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Preface

This volume is being published as part of a 5-year research project, funded by the Japan Min-
istry of Education, Culture, Science, and Technology (Monbukagakusho),on the “Replacement
of Neanderthals by Modern Humans (RNMH).” There are two basic premises of the RNMH
project. First, Neanderthals were replaced or assimilated by modern humans (Homo sapiens).
Second, the replacement or assimilation was driven by cultural differences between competing
Neanderthal and modern human groups, potentially due to some advantage(s) associated with
the culture(s) of modern humans.

The current volume focuses on how differences in the cultures of Palaeolithic or Stone
Age hominin societies might arise as a result of differences in learning strategies, social and
demographic factors, and so on. This includes the knotty inverse problem of inferring learning
strategies from actual trajectories of cultural change. With the exception of one chapter, the
replacement process itself is not addressed.

The majority of contributors to this volume are not members of the RNMH project. Nev-
ertheless, we have invited them to submit chapters, because they are leading anthropologists,
archaeologists, biologists, and psychologists who are directly involved in the effort to decipher
hominin cultural change and cultural diversity during the Palaeolithic (see list of contributors).

In addition to the contributors, we wish to thank Jelmer Eerkens, Yasuo Ihara, Jeremy
Kendal, Steven Kuhn, Charles Perreault, Katsuhiro Sano, Jonathan Scholnick, Pontus Strim-
ling, Jamie Tehrani, Claudio Tennie, and Taro Yoshida, for valuable comments on and
constructive reviews of the chapters. Their input is gratefully acknowledged.

This volume was made possible by Monbukagakusho grant 22101004 and indirectly by the
Japanese taxpayer. We are deeply grateful for their support and interest.

Finally, we thank Ken Kimlicka and Taeko Sato of Springer, Japan for their guidance
through the intricacies of the publication process.

Durham, UK Alex Mesoudi
Tokyo, Japan Kenichi Aoki
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1Introduction to “Learning Strategies
and Cultural Evolution During the Palaeolithic”

Kenichi Aoki and Alex Mesoudi

Abstract

In this introductory chapter, we first provide some background on the two major recurrent
themes of the volume, i.e. learning strategies of individuals, and social and demographic
characteristics of populations. This is followed by a brief summary of each chapter. Then,
we conclude with some thoughts on why and how the methods and findings presented in
this volume are relevant to, and might inform our understanding of, the replacement of
Neanderthals by modern humans (Homo sapiens).

Keywords

Learning strategy • Demographic factors • Cultural change • Cultural diversity

This volume provides up-to-date coverage on the theory
of cultural evolution as is being used by anthropologists,
archaeologists, biologists, and psychologists to decipher ho-
minin cultural change and cultural diversity during the Palae-
olithic. The contributing authors are directly involved in this
effort, and the material presented includes novel approaches
and findings. The common theoretical framework of the vol-
ume is that cultural change constitutes a dynamic evolution-
ary system, which can be analyzed using tools and methods
derived from the theory of biological evolution (Cavalli-
Sforza and Feldman 1981; Boyd and Richerson 1985).

Various chapters show how learning strategies in
combination with social and demographic factors (e.g. pop-
ulation size and mobility patterns) predict cultural evolution
in a world without the printing press, radio, or the internet—
which is to say that cultural traits can be acquired from
others only by directly observing their actions or the

K. Aoki (�)
Organization for the Strategic Coordination of Research and
Intellectual Properties, Meiji University, Nakano 4-21-1, Nakano-ku,
Tokyo 164-8525, Japan
e-mail: kenaoki@meiji.ac.jp

A. Mesoudi
Department of Anthropology and Centre for the Coevolution of
Biology and Culture, Durham University, Durham DH1 3LE, UK
e-mail: a.a.mesoudi@durham.ac.uk

results of these actions. Also addressed is the inverse
problem of how learning strategies may be inferred from
actual trajectories of cultural change, for example as
seen in the North American Palaeolithic. Mathematics
and statistics, a sometimes necessary part of theory, are
explained in elementary terms where they appear, with
details relegated to appendices. Full citations of the relevant
literature will help the reader to further pursue any topic of
interest.

1.1 Learning Strategies

Before proceeding it will be useful to briefly explain what
the contributing authors and the editors mean by a “learning
strategy.” A learning strategy is the way in which an organ-
ism combines individual learning and social learning, either
simultaneously or sequentially, and its relative dependence
on each. Here, individual learning occurs when the organ-
ism depends on personal experience to gather information,
e.g. by trial-and-error. Social learning refers to obtaining
information from other organisms, e.g. by imitation. Biases
associated with social learning in the choice of whom to copy
are also an integral part of a learning strategy.

A. Mesoudi and K. Aoki (eds.) Learning Strategies and Cultural Evolution during the Palaeolithic,
Replacement of Neanderthals by Modern Humans Series, DOI 10.1007/978-4-431-55363-2_1,
© Springer Japan 2015
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2 K. Aoki and A. Mesoudi

Much theoretical work has been directed toward
examining the adaptiveness of various social learning
biases (Boyd and Richerson 1985; Laland 2004), such as
“success bias” and “prestige bias” which entail preferentially
copying a successful or a prestigious individual, respectively
(Henrich and Gil-White 2001; Nakahashi et al. 2012), and
“conformist bias” which entails copying the majority cultural
behavior of one’s group (Henrich and Boyd 1998; Wakano
and Aoki 2007; Nakahashi 2007; Kendal et al. 2009;
see Aoki and Feldman 2014 for a comprehensive review).
“Teaching” represents a powerful adjunct to social learning,
where the individual being copied (the “teacher”) modifies
his/her behavior to facilitate social learning by a naïve
individual (the “pupil”) (Caro and Hauser 1992). Still
another aspect of learning—in particular the learning of
complex technical knowledge comprising various different
skills—is that cultural traits may be interdependent, some
serving as prerequisites for the acquisition of others.
Several chapters in this volume tackle the question of how
different learning strategies might structure population-
level cultural change and variation, and the even more
difficult problem of how to identify these population-
level signatures in the often sketchy archaeological
record.

1.2 Social and Demographic Factors

Many archaeologists and anthropologists currently empha-
size social and demographic factors in interpreting “sudden”
and “dramatic” changes in stone tools or other cultural
artefacts during the Late Pleistocene (between 130,000 and
10,000 years ago), in particular the “creative explosions”
(Kuhn 2012) of the African late Middle Stone Age and the
European Upper Palaeolithic (Shennan 2001; Henrich 2004;
Kline and Boyd 2010; Zilhão et al. 2010; Mesoudi 2011;
Clark 2011; Kuhn 2013). In fact, theoretical studies have
repeatedly shown that population size can have a large effect
on cultural evolutionary rate and cultural diversity (Shennan
2001; Henrich 2004; Strimling et al. 2009; Mesoudi 2011;
Lehmann et al. 2011; Aoki et al. 2011; Kobayashi and Aoki
2012; Aoki 2013), as can interconnectedness of subpopula-
tions (Powell et al. 2009; Perreault and Brantingham 2011).
Transmission chain experiments conducted in the laboratory
also provide some support for a link between population
(or group) size and cultural complexity (Derex et al. 2013;
Muthukrishna et al. 2014; Kempe and Mesoudi 2014; but see
Caldwell and Millen 2010).

However, archaeological evidence on the role of de-
mographic factors is inconclusive or even contradictory.
Two recent studies of Late Pleistocene South Africa are
particularly relevant. Clark (2011) looked for signatures of
population growth and/or demographic stress in an increase

of diet breadth (e.g. the use of non-preferred prey animals),
obtaining some support for an association with the height-
ened creativity of Howieson’s Poort. But, as Clark (2011)
is careful to note, this association is open to an alternative
interpretation, namely that rapid cultural change produced
new tools, which were used to exploit novel resources. Klein
and Steele (2013) (see also Klein 2008, Box 1) observed that
edible shellfish remains from Middle Stone Age middens
are significantly larger than those from Later Stone Age
middens. If shellfish size reflects human collection intensity,
then this finding suggests that the precocious appearance of
modern behaviors in the Still Bay and Howieson’s Poort may
not have been associated with population growth.

The claim that pre-contact Neanderthals in Spain used
necklaces made of shells strung together as body orna-
mentation 50,000 years ago is also laden with ambiguity,
in more ways than one. Zilhão et al. (2010) regards this
as evidence for the cognitive equality of Neanderthals and
modern humans, “support[ing] models of the emergence of
behavioral modernity as caused by technological progress,
demographic increase.” However, perforation may not have
been anthropogenic, and shells with naturally-formed holes
of appropriate size for threading may have been selectively
collected. Moreover, according to Prüfer et al. (2014), Nean-
derthal population size in the Altai region as estimated from
genetic data shows a continual decrease after one million
years ago, which is not true of various current modern
humans. Similarly, Mellars and French (2011) argue for
small population size in pre-contact European Neanderthals
(MTA) compared to the Aurignacian. By implication, both
Neanderthals and modern humans achieved the same cultural
level, in spite of a difference in population size. Note,
however, modern human beads occur much earlier—as early
as 100,000 years ago in the Levant (Vanhaeren et al. 2006)—
so perhaps population size did play a role.

In addition, statistical analyses of ethnographic hunter-
gatherers have failed to detect an association between pop-
ulation size and the number of food-getting tools (Col-
lard et al. 2005; Read 2006). On the other hand, ethno-
graphic food-producing societies (e.g. small-scale farmers
and herders) do conform to the theoretical prediction that
population size and the number of food-getting tools should
be positively correlated (Kline and Boyd 2010; Collard et al.
2013). Possible explanations for these contrasting results
have been suggested, including higher degrees of specializa-
tion in the latter societies.

A fundamental problem in human evolution is how to
account for an apparently abrupt cultural change, without
invoking a major genetic change in cognition (e.g. innova-
tiveness), for which there is at present no strong evidence
(Klein 2008). Needless to say, absence of evidence does not
constitute evidence of absence, and we are obliged to keep
an open mind (Akazawa et al. 2013). Richerson et al. (2009)
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(see also Richerson and Boyd 2013) discuss the possibility
of spontaneous transitions between stable regimes—a small
population at a low cultural level and a large population at
a high cultural level. Developing this idea further and based
on an explicit mathematical model, Aoki (2015) shows that
a saltatory cultural change can be triggered by a gradual
evolutionary change in the genetic basis for innovativeness.
This scenario is not inconsistent with the “neural hypoth-
esis,” a recent version of which invokes “a neural change
that promoted the extraordinary modern human ability to
innovate” (Klein 2008, p. 271). However, this neural change
would not be attributable to just one “fortuitous mutation” in
a major gene 50,000 years ago.

1.3 Summary of the Chapters

This volume comprises ten chapters, which use a range of
methods to address different aspects of cultural evolution
during the Palaeolithic.

In Chap. 2, Fogarty et al. present a theoretical analysis
examining the modes and pathways of social learning, and
how they affect the expected number of cultural traits main-
tained in a population. Specifically, they compare random
oblique, best-of-K (an example of direct bias, which entails a
preference for a particular variant of a cultural trait), success
bias, and one-to-many. Given the current emphasis among
archaeologists and anthropologists on demographic factors,
the effect of population size is also investigated, as is the less
acknowledged role of innovation.

Fogarty et al. classify cultural traits as simple or complex,
depending on the ease or difficulty of acquisition by social
learning and innovation. Assuming an innate upper limit
to the number of cultural traits that can be imagined—a
limitation that may possibly be overcome by a mechanism
analogous to “embedding” in linguistics—they show that the
number of simple cultural traits may saturate as population
size increases, in which case a statistical association between
the two variables is not predicted. At smaller population
sizes, there is a major effect of the mode of social learning.
By contrast, the relation between the number of complex
cultural traits and population size is approximately linear and
almost identical for all modes of social learning investigated.
This is because most of the complex cultural traits that
are maintained in the population can be accounted for by
innovation alone, which raises the question of whether such
traits qualify as “cultural” (Whiten et al. 1999).

In Chap. 3, Nakahashi describes and analyzes a new
mathematical model for the evolution of teaching that is
culturally transmitted rather than genetically determined.
Teaching is here defined sensu Caro and Hauser (1992) as a
knowledgeable individual (the teacher) altering its behavior
in the presence of a naïve individual (the pupil), suffering

a cost to do so, and thereby promoting social learning by
that naïve individual. In this model, there are an infinite
number of cultural traits, which are acquired by either indi-
vidual learning or social learning, and where their acquisition
entails a viability cost. Moreover, cultural traits are either
beneficial or neutral, and only the former are assumed to
contribute to fertility.

Nakahashi shows that teaching behavior can evolve
culturally—i.e. teachers can invade and exist at a stable
positive equilibrium—if a teacher can socially transmit more
cultural traits than a non-teacher. However and surprisingly,
it cannot evolve if teaching merely improves the accuracy
of social learning by pupils. This latter result differs from
the predictions of previous theoretical work that assume
genetic determination of teaching behavior (Fogarty et al.
2011).

The next three chapters deal with structured populations.
Kobayashi et al. (Chap. 4) directly address the cultural
correlates of the replacement of Neanderthals (and other
archaic humans) by modern humans. Their chapter begins
with a detailed review of the archaeology of the Middle
to Upper Palaeolithic transition in various parts of Eurasia,
which suggests varying degrees of cultural continuity dur-
ing/after the arrival of modern humans. In particular, China is
apparently characterized by the late persistence of primitive
core-and-flake industries (Norton and Jin 2009; Bar-Yosef
and Wang 2012). Several Upper Palaeolithic industries in
western Eurasia, e.g. the Emiran in the Levant and the Early
Baradostian in the Zagros, may also exhibit recognizable
elements of the preceding Middle Palaeolithic.

Kobayashi et al. describe a new model in which an invad-
ing modern human population has a demographic advantage
(a higher relative growth rate), but receives unidirectional
cultural influences from the indigenous archaic population.
The cultural traits that the modern humans acquire from
the archaics are assumed to be of a different kind from
those that may be contributing to the demographic advantage
of the former. Using approximate analytical methods and
agent-based simulations, these authors show that biological
replacement can be associated with either the rapid disap-
pearance, the gradual disappearance, or the persistence of
these autochthonous cultural traits. Gradual disappearance
or persistence, i.e. cultural continuity, is predicted when
a small modern human population invades a region with
a relatively unfavorable physical environment. Importantly,
cultural continuity is not an indicator of biological continuity.

The pattern of mobility within a geographically-structured
population is recognized to be an important demographic
factor in cultural evolution, through its effect on the variety of
social learning opportunities (Powell et al. 2009). In addition,
mobility may place a limit on the number of portable arte-
facts (Torrence 1983; Shott 1986). Premo (Chap. 5) gives an
excellent introduction to residential mobility and logistical

http://dx.doi.org/10.1007/978-4-431-55363-2_2
http://dx.doi.org/10.1007/978-4-431-55363-2_3
http://dx.doi.org/10.1007/978-4-431-55363-2_4
http://dx.doi.org/10.1007/978-4-431-55363-2_5
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mobility (Binford 1980; Kelly 1983), where the former refers
to the relocation of a hunter-gatherer residential base and
the latter to the movement of a subgroup on task-specific
forays.

Premo conducts agent-based simulations of a spatially-
distributed metapopulation to obtain its effective size. Each
agent is a culturally monomorphic group of hunter-gatherers
that relocates its residential base if a logistical foray proves
unsuccessful in finding food. All agents initially carry dif-
ferent variants of a cultural trait, but agents within a cer-
tain interaction radius influence each other culturally, and
the mean time until the metapopulation is fixed for one
of these variants is used as a proxy measure of effective
population size. The main result of this chapter is that the
effective size of the metapopulation increases—sometimes
quite substantially—as the frequency of residential moves
decreases. This prediction has implications for the cultural
diversity that is expected to be maintained in the metapopu-
lation.

Madsen and Lipo (Chap. 6) describe and analyze a new
agent-based simulation model for the cultural evolution
of hierarchically-structured cultural traits (e.g. knowledge,
skills), where some cultural traits are prerequisites for the
acquisition of others. That is, while most models assume
the transmission of independent cultural traits, Madsen
and Lipo build on previous efforts (Mesoudi and O’Brien
2008; Mesoudi 2011; Enquist et al. 2011) to explore the
more realistic situation where acquiring a cultural trait
is dependent on already possessing other cultural traits.
Cultural interactions, providing opportunities for social
learning, can occur between two adjacent agents on a square
lattice, as in the model proposed by Axelrod (1997). Agents
may also innovate. The major difference between the current
model and the original Axelrod model is that the focal agent
can acquire a cultural trait from its neighbor only if it already
has the prerequisite cultural traits. Alternatively, the neighbor
may structure the learning environment of the focal agent by
supplying the latter with the necessary prerequisite cultural
traits. Madsen and Lipo refer to this behavior by the neighbor
as teaching.

In their simulations, Madsen and Lipo examine the effects
of the fidelity of teaching, size of design space (maximum
possible number of cultural traits), innovation rate, and
population size on cultural diversity (number of different
repertoires of cultural traits segregating in the population),
“knowledge depth” of cultural traits (average number of
prerequisites per extant cultural trait, which can be regarded
as a measure of cultural complexity or cumulativeness),
etc. Cultural diversity is found to increase with the fidelity
of teaching and with the size of design space, but only
when innovation is allowed. Knowledge depth increases with
the fidelity of teaching, but again only when innovation is
allowed.

Of particular interest is the possibly counterintuitive pre-
diction that knowledge depth is minimally affected by popu-
lation size. This result is likely a consequence of the assump-
tion inherited from Axelrod (1997) that cultural interactions
are spatially localized and moreover occur preferentially
between culturally similar agents (homophily). If these as-
sumptions apply to Palaeolithic hunter-gatherers—they may
not to some present-day hunter-gatherers that travel long
distances (Hewlett et al. 1982)—then the predictive value of
population size per se should be viewed with caution.

Chapters 7 and 8 explore novel Bayesian methods for
detecting signatures of learning strategies in archaeological
data. Summary statistics such as the expected number of cul-
tural traits are useful, but frequency distributions (spectrums)
of variants of cultural traits are more informative. Kandler
and Powell (Chap. 7) explain a powerful new method—
approximate Bayesian computation (ABC) (Beaumont et al.
2002)—for identifying learning strategies that produce the
observed population level data on such frequency distribu-
tions. Very briefly, ABC entails simulating a model with
parameter values chosen from a prior distribution and re-
taining those parameter values that give the closest fit of the
simulated data to the observed data; these retained parameter
values approximate the posterior distribution.

As a concrete example of the application of this method,
they first generate “observed” data by simulating a hypothet-
ical model for the evolution of a cultural trait with known
parameter values but with noise added. The parameters that
define the learning strategy are the degrees of reliance on
individual learning (i.e. innovation), directly-biased social
learning, and conformist social learning. Then, the frequen-
cies of the variants are sampled at various times, and the
parameters of this model are estimated by ABC. It is shown
that the original parameter settings are faithfully recovered
by this estimation procedure.

Kovacevic et al. (Chap. 8) apply approximate Bayesian
computation to empirical data on the geographical distribu-
tion of bead types in European Aurignacian sites. The goal of
this chapter is to test the hypothesis, proposed by Vanhaeren
and d’Errico (2006) based on this data, that these bead types
had a symbolic meaning and served as markers of ethnic
identity. Agents in the simulation model of Kovacevic et al.
are mobile Aurignacian groups, which can undergo pairwise
cultural interactions when in geographical proximity. Two
cultural interaction processes are considered, “conflict” and
“sharing.” In the case of conflict, the bead types of the losing
group are completely replaced by those of the winning group.
Sharing entails the pooling and swapping of some bead types
between the two groups.

If bead types are indeed ethnic markers, then—as Kovace-
vic et al. argue—two interacting groups that are relatively
similar for bead types are more likely to share, whereas those
that are relatively different are more likely to experience
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conflict (culture-dependent interaction model). On the other
hand, if bead types have no such meaning, then the nature
of the cultural interaction should not depend on these simi-
larities or differences (null model). Kovacevic et al. find that
the best fits of the simulated to the observed data are equally
likely under the null model as the culture-dependent model.
Thus, their study does not support the hypothesis that the
Aurignacian was ethnically structured, at least in the sense
that different bead types were used symbolically to mark
ethnic identity.

In Chap. 9, O’Brien et al. provide an excellent summary
of the variety of learning strategies discussed in the literature
and of the well-studied archaeology of Palaeolithic North
America. Among these various learning strategies, they focus
on “guided variation” and “indirectly-biased” social learn-
ing as likely candidates for the Early Paleoindian period.
Guided variation is a learning strategy in which unbiased
social learning is followed by individual learning that targets
the environmentally optimal behavior (Boyd and Richerson
1985). Indirect bias entails that an individual perceived to be
successful or prestigious is preferentially copied. Whereas
the former results in adaptive cultural change, the latter
may not do so unless success or prestige is correlated with
biological fitness.

O’Brien et al. review several recent studies (Morrow and
Morrow 1999; Buchanan and Hamilton 2009; Hamilton and
Buchanan 2009; Sholts et al. 2012; Buchanan et al. 2014)
that ask whether the geographical variation in Clovis points
is due to regional adaptation by guided variation or other
factors such as random drift associated with indirectly-biased
social learning. They argue that different learning strategies
may be applied to different aspects of stone-tool production,
specifically that patterns of flake removal may have been
determined by prestige-biased social learning from skilled
craftsmen, whereas point shape was determined by guided
variation. The greater regional variation observed for point
shape is explained by this difference in learning strategies.

Our final two chapters focus on laboratory experiments as
a means of better understanding learning strategies, begin-
ning with Caldwell (Chap. 10). The distinguishing feature of
the culture of modern humans as opposed to non-human an-
imal cultures—to a certain extent, perhaps also Neanderthal
culture—is that it is cumulative. Thus, as Tomasello (1999,
p. 512) explains, “[t]he most distinctive characteristic of
human cultural evolution is the way that modifications to a
cultural artifact or a social practice made by one individual
or group of individuals often spread within the group, and
then stay in place until some future individual or individuals
make further modifications.”

Caldwell reviews her work on transmission-chain labora-
tory experiments (e.g. Caldwell and Millen 2008a, b, 2009,
2010; Caldwell et al. 2012), which ask what unique aspects
of cognition and social learning in present-day humans make

cumulative cultural change possible. One prevailing view
holds that only imitation, i.e. “process-oriented” or “action-
copying” social learning, can support high-fidelity social
learning, which is a necessary condition for cumulative
cultural change. Against this, the experiments tested whether
emulation, i.e. “goal-oriented” or “results-feedback” social
learning, might also qualify.

Participants were given two tasks, building a paper aero-
plane scored for flight distance and building a spaghetti tower
scored for height. The experimental conditions differed in the
type of information made available to the participants, specif-
ically the actions used by the antecedents in the transmission
chain to execute the tasks and/or the results (i.e. products)
of these actions. Caldwell and coworkers found that high-
fidelity social learning occurred even when participants were
permitted to observe only the results. Moreover and conse-
quently, performance was improved over the “generations”
of the transmission chain. Teaching was also found to be ef-
fective, independently of imitation and emulation. However,
as Caldwell notes, these experiments do not address the role
of innovation, which is clearly also a necessary condition
for cumulative cultural change (Borenstein et al. 2008).
Furthermore, the tasks used are rather simple compared to
even very early hominin technology such as flint-knapped
handaxes, for which imitation may well be more important.

Lycett et al. (Chap. 11) review their work on transmission-
chain experiments conducted in the laboratory (Kempe et al.
2012; Schillinger et al. 2014). They emphasize the impor-
tance of laboratory experiments in understanding how the
dynamics of micro-evolutionary processes affect artefactual
variation, to produce the macro-patterns seen in the archae-
ological record. Specifically, their interest focuses on eluci-
dating the relation between copying error, either deliberate
or unintentional, and cultural variation among populations.

In the first experiment (Kempe et al. 2012), each partic-
ipant was asked to view an image of a handaxe drawn by
his/her antecedent in the transmission chain and to faithfully
copy its size. Observed copying error averaged 3.43 %,
which is consistent with the value of 3 % reported in the
psychophysical literature. Moreover, the variance among
transmission chains increased as expected over the ten gener-
ations of the experiment. Then, individual based simulations
were conducted to predict the variance of handaxe length
and breadth after 200 generations. The predicted variance
was far greater than that observed in a sample of more
than 2,000 Acheulean handaxes from 21 sites spanning
1.2 million years, suggesting certain undetermined factors
countermanding the effects of copying error.

In the second experiment (Schillinger et al. 2014), partic-
ipants were asked to make a replica handaxe from plasticine
using a knife. Two experimental conditions were compared:
reductive only in which material may be removed but not
added as is usually the case in stone-tool knapping, and
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additive-reductive in which both actions are permitted as in
the manufacture of pottery. As expected, copying error was
statistically greater under the former condition. These simple
experiments show, using a “model artifact” for culture—
in this case, handaxes—equivalent to “model organisms” in
experimental population genetics, how features of perceptual
systems and manufacturing techniques can generate system-
atic patterns in cultural datasets.

1.4 Concluding Remarks

The goal of this volume is to show how learning strategies,
in combination with social and demographic factors, predict
cultural change and cultural diversity during the Palaeolithic.
Also addressed is the more challenging inverse problem of
how learning strategies may be inferred from the sketchy
archaeological record. Towards this end, our contributors
have applied a diverse range of scientific methodologies,
including mathematical models derived from population ge-
netics, spatially explicit agent-based models, approximate
Bayesian computation, and transmission chain laboratory
experiments.

Our underlying motivation is to explain why and how
Neanderthals were replaced (or assimilated) by modern hu-
mans, in terms of cultural differences between the two
(sub-)species. This is an entirely reasonable premise, given
that replacements in historical times were likely driven by
cultural differences—and the demographic or disease-related
corollaries of such cultural differences—between compet-
ing ethnic groups (Diamond 1997). Moreover, as recently
as 2003, leading anthropologists noted that “[t]he ultimate
mechanism for this replacement is widely considered to be
a behavioral difference between non-modern and modern
populations that lent an adaptive advantage to moderns”
(Henshilwood and Marean 2003, p. 627). The theory de-
scribed in this volume helps us to understand how various
factors—innovativeness, biases and error associated with
social learning, population size and structure, residential and
logistical mobility, to name a few—influence the amount,
complexity, and geographic variation of culture.

However, based on intensive archaeological work during
the past decade, it has been suggested that contemporaneous
Neanderthals and modern humans—in particular in Europe
where the two (sub-)species apparently overlapped for sev-
eral thousand years (Higham et al. 2014)—both exhibited
most, perhaps all, “modern behaviors” including symbolic
behavior (d’Errico and Stringer 2011; Zilhão 2013). See,
for example, Table 3 of McBrearty and Brooks (2000) for
a comprehensive list of modern behaviors, initially believed
to constitute the distinguishing features of modern humans.
From the standpoint of the cognitive equality of Neanderthals
and modern humans, the possible “nail in the coffin” is

the recent report of a rock engraving made by pre-contact
Neanderthals in Gibraltar (Rodríguez-Vidal et al. 2014).

On the other hand, we must not forget that there was
much variability both among Neanderthal regional groups
and among modern human regional groups. Competition
resulting in replacement would likely have occurred on a
circumscribed geographical scale, not between the “cham-
pions” on either side. Hence, if Neanderthal regional cul-
tures were on average slightly inferior to modern human
regional cultures—perhaps reflecting a small (sub-)specific
difference in cognition or in demography—then the premise
that cultural differences contributed to replacement, which
we subscribe to, would still be tenable.
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2Factors Limiting the Number of Independent
Cultural Traits That Can BeMaintained
in a Population

Laurel Fogarty, Joe Yuichiro Wakano, Marcus W. Feldman, and Kenichi Aoki

Abstract

We obtain the theoretically expected number of independent cultural traits at equilibrium
in a population where one of four modes of social learning—random oblique, best-of-K,
success bias, or one-to-many—is practiced by its members. Cultural traits can be classified
as simple or complex, depending on the ease or difficulty of acquisition by social learning
and innovation. The number of simple cultural traits may saturate as population size
increases, in which case a statistical association between the two variables is not predicted.
At smaller population sizes, there is a major effect of the mode of social learning on the
number of simple cultural traits. By contrast, the relation between the number of complex
cultural traits and population size is approximately linear and almost identical for all
four modes of social learning. We suggest that empirical studies of statistical association
between number of cultural traits and population size should distinguish between simple
and complex cultural traits.
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2.1 Introduction

Beginning with the work of Cavalli-Sforza and Feldman
(1973a, b, 1981), numerous theoretical models have been
proposed for the quantitative study of cultural evolution.
These models differ in how cultural variation among individ-
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uals is represented. Recent theoretical investigations of long-
term cultural evolution have employed three approaches. The
first measures the “skill” of an individual by one continuous
variable, which may be regarded as the cumulative effect of
the variants of many cultural traits carried by that individual
(e.g. Henrich 2004; Powell et al. 2009; Kobayashi and Aoki
2012). The second assigns to each individual a “vector”
(a one-dimensional array), the elements of which represent
different cultural traits, and where any number of variants is
permitted for each cultural trait (e.g. Shennan 2001; Mesoudi
2011). The third is a simplified version of the second, in
which only the possession or non-possession of a cultural
trait is noted (e.g. Strimling et al. 2009; Lehmann et al. 2011;
Aoki et al. 2011; Aoki 2013).

Ethnography provides us with comparative data from
numerous societies on the presence or absence of various
cultural traits, including tool types and linguistic features.
Such data have been used in recent statistical analyses of
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cultural evolution to estimate the cultural evolutionary rate
(e.g. Rogers and Ehrlich 2008; Rogers et al. 2009), to
determine whether certain cultural traits are co-transmitted
(e.g. Brown and Feldman 2009; Jordan and Shennan 2009;
Jordan and O’Neill 2010), and to examine the possibility
of the serial founder effect (e.g. Atkinson 2011). Other
statistical studies have investigated the effects of various
environmental, demographic, and behavioral factors on the
number of food-getting tool types in use in subsistence
societies (Collard et al. 2005, 2011, 2012, 2013a, b, c; Read
2006). In these studies, the “cultural state” of a society is
represented, explicitly or implicitly, in terms of a vector
of 1’s and 0’s which denote the presence and absence,
respectively, of the relevant cultural traits in that society.
This is consistent with the third modeling approach described
above, although variation among individuals within a society
is not distinguished in these empirical studies. We note here
an ambiguity in the concept of a “cultural trait,” a matter we
take up briefly in the Discussion.

The objective of this paper is to further develop a frame-
work for modeling the evolution of culture-as-a-0, 1-vector.
We show how processes at the individual level such as social
learning and innovation, in conjunction with demographic
factors such as population size, determine the extent of
cultural diversity within a population. In particular, we wish
to compare the effects of different modes of social learning
(transmission)—specifically, random oblique, direct bias,
success bias, and one-to-many—which have been argued to
be important (Guglielmino et al. 1995; Henrich 2004; Lycett
and Gowlett 2008; Powell et al. 2009; Mesoudi 2011). Var-
ious measures of within-population cultural diversity exist,
e.g. the total number of cultural traits in the population, the
average number of cultural traits carried by an individual, the
fraction of cultural traits that are shared between individuals,
etc. Here, we focus on the first measure, because it is directly
relevant to the statistical studies on the number of tool types
mentioned above. It may perhaps also be useful for our
ultimate goal of interpreting the archaeological record of
Palaeolithic technologies (e.g. Perreault et al. 2013) and of
explaining the demise of the Neanderthals and their replace-
ment by modern humans.

Several theoretical studies have already addressed this
question (Strimling et al. 2009; Lehmann et al. 2011;
Aoki et al. 2011), but they do not fully explore the
detailed relationships among population size, innovation
regimes, and trait simplicity/complexity. In addition, these
papers may contain an unnatural assumption with regard
to who innovates—empirically speaking, innovations are
attributable to adults or juveniles (e.g. Reader and Laland
2001; Morand-Ferron et al. 2011; Hewlett 2013), but not
newborn infants—which we rectify (see below). On the
other hand, we continue, as in these previous studies, to
ignore natural selection and to assume that cultural traits

are independently transmitted. These simplifying conditions
clearly restrict the applicability of our results and moreover
have been shown in some instances not to apply. For
example, Brown and Feldman (2009), Jordan and Shennan
(2009), and Jordan and O’Neill (2010) provide evidence for
the associated transmission of some, but not all, cultural
traits. Contingent transmission of cultural traits has been
modeled in a theoretical paper by Mesoudi (2011).

In the present paper, we first adapt the model of Strim-
ling et al. (2009) to analytically derive a recursion for the
total number of cultural traits in the population, which can
be iterated numerically to yield a solution in the case of
direct bias as well as for random oblique social learning.
Then, we conduct extensive Monte Carlo individual-based
simulations. Some of the results we obtain are at first sight
counterintuitive or inconsistent with established views. For
example, we find that the proposal by Henrich (2004) that
“complex skills” are more easily lost than “simple skills”
when population size declines is only partially supported.

In implementing the simulations, we have set an upper
limit to the possible number of cultural traits, which we call
the “imagination space.” Although introduced for the sake of
convenience, the imagination space of cultural traits may in
reality be bounded due to innate constraints, or alternatively
be dependent on the cultural level that has already been
attained—an example of cultural niche construction (Odling-
Smee et al. 2003; Ihara and Feldman 2004). Not surprisingly,
we find that imagination space has a profound effect on
cultural diversity.

2.2 Model

Let us assume a finite population comprising N individuals
and in which a potentially infinite number of cultural traits
may occur. A particular cultural trait may or may not be
found in the population at any one time. Moreover, even
when it is, an individual member of this population may
or may not carry it. We will use the terms 1-variant and 0-
variant to denote the presence and absence, respectively, of
a cultural trait at the individual and population levels. Each
individual can then be represented by a vector of 1’s and 0’s,
and the population by a matrix formed by aligning N such
vectors. Thus, the ijth element of this matrix, which we write
Cij, is equal to 1 if the jth cultural trait carried by the ith
individual is the 1-variant, and 0 otherwise.

The cultural dynamics are defined by events occurring
during one time step, which are innovation, birth, social
learning (SL), death and replacement, in that order. First, the
N individuals alive at the beginning of a time step, whom
we call adults, innovate according to rules described later.
Second, one individual is born and is considered to have the
0-variant of each cultural trait. Third, this newborn acquires
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either the 1-variant or the 0-variant of each extant cultural
trait by SL from the adults. Fourth, a random adult, i.e. an
individual other than the newborn, dies and is replaced by the
newborn (except in the case of one-to-many SL, as described
below, when it is the expert who dies). The second through
fourth events constitute the birth-death version of the cultural
Moran model (Strimling et al. 2009; Lehmann et al. 2011;
Aoki et al. 2011; Aoki 2013).

Since deaths occur at random with probability 1/N per
adult per time step, the life expectancy of a newborn is N
time steps. Hence, we can regard N time steps as equivalent
in duration to one generation (Gale 1990). This does not
mean that the lifespan of an individual increases linearly
with population size. Rather, the correct interpretation is that
the interval between successive births decreases in inverse
proportion to the population size. One virtue of the cul-
tural Moran model is that the generations are naturally
overlapping—e.g. an individual can be alive at the same
time as his/her parents and/or children—which provides a
closer approximation to hominin demography than earlier
models of cultural transmission that assumed discrete non-
overlapping generations.

Innovation of a cultural trait is defined as the spontaneous
acquisition of the 1-variant by an individual who carries the
0-variant. We assume that all N adults may innovate during
a time step. This differs from most previous models in which
only the one newborn was allowed to innovate (e.g. Strimling
et al. 2009; Lehmann et al. 2011). In addition, for the
Monte-Carlo individual-based simulations (IBS, see below),
we consider two different types of innovation processes,
infinite-sites and recurrent. Infinite-sites innovation entails
that an innovating adult may only acquire the 1-variant of
a cultural trait that is absent from the population and that
has not been acquired by another innovating adult during
the same time step. Hence, after all N adults have had a
change to innovate, each new 1-variant necessarily exists in
single copy. With recurrent innovation, on the other hand, an
innovating adult may acquire any 1-variant he/she does not
currently carry, regardless of whether that 1-variant is carried
by other adults.

The infinite-sites assumption may appear to be a restric-
tive way of modeling innovation. However, it is useful in
deriving analytical results, and we make this assumption to
do so (see Aoki et al. 2011 and below). Moreover, provided
the innovation rate is low, the IBS suggest that the cultural
dynamics apparently do not differ greatly whether we assume
infinite-sites or recurrent innovation. On the other hand, we
observe some interesting differences in the outcomes when
the innovation rate is high.

The innovation rate, which we denote by �, is defined
per individual per generation/lifespan. Since the life cycle is
described per time step, we also require the innovation rate
per time step, which is �/N for each individual and � for the

population. The reason we choose the generation rather than
the time step to be our basic unit of time is that the former
is biologically relevant whereas the latter is a mathematical
construct.

We consider four different modes of SL by the newborn.
In a “real-life” SL situation, these different modes of SL are
likely to be combined. For example, the “expert” in one-to-
many SL may also be the most “successful” individual who
carries the greatest number of 1-variants. Nevertheless, we
believe it is useful to consider the separate effect(s) of each
mode of SL in isolation. See Aoki et al. (2011) and Aoki
(2013) for details.

Random Oblique The newborn samples one adult at random
from among the N adults. The 1-variant of each cultural
trait is independently acquired from this exemplar adult
with probability ˇ, which we also refer to as the efficiency
of SL.

Best-of-K The newborn samples K adults at random without
replacement. The 1-variant of each cultural trait is indepen-
dently acquired with probability ˇ, provided at least one of
the K sampled exemplar adults carries the 1-variant.

Success Bias The newborn samples K adults at random
without replacement and then chooses one adult with the
greatest number of 1-variants from among these K adults to
be his/her exemplar. That is, we assume that the possession
of cultural traits (some of which may be material goods)
is regarded as an indicator of success, whether or not they
contribute to reproductive success. The 1-variant of each
cultural trait is independently acquired with probability ˇ

from this exemplar adult.

One-to-Many One adult has the special status of expert
and retains this special status until death. The newborn
acquires the 1-variant of each cultural trait independently
with probability ˇ from this expert. When the expert dies,
which occurs with probability 1/N per time step, he/she is
replaced by another adult or by the newborn. When a non-
expert dies, he/she is replaced by the newborn, as with the
other modes of SL.

Finally, for all four modes of SL, the default trait variant
is the 0-variant.

In the above description of SL, it should be noted that the
probability of acquisition of the 1-variant of a cultural trait,
ˇ, is defined per time step, in contrast to the innovation rate,
�, which has been defined per generation. If the generation
length is fixed, then the duration of a time step, and hence
the time available for SL, is expected to decrease as the
population size, N, increases. However, our model does not
take this into account and in effect assumes that SL is
instantaneous. We assume 0 < ˇ <1.
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The variable of interest for us in this paper is the number
of different cultural traits that can be found in the popula-
tion at any one time, i.e. the number of cultural traits for
which at least one individual carries the 1-variant, which
we denote by Cpop. In terms of the matrix elements, Cij,

we can define Cpop as follows. Let �j D 1 if
NX

iD1

Cij > 0,

and �j D 0 if
NX

iD1

Cij D 0. Then, Cpop D
X

j

�j . We

have followed previous theoretical work (e.g. Strimling et al.
2009; Lehmann et al. 2011; Aoki et al. 2011) in adopting
this definition of Cpop, which is also implicit in the models
of Shennan (2001) and Mesoudi (2011). However, it may
not agree with the operational definition for identifying a
cultural behavior in non-humans primates, which requires
that it occur in several individuals (e.g. Whiten et al. 1999).
We take this point up again very briefly in the Discussion.

We investigate how the expected value of this variable

at equilibrium, OC pop (the bar over the variable indicates
that it is the expected value, whereas the hat indicates
that it is evaluated at equilibrium), depends on the mode
and efficiency of SL, the innovation rate, the imagination
space (see below), and the population size. Other important
measures of cultural diversity are the number of cultural traits
carried by an individual, Cind, and the number of cultural
traits that are shared between individuals (see companion
paper by Fogarty et al.). The reason we focus here on Cpop

is that it is empirically most relevant to the ethnographic and
archaeological records.

2.3 An Analytical Result

We adapt the model of Strimling et al. (2009) to develop an

alternative derivation of OC pop that allows us to obtain OC pop

for best-of-K as well as random oblique SL.
We make two independence assumptions. First, there

is no association among the cultural traits carried by an
individual; for example, the possession of the 1-variant of
one cultural trait does not predict possession of the 1-
variant of another cultural trait (analogous to the assumption
of “linkage equilibrium” in genetics). Second, the cultural
traits carried by an exemplar, or exemplars, are transmitted
independently of each other to the newborn (analogous to
“free recombination”).

Let the variable Pi be the expected number of cultural
traits at the beginning of a time step for which the 1-variant
has “popularity” i in the population of N adults—i.e. has

frequency i/N, where 1 � i � N . Then C pop D
NX

iD1

Pi .

Immediately after infinite-sites innovation, this expected
number becomes

P �i D Pi C �ıi1 (2.1)

where ıi1 D 1 if i D 1 and 0 otherwise. For each such
cultural trait, let bi be the probability that the newborn
acquires the 1-variant, and let di be the probability that death
then strikes an adult carrying the 1-variant. Then, at the end
of the time step, we have

P 0i DP �i�1bi�1 .1 � di�1/ C P �i Œbid i C .1 � bi / .1 � di /�

C P �iC1 .1 � biC1/ diC1: (2.2)

A partial proof of Eq. (2.2) is given in the Appendix 1.
For random oblique SL (see Aoki et al. 2011), we set

bi D i
N

ˇ; di D i
N

: (2.3)

For best-of-K, we set

bi D ˇ

8
ˆ̂<

ˆ̂:
1 �

0

@N � i

K

1

A

0

@N

K

1

A

9
>>=

>>;
; di D i

N
for K � N � i;

(2.4)

where

�
x

y

�
D x .x � 1/ � � � .x � y C 1/

y .y � 1/ � � � 1 , and bi D ˇ for

K > N � i (see Aoki et al. 2011).
Setting Pi D P 0i D OPi in Eqs. (2.1) and (2.2), we obtain

the nonhomogeneous second order difference equation that
holds at equilibrium

OPi�1bi�1 .1 � di�1/ C OPi .2bid i � bi � di /

C OPiC1 .1 � biC1/ diC1

D ��ıi�1;1bi�1 .1 � di�1/ � �ıi1

Œbi d i C .1 � bi / .1 � di /� (2.5)

where b0 D 0 and OPNC1 D 0. We have been unable to derive
the analytical solution of Eq. (2.5). Hence, we compute OPi by
numerical iteration of Eqs. (2.1) and (2.2), with either Eqs.
(2.3) or (2.4), from the initial conditions Pi D 0 for 1 � i �
N until equilibrium is reached. Then, OC pop D

NX

iD1

OPi .

In the limiting case of ˇ D 0, where SL is absent, Eq.
(2.5) can be solved explicitly. We obtain OP1 D .N � 1/ �

and OPi D 0 for 2 � i � N (Appendix 2). Hence, in this case

OC pop D .N � 1/ �; (2.6)
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which is linear in N. When the efficiency of SL is low, i.e.
when ˇ is small, we will find below that Eq. (2.6) provides a
good approximation.

2.4 Monte Carlo Individual-Based
Simulations

Our principal results are obtained by Monte Carlo individual-
based simulations (IBS). Implementing the IBS is for the
most part straightforward, with three exceptions. First,
whereas theory allows a potentially infinite number of
cultural traits, we must set an upper limit, M, to this
number in the IBS. We call M the “imagination space”—
more precisely the size of the imagination space. Although
parameter M is introduced for the sake of convenience, it
may in fact have an important cognitive implication. For
example, it may represent an innate bound to the number
of cultural traits that can be imagined. We will find that
assuming a finite number of cultural traits in the IBS may

have a large effect on OC pop.
Second, we need to carefully specify the details of the in-

novation process. The algorithm for infinite-sites innovation
per time step is: (1) Choose an adult in random order who has
not been chosen before. If all N adults have already been cho-
sen, then exit loop. Else proceed. (2) Ask whether this adult
innovates by comparing a uniformly-distributed pseudo-
random number to the innovation rate. If innovation does not
occur, return to step 1. If it does, proceed. (3) Choose a cul-
tural trait at random that is fixed for the 0-variant in the pop-
ulation. If all such cultural traits have already been chosen,
then exit loop. Else proceed. (4) Change this cultural trait in
this adult from the 0-variant to the 1-variant. Return to step 1.

A slight modification of the above yields the algorithm
for recurrent innovation per time step: (1) Choose an adult in
random order who has not been chosen before. If all N adults
have already been chosen, then exit loop. Else proceed. (2)
Ask whether this adult innovates by comparing a uniformly-
distributed pseudo-random number to the innovation rate. If
innovation does not occur, return to step 1. If it does, proceed.
(3) Choose a cultural trait at random for which this adult
carries the 0-variant. If this adult carries the 1-variant of all
cultural traits, then return to step 1. Else proceed. (4) Change
this cultural trait in this adult from the 0-variant to the 1-
variant. Return to step 1.

Third, we wish to estimate OC pop, which is the mean
of the stationary distribution, but this is difficult to do
because of stochastic fluctuations. For each set of parame-
ters, the IBS was run for 2,000 generations (i.e. 2,000 � N
time steps) from the initial conditions Cij D 0 for 1 �
i � N; 1 � j � M . By visualizing the output of

Cpop, we were able to determine that 1,000 generations was
sufficient for directional changes to cease. Thus, the value

of OC pop that we report is the average of Cpop, measured
once every generation, between the 1,001st and 2,000th
generations

2.5 Results for RandomOblique Social
Learning

In Fig. 2.1a–d, we plot OC pop against N for random oblique
SL.The solid line in each panel gives the analytical values—
rigorously speaking, the values obtained by numerical iter-
ation of Eqs. (2.1) and (2.2) with Eq. (2.3). The short-dash
broken line gives the IBS values with infinite-sites innova-
tion, and the long-dash-and-dot broken line gives the IBS

values with recurrent innovation. In general, OC pop increases
as N, ˇ, or � increase. In the IBS, we always set the size of
the imagination space to M D 500.

We are particularly interested in two panels: Fig. 2.1a with
parameter settings ˇ D 0:9 and � D 1, and Fig. 2.1d with
ˇ D 0:1 and � D 0:04. The motivation for considering
these two combinations of the efficiency of SL (ˇ) and the
innovation rate (�) is that we are interested in the effect
of population size (N) on the number of “simple” cultural
traits and “complex” cultural traits that can be maintained at
equilibrium. These two classes of cultural traits, which are
analogous to the simple skills and complex skills of Henrich
(2004), can be operationally defined by the efficiency/fidelity
of SL and the ease of innovation, which are both expected
to be high for the former (ˇ D 0:9 and � D 1 as in
Fig. 2.1a) and low for the latter (ˇ D 0:1 and � D 0:04

as in Fig. 2.1d).
But before proceeding with this comparison, we note

some important conclusions illustrated by these panels, some
of them specific to random oblique SL. First, the analytical

values of OC pop for random oblique SL are approximately
linear in N. This property was previously noted and proved
by Strimling et al. (2009) and by Lehmann et al. (2011),
based on models of cultural evolution that differ slightly from
the present one. The largest difference is the assumption by
these authors that only the one newborn innovates. Let u
be the innovation rate per time step for the newborn. Then,
Strimling et al. (2009) show that (in our notation)

OC pop � N u

ˇ
ln

1

1 � ˇ
C u

1 � ˇ
; (2.7)

which holds for large N and large ˇ. Equation (2.7) would
appear to give a slight overestimate relative to Eqs. (2.1) and
(2.2) with Eq. (2.3), when we set u D �.
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Fig. 2.1 Expected number of cultural traits at equilibrium, OC pop , is
plotted against the population size, N, for the case of random oblique
social learning. Solid (blue) line: analytical values. Short-dash broken
(orange) line: individual-based simulation values with infinite-sites

innovation. Long-dash-and-dot broken (grey) line: individual-based
simulation values with recurrent innovation. (a) ˇ D 0:9; � D 1. (b)
ˇ D 0:1; � D 1. (c) ˇ D 0:9; � D 0:04. (d) ˇ D 0:1; � D 0:04

Second, the IBS values agree well with the analytical
values, obtained from Eqs. (2.1) and (2.2) with Eq. (2.3),
when � is small (Fig. 2.1c, d). For large values of �, there is
good agreement provided N is small (Fig. 2.1a, b). Recall that
we assume independent transmission of the cultural traits,
but not linkage equilibrium, in the IBS. Nevertheless, the
IBS values are consistent with the analytical values. Thus,
we suggest that the assumption of linkage equilibrium made
to derive Eq. (2.2) may be justified in the case of random
oblique SL.

Third, we observe a downward deviation of the IBS values
from the analytical values, which is especially pronounced
when ˇ, �, and N are all large (Fig. 2.1a). We attribute this to
what we call the “saturation effect.” For such combinations
of parameter values, OC pop—also OC ind , the expected value of
the average number of cultural traits carried by an individual
at equilibrium—will approach the upper limit M. This entails
that the number of cultural traits that are available for
innovation will decrease, and hence the effective innovation
rate will be smaller than the nominal value, �. Interestingly, a
close look at Fig. 2.1a shows that the saturation effect is more
pronounced with recurrent innovation than with infinite-sites
innovation; this is apparently true for all modes of SL con-

sidered in this paper, except perhaps one-to-many (below).
This result is at first sight counterintuitive, because recurrent
innovation can occur under more permissive conditions than
infinite-sites innovation. Our explanation is that infinite-sites
innovation, when it occurs, always adds to the number of
segregating cultural traits, whereas recurrent innovation
may not.

Let us now consider the claim made by Henrich (2004)
that a decrease in population size should tend to result
preferentially in the loss of complex skills. A comparison of
Fig. 2.1a, d shows that this prediction is not upheld for the
case of random oblique transmission. That is, the reduction

in OC pop when the population size decreases from N D 100

to N D 50, say, is larger for the simple cultural traits
(Fig. 2.1a) than for the complex cultural traits (Fig. 2.1d),
even when the saturation effect is taken into account.

2.6 Results for Best-of-2 Social Learning

Best-of-K is an example of direct bias. Here, the preference
is assumed to be for having a cultural trait (carrying the 1-
variant) rather than not having it (carrying the 0-variant).We
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find that there is a large increase in OC pop relative to ran-
dom oblique SL, when a newborn is able to sample just 2
adults. Hence, in what follows, we report our results for
best-of-2 SL.

In Fig. 2.2a–d, we plot OC pop against N for best-of-2 SL.
The solid line in each panel gives the analytical values
obtained from Eqs. (2.1) and (2.2) with Eq. (2.4), the
short-dash broken line gives the IBS values with infinite-
sites innovation, and the long-dash-and-dot broken line gives
the IBS values with recurrent innovation. As before, we
focus on the two panels, Fig. 2.2a with ˇ D 0:9 and � D 1

illustrating the effect of population size on simple cultural
traits, and Fig. 2.2d with ˇ D 0:1 and � D 0:04, for complex
cultural traits.

A striking feature of Fig. 2.2a is that the analytical values

of OC pop “explode.” That is, provided the imagination space
is unlimited, best-of-2 SL—and a fortiori, best-of-K SL for
K � 3—can support an extremely large number of simple
cultural traits in the population. This property of best-of-K
SL was previously noted by Aoki et al. (2011, see their Fig.
2) for a slightly different model. By contrast, the IBS values

of OC pop are seen to rapidly approach the upper bound of
M D 500, after which they remain independent of popula-
tion size. Hence, the existence of a limit to imagination has
a profound effect on the number of simple cultural traits that
can be maintained by best-of-2 SL.

The inset shows that the IBS values with infinite-sites
innovation agree with the analytical values when population
size is small (.2 � N � 4/). Hence, the assumptions on
which Eq. (2.2) is based would appear to hold, for best-of-2
as well as for random oblique SL, when the saturation effect
can be neglected.

The situation for the complex cultural traits that we see in
Fig. 2.2d is quite different. Here, we find that the analytical

values of OC pop are approximately linear in N, and the IBS
values coincide almost exactly with the analytical values.
In particular, the saturation effect is not observed, at least
in the range of population sizes examined. Comparison of
Fig. 2.2b, c suggests that the approximate linearity of the
analytical values follows from the assumption of ˇ small
rather than � small.

Let us now confirm that Eq. (2.6) gives a good approxi-
mation when ˇ D 0:1, as in Fig. 2.2b, d. In Fig. 2.2b where
� D 1, the analytical value at N D 250 obtained from Eqs.

(2.1) and (2.2) with Eq. (2.4) is OC pop D 278:0, while Eq.
(2.6) gives 249 � 1 D 249. Similarly, in Fig. 2.2d where

� D 0:04, the analytical value is OC pop D 11:1, and Eq. (2.6)
gives 249 � 0:04 D 9:96. In each case the discrepancy is
about 10 %.

With regard to the proposal by Henrich (2004) that com-
plex skills are more easily lost than simple skills, Fig. 2.2a

shows that it is a valid inference if the imagination space is

limited. That is, the IBS values plateau at OC pop � 500 for
N � 5, so that a decrease of population size should not result
in the reduction of the equilibrium number of simple cultural
traits. On the other hand, a drastic reduction is predicted if
the imagination space is unlimited.

2.7 Results for Success Bias Social
Learning with KD2

In Fig. 2.3a–d, we plot OC pop against N for success bias SL.
To enable comparison with direct bias, which we have mod-
eled as best-of-2, we assume that the newborn samples just
two adults and chooses the one who is more “successful”—
i.e. the one carrying more 1-variants of the cultural traits—
to be his/her exemplar. The short-dash broken line gives
the IBS values with infinite-sites innovation, and the long-
dash-and-dot broken line gives the IBS values with recurrent
innovation. Analytical values are not available for success
bias SL.

Figure 2.3a shows the results with ˇ D 0:9 and � D 1

for simple cultural traits. Compared to best-of-2, the values

of OC pop do not rise as quickly as N increases; hence the
saturation effect is not as pronounced. In fact, these values do
not appreciably exceed the corresponding values for random
oblique.

Figure 2.3d shows the results for complex cultural traits,

where ˇ D 0:1 and � D 0:04. The values of OC pop for
infinite-sites and recurrent innovation are both approximately
linear in N and nearly indistinguishable. Moreover, these
plots apparently have the same slope as the corresponding
plots for best-of-2.

2.8 Results for One-to-Many Social
Learning

In Fig. 2.4a–d, we plot OC pop against N for one-to-many SL.
The short-dash broken line gives the IBS values with infinite-
sites innovation, and the long-dash-and-dot broken line gives
the IBS values with recurrent innovation. Again, analytical
values are not available.

In the case of simple cultural traits, comparison of

Fig. 2.4a with Fig. 2.1a shows that OC pop is larger with one-
to-many SL than with random oblique SL when N is small,
with a major reversal as N increases. For example, with
recurrent innovation, the respective values when N D 250

are OC pop D 220:4 and OC pop D 365:6 (see Fig. 2.5).
This last result accords with intuition, since the effective
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Fig. 2.2 Expected number of cultural traits at equilibrium, OC pop , is
plotted against the population size, N, for the case of best-of-2 (direct
bias) social learning. Solid (blue) line: analytical values. Short-dash
broken (orange) line: individual-based simulation values with infinite-
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based simulation values with recurrent innovation. (a) ˇ D 0:9; � D
1. (b) ˇ D 0:1; � D 1. (c) ˇ D 0:9; � D 0:04. (d) ˇ D 0:1; � D
0:04

population size for one-to-many SL is significantly smaller
than for random oblique SL (Aoki et al. 2011).

Finally, we note from Fig. 2.4d that the plots of the IBS
values are approximately linear in N and almost identical
to what we observe in Figs. 2.1d, 2.2d, and 2.3d. That is,
mode of SL appears to make little difference in the number
of complex cultural traits that can be maintained. Hence, we
suggest that mode of SL should be invoked with caution in
any attempt to explain an observed variation among societies
in the number of complex cultural traits.

2.9 Discussion

We have obtained theoretical predictions for the expected
number of independent cultural traits that can be maintained

in a population at equilibrium, OC pop, by a combination of
analytical method and individual-based simulations (IBS).
We have done this for random oblique SL, best-of-2 SL,
success bias SL, and one-to-many SL, in order to compare
the effects of these four different modes of SL. We have
investigated how OC pop depends on the efficiency of social
learning (SL) by the newborn, ˇ, the rate of innovation by
older individuals, �, and the population size, N. In addition

to these three parameters, we have introduced in the IBS an
upper bound on the number of imaginable cultural traits, M,
which we call the imagination space. For the analytically-

derived values of OC pop, we have assumed no such limit. It is
an interesting and open question whether imagination space
is indeed finite, and if so what its magnitude might be.

OC pop is monotone non-decreasing in N for all modes of
SL considered in this paper, for both the infinite-sites and
recurrent innovation processes, and all combinations of the
parameters ˇ and �. We say “non-decreasing” rather than

“increasing,” because when M is finite the values of OC pop

eventually saturate as N increases and plateau at M. We have
set M D 500 in the IBS.

The class of cultural traits for which ˇ and � are both
large may be called simple cultural traits, as they can be
more easily acquired by social learning or by innovation
(Henrich 2004). The number of simple cultural traits in
the population saturate at smaller values of the population
size than the number of complex cultural traits (see below),
as can be seen from a comparison of Fig. 2.2a, d, for
example (saturation has not occurred in the latter figure).
Comparison of Figs. 2.1a, 2.2a, 2.3a, and 2.4a shows that
saturation occurs first for best-of-2 SL, second for success
bias SL, third for random oblique SL, and last for one-to-
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Fig. 2.3 Expected number of cultural traits at equilibrium, OC pop , is
plotted against the population size, N, for the case of success bias social
learning. Short-dash broken (orange) line: individual-based simulation
values with infinite-sites innovation. Long-dash-and-dot broken (grey)

line: individual-based simulation values with recurrent innovation. (a)
ˇ D 0:9; � D 1. (b) ˇ D 0:1; � D 1. (c) ˇ D 0:9; � D 0:04. (d)
ˇ D 0:1; � D 0:04

many SL. Figure 2.5 compares the IBS values of OC pop at
the five population sizes N D 5; 25; 50; 125; and 250;
saturation has occurred only for best-of-2 SL. We see that
within this range of population sizes, the mode of SL has a

significant effect on OC pop.
The saturation effect is most pronounced for best-of-2 SL,

which is our model of direct bias. In particular, Fig. 2.2a

shows that the IBS values of OC pop for simple cultural traits
do not depend on population size when N � 5. This means
that a hunter-gatherer family of size 5, say, can support
the same number of simple cultural traits as a tribe (ethno-
linguistic group) numbering 500 individuals, say. Of course,
the lower limit for the population size will vary with the
specific values of ˇ, �, and M, but the principle remains the
same. To reiterate, population size above a certain, relatively
low, threshold does not predict the number of simple cultural
traits to be found in a society, if SL is directly biased and
imagination space is limited.

This theoretical result may help to explain why Collard
et al. (2005, 2013a, b) and Read (2006) find no statisti-
cally significant association between number of tool types—
“subsistants” and “technounits,” as defined by Oswalt (1973,
1976)—and population size among hunter-gatherer societies.

However, the tool types counted in these statistical studies
apparently include the digging stick, which likely qualifies
as a simple cultural trait, but also the boomerang, crossbow,
and harpoon, which do not strike us as being so simple.
We suggest that statistical analyses should in future be done
separately for cultural traits that can be classified as simple
or complex.

Our reason for making this point is that the situation is
quite different for complex cultural traits, which are the class
of cultural traits defined by small values of ˇ and �. Here,
OC pop is approximately linear in N for all modes of SL, so we
expect to see a correlation between the number of complex
cultural traits and population size. Moreover, comparison of
Figs. 2.1d, 2.2d, 2.3d, and 2.4d shows that the plots are
almost identical; thus mode of SL appears not to affect the

outcome. The plots of OC pop in these four panels are all close
to .N � 1/ � (see Eq. (2.6)), which is the expected number of
1-variants in a population comprising N � 1 adults and one
newborn, where the former have on average spontaneously
acquired � infinite-sites (i.e. non-overlapping) innovations
each over their lifetimes, and the latter has not yet innovated.
(Recall that � is the innovation rate per adult per generation.)
Social learning apparently contributes little to the number of
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complex cultural traits carried by an individual, which is why
the mode of SL has little effect.

We now return to the unanswered question of what we
should include among the cultural traits. Field workers (e.g.
Whiten et al. 1999) have suggested that unique occurrences
should be excluded, because evidence of social learning—
a necessary condition for culture—is lacking in such cases.
Theoretically, there is no reason to discriminate against those
that are represented only once in the population. However,
we have seen above that most of the complex cultural traits
that are maintained in the population can be accounted for
by innovation alone. We do not wish to argue either way,
but unique occurrences can make a large contribution to our
count of the number of cultural traits, especially when they
are complex (data not shown).

We have been using the term complex cultural trait to
denote a cultural trait that is difficult to acquire either by
SL (small ˇ) or by innovation (small �). On the other
hand, this term more often refers to a cultural trait that
comprises many component parts—e.g. technounits (Oswalt
1973, 1976), procedural units (Perreault et al. 2013)—each
of which can in itself be regarded as a cultural trait. Thus,
there is an ambiguity in the concept of a cultural trait.
However, the two descriptions of a complex cultural trait are
not inconsistent, if it is assumed that a complex cultural trait
in the latter sense is functional/serviceable only if all of its
component parts have been successfully acquired. It may be
difficult for one individual by him/herself to acquire, either
by SL or by innovation, a complex cultural trait in its entirety.
If each member of society specializes in the acquisition
of the knowledge and skill to manufacture a different but
complementary component part and shares the product with
others (Nakahashi and Feldman 2014), then a greater number
of complex cultural traits may be maintained, especially
if these component parts can be used interchangeably in
various complex cultural traits.

Saturation or plateauing has also been observed in a theo-
retical study of cultural evolution by Mesoudi (2011, see his
Fig. 5B). Mesoudi (2011) proposes a model in which “each
individual learns a set of cultural traits that are functionally
sequential, such that earlier traits must be learned before
later traits : : : .” This model is clearly an improvement over
models such as ours that assume independent cultural traits.
We note in passing that the research program outlined by
Enquist et al. (2011), which takes into account the many
types of interdependency among cultural traits, should be
useful in advancing our understanding of how culture evolves
toward greater complexity. Mesoudi (2011) compares three
modes of SL, random oblique (unbiased), direct bias, and
success bias (indirect bias), and shows that, with direct bias
in particular, the mean “cultural complexity” at equilibrium
plateaus when population size exceeds a certain threshold.

Thus, here again theory does not necessarily predict a statis-
tically significant relationship between number of tool types
and population size.

We wish to apply our theoretical results to the archaeolog-
ical record of Palaeolithic technologies and thereby further
our understanding of why Neanderthals went extinct to be
replaced by modern humans. Several theories, including the
“learning hypothesis” (e.g. Aoki 2013), argue for a difference
in cultural level or technological complexity between the
two species, which is in turn attributed to a difference in
learning strategies. Mode of SL is an important element
of a learning strategy, which we would like to infer from
the archaeological record (e.g. O’Brien et al. this volume,
Chap. 9). Perhaps counterintuitively, it is the simple cultural
traits that may be diagnostic.

Suppose we are able to sample Neanderthal and modern
human archaeological sites that can be regarded as reflecting
the activities of populations of similar size, or population size
can be statistically controlled. Then, provided this population
size lies within a suitable range, the number of simple
cultural traits is predicted to be largest when SL is directly-
biased, smallest for one-to-many SL, and somewhere in
between with random oblique or success bias SL (Fig. 2.5).
Hence, an observed difference among these sampled sites in
the number of simple cultural traits would be consistent with
a difference in mode of SL. It may also reflect a difference in
the size of the imagination space. For complex cultural traits,
on the other hand, we expect to see an effect of population
size, but not of mode of SL, on their numbers.

However, before we can do this type of analysis, an
objective measure must be devised for estimating the number
of cultural traits in archaeological assemblages (Perreault
et al. 2013).
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Appendix 1: Partial Proof of Eq. (2.2)

To illustrate, we show the derivation of the first term on the
right hand side of Eq. (2.2), which represents the contribution
of up-transitions—i.e. the expected number of cultural traits
of popularity i � 1 immediately after innovation that have
popularity i at the end of the time step. Let Xi�1 be an
integer-valued random variable giving the number of cultural
traits of popularity i � 1 immediately after innovation. Note
P �i�1 is the expected value of Xi�1. Similarly, let Yi be
an integer-valued random variable giving the number of
cultural traits of popularity i after SL by the newborn—in
the temporarily extended population comprising the N adults

http://dx.doi.org/10.1007/978-4-431-55363-2_9
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and the one newborn—that had popularity i � 1 immediately
after innovation. Finally, let Zi be an integer-valued random
variable giving the number of cultural traits of popularity i
after the death of a random adult.

