMedStat, real-time syndrome data (typically visits for each syndrome)
can be mapped at the ZIP Code level within the state over a Web-based
interface (Li et al., 2006).

By integrating GIS and the city’s standardized location data with various
agency-wide databases, the New York City Department of Health and Mental
Hygiene (DOHMH) is able to analyze a range of health data and evaluate
disease trends and their relationship with environmental conditions.
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Figure 5-6. GIS application for disease incidence tracking (Zhong et al., 2005).
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After West Nile Virus first appeared in the United States in the summer of
1999, DOHMH developed a vector and avian (mosquito and bird) tracking
system using a GIS-enabled database and Intranet application. “The database
is implemented with both spatial (ArcSDE) and relational (SQL Server)
database management system software that allows staff to collect incoming
information from the public through an ArcIMS software-enabled Web site”
(Mostashari, 2002). The city’s Bioterrorism Response Geographic Information
System (BTRGIS) is also based on GIS technology.

GIS maps are also supported by Spatial Temporal Visualizer (STV) available
from BioPortal disease surveillance system. The STV GIS view displays cases
and sightings on a map, allowing the user to select multiple data sets (e.g.,
disease cases, natural land features, land-use elements) to be shown on the
map in a layered manner using the checkboxes. It also supports dynamically
generated views, zooming, brushing, and animation. In addition, it allows the
user to invoke advanced spatial temporal analysis methods such as Prospective
Support Vector Clustering (PSVC) (see Chapter 4 for details) and visually
inspect their results through STV. A screenshot of GIS views from STV is
shown in Figure 5-8.
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In addition, GIS is also used in generating simulated cluster data that can
be used as artificial outbreaks for evaluating the detection capability of the
outbreak detection algorithms. The artificially generated clusters are customized
for desired cluster radius, density, distance, relative location from a reference
point, and temporal epidemiological growth pattern to explore a variety of
the uncertainties for disease detection algorithm to test (Cassa et al., 2005;
Watkins et al., 2005). For instance, based on user-specified parameters
describing the location, properties, and temporal pattern of simulated clusters,
the AEGIS Cluster Creation Tool (AEGIS-CCT) enables users to create
simulated clusters with controlled feature sets.

Internet-based GIS technology and mobile GIS technology provide inno-
vative mechanisms to facilitate flow of information. They allow the instant
availability and accessibility of the information across the globe. We expect that
the technologies can further facilitate the field data collection, real-time infor-
mation sharing, and event investigations in the domain of disease surveillance.
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Figure 5-8. Visualization of dead bird cases distributed along populated areas near Hudson
River by BioPortal STV (2006a).
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24 Spatial-Temporal Disease Modeling and Other
Visualization Examples

As an ongoing research project, IBM has developed a Spatio-temporal
Epidemiological Modeler (STEM) to model and visualize the spatial and
temporal models of emerging infectious diseases. The tool has built in GIS
data and it integrates with Susceptible/Infectious/Recovered (SIR) and
Susceptible/Exposed/Infectious/Recovered (SEIR) models.

The STEM model is one of the few works on visualizing the infectious
disease spreading models. An example from STEM is shown in Figure 5-9.

“Policymakers responsible for creating strategies to contain diseases and
prevent epidemics need an accurate understanding of disease dynamics and
the likely outcomes of preventive actions. In an increasingly connected world
with extremely efficient global transportation links, the vectors of infection
can be quite complex. STEM facilitates the development of advanced mathe-
matical models, the creation of flexible models involving multiple populations
(species) and interactions between diseases, and a better understanding of epi-
demiology. The STEM application has built in GIS data for every county in the
United States. It comes with data about county borders, populations, shared
borders (neighbors), interstate highways, state highways, and airports” (Ford
et al., 2005).
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Figure 5-9. Visualization using IBM STEM (source: http://www.alphaworks.ibm.com/tech/stem).
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Figure 5-10. BioPortal visualizer with phylogenetic tree representation (2006a).

The integrated visualization and analysis environment of BioPortal system
also supports a sequence-based phylogenetic tree visualization of infectious
disease when gene sequence information is available. The sequence-based
phylogenetic tree visualizer has been recently developed for diseases such as
the Foot-and-Mouth disease as shown in Figure 5-10.

3. INTERACTIVE VISUAL DATA EXPLORATION

Interactive visual data exploration entails a wide range of techniques and
operations for effective navigation on computer screens, the process of
information query and, if needed, close examination of individual cases or
patterns (Shneiderman, 1998). In particular, the operations and methods are
expected to provide support for flexibility and interactivity, which allow the
users to explore the information (e.g., a database) dynamically by specifying
a year, a county, and the demographic querying criteria such as age and
gender. Rapid, smooth screen changes on users’ demand are essential for the
perception of patterns, facilitating the early detection of changes in disease
incidence rate over time and in correlation with demographic variables.
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There are generally six types of interface functionality in syndromic
surveillance applications: overview, zoom, filtering, details on demand, relate,
and history (MacEachren et al., 1998). A typical surveillance task always
involves a continuous combination of a set of functionalities of the six types.

As an example, the interactive visual data exploration environment from
the BioPortal project, called the Spatial-Temporal Visualizer, supports all six
elements to display disease hotspots (see Figure 5-11). This environment
consists of a GIS display, a Gantt-chart temporal display, statistical plottings,
and a time-range filter, which are all user controllable and synchronized.
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Figure 5-11. A screenshot of BioPortal’s Spatial-Temporal Visualizer (2006a).
4. SUMMARY OF DATA VISUALIZATION IN

SYNDROMIC SURVEILLANCE APPLICATIONS

In summary, we found that very few systems (e.g., BioPortal) support
dynamic GIS functions or a full-blown interactive visual data exploration
environment. Systems including RODS, ESSENCE, and BioSense provide
limited support for interactive data exploration. Most syndromic surveillance
systems support geographic displays of a local region with vector maps. All
systems offer time-series plottings, arranged or aggregated by syndrome
categories, ages, and other covariates.
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There are several challenges with data visualization in syndromic
surveillance. First, the number of maps generated daily for review is often
large (Wagner et al., 2004b). For example, if there are 8 syndrome categories
and 10 geographical regions, at least 80 maps need to be generated for daily
review. If other parameters such as age and gender are also included in the
analysis, the number of the maps generated quickly becomes unmanageable.

Therefore, automatic screening of the maps (e.g., based on anomaly
detection algorithms) is critical.

Next, when the current research is focused around the best methods for
automating the visual presentation and interpretation of the data, a major
problem with spatial data analysis is data normalization. There is a large amount
of both temporal and spatial variability that must be taken into account. For
example, a known temporal variability is the seasonal variation in respiratory
diseases with increases during the winter months. Spatial variability is even
more problematic. A certain healthcare facility is centrally located and draws
patients from the entire state. However, the number of patients seen and the
severity of their illnesses are associated with the distance the patient must
travel to reach the hospital. Rural areas also have large variations in population
density that must be considered. These normalization issues are a complex
topic.

In addition, although the surveyed visualization tools used in biosurveillance
present a wide application of visualization on disease incidence clustering,
we notice that there is a lack of research on infectious disease modeling.
Research on disease modeling with visual model presentation is critical for
enhancing the understanding of the nature of infectious disease and its
causes, processes, development, and consequences, so as to facilitate the
surveillance process.

In general, we note that interactive, user-controlled, and real-time renderable
data visualization can be leveraged to enable effective surveillance and decision
support, and represents an important research direction.

S. INFORMATION DISSEMINATION AND
REPORTING

We summarize below some existing work on information dissemination
channels for real time alerting and investigation process triggering. Information
dissemination and alerting are concerned with managing and distributing
daily or weekly public health updates and outbreak alerts for involved parties
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such as public health officials, analysts, primary care providers, and possible
public safety and homeland security officials.

Existing syndromic surveillance information dissemination approaches
include email, FAX, pager, phone calls, Web, and dedicated communication
networks. These approaches differ greatly in their level of security, labor,
and resources involved in the procedure, and delay in processing time.

A few nation-wide secure networks have been built for public health
information dissemination and alerting. The CDC’s Health Alert Network
(HAN) serves as a communication backbone, linking public health departments
in 37 states to CDC headquarters in Atlanta, and now is being expanded
nationwide (2004b). The Epidemic Information Exchange (Epi-X) system is
the CDC’s secure, Web-based communications network that serves as an
exchange between the CDC, state and local health departments, poison
control centers, and other public health professionals (CDC, 2006b). Epi-X
provides rapid reporting, immediate notification, and coordination of health
investigations. The Public Health Information Network Messaging System
(PHINMS) provides a secure and reliable messaging system for the PHIN
(2003b; Barry and Kailar, 2005). PHINMS implements ebXML standard
(Kotok, 2003) for bidirectional data transport, which offers high-quality
encryption and authentication. An implementation of HAN- and PHINMS-
based syndromic surveillance is described in (Daniel et al., 2005).

Most syndromic surveillance systems support multiple dissemination
channels. The most commonly used methods, such as Email notification
and voice communications, are relatively fast. Web-based messages and
alerting networks are used less frequently. Secure network alerting with
automatic role-based personnel directory access can be very useful in automatic
and real-time alert distribution and is increasingly gaining acceptance.
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SYSTEM ASSESSMENT AND EVALUATION

Knowing how systems perform under various scenarios is important. We
need to examine with which level of sensitivity and how quickly they can
detect an outbreak or recognize a bioterrorism attack. Knowing the error rate
of a system can help make decisions regarding how much effort is needed
to investigate an alarm. The performance of the algorithms for outbreak
characterization determines the amount of information they provide (e.g.,
sets of affected individuals, the outbreak size, and disease spreading rate),
which provide important input for response planning.

Substantial costs can be incurred when developing or managing syndromic
surveillance systems and investigating possible outbreaks based on the
outputs of these systems (Reingold, 2003). For example, as reported in
(Doroshenko et al., 2005), the annual cost of the NHS Direct Syndromic
Surveillance System is about $280,000 and the usefulness of surveillance
systems for early detection and response is yet to be established. Assessing
the performance of surveillance systems is of significant importance for
improving the efficacy of the investment in system development and
management (Buehler et al., 2004).

As we discussed Chapter 4, dozens of different data analytical methods have
been developed in the literature, and each method has its own limitations and
strengths in different circumstances. One algorithm might work better when
the size of the outbreak infected population is in a particular range. Another
algorithm might have the lowest error rate in a slow-building but not a
sudden-surge outbreak. Most researchers agree that no single algorithm can
effectively cover the wide spectrum of all possible situations (Aamodt et al.,
2006; Siegrist et al., 2004). As such, thoroughly evaluating different systems

H. Chen et al., Infectious Disease Informatics: Syndromic Surveillance for Public Health 89
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_6,
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and analytical methods can provide important clues about their strengths and
weaknesses, and their applicability in various application scenarios.

However, there fundamental difficulties in the evaluation of outbreak
detection methods. The difficulties involve specification of the aberration of
interest, and determining whether the aberration is of public health importance,
caused by an infectious disease outbreak or not. In short, outbreaks are difficult
to define precisely. Measurement of the validity of an outbreak detection
method can be very complicated.

In this chapter, we first present a system evaluation framework that outlines
three linked pieces of work evaluating communication components, outbreak
detection algorithms, and system interface features. We then focus on evaluating
outbreak detection algorithms along with syndrome classification algorithms.
We then discuss the evaluation of data collection and information dissemination
components and the system interface features. For each evaluation task,
we introduce the commonly used measurement metrics. We also report
representative evaluation results from a number of system evaluation studies
employing the discussed measures.

1. SYNDROMIC SURVEILLANCE SYSTEM
EVALUATION FRAMEWORK

CDC’s Guidelines for Evaluating Surveillance Systems aim to address
“the need for (a) the integration of surveillance and health information
systems, (b) the establishment of data standards, (c) the electronic exchange
of health data, and (d) changes in the objectives of public health surveillance
to facilitate the response of public health to emerging health threats (e.g.,
new diseases)” (Buehler et al., 2004).

Many existing evaluation studies follow the guidelines of CDC’s evaluation
framework. This evaluation framework consists of a series of steps requiring
the involvement of stakeholders, the description of system components, and
the gathering of credible evidence regarding the system performance. It can
serve as a checklist to guide the design and implementation of an evaluation
procedure. Along with the description of the step-by-step tasks, relevant
standards are also provided for each of the tasks for assessing the quality of
the evaluation activities. Simplicity, flexibility, data quality, acceptability,
sensitivity, predictive value positive (PVP), representativeness, timeliness,
and stability need to quantified or described. These standards will be further
developed later in this chapter when we discuss evaluation of specific
components of syndromic surveillance systems.
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Our evaluation framework in general follows the CDC evaluation frame-
work but treats major system components separately for the purpose of
performance analysis, considering their differences in terms of performance
metrics, and visibility to different set of users. The specific evaluation tasks
include evaluation of outbreak detection algorithms, data collection and
information dissemination components, and system interface features.

2. EVALUATION OF OUTBREAK DETECTION
ALGORITHMS

2.1 Evaluation Methodology

Simulation is one of the well-developed computational methodologies
that can be applied to testing outbreak detection algorithms’ validity and
reliability. Different types of simulated signals, different days of duration,
and different case distributions need to be specified in a simulation study,
representing a realization of the system dynamic behavior. Tunable replications
of simulation also enable the examination of alternative solutions. In addition,
because of its flexibility and direct mapping to real-world entities, simulation
can be used for training purposes and produce useful animated visual outputs.

On the basis of the extent of data authenticity, three types of simulation
are possible. One is to use real data collected from real outbreaks. However,
because the number of real outbreaks is small (Siegrist and Pavlin, 2004), it
is very difficult to test outbreak detection algorithms using completely authentic
data. Simulated outbreaks can also be superimposed on real data to provide
additional tests for model validity. There are fully synthetic data-based
simulation and semisynthetic data-based simulation. Without actual outbreak
data, simulation-based evaluation, in particular, the fully synthetic data-
based simulation, often demonstrates only limited validity (Kleinman et al.,
2005Db).

2.2 Real Data Testing

Running outbreak detection algorithms on real data provides the strongest
and most direct validity tests. But the lack of surveillance data with real
disease outbreaks makes it difficult for real data testing. There are very few
published evaluation works that use real data with sufficient sample size to
test outbreak detection algorithms. These few studies include the retrospective
analysis by Hogan et al. (2003), a retrospective evaluation study (Ivanov et al.,
2003), and the Bio-ALIRT Biosurveillance Detection Algorithm Evaluation
program (Siegrist and Pavlin, 2004).
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In Hogan et al.’s study, two types of real data — sales of electrolyte
products and hospital diagnoses — were collected from six urban regions in
three states for the period 1998 through 2001. The gold standard outbreaks
are 18 significant increases in respiratory and diarrheal disease in the data.
Time gain using the sales of electrolyte products to signal outbreaks of
respiratory and diarrheal diseases in children compared with the hospital
diagnoses were seen.

Ivanov et al. (2003) conducted a retrospective evaluation study evaluating
chief complaints and the EWMA detection algorithm employing gold standard
outbreaks obtained from a dataset derived from the Utah Hospital Discharge
Database for the years 1998-2001 inclusive.

In the Bio-ALIRT Biosurveillance Detection Algorithm Evaluation program
conducted by Siegrist et al., real historic deidentified data were obtained
from five metropolitan areas over 23 months. Two natural disease outbreak
cases in the data identified and labeled by an outbreak detection group were
used as the gold standard. The study reports the difficulty in determining
how quickly an algorithm might detect an attack is due to the fact that
minimal data exists for an actual biologic attack. The limitations of real data
testing are discussed, including the uncertainty about the exact start date and
size of outbreaks and the inability to examine algorithm outbreak-detection
capabilities under a substantial number of diverse conditions.

2.3 Fully Synthetic Data Testing

To address the data problem, synthetic data or semisynthetic data are often
used in characterizing the performance of the outbreak detection algorithms.