Then,

Pr .Yi j Xi�1/ � binomial .Xi�1; bi�1/

and

Pr .Zi j Yi ; Xi�1/ � binomial .Yi ; 1 � di�1/

That is, the conditional probability of Yi given Xi�1 is
binomial with number of trials Xi�1 and probability of
success bi�1. Similarly, the conditional probability of Zi

given Yi and Xi�1 is binomial with number of trials Yi and
probability of success 1 � di�1. Hence, using E .�/ to denote
expected value, we obtain

E .Zi j Yi ; Xi�1/ D Y i .1 � di�1/ :

Thus

E .Zi j Xi�1/ D X i�1 bi�1 .1 � di�1/ ;

and finally,

E .Zi / D P �i�1 bi�1 .1 � di�1/ ;

which is exactly the first term on the right hand side of
Eq. (2.2).

Appendix 2: Proof of Eq. (2.6)

Since ˇ D 0 entails bi D 0 for 1 � i � N , Eq. (2.5) reduces
to

� OP1d1 C OP2d2 D �� .1 � d1/

� OP2d2 C OP3d3 D 0
:::

� OPN�1dN�1 C OPN dN D 0

� OPN dN D 0

where di D i
N

for 1 � i � N from either Eqs. (2.3) or

(2.4). Hence, OPN D 0; OPN�1 D 0; � � � ; OP2 D 0 and OP1 D
1�d1

d1
� D .N � 1/ �.
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3The Evolution of Culturally Transmitted
Teaching Behavior

Wataru Nakahashi

Abstract

The replacement of Neanderthals by modern humans may possibly have been influenced
by the different cultural transmission mechanisms of the two hominins. Since teaching is
widespread in modern human societies, but extremely rare in animals, it may have played
an important role in human cultural evolution. In modern humans, how and whom to
teach may, in part, be transmitted culturally. Therefore, in this paper, I develop a cultural
transmission model of teaching. I show that even when costly, teaching can evolve provided
that teachers transmit their cultural traits more actively than non-teachers. Teaching is more
likely to evolve when the cost of social learning is low relative to individual learning, social
learning is accurate, the environment is stable, and the effect of teaching is extensive. Under
certain conditions, two states, existence and non-existence of teaching in the population, are
evolutionarily stable (bistable). When this happens, social learning is sometimes maintained
by teaching under unstable environments where social learning cannot exist without
teaching. Differences in subsistence strategy and group structure between Neanderthals
and modern humans may have affected the evolution of the teaching behaviors of the two
hominins.

Keywords

Evolutionarily stable strategy (ESS) • Bistability • Cultural hitchhiking • Cumulative
culture

3.1 Introduction

The replacement of Neanderthals by modern humans is
one of the greatest mysteries in hominin evolution. Many
anthropologists and archeologists have investigated the dif-
ferences between the two hominins in an attempt to clarify
the causes of the replacement. It has often been argued
that Neanderthals lacked so-called “modern behavior”, or at
least modern behavior appeared later in Neanderthals than

W. Nakahashi (�)
School of Advanced Sciences, SOKENDAI (The Graduate University
for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193,
Japan
e-mail: w.nakahashi@gmail.com

in modern humans, which led to demographic disadvantage
and subsequent extinction. Although this simple view has re-
cently been questioned (Zilhão 2013), various useful cultural
skills may have appeared earlier in African modern humans
than in Eurasian Neanderthals (McBrearty and Brooks 2000;
McBrearty 2012). For example, the backed pieces, an inno-
vative way of hafting spears for composite weapon armature,
appeared in Howiesons Poort, South Africa, around 59,000–
65,000 years ago, but there were no comparable industries
in the Neanderthal hunting equipment, al least until the
Châtelperronian, some 20,000 years later (Villa and Soriano
2010).

Why did African modern human culture evolve faster
than Eurasian Neanderthal culture? Theoretical research on
cultural evolution has shown that accurate social learning
and exploratory individual learning are critical for rapid

A. Mesoudi and K. Aoki (eds.) Learning Strategies and Cultural Evolution during the Palaeolithic,
Replacement of Neanderthals by Modern Humans Series, DOI 10.1007/978-4-431-55363-2_3,
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cultural evolution (Henrich 2004; Kobayashi and Aoki 2012;
Nakahashi 2013c, 2014), suggesting that cultural traits may
possibly have been transmitted more accurately and explored
more extensively in modern humans than in Neanderthals.

In present-day humans, accurate transmission is often
supported by teaching. Here, teaching is defined as a costly
(or a neutral) change in behavior on the part of the teacher
that increases the rate or probability of learning in the pupil
(Caro and Hauser 1992). Both experimental and theoret-
ical studies suggest that teaching is essential in cumula-
tive cultural evolution, one of the most significant charac-
teristics of human culture (Dean et al. 2012; Castro and
Toro 2014). Although cultural transmission between non-
relatives is essential for human cultural evolution, teaching
to non-relatives is less common in animals, suggesting that
our strong dependence on teaching may have evolved after
splitting from the chimpanzee lineage; i.e., the evolution
of teaching to non-relatives may cause the difference with
regard to cultural cumulativeness between humans and non-
human animals. Despite the uncertainty as to whether Nean-
derthals taught cultural traits to non-relatives, the difference
in cultural evolutionary speeds between Neanderthals and
modern humans may possibly be explained by the different
teaching behaviors of the two hominins.

Recently, there has been an increase in research on teach-
ing in animals that discusses the selection pressures that
may favor the evolution of teaching (reviewed in Caro and
Hauser 1992; Thornton and Raihani 2008). Since teaching is,
to a certain degree, similar to cooperation, because teachers
pay a cost and pupils receive a benefit through teaching
events, theoretical research on the evolution of teaching has
focused primarily on the cost of teaching, the benefits of
being taught, and the genetic relatedness between teacher
and pupil (Fogarty et al. 2011; Aoki et al. 2013). In these
studies, teaching behavior was assumed to be genetically
transmitted. However, many human behaviors are in reality
not genetically, but culturally transmitted. Since teaching
behavior is very different among different societies (Hewlett
et al. 2011; Terashima 2013), it may, in part, be culturally
transmitted, even though our ability (and preference) for
teaching is genetically transmitted. This situation is similar
to our language; i.e., our language capacity (e.g., throat
structure, universal grammar) is genetically transmitted, but
our language itself (e.g., vocabulary, pronunciation) is cultur-
ally transmitted. Since the transmission mechanism differs
greatly between genetic traits and cultural traits, previous
studies that have assumed the genetic transmission of teach-
ing are insufficient for understanding the evolution of human
teaching behavior.

One of the most important properties of cultural transmis-
sion is that the fitness (transmissibility) of a cultural trait is
not always the same as the fitness (reproductive success) of
its carriers, while the fitness of a genetic trait is essentially

the same as that of its carriers; i.e., even if a cultural trait is
harmful for its carriers, its frequency may increase, provided
it is more frequently transmitted than other cultural traits.
This mechanism is often discussed in memetics (Blackmore
2000). For example, costly prestige-seeking behavior can
spread by prestige-biased social learning (Ihara 2008). In
other words, cultural traits easily “hitchhike” on other char-
acteristics of carriers. The evolution of teaching behavior is
likely to have been influenced by this property of cultural
transmission because teaching directly affects the cultural
transmission mechanism. Therefore, the study of the evolu-
tion of human teaching behavior requires consideration of
cultural transmission.

In this paper, I develop a new model that considers
the evolution of culturally transmitted teaching behavior by
extending the learning capacity model proposed by Naka-
hashi (2010, 2013a, b). I obtain the conditions required
for culturally transmitted teaching behavior to evolve. First,
I explain the learning capacity model, and then include
teaching behavior in the model.

3.2 Model

3.2.1 Basic Model of Nakahashi (2010)

Consider a very large population with infinitely many kinds
of cultural traits (know-how, information, principle, etc.)
generated by individual learning and the mistakes of social
learning. Cultural traits can be classified into two categories,
beneficial and neutral. Organisms cannot distinguish be-
tween beneficial and neutral cultural traits, and acquire them
by individual learning and social learning. The number of
cultural traits they learn (learning capacity) is determined
by their strategy gene, i.e., an organism with strategy (n, m)
acquires n cultural traits by individual learning and m by
social learning. That is, individual learning capacity is n and
social learning capacity is m. Although organisms may or
may not share the same cultural traits, the possibility that an
organism learns the same cultural trait more than once can
be disregarded because, by assumption, there are infinitely
many kinds of cultural traits and organisms acquire a finite
number of cultural traits.

When an organism learns individually, it acquires new
(previously non-existent) cultural traits by itself, for ex-
ample, by trial-and-error or insight. Let the probability of
acquiring a beneficial cultural trait (success rate of individ-
ual learning) be r .0 < r � 1/. When an organism learns
socially, it copies cultural traits from random, possibly dif-
ferent, members of its parental generation (oblique transmis-
sion), where each cultural trait is randomly picked from the
repertory of a target’s cultural traits pool. The probability
of copying a target’s cultural trait accurately (accuracy of
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social learning) is a .0 < a � 1/ for both beneficial and
neutral cultural traits. That is, a fraction a of socially learned
cultural traits remain unchanged but the remaining fraction
mutates into different cultural traits. It may be reasonable to
assume that a mutant cultural trait often loses the essential
function of the wild-type cultural trait but seldom gains a
new function, as is the common assumption with regard to
genetic mutation. Therefore, we can assume that beneficial
cultural traits become neutral with probability 1 � a because
of a loss of function, but all neutral cultural traits remain
neutral because they function as “pseudogenes”.

The life cycle of organisms consists of two stages:
learning/viability-selection stage and fertility-selection
stage. In the learning/viability-selection stage, each organism
learns cultural traits piece by piece and pays a small viability
cost for each learning activity. It costs 1 � e�c to acquire a
cultural trait by individual learning and 1 � e�d by social
learning (c > 0, d > 0), regardless of whether that cultural
trait is beneficial or neutral. Therefore, the probability that an
organism with strategy (n, m) can survive and proceed to the
next stage is Œ1 � .1 � e�c/�n

�
1 � �

1 � e�d
��m D e�cn�dm.

For example, if we assume that individual and social learning
requires c and d units of time, respectively, and there exists a
constant exogenous mortality rate in this stage, the survival
probability after learning one cultural trait individually
and socially becomes e�c and e�d , respectively, and the
survivability of an organism with strategy (n, m) is e�cn�dm.

In the fertility-selection stage, the fitness of an organism
is determined by the number of beneficial cultural traits
acquired during the learning/viability-selection stage. Neu-
tral cultural traits do not affect the fertility of organisms.
The fitness of an organism that has k beneficial cultural
traits is expressed as w C k, where w is the baseline fitness
of organisms .w > 0/. We assume fertility selection: the
number of their offspring is proportional to w C k. All
organisms die soon after their cultural traits are passed on
to the next generation.

In each generation before the learning/viability-selection
stage, (part of) the environment changes and some of the
beneficial cultural traits lose their essential role (become
neutral) while the remaining parts remain beneficial and all
neutral cultural traits remain neutral. For example, cultural
traits specialized for mammoth hunting may have become
neutral after the extinction. The probability that a beneficial
cultural trait becomes neutral in the next generation is 1 � s

.0 < s < 1/. That is, parameter s represents the stability of
the environment. The possibility that a neutral cultural trait
reverts to being beneficial in the next generation can be
neglected when we assume that (part of) the environment
always changes to an inexperienced state, like the situation
of the infinite environmental state model (Feldman et al.
1996). We can consider a different type of environmental
change. That is, a beneficial cultural trait does not become

(completely) neutral by environmental change, but its effect
on fitness decreases to s times its previous value. For ex-
ample, organisms may get only eight head of game by a
hunting method that previously brought ten head of game
to the parental generation because the method becomes
outdated. Nakahashi (2013a) shows that even if we consider
the latter type of environmental change, the following result
is unchanged. Therefore, we can apply the stability of the
environment, s, to both types of environmental change.

Baseline fitness, w, is the contribution of genetic (innate)
traits and corresponds to the fitness of organisms with no
learned cultural traits. The baseline fitness may be greater
when genetic traits are sufficiently adaptive in a particular
environment. Such an environment can be considered to be
mild for organisms, so baseline fitness w reflects the mildness
of the environment.

Let us consider the evolutionarily stable learning strategy
. On; Om/. Here, On and Om are the cultural capacities, i.e. the
numbers of cultural traits acquired by individual learning and
social learning. An evolutionarily stable strategy (ESS) is a
strategy that is stable to the invasion of rare mutants of small
effect (mutants cannot increase their frequency) (Maynard
Smith 1982). Assume that a mutant strategy (n, m) (strategy
B) is introduced at low frequency into an equilibrium popu-
lation whose members all use the strategy (n*, m*) (strategy
A). Then, the fitness of the mutant is

W .B; A/ D .w C rn C a Oxm/ e�cn�dm (3.1)

where

Ox D rsn�

n� C m� � asm�
: (3.2)

is the fraction of cultural traits that are beneficial at this
equilibrium. The derivation of Ox is shown in Appendix1.
Equation (3.1) implies that the survivability of a mutant
over the learning/viability-selection stage is e�cn�dm, during
which it acquires rn beneficial cultural traits by individual
learning and a Oxm beneficial traits by social learning, so
that its number of offspring in the fertility-selection stage is
proportional to w C rn C a Oxm. Since W(A, A) is the fitness
of the wild type, if W .B; A/ < W .A; A/ is satisfied for all
B .B ¤ A/, strategy A is the ESS.

As shown in Appendix 2, the ESS . On; Om/ can be obtained
analytically (Table 3.1). Since Nakahashi (2013a) showed

Table 3.1 The ESS .On; Om/

c � d c > d

cw < r .1=c � w=r; 0/ .1=c � w=r; 0/ if acs � d�
.1� as/ .r � cw/

r .c � d/
;

.acs � d/ .r � cw/

rd .c � d/

�

if acs > d

cw � r (0, 0) (0, 0)
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by numerical simulations that the strategy of the population
converges to the ESS by natural selection in this model,
the ESS can be considered to be the evolutionary out-
come of competition among learning strategies under each
condition.

3.2.2 Including Teaching Behavior

Next, let us include teaching behavior in the basic model.
Assume that teaching behavior is transmitted culturally. If an
organism has the cultural trait for teaching (teaching trait),
it actively transmits cultural traits to learners. We assume
for the moment that teaching behavior is a neutral cultural
trait so that it does not affect the fertility of its carriers (I
will consider the fertility cost of teaching later). When an
organism learns from teachers (organisms with the teaching
trait), it can acquire t times .t > 1/ more cultural traits
than when learning from non-teachers (organisms without
the teaching trait) per same viability cost (unit of time).
That is, teaching decreases the cost of social learners (social
learning). Since the probability of copying another’s cultural
trait accurately (accuracy of social learning) is a, we may
assume that every cultural trait including teaching trait is
accurately transmitted to the next generation with probability
a. We also assume that environmental change does not affect
the effect of teaching behavior.

Assume as before that every organism has the learning
strategy (n, m). Then, if the population size remains constant,
an organism of the parental generation transmits, on average,
m cultural traits, accurately or inaccurately, to the offspring
generation, because the number of cultural traits that the
offspring generation acquires from the parental generation
by social learning should be the same as the number that
the parental generation transmits to the offspring generation.
Let the proportion of teachers in the parental generation be
p. Then, on average, a teacher and a non-teacher transmit
mt= .1 � p C pt/ and m= .1 � p C pt/ cultural traits to
the offspring generation, respectively, because the former
transmits t times as many cultural traits as the latter. Note that
pmt= .1 � p C pt/C .1 � p/ m= .1 � p C pt/ D m. Since
every organism including a teacher has n C m cultural traits
and the accuracy of social learning is a, the expected number
of (individuals with) a particular cultural trait carried by a
teacher that is accurately transmitted to the next generation,
j, is

j D amt

.n C m/ .1 � p C pt/
: (3.3)

Since the teaching trait is necessarily transmitted from
teachers, when j is smaller than one, the expected number
of teaching trait in the population decreases in the next gen-

eration so that the proportion of teachers, p, also decreases,
and when j is larger than one, both increase. Therefore, when
the population is fixed for the learning strategy (n, m), the
proportion of teachers in the population converges to where j
equals unity, i.e.,

Qp .n; m/ D
(

.at�1/m�n
.t�1/.nCm/

if .at � 1/ m > n

0 otherwise
: (3.4)

Setting p D 0 in Eq. (3.3), we find that the sufficient
condition for the teaching trait to invade the population is

at Om
On C Om > 1 (3.5)

where . On; Om/ is the same as in Table 3.1 because learning
strategy evolves to . On; Om/ provided teachers are absent. This
condition can be satisfied only when Om > 0, i.e., c > d ,
cw < r and acs > d . Then, Ineq. (3.5) can be rewritten as

t .acs � d/

s .c � d/
> 1: (3.6)

Next, let us obtain the stable equilibrium with teaching.
Since we have already obtained the equilibrium proportion of
teachers when the population is fixed for a learning strategy
(see Eq. (3.4)), let us consider how learning strategy evolves
when there is a fixed proportion of teachers in the population.
When a proportion p of the population is teachers, learning
strategy evolves to be different from . On; Om/ in Table 3.1. We
should change d to d= .1 � p C pt/ in Table 3.1, because
each organism can socially learn 1 � p C pt times more
cultural traits per same viability cost (unit of time) when
teachers are present. That is, with probability 1�p it acquires
one cultural trait from a non-teacher and with probability p it
acquires t cultural traits from a teacher, per d units of time.

Write the evolutionarily stable learning strategy with pro-
portion p of teachers as . Qn.p/; Qm.p//. Both the proportion of
teachers and learning strategy can be (evolutionarily) stable
at the intersection points of p D Qp .n; m/ and .n; m/ D
. Qn.p/; Qm.p//, which we write . On; Om; Op/, i.e., Op D Qp . On; Om/

and . On; Om/ D . Qn . Op/ ; Qm . Op//. Writing y D 1 � Op C Opt

.1 � y � t/, we can infer from Table 3.1 that

. On; Om/ D
�

y .1 � as/ .r � cw/

r .cy � d/
;

y .acsy � d/ .r � cw/

rd .cy � d/

�
;

(3.7)

when cy > d , cw < r and acsy > d . Hence, from Eq. (3.4),
non-zero Op must satisfy

Op D .at � 1/ Om � On
.t � 1/ . On C Om/

D 1

t � 1

�
t .acsy � d/

s .cy � d/
� 1

	
: (3.8)
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But Op D .y � 1/ = .t � 1/, so Eq. (3.8) can be rewritten as

y D t .acsy � d/

s .cy � d/
: (3.9)

To obtain the condition for Eq. (3.9) to be satisfied, let us
write

f .y/ D csy2 � s .d C act/ y C td: (3.10)

When f .y/ D 0 (condition Eq. (3.9)) has the roots between
1 < y � t , there can be a stable equilibrium (evolutionarily
stable strategy) with teaching. Since f .y/ D 0 is a quadratic
equation of y and f .t/ > 0 and f 0.t/ > 0 are satisfied,
f .y/ D 0 has the larger root between 1 < y < t when
f .1/ < 0 is satisfied, and has two roots between 1 < y < t

when f .1/ > 0, f 0.1/ < 0, and

s.d C act/2 � 4ctd > 0 (3.11)

(the discriminant is positive) are satisfied. As shown in
Appendix 3, the larger root is stable and the smaller root
is unstable. Condition f .1/ < 0 is the same as condi-
tion Ineq. (3.6); i.e., provided teaching trait can invade the
population, an evolutionarily stable strategy where teachers
are present always exists. When conditions f .1/ > 0,
f 0.1/ < 0 .act > 2c � d/, and Ineq. (3.11) are satisfied,
the situation is “bistable”. Note that condition Ineq. (3.6) is
more stringent than condition Ineq. (3.11) provided act >

2c � d . The bistable situation implies that teaching behavior
cannot invade when there are no teachers, but once there are
many teachers, teaching trait stably exists in the population.
This is because, when there are many teachers, the cost of
social learning decreases so that each organism learns more
cultural traits socially ( Qm.p/= Œ Qn.p/ C Qm.p/� increases as p
increases), which in turn entails that the teaching trait is more
easily maintained in the population.

Figure 3.1 shows the conditions for each type of situ-
ation to be achieved. When acs � d , act > 2c � d

and Ineq. (3.11) are satisfied (region IV), two states, only
individual learning exists, . On; Om; Op/ D .C; 0; 0/, and both
individual learning and social learning with teaching coexist,
. On; Om; Op/ D .C; C; C/, are bistable. That is, teaching
maintains social learning.

Teachers may have lower fitness (fertility) than non-
teachers because teaching entails additional costs to
teachers. This may affect the evolution of learning strategy
. Qn.p/; Qm.p//, because an organism who learns more cultural
traits socially is more likely to be a teacher and suffers
teaching cost so that the dependence on social learning
decreases. From Eq. (3.4), when the proportion of social
learning, Qm.p/= Œ Qn.p/ C Qm.p/�, decreases, the proportion
of teachers, p, decreases. However, teaching cost does not

affect the condition for the invasion of teaching (Ineq. (3.5))
because . Qn.0/; Qm.0// is the same as the case of costless
teaching. Note that when teachers are absent, social learners
do not suffer teaching cost. That is, culturally transmitted
teaching behavior can evolve even when teaching is costly.
This is because, even if teachers have lower fertility
than non-teachers, teaching trait still has higher fitness
(transmissibility) than other cultural traits. Teaching cost
may decrease the region where the stable equilibrium with
teaching exists (bistable region), but general tendency of the
above results may still hold.

In the above model, teachers are assumed to facilitate
social learning by pupils, so that the number of cultural
traits each pupil learns increases to t times the value without
teaching. Teaching is sometimes assumed to increase the
accuracy of social learning in pupils (e.g., Castro and Toro
2014). If we assume that the accuracy of social learning
increases to t times .1 < t � 1=a/ when an organism learns
a cultural trait from a teacher, instead of the number of
cultural traits increasing to t times, the results are different.
In this case, since the number of cultural traits each teacher
transmits is the same as non-teachers, when the population
is fixed for a learning strategy (n, m) and population size is
constant, each teacher transmits (on average) m cultural traits
to the next generation, of which the fraction at is accurately
transmitted. Since every organism has n C m cultural traits,
the expected frequency of teaching trait increases when

atm

n C m
> 1 (3.12)

However, since at � 1, Ineq. (3.12) is never satisfied.
That is, teaching behavior never evolves when it affects
the accuracy of social learning, not the number of cultural
traits. This is because each organism always acquires a part
of its cultural traits by individual learning, so that even
when the teaching trait is transmitted with complete accuracy
.at D 1/, its expected frequency must decrease from the
previous generation. How teaching behavior affects pupils’
social learning is important for its evolution.

3.3 Discussion

I have analyzed a mathematical model of cultural transmis-
sion in which teaching behavior is also culturally transmitted.
I have shown from Ineqs. (3.6) and (3.11) that teaching is
more likely to evolve when the cost of social learning is low
relative to individual learning, social learning is accurate, the
environment is stable, and the effect of teaching is extensive,
provided teaching affects the number of cultural traits each
pupil learns from teachers (see also Fig. 3.1). The first three
conditions are those required for the dependence on social
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Fig. 3.1 Evolutionarily stable learning and teaching strategy,
. On; Om; Op/, is shown in the (s, t)-parameter space. The strategies in
each region are (I) individual learning only: .On; Om; Op/ D .C; 0; 0/, (II)
coexistence of individual learning and social learning without teaching:
. On; Om; Op/ D .C;C; 0/, (III) coexistence of individual learning and

social learning with teaching: .On; Om; Op/ D .C;C;C/, (IV) bistability
of .On; Om; Op/ D .C; 0; 0/ and .On; Om; Op/ D .C;C;C/, and (V)
bistability of . On; Om; Op/ D .C;C; 0/ and . On; Om; Op/ D .C;C;C/.
Parameters are c D 0:005, d D 0:001, and a D 0:7. Here, we assume
cw < r

learning to increase, implying that teaching evolves when we
strongly depend on social learning. This is because teaching
behavior is a socially transmitted cultural trait in the model
so that it is more likely to be maintained in the population
when the dependence on social learning is significant. Such
dependence may have increased during human (hominin)
evolution because the cost of social learning decreased and
the accuracy of social learning increased as human social
learning ability (e.g., communication ability, language abil-
ity) improved. Therefore, it is reasonable to assume that
teaching may have evolved at a late stage in human evolu-
tion. The importance of social learning on the evolution of
teaching may also explain why teaching is less common in
animals, whose dependence on social learning is minimal.

Teaching can have two properties: teachers may more
actively transmit their cultural traits than non-teachers, and
pupils may more accurately learn cultural traits from teachers
than from non-teachers. The model shows that the former
promotes the evolution of teaching, while the latter does not,
i.e., teaching evolves because pupils learn teaching behavior
more frequently, not because they learn it more accurately.
Although accurate social learning through teaching may
be important for cumulative cultural evolution, it does not
contribute to the maintenance of teaching in the population.
Since humans actually learn from teachers more often than
from non-teachers, the assumption of an active teacher may
be realistic and the model results are applicable to the
evolution of human teaching, although accurate learning
from teachers is not simultaneously included in the model.
It may be that we prefer to learn from good teachers, which

also increases the number of cultural traits learned from
teachers and enhances the spread of teaching behavior in the
population.

The model shows that teaching is more likely to evolve
when the effect of teaching (number of cultural traits each
teacher transmits per single transmission event) is signifi-
cant. The effect of teaching may be considered to indicate
teaching ability; however we do not consider its evolution
in this model. Teaching to offspring may have been an
essential selection pressure for the evolution of our high
genetic ability for teaching (e.g., theory of mind, empathic
sensitivity) because genetic relatedness between teacher and
pupil is important for the evolution of genetically transmitted
teaching behavior (Fogarty et al. 2011; Aoki et al. 2013).
The ability to teach offspring applies also to teaching to
non-relatives. In other words, teaching to offspring is a
preadaptation for teaching to non-relatives. Therefore, once
(genetically transmitted) teaching to offspring evolved, (cul-
turally transmitted) teaching to non-relatives would have
followed. Since an increase in the dependence on a behavior
may trigger an increase in the ability to perform the behavior
(Nakahashi 2010), teaching ability may improve to a greater
extent when culturally transmitted teaching behavior spreads
in the population.

The model also shows that there is a bistable region
where teaching both exists and does not exist, i.e., even
when teaching can exist in a stable form in the population,
it cannot evolve if there are relatively few teachers initially.
This implies that the existence of teaching in a population
sometimes depends on the past experience of the population.
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For example, once a population experiences a sufficiently
stable environment for teaching to be able to spread, teaching
is maintained, even when the environment becomes unstable
and becomes a bistable condition. If the population does not
experience a stable environment, teaching does not evolve
under the bistable condition. Moreover, teaching and social
learning may exist in a stable form under an unstable envi-
ronment where social learning cannot exist without teaching.
Note that teaching never spreads in the population under
the condition where social learning does not exist. The
experience of a stable environment and the evolution of
teaching are important for the maintenance of social learning
under unstable environments.

The model only considers individual learning and unbi-
ased oblique social learning, which may not be sufficiently
sophisticated to describe human learning strategies. For ex-
ample, modification of socially learned cultural traits (social
improvement) is important for human cumulative cultural
evolution (Nakahashi 2013a, b). Nevertheless, cultural traits
are always acquired by individual learning or (various types
of) social learning. Since teaching is important in social
learning, but meaningless in individual learning, the result
that teaching is more likely to evolve when the dependence
on social leaning is significant should be robust. That is, the
simple model may be sufficient for discussing the evolution
of teaching, although using the model results to discuss more
complex factors may have no justification.

The model shows that, when teaching is culturally trans-
mitted, it evolves because it is more likely to be transmitted
than ordinary cultural traits. That is, teachers apply the
principle that we should actively teach many cultural traits
to non-relatives, which are then more likely to be transmitted
than with the principle that we do not need to teach cultural
traits to others. In other words, cultural traits of influential
persons are more likely to be transmitted than those of or-
dinary persons. This mechanism is important when we con-
sider the evolution of human behavior because our behavior
is often culturally transmitted. For example, we tend to rely
on honest and kind persons, who may follow the principle
that we should be honest and kind to others, which may
promote a more cooperative human society. It is important to
consider this cultural mechanism when we investigate human
behaviors that may relate to cultural transmission.

Although social learning and teaching are less common in
non-human animals, such a cultural transmission mechanism
may also be important in animal behavior. For example, con-
solation is observed in some species, which may reflect their
empathy for others’ distress (reviewed in de Waal 2008).
Although the machinery of empathy for recognizing distress
may be genetically transmitted, the behavior of consoling
others may possibly be culturally transmitted. For example,
maternal behavior is often influenced by the early experience
of being cared for by the mother and observing the maternal

behaviors of others (Gonzalez et al. 2001; Champagne and
Meaney 2007), although in mammals mothers may also take
care of their offspring through instinct. In other words, con-
solation behavior may remain in the population even when
consolation is costly because the behaviors of empathetic
consolers are more likely to be transmitted culturally.

Although archeological evidence suggests that the Upper
Paleolithic modern humans may have taught each other how
to make stone tools (Pigeot 1990; Takakura 2013), the timing
of the initiation of teaching to non-relatives in hominins is
uncertain. Since stone tools became more complex and diffi-
cult to make as hominins evolved, transmission of the skills
for making them may have become essential at a certain stage
in hominin evolution. Of course, the information transmitted
by teaching was never restricted to stone tools, but the
difficulty of stone tool making would reflect the accuracy
of cultural transmission, which may have been significant if
teaching existed. That is, the existence of complex stone tools
suggests the existence of teaching in the society, although we
cannot distinguish between teaching to offspring and to non-
relatives.

When there is one-to-many transmission, cultural evolu-
tion may proceed more rapidly, provided that each individual
can recognize the most skilled person or that the teachers
tend to have higher skills (Henrich 2004; Kobayashi and
Aoki 2012; but see Aoki et al. 2011; Aoki 2013; Naka-
hashi 2013c, 2014). One-to-many transmission may imply
cultural transmission between non-relatives. Therefore, rapid
progress of complex technologies suggests the existence of
teaching to non-relatives in the society.

Archeological evidence suggests that cultural evolution-
ary rates were extremely low before the emergence of mod-
ern humans. For example, the Acheulean tradition of Homo
erectus remained much the same in the archaeological record
for over a million years (Jelinek 1977), and the Mousterian
tradition of Neanderthals was almost static for hundreds of
thousands of years (Akazawa et al. 1998). On the other
hand, modern human culture changed rapidly during and
after the Upper Paleolithic in Europe (Bar-Yosef 2002) and
the Middle Stone Age in Africa (McBrearty and Brooks
2000), although the exact timing of the increase in the rate of
cultural evolution is controversial. Therefore, we can assume
that teaching to non-relatives began at the latest during this
period.

Although it is uncertain whether Neanderthals actually
engaged in teaching, if a difference in teaching behavior
between Neanderthals and modern humans existed, we could
explain the different cultural evolutionary speeds between
the two hominins. We can speculate about two reasons for
the evolution of different teaching behaviors. One possible
explanation is that the African environment was more stable
than the Eurasian at that time, so that teaching evolved
only in African modern humans. Even if the environmental
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stability was similar between the two regions, the difference
in subsistence strategies may have affected the evolution of
teaching. For example, animals and plants may have different
sensitivities to environmental changes, so that a hominin
who strongly depends on hunting and one that depends
on gathering may also respond differently to environmental
changes. Since modern humans may have engaged in a wider
range of economies than Neanderthals (Kuhn and Stiner
2006; Richards and Trinkaus 2009), the cultural skills of
modern humans may possibly have been less sensitive to
environmental changes, so that modern humans may have
depended more strongly on social learning and, therefore,
teaching evolved more easily.

The other explanation is that teaching ability evolved
differently between the two hominins because of their differ-
ent group structures. For example, teaching to non-relatives
may barely evolve if the group is formed only by relatives
and there is little chance to communicate with non-relatives.
Ancient genome sequences suggest that Neanderthal groups
may have been formed only of relatives (Prüfer et al. 2014;
Castellano et al. 2014), which may possibly have inhibited
the evolution of teaching to non-relatives. Neanderthals may
have possessed different communication and cognitive abil-
ities, as compared to modern humans (Green et al. 2010),
which suggests that the two hominins may have had different
teaching abilities. Given that numerous factors may have
affected the evolution of Neanderthals and modern humans in
a complex fashion, it is difficult to ascertain the most critical
cause of the differences in teaching behavior between the
two hominins. However, we can speculate that the different
subsistence strategies and group structures may have played
an important role in the evolution of teaching behaviors.

Although the model is simple, it allows us to discuss how
teaching affects human cultural evolution. The model shows
that teaching may cause the evolution of social learning
under an unstable environment where social learning cannot
exist without teaching. The frequency of change in the utility
of a cultural trait may depend on the property of the cultural
trait. For example, information on the location of an animal
may change often, but the strategy of how to trace the animal
may seldom change. We may individually learn cultural traits
whose utility often changes and socially those whose utility
seldom changes. The model suggests that teaching entails
social learning of cultural traits that need to be learned
individually if teachers are absent. In other words, teach-
ing broadens the variety of cultural traits learned socially.
Compared with other animals, humans depend strongly on
social learning, which may, in part, be supported by teaching.
Moreover, since teaching increases the dependence on social
learning, it may strengthen social ties between individuals,
which would lead to closer cooperation within a group.
Indirect reciprocity is one of the most important mechanisms

for the evolution of human cooperation, and is possibly
supported by information on the reputation of others (Nowak
and Sigmund 1998; Ohtsuki et al. 2009). The existence of
teaching may be important for the spread of information on
reputation. We like to gossip. Furthermore, mutual teaching
may give rise to the emergence of discussion. That is, when
two persons have different information and attempt to teach
one another, discussion may arise. Animals never discuss,
and the emergence of discussion may promote the evolution
of logical thinking, which is one of the most important
factors in human intelligence.

In conclusion, when teaching behavior is culturally trans-
mitted and affects the number of cultural traits each teacher
transmits, teaching to non-relatives evolves when the depen-
dence on social learning is strong. The cost of teaching does
not inhibit the spread of teaching in the population. Teaching
may have affected human cultural evolution in numerous
situations. Despite the uncertainty as to how teaching influ-
enced the replacement of Neanderthals by modern humans,
it is important to consider the evolution of behaviors that re-
late to cultural transmission mechanisms when investigating
cultural evolution.
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Appendix 1

Let x be the fraction of cultural traits that are beneficial
for offspring in the parental generation. Then, when all
organisms use the strategy (n*, m*), they learn n* cultural
traits individually where proportion r is beneficial so that, on
average, rn* beneficial cultural traits are acquired through
individual learning. Organisms also learn m* cultural traits
socially, where proportion x is beneficial, and those beneficial
cultural traits are learned accurately with probability a, so
that on average, axm* beneficial cultural traits are acquired
by social learning. Thus, the proportion of beneficial cultural
traits in the offspring generation is

rn� C axm�

n� C m�
: (3.13)

Since a fraction s of cultural traits that are beneficial for
offspring remain beneficial in the grand-offspring generation,
the fraction of cultural traits that are beneficial for grand-
offspring in the offspring generation, x0, is

x0 D rn� C axm�

n� C m�
s: (3.14)
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Since x0 D x D Ox at equilibrium, we have

Ox D rsn�

n� C m� � asm�
(3.15)

and the fraction of beneficial cultural traits always converges
to Ox because

x0 � Ox D asm�

n� C m�
.x � Ox/ : (3.16)

Appendix 2

Ignoring double mutants and pleiotropy among learning
capacities, the necessary and sufficient condition for the
strategy . On; Om/ to be evolutionarily stable for the invasion
of rare mutants of small effect is

8
ˆ̂<

ˆ̂:

@W .B;A/
@n

ˇ̌
ˇ
.n;m/D. On; Om/

D0 and @2W .B;A/

@n2

ˇ̌
ˇ
.n;m/D. On; Om/

< 0

or

On D 0 and @W .B;A/
@n

ˇ̌
ˇ
.n;m/D. On; Om/

< 0

(3.17)

8
ˆ̂<

ˆ̂:

@W .B;A/
@m

ˇ̌
ˇ
.n;m/D. On; Om/

D0 and @2W .B;A/

@m2

ˇ̌
ˇ
.n;m/D. On; Om/

< 0

or

Om D 0 and @W .B;A/
@m

ˇ̌
ˇ
.n;m/D. On; Om/

< 0

(3.18)

Since W .B; A/ D .w C rn C a Oxm/ e�cn�dm, we have

8
<

:

r D c .w C r On C a Ox Om/

or
On D 0 and r < c .w C r On C a Ox Om/

(3.19)

8
<

:

a Ox D d .w C r On C a Ox Om/

or
Om D 0 and a Ox < d .w C r On C a Ox Om/

(3.20)

where

Ox D rs On
On C Om � as Om: (3.21)

Solving them, we have the ESS . On; Om/ shown in
Table 3.1.

Appendix 3

Let us consider the stability of the equilibrium.On; Om; Op/

against a perturbation. As shown above,f .y/ D csy2 �
s .d C act/ y C td D 0 has the larger root between 1 <

y < t when cy > d , cw < r , acsy > d , and t .acs � d/ >

s .c � d/ are satisfied, and has two roots between 1 < y < t

when cy > d , cw < r , acsy > d , t .acs � d/ <

s .c � d/, act > 2c � d , and s.d C act/2 � 4ctd > 0

are satisfied. Consider a perturbation, for example, a slight
change of environmental stability resulted in slight changes
of learning strategy and the proportion of teachers in the
population from the equilibrium . On; Om; Op/. Then, assuming
that the environment reverts to the previous stability, let us
consider whether learning strategy and the proportion of
teachers in the population also revert to the previous state
(equilibrium). Assume that the present state is .n; m; p/ D
. Qn . Op C �/ ; Qm . Op C �/ ; Op C �/ where j�j << 1. From
Eq. (3.4), provided the population is fixed for the learning
strategy, the proportion of teachers converges to

Qp.Qn. OpC�/; Qm. OpC�// D .at�1/ Qm. OpC�/�Qn. OpC�/
.t�1/Œ Qn. OpC�/C Qm. OpC�/�

D 1
t�1

h
tfacsŒyC.t�1/���dg
sfcŒyC.t�1/���dg � 1

i :

(3.22)

Writing that

Qp . Qn. Op C �/; Qm . Op C �// D Op C ��; (3.23)

the equilibrium is unstable if j�j > 1 and stable if j�j < 1.
Then, Eq. (3.22) can be rewritten as

y � 1

t � 1
C �� D 1

t � 1

�
t facs Œy C .t � 1/ �� � d g
s fc Œy C .t � 1/ �� � d g � 1

	
;

(3.24)

i.e.,

y C .t � 1/ �� D t Œacsy � d C acs .t � 1/ ��

s Œcy � d C c .t � 1/ ��
: (3.25)

From Eq. (3.9), y D 1 � Op C Opt satisfies sy .cy � d/ D
t .acsy � d/, so that Eq. (3.25) can be rewritten as

s .t � 1/ � Œ� .cy � d/ C cy� C c�.t � 1/2�2

D acst .t � 1/ �: (3.26)



32 W. Nakahashi

Neglecting the term of �2, we have

� .cy � d/ C cy D act; (3.27)

i.e.,

� D �1 C act � d

cy � d
: (3.28)

Since cy � d > 0 and act � d > 0 provided f .y/ D 0 has
a root between 1 < y < t , j�j > 1 is satisfied when

act � d > 2 .cy � d/ ; (3.29)

i.e.,

y <
d C act

2c
: (3.30)

That is, the equilibrium is unstable if Ineq. (3.30) is satisfied
and stable if Ineq. (3.30) is reversed. Since the axis of sym-
metry of f (y) is .d C act/ =2c, the smaller root of f .y/ D 0

is unstable and the larger root is stable.
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4APopulation-Genetics BasedModel for
Explaining Apparent Cultural Continuity
from theMiddle to Upper Palaeolithic in Eurasia

Yutaka Kobayashi, Seiji Kadowaki, and Masaki Naganuma

Abstract

There has been heated debate over the interpretation of the Châtelperronian industry as a
result of Neanderthals’ acculturation through direct or distant influence from Homo sapiens.
In contrast, relatively little attention has been paid to the possibility that Homo sapiens
populations may also have undergone acculturation through the influence from indigenous
archaic hominins during the expansion of their habitat range. In this article, we argue
that the acculturation of the invading Homo sapiens population may provide a consistent
explanation for varying degrees of cultural continuity across the MP-UP transition widely
observed in Eurasia. We simulate the spread of a Homo sapiens population in a region
preoccupied by an archaic hominin population by means of mathematical modeling to
investigate the possible effects of the acculturation of the Homo sapiens population on
the pattern of the cultural transition associated with biological replacement. The results
suggest that cultural continuity is likely to be observed when the Homo sapiens population
is initially small and/or spreads slowly. This in turn implies that whether the local physical
environment was relatively favorable to Homo sapiens or to the archaic hominin is an
important determinant of the degree of the continuity.

Keywords

Simulation • MP-UP transition • Cultural transmission • Acculturation • Demography

4.1 Introduction

The Late Pleistocene Out-of-Africa models of Homo sapi-
ens, as variously delineated by genetic and palaeoanthropo-
logical studies (e.g., Smith and Ahern 2013), have greatly
influenced interpretations of behavioral and cultural records
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from the Middle and early Upper Palaeolithic periods in
Eurasia. For example, several archaeologists have proposed
that lithic techno-typological similarity among some of the
Initial Upper Palaeolithic or “transitional” industries in the
Levant (i.e., the Emiran), central Europe (i.e., the Bohu-
nician), and the Altai (i.e., Kara Bom) can be regarded
as “road-signs” of Homo sapiens groups expanding their
geographic distributions from the Levant to other parts of
Eurasia (Bar-Yosef and Belfer-Cohen 2013; Škrdla 2003;
Svoboda 2007; Tostevin 2007). Similarly, recently increasing
Middle Palaeolithic (MP) records in the Arabian Peninsula
have greatly contributed to discussions on the geographic
expansion of Homo sapiens along the “southern route” (e.g.,
Armitage et al. 2011; Delagnes et al. 2013; Rose et al. 2011).

On the other hand, given possible encounters between
dispersing Homo sapiens and indigenous archaic hominin

A. Mesoudi and K. Aoki (eds.) Learning Strategies and Cultural Evolution during the Palaeolithic,
Replacement of Neanderthals by Modern Humans Series, DOI 10.1007/978-4-431-55363-2_4,
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populations, as suggested by genetic studies (Green et al.
2010; Prüfer et al. 2014), interactions between the two
groups can also be represented in archaeological records.
This viewpoint is illustrated by previous and recent inter-
pretations of the Châtelperronian industry as a result of Ne-
anderthals’ acculturation through direct or distant influence
from Homo sapiens groups (Mellars 1999, 2005; Hublin
2013). On the basis of renewed chronological data of Euro-
pean “transitional” industries, some researchers propose that
the Châtelperronian was created by Neanderthals, receiving
indirect, distant cultural influence from Homo sapiens groups
who had already colonized parts of central/eastern Europe by
this time (Hublin 2013; Hublin et al. 2012). In central Eu-
rope, Tostevin (2007) examined a similar acculturation sce-
nario for the Szeletian industry that hypothetically emerged
from the indigenous Micoquian through acculturation by
the invasive Bohunician Behavioral Package. Because the
Bohunician lithic technology is regarded to have originated
in the Levant, its influence over the Micoquian and the
Szeletian, i.e., indigenous cultures in central Europe, can
provide implications for cultural interactions between local
Neanderthals and Homo sapiens groups that are supposed to
have dispersed from the Levant.

While these previous studies focus on a scenario of
indigenous populations that are more or less acculturated
by invasive groups, there have been few discussions on the
process of invasive groups receiving cultural influences from
local groups. The latter case might initially sound counter-
intuitive but not unlikely for various reasons. For example,
indigenous populations must have acquired behaviors and
technology adapted to the surrounding environments, with
which invasive groups are going to cope. It is also possible
that modern humans found archaic cultural traits somehow
attractive. A cultural diffusion from Neanderthals to modern
humans has been recently proposed as one of possible ex-
planations for the discovery of formal bone tools, lissoirs,
from two Mousterian sites in southwest France (Soressi
et al. 2013). This special type of bone tools continues to
occur in subsequent “transitional” and Upper Palaeolithic
cultures, including the Châtelperronian, Protoaurignacian,
and Aurignacian.

We propose this scenario of acculturation on the side of
invasive groups as a potential interpretive framework for
archaeological records that apparently show varying degrees
of continuity from the MP to UP, during which local, archaic
hominin groups are supposed to have been replaced or assim-
ilated by incoming Homo sapiens populations. For example,
in the Levant, some researchers point out similarity or grad-
ual differences in core reduction technology between the late
Levantine Mousterian industry, associated with Neanderthal
remains at Dederiyeh, Amud, and Kebara Caves, and the
Initial Upper Palaeolithic or the Emiran (Belfer-Cohen and
Goring-Morris 2007; Meignen 2012; Olszewski 2009; but

see Tostevin 2003 for a different view). Both industries
are similarly characterized by prepared core technologies
designated as Levallois or adapted Levallois for produc-
ing triangular blanks, i.e., morphologically Levallois points.
Although we have little evidence regarding the makers of
the IUP/Emiran, fragmentary human fossils from Ksal Akil
Layer XXV (Ethelruda) and Üçağ{zl{ are reported to include
features of Homo sapiens (Douka et al. 2013; Kuhn et al.
2009).

In the Zagros region, the Middle Palaeolithic industry, i.e.,
the Zagros Mousterian, is followed by the Early Baradostian
which marks the beginning of the Upper Palaeolithic. The
former industry is associated with Neanderthal fossil remains
at Shanidar and Bisitun Caves. Although the two lithic
industries clearly differ from each other in core reduction
technology, the Early Baradostian assemblages at Warwasi
rockshelter include some tool types (e.g., retouched points
and side scrapers) and truncated-faceted cores that character-
ize the Zagros Mousterian (Olszewski 2009; Olszewski and
Dibble 1994). This observation is supported by recent re-
analyses of the formation processes of stratified deposits at
this site, suggesting the integrity of the stratified assemblages
(Tsanova 2013).

In this study, we assume cultural contact between indige-
nous and invasive groups as one of the possible factors for
the above mentioned techno-typological similarity between
the late MP and early UP in west Asia. This assumption
is supported by chronological overlap between some late
MP and early UP sites in west Asia (Kadowaki 2013) al-
though it needs to be verified further with additional, reliable
radiometric dates like the case recently made for Europe
(Higham et al. 2014). Interactions between Neanderthals and
Homo sapiens in west Asia are also recently suggested by
their genetic analyses (Green et al. 2010; Gibbons 2014).
However, considering different views on the timing and
nature of the MP-UP transition in west Asia (Shea 2008;
Rebollo et al. 2011; Douka et al. 2013), we do not exclude
other possible reasons, such as independent innovation or
behavioral convergence, for some of the apparent cultural
similarity between the late MP and early UP.

On the basis of lithic techno-typological continuity be-
tween the UP and earlier assemblages or industries in eastern
Eurasia, several archaeologists have recently reappraised the
multi-regional model for the origin of Homo sapiens (e.g.,
Derevianko 2011; Derevianko and Shunkov 2012). However,
in light of the hypothesis that Homo sapiens could have expe-
rienced cultural influences from indigenous archaic hominin
populations while they expanded their habitat range, the
observed techno-typological continuity does not necessarily
imply biological continuity. This is theoretically conceivable
as we argue later (see Discussion); the theory predicts that the
pattern of the cultural transition associated with a biological
transition is largely dependent on the mode of the underly-
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ing demographic process. Importantly, cultural continuity is
rather likely to occur for a broad range of parameter values.

In central Asia and southern Siberia, it has been re-
ported that lithic assemblages changed continuously from
MP to EUP based on the archaeological records from sev-
eral multilayered sites. The excavators interpreted the long-
term preservation of the Levallois technique and MP type
tools and coexistence with UP type tools in the toolkits
during the MP-UP transition as autochthonous formation
of Upper Paleolithic without any influence from invasive
groups (Derevianko ibid.). Several local MP assemblages in
these regions (i.e., Sibiryachikha industries) are associated
with Neanderthals fossil remains at Teshk-Tash, Okladnikov
and Chagyrskaya caves (e.g., Okladnikov 1940; Derevianko
et al. 2013), while the local EUP assemblage similar to
preceding MP layers has been uncovered in association with
personal ornaments, bone tools and archaic human bone
(“Denisovian”) from Denisova cave stratum 11 (Krause et al.
2010).

In China, elaborated bone tools and personal ornaments
are considered as principal markers of Upper Paleolithic
or modern human behaviors and several cases, such as
Shuidonggou and Shiyu, suggest the emergence of blade
technique and artifacts of symbolic behaviors (e.g., Qu 2012;
Hou et al. 2013; Qu et al. 2013; Guan et al. 2012). On the
other hand, there is a controversy over the definition of the
MP industries or period (Gao 1999; Norton et al. 2009),
and taxonomic attribution of archaic indigenous population
earlier than Homo sapiens groups is still an open question
(e.g., Wu 2004; Stringer 2012). Moreover, traditional local
core-flake industries (mode I) continued for a long time
period from the Lower to Upper Paleolithic, and some of
them are possibly associated with bone tools, pendants (at
Xiaogushan cave) and Homo sapiens fossils (at Zhoukoudian
Upper cave) (e.g., Qu et al. ibid.; Zhang et al. 2010).

As these examples suggest, the MP-UP transition is not
always a discontinuous shift but rather shows diverse degrees
and modes of continuity depending on regions. Thus, if
Homo sapiens was the maker of EUP industries as usually
postulated, we need to reconsider the validity of our implicit
assumption that biological replacement generally causes dis-
continuous cultural shifts. In this paper, we construct a
mathematical model to simulate the invasion of a population
of Homo sapiens into a region preoccupied by an archaic
hominin population and the associated acculturation on the
side of Homo sapiens. The purpose is to identify the major
determinants of the mode of cultural continuity associated
with biological replacement. We analyze the model using
population-genetic approximation techniques and individual-
based simulations. Based on the results, we discuss the
possible causes of spatial variation in the pattern of cultural
shifts during the MP-UP transition.

Fig. 4.1 Schematic diagram representing the situation considered in
the model. Squares and circles represent archaic and modern humans,
respectively. Cultural phenotypes are represented by colors, where blue
and red represent CA and CM, respectively. Dotted lines represent the
boundary between the two species. Modern humans are initially rare
and all bear CM (upper panel). As time goes, modern humans gradually
replace archaic humans and at the same time the indigenous phenotype
CA spreads into the population of modern humans due to interspecific
oblique transmission (lower panel)

4.2 Mathematical Model

4.2.1 Description

We note that the following model is too simplistic in many
respects as it is intended to extract the essence of the problem
and also to maintain analytical tractability. Imagine that a
small population of Homo sapiens is invading a region pre-
occupied by a population of an archaic hominin species (see
Fig. 4.1). Let us for simplicity call the former and the latter
modern and archaic humans, respectively. Suppose that this
region accommodates a total of N individuals of the archaic
or modern humans, where N is constant. Suppose, again
for simplicity, that both populations reproduce asexually, so
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that each individual has only one parent. Generations are
overlapping insofar as cultural transmission occurs. Modern
humans are initially rare in frequency, given that they have
just arrived in this region. Let p0 denote this initial frequency,
and p the frequency of modern humans in any subsequent
generation. Because the anatomical and genetic features of
present-day human populations are predominantly derived
from the ancestral modern humans, the model assumes that
the modern humans increase in frequency to eventually
replace the archaic humans. To simulate this increase, we
formally assume that the relative fitnesses of modern and
the archaic humans are 1 and 1-s, respectively. We do not
specify the cause of this fitness difference; it may be cultural
and/or genetic and may even depend on regions. Since the
population size is finite, modern humans can go extinct with
a positive probability due to random sampling drift despite
selective superiority. However, we set Ns and Np0 sufficiently
large, so that the probability of extinction for modern humans
is negligibly small.

We assume that cultural transmission may occur from the
archaic to modern humans, while we neglect transmission
in the opposite direction for simplicity. We assume that the
archaic and modern humans initially have distinctive pheno-
types, referred to as CA and CM, respectively. A phenotype
in this case may for example be the use of a particular type
of tools or the use of a particular stone-processing technique
such as the Levallois technique. The phenotypes are transmit-
ted through social learning from one generation to the next.
We assume that each modern human learns vertically and
obliquely with probabilities 1-� and � , respectively. When
a modern human learns obliquely, he/she may copy one of
the archaic humans with a certain probability. As a result,
the phenotype CA can gradually spread into the population of
modern humans. We assume that the probability of copying
an archaic human when transmission is oblique, denoted by
X(u,p), is given by

X.u; p/ D 1 � Y.u; p/ D u.1 � p/

.1 � u/p C u.1 � p/
; (4.1)

where u is a parameter indicating modern humans’ pref-
erence for archaic role models as opposed to modern role
models and may range from 0 to 1; u D 0 (u D 1) implies
that modern humans always choose modern (archaic) hu-
mans as their role models when they learn obliquely. In the
special case of u D 1/2, there is no bias in choice. In the
above equation, Y(u,p) D 1-X(u,p) gives the probability that
a modern human copies a modern human. It must be noted
that the probability of learning CA by oblique transmission
is in general higher than given by Eq. (4.1) because modern
humans may also bear CA. We assume that transmission of
a phenotype is always faithful and perfect, so that social
learning of a phenotype never fails when attempted.

We formally assume that the two phenotypes CA and CM

are selectively neutral. In reality, different phenotypes would
contribute to fitness differently. However, we assume that the
influences of the focal traits on fitness are so small compared
to the overall fitness difference between the two species that
we can regard the traits approximately as selectively neutral.
We will investigate below how the pattern of cultural dynam-
ics depends on selection coefficient s, initial frequency p0,
oblique transmission rate � , and preference for archaic role
models u. We are particularly interested in the probability
that CA goes extinct or the conditional expected time until
the extinction of CA.

4.2.2 Population Dynamics

Prior to the analysis of cultural dynamics, let us consider the
population dynamics of modern humans. Given that Ns > > 1
and Np0 > > 1, we may neglect the effect of random genetic
drift as far as population dynamics is concerned. Thus, the
dynamics of the frequency of modern humans, p, is described
by the following difference equation:

p0 D p

p C .1 � p/.1 � s/
D p

1 � s.1 � p/
; (4.2)

where p0 represents the frequency in the next generation.
The difference in the frequencies between succeeding gen-
erations, denoted by �p, is given by subtracting p from both
sides of Eq. (4.2):

�p D sp .1 � p/

1 � s .1 � p/
: (4.3)

Furthermore, if as we assume s 	 1, the denominator (the
average fitness) is approximately one and the difference �p
can be replaced by the differential dp/dt. Thus, we obtain the
following approximate differential equation:

dp

dt
� sp .1 � p/ : (4.4)

This equation can easily be solved by means of logit transfor-
mation (i.e. let z D p/(1�p)) to yield the frequency of modern
humans as a function of generation t:

z D p

1 � p
� p0

1 � p0

est (4.5)

or

p � p0est

1 � p0 C p0est
: (4.6)
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Fig. 4.2 The population
dynamics of modern humans in
the model. Black lines represent
10 sample paths obtained from
individual-based simulations and
the red line represents the
prediction of the analytical
approximation. Parameter values
are ND 10,000, sD 0.1, and
p0D 0.01
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Figure 4.2 compares the results of individual-based simu-
lations and Eq. (4.6). As the figure shows, the results of
individual-based simulations vary between runs even under
fixed parameter values due to random genetic drift. There
are analytical techniques to take this stochastic variation into
account (e.g., Otto and Barton 1997). However, we refrain
from using those techniques here because they are so com-
plicated that our main conclusions would rather be obscured.
Our deterministic approximation Eq. (4.6) is justified if the
initial number of modern humans is sufficiently large (say,
>50), so that the effect of genetic drift is negligible from the
start.

4.2.3 Patterns of Cultural Dynamics

Here we loosely categorize the patterns of cultural dynamics
based on results of individual-based simulations. Detailed
mathematical analysis for each pattern is provided in later
subsections. We found the following four distinguishable
patterns.

Pattern A (Rapid extinction of CA): CA goes extinct
quickly during biological replacement (Fig. 4.3a). This
pattern occurs when selection is strong (s is large), the
initial frequency of modern humans is high (p0 is large),
the preference for archaic role models is low (u is small),
and/or the oblique transmission rate is low (� is small).

Pattern B (Persistence of CA): CA remains at a high fre-
quency during biological replacement and persists indef-
initely (Fig. 4.3b). This pattern occurs when selection is
weak (s is small), the initial frequency of modern humans
is low (p0 is small), the preference for archaic role models

is high (u is large), and/or the oblique transmission rate is
high (� is large).

Pattern C (Slow extinction of CA): CA decreases to some
extent in frequency during biological replacement. It per-
sists for a while after the replacement but eventually goes
extinct (Fig. 4.3c). This pattern occurs under conditions
intermediate between the patterns A and B.

Pattern D (Temporary decrease of CA): CA decreases tran-
siently in frequency during biological replacement. How-
ever, it eventually reaches fixation and persists indefinitely
(Fig. 4.3d). This pattern also occurs under conditions
intermediate between A and B.

4.2.4 Fixation Probability of CA

Here we compute the eventual fixation probability of the
archaic phenotype CA in the population of modern hu-
mans. In terms of the four patterns described in the pre-
vious subsection, this is the probability that pattern B or
D occurs. Note that the change in the frequency of CA is
stochastic due to random cultural drift. Thus, we need to
cope with a complex stochastic process, in which biological
replacement and random cultural drift occur simultaneously.
We analyze this process using the following approximation
technique. Given that selection favoring modern humans is
strong (Ns > > 1), we may consider that the entire process
consists of two stages. The first stage constitutes a fast
process, in which modern humans replace the archaic ones.
In this stage, the frequency of CA in the population of
modern humans increases due to interspecific transmission
in an approximately deterministic manner. This deterministic
process can be analyzed by the method used in the studies of
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Fig. 4.3 Four distinct patterns of
cultural transition associated with
biological replacement. The red
and black lines represent the
frequencies of CA and modern
humans, respectively, in the
entire population. Population size
is ND 1,000 in all panels. Other
parameter values are (A)
uD 0.01, qD 0.01, sD 0.2, and
p0D 0.05, (B) uD 0.1, qD 0.1,
sD 0.1, and p0D 0.01, (C)
uD 0.05, qD 0.05, sD 0.1, and
p0D 0.01, (D) uD 0.02,
qD 0.05, sD 0.1, and p0D 0.01
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genetic hitchhiking (Maynard Smith and Haigh 1974). The
second stage constitutes a relatively slow process, where the
archaic humans are already extinct and the frequency of CA

in the population of modern humans fluctuates stochastically
due to random cultural drift. This stage can be analyzed using
diffusion-approximation techniques.

Let us first consider the first stage. Let q denote the
frequency of CA in the population of modern humans, so that
the total frequency of CA is given by 1�p C pq. Provided that
we may neglect the effect of sampling drift, the frequency
dynamics of q is described by the following difference
equation:

q0 D .1 � �/ q C � ŒY .u; p/ q C X .u; p/� ; (4.7)

where q0 represents the value of q in the next generation,
given the current frequency q. The first term on the right
hand side represents the contribution of vertical transmission,
while the second term represents the contribution of oblique
transmission. The first and second terms in the brackets rep-
resent the contributions of oblique learning from modern and
archaic humans, respectively. The former term is multiplied
by q because only a fraction q of modern humans bears CA.

Subtracting q from both sides of Eq. (4.7) and assuming
� is sufficiently small, we can replace the difference q0-
q by dq/dt to obtain the following approximate differential
equation:

dq

dt
� �X .u; p/ .1 � q/ : (4.8)

Substituting Eq. (4.6) into Eq. (4.8) yields

dq

dt
� u� .1 � p0/

.1 � u/ p0est C u .1 � p0/
.1 � q/ : (4.9)

Solving this equation with the initial condition q D 0 yields

q � 1 � �
Y .u; p0/ C X .u; p0/ e�st

� �
s : (4.10)

From this equation, we find that after biological replacement
the frequency of CA in the population of modern humans—
and hence in the entire population—is given by

lim
t!1q � 1 � Y .u; p0/

�
s : (4.11)

In the second stage, the archaic humans are extinct and
the frequency of CA fluctuates due to sampling drift. Since
CA and CM are selectively neutral, the fixation probability
of CA, denoted by �A, is given by the initial frequency in
the second process, which is the final frequency in the first
process.

�A � 1 � Y .u; p0/
�
s : (4.12)
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Figure 4.4 compares the results of individual-based simu-
lations and Eq. (4.12). As the figure shows, the probability
of fixation of CA is high when � /s is large, p0 is small,
and u is large. In particular, these results imply that the
archaic phenotype CA is likely to persist when selection is
weak and the initial frequency of modern humans is low; i.e.
when modern humans slowly replace the archaic humans. It
should be noticed that qualitative effects of parameters on the
fixation probability of CA would be unchanged even if one
of the two phenotypes is weakly favored over the other. This
is because the frequency of CA quickly approaches to Eq.
(4.11) as long as the selection pressure on the two phenotypes
is sufficiently small compared to the overall fitness difference
s. In this case, the selection pressure only affects the fixation
probability of CA in the second slow process, but this does
not alter the effects of u, � , s, and p0. This justifies the use
of the neutral model as an approximation of weakly selected
cases.

4.2.5 Expected Time Until CA Is Lost

In Sect. 2.3, we showed that, even when CA is eventually lost,
it may persist for a long time after the biological replacement
(Pattern C). Here, we compute the conditional expected time
t0 elapsed after the completion of biological replacement
until the extinction of CA. Here “conditional” means that we
only consider the cases where extinction eventually occurs.
For this purpose, we can use a formula derived by Kimura
and Ohta (1969):

t0 � �2N

�
q

1 � q

�
ln q; (4.13)

where q is the initial frequency of CA in the second process,
which is the final frequency in the first process Eq. (4.11).
Note that the coefficient 4N in the original article is replaced
by 2N here because cultural phenotypes behave in the same
way as alleles on haploid loci. Substituting Eq. (4.11) for q
in Eq. (4.13) yields the following approximate formula:

t0 � �2N


Y .u; p0/�

�
s � 1

�
ln


1 � Y .u; p0/

�
s

�
; (4.14)

Figure 4.5 compares the results of individual-based simu-
lations and Eq. (4.14). Comparison of Figs. 4.4 and 4.5
reveals that the time until the extinction of CA tends to
be long when the fixation probability of CA is high. As
the figure shows, the time until the extinction can be very
long (several hundred generations) depending on parameter
values. In such cases, we should consider that CA effectively
persisted. In this sense, the formula Eq. (4.12) and Fig. 4.4
may underestimate the probability that cultural continuity is
observed.
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Fig. 4.4 Effect of parameters on the fixation probability of CA. Dots
and lines represent the results of individual-based simulations (com-
puted using data of 500 replications) and analytical results, respectively.
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humans is (a) p0D 0.01 and (b) p0D 0.1. The number next to each line
represents the value of the ratio � /s for the corresponding result

4.2.6 Expected Time Until CM Is Lost

In Sect. 2.3, we showed that phenotype CA may temporarily
decrease in frequency even when it eventually replaces CM

(Pattern D). Here, we compute the (conditional) expected
time t1 until phenotype CA reaches fixation after the com-
pletion of biological replacement under the condition that
the fixation of CA occurs. For this purpose, we again use a
formula derived by Kimura and Ohta (1969):

t1 � �2N

�
1 � q

q

�
ln .1 � q/ ; (4.15)

where q is again the initial frequency of CA in the second
process, which is the final frequency in the first process Eq.



42 Y. Kobayashi et al.

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8 1

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8 1

Preference for archaic role models u

T
im

e 
un

ti
l 
th

e 
ex

ti
nc

ti
on

 o
f 
C

A
 (
in

 g
en

er
at

io
ns

)

0.1

0.2

0.5

0.1

0.2

0.5

a

b

Fig. 4.5 Average number of generations until CA is lost. Dots are
results of individual-based simulations (averages of 500 replications)
and lines are analytical results. Open squares, filled squares, and open
circles are results for � /sD 0.1, � /sD 0.2, and � /sD 0.5, respectively.
The population size is 1,000 in both panels. The initial frequency of
modern humans is (a) p0D 0.01 and (b) p0D 0.1. The number beside
each line represents the value of � /s for the corresponding result

(4.11). Substituting Eq. (4.11) for q in Eq. (4.15) yields the
following approximate formula:

t1 � �2N�

s

 
Y .u; p0/

�
s

1 � Y .u; p0/
�
s

!
ln Y .u; p0/ ; (4.16)

Figure 4.6 compares the results of individual-based simula-
tions and Eq. (4.16). Comparison between Figs. 4.4 and 4.6
reveals that in general the time until the fixation of CA is long
when the fixation probability of CA is low. In Fig. 4.6a, where
Np0 D 10, the simulation results largely deviate from analyt-
ical results. Thus, in this case, the analytical approximation
formula is not reliable. This is because the approximation
assumes that the initial number of modern humans Np0 is
not very small. To check the mathematical soundness of our
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Fig. 4.6 Average number of generations until CM is lost. Dots are
results of individual-based simulations (averages of 500 replications)
and lines are analytical results. Open squares, filled squares, and open
circles are results for � /sD 0.1, � /sD 0.2, and � /sD 0.5, respectively.
The population size is 1,000 in both panels. The initial frequency of
modern humans is (a) p0D 0.01 and (b) p0D 0.1. The number beside
each line represents the value of � /s for the corresponding result

approximation method, we have confirmed that this deviation
disappears for sufficiently large population size (results not
shown).

4.3 Discussion

The four patterns found in our study have important im-
plications for interpretation of archaeological records. That
is, they show that, in the presence of acculturation on the
side of the invader species, the degree of cultural continuity
depends on underlying demographic dynamics in a non-
trivial manner. Specifically, cultural continuity is likely to be
observed when the invader species is initially rare and is only
weakly favored over the indigenous species. This suggests
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that in regions where local environmental conditions were
favorable to the indigenous population rather than to Homo
sapiens culture tends to be continuous beyond the biolog-
ical replacement. For example, the fact that archaeological
records from eastern Eurasia show on average less clear
transitions than those from western parts might imply that
the spread of modern humans decelerated for some reasons
in those regions. It would be worth investigating the relation-
ship between the local environmental conditions during the
MP-UP transition and the mode of cultural continuity over
different regions to test the conclusion of the model.

Our model may also help understand the case in which
only some tool types show continuity beyond the MP-UP
transition while most of the old toolkits are replaced, as in
the case of the transition from the Zagros Mousterian to the
Early Baradostian. Namely, in our model, whether a cultural
element is inherited to the new industry is determined largely
by chance under intermediate conditions (Pattern C or D). Of
course, in reality, modern humans may have had an ability to
distinguish useful tools from less useful ones and hence they
might have copied only useful tools while ignoring the rest.
However, it is unlikely that humans can perfectly evaluate the
usefulness of a tool, and hence we believe that our conclusion
is qualitatively unchanged even if adaptive social learning is
taken into consideration.

Perhaps one of the most important claims of the present
study is that cultural continuity is not an obvious indicator
of biological continuity, but rather provides mixed infor-
mation about biological continuity and the way biological
replacement might have occurred; for example, pattern B is
observed either when extremely slow biological replacement
occurred or when biological replacement did not occur at
all. Although our study is aimed at understanding the MP-
UP transition, the model itself applies to any other invasion
events, including those within a single species (invasion of
one population into another of the same species). Thus in
a sense, the present study reveals a general methodological
limitation of using artifact remains alone as clues for in-
ferring underlying biological processes and emphasizes the
importance of using biological remains in combination.

There are several restrictive assumptions in our model,
which need to be relaxed in future work. For example, we
did not take acculturation on the side of archaic hominin
populations into account. If the Châtelperronian was created
by Neanderthals under the influence of the invading cul-
ture of Homo sapiens, we need to incorporate bidirectional
interspecific social learning to explain this case. Then, the
behavior of the model may change, but we believe that the
change would be only quantitative. More important, it is still
premature to exclude the possibility that the Châtelperronian
was made by modern humans. Given that there is no reli-
able evidence of cultural transmission from modern humans
to Neanderthals, it is possible that interspecific cultural

transmission was asymmetric. However, it would be worth
generalizing the model to incorporate bidirectional cultural
transmission.

A possible extension of the model would be to incor-
porate sexual reproduction, which may be important given
the genetic evidence of interbreeding between archaic and
modern humans (Green et al. 2010; Prüfer et al. 2014).
Under interbreeding, the indigenous culture can be transmit-
ted to Homo sapiens even through vertical transmission. If
interbreeding is the major cause of acculturation, we expect
that the direction of cultural influence coincides with the
direction of gene flow between the two species. Specifically,
if F1 hybrids of Neanderthals and modern humans were not
able to mate and/or reproduce with Neanderthals, then the
culture of Homo sapiens would have never been transmitted
to Neanderthal populations. It would be interesting in future
to estimate the rate of interspecific cultural transmission
from genetic data and examine whether the model explains
observed cultural continuity under the estimated rate.
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5Mobility and Cultural Diversity in Central-Place
Foragers: Implications for the Emergence
of Modern Human Behavior

L.S. Premo

Abstract

Although anthropologists have long recognized the importance of mobility to hunter-
gatherers, much work remains to be done on the issue of how mobility impacts levels
of cultural diversity in central-place foraging populations. Many archaeologists identify
signs of increased diversity in culture material and of increased differentiation between
regions as indicators of modern human behavior. A better understanding of how mobility
affects these variables may provide us with an additional line of evidence for explaining
the appearance of archaeological indicators of modernity. Here, I introduce a spatially
explicit agent-based model, based on Kelly’s (The foraging spectrum: diversity in hunter-
gatherer lifeways. Smithsonian Institution Press, Washington, 1995) central-place foraging
model, to address the following research question: how does length of the effective foraging
radius (re) affect the effective size of a metapopulation composed of central-place foraging
groups? The results show that mobility strategies that emphasize logistical mobility can
inhibit intergroup interaction and, in turn, increase the effective size of a subdivided
population. Considered within the larger context of Sewall Wright’s work on the effects of
isolation by distance, the findings have interesting implications not only for neutral cultural
diversity at the level of the metapopulation but also for cultural differentiation between
groups. To the extent that we can identify shifts in hominin mobility strategies in the
Paleolithic archaeological record, these theoretical findings may help us better understand
the appearance of modern behavior.
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5.1 Introduction

: : : how important is mobility, as opposed to other variables such
as population density, in explaining the rates of spread of cultural
behaviours in a population of foraging groups? (Perreault and
Brantingham 2011, p. 67)

: : : there are two ways in which a population can be regarded
as increasing. One is the obvious one of demographic growth in
a local population. The other arises when an isolated population
establishes contact with another population : : : (Shennan 2001,
p. 12)
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5.1.1 The Emergence of Modern Human
Behavior: Individual- vs.
Population-Level Explanations

Explaining the emergence of so-called modern human be-
havior presents one of anthropology’s “grand challenges”
(Kintigh et al. 2014). Most researchers agree that modern
behavior includes most if not all of the following: symbolic
thought/art, personal ornamentation, ritual burials, relatively
high rates of change in material culture, increased regional
differentiation in material culture, and increased complexity
in tool technology (e.g., Ambrose 2001; d’Errico 2003; Klein
1995; McBrearty and Brooks 2000; Mellars 1996; for a
useful review, see Nowell 2010). Many modern behaviors
are represented in the Paleolithic archaeological record in the
form of implements made of stone, bone, shell, or mineral
pigments that have survived tens of thousands to hundreds
of thousands of years. Abstract engravings on ochre (Hen-
shilwood et al. 2002, 2009) and ostrich eggshell (Ambrose
1998; Texier et al. 2010) as well as carved figurines, cave
paintings, and musical instruments are thought to serve
as evidence of symbolic thought, if not full-blown artistic
traditions. Hominin-modified shell beads serve as evidence
of personal ornamentation (Henshilwood et al. 2004; Kuhn
et al. 2001; Vanhaeren et al. 2006), just as the presence of
bone tools (Henshilwood et al. 2001; Yellen et al. 1995),
composite tools (Ambrose 2001, 2010), and special stone
tool production techniques, such as heat treatment (Brown
et al. 2009), serve as evidence for increased technological
complexity.

Even though some modern behaviors differ in degree
rather than in kind from non-modern behavior, the material
culture associated with the former is generally thought to
signal a substantial shift to a lifestyle in which symbols
and technological know-how played more significant roles
in hominin societies than ever before. Yet, it remains unclear
whether the explanation for this shift resides at the level
of the individual or at the level of the population. Was this
shift caused by a change that endowed individuals with more
sophisticated cognitive abilities, including high fidelity social
learning mechanisms and a knack for innovation? Or was it
caused by changes to the size and/or connectedness of pop-
ulations composed of hominins who had already possessed
such cognitive capabilities for hundreds, if not thousands, of
generations?

At the risk of oversimplifying a nuanced debate, two
families of potential explanations have been proposed for
the emergence of modern behaviors; one views modernity
as an individual-level property and the other views it as
an emergent property of a population. As recently as two
decades ago, it seemed as if the Paleolithic record clearly
showed a large temporal gap between the earliest appearance
of anatomically modern humans, dating to approximately

190,000 years ago (MacDougall et al. 2005), and behav-
iorally modern humans, dating to no more than 50,000 years
ago (Ambrose 1998; Klein 1992, 1995). What is more, it
was thought that this lag might hold the key to understand-
ing the emergence of modern human behavior. Given this
context, it is not surprising that one family of potential
explanations views the appearance of modern behavior as
an abrupt “cognitive revolution,” which occurred relatively
late in human evolution and resulted in a more-or-less fully
formed behavioral package (Ambrose 1998; Ambrose and
Lorenz 1990; Klein 1992, 1995).

Perhaps the best-known example of this school of thought
is Richard Klein’s (1992, 1995, 2000, 2008) hypothesis that
the apparently abrupt behavioral shift at the boundary of the
MP/UP in Europe and the MSA/LSA in Africa may have
been caused by a genetic mutation that affected the neural
architecture of the brains of anatomically modern humans.
Such a mutation is proposed to have endowed those who
carried it with the kind of cognitive abilities that archae-
ologists recognize as “modern.” These abilities presumably
include the full range of high fidelity social learning mecha-
nisms humans rely on today. Although this is undoubtedly
an interesting and bold idea, Klein has consistently stated
that it suffers from a major obstacle: “the main problem
with a neural explanation has long been that it cannot be
tested with fossils” (2008, p. 272). But on this point it is
worth noting that recent paleogenomic work by Svante Paabo
and colleagues comparing the ancient DNA recovered from
Neandertal and so-called Denisovan fossils to modern human
DNA is moving us closer to the possibility of testing the
neural hypothesis more directly and systematically than most
would have thought feasible even 15 short years ago (e.g.,
Burbano et al. 2010; Green et al. 2010; Maricic et al. 2013;
Prufer et al. 2014; Reich et al. 2010).

By contrast, a second family of potential explanations
views the appearance of modern behavior more as a gradual
evolutionary process than a sudden revolution (e.g., Foley
and Lahr 1997; McBrearty and Brooks 2000). McBrearty and
Brooks (2000) question the interpretation there was a long
gap between the earliest appearance of anatomically modern
humans and the earliest signs of modern behavior in the
archaeological record. McBrearty and Brooks suggest that
the gap more likely reflects a sampling bias of the archaeo-
logical record, and they might be right. The more closely and
systematically archaeologists study the Middle Stone Age
record, the more it appears that many of the archaeological
proxies of modern behavior, once thought to appear rather
suddenly and only after approximately 50,000 years ago,
may in fact have a much deeper and more complicated
history in Africa (Brown et al. 2009; d’Errico and Hen-
shilwood 2007; d’Errico et al. 2005; d’Errico and Stringer
2011; Foley and Lahr 1997; McBrearty and Brooks 2000;
Marean et al. 2007; Tryon and Faith 2013; Wadley 2013).
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Contrary to the predictions of the neural change hypothesis,
the Middle Stone Age record of Africa shows that artifact
classes indicative of modern behaviors—e.g., bone tools,
composite tools, personal ornaments, possibly even symbolic
art—appear in different regions in Africa at different times
prior to 50,000 years ago (and, in some cases, then disappear
again) in a piecemeal fashion rather than all at once as a fully
formed package of behaviors (d’Errico and Stringer 2011;
Foley and Lahr 1997; McBrearty and Brooks 2000; Wurz
2013).

The decidedly more gradualist and nonlinear perspective
of change espoused in Foley and Lahr’s (1997) so-called
“Mode 3 hypothesis,” for example, suggests that the emer-
gence of modern behavior may be better understood as a mo-
saic evolutionary process in a subdivided population, marked
by fits and starts in different regions at different times,
rather than as a sudden revolution. This perspective does not
necessarily restrict modern behavior to anatomically modern
humans. To wit, formal bone tools, once thought to be
associated exclusively with behaviorally modern humans, are
now known to exist outside of Africa in stratigraphic contexts
that predate the earliest known incursions of anatomically
modern humans (Soressi et al. 2013). Also note that the grad-
ualist perspective dovetails with the view of modern behavior
as an emergent property of a population of social learners
rather than a property of every individual in a population.
Thus, unlike the neural change hypothesis, there is no a
priori reason why explanations that treat modern behavior
as an emergent property of a population cannot be applied
to precocious archaeological evidence from stratigraphic
contexts that predate 50 kya as well as to ethnographically
documented cases of MSA- or MP-like technology among
recent and undeniably behaviorally modern human hunter-
gatherers.

A fundamental concept underlying most of the
population-level explanations of modern behavior is effective
population size, represented by Ne (Wright 1931). Although
those who study cultural evolution have described the
effective size of a population as the number of “teachers”
who pass their cultural variants to the next generation of
social learners (e.g., Premo and Scholnick 2011)1 or as
the number of distinct cultural variants (such as pottery
motifs) available for copying by “naïve” individuals (e.g.,
Shennan and Wilkinson 2001), neither characterization is

1Under Wright-Fisher model conditions, only approximately 63 % of
the members of the “skilled” generation serve as teachers for members
of the “naïve” generation. Thus, even under the “theoretically ideal”
conditions, the number of individuals who actually serve as “teachers”
to the next generation is lower than the effective size of the population.
Thus, in the context of cultural evolution, it is more accurate to describe
the effective population size as the number of individuals who could
potentially serve as teachers for the naïve generation rather than the
number of individuals who actually serve in that role.

entirely correct. I find Hartl and Clark’s (2007, p. 121)
general definition useful: “the effective population size
of an actual population is the number of individuals in a
theoretically ideal population having the same magnitude
of random genetic drift as the actual population.” As Hartl
and Clark (2007) further explain, a different measure of
effective population size corresponds to each of the three
ways that the magnitude of random drift can be measured.
The details concerning how and why the values provided
by the inbreeding effective size (based on the change in
probability of identity by descent), the variance effective
size (based on the change in variance in variant frequency)
and the eigenvalue effective size (based on the rate of loss
of heterozygosity) can differ are beyond the scope of the
present study (see Crow and Kimura 1970, p. 362).

Here are the four general points concerning effective
population size that are important in the context of the
present study. First, populations with larger effective sizes
are marked by higher levels of neutral diversity and by slower
rates of loss in diversity than populations with smaller ef-
fective sizes. Second, the “theoretically ideal” populations to
which Hartl and Clark refer are those that meet the assump-
tions of the Wright-Fisher model of reproduction (Fisher
1930; Wright 1931). Those assumptions are worth recount-
ing here. In its most basic form, the Wright-Fisher model of
reproduction assumes a constant and finite census population
size (N), a freely mixing population (i.e., panmixia, or ran-
dom mating), discrete non-overlapping generations, discrete
variants, and the absence of selection. Population genetic re-
search that employs the Wright-Fisher model often assumes
an infinite-allele model of mutation, which holds that each
copying error results in an entirely new allele, one that has
never existed in the population before. Despite the fact that
empirical populations violate one or more of these assump-
tions, Ne is still a useful concept. Third, the effective size of
an actual population can be less than or greater than its cen-
sus size. For example, if an empirical population of census
size N shows less diversity and faster rates of loss in diversity
than would a “theoretically ideal” population of the same
census size, the effective size of the empirical population is
less than its census size, or Ne < N. This can occur if traits are
passed via conformist biased transmission (Premo and Schol-
nick 2011). On the other hand, if an empirical population
of census size N shows greater diversity and slower rates of
loss in diversity than would a “theoretically ideal” population
of the same census size, the effective size of the empirical
population exceeds its census size, or Ne > N. This can occur
if traits are passed via vertical cultural transmission such that
each member of the “skilled” generation passes its variant to
a different member of the “naïve” generation. Local-scale un-
biased cultural transmission (Premo and Scholnick 2011) and
forms of frequency-dependent biased cultural transmission
that favor rare variants can both also result in Ne > N. Fourth,
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the clear-cut relationship between effective population size
and copy error rate on one side and cultural diversity on
the other is not expected to hold if variants are subject to
natural selection or cultural selection. I turn now to cultural
evolutionary models that include some form of selection.

A separate but related line of inquiry to the one intro-
duced above investigates the effect of population size on the
mean fitness of a population of social learners. Interesting
theoretical work by Shennan (2001) and others (Henrich
2004; Powell et al. 2009) on adaptive culturally transmitted
variants, shows that larger populations are less likely than
smaller populations to lose beneficial, fitness-enhancing in-
novations due to drift. These results are consistent with the
understanding that the strength of drift decreases relative
to the strength of selection as population size increases.
Under conditions in which there is at least a small chance
per transmission event that the fitness of the cultural variant
adopted by the naïve individual will be higher than the target
variant and where each individual’s reproductive fitness is a
function of culturally transmitted variation only, simulations
show that the equilibrium mean fitness of a population
increases nonlinearly with population size (see Shennan
2001). Of course this holds true when each offspring inherits
cultural variants only from its parent (i.e., vertical cultural
transmission of haploid traits), in which case the relative
frequency of an adaptive cultural variant increases in a
population solely due to the fact that individuals who display
it have a greater number of offspring on average than those
who do not (see Shennan’s (2001) “simple model” in which
the cultural variants are analogous to haploid genes). But
it also holds true under some conditions in the presence
of oblique, direct-biased cultural transmission (Boyd and
Richerson 1985), which has been modeled in a number
of ways (see Henrich 2004; Powell et al. 2009; Shennan
2001) (but see Vaesen (2012)). The results of these models
show that population size can affect equilibrium mean fitness
even if the offspring of the most fit parents occasionally
adopt lower-fitness variants as a result of oblique cultural
transmission.

Note that while neutral theory (Kimura 1968, 1983;
Kimura and Crow 1964; see also Neiman 1995) provides the
means to predict levels of diversity as a function of effective
population size and copy error rate, the work reviewed in
the paragraph above focuses instead on how population
size affects mean fitness and thus does not directly address
the effect of population size on the diversity of adaptive
traits. When cultural variants are marked by differential
fitness (regardless of whether this difference is imbued by
natural selection or cultural selection), population size and
copy error rate alone cannot be used to derive clear-cut
expectations of cultural diversity in the same way as under
Wright-Fisher model conditions. In short, the relationship

between population size and the diversity of adaptive variants
is more complicated than the relationship between effective
population size and the diversity of selectively neutral
variants. On one hand, holding copy error rate constant, one
would expect larger populations to generate greater diversity
if for no other reason than where there are more social
learners there are more transmission events and, thus, more
copy errors. But on the other hand, because natural selection
is more efficient in larger populations due to the fact that
the strength of drift decreases relative to the strength of
selection as population size increases, many of the additional
variants produced will not persist for long if their fitness
effects are not positive. In general, unless the underlying
fitness landscape is very “rugged” indeed, one can expect to
see less cultural diversity in the presence of selection than in
the absence of selection. In sum, unlike under Wright-Fisher
model conditions, population size and copy error rate alone
do not show a clear relationship to the diversity of culturally
transmitted traits in the presence of either natural or cultural
selection.

Questions concerning the origins of modern behavior
remain unresolved due in part to the fact that we are still
in the process of learning more about factors that affect
the level of cultural diversity, technological complexity, and
rates of cumulative cultural change. Some of the factors
that have been investigated to date include the rate of mi-
gration between groups (Powell et al. 2009), local group
extinction (Premo and Kuhn 2010), and intergroup social net-
work topology (Premo 2012a; White 2013). Other important
factors of interest, which include mobility, risk avoidance,
and resource structure, are more closely related to hunter-
gatherer behavioral ecology and optimal foraging theory than
they are to cultural evolutionary theory.

Although I certainly do not mean to imply that any single
factor was the only, or even the most important, variable for
the emergence of modern behavior, here, I use a spatially
explicit model to isolate the effects of hunter-gatherer mobil-
ity on effective population size. In the context of selectively
neutral cultural variants in a subdivided population, effective
population size is directly related to cultural diversity. The
goal of this modeling exercise is not to reproduce all of
the conditions of the Pleistocene, nor is it to investigate all
of the many nuances of hunter-gatherer mobility. Rather, I
employ modeling here as a relatively coarse-grained heuristic
tool with the hope that what it can teach us about how
residential and logistical mobility affect effective population
size (and, by extension, cultural evolution of selectively
neutral traits) will improve the research questions we ask
of the Paleolithic record. Before describing the model and
discussing my results, I use the rest of the introduction to
review previous research on the effects of mobility on hunter-
gatherer technology.
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5.1.2 Hunter-Gatherer Mobility and Cultural
Diversity

Anthropologists have long recognized how important mobil-
ity is to hunter-gatherers. But it was not until the 1960s and
1970s that there was sustained effort to build a theory of
hunter-gatherer mobility. Binford’s (1980) “Willow smoke
and dogs’ tails” is surely among the most influential papers
on the topic in part because it makes a useful distinction
between residential and logistical mobility. Residential mo-
bility refers to the movement of all of the members of the
group from one residential base location to another. Logisti-
cal mobility refers to the movement of some of the group’s
members on task-specific forays between a resource and the
residential base. While all hunter-gatherer societies include
a mix of logistical mobility and residential mobility, one
may be emphasized over the other if doing so improves net
foraging returns. Indeed, Binford viewed the particular mix
of residential and logistical mobility displayed by a hunter-
gatherer group as a useful way to place it along a contin-
uum of adaptive foraging strategies. According to Binford’s
terminology, hunter-gatherers who emphasize logistical over
residential mobility are located closer to the “collector”
end of the spectrum, and those who emphasize residential
over logistical mobility are located closer to the “forager”
end of the spectrum. Roughly speaking, “collectors” move
resources to people while “foragers” move people to re-
sources. Binford (1980) argues that residential mobility and
logistical mobility are interdependent such that a reduction in
residential mobility causes an increase in logistical mobility,
just as a reduction in logistical mobility causes an increase in
residential mobility.

The goal of Kelly’s (1983, p. 277) exploratory cross-
cultural study of hunter-gatherer mobility is to “initiate
development of a theory of hunter-gatherer mobility strate-
gies.” Kelly defines measures of residential mobility (number
of residential moves per year and average distance per
residential move) and logistical mobility (one-way distance
covered during logistical forays). He uses ethnographic data
to explore relationships between mobility and environmental
factors, such as effective temperature (ET), primary produc-
tion, and primary biomass. He uncovers a number of inter-
esting relationships between resource structure and hunter-
gatherer mobility, some of which are pertinent to the present
study. For instance, in the absence of storage, the number
of residential moves per year increases and the average
distance per residential move decreases as resource accessi-
bility decreases. Hunter-gatherers who rely heavily on fauna
can afford to pay the higher energetic costs associated with
“commuting” to and from logistical locations farther from
the residential base than can hunter-gatherers who rely more
heavily on plants. Finally, hunter-gatherers who rely heavily
on fauna and live in areas where resource accessibility is

low (i.e., habitats marked by high primary biomass and low
ET) employ very high residential mobility during the winter
unless they have access to resources that can be stored in
bulk, like salmon.

These empirical relationships inform Kelly’s (1990, 1991,
1995) “central-place foraging model,” which employs the
concept of the effective foraging radius, re. Effective for-
aging radius is the distance at which the daily net return
rate of a logistical foray (the gross caloric return minus the
costs of commuting round-trip between the residential base
and the logistical camp) equals the minimum daily caloric
requirement of the forager, which includes the caloric needs
of the individuals he or she is supporting. Because re varies
as a function of the return rate of available resources and the
forager’s daily caloric requirement (see Kelly 1991, p. 142,
1995, p. 134), effective foraging radius is not the same for
all hunter-gatherer societies. In fact, the effective foraging
radius is likely to vary through time and over space even
within a single society. According to the assumptions of
Kelly’s simple central-place foraging model, it is optimal for
hunter-gatherers to move the residential base a distance of 2re

rather than to conduct logistical forays targeting resources
that are located at a distance greater than re from the resi-
dential base. While it may be possible for hunter-gatherers
to increase logistical and residential mobility simultaneously
under special conditions—Kelly (1995) submits equestrian
bison hunters of North America as a possible example of
this—residential and logistical mobility are interdependent
in the central-place foraging model. Echoing Binford (1980),
any decrease to a forager’s re (decreased logistical mobility)
causes an increase in the frequency of residential moves, just
as any increase to re (increased logistical mobility) causes
a decrease in the frequency of residential moves. Kelly’s
central-place foraging model turns out to be as useful as it
is elegant. Because it incorporates both residential and lo-
gistical mobility, one can represent the full forager-collector
continuum, at least in an idealized form where logistical and
residential mobility are interdependent, by varying a single
parameter: re. Lower values of re represent more forager-like
strategies, and higher values of re represent more collector-
like strategies.

Although Binford (1980) and Kelly (1983) did not di-
rectly address the issue of how hunter-gatherer mobility
might affect technological complexity or levels of cultural
diversity—variables of special interest for the study of the
emergence of modern behavior—other studies soon would.
In an interesting paper on how time budgeting might affect
hunter-gatherer toolkits, Torrence (1983, p. 13) speculates
that the “high mobility” of hunter-gatherer groups would
place a limit on the “gross number of artefacts which can be
carried between residences.” Holding constant the number of
tasks that a group needs to perform, it stands to reason that
switching to a smaller and more generalized toolkit provides
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one adaptive response to the transport limits imposed by
increased residential mobility.

Clearly inspired by Torrence’s interesting speculation,
Shott (1986) investigates the effects of mobility on hunter-
gatherer technology. In particular, he examines relationships
between Oswalt’s (1976) measures of toolkit diversity (the
number of different subsistant2 classes per toolkit, which
is actually a measure of tool class richness) and toolkit
versatility (or mean complexity, calculated as total number
of technounits3 divided by the number of subsistant classes)
and Kelly’s (1983) measures of residential and logistical
mobility in 14 ethnographically documented hunter-gatherer
groups. Shott (1986) finds a statistically significant negative
relationship between the frequency of residential moves and
the number of subsistants per toolkit as well as a signif-
icant positive relationship between the length of stays in
winter/wet-season camps and the number of subsistants per
toolkit. Both findings are consistent with Torrence’s (1983)
hypothesis that an adaptive strategy for dealing with in-
creased residential mobility entails decreasing the number of
tools (presumably, in this case, by decreasing the number of
subsistant classes) per toolkit. However, Shott does not find a
significant relationship between the total distance covered by
residential moves per year and the number of subsistants per
toolkit. Nor is there a significant relationship between toolkit
versatility, as measured by mean complexity, and either of
Kelly’s measures of residential mobility. Thus, Shott does
not find evidence that increased residential mobility corre-
sponds with more generalized toolkits. Territory size, effec-
tive temperature, and net primary productivity each show no
significant relationship to either the number of subsistants
per toolkit or to mean complexity. In light of the results,
Shott (1986, p. 34) is justified in stating: “Relationships such
as those involving mobility and technology are likely to be
complex and to be complicated by other factors (Hitchcock
1982, p. 372). Under these circumstances, simple and clear
relationships should be the exception rather than the rule.”

A string of more recent studies use data culled largely
from Oswalt (1976) and Binford (2001) to test a series
of alternative hypotheses for explaining levels of diversity
and complexity in hunter-gatherer toolkits. Collard et al.
(2005) make use of Oswalt’s (1976) technological data on
the number of subsistants per toolkit (as mentioned above,
a measure of richness), the average number of technounits
per tool class (a measure of complexity), the total number
of subsistant technounits per toolkit (another measure of

2“Subsistant” is Oswalt’s (1976) term for any tool used to procure food.
An interesting empirical question is to what extent tools used to procure
food are subject to natural selection and/or cultural selection.
3“Technounit” is Oswalt’s (1976) term for a distinct technological
component of a tool (e.g., the technounits of a projectile would include
the shaft, hafting, point, and so on).

complexity), and proxy data from Binford (2001) to in-
vestigate four factors possibly responsible for variation in
subsistence-related toolkits used by recent hunter-gatherers.
The four factors include the structure of food resources, risk
of failure to procure resources (effective temperature and net
above-ground productivity), residential mobility (number of
residential moves per year and distance traveled annually
during residential moves), and population size. Forward
stepwise linear multiple regressions show that both of the
proxies for risk of resource failure were the only significant
predictors of the measures of toolkit diversity and complex-
ity. Although Collard et al. (2005) caution against interpret-
ing the results as unqualified support for the risk-buffering
hypothesis (Torrence 1989, 2000), their study suggests that
residential mobility, resource structure, and population size
do not serve as useful predictors of subsistant richness and
complexity in Oswalt’s sample of ethnographically known
hunter-gatherers.

Read (2008) conducts a similar set of tests on a slightly
different data set, one that includes three additional techno-
logical variables (total number of complex subsistant types,
total number of complex subsistants, and total number of
complex technounits) and an additional proxy for risk of
resource failure (length of growing season). Risk of resource
failure is thought to decrease as length of growing season
increases. In contrast to Collard et al. (2005), Read’s results
suggest that the structure of subsistence-related toolkits is
best explained by an interaction between length of growing
season and number of residential moves per year. Although
the results of both studies suggest that risk-reduction plays
an important role in explaining variation in toolkit structure,
Read’s regressions find an additional significant relation-
ship between toolkit structure and residential mobility. It is
worth noting that subsequent studies by Collard et al. (2011,
2013a, b), which apply similar techniques to different hunter-
gatherer samples—and in the case of Collard et al. (2013a),
to different technological data as well—fail to find a similar
effect of residential mobility on toolkit richness.4

A recent study by Perreault and Brantingham (2011) is
more closely aligned with the goals of the present paper, al-
though their model and mine are very different. Perreault and

4Collard et al. (2013a) do not find an effect of distance moved per year
during residential moves on their more general measure of “techno-
logical richness.” But, unlike the other studies, Collard et al. (2013a)
does not include proxy data for number of residential moves per year.
Collard et al. (2013b) find a significant negative effect of number of
residential moves on the average number of technounits per tool class
in their North American sample and a significant negative effect of
total distance moved per year during residential moves on the average
number of technounits per tool class in their global sample. They find
no effect of mobility on number of subsistants per toolkit in any of their
samples.
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Brantingham employ a spatially explicit model to investigate
how the number of “steps” in a Lévy walk affects the average
time elapsed before two foragers happen upon each other
in a featureless 2-dimensional space. In their study, each
simulation begins with two foragers located at their respec-
tive residential bases, which are separated by 10 arbitrary
units of space. Both foragers are characterized by the same
“number of foraging moves,” n, a parameter that designates
how many “steps” each will conduct on its random walk
before returning to its starting location (i.e., residential base).
The random walk follows a Lévy flight, where the length of
each step is defined by the Lévy parameter, 	 D 2. If after
n steps the foragers do not “meet” (i.e., come to inhabit
coordinates within one unit of each other), then they return
to their bases and start new forays. Because both of the
foragers are characterized by the same n, they begin new
forays 10 units apart from one another every n time steps.
Perreault and Brantingham’s (2011, Fig. 7) central finding
is a non-monotonic relationship between n and the mean
time required for an interaction to occur between the two
foragers. Mean interaction time starts relatively high with
low n, decreases as n approaches half of the starting distance
between the home bases (where it reaches its minimum), and
then increases again as n increases. This finding is potentially
of general interest because higher interaction rates between
foraging groups have implications for the effective size of the
population and therefore for the population-level diversity
of selectively neutral culturally transmitted traits, as shown
below.

5.1.3 Summary

Binford introduces a very useful, if highly stylized, way
to think about hunter-gatherer mobility as an adaptive mix
of residential and logistical mobility. Kelly’s central-place
foraging model provides an elegant way to represent the
continuum of mobility strategies along the forager-collector
spectrum by varying just one parameter: effective foraging
radius, re. A series of empirical tests of the effect of mobility
on toolkit diversity yield mixed results, with some finding
that mobility plays an insignificant role in explaining the
richness of subsistant tool classes in recent hunter-gatherer
toolkits. The interesting study by Perreault and Brantingham
provides a step in the right direction even though their model
does not fully represent the relationship between residential
and logistical mobility. By any measure, there is still much
work to be done on the issue of how mobility impacts cultural
diversity in hunter-gatherers. Given that many researchers
identify increased total cultural diversity and increased cul-
tural differentiation between regions as indicators of modern
behavior, a better understanding of how mobility affects
these variables might provide us with an additional line of

evidence for explaining the appearance of archaeological
indicators of modernity during the Paleolithic.

In the next section, I describe a spatially explicit agent-
based model and my experimental design. The purpose of the
model is to address the following question: how does length
of the effective foraging radius (re) affect the effective size of
a subdivided population composed of central-place foraging
groups? The results show that increased logistical mobility
inhibits interaction among groups of central-place foragers,
increasing the effective size of the metapopulation. When
considered within the context of other findings regarding the
effects of isolation by distance, the results also have impor-
tant implications for differentiation between groups and, by
extension, perhaps between regional archaeological assem-
blages. To the extent that we can identify shifts in hunter-
gatherer mobility strategies in the Paleolithic archaeological
record, these findings may help us better understand and
predict (or perhaps “retrodict”) the appearance of modern
behavior as an emergent property of a population.

5.2 TheModel

The model described in this section was programmed and
run in NetLogo 5.0.2 (Wilensky 1999). The source code and
complete model description, following the ODD protocol for
agent-based models (Grimm et al. 2006), are available upon
request.

Consider a population of N agents dispersed randomly
over a 250 cells � 250 cells lattice wrapped around a torus
to avoid edge effects. Each agent represents a small self-
sufficient group of central-place foragers. The population of
N groups represents a spatially explicit subdivided popula-
tion, or metapopulation. It is assumed that all groups are
of the same size and consume resources at the same rate.
The metapopulation of N groups is constant; foraging groups
cannot suffer “local extinction,” reproduce (or fission), or
join together during the course of a simulation run. Each cell
of the grid may contain a resource that provides enough food
to support one group for one time step. Resource density is
given by the parameter d. If d D 1, then every cell contains
food. If d D 0.5, then only half of the cells (chosen randomly)
contain food resources. Foragers deplete resources. When an
agent consumes food, the food does not reappear in its cell
until 800 time steps have passed. Thus, the resource in this
model represents a slowly regenerating source of calories and
nutrients. The rate of resource regeneration and N are held
constant over all simulations.

Foraging decisions, such as how long to remain at a
residential base and how far to move to a new residential
base, depend upon the logic of Kelly’s (1995) central-place
foraging model and, more specifically, on the parameter re.
As their name implies, central-place foragers in this model
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conduct logistical forays from a “central-place,” or residen-
tial base, to procure food from the landscape. Each group
is allowed to consume only those resources located within
the effective foraging radius, re, of its current residential
base. Groups have no information about the state of resources
outside of their current foraging area except for the fact that
they left the resources depleted in their previous foraging
area. Just as in Kelly’s mathematical model, lower values
of re correspond to strategies that emphasize residential
mobility and higher values of re correspond to strategies that
emphasize logistical mobility. All forager groups have the
same effective foraging radius during each simulation run.
Effective foraging radius serves as the primary experimental
parameter in this study. Data are collected to investigate the
effect of re on the effective size of the metapopulation of
N D 25 groups under a range of conditions.

As in Binford (1980), logistical mobility refers to the
movement of people between a residential base and a logisti-
cal camp. Each time step, each group randomly chooses a cell
to serve as its logistical camp from among the set of cells that
satisfy two criteria: (1) the cell is located within a distance
re of the agent’s residential base and (2) the cell currently
contains food. To represent the logistical foray of some of the
group’s members, the agent moves to the logistical camp and
consumes the resource before moving back to the residential
base. In the event that none of the cells within the foraging
area contains food, then the group relocates its residential
base. To avoid overlap between the new foraging area and re-
cently depleted areas, residential camps are moved a distance
of 2re C 1 in a heading defined by adding a value chosen
randomly from a uniform distribution bound by �45 and 45
to the group’s previous heading. In other words, residential
mobility follows a correlated random walk with a step length
of 2re C 1. To better isolate the effect of re on effective
population size, I assume that all of the other needs that might
require mobility (travel for water or for raw materials such as
stone or firewood, or to share information with other groups)
are embedded within logistical and residential mobility. Also
note that a group cannot move logistically and residentially
during the course of a single time step. Each forager moves
its residential base or conducts a logistical foray during each
time step, but it cannot do both. In the event that a residential
move places a group in a foraging area that is completely
devoid of food, that group will make another residential
move during the subsequent time step.

For the sake of simplicity and because within-group
diversity was not a central focus of this study, it is assumed
that all of the members of a group display the same variant
of a selectively neutral cultural trait. Different variants of the
selectively neutral trait are represented by integers. Variants
can be transmitted between groups that find themselves
located within each other’s interaction radius, ri. In cases
where ego is the only group within its interaction radius,

ego retains the variant it displayed in the previous time step
(or, in other words, the members of ego learn from their
“former” selves). When two or more groups (including ego)
are located within ri of ego, ego chooses one of them at
random to serve as its teacher group for the current time step.
Ego adopts the variant that the teacher group displayed in
the previous time step. Because ego can potentially choose
itself to serve as its teacher group in all cases, it is possible
for ego to adopt the same variant that it displayed in the
previous time step even when other groups are located within
ego’s interaction radius. The absence of horizontal cultural
transmission between groups of the same “generation” is
consistent with the Wright-Fisher model assumption that
generations are discrete and non-overlapping. Note that in
this model, cultural transmission does not include copying
error; all variants are copied with perfect fidelity.

There are a number of ways in which groups may come
into contact with each other while foraging for food. Perhaps
the most obvious type of interaction occurs when two or
more residential bases are separated by a distance less than or
equal to ri. It seems unlikely that another group’s residential
base camp, even a relatively small and ephemeral one,
would go unnoticed for long at relatively close range. Small
dwellings, cooking fires, or perhaps even the sound of tod-
dlers at play could betray a group’s location at a distance of
several kilometers or more, depending on the terrain and vis-
ibility. But it is also possible for foragers of different groups
to come into contact while out on logistical forays, or on
what Tostevin (2007) calls “the pathways of the landscape.”
Although it may be more difficult to detect a logistical camp
than a residential base, cultural transmission can occur as
a result of interactions between foragers who meet each
other at the ends of their logistical forays. Finally, logistical
forays may bring a group into contact with another group’s
residential base, just as a residential move might situate the
new base in close proximity to another group’s logistical
camp. The model parameter, interaction type, regulates the
kinds of interactions that can result in cultural transmission
between groups. The more restrictive option allows cultural
transmission to occur between residential bases only. The
less restrictive option allows cultural transmission to occur
between residential bases, between logistical camps, and
between residential bases and logistical camps.

At the start of each simulation run, d � 250 � 250 cells are
seeded with food resources. So as not to start foragers on a
completely pristine landscape at the start of the simulation,
N � 800 (the regeneration rate) of the d � 250 � 250 cells
seeded with food are chosen at random, and each value in the
set [1,2,3, : : : ,800] is assigned to N cells chosen at random
from this subset of N � 800 cells. This value corresponds
to the number of time steps that must pass before the food
resource reappears in the cell. Next, each group is placed on
a randomly chosen cell and initialized with a unique cultural
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variant. Thus, the richness of cultural variants (k) displayed
by the metapopulation of foraging groups is equal to N (i.e.,
k D N D 25) at the start of each simulation.

During each iteration, or time step, of the simulation,
the following methods occur in the following order. First,
groups forage. This involves either a logistical foray to a
cell within the group’s foraging area or a residential move
to a cell outside of its foraging area, but not both. Affected
cells are updated to reflect the fact that groups consume the
resources present at logistical camps. Second, each group
builds a list of potential teacher groups for the current time
step. Under the more restrictive setting of interaction type,
ego’s potential teacher list includes the subset of groups
whose residential bases are located within ri of ego’s resi-
dential base (including ego). Under the less restrictive setting
of interaction type, the potential teacher list includes the
subset of foragers whose residential bases or logistical camps
are located within ri of ego’s residential base or logistical
camp (again, including ego). Third, each forager randomly
chooses a group from its list of potential teacher groups
and then adopts the cultural variant (i.e., the integer) that
the chosen group displayed in the previous time step. This
represents cultural transmission between discrete and non-
overlapping “generations” of social learners. Each time step
can be thought of as the time required for every group in
the population to undergo social learning once (and only
once) rather than as an actual human generation of 20 years.
Fourth, food resources that have been absent for 800 time
steps regenerate themselves. Fifth, the richness of cultural
variants, k, is calculated for the metapopulation. If k D 1,
then data are collected and the simulation ends. If k > 1, then
the methods described in this paragraph are iterated again.
Fifty unique simulations were executed for each possible
combination of parameter values (see Table 5.1), resulting
in a total of 1,800 runs.

The purpose of the model is to address the following
research question: how does length of the effective foraging
radius (re) affect the effective size of a subdivided population
of central-place foragers? Effective foraging radius is the
experimental parameter (or independent variable) in the
study. Mean time to fixation (t), which serves as a proxy

Table 5.1 Parameter values used in this study

Parameter Value(s)

Number of groups, N 25

Resource regeneration rate 800

Resource density, d 0.5, 0.75, 1

Interaction radius, ri 5, 10

Effective foraging radius, re 5, 10, 15

Interaction type Residential bases only, all
combinations of residential bases and
logistical camps

for effective population size (see below), is the dependent
variable. In the context of my model, time to fixation is the
number of time steps that elapse before one of the selectively
neutral cultural variants present at the start of each simulation
(i.e., when k D N) becomes “fixed” in the population, such
that all N groups display the same variant (k D 1). Because
drift is stronger when Ne is small, populations with smaller
effective sizes require less time for one of the selectively
neutral variants to evolve to fixation. Populations with a
larger effective size require more time for a single variant to
become fixed because drift is weaker when Ne is larger. Thus,
the rate of loss of diversity in neutral variants is an inverse
function of effective population size under “theoretically
ideal” conditions.

Kimura and Ohta (1969) show that the average number of
generations required for a single selectively neutral mutant
gene to reach fixation in a diploid Wright-Fisher population
is approximately 4Ne. In the case of haploid genes (and
cultural variants as they are modeled here), the mean time
to fixation is approximately twice the effective size of the
population, or 2Ne. The remainder of the present paper deals
only with the haploid case. Kimura and Ohta (1969, p. 767,
Fig. 1) point out that, while their analytical prediction based
on effective population size slightly overestimates the actual
mean time to fixation, the discrepancy is small. To conduct an
independent check of my agent-based model, I collected data
from 50 simulations in which cultural variants are passed
via global-scale unbiased cultural transmission. Although
the data collected from simulations in which Ne D N D 25
(t D 45.88, standard deviation D 24.80) did not significantly
differ from the value provided by Kimura and Ohta’s an-
alytical estimate (one-sample Wilcoxon test5: V D 443.5,
p D 0.06), a t of 45.88 does provide a sense of the degree
to which 2Ne “overestimates” the actual time to fixation in
the haploid case.

5.3 Results

To assess how hunter-gatherer mobility strategies along Bin-
ford’s forager-collector continuum affect the effective size
of a spatially explicit subdivided population of central-place
foragers I use the model described above to investigate the
effect of re on mean time to fixation (where t=2 is my proxy
for Ne) while holding N constant. The central question is
whether re has a significant effect on mean time to fixation
and, thus, effective population size, while controlling for N,
d, and ri, where ri � 2re. Finding a significant effect of re

5I employ non-parametric tests throughout this paper because in most
cases, though not all, a Shapiro-Wilk test shows that my data are not
distributed normally. For what it is worth, in all cases the parametric
test results lead to qualitatively identical conclusions.
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Fig. 5.1 The effect of re on time
to fixation when cultural
transmission is restricted to
interactions between residential
bases. Each notched boxplot
summarizes data collected from
50 simulations. Different values
of d are distinguished by color
(white: dD 0.5; light gray:
dD 0.75; dark gray: dD 1). ri is
interaction radius (left: riD 5,
right: riD 10). Note that the
scale of the y-axis differs
between panels. See Table 5.2 for
Mann-Whitney test results

on t while holding all other variables constant suggests that
change in mobility, alone, can impact the effective size of
the metapopulation, with interesting implications for total
cultural diversity and regional differentiation in selectively
neutral variants.

5.3.1 Time to Fixation

Figure 5.1 presents data collected from simulations in which
cultural transmission can occur between residential bases
only. I vary ri and d to investigate whether the scale of the
interaction sphere and the density of food resources influence
the effect of re on time to fixation. Violating the assumption
of panmixia, by limiting intergroup cultural transmission to
encounters that occur while foraging, drastically increases
the mean time to fixation even though the number of groups
is held constant at N D 25. For instance, the shortest mean
time to fixation observed (when d D 0.5, ri D 10, and re D 5)
provides an Ne estimate that is 113 times larger than the
actual N. The most extreme case (d D 1, ri D 5, and re D 15)
yields a mean time to fixation of 350,114, which equates to
an Ne estimate that is 7,000 times larger than the actual N.
This finding is consistent with previous work that shows that
in the absence of selection the effective size of a subdivided
population can far exceed its census size as transmission
between groups is reduced (Hartl and Clark 2007, p.127;
Wakeley 1999, 2000).

More importantly to the present research question, the
results of pair-wise Mann-Whitney tests (corrected for mul-
tiple tests while holding ri and d constant) show that re has
a significant and relatively large effect on time to fixation
(see p and PS values in Table 5.2). The relationship between
re and time to fixation is monotonic and positive. The
magnitude of the positive effect of re on time to fixation is
reduced under greater ri, although here it remains statistically
significant in all cases (Fig. 5.1, Table 5.2). Under these

conditions, there are two ways to decrease the strength of
the positive relationship between residential mobility and
intergroup interaction and, thus, to dampen the effect of re on
mean time to fixation (and, thus, Ne). The first is to allow for
residential bases to interact over a greater distance, which can
be accomplished by increasing the interaction radius from
5 to 10, as just shown. The second is to decrease resource
density, d.

As it turns out, there is a third way to dampen the effect
of re on mean time to fixation, and that is to allow cultural
transmission to take place between residential bases, between
logistical camps, and between residential bases and logistical
camps. Figure 5.2 presents data collected from simulations
under these less restrictive conditions. As before, I vary ri

and d to investigate whether the scale of the interaction
sphere and resource density influence the effect of re on mean
time to fixation. As before, the results reflect the fact that
making cultural transmission spatially explicit increases the
effective size of the population (t=2 >> N in all cases).
However, unlike before, re has a significant effect on time to
fixation in only one of nine cases when ri D 5 and in just five
of nine cases when ri D 10 (Table 5.3), and this is explored
further in the next section. Nevertheless, the results show that
even under less restrictive conditions there is no evidence
that increasing re (i.e., emphasizing logistical mobility over
residential mobility) significantly reduces t under any of the
parameter value combinations investigated here.

5.3.2 Number of Variants Remaining
and Teachers Gained per Unit Time

I re-ran all of the simulations for a fixed number of time steps
(in this case, 2,000) to get a better sense of the rate of loss in
diversity as well as the rate that novel teachers are gained per
group while controlling for time. If the effect of re on time
to fixation is explained by the fact that increasing logistical
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Fig. 5.2 The effect of re on time
to fixation when cultural
transmission is allowed to occur
between residential bases,
between logistical camps, and
between residential bases and
logistical camps. Each notched
boxplot summarizes data
collected from 50 simulations.
Different values of d are
distinguished by color (white:
dD 0.5; light gray: dD 0.75;
dark gray: dD 1). ri is
interaction radius (left: riD 5,
right: riD 10). See Table 5.3 for
Mann-Whitney test results

mobility restricts how widely groups interact with each other,
then one should expect (1) a positive relationship between re

and number of traits in the population after 2,000 time steps
and (2) a negative relationship between re and mean number
of different teachers per group after 2,000 time steps. Both
relationships should be stronger for cases in which re has a
stronger effect on time to fixation (Tables 5.2 and 5.3).

Figure 5.3 presents data collected from simulations in
which cultural transmission can occur between residential
bases only. I vary ri and d to investigate whether the scale
of the interaction sphere and resource density influence the
effect of re on the variables of interest. The top row presents
the number of unique variants present in the population after
2,000 times steps. Larger values are indicative of larger
effective population sizes because they result from slower
rates of loss (i.e., weaker drift). The bottom row presents
the mean number of unique teachers (not including ego)
per group after 2,000 time steps. In this case, larger values
are indicative of a more freely mixing metapopulation and,
thus, a smaller effective population size. Figure 5.3 shows a
positive relationship between re and the number of variants
remaining after 2,000 times steps and a negative relationship
between re and mean number of teachers per group. The
results of the Mann-Whitney tests show that these effects
are significant and relatively large in all cases (Table 5.4).
These results are consistent with the explanation that, when
intergroup interaction is allowed to occur between residential
bases only, increased logistical mobility increases the effec-
tive size of a metapopulation by decreasing the number of
groups with which each group interacts.

Figure 5.4 presents data collected from simulations in
which cultural transmission is allowed to take place between
residential bases, between logistical camps, and between res-
idential bases and logistical camps. It is under this condition
that re does not have a significant effect on time to fixation in
some cases (Table 5.3). I vary ri and d as before, and again
collect data after just 2,000 time steps in each simulation.

The relationship between re and mean number of teachers
per group is negative and significant in all cases, although
the effect size is not as large as in the case where cultural
transmission occurs between residential bases only (compare
Figs. 5.3 and 5.4 or Tables 5.4 and 5.5). The weaker effect of
re on mean number of teachers per group explains both why
we do not always see a significant effect of re on number of
traits remaining after 2,000 time steps (Table 5.5) and why re

does not always have a significant effect on time to fixation
(Table 5.3) when cultural transmission is allowed to occur
between any combination of residential bases and logistical
camps.

5.4 Discussion

The results show that when slowly regenerating food re-
sources are distributed randomly and residential moves occur
in a correlated random walk, increased logistical mobility
(or reduced residential mobility) can increase the mean time
required for a selectively neutral trait to become fixed in a
spatially explicit metapopulation composed of central-place
foraging groups. But why does a longer effective forag-
ing radius often increase the effective size of the spatially
explicit subdivided population, and what does this finding
mean for explaining modern behavior as a population-level
property?

5.4.1 HowDoes Increased Logistical Mobility
Increase the Effective Size
of a Subdivided Population?

First, recall that the Wright-Fisher model assumes panmixia,
or a freely mixing population. In the context of our cultural
evolutionary model, a freely mixing population is one in
which every group is equally likely to learn from any other
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Fig. 5.3 The effect of re on
number of variants (k) (top row)
and mean number of teachers per
group (bottom row) after 2,000
time steps when cultural
transmission is restricted to
interactions between residential
bases. Each notched boxplot
summarizes data collected from
50 simulations. Different values
of d are distinguished by color
(white: dD 0.5; light gray:
dD 0.75; dark gray: dD 1). ri is
interaction radius (left column:
riD 5, right column: riD 10).
See Table 5.4 for Mann-Whitney
test results

group including itself. Under such “theoretically ideal” con-
ditions, N D Ne and mean time to fixation for haploid traits
is closely approximated by 2Ne, as shown above. Second,
consider that the opposite of a freely mixing population is
a “non-mixing” (or asexual) population. In the context of
cultural evolution, a non-mixing population of social learners
can be represented by the vertical cultural transmission of
haploid variants. The mean time to fixation of a popula-
tion initialized with k D N and in which each experienced
individual passes its variant vertically to a different naïve
individual (its cultural “offspring,” so to speak) is infinity
for N > 1. Obviously, the mechanism of cultural transmission
can drastically affect a population’s effective size. See Aoki
et al. (2011) for a slightly different demonstration—using
the Moran model rather than a Wright-Fisher model—of this
same general point.

Now, if we return to the “theoretically ideal” case, mobil-
ity becomes a more important factor in determining the rate
at which foraging groups in a spatially explicit population
interact with each other as we gradually relax the assumption
of panmixia by decreasing the length of the interaction
radius. In other words, when ri is relatively low, the mean
number of different groups with which each group interacts
per unit time is determined in large part by residential
mobility. Indeed, in the simple central-place foraging model
presented here, foraging groups that emphasize residential

mobility (low re) move their residential bases significantly
more often (Tables 5.2 and 5.3) and thus explore a larger
proportion of the total landscape per unit time than those
that emphasize logistical mobility and, as a result, repeatedly
trod over the same immediate surroundings as they make
longer logistical trips out from their long-term residential
base. This is true despite the fact that each group consumes
the same amount of resources over the course of a simulation,
regardless of re. Naturally, seeing a greater proportion of
the total landscape per unit time increases the likelihood
of coming into contact with a greater number of groups.
It is easiest to envision why this holds true when cultural
transmission occurs between residential bases only. But the
results presented in Tables 5.3 and 5.5 show that it also holds
true when cultural transmission is less restricted (although
the effect is not always large enough in this case to signif-
icantly affect time to fixation). In general, in the presence
of local spheres of intergroup interaction, a foraging strategy
that emphasizes residential mobility yields a metapopulation
that “mixes” (or interacts) more freely while a foraging
strategy that emphasizes logistical mobility results in a more
viscous metapopulation (see also Premo 2012b). I turn now
to the implications of this finding for selectively neutral
cultural diversity at the level of the metapopulation and
for cultural differentiation between groups in a subdivided
population.
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Fig. 5.4 The effect of re on
number of variants (k) (top row)
and mean number of teachers per
group (bottom row) after 2,000
time steps when cultural
transmission is allowed to occur
between residential bases,
between logistical camps, and
between residential bases and
logistical camps. Each notched
boxplot summarizes data
collected from 50 simulations.
Different values of d are
distinguished by color (white:
dD 0.5; light gray: dD 0.75;
dark gray: dD 1). ri is interaction
radius (left column: riD 5, right
column: riD 10). See Table 5.5
for Mann-Whitney test results

5.4.2 What Are the Implications for Our
Understanding of the Emergence
of Modern Behavior?

My results show that a spatially explicit metapopulation
of central-place foraging groups that emphasize logistical
mobility will often display a larger effective population
size than an equivalently sized metapopulation composed
of central-place foragers who emphasize residential mobil-
ity. But Paleolithic archaeologists do not commonly study
culture material at the level of the metapopulation of all
Pleistocene hominin groups. They more commonly study
material culture excavated from a single locality, such as a
cave site, or collected from within the regional boundaries of
a watershed or a current nation state. In short, the data that
Paleolithic archaeologists consider are usually much closer
in spatial scale to the scale of one to a few groups rather than
to the entire metapopulation. The issue of scale is especially
important here, because decreased intergroup interaction
decreases the effective population size of each group even
though it increases the effective size of the metapopulation.
Thus, it is imperative to discuss how mobility affects diver-
sity not only at the level of the metapopulation, but also at
the level of the groups or regions that archaeologists more
commonly study.

A discussion of the effects of mobility on differentiation
between groups requires a return to theoretical population
genetics. Sewall Wright (1943) shows that decreased inter-
group interaction (in his case, gene flow) not only increases
the effective size of a subdivided population (as shown above
for the case of cultural transmission) but also increases the
level of differentiation between groups while at the same
time increasing the strength of drift within them (not shown
above). In fact, the work of Wright and others shows that
isolation by distance increases diversity at the level of the
metapopulation precisely because it increases the diversity
explained by differences between groups more than it re-
duces the diversity found within groups.

Wright’s findings on effects of isolation by distance in a
stepping stone model of population structure have interesting
implications for understanding how shifts in Pleistocene ho-
minin mobility might have affected the appearance of mod-
ern behavior at a scale that is more amenable to archaeologi-
cal inquiry. As shown above, a shift to a mobility strategy that
emphasizes logistical mobility can increase cultural diversity
at the level of the metapopulation because it reduces inter-
group cultural transmission. Wright’s work shows that one
should also expect increased differentiation in cultural vari-
ants between groups when intergroup interaction is reduced.
Stated more generally, any process that decreases intergroup
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cultural transmission in a subdivided population will have
the two-pronged effect of increasing neutral cultural diversity
at the level of the metapopulation and increasing neutral
cultural differentiation between groups. Thus, to the extent
that greater regional diversification in culturally transmitted
variants serves as an indicator of modern behavior, perhaps
it, too, might be explained in part by increased isolation by
distance due to a greater emphasis on logistical mobility.

5.5 Conclusion

The results reported here show that, holding all else constant,
a shift to a more collector-like foraging strategy yields
metapopulations that are characterized by increased isola-
tion between central-place foraging groups and larger ef-
fective population sizes. Larger effective population sizes
support greater neutral cultural diversity at the level of the
metapopulation. Considered within the context of Wright’s
work on isolation by distance, the results also suggest that
an emphasis on logistical mobility would result in greater
cultural differentiation between groups within a spatially ex-
plicit subdivided population. Archaeologists have generally
recognized greater overall diversity and increased regional
differentiation in culture material as signals of modern be-
havior. However, as is often the case, this finding raises
more questions than it answers. To what extent are signs
of increased cultural differentiation between regions during
the Paleolithic due to a shift in mobility rather than to some
form(s) of biased cultural transmission or to different natural
selective pressures in different environments? How are we
to measure shifts in Pleistocene hominin mobility strategies
independently of the archaeological data we would like to
investigate for the effects of such shifts? In the event that
evidence for shifts to a more collector-like strategy is found
to regularly precede “flashes” of modern behavior in the ar-
chaeological record, what was responsible for such shifts and
were those shifts reversed in cases where the archaeological
record suggests that those behaviors ultimately did not persist
in the region?

Although a full discussion concerning to what extent the
mobility strategies of behaviorally modern humans differed
from other Pleistocene hominin populations, such as Nean-
dertals, is beyond the scope of the present study, the topic
is worth visiting briefly in light of the theoretical findings
presented above. Despite decades of interest in Middle Pa-
leolithic settlement systems, the evidence for differences in
land-use strategies among Pleistocene hominin populations
remains spotty (many authors bemoan the small sample
sizes) and contentious. As recently recounted by Wallace
and Shea (2006) and Walker and Churchill (2014), archae-
ologists have not been of one mind in interpreting Middle
Paleolithic data in the context of hominin mobility. The

available data suggest to some that Neandertals emphasized
logistical mobility, while to others the data suggest that
Neandertals emphasized residential mobility. Lieberman and
Shea (1994) and Wallace and Shea (2006) discuss evidence
that might support the hypothesis that Levantine Neander-
tals emphasized logistical mobility (or “radiating mobility”)
while anatomically modern humans in the Levant some
30,000 years earlier perhaps emphasized residential mobility
(or “circulating mobility”). On the other hand, Kuhn (1992)
is not alone in floating the hypothesis that at least some
Upper Paleolithic modern humans may have emphasized
logistical mobility more than Middle Paleolithic Neandertals
did (see also Riel-Salvatore and Barton 2004). These issues
remain unresolved. But if there is some truth to the notion
that there was a difference in the settlement systems of
Neandertals and modern humans during the Late Pleistocene,
with modern humans emphasizing logistical mobility more
than Neandertals, then holding all else constant the findings
presented above raise the possibility that differences in mo-
bility rather than differences in cognition may have played an
important role in explaining some of the differences between
the Middle Paleolithic and Upper Paleolithic archaeological
records.

Yet, given the nature of the archaeological evidence avail-
able, it is premature to rule out the possibility that all Pleis-
tocene hominin foragers were behaviorally flexible enough
to modify their mix of logistical and residential mobility
in response to changing conditions in ways that are more-
or-less captured by Kelly’s central-place foraging model.
In other words, it seems unreasonable at this time to pin
Neandertals and modern humans to different places along
Binford’s forager-collector continuum as if their land-use
strategies were not only different but also static (nor is this
is a position that many researchers, if any, hold today). If
one avoids rigid, monolithic classifications of Neandertals
as more forager-like and modern humans as more collector-
like (or vise versa) and instead allows for more fluidity in
Pleistocene hominin adaptive responses to changing condi-
tions (e.g., Delanges and Rendu 2011), then one leaves the
door open to the possibility that even relatively subtle shifts
in mobility strategies could modify metapopulation dynam-
ics such that some of the archaeological signals currently
recognized as hallmarks of modern behavior—increased to-
tal cultural diversity and increased cultural differentiation
between regions—could appear and persist for as long as
conditions allow, only to disappear when the metapopulation
dynamics are modified again. Note that this statement is not a
conclusion about the past but rather a hypothesis that remains
to be tested against the culture material record.

In thinking about how this hypothesis might be tested
empirically, I wish to reiterate that the effects of mobility
on cultural diversity discussed above are much more likely
to be seen in selectively neutral cultural variants passed via
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unbiased transmission than in cultural variants that are adap-
tive and/or passed via a form of biased cultural transmission.
Because tool classes used to procure food (i.e., Oswalt’s
(1976) subsistants) were likely affected by cultural selection
(and perhaps even natural selection working on those who
employed them), their diversity is unlikely to vary with
population size in accordance with the predictions of neutral
theory and therefore they are unlikely to serve as a good test
of the so-called “demographic hypothesis.” The same holds
true for cultural variants that are even further removed from
the tool user’s reproductive success than subsistants. While
“stylistic” variants used to convey something about one’s
social identity or group membership may not be adaptive in
the biological sense, they are likely to be affected by cultural
selection—that is, they are likely to be passed via biased
forms of cultural transmission. Thus, it is not enough for
empirical tests of the effect of mobility on cultural diversity
in the Paleolithic to target so-called non-functional aspects of
technology. Empirical tests of the demographic hypothesis
that focus on cultural diversity must target cultural variants
that not only did not affect the reproductive fitness of those
who displayed them but also—and just as importantly—
were passed via unbiased cultural transmission. Identifying
Paleolithic cultural variants that satisfy those requirements
requires more thought and discussion.
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6Behavioral Modernity and the Cultural
Transmission of Structured Information: The
Semantic AxelrodModel

Mark E. Madsen and Carl P. Lipo

Abstract

Cultural transmission models are coming to the fore in explaining increases in the
Paleolithic toolkit richness and diversity. During the later Paleolithic, technologies increase
not only in terms of diversity but also in their complexity and interdependence. As
Mesoudi and O’Brien (Biolog Theory 3:63–72, 2008) have shown, selection broadly favors
social learning of information that is hierarchical and structured. We believe that teaching
provides the necessary scaffolding for transmission of more complex cultural traits. Here,
we introduce an extension of the Axelrod (J Confl Resolut 41:203–226, 1997) model of
cultural differentiation in which traits have prerequisite relationships, and where social
learning is dependent upon the ordering of those prerequisites. We examine the resulting
structure of cultural repertoires as learning environments range from largely unstructured
imitation, to structured teaching of necessary prerequisites, and we find that in combination
with individual learning and innovation, high probabilities of teaching prerequisites leads
to richer cultural repertoires. Our results point to ways in which we can build more
comprehensive explanations of the archaeological record of the Paleolithic as well as other
cases of technological change.

Keywords

Structured trait model • Axelrod model • Unbiased transmission • Knowledge prerequi-
sites • Cumulative cultural transmission

6.1 Introduction

Although humans and our hominin ancestors have been
cultural animals throughout our evolutionary history, an im-
portant change occurred in our lineage during the Middle and
Upper Paleolithic. For millennia our ancestors manufactured
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relatively small toolkits and their material culture was re-
markably similar across continental distances and over many
generations. Beginning in the Middle Paleolithic and contin-
uing through the Upper Paleolithic, the archaeological record
reflects an explosion in our cultural repertoire. Over tens
of thousands of years, artifactual toolkits shift from sets of
relatively few objects with multiple uses to large collections
of functionally-specialized tools that employed increasingly
complex technologies and that were manufactured from an
enriched range of materials. The changes in artifacts suggest
that human solutions to the problems of everyday life became
regionalized and differentiated. Further, the economic basis
of our lives began to broaden and also, in many areas, to
become specialized (Bar-Yosef 2002; d’Errico and Stringer
2011; Straus 2005).
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While early researchers believed that the Upper Pale-
olithic resulted from a singular “revolution” in human evolu-
tion leading to behaviorally modern homo sapiens, this view
is held by a minority of paleoanthropologists and archaeol-
ogists today (e.g., Klein 2009). Careful examination of the
Middle Paleolithic archaeological record especially in Africa
and the Near East suggests that this change in behavior did
not occur as a single distinct event, instead occurring over
a long period of time since much of the enriched material
culture we later characterize as the “Upper Paleolithic” had
precursors. In addition, this change now appears to be patchy
and fitful, with modern features appearing and frequently
being lost again (Bouzouggar et al. 2007; d’Errico and
Henshilwood 2007; d’Errico and Stringer 2011; Straus 2005;
McBrearty and Brooks 2000; McBrearty 2007). Nor does
behavioral modernity map neatly to biological taxa and their
movements, given that evidence for the precursors of fully
modern behavior is abundant in deposits associated with
Neaderthals in addition to modern Homo sapiens (Villa and
Roebroeks 2014).