Simulators are designed to generate the surveillance data such as illness
incidences, drug purchases, physician visits that can best mimic the realization
with careful characterization of an outbreak event and sick people’s healthcare
seeking behaviors.

A number of methods have been applied to generate these synthetic data.
One is to use the outbreak detection algorithm itself by running it backwards
to generate the illness incidence data. This kind of evaluation process was
used to evaluate WSARE (Wagner et al., 2006).

Another method composes the shapes of outbreak signals by looking at
the historical outbreaks. Figure 6-1 shows five temporal distributions used in
one simulation study (Jackson et al., 2007). The temporal distributions are
extracted from the epidemic curves of historic outbreaks, representing
several ways in which a pathogen could spread through a community. They
then specify the range of outbreak signal durations, and ranges of sizes of
populations affected to generate a number of simulated outbreaks.
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Figure 6-1. Simulation process diagram (Watkins et al., 2007).

A third method is agent-based method. Agent-based simulators (e.g.,
BioWar (Carley et al., 2003)) are also used to generate the surveillance data
that best represent the realistic outbreak events by modeling the social and
epidemiological characterization of public health status, which describes
how people acquire diseases, manifest symptoms, seek information, and seek
care. RODS also developed a CityBN (City Bayesian Network) simulator to
validate the WSARE algorithm. The CityBN simulator runs on a large
Bayesian network whose structure and parameters are created by hand. The
Bayesian network introduces temporal dynamics based on a variety of
factors such as weather and food conditions (Wong et al., 2005).
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Researchers also proposed to apply state-transition modeling techniques
to simulate disease outbreaks (Watkins et al., 2007). The spread of infectious
diseases transmitted by person-to-person contact in daily time steps can be
modeled (the process diagram is shown in Figure 6-1). The model
parameters are specified as disease-specific infectivity and susceptibility at
individual level based on the SEIR (Susceptible, Exposed, Infectious,
Recovered) approach that is commonly used to describe the epidemiology of
infectious diseases. The software was developed using the MapBasic
programming language for the MapInfo Professional GIS environment.

The fully synthetic data-based testing is advantageous because of the data
availability and control over the evaluation process. The size of the outbreak,
the spatial distribution, and many other characteristics can be changed to
simulate variable outbreak events. Precise information about outbreaks can
be used to measure the effectiveness of the methods under testing objectively
and precisely. However, the synthetically generated data usually embody
many assumptions to match the evaluated algorithms’ assumptions, thus
possessing limited validity. Typically, the use of the synthetic data testing is
restricted to early stage testing of algorithms.

24 Semisynthetic Data Testing

An alternative method to generate surveillance testing data takes the
approach of adding simulated outbreak cases to the real data streams. This
approach is sometimes referred to as “injecting” or “spiking” events into real
surveillance data collected during nonoutbreak periods (Wagner et al.,
2006). More sophisticated injection techniques model the outbreaks with the
shape and noise level derived from surveillance data collected during real
outbreaks. The high-fidelity detectability experiments (HiFIDE) are available
for noncommercial use.

Most of the evaluation studies take this approach for system evaluation
(Reis et al., 2003; Goldenberg et al., 2002). In the evaluation work of EARS
(Hutwagner et al., 2005a), for instance, 56,000 sets of artificially generated
case-count data are generated based on 56 sets of parameters using a
negative binomial distribution with superimposed outbreaks. The ESSENCE
IT system is evaluated using simulated bioterrorism events with estimated
patterns from the literature (Lombardo et al., 2003).

The semisynthetic approach provides greater validity than the fully synthetic
data-based testing. It allows for flexible manipulation of outbreak sizes and
the shapes of the spikes as well as the time courses of each injected event.
In-depth understanding of the dynamics of real outbreaks is crucial for the
fidelity of the injected outbreaks.
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2.5 Evaluation Metrics for Outbreak Detection
Algorithms

The main concerns regarding anomaly detection algorithms include how
significant the signal needs to be to trigger an alarm, how early an outbreak
can be detected, and how reliable the alarms are. Various aspects of outbreak
detection algorithms need to be evaluated using different evaluation criteria.
Such criteria include the quantification of sensitivity, predictive value positive,
timeliness, false alarm rate, generalized ROC curves, and average run length.
These criteria are in line with the CDC evaluation guidelines (CDC, 2001)
and the prior literature (Buehler et al., 2004; Romaguera et al., 2000). Table
6-1 summarized the outbreak detection metrics in the most commonly used
representations in the literature. A more detailed summary of detection
algorithm evaluation metrics can also be found in (Buckeridge et al., 2005b).

Three metrics — sensitivity, false alarm rate or the alternative measure to
the false alarm rate — predictive value positive and timeliness, are most
commonly seen in the literature (Buckeridge et al., 2004; Sonesson and
Bock, 2003). Sensitivity measures the probability that an alarm is correctly
triggered when an outbreak indeed occurs. False alarm rate measures the

Table 6-1. Outbreak detection metrics.

Terms Descriptions

Sensitivity The proportion of outbreaks that an algorithm detected
correctly (Wagner et al., 2006)

Specificity The proportion of nonoutbreaks days without alarms
(Wagner et al., 2006)

Predictive Value The proportion of alarms signaled as outbreaks are truly

Positive (PVP) outbreaks (CDC, 2001)

Timeliness (time-to-  The difference between the date of the first true alarm and

detection) a reference date (e.g., a date established as a start date of
an outbreak by expert consensus) (Wagner et al., 2006)

False alarm rate The proportion of nonoutbreak time periods (days or weeks

depending on the organization of the time series) on which
an algorithm signals alarms (Wagner et al., 2006)

ROC curve Plot of sensitivity versus false alarm rate
AMOC curve Plot of timeliness against false alarm rate
ARL’ Expected run length until the first false alarm (Sonesson

and Bock, 2003)
Expected run length until an alarm (Sonesson and Bock,
2003)

ROC: Receiver Operating Characteristic

1

ARL

AMOC: Activity Monitoring Operating Characteristic
ARL: Average Run Length
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probability that an alarm is triggered when there is no outbreak. The measure-
ment of sensitivity and PVP for a syndromic surveillance system is often
complicated by the absence of an appropriate gold standard (German, 2000).
A gold standard is assumed to be accurate and can be used to validate the
signals produced by an outbreak detection system.

There exists a tradeoff when trying to achieve good performance among
multiple evaluation criteria (Buckeridge et al., 2004; Siegrist and Pavlin,
2004). The Receiver Operating Characteristics (ROC) curve and the area
beneath it are further evaluation metrics that plot sensitivity against false
alarm rate (Reis and Mandl, 2003). Through the AMOC (Activity Monitoring
Operating Characteristic) curve plotting timeliness against false alarm rate,
the evaluators can easily read the tradeoff between the false alarm rate and
the timeliness.
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(a) Fictional AMOC curve.
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Figure 6-2a and b show a fictional AMOC curve and timeliness-ROC
curve, respectively. A three-dimensional generalized ROC curve is proposed
by Kleinman and Abrams (2006). The 3-D ROC curve incorporates the time
of detection and produces the timeliness-ROC surfaces (an example is shown
in Figure 6-2c). By incorporating sensitivity, specificity and timeliness into
single metrics, the proposed approach simplifies the comparison of different
methods’ performance.

Timeliness measures the proportion of time gained by an early detection
algorithm compared with a reference signal (e.g., the clinical diagnosis of an
anthrax case). As a means to measure the efficiency of detection algorithms,
it refers to how fast an aberration is signaled. The expected delay time can
be denoted by ED(¢) = E [max(O,t A —t)|z' = t} , where the time of change
is7 =1, and the time of alarm triggering is?, . However, the timeliness of a
surveillance process should also include the delay in the process data collection
and case reporting in addition to the time for disease case identification. The
timeliness of the data collection process is now generally indicated by the
frequency of data uploading, either manually or automatically, by the data
providers. A real time surveillance system must feature a real time and
automated data collection mechanism as discussed in Chapter 3.

2.6 Summary of Representative Evaluation Studies

We have conducted a systematic review of syndromic surveillance system
performance evaluation studies. Out of 55 publications that claim to evaluate
syndromic surveillance systems, 32 reported evaluation results or system
experiences with varying degrees of detail. Two systems were compared
with a reference detection system. Timeliness versus sensitivity plotting was
provided in 19 quantitative evaluations of algorithms’ detection performance
(e.g., WSARE, SaTScan, and RSVC). Twelve systems reported sensitivity
and false alarm rate through the ROC curve. A few evaluations such as the
BioALIRT evaluation program are conducted to examine the algorithms
from different systems for side-by-side comparison.

For a selected set of detection algorithms, we provide details about evaluation
design and settings (e.g., the data sets used, the outbreak detection methods
evaluated, and the simulated outbreak patterns). We also present the evaluation
results according to the performance metrics used in the evaluation. However,
as the simulation models and datasets used for evaluating each algorithm
differ, a conclusive performance report is not feasible.
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3. EVALUATION OF DATA COLLECTION AND
INFORMATION DISSEMINATION
COMPONENTS

The system components for data collection and information dissemination
need to be evaluated in terms of HIPAA compliance, scalability, and flexibility.

HIPAA privacy rules govern the obligations and reporting requirements
of healthcare data (CDC, 2003). HIPAA security regulations require methods
that protect data from disclosure in transport. To be HIPAA compliant, data
collection and dissemination components of syndromic surveillance systems
need to provide security measures such as data encryption, secure sockets,
secure shell tunneling, or the use of a virtual private network.

System scalability and flexibility indicate how scalable a syndromic
surveillance system is in monitoring new diseases, accommodating new
syndrome categories, or incorporating new types of data. Geographic coverage
should be able to be expanded with small costs as additional healthcare facilities
and jurisdictions participate. In addition, systems that use standard data formats
(e.g., in electronic data interchange) can easily interoperate with other systems
and thus might be considered more flexible and more scalable (CDC, 2001).

4. ASSESSMENT OF INTERFACE FEATURES AND
SYSTEM USABILITY

4.1 System Usability Evaluation Methodology

To complete our discussion of system evaluation, the performance of
operational systems bringing in the users’ operation experiences need to be
evaluated. The effectiveness (or value) of a syndromic surveillance system
depends greatly on the outcome associated with their use of the system. The
evaluation process usually employs two methodologies: controlled experiment
and field testing. Controlled experiments consider the users’ experience with
the interaction with the system interfaces for completion of a particular
operation. Field testing evaluates operational systems mainly for the measure-
ment of the benefit, and the cost from a perspective of societal utility
(Wagner et al., 2006). It takes into account how long it takes to deploy a
system, what the system failure rate is, and so on.
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4.2 System Usability Evaluation Metrics

In the evaluation work for the BioPortal system, Hu et al. (2005) applied
a number quantitative or qualitative metrics for system usability evaluation.
(1) Task accuracy: the correctness of the user generated analysis results
using the system referenced to the experts’ analysis results; (2) Task efficiency:
measuring the amount of time a person needs to complete an analysis task;
(3) User satisfaction: end-user satisfaction typically encompasses system
content, accuracy, output format, use, and timeliness; (4) Perceived usefulness:
it refers to the extent to which a person considers a system useful in his or
her work role and has been shown to affect user adoption significantly; (5)
Perceived ease of use: the ease of use of a system, as perceived by individual
users refers to the degree to which a person believes that using a particular
system will be free of effort.

Wagner summarized a group of measurable system benefits and cost related
system features in his recent work on field testing of biosurveillance systems
(Wagner et al., 2006). The metrics are: (1) Benefits from expected reductions in
mortality and morbidity through earlier detection; (2) Benefits [usefulness,
simplicity, representativeness (CDC, 2001)] from expected reductions in
operational costs owing to policy improvements and workflow efficiency;
(3) Costs to build or purchase and install, and costs of staff time on alarms
monitoring and investigation and certain other metrics.

4.3 Summary of System Usability Evaluation Studies

The evaluation study conducted by Hu et al. (2005) is representative of
research examining syndromic surveillance system usability issues, such as
readability, learning curve, and decision making assistance. They used the
User Interaction Satisfaction (QUIS) instrument by Chin et al. (1988) to
evaluate the usability of the BioPortal system, based on the Object-Action
Interface model developed by Shneiderman (1998). They examined the
overall reactions to the system, the screen layout and sequence, the system’s
capability, the terminology/information used, and subjects’ ease of learning,
based on a 9-Point Likert scale (Hu et al., 2005).

From a user’s perspective, all relevant data must be seamlessly integrated
to support the surveillance and analysis tasks that are critical to the prevention
of and alerts about particular disease events or devastating outbreaks. Data
visualization support is also critical; the value of a syndromic surveillance
system is greatly affected by the extent to which the system can present data
and analysis results in an easily comprehensible, cognitively efficient manner.
Ultimately, a syndromic surveillance system must facilitate and enhance the
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analysis tasks by public health professionals in terms of accuracy and time
requirements, using their own heuristics and preferred analysis methods.

S. SUMMARY AND DISCUSSION

Evaluation of syndromic surveillance systems is confounded by a number
of factors. First, few real-world datasets are available for evaluation and
comparison purposes due to the low frequency or absence of outbreaks of
most diseases. Second, timeliness of detection is closely related to the timing
of patient visits or medication purchases, determined by individual patients’
behavior. Third, data quality and availability are seldom considered in
algorithm evaluations. Incomplete data from various healthcare participants
can potentially impair algorithms’ detection power.

Fourth, the criteria for optimized detection performance may vary for
different illnesses. Different bioterrorism agents display different temporal
and spatial patterns. Botulism and toxic shock syndrome are readily detected
in relatively smaller clusters, whereas detection of SARS presents a greater
challenge as the syndrome is relatively less specific and the impact may be
more widely spread. The incubation time and the time between exposure and
symptom onset could be longer or shorter depending on the type of biologic
agent. The detection power of the algorithms for rare diseases (e.g., botulism-
like illness or smallpox) is yet to be reported.

Lastly, the ability of an algorithm to identify the geographic location of
an outbreak was rarely measured and reported. In spatial context, the signal
extent is not usually considered. For example, in a scan-like method, the
radius of a detected cluster could indicate a kind of accuracy of the detection
method. The cluster validity measurement techniques discussed in a few
works (Halkidi et al., 2002) seem ready to check the clustering algorithms’
performance.



Part 11

SYNDROMIC SURVEILLANCE
SYSTEM CASE STUDIES

To better illustrate the earlier discussion on syndromic surveillance data
sources, various technical components of syndromic surveillance systems,
and related implementation issues, we present several case studies in Part II
of this monograph. With case studies 1-6, we describe the system components
in detail roughly following the structure of Chapters 3-5.

Increasingly, Web-based electronic information sources such as discussion
forums, mailing lists, government Web sites, and news outlets are becoming
major information sources for early infectious disease detection. Real-time
data communication and advanced data mining technologies combined
with interactive visualization technologies, provide unseen opportunities for
accessing and integrating global information sources for disease surveil-
lance. The following two cases are used to exemplify the efforts dedicated for
global disease surveillance based on online information. Two systems,
HealthMap and Argus, will be presented as cases 7 and 8, respectively.

In Chapters 7—14, we investigated eight biosurveillance systems in depth.
They vary in operational coverage, some being national practice or func-
tioning at an international scale, and the others being deployed locally.

Case 1: The first case study focuses on the BioSense system, which is a
nationwide “safety net” for early detection in major cities, initiated and
administrated by the US CDC. BioSense represents a major effort on infra-
structure building targeted at near real-time data collection at local, state,
and national levels.
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During the wildfires in San Diego County in October 2007, the CDC
BioSense system found a spike in respiratory illnesses that coincided with
the wildfires in San Diego County. BioSense was set up to receive data from
the emergency departments of six hospitals near the wildfire zones. BioSense
identified significant increases in diagnoses of various respiratory syndromes
(p <0.001), particularly asthma (p = 0.001) and dyspnea (p < 0.001). Details
of BioSense’s use as a drop-in biosurveillance system during the San Diego
wildfires are presented in Section 4 of Chapter 7.