The “learning hypothesis” studied in this series of vol-
umes makes the plausible claim that behavioral modernity
is the product of cumulative changes in the way cultural
information was acquired and retained across generations
(Nishiaki et al. 2013), thus providing a potential explanation
for the slow evolution of “modern” features, its patchiness in
space and time, and the lack of a neat mapping between ho-
minin taxonomy and material culture. In short, according to
the learning hypothesis, behavioral modernity arose through
a change or changes in the way social learning operated
within hominin groups, with those groups adopting richer
modes of cultural learning surviving and spreading compared
to those who retained simpler forms of social learning.

Within the umbrella of the learning hypothesis, there are
many ways in which social learning and thus intergenera-
tional cultural transmission could have changed, and an in-
creasing amount of research is focused upon formulating and
testing different models. One class of studies is focused upon
factors exogeneous to the learning or imitation process itself.
Shennan (2000, 2001) proposed that population size has a
powerful effect on diversity within cultural transmission pro-
cesses, which Henrich showed in the case of toolkit element
loss during a Tasmanian population bottleneck (Henrich
2004). In a similar line of reasoning, Kuhn (2013) argues
that low population size and density put Neanderthals in a
situation where innovations spread slowly and ultimately led
to their demise relative to modern humans. Furthermore, a
growing set of experimental studies clearly show a relation-
ship between accumulation of complex cultural traits and
the number of cultural “models” from whom individuals can
learn (Muthukrishna et al. 2014; Derex et al. 2013; Kempe
and Mesoudi 2014). Not all studies have shown a strong

association between population size and cultural diversity,
however. Collard and colleagues, find little association in
a linked series of comparative studies (Collard et al. 2011,
2013a,b,c). Finally, in his analysis of the overall evolutionary
rate, Aoki (2013) found that innovation rates were more
important than population size to determining the rate of
evolution in a population.

To us, this body of work indicates that while population
size is an important parameter in mathematical models, it
may be better understood as a second-order effect in the real
world, interacting with a myriad of other factors and thus
often dominated by those factors. Another important factor is
the structure of bands or demes into larger regional metapop-
ulations. Network topology, for example, is known to have
a substantial effect upon contagion or diffusion processes
(e.g., Castellano et al. 2009; Smilkov and Kocarev 2012).
Thus, it is likely that regional structure has critical effects
on the outcomes we can expect from a single social “learning
rule.” Along these lines, Premo (2012) has examined whether
metapopulation dynamics that include local extinction and
recolonization might provide an improved account for the
retention and expansion of diversity.

A second group of studies has focused upon endogeneous
changes to social learning processes. Many authors in this
volume series, for example, have looked at aspects of the way
individuals learn skills and acquire information (Aoki 2013;
Nishiaki et al. 2013). We know that learning and teaching
styles vary across human groups, and formal modeling ef-
forts are beginning to make clear that such variation has evo-
lutionary consequences that might lead to a rapid expansion
of the human cultural repertoire (Nakahashi 2013). Those
populations which increased the amount or effectiveness of
teaching would have a fitness advantage over those who re-
lied upon imitation and “natural pedagogy” in passing along
technological and foraging knowledge (Csibra and Gergely
2011; Fogarty et al. 2011; Terashima 2013). Demography
and population structure would then play an important role
in reinforcing the fitness differences which different learning
strategies would create, as pointed out by Kuhn (2013).

Ultimately, a full “learning explanation” for behavioral
modernity will be multifacted, including demographic and
spatial changes as well as changes to the mechanisms of
social learning and technological innovation themselves.
Sterelny (2012, p. 61) sums up this kind of multifactorial
approach to behavioral modernity well:

. . . the cultural learning characteristic of the Upper Paleolithic
transition and later periods of human culture—social transmis-
sion with both a large bandwidth and sufficient accuracy for
incremental improvement—requires individual cognitive adap-
tations for cultural learning, highly structured learning environ-
ments, and population structures that both buffer existing re-
sources effectively and support enough specialization to generate
a supply of innovation.
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In research designed to explore how the structure of a
learning environment affects the results of social learning,
Creanza and colleagues (2013), Aoki (2013), Nakahashi
(2013), and Castro and colleagues (2014) developed models
that examine how explicit teaching (as opposed to simple
imitation) affects the overall evolutionary rate or cultural
diversity in a population. Castro et al. for example, find that
cumulative cultural transmission requires active teaching in
order to achieve fidelity across generations. Our work in
this chapter follows these authors, focusing on the nature
of transmitted information itself and the effects of teaching
upon the richness of structured technological knowledge.

In particular, we suggest that when knowledge is struc-
tured such that skills and information must be learned in
sequences, high fidelity learning environments are critical to
evolving ever-richer cultural repertoires, of the type seen in
behaviorally modern assemblages. To formalize this idea, we
construct a model which:
• Represents cultural traits as hierarchically structured, in

order to study increases in complexity,
• Has a learning rule sensitive to the order in which cultural

traits are acquired, with multiple levels of fidelity, and
• Has a mechanism (such as homophily) that allows cultural

differentiation endogeneous to the model.
As we alter the “learning environment” in our models

from less to more frequent teaching of traits and their
prerequisites, we expect to see greater diversity, larger struc-
tured sets of traits persisting in the population, and greater
differentiation of the population into “different” cultural
configurations. We also expect that individual innovation,
independent of the social learning context, will play a role
in the accumulation of cultural complexity by allowing a
population to explore increasingly large spaces of technolog-
ical design possibilities; this expectation is concordant with
Aoki’s (2013) result in Volume I of this series.

In this chapter, we introduce a simulation model which
combines a hierarchical trait space capable of expressing
dependencies or semantic relationships between skills and
information (Mesoudi and O’Brien 2008), and a modified
version of Robert Axelrod’s (1997) homophilic social learn-
ing model which allows us to examine the conditions under
which evolution in a hierarchical design space leads to cul-
tural differentiation. After describing the model, we study its
dynamics and provide an initial assessment of its suitability
for studying the onset of behavioral modernity in the later
Paleolithic. Models like this begin to move beyond diffusion
dynamics, bringing the actual meaning and relations of traits
into the modeling process. Hence, we call these “semantic
Axelrod” models, and believe that such models form a
platform for formalizing the type of multi-factor hypotheses
necessary to examine major transitions in human evolution,
such as “behavioral modernity.”

6.2 The Semantic AxelrodModel for Trait
Prerequisites

Much of our technical knowledge, whether of stone tool
manufacture, throwing clay pots, or computer repair, is built
from simple tasks, bits of background knowledge, and step-
by-step procedures (Neff 1992; Schiffer and Skibo 1987).
These pieces of cultural information are not simply a set of
alternative options, which can be mixed and matched in any
combination. Instead, there are dependencies and relation-
ships between items which affect how skills and information
are learned and passed on between individuals. Some items
will be related in time, as steps in a process. Others will
be related by subsumption: arrowheads are a subclass of
bifacial stone tools, and require many of the same production
techniques as bifaces used in other projectiles. Still others
will be related as sets of alternatives: choices of surface
treatment for a given ceramic paste, given the firing regime
selected, for example. To date, most archaeological models
of tool production have focused upon temporal relations in
the construction of an artifact, as in “sequence models” or
“chaîne opératoire,” but it is important to remember that
other representations are possible, including trees and more
general graphs to capture relations of use, reworking, or
discard (Bamforth and Finlay 2008; Ferguson 2008; Högberg
2008; Bleed 2001, 2002, 2008; Schiffer and Skibo 1987;
Stout 2002).

Given conscious reflection, we describe and organize
our knowledge and skills in many ways, but it is common
(especially while learning a new skill) to think of a complex
process as a “script” or “recipe” (Schank and Abelson 1977).
Experts in a task or field may not represent their knowledge
this way, having internalized such structures below the con-
scious level. Experts will often know more than one way to
accomplish any given goal, and be able to repurpose and
recombine methods and tools, as opposed to the simpler,
more linear or tree-based recipes of the novice or student
(e.g., Bleed 2002, 2008; Stout 2002). Nevertheless, it is
common to teach or learn new information and skills in a
stepwise manner.

In this chapter, we focus not on the execution steps of a
recipe (and thus not on sequence models), but the relations
between skills and information during the learning process.
In specific, we focus upon the prerequisite relationships that
exist between cultural traits, since the ordered dependencies
between skills and information form one of the structures
within social learning occurs during development (and into
adulthood). Some pieces of information or skills must be in
place before a person can effectively learn or practice others.
Examples from our own childhoods abound: one needed
to understand addition and subtraction and multiplication
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before learning long division; in order to make soup, we need
to understand how to simmer rather than boil, how to chop
and slice, what ingredients might be combined, and so on.
The fact that knowledge and skills build upon one another
make prerequisite relations between cultural traits ubiqui-
tous. In this chapter, we represent prerequisite relations as
trees in the graph-theoretic sense (Diestel 2010), replacing
the “nominal scale” structure of “locus/allele” models or
paradigmatic classifications and some typologies (Dunnell
1971), but we emphasize that the tree models we discuss here
are still classifications and thus analytic tools, designed to
allow us to measure variation in the archaeological record,
not reconstruct emic models of Paleolithic technologies.

Our model also requires a way of representing a changing
learning environment, in ways that create higher fidelity and
greater possibility for building cumulative knowledge. In
real learning environments, there are many possibilities, but
deliberate teaching and apprentice learning are repeatedly
seen across human groups as ways that naive individu-
als can reliably learn the complex skills and information
needed for foraging, artifact production and maintenance,
and navigating an increasingly rich social world. The point
of structuring the learning environment with teaching and/or
apprenticeship is to give the learner skilled models to imitate,
shortcut trial and error when acquiring a skill, provide a
reference for needed information, and to guide individuals
to put their information and skills together into appropriate
sequences to accomplish an overall goal. Apprenticeship
and formalized teaching provide a social learning “scaffold,”
helping to lower the amount of individual trial and error
learning needed to master a body of material (Wimsatt and
Griesemer 2007; Wimsatt 2007).

Within a standard discrete-time simulation model of a
social learning process, we can model this type of learning
environment with the following modifications:
1. Represent the order in which skills and information need

to be acquired as a series of trees, with vertices represent-
ing traits (either a skill or piece of information), and edges
the prerequisite relations between them.

2. Disallowing individuals the ability to copy traits from
a cultural model for which they do not have necessary
background or prerequisites, given the relations in the
applicable tree model.

3. Creating a probability that individuals, if disallowed a
trait, can be taught one of the needed prerequisites instead
by that cultural model, leading to the potential accumula-
tion of fuller knowledge and skills over time.
By changing the probability that individuals learn a miss-

ing prerequisite trait, we can “tune” the learning environ-
ment. Low probabilities might correspond, for example,
to a learning environment where individuals can observe
others executing a production step, but are given little or no
instruction or guidance on what they need to know in order to

successfully master it. High probabilities of learning prereq-
uisites would correspond, on the other hand, to environments
where individuals receive instruction, or work together with
a more skilled individual who guides them toward learning
the information and skills they lack. In the next section,
we discuss our model of trait relationships and the learning
environment in more detail.

6.2.1 Representation of Traits and Their
Prerequisites

In order to represent the “prerequisite” relations between a
number of cultural traits, we organize the traits into trees,1

where nodes higher in the tree represent knowledge, skills, or
concepts which are necessary for traits further down the tree.
Let us consider the different skills and information necessary
for the construction of a single artifact, say a dart thrown by
an atlatl. An artisan will possess information about different
raw materials, an understanding of what materials are suit-
able for specific purposes, skills and information concerning
the knapping of different types of bifaces, methods of hafting
bifaces into different kinds of shafts, and so on. Stout (2011)
organized such knowledge into “action hierarchies,” which
represent sequences of actions, sets of choices, and optional
elements for the construction of a class of stone tools,
drawing the representation from Moore’s (2010) graphical
notation.

We should emphasize that employing tree structures to
represent learning dependencies is a modeling choice. Other
choices may be sensible as well. General graphs could
represent webs of relations between concepts or skills, and
multigraphs (replacing adjacency matrices with tensors) can
represent different types of relations in a single structure
(Nickel et al. 2011). For purposes of the present chapter,
we are interested in the order in which people usually learn
skills and information, rather than the order in which steps
are executed. The difference is potentially significant, in
that two adjacent steps in a sequence might involve very
different information, tools, or skills, which can be learned
in parallel without dependencies. Because, in our model,
traits cannot be learned unless an individual possesses the
necessary prerequisites, we introduce the idea of a “learning
hierarchy,” which is a division of Stout’s action hierarchy into
components which are learned with ordered dependencies,
and independent components represented in separate trees.
For example, one might learn about the sources of good

1A tree is a graph with no cycles or loops. That is, a tree is a connected
graph on n vertices that possesses at most n � 1 edges (Diestel 2010).
Furthermore, in this chapter we are concerned with rooted trees, in
which one vertex is distinguished as the “origin” of the tree, giving rise
to a hierarchical structure.
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Fig. 6.1 A single trait tree, represented by a balanced tree with branching factor 3 and depth factor 3, order 40. In our model, nodes higher in the
tree represent prerequisites for nodes lower down the tree. Each instance of the model will have several or many of these trees in the design space

Fig. 6.2 A design space
composed of 4 independent trees,
each tree with branching factor 3
and depth factor 3, order 40. We
also studied larger design spaces
with 16 independent trees, and
with larger branching and depth
factors

lithic raw materials, independent of learning how to perform
different percussion techniques. In our model, each of these
independent areas is represented by a separate tree of traits.

In each simulation model, we begin with a trait or “design
space” that incorporates several independent sets of traits
(O’Brien et al. 2010). The overall design space of a sim-
ulation model is thus a forest,2 composed of several trees
(Fig. 6.1). For each tree in a learning hierarchy, we employ
balanced trees which have the same number of nodes at
each level, to provide a simplified model of a design space
with which to begin our exploration of this class of social
learning model, although real design spaces are undoubtedly
more complex in their geometry. Each tree in our model is
specified by a branching factor r and depth h. As a result,
each trait tree in the design space has

Ph
iD0 r i traits.

The tree depicted in Fig. 6.2 thus has 40 vertices, for
example. In this chapter, we examine both small (4 trees) and
larger (16 trees) design spaces, to see how learning may dif-

2A forest is a graph composed of multiple components, each of which
is a tree.

fer in problems involving design spaces of different size and
complexity. We examine trees with combinations of branch-
ing and depth factors of 3 and 5. Thus, a design space with
4 trees with branching and depth factors of 3 (as in Fig. 6.2)
would have 160 traits, whereas a design space with 16 trees
of branching and depth factors of 5 would have a total of
62,496 traits.3 Even the small design spaces we consider here
create a large space for cultural change and differentiation,
given the number of possible trees one can construct on even
40 vertices.4 In the experiments reported here, the overall

3We initially chose 6 as the limit on branching and depth factors, but
found that we cannot calculate certain symmetry statistics, such as the
size of the automorphism group, on trees that large using existing tools.
Even a tree with r D 5; h D 6 has over 101;623 possible symmetries,
and an attempt to calculate the symmetries for r D 6; h D 6 did not
complete given the memory limits of the computers we had available.
4If we consider each trait to be unique and non-interchangeable, the
number of unique trees with unique vertex labels is nn�2 by Cayley’s
theorem (Diestel 2010). For example, for each trait tree of 40 vertices,
there are roughly 1060 possible trees. Even if we consider traits to
be interchangeable (e.g., we look at the abstract topology of trees
rather than the details of individual traits), there are at least 1016
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size of the design space remains constant over time, which
is a simplifying assumption as we develop this class of struc-
tured information models. In future work, we will explore the
role of invention in episodically creating large new regions of
design space for the evolving population to explore.

Given the total “design space” represented by a forest of
trait trees, each individual in our model is initialized with
a small number of “initial” traits. Initial traits are chosen
randomly but heavily weighted towards the roots of the trees
to represent the fact that our knowledge starts out basic and
sparse. In general, all of the design spaces modeled here are
larger than populations will explore within the bounds of a
simulation run. In the next sections we describe the social
learning model, modified from Robert Axelrod’s original, by
which each simulated population evolves within this tree-
structured design space, and will return to the specifics of
how an initial culture repertoire is chosen.

6.2.2 The Axelrod Model of Social Learning
and Differentiation

Robert Axelrod (1997) formulated a model aimed at studying
the conditions under which simple learning rules could lead
to cultural differentiation, rather than a single fixed state
(which is the result of simpler neutral or diffusion models).
This makes it useful as a starting point for understanding
phenomena such as behavioral modernity, in our view. Axel-
rod’s model combines social learning, in the form of random
copying, a spatial structure to interaction, in the form of
localized copying of neighbors on a lattice, and the tendency
to interact most strongly with those to whom we are already
culturally similar (homophily). The model displays a rich and
interesting set of behaviors, and has been extensively studied
by social scientists and physicists (Castellano et al. 2009).
First we review the basic model, and in the following section
our modified algorithm.

6.2.2.1 Axelrod’s Original Model
The original model locates N individuals on the nodes of
a regular lattice or grid, but various network structures have
also been studied. Each individual is endowed with F integer
variables .
1; : : : ; 
F /, that can each assume q values. In the
original model, each variable is a “cultural feature” each of
which can assume q “traits.” In each step, a randomly chosen
individual i and a random neighbor j are selected, and
“interact” with probability equal to the overlap between their
cultural repertoire. Overlap, in the basic model, is simply the
fraction of features for which i and j possess the same trait
value:

possible unlabelled rooted trees on 40 vertices (using Otter’s (1948)
approximation).

p.i; j / D 1

F

FX

fD1

ı�f .i/�f .j / (6.1)

where ıi;j is Kronecker’s delta function, taking the value 1

when its two arguments are equal and 0 otherwise. When
individuals interact, the focal individual i takes the trait
value of its neighbor for one of the features where the two
individuals differ.

Interaction has no effect when two individuals already
possess identical cultural repertoires, and there is no prob-
ability of interaction if individuals have no traits in common.
This eventually causes the model to reach an absorbing
state where no further changes are possible. Instances of
the model are initialized with a random distribution of traits
among individuals, and left to update until the steady state
is reached. The evolution of the population leads to two
classes of absorbing states: (a) a “monocultural” state in
which all individuals share the same set of variables, and (b)
a “polycultural” state in which subpopulations exist which
share the same set of variables within the group, and are
completely different from their neighbors.

Which of the two results is reached, and the statistical
character of “polycultural” states when they exist, depends
mainly upon the number of traits possible q for each cultural
feature. For small values of q, individuals share many traits
with their neighbors, interactions are thus frequent, and one
domain comprising a single set of traits will grow to become
fixed within the entire population. In contrast, when the value
of q is high, individuals start out sharing very few traits, with
interactions that are correspondingly less frequent. Regions
of uniform cultural variation do grow, but as they do, sets
of individuals who share no traits at all (and thus do not
interaction) grow as well, and often prevent any single
regional culture from expanding to fix within the population.

Many variants of the basic Axelrod model have been
studied, including the addition of “drift” via the introduc-
tion of copying error, situating agents on different types
of complex networks, the addition of an external “field”
to simulate the effects of mass media, and copying that
obeys a “conformist” or majoritarian rule by selecting the
most common trait among the neighbor set (Castellano et al.
2000; De Sanctis and Galla 2009; Flache and Macy 2006;
González-Avella et al. 2005, 2006, 2007a,b; Klemm et al.
2003a,b, 2005; Lanchier et al. 2010; Lanchier 2012). In
general, modifications of the basic model can reduce the
tendency of the model to produce polycultural solutions, or
change the time scale or location of the critical point.

6.2.2.2 Semantic Extensions to the Axelrod
Model

We begin each simulation with N (100, 225, or 400) agents,
arranged on a square grid. A design space is created, with
some number of trait trees (4 or 16), with uniform branching
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Fig. 6.3 Illustration of a design
space composed of a single trait
tree, along with a random initial
trait chosen from the design
space, and a final sample from a
simulation run, showing the
evolution of traits within the
design space. Also shown in the
(a) are the “prerequisites” for a
cultural trait (35), as an example

Design Space

Initial Traits

Sample from Simulation

0

3

11

35

a

b

c

factors and depth factors (3 or 5). An example of such a tree
is shown in panel A of Fig. 6.3. Initial traits (and their prereq-
uisites) are chosen randomly across the configured number of
trait trees, as follows. For each individual, we select a random
number t between 1 and 4, and repeat the trait selection
process t times for that individual. In each selection, we
choose a random tree in the design space, and then select
a depth in the tree for the trait, given by d � Poisson.0:5/.
This biases trait selection towards the root of the tree, as one
would expect in young or inexperienced individuals. We then
walk d steps into the tree, making uniform random selections
for the children of each vertex. The path of vertices thus
constructed is added to the individual’s trait set, giving them
an initial trait and its necessary prerequisites. One such initial
trait is shown in Panel B of Fig. 6.3. Given that individuals
begin with a small number of initial traits (between 1 and
4, selected randomly), and their prerequisites, the initial trait
endowment of an individual is between 1 and 4h, where h is
the maximum depth of the design space (either 3 or 5 in the
experiments reported here).5

5At maximum, this yields some individuals who begin the simulation
with up to 20 traits. The median number of traits in samples taken after
6–10 million time steps is considerably higher – 259 traits per cultural

Once the population is initialized, the simulation runs a
discrete approximation to a continuous-time model. In other
words, only one agent changes at each elemental time step,
as in the original Axelrod model and the Moran model of
population genetics and its cultural version (Aoki et al. 2011;
Moran et al. 1962; Moran 1958). At each step, an agent (A)
is chosen at random, and a random neighbor of A is then
selected (agent B). Their probability of interaction is given
by the overlap of trait sets, which is most simply calculated
as the Jaccard overlap between the set of tree vertices each
possesses, thus replacing Eq. 6.1 with:

J.A; B/ D jV.A/ \ V.B/j
jV.A/ [ V.B/j (6.2)

where V.i/ represents the vertex list for trait trees held by
individual i in the population.

If the agents end up interacting, agent A observes the
traits currently possessed by B, and selects a trait (T) that
it does not already possess to learn. If agent A has the
necessary prerequisite traits for the selected trait, it can learn

configuration or region. Thus, cultural repertoires in the simulation
grow through copying and innovation, as expected.
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trait T. If not, there is a probability P.l/ that B can teach
A a necessary prerequisite for T instead. This simulates the
process of agent B structuring the learning environment of A
through formal instruction or apprenticeship, for example. If
such a prerequisite learning event occurs given P.l/, agent A
learns the most fundamental of T’s prerequisites that it does
not already possess. For example, agent A might require the
trait closest to T (e.g., trait 11 in Fig. 6.3, if the original trait
targeted was 35).

Additionally, at each time step, there is a probability P.m/

that one random individual in the population will learn a new
trait (and necessary prerequisites) that it does not already
possess. For example, if an innovation event occurs and an
agent discovers trait 35 by individual trial and error learning,
we assume that the agent also discovered traits 0, 3, and
11. Thus innovation can introduce one trait to the popula-
tion, or a linked set depending upon its prerequisites and
what the innovating individual already “knows.” This model
of innovation simulates an ongoing process of individual
learning unconnected to social learning or teaching within
the population. Because this functions much like “infinite-
alleles mutation” in the classical Wright-Fisher neutral mod-
els (Ewens 2004), or like noise terms in Axelrod, Ising, or
Potts models (Castellano et al. 2009), we will refer to this as
the “global innovation rate” in this chapter.

One of the editors noted that this model of innovation
may not be as realistic as an alternative, where random
innovations would be “discoverable” only with the correct
prerequisites in place. We believe that innovation in the face
of skill or knowledge prerequisites is continuous between
these two models. Occasionally one will discover a new piece
of knowledge or develop a skill, having learned surrounding
and related knowledge. In other situations, individuals may
learn sequences and sets of information or skills by trial
and error and “tinkering.” The “size” of innovations that can
be learned purely by individual trial and error should thus
vary between these extremes, biased towards the “small”
end of the range. Our selection of an innovation model
where individuals discover a trait and its prerequisites thus
potentially overestimates the effect of individual learning,
but it made certain graph operations easier, and can be
relaxed in future models.

Each simulation run lasts 107 steps, which yields be-
tween 104 and 105 copying events per individual, depending
upon population size.6 Since we do not explicitly model
the interaction between cultural transmission and biological

6One hundred thousand was chosen as a compromise for running large
batches of simulations in parallel. Some simulation runs, especially
in small design spaces with very high prerequisite learning rates, can
converge to a monocultural solution and quasi-stable equilibrium quite
quickly; in the largest design spaces and low learning rates, convergence
may never occur even though the process is well-mixed. However,
the processes have reached a quasi-stable equilibrium, verified by

reproduction here, we can interpret the model as represent-
ing either fine-grained learning within individuals over the
course of their lifetimes, or long-term cultural evolution
within a fixed size population where we are not modeling
fitness. We felt this simplification was appropriate in a pilot
study exploring structured information models, but a more
detailed study would include dynamics on two time scales:
developmental learning and evolutionary dynamics given
birth and death. Samples are taken beginning at 6 million
steps, and sampling at an interval of 1 million steps, and
record the trait trees seen in the population. An example of
such a sampled tree is shown in Panel C of Fig. 6.3. For
reference, the full algorithm for each copying step is given
in the Appendix as Algorithm 1.

6.3 Measuring Cultural Diversity and the
Results of Structured Learning

Each sample from a simulation run is composed of the
distinct sets of trait trees possessed by individuals in the
population, along with summary statistics. If a simulation
run converges to a monocultural solution, the sample will
have one set of trait trees, which are shared across the
entire population. In other cases, there will be clusters of
cultural configurations which might be unique to a single
individual, or shared by some number of agents. Each cluster
will be composed of some number of trait trees (typically,
the number configured for the simulation run: 4 or 16, but
perhaps a subset), and each trait tree will be the result of
many agents learning traits and their prerequisites socially,
and for runs with a non-zero mutation rate, by individual
learning or innovation. Each cluster will thus have some
number of traits, typically higher (often much higher) than
the initial endowment given to the population.

From the sampled trait trees, we calculate summary statis-
tics as follows. The ratio of the number of traits in the sample
to the full design space size (or “remaining density” of traits)
is one measure of trait richness. The radius of a rooted tree is
the number of edges in the path from root to the furthest edge.
The average radius of trees in a sample (or its ratio to the
depth of the design space) is another richness measure, aimed
at measuring whether knowledge with multiple prerequisites
is being learned within the simulated population. Similarly,
in the original design space, the branching factor describes
how many children each node in the tree started with,
so measuring the average vertex degree gives us a rough
measure of how broad a cultural repertoire is. Each of these
measures is illustrated in Fig. 6.4 for an example tree selected
from our data.

examining samples at different times for secular trends in median and
mean values, which were not found.
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Fig. 6.4 An example set of traits at the conclusion of a simulation run,
extracted from a simulation with branching factor 3 and depth factor
3, and a single trait tree as the trait space. The remaining density of
vertices, mean vertex degree, and radius of the tree are noted. Vertex
colors denote “structural equivalence” classes or “orbit structure,” as
measured by adjacency patterns, and is one measure of the symmetries
present in the tree

In addition to these simple numerical measures compar-
ing final trees to the original design space, it is useful to
measure something about the overall “shape” of the trees
themselves. One way of formalizing this notion is to examine
the symmetries of the final trait trees. Examining Fig. 6.4, if
we ignore the exact identities of traits for the moment, it is
apparent that there are repeating patterns. For example, the
left-most branches each terminate in a pair of leaves. This
pattern is repeated on the second right-most branch. These
types of repeating patterns are computationally expensive to
search for in large sets of trees, but we can summarize them
by considering trait trees as algebraic objects and examining
their automorphisms.

An automorphism is a function which maps an object
to itself, in such a way that the structure of the object
is preserved (Rotman 1995). Graph automorphisms map
vertices in a graph to each other, preserving properties
such as the adjacency pattern of edges. The six vertices
which mark the repeating pattern of leaf-pairs in Fig. 6.4
are an automorphism of the tree, and thus are symmetries
we can measure. An overall measure of “how symmetrical”
(or “how many interchangeable patterns”) there are in a
graph possesses given by the total number of automorphisms
found, called the size of the automorphism group or jAut.G/j
(Godsil and Royle 2001). A tree with no repeating patterns
will thus have an automorphism group size of 1, indicating
that the only symmetry is the entire tree itself. A balanced
tree with branching and depth factors of 3, as depicted in
Fig. 6.2, has approximately 1:3 � 1010 automorphisms. The
more repeating patterns there are in trait trees, the more
automorphisms they will possess.

Because group sizes grow quickly and the accuracy of
performing calculations with truly astronomical numbers is
low, another possible measure of the symmetries present is
to count the classes of equivalences into which vertices fall.

The orbits of the automorphism group are the sets of vertices
which are interchangable by some permutation that preserves
structure. For example, the graph in Fig. 6.2 has five orbits,
with each vertex at a given level interchangable (in a struc-
tural sense). Similarly, the six leaf vertices that are part of
pairs in Fig. 6.4 are part of the same orbit; in this illustration,
each orbit is given a different color to highlight their equiva-
lence. For each cultural region found when sampling a simu-
lation, we calculate the size of the automorphism group and
the number and multiplicity (frequency) of orbits. For this
analysis, we employ the nauty + Traces software by Brendan
McKay and Adolfo Piperno (McKay and Piperno 2014).7

6.4 Experiments

Given a modified Axelrod model on a tree-structured trait
space, we expect to see greater cultural diversity, differ-
entiation among groups of individuals, and larger sets of
traits as the “learning environment” is tuned from a low to
high probability of teaching and learning among individuals.
We also expect that individual innovation, independent of
the social learning context, will increase the amount of
the technological design space that a population explores,
which leads to enhanced opportunities for differentiation
even through simple random copying. Here we measure
cultural differentiation by the number of clusters of indi-
viduals who share the same trait trees when we sample the
population.

Second, we looked at whether highly structured learning
environments, represented here by higher probabilities of
naive individuals gaining the prerequisites for the skills and
information they encounter with peers, led to deeper and
richer cultural repertoires. We explore a number of ways of
measure the richness of a cultural repertoire in a model with
structured relations between traits, through the use of graph
properties and symmetry measures. The measures used are
those described above: the tree radius (or depth), mean vertex
degree, the fraction of remaining vertices, and the size of
the automorphism group of sampled trait forests. Finally, we
began to examine how the structured learning environment
might interact with demography, by simulating the same
parameters across two sizes of population.

For this chapter, we examined populations of size 100,
225 and 400, to begin to examine the effects of population
size. For these populations, we examined design spaces that
were small (4 trait trees) and large (16 trait trees). Within
each size, we further examined combinations of branching
factor and depth factor with values of 3 and 5, thus yielding
8 total sizes of design space (Table 6.1).

7Nauty+Traces can be downloaded at http://pallini.di.uniroma1.it/. We
employed version 2.5r7 for this research.

http://pallini.di.uniroma1.it/
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Table 6.1 Size of design space
for different trait tree
configurations

Branching factor Depth factor Number of trait trees Size of design space

3 3 4 160

5 3 4 624
3 5 4 1,456

5 5 4 15,624

3 3 16 640

5 3 16 2,496

3 5 16 5,824
5 5 16 62,496

Table 6.2 Parameter space for
simulations described in this
chapter

Simulation parameter Value or values

Population rate at which new traits arise by individual learning 0.0, 5e�05, 0.0001

Maximum number of initial traits (not including their prerequisites)
each individual is endowed with

4

Number of distinct trees of traits and prerequisites 4, 16
Population sizes 100, 225, 400

Replicate simulation runs at each parameter combination 25

Maximum time after which a simulation is sampled and terminated 10,000,000

Individual probability for being taught a missing prerequisite 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9

Number of branches at each level of a trait tree 3, 5
Depth of traits in each trait tree 3, 5

Further, we examined three levels of global mutation
or innovation rate: zero, or no mutation, and 0.00005 and
0.0001. Such rates created a constant supply of new inno-
vations, but several orders of magnitude less frequent than
copying and prerequisite learning events. The full set of
parameters are given in Table 6.2. In this pilot study, for each
combination of all of the above parameters, we performed 25
replications. With 5 samples per simulation run, this yielded
10,963,691 samples of cultural regions.

6.5 Results

We begin by noting that compared to the original Axelrod
model, or neutral and biased copying models, the dynamics
of our semantic Axelrod model are highly variable. A very
wide range of outcomes is possible for each parameter
combination, especially when the size of the design space
is large. Some variables, such as the average vertex degree of
sampled trait trees, are strongly overlapping across all learn-
ing rates and do not appear diagnostic of different learning
environments, at least in these initial experiments. Given the
large amount of variability in the dynamics, larger numbers
of replications would be useful, although this is computation-
ally quite expensive at present.8 That said, several features
of the data are strongly suggestive that hierarchical trait

8The simulations reported here ran on a cluster of 6 compute-optimized
“extra large” Linux instances on Amazon’s EC2 computing cloud, for
a total of 17 days of wall clock time and 2,075 CPU hours. We plan

models have potential in modeling cumulative technological
evolution, making the computational expense worthwhile.

6.5.1 Cultural Diversity

Variation among individuals is foundational to evolutionary
processes, and is the raw material from which differenti-
ation between regions and cultural groups is constructed.
Figure 6.5 depicts the number of cultural configurations (i.e.,
trait trees) in a population of size 100, for the smallest
trait space with only 160 total traits, and relatively high
levels of individual innovation. For example, in the left-
most panel the large peak just above zero indicates that most
simulated populations are characterized by one or a few sets
of trait trees. Five learning rates are depicted, increasing
from left to right across the panels. At the very lowest
rate of learning fidelity, with only a 10 % chance of being
taught a needed prerequisite for knowledge being copied,
most of the populations simulated share a single set of traits,
and even individual innovation does not drive significant
exploration of the space of structured traits. With increased
fidelity in teaching needed prerequisites, however, simulated
populations begin exhibiting marked differentiation, with
individuals possessing more unique configurations of traits
from the overall design space.

further optimizations to the simulation code to make larger samples
economically feasible.
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Fig. 6.5 Number of cultural configurations in simulations with the smallest trait space (160 total traits in 4 trees), and a high individual innovation
rate (10�4)

Looking at the data from another perspective, we can hold
the fidelity of learning constant (say, at a 40 % chance of
being taught a needed prerequisite), with the same global
innovation rate (10�4) as Fig. 6.5, and examine the effect
of different size design spaces (Fig. 6.6). In general, popu-
lations exhibit greater differentiation between individuals as
the design space gets larger, as prerequisite learning helps
individuals acquire adjacent traits, and individual innovation
randomly explores more distant portions of the design space.

Given the structure of the Axelrod model, with the strong
tendency towards cultural uniformity given homophily, all
simulated populations converged to a single cultural con-
figuration in the absence of a global innovation rate. This
highlights the importance of various “innovation” and “in-
vention” processes in the creation and maintenance of cul-
tural differentiation and diversity (Eerkens and Lipo 2005;
O’Brien and Shennan 2010), and suggest that highly con-
servative cultural repertoires, such as those posited to pre-
cede behavioral modernity in hominin populations, occur
whenever individuals engage in social learning in small
technological design spaces, in the absence of strong and
regular individual innovation.

6.5.2 Trait Richness and Knowledge Depth

Cumulative evolution of technology is represented in our
model by the population learning its way down the trees
which compose the design space. Possession of traits deeper
in the trees represents skills or information which is more
specific, possessing more prerequisites. Thus, we expect that
the depth (or “radius,” see Fig. 6.4) of trees would increase
with the prerequisite learning rate, representing a learning
environment which is structured to ensure such acquisition.

Figure 6.7 gives the normalized mean radius of cultural
regions, broken out by the prerequisite learning rate along the
horizontal axis, and each group of 3 boxplots displays the dif-
fering global innovation rates studied. Radii are normalized
to the depth of their design space, to facilitate comparison.
The results indicate that essentially two regimes exist: shorter
trees, which do not grow much beyond their initialized size,
and larger trees. The mean radius has an asymptote just
above 0.75, achieved with the prerequisite learning rate is
approximately 0.4 or higher. Further increases do not seem to
matter. Additionally, the difference between the two global
innovation rates is small – what matters most in terms of
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Fig. 6.6 Number of cultural configurations in simulations with an intermediate learning rate (0.4), across different sizes of trait space

Fig. 6.7 Mean depth of trait sets, by prerequisite learning rate and global innovation rate, for population size 100
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Fig. 6.8 Mean depth of trait
sets, by prerequisite learning rate
and population sizes of 100, 225
and 400
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qualitative behavior is the presence of global innovation
outside the teaching or learning of prerequisites themselves.

6.5.3 Population Size

Earlier, we mentioned that population size does not seem
to be a primary factor in explaining the measured diversity
in cultural transmission models, except perhaps in bottle-
neck situations like the one Henrich analyzes in Tasmania
(2004). Instead, population size may have an interaction ef-
fect with other factors, yielding smaller second-order effects.
We examined the effect of population size in the research
reported here, repeating the entire set of simulation runs for
populations of 100, 225, and 400.9

Figure 6.8 displays the relationship between mean radius
(or depth) of the cultural traits in each cultural sample, as
in Fig. 6.7 above, but the boxplots are instead colored by
population size. At least over a range of group or deme sizes
likely to be relevant to Paleolithic archaeology, population
size makes no difference to the qualitative behavior of the
model. There is, however, a very slight decrease in mean
radius of trait sets with larger population size, which is likely
a consequence of a larger population spreading out over the
trait space.

9We should note that learning rates of 0.8 and 0.9 for population size
400 were cut short due to budget constraints, but this does not appear to
affect the pattern in our dataset.

6.5.4 Trait Tree Symmetries

Finally, we examined the algebraic properties of the trait
trees composing cultural regions, examining both the number
of vertex equivalence classes (orbits) and the size of the
automorphism group of the trait forests. We examined the
raw metrics, and versions normalized by the size of the
maximally symmetric forest with the same number of traits,
branching factor, and depth factor. The latter proved difficult
and led to serious overflow problems even with 64 bit
arithmetic, so we focus here on the raw automorphism group
size.

The logarithm of the automorphism group size does hint
at interesting structure (Fig. 6.9). In the presence of mutation,
the learning of prerequisites narrows the range of variability
for the automorphism group size, and at higher learning rates
renders the distribution multimodal. The modality arises
because of the different combinations of branching factor
and depth factor we employed for design spaces – i.e., some
design spaces are “wide” and some are “narrow,” while also
being “shallow” or “deep.” This gives rise to different modes
in the measured symmetries, but overall the reduction in
variability in symmetry is the most important qualitative
effect seen in our data.

We do not fully understand the “shapes” of cultural
regions to which the model appears to converge, but it
appears that there is a tendency for trait graphs to converge
towards shapes which have moderate numbers of symme-
tries. This graph is on a logarithmic scale, so a peak at 50
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Fig. 6.9 Number of symmetries in trait tree samples, measured as the log of the order of the automorphism group of the trait graphs, broken down
by prerequisite learning rate (rows) and global innovation rate (columns)

along the horizontal axis correponds to a trait graph with
approximately 5 � 1021 symmetries. This is a fairly small
number, compared to the original design spaces, which have
symmetries ranging from approximately 1041–106;496. Thus,
the geometry of cultural traits in our hierarchical design
spaces are fairly asymmetric and represent small and very
specific segments of the total design space.

Further analysis of trait graph “shapes” is needed to
tell whether there are repeating patterns or graph “motifs”
which characterize a social learning model in a graph-
structured trait space. The results here are suggestive of
such a phenomenon, but inconclusive given just the bulk
algebraic properties of cultural regions, since the size of
the automorphism group (or the number of orbits) tells
only how many symmetries there are, not what types of
symmetries exist. The next step in our analysis of shape is
to pursue a geometric decomposition of the graph following
Ben MacArthur and Rubén Sánchez-García’s (2008) work on
the symmetries of complex networks.

6.6 Discussion

The “semantic Axelrod” model described here specifically
addresses social learning of knowledge with “prerequisite”
structure, and a learning environment which is tunable from
low to high fidelity, simulating the intensity with which
“teaching” occurs in addition to imitative copying. The
model displays a characteristic increase in the cultural reper-
toires of individuals, as they learn in environments of higher
fidelity. At the individual level, an increase in higher fidelity
learning within structured information environments both
creates path-dependency in what is learned, and increases
the chances for specialization among individuals. Hominin
populations in which complex knowledge is taught system-
atically along with prerequisites will accumulate and retain
skills and technology faster and to a greater extent than those
groups which rely upon natural pedagogy and imitation for
social learning.
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Previous research had established the importance of
teaching and learning environments for cumulative cultural
evolution and cultural diversity (Aoki 2013; Castro and
Toro 2014; Creanza et al. 2013; Nakahashi 2013). Our
contribution in this paper is a model capable of connecting
the fact of teaching with the actual structure and content
of cultural knowledge. Such models, we believe, are
important in explaining the explosion of cumulative material
culture that accompanies behavioral modernity. The model
described here only makes a start on modeling the additive
and recombinative complexity of real technologies, but it
does display accumulated depth of “knowledge” or “skills,”
as represented by the radius or depth of trait trees. In
combination with realistic models of technology – such
as the production sequences studied by experts on stone
tools – we believe that empirically sufficient models of the
evolution of specific technologies are possible and within
reach.

Several areas suggest themselves for future research in
structured information or “semantic” cultural transmission
models. Some we are pursuing, others remain open questions
and we invite collaboration towards their solution.
• Regional scale cultural differentiation given a metapopu-

lation embedding of the basic model.
• Additional trait relations (e.g., class subsumption, func-

tional equivalencies).
• Realistic technology models for key artifact classes (e.g.,

bifaces, scrapers, pottery).
• Incorporation of trait fitness in order to study directional

change.
Models of the class introduced here are “thicker” de-

scriptions of how humans acquire skills and information in
real learning environments, and thus complement existing
models which describe the conditions under which teaching
and structured learning might evolve and spread. We believe
models of this type make a needed “downpayment” on
cultural transmission models which can substantively incor-
porate specialties such as archaeometry, the technnological
analysis of lithics and pottery (Tostevin 2012), and studies of
how innovation occurs in various tool classes (e.g., O’Brien
and Shennan 2010). Bringing cultural transmission modeling
together with the details of technologies will be a crucial
component in multifactor evolutionary explanations for the
complex of changes seen in modern Homo sapiens and some
Neanderthal populations in the later Paleolithic.
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Appendices

AlgorithmDescription

Algorithm 1 describes the “semantic” Axelrod model vari-
ant studied in this chapter. Within the algorithm, there are
several functions which find traits with particular properties.
Some, like GetTraitUniquetoFocal(), are fairly simple set
operations but were abbreviated to clarify the notation.

Algorithm 1
Require: innovrate is the population rate at which individuals ran-

domly learn a trait
Require: learningrate is the probability of learning a missing prerequi-

site during a learning interaction
1: focal GetRandomAgent()
2: neighbor GetRandomNeighbor(focal)
3: if focal D neighbor_ focal\ neighbor D¿ _ neighbor ¨ focal

then
4: exit { No interaction is possible, move on to next agent }
5: end if
6: prob .focal[ neighbor � focal\ neighbor/=focal[ neighbor
7: if RandomUniform() < prob then
8: differing neighbor n focal
9: newtrait GetRandomChoice(differing)

10: if hasPrerequisiteForTrait(focal, newtrait) = True then
11: replace GetTraitUniquetoFocal(focal,neighbor)
12: focal focal n replace
13: focal focal[ newtrait
14: else
15: if RandomUniform() < learningrate then
16: prereq  GetDeepestMissingPrerequisite(newtrait, fo-

cal)
17: focal focal[ prereq
18: end if
19: end if
20: end if
21: if RandomUniform() < innovrate then
22: focal3 GetRandomAgent()
23: innovation GetRandomTraitNotInFocal(focal3)
24: focal3 focal3[ innovation
25: end if

GetDeepestMissingPrerequisite() is a procedure which
takes the trait set of an individual, and a trait for which the
individual is known to be missing necessary prerequisites,
and returns the “most basic” missing prerequisite for that
trait (i.e., closest to the root). This is done by finding the
path which connects the root and desired trait, and walking
its vertices from the root downward, checking to see if each
vertex is part of the individual’s trait set. The first trait not
found in the individual’s repertoire is returned.
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Availability of Software and Analysis Code

The simulation software used in this chapter is available
under an open-source license at Mark Madsen’s GitHub
repository https://github.com/mmadsen/axelrod-ct. Required
libraries and software are listed in the source archive itself,
and include Python 2.7 and the open-source MongoDB
database engine to store simulation output.

The codebase consists of a set of library modules which
implement the shared and unique aspects of each model,
unit tests to verify the basic functionality of the code, and
scripts which execute each model. The axelrod-ct repository
contains three models:
• An implementation of the original Axelrod model using

the axelrod-ct libraries.
• A basic model with an “extensible” trait space but no

relations between traits.
• A “semantic” Axelrod model with tree-structured trait

space representing prerequisite relationships between
traits.
Stepwise extension from the original Axelrod to the se-

mantic models on the same code library allowed a degree of
verification, which is difficult in a situation where there is no
existing mathematical theory against which to compare the
code implementation (Committee on Mathematical Founda-
tions of Verification Validation and Uncertainty Quantifica-
tion, National Research Council 2012).

The analysis and final dataset reported here are available,
along with the source of this paper and associated presen-
tations, in an associated GitHub repository: https://github.
com/mmadsen/madsenlipo2014. Statistical analyses of the
final dataset were performed in R, rendering our results
reproducible given simulated data from the “axelrod-ct”
software linked above.
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7Inferring Learning Strategies from Cultural
Frequency Data

Anne Kandler and Adam Powell

Abstract

Social learning has been identified as one of the fundamentals of culture and therefore
the understanding of why and how individuals use social information presents one of
the big questions in cultural evolution. To date much of the theoretical work on social
learning has been done in isolation of data. Evolutionary models often provide important
insight into which social learning strategies are expected to have evolved but cannot tell us
which strategies human populations actually use. In this chapter we explore how much
information about the underlying learning strategies can be extracted by analysing the
temporal occurrence or usage patterns of different cultural variants in a population. We
review the previous methodology that has attempted to infer the underlying social learning
processes from such data, showing that they may apply statistical methods with insufficient
power to draw reliable inferences. We then introduce a generative inference framework that
allows robust inferences on the social learning processes that underlie cultural frequency
data. Using developments in population genetics—in the form of generative simulation
modelling and approximate Bayesian computation—as our model, we demonstrate the
strength of this method with an example based on simulated data.

Keywords

Social learning • Cultural evolution • Generative inference • Approximate Bayesian com-
putation

7.1 Introduction

Much research over the last decades has been devoted to
investigating the dynamics of social learning, one of the
fundamentals of culture. Social learning, defined as learning
facilitated by observations of, or interactions with, another
individual or its products (Heyes 1994; Hoppitt and Laland
2013), occurs in various forms and is widespread across the
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animal kingdom (Hoppitt and Laland 2013). While it can
facilitate the spread of adaptive information, accumulated
over generations, throughout a population, it also allows
the transmission of outdated, misleading or inappropriate
information especially in changing environmental conditions
(e.g. Giraldeau et al. 2002). So understanding why and how
individuals use social information is one of the big challenges
in cultural evolution (Rendell et al. 2010) and the focus
of a highly active, interdisciplinary debate. However, much
of the modelling work to date has been largely theoreti-
cal, in isolation of real data. While models often provide
important insights into which social learning strategies are
expected to have evolved in changing environmental condi-
tions, they are often unable to make robust inferences about
which strategies human populations actuallyuse based on
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observed cultural datasets. Much available empirical data
is in the form of frequency distributions of a number of
different variants of a cultural trait in the population at a
certain point in time (e.g. Bentley et al. 2004) or of time-
series that describe the dynamics of the frequency change
of cultural variants over time (e.g. Henrich 2001), and often
comprise a limited or chronologically-sparse sample from
the whole population. Attempting to infer the underlying
evolutionary processes from such population-level data poses
a classical inverse problem, but despite widespread interest
from researchers across archaeology, biological anthropol-
ogy, animal behaviour and psychology much of the currently
available methodology may be limited in its ability to reliably
identify which learning strategies (or combinations thereof)
could have produced the observed data. While a large number
of possible learning strategies have been identified, such
as direct-biased social learning, conformist social learning
or copy-when-uncertain (e.g. Boyd and Richerson 1985;
Laland 2004; Morgan et al. 2012), the inferential frame-
works utilised often lack the necessary statistical power to
distinguish between the, often very similar, variant frequency
distributions generated under those learning strategies. This
is especially true when the empirical data is sparse, and it is
important to recognise when frequency data lack sufficient
information. In such situations inference has to be based on
other lines of evidence.

In this chapter we review some of these theoretical in-
ferential approaches, focusing on their application to human
learning strategies, and then present a non-equilibrium gen-
erative framework which is aimed at robustly addressing the
current mismatch between theory and data. This generaliz-
able framework models the frequency change of different
variants of a cultural trait present in a population under the in-
fluence of various parameterised asocial and social learning
strategies, and coupled with a powerful statistical technique
called approximate Bayesian computation (ABC) it allows us
to delineate the conditions under which such frequency data
carry reliable signatures of the underlying learning strategies
which generated them. The suggested approach provides a
comprehensive and statistically powerful basis for determin-
ing possible mixture of learning strategies that are consis-
tent with even sparse observed cultural frequency data, and
therefore may result in a substantial reduction of the set of
evolutionary hypotheses that could have produced the data.

7.2 Previous Research

Research to establish the presence of particular learning
strategies in human populations is mainly centred around
experimental, laboratory-based and theoretical, modelling-
based approaches. Laboratory-based experiments have fo-
cused on uncovering the variety and subtlety of human social

learning strategies (Rendell et al. 2011). ‘Microsocieties’
(e.g. Coultas 2004; Baum et al. 2004; McElreath et al. 2008;
Morgan et al. 2012) and diffusion chain experiments (e.g.
Mesoudi and O’Brien 2008; Caldwell and Millen 2008;
Kirby et al. 2008) have proven to provide powerful frame-
works for revealing the existence of specific learning strate-
gies in human populations. For a comprehensive review of
this experimental literature see (Rendell et al. 2011). In this
chapter we focus on theoretical approaches and consider in
the following the merits and limitations of the use of adoption
curves (Sect. 7.2.1), power-law distributions (Sect. 7.2.2),
model selection frameworks (Sect. 7.2.3) and formal popula-
tion genetic and game-theoretic modelling (Sect. 7.2.4) when
investigating the learning strategies employed by human
populations.

7.2.1 Adoption Curve

Adoption curves detail the cumulative number of individuals
that have acquired a specific cultural variant at any given
point in time and therefore describe the temporal dynamic
of the spread of novel cultural variants through the popula-
tion. Many researchers suggested that the shape of adoption
curves can be used to infer information about the underlying
learning strategies employed by human populations; in par-
ticular about the presence or absence of social learning. Here
mathematical models predicted accelerating adoption curves
in situations when social information is used. The acceler-
ation is caused by the frequency-dependent nature of social
learning: the more individuals that have acquired the novel
cultural variant the higher the probability becomes of others
learning it socially, and is often described by a sigmoidal (or
S-shaped) adoption curve (Cavalli-Sforza and Feldman 1981;
Boyd and Richerson 1985; Laland et al. 1996). In contrast,
asocial learning is predicted to result in decelerating, often r-
shaped, adoption curves (Boyd and Richerson 1985; Laland
et al. 1996). Henrich (2001) argued that asocial learning
alone cannot produce S-shaped adoption patterns, and there-
fore that S-shaped dynamics must imply the presence of
social learning strategies, in various forms, in the population.
This reasoning would suggest that the presence or absence
of social learning can be inferred directly from the temporal
adoption dynamic of a cultural variant, and in fact many
episodes of the diffusion of innovations through human pop-
ulations exhibit an S-shaped adoption pattern (Rogers 2003).
While it is undoubtedly true that social learning results in ac-
celerating S-shaped adoption curves it has been demonstrated
that the diagnostic power of the shape of the adoption curve is
greatly reduced when allowing for individual heterogeneity
or complexity in the adoption process (Reader 2004) or
population structure (Franz and Nunn 2009). For example,
Rogers (2003) assumed that the adoption time (defined as



7 Inferring Learning Strategies from Cultural Frequency Data 87

the time it takes an individual to adopt the cultural trait)
is normally distributed and showed that in this situation
asocial learning alone can produce S-shaped adoption curves.
Therefore, individual differences in the propensity to adopt a
cultural trait are likely to influence the adoption dynamic and
researchers have to be cautious when attempting to infer the
presence or absence of social learning from adoption curve
data (Cavalli-Sforza and Feldman 1981). Furthermore, if
there is a number of discrete steps required to adopt a cultural
variant, the cumulative diffusion curve may be S-shaped,
even if individuals learn the tasks asocially (Kendal et al.
2007; Hoppitt et al. 2010b). These ambiguities in discrimi-
nating between asocial and social learning by analysing the
shape of the adoption curve demonstrate that this approach
might have limited power when used as an inference tool.

Adoption curves have also been the subject of intense
research in marketing science. Bass (1969) proposed that
the population of adopters can be divided into innovators
and imitators and that the shape of the adoption curve
will vary as a function of their relative importance. The
Bass model (and its numerous generalisations) has been
widely used in forecasting, especially the forecast of new
products’ sales (e.g. Mahajan et al. 1995). Alternatively to
this social learning hypothesis, threshold models have been
proposed to explain observed temporal adoption dynamics.
Here individuals adopt an innovation as soon as the utility of
the innovation exceeds some threshold e.g. when considering
costly innovations as soon as individuals can afford to adopt
the innovation (e.g. Van der Bulte and Stremersch 2004). It
has been shown that both explanations, the social learning ex-
planation described by the Bass model and the heterogeneity
explanation, can lead to nearly the same adoption behaviour
(Van der Bulte and Stremersch 2004; Kandler and Steele
2010). This again points to the limited power of inferences
based on temporal adoption curves.

7.2.2 Power-Law Distribution

An important strand of cultural evolution has investigated
the utility of models of unbiased social learning or neutral
copying, applied mainly in evolutionary archaeology (e.g.
Neiman 1995; Shennan and Wilkinson 2001; Bentley and
Shennan 2003). The underlying common model is derived
through direct analogy to the neutral model of population
genetics, where changes in selectively neutral allele frequen-
cies are due simply to the stochastic processes of drift and
mutation (e.g. Kimura and Crow 1964). Various empirically
calculated diversity statistics of the different archaeologi-
cal types or variants in an assemblage can be compared
with theoretically derived diversity estimators in order to
determine whether they are consistent, or not, with the
hypothesis of unbiased social learning (Neiman 1995; Kohler

et al. 2004). A further extension of this approach relies on
examining the full variant frequency distribution of a dataset,
rather than just summary statistics, and comparing it to the
right-skewed power-law distribution expected to arise under
unbiased social learning. This expectation is again derived
from the equivalent model in population genetics, where
it was demonstrated that at mutation-drift equilibrium in a
finite population the allele frequency distribution is of the
power-law form P.v/ � v˛ (Kimura and Crow 1964),
where P(v) is the proportion of alleles in the population at
frequency v. Such distributions were found across a number
of different cultural datasets (e.g. Hahn and Bentley 2003;
Herzog et al. 2004; Bentley et al. 2004), and thus the
underlying processes in these various cultural systems were
deemed to be consistent with an unbiased social learning
model. Mesoudi and Lycett (2009) showed that introduc-
ing learning biases into the basic neutral model can drive
the equilibrium variant frequencies away from a power-
law, but relied on a relatively crude testing procedure to
identify significant deviation. Clauset and colleagues (2009)
provided a very comprehensive set of statistical methods
for confirming whether empirical data sets are power-law
distributed, demonstrating that the methods adopted, and
thus the strength of the conclusions drawn, in the previous
literature were necessarily limited.

However, from an information-theoretic viewpoint (e.g.
Frank 2009) a power-law distributed dataset is not a firm
diagnostic of any particular underlying generative process.
The seeming ubiquity of power-law distributions across such
a wide range of natural and cultural phenomena, from the
magnitude and frequency of earthquakes (Gutenberg and
Richter 1944) to word usage frequencies in languages (Zipf
1929), can be explained purely as an inevitable consequence
of any large-scale aggregation process that preserves infor-
mation solely about the geometric mean. In other words, the
power-law is a limiting distribution with a large attractor
basin, such that invoking a unique mechanism to explain
power-law distributed data may be redundant since an infinite
number of different mechanisms will generate indistinguish-
able distributions. Recent work has drawn on this idea by
extending the framework outlined by Mesoudi and Lycett
(2009), in order to approximately quantify the limits of the
power-law attractor basin by testing for when significant
deviation from power-law distributed data occurs (Powell
et al. in prep, see also Clauset et al. 2009). This work begins
with an unbiased copying simulation model (e.g. Bentley
et al. 2004) and introduces incrementally increasing levels
of conformist or anti-conformist social learning. While even
very low levels of anti-conformity bias produces clear devia-
tion from a power-law, surprisingly high levels of conformist
social learning can occur over many generations without sig-
nificant deviation from a power-law distribution. This work
demonstrates that there is very limited statistical power with
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such an approach, and shows the clear limitations of using
power-law distributed data as indicative of an underlying
unbiased social learning process. Additionally, this power-
law approach relies on the assumption that innovation-drift
equilibrium is achieved and it is not immediately obvious
that such equilibria can be reliably achieved or maintained
in many cultural systems, e.g. due to changes in population
size or structure.

A closely-related area of work (e.g. Bentley et al. 2007;
Acerbi and Bentley 2014) draws on another facet of the
neutral model, the rate of turnover within the n most pop-
ular variants in a population, as a further basis to test for
divergence from unbiased transmission. Under the unbiased
copying assumption this turnover can be well-described in
functional form, against which empirical datasets can be
examined within a robust model comparison framework
(Acerbi and Bentley 2014). This approach appears promising
but still relies on the innovation-drift equilibrium assumption
and may be difficult to apply it to sparse archaeological data
where the total number of observed cultural variants is low
(such that a ‘top list’ of size sufficient to accurately calculate
turnover cannot be defined).

7.2.3 Model Selection Framework

Stressing the existence of a large number of possible social
learning strategies, McElreath and co-workers (McElreath
et al. 2008) developed a model selection framework based
on the Akaike information criterion (AIC) (Akaike 1974;
Burnham and Anderson 2002), which allows the quantifi-
cation of the relative support different learning strategies
receive from observed data. To do so they designed an
experiment where each individual controls a virtual farm
and has to decide which of the two possible crop varieties
to plant. Thereby each individual can access information
about the pay-off of each crop variety and the frequencies
of the different choices in the social group. This set-up
produced time-series of decisions and records of which kind
of information is used to make this decision. Now in order
to use this data to infer the learning strategies employed
by the individuals McElreath et al. (2008) developed a
probabilistic model which defined the conditional probability
of an individual choosing any behavioural option at any
point in time given the asocial and social information the
individual accessed. Based on these formulations they de-
vised a maximum likelihood framework to fit the considered
learning strategies to the observed data. Subsequently the
different learning strategies can be compared by evaluating
the relative support of the strategies from the data using
the AIC. Based on the results of this analysis one can
then conclude which learning strategy possesses the highest
relative explanatory power among a set of competing and

plausible strategies. McElreath et al. (2008) concluded that
a so-called ‘hierarchical compare means/frequency depen-
dent social learning’ strategy receives overwhelming support
from the experimental data. This strategy means that indi-
viduals compare the mean value of pay-offs of both crop
choices and if there is only a small difference they use
frequency-dependent social learning to choose which crop
to adopt.

This way of approaching the inference problem provides
significant advantages over classical hypothesis testing as it
can determine which of the strategies, consistent with the
data, has the most explanatory power and therefore describes
the most likely (however not certain) way learning happened.
The ideas developed later in this chapter are in a very similar
spirit but we do not restrict the choice of the modelling
framework by the availability of an analytical representation
of the corresponding likelihood function.

Further, aimed at inferring social learning strategies in
animal populations Franz and Nunn (2009) and Hoppitt
et al. (2010a) introduced network-based diffusion analysis
(NBDA). NBDA explores the existence of social learning
in small groups by monitoring whether information flow
follows the pattern of association between individuals. The
strength of this approach lies in the combination of different
kinds of information about the spread process and the social
network and an information-theoretic inference framework.
NBDA fits simulation models of asocial and social learning
to the observed data using maximum-likelihood estimation
and infers the underlying learning strategies using model
selection based on the AIC (Franz and Nunn 2009). It
overcomes a number of the problems associated with the
analysis of the adoption curve described in Sect. 7.2.1 but
successful applications of this approach require either a con-
trolled experimental set-up or the detailed knowledge of the
underlying social network. For a comprehensive review of
statistical inference techniques in the animal social learning
literature see (Hoppitt and Laland 2013).

7.2.4 Formal Modelling

There exists a large body of modelling work focusing on the
question of which learning strategies human populations are
expected to use especially in spatially and temporally chang-
ing environments. It is assumed that cultural variants differ
in the benefit they convey to their adopters in a particular
environmental situation and population-genetic and game-
theoretic analyses revealed the evolutionary stable learning
strategies for the assumed environmental fluctuations, i.e. the
strategies that would have evolved under natural selection.
These equilibria indicated that asocial learning is favoured
by natural selection when environmental changes occur on
relatively short intervals while social learning is favoured
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when the environment is relatively constant (e.g. Aoki et al.
2005; Boyd and Richerson 1985, 1988; Feldman et al. 1996;
Rogers 1988). Other approaches such as the simulation ap-
proach of the ‘social learning strategies tournament’ (Rendell
et al. 2010, 2011) or the n-variant competition framework
(Kandler and Laland 2013) suggested that social learning
could be the dominant learning strategy even in rapidly
changing environmental conditions. This difference is partly
caused by the fact that in these more recent studies more than
two cultural variants, offering different levels of benefit in a
particular environment, are considered. The potential accu-
mulation of social information then allows social learners to
adjust their adopted variant after an environmental change by
switching to an available, more adaptive variant.

Further, social learning can occur in a large number of
different ways (e.g. Cavalli-Sforza and Feldman 1981; Boyd
and Richerson 1985; Laland 2004), which raises the question
of how social information should be used to adapt efficiently
to changing environmental conditions. In this context special
attention has been devoted to conformist social learning,
in which common variants are disproportionately adopted
(Boyd and Richerson 1985). Henrich and Boyd (1998) stud-
ied the conditions under which conformity can evolve and
found that selection favours conformist learning as long
as the environment does not change too rapidly and the
evolution of social learning is more strongly influenced by
environmental heterogeneity than the evolution of confor-
mity. Contrary to those results Nakahashi (2007), Wakano
and Aoki (2007), Kendal et al. (2009) and Kandler and
Laland (2013) demonstrated a negative relationship between
environmental stability and the reliance on conformist social
leaning: the reliance on conformity tends to be larger in
frequently changing environments. Wakano and Aoki (2007)
pointed out that the Henrich and Boyd model results in the
same conclusion when the time of evolution is sufficiently
long. Additionally the models mentioned above differ in their
assumptions, e.g. Henrich and Boyd (1998) and Wakano and
Aoki (2007) used mixed learning strategies in a spatial and
non-spatial setting, respectively whereas Nakahashi (2007),
Kendal et al. (2009) and Kandler and Laland (2013) assumed
pure strategies where individuals use either social or asocial
learning. Eriksson et al. (2007) suggested that allowing for
more than two cultural variant (and additionally that indi-
viduals have complete knowledge about all present variants)
will disadvantage the evolution of conformist social learning.
Further, Efferson et al. (2008) noted that the evolutionary
advantage of the conformist strategy depends on the accuracy
of asocial learning. McElreath et al. (2011) pointed to the im-
portance of spatial heterogeneity in evolutionary modelling
and claimed that non-spatial frameworks may underestimate
the role of conformity. Similarly, Nakahashi et al. (2012)
argued that the focus on (unrealistic) situations characterized
by: (i) only two cultural variants present, (ii) only temporally

varying environments and (iii) error-free social learning has
obscured conditions favouring the evolution of conformity.

In summary, much theoretical work has been devoted
to the analysis of evolutionary stable strategies in different
environmental conditions. This approach revealed a large
number of important insights into the evolutionary process:
It allows for an elegant characterisation of the long-term out-
comes of evolution through natural selection as well as of the
associated evolutionary trajectories and for the derivation of
analytical conditions for different evolutionary trajectories.
In other words, it produces predictions of which learning
strategies are expected to be present in the population given
the environmental circumstances. However, in many real-
world situations learning strategies cannot be observed di-
rectly and therefore the model predictions reviewed above
are difficult to verify with the available data. Further, the
analysis of stable evolutionary equilibria implicitly assumes
that sufficient time has passed so that the equilibrium could
be reached and that individual fitness (with respect to the
considered cultural trait) is the quantity maximised by evo-
lution (Maynard Smith 1978). But how do we know that the
considered cultural system is at equilibrium? Are those stable
evolutionary equilibria really an appropriate description of
which learning strategies human populations use?

7.3 Generative Inference

In order to address the inverse problem of inferring underly-
ing learning strategies that could have given rise to observed
data, there exist two major types of modelling approaches:
discriminative and generative models. Discriminative infer-
ence proceeds by fitting a, usually limited, number of model
parameters conditional on a single instance of empirical data,
generally assuming some correlational relationship between
these observations and the implicit parameters, which may
have no explicit or causal bearing on the true underlying
mechanism. This kind of approach includes many standard
and familiar statistical modelling procedures, such as regres-
sion or clustering techniques, in which parameter values can
be estimated or structurally different models be compared.
On the other hand, the generative approach proceeds by
building a fully specified probabilistic model, in which the
hypothesised causal mechanisms are explicitly defined. This
model is used to repeatedly simulate pseudo-datasets under
known parameter values such that their expected distribution
can then be statistically compared with the observed data.
This comparison allows certain hypothesised mechanisms to
be rejected as inconsistent with the empirical data, or the
estimation of the causal model parameters that provide the
best fit to the data.

The idea of generative inference in socio-cultural evo-
lution really first emerged with the introduction of ‘Sug-
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arscape’, one of the earliest agent-based models designed
to investigate social processes (Epstein and Axtell 1996).
By repeatedly simulating a population of autonomous agents
moving and interacting on a heterogeneous resource land-
scape the model demonstrated that large-scale social phe-
nomena or patterns, analogous to those observed in the real
world, could emerge from the aggregation of micro-level
interactions. ‘Sugarscape’ and subsequent work (see also
Epstein 2007) demonstrated the viability of this inference
approach, by investigating the effects of hypothesised and
explicitly defined individual-level causal mechanisms on
population-level outcomes, that could then be compared
with observed data in order to test models and estimate
parameter values. While one of the major advantages of this
approach is that expected outcomes of much more realistic,
and potentially non-equilibrium, systems can easily be gen-
erated, the principle limitation has been the lack of a robust
statistical methodology capable of comparing the outcomes
from these complex models to empirical data. Much of the
work discussed in Sect. 7.2.2 and some in Sect. 7.2.1 can be
considered as taking this generative approach, but the infer-
ences drawn are limited by the lack of power in the statistical
methodology employed. However, a relatively recent major
statistical advance in the form of approximate Bayesian
computation (driven mainly by statistical geneticists, e.g.
Beaumont et al. 2002) has started to transform the field of
population genetics, by allowing inference on increasingly
detailed generative genetic models of human evolutionary
history using observed genomic data. Its recent successes
should serve as a model for the field of cultural evolution,
and we are strongly advocating this approach here.

7.3.1 Application in Population Genetics

A significant area of population genetics has recently
emerged that relies on the generative inference approach
outlined above. This work is usually in the form of explicit
simulation modelling, in which simulated genetic data
sets are generated under increasingly realistic genetic
(McVean and Cardin 2005; Marjoram and Wall 2006) and/or
demographic (e.g. Currat et al. 2004) models, and then
statistically compared to observed data in order to infer
population history (Veeramah et al. 2012; Eriksson et al.
2012) or past selection pressures (Itan et al. 2009; Wilde
et al. 2014).

But from its origins in the early twentieth century (Fisher
1930; Wright 1931) up until fairly recently, population ge-
netics had been a largely prospective discipline (Ewens
2004), concerned with predicting how allele frequencies
in a population will change over time. These mainly ana-
lytical models were used to identify theoretical equilibria

between the processes of mutation, drift and selection and
the expected levels of genetic variation thus maintained in a
population, as well as predicting the long-term fate of new
alleles. However, an alternative way of viewing evolution
is based on the idea of genealogies, or lineages, where the
ancestral relationships of a contemporary sample of individ-
uals are considered retrospectively. One major advantage of
this approach is that the ancestry of non-sampled individuals
can be disregarded, as, by definition, it has no bearing on
the evolution of the sampled individuals. While in genetics
these ideas date back at least to the 1940s (e.g. Malécot
1948), it was only the development of coalescent theory
in the 1980s (Kingman 1982) that allowed the ancestral
process to be robustly embedded within a population. The
coalescent is a statistical model that describes the stochastic
process by which lineages reach common ancestors, or
‘coalesce’, backwards in time within a population of defined
size or structure, generating a dated genealogy rooted by the
most recent common ancestor of the whole sample. Many
classical population genetics results were re-derived, often
more elegantly, using this retrospective approach, but the real
strength of the coalescent is that it allows extremely efficient
simulation of genealogies under a well-defined population
history without having to assume any sort of equilibrium. In
conjunction with a mutation model, these genealogies can
then be used to rapidly generate simulated genetic data to
match each observed sample. A number of extensions to
the basic coalescent model have allowed the incorporation
of evolutionary processes such as recombination (Hudson
1983; Marjoram and Wall 2006), as well as complex or
geographically realistic demographic histories (e.g. Currat
et al. 2004; Eriksson et al. 2012).

The coalescent approach is used (almost exclusively) for
inference based on neutral genetic loci, in order to avoid
the serious confounding effects of natural selection. Dis-
entangling the effects of demography and selection can be
very difficult, especially in human populations, given that
many genetic adaptations in humans are thought to have been
driven by cultural processes, e.g. adaptations due to dietary
changes (see Laland et al. 2010). It is difficult to extend
the coalescent to such complex cases, so instead genetic
data can be simulated by modelling the whole population
forward in time, and explicitly defining selection pressures
that may vary in time and/or space or apply just to certain
cultural groups (e.g. Itan et al. 2009; Wilde et al. 2014).
This forward simulation approach can be far more com-
putationally demanding, but still the underlying principle
is the same: genetic data is generated under an explicitly
defined evolutionary model which does not need to assume
equilibrium. Either way, these simulated genetic samples can
then be compared to observed samples, in order to estimate
the parameters of the evolutionary causal mechanisms, such
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as selection strength, changes in population size or migration,
or test between different models of population history.

This simulation, or generative inference, approach has
only become fully viable since the development of an ex-
tremely powerful statistical methodology known as approxi-
mate Bayesian computation (ABC) (Beaumont et al. 2002).
While it is generally preferable to base statistical inferences
on a likelihood function, in most applied population genetic
models their explicit specification and calculation can be
challenging, if not impossible. For those (often simplistic)
models in which the likelihood can be specified, approaches
such as Markov chain Monte Carlo (MCMC) can be imple-
mented in order to evaluate the likelihood. Such methods
are, in general, extremely computationally demanding and
it can be difficult to ensure that the chain converges on
the target distribution efficiently. In contrast, ABC allows
statistically robust inferences to be made on complex models
without the consideration of explicit likelihood functions.
The general idea is to approximate the joint posterior dis-

tribution of the model parameters P


�
ˇ̌
ˇD
�

directly, given

observed data D. This is done by repeatedly simulating data
D* under a generative model with parameter values drawn
from their prior distributions P(�), and retaining just those
parameter sets that generate data sufficiently ‘close’ to the
real data. These retained parameter sets form a sample from

the distribution P


�
ˇ̌
ˇd .D; D�/ � "

�
, where d(.,.) is the

distance between the observed and simulated data and " is
tolerance level that determines the level of approximation.
As " ! 0 the retained sample asymptotically approaches

the true posterior distribution P


�
ˇ̌
ˇD
�

. In practice, the data

are usually reduced in dimension by using a set of summary
statistics S, such that we are approximating the posterior

P


�
ˇ̌
ˇS
�

with P


�
ˇ̌
ˇd .S; S�/ � "

�
. Parameter estimation

is then performed via the joint or marginal posteriors for
each parameter, such that modal values and credible intervals
can be obtained. Many subsequent developments of this basic
algorithm have allowed successful applications of ABC to a
wide variety of inference problems both in population genet-
ics and elsewhere (e.g. Toni et al. 2009, and see Sect. 7.3.2.2).

Recent debate in population genetics has reinforced
the necessity of a rigorous model-based approach to
inference (Nielsen and Beaumont 2009; Beaumont et al.
2010; Templeton 2009). This allows explicit parameterized
models to be created, tested and fitted to data, in a way that
other approaches, such as phylogeography, cannot. While
a number of other non-generative model-based methods
are producing exciting findings (e.g. Green et al. 2010;
Hellenthal et al. 2014), an increasing number of researchers
are utilising the generative approach, often coupled with
ABC, to answer diverse questions about human evolutionary
history using both standard population genetic (Veeramah

et al. 2012; Eriksson et al. 2012) as well as gene-culture
coevolutionary (Itan et al. 2009; Rasteiro et al. 2012)
models.

7.3.2 Application to Cultural Evolution

In this section we turn back to our initial question of which
learning strategies human populations use especially in
changing environments. Based on the framework developed
by Kandler and Laland (2013) we demonstrate in the
following how a cultural evolutionary generative inference
procedure can be constructed and how it can be used to
explore which learning hypotheses are consistent with the
empirical evidence. Thereby we assume that time series
data detailing the usage or occurrence frequencies of
different cultural variants are available. Similarly to the
genetic applications the inference procedure consists of
two steps. The first step comprises the development of
a non-equilibrium generative model capturing the main
cultural and demographic dynamics of the considered system
and describing the frequency changes of different cultural
variants present in a population under the assumed learning
hypothesis. The focus on non-equilibrium situations is
motivated by observations of e.g. drastic environmental
changes or temporal variations in the total size of the
population of cultural variants. The model is designed to
establish a causal relationship between the various asocial
and social learning strategies and temporal frequency
changes of the present cultural variants. Consequently
initializing the model with the frequencies observed at the
beginning of the time series produces patterns of frequency
change expected under a specific learning hypothesis at any
future point in time. The second step uses ABC to derive
conclusions about which mixtures of learning strategies are
consistent with the observable frequency data and which are
not. The aim of this framework, then, is to allow researchers
to ‘reverse engineer’ which learning strategies are likely
to have been used in current or past populations, given
knowledge of how frequencies have changed over time,
independent of any optimality or equilibrium assumptions.
It should be noted that the generative model we introduce
below is simply an example to demonstrate the utility of
this approach, and that a number of the models reviewed
in Sect. 7.2 could feasibly be adapted to use within this
framework. The crucial point is that the generative model
is appropriately chosen and adjusted to the considered
application.

7.3.2.1 Generative Model
In Kandler and Laland (2013) we considered k different
variants of a cultural trait that differ in the benefit they
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Fig. 7.1 Example of an
adaptation function
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convey to their adopters in a particular environment. Us-
ing a competition framework we modelled the frequency
changes of those k variants of a cultural trait in the face
of asocial and social learning in form of direct biased and
conformist social learning. We assumed that a population is
experiencing changing environmental conditions, expressed
by the function e(t) with e.t/ 2 Œ�1; 1�. Those changing
conditions affect the adaptation levels of the different cultural
variants and we characterised each variant i by its adap-
tation function ai(e(t)). This function indicates the benefit
the variant conveys to its adopters in condition e(t) and is
determined by three parameters: the environmental condition
�i to which the variant is best adapted to, the maximum
level of adaptation amax,i and the width 
 i (see Fig. 7.1 for
an example).

Now asocial and social learning strategies cause the cul-
tural variants to change in frequency and we described those
changes using a differential equation framework of the form

@ui

@t
D ��ui .t/ C 
 .asocial learning/

C .1 � 
/ .social leaning/ ; i D 1; : : : ; k

dK

dt
D .� � �/ � K.t/ .1 � K.t// (7.1)

The variable ui describes the frequency of variant i at time
t in the population, or in other words the fraction of the
population that has adopted variant i. Further, K denotes
the total population size, � and � the birth and death rates,
respectively and 
 the reliance of the population on asocial
learning. It follows from the equation describing the tem-

poral dynamic of the population size in model (7.1) that

K.t/ � 1; 8t and further it holds
Xk

iD1
ui .t/ � K.t/.

Consequently, the temporal change in frequency of variant
i (denoted by dui/dt) is determined by
• the loss of adopters of variant i (described by �ui) and
• the cumulative influences of social and asocial

learning (described by the terms 
 .asocial learning/ C
.1 � 
/ .social learning/).
Social learning is based on social cues (and therefore can

only lead to learning of variants which are already present in
the considered location), however the nature of the cues can
be ambiguous. We considered two different social learning
strategies: direct biased social learning and conformist social
learning. Direct biased social learning is based on adaptation
information (meaning the adaptation levels ai of the cultural
variants in the current environment e(t)) and defined as the
adoption of variants found to be efficacious by individual
assessment (Boyd and Richerson 1985). This is incorporated
in model (7.1) by assuming the following dynamic: The
higher the adaptation level of a cultural variant the stronger
is its transmission supported by direct biased social learning.
Contrary, conformist social learning is based solely on fre-
quency information and leads to a disproportional adoption
of variants whose frequencies are above a commonness
threshold (Boyd and Richerson 1985). It holds: the higher
the variant’s frequency the stronger it is supported by the
conformist bias. The reliance on adaptation information
and frequency information is modulated by the parameter
b where b D 0 indicates no conformist tendencies. Asocial
learning on the other hand is based on environmental cues,
specifically on the inference about the benefit of specific
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variants in observed environmental conditions. Naturally,
this inference is error-prone but can lead to the introduction
of new variants into a specific location. We note that the
considered cultural system consist of at most k different
variants; variants can possess a frequency of zero at times
and be reintroduced into the system by the process of asocial
learning. In order to explore the temporal dynamic of the
learning process the birth and death rates, � and �, are
kept constant. A detailed mathematical description of the
considered model can be found in the Appendix. We note
that the suggested framework can be easily extended to
a spatially explicit model by allowing the adopters of the
different cultural variants to move in space. These spatial
movements can be described by a simple diffusion process
and the appendix provides the description of a spatially
explicit model.

Summarizing, system (7.1) provides a framework that
generates temporal frequency patterns of different cultural
variants possessing different levels of adaptation to the ex-
perienced environment conditioned on the assumed mixture
of learning strategies, i.e. it assumes that a fraction 
 of
the population engages in asocial learning and consequently
a fraction .1 � 
/ engages in social learning whereby the
strength of conformist learning is determined by the param-
eter b. The adaptation level ai of the present cultural variants
is determined by experienced environmental conditions e(t)
and the specific adaptation functions as given in Fig. 7.1.
Importantly, the environment e(t) can vary in a deterministic
or random manner (for more details see Kandler and Laland
2013). Now a systematic variation of the model parameters
(
, b) in system (7.1) produces insights into the interplay be-
tween learning strategies and patterns of frequency changes
(see (Kandler and Laland 2013) for a detailed analysis). In
particular when initializing the developed generative model
with the frequency data observed at the first time point
we obtain expectations about possible frequency patterns
at later time points conditioned on the assumed learning
hypothesis (
, b) and adaptation levels ai of the variants. In
the following we aim to establish statistically which of the
possible mixtures of learning strategies are consistent with
the observed frequency data.

7.3.2.2 Statistical Inference
As already mentioned above, in order to explore which mix-
tures of learning strategies are consistent with the observed
data we would ideally determine the likelihood function
of system (7.1) indicating the likelihood of the assumed
parameter values � D Œai ; 
; b� given the observed data D.
In this framework the data consists of frequency information
about different cultural variants at different points in time.
Based on the likelihood function we could derive the region
of parameter spacewhich is likely to have produced the

observed frequency patterns and therefore conclude which
mixtures of the learning strategies could adequately ex-
plain the data. However, in our case the likelihood func-
tion cannot be determined easily and so we use ABC in
the form of a Sequential Monte Carlo (SMC ABC) algo-
rithm (Toni et al. 2009; Beaumont 2010; Del Moral et al.

2012) to approximate the posterior distribution P


�
ˇ̌
ˇD
�

.

The key idea of the SMC ABC algorithm is to decom-
pose this problem into a series of simpler sub-problems
as efficient sampling from approximate posterior distribu-

tion P


�
ˇ̌
ˇd .D; D�/ � "

�
can prove to be difficult. The

algorithm starts by choosing a sequence of tolerance levels
f"0, "1, : : : , "ng with "0 < "1 � � � < "n � 0. In the first step a

sample is drawn from P


�
ˇ̌
ˇd .D; D�/ � "0

�
with "0 large

and subsequently from an increasingly constrained sequence

of distributions P


�
ˇ̌
ˇd .D; D�/ � "i

�
; i D 1; 2; : : : ; n:

In other words the tolerance level is sequentially decreased
until the desired level " D "n is reached. In this con-
text, Del Moral et al. (2012) introduced a procedure which
adaptively determines the best tolerance level "i in each
step.

The SMC ABC algorithm produces distributions of the
model parameters that indicate the ranges of the parameter
space which are able to produce frequency data within a
given tolerance margin " of the observed data. Consequently,
the mixture of learning strategies that are consistent with the
data can be deduced. As suggested in Kandler and Laland
(2013) the widths of the marginal posterior distributions will
allow an estimation of the amount of information contained
in the data on each parameter. If the ranges are narrow then
only a small region of the parameter space is consistent
with the data and therefore we conclude that a large number
of mixtures of learning strategies are not able to produce
the observed frequency change. In this way the suggested
approach can help reduce the possible range of strategies
that could have produced the observed frequency data. On
the other hand, if the posterior distributions of the model
parameters are wide a large region of the parameter space
is consistent with the data. This might be indicative of
either an inadequate description of the cultural system by the
generative model or the fact that the observed frequency data
do not carry a strong signature of the underlying learning
strategies: many different mixtures of learning strategies
can result in very similar frequency changes and therefore
not much information about the underlying learning pro-
cesses can be gained from analysing frequency data. Even
though this appears as a negative result it is crucial to
understand when frequency data is not informative about
the underlying evolutionary processes, as in this situation
researchers have to base inference on other lines of evi-
dence.
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7.3.2.3 Example
In order to demonstrate the applicability of the suggested
framework we consider the following theoretical example.
We use frequency data generated by the previously described
generative model (7.1) in the time interval [0,100] and
sample n data points as shown in Fig. 7.2. In more detail,
we assume three cultural variants to be present initially (with
initial fractions of adopters u1.0/ D 0:2; u2.0/ D 0:1 and
u3.0/ D 0:07) and the environment to stay constant until
time t D 50. Then a shock occurs causing the environment
to change, the present variants to decrease in frequency and
two new variants to be introduced. The model parameters are
chosen as follows


 D 0:1; b D 0; a1 D 0:3; a2 D 0:45; a3 D 0:4 for the
time interval [0,50] and


 D 0:1; b D 0; a1 D 0:35; a2 D 0:1; a3 D 0:07;

a4 D 0:6; a5 D 0:45 for the time interval [50,100].

Using this approach we have full knowledge of the system
(i.e. the adaptation level of the variants, learning processes
and environmental fluctuations) that generated the data, and
this enables us to explore how well our proposed inference
framework recovers the true parameters from disturbed data
(see coloured squares in Fig. 7.2). The data is disturbed
by adding Gaussian noise distributed as N �

0; 
2
�

with

2 D 0:032:

Now we apply the suggested inference framework to the
noisy frequency data and aim to estimate the adaptation
levels of variants present in the time intervals [0,50] and
[50,100], respectively, as well as the fraction of asocial
learners 
 and the strength of conformist learning strategy b.
Figure 7.3 shows the resulting posterior distribution for 
 and
b for the interval [0,50] (top row) and the interval [50,100]
(bottom row) for n D 11 data points. These distributions
describe the range of the parameter space of 
 and b where
the squared sum of the differences between the theoretical
and observed frequencies is smaller than ". Thereby " is
chosen to be the squared sum of the differences of disturbed
and undisturbed data as shown in Fig. 7.2 (Toni et al. 2009).
It is obvious that in both cases the posterior distributions
are tightly clustered around the true value 
 D 0:1 and
b D 0 and therefore the underlying learning processes can be
recovered relatively accurately from the noisy data. For sake
of shortness we omitted the posterior distributions for the
adaptation level ai, however note that those are also tightly
clustered around the true values. Figure 7.3c, f show the joint
distributions of the parameter 
 and b in the different time
intervals. The light areas indicate areas with high probabil-
ity whereas the darker areas indicate less likely parameter
regions. The joint distributions provide valuable information
about the interactions of the investigated processes, in our
case asocial learning and conformist social learning. In other
words, they provide an indication of which parameter con-

stellation give rise to similar population-level frequency data.
It is obvious that large deviations from the true value in both
parameters do not produce frequency patterns consistent with
the observed data (see the triangular shapes of the light areas
in Fig. 7.3c, f). We conclude that the developed inference
framework is able to recover the true model parameter on the
base of n D 11 data points.

This set-up also allows us to explore the question of how
many data points are needed to obtain reliable inference
results. Figure 7.4 shows the posterior distributions for 


and b for the time interval [0,50] if only n D 3 data points
at t D 0;25;50$ (top row) and n D 2 data points at t D 0;50
(bottom row) are available. Not surprisingly the ranges of
consistent parameter values are broadened and therefore
more mixtures of learning processes are consistent with the
sparse data. Especially if only two data points are available
we cannot make conclusive inferences about the role of con-
formist social learning. The range [0,0.08] of the parameter
space for b is consistent with the data which means that we
cannot exclude the presence of a weak or medium-strength
conformist bias in the population. Nevertheless based on
only two data points, we can firstly reject the hypothesis of
the existence of a strong conformist tendency and secondly
establish that the fraction of asocial learner is between 4
and 18 %. Further, the joint posterior distribution (Fig. 7.4f)
shows that a stronger tendency for conformist social learning
is accompanied by a larger fraction of asocial learning in
the population (see shape of the light region). In other
words, increasing the strength of conformist social learning
b and the fraction of asocial learning 
 in the populations
simultaneously can lead to very similar frequencies of the
three present cultural variants at t D 50.

7.4 Conclusion

Model-based inference approaches have already started to
transform the field of population genetics, by allowing in-
ference on increasingly detailed generative genetic models
of human evolutionary history using observed genomic data.
Acknowledging that fundamental questions in cultural evo-
lution and population genetics are of similar nature, namely
which underlying evolutionary mechanisms could have given
rise to observed frequency distributions, we explored in
this chapter the applicability of this inference technique to
cultural data. The key to success of such a framework is the
development of a generative model capturing the main de-
mographic and cultural dynamics of the considered cultural
system. This means that properties like population structure,
changes in population size or patterns of environmental
change are input to the model and need to be appropriately
chosen. Here we considered a competition framework mod-
elling frequency changes of k different variants of a cultural
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Fig. 7.2 Time course of the
frequencies of the different
variants
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Fig. 7.3 Posterior distributions for 
, b and the corresponding joint
posterior distribution for the interval [0,50] (a–c), posterior distributions
for 
, b and the corresponding joint posterior distribution for the interval

[50,10] (d–f). In all cases nD 11 data points are sampled and the true
parameter values are 
 D 0:1 and b D 0

trait in the face of asocial and social learning in the form
of direct biased and conformist learning in a spatially and
temporally variable environment. We note that this chosen
framework is only an example of a generative model; other
approaches such as simulation or network-based frameworks
can be used in exactly the same way (see Crema et al. 2014

for an application of a simulation based inference framework
applied to archaeological data). The crucial point is that the
generative model firstly produces data to which observed
data can be compared to and secondly establishes a causal
relationship between the processes under investigation (in
our case the employed learning process) and the generated
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Fig. 7.4 Posterior distributions for 
, b and the corresponding joint
posterior distribution for the interval [0,50] when nD 3 (a–c), posterior
distributions for 
, b and the corresponding joint posterior distribution

for the interval [0,50] when nD 2 (d–f). The true parameter values are

 D 0:1 and b D 0

data so that statistical inference procedures such as ABC
methods can be applied. In this way the suggested procedure
does not depend on any equilibrium assumption and infers
conclusions from a comparison of theoretical and observed
patterns of frequency change.

While conventional hypothesis testing is able to establish
whether the observed data are consistent with a single hy-
pothesis but does not allow for conclusions about the range
of hypotheses that are consistent, the ABC methodology
produces posterior distributions for the model parameters
indicating the parameter ranges that are consistent with the
observed data. The widths of those posterior distributions
provide estimates of how uniquely the observed population-
level data can be generated from a specifically defined
mixture of learning strategies. In other words, this framework
should help to address the long-standing question of how
much information about the underlying evolutionary pro-
cesses is really contained in observed population-level data.
While narrow posterior distributions for the model parameter
describing the strength of the different learning processes
indicate that the observed patterns of frequency change can
only be produced by a small number of hypothesis wide
distributions do not allow for informative conclusions about
underlying learning processes based on the considered data
and the generative model. We expect the developed infer-

ence framework to be valuable in helping to narrow down
the range of possible hypotheses that could have produced
observed data and therefore to be instructive especially in the
face of sparse data.

Additionally, careful application of an ABC model se-
lection framework can also potentially allow robust com-
parison between structurally different hypotheses. Under
the Bayesian paradigm competing models can be evaluated
on the basis of Bayes factors. While implicitly penalising
over-parameterized complex models these factors serve as
a summary of the evidence provided by the data in favour
of a specific cultural hypothesis out of the possibilities
considered. Early applications of this idea in connection
with ABC (e.g. Pritchard et al. 1999) used the notion that
Bayes factors can be empirically approximated by calculat-
ing the posterior probabilities of the competing models, i,

P


� i
ˇ̌
ˇD
�

. In practice, this is achieved by assigning each

competing hypothesis equal prior probability and then, given
a fixed tolerance or error margin ", approximating model
posterior probabilities by their relative acceptance rates in the
rejection algorithm (Toni and Stumpf 2010). In our example
application we would distinguish between two models: our
original model (7.1) accounting for asocial learning and
social learning in the form of direct biased and conformist
learning anda less complex model which does not allow for
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a conformist tendency in the population (This is achieved by
setting b D 0 in model (7.1).). As expected we find that the
less complex model has a higher Bayes factor as the original
data were generated under the assumption of no conformity
in the population.

In the application presented in Sect. 7.3.2.3 we compared
theoretical and observed frequency data D directly in the
SMC ABC algorithm, using the squared distance between
the data points. But in most real applications using the data
directly might not be possible, and then the ABC framework
relies on reducing the full data D to a set of summary
statistics S such that the approximated posterior distribution

P


�
ˇ̌
ˇS � "

�
is adequately representative of P



�
ˇ̌
ˇD � "

�
.

In statistical terms this requires S to be ‘sufficient’ for D,
such that no information is lost in the dimension reduction. In
practice this is almost impossible to guarantee, so choosing
S can be difficult. A number of different heuristic schemes
to guide the choice of S have been proposed, such that S
‘approaches sufficiency’ (e.g. Joyce and Marjoram 2008) or
choice is otherwise optimized (e.g. Nunes and Balding 2010)
or automated (e.g. Fearnhead and Prangle 2012). In addition,
the model selection approach described above can become
problematic when the Bayes factors are approximated on
the basis of summary statistics S rather than the full data
D (e.g. Robert et al. 2011), as even if S is sufficient for
each model it may not be sufficient to compare between
competing models. This is currently a topic of intense
research in both population genetics and statistics in general,
and regular improvements allow these limitation to be
somewhat mitigated in careful analyses. Notwithstanding
these limitations, the ABC family of techniques has in just
a short time permitted a revolutionary change in inferential
power using increasingly complex and realistic models,
especially those in population genetics. However, we stress
that the accuracy of the obtained inference depends crucially
on the appropriate description of the considered cultural or
genetic system by the generative model. Naturally this points
to the importance of the understanding of the nature and
complexity of the learning strategies employed by human
populations.

In order to infer which learning strategies human
populations really use we need to base inference on available
empirical evidence. Large individual-level datasets on
social learning are relatively rare, outside of experimental
conditions. However, two recent examples have drawn on
detailed historical records of the board game Go (Beheim
et al. 2014) or contemporary ethnographic data from Fiji
(Henrich and Broesch 2011) to directly infer the relative
importance of different learning-biases across and how this
may impact population-level cultural dynamics. While both
studies clearly demonstrate the advantages of such high-

resolution data, in most pre-modern contexts (including the
palaeolithic period) we are necessarily limited to aggregate
population-level data. The framework we have outlined
here successfully demonstrates that we can often still
use such sparse data to make inferences on the relative
weights of various underlying individual-level learning
processes. Importantly, the framework also indicates when
the available population-level data do not carry a strong
signature about underlying learning processes and therefore
when the analysis of this data will not provide meaningful
information. The ABC inference framework offers an
alternative way of studying cultural phenomena, independent
of any equilibrium or optimality assumptions and is highly
appropriate for application to typical archaeological datasets
(see also Crema et al. 2014). In particular, this approach
provides a useful bridge between the important on-going
theoretical work in cultural evolution and the continually
growing empirical data on human evolutionary history.

Acknowledgement We thank Kenichi Aoki and Jeremy Kendal for
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A.1 Appendix

In this chapter we assume that asocial and social learning
strategies cause the cultural variants to change in frequency
and describe those changes using a reaction–diffusion frame-
work of the form

@ui

@t
.t; x/ D d�ui .t; x/ � �ui .t; x/ C 
 .asocial learning/

C .1 � 
/ .social learning/ ; i D 1; : : : ; k

@K

@t
.t; x/ D d�K .t; x/ C .� � �/

� K .t; x/ .1 � K .t; x// : (7.2)

Thereby the variable ui describes the frequency of variant
i at time t in the population, or in other words the fraction
of the population that has adopted variant i. The variable
K denotes the population size at location x and in the
following we assume the population size to be the same
for all locations x. It follows from the second equation in
model (7.2) that K .t; x/ � 1; 8t and further, it holdsXk

iD1
ui .t; x/ � K .t; x/. The diffusion coefficient d de-

scribes the scale of spatial interactions, � and � the birth and
death rates, respectively and 
 the reliance of the population
on asocial learning. For sake of simplicity we stated the
non-spatial version in the main text. All dynamics describes
below hold in a similar way for this model.
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In more detail, learning in various forms can increase or
decrease the frequency of variant i. Asocial learning is based
on the judgement about the benefit of specific variants in
observed environmental conditions and consequently has two
error sources: misjudgement of the current environmental
condition and misjudgement of the adaptation levels of the
different variants. Despite the conceptual differences both
error sources lead to the same outcome in the modelling
framework: a variant i is chosen for which holds �i ¤ e.
Therefore the inaccuracy of asocial learning is modelled by
assuming that asocial learning is based on e D e C ! with
! � N �

0; 
2
!

�
. However, besides being error-prone asocial

learning can lead to the introduction of new variants and
its dynamic is modelled by (for sake of shortness we write
e D e .t; x/)

Pi .ai .e//

�
K .t; x/ �

Xk

jD1
uj

�

C
Xk

jD1;j¤i

�
Pj i

�
ai .e/ ; aj .e/

�
uj .t; x/

�Pij

�
ai .e/ ; aj .e/

�
ui .t; x/

�
(7.3)

The parameter Pi describes the rate at which the fraction
of the population which has not yet adopted a variants
(described by the difference between the population size
K(t, x) at time t and the sum of the fractions of the popu-
lation which have adopted one of the k variants, K .t; x/ �Xk

jD1
uj .t; x/) learns variant i asocially. Pi depends on

the adaption level ai(ē) meaning that asocial learning is not
completely random: the higher the adaptation level in the
estimated environment ē the higher is the adoption rate.
Further, we allowed for the switching of variants which de-
scribes the process that individuals who already have adopted
a cultural variant can switch to adopting a different variant.
The coefficient Pij models the rate at which the fraction of the
population which has adopted variant i switches to variant j
due to the evaluation of environmental cues. Again it holds
the larger the difference aj .e/�ai .e/ between the estimated
adaption levels the higher is the switching rate. Contrary
to asocial learning, social learning is based on social cues
and therefore can only lead to learning of variants which are
already present in the considered location. In the considered
framework we only considered two social learning strategies:
direct biased social learning and conformist social learning.
Direct biased social learning is modelled by (for sake of
shortness we write e D e .t; x/)

ri .ai .e// ui .t; x/

0

B@1 � ui .t; x/

K .t; x/ �
Xk

jD1;j¤i
uj .t; x/

1

CA

C
Xk

jD1;j¤i

�
cj i

�
ai .e/; aj .e/

�

�cij

�
ai .e/; aj .e/

��
ui .t; x/ uj .t; x/ : (7.4)

Similarly to the dynamic of asocial learning the first term

ri .ai .e// ui .t; x/

0

B@1 � ui .t; x/

K .t; x/ �
Xk

jD1;j¤i
uj .t; x/

1

CA

models the adoption of variant i by the population which has
not adopted any variants yet. However contrary to asocial
learning, this term is frequency-dependent. It is a logistic
growth process with adoption rate (or intrinsic rate of in-
crease) ri and broadly speaking describes cultural reproduc-
tion. Per definition, the population size K(t, x) at location
x is the upper limit of the total fraction of adopters in

the population at this location (given by
Xk

jD1
uj .t; x/),

regardless of the adopted variant. Consequently, the upper
limit for the fraction of the population that has adopted

variants i is given by K .t; x/ D
Xk

jD1
uj .t; x/ (i.e. we

assume that our cultural variants compete for a common
pool of adopters). The adoption rate ri is assumed to be
proportional to the adaptation level ai in the currently expe-
rienced environmental condition e. It holds: The higher the
adaptation level the higher is the adoption rate. The second
term

Xk

jD1;j¤i

�
cj i

�
ai .e/; aj .e/

�

�cij ai .e/; aj .e/
�

ui .t; x/ uj .t; x/

describes the switching dynamic between the fractions of the
population which has already adopted a variant. Again we
assumed that individuals who have already adopted a variant
have the chance to switch to another variant and therefore
the different cultural variants compete with each other for
use. These interactions between the variants are described
by the terms cij(ai(e), aj(e))ui(t, x)uj(t, x) which model the
switch process from variant i to variant j. The strength of
this process is determined by the rate cij and it holds: The
higher the difference aj .e/ � ai .e/ of the adaptation levels
of both variants the higher is the switching rate. In order to
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include conformist social learning we allowed these model
parameters to be frequency-dependent. We assumed

Qri D .1 � b/ ri .ai .e// C b .ui .t; x/ � cbK .t; x// and

Qcij D �
.1 � b/ cij

�
ai .e/; aj .e/

�C b
�
uj .t; x/

�cbK .t; x//�C

where b controls the reliance on adaptation information
and frequency information, respectively. For b D 0 we ob-
tain direct biased learning while b > 0 supports variants
with a frequency higher than the commonness threshold
cbK(t, x). In this case the difference .ui .t; x/ � cbK .t; x//

is positive and the adoption rate Qri is increased. Contrary
if .ui .t; x/ � cbK .t; x// is negative (and therefore variant
i has a relatively small frequency) the adoption rate Qri is
decreased. A similar dynamic applies to the switching rate
Qcij . If the frequency of variant j (the target of the switch
process) exceeds the commonness threshold cbK(t, x) then
the rate Qcij with which variant i is substituted by variant j
is increased. The symbol Œ:�C denotes the positive part of any
real number (e.g. Œ3:4�C D 3:4 but Œ�3:4�C D 0) ensures
that there is no reversal of the switch direction.

We note that when considering a single cultural variant the
dynamic of asocial learning (7.3) results in r-shaped adoption
curve while the dynamic of asocial learning (7.4) results
in a S-shaped curve whereby the existence of a conformist
tendency (b > 0) produces long tails at the beginning and
an accelerated adoption behaviour when the commonness
threshold is exceeded. System (7.2) can be solved using the
Finite-Element method and we obtain the time course of
the frequencies ui. of each cultural variant that are expected
under the assumed learning hypothesis and environmental
change.
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8Simulating Geographical Variation in Material
Culture: Were Early Modern Humans in Europe
Ethnically Structured?
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Abstract

A high degree of structuring is seen in the spatial distribution of symbolic artefact types
associated with the Aurignacian culture in Upper Palaeolithic Europe, particularly the
degree of sharing of ornament types across archaeological sites. Multivariate analyses
of these distributions have been interpreted as indicating ethno-linguistic differentiation
(Vanhaeren and d’Errico 2006), although simpler explanations such as isolation-by-distance
have not been formally discounted. In this study we have developed a spatiotemporally
explicit cultural transmission simulation model that generates expectations of a range of
spatial statistics describing the distribution of shared ornament types. We compare these
simulated spatial statistics to those observed from archaeological data for Aurignacian
Europe—using Approximate Bayesian Computation—in order to test and compare a range
of hypotheses concerning group interaction dynamics for the period. Among the set of
hypotheses examined, we include ones where material culture does or does not drive group
interaction dynamics.
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archaeological material culture, and a progression towards
modelling approaches to understanding past processes. Ar-
chaeologists are now more widely postulating explicit hy-
potheses to explain the material culture records recovered
from archaeological sites, and developing various methods
to test these hypotheses. As a result, the fields of archaeol-
ogy, anthropology and the social sciences in general have
become increasingly systematic and multidisciplinary. In
archaeology, there has been an increase in the application
of computer simulation modelling and statistical techniques
to study the relationship between cultural and demographic
processes (Clark and Hagemeister 2007; Powell et al. 2009;
Costopoulos and Lake 2010; Gerbault et al. 2014) in order
to address longstanding archaeological and anthropological
questions that are difficult to address through interpretation
of archaeological data alone.

The evolution and spread of cultures have been studied
using computational modelling methods, with particular fo-
cus on processes of cultural innovation and the transmission
and accumulation of cultural traits (Neiman 1995; Shennan
2001; Henrich 2004; Powell et al. 2009). The formation
of cultural boundaries has also been studied using a group
of computational methods labelled agent based modelling
(ABM). ABM has been applied throughout the social sci-
ences to investigate how large-scale effects emerge as a result
of interactions between agents in the system (Premo 2007;
Powell et al. 2009) and for studies of hominin dispersal
(Mithen and Reed 2002; Nikitas and Nikita 2005; Hughes
et al. 2007). In particular, Robert Axelrod has used ABM
methods to investigate the persistence of cultural heterogene-
ity as a result of interactions between individual agents that
are dependent on the extent of cultural similarity between
those agents (Axelrod 1997).

Simulation modelling of this kind is a powerful approach
that allows the incorporation of stochasticity (variation
in demographic and cultural processes arising from
random events) into the models. Simulation modelling, and
computational modelling in general, also allows researchers
to account for sample sizes and the spatial distribution of
sample sites, effectively incorporating sampling error and
some archaeological bias in inferences on the past (Shennan
et al. 2013; Gerbault et al. 2014). The use of modelling
in archaeology has resulted in a better understanding of
behaviours of agents within the complex systems modelled,
as well as helping to refine the questions that are asked
and hypotheses that are postulated. With such methods,
archaeologists are able to develop robust frameworks that
allow a qualitative comparison of alternative modelled
scenarios with each other and with observed material culture
records, in effect creating virtual experiments to test the
effect of varying parameter values on the similarity between
simulated and observed material culture data.

In addition to simulation modelling, statistical modelling
methods are widely used to describe distributions of, and

relationships between, archaeological variables; for example,
regression modelling is used to infer correlations between
variables of interest. As in many other disciplines, Bayesian
methods in archaeology have surged in popularity in recent
years. In brief, Bayesian inference is a branch of statistics
that uses particular datasets to infer the probability that a
proposed hypothesis, or a parameter value of that hypothesis,
is true. In contrast to frequentist statistics, where the hypoth-
esis is fixed and variation in outcomes (data) is explored,
in Bayesian inference the data becomes fixed and some
space of possible explanations (hypotheses) is explored. This
means that Bayesian approaches are naturally well suited to
archaeological inference since observed data from the past
is fixed but only one of a number of possible outcomes
of a set of stochastic processes of interest. In Bayesian
approaches, various models with set numbers of parameters
are proposed, and the posterior probability distributions of
these parameters are inferred using information from prior
probability distributions of the parameters and information
provided by the observed data.

In archaeology, Bayesian methods are primarily asso-
ciated with dating; for example, to integrate stratigraphic
information with radiocarbon date estimates in order to
calibrate the probability density distributions (Buck 2001).
Other branches of Bayesian methods have not been exten-
sively implemented in archaeological studies. Of particular
interest in this paper is a family of Bayesian methods called
Approximate Bayesian Computation (ABC) (Tavare et al.
1997; Fu and Li 1997; Beaumont et al. 2002; Bertorelle et al.
2010).

In ABC techniques, a large number of datasets are sim-
ulated under a model assuming different, randomly chosen,
parameter values from within prior ranges, and appropriate
summary statistics are used to measure the extent to which
the simulated datasets emulate the observed data. Parameter
values under which the model generates datasets closest to
the observed data are retained and form a sample of the
posterior probability distributions of the parameters. This
approach allows the researcher to postulate a number of
hypotheses and, provided that they are sufficiently well
defined to allow data to be simulated, test which of these
hypotheses are more likely given the observed data. An
important advantage of ABC over traditional Bayesian ap-
proaches is that it is not necessary to formulate an exact
function to calculate the probability of the data given some
conditions (the likelihood function). The ABC framework
and algorithms are further discussed in Appendix 1: Bayesian
Inference and Approximate Bayesian Computation (ABC),
Appendix 2: Approximate Bayesian Computation (ABC)
Algorithm and Appendix 3: Summary Statistics.

In this paper we present a case study in which a spatiotem-
porally explicit cultural transmission simulation framework
has been developed and integrated with observed material
culture data (Upper Palaeolithic bead types identified as
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personal ornaments), using ABC, in order to aid the interpre-
tation of quantitative data analyses on the observed material
culture data (Vanhaeren and d’Errico 2006).

8.2 Case Study: Applying Simulation
Modelling and ABCMethods

8.2.1 Introduction

The transition from the Middle Palaeolithic to the Upper
Palaeolithic period in Europe occurred as early as approxi-
mately 44,000 years ago (Kuhn et al. 2001; Bar-Yosef 2002;
Mellars 2005; Higham et al. 2012; Banks et al. 2013).
This transition is widely seen as marking the appearance
of modern human behaviour in Europe, as evidenced in
the Upper Palaeolithic material culture by increased and
consistent symbolic activity, and other technological and
cultural advances (Powell et al. 2009). These changes in
behavioural patterns appear in the archaeological record in
the form of abstract and figurative art, the use of personal
ornaments, systematically produced microlithic stone tools,
bone, ivory and antler artefacts, and increasingly complex
hunting technologies. The initial appearance of such items in
the European territory dates to the beginnings of the Upper
Palaeolithic transition and is thought to coincide with the ap-
pearance of AMH in Europe (Kuhn et al. 2001; Zilhão 2007).

The earliest evidence of anatomically modern humans
in Europe remains a subject of debate, but is estimated
to date to between approximately 45 Ka (Benazzi et al.
2011; Higham et al. 2011) and 40 Ka (Zilhão et al. 2007;
Trinkaus and Zilhão 2012). Due to the lack of reliably
dated Neanderthal fossils younger than approximately 40 Ka
(Pinhasi et al. 2011), archaeological findings dating to 40 Ka
or later are assumed to be mostly the result of activities
of anatomically modern human populations. Little is known
about the migration routes of the first anatomically modern
human populations inhabiting Europe at the onset of the
Upper Palaeolithic, the extent of biological, cultural and
linguistic diversity among them, and the nature and extent
of their interactions with the local Neanderthals (but see, for
example, Prufer et al. (2014)).

Personal ornaments are considered to be among the first
material objects used to communicate social and ethnic iden-
tity within and across cultural boundaries (Kuhn et al. 2001).
In relation to ethnic identity, personal ornaments can there-
fore be considered to be the most diagnostic components of
material culture surviving in the archaeological record. It has
been argued that personal ornaments and beadwork can be
used as a proxy for ethno-linguistic identity (Vanhaeren and
d’Errico 2006), and that they offer archaeological advantages
over other components of the material record for inferring
ethno-linguistic structuring, including their exclusively sym-

bolic function, and the frequency and wide assortment in
which they occur at archaeological sites associated with
the Upper Palaeolithic (Kuhn et al. 2001; Vanhaeren and
d’Errico 2006).

In their study, Vanhaeren and d’Errico (2006) considered
bead types, identified as personal ornaments, from European
Aurignacian sites. Seriation and correspondence analyses of
the data identified geographically non-randomly distributed
clusters of sites sharing bead types. Seriation analysis is a
relative dating method used to chronologically order artefacts
recovered from different sites and belonging to the same
culture. It is based on the relative chronological order of
artefacts and is often applied when absolute dates are not
available. Correspondence analysis is related to principal
components analysis and is a method used to identify di-
mensions of variation in categorical data and rank them by
the amount of variance explained. The authors argued that
the observed variation in spatial distributions was not due
to changes over time in personal ornament preference or
local availability of raw materials, but rather represented
cultural differences among the human groups using Aurig-
nacian technologies. They further argued that the identified
trends may have reflected ethno-linguistic diversity among
Aurignacian populations.

While this is an interesting interpretation, simpler expla-
nations of these results have not been formally discounted.
There are many factors that could cause spatial variation
or geographical structuring of material culture, including
ethnicity, chronology, local availability of raw materials,
environmental influences or simply isolation-by-distance and
identity by descent. It is also important to distinguish be-
tween spatial variation and ethnic structuring, the latter refer-
ring to the ability of individuals, or groups of individuals, to
consciously identify with a specific social group “based on a
particular locality or origin” (Shennan 1989). Considering
this definition, it is clear that drawing conclusions about
ethnic identity and structure for prehistoric populations is
difficult since there are no data in the material record relating
to individual’s conscious identification; the challenges of
invoking ethnic structuring and reconstructing patterns of
ethnicity through analysis of material culture data have been
discussed by several authors (Shennan 1989, 2002; Jones
1997). With this in mind, invoking ethnic structure for the
Upper Palaeolithic in Europe is a challenging task given the
paucity of material culture and other data for the period.

However, ethnic identity and structuring are universals in
the modern world and are therefore frequently assumed for
peoples in the past. Identifying the earliest appearance of
ethnicity is an issue of general importance for the history of
human evolution that has implications for the emergence of
languages, and may inform on the evolutionary dynamics of
human populations, as well as the role of identity construc-
tion in people today.
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The current study therefore aims to test whether the distri-
bution of artefact types reported by Vanhaeren and d’Errico
(2006) can be explained by a model of cultural identity-
by-descent with modification and isolation-by-distance, or
whether it is necessary to invoke cultural group interaction
processes that would be expected if material culture was
symbolically marking ethnic group identity. For example, an
interaction between two culturally similar populations may
result in sharing of cultural traits between the two, causing
them to become overall more culturally similar, while an in-
teraction between two culturally different populations might
result in the two undergoing conflict, dependent on the extent
of the cultural difference between them, and possibly the
imposition of one culture on another. An analogous distinc-
tion is that between the existence of inter-group differences
arising through cultural mutation and drift (the null model),
of which actors are not consciously aware, versus that null
model plus the intentional adherence to behavioral norms
that imply identity and actively shape interaction processes,
and through that, the spread, loss and mixing of culturally
inherited traits.

In this study, spatiotemporally explicit cultural trans-
mission simulation models that generate simulated material
culture data under each of the scenarios described above
have been developed and explored through simulation. The
archaeological dataset published by Vanhaeren and d’Errico
(2006) is used to assess the validity of each model. The
underlying principle here is that conditions under which the
simulated data is very similar to the observed archaeological
data—as reflected in a range of spatial statistics describing
the distribution of artefact types—are more likely to be true
than conditions under which the simulated data is unlike
the observed data. This assessment of the goodness-of-fit
between the simulated and observed data is quantified using
ABC.

8.2.2 Simulation Modelling

Each simulation is initialised at the onset of the Aurignacian
period, approximately 42 Ka, and simulated forward in
time to the end of the Aurignacian period, approximately
29 Ka (Higham et al. 2012). Each simulation spans a total
of 13,000 years, or 520 generations assuming a 25 year
generation time (Tremblay and Vezina 2000; Thomas et al.
2006). Since this may be an overestimate of the length of
the Aurignacian period (Zilhão and Pettitt 2006), data is
also collected when each simulation reaches 10,000 years,
or 400 generations, though these results are not presented
here. Each simulation includes a 1,000 year, or 40 gener-
ation, burn-in period at the start of the simulation during
which no simulated data is collected, in order to allow
for possible inaccuracies in initial locations of simulated
groups.

8.2.2.1 SimulationWorld
The geographic region considered in this study is the range
of latitudes and longitudes corresponding to the European
territory. The longitude, �, ranges from �11ı to 30ı, which,
relative to modern day country boundaries, is approximately
the area from the western Irish boundary to the western
Russian boundary at the Urals. The latitude, �, ranges from
35ı to 60ı, which is approximately the area from the northern
boundary of Africa to the northern boundary of Scotland.
Although it would be possible to incorporate changes in
sea levels through time by using available bathymetry data,
dramatic geostatic rebound for northern latitudes makes it
difficult to accurately estimate coastlines for northern Eu-
rope. For this reason, modern coastlines are currently used
in simulations.

Within the defined region, each geographic location is
assigned a local carrying capacity. The carrying capacity of
a location determines the habitability, and therefore potential
population density, of that location; a zero carrying capacity
corresponds to an uninhabitable region, for example sea or
ice covered land. In order to estimate these local carrying
capacities for geographic locations in the modelled domain,
two distinct environmental scenarios have been considered;
each simulation is conditioned on only one of these two
environmental scenarios.

The first is a simple scenario in which Europe is assumed
to be a flat space. This corresponds to a distribution with all
locations within the modelled domain having equal relative
carrying capacity values.

In the second of the environmental scenarios, instead of
treating Europe as a flat space, we have taken information on
estimated population densities during the Aurignacian from
Bocquet-Appel et al. (2005) to inform on carrying capacities
for the modelled domain, shown in Fig. 8.1. Bocquet-Appel
et al. used databases of archaeological sites corresponding
to the Upper Palaeolithic period, together with simulated
climatic variables and ethnography of hunter-gatherers, to
estimate the distribution of hunter-gatherer populations in
Upper Palaeolithic Europe.

The original estimate of population density, shown in
Fig. 8.1 for the Aurignacian period, was not made avail-
able, so the distribution used in this study is approximated
based on the original figure. Since we are concerned with
distributions rather than exact numbers estimated in the
original study (Bocquet-Appel et al. 2005), this estimate
is normalised to give relative distributions. The normalised
distribution is used in simulations as the relative carrying
capacity value for each location.

In both scenarios, the potential, or target, population
density for each location is calculated as the product of the
relative carrying capacity value at that location and the Gmax

parameter, which specifies the total maximum number of
groups that the modelled domain can sustain. We treat this
as an unknown parameter and explore a range of values.
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Fig. 8.1 Estimate of the regional
distribution of the metapopulation
of hunter-gatherers during the
Aurignacian period of the Upper
Palaeolithic in Europe,
superimposed on the IOS3
project maps. The boundaries (in
black) of the accretion zones,
with the corresponding numbers,
account for roughly 90 % of the
distribution of the local
population (Image and edited
caption from (Bocquet-Appel
et al. 2005)
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8.2.2.2 Demographic Processes
Each simulation is initialised with a fixed number of groups,
G0, placed in randomly chosen habitable locations in the
modelled domain; all attributes and processes are defined at
the level of the group, rather than individuals in that group,
and groups are assumed to be the same size. Groups mi-
grate locally and undergo fission/extinction processes. These
demographic processes are analogous to an isolation-by-
distance model in population genetics (Wright 1943; Slatkin
1993).

Migratory Processes
At each generation groups are subjected to migratory pro-
cesses modelled as parameterised Gaussian random walks.
The distance each group traverses in a migration process
is picked from a normal distribution with mean �mig and
standard deviation 
mig D dmig. Positive and negative values
picked from the distribution correspond to movement in op-
posite directions, namely East and West and North and South,
respectively. The mean of the distribution is therefore set to
�mig D 0 to ensure that movement in opposite directions is
equally likely. Parameter dmig corresponds to the standard
deviation, or width, of the normal distribution and specifies
the range of values that the migration distance is most likely
to take in each of the East-West and North-South directions.
We treat dmig as an unknown parameter and explore a range
of values.

The distance travelled by each group at each generation
in the East-West and North-South directions is picked in-
dependently from the above-described normal distribution.
The distance, d, and direction, � , that define each group’s
movement are given by:

d D
r


�x
�2 C .�y/2; and (8.1)

� D arctan 2 .�x; �y/ ; (8.2)

where arctan2 corresponds to a variant of the arctan function
that takes into account the sign of both vectors in question
and distinguishes diametrically opposite directions, therefore
specifying unique angle values in the range (0, 2 ).

The new proposed position of each group is then calcu-
lated based on the group’s current location, the distance, d,
and the direction, � , of movement. If the longitude and lati-
tude of the group’s current positions are �current and �current,
respectively, and the same for the group’s new locations are
�new and �new, respectively, then:
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These formulae are introduced to allow for the curvature
of the Earth when calculating the new group positions.
Although the curvature of the Earth has little effect in the
current framework, as the migration distance d is small
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relative to the radius of the Earth (denoted R and assumed
to be constant at 6,371 km) using these formulae ensures
that the model can be applied accurately with arbitrarily large
migration distances.

Fission/Extinction Processes and KDE
In addition to the migratory process undergone at each
generation, each group also undergoes a fission/extinction
process with parameterised probability. The probability that
a group undergoes a fission/extinction process is given by the
probability of fission/extinction parameter, pf/e; we treat this
parameter as an unknown and explore a range of values. The
type of process that a selected group undergoes is determined
by the difference between target and current local population
density at the group’s location (i.e. fission or extinction).
The difference between target and current local population
density is an indicator of potential for growth; a positive
value indicates that the location is below carrying capacity
(i.e. the target local population density is greater than the
current local population density—the location is under-
populated and so there is potential for growth) and therefore
results in a fission event, while a negative value indicates
that the location is above carrying capacity (i.e. the target
local population density is smaller than the current local
population density—the location is over-populated and so
there is no potential for growth) and therefore results in
an extinction event. The population density at the current
generation is estimated from the group locations using kernel
density estimation (Wand and Jones 1995).

An extinction event results in the group being deleted
from the simulation, while a fission event results in a repli-
cation such that two groups, the parent and offspring, are
present in the next generation. The offspring group retains
the cultural traits of the parent group (i.e. the offspring
group is an exact replica of the parent group, except for
any mutation events), analogous to identity-by-descent in
population genetics. In subsequent generations, the parent
and offspring groups migrate and undergo fission/extinction
processes independently, and their respective cultures also
evolve independently.

8.2.2.3 Cultural Processes: Modelling Ethnic
Diversity

Axelrod’s Model of Cultural Dissemination
The models developed in this study simulate innovation in
culture and so require the concept of culture to be mathe-
matically defined. For this purpose we have used an adapted
version of Axelrod’s definition (Axelrod 1997) in which the
culture of an agent (an individual or a group of individuals)
is defined to be a set of attributes that are subject to social
influence. In Axelrod’s definition, the culture of an agent
consists of some number of these attributes, referred to as
cultural features, and each can assume one of a predefined

number of values, referred to as traits, thus, each agent is
monomorphic for each cultural feature. In this definition, the
culture of an agent is then described as a list of digits, with
the position of a digit corresponding to the feature and the
value of a digit specifying the current trait for that feature.
In Axelrod’s definition, the trait—or value that a feature
takes—is assigned at the start of the simulation and is only
influenced by social interactions (i.e. it does not undergo any
mutation processes).

In Axelrod’s formulation, social interactions are con-
strained to occur only between agents that are immediate
neighbours. The simulations occur on a square lattice with
agents arrayed at discrete points over the lattice. Most agents
therefore have four immediate neighbours, with those on the
edge of the lattice having three and those in the corners
having two immediate neighbours. Also in Axelrod’s model,
the probability of an interaction between two agents is
proportional to the cultural similarity between them. This
similarity is quantified as the proportion of their features that
have the same trait. The interaction then consists of an agent,
and an immediate neighbour to that agent, being chosen at
random. A single feature on which the chosen agent’s culture
and the neighbour’s culture differ is selected at random, and
the value of this feature (trait) in the chosen agent’s culture is
set to the value of the same feature in the neighbour’s culture.

This formulation is a good basis; however, it is very
limited in diversity of cultural features and traits and is
inadequate to capture the high dimensionality of the observed
data used in the current study (Vanhaeren and d’Errico 2006).
In addition, over long chronological periods such as those
simulated here, it is necessary to consider the effect of
cultural mutation and drift processes. This definition must
therefore be modified so that it can be applied to the current
problem.

Observed and Simulated Datasets
The observed dataset (Vanhaeren and d’Errico 2006) con-
sists of 157 distinct bead types recorded at 98 Aurignacian
sites in Europe and the Near East, with records specifying
presence/absence of distinct bead types in sites only. These
distinct bead types are divided between 11 features according
to different raw materials, with “62 representing ornaments
made of shells, 31 of teeth, 30 of ivory, 11 of stone, 11 of
bone, 7 of deer antler, and one each of belemnite, nummulite,
ammonite, sea urchin and amber” (Vanhaeren and d’Errico
2006).

In the models developed in this study, we have adapted
Axelrod’s definition of culture described above so that each
agent, in our case a group, is polymorphic for each cultural
feature. To allow for this, each group carries a parameterised
number of items, or beads, in its cultural repertoire, specified
by the Nitems parameter, treated as an unknown and chosen
at the onset of each simulation from a pre-defined range of
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values. These items are then divided between the 11 features
probabilistically (using a multinomial function), such that
the probability of an item being assigned to a particular
feature is proportional to the ratio of unique items observed
in that feature and the total number of unique items observed
(39.5 % shells, 19.7 % teeth, 19.1 % ivory, 7 % stone,
7 % bone, 4.5 % deer antler, and 0.6 % each for belemnite,
nummulite, ammonite, sea urchin and amber). Within each
feature, each item can then take one of a number of unique
possible values, corresponding to the number of distinct
bead types for that feature in the observed ornament data
(Vanhaeren and d’Errico 2006).

Mutation and Drift
The culture of each group undergoes mutation and drift
processes at each generation, such that the culture of each
group at the next generation will be the combined result of
mutation and drift processes acting on the culture of that
group at the current generation. In addition to testing various
environments as described above, two different models of
cultural variation have been considered; in each simulation
data is simulated under only one of these two cultural
variation models.

In the first, mutation is modelled according to the bounded
stepwise model often used to model mutations at microsatel-
lite loci in population genetics (Kimura and Ohta 1978;
Valdes et al. 1993), and occurs at each generation for each
item in each group’s culture with probability proportional to
the pmut parameter. We treat this parameter, which specifies
the probability of mutation, as an unknown and explore
a range of possible values. Under this stepwise mutation
model, a cultural trait in a particular feature at the current
generation is constrained to mutate to one of the cultural
traits on either side of it, within that feature, at the next
generation—mutation therefore changes the frequency with
which each trait occurs in the next generation. In this case,
we assume that cultural traits are ordered in such a way that
adjacent traits are more similar than traits that are further
apart in the sequence. Since cultural traits considered in this
study are discrete and fixed (i.e. one trait cannot morph into
another trait), this stepwise mutation model corresponds to
a group being more likely to add an item to its cultural
repertoire that is morphologically similar to one that is
already present in its cultural repertoire than one that is very
different. Similarly to population genetics, cultural mutation
has the effect of increasing diversity.

In the second, mutation is discrete within the bounds
of each feature. Similarly to the stepwise mutation model,
in this bounded discrete model mutation occurs at each
generation for each item in each group’s culture with prob-
ability proportional to the pmut parameter. This parameter
again specifies the probability of mutation; it is treated as an
unknown and a range of possible values are explored. Under

this mutation model, however, a cultural trait in a particular
feature at the current generation is permitted to mutate to
any of the other cultural traits within that feature with equal
probability at the next generation. The mutation process
again changes the frequency with which each trait occurs in
the next generation and has the effect of increasing diversity.

Drift has the opposite effect and decreases the amount
of diversity in each group’s culture. It is modelled based
on genetic drift, where allele frequencies change as a result
of random differences in reproduction; in finite populations
drift corresponds to the intergeneration sampling error (see,
for example, Tishkoff and Verrelli (2003)). The drift process
is modelled by using a multinomial function to sample the
traits of each cultural feature independently. This implemen-
tation takes into account frequencies of cultural traits in the
current generation, such that, for a particular group, cultural
traits that are at higher frequencies in the group’s culture at
the current generation are more likely to be present in the
group’s culture at the next generation.

Depositing Cultures in Sites
Locations of sites in the model are defined to correspond
to the locations of the archaeological sites in the observed
data (Vanhaeren and d’Errico 2006). A group will deposit its
culture at a site when within a specified geographic distance
of that site. This catchment distance is initially set to be equal
for all sites, with the further constraint that if two groups are
within the catchment distance then the group closest to the
site will be the one to deposit its culture there.

The distance measure used to calculate the distance
between group locations and archaeological sites is the
geodesic distance, which is the aerial path between two
points, also called the as-the-crow-flies, great-circle or
orthodromic distance. To account for curvature of the Earth,
geographic distances are calculated using the Haversine
Formula (Sinnott 1984). This calculates the great-circle
distance between two points on a sphere given their
respective longitudes and latitudes. If the longitude and
latitude of the points are �1 and �1 for point one and �2 and
�2 for point two, respectively, and:

�� D �1 � �2

2
; (8.5)

�� D �1 � �2

2
; (8.6)

then the distance, D, between the two points is calculated as:

D D 2R sin�1

��
sin2 .��/ C cos .�1/ � cos .�2/ � sin2 .��/

� 1
2

�
;

(8.7)

where R is the radius of the Earth, assumed to be constant at
6,371 km.
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Each site is assigned an item capacity, which corresponds
to the number of items recovered from that site as reported
in the original study (Vanhaeren and d’Errico 2006). When
a group comes within the specified distance for a particular
site, a number of unique items, equal to the item capacity for
that site, are selected probabilistically (using a multinomial
function so that trait frequencies are taken into account) from
the group’s entire culture to be deposited at the site—this
corresponds to one copy of each cultural trait that is selected
being deposited at the site. The original dataset contains
presence/absence records of distinct bead types only, so spec-
ifying the item capacity and ‘uniqueness’ of items deposited
at each site in simulations should theoretically minimise
archaeological and sampling bias. A group arriving at a site
at which a deposit has previously been made will deposit its
culture at that site and overwrite the existing deposit only if it
comes within closer proximity to that site than the last group
that deposited its culture there.

Simulated material culture data deposited at the locations
of the archaeological sites in the observed data (Vanhaeren
and d’Errico 2006) are collected at the end of each simula-
tion, which corresponds to the end of the Aurignacian period.

Cultural Interactions
A pair of groups will interact if they are within a param-
eterised geographical distance, dint, of each other; we treat
this parameter as an unknown and explore a range of values.
As above, the distance between groups is calculated as the
geodesic distance and the Haversine Formula (Sinnott 1984)
is used to account for curvature of the Earth. Two cultural in-
teraction processes are modelled in this framework—conflict
and sharing—and a pair of interacting groups will undergo
one of these two processes.

The outcome of a conflict process is the replacement of
the culture of one group by that of the other. To model
this, we assign one in each pair of interacting groups as a
winning, and one as a losing group, and replace the culture
of the losing group entirely by that of the winning group.
The decision on which is assigned to be the winning group,
and which the losing group, is made at random due to
the assumption that the aspects of material culture we are
considering (personal ornamentation) do not have an effect
on, and are not a proxy for, group fitness. Additionally, since
groups are modelled such that they are the same size, group
size cannot be used as a proxy for group fitness. The conflict
interaction process is analogous to a group imposing its
culture on a group that they have defeated, or, alternatively,
assimilating the defeated group into their own, followed by a
fission process.