Case 2: The second case study examines the Real-time Outbreak and
Disease Surveillance (RODS) system, which has been deployed across the
nation. The RODS project is a collaborative effort between the University of
Pittsburg and Carnegie Mellon University. It provides a computing platform
for the implementation and evaluation of different analytic approaches for
outbreak detection, among other data collection and reporting functions. The
National Retail Data Monitor (NRDM) monitoring anonymous sales of over-
the-counter (OTC) healthcare products is part of the RODS project assisting
with disease outbreaks identification. Thousands of retail pharmacy, grocery,
and mass merchandise operations have participated in the NRDM nationwide.

RODS was implemented in Utah during the 2002 Winter Olympics. The
implementation focused on the surveillance process automation and real-
time communication that are essential for short-term drop-in situations such
as international games or other gatherings. We discussed this implementation in
detail as a RODS use case at the end of Chapter 8. Emphases are placed upon
technical and operational aspects of the system implementation, including
secure network infrastructure and messaging standards for automated data
acquisition, data surveillance techniques including natural language processors,
detection algorithms, notification systems, and user interfaces.

Case 3: The third case study examines the BioPortal system. Funded by
the US National Science Foundation (NSF) and US Department of Homeland
Security (DHS), the BioPortal project was initiated in 2003. This system is
unique for its Web-based, highly interactive, and customizable spatial-temporal
data visualization and analysis. This visualization and analysis environment
provides integrated support for sequence-based phylogenetic tree visualization
when sequence information is available. BioPortal enables epidemiological
data sharing across jurisdictions. It also provides support for syndromic
surveillance based on free-text chief complaints (in both English and Chinese).
In addition to human infectious diseases, BioPortal has been applied to
animal diseases such as Foot-and-Mouth disease (FMD).
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FMD disease is a highly contagious and sometimes fatal viral disease of
cloven-hoofed animals such as cattle, water buffalo, sheep, goats, and pigs.
There were a number of epidemics and outbreaks in the US, UK, and Taiwan in
recent history. In 2005, an Asia-I strain of FMD appeared in the eastern
provinces of China. BioPortal collaborated with the FMD Laboratory at the
University of California, Davis, which is dedicated to a global surveillance
for FMD disease by gathering global FMD related information, identifying
surrogates of risks and modeling and predicting FMD virus evolution. The
detailed discussions about the FMD BioPortal in Section 4 of Chapter 9 high-
light the significance as well as difficulties of operating a global surveillance
system for animal diseases.

Case 4: The fourth example system is the Electronic Surveillance System
for the Early Notification of Community-Based Epidemics (ESSENCE). The
system monitors both military and civilian healthcare data daily for early
outbreak detection and warning.

Case 5: We use the New York City syndromic surveillance systems as a
case to illustrate the citywide surveillance activities in public health practice,
discussing its uniqueness in the aspects of operational, response, and research
components that are integrated within a health department. Field investigation
experiences should be shared among the syndromic surveillance practitioners.

The NYC Emergency Department (ED) syndromic surveillance approach
was practiced for respiratory illness in 2005. The practice focuses on not
only detecting abnormal increases in respiratory illness visits but also
determining and characterizing the cause of such increases. They took a “data
fusion” approach, i.e., monitoring and investigating multiple data sources
instead of relying on a single data source. This practice is presented in detail
toward the end of Chapter 11.

Case 6: The Early Aberration Reporting System (EARS) of the US CDC is
widely deployed in local and state public health departments and has helped
public health officials to monitor, analyze, and report unusual trends or
clusters in public health surveillance data. The aberration detection methods
implemented in EARS are tested in a number of circumstances. Experiences
of syndromic surveillance practices with EARS are accumulated regarding
the tuning of the system, the interpretation of the output and the investigation
process.
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EARS was seen as a critical infectious disease surveillance system during
the devastating hurricane disasters in Louisiana, Mississippi, and Texas in
September and October of 2005. We present the implementation and operation
of details as a use case of the EARS system for public health awareness
preparedness during natural disasters.

Case 7: The Argus system has been developed to perform biological
event detection and tracking on a global scale, by examining indications and
warnings of social disruptions. It actively tracks avian influenza and 130 other
infectious diseases.

Case 8: HealthMap is a Web application that automatically queries, filters,
integrates, and visualizes unstructured electronic reports on disease outbreaks. It
collects disease-related online information from around the world, including
news media, expert-curated accounts, and validated official alerts. The system
automatically classifies alerts by location and disease and then overlays them
on an interactive geographic map.

In April 2009, a new strain of influenza known as HINT1 flu (swine flu)
was first detected. HealthMap reported the detection of Swine Flu cases
weeks before the news emerged in English-language resources. It is a real-
time integrated news outlet to enhance the awareness of HIN1 flu outbreaks
for the public around the world. Details of this practice are discussed as a
HealthMap case study toward the end of Chapter 14.



Chapter 7
BIOSENSE

BioSense is part of the US CDC’s Public Health Information Network
(PHIN) framework managed through the CDC Biolntelligence Center. It
supports early outbreak detection at the local, state, and national levels, by
monitoring the size, location, and rate of spread of an outbreak; monitoring
seasonal trends of influenza and other disease indicators; and assisting in
case-finding for epidemiologic investigations.

In March 2005, BioSense had more than 340 state and local health
department user accounts, representing 49 states. Its user base continues to
expand. The current implementation status of BioSense (as of June 2008)
is shown in Figure 7-1. The system has also been used in several high-profile
events (e.g., the G8 meeting in 2004) (Bradley et al., 2005; Ma et al., 2005;
Sokolow et al., 2005).

Figure 7-2 shows the BioSense system architecture. Specifically, BioSense
consists of the following system components (BioSense, 2008):

e Data Transmission: assuring the secure, timely, and routine receipt of
health data for public health surveillance. BioSense requires data to be
transmitted over the PHIN Messaging System (PHINMS). PHINMS is
an interoperable messaging system developed by CDC for data providers
to transmit private data either as standardized messages and vocabulary
securely over the Internet in real-time or in batches.

e Data Analysis: establishing a set of statistical methods and tools to assist
public health analysts to detect potential public health events and make
informed decisions. At the CDC Biolntelligence Center (BIC) each day,
the public health analysts monitor, analyze, and interpret facility, state,
and national trends or anomalies in the BioSense data and provide
further analytic and reporting support to state and local public health
departments.

H. Chen et al., Infectious Disease Informatics: Syndromic Surveillance for Public Health 109
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 7,
© Springer Science + Business Media, LLC 2010
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e Data Reporting: on a near real-time basis, providing useful views of data
through time-series graphs and geospatial maps, for state and local public
health as well as for CDC program staff.

o Public Health Response: providing state and local public health staff real-
time access to existing data from healthcare organizations, state syndromic
surveillance systems, national laboratories, and other data sources for
investigations, outbreak responses, and public health interventions.

Figure 7-2 also shows the recent collaborative efforts between CDC’s
National Electronic Disease Surveillance System (NEDSS) and BioSense. The
goal of the collaboration is to establish interoperable communications between
a hospital system to a state-based electronic disease surveillance system (e.g.,
NEDSS Base System or any NEDSS compliant system) consistent with
CDC PHIN standards.

1. BIOSENSE DATA COLLECTION AND
PREPROCESSING

BioSense data providers include Department of Defense (DoD)-Military
Treatment Facilities (MTF), the Department of Veterans Affairs (VA), the
Laboratory Response Network (LRN), and Electronic Laboratory Results
(ELR) reporting systems. The system accepts, receives, and collects up to
four ICD-9-CM diagnosis codes identifying the reasons for ER visits and
procedure-encoded CPT ordered for every ambulatory care visit from DoD-
MTF and VA. Clinical laboratory test orders are collected nationally through
the commercial lab operator LabCorp (Laboratory Corporation of America).
It also receives lab results from BioWatch environmental sensors (Sokolow
et al.,, 2005). BioSense supports automated messaging through HL7
protocols in either a batch mode or a near real-time mode. The data types
BioSense collects from hospital EDs and ambulatory care include patient
chief complaint, physician diagnosis, supporting patient demographic data,
daily hospital census, ED-specific clinical data, microbiology test orders and
results, radiology orders and results, and medication orders.

The 11 syndrome categories monitored by BioSense are shown in Table
7-1. To allow surveillance of more granular events than is possible using the
11 syndromes, BioSense medical expert staff developed 78 more subsynd-
romes. These subsyndrome definitions can be found at the BioSense project
Web site (CDC, 2007).
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Table 7-1. Eleven syndrome categories monitored by BioSense.

Fever Neurologic
Gastrointestinal Rash

Hemorrhagic illness Severe illness and death
Localized cutaneous lesion Specific infection
Lymphadenitis Respiratory

Botulism-like/botulism

Data in ICD-9-CM form are mapped to 11 syndromes based on a mapping
schema created in 2003 by a multiagency working group (CDC, 2007). Free-
text data are mapped to subsyndromes using the text word search. Most
keywords in the chief complaint to subsyndrome mapping table were derived
from the EARS system Text String Search method. It contains both English
and certain Spanish keywords and includes regular terms, misspellings, word
fragments, and abbreviations. The mapping is continually improving the
keyword search list by examining the original free text and its corresponding
mapping results. Keywords were modified during the initial implementation
period. The majority of the keywords in the free-text physician diagnosis to
subsyndrome mapping table were derived from terms that appeared in ICD-
9-CM descriptions (CDC, 2007). At the same time, BioSense employs a
Bayesian classifier — CoCo from the RODS laboratory — for syndrome
classification.

2. BIOSENSE DATA ANALYSIS

BioSense uses the CUSUM algorithm for anomaly detection. The CUSUM
algorithm is used as a short-term surveillance technique to indicate recent
data changes through the comparison of moving averages (Bradley et al.,
2005). Because of the high variability within the data, CUSUM values are
computed for each date-source-syndrome combination at the state or
metropolitan reporting area (MRA) level rather than for individual ZIP codes
(Bradley et al., 2005).

The other detection algorithms available from BioSense include EWMA
and SMART. EWMA and SMART algorithms are also used to predict the day-
source-syndrome counts at the ZIP code level, with seasonality and day-
of-week effects considered. The calculations are conducted on a daily basis.
Spatial-temporal clustering methods such as various scan statistics are also
being explored by the BioSense system. BioSense explored the use of SaTScan
with a separate run for each month to detect spatial disease clusters. SaTScan
is set to scan a maximum circle radius of 100 km with each ED facility as
one geographic unit. Poisson probability model is used to model the disease
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rates, and clusters are identified by locating the geographic areas that do not
conform to these model-predicted disease rates.

3. BIOSENSE DATA VISUALIZATION,
INFORMATION DISSEMINATION, AND
REPORTING

BioSense is an Internet-accessible, secure system. It displays data in
multiple formats including line graphs, maps, tabular summaries, and case
details. Graph plotting for individual data source, individual syndrome category,

Flu Kiosk My Flu Dashboard Map Time Series Home Dash1 Colorado Dash3 Age
Maps
&0 ) Y0
United States Week Ending: 01/05/2008 United States Week Ending: 01/05/2008 United States Week Ending: 01/05/2008
Sentinel Providers DoD/VA Diagnosis BioSense Hospitals Chief Complaint

Time Series

|20 Bl B30
United States Season:2007-2008
BioSense Hospitals Chief Complaint

|

United States Season:2007-2008 United States Season:2007-2008
Sentinel Providers DoD/VA Diagnosis

[

Figure 7-3. BioSense Influenza tool that merges multiple sources (source: BioSense Web
site).
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BioSense

Home | Test Order Data

VA, DoD, & Lab Test Order Data* Real-time Hospital Data
Analytical results for all Syndrome counts for patient chief
syndromes displayed in Chief Complaint/ Diagnosis complaint and physician
summarized format, maps, diagnosie.
graphs, and tables.
== = List of statistical anocmalies for
Time series graph display with =l Syndrome opunts-and ra6es,
Consolidated Line Graphs data sources plotted on each
syndrome graph. Time series graph of user-
e ot i watisical
Time series graph display with analyses.
Syndrome Specific Line Graphs :ieﬂpga[:asl:nduarkoams:urce graphs for a e e e
R e
create subsets,
Map display with separate data
source maps for  single '
e Display of hosial census cat.
Tabular display with access to Map of the Unites States
Syndrome Specific Tables detailed line lists of records for a displaying national distribution of
single syndrome. disease indicators.
Non-reactive BioWatch Resuits Influenza Module
BioWatch laboratory test results for environmental air samplers within Influenza data from the U.S.Influenza Surveillance System, Influenza
your jurisdiction(s). Division, CDC and BioSense.

Figure 7-4. BioSense homepage showing available surveillance functionalities (source:
BioSense Web site).

and different level of geographical regions is also available (Figure 7-3). On
its homepage, as shown in Figure 7-4, it provides a collection of analysis and
visualization functionalities. For VA, DoD, and Lab Test Order Data, (1) it
can display time series graphs or map graphs of all data sources for each
syndrome or a selected specific syndrome (the example of asthma time-series
is shown in Figure 7-5); (2) it has tabular display with access to detailed line
lists of records for a single syndrome; (3) infection alerts for several
bioterrorism agents can also be reported. For real-time hospital data, a line
list of statistical anomalies found by BioSense analysis, time series and map
display for syndrome counts, and as well as drill-down patient details are all
available.

CDC Biolntelligence Center is the agency responsible for monitoring
anomalies detected by BioSense. The lightweight directory access protocol
(LDAP) is employed for information reporting.
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Figure 7-5. BioSense analysis page for Asthma query (source: BioSense Web site).

4. CASE STUDY: MONITORING HEALTH
EFFECTS OF WILDFIRES USING
BIOSENSE

From October 21 to October 26, 2007, wildfires spread across hundreds
of thousands of acres of San Diego County, forcing the evacuation of more
than 300,000 residents. During October 22-30, 2007, CDC personnel monitored
BioSense for evidence of health effects possibly related to the wildfires in
San Diego County.

In October 2007, data were being received from EDs at six of the 19
hospitals in San Diego County. These six hospitals were located near but
outside the fire and evacuation areas (illustrated in Figure 7-6).

Data received by BioSense included age, sex, free-text patient-reported
chief complaints, and diagnosis codes (usually ICD-9-CM codes). The first
part of the standard procedure is syndrome classification. Diagnoses are
assigned to one or more of the 11 general syndromes (shown in Table 7-1)
and 78 more specific subsyndromes (e.g., asthma and dyspnea).
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Figure 7-6. Hospital participation in BioSense, San Diego County, California, October 20-29,
2007 (Ginsberg et al., 2008).

These data are first centralized at CDC from hospital EDs. Within
2-3 hours, these data are processed at CDC and then made available in
BioSense. The median time for chief complaints from patient visits to receipt
of ED data at CDC is 8 hours. For diagnosis codes, the median time is 5 days.

For data analysis, the daily count of visits indicating diseases after the
manual or automatic syndrome mapping is displayed on time-series graphs
(Figure 7-7 shows an example time-series for counts of diagnoses and chief
complaints of asthma) and compared with the predicted number based on a
7-day moving average. A modification of the EARS C-2 algorithm (Hutwagner
et al., 2003) is used to determine statistical significance. A single-day visit
count with a recurrence interval of >100 days (analogous to p <0.01) is
considered statistically significant.
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Figure 7-7. Time-series of ED visits by chief complaints and diagnosis of asthma — six
participating hospitals, San Diego, California, September 22 — November 17, 2007
(Gingsberg et al. 2008).

During the wildfires, the BioSense system noted increases in total hospital
visit volume and large increases in respiratory visits to hospitals, especially
visits for asthma and dyspnea (difficulty in breathing/shortness of breath).
The BioSense system detected significant (p <0.01) increases in visits for
asthma from October 22 to 24. When the winds shifted on October 25, asthma
complaints and diagnoses began to decline.