The other interaction process considered is sharing of
cultures between interacting groups. Sharing is modelled
by permutation, whereby the cultures of the two interacting

groups are pooled, permuted and then divided between the
two. This is analogous to culturally similar groups swapping
cultural traits.

8.2.2.4 Null and Culture-Dependent Interaction
Models

The Null Model and Culture-Dependent Interaction Model
are both models of cultural identity-by-descent with mod-
ification and isolation-by-distance, and are made up of the
demographic and cultural processes described above.

The difference between the two models lies in the method
of deciding which type of interaction will occur between two
interacting groups. In the Null Model, the type of interaction
is decided at random; groups are equally as likely to share
material culture as they are to undergo conflict. The Null
Model is therefore a scenario in which group interactions
are independent of similarities or differences in groups’
ornamental material cultures. Conversely, in the Culture-
Dependent Interaction Model, the type of interaction is de-
cided probabilistically and depends on the extent of cultural
similarity between the two interacting groups; groups that are
relatively culturally similar are more likely to share cultures
while those that are relatively culturally different are more
likely to undergo conflict. The main aim of this study is to
test which of these two models best explains the observed
spatial distribution of ornament types in the archaeological
record; the latter is intended to represent the effects of ethnic
structuring on the spatial distribution of material culture.

Measures of Cultural Similarity
The extent of cultural similarity between a pair of interacting
groups is quantified differently depending on which of the
models of cultural variation described above is considered. In
simulations that follow the stepwise mutation model, the ex-
tent of cultural similarity is quantified using a measure akin
to the (ı�)2 measure used to quantify the genetic similarity
between populations using microsatellite data (Goldstein
et al. 1995a, b). We define this cultural (ı�)2 measure as:

.ı�/2 D
X

i

X

j

.i � j /2xi yj

� 1

2

2

4
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X
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.i� j /2xi xj C
X

i

X

j

.i � j /2yiyj

3

5 ;

(8.8)

where xi and yj are frequencies of traits i and j in (interacting)
groups x and y respectively. This measure therefore quantifies
the cultural similarity between the two interacting groups by
taking into account the frequencies with which all traits occur
in their respective cultural repertoires—this measure does
not discriminate between differences in cultural features. The
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calculated value of (ı�)2 is normalised by the maximum
(ı�)2 recorded up to that generation of that simulation,
giving a measure of cultural similarity that is relative to the
maximum measured cultural similarity.

In simulations that follow the non-stepwise mutation
model, the extent of cultural similarity between a pair of
interacting groups is quantified using a measure akin to
the FST measure used to quantify the genetic similarity
between populations using allele frequency data (Wright
1978; Cavalli-Sforza et al. 1996). We define the cultural FST

measure as:

FST D HT � HS

HT

: (8.9)

In this definition, HT is the amount of variation in all traits
in the whole population (considered to be the two interacting
groups) and is defined as:

HT D 1 �
X

i
pi

2; (8.10)

where pi is the average frequency of trait i calculated over
the two interacting groups. HS is the amount of variation
between traits within each group (calculated separately for
each of the two interacting groups); HS is the average of HS

calculated over the two interacting groups. HS is defined as:

HS D 1 �
X

i
pi

2; (8.11)

where pi is the frequency of trait i. Similarly to the (ı�)2

measure discussed above, the FST measure takes into account
the frequencies with which all traits occur in the cultural
repertoires of the two interacting groups—as with the (ı�)2

measure, this measure does not discriminate between dif-
ferences in cultural features. It is therefore an estimate
of the proportion of the total variation in a set of traits
that is the result of between-group differences (Bell et al.
2009). Similarly again to (ı�)2, the calculated value of FST

is normalised by the maximum FST recorded up to that
generation of that simulation, giving a measure of cultural
similarity that is relative to the maximum measured cultural
similarity.

The relative values of (ı�)2 (bounded stepwise mutation
model) and FST (bounded discrete mutation model) can
take values between 0 and 1 and are treated as probabili-
ties to decide which of the interaction processes described
above occurs between the two interacting groups; a value
of 0 indicates that the two groups have identical cultural
repertoires and are therefore more likely to share cultures,
while a value of 1 indicates complete cultural difference and
indicates that the two groups are more likely to undergo
conflict.

8.2.2.5 Models, Model Parameters and Prior
Ranges

Given that one of two environmental scenarios and one of
two models of cultural variation are considered for each sim-
ulation in both the Null Model and the Culture-Dependent
Interaction Model, data is simulated under eight distinct
scenarios. These are summarised in Table 8.1. The acronym
and text colour associated with each model correspond to
those used in Fig. 8.2 for that model.

In total there are six parameters that govern the processes
considered in the Null and Culture-Dependent Interaction
Models. Both models have 4 key processes: migration, fis-
sion/extinction, cultural mutation and cultural interaction,
governed by 4 parameters: dmig, pf/e, pmut and dint, respec-
tively. In addition to these, there are two further parameters in
both models, namely the maximum number of groups, Gmax,
and the number of items in each group’s culture, Nitems.

There is little information in the archaeological record
relating to the precise values that these parameters may take.
Each parameter is therefore constrained to a uniform prior
range, with the value of each parameter in each simulation
randomly assigned from this uniform prior. Prior ranges for
each parameter are listed in Table 8.2.

8.2.3 Analysis

Once a large number of simulations have been performed
under the models described above, the objective of the data
analysis is to quantify the extent of similarity between ob-
served and simulated material culture data. To do this, ABC
techniques are used to compare the differences in goodness-
of-fit between the observed data (Vanhaeren and d’Errico
2006) and data simulated by different proposed models. To
be able to compare the observed and simulated datasets,
robust statistics that sufficiently describe the full properties
of the data, referred to as summary statistics, are used.
Summary statistics used in this study are discussed in detail

Table 8.1 Summary of combinations of environmental scenarios and
cultural variation models under which data is simulated in both the Null
Model and Culture-Dependent Interaction (CDI) Model

Environmental
scenario

Cultural
variation model

Flat space
(FLAT)

Bocquet-Appel et al.
(2005) distribution

(B-A)

Bounded stepwise
mutation model

(SW)

Null model - - - - -
CDI model 

Null model - - - - -
CDI model 

Bounded discrete
mutation model

(DIS)

Null model - - - - -
CDI model 

Null model - - - - -
CDI model 
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Fig. 8.2 Relative marginal
likelihood estimates (y-axis) of
each Null Model (dashed lines)
and Culture-Dependent
Interaction Model (solid lines)
for each percentage (x-axis) of
closest simulations, taking into
consideration 2,680,000
simulations (335,000 simulations
for each Null Model and
Culture-Dependent Interaction
Model)

Table 8.2 Model parameters and their prior ranges, for both the Null
Model and the Culture-Dependent Interaction Model

Prior range

Parameter Null Model
Culture-Dependent
Interaction Model

Migration distance (km) dmig [0,100] [0,100]

Probability of
fission/extinction

pf/e [0, 1] [0, 1]

Probability of cultural
mutation

pmut [0, 0.2] [0, 0.2]

Number of items Nitems [500, 1,500] [500, 1,500]

Maximum number of
groups

Gmax [50, 1,000] [50, 1,000]

Interaction radius (km) dint [0, 50] [0, 50]

in Appendix 3: Summary Statistics. By comparing summary
statistics calculated for each simulated dataset to those for
the observed data, this method allows us to accept those
simulations with summary statistics sufficiently close to the
target summary statistics—these are the best simulations,
that is, those generating data most similar to the observed
data.

Another useful feature of this approach is the ability to
formally compare the performance of different models using
Bayes Factors (Kass and Raftery 1995). In short, a Bayes
Factor is a summary of the evidence provided by the data in
favour of one model over another; this is further discussed
in Appendix 4: Bayes Factors for Model Comparison. What
we are estimating in this study are the relative marginal
likelihoods of each proposed model given the data. More
explicitly, given models M1 and M2 that we want to compare,
their respective relative marginal likelihoods l1 and l2 are
defined as:

l1 D N1

N
; and (8.12)

l2 D N2

N
; (8.13)

where N1 and N2 are the number of simulation that come
from models M1 and M2, respectively, and N (DN1 C N2)
is the total number of simulations considered; the relative
marginal likelihood of each model is defined to be the pro-
portion of total number of simulations considered that come
from that model. This is therefore a measure of which model
explains the observed data better, given that N simulations
are considered.

This form of model comparison is independent of the
number of parameters for each model, and instead estimates
the likelihood of the model considering all possible param-
eter values. In cases where models with different numbers
of parameters are compared, this method automatically and
correctly penalises model complexity; for models with a
large number of parameters there is a larger parameter
space to explore and so it is more difficult to find those
parameter sets that generate data similar to the observed
data. Models with more parameters are therefore penalised
for the increased complexity compared to simpler models,
resulting in a comparison weighted by model complex-
ity. Such an approach prevents us from overfitting—from
invoking parameters to explain aspects of the data that
are in fact due to randomness. However, in this particu-
lar study the number of parameters is equal in all mod-
els.

8.2.4 Results

Results shown are from 335,000 simulations for each of
the Null and Culture-Dependent Interaction Models. For
the relative marginal likelihood estimation, results for the
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eight models are considered together; a total of 2,680,000
simulations are therefore taken into account. In this analysis,
we estimate the relative marginal likelihood of each model,
taking into account the extent of similarity between simu-
lated and observed data (Vanhaeren and d’Errico 2006).

Figure 8.2 is a plot of the estimated relative marginal
likelihood of each version of the Null Model (dashed lines)
and Culture-Dependent Interaction Models (solid lines) at
different thresholds. It shows what proportion (y-axis) of
the best simulations—those generating data most similar to
the observed data—are coming from each model for each
percentage (x-axis) of closest simulations. The colours refer
to the combination of the environmental scenario and the
model of cultural variation considered, as detailed in Ta-
ble 8.1. Since the plot depicts proportions, for any particular
percentage of closest simulations (i.e. for any particular
value on the x-axis), the sum of the proportions of the
closest Euclidean distances coming from each model (i.e.
the sum of the values on the y-axis) will always be 1. The
relative marginal likelihood estimates of each version of Null
Model and Culture-Dependent Interaction Model for 0.1 %
of closest simulations (i.e. Fig. 8.2, x D 0.1) are also detailed
in Table 8.3.

Figure 8.2 indicates that, for all scenarios modelled (sce-
nario here referring to a pairwise combination of an en-
vironmental scenario and a model of cultural variation as
explained in Models, Model Parameters and Prior Ranges),
there is little difference in how well the Null Model and
Culture-Dependent Interaction Model perform. The best fits
of simulated to observed data are generated by data simulated
under the scenario that combines the bounded discrete muta-
tion model and the environmental scenario in which Europe
is assumed to have a flat distribution of carrying capacities
(represented by orange lines in Fig. 8.2), with approximately
38.4 % of the best 0.1 % of simulations coming from each
the Null Model (dashed orange line) and Culture-Dependent
Interaction Model (solid orange line).

Table 8.3 Relative marginal likelihood estimate of each Null Model
and Culture-Dependent Interaction (CDI) Model for 0.1 % of closest
simulations

Environmental
scenario

Cultural
variation model

Flat space
(FLAT)

Bocquet-Appel et al.
(2005) distribution

(B-A)

Bounded stepwise
mutation model

(SW)

Null model: 4.0%
CDI model: 3.2%

Null model: 1.6%
CDI model: 1.6%

Bounded discrete
mutation model

(DIS)

Null model: 38.4%
CDI model: 38.4%

Null model: 6.8%
CDI model: 6.0%

8.2.5 Discussion and Extensions of Simulated
Model

This study does not support the hypothesis that Aurignacian
populations in Early Upper Palaeolithic Europe were ethni-
cally structured in a manner related to ornamental material
culture. The spatially explicit simulation models and ABC
analysis presented here, conditioned on the data presented
by Vanhaeren and d’Errico (2006), indicate that there is little
difference between the simple scenario of cultural identity-
by-descent with modification and isolation-by-distance, and
the more complex one that, in addition, invokes cultural
group interaction processes that would be expected if mate-
rial culture was symbolically marking ethnic group identity.

Prior to discussing the results presented above, it is
important to note that any scenario considered will only be
relatively better or worse than any other scenario considered;
it is not possible to rate how good a scenario is absolutely.

Considering the results firstly in view of the two envi-
ronmental scenarios used to condition the demography of
the simulation space, we see that there is no improvement
in the fit of simulated to observed data when conditioning
simulations on the distribution from the Bocquet-Appel et al.
study (Bocquet-Appel et al. 2005) rather than the scenario
in which Europe is assumed to have a flat distribution of
carrying capacities (i.e. Europe is assumed to be a flat space).
Indeed, for each of the two mutation models considered,
simulations in which the demography is conditioned on
the latter environmental scenario generate a better fit to
the observed data. Since this latter scenario is clearly not
realistic, this result implies that both environmental scenarios
used to condition the demography of the simulation space
in this study are unrealistic; this is further discussed as a
caveat of the current modelling framework below, along with
suggestions for possible improvements.

Analysing the results now in view of the two mutation
models considered, we see that, regardless of the assumed
environmental scenario, data simulated under the bounded
discrete mutation model generate a better fit to observed data
than that simulated under the bounded stepwise mutation
model. Although this result requires further investigation, it
could be speculated that this suggests that, in the context
at least of group interactions, there is little scaling of item
similarity in material culture repertoires; little or no scaling
of item similarity implies that a particular item would have
been treated as either the same as or different to items already
in the repertoire.

The fact that the best fits of simulated to observed data are
generated by data simulated under the scenario that combines
the bounded discrete mutation model and the environmental
scenario in which Europe is assumed to be a flat space, and
that these are a far better fit than any of the other scenarios
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considered, implies that both the assumed mutation model
and the assumed environmental model strongly drive the fit
of simulated to observed data. Although we are cautious
about interpreting the following, it is interesting to note that
the assumed mutation model makes a bigger difference than
the assumed environmental scenario to the fit of simulated to
observed data, suggesting that continuously scaled cultural
similarities were not important in distinguishing inter-group
identity.

This study is a work in progress and there are several
caveats, discussed below, which should be taken into consid-
eration when interpreting our results, but these methods offer
the opportunity to formally investigate whether observed
material culture distributions are better explained under the
assumption that ethnic structuring exists and that identities
reflected in ornamental material culture influence how people
interact.

It should be noted that, for the ABC approach adopted
here, the number of simulations per model is relatively small
and may not be enough to adequately explore the parameter
space considered; for this reason, the number of simulations
performed under each combination of environmental sce-
nario and cultural variation model should be systematically
increased.

The culture transmission process used in this framework
assumes neutrality in that bead types are not assumed to
differentially affect group fitness. A number of authors have
been unable to reject neutrality using cultural transmission
models (Neiman 1995; Steele et al. 2010); however, this
may be due to the lack of statistical methods available to
test for deviations from neutrality. Tests for deviations from
neutrality have only been carried out on post-Palaeolithic
datasets and have not been applied in a Palaeolithic context.
However, there is certainly no a priori reason why use of
different bead types should differentially affect group fitness.

As detailed in the description of the framework above,
each group in the simulation deposits its material culture at
the locations of the archaeological sites in the observed data
(Vanhaeren and d’Errico 2006) and overwrites any existing
deposits in the site if it comes within closer proximity
to that site than the last group that deposited its culture
there. The simulated material culture data is therefore a
collection of items selected from different groups’ material
cultures (each of which is the result of mutation, drift and
cultural interaction processes) and deposited at different
points throughout the time period of interest; the process
of a group depositing its culture is only dependent on the
geographic distance between the group and the location
of the site and deposits are made with equal probability
throughout the simulation. Each site is considered to be
single occupancy—only the material culture of the last group
that deposited at a particular site is considered. Assuming
that each site is single occupancy may be misleading since

the observed data (Vanhaeren and d’Errico 2006) cannot be
chronologically resolved and some sites may feature multiple
layers that were deposited thousands of years apart within
the period of interest. To address the inconsistency of this
assumption with the cumulative aspect of the archaeological
record, the depositing process could be modified such that,
instead of overwriting previous deposits at a particular site,
a group depositing its culture at that site would simply add
its entire culture, including information on the frequency
of each trait, to the existing deposits. At the end of the
simulation, a number of unique items, equal to that recovered
from the site as reported in the original study (Vanhaeren
and d’Errico 2006), could then be selected probabilistically
(using a multinomial function so that trait frequencies are
taken into account) for each site, such that the probability of
an item being selected is proportional to the frequency with
which it is occurs in that site.

The two environmental scenarios used to condition the
demography of the simulation space in this study are not
realistic. In the first scenario Europe is assumed have a flat
distribution of carrying capacities; this is clearly a simplistic
and unrealistic view since topographic and climatic variation
within the geographic region considered during the time
period of interest would have had an impact on differences
in habitability, and therefore the carrying capacity values,
of different geographic locations at different points in time
throughout the time period of interest. In the second scenario,
information on estimated population densities is taken from
the Bocquet-Appel et al. (2005) study to inform on carrying
capacities. The reported geographic distribution and relative
estimates of Upper Palaeolithic population size are an in-
dicative starting point; however, the study itself could be
considered somewhat controversial since the millennial scale
climatic variation observed during the time periods that are
considered is not taken into account. The geographic region
during the time period of interest in the current study is
characterised by a number of rapid climatic changes (Banks
et al. 2008) and it is therefore unrealistic to consider the
environment, and the resulting potential population densities,
static for the entire duration of a simulation.

Since these environmental scenarios are unrealistic, future
work could consider how the results are affected when sim-
ulations are dependent on modelled environments that take
into account the climatic variability across the geographic
region considered during the time period of interest. This
could be achieved by using simulated Palaeoclimate data to
inform on the relative carrying capacity values, and therefore
potential population densities, of locations in the region of
interest. Since Palaeoclimate data are available at different
time points throughout the time period of interest, this
approach would allow us to take into account the observed
climatic variability by updating the carrying capacities in
the modelled domain throughout the simulation. On way
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of doing this would be to use Palaeoclimate data (Banks
et al. 2008; Singarayer and Valdes 2010) to approximate
Net Primary Productivity values for each location in the
region of interest, following the precedent set by Eriksson
et al. (2012). Net Primary Productivity provides a proxy for
food availability and has been shown to be a predictor of
demographic patterns in ecological studies (Binford 2001;
Luck 2007) it is therefore an informative proxy for carrying
capacity values, and thus potential population densities.

Group migrations could be conditioned on topographic
roughness by using Topographic Roughness Index values
calculated at the required resolution for the geographic area
of interest using high-resolution (3 arc-sec or 90 m) ele-
vation data (Jarvis et al. 2008). In this case, the value of
the Topographic Roughness Index at a particular location
would effectively scale the distance that a group can travel
at that location; at locations with low values of the index
(low topographic roughness) migrations would be relatively
easier, while at locations with high values of the index (high
topographic roughness) migrations would be relatively more
difficult.

Additionally, migratory processes could be modelled as
parameterised Lévy random walks, instead of as parame-
terised Gaussian random walks as presented above. Lévy
walks are a type of random walk in which movement dis-
tances follow power-law distributions, and studies (Brown
et al. 2007; Raichlen et al. 2014) looking at foraging patterns
in human hunter-gatherer populations have suggested that
Lévy walks are the optimal movement pattern when foraging
for heterogeneously located resources (with little or no prior
knowledge of resource distribution patterns). With this in
mind, migratory processes in this study could be modelled
as parameterised Lévy random walks, with the distance that
each group traverses in a migration process selected from
parameterised power-law distributions.

More generally, we have to face up to the degree of ar-
chaeological resolution we have available. Just as we cannot
assume constant climatic conditions during the course of
the time period considered, with climatic fluctuations that
occurred during the approximately 13,000 years of the Au-
rignacian inevitably affecting regional population densities,
we cannot necessarily assume that the aggregate data set
we are dealing with represents interaction processes acting
uniformly over that period; it might represent a spurious
averaging of a variety of different processes. However, this
is not an argument against modelling approaches; such ap-
proaches are the only way we can get an insight into the
accumulated outcomes of iterated processes going on for
hundreds or thousands of years. It is instead an argument for
improving the archaeology of the time period, as well as for
further comparison. The results presented here would gain
further significance if they could be compared with those
from the subsequent Gravettian and later cultural periods

of the same region. Similarly, we may gain further insight
into group interaction dynamics during the Aurignacian by
comparing the results of the bead analysis (Vanhaeren and
d’Errico 2006) with patterns derived from similarities and
differences between lithic assemblages at the same sites.

8.3 General Discussion and Conclusions

Many fields, including archaeology, are becoming increas-
ingly systematic and interdisciplinary through integration
of traditional methods with techniques developed in other
fields. Simulation modelling involves the use of theory de-
veloped for problems in physical and biological sciences and
allows archaeologists to propose and test explicit hypotheses
in order to address longstanding archaeological and anthro-
pological questions. Our paper has demonstrated a novel and
rigorous approach to a topic of major interest, namely the
role of social structuring in archaic humans. As pointed out
above, the appearance of personal ornaments has long been
considered a distinctive feature differentiating Neanderthals
and anatomically modern humans. While that may be the
case, our results show that we have to be careful of making
the further inferential step of assuming that this reflects
ethno-linguistic structuring specific to anatomically modern
humans. As Kuhn (2013, p. 208) points out, apparently
complex large-scale phenomena can arise “as a function
of simple transmission rules operating on bounded social
networks”, thus other, and simpler, processes accounting for
the observed patterning need to be considered and rejected.
Simulation modelling within the Bayesian ABC framework
provides a means of doing this.

As far as we are aware, the approach reported here has not
been attempted when considering archaeological evidence
for ethnic structuring. We fully accept that there are strengths
and weaknesses to this approach, just as there are with
other approaches, and these should be considered when
interpreting and comparing these results to those of others.
Given that there is, to the best of our knowledge, little or no
representation in the literature of explicit simulation mod-
elling approaches to questions of ethnic structuring, while
interpretative approaches are well represented, we believe
that this study begins to fill an important gap in the literature.

A simulation modelling approach is considerably more
complex and laborious to implement compared to the
interpretation of descriptive statistics or patterns in data
alone. It is, however, a formal scientific approach that
proposes a model with an explicit prediction of the
distribution of material culture data, and tests this formally
by comparing the simulated data to the observed data
for validation. Taking this approach necessitates reduced
models and these, by definition, will never fully describe the
complexity of the true processes that shaped the material
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culture data. However, the model building and testing
process is not a closed one; the previous section has already
indicated various ways in which aspects of the current model
could potentially be improved. None-the-less, the approach
adopted here is explicit and transparent and therefore less
likely to be influenced by the subjective biases that guide
interpretation (Gerbault et al. 2014).
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Appendices

Appendix 1: Bayesian Inference
and Approximate Bayesian Computation (ABC)

Bayesian inference is a branch of statistics that uses observa-
tions of particular datasets to infer the probability that a pro-
posed hypothesis, or a parameter of that hypothesis, is true.
To do this, various models with set numbers of parameters
are proposed, and the posterior probability distributions of
these parameters are inferred using information from prior
probability distributions of the parameters and information
provided by the observed data, through implementing Bayes
theorem. Bayes theorem states that, given parameter (or
set of parameters) � and observed dataset D, the posterior
distribution of � , denoted P(� jD), is proportional to the
product of the probability of observing dataset D given model
with parameter � , denoted P(Dj�), and the likelihood of
� , denoted �(�), which is the distribution of � prior to
any observations being made. Mathematically, this can be
written as:

P


�
ˇ̌
ˇD
�

/ P


D
ˇ̌
ˇ�
�

� � .�/ : (8.14)

Since the explicit form of the likelihood P(Dj�) is difficult
to compute in many complex problems, a family of Bayesian
methods, referred to as Approximate Bayesian Computation
(ABC), which do not require the likelihood function to be
theoretically specified, are used (Tavare et al. 1997; Fu and
Li 1997; Beaumont et al. 2002; Bertorelle et al. 2010).

In ABC techniques, a large number of datasets are sim-
ulated under a model assuming different, randomly chosen,
parameter values from within prior ranges, and appropriate
summary statistics are used to measure the extent to which
the simulated datasets emulate the observed data. Parameter

values under which the model generates datasets closest to
the observed data are retained in the posterior probability
distributions of the parameters.

To be able to compare the observed and simulated
datasets, robust statistics that sufficiently describe the full
properties of the data are used. These are called summary
statistics and those developed for the current framework are
discussed in detail in Appendix 3: Summary Statistics. By
comparing summary statistics calculated for each simulated
dataset to those for the observed data, we are able to accept
to the posterior those simulations with summary statistics
sufficiently close to the summary statistics for the observed
dataset, referred to as the target summary statistics. The
similarity ı between observed data, S, and simulated data, S’,
is calculated as the sum of normalised Euclidean distances
of individual summary statistics:

ı
�
S; S 0j

� D
vuutXn

iD1

�
si � sij 0�2

 .si 0/2

; (8.15)

where s and s’ are values of each of the summary statistics for
the observed and simulated datasets, respectively, subscript
i denotes the ith of n statistics, subscript j denotes the jth
of N simulations and 
(si’) is the standard deviation of
the ith statistics over all N simulations. In performing the
data analysis, we regard the " quantile of the distribution of
distances between the observed and simulated data, ı(S, Sj’),
as the best simulations—those generating data most similar
to the observed data.

Appendix 2: Approximate Bayesian
Computation (ABC) Algorithm

Let M denote the chosen model and the set of parameters of
M be � D (�1, : : : , �m). Let S D (s1, : : : , sn) and S’ D (s1’,
: : : , sn’) denote the values of the summary statistics for the
observed and simulated datasets, respectively. Values S D (s1,
: : : , sn) are referred to as the target values for each of the
summary statistics. The ABC algorithm is applied as follows:
1. Define a set of summary statistics that capture relevant

information contained in the observed dataset.
2. Compute summary statistics values S D (s1, : : : , sn) for

the observed dataset—these are the target values.
3. Sample parameters �* D (�1*, : : : , �m*) from an appro-

priate prior distribution.
4. Simulate data by using parameter �* set with model M.
5. Compute summary statistics values S’ D (s1’, : : : , sn’)

for the simulated data.
6. Compute ı(S, S’), where ı is an appropriately chosen

distance measure.
7. For a chosen tolerance ", retain parameter set �* in the

posterior distribution of � if ı(S, S’) < ".
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8. Repeat steps 1–7 until the desired number of parameter
values have been accepted to the posterior distribution.
In order for ABC methods to be effective, appropriate

summary statistics that sufficiently describe the observed
dataset need to be developed and appropriate choices for the
distance measure, ı, and tolerance, ", must be made.

Appendix 3: Summary Statistics

As explained previously, to be able to compare simulated
and observed datasets using ABC methods, summary statis-
tics that capture the information contained in the observed
data must be developed. These should be robust statistics
and should describe sufficiently the full properties of the
observed dataset considered. For the current dataset, these
are:
– shared information between bead types and sites, respec-

tively
– mutual dependence between bead types and sites, respec-

tively
– diversity in the number of occurrences of different bead

types
– cultural diversity of sites as represented by the variation

in the number of distinct bead types recovered from each
sites

– spatial distribution of sites
For each of these statistics, we consider the values of the

mean and variance in the data analysis.

Shared Information (SI)
Shared information, denoted SI, is a statistic that measures
the extent of similarity between two variables. For measuring
the shared information between bead types, SI is defined to
be:

SI
�
ti ; tj

� D fi fj

f
2

log
r .ti / C r

�
tj
�

r
�
ti ; tj

� ; (8.16)

where r(ti) and r(tj) denote the ratio of the number of
occurrences of bead types i and j to the total number of sites,
r(ti, tj) is the ratio of the number of concurrent occurrence
of bead types i and j to the total number of sites, fi and fj
represent the number of sites in which bead types i and j
occur, respectively, and f is the average number of times
any bead type occurs over all sites. In this case, SI measures
the similarity between pairwise bead types in terms of which
sites the are present in. When two bead types never occur in
the same site,

r .ti / C r
�
tj
� D r

�
ti ; tj

�
; and (8.17)

SI
�
ti ; tj

� D 0: (8.18)

A similar equation can be used to measure the shared
information between sites:

SI
�
si ; sj

� D gi gj

g2
log

r .si / C r
�
sj

�

r
�
si ; sj

� ; (8.19)

where r(si) and r(sj) denote the ratio of the number of sites
in which bead types i and j occur to the total number of bead
types, r(si, sj) is the ratio of the number of sites that share
bead types i and j to the total number of bead types, gi and
gj represent the total number of bead types present in sites
i and j, respectively, and g is the average number of bead
types occurring per site. In this case, SI measures the extent
of similarity between pairwise sites in terms of bead types
present in those sites. Similarly to above, if two sites have no
bead types in common,

r .si / C r
�
sj

� D r
�
si ; sj

�
; and (8.20)

SI
�
si ; sj

� D 0: (8.21)

Mutual Information (MI)
The mutual information, MI, between two random variables
X and Y is a measure of the mutual dependence between
them. It is defined as:

MI .X I Y / D
X

y2Y

X

x2X

p .x; y/ log
p .x; y/

p1.x/ C p2.y/
;

(8.22)

where p(x,y) denotes the joint probability of x and y (the
probability of x and y occurring together), and p1(x) and p2(y)
denote the marginal probabilities of x and y respectively (the
probabilities of the specified values of x and y occurring).

For the observed dataset in this study, setting X D ti
and Y D tj , where ti and tj correspond to the number of
occurrences of bead type i and j in all sites respectively,
allows the mutual information between all pairs of bead
types to be computed. Analogously, setting X D si and
Y D sj , where si and sj correspond to the total number of
bead types present in sites i and j respectively, allows the
mutual information between all pairs of sites to be computed.

In contrast to the SI statistic, which only examines the
common presences between sites or bead types, the MI
statistic examines both the common presences and common
absences. It therefore represents the dependence between the
pairwise vectors in question.

Mean Absolute Deviation (MAD)
The observed dataset shows large fluctuations both in the
number of bead types recovered at individual sites, and
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Fig. 8.3 Histograms of the number of occurrences of bead types (left)
and number of distinct bead types recovered from individual sites
(right) for the observed data

the number of times each particular bead type occurs, as
shown in Fig. 8.3. Assuming that this is not the result of
archaeological bias, these differences could be attributed to
cultural wealth at sites, and the preference for particular bead
types, respectively. To quantify this, the median absolute
deviation statistic, MAD, is used. It is a measure of the
variability of a random sample, and is defined to be:

MAD D median
�ˇ̌

Xi � medianj

�
Xj

�ˇ̌�
: (8.23)

Letting Xi D T D fi

f
, where fi represents the number of

sites in which bead type i occurs and f is the average number
of times any bead type occurs over all sites, the MAD statistic
is a measure the variability in the number of occurrences of
bead types. This can be thought of as a measure of variability
in the popularity of, or preference for, bead types.

Letting Xi D S D gi

g
, where gi represents the total num-

ber of bead types present in site i and g is the average number
of bead types occurring per site, the MAD statistic measures
the variability in the number of beady types recovered. This
can be thought of as a measure of variability in the cultural
wealth recovered from sites.

Spatial Distribution of Sites (DR)
The extent to which sites share bead types may be a function
of the distance between those sites. It is logical to expect
that sites which are located near to each other share bead
types more frequently than those which are far apart. The
spatial distribution of sites can be explored by considering

Fig. 8.4 Density plots of the DR statistic for the original observed data
(top) and a random permutation of the same (bottom)

the average distance between sites sharing bead type i, d i ,
in relation to the average distance between all sites, d , as
follows:

DRi D d i

d
: (8.24)

DR therefore quantifies the spatial distribution of sites in
terms of the shared bead types between them. Figure 8.4
shows density plots for the original observed dataset (top)
and a random permutation of the same (bottom). The ob-
vious shift to the right in the density plot of the permuted
dataset implies that the distance between sites sharing a
particular bead type is on average larger if bead types
are randomly assigned to sites. For the original observed
dataset this implies that sites which are located closer to
one another on average share bead types more frequently
with each other than with sites that are further away, as
expected.

Appendix 4: Bayes Factors for Model
Comparison

Another useful feature of the ABC approach is the ability
to formally compare the performance of different models
using Bayes Factors (Kass and Raftery 1995). A Bayes
Factor is a summary of the evidence provided by the data in
favour of one model over another. Given models M0 and M1,
not necessarily with the same number of parameters, Bayes
Factor B is given by:

B D
P


M1

ˇ̌
ˇD
�

P


M0

ˇ̌
ˇD
� D

P


D
ˇ̌
ˇM1

�
� .M1/

P


D
ˇ̌
ˇM0

�
� .M0/

; (8.25)
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where �(Mi) is the prior probability of model Mi, P(Dj Mi)
is the probability of data D given model Mi and P(MijD) is
the posterior probability of the model, defined as:

P .Mi jD/ D
P


D
ˇ̌
ˇMi

�
� .Mi /

P.D/
; (8.26)

where P(D) is the unconditional marginal likelihood of the
data.

This form of model comparison is independent of the
parameters for each model, and instead calculates the proba-
bility of the model considering all possible parameter values.
This method automatically and correctly penalises model
complexity; for models with a large number of parameters
there is a larger parameter space to explore and so it is more
difficult to find those parameter sets that generate data similar
to the observed data. Therefore, models with more param-
eters are penalised for the increased complexity compared
to simpler models, resulting in a comparison weighted by
model complexity.
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9Transmission of Cultural Variants in the North
American Paleolithic
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Abstract

North American fluted stone projectile points occur over a relatively short time span,
ca. 13,300–11,900 calBP, referred to as the Early Paleoindian period. One long-standing
topic in Paleoindian archaeology is whether variation in the points is the result of drift or
adaptation to regional environments. Studies have returned apparently conflicting results,
but closer inspection shows that the results are not in conflict. At one scale—the overall
pattern of flake removal—there appears to have been an early continent-wide mode of
point manufacture, but at another scale—projectile-point shape—there appears to have been
regional adaptive differences. In terms of learning models, the Early Paleoindian period
appears to have been characterized by a mix of indirect-bias learning at the continent-
wide level and guided variation at the regional level, the latter a result of continued
experimentation with hafting elements and other point characters to match the changing
regional environments. Close examination of character-state changes allows a glimpse
into how Paleoindian knappers negotiated the design landscape in terms of character-state
optimality of their stone weaponry.
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9.1 Introduction

Cultural-transmission theory has as its purpose the identi-
fication, description, and explanation of mechanisms that
humans use to acquire, modify, and retransmit cultural in-
formation in particular instances, whether it be rules con-
cerning eligible marriage partners or instructions for how
to produce fishing nets or any of a countless number of
other cultural features (Eerkens et al. 2014). As Mesoudi
(2013:131) put it, “this surely places cultural transmission
at the heart of pretty much every social science discipline.”
This certainly is the case in American archaeology and
anthropology, where interest in the process and mechanisms
of cultural transmission runs deep (e.g., Boas 1904; Kroeber
1923; Mason 1895; Sapir 1916; Tylor 1871). Franz Boas,
the oft-identified “father” of American anthropology, for
example, pointed out that “the theory of transmission has

A. Mesoudi and K. Aoki (eds.) Learning Strategies and Cultural Evolution during the Palaeolithic,
Replacement of Neanderthals by Modern Humans Series, DOI 10.1007/978-4-431-55363-2_9,
© Springer Japan 2015

121

mailto:obrienm@missouri.edu


122 M.J. O’Brien et al.

induced investigators to trace the distribution and history
of [cultural traits] with care so as to ascertain empirically
whether they are spontaneous creations or whether they are
borrowed and adapted” (1904:522). He later noted that “we
must investigate the innumerable cases of transmission that
happen under our very eyes and try to understand how
transmission is brought about and what are the conditions
that favor the grouping of certain new elements of an older
culture” (Boas 1911:809). The many discussions of cultural
transmission that have appeared from the 1980s on rarely
mention this earlier work, making it sound as if our forebears
ignored the issue, when a more appropriate way of phrasing it
would be to say that common sense substituted for rigorous
models of transmission (Lyman 2008; Lyman and O’Brien
1997, 2003).

That lack of rigor began to be eclipsed in the 1970s with
the mathematical-modeling work of Luca Cavalli-Sforza, a
population geneticist, and Marcus Feldman, a theoretical
biologist (e.g., Cavalli-Sforza and Feldman 1973, 1981;
Feldman and Cavalli-Sforza 1976). The innovative aspect of
their approach, which they labeled “gene–culture coevolu-
tionary theory,” was that they not only modeled the differ-
ential transmission of genes between generations but also
incorporated cultural information into the analysis, which
allowed the evolution of the two systems to be mutually
dependent (Laland and Brown 2011). Cavalli-Sforza and
Feldman’s work was followed by that of Robert Boyd and
Peter Richerson, whose 1985 book, Culture and the Evolu-
tionary Process, laid the foundation for what they labeled as
“dual-inheritance theory,” which for purposes here we view
as synonymous with Cavalli-Sforza and Feldman’s “gene–
culture coevolutionary theory.” Boyd and Richerson’s (1985)
discussion of individual (asocial) versus social learning,
especially their attention to transmission biases, would have
a significant effect on anthropological and archaeological
thought.

There now exist many applications of cultural-
transmission theory, both in anthropology and archaeology,
that attempt to define these mechanisms mathematically and
to model their effects over time (e.g., Aoki 2013; Aoki
et al. 2011; Atkisson et al. 2012; Bentley and O’Brien
2011; Bentley and Shennan 2003; Bentley et al. 2004;
Bettinger and Eerkens 1997, 1999; Derex et al. 2013;
Eerkens and Lipo 2005, 2007; Henrich 2001, 2004, 2006,
2010; Henrich and Boyd 1998; Hoppitt et al. 2010; Kameda
and Nakanishi 2002, 2003; Kandler and Shennan 2013;
Kandler and Steele 2010; Kempe and Mesoudi 2014; Kempe
et al. 2012; Kendal et al. 2009; Kobayashi and Aoki 2012;
Kohler et al. 2004; Kuhn 2013; Lipo et al. 1997; McElreath
et al. 2005; Mesoudi 2008, 2011a; Mesoudi and Lycett
2009; Mesoudi and O’Brien 2008a, b, c; Nakahashi 2013;
Neiman 1995; Powell et al. 2009; Premo 2012, 2014; Premo
and Scholnick 2011; Rendell et al. 2011a, b; Rendell et al.

2010; Schillinger et al. 2014; Sharon 2009; Shennan 2000;
Steele et al. 2010). Our goal here is not to summarize this
extensive body of work (see Laland 2004; Laland and Brown
2011; Mesoudi 2011b; various chapters in this volume) but
rather to extract a few points that would appear to be of
considerable interest to archaeologists interested in how
cultural information is acquired and transmitted. We use as
a basis for discussion several studies that have examined
variation in North American projectile points that date ca.
13,300–11,900 calendar years before present [calBP], a time
span referred to as the Early Paleoindian period. To align our
contribution with others in this volume, we can easily refer
to that period as the American “Paleolithic.”

9.2 LearningModels

Cultural transmission involves learning, which can be use-
fully subdivided into two categories, social learning and in-
dividual learning (Cavalli-Sforza and Feldman 1981; Laland
2004; Mesoudi 2011b). Although the division is analytically
useful, it obscures the fact that humans are neither purely
social nor purely individual learners. Rather, certain condi-
tions, perceived or real, dictate which is used in any particular
situation (Aoki et al. 2012; Bentley et al. 2014; Enquist et al.
2008; O’Brien and Bentley 2011). Humans use social learn-
ing for a variety of adaptive reasons (Bentley and O’Brien
2011; Boyd and Richerson 1996; Ehn and Laland 2012;
Enquist et al. 2011; Henrich and Broesch 2011; Kameda and
Nakanishi 2002; Laland 2004; Mesoudi 2011b; Reader and
Laland 2002; Rendell et al. 2010; Richerson and Boyd 2005;
Tomasello et al. 1993). They learn their language, morals,
technology, how to behave socially, what foods to eat, and
most ideas from other people. This process is the basis for
human culture, organizations, and technology (Whiten et al.
2011); thus the first published definition of human culture by
an anthropologist reads “that complex whole which includes
knowledge, belief, art, morals, law custom, and any other
capabilities and habits acquired by man as a member of
society” (Tylor 1871:1, emphasis added). Humans continue
to “learn things from others, improve those things, transmit
them to the next generation, where they are improved again,
and so on,” and this process continues to lead to the “rapid
cultural evolution of superbly designed adaptations to partic-
ular environments” (Boyd and Richerson 2005:4, emphasis
in original).

Much of the time, social learning is an effort to replicate
another’s behavior accurately without embellishment. It is a
powerful adaptive strategy that allows others to risk failure
first (Henrich 2001; Laland 2004)—that is, to let others
filter behaviors and to pass along those that have the highest
payoff (Rendell et al. 2011a). Copying others is itself a set
of competing strategies in that one might preferentially copy
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someone based on that individual’s skill level (copy those
who are better at something than you are, copy good social
learners, copy those who are successful, and so on), whereas
others might base their decisions on social criteria (copy the
majority, copy kin or friends, copy older individuals). The
various factors that can affect one’s choice of whom or what
to copy are often referred to as “biases,” which in Boyd
and Richerson’s program are unique evolutionary forces
for the selective retention of cultural variants (Marwick
2005). Hence, the term “biased learning” is commonly used
as a synonym for certain social-learning strategies (Boyd
and Richerson 1985; Laland 2004). Of importance is the
difference in the effects of copying based on selection for
knowledge or a skill level as opposed to copying based on
random social interaction (that is, the term “bias” is used here
in a statistical sense to indicate some deviation from random
or “unbiased” copying; it is not used in any normative sense,
such as “gender bias” or “racial bias”). Our view mirrors
that of Rendell et al. (2011a): Copying confers an adaptive
plasticity on populations, which allows them to draw on deep
knowledge bases in order to respond to changing environ-
ments rapidly. High-fidelity copying leads to an exponential
increase in the retention of cultural knowledge.

We should insert a few caveats here with respect to
copying. First, the term “copying” carries a connotation
that someone simply looks over someone else’s shoulder,
views a product, and then replicates it. This behavior might
work on homework or a classroom exam, but it does not
apply in many situations. One cannot, for example, watch
a homebuilder and his crew construct a house and expect
to replicate the behaviors and create a successful product.
If the observer starts with moderate skills, he might learn
some tricks of the trade, but he can never hope to go
away and build a house that mirrors what he saw being
constructed. Second, nonrandom copying can take several
forms, including (1) “indirect bias,” where learners use such
criteria as success or prestige as a basis for selecting a
model, and (2) frequency-dependent copying, where learn-
ers perhaps copy the most-frequent variant, which is often
labeled as “conformity.” Third, cultural models of model-
based transmission often implicitly assume that individuals
can find a master teacher from whom to learn. Likewise,
models of conformist transmission often implicitly assume
that individuals can sense how popular a behavior is in the
population. These assumptions are fine for small groups but
unrealistic for large populations, where individuals have only
local, imperfect knowledge of what models, and hence what
behaviors, are optimal (Bentley and O’Brien 2011; Mesoudi
and Lycett 2009). Fourth, acquisition costs could affect the
ability to copy faithfully (Mesoudi 2011c). This applies to
all modes of social learning.

As opposed to learning socially, one can learn indi-
vidually, or asocially. This is a slow process, wherein an

individual modifies existing behaviors through trial and error
to suit his or her own needs1 Perhaps a learner obtains the
basic behavior from a parent or master and then begins to
tinker with it with no influence from other people. He or she
then passes the behavior on to a few others. Boyd and Rich-
erson (1985) refer to this as “guided variation.” The guided-
variation model shows that, in the absence of selection for
a particular trait, a population will move toward whichever
trait is favored by people’s individual-learning biases. This
occurs even when the strength of guided variation is weak
(Mesoudi 2011b).

This form of learning is called “unbiased” (Boyd and
Richerson 1985; Henrich 2001) because at the population
level it approximately replicates the distribution of behaviors
from the previous generation. After acquiring a behavior
or tool, an individual can obtain environmental information
about the relative payoffs of alternative skills or tools. If the
difference in payoffs is clear, the individual adopts the behav-
ior indicated by the environmental information. If not, the in-
dividual sticks with the behavior acquired through unbiased
cultural transmission (Henrich 2001). Thus, Boyd and Rich-
erson’s (1985) “guided variation” has two equally important
components: unbiased transmission and environmental (in-
dividual) learning. Henrich (2001) uses the term “environ-
mental learning model” to include both the individual-level
learning process, which may occur many times per genera-
tion, and its transgenerational counterpart, guided variation
(unbiased transmission and individual learning).

9.2.1 LearningModels in Archaeology

Archaeologists have taken advantage of these perspectives
on learning to help explain certain patterns in the archae-
ological record (Mesoudi 2010). One example is Bettinger
and Eerkens’s (1997, 1999) study of Great Basin projectile
points manufactured ca. 1,500–1,200 calBP, following the
replacement of the atlatl (throwing stick) with the bow and
arrow. Bettinger and Eerkens (1999) observed that specimens
of two point types found in adjacent regions of the Great

1For an example of individual learning involving stone tools, see Eren
et al. (2011a, b). In this example, it took the experimental knapper
18 months to master a Middle Paleolithic lithic technology called
“Preferential Levallois,” in which a stone nodule’s upper surface is
carefully shaped such that a large “predetermined” flake can be removed
with specific, beneficial morphometric properties (Eren and Lycett
2012). Some researchers have cited this long learning time as evidence
for the difficulty of learning the Levallois technique and the high
skill necessary to master it (Bar-Yosef 2013; Bar-Yosef and van Peer
2009; Putt et al. 2014). While undoubtedly “Preferential Levallois”
represents expert learning (Wynn and Coolidge 2010), it is reasonable
to hypothesize that the 18-month-long Levallois learning period of
the experimental knapper would have decreased significantly had the
learning been social rather than predominantly individual.
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Fig. 9.1 Map of California and Nevada showing variation in the
earlier Elko dart points and the later Rosegate arrow points from
central Nevada and eastern California. Bettinger and Eerkens (1999)
proposed that regional variation among Elko points from central Nevada
was perhaps attributable to resharpening whereas those from eastern
California were resharpened much less frequently. For Rosegate points,
they attributed regional variation to different learning models—indirect
bias in central Nevada and guided variation in eastern California

Basin—central Nevada and eastern California—differ in the
degree to which attributes such as weight, width, and length
correlate with each other (Fig. 9.1). The earlier, Elko points,
which were used to tip darts, all have a similar base shape—
the primary character used to place specimens in the type—
but specimens from central Nevada vary considerably in
weight and length, often being light and stubby, whereas
those from eastern California are uniformly heavy and long
relative to their width. Bettinger and Eerkens (1999) sug-
gested that excessive resharpening drove the highly variable
weight and length of Elko specimens from central Nevada.
The lack of resharpening seen on specimens from eastern
California is perhaps explained by the abundance of high-
quality obsidian sources present. Elko points were simply
discarded rather than resharpened.

Resharpening, however, cannot explain why the later,
Rosegate points, which tipped arrows, are more variable in
basal width in eastern California than in central Nevada.
Bettinger and Eerkens (1999) attributed these differences to
the manner in which prehistoric people of the two regions

acquired and transmitted projectile-point technology. Specif-
ically, the attributes of points found in eastern California
were found to be poorly correlated with each other, which
Bettinger and Eerkens argued was because point designs in
that region originally spread as a result of guided variation.
Hence, each attribute was subject to separate individual trial-
and-error experimentation, causing them to vary indepen-
dently. In contrast, projectile points of the same material
and from around the same period found in central Nevada
featured uniform designs with highly correlated attributes.
Bettinger and Eerkens (1999) argued that points in that
region originally spread as a result of indirect, or model-
based, bias, with individuals copying wholesale the design
of a single successful model. Hence, differences at the
individual level (guided variation vs. indirect bias) can be
argued to have generated differences at the population level
(uncorrelated attributes vs. correlated attributes).

One inherent limitation in archaeology is that we have
access only to population-level historical data. The details
of cultural transmission at the level of the individual—who
copies what from whom, and how—can only be inferred
from these archaeological data, as Bettinger and Eerkens
(1999) did, and not directly observed or measured. Math-
ematical simulations offer one means of addressing this
problem, with the results of simple models of cultural trans-
mission matched to archaeological data (e.g., Eerkens et al.
2006). Mathematical models, however, are only as good as
their assumptions, in this case assumptions regarding peo-
ple’s propensities to learn socially rather than individually,
to conform, to copy the most successful individual, and so
on. What are needed are experimental data in order to verify
the assumptions and findings of theoretical models.

Some experimental tasks, however, are unrealistically
simple. By this we mean that, for example, agents are faced
with only two choices, one of which yields a higher payoff.
Similarly, it might be assumed that agents exhibit only two
traits, one of which has a higher payoff in a particular en-
vironment. These scenarios tend to greatly oversimplify real
life. For example, even the simplest of human technologies
comprise multiple component traits, some of which might
be continuous (e.g., projectile-point length) whereas others
are discrete but with more than two states (e.g., the shape
of a point base). Some traits might be functional (e.g., the
thickness or length of points) whereas others are functionless
(neutral) (e.g., designs incised on a ceramic vessel). The
overall “cultural fitness” of an object is a combination of trait
values, each of which interacts with one another as well as
with the skill of the manufacturer and user and stochastic
factors such as weather conditions (Mesoudi 2014).

Mesoudi and O’Brien (2008a) set out to design a task
that was complex enough to yield insights about how people
solve real-world technological problems yet simple enough
so that the implications of theoretical models of cultural



9 Transmission of Cultural Variants in the North American Paleolithic 125

transmission could be tested. Specifically, they tested Bet-
tinger and Eerkens’s (1999) hypothesis that the different pat-
terns of projectile-point variation observed in the Great Basin
are the result of different cultural transmission processes—
guided variation and indirect bias—by experimentally simu-
lating those cultural-transmission processes in the laboratory.
They had participants (university students) copy the design of
a model after being given information regarding that model’s
prior success (permitting indirect bias) and then allowed
participants to experiment with their point designs in novel
selective environments (permitting guided variation). The
results matched the patterns of attribute correlation found
by Bettinger and Eerkens (1999), with the former points
exhibiting highly correlated attributes and the latter points
exhibiting less correlated attributes. Hence, more confidence
could be placed in Bettinger and Eerkens’s (1999) hypothesis
that these different archaeological patterns were the result
of differences in how projectile-point technology in the two
regions was originally transmitted. The finding that cultural
transmission was relatively more adaptive when there was
a cost to modification suggested a possible explanation
for the site differences: Perhaps the prehistoric Nevadan
environment was harsher in some respect, imposing a cost
on experimentation and necessitating a greater reliance on
indirectly biased cultural transmission.

The Mesoudi and O’Brien (2008a) study was designed
to also present a more general exploration of cultural trans-
mission in a multimodal adaptive landscape, where point-
design attributes are governed by bimodal fitness functions,

thus giving multiple locally optimal designs of varying fit-
ness. Mesoudi and O’Brien hypothesized that the divergence
in point designs resulting from individual experimentation
(the individual-learning component of guided variation) was
driven in part by this multimodal adaptive landscape, with
different individuals converging by chance on different lo-
cally optimal peaks. They argued that indirectly biased hori-
zontal cultural transmission, where individuals search design
space and copy the design of the most successful person,
allows individuals to escape from local optima and jump to
the globally optimal peak, or at least the highest peak found
by people in that group (Fig. 9.2) (Lake and Venti 2009;
Mesoudi 2008). Mesoudi and O’Brien’s experimental results
supported this argument, with participants in groups out-
performing individual controls when the group participants
were permitted to copy each other’s point designs. Computer
simulations confirmed that this social-learning strategy of
“copy-the-successful” was more adaptive than a number of
other social-learning strategies, especially in groups of more
than 50 people, which have been typical throughout much
of human evolution (Dunbar 1992), and showed that the
multimodal-adaptive-landscape assumption was key to this
advantage.

This latter finding is potentially important, as it demon-
strates that the nature of the selective environment will
significantly affect aspects of cultural transmission. To re-
iterate, whereas most previous experiments (e.g., Kameda
and Nakanishi 2002, 2003; McElreath et al. 2005) used
relatively simple learning tasks that required a participant to

Fig. 9.2 A fictional, and highly
simplified, multimodal adaptive
landscape of point design. In this
design universe, concave-base
points have a higher fitness than
those with straight bases, and
fluted points have a higher fitness
than those without flutes. Even
among fluted points, however,
there are differences. Here,
Clovis points are shown as the
highest peak—they are globally
optimal relative to our design
landscape—whereas Cumberland
points, which are fluted from the
base to the tip, occupy a lower
peak—they are suboptimal.
Importantly, suboptimality is a
relative term. Cumberland points
obviously did what they were
intended to do in the
environment(s) in which they
were used
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select one of two options (e.g., crops or rabbit locations),
Mesoudi and O’Brien used a more complex learning task
involving multiple continuous and discrete, functional and
adaptively neutral attributes, some of which had bimodal fit-
ness functions. The resulting multimodal adaptive landscape
was instrumental in generating and maintaining diversity
in the virtual-point designs. They also found in the model
that the “copy-the-successful” strategy outperformed the
“copy-the-majority” strategy. Indeed, the latter performed no
better than individual learning because individuals are just
as likely to converge on a local optimum as on a global
optimum in the absence of information regarding the success
of those individuals, unless individuals at the global optimum
outcompete individuals at the local optima and become the
majority.

How realistic is this assumption of a multimodal adaptive
landscape? Boyd and Richerson (1992) have argued that
multimodal adaptive landscapes are likely to be common in
cultural evolution and may significantly affect the historical
trajectories of artifact lineages, just as population-genetic
models suggest that multimodal adaptive landscapes have
been important in biological evolution by guiding historical
trajectories of biological lineages (Arnold et al. 2001; Lande
1986; Simpson 1944). As we noted earlier, any problems
and tasks faced by modern and prehistoric people would
have had multiple solutions, some better than others, but all
better than nothing. Further, solutions are likely to represent
compromises between multiple functions and requirements.
With respect to projectile points, for example, Cheshier
and Kelly (2006) summarized experimental evidence for
tradeoffs in point designs among such factors as accuracy,
range, killing power, and durability, noting that “thin, narrow
points have greater penetrating power, but wide, thick points
create a larger wound that bleeds more easily” (p. 353).
Such functional tradeoffs would potentially produce multiple
locally optimal point designs, with, for example, one optimal
design maximizing penetrating power and another maximiz-
ing bleeding.

9.3 The North American Paleolithic
and Fluted Points

How might these learning models help us in understanding
the cultural landscape of Paleolithic North America after its
initial colonization? The exact timing of the colonization is
open to question, as is the exact point of entry into the interior
of the continent, but what is not in question is the point of
origin of the early colonists. Despite a few claims to the
contrary (e.g., Stanford and Bradley 2012), the overwhelm-
ing archaeological and archaeogenetic evidence indicates
that humans entered North America by way of Beringia
(Goebel et al. 2008; Kemp and Schurr 2010; Morrow 2014;

O’Rourke and Raff 2010; Raff and Bolnick 2014; Raff et al.
2010; Rasmussen et al. 2014; Waters and Stafford 2007).
Descendants of these migrants moved eastward and then
south of the Cordilleran and Laurentide ice sheets, perhaps
through an ice-free corridor that ran northwest to southeast
through Canada (Catto and Mandryk 1990; Mandryk et al.
2001), and developed a technology known as Clovis (Goebel
et al. 2008), which at 13,300–12,800 calBP represents the
earliest well-documented archaeological evidence of human
occupation of North America.2

Clovis is marked by the widespread occurrence of bifa-
cially chipped projectile points that are lanceolate in form,
have parallel to slightly convex sides and concave bases, and
exhibit a series of flake-removal scars—“flutes”—on one or
both faces that extend from the base to about a third of the
way to the tip (Bradley 1993; Buchanan and Collard 2010;
Buchanan et al. 2012, 2014; Morrow 1995; Sholts et al. 2012;
Wormington 1957) (Fig. 9.3). These points were used to tip
spears that were thrust and/or thrown. Clovis points were first
documented in the American Southwest (Cotter 1937, 1938;
Figgins 1927), where they were found alongside the remains
of extinct mammals such as mammoth and large bison. They
have since been found throughout North America, including
Canada and northern Mexico (Anderson and Faught 1998,
2000; Anderson et al. 2010; Buchanan and Collard 2007,
2010; Buchanan et al. 2012; Goebel et al. 2008; Haynes
1964; Holliday 2000; Prasciunas 2011; Sanchez 2001; Sholts
et al. 2012; Smallwood 2012; Waters and Stafford 2007).

It has long been suspected that Clovis points originated
in the West—the earliest radiocarbon dates (not all of them
are universally accepted [e.g., Waters and Stafford 2007]) are
from the Aubrey site in northern Texas (ca. 13,450 calBP)
and the Sheaman site in Wyoming (13,210 calBP)—but one
credible date from the Southeast—Sloth Hole in Florida
(Waters and Stafford 2007), at 12,900 calBP—falls inside the
13,300–12,800 calBP date range. With the exception of six
radiocarbon dates on hawthorn (Crataegus sp.) seeds from
Shawnee-Minisink in Pennsylvania (Dent 2007; Gingerich
2007, 2013), at ca. 12,865 calBP, the earliest dates from
archaeological sites in the Northeast that have produced
large numbers of fluted points—Bull Brook in Massachusetts
(Byers 1954; Robinson et al. 2009), Vail in Maine (Gramly
1982), and Debert in Nova Scotia (MacDonald 1968)—
consistently fall later than the earliest fluted-point dates in the
West (Bradley et al. 2008; Curran 1996; Haynes et al. 1984;
Levine 1990; Miller and Gingerich 2013a, b; Robinson et al.
2009).

In the western United States, especially the Plains and
Southwest, Clovis points were followed by Folsom points,

2Waters and Stafford (2007) use a slightly more conservative span for
Clovis, with a maximum span of 13,250–12,800 calBP and a minimum
span of 13,125–12,925 calBP.
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Fig. 9.3 Clovis points from
various North American sites
(Photo by Charlotte D. Pevny;
courtesy M. R. Waters)

which tend to be smaller in size than Clovis and to have
deeper and longer channel flakes (Ahler and Geib 2000;
Buchanan and Collard 2010; Collard et al. 2010; Crabtree
1966; Wormington 1957) (Fig. 9.4). Folsom points date to
ca. 12,800–11,900 calBP, with the earlier points found in
the Northern Plains and the younger ones in the Southern
Plains (Collard et al. 2010). In the East, Clovis points were
followed by a host of fluted forms such as Gainey/Bull
Brook and Crowfield in the Northeast and Great Lakes
region; Dalton, Quad, and Cumberland over much of the
South and Midsouth; and Simpson and Suwannee in the
extreme Southeast (Anderson 1990, 2013; Anderson et al.
1996, 2010; Bradley 1997; Bradley et al. 2008; Brennan,
1982; Bullen 1968; Goodyear 1982; Lewis 1954; MacDon-
ald 1968; Mason 1962; O’Brien et al. 2001; Robinson et al.
2009; Thulman 2007, 2012) (Fig. 9.4).

Not surprisingly, specimens in all these types exhibit
variation in size and shape, some more than others. There is,
for example, considerable variation among what archaeolo-
gists typically would label as Clovis points (Haynes 2013),
whereas Folsom points appear to be more standardized in

shape, possibly because the Folsom hafting technique had
stricter requirements than the Clovis technique (Amick 1995;
Buchanan 2006; Judge 1970; Tunnell and Johnson 1991).
Focusing on Clovis points, what might account for the
variation? Is it the result of drift—that is, is it random—or
is there regional patterning that might suggest an adaptive
reason? Buchanan et al. (2014) refer to the former as the
continent-wide adaptation hypothesis. It holds that Clovis
groups did not adjust the shape of their points in relation
to local environmental conditions (Buchanan and Hamilton
2009; Byers 1954; Haynes 1964; Kelly and Todd 1988;
Krieger 1954; Robinson et al. 2009; Sholts et al. 2012;
Willey and Phillips 1958) and that variation in shape is the
result of drift (Hamilton and Buchanan 2009; Morrow and
Morrow 1999). The alternative—the regional environmental
adaptation hypothesis (Buchanan et al. 2014)—posits that
Clovis groups did adapt their hunting equipment to the
characteristics of prey and local habitat, which resulted
in regional differences in projectile-point shape (Anderson
1990; Meltzer 1988, 1993; Smallwood 2012; Storck and
Spiess 1994; Witthoft 1952, 1954).
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Fig. 9.4 Tentative chronology of Paleoindian fluted-point types from eastern North America

Buchanan and Hamilton (2009) expanded on the dis-
tinction between the competing hypotheses. With respect to
projectile points, they defined drift as a measurable change
in point form because of neutral stochastic processes caused
by sampling effects that occur as the result of cultural trans-
mission in finite, naturally fluctuating populations (Neiman
1995; Shennan and Wilkinson 2001). As a consequence of
sampling, drift is amplified in smaller populations, where
the number of people from whom to copy, and the num-
ber of objects or traits to copy, are limited (Bentley and
O’Brien 2011). This process is heightened when popula-
tions bud off and become isolated from a parent popula-
tion (Shennan 2000, 2001). This is known as the “founder
effect”—smaller populations retain only a limited set of
the cultural variation exhibited among the original popu-
lation, which is then subject to drift. As Atkinson (2011)

points out, the founder effect has been used to explain
numerous patterns of variation in cultural replicators, in-
cluding human material culture (e.g., Diamond 1978; Hen-
rich 2004; Lycett and von Cramon-Taubadel 2008; Rogers
et al. 2009).

In contrast to drift, adaptive modifications can be made
to improve the functional performance of projectile points in
specific environments. Buchanan and Hamilton (2009) pro-
posed that functional innovations made to projectile points
are expected to be the result of guided variation, a combina-
tion of unbiased cultural transmission and individual learning
within specific environmental constraints. For example, in
open environments it might be beneficial to have improved
aerodynamic capabilities of weapons launched through the
air (Lipo et al. 2012), or when hunting prey with compar-
atively thick hides it might pay to reduce impact-related
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fractures through the alteration of point shape or hafting
arrangements (Cheshier and Kelly 2006; Frison 1989; Hutch-
ings 1997; Musil 1988).

With respect to projectile-point types, how do we ex-
plain what appears to be considerably greater regional point
diversity in the later portion of the Early Paleoindian period
in the East (Fig. 9.4) than what occurred on the Plains
(Fig. 9.4), where Folsom was the dominant form for 800–
900 years? Was it a continuation of regional adaptation, as
Buchanan et al. (2014) proposed for Clovis variation? In
terms of learning models, could it reflect continued guided
variation? Anderson and Faught (2000; see also Ander-
son et al. 2011) point out that disruptions in climate and
food resources associated with the Younger Dryas (12,890–
11,680 calBP), coupled with the disappearance of megafauna
(Boulanger and Lyman 2014; Grayson 2007; Meltzer and
Mead 1983), could have led to changes in logistic patterns
(Boulanger et al. 2015). Large-distance movements may
have given way to more-localized movements geared to-
ward a wider range of small animals and plants. Anderson
and Faught (2000) propose that the distribution of several
projectile-point types—Suwannee and Simpson (Fig. 9.4),
for example—within circumscribed ranges in the Southeast
might reflect the beginning of that trend.

9.3.1 Studies of Variation in Clovis Points

To place these hypotheses in perspective, we briefly discuss
five studies that have attempted to quantify and account for
variation in Clovis points. The first four found no direct
evidence of regional adaptation whereas the fifth did. The
studies are important for what they tell us not only about the
Clovis cultural landscape but also about potential limitations
of some of the methods used to capture variation in projectile
points.

9.3.1.1 Morrow andMorrow (1999)
Using four ratios derived from linear measurements of 449
fluted points from North America, 31 points from Central
America, and 61 points from South America, Morrow and
Morrow (1999) showed that changes in the form of Early
Paleoindian points were positively correlated with latitude,
with points becoming more stemmed and shouldered the far-
ther south the sample, culminating in the “Fishtail” points of
South America. They considered two possible mechanisms
to explain the patterns: (1) point variation was the result of
adaptive responses to local environmental conditions across
the continents; or (2) variation was a result of drift, which
Morrow and Morrow 1999:227) defined as “a process in-
herent in the ongoing translation of cultural practices from
one generation to another under specific geographic and
historical circumstances.” They discounted adaptation as an

explanation for the change in points because they did not
detect any correlation between point form and environment.
As Buchanan and Hamilton (2009) noted, however, Morrow
and Morrow did not specify the environmental parameters
that would be necessary to assess the relationship. Although
they proposed stylistic drift as the likely mechanism for the
change in points, a formal test of their hypothesis was not
presented but clearly is warranted before either hypothesis
can be rejected.