BIC and San Diego County public health officials also worked together to
conduct retrospective analyses of BioSense post-wildfire data. These analyses
helped to gain a better understanding of how cardiovascular and respiratory
diseases develop before, during, and after the fire and how patients with chronic
respiratory illness were affected by exposure to the wildfire smoke. The
collaboration between BIC and San Diego County public health officials
proved to be useful and has led to increasing collaborative activities across
CDC and with state and local public health officials. Lessons learned from
this experience will help not only the next time wildfires strike, but also in
other large-scale exposures to environmental hazards.
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S.

FURTHER READINGS

We provide the following project link and some key readings for the
readers who might be interested in learning more details about the BioSense
project.

Project link:

http://www.cdc.gov/BioSense/

Important readings:

1.

BioSense working group. (June 2008) “BioSense Technical Overview of
Data Collection, Analysis, and Reporting.” Available at http://www.cdc.
gov/BioSense/files/BioSense_Techn Overview 102908 webpage.pdf
Ginsberg, M., J. Johnson, J. Tokars, C. Martin, R. English, G. Rainisch,
W. Lei, P. Hicks, J. Burkholder, M. Miller, K. Crosby, K. Akaka, A. Stock,
and D. Sugerman. (2008). “Monitoring Health Effects of Wildfires Using
the BioSense System — San Diego County, California, October 2007.”
MMWR July 11, 2008.

Bradley, C. A., and H. Rolka, et al. (2005). “BioSense: Implementation
of a National Early Event Detection and Situational Awareness System.”
MMWR (CDC) 54(Suppl), pp 11-20.

Sokolow, Leslie Z., N. Grady, H. Rolka, D. Walker, P. McMurray, R.
English-Bullard, J. Loonsk. “Practice and Experience: Deciphering Data
Anomalies in BioSense.” MMWR August 26, 2005.

Ma, H., J. Tokars, R. English, T. Smith, C. Bradley, L. Sokolow, and H.
Rolka. 2006 Jul 7. “Surveillance of West Nile Virus Activity Using
Biosense Laboratory Test Order Data.” Advances in Disease Surveillance
[Online] 1:1.

R. English, P. McMurray, L. Sokolow, H. Rolka, D. Walker, J. Quinn III,
and K. Cox. 2006 Jul 7. “Geographic Categorization Methods Used in
BioSense.” Advances in Disease Surveillance [Online] 1:1.



Chapter 8
RODS

The Real-time Outbreak and Disease Surveillance (RODS) system was
initiated by the RODS Laboratory at the University of Pittsburgh in 1999.
The system is now an open source project under the GNU license. The
RODS development effort has been organized into seven functional areas:
overall design, data collection, syndrome classification, database and data
warehousing, outbreak detection algorithms, data access, and user interfaces.
Each functional area has a coordinator for the open source project, and there
is an overall coordinator responsible for the architecture, overall integration
of components, and overall quality of the JAVA source code. Figure 8-1
illustrates the RODS’ system architecture.

The RODS system as a syndromic surveillance application was originally
deployed in Pennsylvania, Utah, and Ohio. As of 2006, RODS performs
emergency department surveillance for other states of California, Illinois,
Kentucky, Michigan, New Jersey, Nevada, and Wyoming through an ASP
model at the University of Pittsburgh, and through local installations in
Taiwan, Canada, Mississippi, Michigan, California, and Texas. As of June
2006, about 20 regions with more than 200 healthcare facilities connected to
RODS in real-time. It was also deployed during the 2002 Winter Olympics
(Espino et al., 2004). It also serves as the user interface for national over-the-
counter medication sales surveillance data collected through the NRDM.

The conceptual architecture of the RODS system is shown in Figure 8-1.
Multiple data sources are collected and stored in a database and data
warehouse where they are made available to outbreak algorithms and the
RODS user interface.

H. Chen et al , Infectious Disease Informatics Syndromic Surveillance for Public Health 121
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_8,
© Springer Science + Business Media, LLC 2010
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Figure 8-1. RODS system architecture (Espino et al., 2004).

The latest version of RODS system is RODS 6. RODS 6 is built from the
ground up to be pluggable and part of a larger biosurveillance system as a
biosurveillance grid node that incorporates as well as offers services. New
data types and algorithms can be easily incorporated into the system without
the need for database redesign or coding of the core software. RODS 6 also
provides a robust API so that external applications can leverage the data
collection, visualization, and data analysis capabilities of RODS.

1. RODS DATA COLLECTION

RODS collects healthcare registration data in real time from participating
hospitals via a standard called HL7. Specifically, healthcare registration data
consist of the age, gender, home zipcode, date/time of admission, and a free-
text chief complaint of the patient.

The National Retail Data Monitor (NRDM) is a component of the RODS
system, collecting and analyzing daily sales data for OTC medication sales.
It also collects and analyzes chief complaints data from various hospitals.
NRDM monitors more than 29,000 retail stores including stores from 12 big
chains in the US and its territories for OTC medication sales 24 hours a day/
7 days a week as of May 2009 (a screenshot of its deployment around the US
is shown in Figure 8-2). Daily batch feeds of sales data from those stores are
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received by NRDM everyday by midnight. Individual medication sales data

are aggregated into one or more of the 18 OTC categories (Table 8-1) before

being aggregated spatially by zip code according to store location.

There are plans to integrate laboratory orders, dictated radiology reports,

dictated hospital reports, and poison control center calls in future versions.
The RODS system currently monitors 7 healthcare registration prodrome

categories, as shown in Table 8-2.

Table 8-1. Eighteen over-the-counter medication categories monitored by NRDM.

Antidiarrheal Cough syrup adult liquid
Antifever pediatric Cough syrup adult tablet
Antifever adult Cough syrup pediatric liquid
Bronchial remedies Electrolytes pediatric
Chest rubs Hydrocortisones
Cold relief adult liquid Nasal product internal
Cold relief adult tablet Thermometers
Cold relief pediatric 11qu1d Throat lozenges
Cold relief pediatric tablet Others
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Figure 8-2. NRDM deployment at 20,000 stores as of 2002 (Wagner et al., 2003).
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Table §-2. Syndrome categories monitored by RODS.

Gastrointestinal Rash

Hemorrhagic illness Respiratory
Constitutional Botulism-like/botulism
Neurologic

The RODS data are collected in real-time through HL7 messages from
other computer systems such as registration systems and laboratory information
systems, over a Secure Shell-protected Internet connection in an automated
mode.

2. RODS DATA ANALYSIS

One of the major strengths of RODS is in data analysis. Several syndrome
classification approaches have been tested and implemented in the RODS
system. It applies a keyword classifier and an ICD-9 classifier to chief complaint
data. The CoCo module, a syndrome mapping component, has been tested in
multiple settings (Olszewski, 2003). For the respiratory syndrome, based on
manually-classified results, CoCo achieves a 77% sensitivity level and 90%
specificity level (Wagner et al., 2004b). The classifier’s performance for
other syndrome categories can also be found in (Wagner et al., 2004b).
Chapman et al. (2005) proposed a Bayesian network-based semantic model,
which has shown to classify free-text chief complaints effectively at the expense
of added system complexity and computational overhead. The performance
of the classifier represented by the ROC curve for each syndrome category
varies between 0.95 and 0.99.

The RODS laboratory, in collaboration with the Auton Lab at Carnegie
Mellon University, continues to develop additional algorithms to model both
the temporal fluctuations and spatial distribution patterns in syndromic
surveillance datasets. The current open source release of the RODS system
includes implementations of several on-the-fly outbreak detection algorithms:
wavelet-detection algorithms, Moving Average, CUSUM with Exponentially
Weighted Moving Average, and Recursive Least Square (RLS). Methods
including SMART, scan statistics, and WSARE are also being developed and
tested. A future release will allow the import and export of data as common
text files such that stand-alone algorithms and statistical software packages
can be used to analyze the data.

CUSUM and SMART are also used in the BioSense system. They were
discussed in the previous section. What’s Strange About Recent Events
(WSARE) algorithm (Wong et al., 2003, 2005) evaluates all the possible
rules that are made up of any data feature components (e.g., a two-component



8. RODS 125

rule could be Gender = Male and Home = NW) in both recent data and baseline
data. The rules that have the largest discrepancy of the proportions between
the recent data and baseline data are detected as rules summarizing the
most significant patterns of anomalies. WSARE 3.0 has been evaluated
retrospectively using the data from the Israel Center for Disease Control and
has shown its capability of detecting the outbreak on the second day from its
onset (Kaufman et al., 2005).

In the latest release of RODS 6, high-fidelity injection detectability
experiments (HiFIDE) are integrated for outbreak simulation and algorithm
testing. HiFIDE enable public health officials to analyze the detectability
characteristics of a surveillance system operating in their jurisdiction. HiIFIDE
inject synthetic outbreak data (spikes) into real surveillance data from a
particular jurisdiction. The HiFIDE spike is both high-fidelity in contour and
in scale by first deriving the spike shape and then rescaling the spike from
real surveillance data collected during outbreaks that occurred in other regions.
In particular, its interface focuses on depicting the expected sensitivity,
specificity, and timeliness of detection for outbreaks of varying sizes, etiologies,
and geographic and demographic scopes. A HiFIDE window is shown in
Figure 8-3.
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Figure 8-3. Sensitivity plots in HiFIDE (Wallstrom et al., 2005).
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3. RODS VISUALIZATION, INFORMATION
DISSEMINATION, AND REPORTING

The RODS system provides multiple graphing techniques with both time-
series and geographical displays available via an encrypted, password-protected
Web interface. Three different data views — Main, Epiplot, and Mapplot —
are supported. Figures 8-4 to 8-6 are three example views of RODS user
interface. These views are implemented using JFreeChart (an open-source
graphing package) and ArcIMS (an Internet GIS server developed by the
Environmental Systems Research Institute, Inc.).

The RODS Main screen (Figure 8-4) shows time-series plots updated on
a daily basis for each syndrome. The intention of the Main screen is that of a
“threat” board in a situation room. The Main screen refreshes itself every
two minutes if left displayed. The graphs can be plotted with different event
monitoring algorithms such as moving average and CUSUM. The user can
choose to view these plots by county or for the whole state.

The RODS Main screen is limited to viewing six OTC (individual types
of medication and prodrome categories cannot be selected from the OTC
Main screen) or healthcare registration charts for the last seven days, whereas
Epiplot screen (Figure 8-5) is highly interactive. EpiPlot allows the user to
specify the syndrome, particular geographic region, start dates, and end dates, to
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Figure 8-4. RODS system Main screen (source: RODS Laboratory, University of Pittsburg).
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generate customized time-series plots. Users can choose to analyze the data
using one of four on-the-fly analysis algorithms — CuSUM with EWMA, RLS,
Wavelet or Moving Average. A “get cases” button allows users to view case-
level detail for encounters making up the specific time-series.
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Figure 8-5. RODS Epiplot screen (source: RODS User Manual).
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RODS Real-time Outbreak and Disease Surveillance
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Figure 8-7. RODS alerts (monitoring healthcare registrations only) (source: RODS manual).

The Mapplot screen provides an interface to the ArcIMS package, to
display disease cases’ spatial distribution using patients’ zip code information.
Figure 8-6 is a Mapplot screenshot of Google Earth geographic view of daily
frequencies of one type of OTC sales.

The Alerts page (Figure 8-7) provides detailed information about each
alert for a defined jurisdiction. An alert is registered each time data analyzed
exceeds the thresholds set by one or more of the four algorithms in use.

4. CASE STUDY: SYNDROMIC SURVEILLANCE
WITH RODS FOR THE 2002 WINTER
OLYMPICS

RODS was deployed at the 2002 Winter Olympics in Salt Lake City for
bioterrorism and public health surveillance. The main purpose of implementing
RODS was to automate an otherwise expensive, round-the-clock surveillance
process. It was a successful test of RODS deployment in such short-term
drop-in situations (Gesteland et al., 2003).

During the Olympics, encounter data were collected from 19 urgent care
centers and nine emergency departments owned and operated by Intermountain
Health Care (IHC), University of Utah Health Sciences Center (UUHSC)
and from the University of Utah Hospital’s emergency department and the
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Polyclinic located in the Olympic Village. Together these emergency rooms
and urgent care centers serve about 70% of the population of Utah.

RODS takes advantage of existing HL7 message routers in healthcare
systems to receive admission, discharge, and transfer (ADT) data in real time
from clinical information systems. HL7 message routers consist of HL7 data
listeners and HL7 parsers. The HL7 listeners establish TCP/IP connections
between RODS and IHC and UUHSC. The HL7 parser uses regular
expressions to parse each data segment in an HL7 message. The parsed ADT
messages are centralized into an Oracle8i database for data retrieval and
analysis. Figure 8-8 shows a sample HL7 message from one of health systems.
The primary keys for a HL7 ADT message contain sending facility, ADT
message type, medical record number, patient class, and visit number (Tsui
et al., 2003).

HSHI‘~\&|HELP|xxx|COMMGN|EXTERNAL|2002&2241715||ADT
AU4 2002022XXXXXXXX |P|2.3<CR
| 123456789 *020|M|||**‘* |||‘|
pv1 EI|II|IIII I|II98765432II|I|| I|II|III|
00202XXXXX
DG1 SORE THROAT, COUGH< oan
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84056
<ETX>

Figure 8-8. Sample HL7 ADT messages (Tsui et al. 2003).
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The HL7 messages were communicated through a secure network infra-
structure between Utah RODS and the data providers consisting of virtual
private networks (VPN) and leased lines (Figure 8-9). Siemens Medical Systems
(SMS) contributed to the initial establishment for the site-to-site VPNs. Utah
RODS processes run on dedicated databases and servers including a Web
server, a GIS server, and a natural language processing server, protected by
Internet firewalls residing on separate servers.

To classify patients into a prodrome category utilizing free-text chief
complaints as input, Utah RODS uses two Natural Language Processors
(NLPS) — Bigram 8 and PLUSIO. They map a chief complaint into one of seven
prodromes-respiratory, diarrheal, botulinic, viral, encephalitic, hemorrhagic,
and rash. Bigram is a simple NLPS, developed at the University of Pittsburgh,
computing the probability of a specific prodrome category of a patient based
on pair of words in a free-text chief complaint. PLUS was developed at the
University of Utah. PLUS classifies a free-text chief complaint using a more
sophisticated Bayesian network. Both NLPS operate in real time using
client-server TCP/IP socket connections. Whenever a chief complaint is
available for processing, the RODS server sends a message to PLUS on the
NLP server, and it returns the classification of the case based on the free-text
chief complaint (Tsui et al., 2003).

RODS analyzes the data for anomalous densities of cases compared with
historical patterns. The analyses were conducted every 4 h, and were frequently
visually inspected by RODS staff through RODS user interfaces. The
primary statistical tool used by RODS during the Olympics for automated
pattern recognition was the RLS adaptive filter. RLS (as discussed in Chapter 4)
computes an expected count of each syndrome within a region from historical
data, adjusting its model coefficients based on prediction errors. RLS algorithm
has an advantage over other potential algorithms in such “drop-in” situations
because it requires only a few days of historical data to generate model co-
efficients. The WSARE algorithm was also used to perform heuristic searches
over combinations of temporal and spatial features to detect anomalous
densities of cases in space and time.

Over 114,000 acute care encounters were monitored between February 8
and March 31, 2002. The RODS system signaled two alarms; both times the
appropriate authorities were notified and the alarms were determined to be
false positives.

At the Olympics, the largest problems faced by the investigators corres-
ponded to data sharing. The major data contributors (IHC and University of
Utah) could not share the same HL7 data sets because of proprietary data
collection issues. It slowed down the process of implementation in a situation
where time was essential. RODS project spent a considerable amount of time
during the 7 weeks in this project managing administrative issues instead of
actually setting up the RODS system. Despite the inherent limitations of the
7-week establishment of the RODS system, the project was highly successful in
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proving how a computer-based, minimally invasive syndromic surveillance
system can work.