9.3.1.2 Buchanan and Hamilton (2009)
To test Morrow and Morrow’s (1999) hypothesis, Buchanan
and Hamilton (2009) generated shape data by measuring
12 interlandmark characters on a sample of 232 points
from 26 North American assemblages. They also collected
from the literature data on several measures of late Pleis-
tocene regional environmental variation—net primary pro-
duction, prey availability, prey selection, and prey body
size—from eight subregions defined on the basis of physio-
graphic association (Cannon 2004). They then used simple
and partial Mantel tests to assess the significance of the
correlation between matrices representing point shape and
regional measures of environmental variation. They also
tested the correlation between point shape and the pos-
sible confounding factors of geographic distances among
sites, assemblage size, and site type (e.g., kill site versus
residential site). Buchanan and Hamilton (2009) found no
significant correlations between projectile-point shape and
region-specific environmental factors, indicating that varia-
tion in shape was not the result of technological adaptive
responses to local environmental conditions and therefore
was more parsimoniously attributable to drift. They did find
evidence of spatial autocorrelation, where regional variation
in point shape correlated significantly and positively with
geographic distances among sites, as would be expected
in situations where populations close in proximity share
either cultural phylogenetic histories or extensive horizontal
transmission. This is compatible with a scenario of demic
splits, which result in regional populations budding off from
source populations while maintaining connections through
social networks.

9.3.1.3 Hamilton and Buchanan (2009)
Hamilton and Buchanan (2009) used the same 232-point
sample as used in the Buchanan and Hamilton (2009) study
to examine spatiotemporal gradients in projectile-point size
across North America. An earlier study (Hamilton and
Buchanan 2007) showed that spatial gradients in Clovis-
age radiocarbon dates indicate that the most likely origin of
the Clovis colonization of North America was the ice-free
corridor. Their analysis demonstrated that the date of the
earliest Clovis occupation across the continent decreased
linearly with distance from Edmonton, Alberta, traditionally
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taken to represent the approximate location of the southern
exit of the ice-free corridor (Martin 1967; Mosimann and
Martin 1975). Thus spatial gradients in Clovis occupations
across the continent also reflect temporal gradients.

Hamilton and Buchanan (2009) found that projectile-
point size mapped onto the gradient, with size decreasing
as sample geographic origin occurred farther away from
Edmonton. They also found that the variance in point size
was statistically constant over time, which is consistent with
biased social-learning practices. They noted that

It is easily understandable why biased learning strategies would
have played an important role in Clovis technologies. Clovis
projectile point technology is complex and would have required
a significant amount of investment both in terms of time and
energy to learn effectively. Under these conditions it is likely that
there was a significant amount of variation among the skill-level
of flintknappers, such that recognized master flintknappers likely
would have held considerable prestige. (Hamilton and Buchanan
2009:67)

Hamilton and Buchanan (2009) further proposed that in
a fast-moving and fast-growing population subject to the
widespread late Pleistocene environmental changes, con-
formist bias—copy the majority—would also have been
a highly effective strategy for learning, alongside prestige
bias—copy the most-skilled point maker. This was their
rationale:

Under circumstances where ecological conditions change on a
generational level, the mean trait value is often optimal, leading
to frequency-dependent bias, or conformism (Henrich and Boyd
1998). If ecological conditions change much faster than this,
social learning will favor trial-and-error learning leading to
increased variance. Although the Clovis time period would have
seen widespread ecological change over time and space, the rate
of this change may not have been experienced within a lifetime
(Alroy 2001). As such, Clovis social learning likely involved a
combination of both prestige bias and conformism, which had
the effect of limiting variance over time.

9.3.1.4 Sholts et al. (2012)
Sholts et al. (2012; see also Gingerich et al. 2014) used laser
scanning and Fourier analysis to examine flake-scar patterns
on a sample of 34 Clovis points from 7 sites in the Southwest,
Southern Plains, and Northern Plains, 5 specimens from the
Meekins Neck site in Dorchester County, Maryland (Lowery
and Phillips 1994), and 11 modern replicates made by an
expert flintknapper. Their analyses suggested that flaking
patterns were similar across regions (but not with respect to
the replicates), and they concluded that there was a continent-
wide standardization of Clovis technology. They tied this to
direct transmission from craftsman to craftsman:

Low flake scar variability among the ancient Clovis points
suggests that when the Clovis style swept across the continent, it
did not spread via Clovis artisans simply copying finished pro-
jectile points or independently developing techniques through
trial-and-error. Instead, the similar flake scar patterns suggest
that the ancient Clovis points were all created with a very

consistent technology. . . . [T]he relative uniformity of flake scar
patterns among the geographically diverse Clovis assemblages
most likely reflects the Clovis artisans sharing their technical
knowledge through direct transmission, i.e. by one knapper
showing another the “proper” way to fashion a Clovis-style
projectile point.

Sholts et al. (2012) suggested that their scenario was
supported by results from modern experimental archaeology.
Ferguson (2003), for example, found comparable ranges
of variation between points he made and those made by
novice knappers whom he had directly assisted as part of
an intensive learning process. Conversely, Whittaker (1984)
reported that when modern knappers have attempted to copy
template points using strategies they acquired on their own
or through training, a number of differences between the
replicate points and the template points were observed.

9.3.1.5 Buchanan et al. (2014)
Buchanan et al. (2014) re-examined the continent-wide-
adaptation versus regional-adaptation hypotheses using the
same sample of 241 points employed by both Buchanan
and Hamilton (2009) and Hamilton and Buchanan (2009)
but expanding it by nine points from four additional as-
semblages. As opposed to using interlandmark differences
to determine shape, as Buchanan and Hamilton (2009) had
done, Buchanan et al. (2014) used geometric morphometrics,
which creates relative warps, or the principal components
of the shape variables. The principal components reflect the
major patterns of shape variation within a group of speci-
mens. Figure 9.5 (top) shows the consensus configuration of
landmarks, which represents the average shape of all points
in the sample. The average point represented in the consensus
configuration has a lanceolate-shaped blade and a concave
base. The two basal landmarks (landmarks 2 and 3) are the
most variable; variation associated with individual landmarks
decreases toward the tip (Fig. 9.5 [bottom]).

Figure 9.6 plots the first two relative warps by region.
The first relative warp, representing 85 % of the overall
variation, is plotted on the X-axis; the second relative warp,
representing 4.3 % of the overall variation, is plotted on
the Y-axis. Overlap among the regions is evident, but points
from the East are more variable than those from the West,
particularly along the second relative warp. The wireframes
in Fig. 9.6 show deformation from the consensus config-
uration at the positive and negative ends of each axis to
illustrate Clovis shape space. That space is defined along the
first relative warp by elliptical blades with deeply concave
bases to the left (negative end)—represented by a point
from Shoop (Pennsylvania)—and by more linear blades with
shallow, rounded concave bases to the right (positive end)—
represented by a point from Simon (Idaho). Along the second
relative warp, Clovis shape space is defined by lanceolate
blades with straight bases at the upper (positive) end—
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Fig. 9.5 Results of a geometric morphometric shape analysis of 241 Clovis points landmark: top, consensus configuration of all landmark
configurations; bottom, variation in landmark configurations after being translated, scaled, and rotated (From Buchanan et al. 2014)

represented by a point from Murray Springs (Arizona)—and
more deltoid blades with deep, concave bases at the lower
(negative) end—represented by a point from Vail (Maine).
These shape spaces have been casually identified previously
(see summary in Gingerich et al. 2014) but not with the
precision of the Buchanan et al. (2014) study.

Significance tests showed that among the four subregions
in the East, points from the Northeast were significantly
different from those from the Midatlantic, Great Lakes, and
Midcontinent. In the West, points from the Northwest were
significantly different from those from the Southern Plains
and Southwest, and Northern Plains points were different
from Southern Plains points.

9.3.1.6 Explaining the Interstudy Differences
Why the difference in findings relative to Clovis points?
There are at least two reasons, neither of which has to do
with the fact that in some studies different samples were
used. Buchanan et al. (2014), for example, used virtually the
same sample used by Buchanan and Hamilton (2009) and

Hamilton and Buchanan (2009), yet came to different con-
clusions. One reason for the difference probably relates to the
different methods used to characterize projectile-point shape.
Buchanan and Hamilton (2009) used interlandmark distances
to capture point shape, whereas Buchanan et al. (2014)
employed geometric morphometrics. The latter approach is
known to detect shape similarities and differences better than
the former approach (O’Higgins 2000; Slice 2007), and it
is likely that the Buchanan et al. (2014) study picked up
subtle variation that was undetected by the technique used
by Buchanan and Hamilton (2009).

With respect to the Buchanan et al. (2014) study and the
Sholts et al. (2012) study, we think there is another reason
for the difference: The former examined shape and the latter
flake-scar patterning (O’Brien et al. 2014). One clever, and
highly significant, aspect of the Sholts et al. (2012; see also
Gingerich et al. 2014) study that tells us quite a bit about
Clovis-period learning was their inclusion of 11 replicate
Clovis points made by Woody Blackwell, who was well
known in the knapping world of the 1990s for his ability
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Fig. 9.6 Bivariate plot of relative warp 1 (85 %) against relative warp
2 (4.3 %) for 241 Clovis points (from Buchanan et al. 2014). Red
circles indicate points from the West and green circles indicate points
from the East. The four images are deformations from the consensus
configurations and display the shape space defined by the first two

relative warps. The upper point is from Murray Springs (Arizona), the
point at the right is from Simon (Idaho), the lower point is from Vail
(Maine), and the point at the left is from Shoop (Pennsylvania) (From
Buchanan et al. 2014)

to make “superb Clovis points” and “large pieces as thin as
anyone could make them” (Whittaker 2004:258). Blackwell
copied points from the Drake Clovis cache in Colorado
and not only passed them off to a highly knowledgeable
collector as authentic but fooled any number of professional
archaeologists familiar with Clovis artifacts.

How was Blackwell able to get away with it, at least
initially? The answer is, he was a master flintknapper and
was able to reverse engineer certain aspects of the Drake
points (Preston 1999). Until the study by Sholts et al. (2012),
it was widely believed that Blackwell’s replicas were all
but perfectly executed, and that his mistake, which even-
tually revealed the points’ inauthenticity, was his choice
of Brazilian quartz as the raw material for some of the
replicas. Sholts et al.’s analysis showed, though, that there
was another giveaway: As skilled a knapper as Blackwell
was, he could not faithfully copy a Clovis knapper’s pattern
of flake removal. As Blackwell later said (Preston 1999:85),
“I just stopped and looked at this piece and said, ‘That
really looks like a Drake-style Clovis if I stop right there.’

Until then, I had always kept going, cleaning up the edges,
making the point smoother, getting the symmetry dead on,
and really dressing the thing up. What I’d been losing was its
immediacy, its simplicity.”

Superimposed front and back flake-scar contours on four
points used in Sholts et al.’s (2012) study—one each from
the Colby site (Wyoming) and the Drake cache and two
of Blackwell’s replicates—are shown in Fig. 9.7. Note the
difference between the replicates and the authentic points.
Figure 9.8 shows the results of a principal components
analysis that was carried out to identify shape deviations
among the 100 flake-scar contours (front and back) on the
sample of 50 points. Most flake-scar contours cluster in
the center of the diagram, with the most extreme outlying
contours being those of the replicates. In other words, Black-
well could sometimes replicate the flake-removal pattern
of a Clovis knapper—note that in terms of the principle
components analysis (Fig. 9.8) some of the replicates are
indistinguishable from authentic Clovis points—but he was
inconsistent in his ability to do so.



9 Transmission of Cultural Variants in the North American Paleolithic 133

Fig. 9.7 Images of three-dimensional models and overlaid front and
back flake-scar contours from prehistoric Clovis points from Colby
(left) and Drake (center left) and two replicate Clovis points (center
right and right) (From Sholts et al. 2012). Despite the markedly
different bases on the Colby and Drake points, there is little difference in

their flake-scar contours. For the two replicas, their flake-scar contours
are more uneven relative to what is seen on prehistoric Clovis points.
The replicas also display larger differences between overlaid front and
back contours than what is seen on prehistoric specimens

Results of this study support Tankersley’s (2004:54) point
that biface-manufacture technology is “as much a signature
of Clovis as is the morphology of its characteristic projectile
point” (Tankersley 2004:54). As Sholts et al. (2012) note,
this is especially true for points recovered from the Colby
site (Frison and Todd 1986), which have distinctive “C”-
shaped bases as opposed to the “typical” Clovis base shape.
Despite the odd base shape, they are consistently referred
to as Clovis points (Frison 1983). Note that the Colby
flake-scar contours are similar to the flake-scar contours
of Clovis points from the other assemblages Sholts et al.
(2012) examined (Fig. 9.7). In particular, the Drake flake-
scar contours show a closer resemblance to those of the
Colby points than to the contours of Blackwell’s replicates,
which he made to mimic the Drake points. Consequently, it
appears that the Colby points were manufactured using the
same flake-removal process as the other Clovis specimens
in the study; they just have a unique base shape. Sholts
et al. (2012:3024) believe “this technological uniformity—
without evidence for diversification, regional adaptation, or
independent innovation—is consistent with Clovis being a
short-lived phenomenon.”

In summary, taken together the five studies suggest that
Clovis learning appears to have been more complicated than
any single study demonstrates. The Sholts et al. (2012) study,
even with a small sample, indicates there was a standard
Clovis lithic-reduction technology that occurred across North
America. Whether this standardization was the result of “per-
sonal interaction and direct transmission of technological

knowledge between Clovis age knappers,” as Sholts et al.
(2012:3025) propose, is perhaps unknowable, but in terms
of learning models, it appears that a good case can be made
for some form of biased transmission across the continent
(Boulanger et al. 2015; O’Brien et al. 2014). It is under-
standable why biased learning strategies would have played
a key role in fluted-point technologies (Hamilton 2008;
Hamilton and Buchanan 2009). The manufacture of a Clovis
or Folsom point is a complex procedure that would have
required a significant amount of investment both in terms
of time and energy to learn effectively (Bradley et al. 2010;
Crabtree 1966; Whittaker 2004). Under these conditions, it
is likely that there was significant variation among the level
of skill exhibited by toolmakers (Bentley and O’Brien 2011;
Henrich 2004, 2006)—one does not become a flintknapper,
let alone an accomplished one, overnight (Olausson 2008;
Pigeot 1990)—such that recognized craftsmen could have
held considerable prestige (Hamilton 2008).

Prestige bias—learning from (not simply copying) certain
individuals to whom others freely show deference or respect
in order to increase the amount and accuracy of information
available to the learner (Henrich and Gil-White 2001; Reyes-
Garcia et al. 2008)—allows a learner in a novel environ-
ment to quickly choose from whom to learn (provided the
population is not so large as to “swallow up” highly skilled
individuals [Bentley and O’Brien 2011]), thus maximizing
his or her chances of acquiring adaptive behavioral solutions
to a specific task or enterprise without having to assess
directly the adaptiveness of every potential model’s behavior
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Fig. 9.8 Principal components
analysis results for 100 analyzed
flake-scar contours on 50
authentic and replicate Clovis
points, showing the first principal
component (PC 1) versus the
second principal component (PC
2) for each contour (From Sholts
et al. 2012). Note the outlying
black circles representing modern
replicas for which flake-scar
contours deviate from the average
shape. Also note that the hollow
orange squares representing the
Colby specimens appear in the
center of the diagram, showing
that their flake-scar patterns have
shapes similar to the other Clovis
points

(Atkisson et al. 2012). In a fast-moving and fast-growing
population subject to the widespread environmental changes
of, say, the North American late Pleistocene landscape,
prestige bias would have been a highly effective strategy
for social learning (Hamilton 2008) because under circum-
stances where ecological conditions change, say, on a gener-
ational scale, the mean trait value is often optimal, leading
to frequency-dependent bias, or conformism (Henrich and
Boyd 1998). However, if ecological conditions change faster,
social learning may favor individual trial and error or even a
combination of the two (Mesoudi 2008; Toelch et al. 2009).

Results of the Buchanan et al. (2014) study—that there
is some regional variation in point shape—is in no way at
odds with the Sholts et al. (2012) findings of technological
uniformity (O’Brien et al. 2014). We propose that patterns of
flake removal are less sensitive to adaptive change driven by
environmental conditions than is point shape because flaking
is less strongly linked to performance than point shape is
(Buchanan et al. 2014). In other words, Clovis flintknappers

across North America used the same methods to produce
points that were similar in flaking pattern yet, where needed,
were adapted to different environmental conditions. At the
regional level, this takes the appearance of guided variation,
with one regional “group” varying its points one way and
another regional “group” varying them in an alternative,
and oftentimes subtle manner.3 It is that subtle variation

3Recent analysis of Clovis points from one environmentally homo-
geneous region of the Upper American Midwest demonstrates that
although production technique was the same across the sample, differ-
ences in shape occur and are highly correlated with the type of chert
used to manufacture the points (Eren et al. 2015). These dichotomous
results indicate that Clovis foragers engaged in two tiers of social
learning. The lower, and more ancestral, tier relates to point flake-
scar patterning and can be tied to conformist transmission of ancestral
tool-making processes across the Clovis population. The upper, and
more-derived, tier relates to point shape. In this case it can be tied
to drift that resulted from increased forager interaction at different
stone-outcrop hubs. Eren et al. (2015) suspect that we are viewing the
very beginnings of a relaxation of social mechanisms that normally
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that was just below the visibility threshold in the Buchanan
and Hamilton (2009) study but that was picked up in the
Buchanan et al. (2014) study. This “structural integrity,”
wherein key components are more conservative and therefore
less likely to change relative to other components, is also
found in other aspects of culture (e.g., Mesoudi and Whiten
2004; Mesoudi et al. 2006; Washburn 2001).

The continent-wide method of point manufacture appar-
ently began to shift immediately following Clovis. In a
follow-up study to the one by Sholts et al. (2012), Gingerich
et al. (2014) examined flake-removal patterns on speci-
mens of several Early Paleoindian eastern fluted-point types
that immediately postdate the height of classic Clovis-point
manufacture—for example, Bull Brook (Byers 1954) and
Debert/Vail (Gramly 1982; MacDonald 1968) (Fig. 9.4)—
and found more variation and bifacial flake-scar asymmetry
than what Sholts et al. (2012) found among Clovis points.
Gingerich et al. (2014:117) hypothesize that the differences
“may represent a time-transgressive shift, where Clovis inter-
action and the direct transmission of knowledge responsible
for consistent reduction techniques is breaking down, caus-
ing biface symmetry to become more variable with greater
flake scar variation.” They point out that their results may
support morphometric studies (e.g., Buchanan and Hamilton
2009) that suggest changes in fluted-point shape resulted
from drift and related to a colonization process or a shift
in population dynamics. If we had to guess, we would take
a shift in population dynamics—that the changes in point
form had to do with shifts in the use of space (territories)
by Paleoindian groups. Those shifts in turn had implications
for how information about point technology and performance
was transmitted (O’Brien et al. 2014).

To explore this issue, we undertook a series of phyloge-
netic analyses aimed at (1) clarifying evolutionary relation-
ships among Paleoindian point forms (Buchanan and Collard
2007, 2010; Collard et al. 2010, 2011; Darwent and O’Brien
2006; O’Brien et al. 2012) and (2) highlighting some of the
changes in traits, or characters, of various forms across North
America. Several of those studies focused on fluted points
from the East and Southeast (O’Brien and Lyman 2000,
2003; O’Brien et al. 2001, 2002, 2013, 2014). Common to
those studies was the use of the same eight characters and
character states to define projectile-point classes (Fig. 9.9).
Because of the nonsystematic manner in which projectile-
point types have been created (Anderson 2013; Lyman and
O’Brien 2002; Miller and Gingerich 2013b; O’Brien and
Lyman 2002; O’Brien et al. 2014), the classes often contain
specimens that, in the literature where they were described,
were placed in different types.

would act to reinforce ties and a concomitant gradual increase in the
diversification of projectile-point shape that will accelerate in the post-
Clovis period.
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 3. 0.80–0.89
 4. 0.70–0.79
 5. 0.60–0.69
 6. 0.50–0.59

V. OUTER TANG ANGLE
 1. 93°–115°
 2. 88°–92°
 3. 81°–87°
 4. 66°–80°
 5. 51°–65°
 6. ≤ 50°

VI. TANG-TIP SHAPE
 1. Pointed
 2. Round
 3. Blunt

VII. FLUTING
 1. Absent
 2. Present

VIII. LENGTH/WIDTH RATIO
 1. 1.00–1.99
 2. 2.00–2.99
 3. 3.00–3.99
 4. 4.00–4.99
 5. 5.00–5.99
 6. ≥ 6.00

Fig. 9.9 Characters and character states used in the analysis
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Focusing solely on the latest study (O’Brien et al. 2014),
the phylogenetic tree shown in Fig. 9.10, which was built
using 218 specimens in 41 classes, contains 48 character-
state changes, represented by boxes.4 Each box is labeled
with a Roman numeral indicating the character that has
changed; the subscript Arabic numeral indicates the evolved
character state (Fig. 9.9). White boxes indicate phylogenet-
ically informative changes—shifts that result from descent
with modification as opposed to changes that result from
either adaptive convergence (black boxes) or a reversal to
ancestral character states (half-shaded boxes). The latter two
types of change are not useful in tracing phylogeny, but
they do provide information on the kinds of subtle variation
present. The tree exhibits numerous clades, defined as two
or more related taxa and their common ancestor, some of the
larger of which are labeled I–VI.

Projecting the tree into geographic space allows us to
observe the significance of the phylogeny in both time and
space (Fig. 9.11). Classes in Clade I all contain specimens
identified as Clovis points, and all are restricted to the Mid-
west. Classes in Clade II are skewed toward the Northeast
and Middle Atlantic regions. Key constituents of the classes
are projectile-point types described as having deep basal
indentations—for example, Bull Brook, Debert, and Gainey
(Simons et al. 1984) (Fig. 9.4). Several studies have shown
that relative depth of the basal indentation varies widely
across time and space, with the deepest indentations being
in the Northeast and around the Great Lakes (Curran 1996;
Ellis 2004; Ellis and Deller 1997; Miller and Gingerich
2013b). Classes in Clade III show a split distribution: One
class is restricted to the northern portion of the study area,
whereas all other classes in Clade III have distributions in
the southern portion. This is not particularly surprising, given
that a key constituent of the subclade is Gainey (Fig. 9.4), a
point type that occurs primarily along the southern edge of
the Great Lakes eastward, although it is found sporadically
throughout eastern North America (Morrow and Morrow
2002). Classes in Clade IV occur in a northeast/southwest-
trending band from the Tennessee River valley northward,
generally following the Ohio River valley. This is also not
surprising, given the large number of Cumberland points
(Fig. 9.4), a key component of classes in Clade IV, that
are found in the Tennessee and central Ohio River valleys
(Anderson et al. 2010). Classes in Clade V occur, like those
in Clade II, in the Middle Atlantic and Northeast. Classes in
Clade VI cluster in the Midwest eastward to the Tennessee
River valley. Constituent types include the long, narrow,
heavily fluted Cumberland point. Interestingly, Clade VI
shows minimal taxonomic diversity and diverges from the su-
perclade comprising the other clades early in the phylogeny.

4See O’Brien et al. (2001, 2013, 2014) for details on how trees were
constructed.

Of particular interest are the 11 unresolved classes—those
that do not fall into one of the six clades—represented in
black in Figs. 9.10 and 9.11. In their classic model of Clo-
vis colonization of North America, Kelly and Todd (1988)
suggest that the speed of colonization was driven by high
rates of residential mobility because of the large foraging
areas required of a primarily carnivorous diet. Hamilton
and Buchanan (2007) note that Clovis colonists would have
moved rapidly through large river systems such as the Mis-
souri and Mississippi drainages, leading to an initially rapid
rate of colonization through the midcontinent, which would
have then slowed dramatically as diet breadths broadened
with the increased biodiversity of the eastern forests (Steele
et al. 1998) and as prey size, abundance, and availability
changed (Meltzer 1988).

Note the locations of the unresolved classes: They occur
in the Upper Midwest near the junction of the Mississippi
and Ohio rivers, northeastward along the Ohio River, and
southeastward along the Cumberland River. All 11 classes,
including the two outgroups, contain specimens identified
in the original literature as Clovis points. In some cases, all
specimens were identified as Clovis, and in others some were
classified as Gainey, Cumberland, Redstone, Debert, and/or
Dalton. A working hypothesis based on this distribution
would be that the unresolved classes were the products of
groups moving rapidly across the landscape—so rapid that
there was not enough time for a strong phylogenetic signal to
develop. There were technological changes, to be sure—they
are what define the classes in the first place—but there were
not enough changes to allow much resolution of phylogeny.
This conclusion runs parallel to our reasoning for the lack
of regional variation in the Buchanan and Hamilton (2009)
study of Clovis point shape.

If, as we propose, the unresolved classes are associated
primarily with Clovis groups, then a related proposal is
that the more-resolved classes, those in clades II–IV, rep-
resent later Early Paleoindian points (O’Brien et al. 2014).
Figure 9.10 shows the numerous character-state changes
that produced those classes. Note that all but one change,
the loss of fluting (VII2— > VII1) in Clade III, are either
instances of convergence, where knappers or groups of knap-
pers landed on the same adaptive peaks through independent
experimentation, or instances of reversal to an ancestral
state. This apparent pattern of increased experimentation is
what one would expect from the guided-variation model:
in the absence of selection, a population will move toward
whichever trait is favored by people’s individual-learning bi-
ases (Mesoudi 2011b; O’Brien et al. 2014). Our proposal of a
shift from biased social learning to guided variation accounts
for the changes in flake-removal patterns identified by Gin-
gerich et al. (2014) for eastern Paleoindian points compared
with the findings of Sholts et al. (2012) for a continent-
wide sample of Clovis points. Future work will be directed
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Fig. 9.10 Phylogenetic tree of the 41 classes, with clades shown in
different colors (from O’Brien et al. 2014). Roman numerals denote
characters, and subscript numbers denote character states. Open boxes
indicate phylogenetically informative changes; shaded boxes indicate

parallel or convergent changes (homoplasy); and half-shaded boxes
indicate characters that reverted to an ancestral state (The tree is a fifty-
percent majority-rule consensus tree based on 100 replicates.)
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Fig. 9.11 Geographic distribution of clades shown in Fig. 9.10 (from O’Brien et al. 2014)

at developing a better understanding of the “fitness” of
character states in terms of performance, which undoubtedly
underlies the fact that groups from widely different regions
during the late half of the Early Paleoindian period landed on
the same fitness peaks in terms of character states—in other
words, they found similar solutions to common adaptive
problems.

9.4 Conclusion

If nothing else, our discussion should make it clear that
in terms of point manufacture, the North American Pa-
leolithic cultural landscape was anything but static. We
did not need to conduct the studies reported here in or-
der to reach that conclusion, but taken together, they offer
glimpses into just how fluid the landscape was. The studies
also underscore the fact that there were myriad subtleties
to how information was acquired and transmitted during

the Early Paleoindian period—subtleties that in some cases
match expectations derived from models of learning. We
return to a point made earlier that is difficult to overem-
phasize: Humans are neither purely social nor purely indi-
vidual learners. Rather, certain conditions will dictate which
kind of learning is used in any particular situation. The
analytical tools discussed here, including geometric morpho-
metrics and cladistics, offer a powerful means of moving
forward.
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10Experimental Studies of Cumulative Culture
in Modern Humans: What Are the Requirements
of the Ratchet?

Christine A. Caldwell

Abstract

The success of Homo sapiens as a species may be explained, at least in part, by their
learning abilities. The archaeological record suggests that the material culture of humans
during the Palaeolithic was fluid and diverse. Social learning abilities may therefore have
allowed Homo sapiens to adapt rapidly to novel or changeable environmental conditions. A
capacity for cumulative cultural evolution is certainly apparent in all contemporary human
societies, whereas it appears either absent or extremely rare in other extant species. Here
I review laboratory studies of cumulative culture in modern adult humans, designed to
shed light on the social information required for this type of learning to occur. Although
it has been suggested that cumulative culture may depend on a capacity for imitation, we
found that imitation (at least in the narrow sense of action copying) was not necessary for
human participants to exhibit ratchet-like effects of improvement over learner generations.
We discuss the need for high fidelity reproduction in cumulative culture (independent of
action copying).

Keywords

Cultural evolution • Cumulative culture • Emulation • Imitation • Ratchet effect

10.1 Introduction

Homo sapiens dominate the planet in the present day, but the
success of the species can be traced back much further. Hill
et al. (2009) have suggested that even if the hunter-gatherer
lifestyle of humans had never been superseded by agriculture
and industry, the worldwide population would still have
reached over 70 million. The early success of H. sapiens
contrasts strikingly with the fate of Homo neanderthalensis
however, as H. neanderthalensis probably went extinct just
a few thousand years after H. sapiens dispersed from Africa
and colonised Europe.

C.A. Caldwell (�)
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This extreme discrepancy in the relative success of the two
species appears not to be attributable to physical characteris-
tics, because in this respect the Neanderthals should have had
the advantage, having evolved in Europe with physiological
adaptations to the northern environment (Mithen 2014).
However, what we know about the behaviour of the two
species suggests that cognitive differences are a possibility.
While Neanderthal artefacts appear to have remained rela-
tively unchanged for over 300,000 years (e.g. Mithen 2005;
Mellars 1999), human artefacts from around the time of the
Neanderthal extinction show huge diversity, and were clearly
used for particular specialised functions (Diamond 1989).

Therefore there seems to be fairly clear evidence that,
at least from the Upper Palaeolithic onwards, humans ex-
hibited cumulative cultural evolution. Cumulative cultural
evolution refers to cultural change that accumulates over
many generations leading to the evolution of behaviours
that no individual could invent (Boyd and Richerson 1996).

A. Mesoudi and K. Aoki (eds.) Learning Strategies and Cultural Evolution during the Palaeolithic,
Replacement of Neanderthals by Modern Humans Series, DOI 10.1007/978-4-431-55363-2_10,
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In human culture this phenomenon has been described as
producing a “ratchet”-like effect (Tomasello 1999), in that
beneficial modifications are preserved without backwards
slippage until further improvements are discovered.

Some recent proposals have suggested that cumulative
culture became apparent at this point in human history as a
consequence of the size and structure of human populations
(e.g. Henrich 2004; Kline and Boyd 2010; Powell et al.
2009; Shennan 2001). Using simulation models, Powell et al.
(2009) found that high population densities and high migra-
tion rates between subpopulations resulted in accumulation
of modifications and increased complexity in technologies.
On this basis they concluded that human population dynam-
ics were a key driver in the acceleration of rates of cultural
change. However, these models rest on the assumption that
any cognitive requirements for cumulative culture were al-
ready in place (making these changes more fundamental).
Therefore, although it remains possible that cognitive ca-
pacities for cumulative culture may have been masked by
demographic factors in Neanderthals, it is nonetheless of
major interest to know whether there are particular aspects
of the cognition and/or learning of modern humans which
are implicated in cumulative culture, which may not have
been present in other hominin species, including ancestors
of H. sapiens as well as Neanderthals. Any such capacities
might offer a plausible explanation for the replacement of
H. neanderthalensis by H. sapiens, since the technological
advances made possible by cumulative culture could have
represented an important competitive advantage.

10.2 Laboratory Studies of Cumulative
Culture in Humans

In recent years, members of my research group have been
pursuing a related question, concerning the uniqueness of
human cumulative culture amongst currently extant species.
Although there is evidence of cultural variation in chim-
panzees (Whiten et al. 1999), as well as some other non-
human primate species (e.g. Panger et al. 2002; Perry et al.
2003; van Schaik et al. 2003), few if any of the behaviours
described are suggestive of cumulative culture. In fact, there
is currently little evidence of anything resembling cumulative
cultural evolution in any nonhuman species (Dean et al.
2014). The few compelling examples of complex, multi-
stage tool use that exist in chimpanzees (e.g. Sanz et al.
2009), are accepted to be very rare, as well as falling
far short of the elaborateness of human culture (Whiten
2011).

This evolutionary anomaly therefore presents something
of a puzzle. The capacity for cumulative culture has allowed
modern humans to dominate the planet (Hill et al. 2009), so
it would appear to represent a uniquely powerful mechanism

for adapting to novel and changing environments. Nonethe-
less, humans remain the only species to have developed this
particular facility.

Various hypotheses have been put forward to explain this
evolutionary discontinuity. Until the mid-1990s, the apparent
absence of evidence of visuo-motor imitation in nonhuman
species (e.g. monkeys: Visalberghi and Fragaszy 1990; apes:
Tomasello et al. 1987, 1994) offered a conveniently neat
explanation, and prominent theorists in the field cited such
evidence in their accounts of the uniqueness of human
cumulative culture. For example, Boyd and Richerson (1996)
noted that simpler social learning processes were unlikely
to result in cumulative cultural evolution. The simple social
learning processes they referred to included local enhance-
ment (where the attention of an observer is drawn to a partic-
ular location) and stimulus enhancement (attention drawn to
a class of objects). In such cases, the behaviour is learned by
trial and error, with the presence of another individual simply
making that learning more likely. Boyd and Richerson (1996)
argued that this sort of learning cannot generate cumulative
cultural evolution, which by definition must allow learners
to proceed from a more advanced starting point than was
possible for previous generations. In contrast, learning by
local or stimulus enhancement effectively necessitates that
each new learner has to start from scratch, wiping out any
useful innovations which may have been chanced upon by
others.

However, there is now a wealth of evidence showing copy-
ing of specific techniques (using “two-action” experimental
designs) in chimpanzees (e.g. Whiten et al. 1996, 2005;
Whiten 1998) and other nonhuman primates (e.g. Voelkl and
Huber 2000; Dindo et al. 2008). Such evidence calls into
question the idea that other species do not exhibit cumulative
culture because of a lack of imitative ability.

More recently, Tomasello and colleagues (e.g. Tomasello
1999; Tennie et al. 2009) have been even more specific about
the types of social learning expected to generate cumulative
culture. Tomasello (1999) has stated that, “cumulative cul-
tural evolution depends on imitative learning, and perhaps
active instruction on the part of adults, and cannot be brought
about by means of “weaker” forms of social learning such
as local enhancement, emulation learning, ontogenetic ritu-
alization, or any form of individual learning.” (p. 39). The
specific reference to emulation learning as a mechanism not
capable of supporting cumulative culture is noteworthy here.
Emulation learning has been defined in a number of different
ways in the literature on social learning (e.g. see Whiten et al.
2009 for a review). However, its usage derives originally
from a chapter by Wood (1989), referring to “instances where
children achieve common goals to those modelled, but do so
by using idiosyncratic means that were never observed” (p.
72). Tomasello (1990) then used the term to describe chim-
panzees’ responses following a demonstration of tool use
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(in Tomasello et al.’s 1987 study), as the chimpanzees had
shown increased manipulation of the tool, without copying
the exact method of the demonstrator.

Since then, however, the term “emulation” has become
used in rather different contexts, typically referring to situa-
tions in which the learner could have (or indeed has) achieved
the exact same outcome as the demonstrator, but without
necessarily copying bodily movements (e.g. through attend-
ing to how the tool or object itself moves). On this basis,
Tennie et al. (2009) have criticised Whiten and colleagues’
claims of imitation from two-action studies, asserting that
the chimpanzees, “were not learning about actions but rather
about how or where the box works—without attending much
or at all to the behavioural techniques used (emulation
learning).” (Tennie et al. 2009, p. 2407).

Tennie et al. (2009) therefore characterised chimpanzees
as “product-oriented” (focussing on effects and end prod-
ucts), in contrast with “process-oriented” human learners,
who focus on bodily actions. There does seem to be some
evidence to suggest that, in comparative studies, human
children may be more focussed on copying actions, with
chimpanzees being more goal-oriented (e.g. Horner and
Whiten 2005; Tennie et al. 2010). However, in relation to
the question of whether these types of learning can support
cumulative culture, this debate raises the intriguing question
of whether cumulative culture is still possible for humans,
even when restricted to learning from “product”, rather
than “process” information. It was this question that led
my research group into our initial attempts to study human
cumulative culture under laboratory conditions.

10.2.1 Study 1: Establishing theMethods for
Studying Cumulative Culture in the
Laboratory

Our initial goal was simply to establish that it was possible to
study cumulative cultural evolution under laboratory condi-
tions. We therefore wanted to identify tasks that participants
could be asked to complete, which could in principle be used
to show a learning-like effect of improved performance over
successive attempts, but crucially, involving different indi-
viduals making each of these attempts. The tasks we chose
also needed to be ones which participants could complete in
a relatively short time period, in order to make the studies
feasible. We also required tasks that would allow a clear
objective measure of performance, so that we could track
improvements (in terms of the prescribed goal measure) over
learner generations.

We ran our initial experiments (reported in full in
Caldwell and Millen 2008b) using two different tasks. In the
first task, participants were asked to build a paper aeroplane
from a single sheet of paper. The goal measure was the flight

Fig. 10.1 Group composition over time in the microsociety design of
Caldwell and Millen (2008a, b). Generational succession was simulated
through the repeated removal of experienced participants and intro-
duction of naïve participants. Each row of the table shows the group
composition at any given time, made up of observing participants and
participants actually engaged in the task. Participants were randomly
assigned the positions 1–10

distance of their plane (which we recorded by giving them
the best distance of three throws, to allow for mis-throws).
In the second task, participants were asked to build a tower
from raw spaghetti and a small amount of modelling clay.
The goal measure for this task was the height of the tower,
so participants were to aim to build their tower to be as tall
as possible.

For both tasks, individual participants were given a total of
5 min to build their own artefact. They were also given 5 min
of observation time prior to this, during which they could
observe other participants engaged in the task. Our design
therefore assumed that participants would most benefit from
social information early on in their experimental “lifespan”,
and that their own opportunities for innovation should follow
this, in order to allow cumulative culture to develop. Using
formal mathematical models, Aoki et al. (2012) have shown
that such an ordering (social learning followed by individual
learning) is evolutionarily adaptive under certain conditions.
It is therefore plausible that this represents an evolved learn-
ing strategy in humans.

For each task, we ran ten chains each composed of
ten participants, who took part in the task one after the
other, each beginning their own attempt at 2½ min intervals.
Figure 10.1 displays a schematic illustrating the role of
each of the ten participants in any given chain at any point
during testing. Running an entire chain of ten participants
therefore took a total of 27½ min, as can be seen from the
schematic. Participants’ completed artefacts were retained in
the test area for inspection by their successors in the chain.
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Fig. 10.2 Tower height and
flight distance data from Caldwell
and Millen (2008a, b). Panel
(a)(i) displays the data for the ten
chains of paper aeroplanes, with
panel (a)(ii) showing the mean
distance flown for each position
in the chains (error bars indicate
C/� SEM). Panel (b)(i) displays
the data for the ten chains of
spaghetti towers, with panel
(b)(ii) showing the mean height
for each position in the chains
(error bars indicateC/� SEM)

Therefore, although participants could only observe their two
immediate predecessors actually building their artefacts, they
could in theory attempt to reproduce the design of any of the
earlier attempts from the finished product.

Our predictions for these initial experiments were that
participants’ scores on the goal measures (flight distance of
planes and height of towers) would increase over learner
generations, such that later participants were performing
better. We expected to find this because we believed that
participants would be able to benefit from the earlier learning
efforts of other participants, through observation of both
successful and unsuccessful approaches of others they were
able to observe, and through copying of apparently effective
completed designs. We also expected to find some evidence
for cultural traditions in the artefacts produced by the partic-
ipants in our chains, as a result of participants copying other
designs. We therefore expected that pairs of designs taken
from the same chain would be more similar to each other
than pairs of designs taken from different chains.

With regard to our prediction that scores would be higher
for later generation participants, we found this to be the case
for both tasks. Figure 10.2 displays the data for both the
paper aeroplane task and the spaghetti tower task, with data
from individual chains displayed in the panels on the left
and averaged data in the panels on the right. Despite a high
level of variability in success on both tasks (apparent from
the individual chain data) there were significant trends in the
direction of higher scores in later generations. This aspect of
our findings supported our basic expectation of a “ratchet-
like” effect across multiple successive learners.

In terms of our prediction that designs would be more
similar within chains, compared with across them, this was
also upheld. Naïve coders rated the similarity of pairs of

designs, using photographs taken during testing, and as
expected we found that pairs from the same chain were
typically rated as being more similar to each other, compared
with pairs from different chains. This offered additional
insights into the effects that we were seeing, as it was
clear from this finding that participants were indeed copying
elements of others’ designs. However, since designs also
tended to improve with transmission, this must have involved
more than just random copying, probably entailing selective
copying of effective designs and/or innovative modification
of previous examples.

Figure 10.3 shows examples of towers built by partici-
pants in two chains of one of our experiments. It should be
noted, however, that the towers depicted in Fig. 10.3 were
taken from Caldwell and Millen (2010), from an experimen-
tal condition found to show particularly strong evidence of
copying. Differences between chains (and similarities within
them) are rarely as striking as those seen here.

10.2.2 Study 2: Comparing Learning
Mechanisms

Having established that these methods could be used to
tap into ratchet effects in social learning, we then wanted
to manipulate the learning opportunities available to our
participants in order to determine whether any particular type
of social information was necessary for this to occur (Cald-
well and Millen 2009). We separated the different sources
of social information into information about: (a) actions
(corresponding to imitation, according to most definitions in
the literature, e.g. Whiten and Ham 1992; Heyes 1993), (b)
results, in the form of both finished products and feedback
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Fig. 10.3 Examples of spaghetti towers created by participants in
Caldwell and Millen (2010). Each row displays the complete set of
towers that were produced by one chain of participants. The towers are

ordered from left to right, in the order in which they were produced (i.e.
the first participant’s tower is on the far left, and the tenth on the far
right)

about performance (corresponding to emulation according
to most definitions, e.g. Whiten et al. 2004; Call et al.
2005), and (c) teaching, in the form of verbal communication
between participants. By combining these different sources
of information into their various possible permutations, we
would be able to establish which of these were necessary
for obtaining a cumulative learning effect over multiple
individuals.

We used the paper aeroplane task because with this task
it was possible to separate out information about actions
from information about results, allowing us to run a “pure”
actions-only condition involving no feedback on perfor-
mance. In our spaghetti tower task, observation of another’s
actions during construction inevitably also provided informa-
tion about results in that it was possible to see the height of
the tower as it was built. However, with the paper aeroplane
task, performance (flight) was separated from construction,
and we could therefore exploit this to separate out these
sources of information within our experimental design. It
should however be noted that, even for the paper aeroplane
task, it was not possible to completely separate out results
in the form of folds made in the paper, since observing
another’s actions meant that participants were also able to
see the effects of those actions on the material. Close inspec-
tion of completed planes could however be separated from
observation of others’ actions. Further details are provided
below, regarding how information from actions, results and
teaching were manipulated.

We manipulated the availability of information by making
alterations to the experimental set-up and the membership
of the test group. So, for example, information in the form
of actions was made available by having participants in the
test group in full view of one another so that they could

observe others building, as well as having participants enter
the test group 5 min before starting their own build (in order
to benefit from dedicated observation time). Conditions with
actions information available were therefore, in this respect,
similar to the design of our previous study (described in the
previous section). In conditions with no information about
actions, participants who were engaged in construction were
screened off from one another in the test group so that
they could not see each other building planes. The 5 min
observation period was also removed, so participants simply
entered the test group and began building their own plane
straight away.

In the conditions in which information about results was
available, participants were provided with the two most
recently completed planes so that they could inspect these
finished products. They were also given explicit information
about the flight distances of these planes, and could observe
other participants throwing their planes at the end of their
build. Conditions with results information available were
therefore largely similar to our previous research using this
task, although it should be noted that the availability of
finished products was more carefully controlled in this study
(with only the two most recently completed planes available),
compared with the previous one discussed (in which all
completed artefacts were retained for inspection). In this
particular study it was considered important to maximise
consistency in the amount of information available to partic-
ipants, for reasons of comparability with the other learning
conditions. For conditions in which results information was
unavailable, participants in the test group were screened
off from those flying their planes, completed planes were
not given to the test group members to inspect, and flight
distances were not fed back by the experimenter.
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In order to vary the presence or otherwise of teaching,
efforts had to be made to ensure the availability, or unavail-
ability as appropriate, of such information. For conditions
in which teaching information was available, participants
were asked to remain in the test group for an additional
5 min, after having completed and flown their plane. They
were explicitly instructed that their role was to help the
other participants with the task, and that they should pass
on any information that they believed might help their group
members. This was different to our previous design, as
previously we had not assigned participants to the role of
teacher; they simply left the test group once their own build
was completed. Nonetheless, we knew that when participants
were able to communicate about the task, useful information
could be (and often was) exchanged between members of
the test group. Hence for the conditions without information
from teaching, we instructed participants not to engage in
any form of verbal communication during their participation
in the experiment. Although complete adherence to the no
talking rule could not be guaranteed, any participants who
began to discuss the task were reminded of the rule by the
experimenter (who was always present). All sessions were
recorded and a subset from each condition were transcribed
to confirm that verbal instruction relating to the task was,
or was not, being exchanged, as appropriate to the condi-
tion.

The various different combinations of these sources of
information gave rise to a total of seven different exper-
imental conditions: actions, results & teaching; actions &
results; actions & teaching; actions only; results & teaching;
results only; and teaching only. For each condition, within-
chain analyses provided the measure of the value of the social
information. The first participants in any chain had no access
any form of social information, whereas participants in the
last few generations not only had access to social informa-
tion, but had access to social information from others who
had themselves received opportunities for social learning
from experienced models (see Figs. 10.1 and 10.2).

Further details of these conditions, including diagrams of
the experimental set-up, can be found in Caldwell and Millen
(2009), with full procedural information for each condition
provided as supplementary information. In each of these
conditions, ten chains each consisting of ten participants
were run, following the design of our previous study.

All of these conditions were analysed individually for ev-
idence of cumulative culture (as evidenced by a trend for im-
proved performance over learner generations). Interestingly,
we found that all seven of the conditions showed this effect.
This suggested that any one of the sources of information
was sufficient, independently, for our participants to benefit
from the earlier efforts of the members of their chain. This
was noteworthy, particularly with regard to the results-only
condition.

Essentially, our results-only condition represented our test
for the possibility of cumulative culture occurring on the ba-
sis of emulation learning alone. In this condition participants
had information about end products in the form of completed
planes, and also information about outcomes in the shape of
the flight distances of these planes. However, participants in
this condition could not observe others building their planes,
and furthermore they were not permitted to talk to their
test group partner, so no information about the process of
building could be conveyed in this way either. The significant
improvement found in these chains therefore indicated that
cumulative cultural evolution was possible from emulation
learning only, at least for this particular task. We return to this
issue in the Sect. 10.3, as there is little doubt that imitation
and teaching are very likely to facilitate transmission of
many other skills. However it is clear that it is not imitative
ability, in and of itself, which gives humans the capacity for
cumulative cultural evolution.

10.2.3 Study 3: High Fidelity Copying
and Cumulative Cultural Evolution

One of the reasons that imitation has been proposed to
be crucial for cumulative cultural evolution is that it is
believed to result in high fidelity transmission (e.g. Tennie
et al. 2009). However, Caldwell and Millen’s (2009) finding,
detailed above, suggests that cumulative cultural evolution
can occur in the absence of action copying, purely from
information about end products and results. In relation to
Tennie et al.’s (2009) argument, this means that either high
fidelity transmission is possible without imitation, or perhaps
that high fidelity transmission is not necessary for cumulative
cultural evolution.

The former possibility, that high fidelity transmission can
occur without imitation, seems very plausible based on our
experiments using the paper aeroplane and spaghetti tower
tasks. These tasks produce fairly simple end product designs,
which can be reproduced with reasonable accuracy even if
one has not observed the process of building.

Nonetheless, this raised the additional question of how
closely participants copied end products in our tasks. Cald-
well et al. (2012) set out to quantify the degree of matching
exhibited by participants who were presented only with
finished products. On this occasion we used the spaghetti
tower task, for which we had generally found two main
design types arising in our participants’ solutions (Caldwell
and Millen 2008b, 2010). Figure 10.3 displays the towers
built by two complete chains of participants in Caldwell
and Millen’s (2010) study, and these illustrate these two
main design types. One design type, which we have labelled
“cubic”, typically begins with a square base of spaghetti,
with four parallel upright spaghetti columns, often finished
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Fig. 10.4 Median proportion of cubic to tripod tower type features in
participants’ towers in live and photo end-state conditions of Caldwell
et al. (2012) (error bars display quartiles)

with a square pyramid upper section. The other design
type, which we have labelled “tripod”, typically begins with
modelling clay feet supporting three (occasionally more, or
fewer) spaghetti columns which converge to a single point,
with upper levels as single columns of spaghetti.

These two design types offered the possibility of expos-
ing participants to experimentally manipulated contrasting
stimuli, which allowed us to objectively code, and therefore
quantify, the similarity of participants’ solutions in relation
the two possible alternatives. As in our previous experiments
however, the goal was the same, i.e. the participants were
instructed simply to build their tower to be as tall as possible.
However, in this version, Caldwell et al. (2012) presented fin-
ished towers as examples of previous participants’ efforts, in
place of the face-to-face interaction involved in the previous
studies detailed above. We therefore exposed participants to
example towers of either the cubic or tripod type, and then
coded the towers they produced in terms of the features in
common with each of the two designs.

We found that participants showed a strong tendency
to match the design type that they had been exposed to,
and this was the case regardless of whether the completed
towers were physically present, or shown as photographs
(see Fig. 10.4). The finding led us to conclude that although
relatively high fidelity copying does appear to be associated
with the sort of transmission that can generate cumulative
cultural evolution, such high fidelity copying is nonetheless
possible on the basis of information about end products,
without necessarily requiring observation of another indi-
vidual’s actions. Once again, an important caveat should be
mentioned, as the task in question makes it easy to reproduce

the solutions from inspecting the end products alone. For
many tasks, especially more complex ones, this will not
necessarily be the case, and we will return to this issue in
the following section.

10.3 Cognitive Requirements
of Cumulative Culture?

10.3.1 Action Copying

As noted above, for these two tasks it appears that obser-
vation of other’s actions is not necessary either for accurate
reproduction, or for cumulative cultural evolution. However,
this is not to say that action copying is never required, since it
inevitably will be for other behaviours. As we have discussed
elsewhere (e.g. Caldwell and Millen 2009), imitation and/or
teaching will always be needed in order to learn behaviours
that leave no physical trace (e.g. for communicative gestures,
where the bodily movement itself is the goal).

Furthermore, any sequences of behaviour that are “cog-
nitively opaque” to the potential learner (e.g. Gergely and
Csibra 2006) will be transmitted much more readily through
either faithful imitation or instruction from a skilled partner.
Cognitive opacity, as Gergely and Csibra have defined it,
refers to behaviours for which it is unclear how the required
actions bring about the desired goal, and therefore this will
inevitably pose problems for a learner restricted to emulation
and other non-imitative forms of social learning.

Boyd et al. (2011) provide multiple examples of skills
necessary for survival in Arctic conditions, used by the
local Inuit populations, which provide excellent examples of
cognitive opacity. The most effective clothing for the winter
climate, for example, is created from Caribou skin, harvested
in autumn when the fur is at just the right thickness. The hide
must then undergo a lengthy process of stretching, scraping
and moistening, followed by further stretching, in order to
produce material that is sufficiently soft and workable. The
garment must then be constructed in a very specific way
in order to create a shape which retains heat but releases
moisture (Otak 2005, cited in Boyd et al. 2011). Details such
as the importance of harvesting at a particular time of year,
the steps involved in processing, and the relevance of the
garment’s shape, would all qualify as cognitively opaque,
since their functional significance would not be obvious to
a naïve observer. Gergely and Csibra (2006) propose that
imitative learning is an important means by which such
behaviours can be transmitted without loss of important
functional details such as these.

In contrast, the paper aeroplane and spaghetti tower tasks
which we used were relatively cognitively transparent from
this point of view. Furthermore, even if participants were
unaware of the functional significance of particular paper
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folds, or precise placement of modelling clay, they would
nonetheless generally be able to infer the actions required
to reproduce these fairly accurately, based on the finished
product alone.

Interestingly however, despite emphasising the signifi-
cance of cognitive opacity in relation to imitative abilities,
Gergely and Csibra (2006) do not seem to share Tomasello’s
(1999) view on the relationship between cumulative culture
and imitation. They state: “We argue that the cognitive
opacity of cultural products in early hominid cultural en-
vironments represented evolutionary pressure for the selec-
tion of a new type of social-cognitive learning mechanism
to solve this learnability problem and to ensure fast and
efficient transmission of culturally relevant knowledge.”.
The implication of this proposal is that any human-unique
social learning mechanisms are perhaps better viewed as a
consequence, rather than cause, of complex human culture.
If this is indeed the case, then researchers may need to look
elsewhere for their explanations of how cumulative culture
arose in the first place.

Certainly, it appears that action-copying abilities alone
cannot explain the species distribution of cumulative culture.
Our own findings have illustrated what is possible for adult
humans using emulation learning, and there is increasing
evidence of action copying abilities in nonhuman species
(e.g. Hopper et al. 2007).

10.3.2 High Fidelity Copying

The interest in imitation specifically, in relation to cumulative
culture, may derive in part from a general confusion within
the literature over definitions of imitation (see Caldwell
and Whiten 2002, for a review). Within the literature on
comparative psychology, a particular focus on action copying
dates back to Thorndike’s (1898) interest in imitation, as
defined as the ability to, “from an act witnessed learn to do
the act” (p. 50). Action copying has typically been assumed
to be particularly cognitively challenging due to the cross-
modal mapping required between observation of another’s
actions and one’s own performance of the same action.
On this basis, vocal imitation (such as that documented in
birds) is typically dismissed as cognitively undemanding
(e.g. Whiten and Ham 1992; Heyes 1993; Byrne 2002). Em-
ulation learning is viewed in the same way, since reproducing
an effect on the environment requires no understanding of the
correspondence between one’s own body and another’s.

However, it seems clear that this cognitively complex
cross-modal mapping is not what Boyd and Richerson (1996)
had in mind when proposing “true imitation” as necessary for
cumulative culture, since they specifically mention bird song
traditions as an exceptional case. Boyd and Richerson (1996)
were probably more interested in faithful reproduction in a

more general sense, without being concerned with the precise
cognitive mechanisms involved.

More recently, Galef (2013) has drawn specific attention
to the relative unimportance of Thorndike-inspired defini-
tions (and tests) of imitation in relation to our understanding
of cumulative culture, noting that, “the kind of imitation
that might lead to faithful copying and cumulative culture
is not Thorndike’s imitation and is not illustrated by the
two-action method.” (p. 126). Galef (2013) proposes instead
that cumulative culture is much more likely to be dependent
on imitation in its common-usage sense, involving using
another’s performance as a template for refinement of one’s
own efforts.

Therefore, whilst the ability to copy actions may not be
necessary for cumulative culture, a motivation to reproduce
others’ performance almost certainly is. Participants in our
paper aeroplane and spaghetti tower experiments were no
doubt motivated to reproduce what they believed to be effec-
tive designs and, for these tasks, this was perfectly possible
even in the absence of information about actions.

Such an interpretation would also be consistent with
Wasielewski’s (2014) recent argument regarding the im-
portance of imitation for cumulative culture involving cog-
nitively opaque behaviour. Wasielewski (2014) highlighted
Acerbi et al.’s (2011) insight that behaviours can vary in
the extent to which solutions close to the optimal design
result in payoffs that are also close to optimal. For such
behaviours, trial-and-error feedback can allow the learner to
find the optimal solution even when transmission is relatively
low fidelity. In contrast, for behaviours which may be su-
perficially similar to others with very different payoffs, high
fidelity transmission would be required. Wasielewski (2014)
points out that low resolution learning is sufficient to explain
most of the evidence for action copying and cultural variation
in nonhumans, as a result of the possibility of behavioural
refinement guided by feedback from non-optimal solutions.

However, although high fidelity reproduction may be
necessary for cumulative culture to occur, this does not
allow us to conclude that this is the key difference be-
tween humans and other species which allowed humans to
develop cumulative culture. Returning to comparisons with
Neanderthals and other extinct hominins is enlightening in
this regard, since it would appear that a proclivity for high
fidelity reproduction may not have been unique to humans
during the Palaeolithic. It has already been mentioned that
the culture of Neanderthals remained relatively static for
a matter of hundreds of thousands of years. However, the
strong technological traditions observed are suggestive of
very high fidelity transmission (Mithen 1994). This suggests
that mechanisms facilitating faithful social transmission were
present in hominin species which exhibited little evidence
of cumulative culture. Some other factor may therefore have
accounted for the unusual complexity of human culture.
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It is possible that the critical development was one which,
operating alongside high fidelity reproduction, tended to
push change in the direction of increased complexity and im-
provements in utility. Any one of a number of factors might
thus have been influential. Advances in individual learning
capacities (e.g. Aoki 2013), for example, might have allowed
individuals to modify their culturally inherited repertoire of
skills in predominantly beneficial ways. Alternatively, partic-
ular social learning strategies (Laland 2004) could have been
responsible for generating shifts towards increasing utility
through cultural selection (e.g. see Mesoudi’s 2011 study
of payoff bias). Finally, as noted in the very first section of
this chapter, it remains possible that the cognitive capacities
required for cumulative culture were already in place well
in advance of the Upper Palaeolithic, but that the rapid
accumulation and diversification of technology was only
manifest in populations of certain size and structure. The
remaining puzzle associated with these interpretations is that,
in contrast to high fidelity social transmission, none of them
appear to be unique to humans. Animals have been shown to
have capacities for capacities for innovation and to exhibit
success-biased and payoff-biased social learning (e.g. see
Dean et al. 2014 for a review of explanations of human cumu-
lative culture). Likewise, humans are not unique in the size of
their communities, or their rates of migration. Perhaps there
are quantitative or qualitative differences between humans
and other species in terms of how innovation and/or social
learning biases operate, although if so, these have yet to be
elucidated. A further possibility is that high fidelity copying,
innovation, and biased transmission, in combination with
certain demographic catalysts, are all critical components
for the expression of cumulative culture, and that modern
humans are the only species to date for which all of these
ingredients have combined in quite this way.

10.3.3 Concluding Remarks

The potential for rapid adaptation permitted by cumulative
culture may well provide an explanation for the replacement
of the Neanderthals by modern humans. The cognitive ca-
pacities underlying this process therefore hold significant
scientific importance. Although it remains unclear exactly
what caused the explosion of cumulative culture in modern
humans during the Palaeolithic, our studies of cumulative
culture in contemporary humans, reviewed in the current
chapter, have provided some insights into the related debate
over the uniqueness of human culture compared with other
extant species.

Our findings have primarily helped to shed some light on
the issue of the relevance (or otherwise) of action copying.
As noted above, there is also good reason to remain cautious
over similar explanations of cumulative culture in terms of

high fidelity copying, even though there is better reason to
believe that this may be a prerequisite. Investigations into
the specific social learning strategies employed by humans,
and the nature of human innovation, may have the potential
to offer further insights. Such investigations might, in due
course, find evidence with converges with other proposals
contending that there were qualitative differences in cogni-
tion between humans and Neanderthals (e.g. Mithen 2014;
Wynn and Coolidge 2004). However, irrespective of the
eventual explanation, it is likely that experimental studies of
social learning in contemporary humans (particularly when
combined with comparative data from nonhuman species)
will continue to offer one of the most critical sources of
evidence in settling this vigorous and stimulating debate.
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11Learning in the Acheulean: Experimental
Insights Using Handaxe Form as a ‘Model
Organism’

Stephen J. Lycett, Kerstin Schillinger, Marius Kempe, and Alex Mesoudi

Abstract

‘Learning’ is a process by which an individual gains new information. In the case of ‘social
learning’, this process occurs because at least one individual has undertaken an activity that
results in another individual learning something new. For an individual, therefore, ‘learning’
is an active process that takes place in vivo. For those faced with the challenge of studying
learning in the Palaeolithic, however, all we are left with are inert objects (e.g., stone
artefacts). Yet, understanding social learning during the Palaeolithic is a fundamental step
toward understanding matters of our cultural evolution. Evolutionary biology, faced with
similar problems, has made substantial progress in understanding matters of transmission,
the effects of transmission on phenotypic variation, rates of mutation, etc. via the use of
laboratory experiments, especially through the use of so-called ‘model organisms’. Here,
we describe two experiments that use handaxe form in the manner of a ‘model organism’
in order to understand the effects of copying error. We go on to discuss why understanding
these micro-evolutionary effects can ultimately lead to a greater understanding of learning
dynamics in handaxe-making hominin populations. These experiments illustrate that the
characteristic size and shape parameters of handaxe traditions will have been inherently
unstable. In the case of shape, in particular, this suggests that a learning mechanism other
than pure observation of others’ artefacts was used. Individual (trial-and-error) learning
could conceivably constrain variation somewhat, but costs associated with knapping
would encourage the adoption of social learning mechanisms that would countermand the
inevitable effects of copying error with reduced risk to tool manufacturers.
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11.1 Introduction

One of the enduring challenges facing Palaeolithic archae-
ology is to understand its basic database—i.e., knapped
artefacts—in terms of behavioural, social, and cognitive
implications, especially as these relate to wider questions
of human evolution over the longer term (e.g., Isaac 1972;
Gowlett 2010). It is, therefore, the hope of everyone working
with the Palaeolithic record that key insights into these
factors can be provided by examining, at various scales
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of analysis, patterns observable in knapped stone artefacts,
especially as recorded in terms of their variable attributes,
form, and/or character (Clarke 1968; O’Brien and Lyman
2000; Lycett and Chauhan 2010). Major changes or trends in
the Palaeolithic record inevitably draw particular attention,
perhaps none more so than the appearance and temporal
durability of so-called “handaxes” (Gowlett 2011).

The appearance of bifacial handaxes is often taken as
evidence of a major behavioural shift in the production of
stone tools by hominins, particularly in comparison with
the preceding Oldowan (e.g., Roche 2005; Gowlett 2006;
Lepre et al. 2011; Beyene et al. 2013). This is fuelled by
the fact that their manufacture, either through the production
and shaping of large flake blanks or via the reduction of
stone nodules, involved not merely the production of discrete
flake tools as was the case with the Oldowan, but serial
knapping events strung together to produce the resultant
form (Edwards 2001; Roche 2005). Formally, ‘handaxes’ are
defined by the imposition of a long axis by means of invasive
bifacial knapping to produce a relatively large (generally
>10 cm in length) elongated, bilaterally-organized form,
with a sharp edge that extends around a major portion of their
extremities (Roe 1976; Isaac 1977; Schick and Toth 1993;
Gowlett 2006). Evidence from experiments, residue analysis,
usewear, design theory, cut-marks, and archaeological con-
text has led many to contend that the form of such artefacts
was driven, at least in part, by functional requirements
relating to demands imposed by their use as cutting and/or
chopping tools (e.g., Jones 1980; Keeley 1980; Roberts and
Parfitt 1999; Domínguez-Rodrigo et al. 2001; Simão 2002;
Gowlett 2006; Bello et al. 2009; Yravedra et al. 2010). Such
artefacts first appear in the archaeological record of Africa
�1.75–1.5 MYA (Lepre et al. 2011; Beyene et al. 2013), but
they subsequently appear in Western Europe and large parts
of Asia, and remain a persistent feature of the archaeological
record for over one million years (Clark 1994; Lycett and
Gowlett 2008; Gowlett 2011). In specific terms, production
of these artefacts represents a shift from the manufacture of
relatively simple cutting tools (flakes) produced by bouts of
knapping not necessarily directed toward the production
of deliberate core forms (Toth 1985), to a situation where
knapping events were strategically oriented toward shaping
the residual block of stone (Roche 2005; Gowlett 2006).

Models of cultural evolution highlight the importance
of understanding the mechanisms that underlie particular
historical trends seen in the archaeological record (e.g.,
Cavalli-Sforza and Feldman 1981; Boyd and Richerson
1985; O’Brien and Lyman 2000; Henrich and McElreath
2003; Mesoudi and O’Brien 2008; Mesoudi 2011; Shennan
2011; Lycett and von Cramon-Taubadel 2015). Following
Darwin (1859), these models emphasize the co-existence of
three essential factors in bringing about historical change via
a process of ‘descent with modification’: (1) a mechanism

of inheritance, or ‘learning’ (2) the existence of variation in
inherited properties, and (3) the differential representation
of inherited variants through time (Mesoudi et al. 2004).
What do we know about learning in prehistoric hominins
from the production of artefacts such as handaxes? ‘Social
learning’, in any form, is effectively a means by which
certain information about a particular behavioural ‘pattern’
(however defined) is transmitted from one individual to
another such that the behavioural pattern is, in turn, repeated
(Heyes 1994; Byrne and Russon 1998; Whiten et al. 2004). It
is sometimes (e.g., Mithen 1999) assumed that the repeated
production of handaxe artefacts over time and space alone
implies not only social learning, but specific forms of social
learning such as imitation (i.e. copying of behavioural factors
involved in their production, in addition to information
gleaned from seeing the artefact alone). Such assumptions
are certainly consistent with the macro-scale phenomenon
of the ‘Acheulean’ technocomplex, whereby handaxes
were repeatedly produced over large swathes of time
and space (see above). Inevitably, however, any statement
about learning from temporal and spatial patterns alone is
limited in potency and would benefit from strengthening
by other lines of enquiry. It may be worth considering
in greater detail why the repeated production of broadly
similar artefacts might be telling us something about social
learning, especially in terms of the specific parameters that
characterize the artefacts referred to as ‘handaxes’, using an
evolutionary framework that moves from the micro to macro
perspective.