S.

FURTHER READINGS

We provide the following project link and some key readings for the readers
who might be interested in learning more details about the RODS system.

Project link:

https://www.rods.pitt.edu/site/

Important readings:

1.

Wu, T. S., F. Y. Shih, M. Y. Yen, J. S. Wu, S. W. Ly, K. C. Chang,
C. Hsiung, J. H. Chou, Y. T. Chu, H. Chang, C. H. Chiu, F. C. Tsui,
M. M. Wagner, 1. J. Su, and C. C. King (2008), “Establishing a
nationwide emergency department-based syndromic surveillance
system for better public health responses in Taiwan,” BMC Public
Health, 8, p 18.

Shen, Y., C. Adamou, J. N. Dowling, and G. F. Cooper (2008),
“Estimating the joint disease outbreak-detection time when an automated
biosurveillance system is augmenting traditional clinical case finding,”
Journal of Biomedical Informatics, 41, pp 224-231.

. Wallstrom, G. L., and W. R. Hogan (2007), “Unsupervised clustering of

over-the-counter healthcare products into product categories,” Journal of
Biomedical Informatics, 40(6), pp 642—648.

Dara, J., J. N. Dowling, D. Travers, G. F. Cooper, and W. W. Chapman
(2007), “Evaluation of preprocessing techniques for chief complaint
classification,” Journal of Biomedical Informatics, 41(4), pp 613—-623.
Espino, J. U., M. M. Wagner, F. C. Tsui, H. D. Su, R. T. Olszewski,
Z. Lie, W. Chapman, X. Zeng, L. Ma, Z. W. Ly, and J. Dara (2004),
“The RODS Open Source Project: removing a barrier to syndromic
surveillance,” Medinfo, 11(Pt 2), pp 1192—-1196.

Tsui, F.-C., J. U. Espino, M. M. Wagner, P. Gesteland, O. Ivanov, R. T.
Olszewski, Z. Liu, X. Zeng, W. Chapman, W. K. Wong, and A. Moore
(2002), “Data, network, and application: technical description of the
Utah RODS Winter Olympic Biosurveillance System.” Proceedings
of the AMIA Symposium, pp 815-819.



Chapter 9
BIOPORTAL

The BioPortal project was initiated in 2003 by the University of Arizona
Artificial Intelligence Lab and its collaborators in the New York State
Department of Health and the California Department of Health Services to
develop an infectious disease surveillance system. The project has been
sponsored by NSF, DHS, DoD, Arizona Department of Health Services, and
Kansas State University’s BioSecurity Center, under the guidance of a federal
inter-agency working group named the Infectious Disease Informatics Working
Committee (IDIWC). Its partners include all the original collaborators as
well as the USGS, University of California, Davis, University of Utah, the
Arizona Department of Health Services, Kansas State University, and the
National Taiwan University.

The BioPortal system provides distributed, cross-jurisdictional access to
datasets concerning several major infectious diseases, including Botulism,
West Nile Virus, foot-and-mouth disease, and live stock syndromes. Figure 9-1
shows the BioPortal system architecture. This portal system provides Web-based
access to a variety of distributed infectious disease data sources including
hospital ED free-text chief complaints (both in English and Chinese) as well
as other epidemiological data. It features advanced spatial-temporal data
analysis methods that include industry standard hotspot analysis algorithms
and in-house developed innovative clustering-based techniques for retro-
spective and prospective data analysis. The analyses results are displayed via
Spatio-Temporal Visualizer (STV). BioPortal also supports analysis and
visualization of lab-generated gene sequence information. Its social network
analysis module can be used to aid in the understanding of infectious disease
transmission processes.

H. Chen et al., Infectious Disease Informatics: Syndromic Surveillance for Public Health 133
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 9,
© Springer Science + Business Media, LLC 2010
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The BioPortal system aims to improve the ability of public health
practitioners to detect, and maintain situational awareness of outbreaks of
emerging diseases and bioterrorist attacks, allowing for more timely and
efficient deployment of resources for further investigation and response
measures.
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Figure 9-1. BioPortal system architecture.

1. BIOPORTAL DATA COLLECTION

ED chief complaint data in the free-text format are provided by the Arizona
Department of Health Services and several hospitals in a batch mode for
syndrome classification. Various disease-specific case reports for both human
and animal diseases are another source of data for BioPortal. It also makes use
of surveillance datasets such as dead bird sightings and mosquito control
information. The system’s communication backbones, initially for data
acquisition from New York or California disease datasets, consist of several
messaging adaptors that can be customized to interoperate with various
messaging systems. Participating syndromic data providers can link to the
BioPortal data repository via the PHINMS and an XML/HL7 compatible
network.

2. BIOPORTAL DATA ANALYSIS

BioPortal provides automatic syndrome classification capabilities based
on free-text chief complaints. One method recently developed uses a concept
ontology derived from the UMLS (Lu et al., 2008). For each chief complaint
(CC), the method first standardizes the CC into one or more medical concepts
in the UMLS. These concepts are then mapped into existing symptom groups
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using a set of rules constructed from a symptom grouping table. For symptoms
not in the table, a Weighted Semantic Similarity Score algorithm, which
measures the semantic similarity between the target symptoms and existing
symptom groups, is used to determine the best symptom group for the target
symptom. The ontology-enhanced CC classification method has also been
extended to handle CCs in Chinese.

BioPortal supports hotspot analysis using various methods for detecting
unusual spatial and temporal clusters of events. A hotspot is a condition
indicating some form of clustering in a spatial distribution. Hotspot analysis
facilitates disease outbreak detection and predictive modeling based on
historical spatial-temporal data and in turn uses them for predictive purposes.

SaTScan is made available as part of the BioPortal system through a
simple Web interface and STV. BioPortal also supports the Nearest Neighbor
Hierarchical Clustering method, and two new methods (Risk-Adjusted Support
Vector Clustering, and Prospective Support Vector Clustering) developed in-
house (discussed in Chapter 4) (Chang et al., 2005; Zeng et al., 2004a). The
version of SaTScan that is incorporated in the BioPortal system uses the
Bernoulli method. The distribution of baseline observations (or controls) and
the distribution of new observations (or cases) are compared and circular
clusters are identified where the proportion of new observations is significantly
higher than the proportion of new observations outside the circle. RSVC is a
clustering-based, spatio-temporal hotspot analysis algorithm developed at the
Artificial Intelligence Laboratory of the University of Arizona. It combines the
power of support vector machines (SVM) with the risk adjustment approach
from CrimeStat®. It clusters points with consideration for baseline information
(data under normal conditions) to find the emerging at risk area. In addition,
BioPortal uses the RNNH algorithm provided by CrimeStat® III. The Nearest
Neighbor Hierarchical clustering (NNH) routine in CrimeStat identifies groups
of incidents that are spatially close. It clusters points together and then proceeds
to group the clusters together. The Risk-adjusted Nearest Neighbor Hierarchical
clustering routine (RNNH) combines the hierarchical clustering capabilities
with kernel density interpolation techniques.

3. BIOPORTAL VISUALIZATION, INFORMATION
DISSEMINATION, AND REPORTING

Figure 9-2 shows the screenshot of the interactive Web-based surveillance
portal. This application allows the user to explore the incidence of infectious
diseases. The portal allows the user to: (1) select a disease of concern and
access-related databases; (2) narrow the scope by time-frame and geographic
area of interest; (3) view a variety of data aggregations; and (4) perform
hotspot analysis to focus attention on critical areas.
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confirmed probable suspected unknown Total
1998 45 3 1 0 49
1999 122 15 8 8 151
2000 87 10 28 4 129
2001 60 1 11 0 82
2002 25 1 1 2 29
2003 14 0 1 0 15
Total 353 40 50 12 455

Hide chart Download CSV
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Figure 9-2. Interactive Web-based BioPortal surveillance portal.

Monitored disease incidence time series are shown on the surveillance
dashboard for the participating hospitals and other healthcare organizations to
view (Figure 9-3). The dashboard is integrated with time series detection
capability and the BioPortal hotspot analysis and visualization tools. Detected
abnormalities are alerted on the upper panel.

BioPortal makes available a visualization environment called the Spatial-
Temporal Visualizer (STV), which allows users to interactively explore spatial
and temporal patterns, based on an integrated tool set consisting of a GIS
view, a timeline tool, and a periodic pattern tool (Hu et al., 2005).
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Figure 9-3. BioPortal syndromic surveillance dashboard integrated with time series detection
capability and the hotspot analysis and visualization tools.

Figure 9-4 illustrates how these three views can be used to explore an
infectious disease dataset. The GIS view displays cases and sightings on a
map. The user can select multiple datasets to be shown on the map in different
layers using the checkboxes (e.g., disease cases, natural land features, and
land-use elements). Through the periodic view the user can identify periodic
temporal patterns (e.g., which months or weeks have an unusually high number
of cases). The unit of time for aggregation can also be set as days or hours. The

timeline view provides a timeline along with a hierarchical display of the
data elements, organized as a tree.
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A new sequence-based phylogenetic tree visualizer has been recently
developed for diseases such as the foot-and-mouth disease, for which gene
sequence information is available (Figure 9-5). Phylogenetic tree analysis
examines the DNA of pathogens to determine the genetic relationship
between various strains, and to identify possible sources or mutation. The
results of an analysis can be drawn as a phylogenetic tree showing the
hierarchical hypothesized evolutionary relationships (phylogeny) between
organisms. Each member in a branch is assumed to be descended from a
common ancestor. The module color-codes outbreak occurrences based on
distance in genetic space to help predict distribution of virus strains, and aids
in more efficient vaccine distribution (Thurmond et al., 2007).

The BioPortal system also provides Social Network Analysis (SNA)
capability for epidemic transmission process investigations (Figure 9-6).
Examining social networks is a useful epidemiological tool for under-
standing the progression of the spread of infectious diseases such as sexually
transmitted diseases. The SNA module in the BioPortal system incorporates

ill Phylogenetic Tree Tool ==
This is a fast preview of our up-coming Phylogenetic Tree tool. Drag the circle to change the color ..
+
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¢
¥

ar
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Figure 9-5. BioPortal phylogenetic tree analysis (source: BioPortal Web page).
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Figure 9-6. Social network analysis to analyze the SARS epidemic in Taiwan in 2003 (Chen et al.,
2007).

geographical locations, which might be high risk areas such as hospitals, into
social networks to examine the role of such locations in infectious disease
transmission, and to identify potential bridges between locations. This helps
to maintain situational awareness and target incident investigation and
mitigation efforts more effectively. Social Network Analysis was also employed
to analyze the SARS epidemic in Taiwan in 2003.

Data confidentiality, security, and access control are among the key research
and development issues for the BioPortal project. An access control mechanism
is implemented based on data confidentiality and user access privileges. For
example, access privileges to the zip code and county level of individual
patient records may be granted to selected public health epidemiologists.
The project also developed various Memoranda of Understanding (MOU )
for data sharing among different local and state agencies.
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4. CASE STUDY: FOOT-AND-MOUTH DISEASE
SITUATIONAL AWARENESS

Foot-and-Mouth Disease (FMD) is considered to be one of the most
contagious infectious animal diseases in the world. BioPortal plays an important
role in the collaborative efforts with the FMD Laboratory at the University
of California, Davis, for developing global real time surveillance for foot-and-
mouth disease. The FMD BioPortal focuses on: (1) gathering global FMD
data; (2) identifying surrogates of risks; (3) modeling and predicting FMD virus
evolution; and (4) evaluating and testing FMD surveillance methodologies.

FMD BioPortal integrates information and data related to foot-and-mouth
disease from public sources and collects proprietary or confidential data
through secure specific routing structures. Major data sources include the
World Reference Laboratory at Pirbright, animal surveillance data from
FAO (Food and Agriculture Organization of the United Nations) and OIE
(World Organisation for Animal Health), and GenBank sequence data.

Analytical and visualization tools for data summarization and trend detection
can be selected and invoked through the FMD BioPortal Web-based platform as
illustrated in Figure 9-7. The BioPortal infrastructure provides generic support
for summarizing and visualizing FMD-related data with prominent spatial and
temporal data elements through the Spatial-Temporal Visualizer (STV) (an
example is shown in Figure 9-8).

A major enhancement to STV developed specifically for FMD BioPortal
is the phylogenetic tree visualization that allows the incorporation of genomic
information visualization in addition to the existing spatial and temporal data
visualization capabilities (Figure 9-9). The phylogenetic tree visualization is
used to display temporal-spatial genomic variation of FMD isolates and
allows user-driven evaluation of differences in genomic variation over time
and geographic location.

In addition, FMD News monitoring is an ongoing effort by the Artificial
Intelligence Lab at the University of Arizona and the FMD Lab at UC Davis
to collect open source FMD breaking news. A team of epidemiologists from
different countries at the FMD Lab reviews more than 40 Web sites daily
and sends out the selected news items in a summary format to a listserv. An
automatic FMD related news collection and classification system was
recently developed by the Al Lab at the University of Arizona.
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Figure 9-9. FMD phylogenetic tree visualization (source: FMD BioPortal Web site).

S. FURTHER READINGS

We provide the following project link and some key readings for the
readers who might be interested in learning more details about the BioPortal
project.

Project link:

http://biocomputingcorp.com/bphome.html
http://ai.arizona.edu/research/bioportal/index.htm

Important readings:

1. Hu, P, D. Zeng, H. Chen, C. Larson, W. Chang, C. Tseng, and J. Ma
(2007). “System for Infectious Disease Information Sharing and
Analysis: Design and Evaluation,” IEEE Transactions on Information
Technology in Biomedicine, Vol. 11, No. 4.

2. Lu, H.-M., D. Zeng, L. Tryjillo, K. Komatsu, and H. Chen (2008).
“Ontology-Enhanced Automatic Chief Complaint Classification for
Syndromic Surveillance,” Journal of Biomedical Informatics, Vol. 41,
No. 2, pp 340-356.
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3. Chang, W., D. Zeng, and H. Chen (2008). “A Stack-Based Prospective
Spatio-Temporal Data Analysis Approach,” Decision Support Systems,
Vol. 45, No. 4, pp 697-713.

4. Zhang, Y.L., Y. Dang, Y.-D. Chen, H. Chen, M. Thurmond, C.-C. King,
D. Zeng, C. Larson (2008). “BioPortal Infectious Disease Informatics
research: disease surveillance and situational awareness,” in proceedings

of International Conference on Digital Government Research, pp
393-394.
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ESSENCE

The Electronic Surveillance System for the Early Notification of Community-
Based Epidemics (ESSENCE) was developed by the Johns Hopkins University
Applied Physics Laboratory (JHU/APL) in collaboration with the Maryland
Department of Health and Mental Hygiene, the District of Columbia Depart-
ment of Health, and the Virginia Department of Health under the sponsorship
of the Defense Advanced Research Projects Agency (DARPA). It is now
used in the Department of Defense Global Emerging Infections System
(DoD-GEIS). It is currently deployed in the National Capital Area (NCA)
(Lombardo et al., 2004). The system monitors both military and civilian
healthcare data daily for early outbreak detection and warning, fusing
information from multiple data sources that vary in their medical specificity,
spatial organization, scale, and time-series behavior (Burkom et al., 2004).
ESSENCE has gone through a series of important development stages, and
its most current prototype is ESSENCE IV.

Figure 10-1 shows the system architecture of ESSENCE. It collects public
health status information from three major channels: clinical data, nonclinical
syndromic data, and health events-related information. The accessibility of
the collected information is managed by either disclosure control or sharing
polices to ensure the privacy of personal healthcare information. Automated
outbreak detection and alerting are supported. Situation and threat awareness
and epidemiology investigation support are integrated with secured Web-
based visualization and user interfaces.