Binford (e.g., 1983) noted some time ago that archaeology
faces a fundamental dilemma in terms of trying to understand
dynamic processes (human activities) from ‘static’ data (i.e.
artefacts). Anthropologists, of course, can say things about
people by studying people; archaeologists on the other hand,
are forced to say things about people by studying objects peo-
ple in the past left behind. This is the both the wonder and the
curse of archaeology (Clarke 1968). In terms of understand-
ing cultural evolutionary factors in the Palaeolithic, the basic
problem is that we want to know something about learning
and transmission from artefacts such as handaxes. In terms
of their dislocation from the population dynamics and social
processes that produced them, however, handaxes dug out of
the ground are as dead as the fossils that palaeontologists use
to reconstruct dynamic biological processes of transmission,
the generation of variation, and the processes responsible for
the sorting of that variation over time (i.e. evolution).

The analogy between ‘dead’ fossils and ‘dead’ artefacts
in terms of understanding dynamic evolutionary processes
is potentially an interesting one in terms of looking for
prospective solutions. Over several decades, evolutionary bi-
ology has made substantial progress in understanding matters
of transmission, the effects of transmission on phenotypic
variation, rates of mutation, etc. via the use of laboratory
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experiments (Bataillon et al. 2013). What is needed are
experiments that attempt to understand how the dynamics of
micro-evolutionary processes affect artefactual variation, in
order to better understand what the macro patterns seen in
the archaeological record imply on a more secure basis. Ex-
periments have a long history in the study of archaeological
artefacts, including stone tools (Johnson 1978). Surprisingly,
however, there are only a small number of experimental
studies that have expressly studied microevolutionary effects
in artefacts in order to derive their macroevolutionary impli-
cations for the study of culture as seen in the archaeological
record (Eerkens 2000; Mesoudi and O’Brien 2008; Kempe
et al. 2012; Schillinger et al. 2014).

Interestingly, biologists frequently use so-called ‘model
organisms’ in experimental studies of evolutionary
processes. ‘Model’ organisms are used because they enable
a more secure understanding of phenomena of wide
interest, from seemingly discrete, even trivial, laboratory
experiments. Commonly used model organisms, such as
fruit flies (Drosophila spp.), tend to have a variety of
characteristics that make them particularly suitable for
such experiments, including economy, speed of replication,
and controllability (e.g., Ashburner and Novitski 1976;
Greenspan 2004; Ashburner et al. 2005). The most suitable
model organisms thus display some of the complexities of
the phenomenon of interest, yet are generally not so complex
that they are unwieldy in experimental settings. Elsewhere
(Schillinger et al. 2014), we have argued that in regard
to the study of cultural evolutionary phenomena, simple
experiments that replicate certain aspects of handaxe form
(e.g., their size and/or shape) make a particularly useful
subject of study.

Here, we describe two experiments that we have under-
taken using handaxe form in the manner of a ‘model organ-
ism’ in order to understand the effects of copying errors,
or ‘mutation’ in cultural evolutionary models. We go on to
discuss these experiments in terms of why understanding
micro-evolutionary effects, such as copy error, can ultimately
lead to a greater understanding regarding issues of ‘learning’
in handaxe-making hominin populations of the Palaeolithic.

11.2 Experiment 1: Considering the Effects
of Size Mutation in the Acheulean

In the context of artefactual variation, the study of variation
generation at a microevolutionary level is the equivalent of
studying genetic mutation in biology (Cavalli-Sforza and
Feldman 1981; Eerkens and Lipo 2005). In principle, a
number of potential mechanisms (e.g., deliberate embellish-
ment) might lead to the generation of new cultural variants,
and it is important to note that the deliberate, intentional
introduction of variation does not invalidate an evolutionary

theory of cultural change (Mesoudi 2008). However, it is also
recognized that unintentional copying errors (i.e. imperfect
replication) during the manufacture of artefacts can lead
to the introduction of novel variation in material traditions
(Clarke 1968: 161; Eerkens and Lipo 2005; Hamilton and
Buchanan 2009).

In our first experiment (Kempe et al. 2012) we were
interested in testing the ‘accumulated copying error’ (or
‘ACE’) model proposed by Eerkens and Lipo (2005), in
which random error in a quantitative artefact dimension
(e.g., handaxe ‘length’) is generated by the physiological
limitations of the hominin perceptual system. Eerkens and
Lipo drew on experimental findings suggesting that the ac-
curacy of human perception has physiological limits, which
influences our ability to perceive differences between objects
(e.g., Coren et al. 1994). If the difference in size between
two objects is below some threshold, then this size differ-
ence will tend to be imperceptible. Such error thresholds
are always relative to the size of the object, rather than
absolute. The perceptual threshold below which humans fail
to discriminate variation in the size of different objects is
termed the ‘Weber fraction’ and is now established at a
level of �3 % difference for a dimensional variable such
as ‘length’ (Eerkens 2000; Kempe et al. 2012). In other
words, if a person is presented with two objects and the
difference in their length is less than 3 %, they will generally
fail to perceive this difference. Such insights provide a
basis for comparing patterns of size variation in artefactual
assemblages (Eerkens 2000; Eerkens and Bettinger 2001;
Kempe et al. 2012).

Eerkens and Lipo (2005) applied this basic principle to
the repeated cultural transmission of artefacts. They assumed
that when attempting to copy the morphology of an arte-
fact as faithfully as possible, and in the absence of formal
measurement aids (e.g., scaled rules), the manufacturer will
inevitably make copying errors that are imperceptible due to
the aforementioned perception thresholds. If that person’s
copied artefact is in turn copied by another person, and
so on along a transmission chain, then copying errors will
compound over time, possibly creating significant morpho-
logical change compared to the original artefact. Moreover,
if multiple such transmission chains evolve independently,
then the variation between these diverging chains is likely
to become substantial and to increase over time. Note that
this process will take place regardless of whether any other
cultural evolutionary forces are at work. Eerkens and Lipo
presented a simple simulation model of this process in which
a continuous trait value is transmitted over successive gen-
erations of individuals with a 3 % random normal error rate,
and with 10 independently evolving chains. Their simulation
showed that, as expected, the independent chains diverged
over time as some became larger and others became smaller.
Due to the randomness of the error, the overall mean value
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did not change over time, while the between-chain variation
did increase over time.

The aim of our experiment was to provide an explicit
empirical test of Eerkens and Lipo’s (2005) ACE model of
artefact transmission. Although their assumption that 3 %
is the perceptual threshold below which humans fail to
discriminate variation in the size of different objects is based
on previous experimental findings from psychophysics, it is
unclear (1) whether this 3 % error threshold is uniform across
a large population of individuals, given that psychophysicists
typically obtain their estimates from just one or a handful
of experimental participants; (2) whether this 3 % threshold,
originally obtained for simple lines or abstract geometric
shapes, also applies to more realistic artefact shapes, such
as handaxes; and (3), whether it is valid to simply extrapo-
late a single individual’s perceptual error along successive
transmission episodes or whether there are, for example,
unexpected dynamics introduced by the compounding of
individual errors.

In order to address these three points, we (Kempe et al.
2012) first derived the ACE model within an explicit mathe-
matical framework and simulated its effects. The model op-
erated on the basis that an individual copies a continuously-
valued artefactual trait (e.g., handaxe ‘length’) with a set
amount of copying error, drawn randomly from a normal
distribution. Given that copy-error is scaled proportionally
to that of the attribute being copied, the resultant value is
obtained by multiplying the original (starting) value by the
randomly sampled copying error. Full details are provided
in Kempe et al. (2012). Simulating this model in 10 inde-
pendently evolving chains over 400 generations of copying
demonstrated that mean artefact size (across all 10 chains)
will remain stable (Fig. 11.1). This is because, although most
chains become smaller across time, the few transmission
chains that get larger become increasingly large because er-
ror is scaled relatively to the attribute being copied. Equally,
chains that tend toward the production of smaller artefacts
deviate less overall from the original value in absolute terms.
Hence, perhaps counter intuitively, the average artefact value
across independently evolving chains will remain relatively
stable across time, even though variance across the different
transmission chains increases. These results were, therefore,
broadly in agreement with Eerkens and Lipo’s (2005) origi-
nal formulation of the effects of the ACE model.

The experimental portion of the study aimed to determine
more accurately the variance of the distribution seen in such
copying errors and also to test whether mean and sample
variance values obtained from experimental data matched
their model-predicted values. The experiment consisted of
individual volunteers, randomly allocated to independent
transmission chains, resizing an image of a handaxe using
an iPad (Fig. 11.2). Each participant was shown the handaxe
of the previous person in their chain and then asked to resize

Fig. 11.1 Results of simulation based on copy error model. Output
shows 10 chains evolving over 400 generations (black lines) and the-
oretically predicted mean (thick black line) and variance (thick dashed
line)

Fig. 11.2 Example of the resizing experiment using electronic touch-
screen. Each participant was asked to resize the handaxe image on the
right so as to match the size of the previous participant’s as closely as
possible, which is shown on the left. Participants pressed the tick mark
to complete the copying task

a second handaxe to match the size of the previous person’s
handaxe as closely as possible. This experimental set-up, as
with the use of ‘model organisms’ referred to earlier, has the
advantage of procedural simplicity, in that it required only
application of a pinching gesture on the electronic screen and
no time limit was imposed. Hence, perceptual error was em-
phasized over manufacturing error, as is necessary given the
aims of our study. A video demonstration of the experiment
is provided in the online supplementary information (open
access) of Kempe et al. (2012).

A total of 200 participants were asked to faithfully copy
the size of the previous participant’s handaxe image us-
ing this experimental set up, divided into 20 independent
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transmission chains of 10 participants each. Two alternative
conditions were implemented. In the first condition, the size
of the image to be rescaled began at the maximum possible,
which in this instance was 14.4 cm, given the height of the
electronic screen. The second condition involved the starting
size of the image to be rescaled being set at 1/3 of maxi-
mum (i.e. 4.8 cm). The transmission chains divided equally
between these ‘start-larger’ and ‘start-smaller’ conditions.
Copying errors were found to be normally distributed and
on the order of 2.69 % for the larger condition and 3.99 %
for the smaller condition, with an overall mean of 3.43 %,
which corresponds well to the 3 % value reported in the
psychophysiological literature. The experimental findings
also supported the model’s prediction that between-chain
variance should increase over time and did so in a manner
quantitatively in line with the model. However, when the
initial size of the image that the participants resized was
larger than the size of the image they were copying, subjects
tended to increase the size of the image, resulting in the
mean size increasing rather than staying constant, as the
raw model would predict. This latter observation represents
a novel and unanticipated empirical finding that, to our
knowledge, has no precedent in psychology, illustrating the
value of experimental simulations of cultural transmission
over multiple generations rather than inferring long-term
dynamics from the characteristics of single individuals.

The final part of the study involved comparing our results
to a dataset of genuine Acheulean handaxes. This dataset
provided quantitative data for 2061 complete handaxes from
21 different sites located in a total of five countries (Is-
rael, Morocco, South Africa, Tanzania, United Kingdom)
covering an age range of some 1.2 million years (Marshall
et al. 2003). The coefficient of variation (CV) for length
in this sample was 0.30 and for breadth was 0.23. We
then simulated the output of the ACE model, setting copy-
error rates to the 3.43 % determined by our experiments.
These simulations determined that CV values of greater than
0.30 will be produced by copying error in less than 200
copying generations. Conservatively setting each generation
at 20 years would imply that in �4,000 years of copying,
variation would exceed that seen in the genuine Acheulean
sample. Indeed, copying error would need to be only on
the order of 0.17 % (i.e. 20 times smaller than the 3.43 %
seen in our experiments) in order to produce the level of
total variation seen in the 1.2 million years covered by the
handaxes concerned. Clearly, what these results imply is that
certain factors must be countermanding the inevitable effects
of size copying error and lineage mutation implied by the
model.

Further experiments and models might examine such
factors, as well as test the effect of relaxing our simplifying
assumptions. For example, we assume in the model and
experiment that transmission is one-to-one, with individuals

acquiring the trait from a single individual. Ethnographic
evidence (e.g. Stout 2005) suggests that the transmission
of artefacts may often be many-to-one, with individuals
acquiring the trait from multiple cultural parents, which
our design could easily be modified to explore (see Kempe
and Mesoudi 2014 for an experimental methodology that
incorporates multiple cultural parents).

11.3 Experiment 2: Considering the Effects
of ShapeMutation in the Acheulean

It bears emphasizing that our first experiment, as described
above, considers only mutation in the size (i.e. scale) of
handaxe attributes, and the patterns of variation that will
be produced through inevitable copying errors induced by
physiological limits to perceive such differences. Although
the analyses we describe suggest that Acheulean handaxes
exhibited a definite range of size variability (see also Cromp-
ton and Gowlett 1993; Gowlett 2009), a fundamental distin-
guishing feature of handaxes are their characteristic shape
properties (Roe 1976; Wynn 1995; Roche 2005). Shape
properties of artefacts, independently of their size, may have
specific functional or aesthetic significance (Lycett 2008;
Winter-Livneh et al. 2013). Indeed, although size and shape
are often conflated (‘form’ D size C shape), both concep-
tually and empirically, size and shape are fundamentally
distinct (Bookstein 1989; Jungers et al. 1995). While the
size of an object is a univariate property and can therefore
be described quantitatively by a single measure of scale
such as volume, shape is inherently a multivariate property.
A quantitative concept of shape, therefore, relies not on
the appreciation of a single variable such as ‘length’, but
on the relative relationships between multiple aspects of
morphometric variation in a given object. As Gowlett (2006)
has noted, the deliberate manufacture of handaxe shape
requires—minimally—the interrelated manipulation of the
relative length variable (s), width (s) and aspects of thickness
variability on the part of their manufacturer, and control of
those interrelated properties during the knapping process.

The potential importance of shape copying errors in the
case of handaxe production is particularly emphasized given
that it has been proposed that the production of artefacts
via knapping may be a particularly ‘error prone’ process.
For instance, some time ago, Deetz (1967) noted that in the
case of a ‘reductive’ process of manufacture, such as the
knapping of stone artefacts, errors are not easily reversed.
As Baumler (1995: 11) put it more recently, in the case of
stone tool manufacture “each [flake] removal is irrevocable
and its consequences are permanent”. Conversely, Deetz
(1967) contended that in the case of more readily reversible
(or ‘additive’) processes of manufacture, such as basketry
or pottery, errors are readily corrected due to the ease by
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Fig. 11.3 Flint replica handaxe provided to participants as the ‘target’ model during the copying task. Participants in each condition were asked
to copy the shape of this handaxe from standardized plasticine blocks using a steel table knife (Replica knapped by SJL.)

which material can be either added or removed. According
to Deetz, differences between such alternative manufacturing
processes would lead inevitably to greater levels of variation
in non-reversible manufacturing traditions, such as those
used in handaxe production.

Testing predictions of this form through studies of the
archaeological record would be fraught with difficulty given
the differing situational conditions under which alternative
sets of artefacts (e.g., pots versus baskets) might be made,
even within the same community. Moreover, comparing
variation in artefacts across differing raw materials may be
problematic given that the medium of manufacture itself
(e.g., stone versus clay) might influence variation patterns
in particular ways. A further specific problem in the case of
artefacts such as handaxes is that their production requires
skilled behaviour built over months, if not years, of practice
(Edwards 2001) and is an activity that can even prove dan-
gerous (Whittaker 1994). Such issues provide serious chal-
lenges to the implementation of an experimental approach
that requires ready-recruitment of participants in numbers
amenable to the implementation of statistical analysis. What
is needed is a ‘model organism’ approach that enables imple-
mentation of fundamental controls such that the key contrasts
between the two alternative manufacturing conditions are
emphasized, while replicating the essential (i.e. ‘additive’
and ‘reductive’) features of the processes of interest under
safe conditions.

Given these considerations, we (Schillinger et al. 2014)
implemented an experimental procedure that consisted of a
simple copying task. Participants were asked to copy the
shape of a replica Acheulean handaxe (Fig. 11.3) as accu-
rately as possible using a standardized block of plasticine
and a stainless steel table knife. Following Deetz (1967), the
central prediction that we tested is that the implementation
of reductive manufacturing processes, where material can
be removed but not added, automatically leads to an overall
higher rate in copying error for shape than under reversible
manufacturing conditions. In the context of this hypothesis,
we specifically targeted the statistical effects of copying error
on shape attributes, using a dataset of size-adjusted morpho-
metric variables. It should be noted, therefore, that in contrast
to the type of experiment described earlier, this experiment
is not so much aimed at the issue of perceptual bias (in
terms of establishing a baseline error rate), as procedural bias
(i.e. additive versus reductive manufacturing processes) and
establishing whether one procedure has intrinsically greater
error rates than the other.

A total of 60 participants were recruited to take part in
this experiment. Of these, 30 were female (mean age D 26,
s.d. D 5.4, age range D 18–44 years) and 30 were male
(mean age D 28, s.d. D 9.8, age range D 18–64 years). Equal
numbers of males and females were employed deliberately
in order to control for any potential confound in terms of
sex differences in visuo-spatial abilities (see e.g., Wynn et al.
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1996). The participants were divided equally between two
experimental conditions: an ‘additive-reductive’ condition,
whereupon participants were instructed that they were free
to both remove and add plasticine during the manufacture
of their replica, and a ‘reductive-only’ condition in which
participants were strictly required only to remove material
in producing their copy. In order to control for memory
effects (see e.g., Eerkens 2000), participants were permitted
to examine the target handaxe for 1 min prior to beginning
the copying task, and were free to compare their model to the
target at any point during the 30 min allotted for completion
of the task. All participants were able to complete the task
within this timeframe.

Upon completion of the task, each participant’s model
was photographed in plan- and profile-views according to
a standardized orientation protocol (see Schillinger et al.
2014 for full details). Thereafter, measurements were ob-
tained digitally for 42 standardized variables (28 plan-view
and 14 profile-view) from each plasticine handaxe using
the freely available morphometrics software tpsDig v2.16
(Rohlf 2010). Given that our analysis specifically focused
on monitoring shape-related changes, the data were size-
adjusted via use of the geometric mean method (Jungers et al.
1995; Lycett et al. 2006). This method of size-adjustment
effectively removes size (scaling) variation between speci-
mens by equalizing their volumes, yet retains their relevant
shape data (Jungers et al. 1995). The geometric mean of
a series of n variables (a1, a2, a3 : : : an) is equivalent to
n
p

a1 � a2 � a3 � � � � � an . Simply, the geometric mean is
the nth root of the product of all n variables (Sokal and Rohlf
1995: 43). The method proceeds on a specimen-by-specimen
basis, dividing each variable in turn by the geometric mean
of the variables to be size-adjusted. Hence, to implement
the method, the geometric mean of each handaxe replica
was calculated separately and thereafter each of the 42
morphometric variables for each specimen were divided by
the geometric mean for that particular specimen. The size-
adjusted values of the 42 morphometric variables for each
of the 60 replicas were subtracted from the equivalent 42
variables of the target flint replica. Thereafter, mean shape
error was computed for each of the 42 morphometric vari-
ables across the 30 replicas obtained in each experimental
condition.

In terms of results, the additive-reductive condition had
an overall mean copying error rate of 0.115 (s.d. D 0.040)
across all variables. The reductive-only condition had a mean
of 0.134 (s.d. D 0.053) across all variables. The results of a
conservative Mann-Whitney U test demonstrated that copy-
ing error rates for the 42 variables in the reductive-only con-
dition were statistically greater than in the additive-reductive
condition (U D 621.5; asymptotic p D 0.0191; Monte Carlo
p D 0.0199). Figure 11.4 shows the overall distribution of the

Fig. 11.4 Box plots showing shape error distribution in each of the two
experimental conditions. Horizontal lines indicate the median error in
each case, boxes depict the 25–75 percentile, while whiskers mark the
largest datum point �1.5� box range

copy errors from the two conditions in the form of 25–75
percentile box plots.

Overall, the results of these analyses were, therefore,
entirely consistent with the proposition of Deetz (1967) that
copying errors, at least in terms of shape, will be higher
in artefacts produced via processes of irreversible reduc-
tion, than in artefacts produced via reversible processes of
manufacture. In other words, ‘mutation’ rates in the shape
attributes of artefacts produced under irreversible, or ‘re-
ductive’, conditions—such as handaxes produced via stone
knapping—are intrinsically greater than those produced via
alternative means.

11.4 Discussion

Here, we have reviewed the results of two experiments de-
signed to examine mutation rates produced by copying error
in cultural evolutionary models. At this juncture, however,
the reader may well be asking what any of this implies for
questions concerning the learning of handaxe production in
the hominin societies that made them.

The value of these experiments in approaching questions
of this type, we would contend, lies in their microevolution-
ary perspective. Evolution is a process in which inherited
variants are replicated differentially, and imperfectly, through
time. Variants are replicated differentially because certain
variants fail to be reproduced either due to ‘selective’ factors
(i.e. differences between variants lead to a differential like-
lihood of successful replication in given circumstances) or
due to some random (chance) factor, which results in ‘drift’
of characteristics within populations. The replication process
in any genuine evolutionary system is, however, always im-
perfect (even if only in very subtle ways), thus ensuring that
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new variants may appear across time. These new variants,
of course, become the engine for yet further evolutionary
change. In the case of artefacts, this was recognised some
time ago by Harrison (1930: 111) who noted:

it is clear that the size and form of any one-piece artifact, or of
any such component of a compound artifact, may be altered very
considerably by the cumulative effect of a number of changes
each small in itself : : : In some instances, variational modifica-
tions arise through the copying from other artifacts of features
of form, with resultant changes in shape and proportions; : : : It
also plays a part in mutational progress.

The results of the first experiment we describe (Kempe
et al. 2012), considered the role of size mutation in these
terms. We simulated the assumptions of the accumulated
copying error model under realistic size copying-error rates
established via empirical experiment. These analyses were
able to show that drift alone would lead to size variation
exceeding that seen in archaeological samples of handaxes
in, conservatively, as little as 4,000 years. In other words,
it seems that in the case of a learning model in which
individuals simply copied the size of handaxes made by
those nearby, mutation effects over time would inevitably
lead relatively quickly to unrealistic levels of size variation.

Simple learning (size copying) plus a level of random
variation does not, therefore, explain the relatively con-
strained levels of size variation seen across the samples of
handaxes considered in our study (Kempe et al. 2012). What
this plausibly suggests is that functionally-related cultural
selection, such as the need to fit into the hand comfortably
(Gowlett 2006), was constraining variation in ways that do
not fit the simple drift-copying model. Such constraints may
have been inducted by individual (‘trial-and-error’) learn-
ing, whereby an individual hominin ‘scaled’ their handaxes
to what worked well in a functional capacity given their
own physical size, strength, etc. Indeed, the importance
of ‘feedback’ mechanisms between considerations of this
nature and the attributes of artefacts such as handaxes was
mentioned some time ago by Clarke (1968: 181–182, 649).
However, within any socially-mediated context of observa-
tion of, and learning about, handaxe production and usage,
some notion of suitable size parameters is also likely to have
been inducted in novice handaxe producers through direct
observation of others’ tools (Fragaszy et al. 2013), essentially
‘resetting’ the drift clock with each generation, especially in
terms of the population mean.

Our second experimental analysis (Schillinger et al.
2014), considered copying error in terms of shape mutation,
independently of size factors. The participants engaged
in one of two alternative conditions; one representing an
irreversible (‘reductive-only’) manufacturing process, and
the other representing a reversible (‘additive-reductive’)
manufacturing process. Participants in each condition were
asked to copy the shape of a target form (a flint replica

handaxe) as accurately as possible utilizing a standardized
block of plasticine and a stainless steel table knife. Our
analysis found that replicas produced in the reductive-only
condition displayed statistically greater levels of shape-
copying error than those produced in the additive-reductive
condition. In other words, mutation rates in the shape
properties of material traditions produced under reductive
conditions (such as stone knapping) are intrinsically greater
than those produced via alternative means. Hence, shape
mutation rates are process dependent, and in the case of
traditions produced through knapping will be inherently
prone to copying error, especially via an imitative (i.e. goal
copying) form of learning. This point is especially notable
given that the characteristic shape of handaxes was imposed
by hominins through the knapping sequence itself, and is
not easily determined merely by selection of starting form as
might more easily be the case with ‘size’ parameters. Indeed,
handaxes were produced on tabular material, rounded
nodules and cobbles, and flake blanks, the latter of which
sometimes involved the instigation of regionally distinctive
knapping routines that produced such flake ‘blanks’ (Sharon
2009). Hence, the characteristic form of handaxes seen in the
archaeological record was imposed on materials comprised
of a variety of differing ‘start’ points. Indeed, at least one
study suggests that handaxes made of stone and bone at the
same locality show no statistical differences in outline shape,
despite the differing nature of these materials (Costa 2010).

Elsewhere, we have noted that the appearance rate of
new cultural variants may conceptually be linked to potential
for evolutionary change (Schillinger et al. 2014: 137) akin
to the concept of ‘evolvability’ in biology (Ridley 2004:
587). It must be stressed, of course, that while ‘evolvability’
in these terms might be used to describe the potential for
change brought about by selective factors (either natural or
cultural), it can also be used to describe potential for the
degradation of culturally transmitted traits, leading eventu-
ally to their extinction, or cultural ‘collapse’ of a particular
tradition. Indeed, although variation is required for selection
to operate, and is therefore a prerequisite of cumulative
cultural evolution, equally it has been known for some time
in biology that ‘mutation load’ is a factor that may ultimately
prove fatal to population viability (Simpson 1953). Hence,
in the case of items of material culture, such as handaxes
produced via reductive processes, their potential for evolu-
tionary ‘corruption’ in terms of shape would be higher than
artefactual traditions produced via processes in which errors
are more easily corrected. A visual demonstration of this
effect is shown in Fig. 11.5, which illustrates merely 15
‘generations’ of different experimental participants copying
the previous participant’s copy in the form of a transmission
chain, when the initial shape starts out in a form similar to
that of a handaxe. In this (albeit anecdotal) example, it is
readily visible that erosion due to effects of copying error can
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Fig. 11.5 Transmission chain produced by 15 participants copying the
3D shape of the ‘artefact’ of the previous participant (starting initial
‘target’ shown top left). Each of these 3D models was carved from
standardized foam blocks (22.3� 11� 7.8 cm) using a plastic table
knife. It should be noted, therefore, that the production of these shapes
requires no specialized skills or knowledge, and they are produced on
an easily malleable material

potentially have potent effects on the integrity of ‘handaxe’
shape within a limited number of generations.

Given these findings, what does this imply for the learn-
ing of ‘shape’ in handaxe-producing communities of the
Palaeolithic? One possibility is that individual (trial-and-
error) learning helped to mitigate the relatively strong effects
of shape mutation in handaxe traditions, at least once the
‘concept’ of handaxe tools had been instigated via other
means (e.g., stimulus enhancement learning and emulation).
There are reasons, however, to be cautious that individual
learning alone explains phenomena of the scale attested in
the archaeological record. One pertinent factor to consider
here is the inherently dangerous nature of flintknapping
involving the percussive removal of razor sharp stone flakes,
which inevitably also leads to small flakes and sharp chips
of stone being thrown into the air. Ethnographically and
historically recorded comments on such injury risks are
attested in the literature (e.g., Pope 1918: 117; Kroeber
1961: 184; Hampton 1999: 267). Today, many flintknap-
pers who produce stone artefacts for academic purposes
or recreation deliberately wear protective gear in the form
of safety glasses, gloves and thick padding. One contem-
porary academic flintknapper is known to have severed a
tendon with a small flake (�5 � 20 mm) requiring corrective
surgery and causing permanent debilitation of movement
in his hand (Whittaker 1994: 3–4). Painful open wounds,
blood loss, risk of infection to injuries, eye damage/loss are
noted risks, in addition to damaged ligaments that might be

caused by incorrect form. These factors are important when
we consider that there is widespread agreement that social
learning strategies will be favourable to asocial learning
strategies (i.e. trial-and-error learning) whenever the activity
to be learned is costly or hazardous (Boyd and Richerson
1985; Feldman et al. 1996). This is strongly supported by
empirical evidence from studies of learning in non-human
animals, which indicate that social learning will be favoured
wherever asocial learning is more costly (e.g., Mineka and
Cook 1988; Chivers and Smith 1995; Kelley et al. 2003),
as well as in contemporary humans using similar computer-
based learning tasks as those described above (Mesoudi and
O’Brien 2008).

One social learning mechanism potentially available to
handaxe-producing hominins, beyond pure copying of arte-
fact shape (i.e. emulation), is imitation. This would imply
some copying of not only the form of the object (the goal,
or ‘end state’) but also some fidelity in terms of copying the
actual behaviours used by others in the manufacture of their
handaxes. Subtle differences in the details of manufacture, or
‘process controls’ (sensu Patten 2005) that aim to increase
the likelihood of intended outcomes during the knapping
process would make obvious targets for such bouts of im-
itation. Such possibilities would also explain why metric
studies of handaxe form have persistently indicated sta-
tistical differences between assemblages of handaxes from
different regions or sites (e.g., Wynn and Tierson 1990;
Lycett and Gowlett 2008; Lycett and von Cramon-Taubadel
2015), which remain difficult to explain solely on the basis
of reduction and/or raw material factors (Sharon 2008; Eren
et al. 2014; Lycett and von Cramon-Taubadel 2015). How-
ever, further support for the instigation of imitative learning
must be further substantiated via independent means.

11.5 Conclusions

Assertions of social learning are often invoked for handaxe
production, sometimes even invoking specific mechanisms
of social learning such as imitation (e.g., Mithen 1999).
These assertions are made largely on the strength that these
mechanisms most plausibly explain the repeated pattern of
handaxe production over considerable swathes of time and
space. Given the scale of the phenomenon under considera-
tion, these assertions are not necessarily unreasonable. This
is especially the case given what we have learned in recent
decades about the role of social learning in the acquisition
of tool use behaviours of our closest living primate relatives
(e.g., Lonsdorf et al. 2004; Whiten and Mesoudi 2008;
Horner and de Waal 2009; Humle et al. 2009; Biro et al.
2010), and what we know from the ethnographic record in
terms of the learning of stone artefacts that are similar to
handaxes (e.g., Stout 2005). However, such assertions are
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problematic in the case of prehistoric handaxes without con-
sidering the role, scale, incidence and potential magnitude of
cumulative copying errors in precise terms. In essence, what
our experiments show is that inevitable copying error in size
and shape factors would relatively quickly lead to the dis-
integration of handaxe traditions attested empirically in the
archaeological record. Handaxe traditions are not inherently
stable; in fact, a combination of factors relating to copying
error in both size and shape factors would make them
inherently unstable. In the case of shape, in particular, this
suggests that a learning mechanism other than pure obser-
vation of others’ artefacts (i.e. goal emulation, or ‘end-state’
copying), was used in the learning of handaxe manufacture.
Individual (trial-and-error) learning could conceivably con-
strain variation somewhat, but the costs associated with
knapping would encourage the adoption of social learning
mechanisms that would countermand the inevitable effects
of copying error that we describe with reduced risk to tool
manufacturers. Determining what such mechanisms are—in
precise terms—will, however, require further work. Hence,
do we still have a long way to go in order to fully understand
the dynamics of learning in the Acheulean? Absolutely.
What the preceding discussion should demonstrate, however,
is the importance of an evolutionary perspective that can
work from a micro- to macro-scale level, and importantly,
is informed by data derived from experimental work of the
type we describe.

11.6 Final Remarks in the Context
of the RNMH Project Objectives

As Nishiaki (2013: 173) noted recently, a primary objective
of the RNMH research project is to investigate potential
factors in the replacement of hominin populations referred to
as ‘Neanderthals’ by those commonly referred to as ‘Modern
Humans’. If the points we have made here regarding imi-
tation capacities in handaxe producing hominin populations
are correct (and we re-emphasize the need for further cor-
roboration), then imitative capacities were a plesiomorphic
feature, present in the last common ancestor of both groups
of populations. Hence, if we are correct, differences in imita-
tive capacities are unlikely to have played a major role in the
replacement process. This, it should be noted, is despite the
fact that imitation may be a key variable in the fidelity of so-
cial learning systems, which a priori, may make it a potential
explanative candidate. If modal differences in the innate (i.e.
genetically determined) social learning capacities of these
two hominin populations played any role in the replacement
of one by another, this leaves only two potential candidates:
(1) that capacities for more sophisticated social learning
mechanisms, such as teaching (Tehrani and Riede 2008),
were different or (2) that one population possessed greater

capacity for innovation than the other, which in turn, pro-
vided an advantage in a competitive environment. Personally,
we are doubtful that innate differences between these two
groups of populations will provide a fully satisfactory answer
to the question of population replacement, partly because
of the demonstrable resilience of Neanderthal populations
over millennia prior to their disappearance, and the proximity
of their biological relationship to contemporary populations
of H. sapiens. However, we acknowledge the considerable
amount of work that needs to be done to fully support our
position.

Acknowledgements The research discussed in this chapter was funded
by a Leverhulme Trust Research Project Grant (F/07 476/AR) awarded
to AM and SJL. For numerous invaluable conversations and comments
while undertaking this work we are grateful to Noreen von Cramon-
Taubadel. We are also grateful to Ken Aoki and Jamie Tehrani for
helpful comments on a previous version of this paper.

References

Ashburner M, Novitski E (1976) The genetics and biology of drosophila
1A. Academic, London

Ashburner M, Golic K, Hawley RS (2005) Drosophila: a laboratory
handbook, 2nd edn. Cold Spring Harbor Laboratory Press, New York

Bataillon T, Joyce P, Sniegowski P (2013) As it happens: current
directions in experimental evolution. Biol Lett 9:20120945

Baumler MF (1995) Principles and properties of lithic core reduction:
implications for levallois technology. In: Dibble HL, Bar-Yosef
O (eds) The definition and interpretation of levallois technology.
Prehistory Press, Madison, pp 11–23

Bello SM, Parfitt SA, Stringer C (2009) Quantitative micromorphologi-
cal analyses of cut marks produced by ancient and modern handaxes.
J Archaeol Sci 36:1869–1880

Beyene Y, Katoh S, WoldeGabriel G, Hart WK, Uto K, Sudo M et al
(2013) The characteristics and chronology of the earliest Acheulean
at konso, Ethiopia. Proc Natl Acad Sci U S A 110:1584–1591

Binford LR (1983) In pursuit of the past. Thames & Hudson, London
Biro B, Carvalho S, Matsuzawa T (2010) Tools, traditions, and tech-

nologies: interdisciplinary approaches to chimpanzee nutcracking.
In: Lonsdorf EV, Ross SR, Matsuzawa T (eds) The mind of the
chimpanzee: ecological and experimental perspectives. Chicago Uni-
versity Press, Chicago, pp 141–155

Bookstein FL (1989) ‘Size and shape’: a comment on semantics. Syst
Zool 38:173–180

Boyd R, Richerson P (1985) Culture and the evolutionary process.
University of Chicago Press, Chicago

Byrne RW, Russon AE (1998) Learning by imitation: a hierarchical
approach. Behav Brain Sci 21:667–721

Cavalli-Sforza LL, Feldman MW (1981) Cultural transmission and evo-
lution: a quantitative approach. Princeton University Press, Princeton

Chivers DP, Smith RJF (1995) Chemical recognition of risky habitats is
culturally transmitted among fathead minnows, Pimephales prome-
las (osteichthyes, cyprinidae). Ethol 99:286–296

Clark JD (1994) The Acheulian industrial complex in Africa and
elsewhere. In: Corruccini RS, Ciochon RL (eds) Integrative paths
to the past. Prentice Hall, Englewood Cliffs, pp 451–469

Clarke DL (1968) Analytical archaeology. Methuen, London
Coren S, Ward LM, Enns JT (1994) Sensation and perception. Harcourt

Brace, San Diego



11 Learning in the Acheulean: Experimental Insights Using Handaxe Form as a ‘Model Organism’ 165

Costa AG (2010) A geometric morphometric assessment of plan shape
in bone and stone Acheulean bifaces from the middle Pleistocene site
of Castel di Guido, Latium, Italy. In: Lycett SJ, Chauhan PR (eds)
New perspectives on old stones: analytical approaches to paleolithic
technologies. Springer, New York, pp 23–41

Crompton RH, Gowlett JAJ (1993) Allometry and multidimensional
form in Acheulean bifaces from kilombe, Kenya. J Hum Evol
25:175–199

Darwin C (1859) On the origin of species. John Murray, London
Deetz J (1967) Invitation to archaeology. The Natural History Press,

Garden City
Domínguez-Rodrigo M, Serralllonga J, Juan-Tresserras J, Alcala L,

Luque L (2001) Woodworking activities by early humans: a plant
residue analysis on Acheulian stone tools from Peninj (Tanzania). J
Hum Evol 40:289–299

Edwards SW (2001) A modern knapper’s assessment of the technical
skills of the late Acheulean biface workers at Kalambo falls. In:
Clark JD (ed) Kalambo falls prehistoric site: volume III. Cambridge
University Press, Cambridge, pp 605–611

Eerkens JW (2000) Practice makes within 5 % of perfect: visual
perception, motor skills, and memory in artifact variation. Curr
Anthropol 41:663–668

Eerkens JW, Bettinger RL (2001) Techniques for assessing standard-
ization in artifact assemblages: can we scale variability? Am Antiq
66:493–504

Eerkens JW, Lipo CP (2005) Cultural transmission, copying errors, and
the generation of variation in material culture and the archaeological
record. J Anthropol Archaeol 24:316–334

Eren MI, Roos CI, Story B, von Cramon-Taubadel N, Lycett SJ (2014)
The role of raw material differences in stone tool shape variation: an
experimental assessment. J Archaeol Sci 49:472–487

Feldman MW, Aoki K, Kumm J (1996) Individual versus social learn-
ing: evolutionary analysis in a fluctuating environment. Anthropol
Sci 104:209–232

Fragaszy DM, Biro D, Eshchar Y, Humle T, Izar P, Resende B,
Visalberghi E (2013) The fourth dimension of tool use: temporally
enduring artefacts aid primates learning to use tools. Philos Trans R
Soc B 368:20120410

Gowlett JAJ (2006) The elements of design form in Acheulian bifaces:
modes, modalities, rules and language. In: Goren-Inbar N, Sharon
G (eds) Axe age: Acheulian tool-making from quarry to discard.
Equinox, London, pp 203–221

Gowlett JAJ (2009) Artefacts of apes, humans, and others: towards
comparative assessment and analysis. J Hum Evol 57:401–410

Gowlett JAJ (2010) The future of lithic analysis in palaeolithic archae-
ology: a view from the Old World. In: Lycett SJ, Chauhan PR (eds)
New perspectives on old stones: analytical approaches to paleolithic
technologies. Springer, New York, pp 295–309

Gowlett JAJ (2011) The empire of the Acheulean strikes back. In: Sept
J, Pilbeam D (eds) Casting the net wide: papers in honor of Glynn
Isaac and his approach to human origins research. American School
of Prehistoric Research, Cambridge, MA, pp 93–114

Greenspan RJ (2004) Fly pushing: the theory and practice of drosophila
genetics, 2nd edn. Cold Springer Harbor Laboratory Press, New York

Hamilton MJ, Buchanan B (2009) The accumulation of stochastic
copying errors causes drift in culturally transmitted technologies:
quantifying Clovis evolutionary dynamics. J Anthropol Archaeol
2:55–69

Hampton OW (1999) Culture of stone: sacred and profane uses of stone
among the Dani. Texas A&M, College Station

Harrison HS (1930) Opportunism and the factors of invention. Am
Anthropol 32:106–125

Henrich J, McElreath R (2003) The evolution of cultural evolution. Evol
Anthropol 12:123–135

Heyes CM (1994) Social learning in animals: categories and mecha-
nisms. Biol Rev 69:207–231

Horner V, de Waal FBM (2009) Controlled studies of chimpanzee
cultural transmission. Prog Brain Res 178:3–15

Humle T, Snowdon CT, Matsuzawa T (2009) Social influences on ant-
dipping acquisition in the wild chimpanzees (Pan troglodytes verus)
of bossou, guinea, West Africa. Anim Cogn 12(S1):37–48

Isaac GL (1972) Early phases of human behaviour: models in lower
palaeolithic archaeology. In: Clarke DL (ed) Models in archaeology.
Methuen, London, pp 167–199

Isaac GL (1977) Olorgesailie: archaeological studies of a middle Pleis-
tocene lake basin in Kenya. University of Chicago Press, Chicago

Johnson LL (1978) A history of flint-knapping experimentation, 1838–
1976. Curr Anthropol 19:337–372

Jones PR (1980) Experimental butchery with modern stone tools and its
relevance for palaeolithic archaeology. World Archaeol 12:153–165

Jungers WL, Falsetti AB, Wall CE (1995) Shape, relative size, and
size adjustments in morphometrics. Yearb Phys Anthropol 38:
137–161

Keeley LH (1980) Experimental determination of stone tool uses: a
microwear analysis. University of Chicago Press, Chicago

Kelley JL, Evans JP, Ramnarine IW, Magurran AE (2003) Back to
school: can antipredator behaviour in guppies be enhanced through
social learning? Anim Behav 65:655–662

Kempe M, Mesoudi A (2014) An experimental demonstration of the
effect of group size on cultural accumulation. Evol Hum Behav
35:285–290

Kempe M, Lycett SJ, Mesoudi A (2012) An experimental test of the
accumulated copying error model of cultural mutation for Acheulean
handaxe size. PLoS One 7(11):e48333

Kroeber T (1961) Ishi in two worlds. University of California Press,
Berkeley

Lepre CJ, Roche H, Kent DV, Harmand S, Quinn RL, Brugal J-P et al
(2011) An earlier origin for the Acheulian. Nature 477:82–85

Lonsdorf EV, Eberly LE, Pusey AE (2004) Sex differences in learning
in chimpanzees. Nature 428:715–716

Lycett SJ (2008) Acheulean variation and selection: does handaxe
symmetry fit neutral expectations? J Archaeol Sci 35:2640–2648

Lycett SJ, Chauhan PR (2010) Analytical approaches to palaeolithic
technologies: an introduction. In: Lycett SJ, Chauhan PR (eds) New
perspectives on old stones: analytical approaches to palaeolithic
technologies. Springer, New York, pp 1–22

Lycett SJ, Gowlett JAJ (2008) On questions surrounding the Acheulean
‘tradition’. World Archaeol 40:295–315

Lycett SJ, von Cramon-Taubadel N (2015) Toward a “quantitative
genetic” approach to lithic variation. J Archaeol Method Theory. doi:
10.1007/s10816-013-9200-9

Lycett SJ, von Cramon-Taubadel N, Foley RA (2006) A crossbeam
co-ordinate caliper for the morphometric analysis of lithic nuclei:
a description, test and empirical examples of application. J Archaeol
Sci 33:847–861

Marshall G, Gamble C, Roe D (2003) The Acheulian biface project: a
digital archive for teaching and research. Antiquity 77 (online)

Mesoudi A (2008) Foresight in cultural evolution. Biol Philos 23:
243–255

Mesoudi A (2011) Cultural evolution: how Darwinian theory can ex-
plain culture and synthesize the social sciences. Chicago University
Press, Chicago

Mesoudi A, O’Brien MJ (2008) The cultural transmission of great basin
projectile point technology I: an experimental simulation. Am Antiq
73:3–28

Mesoudi A, Whiten A, Laland KN (2004) Is human cultural evolution
Darwinian? evidence reviewed from the perspective of The origin of
species. Evolution 58:1–11

Mineka S, Cook M (1988) Social learning and the acquisition of snake
fear in monkeys. In: Galef BG, Zentall TR (eds) Social learn-
ing: psychological and biological perspectives. Erlbaum, Hillsdale,
pp 51–73

http://dx.doi.org/10.1007/s10816-013-9200-9


166 S.J. Lycett et al.

Mithen S (1999) Imitation and cultural change: a view from the stone
age, with specific reference to the manufacture of handaxes. In: Box
HO, Gibson KR (eds) Mammalian social learning: comparative and
ecological perspectives. Cambridge University Press, Cambridge, pp
389–399

Nishiaki Y (2013) ‘Gifting’ as a means of cultural transmission.
In: Akazawa T, Nishiaki Y, Aoki K (eds) Dynamics of learning
in Neanderthals and Modern Humans, vol 1. Springer, Tokyo,
pp 173–185

O’Brien MJ, Lyman RL (2000) Applying evolutionary archaeology: a
systematic approach. Kluwer Academic/Plenum, New York

Patten B (2005) Peoples of the flute: a study in anthropolithic forensics.
Stone Dagger Publications, Denver

Pope ST (1918) Yahi archery. University of California Press, Berkeley
Ridley M (2004) Evolution, 3rd edn. Blackwell, Oxford
Roberts MB, Parfitt S (eds) (1999) Boxgrove: a middle Pleistocene

hominid site at eartham quarry, boxgrove, West Sussex. English
Heritage, London

Roche H (2005) From simple flaking to shaping: stone-knapping evolu-
tion among early hominins. In: Roux V, Bril B (eds) Stone knapping:
the necessary conditions for a uniquely hominin behaviour. McDon-
ald Institute, Cambridge, pp 35–48

Roe D (1976) Typology and the trouble with handaxes. In: Sieveking
G de G, Longworth IH, Wilson KE (eds) Problems in economic and
social archaeology. Duckworth, London, pp 61–70

Rohlf FR (2010) TpsDig2 v2.16. Department of Ecology and Evolution,
State University of New York, Stony Brook. http://life.bio.sunysb.
edu/morph/

Schick KD, Toth N (1993) Making silent stones speak: human evolution
and the dawn of human technology. Weidenfeld and Nicolson,
London

Schillinger K, Mesoudi A, Lycett SJ (2014) Copying error and the cul-
tural evolution of “additive” versus “reductive” material traditions:
an experimental assessment. Am Antiq 79:128–143

Sharon G (2008) The impact of raw material on Acheulian large flake
production. J Archaeol Sci 35:1329–1344

Sharon G (2009) Acheulian giant-core technology. Curr Anthropol
50:335–367

Shennan S (2011) Descent with modification and the archaeological
record. Philos Trans R Soc B 366:1070–1079

Simão J (2002) Tools evolve: the artificial selection and evolution of
paleolithic stone tools. Behav Brain Sci 25:419

Simpson GG (1953) The major features of evolution. Columbia Univer-
sity Press, New York

Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W.H. Freeman, New
York

Stout D (2005) The social and cultural context of stone knapping skill
acquisition. In: Roux V, Bril B (eds) Stone knapping: the necessary
conditions for a uniquely hominin behaviour. McDonald Institute,
Cambridge, pp 331–340

Tehrani JJ, Riede F (2008) Towards an archaeology of pedagogy:
learning, teaching and the generation of material culture traditions.
World Archaeol 40(3):316–331

Toth N (1985) The Oldowan reassessed: a close look at early stone
artefacts. J Archaeol Sci 12:101–120

Whiten A, Mesoudi A (2008) Establishing an experimental science of
culture: animal social diffusion experiments. Philos Trans R Soc B
363:3477–3488

Whiten A, Horner V, Litchfield CA, Marshall-Pescini S (2004) How do
apes ape? Learn Behav 32:36–52

Whittaker JC (1994) Flintknapping: making and understanding stone
tools. University of Texas Press, Austin

Winter-Livneh R, Svoray T, Gilead I (2013) Shape reproducibility and
architectural symmetry during the chalcolithic period in the southern
Levant. J Archaeol Sci 40:1340–1353

Wynn T (1995) Handaxe enigmas. World Archaeol 27:10–24
Wynn T, Tierson F (1990) Regional comparison of the shapes of later

Acheulean handaxes. Am Anthropol 92:73–84
Wynn TG, Tierson FD, Palmer CT (1996) Evolution of sex differences

in spatial cognition. Yearb Phys Anthropol 39:11–42
Yravedra J, Domínguez-Rodrigo M, Santonja M, Pérez-González A,

Panera J, Rubio-Jara S et al (2010) Cut marks on the middle
pleistocene elephant carcass of Áridos 2 (Madrid, Spain). J Archaeol
Sci 37:2469–2476

http://life.bio.sunysb.edu/morph/
http://life.bio.sunysb.edu/morph/


Index

A
Accumulated copying error (ACE) model, 157–159
Acheulean handaxes, 5, 156–163
Adaptation, 121
Additive-reductive process, 160–162
Adoption curves, 86
Agent based modelling (ABM), 51, 53, 104
Analytical method, 16
Anatomically modern humans, 105, 115
Animal behavior, 29
Anthropologists, 156
Approximate Bayesian computation (ABC), 4, 91, 104–115
Asocial learning, 92
Atlatl (throwing stick), 123
Aurignacian culture, 103, 106, 108, 113
Axelrod model, 4

B
Bayes factors, 112
Beads, 46, 105, 108, 110, 115
Behavioral modernity, 68, 69, 72, 77, 81
Beringia, 126

Best-of-K, 11, 12, 14
Best-of-2 social learning, 15, 16
Biased learning, 123
Bohunician, 36
Bone tools, 46, 47
Bounded discrete mutation model, 109, 111, 113
Bounded stepwise mutation model, 109, 111, 113
Bull Brook, 126

C
Carrying capacity, 106, 108, 113, 114
Census population size, 47
Central-place foraging model, 49, 51, 58, 62
Châtelperronian, 36
Chimpanzees, 146, 147
Clovis points, 5, 121
Cognition, 145, 146, 150, 152, 153
Cognitive equality, 2, 6
Cognitively opaque, 151, 152
Cognitive revolution, 46
Colby site, 132
Complex cultural traits, 13, 17, 19
Complex skills, 10, 13, 15
Composite tools, 46, 47
Computational modelling, 104
Conflict, 106, 110, 111
Conformist social learning, 89
Consolation, 29

Continent-wide adaptation hypothesis, 127
Cooperation, 24, 30
Copy error, 5, 48
Copying, 123
Copying errors, 157–164
Copy-the-majority, 126
Copy-the-successful, 125
Cultural (ı�)2 , 110
Cultural change, 1
Cultural continuity, 3
Cultural differences, 105, 106, 111
Cultural diversity, 1
Cultural evolution, 23, 28, 156, 157, 161, 162
Cultural features, 108–110
Cultural FST measure, 111
Cultural interactions, 110, 111, 114
Cultural Moran model, 11
Cultural mutation, 106, 108, 109, 111
Cultural processes, 104, 108–110
Cultural repertoires, 108–111
Cultural selection, 48, 63
Cultural similarity, 108, 110–111
Cultural traits, 106, 108–110
Cultural transmission, 24, 27, 29, 47, 48, 52–54, 56, 58, 60, 62, 63,

106, 114
Cultural variation, 109, 111, 113, 114
Culture-as-a-0, 1-vector, 10
Culture-dependent interaction model, 5, 110, 111, 113
Cumberland, 127, 136
Cumulative culture, 5, 145–153

D
Dalton, 127
Debert, 126
Demographic, 107, 110, 115

factors, 2, 10
hypothesis, 63
processes, 104

Deposit, 109, 110, 113
Descent with modification process, 156
Design space, 71
Direct bias, 14
Drift, 106, 108, 109, 114
Dynamic evolutionary process, 156

E
Early Baradostian, 36
Early Paleoindian period, 121
Effective foraging radius, 49, 51–53, 56
Effective population sizes, 47, 48, 52, 53, 56, 60, 62

A. Mesoudi and K. Aoki (eds.) Learning Strategies and Cultural Evolution during the Palaeolithic,
Replacement of Neanderthals by Modern Humans Series, DOI 10.1007/978-4-431-55363-2,
© Springer Japan 2015

167



168 Index

Elko points, 124
Emiran, 36
Empathy, 29
Emulation, 147, 148, 150–152
Environmental changes, 25, 26, 30
Environmental scenarios, 106, 111, 113, 114
Error prone process, 159
Ethnic diversity, 108–110
Ethnic group identity, 106, 113
Ethnic identity, 4, 105
Ethnicity, 105
Ethnic structuring, 105, 110, 114, 115
Ethnographic evidence, 159
Euclidean distances, 113
Europe, 105, 106, 108, 113, 114
European Aurignacian, 105, 106
Explicit hypotheses, 104, 115, 116

F
Fidelity, 150–153
Fission/extinction processes, 107, 108, 111
Fitness, 48, 63

functions, 125
landscape, 48

Flint replica handaxe, 160
Flutes, 126
Folsom point, 133
Forager-collector continuum, 49, 53, 62
Formally discounted, 105, 112, 114
Formal scientific approach, 115
Founder effect, 128
Frequency-dependent copying, 123
Frequency distributions (spectrums), 4

G
Gainey, 136
Gaussian random walks, 107, 115
Generative inference, 89
Generative model, 91–93
Geodesic distance, 109, 110
Geometric morphometrics, 130
Great Basin, 123
Group fitness, 110, 114
Group interactions, 106, 110, 113, 115
Group structures, 30
Guided variation, 121

H
Hafting elements, 121
Haversine formula, 109, 110
Hierarchically-structured cultural traits, 4
Hominin, 23
Homophily, 69, 72, 77
Human behavior, 24, 29
Hypotheses, 104

I
IBS. See Individual-based simulations (IBS)
Ice-free corridor, 129
Identity-by-descent, 105, 108, 113
Imagination space, 10, 13, 16

Imitation, 146–148, 150–152
Indirect bias, 123
Individual-based simulations (IBS), 10, 11, 13, 16
Individual learning exists, 23, 24, 27, 122
Infinite-alleles mutation, 74
Infinite-sites innovation, 11, 13
Innovation, 3, 10
Interaction radius, 52, 54, 58
Interactions, 104, 106, 108, 110–111, 115
Interdisciplinary, 115
Interlandmark differences, 130
Isolation-by-distance, 105, 107, 110, 113

K
Kernel density estimation, 108

L
Landmarks, 130
Learning

capacity, 24
hierarchy, 70
hypothesis, 68
strategy, 1

Lévy walk, 51
Lissoirs, 36
Local group extinction, 48
Logical thinking, 30
Logistical mobility, 3–4, 48–52, 54, 56, 58, 60, 62

M
Material culture, 104–106, 110, 111, 114, 115
Metapopulation, 51–54, 56, 58, 60, 62
Micoquian, 36
Microsociety, 147
Middle Paleolithic settlement systems, 62
Middle stone age, 46, 47
Migration, 48, 107, 111, 114, 115
Mobility, 48–54, 58, 60, 62, 63
Model organisms, 157
Model selection, 88
Modern behaviors, 6, 23
Modern human, 19
Modes and pathways of social learning, 3
Moran model, 58, 73
Mosaic evolutionary, 47
MP-UP transition, 37
Multidisciplinary, 104
Multimodal adaptive landscape, 125
Multinomial function, 109, 110, 114
Mutation, 46, 47, 108, 109, 114

N
Natural selection, 48, 63
Neanderthals, 2, 6, 19, 46, 62
Neural change hypothesis, 47
Neutrality, 114
Neutral theory, 48, 63
Non-stepwise mutation model, 111
Normal distribution, 107
Null model, 110, 111, 113



Index 169

O
One-to-many, 11, 16
Online supplementary information, 158
Overfitting, 112

P
Paleolithic, 46, 51, 60, 62, 63, 155
Parameter, 104, 106–108, 110–112, 114, 115
Personal ornamentation, 105, 110, 115
Phylogenetic analyses, 135
Pleistocene, 48, 60, 62
Population density, 106, 108, 114, 115
Population genetics, 90
Population size, 2, 10
Power-law distribution, 87
Prestige bias, 133
Prior ranges, 104, 111

Q
Quad, 127

R
Random oblique, 11–13, 16
Ratchet, 145–153
Recurrent innovation, 11, 13
Regional environmental adaptation hypothesis, 127
Regional variation, 5
Relative marginal likelihoods, 112
Relative warps, 130
Reputation, 30
Residential mobility, 3, 49, 50, 52, 54, 56, 58, 60, 62
RNMH research project, 164
Rosegate points, 124

S
Saturation effect, 14, 17
Semantic Axelrod models, 69, 76, 80–82
Sequential Monte Carlo (SMC ABC) algorithm, 93
Settlement systems, 62
Shape mutation, 159–163
Sharing, 106, 110
Shawnee–Minisink, 126
Simple cultural traits, 13, 16, 19

Simple skills, 10, 13, 15
Simpson, 127
Simulation modelling, 104–115
Single occupancy, 114
Size mutation, 157–159, 162
Social learning, 2, 10, 23, 24, 26, 27, 85, 156, 163, 164
Social network, 48
Spatial distributions, 104, 105, 110
Spatially explicit simulation models, 48, 51, 113
Spatial statistics, 106
Spatiotemporally explicit cultural transmission, 104, 106
Stepwise mutation model, 109, 110
Stochasticity, 104
Stochastic processes, 104
Structured learning environments, 68, 75
Subsistants, 50, 51, 63
Success bias, 11, 15, 16
Summary statistics, 104, 111
Suwannee, 127
Systematic, 104, 115
Szeletian, 36

T
Teaching, 2, 24, 26–27
Teaching that is culturally transmitted, 3
Technounits, 50
Trait prerequisites, 69–74
Traits, 108
Transmission-chain laboratory experiments, 5

U
Unique occurrences, 19
Upper Palaeolithic, 62, 105, 106, 114

bead, 104
Europe, 113
period, 105

W
Woody Blackwell, 131
Wright–Fisher model, 47, 48, 52, 56, 58

Z
Zagros Mousterian, 36


	Preface
	Contents
	Contributors
	1 Introduction to “Learning Strategies and Cultural Evolution During the Palaeolithic”
	1.1 Learning Strategies
	1.2 Social and Demographic Factors
	1.3 Summary of the Chapters
	1.4 Concluding Remarks
	References

	2 Factors Limiting the Number of Independent Cultural Traits That Can Be Maintained in a Population
	2.1 Introduction
	2.2 Model
	2.3 An Analytical Result
	2.4 Monte Carlo Individual-Based Simulations
	2.5 Results for Random Oblique Social Learning
	2.6 Results for Best-of-2 Social Learning
	2.7 Results for Success Bias Social Learning with K = 2
	2.8 Results for One-to-Many Social Learning
	2.9 Discussion
	Appendix 1: Partial Proof of Eq. (2.2)
	Appendix 2: Proof of Eq. (2.6)
	References

	3 The Evolution of Culturally Transmitted Teaching Behavior
	3.1 Introduction
	3.2 Model
	3.2.1 Basic Model of Nakahashi (2010)
	3.2.2 Including Teaching Behavior

	3.3 Discussion
	Appendix 1
	Appendix 2
	Appendix 3
	References

	4 A Population-Genetics Based Model for Explaining Apparent Cultural Continuity from the Middle to Upper Palaeolithic in Eurasia
	4.1 Introduction
	4.2 Mathematical Model
	4.2.1 Description
	4.2.2 Population Dynamics
	4.2.3 Patterns of Cultural Dynamics
	4.2.4 Fixation Probability of CA
	4.2.5 Expected Time Until CA Is Lost
	4.2.6 Expected Time Until CM Is Lost

	4.3 Discussion
	References

	5 Mobility and Cultural Diversity in Central-Place Foragers: Implications for the Emergence of Modern Human Behavior
	5.1 Introduction
	5.1.1 The Emergence of Modern Human Behavior: Individual- vs. Population-Level Explanations
	5.1.2 Hunter-Gatherer Mobility and Cultural Diversity
	5.1.3 Summary

	5.2 The Model
	5.3 Results
	5.3.1 Time to Fixation
	5.3.2 Number of Variants Remaining and Teachers Gained per Unit Time

	5.4 Discussion
	5.4.1 How Does Increased Logistical Mobility Increase the Effective Size of a Subdivided Population?
	5.4.2 What Are the Implications for Our Understanding of the Emergence of Modern Behavior?

	5.5 Conclusion
	References

	6 Behavioral Modernity and the Cultural Transmission of Structured Information: The Semantic Axelrod Model
	6.1 Introduction
	6.2 The Semantic Axelrod Model for Trait Prerequisites
	6.2.1 Representation of Traits and Their Prerequisites
	6.2.2 The Axelrod Model of Social Learning and Differentiation
	6.2.2.1 Axelrod's Original Model
	6.2.2.2 Semantic Extensions to the Axelrod Model


	6.3 Measuring Cultural Diversity and the Results of Structured Learning
	6.4 Experiments
	6.5 Results
	6.5.1 Cultural Diversity
	6.5.2 Trait Richness and Knowledge Depth
	6.5.3 Population Size
	6.5.4 Trait Tree Symmetries

	6.6 Discussion
	Appendices
	Algorithm Description
	Availability of Software and Analysis Code

	References

	7 Inferring Learning Strategies from Cultural Frequency Data
	7.1 Introduction
	7.2 Previous Research
	7.2.1 Adoption Curve
	7.2.2 Power-Law Distribution
	7.2.3 Model Selection Framework
	7.2.4 Formal Modelling

	7.3 Generative Inference
	7.3.1 Application in Population Genetics
	7.3.2 Application to Cultural Evolution
	7.3.2.1 Generative Model
	7.3.2.2 Statistical Inference
	7.3.2.3 Example


	7.4 Conclusion
	A.1 Appendix
	References

	8 Simulating Geographical Variation in Material Culture: Were Early Modern Humans in Europe Ethnically Structured?
	8.1 Introduction
	8.2 Case Study: Applying Simulation Modelling and ABC Methods
	8.2.1 Introduction
	8.2.2 Simulation Modelling
	8.2.2.1 Simulation World
	8.2.2.2 Demographic Processes
	8.2.2.3 Cultural Processes: Modelling Ethnic Diversity
	8.2.2.4 Null and Culture-Dependent Interaction Models
	8.2.2.5 Models, Model Parameters and Prior Ranges

	8.2.3 Analysis
	8.2.4 Results
	8.2.5 Discussion and Extensions of Simulated Model

	8.3 General Discussion and Conclusions
	Appendices
	Appendix 1: Bayesian Inference and Approximate Bayesian Computation (ABC)
	Appendix 2: Approximate Bayesian Computation (ABC) Algorithm
	Appendix 3: Summary Statistics
	Shared Information (SI)
	Mutual Information (MI)
	Mean Absolute Deviation (MAD)
	Spatial Distribution of Sites (DR)

	Appendix 4: Bayes Factors for Model Comparison

	References

	9 Transmission of Cultural Variants in the North American Paleolithic
	9.1 Introduction
	9.2 Learning Models
	9.2.1 Learning Models in Archaeology

	9.3 The North American Paleolithic and Fluted Points
	9.3.1 Studies of Variation in Clovis Points
	9.3.1.1 Morrow and Morrow (1999)
	9.3.1.2 Buchanan and Hamilton (2009)
	9.3.1.3 Hamilton and Buchanan (2009)
	9.3.1.4 Sholts et al. (2012)
	9.3.1.5 Buchanan et al. (2014)
	9.3.1.6 Explaining the Interstudy Differences


	9.4 Conclusion
	References

	10 Experimental Studies of Cumulative Culture in Modern Humans: What Are the Requirements of the Ratchet?
	10.1 Introduction
	10.2 Laboratory Studies of Cumulative Culture in Humans
	10.2.1 Study 1: Establishing the Methods for Studying Cumulative Culture in the Laboratory
	10.2.2 Study 2: Comparing Learning Mechanisms
	10.2.3 Study 3: High Fidelity Copying and Cumulative Cultural Evolution

	10.3 Cognitive Requirements of Cumulative Culture?
	10.3.1 Action Copying
	10.3.2 High Fidelity Copying
	10.3.3 Concluding Remarks

	References

	11 Learning in the Acheulean: Experimental Insights Using Handaxe Form as a `Model Organism'
	11.1 Introduction
	11.2 Experiment 1: Considering the Effects of Size Mutation in the Acheulean
	11.3 Experiment 2: Considering the Effects of Shape Mutation in the Acheulean
	11.4 Discussion
	11.5 Conclusions
	11.6 Final Remarks in the Context of the RNMH Project Objectives
	References

	Index