H. Chen et al., Infectious Disease Informatics: Syndromic Surveillance for Public Health 147
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 10,
© Springer Science + Business Media, LLC 2010
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Figure 10-2. Graphs of all the reporting MTFs (icons are highlighted in one of three colors
based on the degree of departure from historical data for one or more syndrome group on any
given day).

Participation of military treatment facilities (MTFs) constitutes an important
part of ESSENCE system. Figure 10-2 shows all the reporting MTFs (icons
are highlighted in one of three colors based on the degree of departure from
historical data for one or more syndrome group on any given day).

1. ESSENCE DATA COLLECTION

ESSENCE now mainly collects three types of data (Lombardo et al., 2003):

1. Chief complaint data from hospital ERs; ICD-9-CM codes, OTC sales
of pharmaceuticals, nurse hotline calls; school absenteeism; and veterinary
reports; 100% of the clinical visits of military and their dependents are included.
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2. Publicly available information (e.g., information about local endemic
disease, sales promotions, and even weather events).

3. Information about external surveillance activities in the NCA.

The process for data collection is automated. For the electronically available
clinical or nonclinical data, the system constantly polls from the hospital
information system via a query software (Lombardo et al., 2003). For publicly
available health event-related news, the information is collected via electronic
media. External surveillance activities are continually communicated among
the public health officials and epidemiologists manually or electronically.

Daily counts are placed into the following syndrome groups (Table 10-1)
(Lombardo et al., 2004). (Each of these groups is defined by a specific set of
ICD-9 codes.)

Table 10-1. Syndrome categories monitored by ESSENCE I1.

Respiratory Gastrointestinal Rash
Death Sepsis Neurologic
Other Unspecified

The free text chief complaints are processed and classified into syndrome
categories with either a natural language processing algorithm (Lombardo
et al.,, 2003) or a weighted keyword matching based parser (Lombardo,
2004). “Once converted to this common format, the information is available
for use or for other surveillance activities. Within minutes of the query to the
hospital emergency room electronic log, the system can forward counts of the
syndrome groups to the participating hospital, state, and county surveillance
activities. This information in most cases is available via electronic media.
Likewise, the occurrence of high-profile events in the community may change
detection and alerting thresholds” (Lombardo et al., 2003).

The time lag in data collection is currently a major limitation of ESSENCE.
Most of the data can be received within 1-3 days after patient visits. However,
improved timely reporting, optimized automated data transmission, and more
frequent data uploads should decrease the data lag to one day.

2. ESSENCE DATA ANALYSIS AND SYSTEM
EVALUATION

The temporal analysis methods for outbreak detection currently used in
ESSENCE include an autoregressive modeling algorithm and the Exponentially
Weighted Moving Average (EWMA) technique. CDC’s Early Aberration
Reporting System (EARS) algorithms are also included for temporal analysis as
reference algorithms for assessing the performance enhancement provided
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by the ESSENCE algorithms (Lombardo et al., 2003). For spatial anomaly
detection, the Kulldorff scan statistic as implemented in the SaTScan software
is used as a primary spatial analysis tool. A modified version of scan statistic
is also developed to produce approximate clusters of space-time interaction.

In ESSENCE, the outbreak detection methods take a “data-fusion” approach
that includes multiple data streams. Burkom and Elbert applied the Kulldorff
statistic to multiple data sources in ESSENCE by treating them as covariates
while using whatever spatial information is available in each source (Burkom,
2003). A multiple univariate strategy can also be applied to the multiple data
stream analysis, by treating each data stream separately with a univariate
outbreak detection method. Then a consensus approach based on Bayes Belief
Network (BBN) is used to combine the outputs of the multiple univariate
algorithms to optimize the decision (Burkom et al., 2004). The BBN approach
increases the sensitivity while controlling the false-alert rate. Table 10-2 lists
the three categories of outbreak detection methods currently employed in
ESSENCE.

The outbreak detection capacity with ESSENCE has been tested in a few
studies. In the 2003 study (Lombardo et al., 2003), several outbreak scenarios
were developed to test the performance, each scenario consisting of a series
of real data streams with a simulated outbreak superimposed. The value of
multiple data sources added to the detection performance is discussed by
plotting the performance of the algorithms for respiratory syndrome as a
function of the number of infected people and the involvement of different
data sources (ER visits, absenteeism data, OTC influenza medication sales,
and school absentee totals). It shows that the absenteeism data contributes to
the timeliness in the detection by 2 days and require a smaller population of
infected people.

In the Bio-ALIRT evaluation program, three of the ESSENCE’s detection
algorithms (Provider-count-adjusted MSPC, multiple univariate EWMA, and
Bayes Belief Network combination) aggregating multiple data sources were
tested for respiratory or gastrointestinal syndromes (Burkom et al., 2004).
Sensitivity and timeliness are measured as performance assessment metrics.

Table 10-2. Analytical methods used in ESSENCE for early outbreak detection.

Temporal analysis Spatial analysis Spatial-temporal analysis
Autoregressive modeling Scan statistic Modified scan statistic
EWMA

EARS algorithms (as
reference)
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The performance results of the three methods are summarized in (Lombardo
et al., 2004). In general, the provider-count-adjusted MSPC and multiple
univariate EWMA algorithm reduce the median detection time by 5 days for
the most constrained false-alert rate, whereas the BBN improved timeliness
by 2 days. The BBN also detected an additional outbreak at the lowest
specificity (Lombardo et al., 2004).

3. ESSENCE INTERFACE, INFORMATION
DISSEMINATION, AND REPORTING

ESSENCE provides a map-based visualization tool that can display both
raw case/event data and clusters/hotspots identified by scan statistics. The
user can enter zip codes or click on an area on the map to select subsets of
data of interest. The details about cases or events are presented as tables or
time-series graphs. ESSENCE provides the second portal listing alerts
generated as the output of the detection processes. These lists consist of
color-coded flags to indicate the extent of deviations from the baseline
normalcy. Upper confidence limits (UCLs) for the daily predictions are
computed and used as thresholds for alerts. If an observed case count
exceeds the 95% UCL but not the 99% UCL, a low-level (yellow) alert is
generated. If the count exceeds the 99% UCL, a high-level (red) flag results.
The user can organize the alert lists for selected data of interest. They can
also sort these lists by various criteria and access data or port them to the
map visualization tool to view the spatial distribution of flagged cases.

The third ESSENCE tool, the query portal, allows a user to select subsets
of data and data elements from drop-down menus and view these data
elements over a user-specified timeframe as graphs or tables. The fourth
portal can be used to generate summary reports, which can then be exported
outside of ESSENCE for further analysis. The user can select any data elements
in the archive and view historic counts as well as upward or downward trends.

Information dissemination in ESSENCE is based on user roles and
jurisdictions. A basic function of ESSENCE is to deliver alerts and surveillance
information to the military and civilian public health authorities in the NCA.
The system provides detection outputs as well as the details of underlying
data streams via secure Web sites. Information is provided in many separate
information layers. In ESSENCE, this data layering approach was implemented



10. ESSENCE 153

to facilitate the distribution to various user roles. “For example, a user who
logs on from an emergency room may be able to see only the emergency
room data from his or her jurisdiction, whereas a user recognized as a
director of epidemiology would have access to all the information within his
or her jurisdiction as well as the shared information from the surrounding
jurisdictions in the region” (Lombardo, 2003).
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Figure 10-3. Visualization of ESSENCE system.
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4. FURTHER READINGS

We provide the following project link and some key readings for the readers
who might be interested in learning more details about the ESSENCE system.

Project link:
http://eedweb.dhss.mo.gov/
Important readings:

1. Lombardo, J., and H. Burkom, et al. (2003). “A systems overview of
the Electronic Surveillance System for the Early Notification of
Community-based Epidemics (ESSENCE II).” Journal of Urban
Health: Bulletin of the New York Academy of Medicine, 80(2): pp 32-42.

2. Burkom, H., and E. Elbert, et al. (2004). “Role of Data Aggregation
in Biosurveillance Detection Strategies with Applications from
ESSENCE.” MMWR (CDC) 53(Suppl): pp 67-73.

3. Lombardo, J., and H. Burkom, et al. (2004). “Electronic Surveillance
System for the Early Notification of Community-Based Epidemics
(ESSENCE 1II), Framework for Evaluating Syndromic Surveillance
Systems.” Syndromic surveillance: report from a national conference,
2003. MMWR 2004 53(Suppl): pp 159-165.
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NEW YORK CITY SYNDROMIC
SURVEILLANCE SYSTEMS

The New York City (NYC) Department of Health and Mental Hygiene
(DOHMH) has conducted prospective surveillance of syndromes since
1995 (Heffernan et al., 2004a). The DOHMH syndromic surveillance system
consists of Emergency Department (ED)-visits-based surveillance system and
a few other complementary surveillance systems for Emergency Medical
Services (EMS) ambulance dispatch calls, retail pharmacy sales, and work
absenteeism data. These systems started operating separately, and different
analytical methods are being employed by each of them. A “drop-in” synd-
romic surveillance system that deployed CDC field-staff to conduct 24 hours
surveillance for bioterrorism related illness was implemented following the
September 11th 2001 attack (Das et al., 2003; CDC, 2002). We use Table 11-1
to summarize these systems that comprise the syndromic surveillance activities
in New York City. However, in the following text, the case study will focus
around the ED visits based syndromic surveillance system in NYC.

H. Chen et al., Infectious Disease Informatics: Syndromic Surveillance for Public Health 157
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 11,
© Springer Science + Business Media, LLC 2010
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Table 11-1. The syndromic surveillance systems in New York City.

Syndromic system Analytical approaches Analysis Data
frequency  transmission
Emergency Medical ~ An adaptation of the excess Daily Calls
Services (EMS) influenza mortality cyclical
Ambulance Dispatch  (linear) regression model
Calls (Greenko et al.,
2003)
Emergency Prospective temporal and Daily FTP or Email
Department Visits spatial scan statistics attachments
(Heffernan et al.,
2004b)
Retail Pharmacy Sales A linear regression model  Daily FTP
(cough and influenza  similar to that used in the (weekdays
medications, and EMS system, controlling for only)
antidiarrheal season, holidays, day of the
medicines) week, promotional sales,
positive influenza tests, and
temperature

Worker absenteeism  CUSUM method with a 14- Daily
day baseline

A “drop-in” syndromic Same techniques that had  Daily CDC field-

surveillance system been developed for the EMS staff collected

following the 9/11 ambulance dispatch system the data at 15

attack (CDC, 2002) NYC hospital
ERs

1. NYC ED SYNDROMIC SURVEILLANCE

SYSTEM DATA COLLECTION

By November 2003, 44 of NYC’s 67 EDs participated in this system,
thereby capturing 80% of all NYC ED patient visits (Heffernan et al., 2004a).
Data files are transmitted to DOHMH daily, either as email attachments or
through FTP. Half of the participating hospitals have already automated the
transmission process. Files can be in several formats, most commonly as
fixed-column or delimited ASCII text. “Data are read and translated into
a standard format, concatenated into a single SAS dataset, verified for
completeness and accuracy, and appended to a master archive.” (Heffernan
et al., 2004a, 2004b).
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The chief complaints captured by the ED visit records are classified into
eight exclusive syndrome categories (Table 11-2) with an SAS algorithm
developed in-house. This algorithm scans the chief complaint field for
character strings assigned to a syndrome. The coding algorithm is designed
to capture a wide variety of common misspellings and abbreviations. If the
chief complaints contain words or phrases from multiple categories, it will
be coded according to the following priority-based assignment scheme:
common cold > sepsis/dead on arrival > respiratory > diarrhea > fever > rash
> asthma > vomiting > other visits. This scheme attempts to place each chief
complaint into a single, specific syndrome. The two syndromes of particular
interest for bioterrorism surveillance are the respiratory and fever syndromes
in persons older than 13 years of age (Heffernan et al., 2004b).

Table 11-2. Exclusive syndrome categories of collected chief complaints in NYC ED
syndromic surveillance system.

Common cold Sepsis Respiratory
Diarrhea Fever Rash
Asthma Vomiting
2. NYC ED SYNDROMIC SURVEILLANCE
SYSTEM DATA ANALYSIS AND FIELD
INVESTIGATIONS

The NYC ED syndromic surveillance system uses an adaption of Kulldorff
and Mostashari’s one-dimensional temporal to evaluate citywide trends in
syndrome visits and spatial scan statistic (Kulldorff, 1997, 2001) to evaluate
clustering in ED visits by hospital address and patient home zip code.

The temporal scan statistic is a special case of the prospective space-time
scan statistic. The analysis is conducted in a prospective setting with daily
runs and a variable-length window consisting of the last 1, 2, or 3 days. In
particular, the ratio of syndrome visits to nonsyndrome (other) visits during
the most recent 1, 2, or 3 days is compared with a 2-week baseline.

The spatial scan statistic approach requires comparing the observed to the
expected number of cases in each geographic area. To control for purely
spatial differences, expected counts of syndrome visits are derived from each
area’s history, rather than from the underlying census population. To detect
rapidly emerging outbreaks, the approach takes the data from the observed
cases from the last day and compares them with data from a 14-day baseline
period, with a 1-day gap between the baseline and the date on which spatial
clustering is being evaluated.
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The surveillance signals produced by the system are first reviewed by medical
epidemiologists on a daily basis. A report consisting of graphs and a brief
summary is distributed by electronic mail to program staff. Further validations
are conducted through field investigations. Detailed field investigations of
syndromic signals are meant to (1) identify the etiology of signals; (2)
determine why a given syndromic surveillance system failed to detect an
outbreak captured through traditional surveillance; (3) validate the utility of
syndromic surveillance for early infectious disease outbreak detection.

3. NYC ED SYNDROMIC SURVEILLANCE
SYSTEM VISUALIZATION, INFORMATION
DISSEMINATION, AND REPORTING

Daily analyses are reviewed with a medical epidemiologist, and a report
containing detailed graphs and a brief summary is distributed by email to
related program staff. If a signal investigation is performed, a more detailed
report will be prepared and made available by the next day. “An external
report summarizing citywide public health trends is also distributed daily to
state and regional health officials, the New York City Office of Emergency
Management, police departments, and fire departments. Hospital-specific,
confidential reports are shared quarterly with participating emergency
departments, comparing their facility to overall citywide trends” (Heffernan
et al., 2004a, 2004b).

Spatial syndromic signals are followed up by reviewing the descriptive
summary of the emergency department visits included in the signal. Hospital(s)
contributing the largest number of excess cases are paid particular attention,
by examining the specific syndromes triggering the signal and the line list of
patients with their chief complaints produced, along with summary statistics
for age, sex, and zip code. Syndromic signals are communicated to other
hospital ED staff through phone calls to alert them of unusual disease
patterns and to ask whether they have noted an increase in the frequency of
syndrome visits or admission of seriously ill patients. Signals of elevated
concern are further investigated by conducting field investigations including
chart reviews, patient interviews, and onsite discussions with clinicians.

Some sample graphs from the presentations of DOHMH syndromic
surveillance made at the National Syndromic Surveillance Conference
(Mostashari, 2002) are as shown in Figures 11-1 to 11-3.
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NYC Emergency Department Syndromic Surveillance
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Figure 11-1. Plotting of NYC ED respiratory visits from November 2001 through March
2002 (Mostashari, 2002).
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Figure 11-2. Display of epidemiology of drug overdoses from EMS “drug overdose” calls
(Mostashari, 2002).
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Figure 11-3. Display of West Nile Virus activities in New York City through September 2001
(Mostashari, 2002).

4. CASE STUDY: RESPIRATORY ILLNESS
SURVEILLANCE USING MULTIPLE
SYNDROMIC SYSTEMS IN NEW YORK CITY

Community-wide increases in respiratory illness detected through syndromic
surveillance are usually difficult to interpret. Syndromic surveillance analysts
at the New York City Department of Health and Mental Hygiene (DOHMH)
hypothesize that multiple data streams can help distinguish whether increases in
respiratory illness are related to environmental allergens or infectious diseases.

For the period June 1, 2004 to May 31, 2005, the NYC DOHMH monitored
several syndromic surveillance data sources daily, including ambulance
dispatch calls from Emergency Medical Services (EMS), chief complaints
from emergency rooms, and over-the-counter medication sales (data samples
are shown in Figure 11-4). Daily citywide ratio of ED respiratory over other
visits was adjusted for day-of-week and holiday effects using linear regression.
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Volume spikes in the daily adjusted ratio were identified using the EARS
CUSUM C3 method with a 14-day baseline. During the study period, five
sustained, citywide spikes in ED respiratory illness were observed. Figure
11-5 shows the plot of ED respiratory illness ratio over other visits adjusted
day-of-week and holiday effects, with CUSUM signals marked and the
corresponding areas shaded in gray.

Date Time
5/5/2003 0:00:12
5/5/2003 0:00:05
5/5/2003 0:00:21
5/5/2003 0:00:28
5/5/2003 0:00:39
Date  Store Zip

9/1/2002 323 10006
9/1/2002 323 10006
9/1/2002 323 10006
9/1/2002 323 10006
9/1/2002 323 10006

Dept Subdept

113
114
115
116
122

Call-type
Initial

001
001
001
002
002

Final

RunNo Zip Unit
111211
210455
311218
410458

510013

Descrip

MOTRIN CHILD COLD GRAPE 4 0Z
EXCEDRIN XSTR CAPS 24'S

DR ASPRN LITE COAT 500'S
CLARITIN 24hr REDI TAB 10ct
LUDENS BAG HNY-LEM BNS 30CT

DispoUnit Dispo Hosp
67C 23
56 43
84

Promo Sold Stock uPC

N

zzzz

0
0
1

61 0300450903044
7 0319810000217
27 0033261111116
8 0041100060662
15 0000083000591

Figure 11-4. Sample ambulance dispatch calls and over-the-counter pharmacy data.
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Figure 11-5. Citywide daily day-of-week adjusted and holiday-adjusted ratios of ED
respiratory/other visits, with CUSUM signals marked.
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Figure 11-6. Plots of daily citywide ratios of OTC allergy over analgesics sales (gray), ED
asthma over other visits (green), and ED fever-flu over other visits (blue).
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To investigate whether the signals are related to influenza or allergy
season, the adjusted daily citywide ratios of OTC allergy over analgesics sales
(gray), ED asthma over other visits (green), and ED fever-flu over other visits
(blue) were also plotted (see Figure 11-6).

Comparing two sets of plots, i.e., the adjusted ratios of ED respiratory/
other visits (Figure 11-5) and ratios of OTC, ED asthma, and ED-fever-flu
(Figure 11-6), six signals of ED respiratory illness over a 15-day period in
September and October were preceded by a spike in OTC allergy sales, and
so were nine signals in May. These signals also coincided with increasing
ED asthma visits while ED fever-flu visits remained constant. Instead, three
consecutive signals in late November, 16 signals in December and 7 signals
in February coincided with increasing ED fever-flu visits, while these periods
showed minimal to no increases in ED asthma visits or OTC allergy sales.
The signal patterns in the multiple data streams suggested that respiratory
illness increases in Fall and Spring could be attributed to allergy or asthma,
whereas the Winter increase in respiratory illness is more likely to be attributed
to influenza (Das, 2005).

The respiratory illness syndromic surveillance practice at New York City
demonstrated how multiple syndromic data streams can be helpful for
characterizing ED respiratory syndrome signals.

S. FURTHER READINGS

We provide the following key readings for the readers who might be
interested in learning more details about the New York Syndromic Surveillance
system.

Important readings:

1. Heffernan, R., F. Mostashari, D. Das, A. Karpati, M. Kulldorf, and D.
Weiss (2004). “New York City Syndromic Surveillance Systems.”
MMWR (CDC) 53(Suppl): pp 23-27.

2. Heffernan, R., F. Mostashari, D. Das, M. Besculides, C. Rodriguez, J.
Greenko, L. Steiner-Sichel, S. Balter, A. Karpati, P. Thomas, M.
Phillips, J. Ackelsberg, E. Lee, J. Leng, J. Hartman, K. Metzger, R.
Rosselli, and D. Weiss (2004). “Syndromic surveillance in public
health practice, New York City.” Emerging Infectious Diseases
[serial on the Internet].

3. Mostashari F., A. Fine, D. Das, J. Adams, and M. Layton (2003).
“Use of ambulance dispatch data as an early warning system for
community-wide influenza-like illness, New York City.” Journal of
Urban Health 80(2 Suppl 1), pp 143—-i49.
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4. Heffernan, R., F. Mostashari, D. Das, M. Besculides, C. Rodriguez, J.
Greenko, L. Steiner-Sichel, S. Balter, A. Karpati, P. Thomas, M. Phillips,
J. Ackelsberg, E. Lee, J. Leng, J. Hartman, K. Metzger, R. Rosselli, and
D. Weiss (2004). “System Descriptions New York City Syndromic
Surveillance Systems.” MMWR(CDC) 53(Suppl), pp 23-27.

5. Das, D., Metzger, K., Heffernan, R., Balter, S., Weiss, D. and
Mostashari, F. 2005. “Monitoring Over-The-Counter Medication Sales
for Early Detection of Disease of Disease Outbreaks—New York City,
“MMWR(CDC) 54(Suppl), pp. 41-46.
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EARS

The Early Aberration Reporting System (EARS) was first developed at
the US CDC. Current EARS system development and research activities are
supported by the National Center for Infectious Diseases (NCID) Bio-
terrorism Preparedness and Response Program (Hutwagner et al., 2003).
EARS provides national, state, and local health departments with several
alternative aberration detection methods to analyze and visualize public health
surveillance data for syndromic surveillance (Figure 12-1). “As of mid 2006,
approximately 90 city, county and state public health offices, in addition to
some international offices, use EARS to assist in the early identification of
outbreaks of disease and bioterrorism events” (CDC, 2006a; Hutwagner et al.,
2003). “The National Center for Infectious Diseases (NCID) Bioterrorism
Preparedness and Response Program provides technical support and research
and development for EARS activities” (Hutwagner et al., 2003).

EARS has been used in practice with several outbreaks flagged. “In one
instance, a state health official thought they had a shigella outbreak. After
running EARS on their notifiable diseases, the outbreak was confirmed and
they were able to easily identify the county involved” (Hutwagner et al.,
2003). “EARS has also linked an increase in asthma cases to an increase in
the ozone level that was not large enough to trigger an ozone alarm. Another
site using EARS identified the beginning of the West Nile Virus season and
implemented spraying for mosquitoes” (Hutwagner et al., 2003).

EARS has also been used for several large public events. These events
include the 2004 G8 Summit in Georgia, the 2004 Democratic National
Convention in Boston, the 2004 Republican National Convention in New
York City, and the 2004 Summer Olympics in Greece. The Florida State

H. Chen et al , Infectious Disease Informatics Syndromic Surveillance for Public Health 167
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 12,
© Springer Science + Business Media, LLC 2010
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Figure 12-1. EARS SAS-based system architecture.

Department of Health used EARS following the 2004 hurricane season.
EARS detected increases in animal bites and carbon monoxide during the
post-hurricane monitoring period. EARS was also used for the 2005 hurricane
season following Hurricanes Katrina and Rita for syndromic surveillance.

1. EARS DATA COLLECTION AND DATA
PREPROCESSING

Users can feed EARS a variety of syndromic surveillance data streams for
analysis. These data are chief complaints, admission codes, and discharge
codes, over-the-counter drug sales, 911 emergency calls, physician office data,
and school and business absenteeism. Data need to be saved as SAS datasets,
Microsoft Access database tables, Microsoft Excel worksheets, or any
delimited text files. EARS does not support real-time data streaming; in other
words, it works in batch mode by loading the data manually.
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EARS analyzes syndromic data from emergency departments based on
chief complaint, admission codes and discharge codes, 911 emergency calls,
physician office data, school and business absenteeism, and over the counter
drug sales. EARS is also used for nationally notifiable disease information.
Some EARS users, who receive their data via file transfer by a given time,
have EARS set up to run as a scheduled task. Other users run EARS once a
day or as needed from their laptop or desktop. In addition, users have taken
the summary file that is produced and linked it back to the data for additional
drill-down analysis. The majority of EARS users are able to run and review
the information from several sources within 5—-15 minutes a day.

In EARS, chief complaints are searched and recognized as a symptom
and thus grouped into a particular syndrome category by using an internal
function called EARS Search Process (ESP). ESP searches the chief complaint
field for specific words that describe illnesses of interest that EARS should
monitor. The syndrome categories predefined by the words are embedded
within the EARS code. The syndrome definitions can be customized and
expended by the users with the built-in logic equations to relate symptom
names to the syndrome name.

It is also allowed to run the EARS search process (ESP) feature without
running EARS. This makes it possible to build new symptoms and syndrome
equations without running the entire EARS process.

2. KEY EARS ABERRATION DETECTION
METHODS

EARS uses three limited baseline aberration detection methods called
C1-MILD, C2-MEDIUM, and C3-ULTRA (CDC, 2006a) and two historical
methods (at least 5 years historical data) — seasonally adjusted CUSUM
method and historical limits method. The terms mild, medium, and ultra
refer to the level of sensitivity of the three statistical methods. For example,
the least sensitive statistical method is named CI1-MILD since it is
considered to have the lowest sensitivity. These methods were designed for
public health surveillance data with varying degrees of available historical
information. The seasonally adjusted CUSUM method is based on the
positive 1-sided CUSUM where the count of interest is compared with the 5-
year mean and the 5-year standard deviations for that period. The seasonally
adjusted CUSUM was originally applied to laboratory-based Salmonella
serotype data (Hutwagner et al., 2005). The historical limits method compares
the current sum of 4 time periods to the mean of the sum of 15 totals of 4 time
periods surrounding the current point of interest over 5 years (Hutwagner
et al., 2005).
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The length of the baseline comparison period for C1, C2, and C3
methods is one week. This time window allows the algorithms to account for
possible fluctuations in the expected case count attributable to any particular
day of the week. “In addition, the baseline period is always selected from
the previous week or a recent week relative to the current value; therefore, if
the syndrome of interest is seasonal, the baseline period most often represents
values selected from the same season” (Hutwagner, 2005b).

“The selection of the baseline period relative to the current value is
different for the C1-MILD method relative to the other two methods. For the
C2-MEDIUM and C3-ULTRA methods, the baseline period is further back
in time relative to the baseline period for the C1-MILD method. The baseline
period for C1-MILD is obtained from the previous 7 days in closest proximity
to the current value, (day[t-7] through day[t-1])” (Hutwagner, 2005b).

Figure 12-2 summarizes the evaluation results of performances of algorithm
Cl1, C2, C3, and NBC 7-day, NBC 14-day and NBC 28-day in terms of
sensitivity vs. false alarm rate. They are all CUSUM - based methods. The

1_
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= 05 —— NBC 7-day
§ N —— NBC 14-day
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0.3 - —— NBC 56-day
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0 . :
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NBC: Negative binomial
cusum with™an out of control
state defined as 2 standard
deviations greater than the
mean

Figure 12-2. Sensitivity of EARS and Negative Binomial CUSUM (NBC) algorithms
according to false alarm rate (Watkins et al., 2008).
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class of Negative Binomial CUSUM (NBC) algorithms are CUSUM algorithm
variations that are with an out of control state defined as 2 standard deviations
greater than the mean. The evaluation is based on the detection of outbreaks
of Ross River Virus disease in Western Australia. As shown in Figure 12-2,
NBC algorithms show significantly higher sensitivity when compared with the
EARS C1, C2, and C3 algorithms, particularly at low false alarm rates. It
suggests that the NBC algorithms have a greater level of agreement with
epidemiological opinion than the EARS algorithms with respect to the existence
of outbreaks of Ross River Virus disease. However, the performance of
individual EARS and NBC algorithms were not significantly different when
timeliness was also incorporated into the analyses (Watkins et al., 2008).

3. EARS VISUALIZATION, INFORMATION
DISSEMINATION, AND REPORTING

EARS generates time-series events occurrence plots for a period of time
that is specified by the user. The plots are flagged with red marks according
to the output of the C1-MILD, C2-MEDIUM, and C3-ULTRA methods. By
clicking on the red marks, EARS can bring the users the original data that
produced the flagged aberration. Figure 12-3 is a sample EARS 30-day graph
report.

The EARS program presents its analysis in a complete HTML Web site
containing tables and graphs linked through a homepage. Viewing EARS
output requires only a Web browser. This output can be viewed simultaneously
by several different public health officials at different locations (Hutwagner
et al., 2003).

The EARS MV Report is the latest reporting tool introduced in EARS
version 4. This tool allows the user to quickly view all the data for each
syndrome on one page. The user can of course examine data tables in detail
to view graphs, maps and the original data associated with any flagged
output.

As depicted in Figure 12-4, the EARS MV Report window has two
panels. The left panel, labeled “MV Report Contents,” shows the contents of
the entire report. The right panel shows the selected output. In the example
below, the table output is shown in the right panel. The user can easily use
the “Back” button on the contents panel to sift through previous output
selections (CDC, 2006a).
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4. CASE STUDY: POSTHURRICANE PUBLIC
HEALTH SURVEILLANCE WITH EARS

In response to Hurricane Katrina, CDC and the Louisiana Department of
Health and Hospitals (LDHH) implemented active public health surveillance
in September, 2005, to monitor for injuries and illnesses at functioning hospitals
and other acute-care facilities in the greater New Orleans area. At the same
time, LDHH and Office of Public Health (LAOPH) recognized the need for
communicable disease surveillance in the evacuation centers (ECs). Starting
from August 2005, approximately 50,000 persons began moving into ECs
throughout the state of Louisiana. In Figure 12-5, the number of persons
under EC surveillance is plotted by date.

For EC surveillance, initially, communicable disease data were entered into
a database and then analyzed by comparing daily results with a 3-day moving
average. Beginning September 14, data were analyzed using EARS statistical
software. CUSUM scores were computed for each syndromic category. An
elevated CUSUM score suggests a potential outbreak. Elevated CUSUM scores
and suspicious cases and clusters identified were investigated by telephone.
Those cases that could not be reconciled by telephone were referred to LAOPH
for investigation. During the period September 15 to October 26, review
of individual EC surveillance forms led to 86 follow-up investigations by
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Figure 12-5. Number and percentage of persons under surveillance in hurricane evacuation
centers by date — Louisiana, September to October 2005 (Toprani et al. 2006).
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telephone; of these, 67 (74%) led to further investigation by LAOPH. “The
EARS syndromic surveillance system produced 194 CUSUM scores that
warranted telephone investigation; 46 (15%) were referred for follow-up by
LAOPH. Of 56 investigations referred to LAOPH after implementation of
EARS, 42 (75%) were identified by both an elevated CUSUM score and
epidemiologist review of surveillance forms, 10 (18%) were identified by
epidemiologist review only, and 4 (7%) were identified by an elevated
CUSUM score only” (Toprani et al., 2006).

An active surveillance system was also implemented in hospital EDs and
acute-care facilities starting in September 2005, to respond to this major disaster.
The initial implementation was based on paper forms. Because intensive
labor forces were required to maintain the paper-based system, an ED-based
electronic syndromic surveillance system was implemented on October 17,
2005. Six participating EDs in the New Orleans area consented to transmit
ED data electronically (e.g., patient demographics and chief complaint) every
24 hours to LDHH, where data were analyzed using EARS. This experience
suggests that electronic ED-based syndromic surveillance is a more sustainable
method to continue long-term surveillance for injury and illness after the
initial response phase of a major disaster.

S. FURTHER READINGS

We provide the following project link and some key readings for the readers
who might be interested in learning more details about the EARS system.

Project link:

http://www.bt.cdc.gov/surveillance/ears/

Important readings:

1. CDC (2006). “Early Aberration Reporting System.” http://www.bt.cdc.
gov/surveillance/ears/.

2. Hutwagner, L., W. Thompson, et al. (2003). “The Bioterrorism
Preparedness and Response Early Aberration Reporting System
(EARS).” Journal of Urban Health, 80(2 suppl 1), pp 89-96.

3. Zhu, Y., W. Wang, et al. (2005). “Initial Evaluation of the Early
Aberration Reporting System — Florida.” Morbidity & Mortality
Weekly Report (CDC), 54(Suppl), pp 123-130.
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4. CDC (2006). “Injury and Illness Surveillance in Hospitals and Acute-
Care Facilities After Hurricanes Katrina and Rita, New Orleans Area,
Louisiana, September 25—-October 15, 2005.” Morbidity & Mortality
Weekly Report (CDC).

5. CDC (2006). “Surveillance in Hurricane Evacuation Centers —
Louisiana, September—October 2005.” Morbidity & Mortality Weekly
Report (CDC), 55(02) pp 32-35.
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ARGUS

Project Argus creates and implements a biological event detection and
tracking capability that provides early warning alerts on a global scale.
Argus currently manages between 2,200 and 3,300 active, socially disruptive
biological event case files with update report threading for approximately
175 countries and over 130 disease entities. It posits a sophisticated scaling
of outbreak severity based not only on disease metrics but also on socio-
logical and governmental reactions in the face of mild to severe epidemics
(Chute, 2008).

The system relies on Internet technologies as “harvesting engines” to
capture information relevant to the definitional criteria for biological-outbreak
severity metrics. Official disease reports from WHO or unofficial international
health status reports from ProMED are collected as indicators of possible
biological events. The association of media activities and the biological
events are shown in Figure 13-1. Figure 13-2 depicts the Argus system’s
biological event detection and tracking process.

H. Chen et al., Infectious Disease Informatics: Syndromic Surveillance for Public Health 177
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 13,
© Springer Science + Business Media, LLC 2010
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Figure 13-2. Argus biological event detection process (source: http://www.syndromic.org/
conference/2007).

The major role of Argus is to monitor social disruption that is possibly
caused by epidemics. Social disruption is a deviation from a routine daily
activity that can be tracked and used in lieu of direct reporting of disease.
Epidemiologists search through the open-source information for signs of
epidemics-caused social disruption through unusual disease reports, and a
number of indirect markers including demand for specialized medical services,
local perception of threat, official acknowledgement of threat, official action
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against threat, change in business practices, and integrity of infrastructure.
The open-source information comes from media articles (local sources are
key) on Internet sites, satellite imagery, weather data, air transportation data,
and animal health data. They developed over 200 social disruption parameters
developed in medicine, public health, sociology, cultural anthropology, history,
and disease modeling. Figure 13-3 shows the screenshot of Argus Watch-
board displaying a global geographical mapping of disease status classified
into Warning, Watch and Advisory levels.

The Argus analytic team consists of multilingual analysts covering 34
languages. They perform biological events detection through state-of-the-art
online media processing software based on taxonomy of nearly 200 social
disruption indicators. They also propose a heuristic staging model called the
Wilson—Collmann Scale for assessing biological event evolution. Once an
event is identified, analysts evaluate the report for possible posting as a
Warning, Watch, or Advisory. The stages of outbreak severity they define
include: (1) environmental conditions favorable to an outbreak, (2) localized
biological event, (3) multifocal biological event, (4) severe social and medical
infrastructure strain, (5) social collapse, and (6) preparatory posture.

In the 2007 influenza season, the Argus team issued nearly 3,000 event
reports across 128 countries and 27 languages, which included 181 Advisories,
58 Watches, and 38 Warnings. They identified hundreds of reports of a
possible H3N2 drifted virus escaping the current vaccine compilation beginning
8 months ago in a multitude of countries. This information ultimately contri-
buted to the decision process by the WHO and its partners to change the

Argus Watchboard™

- Argus Watchboard Biological Event World Map -

ADAN
nRANRNvY

Argus Research Operatioas Center

Levels

.Wammg

Watch

Advisory

Figure 13-3. Argus Watchboard (source: http://www.syndromic.org/conference/2007).
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-Biological Event Country Reports-

Country

CHINA Suspected Vaccine Failure 6/22/2007
CHILE Respiratory Disease 6/19/2007
TANZANIA Rift Valley Fever 6/19/2007
ECUADOR Suspected Vaccine-Associated Illness 6/21/2007
CZECH REPUBLIC H5N1 Avian Influenza 6/21/2007
RWANDA Bird Die-Off 6/21/2007
BAHAMAS, THE Bird Die-Off 6/21/2007
PANAMA Undiagnosed Disease (Human, Bull); Bird Die-Off 6/21/2007
NEW ZEALAND Respiratory Iliness 6/22/2007
SENEGAL Unexplained Deaths (Human) 6/18/2007
HONG KONG H5N1 Avian Influenza 6/17/2007
BANGLADESH H5N1 Avian Influenza 6/18/2007
ALGERIA Undiagnosed Disease (Camels) 6/20/2007

Figure 13-4. Biological event reporting at country level (source http://www.syndromic.org/
conference/2007).

southern hemisphere influenza vaccine to include an updated H3N2 strain
(Wilson, 2007).

The Argus event report (Figure 13-4) highlights recent biological events
with geographical locations and date, classified and color-coded as Warning,
Watch, and Advisory.

We provide the following key readings for the readers who might be
interested in learning more details about the ARGUS system.

Important Readings:

1. Wilson, James M. V. (2007). “Argus: A Global Detection and Tracking
System for Biological Events.” Advances in Disease Surveillance 4(21).

2. Chute, C. G. (2008). “Biosurveillance, Classification, and Semantic
Health Technologies.” Journal of the American Medical Informatics
Association 15(2), pp 172—-173.
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HEALTHMAP

HealthMap is a freely accessible, automated real-time system that monitors,
organizes, integrates, filters, visualizes, and disseminates online information
about emerging diseases. The goal of HealthMap is to deliver real-time
intelligence on a broad range of emerging infectious diseases for a diverse
audience, from public health officials to international travelers.

HealthMap.org Web site has been operational since September 2006
(Figure 14-1). US Health and Human Services and the US Department of
Defense among other national or international organizations have used their
data stream for surveillance activities. HealthMap currently receives approxi-
mately 15,000 unique visitors per month from around the world.

Figure 14-2 shows the system architecture of the HealthMap application,
which consists of the following components: (1) data acquisition, (2) inform-
ation characterization, (3) signal interpretation, and (4) dissemination and
alerting.

The system acquires multistream data automatically every hour from a
variety of electronic sources: online news wires, Really Simple Syndication
(RSS) feeds, ProMED mailing lists, and EuroSurveillance and WHO alerts.
The text data are automatically categorized into groups by disease types and
locations with text mining techniques. The system now handles information
in English, Spanish, and French (Brownstein et al., 2008a). HealthMap
currently processes 133.5 disease alerts per day on average (95% Confidence
Interval: 124.1-142.8), with approximately 50% categorized as Breaking
News (65.3 reports/day). With a 30-day default window, the system may
display over 800 Breaking News alerts on a given day (Freifeld et al., 2008).

H. Chen et al., Infectious Disease Informatics: Syndromic Surveillance for Public Health 183
and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7 14,
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Figure 14-1. HealthMap geographic coverage, October 1, 2006 to February 16, 2007 (Freifeld
et al. 2008).

Classification Engine
Extract location, disease

Data Acquisition
Extract titte, URL, date,
description, info text

Web Backend
» Convert form state to query
* Collect results by location

* Apply Heat Index calculation

Web Frontend

« Display map

form state « Display disease list

« Call AJAX function with form state

Figure 14-2. Framework for Internet-based surveillance (Freifeld et al. 2008).
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HealthMap aggregates the disease reports by source, disease, and geo-
graphic location. This information characterization is performed using natural
language interpretation and automated text mining and parsing techniques.
The characterized information is then overlaid on an interactive map
(supported by Google Maps), which allows for user access to the original
report. On the left-hand panel, the HealthMap page allows improved information
filtering by feeds sources, disease, and countries.
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Figure 14-3. HealthMap page showing the latest information on HIN1 Flu as of May 27th, 2009
(lower-left corner: bringing up the related news at a particular location as zooming out). (source:
Healthmap Web page).
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In April 2009, a new strain of influenza known as swine flu (HIN1 flu)
was first detected in the US and soon led to an outbreak in Mexico. It is
now present in over two dozen countries around the globe including Canada,
Japan and the UK. HealthMap began aggregating and filtering real-time
information on the novel flu virus on April 1, weeks before the news emerged
in English-language resources. HealthMap tracked early reports from the
Mexican press on a “mysterious” influenza-like illness occurring in the town
of La Gloria in the state of Veracruz that reportedly infected 60% of the
3,000 residents and killed 2 people.

Figure 14-3 shows a global alert map of the HIN1 disease during its 2009
outbreak as of the end of May 2009. Zooming to a specific region and clicking
on a balloon bring up a list of disease related news articles at that region.

HealthMap represents a successful practice of mining the Internet for
public health surveillance purposes to support and enhance the traditional
public health infrastructure. It demonstrates that news reports in particular
can be a valuable resource for information as inherently the media has the
ability to saturate towns, cities, and communities where public health
officials may or may not be present to report on potential disease outbreaks.

We provide the following project link and some key readings for the readers
who might be interested in learning more details about the HealthMap Project.

Project link:
http://www.healthmap.org

Important readings:

1. Freifeld, C. C., et al.,, “HealthMap: Global Infectious Disease
Monitoring through Automated Classification and Visualization of
Internet Media Reports.” Journal of the American Medical Informatics
Association 2008. 15(2): pp 150-157.

2. Chute, C. G., “Biosurveillance, Classification, and Semantic Health
Technologies.” Journal of the American Medical Informatics
Association 2008. 15(2): pp 172—-173.

3. Brownstein, J. S., C. C. Freifeld, B. Y. Reis, and K. D. Mandl,
“Surveillance Sans Frontiéres: Internet-Based Emerging Infectious
Disease Intelligence and the HealthMap Project,” PLoS Medicine
Vol. 5, No. 7. (1 July 2008), e151.
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CHALLENGES AND FUTURE DIRECTIONS

We conclude this monograph by discussing key challenges facing syndro-
mic surveillance research and summarizing future directions.

1. CHALLENGES FOR SYNDROMIC
SURVEILLANCE RESEARCH

Although syndromic surveillance has gained wide acceptance as a response
to disease outbreaks and bioterrorism attacks, many research challenges remain.

First, there are circumstances in which syndromic surveillance may not
be effective or necessary. The potential benefit of syndromic surveillance as
to the timeliness of detection could not be realized if there were hundreds or
thousands of people infected simultaneously. In extreme cases, modern
biological weapons could easily lead to mass infection via airborne or
waterborne agents. In another scenario, syndromic surveillance could be
rendered ineffective if the cases involved only a few people (e.g., the anthrax
outbreak in 2001) and thus would not trigger any alarms and could go
undetected (2005b). In this situation, one single positive diagnosis of a spore
of anthrax could be sufficient to confirm the event.

Second, disease data tend to be noisy and incomplete. Although reporting
of most notifiable diseases through the chain of public health agencies is
required by law, the hospitals, laboratories, and clinicians participate largely
on a voluntary basis. Patients making ER visits may not be representative of
the population in the neighboring community; the participating hospitals and
laboratories are not necessarily good random samples from which reliable
statistical inference can be successfully made. This reinforces the need for
careful evaluation of data sources and collection procedures.
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Third, many public health practitioners are unfamiliar with advanced
surveillance analytics. Model selection, interpretation, and fine-tuning all
require proper training. One approach that can potentially reduce the learning
curve is to provide a carefully-engineered interactive visualization environment
for the user to experiment with analysis methods, explore the analysis results,
and validate hypotheses in an intuitive and visually informative environment.

Fourth, many false alarms are being generated by syndromic surveillance
systems daily or weekly, as it is difficult to distinguish natural data variations
from real outbreaks. Human reviews and follow-up investigations are necessary
for signaled outbreaks, which are costly in time and labor. A typical
investigation requires a group of epidemiologists, public health officials,
healthcare providers, and their support staff to go through a multistep procedure
for alert review and event evaluation.

Fifth, there is a critical need to develop computational and mathematical
methods to facilitate response planning and related policy- and decision-
making. Such methods should rely on an understanding of specific disease
spreading patterns. They can be used to evaluate alternative policies and
interventions and provide guidelines for scenario development, risk assessment,
and trend prediction (Roberts, 2002).

2. SUMMARY AND FUTURE DIRECTIONS

o Existing systems differ significantly in scope and purpose (e.g., geo-
graphical cover-age, types of data and diseases monitored). For instance,
a majority of systems surveyed focus on biodefense and detecting bio-
terrorism attacks; while other systems target at outbreak detection for
specific diseases such as influenza (Hyman and LaForce, 2004).

e The absence of standard vocabularies and messaging protocols leads to
interoperability problems among syndromic surveillance systems and
underlying data sources. HL7 standards and XML-based messaging
protocols represent a potential solution for addressing these problems.

e Each syndromic surveillance system implements a set of outbreak
detection algorithms. There is an urgent need for a better understanding
of the strengths and limitations of various detection techniques and their
applicability. Also, implemented algorithms could be potentially reused
across systems as sharable resources.

e System evaluation and comparison are confounded by a number of
practical issues. Systematic, field-based, objective comparative studies
among systems are critically needed.
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With regard to promising future research directions in syndromic
surveillance, we see a number of opportunities for informatics studies on a
wide range of topics. We list some of the potentially fruitful areas of studies
below. (a) Data visualization techniques, especially interactive visual data
exploration techniques, need to be further developed to meet the specific
analysis needs of syndromic surveillance. (b) Outbreak detection algorithms
need to be improved in terms of sensitivity, specificity, and timeliness. In
particular, how to deal with incomplete data records, how to perform privacy-
conscious data mining, and how to leverage multiple data streams are
all interesting research questions. Furthermore, thorough evaluation of
outbreak detection algorithms using synthetic or real data is critically
needed. (c) System interoperability research and event management models
are worth studying. (d) In the context of bioterrorism preparation, research
on predicting and responding to bio-attacks is critically needed. Work
reported in (Harmon, 2003) points to an interesting direction in this area of
study: by examining the preceding events based on historical data of
terrorism attacks, the culminating event can be predicted to occur within a
certain time window. (e) This survey is focused on human diseases.
Agricultural bio-attacks and certain animal diseases (e.g., mad cow, foot-
and-mouth, and avian flu) are gaining increasing attention in biosurveillance
practice. For example, the US Department of Agriculture and the US
Geological Survey (USGS), through its National Wildlife Health Center and
other partners, administer and manage databases for wildlife diseases (e.g.,
http://www.usda.gov/). How to detect and respond to agricultural bioattacks
and disease events poses interesting technical challenges (e.g., the importance
of environmental data such as air, water, or weather). Developing cross-species
syndromic surveillance approaches and cross-fertilizing methods from human
and animal syndromic surveillance research hold interesting potentials.

In closing, we briefly discuss the expanding scope of syndromic sur-
veillance systems. Although syndromic surveillance systems have been
developed and deployed in many state public health departments, there is a
critical need to create a cross-jurisdictional data sharing infrastructure to
maximize the potential benefit and practical impact of syndromic surveillance.
In a broader context, public health surveillance should be a truly global
effort for pandemic diseases such as SARS. There is a need to address issues
concerning global data sharing (including multilingual information processing)
and development of models that work internationally. International politics,
global commerce interests, and cultural and regional considerations are some
of the issues that need to be considered in global syndromic surveillance.
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